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This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI)
problems. This is a fundamental subject of fluid dynamics, in which a lot has already
been done in the theory, experiments, and computational techniques. However, every day
further developments in marine engineering, bioengineering, and renewable energy call
for addressing new problems and arising phenomena. That is why it would be helpful to
explain in this preface basic motivations for publishing this issue.

FSI can be defined as a joint motion of a deformable structure with an internal or
surrounding fluid flow. The structure and the fluid the governing equations are different,
which calls for introducing an interface on which consistent boundary conditions for both
the liquid and the solid regions are formulated. This is the main feature of FSI problems.
In some cases, the liquid causes such a small deformation of the structure that it does not
affect the motion of the liquid. These fluid–structure interaction systems are called weakly
coupled systems, or one-way interaction, i.e., the liquid deforms the structure shape, but
the deformation is so small that it does not affect the flow significantly. In contrast to this, a
strong interaction, or two-way interaction, occurs when the deformation of the structure is
great enough to change the flow characteristics, which, in its turn, may affect the structure
deformation. Two-way interaction problems are complicated due to nonlinearity since
the shape of the interface is unknown in advance and has to be determined as part of
the solution of the problem using boundary conditions at the interface, which come from
joining the solutions for the solid and the liquid parts.

The interest in FSI problems is very great due to their practical importance. Recent
developments in engineering have led to advanced formulations of FSI problems. Some
of them could not be formulated several years ago. These problems require progress in
both numerical algorithms and mathematical apparatus and advanced computational
techniques, such as parallel computations.

In this issue, we have tried to collect different FSI problems, new mathematical and
numerical approaches, new numerical techniques and, of course, new results, which can
provide an insight into FSI processes.

The issue opens with the paper by Ren et al. [1] on vortex induced vibration (VIV)
of risers in oil/gas offshore production systems. Caused by ocean currents, vortices are
periodically generated on the sides of the riser and manifest themselves as a periodic
excitation force. When the frequency of the periodic force approaches one of the natural
frequencies of the riser, an increase in the vibration amplitude can be expected.

The second paper by Qiu, Ren and Li [2] presents a study on FSI during the water
impact of a lifeboat in free-fall from a ship into a rough see. The paper not only reviews
recent developments in the water-entry theory, but also presents a way to account for the
boat elasticity and friction forces. The computational results are verified by experiment.

The paper by Ni et al. [3] on ice–ship interaction is very remarkable. Activities in the
Arctic Regions have rapidly increased in the last decade due to ice melting caused by the
climate change and opening new routes for transportation. This paper presents a numerical
simulation of a ship moving in level ice with a crack propagation process including radial
and circular cracks. The computations are based on a one-way CFD-DEM coupling method.

J. Mar. Sci. Eng. 2022, 10, 159. https://doi.org/10.3390/jmse10020159 https://www.mdpi.com/journal/jmse
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A two-way fluid–structure interaction (FSI) approach is presented in the paper by Malazi
et al. [4] considering three-dimensional FSI in the case of an elastic beam. They developed
a two-way FSI coupling method and demonstrated its high efficiency. The method may be
employed in various engineering fields, such as mechanical, civil, and ocean engineering. Chie
and Wahab [5] investigated the flow field around an intake structure and derived engineering
design criteria to mitigate the seawater intake operation impact on marine life.

Typically, pumps and turbines work with high loads on the impeller. In the case
of flow unsteadiness, this may cause a response of the pump structure, which leads to
vibration and even dangerous resonance phenomena. Mao et al. [6] investigated another
type of instability of reversible pump/turbines caused by a transition from the turbine to
the pump mode of operation. They studied the axial hydraulic force and determined the
deformation of the support bracket and the main shaft, which contribute to the resultant
force on the crown and the band.

The interesting study Liu et al. [7] related to the fish industry deals with the design
parameters of a trawl net and its effect on the hydrodynamic characteristics. Based on the
experiments conducted, it was found that the codend drag force oscillation mainly included
a high-frequency and a low-frequency oscillation. The low-frequency oscillation of the drag
force included a strong wave oscillation and a weak wave oscillation set up alternately.

A study on the vibration characteristics of a marine centrifugal pump unit and different
excitation sources is presented by Dai et al. [8]. They developed a computational code
coupling the fluid and the structural dynamics of the pump unit and studied the vibration
characteristics caused by fluid excitation and electromagnetic excitation. The agreement
between the calculated and the test results is quite impressive.

A two-way FSI coupling approach for the vp1304 marine propeller is presented by
Masoomi and Mosavi [9]. They developed a code that predicts the pressure and stress
distributions with a low-cost and high-precision approach. They pointed out that an
important factor for the coupling approach is the rotational rate interrelated between two
solution domains. The propeller strength was assessed by considering the blades’ stress
and strain for different load conditions.

The paper Liu et al. [10] deals with a numerical modal analysis of a prototype Francis
pump turbine runner. They employed an acoustic–structure coupling method. The effect
of the energy loss on the chamber wall on the natural modes of the runner was studied by
the absorption boundary. The results show that the constraint condition (especially the
rotating shaft) has significant impacts on various modes of the runner.

The case of one way fluid/structure interaction is presented by Marty et al. [11]. They
studied the interaction of a coastal current with submerged components of floating wind
turbines, risers and mooring lines for floating units taking into account surface roughness
caused by mussel’s colonies. The authors found two realistic shapes caused by mussel’s
colonization and presented tests of those shapes in a hydrodynamic tank.

Flow detachment conditions in the presence of surface tension are discussed in Savchenko
et al. [12] for a case study of cavity flow past a wedge with rounded edges. The authors
analyze the Brillouin–Villat criterion of flow detachment and its applicability to flows with
surface tension. It was found that the Brillouin–Villat criterion has a limited applicability,
especially for small Froude numbers and small edge radii. For moderate Weber numbers,
surface tension slightly decreases the cavity size and the drag force. As the Weber number
decreases further, the velocity at the point of cavity detachment increases, and the angle
of flow detachment changes in such a manner that the wetting part of the edge becomes
larger. The tendency seems to be towards wetting the whole of the edge and making the flow
attached to the wedge.

We expect that this Special Issue will be helpful to researchers in different fields of
hydrodynamics and will contribute to the study of fluid/structure interaction problems.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Different from the previous studies of the vortex-induced vibration (VIV) dominated
by first mode of flexible pipe in an oscillatory flow, the features of a higher mode dominated are
experimentally investigated in the ocean basin. The flexible pipe is forced to harmonically oscillate
with different combinations of a period and amplitude. The design dominant mode consists of first
and second modes under the maximum reduced velocity (VR) of approximately 5.5 with a KC number
ranging from 22 to 165. The VIV responses between only the excited first mode and the excited
higher mode are compared and studied using displacement reconstruction and wavelet transform
methods. The discrepancies of spatial and temporal response between smaller and larger KC numbers
(KC = 56 and 121) are first observed. The strong alternate mode dominance and lock-in phenomena
occur in the case of larger KC numbers, while they cannot be observed in the case of smaller KC
numbers under higher modes. The VIV dominant frequency in the in-line (IL) direction is found to
be always triple the oscillatory flow frequency and not twice that in the cross flow (CF) direction.
The dominant frequency in the CF direction can be predicted by the Strouhal law, and the Strouhal
number is approximately 0.18 under VR = 5.5, which is not affected by the excited mode. Moreover,
differences of response motion trajectory are also revealed in this paper. The present work improves
the basic understanding of vessel motion induced VIV and provides helpful references for developing
prediction methods of VIV in an oscillatory flow.

Keywords: vortex-induced vibration; higher mode; flexible pipe; oscillatory flow; motion trajectory;
lock-in; dominant frequency; time-varying

1. Introduction

The riser, serving as the only channel to connect the seabed wellhead to the top floating vessel,
is the weakest part of the entire oil and gas development system. As natural gas and oil production
moves into deep and ultra-deep-water sea, risers are becoming increasingly slender. Under the action
of ocean currents, vortices are periodically generated and alternately shed from the sides of these very
slender risers, resulting in corresponding periodic excitation force. When the frequency of this force is
near one of the natural frequencies of the flexible riser, a significant vibration will occur. This is termed
Vortex-induced Vibration (VIV) [1], which has been proven to be the main reason for the fatigue damage

J. Mar. Sci. Eng. 2020, 8, 408; doi:10.3390/jmse8060408 www.mdpi.com/journal/jmse5
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of risers. Owing to the complexity of the ocean environment and stronger coupling interaction between
fluids and structures, the observation of dynamic behaviors of VIV under different environments is the
first step to solve this problem. Therefore, researchers in both industry and academia have carried
out a lot work to investigate the VIV response performance and to improve the understanding of the
mechanism behind VIV.

In last five decades, the studies, as shown in Table 1, have mainly focused on VIV features
in a steady flow. A stationary rigid cylinder was first towed in the tank. The vortex-induced
force, response frequency, and wake patterns were preliminarily investigated and found to be a
function of Reynolds numbers [1–5]. Furthermore, self-oscillation tests of a rigid cylinder in steady
flow were conducted [6–14]. The amplitude and frequency of the VIV response versus reduced
velocity were studied. Three branches—the initial, the upper, and the lower branches—were defined,
and many other features were revealed. These works enrich the basic understanding of vortex-induced
vibration. However, the aforementioned cylinder model is rigid and quite different from the real riser.
To get closer to the real riser, flexible pipe models were adopted and experimented in steady flows,
such as uniform flow, linear shear flow, and stepped flow [15–23]. Higher-order and multi-mode
responses, traveling wave and time-sharing features are further discussed. These particular phenomena
greatly improve our understanding of VIV. Based on the above efforts, semi-empirical methods were
established. Corresponding software was formed and widely used in industry, such as SHEAR7 [24],
VIVA [25], and VIVANA [26]. However, observation under the steady flow field cannot fully reflect
the vortex-induced vibration characteristics of the vertical pipe under the real ocean environment and
limits development of VIV prediction methods.

Table 1. Summary of experimental studies on the Vortex-induced Vibration (VIV) features.

Author Year Current Model Type Experiment Type Vibration Mode

Schewe et al., Williamson et al.,
Hallam et al., Achenbach et al. 1983,1988,1977,1981 Uniform flow Rigid cylinder Stationary towing /

Williamson et al., Govardhan et al.,
Sarpkaya, Bearman, Feng, Griffin et al.,

Parkinson

2006, 2004, 2008, 2000,
2004, 1984, 1963, 1982, 1989 Uniform flow Rigid cylinder Self-oscillation /

Lie et al., Frank etal., Trim et al. 2006, 2004, 2005 Linear shear flow Flexible pipe Flexible pipe Multi-mode

Fu et al., Ren et al., Vandiver, Song et al. 2011, 2019, 1985, 2016, 2017 Uniform flow Flexible pipe Flexible pipe Multi-mode

Chaplin et al. 2005 Stepped flow Flexible pipe Flexible pipe Multi-mode

Wang et al., Pesce et al., Cunff et al.,
Pereira et al., 2015, 2017, 2017, 2005, 2013 / Flexible pipe VMI-VIV Multi-mode

Fu et al., Wang et al. 2014, 2015 Oscillatory flow Flexible pipe Flexible pipe 1st

In a real sea state, risers inevitably encounter the action of wave and vessel motions. This wave
and wave-induced periodic motion of a platform always result in a relatively equivalent oscillatory
flow around risers. Recently, experimental studies found that the oscillatory flow induced by
vessel motion can also excite VIV at the sag-bend of steel catenary risers [27,28], which is the
so-called Vessel Motion-induced VIV (VMI-VIV) [29]. VMI-VIV can cause serious fatigue damage
to risers [30]. Similar experiments with the steel catenary riser are conducted by Cunff et al. (2005)
and Pereira et al. (2013) [31,32]. Moreover, the experiment of a free-hanging riser under vessel
motion was also carried out [33,34]. VMI-VIV has also been observed. The multimode participation,
travelling wave, amplitude modulation and time-sharing phenomenon are directly found in these
studies. To better understand the VMI-VIV, Fu et al. (2014) conducted a flexible riser model test
in an oscillatory flow by forcing the model to oscillate in still water with different periods and
amplitudes [35,36]. A VIV development process for a flexible riser in an oscillatory flow was first
proposed, including the building-up, lock-in, and dying-out phases. However, only the first mode
was excited in their experiments, which is different from the excited higher mode in real environments.
This limitation prevents this experiment from providing a more basic understanding of VMI-VIV.
Therefore, the features of VIV under a higher mode in an oscillatory flow need further study.
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The remainder of this paper is organized as follows. Section 2 presents the VIV model tests of a
flexible pipe under a higher mode in an equivalent oscillatory flow. The dominant mode is designed to
be the first and second modes. The maximum reduced velocity, located in the significant vibration
region of VIV, is selected as approximately 5.5. The KC numbers vary from 22 to 165 through forcing the
flexible pipe to harmonically oscillate under various combinations of amplitude and period. Section 3
introduces the basic theory of data preprocessing, the displacement reconstruction method, and the
time–frequency analysis method. Based on these methods, the differences of VIV features between only
the first mode and the excited higher mode are compared and studied in Section 4. The investigation
conclusions are then summarized in Section 5.

2. Model Test

2.1. Experimental Setup

To simulate an equivalent oscillatory flow, the same test apparatus made by Fu et al. (2014) [35]
was adopted and forced a flexible pipe to oscillate in harmonic motions under various combinations of
amplitudes and periods in an ocean basin at Shanghai Jiao Tong University. The whole experimental
apparatus mounted under the bottom of the towing carriage primarily contains two horizontal and
vertical tracks as shown in Figure 1. Two force sensors are placed at two ends of the pipe model
through universal joints. A pretension force of 500 N was applied to the flexible pipe by a tensioner,
which was connected to the force sensor and fixed to a side of the vertical tracks. The vertical track
was used to adjust submerged depth of the model, and the horizontal tracks drove the pipe to oscillate.
Two endplates were used to reduce the disturbance of the supporting frame to the equivalent oscillatory
flow field.

Figure 1. Overview and sketch of the whole experimental setup: ((a). the overview photo;
(b). the schematic drawing).

The flexible pipe was made up of a polypropylene random pipe that is filled with copper cable
inside. Silicone gel was placed between different layers to prevent relative slippage. The details of the
flexible pipe are listed in Table 2. The bending stiffness is 46.433 N·m2 and the damping ratio is 2.53%.
The 1st and 2nd order eigen frequency of the flexible pipe in still water can be calculated by which can
be calculated by Equation (1).

fn0 =
n
2L

√
FT0

m
+

n2π2

L2 ·
EI
m

, m = m +
1
4
πD2ρCm, (1)

where FT0 is the pretension force of 500 N, m is the mass of bare pipe per unit length in still water,
and L and D are the length and diameter of flexible pipe, respectively. EI is the bending stiffness
of the pipe, and ρ is the density of water, ρ = 1000 kg/m3. The added mass coefficient is chosen as
Cm = 1.0. Notably, the added mass may deviate from the value of 1.0 in still water, and the forced
oscillation periods will change with the KC number at the same maximum reduced velocity. n is the
mode number.
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Table 2. Parameters of the flexible pipe model.

Item Value

Model length L (m) 4
Outer diameter D (mm) 29

Mass of flexible pipe in the air m (kg/m) 1.529
Mass ratio of flexible pipe (m*) 2.3

Bending stiffness EI (N·m2) 46.43
Tensile stiffness EA (N) 1.528 × 106

Pre-tension FT0 (N) 500
Damping ratio ζ 2.53%

Calculated first natural frequency f 10 in still water (Hz) 1.90
Calculated second natural frequency f20 in still water (Hz) 4.08

Four groups of Fiber Bragg Grating (FBG) strain sensors were installed on the surface of the
flexible pipe to measure the strain responses in both the CF and IL directions. Each of the FBG groups
(CF_a, CF_c, IL_b and IL_d) had ten measurement points along the pipe separated by 0.36 m, as shown
in the schematic diagram in Figure 2.

 
Figure 2. The Fiber Bragg Grating (FBG) strain sensor instrumentation along the flexible pipe model.

2.2. Test Arrangement

For convenience of description, the coordinate system is defined as O-XYZ as shown in Figure 1b.
The origin is at the end point of the test model. The Z axis is along the length of pipe. The X axis is the
in-line flow direction, and the Y axis is the cross-flow direction. In our model test, the instantaneous
displacement X(t) and velocity U(t) of forced harmonic motions in the horizontal direction can be
expressed as:

X(t) = Am sin
(2π

T
t
)

(2)

U(t) = Um cos
(2π

T
t
)
, Um = Am

2π
T

(3)

where Am and T are oscillation amplitude and period, respectively. Um is the amplitude of the forced
motion velocity.

The key parameters determining the VIV features of the flexible pipe under oscillatory flow are
the KC and maximum reduced velocity VR [37]. The KC number is defined as follows in Equation (4).

KC =
2π ·Am

D
, (4)

In our experiments, the excited dominant mode is designed to be the 1st and 2nd modes.
The corresponding maximum reduced velocity VR1 and VR2 is expressed as Equations (5) and
(6), respectively.

VR1 =
2π ·Am

T · f10 ·D (5)

VR2 =
2π ·Am

T · f20 ·D (6)
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To investigate the VIV performance of the flexible pipe under higher modes in an oscillatory
flow, the test cases are divided into two groups with different designed vibration modes under the
same maximum reduced velocities. The comparison group and the group with higher modes used the
f 10 (f 10 = 1.90Hz) and f 20 (f 20 = 4.08Hz) to design test cases, respectively. All test cases are listed in
Table 3. The maximum reduced velocities are approximately 5.5. The KC number ranges from 22 to
160. The corresponding maximum Reynolds number (Remax) is also listed in this table, which can be
calculated by Equation (7):

Remax =
UmD
υ

, (7)

where Um is the forced motion velocity amplitude, and υ is the kinematic viscosity coefficient.
In our experiment, the ambient temperature is maintained near 15 ◦C, and υ is, therefore,
approximately 1.14 × 10−6 m2 s−1.

Table 3. Test Matrix.

Case No. VR Mode Am(m) KC Remax

1–8 5.6 1st 0.10–0.76 22–165 7860
9–15 5.2 2nd 0.22–0.76 48–165 15,696

3. Data Analysis Procedures

3.1. Preprocessing

In the model test, the measured strain in both the IL and CF directions included three components:
the initial axial strain caused by pretension, the varying axial strain caused by varying tension, and the
bending strain resulted from hydrodynamic forces. Therefore, the pure VIV strain at position z, εCF(z,t),
can be calculated by:

εCF(z, t) = [εCF_a(z, t) − εCF_c(z, t)]/2 (8)

where εCF_a(z,t) and εCF_c(z,t) are the original strain time histories at position z sampled by the CF_a
and CF_c measurement points, respectively.

At the same time, the bending strain εIL(z,t) in the IL direction can be calculated by Equation (9).

εIL(z, t) = [εIL_b(z, t) − εIL_d(z, t)]/2 (9)

where εIL_b(z,t) and εIL_d(z,t) are the original strain time histories at position z sampled by the IL_b and
IL_d measurement points, respectively.

Then, a band-pass filter was utilized to eliminate the higher frequency noise in the IL direction
and to remove corresponding higher frequency noise and effects of pendulum motion caused by forced
motion in the CF direction. The cutoff frequencies of the band-pass filter were 0 Hz and 15 Hz for the
IL direction and 2.5f o (f o is the forced oscillation frequency) and 15 Hz for the CF direction.

3.2. Displacement Reconstruction

The displacement reconstruction method is a basic tool for the VIV study [15,21,38]. According to
the Euler–Bernoulli beam theory, the VIV displacement response of a flexible pipe under an external
load can be expressed as the sum of the modal shapes multiplied by the generalized coordinate values
at each step. Taking the response in the CF direction as an example, the VIV displacement response
y(z,t) can be expressed as:

y(z, t) =
n∑

i=1

pi(t)ϕi(z), z ∈ [0, L] (10)

where pi(t) is the ith generalized coordinate displacement value at time t, and ϕi(z) is the displacement
at position z in the ith modal shape.
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Based on an assumption of small deformation, the curvature κ(z,t) can be expressed as:

κ(z, t) =
∂2y(z, t)
∂z2 =

n∑
i=1

pi(t)ϕ
′′
i (z), z ∈ [0, L] (11)

where ϕ′′i is the ith modal shape of the curvature. According to the geometric relationship between the
curvature and strain, the strain can be calculated by:

ε(z, t) = κ(z, t)R = R
n∑

i=1

pi(t)ϕ
′′
i (z), z ∈ [0, L] (12)

where R denotes the radius of the flexible pipe model at position z.
In the flexible pipe model, the modal shape of the displacement is sinusoidal since the two ends

of the beam are hinged boundary using universal joints, and thus can be expressed as:

ϕi(z) = sin
iπz
L

, i = 1, 2... (13)

From Equation (11), the modal shape of the curvature is also sinusoidal. After obtaining the
modal shapes of the displacement and curvature, the generalized coordinates can be obtained from
Equation (12). Then, the VIV displacement response in the CF direction can be calculated by Equation
(10). Using the same method, the displacement response of the IL direction can also be obtained.

3.3. Time–Frequency Analysis

In an oscillatory flow, the shedding frequency changes with the periodic oscillation velocity of the
model, which can be written as:

fst(t) =
St ·

∣∣∣U(t)
∣∣∣

D
(14)

where St refers to the Strouhal number (typically, St = 0.2), and fst is the vortex shedding frequency.
Under the effect of a periodically varying shedding frequency, the VIV characteristics in the CF

direction vary with time. This time-varying feature has been reported to be the major difference
between the VIV in steady flow and that in an oscillatory flow [35]. To investigate this time-varying
feature under higher modes, the wavelet transform is introduced to analyze the time–frequency
distribution of VIV in an oscillatory flow. The continuous wavelet transform equation is expressed as:

WT f (a, τ) =
〈

f (t),ψa,τ(t)
〉
= a−1/2

∫ +∞

−∞
f (t)ψ∗( t− τ

a
)dt (15)

where WTf(a,τ) is the coefficient of the time-domain signal f (t) after the wavelet transform representing
the frequency variation at that time scale, the parameter a is the scale factor, τ is the shift factor, and ψ(t)
is the mother wavelet. In this paper, the Morlet wavelet equation is employed as the mother wavelet,
and this wavelet can be defined as:

ψ(t) = Ce−t2/2 cos(5t) (16)

where C is the wavelet transform coefficient.

4. Results and Discussions

4.1. Spatial and Temporal Distributions of VIV Responses

Based on the method of displacement reconstruction described in Section 3.2, the displacement
modal weights and the displacement response can be obtained. Figure 3 shows the root mean square

10



J. Mar. Sci. Eng. 2020, 8, 408

(RMS) values of the displacement weights (prms) in the CF direction in the cases of KC = 56 and 121
under VR2 = 5.2. It shows that the second mode dominates the VIV response in all cases. The dominant
vibration mode is expected as designed. Moreover, the first mode vibration is also obvious, except for
second order modes, especially for larger KC numbers (KC = 121). This indicates that the multimode
will participate in vibrations.

Figure 3. Root mean square values of the displacement modal weights in the cross flow (CF) direction
for different KC numbers under VR2 = 5.2.

Figure 4 shows the corresponding RMS value distribution of the displacement response along the
flexible pipe in both the CF and IL directions. The blue solid line and the red dashed line represent
the displacement response for KC = 56 and 121 under VR2 = 5.2, respectively. Figure 4a shows that
the RMS value of the VIV response (YRMS) for KC = 121 is smaller than that for KC = 56, except for
the node of the second mode shape (Z/L = 0.5). Meanwhile, the value in the IL direction (XRMS) for
KC = 121 is correspondingly less than that for KC = 56 as shown in Figure 4b. This means that the
drag force acting on the flexible pipe in the IL direction for KC = 121 is weaker than that for KC = 56.
The results are consistent with the belief that VIV will enlarge the incoming flow area and increase
drag in the IL direction [17,18].

 

Figure 4. Distribution of displacement response along the flexible pipe in the CF and in-line (IL)
directions for different KC numbers under VR2 = 5.2: (a) The VIV displacement response in the CF
direction; (b) The VIV displacement response in the IL direction.

To verify the displacement reconstruction method, the strain was recalculated based on the
reconstructed displacement response. Through Equation (12), the curvature can be obtained by the
second order difference of the displacement shape multiplying the generalized coordinate displacement
value. Then, the strain values are further recalculated by Equation (13). Figures 5 and 6 illustrate the
time history of measured and calculated strain in both the CF and IL direction for KC = 56 and 121
under VR2 = 5.2, respectively. The blue solid line and red dashed line respectively represent measured
and calculated strains. Figure 7 presents the distribution of root mean squares of measured and
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calculated strains along the flexible pipe in both the CF and IL directions in the case of KC = 56 and
121 under VR2 = 5.2. The blue circles and the red dashed lines represent the measured and calculated
values, respectively. It reveals that these calculated values are in good agreement with the measured
one. This consistency demonstrates the validity of the displacement reconstruction method for the
flexible pipe in an oscillatory flow.

Figure 5. Time history of measured and calculated strain at different gauge points in both the CF and
IL directions for KC = 56 and VR2 = 5.2.

In oscillatory flows, the VIV responses have distinctive time-varying features [35,38,39]. Figures 8
and 9 show the spatial and temporal distribution of the VIV response for KC = 56 and 121 under
VR2 = 5.2, respectively. Each figure has two subfigures: Subfigure (a) is the time history of forced
motion velocity, and Subfigure (b) presents spatial–temporal distribution of VIV response. Under a
smaller KC number (KC = 56), the displacement response is always dominated by the second mode
over time. Steady standing waves can be clearly seen in the whole forced motion as shown in Figure 8b.
Different from the results of KC = 56, the first mode and the second mode alternately dominate the
VIV response in the case of KC = 121, as shown in Figure 9b. The travelling wave can be observed in
the transition region of two modes. The standing wave occurs in the dominated region of the second
mode. Thus, VIV under higher modes has the characteristic of time-sharing dominance for each mode
for larger KC number. The reason for this can be attributed to the fact that the vortex shedding does not
immediately change with forced motion velocity altering [40]. Under KC = 56, the oscillating period
is shorter, and the vortex shedding causing the second mode vibration will cover it, resulting in the
first mode vibration. As the KC number increases and the correspondingly oscillating period becomes
longer, the above effects gradually weaken. Time-sharing of the two modes appears in the case of a
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larger KC number. More insightful experiments and Computational Fluid Dynamics (CFD) simulations
will be carried out in the near future work to further investigate this interesting phenomenon.

Figure 6. Time history of measured and calculated strain at different gauge points in both the CF and
IL directions for KC = 121 and VR2 = 5.2.

Figure 7. Distributions of the measured and calculated strains in the CF and IL directions for different
KC numbers.
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Figure 8. Spatial and temporal distribution of the VIV response in the case of KC = 56 for VR2 = 5.2.

Figure 9. The spatial and temporal distribution of the VIV response in the case of KC = 121 for
VR2 = 5.2.

4.2. Time-Varying Features of VIV Responses

To further reveal the VIV response features under the higher mode (second mode), the VIV
responses near the antinode of second modal shape (Z/L = 0.3) were selected for investigation.
Figures 11 and 13 respectively present the time history of the VIV response and time–frequency
distributions at Z/L = 0.3 for KC = 56 and 121 under VR2 = 5.2. Figures 10 and 12 present the
corresponding results at Z/L = 0.5 for KC = 56 and 121 under VR1 = 5.6. Each figure above has four
subfigures. Subfigure (a) shows the time history of the forced motion velocity. Subfigure (b) is the
time history of VIV displacement response. Subfigure (c) shows the wavelet analysis of the VIV
displacement response. The depth of the color indicates the concentration level of the VIV response
components. Subfigure (d) indicates the calculated time-varying shedding frequency (fst), time varying
natural frequency (f 1, f 2), and VIV response dominant frequency (fdomi). The black dashed line and
purple solid line, respectively, represents VIV response dominant frequency and vortex shedding
frequency. The blue dot dashed line and red dot line are the first- and second-order eigen frequency,
respectively. Different from Equation (1), f 1, f 2 here considered the measured time-varying tension
FT(t), which is calculated by:

fn(t) =
n
2L

√
FT(t)

m
+

n2π2

L2 ·
EI
m

, m = m +
1
4
πD2ρCm (17)

while we still assumed the added mass coefficient Cm to be equal to 1 the same as Equation (1).
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Under smaller KC number (KC = 56), similar relatively mild amplitude modulation was seen
in both Figures 10b and 11b. The maximum VIV response of the flexible pipe can be reached 0.65 D
and 0.74 D for VR1 = 5.6 and VR2 = 5.2, respectively. The VIV response dominant frequencies are
respectively always lock-in the first and second natural frequency as presented in Figures 10d and 11d.
Although the vortex shedding frequency varies with time, the dominant frequency is always near the
natural eigen frequency of the dominant mode for smaller KC number. There is no mode transition
phenomenon in case of smaller KC number under higher mode. This is a distinctive feature of VIV
response of flexible under higher mode in an oscillatory flow under smaller KC number.

Figure 10. The time history of the VIV response and time–frequency distribution at Z/L = 0.5 for
VR1 = 5.6 and KC = 56: (a) The forced motion velocity; (b) The VIV displacement response; (c) The
time–frequency distribution of the VIV response; (d) The time-varying frequencies.

Figure 11. The time history of the VIV response and time–frequency distribution at Z/L = 0.3 for
VR2 = 5.2 and KC = 56: (a) The forced motion velocity; (b) The VIV displacement response; (c) The
time–frequency distribution of the VIV response; (d) The time-varying frequencies.
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As KC number increases to 121, amplitude modulation became stronger as shown in Figures 12b
and 13b. When VR1 = 5.6, the VIV developing process including building up, lock-in and dying out
can be clearly witnessed in Figure 12b, which were also found by Fu et al. (2014) [35]. However,
these three phases cannot be directly seen in Figure 13b and the VIV response was more disordered
when VR2 = 5.2 and KC = 121. These differences are caused by co-participation and intermittent
dominance of multiple modes under higher mode vibration for larger KC number. Figure 14 gives the
time histories of the first two modal weights. The cyan dashed lines were the envelope of response
obtained by the Hilbert transform. The similar VIV development process under VR1 = 5.6 can be easily
found in the second modal weight under VR2 = 5.2 as shown in Figure 14d, while it is difficult to
identify this process in the first modal weight as shown in Figure 14c. Thus, the secondary vibration
modes confuse the development process of the dominant vibration mode and lead to more chaotic
features of VIV.

In the oscillatory flow, the forced motion contains continuous acceleration and deceleration phases.
The second VIV modal response in acceleration and deceleration stages has an obvious asymmetrical
characteristic as shown in Figure 14d. The amplitude value in the acceleration phase at half a maximum
forced motion velocity (I, III, V) was nearly 0.10 D, while approximately 0.25 D in deceleration phase
at points (II, IV, VI). The latter response in the second modal space is larger than the former one.
This is termed as “hysteresis” [35]. Different from the VIV response dominated by the first mode,
the interesting hysteresis phenomenon did not appear in the total VIV displacement or the first modal
response under the higher vibration mode for the larger KC number. The “hysteresis” only occurs in
the dominant response modal space.

Figure 12. The time history of the VIV response and time–frequency distribution at Z/L = 0.5 for
VR1 = 5.6 and KC = 121: (a) The forced motion velocity; (b) The VIV displacement response; (c) The
time–frequency distribution of the VIV response; (d) The time-varying frequencies.
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Figure 13. The time history of the VIV response and time–frequency distribution at Z/L = 0.3 for
VR2 = 5.2 and KC = 121: (a)The forced motion velocity; (b) The VIV displacement response; (c) The
time–frequency distribution of VIV response; (d) The time-varying frequencies.

Figure 14. The time history of the VIV response at Z/L = 0.3 and the response of the first and second
modal spaces for VR2 = 5.2 and KC = 121: (a) The forced motion velocity; (b) The VIV displacement
response; (c) The time history of first modal weight; (d) The time history of second modal weight.

Beyond that, the “mode transition” and the alternate mode lock-in are prominent for the larger
KC number (KC = 121) under VR2 = 5.2 as presented in Figure 13c,d. This is absent in the VIV response
dominant by only the first vibration mode as illustrated in Figure 12c,d, and it is also not found under
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the smaller KC number (KC = 56) under the same maximum reduced velocity of the higher mode as
presented in Figure 11c,d. With vortex shedding frequency increasing from zero to the maximum value,
the dominant frequency first locked in the first natural frequency of approximately 1.95 Hz and jumped
to lock in at the second natural frequency of nearly 3.8 Hz. When the vortex shedding frequency reached
around the second natural frequency in the acceleration phase, the response dominant frequency
started jumping from the first mode to the second mode. However, the frequency turning points of the
lock-in mode decreased from the second to the first mode occurred when the vortex shedding frequency
fell between 0 Hz to the first natural frequency and displayed some uncertainties. Thus, the higher
mode locking establishment frequency and unlocking frequency are significantly different, which can
also be attributed to the lag of vortex shedding as previously mentioned. Vortex shedding does not
change immediately with forced motion velocity altering, and the locking time of the higher mode
vibration becomes longer, accordingly. Although the interesting phenomenon of “mode transition”
and the alternate mode were revealed above, the prediction of the critical transition frequency awaits
to be determined by more extensive experiments and studies in the future.

4.3. Response Frequencies and Trajectories

For the convenience of investigating performances of response trajectory and frequency under
higher mode vibrations, Figure 15 and Figure 17 first show the spatial distribution of response frequency
in the IL and CF directions and the cross-section displacement trajectories at Z/L = 0.3, 0.5, 0.7 when
KC = 56 and 121 under VR1 = 5.6 in one oscillation cycle, respectively, which is processed by MATLAB
software. Figure 16 and Figure 18 present the above under VR2 = 5.2. The dominant frequency of VIV
response in both the IL and CF direction are summarized in Table 4. Under the smaller KC number
(KC = 56) with VR1 = 5.6, Figure 15a shows the dominant response frequency in the IL direction,
the same as expected for the forced motion frequency at f = 0.188 Hz (f o). The secondary contribution
from the VIV response in the IL direction is dominated by f = 0.565 Hz (3 f o). The VIV response in
the CF direction is dominated by f = 1.907 Hz (10 f o) as shown in Figure 15b. Comparing two spatial
distributions of VIV response frequencies, the corresponding twice VIV dominant frequency in the
CF direction is inconspicuously observed in Figure 15a. There is no clear relationship where the VIV
dominant frequency in the IL direction is twice of that in the CF direction. This is inconsistent with the
results of the frequency relationship found in steady flow reported by Blevins and Saunders (1977) [1].

With the design vibration mode increasing to 2 for KC = 56, removing the response corresponding
to the forced motion frequency (fo = 0.38 Hz) in the IL direction, the VIV response in the IL direction is
dominated by f = 1.129 Hz (3f o) and participated in an insignificant frequency contributor f = 1.892 Hz
(5f o) as shown in Figure 16a. The VIV response frequency in the CF direction is dominated by
f = 3.785 Hz (10f o) as shown in Figure 16b. f = 0.322 Hz (9f o), and f = 4.548 Hz (12f o) can also be
seen, but is not obvious. The twice relationship of the VIV response dominant frequency between the
CF and IL directions is also not easy to find under the higher mode in the case of a smaller KC number.
Under the larger KC number (KC = 121), the frequency results are similar to those in the case with
smaller KC numbers. The VIV response dominant frequency in the case of KC = 121 and VR1 = 5.6
is f = 0.267 Hz (3f o) and f = 1.92Hz (22f o) for the IL and CF direction as shown in Figure 17a,b,
respectively. The frequencies f = 0.53 Hz (3f o) and f = 3.68 Hz (21f o), respectively, dominates the VIV
response in the IL and CF directions with KC = 121 under VR2 = 5.2 as presented in Figure 18a,b. Thus,
it suggests that the traditional VIV response frequency relationship between the IL and CF directions
cannot be directly used to predict the VIV response in an oscillatory flow. Beyond that, an interesting
phenomenon is witnessed in that the dominant response frequency and other secondary frequencies
all maintain the multiple relationship with the frequency of the forced motion. Similar phenomena are
also found from stationary rigid cylinder experiments in an oscillatory flow [37]. Moreover, the VIV
responses in the IL direction are always coincidentally dominated by 3f o. This provides a possible
reference for a VIV prediction in the near future.
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Figure 15. The spatial distribution of response frequency and displacement trajectories at different
positions when KC = 56 and VR1 = 5.6.

Figure 16. The spatial distribution of response frequency and displacement trajectories at different
positions when KC = 56 and VR2 = 5.2.
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Figure 17. The spatial distribution of response frequency and displacement trajectories at different
positions when KC = 121 and VR1 = 5.6.

 

Figure 18. The spatial distribution of response frequency and displacement trajectories at different
positions when KC = 121 and VR2 = 5.2.
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Table 4. Summary of dominant frequency of VIV for different test cases.

VR KC Dominant Mode Forced Motion Frequency (f o) Dominant Frequency of VIV Direction

VR1 = 5.6 56 1st 0.188 Hz 0.565 Hz (3f o) IL

VR1 = 5.6 56 1st 0.188 Hz 1.938 Hz (10f o) CF

VR2 = 5.2 56 2nd 0.38 Hz 1.290 Hz (3f o) IL

VR2 = 5.2 56 2nd 0.38 Hz 3.785 Hz (10f o) CF

VR1 = 5.6 121 1st 0.084 Hz 0.267 Hz (3f o) IL

VR1 = 5.6 121 1st 0.084 Hz 1.920 Hz (22f o) CF

VR2 = 5.2 121 2nd 0.18 Hz 0.530 Hz (3f o) IL

VR2 = 5.2 121 2nd 0.18 Hz 3.680 Hz (21f o) CF

Displacement trajectories can directly reveal the whole response process of a flexible pipe in an
oscillatory flow. We firstly select five typical time points (I, II, III, IV, and V) to mark and to help us
to describe the features of displacement trajectories at different acceleration or deceleration phases
as shown in Subfigure (c) of Figures 15–18. The necessary comparisons of displacement trajectories
mainly include the following two items:

(1) The performance of trajectories changes before and after reverse motion such as those in the
stages I→II and II→III, III→IV, and IV→V. Under the smaller KC number of VR1 = 5.6, taking one
pair stages (I→II and II→III) in half an oscillation cycle for observation, the trajectories from time I to
II are not symmetrical to those from time II to III as shown in Figure 15d–f. The response in phase
(I→II) is slightly larger than that in phase (II→III), which indicates that the response was suppressed
in the reverse motion stages. The same results can be also witnessed in phases (III→IV) and (IV→V) as
shown in Figure 15d.

One reason for this asymmetry may be attributed to the vortex shedding interaction, when the
cylinder reverses its motion direction and encounters the previously shed vortices [6,36]. The vortex
shedding interaction leads to a correspondingly different response before and after the reverse motion.
Nevertheless, we cannot rule out the effects of vortex shedding lag. At point I, the forced motion starts
to slow down, and stronger shedding vortices catch up with the flexible pipe, resulting in a larger
response in the process from I to II. These effects will weaken over time. Thus, the response asymmetry
and a larger response of I→II than that of II→III were observed. When the KC number increases to 121
under VR1 = 5.6, the asymmetric features in phase (I→II) and (II→III) of the trajectory become very
apparent, as shown in Figure 17d–f.

With the dominated mode increasing to the second mode, similar results can also be found under
the smaller KC number (KC = 56) as shown in Figure 16d–f. However, the aforementioned prominent
features are not obvious in the case of the larger KC number (KC = 121) under VR = 5.2 of the second
mode as illustrated in Figure 18d–f. A multifrequency response and a multimode intermittent disrupt
the features above.

(2) Differences of trajectory in acceleration and deceleration stages merit study. In the case of the
smaller KC number when VR1 = 5.6, trajectory discrepancies are very obvious between acceleration
stage II→III and deceleration stages III→IV as presented in Figure 15d–f. More significant results can
be found when KC increases to 121 under VR1 = 5.6 as shown in Figure 17d–f. Under smaller KC
numbers with VR1 = 5.6, the discrepancies of the cross-section trajectory are mainly derived from the
response phase differences between the CF and IL directions, while response amplitude discrepancies
contribute to the corresponding differences in trajectory under larger KC numbers with VR1 = 5.6.
Moreover, under the higher mode VR2 = 5.2, although a distinctively inconsistent trajectory can directly
observed in both smaller and larger KC numbers, as shown in Figures 16d–f and 18d–f, respectively,
differences of trajectories can be all attributed to response phase differences. The response amplitude
difference is slight and is a secondary reason for trajectory discrepancies in the case of VR = 5.2 of the
second mode.

Beyond that, under VR1 = 5.6, the trajectory of the walking “8” and “o” shapes can be observed,
especially for the larger KC number (KC = 121) as shown in Figure 17d–f. When the design dominated
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mode increased to the second mode, the quasi-regular track characteristics like the walking “8” and “o”
shapes disappeared without any trace for smaller or larger KC numbers as presented in Figures 16d–f
and 18d–f. Furthermore, some differences do exist in the trajectory along the length of the flexible
pipe whether the higher order mode is dominated or only the first mode is involved. Subfigures
(d–f) of Figures 15–18 display this well. It should be emphasized that the response amplitude and
the response phase between the IL and CF directions are two essential factors for hydrodynamic
force coefficients. The results above indicate that hydrodynamic coefficients before and after the
reverse motion, acceleration, and deceleration stages will be different. A different trajectory along the
flexible pipe means that a different cross section will have different hydrodynamic coefficients. Thus,
hydrodynamic coefficients may display spatial and temporal varying features [39,41–43]. Moreover,
the trajectory discrepancies between the higher mode dominated and only the first mode involved
manifest that hydrodynamic coefficients under a response dominated by a higher mode will have
certain novel and complex characteristics that need to be studied in future work.

4.4. General Discussions

Based on this detailed case study, features of the VIV response of a flexible pipe under oscillatory
flow with the higher mode dominated are different from that with only the first mode dominated
through comparing smaller and larger KC numbers under the same maximum-reduced velocity of
different design dominated modes. Under the higher mode with the larger KC number, the mode
transition and alternate mode lock-in are prominent. A travelling wave occurs in the mode transition
stage and the standing wave appears in the lock-in one. However, the alternate mode lock-in
phenomenon cannot occur, and the VIV response is always locked in the dominated mode for the
smaller KC number with the higher mode. The standing wave is always seen in the spatial and
temporal distributions of the VIV. The travelling wave characteristic is not found in the case of
the smaller KC number under the higher mode. Different from only the first mode excited case,
VIV processing, including building up, lock-in and dying out, and hysteresis, are clearly witnessed
only in the dominated modal space. This indicates that the response of the secondary participate mode
does not affect the VIV process or features in the dominated modal space.

The aforementioned detailed features provide us with a basic understanding of the VIV response
under the higher mode in the case of different KC numbers. The VIV displacement amplitude of each
case should be further summarized. Figure 19 shows the maximum root mean square VIV displacement
versus the KC number under different dominated modes. The blue triangle and red circle represent
the responses under VR1 = 5.6 and VR2 = 5.2, respectively. The decreasing tendency of response
amplitude with KC number can be observed under two dominant designed modes. Under the small
KC number, the interaction of vortex shedding before and after the reverse forced motion is stronger
for the small KC number case, leading to a larger response [36]. In the case of the larger KC number,
the maximum value of YRMS/D approaches towards a constant value asymptotically as the KC number
increases. The value differences of VIV response amplitudes under two dominated modes are not
large. This indicates that the effects of higher dominated mode (>2) in an oscillatory flow on VIV
response amplitude may be slight.

In Section 4.3, the response frequency and trajectory under different dominated modes in an
oscillatory flow are compared. Discrepancies of response trajectories are revealed between different
dominated modes and may cause some unknown effects on hydrodynamic force. Future work
should emphasize the investigation of hydrodynamic coefficients under higher modes. Moreover,
response frequency always maintains a multiple relationship with the frequency of the forced motion
whether is dominated by a higher mode or not. The response frequency calculation is an essential issue
in VIV prediction. For the VIV of a rigid cylinder in an oscillatory flow, Sumer and Fredsøe (1988) [37]
found the integral multiple relationship between the VIV dominant response frequency fdomi in the CF
direction and the oscillatory flow frequency f o. This result is consistent with our observation on the
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VIV response of the flexible pipe in an oscillatory flow as previously described. It indicates that there
are integral vortices shedding for each motion period. These vortex shedding pairs N are defined as:

N =
fdomi

fo
(18)

Figure 19. The maximum root mean square VIV displacement responses versus KC numbers under
different dominated modes.

In a steady flow, the VIV dominant frequency is governed by the Strouhal number (St). The typical
value of the St number is found to be approximately 0.2 through the stationary smooth cylinder in a
steady flow [1]. To further investigate the effects of dominated modes on the St number and to extract
the exact value of the St number, the relationship among the VIV dominant frequency, the number
of vortex shedding pairs, the KC number under oscillatory flow, and the Strouhal number can be
expressed as follows:

N
KC =

fdomi
fo
· D fo

Um
=

fdomiD
Um

= St
N = St ·KC

(19)

The aforementioned relationship was first introduced to investigate the St number of a smooth
rigid cylinder in an oscillatory flow by Sumer and Fredsøe (1988) [37]. However, it can be also applied
for the flexible pipe and has been used in the SCR and free-hanging riser model tests [27,33,34].
Through Equation (18), the dominant frequency of all cases is first summarized, and the vortices
shedding pairs N are then calculated. The distributions of vortex shedding pairs versus KC numbers
are presented in Figure 20. The vortex shedding pairs maintain a good linear relationship with the
KC numbers. Based on Equation (19), the values of the St number under VR1 = 5.6 and VR2 = 5.2 are
0.18 and 0.174, respectively. These values are slightly lower than the typical value of 0.20, which is
consistent with the results reported by Wang et al. (2015) [27]. Comparing St numbers under two
different dominated modes in an oscillatory flow, the two values are very close, and the differences can
be ignored. Thus, we can infer that the St number is controlled by the maximum reduced velocity and
not related with the dominated modes in the CF direction.

Moreover, the dominant frequency of the VIV response in the IL direction is different from that in
the CF direction as depicted in Figures 15a, 16a, 17a and 18a. The dominant frequency seems to always
be triple the oscillatory flow frequency. Thus, the dominant frequency prediction of the VIV response
in the IL direction can be directly calculate by this simple relationship. Although the VIV response
dominant frequency in both the IL and CF directions can be preliminarily predicted, the time varying
frequency features under larger KC numbers require a critical value to determine whether dominant
lock-in frequency jump has occurred.

Future work should conduct a more systematic series of experiments. The lock-in frequency jump
between multimode needs a critical value to be further determined. The hydrodynamic coefficients
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under different excited modes, KC numbers and maximum reduced velocity are also emphasized for
future investigation.

Figure 20. The summarized relationship between vortex-shedding pairs and KC numbers under
different dominant modes.

5. Conclusions

In this paper, an experimental study on the VIV of a flexible pipe under a higher mode in
an oscillatory flow was carried out with a VR of approximately 5.5 in the case of KC numbers
varying from 22 to 165. The dominant excited mode was designed for the first and second modes.
The VIV displacement and time-varying frequency are reconstructed and identified through the modal
superposition method and wavelet transform, respectively. Compared with only the first mode excited
cases, the features of VIV were further investigated. The main conclusions are as follows:

1. Under the higher mode, a travelling wave is observed in the mode transition regions for larger
KC numbers. An alternate mode lock-in occurs in the case of larger KC numbers, but does not
occur for smaller KC ones. A distinctive feature for smaller KC number is that the VIV response
of the flexible pipe always locks in the dominant mode.

2. The features of response motion trajectory under higher modes are different from those under
only the first mode excited, especially for larger KC numbers. The walking “8” and “o” shapes of
the motion trajectory are observed under only the first mode excited and disappear under the
higher mode. The discrepancies of trajectory along the flexible pipe and in different time phases
indicate that the hydrodynamic coefficient may exhibit spatial and temporal features.

3. The dominant frequency of the VIV is always kept triple that of the oscillatory flow frequency in
the IL direction and maintains the Strouhal law in the CF direction. Under a VR of approximately
5.5, the St number is equal to 0.18 and is not affected by the excited mode number.

Generally speaking, these findings will improve the basic understanding of VMI-VIV phenomena
and provide a good reference for developing a VIV prediction method of a flexible pipe in an
oscillatory flow.
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Abstract: In order to improve the accuracy of the freefall of lifeboat motion simulation in a ship
life-saving simulation training system, a mathematical model using the strip theory and Kane’s
method is established for the freefall of the lifeboat into the water from a ship. With the boat moving
on a skid, the model of the ship’s maneuvering mathematical group (MMG) is used to model the
motion of the ship in the waves. Based on the formula of elasticity and friction theory, the forces of
the skid acting on the boat are calculated. When the boat enters the water, according to the analytical
solution theory of slamming, the slamming force of water entry is solved. The simulation experiments
are carried out by the established model. The results of the numerical simulation are compared
with the calculation results of the hydrodynamics software Star CCM+ at water entry under initial
condition A in the paper. The position and velocity of the center of gravity of the boat, the angle,
and velocity and acceleration of pitch calculated by the two methods are in good agreement. There is a
little difference between the values of translation acceleration calculated by the two methods, which is
acceptable. This shows that our numerical algorithm has good accuracy. A qualitative analysis is
performed to find the safe point of water entry under the condition of different wave heights and two
situations of a ship encountering waves. Finally, the model is applied to the ship life-saving training
system. The model can meet the system requirements and improve the accuracy of the simulation.

Keywords: lifeboat; freefall; ship motion; Kane’s method

1. Introduction

1.1. Motivation

The lifeboat is the main life-saving equipment onboard ships. When a shipwreck accident occurs,
the crew onboard can quickly escape from the ship by the lifeboat. During the freefall of the lifeboat,
the hull of the boat usually slams into the water at high speed, with huge instantaneous impact pressure.
If the crews make a mistake when launching the lifeboat, it can cause serious damage to the hull
structure and threaten the personal safety of the crew [1]. According to the International Convention
on Standards of Training, Certification and Watchkeeping for Seafarers, 1978, as amended in 1995
(STCW 78/95), the crew must be trained and pass a lifeboat assessment before boarding [2]. Training is
limited by factors such as time and costs. In recent years, virtual reality technology has developed
rapidly, and has been used in training for marine life-saving [3,4]. In order to improve the immersion
experience and the reality of the ship’s life-saving training system, a mathematical model is established
for the motion of the lifeboat’s freefall during its launch from the ship.
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1.2. Related Work

Re et al. [5–7] conducted a series of model experiments of a boat launched from a fixed platform.
The main focus of the experimental evaluation was the performance of the boat in a range of different
weather conditions. Hollyhead et al. [8] and Hwang et al. [9] performed experiments on launching
boats from moving ships. They analyzed the motion parameters and the load of the boat. Due to the
limitation of experimental conditions, they could only analyze parameters that affected the water entry
motion of the boat and did their experiments under good environmental conditions.

In addition to the model experiment, some scholars used a computational method to analyze
the freefall of the boat, which was mainly divided into two aspects. First, computational fluid
dynamics (CFD) technology was used to numerically simulate the water entry of the lifeboat, and the
slamming load of the hull was analyzed by the simulated results [10–12]. The second method was
to establish a mathematical model for the freefall of the lifeboat for predicting the lifeboat motion
attitude, and analyzing the risk of injury to the crew [13–15]. The mathematical model of the water
entry of the lifeboat’s freefall started from Karman’s momentum theorem, solving the problem of
water impact [16]. Boef [17,18] applied Karman’s theory to the modeling of the lifeboat’s motion,
and divided the force of the lifeboat entering the water into gravity, buoyancy, drag, and slamming
force. Arai et al. [19,20] simplified Boef’s model. They divided the lifeboat’s motion into four stages,
sliding phase, rotation phase, freefall phase, and water entry phase, and analyzed the local acceleration
of the bow, midship, and stern. The calculation results of local acceleration were close to the model
experiment data. Khondoker et al. [21–23] applied Arai’s model to analyze the parameters that affect
the boat’s water entry. Karim et al. [24,25] applied Arai’s model and took the effect of regular waves
into account when calculating speed of the boat entering the water. Raman-Nair and White [26] used
multibody dynamics to analyze the entry of the boat from an offshore platform with simple movement.
The rotation phase at skid exit is automatically modeled in this way. They regarded the skid as a
slope, and the lifeboat as a cube on the slope and as a cylinder at water entry. When calculating the
slamming force, they added the item of incident wave force in addition to the item of momentum
theory, considering the effect of waves [27,28]. Dymarski and Dymarski [29] studied the model of a
lifeboat released into the water from the stern of a ship. They also regarded the skid as a slope and the
lifeboat as a cube on the slope, considering the reaction of the boat to the skid, but the motion of the
ship was not considered. The detail of the algorithm was not given.

In summary, the current mathematical models for the freefall of the lifeboat do not take motion
of ships in waves into account, and the contact force between the boat and skid is not modeled
according to their actual structure. The slamming force is calculated according to momentum theory.
All algorithms are not compared with real boat experiments or fluid dynamics software.

1.3. Our Contributions

This paper presents a computational model for the simulation of lifeboat freefall during its
launching from a ship in rough seas. In order to consider the effect of the ship’s motion on lifeboat
motion, the maneuvering mathematical group (MMG) model is used to simulate the motion of the ship
in the waves. In order to improve the calculation accuracy, the contact force between boat and skid is
calculated based on strip theory, according to the actual structure of the boat and skid. When the boat
enters the water, the slamming force is solved based on the theory of energy. The added mass of the
boat is calculated according to its size and depth of water entry. Finally, the equations of motion of a
freefall lifeboat are formulated using Kane’s method.

A series of simulation experiments are carried out by using the computational model established
in this paper. The results of simulation experiments are compared with results of the fluid dynamics
software Star CCM+. They show that our numerical algorithm has good accuracy. A qualitative
analysis is performed to find a safe point of water entry under the condition of different wave heights
and two situations of a ship encountering waves.
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Section 2 describes the mathematical model of the motion of boat on the skid. Section 3 describes
the mathematical model of boat’s water entry. The setup, results, and analysis of the simulation
experiments are presented in Section 4. Section 5 describes an application of the mathematical model
and Section 6 gives conclusions.

2. Motion of the Boat on the Skid

After the lifeboat is unhooked and released, the lifeboat slides down the skid away from the
mother ship by its own gravity. When the center of gravity of the boat slides out of the lowest point of
the skid, the boat begins to rotate owing to the vector of the gravity and the force of the skid not acting
on the boat in a straight line.

2.1. Coordinate System

Figure 1 shows the central longitudinal section of the ship. There are three Cartesian coordinate
systems: oxyz is the inertial coordinate system, with unit vectors of the three axes N1, N2, N3;
the coordinate system of o0x0y0z0 is fixed on the ship; o0 is located at the center of gravity of
the ship, the direction of o0x0 points to the bow, the direction of o0z0 points to the keel, and i0, j0, k0 are
the unit vectors of the axes. The coordinate system of o1x1y1z1 is fixed on the skid and o1 is located
at the center of the upper end of the skid, with o1x1 pointing down along the skid and o1z1 pointing
up the perpendicular to the slope of the skid; i1, j1, k1 are the unit vectors of the three axes; φ is the
angle between the plane of the skid and the horizontal plane. As shown in Figure 2, Gb is the center
of gravity of the lifeboat, o2x2y2z2 is the coordinate system attached to the boat, o2 is located at Gb,
and b1, b2, b3 are the unit vectors for the three axes.

Figure 1. The three coordinate systems are the inertial coordinate system oxyz, the coordinate system
o0x0y0z0 fixed on the ship, and the coordinate system o1x1y1z1 fixed on the skid.

Figure 2. Generalized coordinates qr of the boat in the coordinate system fixed on the skid and the
coordinate system attached to the boat with the unit vectors br (r = 1, 2, 3).
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2.2. Mathematical Model of Boat

The relative position of o0 and o1 remains unchanged in o0x0y0z0. The vector o0o1 is represented
by r and a is the angle of r with the horizontal line. Based on the theorem for composited velocity and
acceleration, the velocity and acceleration of o1 are

⎧⎪⎪⎨⎪⎪⎩
vo1 = vo0 +ωo0 × r
ao1 = ao0 +

( .
ωo0 × r

)
+ωo0 × (ωo0 × r)

, (1)

where vo0 ,ωo0 are the velocity and acceleration of the ship.
When considering only the ship’s longitudinal motion, the ship’s pitch angle is θ ; u and w are

components of the ship’s velocity in the direction of axis ox0 and oz0. The velocity and acceleration of
o1 are ⎧⎪⎪⎪⎨⎪⎪⎪⎩

vo1 =
(
u− .

θ|r|sina
)
i0 +

(
w +

.
θ|r|cosa

)
k0

ao1 =
(

.
u + w

.
θ− ..

θ|r|sina +
.
θ

2|r|cosa
)
i0 +

(
.

w− u
.
θ+

..
θ|r|cosa +

.
θ

2|r|sina
)
k0

. (2)

The velocity and acceleration of Gb are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vG = vo1 +

( .
q1 + q2

.
φ
)
i1 +

( .
q2 − q1

.
φ
)
k1

aG = ao1 +
(

..
q1 + q2

..
φ+ 2

.
q2

.
φ− q1

.
φ

2)
i1 +

(
..
q2 − q1

..
φ− 2

.
q1

.
φ− q2

.
φ

2)
k1

. (3)

The angular velocity of the rigid body is irrelevant to the choice of the base point, so
.
φ =

.
θ. The angular

velocity and acceleration of the boat are

⎧⎪⎪⎨⎪⎪⎩
ωb =

( .
φ− .

q3

)
N2

αb =
( ..
φ− ..

q3

)
N2

. (4)

The lifeboat is divided into n cross sections with equal thickness along the length of the boat.
The coordinates of the center of each section Sk, (k = 1, . . . ., n) are expressed as

(
xsk , 0, 0

)
in the coordinate

system of the boat, and lb is the length of boat. The thickness of each section is ts = lb/n ; the velocity
at the center of each cross section is

vsk = vo1 + (
.
q1 + q2

.
φ+

.
φxsk sinq3 − .

q3xsk sinq3)i1 +
( .
q2 − q1

.
φ− .

φxsk cosq3 +
.
q3xsk cosq3

)
k1. (5)

Generalized coordinates are qr, generalized velocities are ur =
.
qr(r = 1, 2, 3), partial velocities

associated with points Gb, Sk and the angular velocity are written as follows [30]:

vr
G =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i1 (r = 1)
k1 (r = 2)
0 (r = 3)

, (6)

vr
Sk

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i1 (r = 1)
k1 (r = 2)
xSk cosq3k1 − xSk sinq3i1 (r = 3)

, (7)

ωb
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (r = 1)
0 (r = 2)
−N2 (r = 3)

. (8)

The force analysis of the boat at the skid is shown in Figure 3. Forces acting on the boat are gravity
G, supporting force Fn, and friction F f .
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(a) (b) 

Figure 3. The side view (a) of forces and front view (b) of supporting force acting on the boat at the
skid. The lifeboat is located on the contact rollers on both sides of the skid. The top point of the rollers
is in contact with the boat and provides supporting force and friction.

The generalized force of gravity and inertia are, respectively,

Fr
G = vr

G·mbgk, (9)

Fr∗ = vr
G·(−mbaG) +ωr·(−I2αb), (10)

where mb is the mass of the boat, g is the acceleration of gravity, and I2 is the moment of inertia around
oy2.

For the supporting force Fn, this paper regards the contact roller as a spring with stiffness
coefficient kr and damping coefficient cr. The frictional contact force is modeled using a coefficient of
μr . The coordinates of the center of each section Sk (k = 1, . . . ., n) are

(
q1 + xsk cosq3, 0, q2 + xsk sinq3

)
in

the boat coordinate system. We define them as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αsk = q1 + xsk cosq3

βsk = q2 + xsk sinq3 − zp

γsk = 1/2
(∣∣∣βsk

∣∣∣− βsk

) . (11)

The velocity of each section relative to its contacting point is vsk/sk′ . The positions of each
contact roller are known; there are np contact rollers on each side of the skid. The coordinates of the
top of the contact roller on each side of the axes of o1x1 and o1z1 at the skid coordinate system are
xpi , zp

(
i = 1, . . . , np

)
as xpi − ts

2 cosq3 < αsk < xpi +
ts
2 cosq3 . The contacting force between Sk and contact

rollers [31,32] is

Fsk = 2
(
kr ∗ γsk − cr

(
vsk/sk′ ·k1

)
sign

(
γsk

))
k1 − 2

(
μrkrγsk sign

(
vsk/sk′ ·i1

))
i1 (12)

where ⎧⎪⎪⎨⎪⎪⎩
vsk/sk′ ·k1 =

.
q2 − q1

.
φ− .

φXSk cosq3 +
.
q3XSk cosq3 +

.
φαSk

vsk/sk′ ·i1 =
.
q1 − q2

.
φ− .

φXSk sinq3 +
.
q3XSk sinq3

. (13)

The associated generalized force acting on the Sk by the skid is

Fr
sk
= vr

sk
·Fsk (r = 1, 2, 3). (14)

The combined generalized force of the skid that acted on the boat is Fr
c =

∑
Fr

sk
(r = 1, 2, 3).

The equation of the boat motion is

Fr + Fr∗ = 0 (r = 1, 2, 3), (15)
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where Fr = Fr
c + Fr

G. Finally, the fourth-order Runge-Kutta method is used to solve the differential
equation.

2.3. Mathematical Model of Ship Motion

Based on the model of MMG [33], the coordinate system is as shown in Figure 1. The ship dynamic
equation is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m + mx)
( .
u− vr + qw

)
= XH + Xwave(

m + my
)( .

v + ur− pw
)
= YH + Ywave

(m + mz)
( .
w + pv− qu

)
= ZH + Zwave

(Ixx + Jxx)
.
p +

(
Izz − Iyy

)
qr = KH + Kwave(

Iyy + Jyy
) .
q + (Ixx − Izz)pr = MH + Mwave

(Izz + Jzz)
.
r +

(
Iyy − Ixx

)
pq = NH + Nwave

, (16)

where the variables with subscript H are the forces and moments on the hull; the variables with
subscript wave are wave forces. m is the mass of the ship; mx, my and mz are, respectively, added masses
in the direction of the axes ox0, oy0and oz0 ; Ixx, Iyy and Izz are the rotational moment of inertia around
axes ox0, oy0 and oz0; Jxx, Jyy and Jzz are the added moment of inertia around axes ox0, oy0, oz0 ; u, v, w
are velocities in the direction of axes ox0, oy0and oz0; and p, q, r are the angular velocities around
axes ox0, oy0, oz0. mz = m ; other added masses are calculated as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mx
m = 1

100

(
0.398 + 11.988cb

(
1 + 3.73 d

B

)
− 2.89

cbLp
B

(
1 + 1.13 d

B

)
+ 0.175cb

(
Lp
B

)2(
1 + 0.541 d

B

)
− 1.107

dLp

B2

)
my
m = 0.882− 0.54cb

(
1− 1.6 d

B

)
− 0.156(1− 1.673cb)

Lp
B + 0.826 d

B
Lp
B (1− 0.678 d

B ) − 0.638 d
B

Lp
B (1− 0.669 d

B )

, (17)

where cb is the block coefficient, d is the draft, B is the ship width, and Lp is the length between
perpendiculars. Ixx, Iyy, Izz, Jxx, Jyy and Jzz are calculated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ixx + Jxx = mB
(
0.3085 + 0.0227 B

d − 0.0043
Lp
100

)

Iyy = Jyy = 0.83 B
2d

(
0.25Lpcp

)2
m

Izz =
(
1 + cb

4.5
)
m +

(
Lp

2 + B2.4
)
/24

Jzz = 0.01m
(
33Lp

2 − 76.85cb(1− 0.784cb) + 3.43
Lp
B (1− 0.63cb)

)
, (18)

where cp is the prismatic coefficient.
The kinematics equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x = μcosψcosθ+ v(cosψsinθsinϕ− sinψcosϕ) + w(cosϕsinθcosψ+ sinϕsinψ)
.
y = μsinψsinθ+ v(sinψsinθsinϕ+ cosψcosϕ) + w(cosϕsinθcosψ+ sinϕcosψ)
.
z = −μsinθ+ vcosθsinϕ+ wcosϕcosθ
.
ϕ = p + qsinϕ tanθ+ rcosϕ tanθ
.
θ = qcosϕ− rsinϕ
.
ψ =

qsinϕ
cosθ +

rcosϕ
cosθ

(19)

where x, y, z and ϕ,θ,ψ are displacements and Euler angles relative to the inertial coordinate system,
respectively.
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The forces and moments on the hull are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XH = Xuuu2 + Xvvv2 + Xvrvr + Xrrr2

YH = Yvv + Yrr + Yr|r|r|r|+ Yvrvr
ZH = −Zww−Zqq−Z .

q
.
q−Zθθ

KH = −2Kpp− Δ·GM·sinϕ−YHzH

MH = −Mww−M .
w

.
w−Mqq−Mθθ

NH = Nvv + Nrr + Nr|r|r|r|+ Nvrvr + YHxc

, (20)

where Xuu, Xvv, Xvr, Xrr, Yv, Yr, Yr|r|, Yvr, Zw, Zq, Z .
q, Zθ, Kp, Mw, M .

w, Mq, Mθ, Nv, Nr, Nr|r|, Nvr, and Nvr

are hydrodynamic derivatives, which are easily calculated according to the ship parameters [34]; Δ is
the ship displacement, GM is the metacentric height, zH is the coordinate of action point of YH in the
direction of oz0, and xc is the distance between the center of gravity and the center.

For the wave force, it is estimated, based on the Frude-Krenov assumption, that the hull is
simplified to a box, and the six-degrees-of-freedom wave force and moment are as follows [34]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xwave = 2ρga
sin( kBsin(χ)

2 )
kBsin(χ)

2

e−kdBdsin(k L
2 cos(χ))sin(ωet)

Ywave = −2ρga
sin( kLcos(χ)

2 )
kBcos(χ)

2

e−kdLdsin(k B
2 sin(χ))sin(ωet)

Zwave = ρgak
sin( kBsin(χ)

2 )
kBsin(χ)

2

e−kdBLd
sin( kLcos(χ)

2 )
kBcos(χ)

2

cos(ωet)

Kwave = ρgasin(χ)
sin( kBsin(χ)

2 )
kBsin(χ)

2

e−kdd2 sin( kLcos(χ)
2 )

cos(χ) sin(ωet)

Mwave = ρga
sin( kBsin(χ)

2 )
ksin(χ)

2

e−kdd
2sin( kLcos(χ)

2 )−kLcos(χ)cos( kLcos(χ)
2 )

k2cos2(χ)
sin(ωet)

Nwave = ρga
sin( kBsin(χ)

2 )
ksin(χ)

2

e−kdd
2sin( kLcos(χ)

2 )−kLcos(χ)cos( kLcos(χ)
2 )

k2cos2(χ)
cos(ωet)

(21)

where a is the amplitude of the wave, k is the number of waves, ωe is the encounter frequency, χ is the
encounter angle, ρ is the water density, and L is the ship waterline length.

The motion parameters of the ship can be obtained by solving the differential Equations (16) and
(19) using the fourth-order Runge-Kutta method.

3. Water Entry

The geometric orientation relationship of the inertial and boat coordinate system is represented
by β1, β2, β3. The transformation relationship between the two coordinate systems is as follows,
where [NCb] is transformation matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
N1

N2

N3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
[
NCb

]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b1

b2

b3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22)

[
NCb

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
c2c3 s1s2c3 − s3c1 c1s2c3 + s3s1

c2s3 s1s2s3 + c1c3 c1s2s3 − c3s1

−s2 s1c2 c1c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (23)

where si = sinβi, ci = cosβi, (i = 1, 2, 3).
The generalized coordinates are

⎧⎪⎪⎨⎪⎪⎩
qb

i = βi

qb
3+i =

→
OOb · bi

(i = 1, 2, 3). (24)
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The generalized velocities are

⎧⎪⎪⎨⎪⎪⎩
ub

i = ωb · bi

ub
3+i = vb · bi

(i = 1, 2, 3), (25)

where ωb, vb are the velocity and angular velocity of the lifeboat, respectively.
The relationships between generalized coordinates and generalized velocities are

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
qb

1 = ub
1 + s2/c2

(
ub

2s1 + ub
3c1

)
.
qb

2 = ub
2c1 − ub

3s1
.
qb

3 =
(
ub

2s1 + ub
3c1

)
/c2

, (26)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

.
qb

4 = ub
4 − ub

2qb
6 + ub

3qb
5

.
qb

5 = ub
5 + ub

1qb
6 − ub

3qb
4

.
qb

6 = ub
6 − ub

1qb
5 + ub

2qb
4

. (27)

The acceleration and angular acceleration of the boat are

αb = Nd
(
ωb

)
/dt = bd

(
ωb

)
/dt +ωb ×ωb =

.
ub

i bi, (28)

ab = (
.
ub

4 + ub
2ub

6 − ub
3ub

5)b1 + (
.
ub

5 − ub
1ub

6 + ub
3ub

4)b2 + (
.
ub

6 + ub
1ub

5 − ub
2ub

4)b3. (29)

The partial angular velocities and velocities of the boat are

ωb
r =

{
br (r = 1, 2, 3)
0 (r = 4, 5, 6)

, (30)

vb
r =

{
0 (r = 1, 2, 3)
br−3 (r = 4, 5, 6)

. (31)

The generalized inertial force is

F∗br = ωb
r · T∗ + vb

r ·
(
−mbab

)
, (32)

F∗br =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[ .
ub

1I1 − ub
2ub

3(I2 − I3)]

−[ .
ub

2I2 − ub
3ub

1(I3 − I1)]

−[ .
ub

3I3 − ub
1ub

2(I1 − I2)]

−mb(
.
ub

4 + ub
2ub

6 − ub
3ub

5)

−mb(
.
ub

5 − ub
1ub

6 + ub
3ub

4)

−mb(
.
ub

6 + ub
1uB

5 − ub
2ub

4)

, (33)

where I1, I2, I3 is the moment of inertia around ox2, oy2, oz2.
The generalized force caused by the gravity of the boat is

FG/b
r = mbgN3 · vb

r , (34)
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FW/b
r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
mbg(sin− q2)

−mbg(sinq1cosq2)

−mbg(sinq1cosq2)

. (35)

The generalized force caused by air drag is

FW/b
r = FW

b · vb
r , (36)

FW
b = −1

2
ρwAwCw

∣∣∣vb/W
∣∣∣vb/W , (37)

where vb/W is the vector difference between the lifeboat velocity and the wind velocity vb/W = vb − vW ,
ρw is the air density, Aw is the projected area of the lifeboat in the plane perpendicular to vb/W , and Cw

is the coefficient of air drag.
The generalized force caused by fluid drag is

FD/b
r =

∑n

k=1
FD/sk

r (r = 1, · · · , 6), (38)

FD/sk
r = FD

sk
· vsk

r , (39)

where FD
sk

is the fluid drag acting on Sk and vsk
r is the partial velocity of Sk. The velocity of Sk is as

follows:
vsk = vsk

1 b1 + vsk
2 b2 + vsk

3 b3, (40)

where vsk
1 = u4, vsk

2 = u5 + xsk u3, vsk
3 = u6 − xsk u2.

The partial velocities of Sk are

vsk
r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
−xsk b3

xsk b2

br−3

(r = 1)
(r = 2)
(r = 3)
(r = 4, 5, 6)

. (41)

The components of the fluid drag acting on Sk are as follows [22]:

FD
sk
=

∑3

i=1
Dsk

i bi, (42)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dsk
1 = − 1

2nρaAsm
1 csm

D1

∣∣∣∣vsm/R
1

∣∣∣∣vsm/R
1

Dsk
2 = − 1

2ρaAsk
2 csk

D2

∣∣∣∣vsk/R
2

∣∣∣∣vsk/R
2

Dsk
3 = − 1

2ρaAsk
3 csk

D3

∣∣∣∣vsk/R
3

∣∣∣∣vsk/R
3

, (43)

where ρa is the density of seawater and Ask
i is the area of sk perpendicular to bi below the water

surface. The section sm has maximum area Asm
1 = max(Ask

1 )(k = 1 · · · n), csk
Di

is the fluid drag coefficient,

and vsk/R
i is the component of the velocity of the section sk relative to the wave surface on the axis of bi.

The generalized force caused by buoyancy is

FB/b
r =

∑n

k=1
FB/sk

r (r = 1, · · · , 6), (44)

FB/sk
r = FB

sk
· vsk

r , (45)
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FB
sk
= −ρaVsk gN3, (46)

where Vsk is the volume of Sk in water and FB
sk

is the buoyancy acting on sk.
The generalized force caused by the slamming force is

Fp/b
r =

∑n

k=1
Fp/sk

r (r = 1, · · · , 6), (47)

Fp/sk
r = Fp

sk
· vsk

r , (48)

Fp
sk
=

∑3

i=1
psk

i bi, (49)

where Fp
sk

is the slamming force that acted on section sk. Previous scholars adopted the momentum
theory to calculate the slamming force. When an object enters the water, part of its initial momentum
will be transferred to the surrounding water. Assuming that the momentum conversion process is
irreversible, the slamming force acting on the boat can be calculated by the rate of its momentum
change:

m0v0 = (m0 + ma)v, (50)

Fp =
d
dt
(m0v) = − d

dt
(mav) = −

(
dma

dt
v +

dv
dt

ma

)
, (51)

where v0 is the velocity of the object before entering the water and v is the velocity of the object after
entering the water; m0 is the mass of the object and ma is the added mass of the object.

Another method is based on energy theory, which was derived by Wu [35]. It has more physical
significance and is widely used [36–38]. The relationship between slamming force and added mass is

Fp = −dv
dt

ma − 1
2

dma

dt
v. (52)

In order to consider the effect of the wave on the boat, the incident wave force Fin is added into
the slamming force:

Fin = ρaVsuba f , (53)

where Vsub is the submerged volume and a f is the fluid acceleration.
In this paper, the slamming force Fp

sk
is calculated as the sum of energy theory and incident wave

force for the first time. psk
i are the components of Fp

sk
on the axis of bi:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

psk
1 = 1

n (ρaVsha f /sh
1 − (0.5

dm
sh
1

dt vsh/R
1 +

dv
sh/R
1
dt msh

1 ))

psk
2 = ρaVsk a f /sk

2 − (0.5
dm

sk
2

dt vsk/R
2 +

dv
sk/R
2
dt msk

2 )

psk
3 = ρaVsk a f /sk

3 − (0.5
dm

sk
3

dt vsk/R
3 +

dv
sk/R
3
dt msk

3 )

, (54)

where a f /sk is the wave surface acceleration at section sk at the coordinate system of the boat, a f /sk
i

are the components of a f /sk at the coordinate system of the boat, msk
i are the added mass of the cross

section in the direction of bi, msh
1 is the added mass of the boat in the direction of b1, and vsh

1 is the
velocity component of the midsection sh between the bow and the center of gravity of the boat in the
direction of b1.

sk have coordinates (xg
sk

, yg
sk

, zg
sk
) in an inertial coordinate system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
xg

sk

yg
sk

zg
sk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
[
NCb

]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
q4 + xsk

q5

q6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (55)
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The depth of sk is

hsk = C31 ·
(
q4 + xsk

)
+ C32 · q5 + C33 · (q6 − h0) − η

(
xg

sk
, t
)
, (56)

where Cii are elements of the matrix of [NCb], the subscript is its location in the matrix, h0 is the vertical
distance from the center of gravity to the keel, h0 is 1.15 m in Figure 4, and η(x, t) is a known function
describing the wave surface.

 
(a) (b) 

b

b

Figure 4. Lifeboat cross section: (a) longitudinal section in center plane, (b) A-A cross section.

The added mass is msk
2 = msk

3 in this paper. msk
3 depends on the depth and the instantaneous half

width of sk at the wave surface:

msk
3 =

⎧⎪⎪⎨⎪⎪⎩
ρπC2

(
xsk , hsk

)
/2

ρπC2
(
xsk , d1

)
/2

hsk < d1

hsk ≥ d1
, (57)

where C(xsk , hsk) is half the width of sk at depth hsk . When the depth of sk is greater than d1, the added
mass is calculated according to the half-width at depth d1 , as shown in Figure 4. We take the derivative

of msk
3 to time

dm
sk
3

dt =
dm

sk
3

dhsk

dhsk
dt with

dhsk
dt = max(vsk/R

3 , 0).

To calculate msh
1 , define αsk

αsk =

{
1
0

hg
sk
≥ 0

hg
sk
< 0

, (58)

where hg
sk
= zg

sk
− η(xg

sk
, t). The length of water entry in the direction of b1 is l1:

l1 =
∑n

k=1
αsk ·ts, (59)

msh
1 =

⎧⎪⎪⎨⎪⎪⎩
max

(
2(l1/lb)

3 − 4(l1/lb)
2 + 2.5(l1/lb)

)
max/2

l1 < lb/2
l1 ≥ lb/2

, (60)

where max is the added mass of the boat in the direction of b1 when the boat is completely in the water.

max =
kmπρalb(d1 + d2)

2

6
, (61)

where km is a coefficient depending on lb
(d1+d2)

. We take the derivative of msh
1 to time

dm
sh
1

dt =
dm

sh
1

dl1
dl1
dt

with dl1
dt = max(vsh/R

1 , 0).
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The acceleration of the section is
ask =

∑3

i=1
ask

i bi, (62)

where ask
1 =

.
u4 + zsk

1 , ask
2 =

.
u5 + xsk

.
u3 + zsk

2 ,ask
3 =

.
u6 − xsk

.
u2 + zsk

3 ,zsk
1 = u2u6 − u3u5 − xsk(u

2
2 + u2

3),
zsk

2 = −u1u6 + u3u4 + xsk u1u3,zsk
3 = u1u5 + u2u4 + xsk u1u3.

So
.
vsh

1 =
.
ub

4 + ub
2ub

6 − ub
3ub

5 −
1
2
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where L f is the distance from the center of gravity of the boat to the bow.
In summary, the equation of motion is

F∗br + FG/b
r + FW/b

r + FD/b
r + FB/b

r + Fp/b
r = 0 (r = 1, · · · , 6). (64)

The motion parameters of the lifeboat can be solved by Equation (64) by the fourth-order
Runge-Kutta method.

4. Results and Analysis

4.1. Experimental Setup and Implementation

The basic information of the boat, ship, and skid is shown in Tables 1–3. Air drag coefficient
Cw = 0.5. Fluid drag coefficient csk

Di
= 1.2. Figure 5 gives the structural dimension diagram of the ship

and boat in the simulation experiment.

Table 1. Basic information of the boat.

Item (Unit) Value

Length (m) 7.4
Width (m) 2.65
Draft (m) 0.74

Maximum height (m) 2.3
Maximum half width (m) 1.42

Distance between center of gravity and center (m) 0.02
I2 (kg·m2) 34,825
mass (kg) 6200

The projected areas of the boat at plane perpendicular to b1 (m2) 4.2
The projected areas of the boat at plane perpendicular to b2 (m2) 13.2
The projected areas of the boat at plane perpendicular to b3 (m2) 13.2

Table 2. Basic information of the ship.

Item (Unit) Value

Length over all (m) 144.4
Waterline length (m) 133.55

Length between perpendiculars (m) 129
Width (m) 20.8
Draft (m) 4.4

Depth molded (m) 11.4
GM (m) 5.57

Distance between center of gravity and center (m) 2.3
Block coefficient 0.68

Water plane coefficient 0.83
Prismatic coefficient 0.693
Displacement (kg) 7,550,000
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Table 3. Basic information of the skid.

Item (Unit) Value

Vertical distance between the low end of skid and deck (m) 3.5
Inclination (◦) 30

Length (m) 9
Sliding distance of the center of gravity (m) 4.96

 
(a) (b) 

Figure 5. Structural dimension diagram of the ship and boat: (a) the size of the longitudinal section
in the center plane of the ship and skid; (b) the inclination of the skid and the position of the boat at
the skid.

The simulation experiment of the whole algorithm was realized by MATLAB. The flow of the
algorithm consists of two stages that are separated by the time point of the boat out of the skid. In the
first stage, the motion of the skid is calculated according to parameters of ship motion solved by
Equations (16) and (19). The generalized contact force can be solved by Equation (14), the generalized
force caused by gravity and inertia can be solved by Equations (9) and (10), and the generalized
velocities and generalized coordinates of the boat can be solved by Equation (15). In the second stage,
the generalized force caused by inertial, gravity, air drag, fluid drag, buoyancy, and slamming force
can be solved by Equations (32), (34), (36), (38), (44) and (47); the generalized velocities of the boat can
be solved by Equation (64); and the generalized coordinates of the boat can be solved by Equations
(26) and (27). For the two stages, 20 lifeboat segments were used. For convenience of analysis and
understanding, the data of the boat’s translation and pitch are shown in the coordinates obtained by
the inertial coordinate system, rotating 180◦ around the axis of oy.

The results of a simulation experiment by the numerical algorithm in this paper were compared
with the results of Star CCM+ at the initial condition A, as shown in Table 4. The version of Star CCM+
used was 13.02. These computations were performed using an overlapping grid, as shown in Figure 6a,
in order to provide accurate wave representation at any location irrespective of the lifeboat position.
The behavior of two fluids (air and water) in the same continuum is modeled by using the model of
volume of fluid (Figure 6b). Due to the existence of two fluids in different phases, the Euler multiphase
model is activated and the gravity model is used to take into account the gravity effect of the two fluids.
The initial condition of water entry is obtained by our numerical algorithm: the boat enters the water
at the crest of the wave, the pitch angle of the boat when entering the water is 50.7◦ with horizontal,
vertical, and rotational velocity of 5.9 m/s, −11 m/s, and 0.46 rad/s.
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Table 4. Details of initial condition A.

Item (Unit) Value

Wave height (m) 2
Period of wave (s) 8

Wind velocity (m/s) (0, 0, 0)
Ship’s initial position (m) (0, 0, 0)

Ship’s initial velocity (knot) (1, 0, 0)
Situation of ship encountering waves

(0: head the wave; 1: follow the wave) 1

  
(a) (b) 

Figure 6. Simulation experiment diagram of Star CCM+: (a) overlapping grid; (b) volume fraction
of water.

4.2. Comparison and Analysis of Experimental Results

The red line is the result of the whole motion process calculated by the model in this paper. The red
blue is the result of the water entry process calculated by Star CCM+.

Figure 7 shows the trajectory and pitch angle of the boat. The results show that the trajectory
and pitch angle calculated by two methods are in good agreement. When the boat moves on the skid,
the pitch angle begins to change with no obvious logic. The pitch angle begins to increase at the bottom
of the skid. After the boat leaves the skid, the pitch angle of the boat gradually increases to about 53◦.
The pitch angle begin to decrease after increases in short time because the bow of the boat hits the
water. The center of gravity of the boat is sinking, the bow of the boat is raised, resulting in the stern
hitting the water. The buoyancy increases with the increase of the depth of the stern. Subsequently,
the pitch angle of the boat begins to increase again, and the lifeboat begins to float. After it comes out
of the water, the bow hits the water again.

 
(a) (b)

Figure 7. Trajectory (a) and pitch (b) of the lifeboat freefall during its launch from the ship.
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Figure 8 shows the ratio of the acceleration of the center of gravity to g. When the boat is on the
skid, the acceleration value of the center of gravity of the boat begins to vibrate. When the boat is at
the low end of the skid, the vibration frequency of the acceleration value increases and the amplitude
decreases. When the boat leaves the skid, the horizontal acceleration of the boat is zero and the vertical
acceleration is g before entering the water. The horizontal acceleration of the boat is negative in the
initial stage of water entry because of the slamming force and the fluid drag force, and the acceleration
becomes positive when the boat floats up because of its large buoyancy. The vertical acceleration
of the boat is almost positive because of the upward force, and its negative value caused by gravity
and fluid drag when the boat floats up. There is a little difference between the acceleration values
calculated by the two methods, especially at the initial stage of water entry. The difference is acceptable.
This phenomenon may be due to the fact that the deformation of the water caused by boat is not
considered in this algorithm.

 
(a) (b)

Figure 8. Acceleration of center of gravity of the lifeboat in the horizontal (a) and vertical (b) direction.

Figure 9 shows the velocity of the center of gravity of the boat. The horizontal velocity of the
boat gradually begins to increase at the skid, and remains the same in the air before entering the
water; it begins to decrease due to the negative acceleration at the beginning of the water entry phase,
and begins to increase when the boat floats up. The value of vertical acceleration is decreasing because
the boat moves down the skid. The value of vertical acceleration decreases at the same rate because of
g in the air before entering the water. Its value gradually increases until the sign is positive because of
the slamming force and the buoyancy at the water entry phase; its sign becomes negative when the boat
falls into the water again. The velocity values calculated by the two methods are in good agreement.

 
(a) (b)

Figure 9. Velocity of center of gravity of the lifeboat in the horizontal (a) and vertical (b) direction.

Figure 10 shows the velocity and acceleration of pitch. When the boat is on the skid, the value
of the velocity of the pitch begins to vibrate. When the boat leaves the skid, the velocity of the pitch

41



J. Mar. Sci. Eng. 2020, 8, 631

remains the same before entering the water. The velocity of the pitch decreases to a negative value when
the boat enters the water. Its sign is positive when the boat’s bow begins to fall into the water again.
The acceleration of the pitch has the same rule of change as the horizontal acceleration. The velocity
and acceleration of pitch calculated by the two methods are in good agreement.

 
(a) (b)

Figure 10. Velocity (a) and acceleration (b) of pitch of the lifeboat.

In summary, the position and velocity of the center of gravity of the boat, the angle, and velocity
and acceleration of pitch calculated by the two methods are in good agreement. There is a little
difference between the values of translation acceleration calculated by the two methods. The difference
is acceptable. This shows that the numerical algorithm in this paper has good accuracy.

The boat experiences three water impacts (bow impact, stern impact, bow impact) in the previous
analysis. In order to analyze the local acceleration of different positions in the boat, the local acceleration
of the bow, midship, and stern is calculated by Equation (1). Figure 11 shows the acceleration of the
bow (a,b), midship (c,d), and stern (e,f) in the boat coordinate system. The acceleration values in all
figures are the ratio of actual values to the acceleration of gravity g.

During the whole water entry process, the acceleration curves have three peaks because of three
water impacts (Figure 11a,c) The first two peaks are close; there is a positive maximum acceleration in
the direction of b3 at the bow at the first impact as the first peak of the curve (Figure 11a). There is a
positive maximum acceleration in the direction of b3 at the midship at the second impact as the second
peak of the curve (Figure 11c). There are two contrary extreme values of the acceleration at the stern in
the direction of b3 (Figure 11e): a negative extremum due to the first impact, and a positive extreme
value due to the second impact. The negative maximum acceleration in the direction of b1 at the bow,
midship, and stern is because of the first impact (Figure 11b,d,f). The maximum acceleration is about 3
g in the direction of b3, derived from the bow’s first impact.

4.3. Qualitative Analysis

According to the numerical calculation method used in this paper, the local acceleration extremum
is calculated under different initial conditions. The wave heights are 1, 2, 3, 4, and 5 m. By adjusting
the initial phase of the wave, the points of water entry of the boat are shown in Figure 12. Figure 12a
shows the ship heading the wave and Figure 12b shows the ship following the wave. When the ship is
heading or following the wave, only the surge, heave, and pitch of the ship are considered. Other initial
conditions (period of wave, wind velocity, ship’s initial position, ship’s initial velocity) are the same as
in condition A.

Figures 13–17 show the trajectory and pitch angle of the lifeboat when the ship is heading the
wave. Figure 18 shows the maximum value of the acceleration in the directions of b1 and b3 at the bow
(Figure 18a,b), midship (Figure 18c,d), and stern (Figure 18e,f) of the boat at eight different points of
water entry when the ship is heading waves. Figures 19–23 show the trajectory and pitch angle of the
lifeboat when the ship is following waves. Figure 24 shows the maximum value of the acceleration in
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the directions of b1 and b3 at the bow (Figure 24a,b), midship (Figure 24c,d), and stern (Figure 24e,f) of
the boat at eight different points of water entry when the ship is following waves. As there are no
experimental data for comparison, the numerical calculation results may not be very accurate, but can
be used in a qualitative analysis.

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 11. The acceleration of the bow, midship, and stern in the coordinate system of the lifeboat in
the direction of b3 (a,c,e) and in the direction of b1 (b,d,f).

  
(a) (b)

Figure 12. Eight different points of water entry of the boat when the ship is heading the wave (a) and
following the wave (b).
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(a) (b)

Figure 13. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 1 m.

 
(a) (b)

Figure 14. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 2 m.

 
(a) (b)

Figure 15. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 3 m.

 
(a) (b)

Figure 16. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 4 m.
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(a) (b)

Figure 17. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 5 m.

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 18. The maximum acceleration of the bow, midship, and stern in the coordinate system of the
lifeboat in the direction of b3 (a,c,e), and in the direction of b1 (b,d,f), at different wave heights.
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(a) (b) 

Figure 19. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 1 m.

 
(a) (b) 

Figure 20. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 2 m.

 
(a) (b)

Figure 21. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 3 m.

 
(a) (b)

Figure 22. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 4 m.
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(a) (b)

Figure 23. Trajectory (a) and pitch (b) of the lifeboat freefall when the wave height is 5 m.

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 24. The maximum acceleration of the bow, midship, and stern in the coordinate system of the
lifeboat in the direction of b3 (a,c,e), and in the direction of b1 (b,d,f), at different wave heights.
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The ship heads the wave. As shown in Figures 15–17a, when the wave height exceeds 3 m,
the boat will move to the side of the ship after water entry at P7 and P8. As shown in Figures 16a and
17a, when the wave height exceeds 4 m, the same phenomenon appears at point P6. As shown in
Figures 13–17b, at points P1 and P8, the pitch angle of the boat has a large range of change. As shown
in Figure 18, in the direction of b1, the maximum values of acceleration at the bow, midship, and stern
of the boat appear at point P4; the minimum value generally appears at P1 and P8. The maximum
values at the bow and midship are almost the same, slightly lower than the stern. In the direction of b3,
the maximum absolute values of acceleration at the bow and midship of the boat appear at points P3
and P2; the minimum value generally appears at points P7 and P8. There is no obvious rule about
the values of acceleration at the stern; the acceleration is the largest at the bow and the smallest at
the midship.

The ship follows the wave. As shown in Figures 21–23a, when the height of the wave exceeds
3 m, the boat will move to the side of the ship after water entry at points P1 and P8. As shown in
Figures 22 and 23a, when the height of the wave exceeds 4 m, the same phenomenon appears at point
P7. As shown in Figures 19–23b, the pitch angle of the boat has a large range of change at points P5
and P6. As shown in Figure 24, in the direction of b1, the maximum values of acceleration at the bow
and midship appear at points P6 and P7, and the minimum values generally appear at points P2 and
P3. The maximum values of acceleration at the stern appear at points P4 and P5, and the minimum
values generally appear at points P1 and P2. The maximum values at the bow and midship of the boat
are almost the same, and slightly lower than for the stern. In the direction of b3, the maximum values
of acceleration at the bow and midship of the boat appear at points P4 and P5; the minimum value
generally appears at points P1 and P8. The maximum absolute values of the two extremal values at the
stern appear at P4 and P5. The minimum values generally appear at P1 and P8; the acceleration is the
largest at the bow and the smallest at the midship.

Therefore, when the ship is heading the wave, P7 and P8 can be selected to enter the water at a
low wave. In order to prevent the boat from moving to the side, one can choose point P1 at a high
wave, which will withstand a large change in pitch. When the ship is following the wave, P1 and P8
can be selected at a low wave. In order to prevent the boat moving to the side, one can choose P2
and P3 at a high wave. In summary, it is safer to select points at the crest and behind the crest when
entering the water.

5. Application

This paper applies an established mathematical model to a ship’s lifesaving training system,
improving the immersion and reality of the system. The system takes the Panama bulk carrier as
a physical prototype, and uses 3D Studio Max (3ds Max) to build 3D models of the ship, lifeboat,
and skid. The system constructs a virtual scene of a ship life-saving drill, and releases the lifeboat
through a three-dimensional virtual operation, as shown in Figure 25.

  

(a) (b)

Figure 25. Scene of virtual human operating lifeboat (a) and lifeboat moving on the skid (b) in a ship’s
lifesaving training system.
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6. Conclusions

This paper presents a computational model for the simulation of lifeboat freefall during its
launching from a ship in rough seas. The model is applied to the ship’s lifesaving training system.
We can draw the following conclusions:

(1) The mathematical model in this paper can simulate the entire process of the water entry of
the ship’s lifeboat and can acquire the parameters of the boat’s trajectory, pitch angle, velocity,
local acceleration, etc.

(2) The results of a numerical simulation experiment are compared with the calculation results of the
hydrodynamics software Star CCM+ at water entry under initial condition A. It shows that our
numerical algorithm has good accuracy. The model can be applied to other ships by adjusting
the parameters.

(3) Under different wave heights and two situations of the ship encountering waves, a qualitative
analysis is performed to determine the safe point of water entry. It is safer to select points at the
crest and behind the crest when entering the water.

(4) Since the motion of the boat on the skid is only three-degrees-of-freedom, the effects of the ship’s
roll, sway, and yaw are not considered; only the simulation experiments of the ship heading and
following the wave are analyzed. Future research will consider the effect of the ship’s roll, sway,
and yaw.
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Abstract: In most previous ice–ship interaction studies involving fluid effects, ice was taken as
unbreakable. Building breakable level ice on water domain is still a big challenge in numerical
simulation. This paper overcomes this difficulty and presents a numerical modeling of a ship moving
in level ice on the water by using a one-way CFD-DEM (computational fluid dynamics-discrete
element method) coupling method. The detailed numerical processes and techniques are introduced.
The ice crack propagation process including radial and circular cracks have been observed. Numerical
results are compared with previous experimental data and good agreement has been achieved.
The results show that water resistance is an order of magnitude smaller than ice resistance during the
ice-breaking process. Ice resistance shows strong oscillation along with ice failure process, which are
affected by ship speed and ice thickness significantly.

Keywords: one-way coupling; CFD-DEM; ice resistance; ice crack

1. Introduction

With global warming, the sea ice has melted gradually [1], making the Arctic shipping routes
more navigable [2]. More and more ships are beginning to sail in the polar ice regions (NSRA) [3].
Different from open water areas, ships would encounter not only water loads but also ice loads in
the polar ice region. In particular, the effect of ice on ships presents different character from that of
water, which affects the motion response and structural safety of ships. Therefore, it is of significance
to understand ice–water–ship interaction and predict the ice and water loads of a polar ship more
accurately, which has become one of the core problems for the design and operation of polar ships [4,5].

The problem of ice–water–ship interactions is very complex [5]. To solve this problem, various
experimental, analytical, and numerical methods have been developed. Experimental studies, including
field tests [6–8] and model tests in ice tanks [9–14], are generally viewed as reliable; however, they are
strict regarding the experimental facilities and methods used and are quite expensive so cannot be done
easily. Analytical methods have a relatively long history from simple models to complex models [15–20].
However, they are usually based on many simplifications of body shape and ice model, which made
them hard to extend to complex ship hulls and actual ice conditions. Numerical methods [21–25]
have been developing quickly in recent years with the rapid development of computer capacity. In
contrast to experimental and analytical methods, numerical methods are easy to extend to various
body configurations.

From the perspective of ice mechanics, the finite element method (FEM) and discrete element
method (DEM) are two mainstream numerical methods used to simulate ice–ship interactions. FEM is
a relatively mature method to solve the continuum mechanics problem and has been used in ice–ship
interaction recently, especially adopted by various commercial software. Valanto [26] adopted FEM to
calculate the ice resistance of a ship moving in a level ice channel. Liu [27] developed a material model
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for icebergs and inserted it into the FEM software LS-DYNA and simulated the collision between
an iceberg and a ship structure. Kim et al. [11,28] simulated the resistance performance of a cargo
ship sailing in a broken ice channel using LS-DYNA software. The numerical results were compared
with the results of the nonfrozen model ice test in a water tank and the cut ice test in an ice tank,
and agreements were both achieved. On the basis of FEM, Zhou et al. [29] adopted the cohesive
element method to simulate collision between ice and propeller.

There have been several attempts to consider water effects (mainly buoyancy effects) in ice–ship
interaction by using FEM. Guo et al. [30] adopted the arbitrary Lagrange–Euler (ALE) approach
in LS-DYNA software to consider the fluid–structure coupling and calculated the resistance of an
ice-going container ship in a broken ice channel. Ni et al. [31] adopted a similar method to calculate
the total resistance of a ship turning in a level ice region, with and without water effects. It was found
that the existence of water increased the ice resistance of the ship on all directions whether in straight
or rotational motion. More work on this topic could refer to the review from Xue et al. [32].

On the other hand, DEM has become a popular method in simulating ice dynamics, by virtue of
its granular characteristics, and has been extensively used in simulating ice–structure interaction [33].
Hansen and Løset [34] applied a two-dimensional disk discrete element to simulate broken ice, by using
a linear viscoelastic force model between ice elements and studied broken ice–ship collision firstly.
Zhan et al. [35] and Lau et al. [36] adopted DEM to study the ice force and moments of a ship
maneuvering in level ice. Morgan [37] calculated the interaction between level ice and structures by
using an open source DEM software LIGGGHTS. Cai and Ji [38] used DEM to simulate the navigation
process of ships in level ice and discussed the influence of ship speed and ice thickness on ship
resistance. Further work extended the interaction between level ice and conical structures [39–41].
Gong et al. [42] modeled an ice ridge by using DEM and calculated the ice force of a ship colliding on
an unconsolidated and deformable ice ridge.

Although DEM is used extensively during ice–ship interaction, it is difficult for DEM itself to
include water effect. As an alternative of neglecting water effect directly, a common treatment is
to add buoyancy force and/or drag force of water on the discrete ice elements based on empirical
equations [33]. However, this simplified treatment cannot account for water effects fully, such as
ship-generated wave effects on ice movement [43]. To solve this problem, a combined CFD and DEM
method has developed rapidly recently, which solves the fluid flow by using the Euler method and ice
particle movement by using Lagrangian method.

Currently, STAR-CCM+ software has developed a DEM module, which provides a combined
CFD-DEM method to simulate ice–ship interaction. Vroegrijk [44] adopted STAR-CCM+ to simulate
the movement of a ship in a broken ice channel by using a combined CFD-DEM method. By comparing
numerical results with measured data, the combined CFD-DEM model was validated. Huang et al. [43]
simulated a ship advancing in floating ice floe regions by using the combined CFD-DEM approach
based on STAR-CCM+. They developed two algorithms for generating probability-distributed ice
floe fields. The influences of ship speed and ice concentration on ice resistance were investigated.
Luo et al. [45] calculated the resistance of an ice-strengthened bulk carrier in a brash ice channel
using the CFD-DEM coupling method. Unbreakable brash ice blocks were constructed by bonding ice
particles in various shapes. Numerical results were compared with HSVA (Hamburgische Schiffbau
Versuchsanstalt) ice tank results and good agreements were achieved.

All the previous studies have proved that the CFD-DEM coupling method is feasible in simulating
ice–water-ship interaction. However, to our best knowledge, all the previous CFD-DEM studies just
simulated unbreakable ice, not considering broken ice channel, floating ice floes, or brash ice regions.
It seems little work has simulated a ship moving in a breakable level ice region by using the CFD-DEM
method. On the other hand, a ship moving in breakable level ice with water effects has its own
distinction. It needs to consider not only the ice breakup and crack propagation under ship impact
but also the drift and overturn of ice fragments under water effects. Therefore, it is of significance
to explore this process by using the CFD-DEM approach. This also forms the prime motivation and
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distinct innovation of this paper. Based on STAR-CCM+, this paper develops a method to bond a
breakable level ice using DEM. A one-way CFD-DEM coupling framework is also built and solved.
An ice breaker advancing in the level ice and the resistance of the ship under various parameters are
studied. Numerical results are further compared with experimental data.

2. Computational Modeling

The finite volume method (one of the CFD methods) is used to describe fluid flow, and DEM is
used to describe ice particle movement. In this part, the modeling of fluid phase and solid phase is
described, respectively, and the one-way coupling scheme is illustrated subsequently. Considering
that the establishment of breakable level ice is innovative, its modeling process is stressed.

2.1. Fluid Model (CFD)

The fluid domain is governed by the equation of continuity and Navier–Stokes equation for an
incompressible fluid, as expressed in Equations (1) and (2) [46],

∂ηρ f

∂t
+ ∇ · (ηρ f u f ) = 0 (1)

∂(ηρ f u f )

∂t
+ ∇ · (ηρ f u f u f ) = ηρ f g− η∇p + ν f∇2(ηu f ) −Rp f (2)

where η is the volume fraction of the fluid term in the control volume and it satisfies η = 1 − ε =

1− ( n∑
i=1

ϕpiVpi)/Vcell, in which ε is the volume fraction of the particle term in the control volume, or the

commonly called ‘void ratio’, Vcell is the total volume of the calculated cell, n is the number of the
particles in the cell, ϕpi is the weighting coefficient of the particle i according to the ratio of the particle
volume in the cell to its total particle volume Vpi. u f is the fluid velocity, p is the fluid pressure, ρ f is
the fluid density, ν f is the kinematic viscous coefficient of the fluid, and Rp f represents the momentum
exchange between the fluid phase and the particle phase. Standard k− ε turbulence model is selected
in this paper. For more details on turbulent models, refer to reference [46].

There are many methods to calculate the momentum exchange term Rp f and a common method
is introduced here [47], which is relatively accurate and easy to implement.

Rp f =

∣∣∣Fp f
∣∣∣∣∣∣up − u f

∣∣∣ (up − u f ), (3)

where Fp f is the interaction force between the fluid and particle, which is obtained by integrating the
pressure of the fluid on the particle, and up is the particle velocity.

The volume of fluid (VOF) method is used to deal with the interface between water and air.
The VOF model defines αw and αa as the water volume fraction and the air volume fraction, respectively.
Considering volume fraction of the fluid term η= (Vw + Va)/Vcell, where Vw and Va are water volume

and air volume in the cell, αi is defined as αi = Vi/
2∑

i=1
Vi, where phase i = 1 and 2 denote water and air,

respectively. Thus, in a control volume, it satisfies

2∑
i=1

αi = 1 (4)

If the cell is full of water, one has αw = 1. If there is no water in the cell, one has αw = 0. Otherwise,
one has 0 < αw < 1. The interface is tracked by solving the volume fraction transport equation [48],
as below:
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∂
∂t

∫
V
αiηdV +

∮
A
αiηv · nds =

∫
V

SαidV −
∫

V

1
ρi
∇ · (αiηρivdr,i)dV (5)

where A is the surface of the control volume, n is the unit normal vector of the surface, Sαi is user-defined
source term for phase i, vdr,i is the diffusion velocity for phase i.

Ship is viewed as a rigid body upright floating in the water at a given draught in this simulation,
which can move at a given speed in just one direction, and the hull form comes from an icebreaker.
The principal dimensions of the hull are shown in Table 1.

Table 1. The main geometric parameters of the hull of an icebreaker.

Parameter Value Unit

Length overall 124 m
Breadth 22 m
Draught 7.8 m

Stem angle 20 Deg.
Waterline angle 34 Deg.

Flare angle 53 Deg.

In numerical simulations of a ship moving in a brash ice region, to make the numerical modeling
easier, part of previous work [43] kept the ship stationary, set water moving in a constant velocity
against the hull, and released the ice particles into the water with the same initial velocity. In this
way, water carried ice particles towards the ship, which was sometimes used as an alternative in
simulating a ship moving in a brash ice region. However, this does not work for level ice, given that
the push of water on the level ice is not large enough to support the collision between ship and level
ice, inducing results wildly inconsistent with reality. In order to solve this problem, it is necessary to
set the ship to move in and break the level ice floating on the water.

The overset grid technique is used in this paper to achieve this process. The overset grid is
composed of two sets of grids, the background grid, and the moving grid. Information is exchanged
between these two sets of grids using interpolation methods. In this paper, the linear interpolation
method is used. The grid accepting information is named as ‘acceptor’, while the grid providing
information is named as ‘provider’. In linear interpolation formulation, one has

Φacceptor =
∑

χiΦprovider_i, (6)

where Φ is the physical quantity, χ is weighting factor, and the subscript i denotes the number of the
provider. As shown in Figure 1, the physical quantity of a grid C comes from those of the neighboring
grids N1, N2, and N3 of the same set of grids and the neighboring grids N4, N5, and N6 of the other
set of grids. The equation is solved iteratively until the residual error is small enough. During the
construction, it should be noted that the overlapping area between two sets of grids should contain
at least 4–5 grid cell layers, and the boundary mesh sizes should be similar, which reduces the error
of interpolation as much as possible. More information about overset grid technique can refer to
Hadzic [49].

The flow field is truncated as far as possible in order to reduce the influence of the outer boundary
of the flow field. In this paper, the flow field is taken as 600 m × 600 m × 450 m. The fluid domain
is meshed with a trimmed meshing model and boundary layer grids are divided around the ship
surface, as shown in Figure 2. According to the ship speed, the Reynolds number in this paper is
1.94 × 108 ≤ Re ≤ 4.54 × 108, which is a high-Reynolds-number problem. According to the user’s
manual of STAR-CCM+ [48], y+ for a high-Reynolds-number problem is recommended to be larger
than 30 in standard k − ε turbulence model. Thus, in this paper, the thickness of the first layer grid
of the boundary layer is 8 × 10−4 m, and the y+ value is chosen around 60 based on our numerical
experience. The meshes on the ship surface are refined near waterline, stem, and stern area, as shown
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in Figure 2a. In the flow domain, grids are refined near the water surface and in Kelvin wave area,
as shown in Figure 2b,c.

 
Figure 1. Sketch map of the information exchange between two sets of grids.

 
(a) The surface on the hull 

 
(b) Side view 

 
(c) Bird view 

Figure 2. Mesh distribution of the numerical model with meshes on (a) the surface on the hull,
and meshes of the flow domain in (b) side view and (c) bird view, respectively.

The truncated surfaces of the flow domain are defined as front, rear, left, right, top, and bottom
surfaces based on the ship, where the front surface is the surface that ship bow points. The boundary
conditions of the flow domain include a velocity inlet for the rear, left, right, top, and bottom surfaces,
and a pressure outlet for the front surface. Rigid wall boundary condition is exerted on the ship surface,
which satisfies both impermeable condition and nonslip condition, namely,

u f · n = us · n (7)

u f · τ = us · τ (8)

where u f and us are the fluid velocity and ship velocity, respectively, and n and τ are unit normal
and tangential vectors of the ship surface. On the ice surfaces, no boundary conditions are satisfied
because the coupling method is based on force and moment exchange balance and not the interface
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track or capture method [50]. More details about the coupling method will be discussed in Section 2.3.
The initial conditions of the flow field are stationary.

An appropriate number of grids should be chosen to ensure the calculation accuracy and save
calculation time. After grid independence verification based on the water resistance of the ship in 5 kn,
as shown in Table 2, the overall grid is taken about 1.63 million, namely mesh3 in Table 2.

Table 2. Water resistance of the ship in 5 kn under different mesh parameters.

Basic Size/m
Total Mesh

Number
Resistance/N

Resistance Deviation
(with Finest Mesh)

mesh1 7 6.42 × 105 1.21 × 105 9.93%

mesh2 4.95 9.82 × 105 1.10 × 105 5.33%

mesh3 3.5 1.63 × 106 1.05 × 105 1.01%

mesh4 2.48 2.80 × 106 1.04 × 105 -

2.2. Ice Model (DEM)

Ice is modeled by using DEM, and the governing equation is Newton’s second law. Taking a
particle element i as an example, one has

mi
dup,i

dt
=

∑
j

Fc,i j +
∑

k

Flr,ik + Fp f ,i + Fg,i, (9)

Ii
dωi
dt

=
∑

j

(Mt,i j + Mr,i j), (10)

where subscript i, j, and k denote the particle number, m is the particle mass, Fc and Flr are the contact
and non-contact forces between particles, respectively, Fp f is the interaction force between the fluid
and particle, same to which in Equation (3), and Fg is the gravity force of the particle. I is the moment
of inertia of the particle,ω is angular velocity of the particle, Mt and Mr are the moments of the sliding
friction and the rolling friction, respectively. Considering Flr, such as electromagnetic force or van der
Waals forces, is just involved in special cases, Flr is not included in this paper. Here the method to
calculate the contact force Fc is introduced briefly.

There are many methods to calculate the contact force Fc, and a common model ‘Hertz–Mindlin’
collision model is adopted here [47]. In the Hertz–Mindlin collision model, the contact force Fc between
two spheres, A and B, are described by the following set of equations:

Fc = Fnn + Ftτ, (11)

where subscript n and t denote normal and tangential components, respectively, and n and τ are unit
vector in normal and tangential directions, respectively. Normal and tangential forces Fn and Ft are
expressed as:

Fn = −Kndn −Nnvn, (12)

Ft =

{ −Ktdt −Ntvt , |Ktdt| < |Kndn|C f s
|Kndn|C f sdt/|dt| , |Ktdt| ≥ |Kndn|C f s

, (13)

where d and v are relative displacement and velocity, respectively. Figure 3 provides the normal
and tangential relative displacements dn and dt, and they are obtained by the integral of normal and
tangential relative velocities vn and vt, which are obtained by using Equation (9). K and N are spring
stiffness and damping, respectively, and C f s is a static friction coefficient, which is taken as 0.15 according
to the recommended value for sea ice [51]. K and N are not constant in Hertz-Mindlin collision model
and they are calculated each step by using Kn = 4

3 Eeq
√

dnReq, Kt = 8Geq
√

dtReq, Nn =
√

5KnMeqNn damp,
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Nt =
√

5KtMeqNt damp, in which equivalent Young modulus Eeq =
1

1−νA
2

EA
+

1−νB
2

EB

with ν as Poisson’s ratio

and subscript A and B denoting particles number, equivalent radius Req =
1

1
RA

+ 1
RB

, equivalent shear

modulus Geq =
1

2(2−νA)(1+νA)
EA

+
2(2−νB)(1+νB)

EB

, equivalent mass Meq =
1

1
MA

+ 1
MB

, normal damping coefficient

Nn damp =
− ln(Cn rest)√
π2+ln (Cn rest)

2
and tangential damping coefficient Nt damp =

− ln(Ct rest)√
π2+ln (Ct rest)

2
, in which Cn rest

and Ct rest are the normal and tangential coefficients of restitution, which are taken as 0.5 [45].

τ

  
(a) Initial state (b) Relative displacement 

Figure 3. Sketch map of parallel bonding model, where (a) is the initial state and (b) is the relative
displacement of two particles in movement.

The generation of level ice is one of the main difficulties in the process of ship-level ice–water
interaction. Care must be taken to build breakable level ice in DEM. In STAR-CCM+, there are a variety
of particle models in the DEM module, and the composite particle model is widely used because it can
be freely combined into the shape of the target object. However, the composite particle model cannot
be broken, which is inconsistent with the properties of the level ice in this paper. On the other hand,
the particle clumps model can realize the fracture between particles, but it requires initial input of the
position and size of each particle to define the initial shape of the object. It would be a huge amount
of work to generate such a model of level ice with tens of thousands of particles. As an alternative,
in this paper, a simple spherical particle model is adopted, and the bonding bond and fracture criterion
between the particles are applied to establish the model of breakable level ice, which will be proved to
be successful and relatively easy. The model is chosen as viscoelastic with ice density of 900 kg/m3 and
Young’s modulus of 1 Gpa.

The detailed processes are described. It includes two main steps: ‘particle generation’ and ‘particle
bonding’. For the first step, particles are generated based on seed points. For the success of bonding
a level ice, it is necessary to ensure that the particles are relatively compact and no large gaps exist.
Generating particles with a conventional ‘part ejector’ does not guarantee needed particle density.
To solve this problem, a ‘random ejector’ with the maximum filling form is used. This ‘random ejector’
injects a specified number of particle seeds with small starting volume into the space in random
positions, in which the number is obtained by the area of the space and the prescribed radius of the
particle. Then, spherical particles start to grow from the seeds. As the maximum filling form is adopted,
the spherical particles grow until there is no room left. For the ‘random ejector’, the space to fill must
be real. A direct idea is to build a real space where the level ice locates, before filling it. However,
building such a real space in the fluid domain will affect the computation of the fluid. To avoid this
disturbance, a technique was developed to create a new space in a spare fluid domain. This space and
this fluid domain are not used for calculation, but just for generating ice particles. After the particles
are generated by ‘random ejector’ with the maximum filling form there, the positions and sizes of
these particles can be derived to make a table, which consists of all the information of the particles.
Then, the original fluid domain is returned, and another ejector, ‘table ejector’, is used to generate
ice particles at the above locations and sizes in the original fluid domain. There is another problem
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with this method. The ‘table ejector’ does not generate ice particles simultaneously, which makes the
early ejected ice particles deviate from initial positions when all the ice particles have been ejected,
inducing the bonding step to fail. Therefore, another technique was put forward, which is to use a
custom function to generate these particles simultaneously. In this way, all the particles are kept at their
initial positions before bonding, laying a good foundation for a successful bonding step subsequently.
These two techniques above are of significance to this step.

After all the ice particles have been released to their prescribed positions in the first step ‘particle
generation’, they need to be bonded together as a level ice. Thus, the second step, ‘parallel bonding’,
is implemented. As shown in Figure 3a, the parallel bonding model uses the concept of massless
bars connecting a pair of bonded particles. The bars can transmit force and torque between particles.
Alongside force Equation (11), torque equation is expressed as:

Mc = Mnn + Mtτ (14)

where Mn and Mt denote normal and tangential torque components, respectively. One has

ΔMn = −KtJΔΩn (15)

ΔMt = −KnLΔΩt (16)

where Δ is increment, J = 1
2πR4

eq and L = 1
4πR4

eq, K is still spring stiffness and the value is the same to
that in Equations (12) and (13), Ω is relative angular displacement.

Based on ‘parallel bonding’ model, a simple rupture model is used. It means that once the tensile
or shear stresses between particles exceeds the maximum limits, the bar breaks and corresponding
force and torque disappear. Then the particles separate, and cracks generate. In this way, a breakable
ice model becomes available. It should be stated that the interparticle tensile and shear bonding
strength of ice in the DEM model are affected by many factors, including particle shape, particle radius,
number of layers, and arrangement modes (regular or random arrangement) [52]. According to
previous studies [53], the interparticle tensile and shear bonding strength of ice in random arrangement
mode should be larger than macroscopic measured tensile and shear strength of sea ice [54], so that the
simulated ice behaviors including compression and bending agree with those of real ice. Based on
the suggested values of reference [53] and our numerical experience, interparticle tensile and shear
bonding strength were both taken as 3.0 Mpa. The final successful bonded level ice model with two
layers of ice particles is shown in Figure 4, which is also adopted in this paper.

 

Figure 4. Numerical model of bonded level ice of two layers, with the upper part in bird’s eye view
and the lower part in side view.

2.3. Coupling Scheme

As mentioned in Luo et al. [45] and Ni et al. [5], there are usually two kinds of coupling schemes
in the coupling framework of CFD and DEM: two-way coupling (TWC) and one-way coupling (OWC).
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TWC considers both the full interaction between fluid (solved by CFD) and particles (solved by DEM),
while OWC just considers the force of fluid on the particle but ignores the force of ice on the fluid.
In other words, fluid exerts forces on the particles, but the particles do not affect the movement of the
fluids. Luo et al. [45] adopted both TWC and OWC methods to calculate a ship moving in brash ice
channel and compared the influences of these two schemes. It was found that although the minimum
error of TWC was slightly smaller than that of OWC relative to experimental resistance, the average
error of them was very close. However, TWC occupied much more computing resources than OWC.
The total solving CPU time of TWC rose more sharply and became much longer, up to five times or
longer, than that of OWC along with the calculation [55]. As a result, Luo et al. [45] recommended
OWC for the case of a ship moving in ice at a low speed. Considering the speed of a ship moving in
level ice is much lower than that in brash ice, the OWC method is chosen in the simulation in this paper.

Here the framework of OWC is introduced briefly, as shown in Figure 5, and that of TWC can
refer to [34]. To start with, all components of simulation, including DEM, CFD and coupling parts,
are initialized. All the initial conditions and initial value, including stationary fluid with hydrostatic
pressure, stationary level ice floating on the water surface and rigid ship moving forward in a given
speed, are assigned. The OWC starts with calculating the fluid porosity, namely the ratio of the
particle volume in each fluid cell, based on the particle information (position and size) and fluid mesh
information (mesh size and node location). As mentioned in Section 2.1, the interface between water
and ice particle is not tracked or captured, and the fluid-particle interaction force and momentum
exchange are calculated based on fluid porosity, so it is important to calculate fluid porosity. Thereafter,
velocity of particles and fluid as well as the pressure and stress tensor of fluid at the current time
step are used to calculate the fluid-particle interaction force Fp f ,i in Equation (9). The next step is
the iteration loop of the DEM. After the DEM loop involving Equations (9) and (10) is completed,
the new position and translational and rotational velocities of all particles in the next fluid time step are
obtained. On this basis, the fluid phase Equations (1) and (2) are solved. In OWC, Rp f in Equation (2)
is taken as zero. In this way, the solving process becomes much easier and enormous computation
time and storage are saved. Then the obtained particle and fluid information will be used in next loop,
until the whole simulation terminates.

 
Figure 5. Framework of one-way coupling in the discrete element method-computational fluid
dynamics (CFD-DEM) model, revised based on [50].
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3. Validation

Before studying the motion of a ship in the level ice, the coupling method is firstly validated by
comparing numerical results with experimental data. There have been previous studies of model ships
moving in level ice in an ice tank as mentioned in Section 1. Considering the hull form information, the
experimental study from ice tank of Tianjin University [14] was chosen. The corresponding prototype
used by Huang et al. [14] is that same as that used in this paper, as shown in Table 1 and Figure 2,
and the scale ratio is 37.5 for their model. Considering that they have predicted the resistance of
the prototype from model resistance under the similarity laws, we calculated the prototype and
compared our numerical results with their predicted resistance of prototype. The experimental picture
and the state of the ship before moving into level ice region in numerical simulation are shown in
Figure 6a,b, respectively.

 
(a) 

 
(b) 

Figure 6. Bird’s eye view of experimental picture (a) (reproduced from [14], with permission from
ELSEVIER, 4 September 2020), and the state of the ship before moving into level ice region in numerical
simulation (b).

Two main physical quantities are concerned. One is the damage of the level ice under impact of
the ship, including the crack development and broken ice movement. The other is the total resistance.
The former can just be compared qualitatively while the later can be compared quantitatively. In order
to validate the former, the case with ice thickness 1.5 m and ship speed 5 kn in prototype is chosen as
an example. The damage of ice obtained by numerical simulation in this paper is compared with that
in the model test, as shown in Figure 7. Comparison of ice damage between model tests (a) [14] and
(b) [56] and numerical simulation (c) is examined, where the general outline of the ice crack is marked
by lines.

   
(a) (b) (c) 

Figure 7. Comparison of ice damage between model tests (a) (reproduced from [14], with permission
from ELSEVIER, 4 September 2020), and (b) (reproduced from [56], with permission from ELSEVIER,
4 September 2020), and numerical simulation (c), where the general outline of the ice crack is marked
by lines.
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In Figure 7, two cases of experimental data are chosen for comparison as shown in Figure 7a,b,
respectively. Figure 7a provides the experimental data from [14], where the red lines are the outlines
of the circular cracks. Experimental scene was taken by camera, while the model vessel was driven
back to prepare the next test run. Figure 7c is the numerical result with the same parameters in
Figure 7a. In Figure 7c, ice particles in the same fragment are shown in the same color, so different
colors can be seen to distinguish the shapes of the broken ice. Considering the cracks in Figure 7a
from [14] are not clear enough, although we tried to highlight them by red lines, the picture from
another reference [56] is adopted as supplementary in Figure 7b. It is worth mentioning that there is no
direct link between numerical simulation and model test in Figure 7b, as the ship forms are different.
As a result, the characteristics of the ice breakup in numerical simulation Figure 7c are compared
qualitatively with those in Figure 7a,b. It can be found that the simulated ice destruction area and the
shape of the broken ice are similar to those of the model test. There are mainly two points of qualitative
similarities. One is the ice-breaking areas extending outwards in a V-shape, as shown by the general
outlines of the crack in Figure 7a,c. Circular cracks and radial cracks cross each other, forming crushed
ice of various sizes. The other similarity is that crushed ice has a smaller size when it is closer to the
center line of the ship, especially shown by the fragments in Figure 7b,c.

Secondly, the ice resistance values of numerical simulation are compared with those transformed
from model test, as plotted in Figure 8. In Figure 8, the squares denote the average resistance at ship
velocity 2 kn, 3 kn, 4 kn, and 5 kn in prototype transformed from model test, while the dots denote the
average resistance at ship velocity 3 kn, 5 kn, and 7 kn in numerical simulation. Considering the ship
with lower speed taking much longer calculation time and resources, we did not calculate cases 2 kn
and 4 kn and took cases 3 kn and 5 kn as examples for comparisons. As can be seen from Figure 8,
when the speed is 5 kn, the mean value of numerical simulation resistance is about 1.9 MN, which is
very close to the measured resistance 2 MN in ice tank, with the deviation just around 5%. The total ice
resistance deviation is only 2% when the speed is 3 knots. The good agreement validates the accuracy
of the coupling method to some extent.

Figure 8. Comparison of ice resistance between model test (the squares), transformed into prototype
by Huang et al. [14] and numerical simulation (the dots) at various ship velocity.

Based on the above analysis, it can be seen agreement has achieved between numerical results and
experimental data both qualitatively and quantitatively. In this way, it is considered that the coupling
numerical model can simulate ship navigation in level ice effectively.
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4. Results and Discussion

The one-way CFD-DEM coupling model established in this paper is applied to the numerical
simulation of a ship moving in the level ice region. The responses of ice in this process, including crack
propagation, are obtained. In addition, the characteristics of the resistance of the ship in this process
are also one focus of this paper.

4.1. Ice-Breaking Process

The interaction between a ship and level ice is a very complicated problem. The process of ice
breaking and crack propagation is accompanied by various failure modes. To study this problem,
the case with ship speed of 5 kn and the ice thickness of 1.5 m is selected as a typical case study in
this section. Figure 9 shows the ice evolution during the ice-breaking process. As mentioned before,
different colors denote different ice fragments.

 
(a) t = 9 s           (b) t = 14 s            (c) t = 15 s           (d) t = 17 s 

Figure 9. Ice evolution during the ice-breaking process at (a) t = 9 s, (b) t = 14 s, (c) t = 15 s and
(d) t = 17 s, respectively, where some circular cracks are highlighted by curves in (b,d), respectively.

As mentioned in Section 2.2, ice is taken as viscoelastic model. When the ship comes into contact
with the ice, the elastic deformation of the ice occurs first, and no cracks appear at this time. As the ship
continues forward, the contact force between ship and ice increases further. When the stress inside the
ice exceeds its ultimate stress, the particle bond of the ice in DEM model breaks. With the increasing of
the broken bonds, the crack of the ice starts to expand. Radial cracks are first observed propagating
from the contact points between ship and the ice sheet, as Figure 9a t = 9 s shows. Along with the
forward movement of the ship, radial cracks extend outwards gradually. A first-order circular crack
appears at the ship’s shoulder, as Figure 9b t = 14 s shows, and a small amount of ice fragments appear
at the bottom of the bow, forming the so-called local crushing zone [13]. As the ship continues to move
forward, the interaction between the ship’s shoulder and the ice sheet gets severer. The ice bends under
the action of ships. The first-order circular crack continues to extend forward, inducing large pieces of
ice separating from the ice sheet, as shown at Figure 9c t = 15s. These ice fragments overturn under
the bow and may collide with ship bottom or other ice fragments and get broken again, resulting in
several smaller pieces of ice. Then a second-order circular crack appears on the basis of the first-order
circular crack around ship bow, as shown at t = 17 s in Figure 9d. Many pieces of crushed ice with
various sizes are formed between the radial cracks and the circular cracks. As the ship continues to
move further, more radial and circular cracks generate in a similar and repeated ways as described
above, which have also been observed in experiments [13]. Finally, a V-shaped crushing region will be
formed as shown in Figure 9b.

4.2. Total Resistance and Ice Resistance

The total resistance is one of the most significant problems for ship performance in ice regions.
It is a common way to divide the total resistance into ice resistance and water resistance [57]. Although
water resistance is usually small compared with ice resistance, especially for a ship moving in level ice,
water effects cannot be easily ignored. On the one hand, the ice sheet is not fixed in the direction of
gravity and needs the support of water to keep it afloat and stable. On the other hand, the broken
ice fragments usually drift and overturn under the action of water, which affects the change of ice
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resistance, especially the so-called submersion component [58]. That is also the reason why we choose
the coupling model, which considers the interaction between ship, ice and water.

In the numerical modeling, on the ship surface, there are two forces, one is the fluid force and the
other is the ice force. Therefore, one can obtain two resistances from the integral of fluid and ice forces,
respectively. They are defined as ‘water resistance’ and ‘ice resistance’ in this paper. Because OWC
method is adopted in this paper, fluid motion and pressure are not affected by the ice, so the ‘water
resistance’ is not affected by ice either. ‘Ice resistance’ is affected by the fluid motion under OWC
method, so it can be seen as the ice resistance considering the influence of fluid. This division method is
easy to compare the contribution of ice and water in a rough way. Therefore, water and ice resistances
are checked separately.

Figure 10a,b provides curves of water resistance and ice resistance, respectively. As shown in
Figure 10a, one can see that water resistance when stable is about 0.1–0.2 MN, which is at least an
order of magnitude smaller than the ice resistance shown in Figure 10b, which is in MN. This verifies
again that the water resistance component is very small in the total resistance for a ship moving in
level ice. Considering that the one-way coupling method is adopted in this paper, the water resistance
is not affected by ice and remains the same under different ice conditions. Therefore, the following
discussion will focus on the characteristics of ice resistance instead of water resistance.

(a) 

(b) 

Figure 10. Time history of water resistance (a) and ice resistance (b), in which the red dotted line is the
mean value of ice resistance after the whole ship bow enters the level ice region.

Figure 10b shows the time-history curve of ice resistance. Corresponding to Figure 9, the influence
of various ice failure patterns on the ice resistance can be vividly seen in the curve. Firstly, it can be
seen from the figure that at the first 9 s, the ice resistance is rising gradually in a small extent. Before 9 s,
the ice is bent under the moment of ship bow. Local large elastic deformations occur but not the whole
cracks. At about 9 s, the first crack starts to form and propagate, as shown in Figure 9a, so the ice
resistance reaches its first peak before it decreases sharply along with the unloading of the ice force.
As the ship moves further and contacts with more ice, the ice resistance rises slowly with fluctuations
due to cracks. Around 14 s, the ice resistance reaches another peak, when the first-order circular crack
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just generates, as shown in Figure 9b. Then the ice is completely broken and the circular crack has been
completely formed around 15 s, as shown in Figure 9c, so the ice resistance reaches bottom sharply
due to unloading of the ice force. The generation of secondary circular crack propagation in Figure 9d
also induces a rise in the resistance curve but with a smaller magnitude than that induced by the first
order circular crack. Then there exists a distinct rise of ice resistance around 18 s, when the whole
ship bow enters the ice region. After that moment, although the ice resistance still fluctuates strongly,
its mean value tends to be stable. This indicates that the parallel middle body of the ship has a smaller
contribution to the ice resistance than bow, because the force resulted from ice collision in this area is
perpendicular to the motion direction. Although the frictional resistance between broken force and
hull surface also has a contribution, it is small compared with ice–ship collision force. To compare with
the mean ice resistance in model test mentioned above, the mean value after the whole ship bow enters
the level ice region is defined as the average ice resistance here, as denoted by the red dotted line in
Figure 10.

4.3. Effect of Ship Speed

Ship speed is a key factor that affects ice breaking and ice resistance. Other parameters are kept
the same as those in Section 4.1, and ship speed is changed from 3, 5, to 7 kn to determine its effect.

Figure 11 shows the ice conditions under different ship speed, in which the distances of the ship
into the level ice are the same with different moments marked below each figure. When the ship speed
is 3 kn, the damage range of the ice sheet in the lateral direction is largest. The ice far away from the
ship side is also affected and damaged, with larger pieces of broken ice and longer cracks propagated.
As the ship speed increases to 7 kn, it can be found that the ice-breaking channel is narrowest. The ice
beyond ship breadth has been little affected by the ship motion. Furthermore, the difference in size
between the pieces of broken ice becomes smaller and the very large ice fragments get fewer.

   

(a) v = 3 kn (t = 40.0 s) (b) v = 5 kn (t = 24.0 s) (c) v = 7 kn (t = 17.1 s) 
Figure 11. Ice-breaking conditions at different ship speed (a) v = 3 kn, (b) v = 5 kn and (c) v = 7 kn,
respectively.

The change of ship speed can be considered as the change of the loading rate on the ice. As one
may know, the responses of the ice are affected by the loading rate significantly [54]. When ship speed
increases, the loading rate of the ice increases and the ice sheet presents a greater brittle response [54].
As a result, the size of ice fragments gets small, the crack propagation becomes short, and the lateral
damage area reduces, and the ice-breaking channel gets relatively narrow.

Figure 12 shows the time histories and typical values of ice resistance at different ship speed.
From time history curves, one can still see two stages for each velocity. Although the time when they
enter the second stage differs, the distance they take is the same, which is just equal to the length of the
ship bow. This verifies the analysis in Section 4.2 again. The variation of maximum and average ice
resistance in the second stage of each case are further checked in Figure 12d. It can be seen that ship
speed has a significant effect on the ice resistance. Both maximum and mean values of ice resistance
increase with the increase of speed, almost in a linear relationship. Similar trends are also observed
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in the previous experimental studies [14,56]. Furthermore, the rising slopes of maximum and mean
values are close.

 
(a) v = 3 kn 

 
(b) v = 5 kn 

 
(c) v = 7 kn 

 
(d) maximum and mean values of ice resistance 
after whole ship bow enters into level ice region 

Figure 12. Ice resistance at different ship speeds (a) v = 3 kn, (b) v = 5 kn and (c) v = 7 kn, respectively,
and (d) provides maximum and mean values of ice resistance after whole ship bow enters into level
ice region.

4.4. Effect of Ice Thickness

Ice thickness is also an important factor affecting ice breaking. The ice sheet in this paper is
modeled by using DEM particles. The mechanical strength of the ice sheet is determined by the
bonding bars between the particles. The values of the bonding parameters are closely related to the
particle size. In order to eliminate this error, the particle size is kept unchanged, and the ice thickness
is changed by increasing or decreasing the number of particle layers. Considering the diameter of the
particle is 0.75 m, single-layer, double-layer, and three-layer ice can be modeled, so the ice thickness is
0.75 m, 1.5 m, and 2.25 m, respectively. Other parameters are kept the same with those in Section 4.1.

Figure 13 shows the ice conditions under different ice thicknesses at the same time t = 20 s. It can
be found that when the ice thickness is 0.75 m, there are more long radial cracks formed on the ice
surface. The ice fragments are relatively larger in size and the total amount decreases instead. As the
ice grows to 1.5 m in thickness, the size of the crushed ice varies. Both large and small ice fragments
exist, and the amount of crushed ice increases compared with 0.75 m case. When the ice thickness rises
to 2.25 m, the damage of ice sheet reduces distinctively. Many small-sized ice fragments are generated
just around the ship–ice contact region.

The ice resistance under different ice thickness is shown in Figure 14. It can be found that
both maximum and mean ice resistances increase with ice thickness sharply. As the ice thickness
rises, the difference between the maximum and average ice resistance increases also. It denotes that
maximum ice resistance is more sensitive to ice thickness.
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(a) D = 0.75 m (t = 20 s) (b) D = 1.5 m (t = 20 s) (c) D = 2.25 m (t = 20 s) 

Figure 13. Ice conditions at different ice thickness (a) D = 0.75 m, (b) D = 1.5 m and (c) D = 2.25 m,
respectively.

 
(a) D = 0.75 m (b) D = 1.5 m 

 
(c) D = 2.25 m 

 
(d) maximum and mean values of ice resistance 
after whole ship bow enters into level ice region 

Figure 14. Ice resistance at different ice thickness(a) D = 0.75 m, (b) D = 1.5 m and (c) D = 2.25 m,
respectively, and (d) provides maximum and mean values of ice resistance after whole ship bow enters
into level ice region.

5. Conclusions

In this paper, an icebreaker moving in level ice has been simulated by using the one-way CFD-DEM
coupling method. Numerical results are compared with experimental data and good agreement has
been achieved. On this basis, influences of various parameters on ice resistance and ice breaking
conditions are further investigated. The following conclusions are drawn preliminarily:

(1) One-way CFD-DEM coupling method is firstly used to simulate a ship moving in level ice.
To solve the challenge of building level ice on the water domain, this paper puts forward two
numerical techniques, which are crucial for the success of the modeling.

(2) For a ship moving in level ice, water resistance is an order of magnitude smaller than ice resistance.
However, this does not mean water can be easily ignored. Actually, ice resistance is affected by
the fluid motion in the OWC method. In other words, the ice resistance in OWC method has
included the influence of fluid already.
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(3) Ice resistance shows strong oscillation in the process of ice breaking, presenting cycling of ‘gradual
rising—reaching maximum—sudden drop’ generally. This is closely related to the ice failure
process of ‘elastic deformation-reaching stress, limit-crack generation, and unloading’. After the
ship bow fully enters into the level ice region, the average ice resistance reaches stable broadly.
Both ice resistance and ice destruction are affected by ship speed and/or ice thickness significantly.

In future work, TWC method will be studied further and used in the ship moving in level ice.
Furthermore, the variation speed of the ship will be studied, as well as the motion of the ship in
six degree of freedom.
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Abstract: A three-dimensional T-shaped flexible beam deformation was investigated using model
experiments and numerical simulations. In the experiment, a beam was placed in a recirculating water
channel with a steady uniform flow in the inlet. A high-speed camera system (HSC) was utilized to
record the T-shaped flexible beam deformation in the cross-flow direction. In addition, a two-way
fluid-structure interaction (FSI) numerical method was employed to simulate the deformation
of the T-shaped flexible beam. A system coupling was used for conjoining the fluid and solid
domain. The dynamic mesh method was used for recreating the mesh. After the validation of the
three-dimensional numerical T-shaped flexible solid beam with the HSC results, deformation and
stress were calculated for different Reynolds numbers. This study exhibited that the deformation of
the T-shaped flexible beam increases by nearly 90% when the velocity is changed from 0.25 to 0.35 m/s,
whereas deformation of the T-shaped flexible beam decreases by nearly 63% when the velocity is
varied from 0.25 to 0.15 m/s.

Keywords: fluid–structure interaction; flexible beam; high speed imaging; system coupling

1. Introduction

Deformation of structures has been an area of interest for engineering. Because the coupling
process between fluid and structure plays an important role in many engineering fields. Interaction of
fluid and structures in underwater flexible beams is a complex problem in industrial applications.
Experimental and numerical research has been conducted to examine fluid–structure interaction (FSI).
A number of previous studies are summarized in this section.

Important FSI problems were simulated numerically by Chimakurthi et al. [1]. The authors applied
Ansys workbench system coupling and two-way fluid–structure interaction to various multiphysics
coupled problems, such as FSI in an oscillating solid structure and sub-sea pipeline vibrations.
This study is important, because it shows that Ansys workbench system coupling is highly suited
to multiphysics coupled problems. Furthermore, the study results were also validated with other
experimental and numerical studies. Gluck et al. [2] studied fluid–structure interaction numerically
in different plate forms, such as vertical and L-shaped plates. The authors used two code samples
for simulation flow and structure, one using the finite volume method for the flow side and the
other using the finite element method for the solid side. The one-way fluid–structure interaction
method was employed for the simulation effect of waves on a ship’s hull by Dhavalikar et al. [3].
It was assumed that the ship’s hull was a rigid body and wave loads were then simulated on a rigid
body. Narayanan et al. [4] numerically investigated flow behavior past a cylinder with a flexible
filament. The commercial software STAR-CCM+ was used for solving the governing equations.
Large deformation of a flexible rod in fluid flow was studied numerically and experimentally by

J. Mar. Sci. Eng. 2020, 8, 714; doi:10.3390/jmse8090714 www.mdpi.com/journal/jmse73



J. Mar. Sci. Eng. 2020, 8, 714

Hassani et al. [5]. The authors applied a wind tunnel for testing a flexible rod and a mathematical model
was developed by coupling with the Kirchhoff rod theory. The deformation of plants under different
combinations of wave periods was examined experimentally by Juan et al. [6]. An oscillatory tunnel
and volumetric particle image velocimetry system were used in this study. Results showed the velocity
distribution around plants. Mantecon et al. [7] numerically investigated the fluid–structure interaction
of nuclear fuel plates under axial flow conditions. The authors employed the commercial software
Ansys CFX for modeling the fluid flow and Ansys Mechanical for modeling solid plates. Results showed
the maximum deflection of the plates happened at the leading edge. The fluid–structure interaction of a
square sail was investigated experimentally and numerically by Ghelardi et al. [8]. Initially, the square
sail was tested in a wind tunnel at various velocities and then the ADINA commercial program was
applied for numerical simulation under the same conditions. The authors obtained a good overall
agreement between experimental and numerical results. Liu et al. [9] studied the FSI of a single
flexible cylinder in an axial flow at different inlet velocities. Ansys Fluent commercial software was
applied to the flow field. They used a user-defined function (UDF) code sample for the deformation
of the cylinder. Results showed that increasing or decreasing vibration depends on flow velocity.
Xu et al. [10] applied a new method for solving fluid–structure interaction. The lattice Boltzmann
method (LBM) and immersed boundary method (IBM) were combined in this method. The authors
used a large-eddy turbulence model (LEM) for high Reynolds numbers. This new method was tested
with different benchmarks. The results proved that it has good accuracy. Wang et al. [11] studied
three different risers (one steel riser and two composite risers) for their Vortex Induced Vibration
(VIV) characteristics using the fluid–structure interaction method. They simulated 2D and 3D models
using the Ansys Fluent commercial software. Deformations of the models were obtained. The results
show that the displacements of the Fiber Reinforced Polymer (FRP) composite risers are significantly
larger than those of other models. The fluid–structure interaction problems of two side-by-side
flexible plates were also numerically investigated by Dong et al. [12]. The authors presented results
of drag force and energy capture performance in a three-dimensional model. A two-dimensional
immersed boundary method was used for simulation fluid–structure interaction of a large structure by
Wang et al. [13]. A finite difference method was applied to solve compressible Navier–Stokes equations.
The authors validated the results using a flexible plate in a hypersonic flow. Good agreement was
found between experimental and numerical data. Turek et al. [14] defined a new benchmark for
comparing various methods in fluid–structure interaction problems. They located an elastic object
in a laminar incompressible channel flow. A good comparison was obtained in this new benchmark
study. Wang et al. [15] investigated the flow past a circular cylinder with a flexible splitter plate. A
two-dimensional model was used for simulation of the fluid–structure interaction using two different
Reynolds numbers. The authors also studied a circular cylinder with a plate, with a gap between
the cylinder and the plate. Zheng et al. [16] used a new fluid–structure interaction method that
coupled a finite-element method and immersed boundary method (IBM) to study the flow-induced
vibrations of the vocal folds during phonation. Wang et al. [17] presented a fluid–structure interaction
(FSI) methodology to simulate flexible submerged vegetation stems and kinetic turbine blades. The
structural dynamic solver was based on the combined finite element method–discrete element method
(FEM-DEM), and solid and fluid solvers were coupled using an immersed boundary method (IBM)
iterative algorithm. The flow solver was a ghost-cell-based sharp-interface immersed boundary
method (IBM) described by Mittal et al. [18]. The unsteady, incompressible Navier–Stokes equations
were solved and a second-order, central-difference scheme was used for all spatial derivatives. The
fluid–structure interaction of a three-dimensional flexible membrane was studied by Nestola et al. [19].
The authors used the immersed boundary method for solving complex structures immersed in laminar,
transitional, and turbulent flows. Peskin [20] applied the immersed boundary method to computer
simulation of fluid–structure interaction. Eulerian and Lagrangian variables were coupled in this
method. A fixed Cartesian mesh for the Eulerian variables and a moving curvilinear mesh for
the Lagrangian variables have been used in the immersed boundary (IB) method, particularly in
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biological fluid dynamics. A monolithic FEM/Multigrid method for the fluid–structure interaction of
an incompressible elastic object in laminar incompressible viscous flow was presented by Hron and
Turek [21]. Griffith and Luo [22] studied a coupling scheme for the immersed boundary method to
link the Lagrangian and Eulerian variables. They used this method for solving FSI problems. The left
ventricle of the heart was stimulated by this method. The arbitrary Lagrangian-Eulerian finite element
method was applied by Nassiri [23]. They used this method for numerical simulation and experimental
investigation of wavy interfacial morphology during high velocity impact welding. Tabatabaei et
al. [24] studied the hydrodynamics behavior of an axisymmetric squid model numerically. They
applied SST k-w turbulence model for simulation. Various fineness ratios, jet propulsion, and drag
force were investigated for different swimming velocities. Squid’s flow characteristics were studied
numerically and experimentally by Olcay et al. [25]. Digital particle image velocimetry (DPIV) was
used for obtaining velocity contours in the experimental region. Ansys Fluent commercial software
was applied for solving governing equations in the flow field. They showed that numerical results
were so close to the experimental data. Hydrodynamic forces of a moving cylinder and fixed cylinder
were investigated numerically by Eren et al. [26]. They used the dynamic mesh method for recreating
mesh and moving a cylinder in the incompressible flow.

To improve our understanding of fluid–structure interaction methodology for flow past a flexible
beam, we studied the fluid–structure interaction experimentally and numerically for a single flexible
beam. We use a high-speed camera system (HSC) for obtaining the deformation of the beam.
The three-dimensional flexible beam model was then investigated numerically at three different
velocities. Two-way FSI method was applied for numerical simulation, and also, a validation test was
carried out. All in all, this study helps to improve our understanding of flexible beams deformations.
The paper was organized as follows: Section 2 defines experimental setup, computational domain
governing equations, and numerical methods. Section 3 presents validation of deformation T-shaped
flexible beam, numerical results, and discussions. Section 4 contains the conclusions.

2. Materials and Methods

2.1. Experimental Arrangement and Analysis Methodology

Details of the experimental setup are explained in Sections 2.2 and 2.3. Section 2.2 presents the
water channel, the high-speed camera, and the technique of high-speed imaging method. Section 2.3
describes the data analysis of the experiment results.

2.2. Experimental Setup

Experiments were carried out in a recirculating water channel of State Key Laboratory of Hydraulics
and Mountain River Engineering (SKLHMRE) at Sichuan University (SCU), China. The water channel
has a 12 m (length) × 0.5 m (width) × 0.6 m (height) test section with the mean flow velocity up to
0.25 m/s. The water level was maintained at 0.5 m during the experiments and a propeller velocity
meter was used to measure the inflow velocity. Froude number is 0.11 (Fr = 0.11), so flow is subcritical
in this study. Multiple measurement points in the same vertical plane of the channel at different depths
are chosen to measure the velocity in a long period, and the mean flow velocity is calculated by time
averaging and space averaging. A T-shaped flexible beam made of polyurethane was fixed in a vertical
plane facing to the approaching flow. The dimensions of the T-shaped flexible beam are shown in
Figure 1. Water was used for the fluid part and a polyurethane beam was applied for the solid part.
The experiment was conducted indoors; physically essential properties of selected materials at room
temperature are provided in Table 1.
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Figure 1. Schematics showing the dimensions of the beam.

Table 1. Characteristics of fluid and solid in numerical and experiment methods.

Water

Density (ρ) 1000 kg/m3

Dynamic viscosity (μ) 0.001 kg/m−s

Flexible Beam

Density (ρs) 1.17 g/cm3

Young’s modulus (E) 18 MPa
Poisson’s ratio (ν) 0.3

For the beam motion and image recognition process, illumination was provided by an LED light
sheet, and the beam was marked black. A non-intrusive technique of high-speed imaging method
was employed to record the deformation of the flexible beam in this study. Images were captured at
1000 frames per second (fps) using a high-speed camera (Fastcam Mini UX100, Photron Inc., Chiyoda-Ku,
Tokyo, Japan, maximum acquisition rate: 4000 fps with the resolution of 1280 × 1024 pixels).
The resolution of the images is cut down to 616 pixels × 1024 pixels for saving camera memory
space to only cover the area where the beam exists, as shown in Figure 2.

(a)

 
(b)

Figure 2. Cont.
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(c) (d)

Figure 2. Schematics of the experiment setup: (a) experimental arrangement in the recirculating
water flume; (b) high-speed camera on one side of the flume; (c) and (d) side views.

The standardization tests were carried out in still water in order to determine the actual distance
per pixel (Figure 3). The field of view was approximately 12.07 cm × 20.07 cm, leading to a spatial
resolution of 0.0196 cm pixel−1.

 
Figure 3. Standardization test.

2.3. Data Analysis

To track the deformation of the T-shaped flexible beam, an image recognition Python code was
developed to obtain quantitative data from images captured in the experiment (Figure 4). A bilateral
filter is a basic theory of image noise reduction, and it is better in edge-preserving than other filters,
so we used a bilateral filter to reduce the noise of experimental images. Then, the Canny edge detector,
which is an edge detection operator that uses a multi-stage algorithm, was used to detect edges of
the beam in experimental images. Image binarization was set the grayscale value of the pixel on the
image to 0 or 255, which is the process of presenting the whole image with an obvious black and white
effect. The erosion, closing operation, and dilation are the morphological operations to enhance image
features. We used erosion, closing operation, and dilation to make the edges detected by the Canny
edge detector clearer, then the pixel coordinates of the edges were recorded. The pixel size of a picture
can be detected. Thus, the scale S of actual distance and Pixel distance can be calculated through
Figure 3. S is defined by S = actual distance/pixel distance. Therefore, the actual displacement D of the
tracking point is calculated by D = S*L, where L is the pixel distance between the current and initial
position of the tracking point. Details about image processing are illustrated in Howes [27].
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Figure 4. Flow chart of image processing program.

2.4. Numerical Methods

The two-way fluid-structure interaction (FSI) numerical method is explained in Sections 2.5–2.8.
The solution of the three-dimensional fluid domain is described in Section 2.5. The structural dynamics
of the T-shaped flexible beam is explained in Section 2.6. Section 2.7 presents system coupling between
fluid and solid domain. Details of the computational domain and boundary conditions are investigated
in Section 2.8.

2.5. Computational Fluid Dynamics (CFD)

The realizable k-ε turbulence model was applied for the turbulent flow simulation in the
three-dimensional fluid domain (Olcay et al. [28] and ANSYS Fluent Theory Guide [29]). The governing
equations representing the continuity and momentum formulas as given below:
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where k is the turbulent kinetic energy and ε is rate of dissipation. Gk is turbulent kinetic energy
generation because of the mean velocity gradients, Gb is turbulent kinetic energy generation because
of buoyancy, and YM is fluctuating dilatation contribution to the overall dissipation rate. The model
constants for realizable k-ε turbulence model are C1ε = 1.44, C2ε = 1.92, σk = 1.0, Cμ = 0.09,
and σε = 1.3.

2.6. Computational Structural Dynamics (CSD)

Deformation of a three-dimensional flexible solid structure is described by the equation of motion,
which can be expressed as follows:
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where [M] is the structural mass matrix, [C] is the structural damping matrix, [K] is the structural
stiffness matrix, and {F} is the applied load vector acting on the structure caused by fluid.
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Newmark time integration method with an improved algorithm (HHT) was used for the solution of
Equation (5). The Newmark method and HHT method were applied for implicit transient analyses.
The Newmark method applies finite-difference expansions in the time interval Δt. It is presumed that
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The solution of displacement at time tn+1 can be obtained by first rearranging Equations (6) and (7),
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where a0 = 1
αΔt2 , a2 = 1

αΔt , a3 = 1
2α − 1, a6 = Δt(1− δ), a7 = δΔt.

Once a solution is obtained for
{
un+1

}
, velocities and accelerations are computed as defined

Equations (9) and (10). For the nodes where the velocity or the acceleration is obtained, a displacement
constraint is computed from Equation (7). The HHT time integration method can help to have the
desired property for the numerical damping in the full transient analysis (Chung and Hulbert [31]).

The basic form of the HHT method is defined as Equation (11)
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where αm and α f are two extra integration parameters for the interpolation of the acceleration and the
displacement, velocity, and loads. It was also realized that the transient dynamic equilibrium equation
considered in the HHT method is a linear combination of two successive time steps of n and n + 1 after
comparing Equations (5) and (11).
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2.7. CFD-CSD Coupling

We used Ansys Workbench-system coupling for simulation two-way fluid–structure interactions
(Chimakurthi et al. [1]). Fluid Flow (Ansys Fluent) and the Transient Structural systems (Ansys
Mechanical) are connected in system coupling. Reynolds-averaged Navier-Stokes (RANS) equations
with the realizable k-ε turbulence model are solved in the computational domain by using the CFD
solver (Fluent), and also, transient structural analysis is used to solve the T-shaped flexible beam
deformation under the action of loads. Forces or stresses on the fluid side of the interface are
transformed on to the solid side, and also, displacements or velocities on the solid side of the interface
are transformed on to the fluid side in the system coupling method. Transferring in this system coupling
includes the computation of weights and their subsequent use in the interpolation of data. It can
happen between topologically similar and/or dissimilar element types, distributions, and dimensions
such as surface to surface, volume to volume, point to volume, surface to volume, and vice-versa.
Figure 5 shows the calculation procedure and detailed overview of the partitioned system coupling.
The induced force on the beam was obtained after the flow field was calculated by using CFD solver
from Ansys Fluent. Then, the displacement of the beam was solved by using a structure transient from
Ansys Mechanical. This process gets continued until convergence is obtained in system coupling.

 

Figure 5. Numerical steps of system coupling.

2.8. Computational Model Geometry, Boundary Conditions, and Meshing

The T-shaped flexible beam was fixed on the channel bottom wall. Figure 6 shows the
computational domain and boundary conditions schematically. The height (H) of the T-shaped
flexible beam is 0.17 m. The beam was put on a cuboid-shape computational domain. The height,
length, and width of the domain were defined as 5 H, 20 H, and 10 H. The velocity inlet boundary
condition was located at 5H upstream of the beam, and the pressure outlet boundary condition was
located at 15 H downstream of the T-shaped flexible beam. No slip boundary condition was selected
for walls (bottom wall and T-shaped flexible beam). Free slip boundary condition was applied for top
and to the sides of the computational. Dimensions and material properties of T-shaped flexible beam
and flow properties that were used in all simulations were the same with experiment case Table 1.
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Figure 6. Details of the computational domain and boundary conditions.

The non-dimensional Reynolds number was applied for defining flow characteristics in this study.
The Reynolds number was defined as Equation (12)

Re =
ρUL
μ

(12)

where ρ is density, μ dynamic viscosity of the fluid, U free stream velocity, and L is the characteristic
length (i.e., height of beam). The highest water velocity was 0.25 m/s in the experimental setup,
because the close-circuit water channel could supply 0.25 m/s as the highest water velocity throughout
the channel. In the numerical study, three different velocities were used for the understanding of beam
behaviors in various velocities. U = 0.15, 0.25, and 0.35 m/s were chosen for numerical simulations
after validation. The Reynolds numbers were defined as 25,500, 42,500, and 59,500 for U = 0.15, 0.25,
and 0.35 m/s Table 2. Commercial computational fluid dynamic (CFD) code Ansys Fluent and Ansys
Mechanical programs were employed to solve the flow domain and solid part. A system coupling
method was used to connect between flow domain and solid part. The coupled scheme was selected
among five pressure–velocity coupling algorithms. The second-order upwind scheme was used for
discretization of advective terms of the transport equations. Criteria of convergence were set to 10-6 for
the continuity and momentum equations. The solution of continuity and momentum equations were
continued until criteria of convergence were achieved.

Table 2. Shows the relation between velocities and applied models.

Velocity (m/s) Reynolds Number Applied

0.15 25,500 Numerical model

0.25 42,500 Numerical and experimental
model

0.35 59,500 Numerical model

Tetrahedron and prism with triangle base elements were set for meshing the fluid solution
domain with high-density mesh near walls, and Tetrahedron mesh was used for the solid
domain. The dynamic mesh method was applied to simulate the deformation of the T-shaped
flexible beam. Totally 800,000–1,200,000 elements were employed to solve the fluid domain,
and 21,210–73,000 elements were used to solve the solid domain, as illustrated in Figure 7. A mesh
sensitivity study was also carried out for all models in the fluid domain. Table 3 shows the variety of
total deformation along with the various number of elements at 0.25 m/s inlet velocity. It was identified
that 1,200,000 elements for the fluid solution domain, and 72,425 elements for the solid domain were
needed for obtaining good results at maximum velocity in our study. Three different coupling time
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steps were inspected at 0.01, 0.001, and 0.0001. All simulations were run for a total time of 10 s in this
study. A time step of 0.001 was selected for all simulations after mesh refinement studies.

 

(a) 

 

(b) 

 

(c) 

Figure 7. (a) Computational mesh of fluid domain, (b) enlarged view around beam surface,
and (c) computational mesh of beam.

Table 3. Mesh convergence study for the computational domain.

Mesh Resolution Deformation at t = 10 s

810,000 0.022400
890,000 0.01989
920,000 0.01934

1,020,000 0.019147
1,040,000 0.019144

3. Results and Discussion

3.1. Comparison between Experimental and Numerical Results

High-speed camera (HSC) measurements were carried out for the three-dimensional flexible beam
model at one Reynolds number (42,500). The close-circuit water channel could supply 0.25 m/s as the
highest velocity, so the highest Reynolds number for flexible beam was 42,500 in this experiment work.
The numerical simulation was done at the same conditions, as used for the experiment. The results of
numerical and experimental data were compared regarding the total deformation, Figure 8. The total
deformation shape in the numerical model agrees well with the deformation obtained from HSC
measurements for a Reynolds number of 42,500. A point (red point) was selected at the top of
the T-shaped flexible beam for the tracking maximum displacement of the T-shaped flexible beam.
When the T-shaped flexible beam has a vertical position, the red point is at position 1. After deformation,
the red point changes from position 1 to position 2. The maximum displacement is the distance
between position 1 and position 2. Table 4 shows the maximum deformation of the T-shaped flexible
beam at t = 6 s and t = 10 s for numerical and experimental models.
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Comparison of total deformation of T-shaped flexible beam for Re = 42,500 and t = 6 s.
(a) Experiment (high-speed camera system (HSC)), (b) experiment (HSC) with image track program,
and (c) numerical (CFD). Comparison of total deformation of T-shaped flexible beam for Re = 42,500
and t = 10 s. (d) Experiment (HSC), (e) experiment (HSC) with image track program, and (f) numerical
(CFD).

Table 4. Comparison of maximum deformation of T-shaped flexible beam for Re = 42,500, t = 6 s,
and t = 10 s.

Re = 42,500 t = 6 s (Figure 8a–c) t = 10 s (Figure 8d–f)

Experimental model deformation (m) 0.0205 ± 0.001 0.0202 ± 0.001
Numerical model deformation (m) 0.0193 0.0191

3.2. Deformation and Stress Study

The T-shaped flexible beam was validated at a Reynolds number of 42,500 (U = 0.25 m/s), and
then, it was investigated at two different Reynolds numbers of 25,500 (U = 0.15 m/s) and 59,500
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(U = 0.35 m/s). Totally, The T-shaped flexible beam was studied in three various Reynolds numbers
numerically. Total deformation was calculated numerically in this study. Total deformation can be
computed by using Equation (13)

U =
√

U2
x + U2

y + U2
z (13)

where Ux is component deformation in the x direction, Uy is component deformation in the y direction,
Uz is component deformation in the z direction. Figure 9 shows total deformation record from t = 0 s
to t = 10 s at three different velocities of 0.15, 0.25, and 0.35 m/s. In all velocities, deformation of the
T-shaped flexible beam increased in time, then it started to decrease and, finally, it had a constant value.
The deformation of the T-shaped flexible beam increased with increasing velocity. The outer load
also changed with velocity. The T-shaped flexible beam bent more and more when velocity increases.
It seems that the maximum value of deformation happens early for minimum velocity. We can observe
that the maximum value of deformation occurs at t = 0.47 s when velocity is U = 0.15 m/s, and also,
it occurs at t = 0.511 s when velocity is U = 0.35 m/s. Maximum stress (Von Mises stress) of the T-shaped
flexible beam happened at maximum inlet velocity between three different inlet velocities.

Figure 9. Variation of total deformation of T-shaped flexible beam between t = 0 s and 10 s.

Von Mises stress was calculated numerically in this study. Von Mises stress can be calculated by
using Equation (14)

σe =

⎡⎢⎢⎢⎢⎣ (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

2

⎤⎥⎥⎥⎥⎦
1/2

(14)

where σ1 stress statestress in the x direction, σ2 is stress statestress in the y direction, and σ3 is stress
statestress in the z direction. The maximum stress and maximum deformation of the beam have similar
behavior, so we can figure out that stress changes like deformation in all velocities. Figure 10 shows
maximum stress of beam that changes by time, and it occurs obviously on the bottom of the beam.
Figure 11a–c show maximum principal stress, middle principal stress, and minimum principal stress
of beam that changes by time.
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Figure 10. Variation of Von Mises maximum stress of T-shaped flexible beam between t = 0 s and 10 s.

 

(a) 

Figure 11. Cont.
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(b) 

 

(c) 

Figure 11. (a) Variation of maximum principal stress of T-shaped flexible beam between t = 0 s and 10 s.
(b) Variation of middle principal stress of T-shaped flexible beam between t = 0 s and 10 s. (c) Variation
of minimum principal stress of T-shaped flexible beam between t = 0 s and 10 s.

Equivalent strain was computed numerically in this study. Equivalent strain can be calculated by
using Equation (15)

εe =
1

1 + υ′
(1

2

[
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2
]) 1

2
(15)
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where ε1 is principal strain in the x direction, ε2 is principal strain in the y direction, ε3 is principal
strain in the z direction, and υ′ is effective Poisson’s ratio. Figure 12 shows equivalent strain of beam
that changes by time.

 
Figure 12. Variation of equivalent strain of T-shaped flexible beam between t = 0 s and 10 s.

3.3. Contours Plots of Numerical Study

Deformation of the T-shaped flexible beam was shown for three different Reynolds numbers of
25,500 (U = 0.15 m/s), 42,500 (U = 0.25 m/s), and 59,500 (U = 0.35 m/s) at t = 10 s, Figure 13. The stress
of the T-shaped flexible beam was illustrated for three different Reynolds numbers of 25,500, 42,500,
and 59,500 at t = 10 s, Figure 14. It was realized that maximum deformation and stress occurred
at the maximum Reynolds number, because the T-shaped flexible beam has a large pressure in the
front surface.

 
(a) (b) 

Figure 13. Cont.

87



J. Mar. Sci. Eng. 2020, 8, 714

(c) 

Figure 13. Deformation (m) of T-shaped flexible beam at t = 10 s (a) Re = 25,500, (b) Re = 42,500,
and (c) Re = 59,500.

  
(a) (b) 

Figure 14. Cont.
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(c) 

Figure 14. Stress (Pa) of T-shaped flexible beam at t = 10 s (a) Re = 25,500, (b) Re = 42,500,
and (c) Re = 59,500.

Pressure contours at the solution domain were plotted in Figure 15 for t = 10 s. When flow around
a T-shaped flexible beam was studied, there was a large pressure on the front surface of T-shaped
flexible beams. Figure 16 also showed lower pressure regions at the top region of the T-shaped flexible
beam implying flow separation. It was noted that the pressure difference between the front and back
surface of T-shaped flexible beams was large. In addition to pressure contours, streamline contours
were plotted in Figure 16 for t = 10 s. It was revealed that recirculation regions were formed behind the
T-shaped flexible beams. Recirculation regions were near the top region of the T-shaped flexible beam,
because the separation happened near the head of the T-shaped flexible beam.

 
(a) 

Figure 15. Cont.
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(b) (c) 

Figure 15. Pressure distribution (Pa) of T-shaped flexible beam at t = 10 s (a) Re = 25,500, (b) Re = 42,500,
and (c) Re = 59,500.

 

(a) 

 
(b) 

 
(c) 

Figure 16. Streamline (m) of T-shaped flexible beam at t = 10 s (a) Re = 25,500, (b) Re = 42,500,
and (c) Re = 59,500.

3.4. Drag Coefficients Study

When the body locates in fluid flow, it can experience a certain amount of drag force
(Olcay et al. [28], Batchelor [32], and Vasudev et al. [33]). Drag force was given by

FD = FD_pressure + FD_viscous =

∮
Pn̂ .êddS +

∮
τwt̂ .êddS (16)
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where FD_pressure and FD_viscous are drag forces in the x-direction due to the pressure and viscous effects.
Here, p is the pressure on the T-shaped flexible beam, and τw is the wall shear stress on the surface of
T-shaped flexible beam.

Drag force studies are shown in Table 5 for t = 6 s and t = 10 s. It was noted that the drag force
increased with increased Reynolds numbers for T-shaped flexible beam.

Table 5. Change in drag force with the Reynolds numbers for t = 6 s and t = 10 s.

Reynolds Umbers Drag Force, t = 6 s Drag Force, t = 10 s

25,500 (U = 0.15 m/s) 0.09591 0.09563
42,500 (U = 0.25 m/s) 0.25932 0.25663
59,500 (U = 0.35 m/s) 0.48103 0.47961

Once the drag force was obtained, the drag coefficient was studied using Equation (9).

Cd =
FDrag

1
2ρU2A

(17)

where Cd is drag coefficient, FDrag is Drag force, ρ is density of the fluid, U is velocity of fluid, and A
is the reference area (the frontal area of the body). Drag coefficient was plotted in Figure 17. It was
also realized that the drag coefficient decreased with increased Reynolds numbers for T-shaped
flexible beam.

 

Figure 17. Change in drag coefficient with Reynolds numbers for t = 6 s and t = 10 s

4. Conclusions

In this study, the deformation of a T-shaped flexible beam was investigated at 0.25 m/s inlet
velocity. A three-dimensional T-shaped flexible beam was placed into a close-circuit water channel
for high-speed camera system (HSC) measurements. The results of a three-dimensional T-shaped
flexible beam agreed well with the results of HSC measurements for 0.25 m/s inlet velocity. Then,
two additional inlet velocities were noticed for a flexible beam, and those velocities were examined for
the T-shaped flexible beam. A two-way FSI coupling method was employed for solving fluid and solid
parts. The dynamic mesh method was used for grid, and mesh was updated in every time step in
fluid and solid sides. Deformation, maximum stress, and minimum stress of the T-shaped flexible
beam were calculated, and also, velocity distribution and pressure distribution of the flow around
the T-shaped flexible beam were computed at various velocities in the numerical model. The results
reveal that deformation and stress in the flexible beam has increased with increasing velocity. It was
also found that a large pressure region was created on the front surface of the T-shaped flexible beam
and flow separation happened in the head of the T-shaped flexible beam. It was concluded that high
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velocity caused the drag force to be larger when compared with low velocity, so high drag force caused
a large deformation and high stress in the T-shaped flexible beam. We carried out a validation study.
The results of experimental and numerical methods were compared in the present study. In this study,
the percent error of maximum deformation between experimental and numerical methods is nearly
4%~5%. The study also revealed that the system coupling method can be used in fluid–structure
interaction applications and a two-way FSI coupling method has high efficiency, so this method can be
employed in various engineering fields such as mechanical, civil, and ocean engineering.
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Abstract: The primary environmental impact caused by seawater intake operation is marine life
impingement resulting from the intake velocity. Environmental Protection Agency (EPA) of United
State has regulated the use of velocity cap fitted at intake structures to reduce the marine life
impingement. The engineering design parameters of velocity cap has not been well explored to
date. This study has been set to determine the fundamental relationships between intake velocity
and design parameters of velocity cap, using computational fluid dynamic (CFD) model. A set of
engineering design criteria for velocity cap design are derived. The numerical evidence yielded in
this study show that the velocity cap should be designed with vertical opening (Hvc) and horizontal
shelf (�vc). The recommended intake opening ratio (Or) shall be 0.36 Vr

−0.31, where Or = Hvc/�vc and
Vr =V0/Vpipe. Vo is the velocity at the intake window and Vpipe is the suction velocity at the intake
pipe. The volume ratio (ωr) between the velocity cap (ωvc) and intake tower (ωIT) is recommended
at 0.11 Vr

−1.23. The positive outlooks that yielded from this study can be served as a design reference
for velocity cap to mitigate the detrimental impacts from the existing intake structure.

Keywords: coastal structure; fluid-structure interaction; engineering design parameters; environment
protection; intake velocity; velocity cap

1. Introduction

Seawater intake structure are widely used by most coastal plants. A seawater intake structure
usually made of reinforced concrete supporting the inlet of the withdrawal pipe. Figure 1 shows the
photo examples of existing intake structures at Plant of Aguilas, Plant of Nungua, Plant of Skikda,
and Plant of Campo De Cartagena [1]. Most of the intake towers are circular in shape with diameter
ranging between 4.7 and 5.3 m. The intake tower height is between 5 and 7 m with intake rate between
1 and 7 m3/s. However, depending on the intake rate, the diameter of the intake tower can be ranging
between 2 and 20 m [2]. The shape of the intake structure can be rectangular if it is designed to be in
current, with shorter sides angled against the current. The marine life impingement and entrainment
resulting from the intake operation is a major environment concern [3]. An optimum intake structural
design should be operated in a way that minimizes marine impacts, particularly considering the
impingement and entrainment of marine life. There are substantial literatures that points to increase
intake mortality with increase intake velocities [4–6]. Even though fish are excellent swimmers, they
can often be drawn in by vertical currents generated by intake velocity. The Environment Protection
Agency of United State (USEPA) has suggested the use of velocity caps fitted at the intake structures
to convert the water flow from vertical to horizontal [6]. The velocity cap, which is usually made of
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steel or concrete, is a simple modification to the unscreened intake in the open sea to draw water in
horizontally. The used of velocity cap can reduce marine entrainment because fish are adapted to
respond to horizontal current rather than vertical current fluctuations [7]. A change in horizontal flow
pattern created by velocity cap will triggers an avoidance response mechanism in fish, which aids to
reduce the marine life impingement [8]. The use of velocity cap can reduce 80% to 90% of the fish
impingement at the intake entrance [9]. Based on this record of performance, USEPA has promulgated
final ruling under the Clean Water Act to restrict the intake velocity to a maximum of 0.15 m/s and
specify that seawater intake structures should be equipped with a velocity cap [10]. Electric Power
Research Institute [11] has performed comprehensive literature reviews on the swimming capabilities
of marine, freshwater, and estuarine fishes to determine the appropriateness of regulating 0.15 m/s as
the maximum allowable intake velocity to preclude impingement impacts. They have concluded that
intake velocity is an appropriate regulatory parameter, and it should be measured, preferably, as a
vector parallel to the main water flow at the intake window. They highlighted that the 0.15 m/s intake
velocity criterion can be useful to delineate where significant impingement impacts are unlikely to
happen under common environmental conditions. Several federal and state agencies in US have also
developed the intake velocity criteria to protect local populations of fish from being impinged at the
intake window, and they generally proposed maximum allowable intake velocity of 0.15 m/s as an
acceptable indicator of likely low occurrence of impingement problems at the intake structure [12,13].

  
Plant of Aguilas (Murcia) Plant of Nungua (Ghana) 

  
Plant of Skikda (Algeria) Plant of Campo De Cartagena 

Figure 1. Photo examples of the existing seawater intake structure [1].

Previous literature and sources of information reviewed did mentioned that velocity cap is one
of the best technology available (BTA) and it shall result in a design intake velocity that less than or
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equal to 0.15 m/s. Figure 2 shows the schematic illustration of the flow in a capped intake structure.
It is reasonable to speculate that the local flow conditions induced by the intake structure are the
important fundamental to protect marine life from impingement mortality. However, to the author’s
best knowledge, very little research work has been conducted in the area of engineering design criteria
for velocity cap. Voutchkov (2018) [2] suggested the vertical opening of the velocity cap shall be
between 1 and 3 m. Schuler and Larson (1975) [14] suggested that the horizontal distance of the velocity
cap shall extend approximately 1.5 times the vertical opening. A key problem with many of these
suggestions is that there are mostly based on “rules of thumb”, which have not been scientifically tested.
This raises many questions about whether those intake design suggestions are suitable to be used
for various structural configuration and intake rate. A variety of engineering properties, i.e., vertical
opening and horizontal shelf of velocity cap are important contributory factors to influence the intake
velocity. The literature review revealed that no single source of information or document precisely
contained velocity cap design standards. Intake velocity requirement is significant and that this paper
is essential for the understanding of fundamental relationships between the design parameters and
intake velocity to derive engineering design criteria for environment protection.

  

Cross-Sectional View Plan View 

Figure 2. Schematic illustration of the flow in intake structure with velocity cap.

A vast research has been undertaken to study the flow field around the coastal structure by using
CFD models [15–18]. They have concluded that, with the advancement in numerical modelling tools, it
is possible to analyze the fluid–structure interactions with numerical models. This paper presents the
application of CFD model to simulate the flow field around an existing capped intake structure that
located in Penang Strait of Malaysia. The existing capped intake structure was used to draw ambient
seawater for power plant usage. The feasibility of the present numerical model was validated by
comparing with the measured field values that obtained from secondary data source [19]. With proper
data checking and data screening, field data has the advantage of being able to observe the outcome in
a natural setting rather than in a contrived laboratory environment. Subsequently, the relationships
between influencing design parameters and intake velocity are systematically analyzed and presented
in SI unit. Finally, the engineering design criteria for intake structure is recommended.

2. Method

2.1. Numerical Model

The numerical investigation was undertaken using FLOW3D based on Reynolds’ Averaged
Navier–Stokes (RANS) equations. The FLOW3D solver is structured upon the principle laws of mass,
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momentum and energy conservation, and the equations were solved using finite difference method.
The central aim of any flow model is to provide projections of turbulent fluctuations on the flow
quantities. This is commonly represented by including diffusion terms in the following mass and
momentum transport equation:

VF
∂ρ

∂t
+

∂
∂x

(ρuAx) + R
∂
∂y

(
ρvAy

)
+

∂
∂z

(ρwAz) + ξ
ρuAx

x
= RDIF + RSOR (1)

where u, v, and w are fluid velocities in the Cartesian coordinate directions (x, y, z), Ax, Ay, and Az are
the fractional areas open to flow in the x, y, and z axis. VF is the fractional volume open to flow, ρ is the
fluid density, then R and ξ are coefficients that depend upon the choice of coordinate system. RDIF and
RSOR are respectively the turbulent diffusion and mass source terms and are defined in Equations (2)
and (3) below:
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where υρ = Scμ/ρ, in which Sc is the turbulent Schmidt number and μ is the coefficient of momentum
diffusion. The 3D equations of motion are solved with the following Navier–Stokes equations with
some additional terms:
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where t is the time, Gx, Gy and Gz are accelerations due to gravity, f x, f y, and f z are viscous
accelerations, and bx, by, and bz are the flow losses in porous media, uw, vw, and ww are velocity of the
source component, us, vs, and ws are velocity of the fluid at the surface of the source.

k-ε RNG turbulence model was suggested by Chie and Wahab (2019) [20] as the viscous model
to simulate the flow kinematics around the intake structure. They tested the performance of four
turbulence models, namely the standard k-epsilon (k-ε), k-ε renormalized group (RNG), k-omega
(k–ω), and large eddy simulation (LES) models and concluded that k-ε RNG model can provide good
accuracy and reduce the computational costs compared to the LES model. Furthermore, the k-ε RNG
model [21] extend the capabilities of k-ε model to provide better coverage of low intensity turbulence
flows and flow in areas with strong shear.

2.2. Model Setup

An existing seawater intake structure was used as a basis for the intake model. The intake
structure is fully submerged underwater with a submergence of 2.2 m from mean sea level (MSL)
and is extracting water at a rate of 25.43 m3/s. The existing structure is partially buried in the seabed
(~4.8 m below the existing seabed level) and the water depth during MSL is approximately 10 m.

The intake structure is composed of 2 major components: velocity cap and intake tower. The
velocity cap size of 9.2 m × 5.2 m has 3.1 m horizontal shelf (�vc) and 2.6 m vertical opening (Hvc) to
convey the flow into the intake tower. The intake tower is rectangular in shape with an outer large
and long of 6.2 m × 10.2 m. The intake tower opening size is 5 m large × 9 m long. The total height of
intake tower is 9.98 m. Figure 3 shows the overall dimensions of the intake structure.
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Figure 3. The overall dimensions (in unit mm) of the intake model.

A model with domain sizes of 41 m × 45m × 18 m is constructed for this study. The measured
bathymetric data is imported into the model using a universal terrain representation raster format to
provide a realistic bed level for modelling. The 3D raster bathymetric map is shown in Figure 4. The
intake structure was incorporated into the model bathymetry to mimic the actual site condition.

 
Figure 4. 3D bathymetric map used for model setup.

The boundary condition (BC) of the model domain is defined as velocity, pressure, wall, and mass
momentum source. The kinetic energy and dissipation rate are calculated based upon the computational
formulas of turbulence quantities at the velocity boundary. The published tidal level [22] is prescribed
with pressure-type boundary. The wall boundary is defined at seafloor with no tangential velocities.
The model domain is setup with single incompressible fluid with free surface. Fluid fraction (F) = 0
correspond to void region, in which a uniform atmospheric pressure is applied. Mass momentum
sinks were added to the intake structure outlet to withdraw water from the model domain. The model
boundary conditions are illustrated in Figure 5. One downside regarding the methodology is that the
wave effects are not considered in this study. Further data collection would be needed to determine
exactly how the wave effects affects the engineering design criteria for the intake structure.
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Figure 5. Model boundary conditions.

2.3. Mesh Sensitivity Study

Mesh sensitivity study was performed for three computational grids that consisting of 355,296
(M1), 792,028 (M2), and 1,682,826 (M3) nodes. It is suggested by ASME (2009) [23] that the grid
refinement should be conducted systematically, and it is highly recommended that the grid refinement
factor, r = hcoarse/hfine, (where h is the grid size) should be greater than 1.3 for most practical problems.
Table 1 summarizes the grid information for the tested grid. An extraction rate of 25.43 m3/s is added as
mass momentum source, and the intake velocity is recorded at four intake windows. Mesh independent
solutions are achieved when the differential between two intake velocities (M1-M2 and M2-M3) is
less than +/−0.01 m/s. Table 2 tabulated the comparison of intake velocity for M1, M2, and M3 grids.
The results show that the maximum velocity differences between M1 and M2 grid is 0.03 m/s. By
increasing the grid resolution, the results show a reduction in velocity differences. The maximum
velocity differences between M2 and M3 is generally less than 0.01 m/s. This indicates that the M2 grid
has reached a solution value that is independent of the grid resolution. Therefore, the optimum grid is
M2 with resolution ranging between 0.22 m and 0.4 m.

Table 1. Tested gird for mesh sensitivity study.

Grid Info

Tested Grid
Coarse Grid (M1) Medium Grid (M2) Fine Grid (M3)

Total grid cells 355,296 792,028 1,682,826
Min. grid size (h) 0.29 0.22 0.17
Max. grid size (h) 0.52 0.40 0.31

Grid refinement factor (r) hM1/hM2 = 1.3 hM2/hM3 = 1.3
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Table 2. Comparison of intake velocity for M1, M2, and M3 grids.

Tested Grid No. Grid Cells

Intake Velocity (m/s)

Short Window 1
Differential

(M2−M1)
(M3−M2)

Short Window 2
Differential

(M2-M1)
(M3-M2)

Coarse Grid (M1) 355,296 0.21 0.23
Medium Grid (M2) 792,028 0.24 0.03 0.24 0.01

Fine Grid (M3) 1,682,826 0.23 −0.01 0.24 0.00

Tested Grid No. grid cells Long Window 1
Differential

(M2-M1)
(M3-M2)

Long Window 2
Differential

(M2-M1)
(M3-M2)

Coarse Grid (M1) 355,296 0.26 0.24
Medium Grid (M2) 792,028 0.25 −0.01 0.25 0.01

Fine Grid (M3) 1,682,826 0.26 0.01 0.25 0.00

2.4. Model Validation

Secondary velocity measurements were adopted for model validation. The tide at the Penang
Strait is semi-diurnal with two high tides and low tides in a tidal day with comparatively little
diurnal inequality. The measurements, covering both high and low tides, were captured by three
Acoustic Doppler Current Profilers (ADCP1, ADCP2 and ADCP3). ADCP1, ADCP2, and ADCP3 were
respectively located at 0.5 m, 2 m, and 1 m from the velocity cap as illustrated in Figure 6. The high
resolution FLOW3D CFD model was used to reproduce velocity at these locations. The simulated
velocity was validated with the measured data, and the results are graphically shown in Figure 7. It is
plausible that slightly higher error percentages will be obtained when the validation results are based
on field surveys where data was collected in an uncontrolled environment. Department of Irrigation
and Drainage (DID) Malaysia suggested the root mean square percentage error (% RMSE) between
the measured and simulated data shall be less than 20% for any coastal hydraulic study and impact
assessment [24]. Table 3 summarizes the discrepancies between the simulated and measured data
with % RMSE, squared of Pearson product-moment correlation coefficient (r2) and mean absolute
error (MAE). The RMSE percentage of all ADCP locations are less than 10%, and r2 are well above 0.9.
This demonstrates that the model is capable and suitable to be used for the investigation of flow field
around the intake structure.

 
Figure 6. The measurement locations of ADCP1, ADCP2, and ADCP3.
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(a) 

 
(b) 

(c) 

Figure 7. Comparison of velocity magnitude from numerical model with measurement data at
(a) ADCP1 (b) ADCP2, and (c) ADCP3.

Table 3. Comparison of velocity magnitude between simulated and measured data.

Station %RMSE r2 MAE (m)

ADCP1 6.81 0.98 0.02
ADCP2 7.16 0.97 0.02
ADCP3 9.63 0.94 0.03

3. Results and Discussion

The validated model was used to study the intake velocity at the velocity cap. Figure 8 illustrates
the flow field around the existing intake structure during flood, ebb, and slack current conditions.
During the flood and ebb currents, it can be clearly perceived that the flow field around the intake
structure is mainly influenced by the tidal current. The intake structure increases the flow velocity
upstream but decreases the flow velocity downstream. The slow flow region is observed leeward of
the structure, which could benefit sheltering effects for fishes [25,26]. The tidal flow passing through
the intake window is affected by the compressive interference of the intake suction, which generate
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velocity gradients around the intake windows. However, the velocity gradients around the intake
windows are mild during tidal flow and potentially stimulate an avoidance response in fishes, which
aids to reduce marine life impingement.

Cross Section X Cross Section Y 

  

(a) 

  
(b) 

  
(c) 

 
 

(d) 
Legend: 

Velocity Magnitude (m/s) 

 

Figure 8. Simulation of flow field around the existing intake structure during flood, ebb, and slack
currents (a) Flood Current; (b) Ebb Current; (c) Slack Ebbing Current; (d) Slack Flooding Current.

The weakest tidal currents, which happen during slack tides, occur during the transition from
flood to ebb currents, and vice versa. At this point of time, the tidal currents decrease rapidly to nearly
stagnant and the flow field around the intake structure is mainly attributed by the intake suction.
The velocity gradients around the intake windows are strong and could potentially cause the marine
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life impingement and entrainment. Therefore, slack current condition (with tidal current = 0) will
be adopted in this study to derive the fundamental relationship between intake velocity and design
parameters of velocity cap.

The design of the velocity cap is influenced by the parameters as illustrated in Figure 9. Basic
terminology must first be established to clearly evaluate the intake velocity in this study. For this
study, the term “intake velocity” is represented by V0—the velocity magnitude measured at the vertical
opening of the velocity cap. The velocity magnitude was computed with Equation (5) where u, v,
and w. are fluid velocities in the Cartesian coordinate directions (x, y, z) computed from governing
equation of FLOW3D.

V0 =
√

u2 + v2 + w2 (5)

 

Design parameters for velocity cap: 
Avc = Area of the velocity cap (m2) 
Hvc = Vertical opening (m) 
ℓvc = Horizontal shelf (m) 

ω = Avc × Hvc = Size of velocity cap (m3)
ω Size of intake tower (m3) 
Q = Q1+Q2 = Total intake rate (m3/s)  

Figure 9. Design parameters for velocity cap.

To analyze V0 in the following sections, V0 profiles were extracted along the vertical openings
(Hvc) at the middle of the four windows (two long windows at L/2 and two short windows at W/2, as
shown in Figure 2). The intake velocity profile at each window was analysed to determine the average
V0. The term “intake velocity ratio (Vr)” is used in this study to represent the dimensionless velocity
that considers the ratio of intake velocity (V0) to average suction velocity at the intake pipe (Vpipe)
(Vr = V0/Vpipe). Vpipe is determined by using Equation (6), where Q is the intake rate and Apipe is
the pipe area that is calculated with Equation (7). Vr can be used to evaluate the intake structural
performance. Lower Vr indicates better structural performance in reducing intake velocy, and vice
versa. The use of the dimensionless intake velocity ratio (Vr) is more appropriate and makes the
application more generalizable to various intake rates.

Vpipe =
Q

Apipe
(6)

Apipe =
πDpipe

2

4
(7)

3.1. Fundamental Relationships

3.1.1. Effect of Horizontal Shelf (�vc)

A total of five test cases were conducted to evaluate the effect of �vc on Vr. Hvc and ωIT in all test
cases are respectively set at 5.5 m and 450 m3. A range of intake rates (Q = 45, 50, and 60 m3/s) are
considered in this section. The analyzed simulation results are presented in Figure 10 as a scatter plot.
The best fit equation and 95% confidence interval (CI) are presented. The results of a regression analysis
revealed that Vr and �vc have a negative non-linear relationship. Vr can be reduced by increasing
the length of �vc. The relationship between Vr and �vc can be expressed with the power function:
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Vr = 0.15 �vc
−0.63. All simulated data are lies within the 95% CI. There is a 95% probability that the best

fit equation between Vr against �vc lies within the confidence interval.

 

Figure 10. Relationship between Vr against �vc.

3.1.2. Effect of Vertical Opening (Hvc)

The investigation continued by evaluating the influence of Hvc to Vr, with 17 test cases. �vc, Avc,
and ωIT in all test cases are respectively set at 3.1 m, 152 m2, and 450 m3. Intake rate ranging between
6 and 30 m3/s are considered in this section. The analyzed simulation results are presented in Figure 11.
The results of regression analysis revealed that Vr and Hvc have a negative non-linear relationship. Vr

can be reduced by the increasing Hvc. The relationship between Vr and Hvc can be expressed by the
equation: Vr = 0.4Hvc

−0.9. All simulated data are lies within the 95% confidence interval bands. The
best fit equations have 95% confidence interval.

Figure 11. Relationship between Vr against Hvc.

3.1.3. Effect of Velocity Cap Size (ωvc)

The cumulative influence of the velocity cap design parameters (Avc, Hvc, and �vc) to Vr is
investigated by using the term “velocity cap size”. The velocity cap size (ωvc) is calculated by Avc × Hvc,
where Avc depends upon the velocity cap geometry and is influenced by �vc. A total of 40 test cases
with the following structural design range were adopted in the simulations:

• Intake rate (Q): 6–60 m3/s
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• Vertical opening (Hvc): 1.0–6.5 m
• Horizontal shelf (�vc): 3.1–9.6 m
• Area of the velocity cap (Avc): 152–520 m2

• Size of velocity cap (ωvc): 152–3122 m3

• Size of intake tower (ωIT): 450 m3

The simulated results are plotted as scatter plot with best fit equation and 95% Confidence interval
(CI) bands, as shown in Figure 12. The results of a regression analysis revealed that Vr and ωvc are
fitted by the nonlinear power function with a negative relationship. With the increasing ωvc, Vr is
reduced, and the intake performance is increased. However, it is crucial to note that the influence of
ωvc to Vr is reduced significantly when ωvc > 1000 m3.

 

Figure 12. Relationship between Vr against ωvc.

3.2. Engineering Design Criteria

The previous findings indicated the potential application of �vc, Hvc, and ωvc to control the intake
velocity. In this section, the combined effects of �vc, Hvc, ωvc, and ωIT on Vr are investigated. The
volume size (ω) is used in this study to make the application more generalizable to the intake tower
that is mostly circular in shape. Based on the normal engineering practice [1], the height of intake
tower is mostly ranging between 5 and 9 m for constructability considerations (i.e., seabed bathymetry
and distance of the structure from the shore). The term “volume ratio (ωr)”, where ωr = ωvc/ωIT,
used in this section is a dimensionless term to represent the ratio of velocity cap size to intake tower
size. The term “Window opening ratio (Or)”, where Or = Hvc/�vc, is a dimensionless term to represent
the ratio of vertical opening to horizontal shelf. A total of 115 test cases with the following structural
design range were adopted in the simulations:

• Intake rate (Q): 6–60 m3/s
• Vertical opening (Hvc): 1.0–6.5 m
• Horizontal shelf (�vc): 3.1–9.6 m
• Area of the velocity cap (Avc): 152–520 m2

• Size of velocity cap (ωvc): 152–3122 m3

• Size of intake tower (ωIT): 240–450 m3

Figure 13 demonstrates the influence of ωr to Vr. The results of a regression analysis highlighted
a strong negative non-linear relationship between the Vr and ωr. The best fit equation between Vr and
ωr is 0.16ωr

−0.81 with 95% confidence interval. Majority of the simulated data lies within the upper
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and lower bounds. It is noted that Vr is reduced by the increasing volume ratio ωr. However, it is
important to note that the influence of ωr to Vr is insignificant when ωr > 4. Figure 14 demonstrates
the combined effects of Or and ωr to Vr. The results of a regression analysis indicated a strong negative
non-linear relationship between Vr, Or and ωr, with the best fit equation of Vr = 0.12(Orωr)−0.65. A set
of design parameter formulations were derived and is summarized in Table 4.

 

×
× ×πDpipeଶ

Figure 13. Relationship between Vr against ωr.

 

πDpipe^2
×
× ×

Figure 14. Relationship between Vr against Orωr.
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Table 4. Engineering design criteria for seawater intake structure.

Design Parameter Symbol Design Formulation

Intake velocity ratio Vr V0/Vpipe where V0 is the design criteria for intake velocity
Pipe velocity (m/s) Vpipe Q/Apipe where Q = intake rate (m3/s) and Apipe = πDpipe

2/4
Intake opening ratio Or 0.36 × Vr

−0.31 . where Or = Hvc/�vc
Volume ratio ωr 0.11 × V−1.23

r where ωr =ωvc/ωIT

Note: The formulations are in SI unit.

The main design consideration for a seawater intake structure is the impact on fish impingement at
intakes, resulting from intake velocities (V0). The Environmental Protection Agency (EPA) of the United
States (US) has promulgated final ruling under the Clean Water Act to restrict the through-screen
velocity (comparable to the term “intake velocity” used in this study) of a water intake structure to a
maximum 0.15 m/s, and specify that the intake structures should be equipped with a velocity cap. The
intake velocity performance standard proposed by USEPA is specifically referred to as the “design
intake velocity”—which can be used to evaluate intake design prior to construction. The regulation of
intake velocity by USEPA can thus be a good design reference to indicate a low potential for detrimental
impacts from impingement.

4. Conclusions

This study has shown that intake design can greatly influence the intake velocity, and by optimizing
the design parameters, it is greatly reducing the intake velocity. Particular attention is paid to seawater
intake structures, which typically consists of velocity cap and intake tower. The research findings are
generally summarized into the following areas:

(a) This study has demonstrated the usefulness of velocity cap in mitigating intake velocity. The key
design parameters for velocity cap is velocity cap size (ωvc), which comprises of the horizontal
shelf (�vc) and vertical opening (Hvc). The recommended intake opening ratio (Or) shall be
0.36Vr

−0.31, where Or =Hvc/�vc and Vr =V0/Vpipe. Vo is the velocity at the intake window and
Vpipe is the suction velocity at the intake pipe.

(b) With increased velocity cap size, the intake velocity is reduced. The volume ratio (ωr) between
the velocity cap (ωvc) and intake tower (ωIT) is recommended at 0.11Vr

−1.23.
(c) The primary environmental impact caused by intake operation is marine life impingement

resulting from the intake velocity. Therefore, it is reasonable to regulate intake velocity as an
environmental safety factor. However, to the author’s best knowledge, most of the country has
no single regulation used to enforce the intake performance for environment protection purposes.
Thus, the maximum allowable intake value of 0.15 m/s, used by the United States as their national
screening value for the permissible regulation of intake velocity, shall be used as reference to
establish engineering design criteria for seawater intake structures. This value has been widely
utilized to indicate that an intake structure has low potential adverse environmental impact.
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Abstract: During the starting up of the pump mode in pump turbines, the axial hydraulic force acting
on the runner would develop with the guide vane opening. It causes deformation and stress on the
support bracket, main shaft and runner, which influence the operation security. In this case, the axial
hydraulic force of the pump turbine is studied during the starting up of pump mode. Its influences
on the support bracket and main shaft are investigated in detail. Based on the prediction results
of axial hydraulic force, the starting-up process can be divided into “unsteady region” and “Q flat
region” with obviously different features. The mechanism is also discussed by analyzing pressure
distributions and streamlines. The deformation of the support bracket and main shaft are found to
have a relationship with the resultant force on the crown and band. A deflection is found on the
deformation of the runner with the nodal diameter as the midline in the later stages of the starting-up
process. The reason is discussed according to pressure distributions. The stress concentration of the
support bracket is found on the connection between thrust seating and support plates. The stress of
the runner is mainly on the connection between the crown and the blade’s leading-edge. This work
will provide more useful information and strong references for similar cases. It will also help in the
design of pump turbine units with more stabilized systems for reducing over-loaded hydraulic force,
and in the solving of problems related to structural characteristics.

Keywords: axial hydraulic force; stress; deformation; pump turbine; starting-up

1. Introduction

Pumped storage power stations are crucial in electric power systems. They have
two main modes—the power generating (turbine mode) and pump-storing (pump mode)
modes—with the ability to quickly start up and shut down. During the peak period of
electricity demand, the pump turbine operates in turbine mode and converts the potential
energy of water in upstream to electrical energy. During the off-peak period, it operates in
pump mode and stores the excess energy via pumping water into the upstream reservoir.

The pump turbine, designed as reversible in modern times, is the key component of
pumped storage power stations [1]. It operates under complex conditions and suffers varying
hydraulic force on the runner, shaft and support bracket. Pump turbines are usually designed
and installed in vertical-axis style. The operating stability and security becomes very sensitive
to axial hydraulic force [2]. The total axial force that shaft systems suffer includes the axial
hydraulic force, the weight of the runner and the weight of the shaft system. Thus, the axial
force is an important technical requirement and also affects the design of thrust bearing.
The desirable condition of axial force is upward but slightly less than the runner-shaft weight.
The total axial force will be downward to ensure the unit is stable. However, a desirable
condition is usually difficult to achieve. Especially, the axial force strongly and complexly
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changes in transient conditions such as starting-up, load rejection, stalling, etc. If the upward
axial hydraulic force is too strong to exceed the unit weight, the unit lifting happens and
causes accidents [3–6]. On the contrary, if the downward axial hydraulic force is too strong,
especially with strong pulsation, the support bracket will strongly deform or even be damaged
due to plastic deformation or fatigue failure [7].

Investigating the axial hydraulic force characteristics and influences is a popular
topic in pump turbine engineering cases and other hydro-turbine cases. The mechanism
of axial hydraulic force is currently well known. It is caused by the pressure difference
between the inner and outer surfaces of the runner’s crown and the band and between the
runner blade’s suction and pressure sides [8–11]. Usually, the crown and band leakages
are filled with high-pressure flow, which is higher than the inner flow of the runner [4,12].
The pressure of the blade pressure side is higher than that of the suction side. However, the
total axial hydraulic force is empirically unpredictable because the influence factor is very
complicated. The condition parameters of the pump turbine, including head, flow rate and
rotation speed, impact the flow regime and pressure distribution [13–15]. Liu et al. [16]
presented an analytical method to calculate the axial hydraulic force, considering the
leakage size and the angular flow velocity in high-pressure leakages. They also pointed out
that the turbine axial force is mainly produced by crown and band leakages. The leakage-
induced axial force is much larger than that induced by other runner parts. Based on
Genetic Algorithm, large-quantity experiment and computational fluid dynamics(CFD)
simulation, Zhao et al. [17] put forward a prediction formulation of axial hydraulic force
with condition parameters, runner diameter and empirical coefficients. The axial force of
the centrifugal pump simulated by the CFD method was compared with the test result of
Zhou et al. [18]. The results indicated that an appropriate impeller rear shroud radius is
able to significantly reduce axial force. Based on experiment and simulation, the wear ring
radial clearance was found to influence the axial thrust. The solutions of hydraulic axial
thrust reduction of pumps were then presented [19,20]. In terms of the load-rejection of
generating mode, the axial force variation was found to have a strong relationship with
flow rate [21]. Li et al. [22] found that the amplitude of the force depends on the operating
conditions and the guide vane openings. For example, the axial force is prominent in the
common operation of turbine mode while the radial force is dominant in runaway and
shutdown processes.

The structure of the pump turbine mainly includes the support bracket, main shaft,
rotor generator and runner. The support bracket is a fixed component while the other
components are rotational. As the structural support, the weight of the unit and the
hydraulic force of the runner load on the support bracket [23,24]. It should be considered
as a fluid–structure interaction (FSI) problem in order to understand the influence of the
runner’s hydraulic force on structures [25]. Based on FSI, many studies were focused on
the stress on the runner. Considering the interaction between the hydraulic force of the
flow field and the deformation of the structure field, two-way FSI is used in structural
analysis of the runner and the accuracy is compared with experimental studies [26–29].
However, in terms of turbine FSI issues, the deformation of the runner structure is much
less than the flow characteristic length. In that case, Zhou et al. and Xiao et al. [30,31]
studied the fatigue and stress of runner at off-design operating points via one-way FSI.
They found that the stress caused by hydraulic force is one of the main reasons of the
runner fatigue failures and cracks. In terms of the other essential components of pump
turbines, Luo et al. [32–34] focused on the stress of the rotor bracket of the generator and
the piston rod of the blade. Improvements in design are made based on stress analyses.
However, the hydraulic force was usually simplified as a resultant force in the research on
shafts and support brackets [35–37]. It cannot accurately reflect the influence of hydraulic
force on unit structure due to the non-uniform force distributions.

In this study, based on one-dimensional (1D) hydraulic transient simulation in pipeline
and 3D CFD simulation in pump turbines, the axial hydraulic force of the pump turbine
in the starting up of pump mode is studied. The influence of axial force on pump turbine
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structure is also researched. The reliability of CFD simulation is verified by comparison
with the prototype on-site test. The influence of the operation parameters on axial hydraulic
force and the mechanism are analyzed and explained in detail. Based on one-way FSI,
the structural strength including deformation and stress of the support bracket, main shaft
and runner is calculated. The relationship between axial hydraulic force and structural
strength is well discussed. This research will provide more useful information and strong
references for similar cases. It helps the design of pump turbine units for a better hydraulic
and structural performance.

2. Numerical Method

2.1. Method of 3D Turbulent Flow Simulation

Given the incompressibility of water, the Reynolds averaged Navier-Stokes (RANS)
equations were used to calculate the 3D flow field in the pump turbine. The continuity
equation and momentum equation are [38]:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= fi − 1
ρ

∂p
∂xi

+ v∇2ui (2)

where u is flow velocity, f is body force, ρ is density, p is pressure, v is kinematic viscosity,
t is time and x is the coordinate component.

In the RANS method, the instantaneous component is decomposed into its time-
averaged component and fluctuating component. To close the equations, the turbulence
model is used to empirically model the fluctuating component. The SST k − ω transient
model which is an eddy viscosity model is applied in this study [39]. It can simulate
both the shear flow and adverse pressure gradient accurately and is particularly useful in
engineering simulations. The RANS equation with SST k − ω model can be written as:
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where lk−ω is the turbulence scale in which lk−ω=k1/2βkω, μ is dynamic viscosity, term
P is the production term, Cω is the coefficient of the production term, F1 is the blending
function, σk, σω and βk are model constants.

Based on the CFD commercial software CFX, the high resolution was used for dis-
cretization schemes in this paper.

The 3D flow simulation was processed with the steady simulation in CFX. The one-
dimensional (1D) hydraulic transient simulation of unsteady flow in pipe was processed
to consider the transient effect in starting-up. As the boundary conditions of 3D flow
field, the 1D hydraulic transient simulation was based on the continuity equation and
momentum equation.
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where H is piezometric head, U is average velocity, g is gravity acceleration, f is Darcy-
Weisbach friction factor; α is pipeline slope; D is diameter of pipe; a is speed of pressure
pulse [40].
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2.2. Method of Structural Simulation

The structural simulation was proceeded using commercial software ANSYS. Based
on the structural static equilibrium equation, the stress and deformation are calculated
using the finite element method (FEM). The equilibrium equation is [41]:

[K]{d} = {F} (7)

where [K] is the stiffness matrix of the system, {d} is the vector with the nodal displacement
and {F} is the vector of force loaded on structure.

Via the displacement {d} solved by Equation (7), the static stress σ can be calculated
by [42,43]:

σ = [Ds][Bs]{d} (8)

where [Ds] is the elastic matrix based on Young’s modulus and Poisson’s ratio for the
material and [Bs] is the strain–displacement matrix based on the element shape functions.

Universally, the equivalent von Mises stress is applied in engineering to analyze the
stress characteristics of the structure. The equivalent von Mises stress σc can be calculated
using the fourth strength theory:

σc =

√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(9)

where σ1, σ2 and σ3 are the first, second and third principal stress.

3. Computational Model and Boundary Conditions

3.1. Flow Field of Pump Turbine

In this study, the model is a prototype reversible pump turbine in a pumped storage
power station. In order to acquire the boundary conditions of the pump turbine, the hy-
draulic system has been modelled in 1D. As shown in Figure 1, the 1D system includes
the pipeline, reservoir, gate shaft, pump turbine and tank. The operate process studied
in this paper is the starting-up process of the pump mode. Because the reservoir level
has principle influence on hydraulic force, the most common situation is considered to be
the initial conditions with the maximum lower reservoir level of 294 m and the minimum
upper reservoir of 741 m. The length of upper pipeline is about 1160.9 m and the length of
lower pipeline is about 1108.5 m.

Figure 1. Schematic map of the hydraulic system of the studied pumped storage power station.
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The parameters of pump turbine are listed in Table 1. The 3D flow profile of the pump
turbine, shown in Figure 2, mainly consists of volute, stay vane, guide vane, runner and
draft tube. To consider the hydraulic force on the outside surface of the runner, the flow
field of the runner’s crown and shroud leakages, and pressure-balancing chamber, are also
modelled. Figure 3 shows the details of the runner and leakage. The hydraulic force of
runner and leakage flow acts on the fluid–structure interface including the blade suction
side (BSS), blade pressure side (BPS), crown outside surface (COS), crown inside surface
(CIS), band outside surface (BOS) and band inside surface (BIS). These interfaces are
illustrated in Figure 3.

Table 1. Parameters of pump turbine.

Parameter Value

Rated head Hr [m] 430
Rated rotation speed nr [r/min] 428.6
Rated power Pr [MW] 300
Rated flow rate Qr [m3/s] 68
Diameter on runner pressure side Dhi [m] 4.16

Figure 2. Overview of the 3D flow profile of the pump.

Figure 3. Details of runner and leakage.
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While the runner keeps rotating at the rated speed, the air, which is pressurized into
the runner chamber to reduce start-up torque, has been already released, instead of filling
water. Then, the guide vane opens gradually from 0 degrees to the maximum opening angle.
This process is called “starting-up” in pump mode. According to the guide vane opening
law, the starting point is when the guide vane opening is 0 degrees and the starting-up
calculation duration in this paper is 30 s. The time step of 1D hydraulic transient simulation
is 0.005 s.

The 3D flow field during starting-up is calculated using CFD steady simulation at
selected typical time points (STP), which is illustrated in Figure 4. The boundary conditions
of 3D CFD simulation is based on 1D hydraulic transient results of the pipe at the inlet and
outlet of the pump turbine. The draft tube inlet is set as the mass flow rate inlet boundary.
The volute outlet is set as the static pressure outlet boundary. The rotation speed is the
rated speed. The guide vane opening rule, mass flow rate and static pressure at volute
outlet are acquired from 1D hydraulic transient simulation, as shown in Figure 4. All the
parameters are at relative values of Q* = Q/Qr, Hout* = Hout/Hr, A* = A/Amax where Qr,
Hr are the rated flow rate and rated head, Hout is the pressure at the volute outlet, Amax
is the maximum guide vane opening. There is a fluctuation of Hout at the initial stage of
starting-up, which is caused by the water hammer effect in the pipeline with the guide
vane opening.

Figure 4. Boundary conditions acquired from 1D hydraulic transient simulation.

The fluid medium is considered as incompressible in this case. The runner walls
in leakages are set as counter-rotating. The other solid walls are set as no-slip wall type
boundaries. The runner domain and FSI of leakage, COS and BOS are set as rotational. The
other domain and wall are set as stationary. Interfaces between stationary domains are
set as general connection. Interfaces between stationary and rotational domains are set
as frozen-rotor type for good data transfer ability. The convergence criterion is set as the
root-mean-square (RMS) residual of continuity equation, and momentum equation is set as
less than 1 × 10−4.

3.2. Structural Field of Pump Turbine Unit

In the structural field simulation, the structural stress and deformation of pump tur-
bine unit are focused and simulated based on the finite element method (FEM). The struc-
tural model is composed of the support bracket, shaft, motor and runner. The rotating
components including the shaft, motor and runner are regarded as one. Figure 5 shows
the 3D structural model with corresponding boundary conditions. The material of the
pump turbine unit is steel; the properties that refer to the prototype pump turbine are
listed in Table 2. The total weight of rotating components is about 550 t. The coordinate
system is shown in Figure 5 with a downward +z (axial) direction. The bracket has, in total,
eight supporting arms, fixed by concrete foundations at the arm end (fixed support 1) and
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connected with the generator stator at the bottom (fixed support 2). The diameter of the
basic support part is 4 m and the diameter with eight supporting arms is 10 m. The thrust
bearing is simplified by spring element (the element type is COMBIN14), connecting the
thrust collar and thrust seating of the support bracket. The upper bearing, lower bearing
and turbine bearing are simplified by the bearing element (the element type is COMBI214),
constraining the radial motion of the shaft. The stiffness coefficients k of thrust bearing
and guide bearing are listed in Table 3 [37]. Hydraulic force loads on the fluid–structure
interfaces of runner based on one-way FSI. The hydraulic force is acquired from 3D flow
field simulation and is mapped onto the fluid–structure interface of the runner structure
using the profile-preserving method. The rotation speed of the rotating components is
nr. The gravity and centrifugal force of the rotating components are fully considered in
this study.

Figure 5. Model and boundary conditions of structural field of pump turbine unit.

Table 2. Pump turbine unit material properties.

Density ρ
[kg/m3]

Young’s Modulus E
[Pa]

Poisson’s Ratio μ
[-]

7850 2.1 × 1011 0.3

Table 3. Bearing stiffness coefficients k.

Upper Bearing Lower Bearing Turbine Bearing Thrust Bearing

Stiffness
coefficients k

[N/m]
2.0 × 109 2.0 × 109 1.5 × 109 2.5 × 109
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4. Mesh and Independence Check

4.1. Mesh of Flow Field

The flow field of the pump turbine is discretised using tetrahedral-hexahedral hybrid
mesh elements to balance the computational cost and simulation accuracy. The schematic
map of mesh is shown in Figure 6. It is worth noting that the guide vane flow domain is
remeshed with consistent element size and rules as the guide vane opening is changing.
The y+ value is also checked by adjusting the near-wall mesh height. To apply the automatic
wall functions, y+ is finally controlled within 30~300.

  
(a) (b) (c) 

Figure 6. Schematic map of the mesh for flow field. (a) Runner; (b) Leakage, guide vane, stay vane and volute; (c) Draft tube.

In order to validate the mesh independence and the simulation accuracy, the com-
parison of pressure on typical locations between the prototype pump turbine test data
and simulation is conducted, as pressure distribution is the key point of hydraulic force.
Four pressure sensors were arranged on the prototype pump turbine at the location marked
in Figure 7, working during the starting-up in pump mode. The sampling frequency of the
pressure sensor is 800 Hz. For comparison with simulation results at STP, the frequency
of test pressure shown in Figure 8 is 4 Hz, which is averaged from the original data with
800 Hz. The relative pressure coefficient Cp is defined as:

Cp =
P

ρgHr
(10)

Figure 7. Pressure measurement points. P1: crown leakage before seal; P2: band leakage before seal;
P3: upper vaneless space; P4: lower vaneless space.
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Figure 8. Comparison of pressure between prototype test and simulation on typical locations.

As shown in Figure 8, the pressure on typical locations shows good agreement between
the test and simulation, with errors below 10.7%. Larger errors mainly exist in the initial
stage of the starting-up process as both the guide vane opening and mass flow rate are
very small. Furthermore, relative head H* = H/Hr and relative pressure at draft tube inlet
Hin* = Hin/Hr between 1D hydraulic transient and 3D CFD steady simulation are compared
in Figure 9. The H* and Hin* predicted by CFD matches well with the 1D-predicted results.
Therefore, the mesh is sufficient for the hydraulic force simulation based on steady state CFD
simulation. The final mesh of the flow field in this study has about 6.89 million nodes and
9.91 million elements. The mesh detail of each component is, respectively, listed in Table 4.

Figure 9. Comparison of head between 1D hydraulic transient simulation and 3D CFD simulation.

Table 4. Mesh details of the flow field.

Component Nodes

Volute 150,796
Stay Vane 417,420

Guide Vane 750,688
Runner 1,831,959

Draft Tube 174,411
Leakages 2,947,430

Balancing-Pipe 615,984
Total 6,888,688
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4.2. Mesh of Structural Field

Figure 10 shows the mesh of structural field including support bracket, shaft and
runner. The support bracket is meshed by tetrahedral mesh elements. The shaft and runner
are meshed by hexahedral mesh elements. The element type in ANSYS simulation is
SOLID185. The tress concentration often occurs at the “T-shape” connection and at the
corners. These regions are extremely sensitive to the mesh quality [44]. Therefore, as
shown in detail in Figure 10, mesh in special regions like the corners of support plates, the
connections between the blade and the crown, and the connection between the blade and
the runner’s band, are locally refined. According to the maximum stress on local refinement
zones of the runner and support bracket, the mesh independence check is conducted with
four schemes, as listed in Table 5. The four schemes have different element sizes, especially
in sensitive regions. As shown in Figure 11, the changes of maximum stress at typical sites
are monitored to be less than 2% in the check. The final mesh scheme has 0.92 million
nodes and 1.17 million elements. The mesh details of each component are listed in Table 6.

(a) 

(b) 

(c) 

Figure 10. Schematic map of the structure field meshes. (a) Shaft and Generator rotor; (b) Support Bracket; (c) Runner.

Table 5. Mesh details for mesh independence check.

Mesh1 Mesh2 Mesh3 Mesh4

Nodes 635,012 827,539 915,961 1,972,471
Elements 774,907 1,009,839 1,169,321 2,640,587
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Figure 11. Mesh independence check.

Table 6. Mesh details of the final structure field.

Component Shaft and Generator Rotor Support Bracket Runner Total

Nodes 262,888 121,470 540,639 915,961

5. Results and Analysis

5.1. Axial Hydraulic Force
5.1.1. Characteristic and Development

Based on the CFD simulation at the STP, the development of total axial hydraulic force
acting on runner during the starting up process is analyzed, as presented in Figure 12. The
relative axial hydraulic force is defined as:

F∗
z =

Fz

mtg
(11)

where mt is the weight of rotating components including the shaft system and runner.

Figure 12. Schematic map of the structure field meshes.
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In this paper, the downward axial force is defined as positive according to the defi-
nition of the +z direction. |F∗

z | is adopted to stress the magnitude of axial hydraulic force.
To find out the mechanism of axial hydraulic force and its relationship with flow parameters
of the turbine, the relative flow rate Q* and relative head H* from 1D hydraulic simulation
are also shown in Figure 12 as a reference.

During starting-up, |F∗
z | is upward and changes between approximately 0.05 and

0.23. There, t = 0 corresponds to the onset of the opening up of the guide vane. In 0~4.5
s, |F∗

z | gradually decrease and reach the first local valley. During this period, H* reaches
the maximum with fluctuation. Before t = 11 s, the guide vane has opened for 46% and
Q* increases to 0.88. |F∗

z | suffers the largest fluctuation from 0.05 to 0.23. It can be found
that the axial hydraulic force, head and flow rate are very fluctuant until the guide vane
opens to 46%, which is about half of the maximum opening. This period is defined as the
“unsteady region” where the phenomenon will be discussed in later sections. Then, Q*
increases flatly when the guide vane is continually opening, while H* is almost constant.
This period is defined as the “Q flat region”. It is worth stressing the point that |F∗

z | has a
sharp increase and is strongly positively related to flow rate in this “Q flat region”.

In order to identify the axial hydraulic force on specific locations of the runner, the com-
ponents of |F∗

z | are plotted in Figure 13. It may be helpful to have a clear knowledge of the
variation mechanism of axial hydraulic force during the starting up process. As shown
in Figure 13a, the directions of F∗

z on COS and BIS are downward and those on CIS and
BOS are upward. It is very unstable for axial hydraulic force on the surface of the crown
and band in the “unsteady region” while it is almost flat in the “Q flat region”. For the
runner’s crown, |F∗

z | on COS is larger than CIS, so the resultant axial force acting on crown
is downward, as shown in Figure 13b. For the runner’s band, the resultant axial force is
upward as |F∗

z | on BOS is larger than BIS. It can be estimated that pressure in the leakages is
higher than that in the runner. Hence, the axial hydraulic force on the outside surface of the
runner is larger than on its inside surface. With the opening of the guide vane, the resultant
force on the crown and band decreases with the increasing of the flow rate. The other point
observed in Figure 13b is that the resultant force on the crown is smaller than that on the
band. Figure 13c provides the |F∗

z | value on the blade with the comparison against that on
the crown and the band. |F∗

z | on the blade is found downward because pressure on blade
pressure side is always higher than that on the suction side. In the “unsteady region”, |F∗

z |
on the blade increases with the opening of the guide vane because the differential pressure
on the blade is increasing. In contrast, it decreases in the “Q flat region” as the guide vane
is continually opening and the flow rate is flatly increasing. For the resultant force on the
crown and the band, some fluctuations can be found in the “unsteady region”, as well as a
slight increase in the “Q flat region”.

In summary, the process of pump mode’s starting-up should be divided to two parts—
the “unsteady region” and the “Q flat region”—when discussing the characteristics of axial
hydraulic force. The dividing point of two periods is that the guide vane opens to around
half. In the two periods, obviously different axial hydraulic force characteristics and their
relationships with flow parameters can be found. By analyzing the local components, it
is found that the magnitude of axial hydraulic force on the runner’s local surface is 4~10
times the weight of the pump turbine unit, but in the opposite direction. The total axial
hydraulic force is generated due to the counteraction among all the force components. The
total |F∗

z | value is much smaller than these local axial force values. Therefore, because of
the combined influence of local axial force, the resultant force develops according to a
complicated law.

122



J. Mar. Sci. Eng. 2021, 9, 158

 
(a) (b) 

  
(c) 

Figure 13. Axial hydraulic force components during pump mode’s starting up. (a) Inside and outside surface of runner; (b)
Crown and band; (c) Crown and band, blade.

5.1.2. Mechanism Discussion

Pressure distribution in the runner and leakages is the key factor influencing axial
hydraulic force. In order to discuss the mechanism of axial hydraulic force, Figure 14
provides the pressure coefficient Cp distribution on the cross-section view in runner domain
and leakages at typical selected time points, t = 3 s, 4 s, 6 s, 11 s, 16 s, 21 s.

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Cp 

Figure 14. Pressure distribution on axial cross-section of runner and leakages during starting-up at t = 3 s, 4 s, 6 s, 11 s, 16 s,
21 s. (a) t = 3 s; (b) t = 4 s; (c) t = 6 s; (d) t = 11 s; (e) t = 16 s; (f) t = 21 s.
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During the starting-up process, pressure reaches the lowest level at t = 11 s, accompa-
nied with the smallest axial hydraulic force. Before reaching this point (in the “unsteady
region”), unstable pressure development can be observed in the runner and leakages.
At t = 4 s, the pressure level becomes lower than before and after. This is the time with
the first valley value, as shown in Figure 12. Hence, the valley values of axial hydraulic
force are, along with the lower pressure level in the “unsteady region”, at t = 4 s and 11 s.
Moreover, in this period, the pressure in crown and band leakages are apparently higher
than that in the runner. In contrast, there is a small difference of pressure between the
runner and leakages from t = 11 s to 21 s. Pressure in the crown and band leakages remain
almost unchanged in the “Q flat region”. At the same time, pressure in the runner near the
draft tube increases with the flow rate.

Figure 15 shows the streamlines and relative velocity coefficient Cv in the mid-span of
the guide vane at typical selected time points of t = 3 s, 6 s in the “unsteady region” and
t = 16 s, 21 s in the “Q flat region”. The relative velocity coefficient Cv is defined as:

Cv =
v

πnD
60

(12)

 

  
(a) (b) 

  
(c) (d) 

Cv 

x 

y 

Figure 15. Streamlines and relative velocity coefficient Cv in the mid-span of guide vane during starting-up at t = 3 s, 6 s,
16 s, 21 s. (a) t = 3 s; (b) t = 6 s; (c) t = 16 s; (d) t = 21 s.

In the “unsteady region”, the guide vane opening is relatively small. The high-speed
flow from runner is blocked in front of the guide vane and forms an obvious jet flow
between two guide vane blades. Due to the disturbance of the jet, the twin-vortex flow
structure can be seen in the vaneless region between the guide vane and the stay vane. This
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twin-vortex flow structure causes strong local blockage in the guide vane. Therefore, the
flow blockage leads to high-pressure in the runner and leakages. The twin-vortex causes
the flow pattern to be significantly more turbulent and unstable. This is the reason why
axial hydraulic force fluctuates in this period. With the guide vane opening becoming
larger in the “Q flat region”, the flow pattern in the guide vane becomes well-behaved
with no obvious separation and vortex. The axial hydraulic force develops stably with a
positive correlation against flow rate. It is worth noting that the flow pattern distribution
in the guide vane is asymmetric in the later period during starting-up. This phenomenon
will be discussed in the following sections.

5.2. Structural Characteristic of Unit

Based on the FEM method, structural simulation of pump turbine unit, including
the support bracket, shaft and runner, is conducted during pump mode’s starting-up
process. The hydraulic force on the runner and leakages are obtained from the CFD results
above. It is loaded on the fluid–structure interface based on the one-way FSI method. The
Von-Mises stress σ and axial deformation D, which influence the operation safety of the
pump turbine, are the main parameters in the structural simulation.

5.2.1. Deformation

The deformation Dmax distribution on the main shaft and support bracket are almost
constant during starting-up, as shown in Figures 16 and 17 at t = 21 s. In this paper,
the downward deformation is positive. The Dmax of the main shaft is 1.3 mm at t = 21 s
and the location is at the top of shaft. It is noted that the end of the shaft, which connects
the runner, has the smallest deformation. This means that the shaft is pushed upward
because of centrifugal force. The Dmax of the support bracket is 0.35 mm at t = 21 s and the
location is at the thrust seating, which bears the axial hydraulic force and the self-weight of
rotating components. The deformation decreases as the radius increases since the ends of
the support arms are fixed.

D[mm] 

 
 

 
 
 
 
 
 
 

Figure 16. Deformation of main shaft at t = 21 s.
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D[mm] 

 
 

 
 
 
 
 
 
 

Figure 17. Deformation of support bracket at t = 21 s.

Figure 18 shows the Dmax variation of the main shaft and support bracket during pump
mode’s starting-up process. To emphasize the effect of hydraulic force, the deformation
without hydraulic force is plotted as a reference. The resultant force on the crown and band
is also shown as a reference. The total axial force FzT acting on the shaft and bracket can be
calculated as:

FzT = FzH + FzW (13)

where FzH is the hydraulic axial force and FzW is the self-weight of rotating components.

Figure 18. Maximum deformation of main shaft and support bracket during starting-up.
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Based on Equation (7), there is the relationship that D ∝ FzT . Since FzW is constant,
it is the case that D ∝ FzH . The finding that the axial deformation of the main shaft and
support bracket do not relate to the total axial hydraulic force is unexpected. However,
it relates to the resultant axial hydraulic force on the crown and band (FzCB). As Figure 18
shows, when hydraulic force has not been loaded on the fluid–structure interface, the Dmax
of the shaft and bracket is 3.2 mm and 0.85 mm. The hydraulic force makes Dmax decrease,
as a result of the upward axial hydraulic force. At the initial point of starting-up, Dmax is
the largest, with values of 2.35 mm for the shaft and 0.63 mm for the bracket. Dmax of the
shaft and bracket have similar tendencies during starting-up. They decrease before t = 6 s
and reach the first valley value, which corresponds to the first valley of FzCB. Then, they
increase and reach the peak value at t = 11 s which corresponds to the first peak of FzCB.
In the “Q flat region”, the Dmax of the shaft and bracket decrease and correspond to the
FzCB with a similar tendency. It indicates that the resultant axial hydraulic force on the
crown and band plays a principal role that affects the deformation of the shaft and bracket.
However, the axial force on the blade has only a slight effect. This is a new breakthrough
understanding because total axial hydraulic force was, previously, usually regarded as
important. Now, the influence of the resultant axial hydraulic force on the runner’s crown
and band should be specially focused.

Unlike the shaft and bracket, a developing distribution of the runner axial deformation
during starting-up is shown in Figure 19. Initially, the D distribution of the runner is radial-
symmetric. The Dmax is 1.65 mm and the location is at the outer edge of the crown. The Dmin
is at the bottom of the band (shown in Figure 19a) due to the effect of centrifugal force.
However, at t = 6 s, there are different degrees of deformation between the two sides of
the runner. As shown in Figure 19b,c, the maximum is at one side of the outer edge of the
crown while the minimum is at the other side, at the bottom of the band. In the later period
of the starting-up process, the runner is obviously deflected with the nodal diameter as
midline. Dmax and Dmin are, respectively, at the two sides outer edge of crown, as shown in
Figure 19d. Considering the operation of the pump turbine, it is important to find out this
phenomenon. This is because the deformation on the crown and band may change the size
of leakages and then influence the leakage flow field.
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Figure 19. Cont.
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Figure 19. Deformation of main shaft during starting-up at t = 3 s, 6 s, 16 s, 21 s. (a) t = 3 s; (b) t = 6 s; (c) t = 16 s; (d) t = 21 s.

In order to understand the runner deflection, based on the location of Dmax and Dmin
at t = 21 s (marked as D1 and D2 in Figure 19d), the deformation development is provided
in Figure 20. During starting-up, the maximum location is at D1 all the time. The variation
of Dmax of the runner has a similar tendency to those of the shaft and bracket as a result
of the superposition of deformation. The largest Dmax is 1.7 mm at t = 11 s. After that, the
Dmax is at lower values of around 0.75~1 mm. In terms of D2, it is very close to D1 at the
beginning. With the increase in guide vane opening, the difference between D1 and D2
also increases. Figure 21 provides the development of ΔD = D1 − D2 which provides a
visualized illustration. According to the asymmetric streamlines in the guide vane region,
as shown in Figure 15, a possible explanation is that the increasing of the flow rate leads to
a more serious asymmetric flow field distribution as the volute are asymmetric. This may
induce the large runner deflection phenomenon.

Figure 20. Deformation of runner’s typical location during starting-up.
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Figure 21. ΔD of runner during starting-up.

To illustrate the reason of runner deflection, the pressure distribution of COS and BOS
are found to be asymmetric in the later part of starting-up, when t = 21 s, as shown in
Figure 22. It is obvious that the pressure distribution at 135◦ direction of both COS and
BOS are smaller than that of the opposite direction. As the direction of axial hydraulic
force of COS and BOS is opposite and the effects would be counteracted against each other,
the pressure distribution on every 45◦ line (as marked in Figure 22a) of COS and BOS is
provided in Figure 23 for comparison. R* is the relative radial distance where R* = 2R/Dhi.
In COS and BOS, Cp of PL4 is the largest while that of PL2 is the smallest. It can be compared
to the difference between the PL4 and PL2 of COS, which is larger than that of BOS, which
means that COS plays the principal role in affecting the runner deflection. In this case,
it can be summarized that the downward hydraulic force on the D1 side is larger than that
on the D2 side. Therefore, the deflection of runner can be well explained.

 

 
(a) (b) 

Cp 

x 

y 

45° 

PL1 PL2 

PL3 PL4 

Figure 22. Pressure distribution of COS and BOS at t = 21 s. (a) COS; (b) BOS.
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(a) (b) 

Figure 23. Pressure distribution on typical lines of COS and BOS at t = 21 s. (a) COS; (b) BOS.

5.2.2. Von-Mises Stress

Unlike the deformation of the runner, the Von-Mises stress distribution and the σmax
location on the runner are almost constant during starting-up. It is also almost constant
on the support bracket. The stress of the main shaft, which is very small, is not discussed
in detail in this case. Figures 24 and 25 show the distribution of Von-Mises stress on the
support bracket and runner at t = 21 s. The maximum stress of the support bracket concen-
trates on the connection between the thrust seating and the support plates. The maximum
stress value is about 90.2 MPa at t = 21 s. However, the strength of other sites is strong
enough as the stress is only around 10 MPa. For the runner, the stress concentration occurs
on the connection between the crown and the leading-edge of the blade. The σmax of the
runner is about 105.8 MPa at t = 21 s and that of the other regions is less than 60 MPa.

max 

 [MPa] 

        

Figure 24. Von-Mises stress of support bracket at t = 21 s.

 [MPa] 

      

Figure 25. Von-Mises stress of runner at t = 21 s.
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Figure 26 shows the σmax development of the support bracket and the runner during
starting-up. For the support bracket, the σmax development has a similar trend with
deformation. It is principally influenced by the resultant force on the crown and band.
The largest σmax of the support bracket is 172.8 MPa at the beginning of starting-up.
As guide vane opens completely, σmax reaches the smallest value of 90.2 MPa. It indicates
that the beginning of starting-up should be focused when considering the strength and
safety of the support bracket. Differently, the σmax of the runner reaches the peak value
of 134.1 MPa at t = 11 s. It is obvious that the stress of the runner is not only influenced
by the hydraulic force on the crown and band but also affected by the blade force. In this
paper, the axial hydraulic force is mainly focused. The radial and circumferential force
components and their influence on structural stress will be discussed in future research.

Figure 26. Maximum Von-Mises stress of support bracket and runner during starting-up.

6. Conclusions

This paper studied the axial hydraulic force characteristics on the runner in a pump
turbine case during the starting up of the pump mode. Conclusions can be drawn as follows:

1. According to the features of axial hydraulic force, the pump mode’s starting-up
process can be divided into two parts—those of the “unsteady region” and the
“Q flat region”. In the “unsteady region”, the axial hydraulic force and its com-
ponents are obviously fluctuant. In the “Q flat region”, the axial hydraulic force
shows a strong positive relationship with flow rate. The dividing point of these two
regions is, approximately, at the half-opening of the guide vane. The components of
axial hydraulic force are in different directions at different positions. Therefore, the
total axial hydraulic force is formed by the counteraction among force components.
It is the main reason for the complexity of axial hydraulic force characteristics.

2. The pressure distribution in the runner and leakages and the streamline in the guide
vane region enabled the identification of the mechanism of axial hydraulic force
development. In the “unsteady region”, the pressure is obviously unstable. Pressure
in the runner’s crown and band leakages is apparently higher than in the runner.
A twin-vortex flow structure can be observed in the vaneless region between the guide
vane and the stay vane with strong flow blockage. In the “Q flat region”, the pressure
in the crown and band leakages remains almost unchanged, while the flow regime in
the guide vane is well-behaved. It is worth noting that the flow pattern distribution
in the guide vane is asymmetric in the later period of the starting-up process.

3. The maximum deformation of the main shaft is located at the top of shaft. The maxi-
mum deformation of the support bracket is on the thrust seating. The finding that
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the resultant axial hydraulic force on the crown and band plays a principal role in
affecting the deformation of the shaft and bracket is unexpected. However, the axial
force on the blade has just a slight effect. The deformation on the runner is radially
symmetric at the beginning of starting-up, while the runner clearly deflects with
the nodal diameter at the midline in the later period. The reason is found to be the
asymmetric pressure distribution of COS and BOS. Among them, COS plays the
principal role.

4. The maximum stress on the support bracket concentrates on the connection between
the thrust seating and the support plates. The maximum stress on the runner is on
the connection between the crown and the blade inlet edge. The σmax development
of the support bracket has a similar tendency with the development of deformation.
The stress on the runner is found not only to be influenced by hydraulic force on the
crown and band, but also to be affected by the blade force.

Finally, this paper will be helpful in realizing the axial hydraulic force of the pump
turbine during the starting-up of the pump mode and can provide support for the design
of structural components. In the further works in the future, the transient characteristics
of axial hydraulic force, vibration and structural dynamic stress should be analyzed and
discussed in order to facilitate further improvement in more actual engineering cases.
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Abstract: The codend of a trawl net is the rearmost and crucial part of the net for selective fish
catch and juvenile escape. To ensure efficient and sustainable midwater trawl fisheries, it is essential
to better understand the drag characteristics and fluttering motions of a midwater trawl codend.
These are generally affected by catch, cutting ratio, mesh size, and twine diameter. In this study,
six nylon codend models with different cutting ratios (no cutting, 6:1, 5:1, 4:1, 7:2, and 3:1) were
designed and tested in a professional flume tank under two conditions (empty codends and codends
with catch) and five current speeds to obtain the drag force, spatial geometry, and movement trend.
As the cutting ratio of empty codends decreased, the drag force decreased, and the drag coefficient
increased. The unfolding degree of codend netting and the height of empty codends were found
to be directly proportional to the current speed and inversely proportional to the cutting ratio.
The positional amplitude of codend with cutting ratio 4:1 was the smallest for catch. The drag force of
codends with catch increased as the current speed increased, and first decreased and then increased
as the cutting ratio decreased. To ensure the best stability and minimum drag force of the codend,
it is recommended to use the 4:1 cutting ratio codend.

Keywords: cutting ratio; codend; hydrodynamic characteristics; fluttering motions; the Fourier series

1. Introduction

Trawling plays an important role in marine fishing, accounting for approximately 35%
of the world’s catches [1,2]. Midwater trawling involves pulling a fishing net horizontally
through the water behind one or two vessels. This fishing equipment is normally designed
according to the behavior of target species to achieve more selective netting, and to reduce
the nets’ drag to decrease the fuel consumption of fishing vessels, thus improving fishing
efficiency and increasing economic benefits [3,4]. The shape of a midwater trawl is almost
similar to an elliptical cone when dragged; the scientific conicity and outline make the
midwater trawl smooth and stable, guiding the fish better and with uniform force [5,6].
The conicity and contour of a trawl are obtained by the cutting ratio. However, to ensure
that all of the nets of the trawl are at the same inclined angle with a smooth contour,
the cutting ratio generally increases from the wing to the codend, causing the trawl

J. Mar. Sci. Eng. 2021, 9, 256. https://doi.org/10.3390/jmse9030256 https://www.mdpi.com/journal/jmse

135



J. Mar. Sci. Eng. 2021, 9, 256

contour line to form a convex curve inwardly when the nets are connected. Then, the curve
becomes a straight line by water impact [3].

The codend is connected to the narrow end of a tapered trawl, and is most often
an elliptical cone shape due to the cutting ratio [7]. The codend is an essential part of
the trawl, because its function is to store large fish by catching them while releasing
the juvenile fish [8–10]. However, as the catch accumulates, the codend shape changes,
with the front mesh of the codend closing and the rear contour of the codend bulging [11].
To ensure consistent trawl performance, the increase in codend drag as the catch builds up
must be considered. Moreover, as the codend is connected to the end of trawl, the effect of
shadowing on the codend cannot be ignored [12]. Druault and Germain [13] reported that to
optimize the codend efficiency in terms of catchability and its effect on energy consumption,
it must have a high static stability, which is difficult due to the significant influence of
hydrodynamic turbulence flow. Furthermore, they mentioned that the knowledge of flow
instability is important to better understand the force acting on a codend and to implement
a selected device.

The selectivity, drag force, and stability of the movement of the codend are signif-
icantly affected by the hydrodynamic turbulent boundary layer, vortex, and wake flow
developing around the fishing equipment [14]. However, it is difficult to determine the
hydrodynamic force on each part of the trawl net because of the fluid–structure interactions
that induce large deformation and oscillation of the net, modifying the drag force instanta-
neously [15,16]. In recent decades, considerable progress has been made in understanding
the flow field around a trawl net in general, and a codend in particular, using experimental
and numerical approaches. Bouhoubeiny et al. [14] evaluated the flow around rigid and
oscillating codend models. These preliminary analyses showed that a symmetrical vortex
exists behind the rigid codend and possible turbulent flow interactions with the flutter-
ing codend structure without a complete study of the PIV (Particle Image Velocimetry)
database. Recently, Druault and Germain [13] used the PIV method to evaluate the flow
field distribution around a codend and found that, while dragging the trawl, vortices are
alternately generated behind the codend. The shedding of the vortex generates vertical
pressure on the codend and causes it to oscillate. Due to the local hydrodynamic effects
(fluctuating velocities, vortex shedding wake, etc.), warp tension variations, movements of
the deformable structure itself, and the geometry of rigid structure can cause the codend
to oscillate. Moreover, each excitation mechanism can occur simultaneously and interact
with each other, thereby increasing the complexity of characterizing the fluid–structure
interaction [17]. However, these investigations explain the oscillation of the codend, but do
not provide a method to minimize the oscillation amplitude or provide a model to fit the
oscillation trend. Madsen et al. [18] evaluated the behavior of six different codends at
full scale in a flume tank of SINTEF and found that each codend oscillates considerably
when loaded with fish, and the standard codend is the most stable of those six codends.
Thus, he considered that adjusting the net type and combination mode of the codend can
minimize its oscillation amplitude.

The codend motion and catch build-up in the codend can influence catch quality
because they can cause epidermal damage [12,19]. Therefore, it is important to improve the
codend performance. As shown by the literature review, there are also differences in the
cutting ratio of the codend to suit target species. Kumazawa et al. [20], Zhou et al. [21,22],
and Yao et al. [23] investigated the drag characteristics of the midwater trawl, but different
cutting ratios of codend structures exist. To date, it has not been determined whether the
cutting ratio can be adjusted to reduce the drag force and improve the stability. In addition
to influencing the effect of the cutting ratio on attack angle and contour, it also creates
a special geometrical shape with the codend that, in turn, influences the hydrodynamic
performance of the codend and consequently its catchability, stability, and selectivity.
Therefore, in this study, the effects of cutting ratio on the net shape and drag force of
empty codends and codends with catch were analyzed. Six codends with different cutting
ratios and in two states, with or without catch, were selected. Model tests were performed
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under five conditions to compare the net shape, drag force, and motion of these codends.
The Fourier series was used to fit the positional and drag force oscillations of the codend
with catch, providing information to improve the hydrodynamic performance and stability
of the codend.

2. Material and Methods

2.1. Codend Design

The Antarctic krill trawl (codend length = 30 m) is designed for the target vessel,
F/V “Long Teng” of China National Fisheries Corp. This net codend has a mesh size of
144 mm and bar diameter of 16 mm. The model trawl codend scales are: length scale =
1/20 (λ = 20), small-scale ratio λ’ = 5, flow velocity scale = 1/2.24, according to Tauti’s law.

Six models of codends constructed using nylon material and with different cutting
ratios were used based on the model codend (Net 1). These codends were constructed
by assembling four pieces of netting with a diamond mesh size of 30 mm and a twine
diameter of 3 mm. Each piece of netting was joined by part 1 (20 × 25 mesh) and part
2 (20 × 25 mesh), in addition to cutting part 2 into six cutting ratios (no cutting, 6:1, 5:1,
4:1, 7:2, and 3:1). The codend parameters and joining methods are shown in Table 1 and
Figure 1.

Table 1. Specifications for each netting panel of codend.

Codend
Twine

Materials
Bar Length

(mm)
Bar Diameter

(mm)
Cutting Ratio

Cutting Sequence (Subscripts
Represent Cycle Index)

Part 1 nylon 15 3 No cutting [N]22

Part 2

Net 1 nylon 15 3 No cutting [N]25
Net 2 nylon 15 3 6:1 N [NBNNNBN]4
Net 3 nylon 15 3 5:1 [NBNNBN]5
Net 4 nylon 15 3 4:1 N [NBNBN]6
Net 5 nylon 15 3 7:2 NB[NBNBNBNBN]3 BNN
Net 6 nylon 15 3 3:1 [NBNB]8 N

Figure 1. Design sketch of six codends.

2.2. Experimental Setup

Figure 2 shows the experimental apparatus used for measuring the drag force and
net shape of the codend. The experiments were conducted in a flume tank at the Tokyo
University of Marine Sciences and Technology (TUMST). The test section of the flume tank
is 9.0 m in length, 2.2 m in width, and 1.6 m in depth, containing ≈150 tons of freshwater.
The flow is circulated using four contrarotating impellers through constant-speed hydraulic
delivery pumps. The impellers are 1.6 m in diameter and deliver a maximum flow speed
of 2 m/s. A side-viewing window on one side of the flume tank allows users to observe
the behavior of the codend during testing and to record video. A camera with a frequency
of 59 Hz per frame image and a resolution of 1920 × 1080 pixels was used to record the
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codend behavior. To accurately measure the drag force of the codend and ensure that the
drag force of the equipment is lower than that of the codend, a circular rigid frame was used
to determine the drag force of the codend, and the drag force of the equipment was finally
subtracted from the total drag force. In the experiment, the codend opening was joined
around the rigid frame, and the rigid frame was combined with a six-component force
(5 kgf, Denshikogyo Co., Japan) instrument (Figure 2b). The data were sampled at 50 Hz.
A flow meter was placed 1.2 m directly in front of the six-component force instrument to
detect the current speed. The measurements were conducted at five different flow velocities
of 0.5, 0.6, 0.7, 0.8, and 0.9 m /s. The water density of the flume tank was 999.8 kg/m3,
and the water temperature was maintained at 17.6–18.4 ◦C during the experiments.

Figure 2. The setup of flume tank experiment (a): schematic diagram of experimental set up and apparatus for codend
testing; (b): schematic diagram of rigid frame).

To measure the drag force and net shape of the codend with catch, a water-injected
balloon was used instead of the catch, and a tape measure with an accuracy of 0.1 cm was
used to measure the circumference of the balloon at ten different positions. The balloon
diameter was calculated as 16.6 ± 0.3 cm, and the density of the water-injected balloon was
similar to that of the water in the tank.

2.3. Experimental Procedures

The experiment was divided into two parts with a total of 30 tests. The first part was
to measure the drag force and net shape of the empty codend, and the second part was to
measure the codend with catch.

Before the experimental measurements of different codends, the drag force of a rigid
frame was first measured. The rigid frame was directly combined with the six-component
force instrument, making the plane of rigid frame perpendicular to the current direction.
This rigid frame handle was immersed in water at 10.0 cm. The drag force of frame was
measured at different current velocities, ranging from 0.3 to 1.1 m/s, and set up with an
interval of 0.1 m/s. The drag force data measurements of the rigid frame (500 datapoints
in total) were sampled for a duration of 10 s, and the average value was calculated using
the measurement data.

After the measurement of rigid frame drag force, the second measurement was con-
ducted on the codend without catch. The rigid frame and codend were attached to the
six-component instrument and submerged in the water at 10.0 cm, making the rigid frame
plane perpendicular to the current direction. The current velocity was adjusted until the
codend shape was unfolded and stable. The camera was used directly in front of the
observation window to record the net shape of the codend. The drag force and net shape of
each codend were recorded for 10 s. Finally, the codend with catch inside (water-injected
balloon) was measured, following the same experimental procedure as the first experiment.
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The drag coefficient was calculated using Equation (1) as follows:

Cx =
2R

ρSV2 (1)

where Cx is the drag coefficient, R is the drag force, ρ is the density of water, S is the trawl
net opening area, and V is the current speed.

2.4. Data Collection and Analysis

The net shape geometry was obtained from the video camera (Figure 3). The following
method was used for image processing in this study: First, a series of images separated by
0.25 s were selected from the recorded video footage; second, graph digitizing software
was used to extract the coordinates of characteristic points of the model net based on a
plane-coordinate system; finally, a standard bar was used in different locations to calibrate
the measurements and consider the effect of camera lens and water refraction. In addition,
by maintaining the 50 Hz high-frequency data of drag force for the codend, the high-
frequency data were processed to obtain the corresponding 4 Hz data.

 

Figure 3. Side-view of the empty codend (left) and codend with catch (right) in the flume tank.

2.5. Data Fitting and Testing

The Fourier series was used to fit the net motion and drag force oscillation of the
codend with catch. The Pearson product-moment correlation coefficient was used to
assess the correlation between the fitted and measured values, where 80–100% indicates
very strong correlation, 60–80% indicates strong correlation, 40–60% indicates moderate
correlation, 20–40% represents weak correlation, and 0–20% indicates very weak correlation
or no correlation.

The Fourier series formula can be estimated as follows:

f (t) =
A0

2
+

∞

∑
n=1

(Ancosωnt + Bnsinωnt) (2)

or f (t) =
A0

2
+

∞

∑
n=1

Ansin(ωnt + ϕn) (3)

where t is the time, An and Bn are amplitude, ωn is the angular frequency, ϕn is the initial
phase, and n is the series.

The Pearson product-moment correlation coefficient can be calculated using Equa-
tion (4):

ρXY =
Cov(X, Y)√
D(X)

√
D(Y)

=
E{[X − E(X)][Y − E(Y)]}√

D(X)
√

D(Y)
(4)

where E is the mean, D is the variance,
√

D(X) and
√

D(Y) are the standard deviation of
variables X and Y, and E{[X − E(X)] [Y − E(Y)]} is the covariance of variables X and Y,
denoted Cov(X, Y), i.e., Cov(X, Y) = E{[X − E(X)] [Y − E(Y)]}.
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3. Results

3.1. Frame Drag Force

To verify the effectiveness of the experimental frame, the rigid frame drags were
measured at different current speeds (Figure 4). The rigid frame drag force varied from
32.5 to 541.4 g as the current speed varied from 0.3 to 1.1 m/s. The results indicate that
the rigid frame drag increased as the current speed increased, and their relationship was
exponential (Figure 4). Using nonlinear regression with the data argument predicted
from the formula of drag force of rigid frame with different current speeds, the following
expression is proposed:

R f rame = 422.47 × Vf low
2.070,

(
R2 = 0.99

)
(5)

where Rframe is the drag force of the rigid frame and Vflow is the current speed.

Figure 4. The relationship between frame drag and current speed.

3.2. Empty Codend Profile

As shown in Figure 5, the codend motion increases as the current speed increases.
The codend without cutting droops the most at a current speed ≤0.6 m/s. However, at a
current speed of ≥0.8 m/s, the central axis of each codend is horizontal. Moreover, the un-
folding degree of codend netting and the height of the codend endpoint are directly
proportional to the current speed and inversely proportional to the cutting ratio.

 

Figure 5. Variation of the profile of empty codends with different cutting ratios at different current speeds.
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3.3. Drag Force of Empty Codends

The drag forces on the codends were determined by subtracting the averaged measure-
ments for each current speed on the rigid frame from the averaged measurements for each
current speed on the frame and codends; the results are shown in Figure 6. The codends’
drag force increased as the current speed and cutting ratio increased. On average, the drag
forces of codend without cutting are 9.44% (±0.94%), 13.25% (±0.67%), 16.68% (±0.81%),
16.05% (±1.04%), and 18.24% (±0.95%) greater than those of codend with cutting ratios 6:1,
5:1, 4:1, 7:2, and 3:1, respectively.

Figure 6. Drag of empty codends with different cutting ratio at 5 current speeds.

On average, the drag coefficients of codend without cutting are 2.99% (±0.66%), 3.04%
(±0.53%), 3.09% (±1.44%), 7.72% (±0.32%), and 9.33% (±1.19%) smaller than those of
codend with cutting ratios 6:1, 5:1, 4:1, 7:2, and 3:1, respectively (Figure 7). The drag
coefficient of the codend decreased as the Reynolds number and cutting ratio increased
(Figure 7). Moreover, the codends with cutting ratios 6:1, 5:1, 4:1, 7:2, and 3:1 were designed
to have a small amount of twine compared with codends without cutting and those used
in the midwater fishing industry to evaluate the effect of cutting ratio on the total drag.

Figure 7. Drag coefficient of empty codends with different cutting ratio at five current speeds.

3.4. Positional Oscillation of Codends with Catch

Evaluation of fluid–structure–catch interaction requires consideration of the geometry
and motions of codend structure. Figure 8 shows the time evolution of fluctuating trans-
verse motion of codend structure with catch inside during selected measurements. Clearly,
the codend oscillates when it has a catch. However, using the first-order and second-order
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Fourier series to fit the positional oscillation, the results show that as the current speed
increased, the oscillation cycle of each codend decreased, but the amplitude did not change
significantly with a gap of <1.5%. Except for the amplitude of codend without the cutting
ratio, the amplitude first decreased (current speed lower than 0.7 m/s) and then increased
(current speed higher than 0.7 m/s) as the cutting ratio decreased.

Figure 8. Variations of the end point height for codends with catch in different cutting ratios.

3.5. Use of Fourier Series to Fit the Positional Oscillation of Codends

The Fourier series was used to fit the positional oscillation of the codend, and the
Pearson product-moment correlation coefficient was used to test the fitted value (Figure 9,
Table 2). The results show that when the first-order Fourier series was used to fit the
motion of codend, the fitted value was the same as the measured value with a very strong
correlation (43.3%), but others still have an error compared with the measured value
because of a moderate correlation of 10%. When the second-order Fourier series was used,
the fitted value showed a very strong correlation of 93.3% compared with the measured
value, and the remaining (6.7%) had a strong correlation.

Table 2. Correlation of measured value and fitted value of the end point height for codends by the Pearson product-moment
correlation coefficient.

Cutting Ratio

First-order Fourier Series No Cutting 6:1 5:1 4:1 7:2 3:1 Average

Current speed (m/s)

0.5 79.0% 88.3% 91.9% 71.8% 66.9% 85.2% 80.5%
0.6 94.5% 91.0% 80.4% 70.6% 75.8% 91.8% 84.0%
0.7 92.5% 86.6% 96.1% 56.2% 77.8% 86.8% 82.7%
0.8 92.2% 74.6% 68.0% 70.1% 58.3% 89.9% 75.5%
0.9 77.8% 62.5% 79.1% 76.0% 53.2% 84.1% 72.1%

Second-order Fourier Series

Current speed (m/s)

0.5 88.8% 90.5% 94.0% 95.4% 97.4% 92.0% 93.0%
0.6 96.4% 96.3% 89.3% 89.9% 98.1% 92.2% 93.7%
0.7 93.0% 96.5% 98.0% 87.3% 94.6% 96.7% 94.3%
0.8 94.8% 95.5% 78.5% 75.6% 85.6% 93.7% 87.3%
0.9 90.7% 84.9% 86.7% 84.4% 83.4% 89.1% 86.5%

Note: Percentage values represent the similarity between the Fourier series fitted value and the measured value.
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Figure 9. Comparison of the fitted value and the measured value of the end point height for codends with catch using
different order Fourier series (an example: (left): using the first-order Fourier series; (right): using the second-order
Fourier series).

3.6. Drag Force of Codends with Catch

The drag force of codends with catch increased as the current speed increased; how-
ever, when the cutting ratio decreased, the drag force first decreased and then increased,
except the drag force of the 4:1 cutting ratio, which was lower than those of other codends
(Figure 10). Furthermore, as shown in Figure 10, the drag force evolution of codends
was quasi-periodic oscillatory. The oscillations include high-frequency (50 Hz) and low-
frequency (4 Hz). However, no significant difference was observed between the high-
frequency and low-frequency oscillation of each codend in the first-order Fourier series.
In contrast, when the second-order and third-order Fourier series were used to fit the
low-frequency oscillation, the amplitude of each codend drag force increased, and the cycle
decreased with the increase in current speed. Moreover, the oscillation cycle of each codend
drag force had no significant difference in terms of cutting ratio at the same current speed,
but the amplitude initially decreased and then increased as the cutting ratio decreased.
The amplitude of codend without the cutting ratio is the highest, and that of 4:1 cutting
ratio codend is the smallest, compared to those of other codends.

Figure 10. Variations of drag for codends with catch in different cutting ratios.

3.7. Use of Fourier Series to Fit the Drag Force Oscillation of Codends

The Fourier series can be used to fit the drag force oscillation of a codend. However,
the accuracy of the fitted value obtained using the second-order Fourier series is different
from that obtained using the third-order Fourier series (Figure 11). Using the Pearson
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product-moment correlation coefficient to test the fitted and measured values (Table 3),
the use of second-order Fourier series to fit the measured value has a lower correlation with
very strong correlation (56.7%), but the use of third-order Fourier series to fit the drag force
of codend with different cutting ratios has also very strong correlation with the increase in
measured value to 86.7%.

Figure 11. Comparison of the fitted value and the measured value of drag for codends with catch
using different order Fourier series (an example: (left): using the second-order Fourier series;
(right): using the third-order Fourier series).

Table 3. Correlation of measured value and fitted value of codend drag by the Pearson product-moment correlation coeffi-
cient.

Cutting Ratio

Second-order Fourier Series No Cutting 6:1 5:1 4:1 7:2 3:1 Average

Current speed (m/s)

0.5 94.0% 95.1% 92.9% 81.7% 88.0% 87.8% 89.9%
0.6 91.3% 81.4% 89.6% 69.9% 69.4% 66.0% 77.9%
0.7 76.7% 72.8% 92.3% 73.7% 87.5% 50.3% 75.5%
0.8 82.7% 76.7% 70.2% 72.6% 93.5% 81.0% 79.4%
0.9 81.5% 70.3% 76.9% 63.9% 85.3% 94.4% 78.7%

Third-order Fourier Series

Current speed (m/s)

0.5 94.5% 97.4% 95.6% 84.5% 89.8% 92.3% 92.3%
0.6 92.2% 86.0% 90.9% 80.7% 90.9% 82.5% 87.2%
0.7 85.9% 81.4% 94.0% 83.4% 93.5% 73.3% 85.3%
0.8 85.0% 84.6% 72.2% 82.0% 94.4% 88.2% 84.4%
0.9 86.3% 79.0% 85.2% 74.6% 90.7% 96.7% 85.4%

Note: Percentage values represent the similarity between the Fourier series fitted value and the measured value.

4. Discussion

4.1. Effect of Rigid Frame Drag Force on Codend

The experimental apparatus effect of model nets is a common problem, especially in co-
dend model tests. This study and previous studies by Pichot et al. [24], Bouhoubeiny et al. [14],
and Druault and Germain [13] used a self-designed configuration of this rigid frame to
accurately measure the hydrodynamic forces of the codend. One of the principal objectives
in fishing gear hydrodynamic measurements is to design frames with very lower drag
forces unlike those of fishing equipment in general, and nettings or codends in particular.
In this case, the average drag force caused by a rigid frame was 17.6% (±1.3%) and 16.1%
(±0.7%) of the total compared to the codend without catch and with catch (codend drag
+ rigid frame drag), respectively. In addition, the frame stability was evaluated under
different current speeds and cutting ratios. Indeed, the ratio between drag force caused
by a rigid frame without a codend and the total drag increased as current speed and
cutting ratio increased. This ratio was 13.32% (±0.42%), 14.51% (±0.54%), 15.05% (±0.49%),
15.60% (±0.46%), 15.47% (±0.35%), and 15.82% (±0.40%) for the codend without cutting
ratio and the codends with cutting ratios 6:1, 5:1, 4:1, 7:2, and 3:1, respectively. However,
the results reported by Tang et al. [25,26] on netting showed that the frame drag force
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accounted for a maximum of between 17% and 20% of the total (netting drag + rigid frame
drag) using streamlined frames, close to those obtained in this experiment. Therefore,
the application of a rigid frame reduced the impact of turbulent or vortex flow on the
experimental hydrodynamic force and the geometrical shape of codends. When studying
hydrodynamic forces and codend motion at different current speeds, the use of a rigid
frames is strongly recommended.

4.2. Effect of Cutting Ratio on the Net Shape and Drag Force of Empty Codends

In this study, the codend did not oscillate significantly under the condition of an
empty codend. Unlike the results of previous studies, the results obtained by Pichot [27]
and Bouhoubeiny et al. [14] using a rigid codend showed that an asymmetrical vortex
was generated at the codend tail due to the obstruction of codend. At the same time,
the vortex shedding generated water pressure in the vertical flow direction to the codend
and caused an oscillation of this structure. The differences between the results obtained in
this study and those obtained by Bouhoubeiny et al. [14] are due to the codend filtration
and the current speed, which are not the same. In addition, the difference is also because
Bouhoubeiny et al. [14] placed a spherical cap to block the water directly passing through
the mesh of the codend at the codend bottom, but allowed the water to flow back and
around the outer surface of the spherical cap, thereby generating a symmetrical vortex.
In this study, the codend was completely open, facilitating the passage of water through
the mesh of the codend and not causing a vortex in the codend that would deviate the
fish trajectory. Indeed, the bar of mesh also blocks the water passing through the codend
directly [24,28,29], but the pressure generated by the shading effect of the bar was not
sufficient to make the entire codend oscillate significantly. Thus, the codend did not
significantly oscillate in the camera shot.

As shown in the side view of each codend shape in Figure 5, the lower part of the
codend without cutting ratio had obvious stacking at a low current speed, and the stacking
nets rippled with the current in the video. These results were also observed in the study
carried out by Balash and Sterling [30] on prawn trawl, Bouhoubeiny et al. [31] on the
flow measurement around a fishing net, and Tang et al. [32] on the shape measurement
of a purse seine. However, according to the drag force results obtained in each empty
codend at different current speeds (Figure 6), the drag force of the empty codend positively
correlates with the cutting ratio, i.e., a higher cutting ratio led to a greater drag force of
codend at the same current speed. Thus, the reason is not only that the cutting ratio was
directly proportional to the twine area, but also that the codend with a high cutting ratio
was more likely to stack the net under the low current speed condition, thus increasing
its drag force. A significant decrease in twine area and drag force was observed due to a
decrease in cutting ratio. Indeed, the twine area of the codend without a cutting ratio was
7.81%, 9.96%, 12.20%, 14.52%, and 16.96% greater than that of codends with cutting ratios
of 6:1, 5:1, 4:1, 7:2, and 3:1, respectively. As mentioned above, the codends with cutting
ratio were designed to contain a small amount of twine compared to codends without a
cutting ratio and those used in the midwater trawl fishery industry to demonstrate the
effect of the cutting ratio on hydrodynamic force and net shape. In conclusion, according to
the experimental results of Balash et al. [33] and Thierry et al. [3] on the effect of net cutting
of the prawn trawl body and bottom trawl wing on the trawl performance, and the results
of this study, the net cutting of some part of the trawl net allows it to change its shape,
which automatically reduces its twine area and drag force while making it more efficient.

This study also demonstrated that the increase in cutting ratio led to the increase
in the angle between the flow direction and codend surface (attack angle) during the
operation. However, Tang et al. [25] reported that the relationship between the nylon mesh
drag coefficient and attack angle (0◦–20◦) has a positive correlation, and the netting drag
coefficient increased as the attack angle increased, decreasing as the Reynolds number
increased before moving asymptotically toward a constant value. This trend was confirmed
by the experiment carried out in this study, demonstrating that the drag coefficient for the
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empty codend increased as the Reynolds number decreased and attack angle and cutting
ratio increased. However, the drag coefficients obtained in this study are different from
those obtained in the netting by Tang et al. [25,26,34] and Hosseini et al. [35], whereas
they are similar to those obtained on the optimized trawls studied by Balash [30] and
Thierry et al. [6]. The main reason for this difference is that the mesh of the codend is in
a free state in this experiment, rather than the mesh being tightly bound to the frame.
In addition, the net at the bottom of the codend piles up and waves with the current.
Moreover, the attack angles are not the same in the whole codend structure, and the
shadowing effect of the rigid frame affected the codend drag coefficient. By comparing the
effect of the cutting ratio and twine area on the codend drag force, it can be seen that the
effect of twine area on the drag force for the codend is greater.

4.3. Effect of Catch Substitutes on the Experiment

The actual catch build-up in a codend produces debris and fall, affecting the outcome
and equipment. Some researchers use catch substitutes for model experiments. The catch
substitutes are generally divided into two categories, namely multiple small-volume objects
and a single large-volume object. The multiple small-volume objects mainly include water-
filled table tennis balls or small-volume water-filled bags. Madsen et al. [18] used multiple
small-volume water-filled bags to evaluate the effects of mesh types on the hydrodynamics
and oscillations of the codend. Multiple small objects in the codend directly block the flow
through the mesh, similar to the actual catch when investigating the flow field distribution.
However, because small objects have a smooth surface and most of them are spherical with a
large space, the overall drag force of the model is less than the actual drag force. In addition,
the number of small-volume objects required in the test is mostly large; operating errors
can cause some small-volume objects to pass into the tank and damage the instrument.
Single large-volume objects mainly include a water-injected balloon or a spherical cap.
When Druault and Germain [13] used the PIV technology to study the effect of catch on
shadowing and flow field around the codend, a spherical cap and water-injected balloon
were used in the place of catches. Such a surrogate also plays a role in blocking the flow
directly through the mesh, but it completely blocks the flow. Therefore, the use of a single
large volume to replace the catch will result in an overall drag force of the codend that is
greater than that actually obtained, and also makes the oscillation of codend more obvious.
The drag focus in this study was to analyze the effect of the cutting ratio on the oscillation
of the codend. Obvious codend oscillation allowed easy result analysis, so a water-injected
balloon was used instead of real catch.

4.4. Effect of Cutting Ratio on the Shape and Drag Force Oscillation of Codends with Catch

A codend with catch has obvious oscillations in position or drag force. Previously,
Bouhoubeiny et al. [14], Madsen et al. [18], and Druault and Germain [13] reported that
codend oscillations can be caused by the vortices behind the codend. When dragging the
trawl, vortex shedding generates vertical pressure on the codend and makes it oscillate.
Furthermore, this study and Madsen et al. [18] found that codend oscillation is not limited
to the specific direction, but codend oscillation in any direction perpendicular to the codend
central axis is possible. The main reason is that the codend motion is free in all directions
perpendicular to the central axis. In addition, the oscillating track of the codend is mainly
distributed near the central axis according to the results obtained by this experiment and
Madsen et al. [18].

The codend drag force oscillation mainly included a high-frequency oscillation and a
low-frequency oscillation according to the results obtained in this study and those obtained
by Bouhoubeiny et al. [14] and Druault and Germain [13]. In addition, it was also found
that the low-frequency oscillation of codend drag force included strong wave oscillation
(large amplitude) and weak wave oscillation (small amplitude), and the strong wave and
weak wave oscillations appeared alternately. The sum of two oscillating cycles of drag force
is approximately equal to one oscillating cycle of the position. Moreover, this experiment
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and those of Bouhoubeiny et al. [14] and Druault and Germain [13] also confirmed that the
oscillation of codend position and drag force oscillation are synchronous, i.e., the alternate
cycle of two vortices in the same direction is equal to one codend positional oscillation cycle.

Because of two main factors, namely, the twine area and attack angle, the positional
and drag force oscillation amplitudes of large cutting ratios (no cutting, 6:1, and 5:1) are
usually greater than those of small cutting ratios (4:1, 7:2, and 3:1). A larger cutting ratio
can lead to a larger twine area, making the codend drag force greater. Therefore, the vortex
shedding generates more vertical pressure on the codend and increases the amplitude.
The periodic variation in the oscillation is mainly due to the periodicity of vortex shed-
ding [13]. The greater the current speed, the greater the vortex shedding speed, and the
greater the pressure. This also shows that, as the current speed increases, the oscillation
cycle is shorter and leads to a greater amplitude. In addition, according to the orthogonal
decomposition analysis, the amplitude decreased as the attack angle and binding force of
free direction (vertical current direction) increased.

4.5. Fourier Series Fitting

The Fourier series was used in this study to fit cyclic motion. The higher the series,
the closer the fitted value to the measured value, but the calculation increased as the series
increased. In this study, the first-order and second-order Fourier series were used to fit the
codend positional oscillation. The results show that the value obtained using the second-
order Fourier series is close to the measured value, depending on the positional oscillation
of the codends with catch taken in a different cutting ratio (Figure 8). This also shows that
the codend positional oscillation has a trigonometric function, with the exception of the
presence of alternate strong and weak waves of positional oscillation, such as a 6:1 cutting
ratio with 0.8 and 0.9 m/s. Therefore, when fitting the codend positional oscillation, it is
recommended to use ≥ second-order Fourier series to fit the codend positional oscillation.

The Fourier series was used to fit the oscillation of codend drag force which should be
greater than that of positional oscillation fitting. As shown in Figure 10, the force oscillation
of the codend included high-frequency oscillation and low-frequency oscillations. The low-
frequency oscillations included strong wave oscillation and weak wave oscillation. In this
study, we only fitted low-frequency oscillation. The results show that although a third-
order Fourier series was used to fit the codend drag force oscillations, some of the fitted
values were still different from the measured values. Therefore, when using the Fourier
series to fit the low-frequency oscillation of the codend drag force, it is recommended to
use ≥ third-order Fourier series.
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Abstract: In order to study the vibration mechanism of a marine centrifugal pump unit and explore
the contribution of vibration caused by different vibration excitation sources, a marine centrifugal
pump with a specific speed of 66.7 was used for research. A numerical calculation model of the flow
field and electromagnetic field of the pump unit was established to analyze the frequency spectrum
characteristics and contribution of pump unit vibration caused by different excitation sources. Using
the modal superposition method, the vibration characteristics of the pump unit caused by fluid
excitation and electromagnetic excitation were analyzed. The results show that the main frequency
of pump unit vibration caused by fluid excitation was at the 1× blade passing frequency. The main
frequency of pump unit vibration caused by electromagnetic excitation was at the 2× utility frequency.
The contribution of different excitation sources to the vibration of marine centrifugal pump unit was
in the following order: fluid excitation on the inner surface of the pump > electromagnetic excitation
> fluid excitation in the impeller.

Keywords: marine centrifugal pump; vibration excitation source; fluid excitation; electromagnetic
excitation; numerical simulation

1. Introduction

The marine centrifugal pump is one of the important auxiliary devices on a ship,
which plays an important role in its operation. On the one hand, the self-excited vibration
of fluid during the operation of the marine pump will affect the stable operation of other
equipment. On the other hand, the vibration generated by other mechanical equipment or
the marine main engine during operation also affects the marine pump. Excessive vibration
will not only affect the measurement accuracy of some precision equipment, but also cause
harm to people’s physical and mental health.

The marine centrifugal pump in the process of operation will show obvious non-
stationary properties. Vibration analysis is widely used in centrifugal pump condition
monitoring, fault diagnosis, and other fields [1]. Compared with the pressure pulsation
sensor, the vibration sensor does not need to contact the fluid and does not destroy the flow
characteristics in the centrifugal pump. In addition, the vibration sensor can be placed on
the surface of the pump body, which can better reflect the high-frequency characteristics of
the centrifugal pump during operation [2,3]. The vibration excitation sources of the marine
pump unit can be divided into three types according to the generation mechanism, namely,
shafting excitation, fluid excitation, and electromagnetic excitation. Shafting excitation is
mainly caused by a rotor fault or rolling bearing fault [4]. Fluid excitation is mainly caused
by unsteady fluid excitation in the marine pump. Electromagnetic excitation is mainly
caused by the radial electromagnetic force generated by the rotating magnetic field inside
the motor. The vibrations caused by the above three excitation sources will be coupled
with each other, which will affect the pump unit.
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Usually, in non-fault cases, the shaft excitation is generally small and can be controlled
by active control technology. Compared with shaft excitation, the occurrence mechanism
of fluid excitation is more complex. In recent years, with the development of CFD (com-
putational fluid dynamics) technology, more and more scholars have realized that the
deep-seated reason for pump vibration caused by fluid excitation is the unsteady flow of
fluid in the pump, and they began using numerical calculation methods to analyze the
internal flow of the pump [5–7]. At first, most scholars’ research on fluid excitation was
mainly focused on the analysis of pressure pulsation on the inner wall of the pump [8–10].
They hoped to explore the law of vibration caused by fluid excitation through the anal-
ysis of pressure pulsation. With the deepening of research, the calculation methods of
vibration caused by fluid excitation have made great progress. Unidirectional coupling
and bidirectional coupling are two commonly used methods at present [11]. In the uni-
directional coupling method, the pulsating force of the fluid is calculated using the CFD
method, and the pulsating force is loaded on the inner wall of the finite element structure.
Subsequently, the vibration response of the structure is obtained. Many scholars have
conducted in-depth research on the unidirectional coupling method. Ye [12] used the
Reynolds-averaged method to calculate the internal flow field of a centrifugal pump. He
calculated the vibration response of the pump body through the radial force acting on
the inner wall of the volute. However, he ignored the influence of motor structure on
the vibration of the pump unit when establishing the structural model. Moreover, pump
vibration calculated using the radial force inside the volute as excitation is unreasonable,
and there is a big difference between calculation and the actual results. Jiang [13] et al.
matched the fluid–solid boundary grid and mapped the pressure pulsation data obtained
from fluid numerical calculations to the structural grid, which corresponded to the fluid
grid. Jiang’s method was more accurate in calculating the structural vibration caused by
fluid excitation. Wang [14] calculated the pressure pulsation of the pump chamber, guide
vane, impeller, and volute of a centrifugal pump via numerical calculations and compared
the results with an experiment. He [15] established a finite element model of a pump unit
including a motor. By writing the UDF (user-defined function), he calculated pressure
pulsations on the impeller surface at each time step. He integrated these pulse forces as
the force of the rotor subjected to the impeller. The force on the rotor was regarded as the
excitation source that caused the vibration of the pump unit, and the vibration response
of the pump unit was obtained on the basis of the modal analysis results. Following He,
Jiang [16] studied the vibration of the bracket through the fluid in the volute and the
impeller. The research results showed that the bracket vibration caused by fluid excitation
through the impeller was greater than that caused by the volute. Although He and Jiang
considered that the vibration of the pump unit would be affected by the motor structure,
they did not consider the impact of the vibration generated by the motor on the pump
unit. In summary, structural vibration caused by fluid can be quickly calculated using
the unidirectional coupling method. However, the unidirectional coupling method only
considers the effect of the fluid on the structure, while it ignores the reaction of the structure
to the fluid. Therefore, it is widely used in the case of large stiffness of the structure and
large volume of the flow field [17,18].

Compared with the unidirectional coupling method, the bidirectional coupling method
considers the reaction of the structure to the fluid, which can more truly reflect the real
situation and accurately capture the changes in the force and motion laws of the geom-
etry. Pei [19] took a single-stage centrifugal pump as the research object. He calculated
the structural response of the pump unit by using the bidirectional fluid–solid coupling
method. Zhang [20] used the bidirectional fluid–solid coupling method to calculate the
volute vibration of a thick-blade centrifugal pump. Guo [21] calculated the radial force
on the impeller by using the bidirectional fluid–solid coupling method and used it as the
fluid excitation force to calculate the vibration response on the impeller. Although the
bidirectional coupling method considers the interaction between the fluid and the struc-
ture more comprehensively, it should be noted that the bidirectional fluid–solid coupling

152



J. Mar. Sci. Eng. 2021, 9, 274

method is more suitable for occasions where the structure has a greater impact on the
fluid. Due to the complex structure of the centrifugal pump, a high computational cost
is required when using the two-way fluid–solid coupling method, and the calculation is
difficult to converge. In addition, the calculation results can be obtained more conveniently
by using the unidirectional coupling method because of the high rigidity of the centrifugal
pump structure.

In summary, many scholars conducted extensive research on the vibration of pump
unit caused by fluid excitation in the study of pump unit vibration, but few scholars
considered the influence of motor vibration on the pump unit [22,23]. The vibration
generated by the motor can be transmitted to the pump body through the bracket or
connecting plate according to different types of pump. Many scholars established numerical
calculation models to study the vibration generated by the motor during operation, but
they only analyzed the impact of motor vibration on itself, whereas they did not study
the impact of motor vibration on the structure of the pump [24–26]. Motors can generate
electromagnetic fields through coils, the electromagnetic force inside the electromagnetic
field can be calculated by finite element analysis, and then the electromagnetic force can be
mapped to the inner wall of the structure to calculate the vibration response of the motor.

Since the transfer vibration between the motor and the pump in a marine centrifugal
pump unit has higher coupling than that of a horizontal pump, the vibration of the
motor must be taken into account in the study of the vibration characteristics of a marine
pump unit.

2. Numerical Calculation Model and Strategy

2.1. Flow Field Calculation Model and Calculation Method

A marine centrifugal pump with a specific speed of 66.7 was used in this paper for
research. The main design parameters were as follows: flow rate, Qd = 25 m3/h; rated
head, H = 35 m; rated speed, n = 2950 r/min. The structural parameters of the marine
pump are shown in Table 1.

Table 1. Main structural parameters of marine pump.

Components Geometric Parameters Symbol Value

Impeller

Inlet diameter (mm) D1 65
Exit diameter (mm) D2 165

Exit width (mm) b2 7
Blade wrap angle (◦) ϕ 110

Blade numbers z 6

Volute
Basic circle diameter (mm) D3 170

Inlet width (mm) b3 20
Exit diameter (mm) Dd 50

The whole flow field computational domain includes the inlet elbow, fluid field in the
impeller, pump chamber, fluid field in the volute, and outlet extended section. In order to
achieve a stable state, the inlet extended section with a length of four times the diameter of
the pipe is set before the inlet elbow, which is also conducive to the stability of the internal
flow field of the marine pump. The whole model is shown in Figure 1.
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Figure 1. Numerical calculation model of fluid in a marine centrifugal pump.

In this paper, ICEM-CFD (The Integrated Computer Engineering and Manufacturing
code for Computational Fluid Dynamics) was used to mesh the fluid domain. In order to
ensure the accuracy of the calculated pressure pulsations, the boundary layer grid in the
fluid domain was refined. In order to avoid the influence of grid density on the calculation
results of the flow field, five sets of meshes with different numbers were used for the
mesh-dependence test in this paper. The results are shown in Table 2. Considering the
difference between the head from the numerical calculation and the design value, and
considering the time required for numerical calculation, Scheme 3 was finally determined
for subsequent numerical calculations.

Table 2. Scheme of mesh-dependence test.

Scheme Number of Grids Number of Nodes Head (m)

1 1,647,157 1,474,148 34.5
2 2,457,849 2,287,414 35.2
3 2,914,979 2,741,943 35.5
4 3,278,458 3,024,785 35.5
5 3,715,756 3,546,854 35.6

The y+ values of the stationary domain surface and the moving domain surface are
shown in Figure 2. Figure 2a shows the y+ values of the inner wall of the volute and the
pump chamber. Figure 2b shows the y+ values of the inner surface of the impeller. It can be
seen from Figure 2 that the y+ values of all walls are less than 12. Most of the y+ values of
the inner wall of the volute and pump chamber are less than 6, and most of the y+ values
of the inner wall of the impeller are below 8, which can better ensure the accuracy of the
wall flow information calculation

Figure 2. y+ distribution of the volute, pump chamber, and impeller: (a) static domain;
(b) moving domain.
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In this paper, the standard k–ε turbulence model was adopted, and the pressure
boundary inlet condition and mass flow outlet boundary condition were adopted. In order
to ensure that the calculated fluid excitation had high time resolution, the time step was set
to ΔT = 0.565 × 10−4 s, which is the time required for the impeller to rotate 1◦. When the
flow field is stable, the time-domain information of pressure pulsation on the surface of the
stationary domain and moving domain can be derived. The pressure pulsation data for
10 stable cycles of impeller rotation were used as the fluid excitation source, and the total
duration was set to 0.25s.

2.2. Electromagnetic Field Calculation Model and Calculation Method

The three-phase asynchronous motor model Y132S1-2 was selected in this paper.
The parameters of the motor are shown in Table 3. Due to the imprecise shortcomings
in the calculation of the three-dimensional motor model and the symmetrical structure
of the motor, many scholars used the two-dimensional model to analyze the internal
electromagnetic field of the motor.

Table 3. Geometric parameters of the motor.

Voltage (V) 380 Pole Number 2

Rated speed (rpm) 2950 Phase number 3
Frequency (Hz) 50 Connection method Delta connection

Stator outer diameter (mm) 210 Stator inner diameter (mm) 116

Rotor outer diameter (mm) 114 Rotor inner diameter
(mm) 74

Stator slot number 30 Rotor slot number 26

Altair Flux was used for parametric modeling of the above motors in this paper. This
model uses element PLANE53 for meshing. The electromagnetic field calculation domain
included the stator iron core, rotor iron core, stator tooth, rotor tooth, and motor shaft. The
electromagnetic field calculation model is shown in Figure 3.

Figure 3. Electromagnetic field calculation model.

2.3. Structure Calculation Model and Calculation Method

The structure model of the marine pump unit in this paper included the motor, bracket,
pump body, inlet pipe, base, and rotor system.

ANSYS Workbench was used to establish a finite element analysis model of the pump
unit in this paper. The three-dimensional (3D) model of the pump unit is shown in Figure 4.
The rotor and pump body adopted element SOLID187, and the surface of the structure
in contact with the flow field and electromagnetic field adopted element SURF154. The
finite element analysis model is shown in Figure 5. In order to reduce the computation
time, the details which had less influence on the structure were simplified when building
the structure model. In addition, since the bearing position was the focus of this study, the
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rotor was simplified when the model was established. The grids of the rotor system were
hexahedral grids, and the meshes were refined.

Figure 4. The three-dimensional (3D) model of the pump unit: (a) pump unit structure;
(b) rotor system.

Figure 5. Finite element model of pump unit: (a) pump unit structure; (b) rotor system.

Before vibration calculation, a modal analysis of the marine pump was needed. The
LMS Virtual Lab software was used in this paper to analyze the modal response of the
centrifugal pump unit. In the modal analysis, the bolt holes of the pump unit base were
set as rigid surface constraints, and the constraints of the inlet and outlet flanges were
released. Figure 6 shows the natural frequency of the centrifugal pump unit less than
1000 Hz obtained through modal analysis.

According to the results of modal analysis, the calculated pressure pulsation on the
fluid grid was mapped to the structural grid to calculate the vibration.
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Figure 6. The natural frequency of the pump unit.

2.4. Test Object and External Characteristic Experiment

The vibration test was carried out on the closed test bench of the marine pump of
Jiangsu University. This test used a three-axis vibration acceleration sensor model INV9832.
The sampling frequency was 6.4 kHz and the sampling time was 30 s. The arrangement of
vibration measuring points is shown in Figure 7.

Figure 7. Vibration measuring point location.

In order to verify the reliability of the numerical simulation results, the external
characteristic curve of marine pump was compared with that of the numerical simulation.
The comparison result of the external characteristic curve is shown in Figure 8. Under
the rated flow, the numerical simulation result of the head differed by 4.43% from the
test value, and the efficiency differed from the test value by 1.90%, which shows that the
adopted numerical simulation calculation method was reliable.
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Figure 8. External characteristic curve of numerical simulation and test.

3. Analysis of Numerical Simulation Results

3.1. Analysis of Fluid Excitation Calculation Results
3.1.1. Force Analysis of the Volute Wall

The reason for the vibration of the marine centrifugal pump caused by the fluid
excitation is the result of the pulsation force of the fluid acting on the structure. Setting
up monitoring points at different locations to monitor changes in pressure pulsation in
real time can more clearly reflect the characteristics of fluid excitation. In this paper, the
pressure pulsation monitoring points were set at each volute cross-section and the position
of the tongue. A schematic diagram of the monitoring points is shown in Figure 9.

Figure 9. Location of pressure pulsation monitoring point on the volute wall.

Figure 10 shows the time-domain and frequency-domain amplitude changes of the
pressure pulsation in one cycle at each monitoring point of the volute after the pressure
pulsation has stabilized. It can be seen from Figure 10a that the pressure pulsation of
each measuring point had obvious periodicity, and there were six peaks in one cycle. The
number of peaks corresponded to the number of blades. Comparing the amplitude of
pressure pulsation at each measuring point, it can be seen that the amplitude of the pressure
pulsation gradually increased from the first cross-section to the eighth cross-section. At
the volute tongue position, the pulsation amplitude increased sharply from 450 kPa at the
eighth cross-section to 470 kPa. Figure 10a clearly reflects the variation law of internal
pressure pulsation with time.
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Figure 10. Time-domain and frequency-domain changes of pressure pulsation at each monitoring
point: (a) time-domain characteristics; (b) frequency-domain characteristics.

It can be seen from Figure 10b that the pressure pulsation at each monitoring point
had a clear peak at the 1× blade passing frequency (295Hz). Obvious peaks also appeared
in multiples of the 1× blade passing frequency, indicating that the main reason for the
pressure pulsation is the interaction between the impeller and the diaphragm. It can be
seen from the variation of the main frequency amplitude at each monitoring point that the
pressure pulsation amplitude at the tongue position was the highest. The main frequency
amplitude of the pressure pulsation from the first to the seventh cross-section gradually
decreased, and the main frequency amplitude suddenly increased at the eighth cross-
section. In conclusion, because the fluid was greatly affected by the tongue, the pressure
pulsation near the tongue had a large amplitude. With the increase in distance from the
tongue, the main frequency amplitude of the pressure pulsation at each measuring point
showed a downward trend.

3.1.2. Force Analysis of the Impeller

The fluid excitation force acting on the impeller surface causes rotor vibration and
transfer to the pump body, which is one of the main factors leading to vibration of the
marine pump unit. In order to explore the law of pump vibration caused by fluid excitation,
the characteristics of fluid excitation force on the impeller were analyzed. Figure 11 shows
the time-domain and frequency-domain amplitude changes of the horizontal radial X,
horizontal radial Y, and vertical axial Z of the impeller under the rated condition, and these
three directions were perpendicular to each other. It can be seen from the time-domain
diagram of the three directions in Figure 11a,c,e that the force of the impeller had obvious
periodicity, and the length of each period was equal to the time required for the impeller
to rotate once. In addition, because the motor and the marine pump used the same rotor,
eccentricity failure would not occur, and the radial forces on the impeller in the X and
Y directions were very similar. Radial force is one of the main causes of vibration of the
impeller. It can be seen from Figure 11a, and Figure 10c that the blades were most affected
by the radial force in each part of the impeller, followed by the front cover plate, whereas
the back cover plate was the least affected. Although the force of each part of the impeller
was large, the force in the Z direction of the impeller was small due to the superposition of
radial forces.

Fourier transform was performed on the forces in the three directions, and the
frequency-domain characteristics of the forces in the three directions of the impeller were
obtained as shown in Figure 11b,d,f. It can be seen from Figure 11b,d that the main
frequency of the radial force of the impeller was at the 1× shaft frequency, and other
characteristic frequencies were distributed at multiples of the 1× shaft frequency. The main
frequency of the axial force of the impeller was at the 2× blade passing frequency, and
there were higher peaks at the 1× and 3× blade passing frequencies.
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Figure 11. The radial force on each part of the impeller in the time domain and frequency domain:
(a) time domain (X); (b) frequency domain (X); (c) time domain (Y); (d) frequency domain (Y); (e) time
domain (Z); (f) frequency domain (Z).

3.2. Analysis of Electromagnetic Excitation Calculation Results

Because the air gap magnetic field of the motor is affected by many factors, the
distribution of the internal magnetic field is complex. The finite element method can
reflect the distribution of the internal magnetic field more comprehensively and clearly.
Figures 12 and 13 show the magnetic line distribution and magnetic flux density distribu-
tion at a certain moment after the motor was stable.

It can be seen from Figure 12 that the high-energy region was distributed on the
surface of the stator and rotor and the stator slot. It can be seen from Figure 13 that the
high flux density was concentrated in the stator slot, the rotor slot, and the gap. The
maximum value of the flux density was located in the stator and rotor slot, up to 2.6 T.
When the stator is subjected to radial electromagnetic force, it vibrates and causes the
motor to vibrate. In order to better explore the influence of radial electromagnetic force on
the motor, the electromagnetic radial force on the surface of the stator slot was extracted
for further analysis in this paper. Figure 14 shows the distribution nephogram of the
electromagnetic force on the surface of the stator slot at different rotation angles. It can be
seen from Figure 14 that the electromagnetic excitation force was distributed in the air gap
of the fixed rotor and at the contact between the stator and the winding. The region excited
by electromagnetic force was symmetrical and varied with the rotation angle of the rotor.
In addition, the maximum electromagnetic excitation force did not exceed 3 N.
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Figure 12. The distribution nephogram of magnetic lines during normal operation of the motor.

Figure 13. The distribution nephogram of flux density during normal operation of the motor.

Figure 14. Cont.
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Figure 14. The distribution nephogram of electromagnetic force on the surface of the stator slot at
different rotation angles.

3.3. Analysis of Vibration Calculation Results
3.3.1. Fluid Excitation on the Inner Surface of the Pump-Induced Vibration Analysis

The fluid can gain a lot of kinetic energy when the impeller works on the fluid. The
fluid acting on the volute and the pump chamber produces high pulse force on the wall,
which is the fundamental reason for the pump unit vibration caused by the fluid excitation
on the inner surface of the pump. Figure 15 shows the location of the vibration measuring
point of the pump unit. The vibration measuring points were located at the connecting
plate, inlet flange, outlet flange, and base.

Figure 15. The position of each vibration measuring point of the pump unit.

The frequency characteristics of vibration velocity at each measuring point were
obtained by calculating the vibration of pump unit caused by fluid excitation on the inner
wall of volute and pump cavity, as shown in Figure 16. It can be seen from Figure 16a–d
that the distribution of the characteristic frequency of vibration at each measuring point
was similar. The main frequency of vibration at each measuring point was at the 1× blade
passing frequency (295 Hz), and obvious peaks also appeared in multiples of the 1× blade
passing frequency. In addition, it can be seen from Figure 16d that there were also obvious
peaks in the low-frequency region such as the 1× shaft frequency (49 Hz). Since the pump
unit may have been resonated when passing through the natural frequency, peaks also
appeared at multiple natural frequencies, for example, at 36 Hz in Figure 16a–d and at
117 Hz in Figure 16b,c. In addition, the vibration velocity levels of the radial direction at
the measuring points of import and export flanges were the highest in the whole frequency
domain, indicating that the import and export flanges were mainly affected by the radial
force. At the measuring points of the connecting plate and the base, the axial vibration
velocity level was the highest, which indicates that the main vibration directions of the
measuring points were different.
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Figure 16. The frequency spectrum of the vibration of the pump unit caused by fluid excitation on
the inner surface of the pump: (a) export flange; (b) import flange; (c) connecting plate; (d) base.

3.3.2. Fluid Excitation in Impeller-Induced Vibration Analysis

When the impeller works on the fluid, it is also subjected to the reaction force of
the fluid on it, which causes the vibration of the rotor, and the vibration of the rotor is
transmitted to the pump unit through the bearing housing. Figure 17 shows the frequency
spectrum of the pump unit vibration caused by the fluid excitation at each measuring point
through the rotor when the fluid passed through the impeller. It can be seen from Figure 17
that the vibration peak of the marine pump unit caused by fluid excitation in the impeller
was near the 1× blade passing frequency at different measuring points, It can be seen from
Figure 17a–d that the vibration peak of the marine pump unit caused by fluid excitation in
the impeller was near the 1× blade passing frequency at different measuring points, which
indicates that the 1× blade passing frequency was the main frequency of the vibration of
the marine pump unit induced by the fluid. In addition, due to the influence of the rotor
itself, an obvious peak appeared at the 1× shaft frequency. Compared with the vibration
velocity level in different directions of each measuring point, the vibration velocity level of
horizontal radial Y at the inlet and outlet flange was the highest, and the vibration velocity
level of axial Z at the motor base and the base was the highest. The characteristic frequency
of the pump unit vibration at each measuring point caused by the fluid excitation in the
impeller was basically consistent with the fluid excitation on the inner surface of the pump.
However, the vibration of the pump unit shown in Figure 17 was relatively stable in the
whole frequency domain, and the vibration velocity level showed a downward trend with
the frequency increasing. In the whole frequency domain, the variation law of the vibration
of the pump unit caused by the fluid excitation in the impeller was quite different from the
fluid excitation on the inner surface of the pump.
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Figure 17. The frequency spectrum of the vibration of the pump unit caused by fluid excitation in
impeller: (a) export flange; (b) import flange; (c) connecting plate; (d) base.

3.3.3. Electromagnetic Excitation-Induced Vibration Analysis

Radial electromagnetic force produced by the interaction between the stator and rotor
in a motor can cause vibration of the marine pump unit. Figure 18 shows the vibration
spectrum of each measuring point of the pump unit under radial electromagnetic force.
It can be seen from Figure 18a–d that the vibration law of the pump unit caused by
electromagnetic excitation was completely different from that caused by fluid excitation.
Under the action of electromagnetic force, the main frequency of the vibration of each
measuring point was at the 2× utility frequency (100 Hz), which conformed to the law
of rotor vibration caused by electromagnetic force in general. There were many obvious
peaks in the frequency domain of the vibration of the pump unit caused by electromagnetic
excitation. The frequencies corresponding to these peaks were the natural frequencies of
the marine pump structure, indicating that the structure of the marine pump unit was
greatly affected by electromagnetic excitation, and there would be obvious peaks under
multiple natural frequencies. It can be seen from Figure 18 that the vibration velocity
level at the seventh natural frequency (295 Hz) had the largest amplitude compared with
the other natural frequencies. Furthermore, the amplitude of the vibration at the seventh
natural frequency is the largest at the base position, which is basically the same as the
vibration amplitude at the 2× utility frequency.
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Figure 18. The frequency spectrum of the vibration of the pump unit caused by electromagnetic
excitation: (a) export flange; (b) import flange; (c) connecting plate; (d) base.

In addition, it can be seen from Figure 18 that the vibration of the pump unit caused
by electromagnetic excitation inside the motor showed obvious periodicity. Moreover,
the amplitude change was very large; the minimum vibration velocity level at the base
position was about −30 dB, which is already lower than the reference vibration level, and
the maximum was about 117 dB.

3.4. Comparison of Numerical Simulation and Test Results

In order to intuitively compare the contribution of pump unit vibration caused by
different excitation sources, the total vibration velocity level was used to evaluate it in this
paper. Chen [27] used the total vibration level evaluation method to analyze the vibration
of ships with different structures through experiments and simulations, and he effectively
obtained the optimal hull structure model. Liu [28] studied the vibration characteristics of
a centrifugal pump. The vibration of centrifugal pump unit caused by the change of speed
and flow rate was evaluated by the total vibration level evaluation method. The results
showed that the total vibration level evaluation method can better reflect the vibration
variation law of centrifugal pump unit.

The vibration acceleration level (Lva) is widely used in the vibration analysis of cars,
tracks, bridges, etc. According to the principle of energy superposition, Jiang [29] carried
out a superposition calculation of vibration acceleration and obtained the calculation
method of total vibration acceleration level (Lvat). By referring to Jiang’s method, the
vibration velocity was calculated by superposition in this paper. The total vibration velocity
level evaluation method can evaluate the overall impact of multiple vibration sources on a
measuring point. The vibration caused by different excitation sources may affect the marine
centrifugal pump in different directions or in different frequency bands. The total vibration
velocity level evaluation method was used to superposition the measured vibration energy
in three directions of each vibration measuring point of the marine centrifugal pump unit
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in this paper. The overall vibration of the marine centrifugal pump unit was evaluated
effectively. The total vibration velocity level in decibels (dB) was calculated as follows:

VaLtotal = 10 log10(10
VaL1

10 + . . . + 10
VaL2

10 + . . . 10
VaL3

10 ), (1)

where VaL1, VaL2, and VaL3 are the vibration levels in three directions perpendicular to
each other at the monitoring point.

Figure 19 shows the changes at each measuring point of the marine pump unit
vibration caused by different excitation sources. In addition, Table 4 shows the total
vibration velocity level results obtained by simulation and test for each measuring point.

Figure 19. The total vibration velocity level caused by different excitation sources at each
measuring point.

Table 4. The value of total vibration velocity level of different measuring points obtained by simula-
tion and test.

Measuring
Point

Test Results
(dB)

Fluid Excitation
on the Inner
Surface (dB)

Fluid Excitation in
the Impeller (dB)

Electromagnetic
Excitation (dB)

Outlet flange 128.8 128 125 127
Inlet flange 127.5 126 122.6 125.5

Connecting plate 125.9 124.4 119.5 123.3
Base 121 120.8 115 117.6

By comparing the total vibration velocity level of different excitation sources at each
measuring point, it can be seen that the vibration of the fluid excitation on the inner surface
of the pump was the highest at each measuring point, followed by the electromagnetic
excitation, and the lowest contributor was the fluid excitation in the impeller. This shows
that the fluid excitation on the inner surface of the marine pump is the most important
factor leading to the vibration of the pump unit. The numerical simulation result of the fluid
excitation on the inner surface of the pump was closest to the test value at the measuring
point of the pump base, where the difference was only 0.2 dB. This shows that the fluid
excitation on the inner surface of the pump has a greater contribution to the vibration of
the base position, which can more accurately reflect the real vibration of the base position
of the marine pump unit. Since the impeller vibration caused by fluid excitation is first
transmitted to the bearing through the rotor, and then to the pump body through the
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bearing seat, the contribution of fluid excitation in the impeller to the vibration of the
marine pump unit is small. The vibration generated by electromagnetic excitation is also
transmitted to the pump body through the rotor and bearing seat. Because the energy of
electromagnetic excitation is consumed in the process of transmission, the contribution of
electromagnetic excitation to the vibration of the marine pump unit is small.

The fluid excitation force on the inner surface of the pump is greater than the electro-
magnetic excitation and the fluid excitation in the impeller. In addition, the fluid excitation
on the inner surface directly acts on the pump body; thus, the pump unit is most affected
by the pump inner surface fluid excitation. This shows that fluid excitation on the inner
surface of the pump can describe the vibration of the pump unit more accurately than
electromagnetic excitation and impeller fluid excitation.

In addition, it can be seen from Figure 19 that the vibration level of the base position
was the lowest because the base measuring point was far away from the three excitation
sources and the base was rigidly constrained by bolts. Since the import and export flanges
were closest to the incentive source, they were most affected by the incentive source. The
influence of all excitation sources on different measuring points was in the following order:
outlet flange > import flange > connecting plate > base.

Through the above analysis, it can be seen that the fluid excitation on the inner surface
of the pump was the main reason for the vibration of the marine pump unit. The vibration
generated by fluid excitation on the inner surface of the pump was compared with the test
value, as shown in Figure 20.

Figure 20. Comparison of the vibration generated by the fluid on the inner surface of the pump and
the vibration obtained in the test: (a) export flange; (b) import flange; (c) connecting plate; (d) base.

It can be seen from Figure 20 that the numerical simulation results of different mea-
suring points were relatively close to the test results. The numerical simulation results
could reflect the real operation state of the equipment in the low-frequency band and at
each characteristic frequency. Both the numerical simulation results and the test results
showed that the main frequency of the vibration of the marine pump unit was the 1×
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blade passing frequency. In the numerical simulation results, the vibration spectrum at the
inlet and outlet flanges showed a high peak at the 3× blade passing frequency. However,
the test results were quite different from the numerical simulation results for frequencies
greater than 900 Hz, which shows that fluid excitation in the pump mainly affects the
low-frequency vibration of the marine pump unit. In addition, since the finite element
method has a better ability to express the characteristics of the low-frequency band, the
numerical simulation values of vibration in the high-frequency band were different from
the test values.

4. Conclusions

In order to explore the contribution of different excitation sources to the vibration
of the marine centrifugal pump unit, a marine centrifugal pump with a specific speed of
66.7 was studied in this paper. The numerical calculation method was used to analyze the
vibration characteristics of the marine centrifugal pump caused by fluid excitation and
electromagnetic excitation, and the numerical calculation results were compared with the
test results. The conclusions were as follows:

(1) The pressure pulsation in the volute of marine centrifugal pump showed obvious
periodicity. The main frequency of pump unit vibration caused by pressure pulsation was
at the 1× blade passing frequency, and obvious peaks also appeared in multiples of the 1×
blade passing frequency. As the distance between the monitoring point and the tongue
increased, the main frequency amplitude of the pressure pulsation at each measuring point
showed a downward trend. In addition, the force of the fluid acting on the impeller also
showed obvious periodicity. The main frequency of the radial vibration of the impeller
was at the 1× shaft frequency, and other characteristic frequencies were distributed at
multiples of the 1× shaft frequency. The main frequency of axial vibration was at the 2×
shaft frequency.

(2) The main frequency of vibration caused by fluid excitation on the inner surface of
the pump was at the 1× blade passing frequency. Moreover, other characteristic frequencies
appeared at the 1× shaft frequency and at multiples of the 1× blade frequency. The main
frequency of vibration caused by electromagnetic excitation was at the 2× utility frequency.
In addition, because the marine pump unit was greatly affected by the structural natural
frequency, there were obvious peaks at each natural frequency.

(3) The numerical calculation results were compared with the test results in this paper.
The contribution of pump unit vibration caused by different excitation sources to the total
vibration of the marine centrifugal pump unit was in the following order: fluid excitation
on the inner surface of the pump > electromagnetic excitation > fluid excitation in the
impeller. The maximum difference between the total vibration velocity level caused by the
fluid excitation on the inner surface of the pump at each measuring point and the test value
was less than 1.5%. The maximum difference between the test and the electromagnetic
excitation was about 2.5%, and the maximum difference between the test and the fluid
excitation in the impeller was greater than 4.5%. The fluid excitation on the inner surface
of the pump could more accurately describe the actual operating characteristics of the
marine centrifugal pump, especially at the base position. In addition, the fluid excitation
on the inner surface of the pump had a better ability to express the low-frequency vibration
characteristics of the marine pump unit. The impact of all excitation sources on different
positions of the pump unit was in the following order: outlet flange > import flange >
connecting plate > base.

Due to the huge amount of calculation and the lack of calculation methods, it is
difficult to calculate the overall vibration of the pump unit combined with fluid excitation
and electromagnetic excitation. How to reduce the computational complexity and how
to establish a more accurate calculation method will be the future research direction of
vibration analysis of marine centrifugal pumps.

168



J. Mar. Sci. Eng. 2021, 9, 274

Author Contributions: Conceptualization, C.D. and H.L.; writing—original draft preparation, Y.Z.;
writing—review and editing, C.D. and L.D.; numerical calculation and experiment, C.D. and Q.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51879122,
51579117, 51779106), the National Key Research and Development Program of China (2016YFB0200901,
2017YFC0804107), the Zhenjiang Key Research and Development Plan (GY2017001, GY2018025), the
Open Research Subject of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xi-
hua University (szjj2017-094, szjj2016-068), the Sichuan Provincial Key Lab of Process Equipment and
Control (GK201614, GK201816), the Jiangsu University Young Talent Training Program—Outstanding
Young Backbone Teacher, Program Development of Jiangsu Higher Education Institutions (PAPD),
and the Jiangsu Top Six Talent Summit Project (GDZB-017).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, H.-M.; Liu, Y. Research Status and Developing Tendency of Malfunction Diagnosis in Centrifugal Pumps. Agric. Sci. Technol.
Equip. 2019, 1, 70–74, 77.

2. Zhao, Y.-Q. Research on Cavitation Diagnosis and Its Characteristics of Flow Field and Acoustic Field in Centrifugal Pump.
Master’s Thesis, Jiangsu University, Zhen Jiang, China, 2018.

3. Duan, X.-H.; Tang, F.-P.; Duan, W.-Y.; Zhou, W.; Shi, L.-J. Experimental investigation on the correlation of pressure pulsation and
vibration of axial flow pump. Adv. Mech. Eng. 2019, 11, 168781401988947. [CrossRef]

4. Zhao, W.-Y.; Bai, S.-B.; Ma, P.-F. Vibration of Rotor in Centrifugal Pump Status and Prospects. Fluid Mach. 2011, 3, 37–39.
5. Ren, Y.-X.; Chen, H.-X. Introduction. In Fundamentals of Computational Fluid Dynamics; Liu, J.-L., Song, Y.-Q., Eds.; Tsinghua

University Press: Beijing, China, 2006; pp. 5–6.
6. Zhou, Y.-L. Analysis on Pressure Fluctuation and Vibration of a Centrifugal Pump for Off-design Conditions. Fluid Mach. 2015, 2,

52–55.
7. Lucius, A.; Brenner, G. Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation. Int. J. Heat

Fluid Flow 2010, 31, 1113–1118. [CrossRef]
8. Park, S.H.; Morrison, G.L. Centrifugal pump pressure pulsation prediction accuracy dependence upon CFD models and boundary

conditions. In Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009;
pp. 207–220.

9. Wang, Y. Research on Cavitation and Its Induced Vibration and Noise in Centrifugal Pimps. Ph.D. Thesis, Jiangsu University,
Zhen Jiang, China, 2011.

10. Wang, Y.; Dai, C. Analysis on Pressure Fluctuation of Unsteady Flow in a Centrifugal Pump. Trans. Chin. Soc. Agric. Mach. 2010,
41, 91–95.

11. Jin, Y.-B.; Dong, K.-Y.; Yu, J.; Wu, X.-R. Research progress of centrifugal pump fluid-induced vibration. Pump Technol. 2015, 3, 1–5.
12. Ye, J.-P. Research on Optimization of Vibration and Structural Noise of Centrifugal Pump. Master’s Thesis, Wuhan University of

Technology, Wuhan, China, 2006.
13. Jiang, Y.-Y.; Yoshimura, S.; Imai, R.; Katsura, H.; Yoshida, T.; Kato, C. Quantitative evaluation of flow-induced structural vibration

and noise in turbomachinery by full-scale weakly coupled simulation. J. Fluids Struct. 2007, 23, 531–544. [CrossRef]
14. Wang, Y.; Luo, K.-K.; Wang, K.; Liu, H.-L.; Li, Y.; He, X.-H. Research on pressure fluctuation characteristics of a centrifugal pump

with guide vane. J. Vibroeng. 2017, 19, 5482–5497. [CrossRef]
15. He, T.; Yi, Z.-Y.; Sun, Y.-D. Numerical analysis for flow induced vibration of a centrifugal pump. J. Vib. Shock. 2012, 31, 96–102.
16. Jiang, A.-H.; Li, G.-P.; Zhou, P.; Zhang, Y. Vibration incited by fluid forces on centrifugal pump from volute path and impeller

path. J. Vib. Shock. 2014, 33, 1–7.
17. Luo, B.; Wang, C.-L.; Xia, Y.; Ye, J.; Yang, X.-Y. Numerical simulation of flow-induced vibration of double-suction centrifugal

pump as turbine. J. Drain. Irrig. Mach. Eng. 2019, 37, 313–318.
18. Yao, T.-T.; Zheng, Y. Finite element analysis of stress, deformation and modal of head cover in axial-flow hydro-turbine. J. Drain.

Irrig. Mach. Eng. 2020, 38, 39–44.
19. Pei, J. Investigations on Fluid-Structure Interaction of Unsteady Flow-Induced Vibration and Flow Unsteadiness Intensity of

Centrifugal Pumps. Ph.D. Thesis, Jiangsu University, Zhen Jiang, China, 2013.
20. Zhang, D.-S.; Zhang, L.; Shi, W.-D.; Chen, B.; Zhang, H. Optimization of Vibration Characteristics for Centrifugal Pump Volute

Based on Fluid-structure Interaction. Trans. Chin. Soc. Agric. Mach. 2013, 44, 40–45.
21. Guo, W.-J. Analysis of Unsteady Flow and Vibration Characteristics of Low Specific Speed Centrifugal Pump Based on Two-way

Fluid-Structure Interaction. Master’s Thesis, Zhejiang Sci-Tech University, Hang Zhou, China, 2017.
22. El-Gazzar, D.M. Finite element analysis for structural modification and control resonance of a vertical pump. Alex. Eng. J. 2017,

56, 695–707. [CrossRef]
23. Bae, D.-M.; QI, D.L.; Cao, B.; Cuo, W. A study on the method vibration analysis of marine pump. J. Korean Soc. Fish. Ocean. Technol.

2015, 51, 279–284. [CrossRef]

169



J. Mar. Sci. Eng. 2021, 9, 274

24. Wu, J.-H.; He, T.; Yi, Z.-Y. FEM/BEM analysis for flow induced noise and vibration of a centrifugal pump. Ship Sci. Technol. 2016,
38, 49–55.

25. Jiang, Y.; Zhao, J.-T. Reduce vibration measures for ship centrifugal pump based on modal analysis and CFD simulation.
Ship Sci. Technol. 2012, 34, 109–114.

26. Choi, B.K. Abnormal Vibration Diagnosis of High Pressure LNG Pump. J. Power Syst. Eng. 2005, 2, 45–49.
27. Chen, W. Numerical Simulation an Experimental Study on Damping Vibration of Ships. Master’s Thesis, Shanghai Jiao Tong

University, Shanghai, China, 2019.
28. Liu, Z.; Li, B.; Ma, Q.-N.; Zhu, D.-P. Experiment on vibration characteristics of centrifugal pump with high head. J. Drain. Irrig.

Mach. Eng. 2013, 31, 938–942.
29. Jiang, T. Vibration Level Evaluation of the Environmental Vibration Affected by Multi-vibration Sources. Urban Mass Transit 2010,

13, 26–29.

170



Journal of

Marine Science 
and Engineering

Article

The One-Way FSI Method Based on RANS-FEM for the Open
Water Test of a Marine Propeller at the Different
Loading Conditions

Mobin Masoomi 1 and Amir Mosavi 2,3,*

Citation: Masoomi, M.; Mosavi, A.

The One-Way FSI Method Based on

RANS-FEM for the Open Water Test

of a Marine Propeller at the Different

Loading Conditions. J. Mar. Sci. Eng.

2021, 9, 351. https://doi.org/

10.3390/jmse9040351

Academic Editor: Yuriy Semenov

Received: 26 January 2021

Accepted: 16 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran;
m.mo.masoomi@gmail.com

2 Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
3 John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
* Correspondence: amir.mosavi@mailbox.tu-dresden.de

Abstract: This paper aims to assess a new fluid–structure interaction (FSI) coupling approach for
the vp1304 propeller to predict pressure and stress distributions with a low-cost and high-precision
approach with the ability of repeatability for the number of different structural sets involved, other
materials, or layup methods. An outline of the present coupling approach is based on an open-
access software (OpenFOAM) as a fluid solver, and Abaqus used to evaluate and predict the blade’s
deformation and strength in dry condition mode, which means the added mass effects due to
propeller blades vibration is neglected. Wherein the imposed pressures on the blade surfaces are
extracted for all time-steps. Then, these pressures are transferred to the structural solver as a load
condition. Although this coupling approach was verified formerly (wedge impact), for the case
in-hand, a further verification case, open water test, was performed to evaluate the hydrodynamic
part of the solution with an e = 7.5% average error. A key factor for the current coupling approach is
the rotational rate interrelated between two solution domains, which should be carefully applied in
each time-step. Finally, the propeller strength assessment was performed by considering the blades’
stress and strain for different load conditions.

Keywords: fluid–structure interaction; OpenFOAM; one-way approach; structural analysis; open
water test; computational fluid dynamics; numerical analysis; fluid mechanics; blade design; propeller

1. Introduction

The propeller is the main part of a propulsion system by which engine power can
move the marine vessels. Marine propellers work in an intense and complicated flow field
and high-risk work conditions; those two aspects must be considered to design a new
propeller. First, evaluating the hydrodynamic coefficients like efficiency and thrust and
torque coefficient. Second, strength due to loads and manufactured material. The propeller
blade strength role is essential in the cavitation phenomenon and propellers’ efficiency.
In essence, the blades’ structural behavior has fully interacted with the hydrodynamic
propulsion qualification, particularly propeller efficiency. There are two main approaches
for hydrodynamic calculations of marine propellers. The first, the inviscid numerical
methodologies, involve the lifting line method, the boundary element method (BEM) [1],
and the vortex lattice method (VLM) [2]. The second is computational fluid dynamic
(CFD) involving large eddy simulation (LES) [3], or Reynolds-averaged Navier–Stokes
(RANS) [4–6]. Because marine propeller operates in a viscous flow and complex current of
the wake, CFD methods are more suitable and efficient than the inviscid methods (BEM,
VLM), albeit some researchers use the inviscid method for propeller simulation due to the
low-cost and lower simulation power needed.

Many researchers have used the RANS method to overcome the rotating blades’
solution complexity, especially for marine propellers. Maksoud et al. [7] carried out how the
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propeller hub could change the propeller efficiency by using CFX. Another main factor in
operational marine propeller condition is the propeller and rudder interaction, investigated
by Simenson et al. [8]. Valentine [9] used the RANS equations to predict the propeller
blades’ flow characteristics by considering turbulence inflow characteristics. In this paper,
two main issues should be evaluated; first hydrodynamic calculations based on the RANS
method. Second, structural analysis, that fluid–structure interaction must be engaged in
the computational prediction approach. The nonlinear hydrodynamic load exerted on
propeller blades due to the propeller’s rotational motion inducing a centrifugal force.

The majority of the fluid-structure interaction studies on marine propeller focus on
the composite propeller; Das et al. [10] used a reverse-rotation propeller in a CFD analysis.
Mulcahy [11] investigated a comprehensive study on the composite propellers’ hydro-
elastic tailoring. In 2011, Blasques et al. [12] investigated the propeller’s hydrodynamic
improvements using different laminate layups for optimal speed and fuel consumption.
In 2008, Young [13] investigated marine propeller fluid-structure interaction analysis to
assess the composite blade’s behavior. Also, the Tsai-Wu strength criterion is considered
to evaluate the blade strength. Lee et al. [14] investigated a two-way coupling approach
consisting of added mass based on the coupling between boundary element and finite
element method. He et al. [15] used a hydro-elastic approach to evaluate composite pro-
peller’s performance, especially vibration due to loads on propeller hub and the composite
layup scheme shaped based on coupling CFD and FEM methods. Finally, a comprehensive
study for four propellers with different concerning materials was published in 2018 by
Maljaars et al. [16], consisting of RANS–FEM and BEM–FEM results versus experimental
results. Hong et al. [17] developed a pre-twist approach to gentrify the propeller’s hydrody-
namic characteristics using FEM/CFD-based software, ANSYS/CFX. Han et al. [18] used
Star-CCM+ and Abaqus coupling approach to study the marine composite propellers; the
results were reasonably close to experimental outputs. Paik et al. [19] investigated different
composite propellers numerically and experimentally. In 2020, Shayanpoor et al. [20]
performed an analysis by considering the CFD–FEM-based approach under the two-way
coupling method on the KP458 propeller.

A simple FSI surrogate modeling is introduced in the present study by consider-
ing two distinct solvers, Linux-based/open access solvers (OpenFOAM) and windows-
based/commercial software (Abaqus); thus, the major challenge is the coupling approach
by considering the propeller’s dynamic motion. Accordingly, the pressures extracted from
OpenFOAM transfer to Abaqus in each predetermined time-step, to use as structural load,
the rotation rate and the number of time-steps should be first evaluated. In the following
sections, for the first step, hydrodynamic solution verified with experimental tests. For the
structural solution, the current FSI approach compared with the wedge impact case was
verified later; the justification of using the wedge impact verification is the similarity of
the two cases. For the second step, the verified numerical model performs to analyze the
advance coefficients’ effect on the forces and stresses imposed on the propeller blades.

2. Materials and Methods

Fluid–structure interaction approaches are divided into monolithic and partitioned
methods. In addition, partitioned methods are divided into one-way and two-way ap-
proaches. Moreover, two-way coupled is divided into strong and weak approaches [21].
From the accuracy aspect, the two-way coupling approach is more accurate than the one-
way approach, especially for cases with more significant deformations and deflections.
On the other hand, the one-way coupling requires less data for a single iteration per time-
step. In addition, the mesh advocated for the fluid domain needless to be recalculated at
each time-step. This leads the numerical solution to remain stable with unchanged mesh
quality. Thus, the needed time related to the numerical solution is lower than two-way
coupling, updated only after each time-step for a new iteration. Therefore, an overriding
advantage of the one-way coupling approach is decreasing in the numerical solution time.
Piro’s [22] compared the one-way and two-way coupling approaches (RQS-RDyn-TC) for
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different plate thicknesses, the discrepancies between the methods were small for thick
plates; whatever the plate’s thickness becomes small, the accuracy of one-way coupling
decrease. Due to the small deflection that occurred for the propeller blades in the present
study, the one-way coupling method could be accurate enough.

2.1. Governing Equations of the Flow Around the Propeller

The most applicable and usable approach for simulating turbulent regimes is based
on solving the Reynolds-averaged Navier–Stokes (RANS) equations. In the present study,
InterDymFoam, a multiphase solver of OpenFOAM libraries, is used for hydrodynamic
simulation. InterDymFoam is a proper solver based on the RANS equation by consid-
ering multi turbulence models [23] for dynamic mesh cases. The fluid is regarded as
an incompressible Newtonian fluid that should inherently satisfy the mass conservation
and momentum equations. The RANS equations are based on time-averaged variables
decomposing the velocity, pressure fields into:

u = u + u′
p = p + p′
u = ui + vj + wk
u′ = u′i + u′ j + w′k

(1)

∂ui
∂xi

= 0 (2)

∂(ui)

∂t
+

∂(uiuj)

∂xj
= fi − 1

ρ

∂p
∂xi

+
∂

∂xj

[
v

(
∂ui
∂xj

+
∂uj

∂xi

)
+ τij

]
(3)

xi = (x, y, z) represents coordinates, ui = (u, v, w) are the component of Reynolds-
averaged velocity. ƒi denotes the body forces presented as forces per unit volume and in
the present study assumed that fi = 0. Moreover, u, ρ, and P are fluid velocity vectors,
density, and pressure, respectively. The Boussinesq assumption is considered to represent
the Reynolds stress for incompressible flows, which is commented below:

τij = υt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
δijk (4)

k =
1
2

(
(u′)2

+ (v′)2
+ (w′)2

)
, u′ = u − u, u′ =

1
T

T∫
0

(u(t)− u)dt (5)

where νt represent the turbulence eddy viscosity, k denotes turbulent kinetic energy (TKE)
per mass. In addition, δij surrogate as the Kronecker delta. u is time-averaged velocity,

in which u′ and u′2 are the mean and variance velocity, respectively. A two-equation
turbulence model (k-ε) is used for the present study. ε denotes the dissipation rate of
energy per mass, which determines the amount of energy lost by the viscous forces in the
turbulent flow that should be introduced. (μt) is turbulent viscosity:

μt = ρCμ
k2

ε
(6)

ε =
1
2

μ

ρ

{
∇u′ + (∇u′)T

}
:
{
∇u′ + (∇u′)T

}
(7)

To track the particles and capture the interface for the multiphase solution easily, the
volume of fluid (VOF) could be a practical approach. The VOF method uses a volume
fraction variable α to represent the air and water portion in each finite volume cell [24],
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where ρ1 and μ1 represent the physical properties of water, and ρ2 and μ2 also mean the
physical properties of air, which introduces new conservation equations:

ρ = αρ1 + (1 − α)ρ2, μ = αμ1 + (1 − α)μ2,
α = 0 : air
α = 1 : water

(8)

The two-phase dynamic solution similar to the present case (propeller in water) is
transient with a high turbulent regime that caused the solution to be inherently unstable.
There were some algorithms to couple the mass conservation and momentum equations,
the semi-implicit method for pressure-linked equations (SIMPLE), and the pressure implicit
with the splitting of operators (PISO) that in the present study, the high-fidelity algorithm
based on merging the PISO and SIMPLE called PIMPLE used.There are two important
parameters, inner and outer correctors; inner corrector is the number of times the pressure
is corrected, and the outer corrector is the number of times the equations are solved in each
time-step. Outer corrector puts an obligation to stop the solution for each time-step apart
from the solution be converged or not.

2.2. Governing the Structural Equations

Structural analysis is an essential step for one-way coupling approaches that should
be performed correctly. The cantilever beam model is the initial theory to calculate the
propeller blade strength introduced by Taylor [25]. This method was implemented and
developed by some researchers. The method’s drawback was poor results for the points
with a low thickness on the propeller’s blade compared to thicker blade’s sections near the
propeller’s root. This problem continued until the introduction of shell theories developed
by Cohen [26] and Conolly [27], the limitation of this method was the propellers’ geome-
try complexity. For instance, wide-blade or high-skew propellers could not be assessed
accurately, but in recent years, the finite element method used widely by dividing into
solid or shell element approaches. Many investigations are based on both approaches,
but Young [13] and Blasques et al. [12] performed a study to evaluate the output results’
differences. Their investigation indicates that, although both methods are sufficient, the
Shell element model needs lower computational power than the solid element method.
Moreover, the solid element method has some prominency rather than a shell element
model, Young [13]; this is why most FSI problems used a solid element model for the
structural solver.

The deflection due to the structure’s imposing loads is the main issue [28] performed
by the finite element method. This technique broadly consists of discretizing a structure into
several elements that should be assembled at the end. In addition, internal stresses are in
equilibrium due to the continuity of stress for interface elements. The present finite element
uses the explicit method, in which a time-based approach (central difference method) is
used to integrate the equations of motion. In this method, the period is considered small
enough to prevent divergence [29]. The equation of motion for the structural deformation
corresponding to the propeller blade fixed coordinate is introduced by Equation (9):

Ms
..
d + Cs

.
d + Ksd = FST (9)

where Ms is the mass matrix, Cs belongs to damping matrix and Ks represent the matrix for
the structure stiffness. the variables

..
d

.
, d, d are the acceleration, velocity, and displacement,

respectively. FST is the summation of all loads imposed on the structure. Importantly, for
the cases like a propeller, this load comprises force due to rotation, centrifugal force and mo-
ments, Coriolis force, and external load on the structure. For the case in hand, due to static
analysis of the propeller and motionless blades in each time-step, the only pressure used
for calculation is the fluid pressure extracted from the CFD solution. The calculation algo-
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rithm’s first step is to solve the dynamic equilibrium relation, Equation (11). The kinematic
conditions solve the next iteration’s kinematic constraint in each distinct increment.

..
U = (M)−1(P − I)t, M

..
U = P − I (10)

.
U(t+ Δt

2 ) =
.

U(t− Δt
2 ) +

(Δt(t+Δt) + Δt(t)
2

..
Ut (11)

U(t+Δt) = U(t) + Δt(t+Δt)
.

U(t+ Δt
2 ) (12)

All of these parameters belong to nodal points, where M is the nodal mass matrix, U
is nodal displacement and

..
U is nodal acceleration. To govern net forces act on nodal points

(P–I) is used, that p is the external loads imposed on the structure. This parameter is con-
sidered nodal forces. The integrated accelerations are used to calculate velocity variations;
this new added velocity value from the previous middle increment determines the middle
of the current increment Equation (11). then The time-integrated velocities are added to
the beginning displacements’ increment to determine the final displacements’ increment,
Equation (12); after estimation of the nodal displacement in time(t), the element strain
increments are calculated from the strain rate, The stress components can be calculated
from constitutive equations and the solution process repeated for time (t + Δt).

2.3. Modeling and Computational Setup
2.3.1. Open Water Test Characteristic

The present study’s framework is a numerical solution related to the Potsdam propeller
test case (PPTC). For this purpose, the same propellers’ geometry with the same material is
accepted from the experiment cases, represented in Tables 1 and 2, respectively [29]. The
International Towing Tank Conference (ITTC) recommended that the propeller rotational
speed is considered constant, but propellers’ advanced speed varies for different advance
coefficients. The incident flow into the propeller is the opposite of real working conditions;
propellers must be rotated in the opposite direction. We will hereafter comply with this
rule to perform open water tests. The solution domain is modeled cylindrically with the
following dimensions; 3.5 D forward, 10 D rearward, and 5 D in diameter, D is propeller
diameter [30] (Figure 1).

Table 1. Geometrical specification of the propeller.

Propeller Model Vp1304

Diameter 0.25 m
Hub coefficient 0.3

Number of blades 5
pitch coefficient

(r/R = 0.7) 1.635

AE/A0 0.779

Table 2. Structural specification of the propeller.

Material Al-Alloy

Elasticity 120 Gpa
Poisson’s ratio 0.34
Mass density 7400 kg/m3
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Figure 1. Numerical solution domain used for computational fluid dynamics (CFD) part of the present study.

For the open water tests, The main parameters are the thrust coefficient kt, and torque
coefficient kQ, represented by the dimensionless values mentioned in equation (13). The
coefficients are directly related to rotational speed, n, diameter, D of the propeller, and
water density, ρ. Furthermore, T represents thrust [N], Q is equal to torque [Nm], Va denote
the advance speed [m/s], and η is proportional to the efficiency [-].

J =
Va

nD
, kt =

thrust
ρn2D4 , Kq =

Torque
ρn2D5 , η =

KT J
2πKQ

(13)

2.3.2. Applied Boundry Condition and Dynamic Motions Method

Although various boundary conditions can be devoted to, accurate results without
divergence need a proper allocation of boundary conditions In the present case, the inlet and
outlet boundary condition was set based on the downstream of the outlet boundary domain.
For the inlet boundary condition, free-flow velocity is considered constant, dependent on
advance velocity for each advance coefficient. Moreover, the inlets’ turbulence intensity is
considered, I = 5%. Two main approaches could simulate the propeller’s dynamic motions,
multi-reference frame (MRF) and arbitrary mesh interface (AMI), since the AMI is more
practical for propeller case studies used in the present numerical solution. This method
is based on the interpolation between two distinct but adjacent domains connected with
an interface [30]. Two similar cylindrical domains encompass the propeller, one is static,
and another one is dynamic, moves with the propeller’s rotation. Although there was no
physical relationship between the two zones, the fluid and numerical calculations were
transported through the interface.

An appropriate mesh quality and structural-based domain around the propeller
needs some consecutive cylinders for dividing the domain into some sub-domain. The
smallest cylinder is a small grid size, and the subsequent cylinder is larger than the former
cylinder. In this regard, snappyHexMesh is used as the main tool and rhinoceros’ role
as an assistant tool to generate the numerical solution mesh. As shown in Figure 2, a
high-quality structured mesh can be obtained by considering these techniques. A mesh
independence study was established for the accuracy of the CFD solutions besides keep
the computational cost.

The mesh generation framework is explained, but the mesh independence study must
be performed simultaneously. The mechanism whereby the performance of griding quali-
fied is highly dependant on the main propeller characteristics shown in Equation (12); that
is how the mesh could be alleviated the computational cost without losing the accuracy.
The propeller rotational speed, ω = 15 rps, and advance speed, va = 2 m/s, the advance
coefficient, J = 0.53 [-] is considered to perform the numerical solution, Table 3. The calcula-
tion for this advanced coefficient involved five different initial grid sizes, Table 4, dynamic
multiphase solutions, InterDyMFoam, which comes from OpenFOAM libraries with the
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same underlying physics relative to InterFoam. The thrust and torque are extracted from
the postprocessing tool as the initial value; then these values substitute in Equation (13);
finally, the results for each simulation are gathered in Table 4; all these cases provided
acceptable results. Consequently, fine (IIII) resolution leads to a reasonable prediction of
thrust and torque coefficient with optimum computational cost compared with other cases.

  

Figure 2. Mesh generated structure around the propeller.

Table 3. Primary data assumed in calculations.

Parameter Unit Model Real

Density (water) kg m−3 999.0 1025
Kinematic viscosity (water) m2 s−1 1.139 × 10−6 1.188 × 10−6

Revolution (propeller) s−1 15 4.33

Table 4. Mesh independency study for vp1304 propeller.

Quality Base Grid Cell.NUM
kt

(kt)excellent

kq

(kq)excellent
NUM

Coarse 0.11 245,210 1.1 1.11 (I)
Mid 0.09 315,402 1.05 1.055 (II)

Mid-fine 0.08 335,183 1.025 1.024 (III)
Fine 0.064 425,060 1.015 1.013 (IIII)

Excellent 0.0325 835,205 ≈1 ≈1 (V)

3. Results and Discussion

3.1. CFD Validation

The numerical model tests are performed base on the advanced coefficient shown in
Table 5, the same as the experimental tests [31]. As before said, the numerical investigations
performed based on InterDymFoam to derive the thrusts and torques forces, then these
values substitute in Equation (13) to obtain the trust coefficients, torque coefficients, and
efficiency. These coefficients are calculated and compared with the experimental values; the
resemblance between the present study results and the experiments is sufficient, Figure 3.
Neither this numerical method nor any other methods could not achieve accurate results
for low advance coefficients. That is why the error is an intrinsic part of the simulation,
especially for low advance coefficients. In fact, the J = 0.266 error percentage does not
account for the average error calculation. The reason is, due to severe turbulence flows
around the propeller, the maximum error percentage belongs to the highest turbulent rate,
J = 0.266, which caused unavoidable discrepancies. Finally, e = 7.5% is considered as the
average error percentage for the present method’s efficiency.
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Table 5. Different advance coefficient specifications.

J [-] ω [rps] Va [m/s] Number

0.266 15 1 I
0.533 15 2 II
0.8 15 3 III

1.06 15 4 IIII
1.23 15 5 V
1.6 15 6 VI

 

Figure 3. Hydrodynamic comparison between experimental and numerical results.

Hydrodynamic Analysis of the vp1304 Propeller

Four advanced coefficient-related contours are illustrated in Figure 4 to show the
motion of the flow’s particles around the propeller, particularly around the faces and
backside. In essence, for the bigger advance coefficient, the blade’s pressure gradient
decrease; this leads the propeller’s thrust and torque to be lower than the smaller advance
coefficient. That is why the maximum propeller’s thrust occurred at bollard state (advance
velocity = 0), and after this, it gradually decreased until it reached near zero for j = 1.6
onwards. Because the pressure and velocity are interrelated, the flow field’s evaluation
for the velocity should be considered. The discrepancies between j = 0 and j = 1.23,
minimum and maximum advanced coefficient, for the velocity contour are affected by
the direction and disparity of the propeller’s flow. As the advanced velocity increases,
the propellers’ backflow becomes more parallel with low dispersion, and the velocity
is smoother around the propeller; accordingly, the hydrodynamic gradient pressure for
propeller blades decreases.

    

    
(J = 0) (J = 2.66) (J = 0.8) (J = 1.23) 

Figure 4. Pressure (top) and velocity (bottom) contours for different advance coefficients.
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Table 6. Three gauge positions on the propeller blade.

Gauge Distance from the Center

 

p-1 0.04 m

p-2 0.08 m

p-3 0.12 m

  

 
Figure 5. Gauge pressure variations of one rotation (t = 0.12 s-t = 0.18 s) for different advanced coefficients.

The valid question is, to what extent has the force dispersion on the propellers’ blade
changed? This question is answered by following the same approach of the pressure
evaluation. Upon that, ParaView, a visualization and postprocessing tool for OpenFOAM,
is accomplished for force evaluation. A framework for the force solution is generated and
captured each propeller blade surface and adopted normal vectors on these surfaces. After
this, by multiplying the pressure with these normal vectors, the force could be extracted
from the hydrodynamic solution. There is another method to capture the imposed force by
adding force-Library to the OpenFOAM solver. This method’s drawback is that these codes
must be added to the solver before the numerical solution started; thus, it is useless when a
solved case wants to be evaluated. As shown in Figure 6, the maximum force imposed on
the propeller occurred at J = 0; the smallest advance coefficient, J = 0.266, experienced the
force (F = 600 N) similar to the bollard pull value (J = 0).
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Figure 6. Integral forces act on the propeller at the different advanced coefficients.

3.2. Fluid–Structure Interaction Validation
3.2.1. Finite-Element Method

Von Mises stress calculation is at the scope coverage of the present method by im-
plementing the static/general solution of Abaqus solvers. Substantially the propeller’s
dynamic motions are only considered in the CFD approach, and it is reasonable to suppose
that the propeller is fixed for each time-step in the structural solver. As before said, the
FEM solver used solid elements with three translation degrees of freedom, the displace-
ments, and rotations (u, v, w, φ1, φ2). Moreover, weight functions (δu, δv, δW1, δw2, δw3)
are approximated:

u = ∑n
j = 1 uj.ψj, δu = ψi ϕ1 = ∑n

j = 1 w2
j.ψj, δw2 = ψi

v = ∑n
j = 1 vj.ψj, δv = ψi ϕ2 = ∑n

j = 1 w3
j.ψj, δw3 = ψi

w = ∑n
j = 1 wj.ψj, δw1 = ψi

(14)

These Lagrange interpolation functions (ψi) are substituted in the differential equa-
tions’ weak form [32]. These functions are nodal parameters (x and y) in which x and
y are nodal displacements. At the finite element methods based on displacement, the
displacement’s manner in the element boundaries is not separated; unlike the strains, that
the manner of strain is continuous only within one element. The point here is, choose
between the linear or quadratic elements. Indeed, the strains have a constant value in
linear elements, but in quadratic elements, the strains are nonlinear with more accurate
strain or stress results than linear elements. According to Barlow [33], strains and stresses
can be solved without limitation in the element, just for points, including defined nodes.

3.2.2. One-Way Coupling Approach

There are two main modes, dry and wet modes, with the critical factor of “added
mass-generated effects” due to structural deformations. Dry condition considers only
material/structural damping and wet condition consider added mass due to the blades’
vibration. Wet modes are computed by finite element embedding the structure in a fluid
domain modeled by acoustic elements. When the propeller reaches maximum load at
real state condition, blades begin to vibrate on their natural frequencies that, analysis
under “wet” condition can give more accurate and reliable results, especially for large
deformations. Due to the Investigation of Lee et al. [14], the difference between the results of
the dry and wet conditions is not significant, especially for the case with low deformations.
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Thus, the one-way coupling with the dry condition used in the present study could perform
accurate results. Nevertheless, the underlying physics dominant on the one-way coupling
caused fluctuating trends due to large deformation and membrane forces rather than
two-way approaches.

An aluminum wedge’s results are considered and verified with Agard and Pancirolis’
investigation [34] to evaluate the model’s applicability. The wedge characteristic used
for the numerical solution is shown in Tables 7 and 8; two variables were considered for
the verification purpose, von Mises stress and strain. Since the maximum value for these
variables occurred at the midpoint of the wedge wing, 150 mm from the wedge apex at the
interior side (1 [mm] above the neutral axis), and Whatever the deformations larger, the
accuracy challenge for the represented one-way approach is more dependable: thus, the
method is verified under the most complicated state. In the present method by considering
the wedge impact verification case, Agard [24], which was previously verified, Figure 7,
the method adoption performed well for the propeller rotation. The similarity of steps
and methods for the present study rather wedge impact can be reliable enough to use as a
base approach of the vp1304 propeller. With this justification, this verified process can be
utilized to analyze the propeller with a small but essential amended step; this involved the
propeller’s rotation at each time-step for the structural solver, which is discussed further in
the next sections.

Table 7. Wedge characteristic used for one-way coupling verification solution.

Characters Wedge Length Wedge Thickness Deadrise Angle

value 0.3 m 0.002 m 20◦

Table 8. Material properties for the wedge used for one-way coupling verification solution.

Characters Material E [Gpa] ρ [kg/m3] ν [-]

value Aluminum 68 2700 0.3

  
Figure 7. Present method (by considering the wedge impact) verification versus two-way coupling [24].

In the present study, the structure is considered as a rigid body for fluid simulations
that the flexural mass is neglected in rigid/quasi-static (RQS) approximation. Thus, the
hydrodynamic forces and pressures are independent of the structure deformations. In
Equation (15), fR(t) considered as the fluid force and the deformations δRQS extracted
from this method are always smaller than the real deformations. As said in Heller and
Jasper [35], a “dynamic amplification factor” must be applied due to neglecting the flexural
mass to correct error predicting.

The coupling process’s first step is gathering the hydrodynamic data by performing
the numerical solution for the marine propeller accomplished with InterDyMFoam akin
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to OpenFOAM libraries. The hydrodynamic data for a rigid body has mainly involved
the point-by-point exerted pressure on the propeller’s surface, collected as an Excell file
for the ease of transferring. Now the question is how the pressures should impose on the
propeller in the structural solver. Two steps were needed to perform the Abaqus analysis.
The first, the time-step assessment, involved the number of separate cases in the Abaqus
solver must be determined based on Equation (16). The extracted pressures from the CFD
solver were considered as a load condition at the FEM solver for the related designated
time-steps. Each case at Abaqus was solved distinctly, and the results were recorded for
the final datasheet. All these procedures are represented in the chart shown in Figure 8.

k.δRQS = fR(t) (15)

(a), ω =
2π

T
(b), n =

∇t
T

(c), m =
360
n

(16)

 
Figure 8. The comprehensive chart of the present method by considering the solvers engaged.

In more detail, the FEM part of the method could involve a set of data for different
cases in each time step; the rotation rate is constant for all advance coefficients due to
constant rotational speed (ω = 15 rps). The rotational rate is obtained at each time step by
substituting the related values in Equation (15), θ = 27◦. The number of time-steps for
the two complete revolutions is C = 23 distinct cases. Although there were five tables for
each advance coefficient, Table 9 is represented as a sample to show how the time-steps
were selected and to what extent the propeller must rotate at a specific time to match
the propeller’s position with the CFD solver. The number of cases, number of time-steps
in Abaqus is selectable and can be increased to achieve smoother diagrams with lower
fluctuations; also targeted reduction in the number of time-steps to achieve lower cost
and time of the simulation. As shown in Table 9, the maximum stress and strain for each
time-step were evaluated to engage in the final outputs.
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Table 9. The datasheet for the coupling procedure of v = 5 m/s test case.

Case (FEM) 1 2 3 4 5 6 7

Time step(s) 0.07 0.075 0.08 0.085 0.09 0.095 0.1
Rotation

Angle 18◦ 45◦ 72◦ 99◦ 126◦ 153◦ 180◦

Stress (pa) 6.01 × 106 5.92 × 106 5.47 × 106 5.59 × 106 5.91 × 106 9.16 × 106 5.90 × 106

Strain (m) 4.7 × 10−5 4.67 × 10−5 4.34 × 10−5 4.4 × 10−5 4.6 × 10−5 8.4 × 10−5 4.6 × 10−5

8 9 10 11 12 13 14 15

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14
207◦ 234◦ 261◦ 288◦ 315◦ 342◦ 369◦ 396◦

8.87 × 105 8.40 × 105 5.20 × 106 5.70 × 106 5.80 × 106 5.80 × 106 5.70 × 106 5.70 × 106

8.2 × 10−6 7.8 × 10−6 4.11 × 10−5 4.5 × 10−5 4.6 × 10−5 4.59 × 10−5 4.56 × 10−5 4.56 × 10−5

16 17 18 19 20 21 22 23

0.145 0.15 0.155 0.16 0.165 0.17 0.175 0.18
423◦ 450◦ 477◦ 504◦ 531◦ 558◦ 585◦ 612◦

5.70 × 106 5.60 × 106 5.68 × 106 5.63 × 106 5.60 × 106 5.55 × 106 5.40 × 106 5.30 × 106

4.51 × 10−5 4.44 × 10−5 4.45 × 10−5 4.44 × 10−5 4.41 × 10−5 4.36 × 10−5 4.28 × 10−5 4.17 × 10−5

The comprehensive question is, how do we diagnose the reliability of the one-way
rather than two-way coupling or the advantages of using the one-way method? First,
for the small deflections, significantly smaller than the body’s thickness, classified in the
nonlinear deflections, the one-way is similar to two-way coupling results, and whatever
the deflections became larger, the accuracy of the one-way approach decrease. For the case
at hand, propeller deflections were classified in the range of low-deflection cases; thus, this
approach could be reliable enough. Agard [24] used a parameter, the wetting equation
(WQ), to classified the cases upon eigenfrequency and Young’s modulus for wedge impact
studies to estimate the intrinsic error belong to one-way coupling. The one-way coupling
named as an industrial approach due to:

• Decrease the complexity of the numerical solution by dividing it into two parts;
• Create two distinct mesh generation schemes depending on the grid dimension needed;
• The ability to use one hydrodynamic solution for many structural sets, using different

materials, thickness and different structural design;
• Lower numerical solution cost and time rather than a two-way approach, the solution

time is evaluated in the present study illustrated in Table 10;
• High-fidelity results for the cases with low deflection;
• One-way coupling is more useful for cases with large domain and multiphase systems

like investigations on marine vessels, propellers, etc.

Table 10. The time needed to analyze different cases.

Advance Velocity V = (1, 2, 3, 4, 5) m/s

FEM solution time + gathering datasheet 2 + 1 hour
CFD solution time 24 hour

Cumulative time (present method) 27 hour

3.3. Structural Behavior of Propellers’ Blade

The propellers’ work conditions indicate that the blades should sufficiently withstand
long work cycles without failure or permanent distortion. The initial research on the
propeller’s structure and the analysis method was introduced by Taylor [36]. Since then,
research on propellers’ hydroelastic started to include the deformations of the (high-skew)
bronze propeller in the 1980s. The marine propeller’s design with the systematic propeller
series was performed by Ekinci [37], who investigated B-series propellers using some
empirical methods with different load conditions. The superiority of the present method is
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related to perform a quick structural calculation. Indeed, CFD and FEM are not correlating
with each other, and the emphasis is put on using one hydrodynamic calculation for the
several structural solvers.

Different cases could be performed for different materials involved Alloy or composite
materials. A reasonable method to judge how the materials affect the propellers’ structures
depends on two main structural variables, stress and strain. The discrepancy in value
and the maximum or minimum occurrence positions are the most important factors in
evaluating the propeller’s strength. To cast light on the mechanism whereby how the
efficient case selected, the maximum von Mises stress imposed on the propeller used as a
key factor to illustrate the stress distribution for each advance coefficient.

Apart from some exceptions, maximum stress occurred near the blades’ root, and
whatever far away from the root, the value for stress decreased by a gentle slope. As
predicted, when the propellers’ thrust reaches the maximum value, the propellers’ blade
has deformed in the load vector’s direction. The highest value for strain and stress occurs
at bollard pull (j = 0) due to thrust and torque values. As shown in Figure 9, in the bollard
states’ (j = 0) maximum stress is about, s = 3× 106 pa, but for another advanced coefficient,
this value is oscillating about, s = 1 × 106 pa, and s = 1 × 106 pa.

 
Figure 9. The comparison between a maximum stress and hydrodynamic efficiency.

For further explanation, Figure 10 used to evaluate the maximum strain and stress
trends; maximum stress locations are different for each advance coefficient, at J = 1.23, the
maximum value for stress is about, S = 5.2 Mpa, occurred at t = 0.08 s ((rev-1/(t = 0.66 s
to t = 0.12 s)), this value is different for J = 0.8, maximum von Mises stress appears at
t = 0.12 s (end of the rev-1). Such a different trend is valid for other advanced coefficients.
The oscillation occurs for von Mises stress due to neglecting the damping and added
mass effects for structural behavior. A contour-based figure, Figure 11, was constructed to
show the stress for one revolution versus the advance coefficient The propeller’s design is
such that the blade’s thickness near the hub is greater than the tip; as a result, the stress
distribution indicates that stress concentration at the blade-hub intersection. The von
Mises range is between S = 1.8 × 106 pa and 2.4 × 106 pa, except for t = 0.12 s, that is,
S = 8.2 ×106 pa. The main assessment comprises how stress and strain distribute on the
propeller’s blades and which blade absorbs the maximum load.
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Figure 10. Maximum stress and strain values, for two revolutions, at J = 0, 0.266, 0.8, 1.23.

3.4. Propellers’ Structural Behavior in Rotation

Three different points were selected based on Table 6 to evaluate the blade rotation
angle’s effects on stress distribution. The initial impression from Figure 12 is that the point
near the blade root (P1), apart from the advance coefficient, has the greatest von Mises stress
value, and the minimum value belongs to the point at the top of the blade (P3). Albeit, the
diagrams’ harmony for three points is similar to each other. Consequently, a set of different
graphs for each advance coefficient are used to illustrate how the stresses on the propeller
blade’s surface are changed. Following the same approach, the von Mises stress versus
the rotation angle is shown in Figure 13 for four different advance coefficients. Although
the von Mises diagrams for all advance coefficients (J) are not harmonic (rev-1:0–360 and
rev-2:360–720), the trend for the J = 0.266 distribution is more harmonic than other advance
coefficients. j = 0.266 is a minimum point for the stress diagram; thus, the propeller’s
structural behavior is more stable and has a minimum value because of maximum kt and
kq, which are occurred at j = 0.266. Therefore, the main portion of exerted pressure on the
propeller uses to generate thrust.
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T = 0.07 s T = 0.08 s 

    
T = 0.09 s T = 0.1 s 

    

T = 0.11 s T = 0.12 s 

    

Figure 11. Von Mises stress evaluation on propeller surface at different time-steps.

Figure 12. Maximum von Mises stress on a blade versus advance coefficient.
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Figure 13. Maximum von Mises stress versus rotation angle for j = 0, 0.266, 0.8, 1.23.

4. Conclusions

In the present study, simple surrogate modeling for rigid/quasi-static approach is
used to investigate hydroelastic simulation for open water propeller test cases (PPTC);
the coupling approach comprises a CFD-FEM method solved separately. In the first step,
the hydrodynamic solver, InterDyMFoam, is verified with an experimental study that the
average efficiency error for different advanced coefficients was about e = 7.5% for efficiency
on average. For further evaluation in the hydrodynamic section, a force analysis was
performed using the ParaView postprocessing toolkit for each advanced coefficient; also,
pressure and velocity contours were demonstrated versus different advance coefficients.

For the second step, the pressure distributions were obtained from OpenFOAM visual-
ization software, ParaView, and used as the initial structural loads in Abaqus software. The
point is that the propeller must have an appropriate rotational motion in each time-step;
this procedure continued until it reaches any complete revolutions needed. Emphasis is
put on von Mises stress, which is vital for evaluating the propeller’s structural strength.
A fact that is borne out is that the maximum stress occurs at the bollard pull state, J = 0.
In addition, j = 0.266 has the minimum stress value apart from the advance coefficient.
Although von Mises stress’s value remained stable without a notable change after J = 0.8,
the value and maximum stress position could be changeable for each advance coefficient
under different work conditions. Consequently, the propeller’s structural behavior can
effectively be analyzed by the one-way coupling approach, which is a simple, but efficient
model by considering the OpenFOAM and Abaqus solvers as the CFD and FEM solu-
tions, respectively. The present method aims to assess the appropriate material or design
framework for a wide range of propellers and working conditions with an accurate and
low-cost method.
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Abbreviations

Arbitrary mesh interface AMI
Boundary element method BEM
Computational fluid dynamic CFD
Fluid–structure interaction FSI
Finite element method FEM
International Towing Tank Conference ITTC
Large eddy simulation LES
Multi-reference frame MRF
Pressure implicit with splitting of operators PISO
Potsdam propeller test case PPTC
Vortex lattice method VLM
Volume of fluid VOF
Reynolds-averaged Navier–Stokes RANS
Rigid/quasi-static RQS
Semi-implicit method for pressure-linked equations SIMPLE
Turbulent kinetic energy TKE
Wetting time equation WQ

Abbreviations

Kt Thrust coefficient
Kq Torque coefficient
Va Advance velocity
η Efficiency
J Advance coefficient
E Elasticity
ρ Density
υ Poissons’ ratio
ω Angular frequency
S von Mises stress
Pi Pressure gauge (i = 1–2–3)
ε Strain
F Force
T,t Time
e Error percentage
rev Propeller revolution
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Abstract: To predict the resonance characteristics of hydraulic machinery, it is necessary to accurately
calculate the natural modes of the runners in the operating environment. However, in the existing
research, the boundary conditions of the numerical modal analysis of the runner were not unified.
In this paper, numerical modal analysis of a prototype Francis pump turbine runner was carried
out using the acoustic–structure coupling method. The results of three different constraints were
compared. The influence of the energy loss on the chamber wall on the natural modes of the
runner was studied by the absorption boundary. The results show that the constraint condition
(especially the rotating shaft) has significant impacts on the torsional mode, the radial mode, the
1 nodal-diameter mode, and the 0 nodal-circle mode, and the maximum differences in the natural
frequencies under different conditions are 69.3%, 56.4%, 35.1%, and 9.4%, respectively. The change of
the natural frequencies is closely related to the modal shapes. On the other hand, the energy loss
on the wall mainly affects the nodal-circle modes, and the influence on other modes is negligible.
The results can provide references for the design and resonance characteristics analysis of hydraulic
machinery runners.

Keywords: hydraulic machinery runner; wet modal analysis; acoustic–structure coupling;
boundary condition

1. Introduction

The natural mode is an inherent vibration characteristic of the structural systems.
For hydraulic machinery runners, the natural mode is an important technical index. The
accurate calculation or measurement of the natural mode is of great significance to the
safety of the unit, and even the whole power station.

The goal of modal analysis of the runners has evolved from the dry mode to the
wet mode. It is well known that the natural modes of structures in water are different
from those in air (or a vacuum) [1]. Therefore, the wet mode and its prediction method
have been widely studied. At first, the test method is the most direct and effective. For
example, Rodriguez et al. [2] and Han et al. [3] used the experimental method to analyze
the wet modes of a scale model of a Francis turbine runner and a current turbine blade,
respectively. Presas et al. [4] carried out modal tests on a scale model of a pump turbine
runner outside and inside the casing. The effect of the added mass on the dynamic response
was proposed and discussed. Østby et al. [5] studied the added mass effect of water on
a simplified low specific speed Francis turbine runner using an experimental method.
The measurements revealed a frequency reduction of about 40% when the runner was
hanging in water. Egusquiza et al. [6] measured the natural modes of a prototype pump
turbine runner in air and water. Considering the modal shapes, the mechanism of the
effect of the added mass on the natural modes was analyzed. The main defect of the
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test method was that it costed too much. Thus, the numerical simulation has become
the popular research method because it is easy to implement. Hübner et al. [7] took
the modal shapes of the structure in air as the initial displacement condition of the two-
way fluid–structure coupling simulation, analyzed the frequency reduction coefficient of
each mode of the structure in water, and then obtained the wet modes of the structure.
The defect of this method is that only one mode can be obtained in each calculation.
Liu et al. [8] proposed a two-way fluid–structure coupling method based on a PolyMax
modal identification algorithm. This method can obtain multiple modes at once. However,
because of the complexity of the two-way coupling, the efficiency of this method is still low.
Egusquiza et al. [9,10] measured the natural frequencies of a runner in a tank by experiment
and acoustic theory-based fluid–structure coupling method. The results showed that the
natural frequencies obtained by the above two methods were in good agreement, which
proved that the acoustic–structure coupling method is accurate. Compared with the two-
way fluid–structure coupling method, the acoustic–structure coupling method simplifies
the Navier–Stokes equation to a certain extent, and is highly efficient; thus, it is widely
used. Huang et al. studied the effect of cavitation on the modes of a Francis turbine runner
using the acoustic–structure coupling method [11] and calculated the static and dynamic
stresses of the runner during operation [12]. Rodriguez et al. [13] measured the modes of
an underwater circular plate using the acoustic–structure coupling method and compared
it with the experimental data, which further proved that this method can accurately predict
the natural frequencies of underwater structures considering the influence of rigid walls.

Due to the reflection of the pressure wave on the wall, the additional mass of the water
around the structure increases, which will reduce the natural frequencies. Askari et al. [14]
studied the influence of the axial and radial clearances on the modes of a circular plate in
water tanks, and the results showed that the natural frequencies changed with the thickness
of the clearance. Additionally, the smaller the thickness, the more significant the influence.
Similarly, He et al. [15] studied the effect of the clearance on the dynamic characteristics of
a pump turbine runner using the acoustic–structure coupling method. The results showed
that the thickness of the clearance between the runner and the wall has a significant impact
on the resonance condition. In current numerical research, the flow passage vessel is
usually simplified as a rigid wall to analyze the wet mode of the internal structure, i.e.,
the system composed of the structure and water is assumed to have no energy loss at the
boundary [9]. However, flow passage vessels (such as runner chambers) are not completely
rigid. Therefore, the outer wall will vibrate along with the structure–water system and
absorb some of the energy of the system. The effect of the energy loss on the modes of the
runners needs to be further discussed.

In practical engineering, the runner of hydraulic machinery is fixed on the shaft by
bolts. However, in the research of the dynamic characteristics of the runners, the setting
of the constraints is not uniform. Without considering the rotating shaft, line constraint
(i.e., fixed constraint on bolt center line) [11,12], surface constraint (i.e., fixed constraint
on connecting surface) [15] and rope suspension [2,5,6] are often adopted. Among them,
the rope suspension is usually used in the experimental modal analysis to eliminate the
influence of constraints or other structures on the dynamic characteristics. However, some
researchers have carried out modal analysis of the runner, the shaft, and even the rotor as a
whole [16,17], to make the numerical model closer to the actual operating environment.

In this paper, the modal analysis of a prototype pump turbine runner is carried out by
the acoustic–structure coupling method. The purpose is to investigate the influence of the
constraints and the boundary conditions of the wall on the prediction of the natural modes
of the runner.

2. Numerical Model

2.1. Governing Equation

The governing equation of the acoustic–structure coupling method has been derived
in detail [18,19], and its discrete form can be written as follows:

192



J. Mar. Sci. Eng. 2021, 9, 434

[
[MS] 0

ρ0[R]
T [MF]

]{ { ..
u
}{ ..

pe
} }

+

[
[CS] 0

0 [CF]

]{ { .
u
}{ .

pe
} }

+

[
[KS] −[R]

0 [KF]

]{ {u}
{pe}

}
=

{ {FS}
{0}

}
(1)

where [MS], [CS], and [KS] are the mass matrix, the damping matrix, and the stiffness
matrix of the structure, respectively; [MF], [CF], and [KF] are the mass matrix, the damping
matrix, and the stiffness matrix of the fluid; {u} is the node displacement vector; {pe} is
the node pressure; ρ0 is the density of the acoustic fluid; [R]T is the boundary matrix of the
fluid; and ρ0[R]

T and −[R] represent the coupling mass matrix and the coupling stiffness
matrix of the system, respectively.

In this paper, the modes of a runner under different constraints are compared, and the
wall of the runner chamber is set as the absorption boundary to consider the energy loss.
Among them, the change of the constraint condition mainly affects the stiffness matrix of
the structure, and the change of the absorption coefficient α on the wall affects the damping
matrix of the fluid. When the energy dissipation on the fluid boundary is considered, the
damping matrix can be expressed as [19]:

[CF] =
α

c

∫
S

{
Np

}{
Np

}TdS (2)

where c is the sound velocity in the fluid;
{

Np
}

is the shape function of pressure element;
and S is the fluid boundary. It can be seen that when all fluid boundaries are set as total
reflection boundaries (i.e., α = 0), the fluid damping is 0.

In fact, the absorption boundary mentioned here is an acoustic impedance boundary
condition. The relationship between the acoustic impedance Z and absorption coefficient
can be described as [20]:

Z = Z0
1 +

√
1 − α

1 −√
1 − α

(3)

where Z0 = ρ0 · c is the dielectric characteristic impedance of the fluid.

2.2. Finite Element Model

A prototype Francis pump turbine runner with nine blades was taken as the object
of this article. The runner was made of structural steel: the density was 7850 kg/m3, the
Poisson’s ratio was 0.3, and the elastic modulus was 200 GPa. The cut-away view and 3D
modeling of the runner and the surrounding fluid are shown in Figure 1. Several geometric
parameters of the runner are given here in dimensionless form.

 

 
Figure 1. Schematic diagram of the runner and surrounding fluid.

First, the independence of the grid was checked. The fixed constraint was set at the
bolt centerline, the interface between the fluid domain and the structure was set as the
fluid–structure interaction surface, the interface between the fluid domain and the runner
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chamber was set as the rigid wall, and the interface between the fluid domain and the
external fluid domain was set as the full absorption boundary.

The geometry of the clearance was very narrow; therefore, the prediction accuracy of
the pressure wave could be greatly improved by using the hexahedral mesh to discretize it.
However, the runner and its internal fluid were divided by tetrahedral mesh. In addition,
the nodes on the fluid–structure interaction surface were kept at one-to-one correspondence.
Four sets of grids were divided according to a certain proportion, named A, B, C, and
D, and their parameters are shown in Table 1. For the first five modes of the runner,
the frequency ratio fi/f iD was used to analyze the grid independence, and the results
were shown in Figure 2. fi is the ith natural frequency of the runner, and the subscript D
represents the result corresponding to the grid D.

Table 1. Grid parameters of fluid structure coupling modal analysis of runner.

Grid A B C D

Unit number of structure (-) 271,271 638,713 1,209,795 2,033,087
Unit number of water (-) 366,915 834,053 1,551,437 2,414,909

Total unit number (-) 638,186 1,472,766 2,761,232 4,447,996

f i
f i

Total number of grid cells

f
f
f
f
f

Figure 2. The first five natural frequencies of the runner in channels with different grid sizes.

It can be seen that the frequencies of each order tended to a stable value with the
increasing number of elements. Considering the accuracy and efficiency of the solution,
grid C was selected for the simulations. The finite element model is shown in Figure 3.
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Figure 3. Finite element model of fluid–structure coupling modal analysis of runner.

2.3. Definition of Vibration Mode

For hydraulic machinery runners, the vibration mode is similar to that of a disk. To
describe and analyze the modes of the runner conveniently, the concepts of nodal diameter
(ND) and nodal circle (NC) in the vibration mode of the disks should be introduced. ND
and NC refer to the straight or circumferential line where the displacement of the disc
structure remains at zero during vibration. In fact, ND and NC modes refer specifically to
axial vibration. However, there are also circumferential and radial vibrations in the modes
of the disk-like structure, as shown in Figure 4.

 
Figure 4. Schematic of vibration modes of a disk.

The geometry of the runner is much more complicated than that of the disk. Therefore,
there are some special vibration patterns in ND and NC modes, such as crown dominant
(CD), band dominant (BD), and counter phase (CP) [15]. In addition, the modes of the
runner also include the vibration modes dominated by blades.

3. Results and Discussion

3.1. Modes under Different Constraints

The fixed constraints were set on the shaft-connecting surface, bolt centerline, and the
top of the short shaft, respectively (as shown in Figure 1), and then the modes of the runner
in channels were calculated by the acoustic–structure coupling method. The modal shapes
and the natural frequencies under different constraints were compared.
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The first 10 modes of the runner under surface constraint are shown in Figure 5.
Among them, the first five modes are typical ND and NC modes; the sixth is the torsional
mode; the seventh is the radial vibration mode; the eighth and tenth order modes are
dominated by blade vibration; and the ninth is an 0NC-CP mode. The deformation of the
0NC-CP mode was concentrated at the position where the inlet edge was far away from
the blade due to restriction of the blade to the upper crown and lower band.

 
Figure 5. The first 10 modes of the runner with surface constraint.

Comparing the modes under different constraint conditions, it was found that the
change of the modal shapes was generally small. The shapes of the 1ND mode, the 0NC
mode, the Torsional mode, and the Radial mode changed obviously, as shown in Table 2.
For the radial mode with the most obvious change, the maximum vibration point moved
upward and even showed a certain axial swing when the shaft was considered.

Table 2. Modal shapes under different constraints.

1ND 0NC Torsional Radial

Surface
constraint

line constraint
  

shaft constraint

    

To analyze the influence of the constraint condition on the natural frequencies, the fre-
quency fS under surface constraint was defined as the reference value. Then, the frequency
ratios fL/fS and fSh/fS were obtained by dividing the natural frequencies fL (under line
constraint) and fSh (under shaft constraint) with the corresponding reference frequencies.
The frequency ratio of each mode is shown in Figure 6. It can be seen that the influence of
the constraints on the frequencies of different modes was quite different. Among them, the
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Torsional and the Radial modes were the most variable modes, especially affected by the
rotating shaft. For example, the frequency of the Torsional mode was reduced to 0.851 fS
under the line constraint, and the frequency could be further reduced to 0.307 fS when
the shaft was considered. For the ND modes, the 1ND mode was most affected by the
constraints. Additionally, with the increase in the order, the influence decreased rapidly.
A similar rule also appeared in the NC modes, but it changed slowly. For the modes
dominated by blade vibration, the change of the frequency with the constraint condition
could be ignored.

fL fS

fSh fS

fL fS

fSh fS

Figure 6. Influence of the constraint condition on the natural frequencies.

If only the maximum difference of natural frequencies under different constraints is
concerned, it can be described by Δm = (fmax − fmin) fS. fmax and fmin are the maximum and
minimum natural frequencies of a mode under different constraints. The Δm of each mode
is shown in Table 3. It can be seen that the Torsional mode, the Radial mode, the 1ND mode,
and the 0NC mode varied most significantly with the constraint condition. The maximum
differences in the natural frequencies of these four modes under different constraints were
69.3%, 56.4%, 35.1%, and 9.4%, respectively. When these modes are involved in practical
engineering problems, it is necessary to carefully analyze whether the setting of constraint
condition is reasonable, especially considering the influence of the shaft or even the rotor
system. For example, if the constraint condition is not accurate, it is likely to misjudge the
resonance characteristics of the runner when the 1ND exciting force appears in the unit.

Table 3. Maximum differences of natural frequencies under different constraints.

Modal 1ND 2ND 3ND 0NC 1NC

Δm 0.351 0.017 0.004 0.094 0.027

Modal 0NC-CP Torsional Radial Blade I Blade II

Δm 0.016 0.693 0.564 0.003 0.011
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Theoretically, the above results are reasonable. When the surface constraint was
adopted, the local stiffness was the largest, and the natural frequencies of the runner were
the highest. When the line constraint or shaft constraint was used instead, the local stiffness
was reduced, and the natural frequencies were reduced. It can be seen from the modal
shapes that the stiffness here strongly restricted the movement of the Torsion mode, the
Radial mode, the 1ND mode, and the ONC mode, and the restriction on the movement of
other modes was weak. Therefore, the change of the natural frequencies presented such
a rule.

3.2. Modes Considering Energy Loss on the Wall

The rigid wall boundary on the runner chamber was changed to the absorption
boundary, and the absorption coefficient α was set to 0.2, 0.4, and 0.6, respectively. Firstly,
the results showed that the absorption coefficient had no impact on the shapes of most
modes except the 1NC mode. When α increased to 0.2, the position of the nodal circle of the
1NC mode obviously moved outward, and the position of maximum displacement shifted
from the outer edge to the center; when α increased to 0.4, the 1NC mode disappeared. The
change of the modal shape was shown in Figure 7.

 
Figure 7. Variation of the 1NC mode with absorption coefficients.

Figure 8 shows the variation of the natural frequency of each mode with the absorp-
tion coefficient. Here, the frequency ratio fα/f 0 was used for demonstration. fα is the
natural frequency under different absorption coefficients, and f 0 is the frequency when the
absorption coefficient is 0.

 
(a) (b) 

Figure 8. Variation of the natural frequencies with absorption boundary: (a) NC modes;
(b) other modes.

The results showed that, with the increase in the absorption coefficient on the runner
chamber, the natural frequencies of the runner increased except for a few modes. It is well
known that the proximity of the outer wall increases the added mass of water, thereby
reducing the natural frequencies of the underwater structure. When the outer wall was
not rigid, it vibrated along with the structure–water system and absorbed some of the

198



J. Mar. Sci. Eng. 2021, 9, 434

energy in the pressure wave. At this time, the influence of the wall on the added mass
was weakened, so the natural frequencies of the structure increased. Among them, the
frequency change of the NC modes was the most significant, followed by the ND modes
and the Torsional mode. The variation of the Radial mode and the blade vibration modes
could be ignored. Compared with other modes, the frequencies of the NC modes changed
too much; thus, they are shown separately in Figure 8a. For the NC modes, the change
rule of the frequency of each mode was different. In particular, the frequency of the 1NC
mode was abnormal. When α increased to 0.2, the frequency of the 1NC mode decreased
by approximately 35%. Meanwhile, the frequencies of 0NC and 0NC-CP modes increased
by 7% and 1%, respectively. For the ND modes, the change of the frequency of each mode
with the absorption coefficient was almost the same. Additionally, with the increase in α,
the frequency gradient of the ND modes increased.

In fact, the proximity of the wall has very different effects on the added mass of
different modes. For example, during the movement of the nodal circle modes, the runner
moves upward or downward as a whole to squeeze the water in the side chamber. At this
time, the wall has a strong reaction force against the runner–water system, which causes a
great added mass. For the blade vibration modes, the Radial mode, etc., the influence of
the wall on the added mass is very small. The above results can be found in the study of
Li et al. [21]. In the same way, when the absorption coefficient on the wall increased, the
change in the added mass of the nodal circle modes was the most obvious, and the change
in the blade vibration modes and the Radial mode was small. As for the abnormal change
of the 1NC modal frequency, we think that it was caused by the change of the modal shape.

In general, the energy loss on the runner chamber had little impact on the runner’s
modes. When α was increased from 0 to 0.2, the frequency variation of each mode was
within 0.5%, except for the NC modes. Therefore, in the numerical modal analysis of the
runner, only the influence of the energy loss on the NC modes needs to be considered.

4. Conclusions

In this paper, the influence of the constraint condition and the energy loss on the
natural modes of hydraulic machinery runner was analyzed. The conclusions are as follows.

The constraint condition determines the local stiffness of the structure; therefore, it
has a significant impact on the modes of the runner. The influence of constraint condition
on the frequencies of the different modes is quite different, and the degree of the effect
is closely related to the modal shapes. Among them, the Torsional mode, the Radial
mode, the 1ND mode, and the 0NC mode varied most significantly with the constraint
condition. The maximum differences in the natural frequencies of these four modes under
different constraints were 69.3%, 56.4%, 35.1%, and 9.4%, respectively. When the above
modes are involved in practical engineering problems, the rationality of the setting of the
constraint condition must be carefully analyzed. In particular, the correct modelling of the
shaft region is essential for the correct determination of natural frequencies and avoiding
exciting frequencies.

When the chamber wall was not rigid, it vibrated along with the structure–water
system and absorbed some of the energy in the pressure wave. At this time, the influence
of the wall on the added mass was weakened, so the natural frequencies of the structure
increased. The frequency variations of the Radial mode and the blade vibration modes can
be ignored, and the variations of the ND modes and the Torsional mode are also small,
but the variations of the NC modes are significant. Except for several specific modes, the
modal shapes of the runner were almost unchanged. The results showed that it is necessary
to pay attention to the influence of the energy loss on the chamber on the NC modes in the
numerical modal analysis of the runner.
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Abstract: After a few weeks, underwater components of offshore structures are colonized by marine
species and after few years this marine growth can be significant. It has been shown that it affects
the hydrodynamic loading of cylinder components such as legs and braces for jackets, risers and
mooring lines for floating units. Over a decade, the development of Floating Offshore Wind Turbines
highlighted specific effects due to the smaller size of their components. The effect of the roughness
of hard marine growth on cylinders with smaller diameter increased and the shape should be
representative of a real pattern. This paper first describes the two realistic shapes of a mature
colonization by mussels and then presents the tests of these roughnesses in a hydrodynamic tank
where three conditions are analyzed: current, wave and current with wave. Results are compared to
the literature with a similar roughness and other shapes. The results highlight the fact that, for these
realistic roughnesses, the behavior of the rough cylinders is mainly governed by the flow and not by
their motions.

Keywords: marine growth; hydrodynamic loading; roughness; mussels; morison coefficients

1. Introduction

Since 2010, Floating Offshore Wind Turbines (FOWT) have been shown to be very
promising for producing offshore wind energy in deeper water (>60 m) while reducing
the need for spatial area nearshore where the sharing of space with other activities creates
conflicts. Few prototypes and pilot farms have proven the maturity of floating concepts
for wind turbines. It is now facing the reduction of cost that relies on the optimization of
design, the development of new installation processes and new technologies for inspection
and maintenance [1]. The need for new components in comparison with Oil and Gas
floating platforms has also been shown. The size of the floater is smaller and that is the case
for its underwater components: mooring lines and power cables. The order of magnitude
of their diameter is 0.3–0.5 m [2,3]: these small diameters in comparison with components
of Jackets offshore platforms lead to an increase of the relative roughness (i.e., ratio between
the roughness and the smooth diameter) in comparison with previous tests carried out
by the oil and gas industry. By increasing the role of the roughness, the effect of its shape
should be reinvestigated.

Mooring lines and power cables are recognized to be the most critical components for
which the feedback from the Oil and Gas industry cannot be transferred immediately [2,3].
Even if the Oil and Gas sector invested in research and development for mooring line
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design, it experienced unexpected failures: according to Ma et al.’s review on failures of
permanent mooring systems between 2001 and 2011 [4], the annual probability of failure
was estimated to be around 3 × 10−3 over an average sample of 300 permanent mooring
systems from oil and gas industry. This assessment steered operators towards a strength-
ening of safety factors, which can involve solutions such as mooring lines redundancy
or thicker mooring lines. However, reducing mooring system CAPEX leads to avoid
redundancy, to lighten mooring lines components, to shorten their length and to use high-
performance nonstandard materials such as synthetic ropes. The nascent floating offshore
wind industry then faces a challenge: reducing mooring system CAPEX without increasing
the risk of high consequences in case of failure. According to Fontaine et al.’s review of
“past failures, pre-emptive replacements and reported degradations” (Figure 7 in [5]), over
74 analyzed failures, it became clear that fatigue is one of the main issues. Based on the
same observations, the JIP led by Carbon Trust identified four major innovation needs for
mooring systems ([6], p.48), among them the “Understanding of fatigue mechanisms in
floating wind mooring systems”. According to Braithwaite and McEvoy, offshore fish farms
experienced failures due to the presence of biofouling [7]. The loading of these underwater
beam components is usually modeled through the Morison quasi-static equation [8] where
drag and inertia coefficients comprise as much as possible the complex hydrodynamic
interactions between water and the cable. Macro-fouling, called marine growth in the
following, has been shown to change drastically the value of these coefficients and thus the
loading [9–11] and the structural reliability [12–14]. Three effects have been shown to drive
the loading changes [10]: the change of the diameter, of the mass and of the roughness by
both changing the quasi-static and the dynamic loading [15].

In 1990, Sarpkaya summarized more than 20 years of research on the effect of rough-
ness [16]. It was shown that this changes both the bounds of hydrodynamic regimes (from
laminar to turbulent) and the level of the loading. Ameryoun [17] simulated the effect of
the growth of mussel’s roughness through a flowchart of the load computation from the
response surface model [18] and concluded it may lead to an increase of 50% of the drag
force in a single year. Usually, the experimental hydrodynamic test over-simplifies the
shape of the marine growth: it is usually modeled with sand or gravels. When the shape is
more realistic by using a natural colonization by barnacles, anemones or seaweeds [18], the
shape is not fully described as well as the surface density of specimens. It is usually sum-
marized in a single value: relative roughness computed as the ratio between the roughness
(surface to peak distance) and the smooth diameter of the component. This simplification
of the real geometry explains part of the discrepancies of tests in basin reported in the
standards [19,20]. Furthermore, there are only few published reports about on-site marine
growth assessment from inspections and they usually register only a mean thickness and
the type of species of a multi-layer marine growth [21–24]. It is thus not possible to depict
a representative roughness. Recently, underwater image processing was improved [25–28]
and the first quantitative data were extracted: among them, the roughness of mussels, a
dominant species in Atlantic and North-Sea area [3,29]. This paper takes advantage of
these data to provide a realistic reproduction of marine growth in terms of geometry and
density.

With a view to simplifying further bench-marking studies, a dedicated test campaign
is carried out with two homogeneous realistic shape roughnesses. The main objective of
this study is to analyze how the taking into account of the real hard roughness geometry
influences the loading estimation. This paper is split into four sections. Section 2 introduces
the model of the two tested geometries, the experimental setup and the selected hydro-
dynamic conditions are chosen to be as representative as possible to those encountered
by underwater mooring lines (submitted to wave and current effects). Section 3 gives the
results in terms of drag and inertia Morison coefficients. Three types of conditions (current
only, wave only, current plus wave) are imposed to the three studied geometries (1 smooth
and 2 rough) and the results are compared with those of the literature in order to underline
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the benefit to take into account the real geometry of roughness for hydrodynamic load
estimation. Section 4 summarizes the paper.

2. Hard Marine Growth Reproduction and Experimental Setup

The objective of the tests is to represent as close as possible the hydrodynamic condi-
tions and bio-colonization by mussels encountered by underwater components of floating
offshore wind turbines. In this section, we first propose a realistic reproduction of marine
growth in terms of geometry and density. The experimental setup is presented a second
time.

2.1. Realistic Shape of Colonization by Mussels

This paper focuses on the full coverage by adult mussels encountered on Atlantic and
North Sea offshore structures (species Mytilus Edulis). Recently, underwater inspections
and image processing were carried out on two test sites. A day and a depth were selected,
with a view to get the best conditions according to [30], and three pictures on three
separated parts of a chain were taken with the aksi3D® (Figure 1c) developed during
the ULTIR project [25]. In these best conditions (luminosity, turbidity, distance to the
target), the accuracy reaches 0.7 cm. This chain is the main anchoring material for the buoy
equipment of the SEMREV site, operated by Ecole Centrale de Nantes, where adult mussels
were observed. The same type of pictures was obtained 10 km away, on the test platform
UN@SEA ee (called UN-SEA-SMS previously) [3] of Université de Nantes, two years after
its installation in June 2017. The organization of each specimen and the roughness were
measured. Figure 1 illustrates the organization of the specimen. On Figure 1a, the red
frame represents a pattern of size 20 cm × 20 cm that was shown to be representative of an
elementary representative organization of the specimens on the covered surface. Figure 1b
represents the top view of mussels by an elliptical shape whose major axis inclination
with respect to x axis is reported in Table 1. Note that for simplifying the presentation,
mussels are aligned horizontally and vertically in Figure 1b that is not the case due to
the important difference between the size of vertical and horizontal axes (see position X
and Y in Table 1). For simplifying future modeling and bench-marking, the major axis
is approximated by 8 values: 0◦, +/− 30◦, +/− 45◦, +/− 60◦ and 90◦. Similar absolute
value of the inclination is plotted with the same color. Table 1 gives the position of the
centers and the inclination for each of the 16 specimens in the patch. It is shown that the
organization is not totally random and that similar angles are observed: it comes from the
fact that an optimal organization of mussels should optimize the access to food, that is,
phytoplankton obtained by filtering the sea water.

  
(a) (b) 

Figure 1. Cont.
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(c) 

Figure 1. (a) Typical underwater picture with the organization of the specimen; (b) corresponding elliptical shape with
major and minor axis: purple (0◦), green (+/− 30◦), black (+/− 45◦), blue (+/− 60◦) and red (90◦); (c) using the aksi3D®

system (tested at IFREMER).

Table 1. Position of the center and inclination of each specimen.

N◦ Position/Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 8 25 41 58 8 24 43 59 8 26 42 58 8 25 41 58

Y 59 58 58 59 42 42 42 41 26 25 26 23 9 8 9 8

Inclination of major
axis/axis x +45◦ −30◦ +30◦ −45◦ +45◦ +45◦ +90◦ 0◦ +45◦ +90◦ 0◦ +90◦ 0◦ −30◦ +30◦ +60◦

Roughness was also measured and modeled according to the protocol described
in [30]. Figure 2a shows the definition of a roughness k and typical numbers. Note that
the ratio l/k varies between 1 and 1.15 for adult mussels. In this study, the value l/k = 1.1
is used. The relative roughness e is defined as the ratio k/De, where k is the dimension of
the studied roughness and De the equivalent diameter. In the literature, several definitions
of the roughness exist [10,31]. Decurey et al. [3] give a definition of De in line with on-
site measurements. In Ameryoun et al. [17], they used a stochastic modeling of marine
growth and hydrodynamic parameters to define the roughness as the ratio of the apparent
height of the surface roughness (mussel length from the wider section to the external
extremity, k) on the equivalent diameter of the studied configuration. Indeed, a mussel
cover may be composed of several highly compact superimposed layers. As such, layers
below the external one represent a thickness of closed surfaces where no fluid dynamics is
permitted, with no entrapped water volume. This closed volume corresponds therefore to
the difference between the whole thickness (from the internal diameter to the extremity,
th) and the surface roughness (k). Figure 3 represents the different parameters for the
calculation of the equivalent diameter.

204



J. Mar. Sci. Eng. 2021, 9, 598

 

 
 

 

(a) (b) 

l  

Figure 2. (a) Definition of the roughness for a given size of the shell S (numbers in cm); (b) typical extraction of the
roughness from image processing.

 

Figure 3. Definition of roughness parameters adapted to the experimental set-up.

Consequently, this thickness is assumed to be a diameter increase in a fluid dynamic
point of view and thus the equivalent diameter is calculated as follow.

De = Di + 2 (th − k). (1)

Then, the relative roughness e is defined only from the external layer, over a cylinder
of equivalent diameter De. Applying the same principle on the external layer, the part
below the wider section of the mussel is considered closed. Consequently, only the mussel
height upon the wider section is considered to define the roughness k, representing the
surface irregularities impacting the flow boundary layer. Several lines were inspected and
Figure 4 provides the distribution of the roughness that were measured between 1.5 and
3 cm [30].
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Figure 4. Distribution of roughness extracted from image processing.

The objectives of this paper are:

− to analyze the effect of a realistic roughness on the loading and to compare with other
tests in the literature,
− to highlight whether the realistic size of mussels significantly impacts the loading.

For these reasons, two sizes are selected for the roughness: small size mussels (mussel
roughness of 20 mm) and larger individual mussels (mussel roughness of 30 mm). This is
to notice that when mussels cluster around the rope, they do not fill all the space and create
interstices full of water. In the following, we consider that only the last level of mussels
creates the surface roughness and the other levels create a close volume due to the high
concentration of mussels. To this end and by means of 3D printing, two types of mussels
shape and distributions have been considered. The first one is called C1 with an outside
diameter (Dext) equal to 260 mm with small size mussels (roughness of 20 mm) and the
second one called C2 with outside diameter equal to 280 mm composed of larger individual
mussels (roughness of 30 mm). According to Figures 1 and 2, the design of the roughness
due to mussel can be modelled as a semi-ellipsoid with the minor and major axes and its
height. Both configurations have an ellipse base of 16 × 18 mm and 20 mm tall for C1 and
24 × 27 mm and 30 mm tall for C2. Precise dimensions are given in the Figure 5.

For each mussel’s shape, the distribution around the cylinder follows the same pattern.
Mussels are arranged depending on their angle between the major axis of the ellipse
and the cylinder axis according to Figure 1b in such a way as to generate a stochastic
distribution network as shown on the Figure 5 Right. The eight angles pattern is repeated
all along the circumference of the cylinder and then reproduced along the cylinder axis
with a staggered positioning, represented with the arrows on the drawing. Note that,
for printing reasons, the four specimens horizontally aligned on Figure 1b were arrayed
in checkerboard; that agrees also the real organization of mussels for which there is an
important difference between the size of vertical and horizontal axes. The experimental
set-up is based on a smooth cylinder (called S) of diameter D = 160 mm, on which the
roughness is superimposed in order to design a configuration with roughness (see Figure 6).
The three cylinders’ arrangement characteristics are summarized in Table 2.
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Figure 5. Mussels’ roughness shape for C1 on top and C2 at the bottom. On the right, mussels distribution around the
cylinder with the C2 shape.

 

Figure 6. On the left, from the top to the bottom, cases S, C1 and C2. On the right, C2 roughness
mounted on the cylinder.
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Table 2. Synthesis of the studied roughness parameters for all configurations.

Configurations
Di

[mm]
Dext

[mm]
k

[mm]
th

[mm]
De

[mm]
e = k/De

Mass System
[daN]

Areal Density for nb.
Specimens/m2

S 160 160 0 0 160 0 47 -

C1 160 260 20 50 220 0.091 105 2969

C2 160 280 30 60 220 0.136 110 1374.5

2.2. Realistic Hydrodynamic Configurations

Reynolds Re and Keulegan-Carpenter KC numbers have been shown to drive the
evolution of drag forces and inertia coefficient of Morison equations with the water particle
velocity. Their definition in the presence of marine growth [11] is presented in Equations
(2) and (3):

Re =
U De

υ
=

Axω De

υ
(2)

with υ the kinematic velocity, U, the flow velocity or the oscillation speed Axω.

KC = 2π
Ax

De
(3)

The reduced speed is defined as:

Ur =
U

f De
(4)

with f = ω
2π .

The objective is to cover common hydrodynamic conditions with 4.104 < Re < 3.105

and 4 < KC < 12. The range of KC allows to detect the strong non-linearities of drag and
inertia forces with particle velocity.

According to the potential of the equipment (see Section 3), values in Table 3 are
reached for each configuration.

Table 3. Synthesis of the normalized numbers covered for all configurations.

Configurations KC Ur Re/105

S 3.9–15.7 4.1–39.1 0.4–2.7

C1 2.5–11.4 3–56.8 0.55–3.8

C2 2.5–11.4 3–56.8 0.55–3.8

3. Experimental Setup

We seek to understand the hydrodynamic behavior of a submarine cable under waves
and current conditions. In this way, we performed tests using a fixed cylinder (with
or without roughness) under current conditions first, then the superimposition of an
oscillating cylinder under these same current conditions with the aim of reproducing the
effect of the wave and current interaction. The horizontal oscillating motions of the tested
cylinder, which simulate the wave part, are made using a 6-axis hexapod.

3.1. Ifremer Flume Tank, Assembly and Instrumentation

The tests are carried out in the wave and current circulating flume tank of Ifremer
located in Boulogne-sur-Mer (France) [32]. The test section is: 18 m long × 4 m wide × 2 m
high. In this work, the three instantaneous velocity components are denoted (U; V; W)
along the (X; Y; Z) directions respectively (Figure 7). The incoming flow (U∞; V∞; W∞)
is assumed to be steady and constant. By means of a grid and a honeycomb (that acts
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as a flow straightener) placed at the inlet of the working section, a turbulent intensity of
I = 1.5% is achieved.

An overview of the global set-up is presented in Figure 7. The cylinder movements are
generated using a 6-axis hexapod on which the structure and the instrumentation are fixed.
As shown on Figure 7, the cylinder is horizontally freely mounted so that the cylinder is
located in the middle of the test section (at one meter depth). The 2 m length cylinder
is perpendicular to the direction of the upstream flow. To simulate wave conditions, the
hexapode moves with an oscillating and periodic motion in parallel to the flow to represent
the horizontal part of the waves’ orbital velocity. The hexapode motions along the Ox axis
are characterized by its amplitude Ax and its frequency f. The axis coordinate system (x, y,
z) is chosen so that the Ox axis is in the same direction as the current. The Oz axis is across
the width of the basin and the Oy axis is vertical and oriented upwards, see Figure 7 left.

Two 6 components load cells, with a maximal loads range of Fx;y;z = 150 daN, fixed at
each extremity of the cylinder, allow the measurement of the forces applied on the cylinder.
The location of these load cells is identified by their own axis systems as shown in the
Figure 7 (right). The two cylindrical load cells measure the forces applied on the cylinder
only; half of the total load for each cell. The noise of the measurement is negligible. The
data treatment from Morison equation requires a sinusoidal loading [33]. That explains the
presence of residuals.

Figure 7. Presentation of the global set-up with the 6-axis hexapod (left), the smooth cylinder (top center) and one of the
rough cylinder (bottom center) and axis coordinate system (x, y, z) used in tests (left). In black, the main system. The Ox
axis is common to all systems and corresponds to the main flow direction. In red, the axes of the load cells (right and left).

3.2. Post-Processing of Results

The detailed procedure for computing forces and Morison coefficients is available
in [34,35]. Inertia and drag coefficients are obtained. The following notations are used:

− CD for the drag coefficient in steady flow (also written CDS in standards)
− Cd for the drag coefficient in oscillating motion (also written CD in standards)
− Cm for the inertia coefficient in oscillating motion (also written CM in standards).

These three parameters are plotted as a function of the dimensionless numbers pre-
viously cited (Re, KC and Ur). All the raw data can be found on the data share platform
SEANOE [34,35].

Three tests are considered and their results are commented on in the next three
subsections:

209



J. Mar. Sci. Eng. 2021, 9, 598

− Current only
− Oscillating motion
− Current and oscillating motion

4. Results and Discussion

4.1. Current Only Tests

Figure 8 shows the evolution of the drag forces in the function of the flow velocity. In
the studied flow range, there are no drag force differences between the two roughnesses.
The curves highlight the classical evolution according to a square power law for the two
rough cylinders. This response is however different for the smooth cylinder with a linear
evolution until the transition obtained at a flow speed of 1.25 m/s. For U > 1.25 m/s, the
drag is quite constant around FD ≈ 200N.

 
Figure 8. Drag force evolution for the three tested cases.

By comparing the results of smooth and shape C2, an increase of 58, 211 and 413% of
the drag force for velocities of 1.25, 1.5 and 1.75, respectively, is observed for an increase
of only 38% of diameter De. Moreover, by comparing C1 and C2, the small change of the
roughness increases the drag force of around 8% for velocities between 0.5 and 1.5 m/s.

Let us now focus on the variation of the overall mean drag coefficient CD, denoted
CDS in some standards, the Strouhal number St = fν De

U (with fν the vortex shedding
frequency) and the r.m.s. values of the lift with Reynolds number (Figure 9).

For the smooth case, the overall shape of the CD(Re) curve clearly coincides with the
results presented in the literature. In the subcritical Reynolds number regime, a nearly
constant value for CD of about 0.9 is found. For increasing Reynolds numbers, hence by
approaching the critical flow state or lower transition that starts at Re ≈ 2.1 × 105, this
value gradually decreases. The minimum value of the drag coefficient of CD ≈ 0.28 at
Re ≈ 2 × 105 marks the transition from the critical Reynolds number regime to the upper
transition. This phenomenon is well known [36,37] and confirms the accuracy of the
experimental set-up and of the measurements.

For roughness cases (C1 and C2), the transition does not occur in the flow velocity
range and the relative roughness (10−1) studied. It was observed for the smallest relative
roughness between 5 × 10−4 and 2 × 10−2 [38]. The results show that CD increases with
the size of the roughness, reaching a nearly constant value of about 1.05 for C1 and 1.15 for
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C2. Note that API and DNV standards gathered studies from 1971 to 1986 and recommend
values of 1.11 for the relative roughness of C1 (e = 0.09). However, standards do not report
the results of the PhD of Theophanatos [18] (p. 96), where a discussion about similar values
of e is available. In this study, cylinders fully covered by a relative roughness close to C1
were tested (e = 0.085) from a single layer of mussels of size 0.27 mm with a value of CD of
1.2, close to the value obtained by pyramids and gravels. However, the areal density of the
peaks was not given. For C1 and C2, they are the following (Table 2):

− Areal density for C1 = 2969 specimens/m2.
− Areal density for C2 = 1374.5 specimens/m2.

It was shown that the percentage of cover (another estimate of the areal density) plays
a significant role: CD varies from 1.15 to 1.2 for percentages of cover of 75% and 100%,
respectively. The results of the present study suggest 1.05 instead 1.11 (standards) or 1.2
(Theophanatos), which leads to a reduction of respectively 5% and 13% of the drag force.

Moreover, standards indicate no results among 56 experiences reported in the CD = f(e)
curves with a drag coefficient larger than 1.14 for the range of relative roughness 2 × 10−6–
4.5 × 10−2. The results of this paper show that standards could suggest a value of 1.15 for
larger relative roughness up to e = 0.14.

It is thus crucial to report not only the relative roughness and the shape, but also the
organization and areal density of the species in future studies.

 

 

 
Figure 9. Distribution of the three main hydrodynamic parameters as function of the Reynolds number from direct force
measurements for the three test cases: S, C1 and C2.
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Figure 9 presents the dependency of the Strouhal number on the Reynolds number. A
constant value of St = 0.18 is observed in the subcritical regime for the smooth cylinder.
This value is lower than the Strouhal number commonly used, which is generally equal to
0.21, see [39]. For both rough cylinders, the Strouhal number presents a nearly constant
value of about 0.14.

The variation of the r.m.s values of the lift fluctuations with the Reynolds number is
also shown in Figure 9. A maximum value of approximately 0.3 is obtained for Re ≈ 2 × 105

in the subcritical state. For larger Reynolds numbers inside this flow regime, a steep
decrease of the r.m.s. values is observed. For both rough cases, the fluctuations are very
low with: Cl′ 
 0.05.

These results show that the surface roughness has an influence on the drag coefficient,
the r.m.s. values of the lift fluctuations and the Strouhal number. The r.m.s. values
are always lower for the rough circular cylinders. A similar trend is observed on the
drag coefficient, where a difference of about 10% between cases is observed in this range
(Re < 2 × 105). The vortices are shed into the wake with different frequencies. The Fourier
transform of the lift forces shows (Figure 10) that the amplitude peaks of the vortex
shedding frequencies are much higher for the smooth configuration with values of 25 N
for 2 ≤ Re/105 ≤ 2.5 when it reaches only 2 N for the two rough configurations.

 

Figure 10. Lift forces Fourier transform as function of the Reynolds number for the three test cases: S, C1 and C2.

The peak of the spectrum for C1 is closer to that of S and is easily identified when it is
more spread for C2. This can be explained by a two times larger areal density of mussels
for C1 in comparison with C2 (Table 2). Configuration C1 behaves dynamically as a smooth
cylinder when turbulences appear with C2.

4.2. Oscillating Motions

For the oscillating motions test cases, the current velocity is equal to zero. Figure 11
presents the evolution of the oscillating drag coefficient Cd (left), denoted by CD in some
standards, and the inertia coefficient Cm, denoted by CM in some standards, as a function
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of the Keulegan-Carpenter number KC. Several points are plotted per KC because several
tests have been carried out at the same motion amplitude Ax but with different frequencies.

  

Figure 11. Evolution of Cd (left) and Cm (right) vs. KC.

Figure 11 (right) shows the usual trend of decreasing evolution of Cm with KC for
KC < 15 [16,40,41]. The results show a constant difference between the inertia coefficient
of 0.3 between the two rough cylinders with a higher value for the higher relative rough-
ness (C2). The Cm of the smooth cylinder is slightly lower than the rough cases. To our
knowledge, only the studies of Nath [42] reported values of Cm for e = 0.1 with artificial
roughness represented by cones. The values reported are significantly higher: 2.8 and 2.5
for KC = 5 and 12, respectively, where our test results give 1.4 and 1 for C1. However, again,
the areal density of peaks is not reported in the paper. A realistic shape for mussels appears
to drastically change the inertia coefficient.

Concerning oscillating drag coefficients between smooth and rough cases, results
show a significant difference. The calculated coefficients are more than three times higher
for cases C1 and C2 compared to the smooth case, with Cd ≈ 2.5 for KC > 6 for the rough
cases and Cd ≈ 0.5 for KC ≤ 16 for the smooth cylinder. The behavior of the rough cylinders
is mainly governed by the flow and not by their motions, contrary to the smooth cylinder
for which its behavior is mainly governed by its motions. Again, only the studies of Nath
were carried out with a relative roughness close to ours (C1): they are compared with other
studies in [18] (Figure 9.9). Again, the values reported are significantly higher: 3.2 and
2.7 for KC = 5 and 12, respectively, with large scatters where our tests give 1.7 and 2.3 for
C1. The effect of roughness is shown to be significant, especially for low KC (≈3) where
Cd ≈ 1.3 for C1 and 2.1 for C2, leading to a 62% increase of drag forces.

4.3. Current and Oscillating Motions

This section presents results concerning current and oscillating motions tested cases.
The coefficients introduced in the previous sections are calculated: the mean drag coefficient
CD, the oscillating drag coefficient Cd and the inertia coefficient Cm. These coefficients are
at first presented configuration by configuration as a function of U r in Figure 12. It is first
observed that mean and oscillating drag are very close for both roughness cases. The mean
drag coefficients are two times higher for the rough cases than for the smooth one. These
results confirm that the behavior of the rough cylinders is mainly governed by the flow
and not by their motions, contrary to the smooth cylinder for which its behavior is mainly
governed by its motions. Inertia coefficients for the rough cases present less dispersion
than for the smooth cylinder and show a value for C2 25% higher than for C1 for Ur < 10.

Figure 13 presents each coefficient for the three studied configurations. In order to
compare the behavior of each configuration, the current velocity is fixed at 1 m/s. These
coefficients are represented as a function of the reduced speed for all the motion amplitudes
in order to study the amplitude and the frequency parameters effects at the same time.

The results show several and opposite behaviors of the coefficients. First of all, the
inertia coefficient Cm tends to be similar for each configuration. The higher the frequency
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(small Ur), the lower the coefficient. Moreover, the motion amplitude has no impact
on the evolution of the inertia coefficient. Regarding drag coefficients Cd and CD, their
behaviors are totally the opposite. The value of Cd increases with the reduced velocity Ur.
Moreover, for a fixed frequency (or Ur fixed) the amplitude parameter has a high impact
and the value of the coefficient increases when the amplitude Am decreases. The exact
opposite phenomenon occurs concerning the mean drag coefficient CD, with the value of
the coefficient decreasing when the amplitude Am increases.

Finally, as for the previous case, there is an important difference concerning oscillating
drag coefficients and mean drag coefficients between smooth and rough cylinders. The
calculated coefficients are much higher for cases C1 and C2 compared to the smooth case
for which there is no dependency on the motion amplitude and frequency. A strong
dependency on the amplitude of the drag coefficients at a fixed frequency for the rough
cases is here clearly highlighted.

 

 

Figure 12. Cont.
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Figure 12. Evolution of Cm, Cd and CD vs. KC for the S (top), C1 (middle) and C2 (bottom) cases.

 

 

Figure 13. Evolution of Cm, Cd and CD vs. Ur for the S, C1 and C2 cases.
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5. Discussion and Conclusions

This study shows the impact of two realistic hard marine growth roughness C1 and C2
on the drag and inertia coefficients compared to a smooth case. The shape and organization
of species are deduced from on-site observations of a full colonization by adult mussels
that induce high relative roughness (0.09 for C1 and 0.14 for C2) for mooring lines and
power cables of Floating Offshore Wind Turbines. These results show that the surface
roughness has an influence on the drag coefficient, the r.m.s. values of the lift fluctuations
and the Strouhal number. The results from this experimental campaign highlight significant
differences concerning the forces on the two rough cylinders. For instance, the effect of
roughness is shown to be significant especially for low KC (≈3) of oscillating motion,
where Cd ≈ 1.3 for C1 and 2.1 for C2, leading to a 62% increase of drag forces. The results
show a constant difference between the inertia coefficient of 0.3 between the two rough
cylinders with a higher value for the higher relative roughness (C2). The vortices are shed
into the wake with different frequencies and different amplitudes, the amplitude peaks of
the vortex shedding frequencies are much higher for the smooth configuration than the
rough configuration with a difference of about 90%. The r.m.s. values are always lower
for the rough circular cylinders. A difference of about 10% between cases on the drag
coefficient is observed for Re < 2 × 105. For the oscillating cases, the inertia coefficients
for the rough cases present less dispersion than for the smooth cylinder. For Ur < 10, the
mean drag coefficients are two times higher for the rough cases than for the smooth one. In
this case, a strong dependency on the amplitude of the drag coefficients at fixed frequency
for the rough cases has been highlighted, while they are stable in static. This shows that
the commonly used approach of Cd = ψ(KC). CD(Re) is not legitimate. Moreover, while
Morison’s linearization for static drag force is justified, it means that it is not for oscillating
cases, the KC defined only with the amplitude is not representative of the flow variety,
this number should also depend on the frequency. These results highlight the fact that the
behavior of the rough cylinders is mainly governed by the flow and not by their motions,
contrary to the smooth cylinder for which its behavior is mainly governed by its motions.
Moreover, the results have been compared with similar studies carried out for high relative
roughness (0.1); significant differences have been observed due to the fact that the shape
of the rough cylinders is not well described in these studies: key information about the
organization and the areal density of peaks are usually not given.

For now, assumptions are strong: the marine growth is considered to be of a homoge-
neous circumferential and length volume. Due to internal and inter-species competition, it
has been observed that mussels may be arranged in a bulbous manner. This phenomenon
has not been studied here but the roughness variations must be studied to be compared
to homogenous cover, which is considered in the engineering design phase. Pure current,
regular forced oscillations and superimposed loadings must be tested in order to conclude
on the validity of extracted coefficients but also on the standard hydrodynamic loading’s
formulation commonly used.
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Abstract: Cavity flow around a wedge with rounded edges was studied, taking into account the sur-
face tension effect and the Brillouin–Villat criterion of cavity detachment. The liquid compressibility
and viscosity were ignored. An analytical solution was obtained in parametric form by applying the
integral hodograph method. This method gives the possibility of deriving analytical expressions for
complex velocity and for potential, both defined in a parameter plane. An expression for the curva-
ture of the cavity boundary was obtained analytically. By using the dynamic boundary condition
on the cavity boundary, an integral equation in the velocity modulus was derived. The particular
case of zero surface tension is a special case of the solution. The surface tension effect was computed
over a wide range of the Weber number for various degrees of cavitation development. Numerical
results are presented for the flow configuration, the drag force coefficient, and the position of cavity
detachment. It was found that for each radius of the edges, there exists a critical Weber number,
below which the iterative solution process fails to converge, so a steady flow solution cannot be
computed. This critical Weber number increases as the radius of the edge decreases. As the edge
radius tends to zero, the critical Weber number tends to infinity, or a steady cavity flow cannot be
computed at any finite Weber number in the case of sharp wedge edges. This shows some limitations
of the model based on the Brillouin–Villat criterion of cavity detachment.

Keywords: cavity detachment; free streamlines; Brillouin criterion

1. Introduction

Surface tension arises at an air–liquid interface as a result of a reversible isothermoki-
netic process on a free boundary. According to the Young–Laplace equation, surface tension
results in a pressure jump, which is governed by the curvature of the cavity boundary. The
dynamic boundary condition in the model of the ideal fluid (Bernoulli equation) includes
this jump; therefore, the velocity modulus on the cavity boundary, the pressure on the
liquid side of the interface, and the curvature of the interface are related to one another.
Cavity detachment for smooth-shaped bodies is determined by the Brillouin–Villat crite-
rion [1,2], which states that the curvature of the cavity boundary should be equal to the
curvature of the body at the point of detachment. This criterion comes from geometrical
restrictions on the cavity curve and, therefore, it should be valid for flows both with and
without surface tension. As the surface tension tends to zero, the solution of the problem
gradually approaches its limiting case without surface tension, as shown in [3], for cavity
flow past a circular cylinder.

Cavity detachments for bodies whose shapes form corner trailing edges are different,
and it is not fully understood yet when the surface tension is nonzero. Although the
position of cavity detachment is predetermined at the edge, the curvature of the cavity
boundary is infinite for the case of zero surface tension [4,5]. Even small surface tension
might result in an infinite negative pressure at the cavity detachment point. The same infi-
nite negative pressure occurs for flow around a corner without flow detachment. Therefore,
flow detachment may not occur at all.

J. Mar. Sci. Eng. 2021, 9, 1253. https://doi.org/10.3390/jmse9111253 https://www.mdpi.com/journal/jmse
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Attempts to take into account surface tension in problems of cavity flows were done
in [6–9]. The case of small surface tension values was considered in [8] using the method
of matched asymptotic expansions. For this case, the curvature of the cavity boundary
equals the curvature of the plate at the point of detachment. Such a formulation of the
problem leads to waves on the free surface. It was shown in [9] that these waves have no
physical basis since they require an energy input from infinity. In [6,7], it is assumed that at
the flow detachment point, the tangent to the flow boundary is a discontinuous function.
According to the theory of jets of an ideal liquid [4,5], this assumption leads to zero
velocity at the point, while the curvature of the cavity boundary remains undetermined.
Alternative models of cavity detachment were proposed in the works [10,11]. These models
account for the physical properties of the liquid/structure interaction [12,13]. The work [10]
considers cavity detachment as bubbles growing within the boundary layer starting from
the stagnation point; the coalition and merging of the bubbles form a cavity. The work [11]
considers adhesion between the liquid and the material of the body, which determines the
contact angle between the body and the free surface. However, these models are not used
widely in practice since further experimental validation of these models is required.

The surface tension force becomes dominant on the scale of mechanical elements far
below millimeters, which is the typical size of microelectromechanical systems (MEMS)
and microfluidic systems [14,15]. The study of cavitation phenomena in such systems is of
interest when developing micropumps, microvalves, microcoolers, etc., which are fabri-
cated with a micro-orifice of a smaller diameter than the main microchannel. Cavitation
in MEMS appears in the same way as cavitation in macroscale devices, when the local
pressure drops below the vapor pressure. However, on microscale, the surface tension
force dominates other forces and may affect flow characteristics, which may be treated as a
scale effect [16,17].

In this paper, we consider classical two-dimensional potential free surface flow around
a wedge with rounded edges and apply the Brillouin–Villat criterion to determine the cavity
detachment for the case of nonzero surface tension. A sharp trailing edge is considered
as the limiting case of a rounded edge when the radius of the edge tends to zero. An
analytical solution to the problem is obtained using the integral hodograph method [18].
The complex velocity and the derivative of the complex potential are derived analytically
in a parameter plane. A function mapping the parameter plane onto the physical plane is
also obtained. The method is based on the integral formula [19], which gives a solution
of a mixed boundary-value problem for a complex function (here, the complex velocity)
defined in the first quadrant. The derivative of the complex potential is obtained by using
Chaplygin’s singular point method [5,20].

The complex velocity includes the slope to the body and the velocity modulus along
the cavity boundary, which are determined from a system of integral equations derived by
using the dynamic and the kinematic boundary conditions. By using an analytical expres-
sion for the curvature of the free boundary, it is possible to directly apply the Brillouin–Villat
condition and obtain an equation to determine the point of cavity detachment.

The results are presented over a wide range of Weber numbers and the radius of the
wedge edges. It is shown that the effect of surface tension becomes more pronounced as
the Weber number or the radius of the edge decrease. The surface tension results in some
reduction of the cavity length and the drag force coefficient and delays cavity detachment.
The point of detachment moves downward, increasing the wetted part of the rounded edge.
It is found that, for each edge radius, there exists a critical Weber number below which a
solution cannot be obtained due to the iteration process failing to converge. This critical
Weber number increases as the radius of the edge decreases. As the edge radius tends to
zero, the Weber number tends to infinity, or a steady cavity flow cannot be computed for
any finite Weber number in the case of a sharp wedge edge. This shows some limitation of
the model based only on the Brillouin–Villat criterion of detachment.
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2. Complex Potential of the Flow

We consider cavity flow past a wedge of width 2H with rounded edges of radius R
sketched in Figure 1a. The wedge angle α lies in the range 0 < α < π. For α = 90○, the wedge
becomes a flat plate. We introduce Cartesian coordinates xy. The origin is located at point
O. The liquid is inviscid and incompressible. The flow is symmetric about the x-axis, so we
consider only half of the flow region. An assumption as to the cavity closure is necessary
due to the Brillouin paradox at the point where the upper and the lower cavity boundaries
are merged [4]. We introduce an implicit model of cavity closure according to which, along
the streamline OCDB, the velocity modulus changes in such a manner that the portion OC
corresponds to the cavity boundary, and on the portion CD the velocity modulus changes
from the value V0 at the end of the cavity (point C) to the value U at point D. The velocity
U is the velocity at infinity. Along the contour DB, the velocity remains constant and equals
U. As s → ∞, the y-coordinate of the closing line DB tends to zero. Such a cavity closure
model mimics a turbulent wake in real cavity flows [21,22].

Figure 1. Flow sketch: (a) physical plane (b) parameter, or ζ-plane.

The pressure jump across the cavity boundary is determined by the Laplace–Young
formula

p − pc = τΥ, (1)

where τ is the coefficient of surface tension, pc is the pressure in the cavity, and Υ is the
curvature. The pressure in the cavity may be equal to the vapor pressure, pc = pv, or be
higher for gaseous liquids.

We choose H and U as the characteristic length and velocity, respectively. From
the equation

V2

2
+ p

ρ
= U2

2
+ p∞

ρ
(2)

and Equation (1) the velocity modulus on the cavity boundary is obtained

v = V
U

= √
1 + σ − 2χ

We
, (3)

where χ = ΥH. Here, We is the Weber number that characterizes the ratio of the inertia
force to the surface tension force, and σ is the cavitation number indicating the degree of
cavitation development.

σ = p∞ − pc

1/2ρU2 , We = ρU2H
τ

, (4)

where ρ is the density of the liquid, and p∞ is the pressure at infinity.
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We can introduce a complex potential, w(z) = φ(x, y) + iψ(x, y), where φ(x, y) and
ψ(x, y) are the harmonic conjugate function of the potential and the stream function,
respectively. The determination of the function w(z) is a challenging problem. Instead,
Michell [23] and Joukovskii [24] introduced an auxiliary ζ-plane and determined the
complex conjugate velocity, dw/dz, and the derivative of the complex potential, dw/dζ, as
functions of the parameter variable ζ. If these functions are known, then the solution of the
problem is obtained in parametric form:

w(ζ) = w0 + ∫ ζ

0

dw
dζ′

dζ′, z(ζ) = z0 + ∫ ζ

0

dw
dζ′

/ dw
dz

dζ′, (5)

where w0 is the value of the complex potential at point O, and z0 is the coordinate of
point O.

We choose the first quadrant of the ζ-plane in Figure 1b as the region corresponding
to the liquid region in the physical plane (Figure 1a). According to the conformal mapping
theorem, we can chose the position of three points. They are points O (ζ = 0), A (ζ = 1),
and B (ζ = ∞), as shown in Figure 1b. The interval 0 < ξ < 1 corresponds to the wetted
part of the wedge, and the interval 1 < ξ < ∞ corresponds to the symmetry line AB. The
imaginary η-axis corresponds to the boundary OCDB, which includes the cavity contour
OC (0 < η < ηc) and the closure contour CB (ηc < η < ∞). The position of point C (ζ = iηc)
has to be determined from the solution of the problem and physical considerations. In
order to determine these functions, we assume that the velocity modulus v and the tangent
to the wetted part of the body β are known functions of the variables η and ξ, respectively.

2.1. Expressions for the Complex Velocity and for the Derivative of the Complex Potential

The body is considered to be fixed; therefore, the velocity direction and the slope of
the body coincide. Besides, at this stage we assume that the velocity magnitude on the
free surface is a known function of the parameter variable, v(η). Then the boundary-value
problem for the complex velocity in the first quadrant of the parameter plane can be written
as follows

χ(ξ) = arg( dw
dz

) = { −βb(ξ), 0 ≤ ξ ≤ 1,
0, 1 ≤ ξ < ∞.

(6)

v(η) = ∣ dw
dz

∣
ζ=iη

, 0 ≤ η < ∞. (7)

Here, βb(ξ)ξ=0 = β0 at point O, and βb(ξ) = −α as ξ → 1. Equation (6) satisfies the
conditions: χ(ξ) = 0 along the interval AB on the symmetry line and χ(ξ) = −βb(ξ)
along the body. The argument of the complex velocity exhibits a jump Δ = α at point A
when we move along the boundary in the physical plane from point O to point B. This
boundary-value problem can be solved by applying the following integral formula [19]:

dw
dz

= v∞ exp
⎡⎢⎢⎢⎢⎣ 1

π

∞∫
0

dχ

dξ
ln( ζ + ξ

ζ − ξ
)dξ − i

π

∞∫
0

d ln v
dη

ln( ζ − iη
ζ + iη

)dη + iχ∞
⎤⎥⎥⎥⎥⎦, (8)

where v∞ = v(η)η→∞ and χ∞ = χ(ξ)ξ→∞. Substituting Equations (6) and (7) into (8) and
evaluating the first integral over the step change at the point ζ = 1, we obtain

dw
dz

= ( ζ − 1
ζ + 1

) α
π

exp

⎡⎢⎢⎢⎢⎢⎣
1
π

1∫
0

dβb

dξ
ln( ζ − ξ

ζ + ξ
)dξ − i

π

∞∫
0

d ln v
dη

ln( ζ − iη
ζ + iη

)dη

⎤⎥⎥⎥⎥⎥⎦. (9)

Here, we used v∞ = 1, which follows from the definition. It can be easily verified
that for ζ = ξ the argument of the right-hand side of (9) is the function −βb(ξ), while for
ζ = iη the modulus of (9) is the function v(η), i.e., the boundary conditions (6) and (7) are
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satisfied. It can also be seen that the complex velocity function has zeros of order α/π,
which correspond to flow around a corner of angle π − α at point A.

The velocity is tangent to the boundary for steady flows and, therefore, I(w) = 0 both
along the body and along the cavity boundary. The real part of the complex potential
increases from −∞ at point B to +∞ at point B′. Thus, the region of the complex potential is
a half-plane. The first quadrant and the half-plane of the w-plane are related as w = Kζ2 + w0
where K is a positive real number. Then one can obtain

dw
dζ

= Kζ. (10)

The derivative of the mapping function is obtained by dividing (10) by (9)

dz
dζ

= Kζ( ζ + 1
ζ − 1

) α
π

exp

⎡⎢⎢⎢⎢⎢⎣− 1
π

1∫
0

dβb

dξ
ln( ζ − ξ

ζ + ξ
)dξ + i

π

∞∫
0

d ln v
dη

ln( ζ − iη
ζ + iη

)dη

⎤⎥⎥⎥⎥⎥⎦. (11)

The integration of this equation yields the mapping function z = z(ζ) relating the
parameter and the physical planes. Equations (9) and (10) include the parameter K, and the
functions v(η) and βb(ξ), which are determined from the boundary conditions and from
physical considerations.

The arc length coordinates along the body, sb(ξ), and along the cavity boundary, s(η),
are obtained as follows:

sb(ξ) = ∫ ξ

0

dsb
dξ

dξ, s(η) = − ∫ η

0
∣ dz
dζ

∣
ζ=η′

dη′ = −K ∫ η

0

η′

v(η′) dη′, (12)

where

dsb
dξ
= ∣ dz

dζ
∣
ζ=ξ

= Kξ( ξ + 1
1− ξ

)α/π

exp
⎛⎜⎝−

1
π

1

∫
0

dβb
dξ′

ln∣ ξ − ξ′

ξ + ξ′
∣dξ′ + 1

π

∞

∫
0

d ln v
dη

2 tan−1 η

ξ
dη
⎞⎟⎠ (13)

The real factor K is determined from the condition for the length of the wetted part of
the wedge, including the trailing edge Sw. By substituting Equation (13) into (12), we obtain

Sw = K ∫ 1

0
ξ( ξ + 1

1 − ξ
)α/π

exp
⎛⎜⎝− 1

π

1∫
0

dβb

dξ′
ln∣ ξ − ξ′

ξ + ξ′
∣dξ′ + 1

π

∞∫
0

d ln v
dη

2 tan−1 η

ξ
dη

⎞⎟⎠dξ (14)

2.2. Cavity Closure Model

A solution of the problem of cavity flow around a body is not unique in the framework
of the model of ideal liquid due to a paradox that arises at the point of cavity closure. On
the one hand, the velocity at this point must be equal to the velocity on the cavity boundary
since this point belongs to it. On the other hand, the velocity at this point should be equal
to zero since the upper and the lower contours of the cavity merge into one streamline.
This is known as the Brillouin paradox [4].

Various assumptions as to the flow in the cavity closure region were proposed by
Roshko, Riabouchinsky, Efros, in the re-entrant jet model, Tulin, etc., to resolve this paradox.
They are now well known as classical models of cavity flows [5]. These models give similar
results for developed cavity flows, for which the size of the cavity is larger than the size of
the body. However, when the cavity size is smaller, the cavity contour ends on the body
surface (partial cavitation), and the assumptions made may affect the results [10,25].

An implicit cavity closure model modeling effects of the liquid viscosity in the cavity
closure region was proposed in [21,22,26]. It is based on dividing the flow region into vis-
cous and inviscid subregions and the application of viscous/inviscid interaction conditions
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along the interface. In this work, we simplify the model by dropping the viscous wake and
using an assumption as to the velocity distribution along the closing contour.

We assume that the velocity magnitude, v(s), linearly decreases from the value v0 at
point C determined by Equation (3) to the value U at point D and then remains constant
along BD

v∗(s′) = { v0 + (v∞ − v0)/2[1 − cos(πs′)], 0 < s′ < 1,
1, 1 < s′ < ∞,

(15)

where s′ = (sc − s)/(sc − sd), sc and sd are the arc length coordinates of points C and D,
respectively.

From the balance of the flow rate upstream and downstream, the y-coordinates of the
boundary CDB at right infinity (point B) should be equal to zero; that is

Im
⎛⎜⎝ ∫
ζ=∞

dz
dζ

dζ
⎞⎟⎠ = −Im

⎛⎜⎝ ∫
ζ′=0

dz
dζ′

dζ′

ζ′2

⎞⎟⎠ = − iπ
4

Res
ζ′=0

d2

dζ′2
( dz

dζ′
ζ′) = 0, (16)

where ζ′ = 1/ζ.
By using the theorem of residues, we evaluate the integral and get the following

equation
1∫

0

dβb

dξ
ξdξ + ∞∫

0

d ln v
dη

ηdη + α = 0. (17)

This is an implicit equation in the cavity length, sc. The magnitude of the velocity
v(η) = v[s(η)], ηc < η < ∞, given by Equation (15) and the cavity length sc = s(ηc) affect the
second integral in Equation (17). The unique value sc = s(ηc), satisfies Equation (17).

2.3. Brillouin–Villat Condition of Cavity Detachment

The Brillouin–Villat criterion [1,2] comes from the consideration of possible configu-
rations of the cavity boundary near the detachment point. It states that the curvature of
the cavity boundary at the point of cavity detachment should be finite and equal to the
curvature of the body. This conclusion is based on the following considerations. In order
to determine the curvature of the cavity boundary, we first find the slope of the cavity
boundary by taking the argument of the complex velocity from Equation (9)

δ(η) = − arg( dw
dz

∣
ζ=iη

) = α

π
(2 tan−1 η − π) − 1

π ∫ 1

0

dβb

dξ
(π − 2 tan−1 η

ξ
)dξ + 1

π ∫ 1

0

d ln v
dη

ln∣ η′ − η

η′ + η
∣dη′ (18)

Then, differentiating the above equation, we find the curvature of the free surface

χ(η) = dδ

ds
= dδ/dη

ds/dη
= − v(η)

Kη
( α

π

2
1 + η2 + 2

π ∫ 1

0

dβb

dξ

ξdξ

ξ2 + η2 − 2
π ∫ ∞

0

d ln v
dη′

η′dη′

η′2 − η2 ) (19)

At the detachment point η = 0; therefore, the denominator of the above equation
equals zero. The curvature may take a finite value if the nominator at η = 0 also equals
zero, or

∫ 1

0

dβb

dξ

dξ

ξ
− ∫ ∞

0

d ln v
dη′

dη′

η′
+ α = 0 (20)

This is an equation in the unknown length of the wetted part of the body, Sw, which
affects the function βb(ξ) = βb[s(ξ)], 0 < s < Sw.
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2.4. Integro-Differential Equations in the Functions βb(ξ) and v(η)
The function βb(s) is known due to the given shape of the body. Then the function

βb(ξ) is determined from the integro-differential equation

dβb

dξ
= dβb

ds
ds
dξ

= χ[s(ξ)]Kξ( ξ + 1
1 − ξ

)α/π

exp
⎛⎜⎝− 1

π

1∫
0

dβb

dξ′
ln∣ ξ − ξ′

ξ + ξ′
∣dξ′ + 1

π

∞∫
0

d ln v
dη

2 tan−1 η

ξ
dη

⎞⎟⎠ (21)

where χ(s) is the curvature of the body given as a function of the arc length s.
In order to derive an integral equation in the function v(η), we substitute (19) into the

dynamic boundary condition (3)

∫ ∞

0

d ln v
dη′

η′dη′

η′2 − η2 = πWeKη

4Rv(η) (1 + σ − v2(η)) + α

1 + η2 + ∫ 1

0

dβb

dξ

ξdξ

ξ2 + η2 (22)

where

v(η) = v0 exp(∫ η

0

d ln v
dη′

dη′).

According to the Brillouin–Villat criterion, the curvature of the free surface at the
cavity detachment point equals the curvature of the body, or χ0 = H/R = 1/r. Then, the
velocity magnitude at the point of cavity detachment is obtained from Equation (3)

v0 = √
1 + σ + 2

rWe
. (23)

From the above equation, it follows that the velocity magnitude at the cavity detach-
ment point tends to infinity as the radius of the edge tends to zero or the Weber number
tends to zero.

3. Numerical Method and Results

3.1. Numerical Approach

In discrete form, the solution is sought on a fixed set of points ξ j, j = 1, ..., M distributed
along the real axis of the parameter region and on a fixed set of points ηi, i = 1, ..., N
distributed along its imaginary axis. The points 0 < ηi ≤ ηC, i = 1, ..., K , where ηK = ηC,
correspond to the end of the cavity, and the points ηK < ηi ≤ η∗, i = K + 1, ..., N correspond
to the cavity closure contour CD. The total number of the points ηi was chosen in the
range from N = 150 to 450, and the total number of the points ξ j was chosen as M = 3N to
check the convergence of the solution procedure. The points ξ j are distributed to provide a
higher density of the points sj = s(ξ j) near the rounded edges of the wedge and point A,
at which the derivative ds/dξ has a singularity. The distribution of the points ηi is chosen
to provide a higher density of the points si = s(ηi) on the free surface near point O where
the curvature of the cavity boundary may vary quickly. The length of the contour CD is
chosen as sCD = 10.

The solution of Equation (22) can be found by the method of successive approxima-
tions, determining the (k + 1)th approximation using the Hilbert transform

( d ln v
dη

)(k+1)

i
= 8

π ∫ ∞

0
F(k)(η′) η′dη′

η′2 − η2
i

, i = 1, ..., K. (24)

where

F(k)(η) = α

1 + η2 + ∫ 1

0
( dβ

dξ
)(k) ξdξ

ξ2 + η2 + πWeKη

4Rv(k)
(η)(1 + σ − v2(k)),

v(k)(η) = v0 exp
⎛⎝∫ η

0
( d ln v

dη′
)(k)dη′

⎞⎠.
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is the right-hand side of Equation (22).
At each iteration step k, the integro-differential Equation (21) in the function dβ/dξ

was solved using the inner iteration procedure

( dβ

dξ
)(l+1) = χ[s(l)(ξ)] K(l)ξ

v0
(1 + ξ

1 − ξ
)α/π

exp
⎡⎢⎢⎢⎢⎣− 1

π ∫ 1

0
( dβ

dξ
)(l) ln( ξ′ − ξ

ξ′ + ξ
)dξ′ (25)

− 1
π ∫ ∞

0
( d ln v

dη
)(k)(π − 2 tan−1 η

ξ
)dη

⎤⎥⎥⎥⎥⎦
At each iteration step l, the parameters K(l) and ηC were calculated from Equations (14)

and (17), respectively. The integrals appearing in the system of equations were evaluated
using the linear interpolation of the functions β(ξ) and ln v(η) on the intervals (ξ j−1, ξ j)
and ηi−1, ηi, respectively. At the first iteration, the functions β(ξ) ≡ −α and v(η) ≡ 1.

The convergence of the inner iteration procedure required from 5 to 10 iterations
to reach the condition ∣β(l+1)

j − β
(l)
j ∣ < ε, j = 1, ..., M for the chosen value ε = 10−7. The

convergence of the outer iteration procedure required from several hundreds to several
thousands of iterations, and it was obtained applying the under-relaxation method. In
the paper [3], a similar approach was applied to solving the problem of cavity flow past
a circular cylinder. It was shown that the numerical procedure can provide an accuracy
about 1%, which is satisfactory for this kind of problems. The results presented below
were obtained for a larger number of nodes; therefore, we can expect a similar accuracy of
the results.

An alternative numerical approach is based on the collocation method used earlier
for solving boundary-value and related problems [27–29]. Instead of solving the integro-
differential Equation (22), we solve the system of nonlinear equations

Gk(V) = 1 + σ − 2χk
We

− v2
k = 0, k = 2, ..., K. (26)

which is obtained from the dynamic boundary condition (3) at the collocation points
η̄k = (ηk−1 + ηk)/2, k = 2, ..., K. Here, V = {vj}, j = 2, ..., K is the vector of unknown velocities
at the points ηi, i = 2, ..., K. For each set of values {vj}, the system of Equations (17), (20) and
(21) is solved, and the curvature of the cavity boundary, χk = χ(ηk), at the points η̄k can be
computed using Equation (19). The system of nonlinear Equation (24) is solved using the
Newton–Raphson method.

3.2. Numerical Results

The cavity contours for edge radius r = 0.05 and cavitation numbers σ = 1.0 and 0.5 are
shown in Figure 2 for different Weber numbers. The cavity contours are shown as thin lines,
and the closure contours are shown as thick lines. It can be seen that surface tension reduces
the cavity size and affects the slope of the cavity near the detachment point. The latter is
more pronounced for the larger cavitation number. The values We = 70 and We = 50 are
the minimal values of the Weber number for which the solution is obtained for cavitation
number σ = 1.0 and σ = 0.5, respectively. For smaller Weber numbers, the iteration process
fails to converge. As can be seen in Figure 2a, the angle of cavity detachment, β0, decreases,
and the cavity surface becomes flatter. This tendency may lead to a positive curvature of
the free surface and make the flow unstable.
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(a)
(b)

Figure 2. Cavity contours for various Weber numbers for edge radius r = 0.05 and cavitation number:
(a) σ = 1.0 and (b) σ = 0.5.

The angle δ = α − β0 shown in Figure 1a determines the wetted length of the rounded
edge, s∗ = rδ. Figure 3 shows the angle δ versus the Weber number for different edge radii.
At large Weber numbers, when the effect of surface tension on the flow is negligible, the
angle δ decreases as the radius of the edge decreases. In the limiting case of r → 0 (sharp
edge) and We → ∞ so that rWe → ∞, the velocity at the detachment point (Equation (23))
becomes v0 = √

1 + σ as in the case without surface tension. The angle δ tends to zero, and
we can expect that the flow leaves the wedge tangentially to the flat part of the wedge. As
the Weber number decreases, the angle δ increases, and the surface tension starts to affect
the cavity contour. As can be seen in Figure 3, the smaller the wedge radius, the larger the
Weber number at which the angle δ starts to increase. If the angle δ becomes δ = π − α, this
corresponds to cavitation-free flow around the edge of radius r. In the limiting case of r → 0,
which corresponds to a sharp edge, and rWe → 0, the velocity at the cavity detachment
point v0 → ∞. This is the same as for flow around a corner without a cavity.

deg. 

0.20 
 

0.10 

0.05 

R/H=0.01 

Figure 3. Angle of the wetted part of the edge versus the Weber number for cavitation number σ = 1.0
and various edge radii.

The drag force coefficient the versus cavitation number is shown in Figure 4 for edge
radius r = 0.01. The relationships are almost linear, which is consistent with the theory of
cavity flows [4,5]. The surface tension affects the drag force coefficient slightly: the smaller
the Weber number, the smaller the drag force coefficient. This reduction occurs due to a
higher velocity and, correspondingly, a lower pressure near the detachment point, as can
be seen from Equation (23). The pressure near the edge may even become negative if the
radius is very small, which decreases the total force acting on the wedge.
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Figure 4. Drag force coefficient versus the cavitation number for radius r = 0.01 and Weber numbers:
We = 1000 (solid line); We = 250 (dashed line); We = 150 (dotted line); and We = 100 (dot-dashed line).

The relative difference of the cavity flow parameters for Weber numbers We = 2000
and We = 200 versus the cavitation number is shown in Figure 5 for edge radius r = 0.02.
Here, Δhc/hc, Δlc/lc and ΔCx/Cx are the relative difference of the cavity width, length and
force coefficient, respectively. It can be seen that, for a smaller cavitation number, the effect
of surface tension is larger.
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Figure 5. Relative difference of the cavity width (solid line), length (dashed line), and force coefficient
(dotted line) for Weber numbers We = 2000 and We = 200, versus the cavitation number. The edge
radius is r = 0.02.

4. Conclusions

The effect of surface tension on cavity flow past a wedge with rounded edges was stud-
ied theoretically based on an analytical solution that satisfies the Brillouin–Villat criterion
for cavity detachment. The integral hodograph method was employed to derive analytical
expressions for the complex velocity potential of the flow, the complex velocity, and the
mapping function in integral form. These expressions contain the velocity magnitude along
the cavity boundary and the slope of the wetted part of the wedge, both as functions of a
parameter variable. The solution is obtained in the form of a system of integral equations
using the dynamic and kinematic boundary conditions.

A case study is presented for a flat plate with rounded edges. The solution made
it possible to determine the range of applicability of the model, which depends on the
radius of the edges and the Weber number. For moderate Weber numbers, the surface
tension slightly decreases the size of the cavity and the drag force. As the Weber number
decreases further, the velocity at the point of cavity detachment increases, and the angle
of flow detachment changes in such a manner that the wetting part of the edge becomes
larger. The tendency seems to be towards to wetting the whole of the edge and making the
flow attached to the wedge. However, this situation is not observed in the results due to
the iteration process failing to converge for Weber numbers below some critical value. In
these cases, a steady flow solution cannot be obtained. A similar situation occurs when the
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wedge radius tends to zero at some fixed value of the Weber number. The results obtained
suggest that at Weber numbers below the critical value, the flow may become unsteady,
and the point of cavity detachment may oscillate about some position on the edge. To
verify this mechanism of cavity detachment, an advanced formulation of the problem,
including flow unsteadiness and a more sophisticated flow model, are needed.
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Nomenclature

x, y Cartesian coordinates
z = x + iy physical plane
ζ = ξ + iη parametric plane/parametric variable
w complex potential
dw/dz complex velocity
dw/ζ derivative of the complex potential
φ flow potential
ψ stream function
s arc length coordinate
H half-width of the wedge
R radius of the edge
p∞ pressure at infinity
pc pressure in the cavity
U inflow velocity
v velocity magnitude
α wedge angle
β slope of the wedge
β0 angle of cavity detachment
σ cavitation number
δ angle of detachment

References

1. Brillouin, M. Les surfaces de glissement de Helmholtz et la resistance des fluids. Ann. Chim. Phys. 1911, 23, 145–230.
2. Villat, H. Sur la validite des solutions de certains problemes d’hydrodynamique. J. Math Pure Appl. 1914, 20, 231–290.
3. Yoon, B.S.; Semenov, Y.A. Capillary cavity flow past a circular cylinder. Eur. J. Mech. B/Fluids 2009, 28, 670–676. [CrossRef]
4. Birkhoff, G.; Zarantonello, E.H. Jets, Wakes and Cavities; Academic Press: New York, NY, USA, 1957.
5. Gurevich, M.I. Theory of Jets in Ideal Fluids; Academic Press: New York, NY, USA, 1965.
6. Vanden-Broeck, J.-M. The influence of surface tension on cavitating flow past a curved obstacle. J. Fluid Mech. 1983, 133, 255–264.

[CrossRef]
7. Vanden-Broeck, J.-M. Nonlinear capillary free-surface flows. J. Eng. Math. 2004, 50, 415–426. [CrossRef]
8. Ackerberg, R.C. The effects of capillarity on free-stream line separation. IBID 1975, 70, 333–352.
9. Cumberbatch, E.; Norbury, J. Capillarity modification of the singularity at a free-streamline separation point. J. Mech. Appl. Maths.

1979, 32, 303–312. [CrossRef]

229



J. Mar. Sci. Eng. 2021, 9, 1253

10. Yoon, B.S.; Semenov, Y.A. Cavity detachment on a hydrofoil with the inclusion of surface tension effects. Eur. J. Mech. -B/Fluids
2011, 30, 17–25. [CrossRef]

11. Bouwhuis, W.; Snoeijer, J.H. The effect of surface wettability on inertial pouring flows. arXiv 2015, arXiv:1507.05931.
12. Ni, B.Y.; Pan, Y.T.; Yuan, G.Y.; Xue, Y.Z. An experimental study on the interaction between a bubble and an ice floe with a hole.

Cold Reg. Sci. Technol. 2021, 187, 103281. [CrossRef]
13. Yuan, G.Y.; Ni, B.Y.; Wu, Q.G.; Xue, Y.Z.; Zhang, A.M. An experimental study on the dynamics and damage capabilities of a

bubble collapsing in the neighborhood of a floating ice cake. J. Fluids Struct. 2020, 92, 102833. [CrossRef]
14. Ho, C.-M.; Tai, Y.-C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 579. [CrossRef]
15. Gravesen, P.; Branegjerg, J.; Jensen, O.S. Microfluidics—A review. J. Micromech. Microeng. 1993, 3, 168. [CrossRef]
16. Mishra, C.; Pelesa, Y. Cavitation in flow through a micro-orifice inside a silicon microchannel. Phisics Fluids 2005, 17, 013601.

[CrossRef]
17. Ghorbani, M.; Sadaghiani, A.K.; Villanueva, L.G.; Kosar, A. Hydrodynamic cavitation in microfluidic devices with roughened

surfaces. J. Micromech. Microeng. 2018, 28, 075016. [CrossRef]
18. Semenov, Y.A.; Iafrati, A. On the nonlinear water entry problem of asymmetric wedges. J. Fluid Mech. 2006, 547 231–256.

[CrossRef]
19. Semenov, Y.A.; Yoon, B.S. Onset of flow separation at oblique water impact of a wedge. Phys. Fluids 2009, 21, 112103-1. [CrossRef]
20. Chaplygin, S.A. On the Pressure of a Plane Flow on Obstructing Bodies (To the Theory of an Airplane); Moscow University: Moscow,

Russia, 1910; 49p.
21. Pilipenko, V.V.; Semenov, Y.A.; Pilipenko, O.V. Study of hydrodynamic cavitation in inducer centrifugal pumps. In Proceedings

of the Third International Symposium on Cavitation, Grenoble, France, 7–10 April 1998; Volume 1, pp. 323–328.
22. Semenov, Y.A.; Tsujimoto, Y. A cavity wake model based on the viscous/inviscid interaction approach and its application to

non-symmetric cavity flows in inducers. Trans. ASME J. Fluids Eng. 2003, 125, 758–766. [CrossRef]
23. Michell, J.H. On the theory of free stream lines. Phil. Trans. R. Soc. Lond. A 1890 181, 389–431.
24. Joukovskii, N.E. Modification of Kirchhof’s method for determination of a fluid motion in two directions at a fixed velocity given

on the unknown streamline. Math. Sbornik. 1890, 15, 121–278.
25. Anevlavi, D.; Belibassakis, K. An adjoint optimization prediction method for partially cavitating hydrofoils. J. Mar. Sci. Eng. 2021,

9, 976. [CrossRef]
26. Voskoboinick,V.A.; Grinchenko, V.T.; Makarenkov, A.P. Pseudo-Sound Behind an Obstacle on a Cylinder in Axial Flow. Int. J.

Fluid Mech. Res. 2005, 32, 488–510. [CrossRef]
27. Andreev, M.V.; Drobakhin, O.O.; Saltykov, D.; Gorev, N.B.; Kodzhespirova, I.F. Simple technique for biconical cavity eigenfre-

quency determination. Radioelectron. Commun. Syst. 2017, 60, 555–561. [CrossRef]
28. Andreev, M.V.; Drobakhin, O.O.; Saltykov, D.; Gorev, N.B.; Kodzhespirova, I.F. Determination of biconical cavity eigenfrequencies

using method of partial intersecting regions and approximation by rational fractions. Radioelectron. Commun. Syst. 2019, 62,
630–641. [CrossRef]

29. Semenov, Y.A. Nonlinear flexural-gravity waves due to a body submerged in the uniform stream. Phys. Fluids 2021, 33, 052115.
[CrossRef]

230



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Journal of Marine Science and Engineering Editorial Office
E-mail: jmse@mdpi.com

www.mdpi.com/journal/jmse





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3251-6 


	JMSE cover.pdf
	JMSE FluidStructure Interactions - no cppyright.pdf
	JMSE cover
	空白页面

