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Preface to ”Bayesian Design in Clinical Trials”

Bayesian designs have become increasingly popular in clinical trials, particularly in the early

phase of drug and biologics development for evaluating their safety and efficacy [1], as well as

medical device trials [2]. The Bayesian approach has been used to answer treatment questions and

to foster novel designs [3]. The inability to estimate the probability of clinical benefit, a lack of

mechanism for incorporating prior information and the difficulty in including multiple hypothesis

testing are some inherent limitations to frequentist analysis that are overcome in the Bayesian

framework [4].

In the last 10 years, the FDA has supported the development of Bayesian adaptive trials, and

recently it has enhanced its capacity to review complex innovative designs [1]. The Bayesian approach

leads to thinking about inference in terms of a probability distribution on the treatment effect, rather

than a point estimate or confidence interval. Therefore, the Bayesian approach is oriented toward

a progressive uncertainty reduction on a posterior distribution in treatment effect estimation. Prior

information may contribute to the reduction of this uncertainty. The specification of the sample size in

advance required by traditional clinical trials can be inefficient when limited information is available

at the design stage, especially regarding the likely effect size. By incorporating knowledge from

different resources, such as experts’ opinions, the literature and historical data, a properly elicited

prior distribution can improve the efficiency and reduce the sample size of a Bayesian trial, thus

saving resources and minimizing the number of subjects exposed to an unpromising treatment [5].

In this regard, as uses of real world data become more familiar for trial design and regulatory

submission, the increasing availability of open data holds immense potential, not only for expanding

general scientific knowledge but also for strengthening Bayesian trials across the therapeutic

continuum of medical product development, regulation and use. Even if Bayesian designs have

many strengths, they do not provide solutions to all problems. It is acknowledged that implementing

Bayesian methods in the regulated pharmaceutical industry does entail challenges. Prior elicitation,

extensive simulations before launching the real trial, multidisciplinary collaboration during the

design stage and less established reporting guidelines are just some of the challenges posed by

Bayesian trials [6].

However, new methods and integrated software for study design, such as http://trialdesign.org,

are available to overcome the traditional difficulty of implementing Bayesian methods.

It is important to find the right trade-off between innovation (i.e., software that can bring new

methods but requires skilled programmers), and usability (i.e., software intended as a resource for

the rapid construction of trial designs), which encourages exploration and experimentation as well.

This would be a key element to persuade clinical trialists and academics to better understand

and exploit the benefit of Bayesian designs.
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1. Fors, M.; González, P. Current status of Bayesian clinical trials for oncology, 2020. Contemp. Clin.

Trials Commun. 2020. [CrossRef]

2. Campbell, G. Bayesian methods in clinical trials with applications to medical devices. Commun.

Stat. Appl. Methods 2017, 24, 561–581. [CrossRef]

ix



3. Ryan, E.G.; Bruce, J.; Metcalfe, A.J.; Stallard, N.; Lamb, S.E.; Viele, K.; Young, D.; Gates, S. Using

Bayesian adaptive designs to improve phase III trials: A respiratory care example. BMC Med. Res.

Methodol. 2019, 19, 99. [CrossRef]

4. Greenland. S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G.

Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. .J

Epidemiol. 2016, 31, 337–350. [CrossRef]

5. Medical Outreach Subteam of the Drug Information Association Bayesian Scientific Working

Group. Why Are Not There More Bayesian Clinical Trials? Perceived Barriers and Educational

Preferences Among Medical Researchers Involved in Drug Development. Ther. Innov. Regul. Sci.

2022. [CrossRef]

6. Ferreira, D.; Vivot, A.; Diemunsch, P.; Meyer, N. Bayesian analysis from phase III trials was

underused and poorly reported: A systematic review. J. Clin. Epidemiol. 2020, 123, 107–113. [CrossRef]

Paola Berchialla, Ileana Baldi

Editors

x



International  Journal  of

Environmental Research

and Public Health

Article

Using an Interaction Parameter in Model-Based Phase I Trials
for Combination Treatments? A Simulation Study

Pavel Mozgunov 1,*, Rochelle Knight 1, Helen Barnett 1 and Thomas Jaki 1,2

Citation: Mozgunov, P.; Knight, R.;

Barnett, H.; Jaki, T. Using an

Interaction Parameter in Model-

Based Phase I Trials for Combination

Treatments? A Simulation Study. Int.

J. Environ. Res. Public Health 2021, 18,

345. https://doi.org/10.3390/

ijerph18010345

Received: 9 November 2020

Accepted: 31 December 2020

Published: 5 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK;
rochelleknight96@gmail.com (R.K.); h.barnett@lancaster.ac.uk (H.B.); thomas.jaki@mrc-bsu.cam.ac.uk (T.J.)

2 MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
* Correspondence: p.mozgunov@lancaster.ac.uk

Abstract: There is growing interest in Phase I dose-finding studies studying several doses of more
than one agent simultaneously. A number of combination dose-finding designs were recently pro-
posed to guide escalation/de-escalation decisions during the trials. The majority of these proposals
are model-based: a parametric combination-toxicity relationship is fitted as data accumulates. Various
parameter shapes were considered but the unifying theme for many of these is that typically between
4 and 6 parameters are to be estimated. While more parameters allow for more flexible modelling of
the combination-toxicity relationship, this is a challenging estimation problem given the typically
small sample size in Phase I trials of between 20 and 60 patients. These concerns gave raise to an
ongoing debate whether including more parameters into combination-toxicity model leads to more
accurate combination selection. In this work, we extensively study two variants of a 4-parameter
logistic model with reduced number of parameters to investigate the effect of modelling assumptions.
A framework to calibrate the prior distributions for a given parametric model is proposed to allow
for fair comparisons. Via a comprehensive simulation study, we have found that the inclusion of the
interaction parameter between two compounds does not provide any benefit in terms of the accuracy
of selection, on average, but is found to result in fewer patients allocated to the target combination
during the trial.

Keywords: dose-escalation; combination study; modelling assumption; interaction

1. Introduction

Traditionally, Phase I oncology trials predominantly investigated dose-finding for
a single cytotoxic agent. In recent years, however, more complex dosing regimens are
routinely considered. In particular combinations of drugs can have better therapeutic
outcomes than a single anti-cancer drug treatment [1]. In a Phase I dual-agent combination
trials, the aim is to determine the highest acceptable combination of doses known as
the maximum tolerated combination (MTC) which is defined as the combination with
probability of a dose-limiting toxicity (DLT) closest to the pre-specified target θ.

Single agent trials typically assume that toxicity increases monotonically with dose (also
known as monotonicity assumption [2]) and hence there is only one target dose, the maxi-
mum tolerated dose (MTD). In combination trials, however, the monotonicity assumption
typically does not hold for all combinations under study. This can be examplified where for
the one level we have two drugs at two different doses, but the next level corresponds to
an increase in one of the drugs but a decrease in the other. Here, the ordering of the toxicity
probabilities is typically not known. The situation where the orderings between some dose
combinations are known where others are not, is known as partial ordering [2]. A number
of novel dose-finding design for combination trials were proposed [3,4]. The majority of
novel designs are model-based and rely on a parametric model to fit the combination-
toxicity relationship given the accumulating data. Typically, these models have between 4
and 6 parameteres [5–7] to be estimated given a small number of observations in the study.

Int. J. Environ. Res. Public Health 2021, 18, 345. https://doi.org/10.3390/ijerph18010345 https://www.mdpi.com/journal/ijerph
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There is, however, an ongoing discussion as to whether a model with more parameters can
be adequently fit in the setting of small sample sizes (usually between 20 and 60 in total
and as few as two when the model is fit for the first time).

Specifically, Cunanan et al. [8] found that early phase dose finding trials studying
toxicity and efficacy together often relied on copula models to specify the joint distribution
of toxicity and efficacy, which include an additional correlation parameter that can be
difficult to estimate. This is because of the small sample size in early phase trials. It
was also found that a simple model that assumes independence between toxicity and
efficacy performs just as well due to difficulty in estimating the copula model correlation
parameters from binary data.

Similar reasoning to that of modelling the interaction between toxicity and efficacy as
independent is thought to be relevant for models used in combination trials. Specifically,
the question translated into whether an interaction term between the two agents could
be estimated on small samples. Mozgunov et al. [9] have recently proposed a model-
free dose-finding design for combination studies that assumed no-interaction and was
found to perform more accurately in the considered setting than a model-based partial
ordering continual reassessment method (POCRM) [10] and an alternative model-free
design, PIPE [11]. However, one potential drawback of not including an interaction
term in the combination-toxicity model is that less flexible models can collapse in some
situations. While it was not found to be the case for the model-free design [9] due its
flexibility, the question of the trade-off between not capturing unexpected combination-
toxicity relationships and the challenging estimation of additional parameters still stands
for the model-based combination designs.

In this work, we investigate for one particular model, namely the 4-parameter logistic
model by Riviere et al. [6], the effect of removing specific parameters from the dose
combination-toxicity model. We propose two model modifications reducing the number
of parameters to three. For a fair comparison in the presence of no prior information
on the compounds, we also propose an extensive calibration procedure to find so-called
operational prior parameters, parameters that results in high accuracy in a range of different
scenarios. Using the operational prior for each model considered, we explore the trade-off
between estimation and flexibility via a compherensive simulation study in a number of
clinical plausible scenarios with various interaction mechanisms of the compounds.

2. Model-Based Dose-Finding Design

2.1. Setting

Consider a dual-agent Phase I clinical trial. Assume that there are J dose levels of
agent 1 (indexed by j) and K dose levels of agent 2 (indexed by k). A combination of
the jth dose of agent 1 and the kth dose of agent 2 is denoted by (j, k). Let Yijk be a
Bernoulli random variable indicating whether a DLT occurs in patient i (i = 1, . . . , N)
given combination (j,k) where Yijk = 0 if no DLT is observed in patient i and Yijk = 1 if a
DLT is observed. Let πj,k denote the toxicity probability given combination (j, k) and the

logit function is defined as logit(πj,k) = log{ πj,k
1−πj,k

}. It is assumed that the dose-toxicity
relationship increases monotonically with the dose-levels of each agent. The aim of the
trial is to determine the MTC, the highest dose combination with a probability of toxicity
closest to the corresponding target level of toxicity θ.

2.2. 4-Parameter Logistic Model

Riviere et al. [6] proposed the following logistic parametric form to model the
combination-toxicity relationship:

Yijk ∼ Bernoulli(πjk)

Model M0: logit
(

πj,k

)
= β0 + β1uj + β2vk + β3ujvk (1)

2



Int. J. Environ. Res. Public Health 2021, 18, 345

where β0, β1, β2 and β3 are unknown parameters that denote the intercept (β0), the toxicity
effect of agent 1 (β1), agent 2 (β2) and the interaction between the two agents (β3), and
uj = log

( pj
1−pj

)
and vk = log

(
qk

1−qk

)
are the standardised doses of the two agents. The

parameters p1, . . . , pJ , and q1, . . . , qK, are the prior estimates of the toxicity probabilities
for the dose levels of agent 1 and 2, respectively, when administered as monotherapy. The
terms uj and vk are also known as the skeleton and are unchanged throughout the trial
(with the estimation of the contribution of each agent to the combination toxicity being
updated through the corresponding model parameters β1, β2, β3).

Riviere et al. [6] defined the parameters β0, β1, β2 and β3 such that β1 > 0 and
β2 > 0, ensuring that the toxicity probability is increasing with increasing dose levels of
each agent alone; and ∀ k, β1 + β3vk > 0 and ∀ j, β2 + β3uj > 0, guaranteeing that the
toxicity probability is increasing with increasing dose levels of both agents together; and
the intercept β0 ∈ R. The model parameters are initialised by some prior distribution
which describe beliefs about these parameters before any data are collected. We will refer
to this original combination-toxicity model as “Model M0”.

Assume that nj,k patients are assigned to combination (j, k) and a total of tj,k = ∑
nj,k
i=1 Yijk

toxic responses are observed for this combination. We define N = (n1,1, n1,2, . . . , nj,k, . . . , nJ,K)
and T = (t1,1, t1,2, . . . , tj,k, . . . tJ,K). Assuming some prior distribution of the model param-
eters f (β0, β1, β2, β3) and applying Bayes Theorem, the posterior distribution of the model
parameters is given by

f (β0, β1, β2, β3|N,T) ∝
J

∏
j=1

K

∏
k=1

π
tj,k
j,k (1 − πj,k)

nj,k−tj,k f (β0, β1, β2, β3)

where f (β0, β1, β2, β3) is the joint probability density function of the prior distribution
of the parameters. In the original proposal, independent prior distributions for each
parameters were considered. We investigate the case of dependent prior distributions for
the model parameters in Section 5.1.

For the parametric model and set of prior distributions of the model parameters,
MCMC was used to obtain posterior samples from each distribution, that were then used
to approximate the posterior distribution as they do not, generally, have a closed form.
Specifically, Gibbs Sampling as implemented in the R-package rjags [12] was used. To
satisfy the constraints of β1 > 0 and β2 > 0, the prior distributions defined on the positive
real line were chosen (see Section 3 for further details). To ensure that ∀ k, β1 + β3vk > 0
and ∀ j, β2 + β3uj > 0, only those posterior samples of the model parameters that satisfy
these constraints are taken forwards. Once the posterior samples for each parameter were
obtained, they were used to get the posterior distribution of toxicity probability at each
combination. These toxicity probabilities are subsequently used to govern escalation/de-
escalation decisions (see Section 2.3).

2.3. Original Dose Finding Design

Riviere et al. [6] proposed to use model (1) in a sequential dose-finding trial with
cohorts of patients sequentially assigned to different combinations based on accumulating
evidence gained throughout the trial. Dose escalation and de-escalation was restricted to
one level at a time (i.e., dose escalation and de-escalation along the diagonal is not allowed).
The decision about which combination to assign to the next cohort was made based on the
escalation/de-escalation constraints that were defined as follows.

Let ce be the probability threshold for dose escalation, cd the probability threshold for
dose de-escalation and θ be the target toxicity probability. It is required that ce + cd > 1.
Let the current dose combination be (j,k) and {N,T} be the current data available on
the number of patients thus far assigned to dose combinations and the number of DLTs
observed, then

3



Int. J. Environ. Res. Public Health 2021, 18, 345

• If P
(

πj,k < θ|N,T)
)

> ce, the combination dose level is escalated to an adjacent
combination dose level {(j + 1, k), (j, k + 1), (j + 1, k − 1), (j − 1, k + 1)} and the next
allocated dose combination (j ′,k ′) is chosen such that it has a toxicity probability
higher than the current value, π̃j′ ,k′ > π̃j,k, and a toxicity probability closest to θ

min
j′ ,k′

{
∣∣∣π̃j′ ,k′ − θ

∣∣∣ : (j′, k′) ∈ (j + 1, k), (j, k + 1), (j + 1, k − 1), (j − 1, k + 1)}

If the current combination is the highest of the combination space, (J,K), the next
cohort of patients will receive the same combination.

• If P
(

πj,k > θ|N,T)
)
> cd, the combination dose level is de-escalated to an adjacent

combination dose level {(j − 1, k), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1)} and the next
allocated dose combination (j ′,k ′) is chosen such that it that has a toxicity probability
lower than the current value, π̃j′ ,k′ < π̃j,k, and a toxicity probability closest to θ. If the
current combination is the lowest of the combination space, (1,1), the next cohort of
patients will receive the same combination.

• If P
(

πj,k < θ|N,T)
)
≤ ce and P

(
πj,k > θ|N,T)

)
≤ cd, the next cohort will be receive

the current combination dose level.

Once the required sample size has been reached, the MTC is selected as the combina-
tion with the highest posterior probability of the risk of toxicity being within δ of the target
probability, θ, P(πj,k ∈ [θ − δ; θ + δ]), and which has been used to treat at least one cohort
of patients. Here, the parameter δ reflects how close the toxicity risk of a combination
should be to the target in order for this combination to be considered promising.

For the purposes of this manuscript, we will focus on this specification of the design
without stopping rules to ensure that the model specification is responsible for differences
in the results. Each model can, however, also be used with stopping rules. For example,
the most common stopping rule is to stop for safety—none of the studied combinations are
deemed safe given the current data and the trial is terminated [13]. Furthermore, a design
could stop once a given number of patients has been assigned to the same combination [14].

2.4. Alternative Models for the Combination-Toxicity Relationship

To ease the estimation problem of the combination-toxicity relationship with small
samples, we explore a similar type of combination-toxicity relationship but with a reduced
number of parameters. We consider modelling the drug combination-toxicity relationship
based on the model with no interaction term, β3,

Model M1: logit
(

πj,k

)
= β0 + β1uj + β2vk (2)

and the model with no intercept term, β0

Model M2: logit
(

πj,k

)
= β1uj + β2vk + β3ujvk. (3)

The model in Equation (2) will be referred to as “Model M1” and the model in
Equation (3) will be referred to “Model M2”. Both models M1 and M2 use the same
escalation and de-escalation criteria as outlined in Section 2.3 and all parameters within
these models are as defined as before. Note that Model 2 resembles some of the features of
the model by Thall et al. [5] but without the power parameters.

3. Choice of Prior Distribution

All combination-toxicity models described in the previous section employ a Bayesian
paradigm for the sequential parameter estimation. Therefore, to initialise the model, prior
distributions for each parameter should be defined before the trial commences. For each
parameter, we use the same distributions as in the original work by [6]. In this section, using

4
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the example of the 4-parameter logistic design, we describe an algorithm for calibrating
the hyper-parameters of the prior distributions of the model parameters β0, β1, β2 and β3.
We will apply the same algorithm for all models considered in this manuscript.

The calibration of the hyper-parameters of the prior distributions for the model
parameters will be performed through a grid search which consists of fitting a model
for each of the possible combinations of hyper-parameters. The hyper-parameters of
the models parameters—β0, β1, β2 and β3—will be calibrated using the following prior
distributions:

β0 ∼ N (0, a), β1 ∼ Gamma(b, b), β2 ∼ Gamma(c, c), β3 ∼ N (0, d) (4)

for a ∈ A, b ∈ B, c ∈ C, and d ∈ D where A, B, C and D are the grids of values of hyper-
parameters for each of the prior distributions. Following the original proposal, we use the
normal prior for β0 and β3 centred at 0 to allow for the parameters to take both positive
and negative values with neither being favoured. The Gamma prior is used for β2 and
β3, to ensure that the parameters are positive, and are centred at 1 [6]. The latter implies
that the toxicity effect of both agents is considered to be similar and that neither agent is
favoured to increase the toxicity effect with increasing dose level more than the other.

While a model can be calibrated under all scenarios that are considered clinically plausi-
ble, such a procedure can become computationally infeasible if there are many scenarios to be
considered. Therefore, we propose to perform a grid search using a subset of scenarios such
that these would represent noticeably different (but still clinically plausible) combination-
toxicity relationships. For example, one scenario with many doses having toxicity probabilities
far below the MTC, and another where most doses have toxicity probabilities far above the
MTC would reflect different extreme settings [14,15]. Additionally, some of the scenarios
selected for the calibration should reflect various interaction mechanism between the two
compounds. We provide examples of such scenarios in Section 4.

For the purposes of this manuscript, the models will be calibrated in terms of their
accurate, namely, the proportion of correct selections (PCS). Let η

(h)
a,b,c,d be the PCS under

scenario h using prior parameters a, b, c, d. Then, the parameters a�, b�, c�, d� maximising
the geometric mean of the PCS across H considered scenarios

max
a∈A,b∈B,c∈C,d∈D

(
H

∏
h=1

η
(h)
a,b,c,d

) 1
H

(5)

are selected for the model. The use of the geometric mean over the arithmetic mean is
proposed as a model performing uniformly across the considered scenarios is desirable.
The geometric mean penalises poor results which is advantageous when looking at the
ability of a model to consistently find the MTC across a variety of scenarios.

We would like to stress that the calibration procedure in this work is solely based
on one measure (5) for the purposes of the comparing the models in terms of the MTC
selections. At the same time, when considering calibration of the design hyper-parameters
for a particular dose-finding clinical trial, some of the choices of hyper-parameters might
not be considered as favourable even if they imply the highest accuracy. If there are
some additional constraints to be imposed on the prior, this can be embedded within
the procedure. For example, one can target the hyper-parameters such that the PCS is
maximised but the prior toxicity probability at the lowest combination is not above 15%.

4. Numerical Evaluation

4.1. Setting

In this section, we study how the different parametric models for the combination
toxicity relationship defined in Section 2 perform in a variety of clinically plausible settings.
To investigate the design under each model, we simulate independent replications of
Phase I trials that evaluate dual-agent drug combinations. We focus on the setting originally
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considered by Riviere et al. [6]. Specifically we use five dose levels for agent 1 and three
dose levels for agent 2, resulting in 15 dose combinations to be investigated. The target
toxicity is fixed at θ = 0.3 and for each trial, an overall sample size of N = 60 is used.
A cohort size of 3 is used for all models and no stopping rules are used. For ethical
reasons, each trial is started at the lowest dose combination (1,1). It was assumed in [6]
that both agents were previously studied separately and intial guesses of toxicities for
each dose of both agents administered as monotherapies can be provided by the clinical
team. Specifically, for agent 1, the marginal initial guesses of toxicities, pj, are specified
as p = (0.12, 0.2, 0.3, 0.4, 0.5) and for agent 2, qk is specified as q = (0.2, 0.3, 0.4). These
prior guesses are used to construct the skeletons uj and vk in Equation (1). The probability
thresholds used to guide dose escalation and de-escalation follow [6] and are set at ce = 0.85
and cd = 0.45. The length around the target interval, δ is set at δ = 0.1.

The objective is to evaluate the models in terms of their accuracy and the ethical
counterparts: how many patients are assigned to overly toxic combinations and often is
the target combination assigned during the trial. Specifically, we study the properties of
the designs in terms of

• the percentages of correct selections (PCS) reflecting how accurately the design selects
the target combination;

• percentage of patients allocated to a true MTC during the trial, reflecting the potential
benefit the patients could get from efficient combination assignment;

• the percentage of DLTs observed throughout the trial reflecting how many patients
suffer from the adverse events under each design.

4.2. Scenarios

Twenty scenarios are used to represent a variety of clinically feasible true underlying
combination-toxicity relationships (Table 1). We focus on finding one MTC at the end of the
trial, regardless of if there are multiple possible correct combinations within the scenario.

In Scenarios 1–7, the MTC is located along each diagonal of the combination space,
moving from the lower (1,1) corner of the combination space in scenario 1 to the upper (5,3)
corner in Scenario 7. As it is unknown at the planning stage what the true combination-
toxicity relationship is, it is important that all these scenarios are used to ensure good
operating characteristics across all these scenarios. Scenarios 2 and 6 each have two possible
MTC dose combinations. Two more variants of each of these scenarios were added.

Scenarios 2 and 6 were altered by replacing, in turn, one of the two MTCs with a
dose combination with a toxicity probability different to 0.3 whilst ensuring that the mono-
tonicity assumption still holds to form the Scenarios 2.1, 2.2, 6.1 and 6.2. The Scenarios 1,
2.1, 2.2, 6.1, 6.2 and 7 represent extreme examples of the dose-toxicity relationship. For
Scenarios 1, 2.1 and 2.2, they represent a steep combination-toxicity relationship with many
of the doses higher in the combination space having toxicity probabilities far above the
MTC. Comparatively, for Scenarios 6.1, 6.2 and 7, they show a flat combination-toxicity
relationship where many of the doses lower in the combination have toxicity probabilities
space are far below the MTC. Note that Scenarios 2.1, 2.2, 6.1, 6.2 also correspond to cases
when one compound increases the toxicity of the combination more than the other—when
increasing the dose of one compound leads just to the target toxicity of 30% but increase in
another corresponds to an overly toxic (40%) dose combination.

Scenarios 8–12 were proposed by Riviere et al. [6]. In Scenarios 8, 10, 11 and 12
there are multiple MTCs which are not located along the same diagonal but throughout
the combination space and in Scenario 9 there is one MTC located in the centre of the
combination space. Furthermore, under Scenarios 8, 10, and 12, it is assumed that one of
the compounds is more toxic than the other (i.e., the combination toxicity relationship is
steeper in one compound). Scenarios 13 and 14 represent the scenarios with only one MTC
located for high doses of one of the agents.
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Table 1. Toxicity scenarios for the dual-agent combinations. The true MTC combinations are in bold.

Agent 1

Agent 2 1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2

1 0.30 0.40 0.50 0.60 0.70 0.20 0.30 0.40 0.50 0.60
2 0.40 0.50 0.60 0.70 0.80 0.30 0.40 0.50 0.60 0.70
3 0.50 0.60 0.70 0.80 0.90 0.40 0.50 0.60 0.70 0.80

Scenario 2.1 Scenario 2.2

1 0.20 0.30 0.40 0.50 0.60 0.20 0.40 0.50 0.60 0.70
2 0.40 0.50 0.60 0.70 0.80 0.30 0.50 0.60 0.70 0.80
3 0.50 0.60 0.70 0.80 0.85 0.40 0.60 0.70 0.80 0.90

Scenario 3 Scenario 4

1 0.15 0.20 0.30 0.40 0.50 0.10 0.15 0.20 0.30 0.40
2 0.20 0.30 0.40 0.50 0.60 0.15 0.20 0.30 0.40 0.50
3 0.30 0.40 0.50 0.60 0.70 0.20 0.30 0.40 0.50 0.60

Scenario 5 Scenario 6

1 0.05 0.10 0.15 0.20 0.30 0.03 0.05 0.10 0.15 0.20
2 0.10 0.15 0.20 0.30 0.40 0.05 0.10 0.15 0.20 0.30
3 0.15 0.20 0.30 0.40 0.50 0.10 0.15 0.20 0.30 0.40

Scenario 6.1 Scenario 6.2

1 0.01 0.03 0.05 0.10 0.20 0.03 0.05 0.10 0.15 0.20
2 0.03 0.05 0.10 0.15 0.30 0.05 0.10 0.15 0.20 0.40
3 0.05 0.10 0.15 0.20 0.40 0.10 0.15 0.20 0.30 0.50

Scenario 7 Scenario 8

1 0.01 0.03 0.05 0.10 0.15 0.05 0.08 0.10 0.13 0.15
2 0.03 0.05 0.10 0.15 0.20 0.09 0.12 0.15 0.30 0.45
3 0.05 0.10 0.15 0.20 0.30 0.15 0.30 0.45 0.50 0.60

Scenario 9 Scenario 10

1 0.02 0.10 0.15 0.50 0.60 0.05 0.12 0.20 0.30 0.40
2 0.05 0.12 0.30 0.55 0.70 0.10 0.20 0.30 0.40 0.50
3 0.08 0.15 0.45 0.60 0.80 0.30 0.42 0.52 0.62 0.70

Scenario 11 Scenario 12

1 0.12 0.20 0.30 0.40 0.60 0.04 0.06 0.08 0.20 0.30
2 0.20 0.30 0.40 0.50 0.67 0.10 0.20 0.30 0.50 0.67
3 0.42 0.52 0.62 0.70 0.80 0.30 0.42 0.52 0.70 0.80

Scenario 13 Scenario 14

1 0.05 0.08 0.10 0.15 0.20 0.01 0.03 0.06 0.10 0.20
2 0.10 0.15 0.20 0.30 0.40 0.04 0.07 0.12 0.20 0.30
3 0.20 0.40 0.50 0.55 0.60 0.08 0.10 0.20 0.40 0.50

Scenario 15 Scenario 16

1 0.45 0.50 0.55 0.60 0.65 0.01 0.02 0.05 0.10 0.15
2 0.50 0.55 0.60 0.65 0.70 0.02 0.05 0.10 0.15 0.17
3 0.55 0.60 0.65 0.70 0.75 0.05 0.10 0.15 0.17 0.20

Under Scenario 15, all combinations are too toxic as the lowest combination already
has the toxicity rate of 45%. In contrast, under scenario 16, all combinations are safe as
the highest combination has a toxicity probability of 20%. Note that as the design does
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not include stopping rules, it is expected that a design with desirable properties would
recommend the lowest and the highest dose in Scenarios 15 and 16, respectively.

Finally, Scenarios 11 and 14 were found to be well-approximated by the original
4-parameter logistic model but with the slope parameters for each agent being equal to
β1 = β2 = 0. This implies that the underlying combination-toxicity relationships are fully
determined by the interaction parameter β3 and these are the scenarios where one could
expect to see the most gain in benefit in including the interaction term. Therefore, we will
be using these 2 scenarios to assess further potential losses of not including the interaction
parameter.

4.3. Calibration

The sets of values for the grid search for the hyper-parameters have been selected as

A ={0.1, 1, 10, 100, 200, 400},

B ={0.1, 1, 10},

C ={0.1, 1, 10},

D ={1, 10, 100, 200, 400}

for each of the considered models. Note that the values of a = 10, b = 1, c = 1 and d = 10
correspond to the prior distributions specified by Riviere et al. [6]. Therefore, these grids
were chosen to explore lower and higher variance around the mean of the parameters
compared to the originally considered prior distribution. Due to the computational costs,
the hyper-parameters to be tried were chosen to be noticeably different from each other,
e.g., at least increasing the variance of the parameter twofold. This aims at locating an
approximately optimal (in terms of PCS) values. We will use these values to compare
whether the proposed calibration procedure can provide benefits in terms of the operating
characteristics. For each set of hyper-parameters combinations, we simulate 500 trials to
evaluate dual-agent drug combinations.

As discussed above, the choice of scenarios for the calibration is crucial. As the
calibration over all 20 scenarios would have been to computationally demanding, we
specify a subset of four scenarios to reduce the compuational costs while still adequetly
exploring the properties of the design specification under extreme scenarios. Specifically,
Scenarios 2.1, 2.2, 6.1 and 6.2 from Table 1 are used for the calibration process. Scenarios
2.1 and 2.2 represent a steep combination-toxicity relationship with many of the doses
higher in the combination space far above the MTC and Scenarios 6.1 and 6.2 show a flat
combination-toxicity relationship where many of the doses lower in the combination space
are far below the MTC. Importantly, we have selected scenarios with one MTC only as
it was noted previously that model-based designs can strongly favour one of the MTC
in scenarios with several of them. This undesirable favouring of particular combinations
cannot be picked up via summary characteristics such as the PCS, and the inclusion of
scenarios with one MTC only would mitigate this risk.

The results of the hyper-parameter calibration are given in Table 2.

Table 2. Calibrated prior parameters for each model and the corresponding PCS under 4 calibration
scenarios. GM is the geometric mean of the PCS across the four scenarios. Results are based on
500 replications.

Model β0 β1 β2 β3 Sc 2.1 Sc 2.2 Sc 6.1 Sc 6.2 GM

M0(0) N (0,10) G(1,1) G(1,1) N (0,10) - - - - -
M0 N (0,1) G(1,1) G(1,1) N (0,100) 44.6 38.8 45.0 55.6 45.6
M1 N (0,400) G(1,1) G(10,10) - 41.3 40.8 43.3 40.5 41.4
M2 - G(1,1) G(1,1) N (0,100) 32.1 26.0 40.2 76.2 39.9

8



Int. J. Environ. Res. Public Health 2021, 18, 345

For completeness, we also include the prior distribution originally proposed for the 4-
parameter model (to which we refer as M0(0)) that will be further included in the simulation
study. Note that the values of the hyper-parameters for M1 yielding the highest PCS were
found to be on the bound of the selected grids of β0 and β2. We have further extended
these grids to include a = 400, 500, 600 and c = 10, 20, 40 and it was found that indeed the
hyper-parameters in Table 2 result in the highest PCS among the considered combinations
of values (see Table 3).

Finally, the calibrated hyper-parameters choices imply various prior combination
toxicity relationships, all of which could be plausible. For example, under Model M2,
the prior point estimate is around 0.05% for the lowest combination (i.e., the starting
combination is very safe) and the highest is nearly 40%. Such prior beliefs correspond to
a sharp increase in toxicity on the 5th dose on one of the compounds. Then, for example,
starting escalation at the lowest combination, if the earlier data would suggest that the
highest dose is not as toxic as expected, the escalation to higher doses would be allowed.

Table 3. Further calibration of M1: the geometric mean of the PCS across scenario 2.1, 2.2, 6.1, 6.2 for
various values of hyper-parameters a = 400, 500, 600, and c = 10, 20, 40. The highest PCS is in bold.
Results are based on 500 replications.

c = 10 c = 20 c = 40
a = 400 41.4 38.2 39.2
a = 500 40.7 38.9 37.1
a = 600 37.9 39.3 37.6

4.4. Comparator: Optimal Benchmark for Combination Studies

While the primary goal of this work is to compare the performance of different models
to each other, the similarity of the parameteric models defined (and the fact that all of
the designs are model-based) could mean that all methods perform equally poorly on
some scenarios. To provide a context for the comparison of operating characteristics, we
include the performance of the non-parameteric benchmark for combination studies, a tool
that provides an estimate for the upper bound on the PCS under the given combination-
toxicity scenario [16]. The benchmark takes into account the “difficulty” of a scenario
in terms of how close the toxicity risks for the combinations (under this scenario) to the
target level of 30% are, and also accounts for the unknown monotonic ordering in the
combination setting.

Specifically, at its first step, the benchmark utilises the concept of complete informa-
tion [17], which assumes that the data for each patient given each dose is available (in
contrast to the actual trials setting with this information for one dose only). Under complete
information, the toxicity estimates at each combination are found. At the second step, the
probabilities that these toxicity estimates come from various potential clinically feasible
“orderings” of combination are found. These probabilities are assigned to the probability of
each combination selection under the given ordering. We refer the reader to the recent work
by Mozgunov et al. [16] for further technical details on the benchmark for combinations
trials. We will refer to the benchmark design as “B”.

4.5. Results

A summary of operating characteristics using 4000 replications for all 4 models under
Scenarios 1–14 with at least one MTC is given in Table 4. As some designs are expected
to outperform others in some scenarios and perform worse in others, we also provide the
geometric mean (GM) of the PCS and its variance (Var) across scenarios.
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Table 4. Percentage of correct selection in comparison of 5 dose-finding designs and the benchmark
(B) under Scenarios 1–14. Percentage of patients allocated to a true MTC during the trial and
percentage of observed DLTs throughout the trial. GM is the geometric mean and Var is the variance.
In the top third of the table, the highest PCS and those within less than 3% across the dose-finding
designs are shown in bold for each scenario. Results are based on 4000 simulations.

Sc 1 2 2.1 2.2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 GM Var

Percentage of correct selection (PCS)

M0(0) 58 59 56 27 58 56 56 57 32 51 69 64 62 62 61 61 24 18 48.7 232.6
M0 59 53 48 35 54 56 57 64 40 54 68 61 53 57 57 58 28 22 49.6 152.0
M1 75 60 38 42 58 55 54 55 41 36 76 57 68 52 59 40 46 31 50.8 165.2
M2 47 37 30 26 35 41 47 82 39 74 57 28 33 39 43 36 11 23 37.0 296.6
B 82 61 49 46 57 54 57 61 46 42 83 65 58 53 50 56 32 41 53.8 166.1

Percentage of patients allocated to a true MTC during the trial

M0(0) 45 45 38 17 42 36 34 36 23 24 38 36 24 44 38 40 14 16 30.9 105.6
M0 41 36 30 22 36 35 37 45 32 28 33 38 18 40 32 36 19 21 31.2 62.0
M1 56 40 21 32 38 34 31 36 25 21 48 35 37 33 34 26 19 22 31.4 91.8
M2 33 26 21 20 27 27 35 57 39 33 23 31 9 27 21 27 22 28 26.4 96.9

Percentage of DLTs throughout the trial

M0(0) 37 33 35 36 30 28 26 24 23 25 20 28 33 30 32 30 28 26 28.6 21.1
M0 38 36 36 38 33 31 28 25 23 26 20 30 36 33 34 33 31 27 30.5 27.4
M1 36 33 34 34 31 29 28 25 25 27 21 29 31 31 32 32 30 27 29.4 13.2
M2 41 39 40 41 37 34 30 25 23 27 19 33 41 37 38 38 34 28 32.8 47.1

The calibrated model M2, the model with no intercept parameter, has a significantly
lower average PCS of 37.0% compared to all other models. In 10 scenarios it has a PCS
below 40% and has the lowest PCS amongst all models with a PCS of 11% in Scenario 13.
The model M2 also has the lowest average percentage of patients allocated to a true MTC
during the trial and the average percentage of DLTs throughout the trial is 32.8% which
is the furthest from 30% compared to all other models. As this model is not performing
comparably to all other models, it will not be considered further.

For model M0, which is the four-parameter model, two variations, with different
set of prior parameters, are considered. The original model M0(0) and the calibrated M0
have the mean PCS of 48.7% and 49.6%, respectively. Therefore, the use of a calibrated
prior allowed to increase the average PCS by nearly 1% on average under all considered
scenarios. Comparing the average performance across scenarios that were not included in
the calibration (i.e., excluding 2.1, 2.2, 6.1, 6.2), the models perform comparably—within
0.4% for the average PCS. At the same time, the calibrated model results in a noticeably
more consistent performance in terms of the PCS across the scenarios—the variance of
the PCS is 232.6 for the original prior and 152.0 for the calibrated one. Furthermore, the
calibrated model results in nearly the same proportion of patients allocated to the true
MTC (difference of 0.3%) but with noticeably lower variance across scenarios—62.0 for
the calibrated model against 105.6 for the original prior. The costs for a better and more
consistent performance for the calibrated model M0 is having an average percentage of
observed DLTs slightly above the target rate, 30.5%, but still close to the target toxicity.
Therefore, the model with the calibrated prior results in a more consistent performance of
the design, and therefore the model under this prior is taken for further evaluation with
the competing models.

Model M1, the model with no interaction parameter, had the highest average PCS
of 50.8% compared to the other models 1.2% higher that for the calibrated model M0. At
the same time, M0 has slightly lower variance in the PCS across the scenarios of 152.0
compared to 165.2 for M1. In eleven scenarios the model M1 has either higher PCS than the
model M0 or is within 3% of it (for 9 scenarios the same can be said for M0). Additionally,
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M1 allocated the highest average percentage of patients to a true MTC throughout the
trial at 31.4% and has 1% lower average percentage of observed DLTs. We will now focus
on comparing scenario-by-scenario performance as the two models M0 and M1 seem to
perform somewhat comparably.

In scenarios with only one MTC, the two models show uneven performance depending
on the location of the MTC. When the true MTC was located in either the lower (1,1) or
higher (5,3) extremity or the centre (3,2) of the combination space, as in scenarios 1, 7 and
9 respectively, model M1 showed its best performances with PCS of 75%, 76% and 68%
respectively. In all three of these scenarios the model M0 had a PCS at least 8% lower.
Importantly, in scenario 1, the difference in PCS of 16% is observed between the two models
in favour of the model M1. Scenario 1 shows a steep combination-toxicity relationship with
all the doses higher in the combination space having a toxicity probability far above the
MTC. Therefore, the significantly higher PCS for the model M1 is of particular preference
in this scenario. The model M1 also allocates 56.1% of patients to the true MTC in scenario
1 which is the highest allocation across all scenarios compared to 41% for M0. The higher
percentage of patients allocated to the true MTC for the model M1 suggests it is more
conservative and less aggressive in its approach at allocating patients compared to the
model M0. This is preferable, in particular in scenarios such as scenario 1 which shows
such a steep combination-toxicity relationship. The most noticeable costs for this advantage
of the model M1 is a loss of 18% PCS in scenario 12 with the target combination lying
on various diagonals. The model M0 has a PCS of 58% compared to 40% for M1 that
suggests that having a more flexible model (under the calibrated parameters) might be
more beneficial under this scenario. Comparatively, in scenarios 2.1, 2.2, 6.1, 6.2, 13 and 14,
both models show some of their poorest performances as these are the most challenging
scenarios with a single MTC. It also confirmed by the benchmark that these scenarios are
the most difficult—the benchmark results in its lowest PCS under these scenarios as well.
In all these scenarios, both models have a PCS of 45% or lower.

Comparing the PCS in scenarios 11 and 14 which are approximately generated using
the model with the intercept and interaction parameter model, β1 = β2 = 0, one can
find that the calibrated 4-parameter and 3-parameter with no interaction models perform
within 3% of each other under scenario 11, and M1 outperforms M0 by 9% under scenario
14. Therefore, in the scenarios determined by the interaction only, the 4-parameter model
does not provide any tangiable benefit and the 3-parameter model can approximate the
combination-toxicity relationship well enough (or even better) to locate the true MTC.

Finally, comparing the performance of the models to the benchmark, as expected the
benchmark results in the highest average PCS. Specifically, the ratio of the PCS compared
to the benchmark, is 90% for M0(0) and are 92 and 94% for M0 and M1, respectively.
Furthermore, the benchmark results in the highest PCS under the majority of scenarios, in
11 out of 18 scenarious, the benchmark results in either higher PCS or within the simulation
error. The lowest ratio of the PCS compared to the benchmark is nearly 44% for M0(0)

and around 71–72% for M0 and M1. In some of the scenarios, the models have shown to
lead to super-efficiency [18], the phenomenon when the benchmark is outperformed. This
can be explained by a design favouring particular combinations. The highest ratio of PCS
compared to the benchmark is also achieved for M1 under Scenario 13–32% PCS for the
benchmark versus 46% for M1 resulting in the ratio of 144%. This suggests that the design
favours this combination under the calibrated hyper-parameters.

The model M1 assigned at least 30% of patients to a true MTC in more scenarios than
M0. Of the two models, M0 was the only one in which for two scenarios—Scenario 9 and
13—the allocation was below 20%. For the model M0, the highest percentage of DLTs
observed for all the scenarios was 38% in scenario 1 whereas for M1 this value is lower at
36%, also in scenario 1. This once again highlights that the model M0 is more aggressive in
patients allocations. For the model M1, in six scenarios the percentage of observed DLTs
lay in the interval [29%, 31%] compared to three scenarios for M0.

The results for scenarios 15 and 16 with no MTC are given in Table 5.
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Table 5. Operating characteristics of the dose-finding designs under Scenarios 15 and 16. Results are
based on 4000 simulations.

Sc 15 16

Selection Percentage of The Combination Closest to 30%

M0(0) 95.8 88.9
M0 96.1 88.3
M1 98.9 93.9
M2 92.7 79.8

Allocation Percentage To The Combination Closest to 30%

M0(0) 83.1 49.9
M0 78.1 45.4
M1 90.1 58.9
M2 61.7 31.3

Under the overly toxic scenario 15, all of the models select the lowest combination
with at least 92% with the minimum value of 92.7% for M2 and the highest of 98.9% for M1
(nearly 3% higher than for the calibrated model M0). Similarly, M1 allocated nearly 90%
of patients to the lowest combination, which is the highest proportion among all models.
Concerning, the safe scenario 16, M2 correspond to the poorest performance and selects the
highest combination in nearly 80% compared to nearly 88% for both M0 models and nearly
94% for M1. The proportion of allocation is again the lowest for M2 and the highest for M1.
Therefore, under both scenarios, Model 1 selects the closest to the target level combination
with the highest probability and allocated more patients to the right dose.

As it was noted above, under the scenarios with several target combinations, model-
based designs can favour particular combinations that will be reflected in uneven selection
proportion of the target combinations. To explore this aspect of the considered models, we
study the variance of each MTC selection within the scenario. Table 6 shows the variance
between the percentage of selections of each possible correct MTC within the scenario for
the models M0(0), M0, and M1.

Table 6. Variance between correct selections of MTCs in different locations throughout the combina-
tion space. GM is geometric mean. Results are based on 4000 simulations.

Scenario 2 3 4 5 6 8 10 11 12 GM

M0(0) 18 250.7 157.9 233.8 269.1 5.1 245.9 1223.9 348.8 141.9
M0 33.4 244.5 140.1 234.0 257.6 35.7 294.3 1336.4 449.2 196.4
M1 22.4 234.5 200.5 417.0 8.9 1365.0 313.0 116.7 428.1 163.5

All of the models show poor performance in evenly selecting between multiple MTC
combinations across the scenarios. Comparing calibrated models, Model M1 has a lower
average variance across these scenarios of 163.5 compared to 196.4 for M0. Despite having a
lower average variance, the model M1 shows a greater range of values across the scenarios.
In Scenario 8, M1 shows its highest variance of 1365.0. The model M0 has nearly the same
range of variance across these scenarios, where its highest variance is 1336.4 in Scenario 11.

Overall, under the operational prior distributions calibrated to achieve the highest
PCS under each parameter model, the model M1 without interaction parameter was
found to have the best performance in the set of considered scenarios. The model M1
has the highest average PCS and has the greatest lowest ratio of the PCS compared to
the benchmark across scenarios. The model M1 allocates the highest average percentage
of patients to a true MTC throughout the trial. It has the closest average percentage of
observed DLTs throughout the trial to the target value of 30%. The model M1 also has the
highest proportion of MTC selections in the interval [0.2, 0.4] so is, on average, selecting
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combinations with toxicities around the target value of θ = 0.3 more often. It has also
demonstrated the most accurate performance in scenarios without the MTC. Furthermore,
it containts one fewer parameter that can reduce the computations complexity of the
proposed calibration procedure noticeably. One of the main drawbacks of model M1 is that
it shows high variability when selecting the MTC when there are multiple possible MTCs
in the combination space (e.g., Scenario 8).

5. Sensitivity Analysis: Joint Prior Distribution

5.1. Joint Prior Distribution

In the previous sections, following the approach of Riviere et al. [6], we have con-
sidered the parameters of the drug combination-toxicity relationship models to be in-
dependent. This assumption may not necessarily hold true and so we are interested in
investigating whether considering the parameters to be dependent in a Phase I setting
can improve the model’s performance. We therefore consider an alternative model that
allows for dependence between the parameters in this section. Above, it was found that the
calibrated three-parameter logistic model, M1, showed the best operating characteristics
amongst the models considered and therefore we will use it her again but allow for a de-
pendence structure between the three parameters β0, β1 and β2 via a joint prior distribution
with a given correlation structure.

We will model the joint distribution of the model parameters using a multivariate
normal distribution. To ensure the conditions on parameters β1 and β2 to be positive, the
following parameterisation will be used to

(β0, β1, β2)
T = (τ1, exp(τ2), exp(τ3))

T

where the 3-dimensional random vector τ = (τ1, τ2, τ3)
T follows a multivariate normal

distribution τ ∼ N3(μ, Σ) with mean vector μ and 3 × 3 covariance matrix ΣΣΣ.

5.2. Parameters Calibration

To calibrate the joint prior, we use the same algorithm as before. The main difference
being that now one needs to calibrate with respect to the correlation parameters. Specifi-
cally, using previously found calibrated values of the variance for the parameter β0, we
parametrise the covariance matrix of vector τ as

ΣΣΣ =
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for ρ0 ∈ P0, ρ1 ∈ P1, m ∈ M and n ∈ N where P0, P1 are sets of correlation values
between the parameters and M, N are sets of hyper-parameters for the variance of the
prior distributions of τ2 and τ3, respectively. To ease the computational burden, we have
fixed the value of hyper-parameter corresponding to β0 at the value found in Section 4.3,
a = 400 as the marginal distribution of β0 is unchanged under this parametrisation. We
have also assumed that Corr[τ1, τ2] = Corr[τ1, τ3] = ρ0. This is based on the assumption
that it is reasonable to assume that Corr[β0, β1] = Corr[β0, β2] as the assumption that the
correlation between the parameter of interaction, β0, and the toxicity effects of agent 1,
β1; and the correlation between the parameter of interaction, β0, and the toxicity effects
of agent 2, β2 is the same. The correlation between the two parameters τ2 and τ3 will be
Corr[τ2, τ3] = ρ1. As before, we require β0 to be centred at zero.

As in the model M1(1), we require the parameters β1 and β2 to be centred at 1 such
that E[β1] = E[β2] = 1. The parameters β1 and β2 both follow a log-normal distribution,
hence, we take μ2 = E[τ2] = −m

2 and μ3 = E[τ3] = − n
2 to guarantee it.
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To calibrate the covariance matrix, the following values of the hyperparameters
were tried.

M ={0.5, 1, 1.3, 1.4, 1.5, 1.6, 2, 2.5, 5}
N ={0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1}
P0 ={−0.25, 0, 0.1, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8}
P1 ={−0.25, 0, 0.1, 0.2, 0.25, 0.3, 0.4}

Under the prior distributions in model M1, its hyper-parameter values correspond
to m = 1 and n = 0.1 relating to the variance of β1 and β2; and ρ0 = ρ1 = 0 as all the
parameters in the model are independent. Higher values of m and n relate to higher
variance which indicates a greater level of uncertainty for the parameters β1 and β2,
respectively. Higher positive values of ρ0 and ρ1 reflect a stronger positive correlation
between the two parameters in question, whilst lower negative values of ρ0 and ρ1 reflect a
stronger negative correlation. The values of M and N on the grid were selected so that
the variance of the model parameters could be both increased and decreased compared to
the values in the model M1. The values of ρ0 and ρ1 were selected so that the parameters
could be both positively and negatively correlated.

The final calibrated model M3 uses the hyper-parameter values m = 1.6, n = 0.5 and
ρ0 = ρ1 = 0.3 which corresponds to a weak positive prior correlation in the parameters.
This combination of hyper-parameters provided the highest average PCS across the four
calibration scenarios. This model will be referred to as M3.

5.3. Results

The model M3 was used in a large scale simulation study to assess its ability to
determine the MTC under the scenarios in Table 1. The simulation study setting used was
the same as described in Section 4.1. Again, we use 4000 replication to provide the results.
We compare the model M3 to model M1. A summary of operating characteristics are given
in Table 7.

Table 7. Percentage of correct selection in comparison of 2 dose-finding designs and under the
benchmark (B). Percentage of patients allocated to a true MTC during the trial and percentage of
observed DLTs throughout the trial. GM is the geometric mean and Var is the variance. In the top
third of the table, the highest PCS and those within less than 3% among the dose-finding designs are
shown in bold for each scenario. Results are based on 4000 simulations.

Sc 1 2 2.1 2.2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 GM Var

Percentage of correct selection (PCS)

M1 75 60 38 42 58 55 54 55 41 36 76 57 68 52 59 40 46 31 50.8 165.2
M3 73 60 46 36 57 54 52 55 31 38 76 56 70 51 60 57 44 32 51.1 172.4
B 82 61 49 46 57 54 57 61 46 42 83 65 58 53 50 56 32 41 53.8 166.1

Percentage of patients allocated to a true MTC during the trial

M1 56 40 21 32 38 34 31 36 25 21 48 35 37 33 34 26 19 22 31.4 91.8
M3 56 38 24 26 36 32 30 35 20 20 48 28 36 31 33 31 21 21 30.2 90.9

Percentage of DLTs throughout the trial

M1 36 33 34 34 31 29 28 25 25 27 21 29 31 31 32 32 30 27 29.4 13.2
M3 36 33 35 34 31 30 28 25 25 27 21 29 31 31 32 32 30 27 29.6 14.2

The model M3 has the higher average PCS of the two models of 51.1% compared
to 50.8% for model M1. Both models show a similar variance in PCS across the eighteen
scenarios, however the variance is higher for the model M3 at 172.4 compared to 165.2 for
M1. For 14 scenarios, the PCS for each model is within 3% of the other. In scenarios 2.1, 2.2,
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6.1 and 12, the two models have PCS results that have a difference of greater than 3%. The
model M1 has the higher PCS in scenarios 2.2 and 6.1. Both represent extreme examples
of the dose-toxicity relationship where for scenario 2.2, many of the doses higher in the
combination space are far above the MTC and for scenario 6.1, many of the doses lower in
the combination space are far below the MTC. The largest difference in PCS between the
two is in scenario 12 where it is possible to gain an additional 17% in PCS by selecting the
model M3. At the same time, in scenario 6.1, model M3 has a PCS that is 10% lower than
that of model M1. Comparing the performances to the benchmark, both model results in
the ratio of average PCS of around 94%. Although, the lowest ratio of the PCS compared to
the benchmark is nearly 71% for M1 under scenario 12 and 67% under scenario 6.1 for M3.
Similarly to the findings for M1 above, super-efficiency can still be observed for M3, the
ratio of the PCS is 138% under scenario 13 versus around 144% under the same scenario.

The model M1 on average allocates 31.4% of patients to a true MTC throughout the
trial which is higher than for the model M3 which allocates 30.2%. In 14 scenarios the model
M1 allocates a higher percentage of patients to a true MTC compared to only three scenarios
for the model M3. In one scenario the allocation is the same. The average percentage of
DLTs observed throughout the trial is highly similar for the two models at 29.6% for the
model M3 compared to 29.4% for the model M1. In sixteen scenarios, the percentage of
observed DLTs for each model was within 0.5% of the other and of these sixteen scenarios,
the percentage of observed DLTs was the same for the two models in six scenarios.

Overall, for the operating characteristics we have studied, neither of the two models,
M1 and M3, uniformly outperforms the other. The model M3 has a slightly higher average
PCS so is able to locate a true MTC correctly more often under the scenarios investigated
than the model M1. However, the model M1 allocates a higher average percentage of
patients to a MTC throughout the trial, and allocates a higher percentage of patients to
combinations with toxicity around the target value. The percentage of DLTs observed
throughout the trial is similar for both models where the average values for each model is
close to the targeted value of 30%. For both models, compromises in performance in one
area needs to be made to achieve better performance in another.

6. Sensitivity Analysis: Different Sample Sizes

The results above concerned the setting with a sample size of up to N = 60 patients
enrolled in the trial. One can argue that the interaction parameter could be fitted more
accurately with such a sample size but not with smaller sample sizes. Therefore, in this
section, we study the behaviour of various models under different sample sizes under all
considered scenarios.

Specifically, we will focus on the calibrated 4-parameter model M0, calibrated 3-
parameter model M1, and calibrated 3-parameter model M3 with joint prior distribution
on model parameters. These were found to result in similar operating characteristics and
provide the most benefit in terms of the PCS while delivering safe designs. We consider
3 sample sizes, N = 60 as before, and lower sample sizes N = 48 and N = 30 and fix the
cohort size to be c = 3 in each setting. Note that the values of prior parameters for each
sample size will be the same for the given model, and these parameters were calibrated for
N = 60 and are given in Sections 4 and 5.

The results for the three model and various sample sizes based on 4000 replications
are given in Figure 1.
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Figure 1. PCS for M0, M1 and M3 models under 18 scenarios and the sample sizes of N = 60, 48, 30.
Results are based on 4000 replications.

Considering the PCS for each model individually, the lower sample size results in
lower mean PCS for all models. The reduction in the sample size from N = 60 to N = 48
results in 5% mean PCS reduction for all three models. Further reduction from N = 48
to N = 30 results in additional nearly 9–11% for all models. Therefore, as expected, the
sample size does have a major impact on accuracy of all model and larger sample sizes
should be advocated for (regardless of the model used) in Phase I combination trials in
order to achieve reliable recommendation of the MTC.

Comparing the models amongst themselves for a given sample size, a similar pattern
as for N = 60 discussed in previous section can be found. The 3-parameter models
perform within 0.5%, on average, for all considered sample sizes and result in higher
mean PCS compared to the M0 model: nearly 1% for N = 60, nearly 2% for N = 48, and
approximately 3–4% for N = 30. As a result, for lower sample sizes, the benefit provided
by the models with fewer model parameters increases. Therefore, the interaction parameter
does not seem to provide benefit in the mean PCS under the considered scenarios and,
on the contrary, was found to result in lower average PCS as sample size decreases. The
variance of PCS for all considered models under three considered sample sizes is similar
across all three methods.

Considering other operating characteristics, the proportion of patients allocated to the
MTC and the average proportion of the DLTs, all of the design performed similarly and the
conclusion for N = 60 stand. We refer the reader to the Supplementary Materials for the
complete set of results for the lower sample sizes.

Overall, under the calibrated prior distribution targeting the highest PCS, the model
with interaction resulted in 1–3% lower PCS across various sample sizes compared to the
model with fewer parameters while resulting in nearly the same performance on other
characteristics.

7. Discussion

In this work, we have conducted an extensive simulation study of various model-based
dose-finding design for combination trials. Firstly, we have proposed a formal calibration
procedure for the hyper-parameters under a given parametric curve to obtain an operation
prior—the prior leads that leads to high PCS across many various scenarios. Applying the
same procedure to each of the models allowed for a fairer comparison between models
with various parameters. This is crucial as by definition, for the same hyper-parameters,
a model with fewer model parameter would bare less uncertainty. We have shown that
the proposed procedure allows for the improvement of the performance of the original
4-parameter model under the considered scenarios—it resulted in slightly higher average
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PCS yet noticeably more consistent performance across scenarios (reflected in the lower
variance of the PCS).

Secondly, it was found that under the considered logistic-type models and the op-
erational prior distributions calibrated to achieve the highest PCS for each model, the
interaction parameters provided no benefit in terms of the PCS but resulted in lower ratio
of the PCS compared to the benchmark than a model with the interaction term. The reduced
number of parameters in the model has also had no negative effect on the performance
under scenarios generated by the model with an interaction parameter only. Given a
lower computations costs needed to calibrate fewer parameters, a logistic model with
3 parameters, the intercept, and a slope corresponding to each compound, is recommended
for the consideration. We have also found that this recommendtion is consistent for various
sample sizes, N = 30, N = 48, N = 60. Importantly, this conclusion is obtained under the
assumption when no reliable prior information on the interaction between the compounds
(i.e., on β3) is available. If, however, such information is available and is indeed correct,
one can expect that the model with interaction parameter can have certain benefits.

Finally, comparing the 3-parameter models, specifying the joint prior distribution for
the model parameters has not provided any tangiable benefit in terms of the PCS. However,
it did result in lower computational costs and, therefore, could be considered in practice to
speed up the calibration process proposed. Again, the conclusion is consistent across the
various sample sizes.

Building on the computation aspect of the proposed calibration, it should be noted
that the procedure is indeed quite computational costly given that it involves a grid search
over each of the parameters. At the same time, the resulting hyper-parameters lead to good
operating characteristics across many scenarios that enabled a more consistent aproach
to the prior choice under the assumption of no prior knowledge about the compounds
that is desired to be incorporated. If the calibration under various scenarios are parallised,
it has found to result in feasible computation time. Moreover, the reader might use the
parameters calibrated as the starting point in the the settings with similar numbers of doses
of the compounds. At the same time, a less computationally demanding (yet reliable)
procedure could be of interest and will be explored in the future.

In this work, we have focused on the comparison of designs that employ various
parametric models for the combination-toxicity relationships but do not have any early
stopping contraints. Constraints for stopping for safety (if all of the combinations are
deemed unsafe) and stopping early for reaching a particular number of patients on one
combination can easily be added.

Importantly, in this work, we have focused on a single form of the parametric curves
for the combination-toxicity relationship—the logistic curve. While one could reasonably
expect similar patterns under alternative parameter forms, this could be checked for a
desirable model when taking a particular design forward in an actual trial. This could be
done in a similar scheme to the simulation study as proposed in this manuscript. At the
same time, the findings of this manuscript would warrant such an exploration.

Finally, the dual-agent setting is considered in this manuscript. However, combination
studies looking at 3 and more agents could also be of interest. The extension of the
proposed parametric model to more than 2 agents can be achieved via including the
variables reflecting each compound. Then, the question will again be whether inclusion of
the interaction terms can provide any benefits in terms of the operating characteristics and
how these interaction should be included (e.g., only pairwise or should be interaction of
3 compounds be considered too). Given the findings of this work, the benefits of including
interaction terms (that would complicate the estimation problem even further) should be
scrutinised. It is also important to mention that the calibration procedure proposed for
the setting more than 2 agents can be even more computational costly and might not be
always feasible. For such cases, alternative (yet robust) approaches to the specification of
the operational prior distribution should be studied.
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8. Conclusions

Our study finds that carefully calibrated prior distributions can result in improved per-
formance of the 4-parameter logistic model used for combination dose-finding. Moreover
we show that only marginal benefits (if any) are seen when using an interaction term in the
combination-toxicity model that are outweight by the additional complexity of the model.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/1/345/s1. Complete set of results for the lower sample sizes.
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Abstract: This paper presents a brief overview of the recent literature on adaptive design of clinical
trials from a Bayesian perspective for statistically not so sophisticated readers. Adaptive designs are
attracting a keen interest in several disciplines, from a theoretical viewpoint and also—potentially—
from a practical one, and Bayesian adaptive designs, in particular, have raised high expectations in
clinical trials. The main conceptual tools are highlighted here, with a mention of several trial designs
proposed in the literature that use these methods, including some of the registered Bayesian adaptive
trials to this date. This review aims at complementing the existing ones on this topic, pointing at
further interesting reading material.

Keywords: adaptive designs; adaptive randomization; Bayesian designs; clinical trials; predictive
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1. Introduction

This paper is a bird’s eye view of the recent literature on adaptive designs of clinical
trials from a Bayesian perspective. Statistics plays a prominent role in the design as well
as the analysis of the results of a clinical study and Bayesian ideas are well received by
clinicians. In their book, Spiegelhalter and his coauthors [1] make a strong case in favour
of Bayesian methods in health care, and in the last two decades Bayesian statistics has
had a large impact in the medical field (see the superb review by Ashby [2]), the more
so as its implementation gets easier thanks to better computational facilities. “Bayesian
clinical trials: no more excuses” is the title of an editorial in Vol 6(3) of Clinical Trials [3]. The
Bayesian approach has a good reputation at producing scientific openness and honesty.

The Bayesian paradigm is especially appropriate at the planning stage of a clinical trial,
when external information, such as historical data, findings from previous studies, and
expert opinions, is often available and awaiting to be made the most of. As Donald Berry
and his colleagues state in [4], we are all Bayesian at the design stage! Health authorities
have issued important statements on the statistical, clinical and regulatory aspects of
Bayesian clinical trials ([5,6]), recently allowing and even advocating the use of innovative
methods, in particular adaptive design; as the editors of this Special Issue point out, most
statistical and biomedical journals have recently hosted proposals of trial designs with a
Bayesian slant, in some cases virtual re-executions of published trials. A search carried out
in PubMed in August 2020 has returned nearly 300 publications (half of them published in
the last decade) which either propose or use Bayesian adaptive methods in the design of a
clinical trial. This may be also thanks to the popularization by Donald Berry [7–11] and
the efforts made by statisticians working in the pharmaceutical industry, one of the main
players in the design of clinical trials, to incorporate Bayesian methods. This is shown in
leading journals in clinical trial methodology, like Pharmaceutical Statistics, The Journal of
Biopharmaceutical Statistics or Biometrical Journal.

Some confusion occasionally arises between the concepts of “Bayesian” and of “adap-
tive” design, because of similarities in the outlook: in the Bayesian paradigm, accrued
data are used to update the prior distribution on the parameters, via Bayes’ Theorem,
and in response-adaptive experiments the accrued data are used at each step, namely
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after each observation or predefined group of observations, to update the next planning
decision. Either approach (Bayesian or adaptive) can stand on its own, and has developed
independently of the other: we clarify this point later.

We are interested in trial designs that are both Bayesian and adaptive. The data
are recursively evaluated during the experiment: the posterior parameter distribution is
recursively updated and used to modify the execution of the trial according to a previously
established rule. The textbook by Berry, Carlin, Lee, and Muller [12] successfully illustrates
Bayesian adaptive methods in clinical research and deals with design issues too. It goes
almost without saying that randomization is a must in a clinical trial (for Bayesians too),
to counteract several types of bias, for instance selection bias.

The subject is advancing fast in many directions and it is impossible to keep up
with all the different threads. Dealing with this topic properly would require several
books. In this paper it has been chosen to focus on the methodology, followed by several
examples of instances in which the methods are applied. The subject matter is organized as
follows: Section 2 is a general discussion of Bayesian designs. In Section 3 we summarize
the theory of response-adaptive designs from the frequentist viewpoint, with emphasis
on their importance in clinical studies. Moving on to Bayesian adaptive trial designs,
Section 4 deals with the different methodological approaches (utility-based, probability-
only, predictive) and their use for randomization, sample size determination and early
stopping. Section 5 reports examples from the literature. Section 6 lists some well-known
real life trials performed according to a Bayesian adaptive design. In Section 7 we mention
the on-going debate on the relevance of response-adaptive randomization designs in
clinical trials, although at present the controversy is not directly addressed to Bayesian
methods. Conclusions are drawn in Section 8.

2. Bayesian Designs

To start with, the very meaning of the term “Bayesian design” has to be contextualized.
It is important to specify whether the Bayesian approach relates just to the pre-experimental
plan, or to the analysis of the data as well. Because “Bayesian” is sometimes taken to mean
“subjective”, for clinical trials an “objective” data analysis is often preferred. In clinical
trials in particular the operating characteristics of the design often include the power
of some statistical test, strictly speaking a non-Bayesian feature. So some studies are
hybrid: the inference is frequentist, but a prior probability on the parameters is used at
the design stage. Several authors, for example Ventz et al. [13] have presented ways of
combining Bayesian models and frequentist analyses in clinical trials. At the start, design
issues were neglected by Bayesian statisticians, but Bayesian design has latterly become
a well-established subdiscipline, as shown by the outstanding number of quotations of
Chaloner and Verdinelli’s [14] paper throughout the years. Unfortunately, that review has
never been updated, and does not mention the topic of adaptive design, which at the time
was only beginning to appear in the literature.

As is well known, in the Bayesian model-based paradigm, the parameters of the
model are treated as random quantities and the a priori knowledge about unknown
effects of the interventions is expressed by means of a prior probability distribution on
the model parameters. In the non-adaptive case, the experiment is designed entirely
before the new data are acquired, and its performance may depend on the data still to be
observed The fully Bayesian way to designing the trial would be a utility-based one, in
accordance with Lindley [15]. In the model-based approach, the utility U will be a function
of the experimental plan, the data y, and the model parameter values θ. A design action
(deterministic or randomized) is chosen so as to maximize the expectation of the utility
function with respect to the joint distribution of the parameters and the future data.

In the eighties Smith and Verdinelli [16], Giovagnoli and Verdinelli [17] and Chaloner [18]
proposed Bayesian designs that maximize the precision of the posterior distribution of the
treatment effects under a linear statistical model. For non-linear models, Chaloner and
Larntz [19] suggested choosing the design that optimizes the expectation, with respect to
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the parameters’ prior, of one of the well-known design criteria: the best known ones—the
so-called D-optimality and trace-optimality for instance (“Optimal design” [20])—have also
Bayesian interpretations. Since optimality criteria are functions of the Fisher information
matrix, which is already an average over the possible responses, this approach too is not
conditional on the data. This suggestion has become very popular and keeps being used in
the literature, with many variants, not all of which are entirely convincing.

It should be stressed that the choice of a suitable utility function is related to the
objectives of the trial. The specification of the function U is certainly demanding, as various
aspects of the decision context have to be formally quantified. The main purpose of any
experiment is obviously inference. Even if the subjects are patients, the main goal of
a trial is knowledge, not healthcare, so the expected gain in information is a relevant
component of U . In the past, designs for Bayesian analysis of the data would mostly choose
utility functions based on Shannon information or on a quadratic loss. Nowadays, it is not
uncommon to find Bayesian designs motivated by the precision of the estimates and power
of the tests, in view of the fact that the experimental data will be analysed by frequentist
tools. On the other hand, in a clinical trial the utility function may also need to reflect
care for the subjects involved in the experiment. An opposite, rather extreme, example
in the binary response case is the 0–1 utility: the gain is 1 for success, 0 for failure, which
takes no account of inference. Since a clinical trial is a multi-objective experiment, the
utility will more likely be a trade-off between several purposes: ethical, inferential and
possibly economic. Verdinelli and Kadane [21] suggested a utility function which is a
linear combination of the total expected value of future observations and the Shannon’s
information of the experiment. Clyde and Chaloner [22] too have proposed weighted
combinations of utility functions, which are still mathematically valid utilities. In this way
optimal designs for multiple objectives can be handled in the decision-theoretic framework,
so long as the utilities are standardized to a comparable scale. For instance with binary
outcomes one of the usual optimality criteria—determinant or trace, standardized—can be
combined with the percentage of expected successes. Clyde and Chaloner [22] show that
this approach is equivalent to finding the optimal experiment under one (primary) criterion
subject to constraints on the minimal efficiency of the experiment under criteria for other
objectives. The weights will be chosen by the experimenter to reflect the relative importance
given to each utility component: it is advisable that the ethical and/or economic impact
should not completely outweigh the inferential goal.

Bayesian non-adaptive design has had numerous applications in clinical trials up to
the end of the nineties and beyond, as shown in the paper by Ashby [2].

3. Adaptive Designs: The Frequentist Approach

Response-adaptive—or simply adaptive—experiments are those in which the accrued
data and the past allocations are used at each step to choose how to perform the next obser-
vations, according to pre-established rules. In statistics, “response-adaptive” (sometimes
also “flexible”) is a technical term. It means a predefined step-wise sequential algorithm
which prescribes the modalities of the next step as a (deterministic or probabilistic) function
of the accrued data. The choice of the pre-established rule is an essential part of the design—
as indicated by the FDA [6]— and must be taken into account to draw correct inferences.
Response-adaptive design does not mean simply that at any stage you may want to change
your plans. It should be stressed that the updating process of an experiment cannot take
place in a haphazard manner, which could undermine the ensuing statistical analysis of the
data. Typically it could lead to miscalculating the variance of the estimates or to drawing
wrong conclusions. Burman and Sonesson [23] give a very clear-minded discussion. Thus
the correct design of adaptive experiments poses challenging statistical problems: because
of the dependence on the past data, the design itself will be a stochastic process, whose
realization is the sequence of actual assignments of the experiment.
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A good introduction to adaptive designs is Chapter 1 of the collective volume edited
by Pong and Chow [24]. It is useful to distinguish among the different types of adaptation
useable in clinical trials:

(1) Adaptive allocation rule—change in the randomization procedure to modify the
allocation proportion.

(2) Adaptive sampling rule—change in the number of study subjects (sample size) or
change in study population: entry criteria for the patients change.

(3) Adaptive stopping rule—during the course of the trial, a data-dependent rule dictates
whether and when to stop for harm/futility/efficacy.

(4) Adaptive enrichment: during the trial, treatments are added or dropped.

A more detailed classification is the one by Huskins et al. [25]. All types of adaptation
may also take into account covariates, i.e., the patient’s prognostic factors/biomarkers.
Adaptation may aim to ensure approximate balance of categorical covariates between the
treatment arms in randomization (minimization and stratified randomization methods)
or to best suit the characteristics of the subjects in the trial, when the covariates are of the
“predictive” type, namely they interact with the treatments.

Despite the intricacies of the theory, including whether inference should be conditional
on the design or unconditional as Baldi-Antognini and Giovagnoli point out [26], adaptive
methods are attractive to experimenters: they look and sometimes are more flexible,
efficient, ethical and/or economical, and proceeding sequentially seems to reflect real
life practice. Among the possible applications, at present the clinical ones are playing a
prominent role, to the point that response-adaptive designs are almost identified with
clinical trials, notwithstanding their relevance in other disciplines: experimental economics,
computer science, aerodynamics, combustion engineering, psychology, social sciences, and
many others, as a simple search in Google Scholar easily shows. Altogether, adaptive design
seems to be a more congenial perspective for practicing clinicians. Adaptive procedures
are often feasible in clinical trials, in which typically the recruitment of subjects takes
place sequentially, especially when they are healthy volunteers. In particular, they are
fairly frequent in early phase studies, because of the inherently adaptive nature of such
trials. The “steps” may consist of just one observation at-a-time, or more than one, as
explained earlier. They may also represent natural stages of the experiment. Even a two-
stage trial may be regarded as adaptive, if it is ruled in advance what decisions will be
made conditional on the first stage data. Clearly such step-by-step procedures must be
described and justified in the study protocol. A review of the literature unfortunately
shows that some trials described as adaptive report not-so-rigorous ad-hoc adjustments of
the experimental design along the way.

A quick overview of non-Bayesian adaptive designs methods may be helpful, to
present the main ideas. An authoritative starting point is Rosenberger’s 1996 review [27]
but important methodological advances have been made since.

3.1. Dose Finding

Trials for new drug development involve dose-finding. In Phase I we are usually
interested in finding which value of the dosage x will produce a prescribed mean response,
typically a small tolerated amount of toxicity. The experimental problem is essentially
adaptive by its very nature: after each observation a decision has to be taken as to whether
to leave the dosage unaltered for the next cohort or change it. There are the so-called
rule-based designs without assumptions on the dose-toxicity response curve, like the
notorious 3 + 3 rule. I have chosen not to dwell on these non-Bayesian methods, since a
description can be easily found in several books about statistical methods in clinical trials.
Another non parametric method is the Up-and-Down design, in which the assignment rule
of the next patient involves a random component: see for instance Baldi-Antognini and
Giovagnoli [26] for the theoretical properties. Surprisingly, only few developments of the
Up-and-Down incorporating Bayesian ideas have taken place.
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In the parametric set-up, the mean response is modelled as a smooth increasing
function Q(x, θ) of the dose, depending on an unknown vector parameter θ. Frequent
choices for Q(x, θ) are the logistic quantile function and the probit function. The parameter
θ can be recursively estimated through Maximum Likelihood. The design problem is how
to modify the doses efficiently each time.

Adaptive ideas show their potential also in “seamless” designs for Phase I and Phase
II simultaneously ([28]), or Phase II together with Phase III ([29]).

3.2. Response-Adaptive Randomization

When equal allocation to the treatment arms was regarded as optimum, the only ac-
cepted randomization rule with two treatments was “tossing a fair coin”. Since Efron ([30]),
randomization schemes that move away from the traditional equal allocation have gained
consent. Efron’s Biased Coin is a randomization rule skewed in favour of the under-
represented treatment(s), regardless of the data; response-adaptive randomization, on the
other hand, is a “biased coin” that skews the allocations using the accrued data, usually to
favour the best performing treatment. An important introduction to the mathematics of
response adaptive randomization in clinical trials is the book by Hu and Rosenberger [31].

For two treatments A and B with binary responses and pA and pB success probabilities,
basic methods are the well-known Play-the-Winner and Randomized Play-the-Winner:
see the book by Rosenberger and Lachin [32] for details and also for recent theoretical
developments in adaptive randomization. The modern approach consist in first choosing
an ideal allocation proportion of the treatments—a “target”—obtained by a trade-off
between several purposes: ethical, inferential and possibly economic, as suggested by
Baldi-Antognini and Giovagnoli [33]: see also [34]. Then an adaptive, possibly randomized,
procedure is devised with the property of converging to this target allocation for all values
of the unknown model parameters. Suggested adaptive rules that achieve this purpose
are the Sequential Maximum Likelihood design, the Doubly-adaptive Biased Coin Design
and the Efficient Randomized Adaptive Design (ERADE), which is a response-adaptive
version of Efron’s Biased Coin rule. These are explained, for instance, in Chapter 1 of the
collective book edited by Sverdlov [35] that contains a description of the state-of-the art
in adaptive randomization in clinical trials. The other contributions in the same volume
dwell on further developments.

3.3. Sequential Monitoring

Selecting the sample size is the number one design concern in almost all experiments.
In frequentist statistics the sample size is usually calculated so as to achieve a prescribed
power for the statistical test of interest, under reasonable assumptions for the true state of
nature. An adaptive approach to this problem is typically applied in clinical trials, when
the trial design is in two or more stages. At the end of each stage the appropriate sample
size for the next stage gets re-estimated, making use of the accrued data.

The sample size issue is also related to early stopping, since as is well-known in
clinical trials another approach is to fix a (maximum) number for the sample and include
the possibility to stop earlier, if certain conditions are met. Interim analyses of the data at
predetermined time periods are conducted before the data collection has been completed,
in order to stop the trial early if some of the treatments tested show to be clearly harmful or
clearly useless, or obviously superior. This is the oldest practice in adaptive design, usually
referred to as group-sequential. Decision rules for stopping consist in setting boundaries for a
predetermined test statistic so that some error probability requirements are satisfied. There
is a rich literature on this topic [36–39]. Adaptive early termination has been applied, for
instance, in the recent 2020 World Health Organization Solidarity Trial for COVID-19 [40].

In bio-pharmaceutical experiments the attention has focussed in particular on stochas-
tic curtailment ([41]). The stochastic curtailment rule computes the conditional power,
i.e., the conditional probability that the summary statistics at the end of the trial is in the
rejection region, given the current data available, under the null hypothesis of no effect or
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the alternative hypothesis (a clinically significant difference). This approach is based on a
“prediction”, thus it leans towards the Bayesian philosophy.

Group-sequential designs in general do not consider treatment allocations other than
equal size randomization. For some models, however, Jennison and Turnbull [42] have
shown that response-adaptive randomization can be incorporated into a general family
of group sequential tests without affecting the error probabilities. Zhu and Hu [43] have
studied both theoretical and finite sample properties of designs which combine sequential
monitoring with response-adaptive randomization.

4. The Bayesian Viewpoint in Response-Adaptive Designs

Adaptive designs are (deterministic or randomized) rules that at each stage of the
trial, conditionally on the accrued data, prescribe how to choose the treatment assignments
and/or include new or drop old treatments and/or choose the sample size for the next
experimental stage and/or choose the next patients, and/or decide whether to stop the trial.
In the Bayesian set-up, in order to choose the next step’s or stage’s settings in an optimal
way the design rule makes use of the posterior distribution of the parameters, updated each
time. If the approach is decision-based, the design rule recursively optimizes the posterior
expected utility. Posterior distributions may also be used in more direct ways in the design
of the experiment, without the decision theoretic framework, as we shall see in Section 4.1
about adaptive randomization. In the binary case, posterior probabilities correspond to the
choice of the simplistic utility, where the gain is 1 for success, 0 for failure. An essential
Bayesian tool is also the predictive probability of yet unobserved events, conditional on
past data. Predictive distributions are useful in many adaptive design contexts, like trial
monitoring and also deciding whether to conduct a future trial. Their use is shown in many
clinical contexts in the book by Berry et al. [12].

Recently, Bayesian methods are more and more to be found naturally embedded in
most of the emergent adaptive design ideas: the Continuous Reassessment Method for
dose-finding in Phase I (see Section 5) is a typical example. Important review articles are by
Chevret [44], who searched adaptive Bayesian design in the medical literature up to 2010,
and by Rosner [45], who deals with Bayesian adaptive design in drug development.

Bayesian adaptive designs are sometimes called BAD, not a very exciting acronym!
When the randomization rule is adaptive, they are called Bayesian Adaptive Randomization
(BAR), Bayesian RAR or Bayesian Response-Adaptive Randomization (BRAR); we prefer
Bayesian Adaptively Randomized Designs (BARDs), a much more inspiring acronym.
In the literature there is occasionally a temptation to describe as Bayesian some adaptive
designs that make no use of priors or posteriors, like the Bayesian Biased Coin Design by
Atkinson and Biswas [46].

4.1. Bayesian Adaptive Randomization

The need to randomize treatments to patients is mandatory in all clinical trials, and
is used in each Phase whenever possible, although it tends to be studied with particular
reference to Phase III: these are multicenter case-control studies on large patient groups
(300–3000 or more), aimed at assessing how effective the proposed new intervention(s) is
in comparison with the current “gold standard”.

In spite of the popularity of Bayesian adaptive methods, Bayesian adaptive random-
ization for clinical trials does not seem to have been investigated extensively, as pointed out
in the book by Atkinson and Biswas [47]. There is no straightforward Bayesian equivalent
of Play-the-Winner for the case of binary data and two treatments, which is not surprising
since Play-the-Winner is a myopic strategy, based on the most recent result, whereas the
Bayesian paradigm is characterized by its use of all the past data.

The very early paper by Thompson [48] is worth a special mention, because its
Bayesian way to randomization in the binary model—reminiscent of the Randomized
Play-the-Winner, and called “probability only”—is still very popular to this day.
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“If P is the probability estimate (meaning the posterior probability) that one treatment
is better than a second, as judged by data at present available, then we might take some
monotone increasing function of P, say f(P), to fix the fraction of such individuals to be
treated in the first manner until more evidence may be utilised, where 0 ≤ f(P) ≤ 1; the
remaining fraction of such individuals (1 − f(P)) to be treated in the second manner;
or we may establish a probability of treatment by the two methods of f(P) and 1 − f(P),
respectively”. (Thompson, [48])

When f (P) = P this method is referred to as randomized probability matching: it is ethical
from the patients’ viewpoint but pays no attention to inference. However the function
f may be chosen so as to act as a stabilizing transformation, to avoid excess variability
which has a negative effect on the inferential efficiency. It has become customary to take
f (P) and 1 − f (P) proportional to [Pr(pA > pB | y)]υ and [Pr(pB > pA | y)]υ, respectively,
where υ is a positive quantity that modulates the tradeoff between the exploration (gaining
information) and the exploitation (benefit for the patients) aims of the experiment. The
value of υ recommended by Thall and Wathen [49], based on empirical experience, is υ = 1

2 ,
or υ = n/2N, where n is the present sample size and N the total proposed one. Extensions
of the theory allow the progressive reassessment of υ based on interim analysis data.

In principle, the idea of adaptive randomized designs converging to a prescribed target
can be used in a Bayesian context as well. A utility function is chosen and at each step,
a “temporary” target is found by optimizing the posterior expected utility. This pseudo-
target—which is conditional on the data and gets updated each time—will be used, possibly
after a suitable transformation, as the allocation probability of the randomization scheme.
The intuitive meaning is to try to allocate the treatments—at each step—in the way that is
optimal according to the present information. It may be looked at as a Bayesian equivalent
of the frequentist Sequential Maximum Likelihood design mentioned in Section 3.2.

4.2. Sample Size Determination and Early Stopping

Although for a Bayesian analysis of the data in principle there is no need for pre-
planned sample sizes, nevertheless Bayesian design does consider sample size selection,
both for practical reasons and for a potential classical inferential analysis. The prior dis-
tribution of the unknown quantities may be incorporated into finding the appropriate
sample size in more ways than one (utility-based, pre-posterior, ecc.); see for instance [50].
Instead of the conditional power, the predictive power is often used, namely the predictive
probability of rejecting the null hypothesis of no effect, or of no difference among effects:
this approach indicates how the sample size of a clinical trial is to be adjusted so as to claim
a success at the conclusion of the trial with an expected probability. The same ideas can
be used when the trial is planned to be performed adaptively; at the end of each step the
sample size of the next step will be selected.

As to sequential monitoring, Donald Berry [51] and Spiegelhalter and Freedman [52]
were perhaps the very first to suggest the application of Bayesian tools for the decision
to stop the trial before the planned sample size is reached. Monitoring can be based
on the posterior probabilities of the hypotheses of interest, like the posterior probability
that the treatment benefit lies above or below some boundary, or based on the predictive
probabilities of the consequences of continuing the study; the predictive power, namely the
expectation of the power function with respect to the distribution of the true underlying
effect size, is often relevant when deciding on whether to stop a clinical trial for futility.
Useful references are [53,54]. Alternatively, the decision of whether to interrupt the trial
may derive from a proper utility function that quantifies the gain associated with the
consequences of stopping or continuing. A good discussion of the appropriateness of
the different Bayesian decision rules is found in the books by Spiegelhalter et al. [1] and
Berry et al. [12], and in [55].
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5. Suggestions of Bayesian Adaptive Design from the Literature

The best known Bayesian adaptive rule is the Continual Reassessment Method (CRM)
by O’Quigley et al. [56,57] for Phase I: Cheung [58] devotes an entire book to it. It is aimed
at finding a given quantile of the dose-response function Q(x, θ), with θ the unknown vector
parameter. Often the response is toxicity and we are looking for the dose xp* corresponding
to a given maximum probability p* of toxicity, called Maximum Tolerated Dose (MTD).
Given a prior on θ, the expected value of xp* is calculated and the next set of observations
is taken at the dose level nearest to it. The process is then iterated recusively and it can be
proved to converge to the MTD. The main advantage of this design is that the majority of
observations are centered around the dosage of interest.

Many variants of the CRM have appeared over the years to handle different clinical
scenarios, such as separate groups or late-onset toxicity. In particular:

• The TITE-CRM by Cheung and Chappell [59] incorporates the time-to-event of each
patient allowing patients to be entered in a staggered fashion.

• Escalation with Overdose Control (EWOC) by Babb and Rogatko [60]: it is the same as
CRM, except for the use of the αth-quantile of the MTD’s posterior, instead of its mean,
when selecting the next dose. This allows rapid dose escalation while controlling the
probability of exceeding MDT. The extension of EWOC to covariate utilization permits
personalization of the dose level for each specific patient.

• The STARPAC design [61] uses a traditional rule-based design until the first patient
has a dose limiting toxicity and then switches to a modified CRM.

• Yin and Yuan [62] use the rather controversial idea of averaging the statistical model
with respect to the parameter prior in conjunction with the Continuous Reassess-
ment Method.

Still about dose-finding trials of Phase I with a binary toxicity endpoint, examples of
Bayes design rules obtained in a decision theoretic framework are:

• The modified Toxicity Probability Interval (mTPI) design [63]. The decision to escalate
or de-escalate the dose is made by partitioning the probability interval into three subin-
tervals. The posterior probability that p* is in each subinterval is calculated, divided by
the width of the subinterval. The interval with the highest posterior probability mass
dictates the dose decision for the next patient. The mTPI possesses desirable large- and
small-sample properties. These designs are compared in a numerical study in [64].

• The Adaptive Bayesian Compound Design by McGree et al. [65]: the authors use a
compound utility functions to account for the dual experimental goals of estimating
the MTD and addressing the safety of subjects.

Bayesian optimal design theory is used adaptively in a two-stage Phase I design by
Haines et al. [66].

There has been a widespread use of Bayesian response-adaptive randomization methods.

� Thompson’s idea for adaptive randomization, extended from the case of two treatment
arms to several arms, has been applied by Thall, Inoue and Martin [67] to the design
of a lymphocyte infusion trial.

� Under a beta-binomial model, Yuan, Huang and Liu [68] design a trial for leukemia.
The randomization assigns an incoming patient to the treatment arm such that the im-
balance of a prognostic score across the treatments is minimized. This score depends
on an unknown parameter whose posterior mean is continuously updated during the
ongoing trial.

� Still for the Beta Binomial model, in Giovagnoli [69] the trace criterion is used as the
utility function and a recursive “biased coin” is found that maximizes the posterior
utility. The sequential randomized treatment allocation is shown to converge to
Neyman’s classical target, namely the optimal one according to the trace criterion.

� Under the same model, Xiao et al. [70] have defined a Bayesian Doubly-adaptive
Biased Coin Design, using the posterior probabilities of pA > pB and of pB > pA, for the
target and an assignment rule similar to the ERADE mentioned in Section 3.2. They
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derive some asymptotic properties of their Bayesian design, namely convergence and
asymptotic normality of the allocation proportion.

� Giovagnoli and Verdinelli [71] choose a recursive target that optimizes the posterior
expectation of a compound utility function and the ERADE algorithm for convergence.

Turning to sample size determination and early stopping, sequential stopping is
mainly associated with Phase II trials, but as early as 1994, Thall and Simon [72] developed
a design with continuous monitoring until a high posterior probability is achieved that a
drug is promising or that it is not promising, or until reaching the maximum sample size.
This idea has been further refined and modified by a multitude of authors.

• Wang [73] predicts how the sample size of a clinical trial needs to be adjusted so as to
claim a success at the conclusion of the trial with an expected probability.

• An interesting evaluation paper is by Uemura et al. [74].
• Continuous monitoring by means of predictive probabilities is given by Lee and

Liu [75]: for the binary case, under a beta-binomial model, and a given maximum
sample size, they recursively calculate the predictive probability of concluding the
study rejecting the hypothesis of no efficacy of the new treatment. They search for the
design parameters within the given constraints such that both the size and power of
the test can be guaranteed.

• Yin, Chen and Lee [76] have coupled Thompson’s adaptive randomization design
with predictive probability approaches for Phase II.

• Zhong et al. [77] introduce a two-stage design with sample size re-estimation at the
interim stage which uses a fully Bayesian predictive approach to reduce an overly
large initial sample size when necessary.

Decision-theoretic methods have been applied in this context too, for example by
Cheng and Shen [78] for a comparative two-armed clinical trial. They specify a loss function,
based on the cost for each patient and the costs of making incorrect decisions at the end of
the trial. At each interim analysis, the decision to terminate or to continue the trial is based
on the expected loss function while concurrently incorporating efficacy, futility and cost.
The maximum number of interim analyses is determined adaptively by the observed data.

6. Bayesian Adaptive Designs in Registered Trials

Adaptive designs are mathematically sophisticated instruments. Their development
is fairly recent, and the split that can be observed between theory and practice is not at
all surprising. There are several obstacles—both technical and practical—to launching
an adaptive trial, beyond the significant time and effort required by any clinical trial.
Among other things, adaptive design requires updating information on accrued data, the
speed of acquisition may be highly variable so there is the need to identify short-term
endpoints that can be used to accurately predict treatment responses such as long-term
mortality in terms of a gold-standard endpoint. The steps required to establish this type
of design in a novel context are indeed fairly complex, as some case studies show (see
for instance Mason et al. [79]. As to the Bayesian approach, this may include specialized
software programs to run the study design, only made possible by recent advancements in
computational algorithms and computer hardware ([80]).

Nevertheless, it is worth remarking that the philosophy of Bayesian adaptive designs
has already made its way into the clinic. They are now fairly well established in cancer
research ([10]), and to a lesser extent, in other clinical areas. As well as single study designs,
Bayesian adaptive methods are being employed to build “platform” designs (Adaptive
Platform Trials). These are trials for simultaneous testing of multiple treatment strategies in
separate groups, with plans to discontinue any group that is definitively inferior at planned
interim analyses. Trial patients are enrolled in a continuous manner via a common master
protocol, with interventions entering and leaving the platform on the basis of a predefined
decision algorithm. Several Adaptive Platform Trials are now funded in various disease
areas (see Angus et al. [81], Brown et al. [82] and Talisa et al. [83] for a discussion).
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The following is a non-exhaustive list of recent or still on-going clinical trials that
incorporate Bayesian adaptive design features:

• The Randomized Embedded Multifactorial Adaptive Platform Trial in Community
Acquired Pneumonia (REMAP-CAP): see [84]. It has set-up a sub-platform called
“REMAP−COVID” on which the evaluation of specific treatments for COVID-19
is run.

• Anti-Thrombotic Therapy to Ameliorate Complications of COVID-19 (ATTACC)
(see [85]), similar in purpose to RECAP-COVID.

• GBM AGILE, an adaptive clinical trial to deliver improved treatments for glioblastoma,
now open and enrolling patients ([86]).

• STURDY, a randomized clinical trial of Vitamin D supplement doses for the prevention
of falls in older adults ([87]).

• The SPRINT trial on safety and efficacy of neublastin in painful lumbosacral radicu-
lopathy ([88]).

• SARC009: A Phase II study in patients with previously treated, high-grade, advanced
sarcoma ([89]).

• The SHINE clinical trial for hyperglycaemia in stroke patients ([90,91]).
• The EPAD project in neurology ([92]).
• The BATTLE and BATTLE-2 trials for lung cancer ([93,94]).
• The I-SPY 2 platform for breast cancer chemotherapy ([95]; see also [96–98]).
• A study on Lemborexant, for the treatment of insomnia disorder ([99]).
• A Phase I non-randomized trial of a combination therapy in patients with pancreatic

adenocarcinoma ([100]).
• A first-in-human study of RG7342 for the treatment of schizophrenia in healthy

male subjects ([101]).
• A newly started Phase II trial in Japan for sarcoma ([102]) also shows the utility of a

Bayesian adaptive design.
• A Bayesian response-adaptive trial in tuberculosis is the endTB trial ([103]).
• Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN) was a Bayesian adap-

tive phase 2 dose-response study to establish whether UK-279,276 improves recov-
ery in acute ischemic stroke. The adaptive design facilitated early termination for
futility ([104]).

7. Controversies

There is an on-going debate on adaptive designs in clinical trials. The criticisms are
not addressed specifically to Bayesian methods, nor to the general class of adaptive designs,
but circle around the value of response-adaptive randomization in clinical trials. The much
criticized Michigan ECMO trial (see [105,106]), which took place 35 years ago, is often
advocated to discourage the use of response-adaptive randomization in practice. It is not
an aim of this paper to get involved in these controversies: among the rest, there are still
too many open methodological questions surrounding the use of adaptive designs and
their inference, whether Bayesian or not. On the other hand, it would be unfair not to
mention the existence of this debate.

First of all the usefulness of adaptive randomized design is questioned: Korn and
Freidlin [107] and Yuan and Yin [108] suggest that in the binary case outcome-adaptive
randomization might not have substantial advantages over fixed-ratio when the response
rate of the experimental treatment is not substantially higher than that of the standard
treatment. Berry [109], however, disproves their conclusion. Korn and Freidlin [110]
examine further the negative effects of response-adaptive randomization in some well-
known trials. Lee, Chen and Yin [111] give a balanced view, as the result of extended
simulations.

Another issue is whether adaptive randomization designs are ethical: Hey and
Kimmelman [112] and Wathen and Thall [113] argue that the chance that adaptive ran-
dom allocation will assign more patients to an inferior arm is too high. Other authors
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(Wason et al. [114]) worry that these designs may be too complex for use and that standard
analysis methods of analyzing results from adaptive trials are valid only asymptotically.
Another main concern is bias from temporal trends ([115]).

In conclusion, Thall, Fox and Wathen [116] state that adaptive randomization produces
inferential problems that decrease potential benefit to future patients, and may decrease
benefit to patients enrolled in the trial. These problems should be weighed against its puta-
tive ethical benefit. For randomized comparative trials to obtain confirmatory comparisons,
designs with fixed randomization probabilities and group sequential decision rules appear
to be preferable to adaptive randomization, scientifically and ethically.

Whereas this controversy has been useful to learn how response-adaptive random-
ization might be used appropriately, for instance by introducing a burn-in period of equal
randomization in some adaptive trials, the class of adaptive designs is really vast, so any
discussion should focus around the value of a specific type of adaptive design in the specific
context for which it is being proposed. Unfortunately, the arguments are often generic
and not applied to the special features of adaptive procedures, as also Villar et al. [117]
underline. In particular, as mentioned in Section 2 about the choice of the utility function,
priorities about the very purpose or purposes of the experiment should be made clear
in advance.

8. Conclusions

“Bayesian adaptive clinical trials: a dream for statisticians only?” asks Chevret [44]. Clearly,
Bayesian adaptive experiments are not easy to design, let alone to implement. For a start,
elicitation of a prior is not a simple matter. In clinical trials it is generally assumed to be
based on historical data. In their book ([1]) Spiegelhalter, Abrams and Myles recommend
attempting both an “enthusiastic” and a “skeptical” prior. On the other hand, Bayesian
statistics exercises greater appeal than frequentist on most applied researchers, and the same
can be said of adaptive design rules. This explains why the presence of Bayesian and adap-
tive design methods combined together has become massive in the biostatistical literature,
notwithstanding the fact that adaptive algorithms are more complex than non-adaptive.

It is this author’s opinion that although there is a widespread consensus that the
Bayesian and the adaptive approaches to design go very well together, the field is still
rather fragmented. The development has taken place in a relatively short time and Bayesian
adaptive designs are still awaiting in-depth investigation. It is a sad state of affairs that
in general there is no sounder way to evaluate the performance of Bayesian (and non-
Bayesian) designs other than by computer simulations. Often the simulation scenarios
are chosen on the basis of the researchers’ personal preferences, so the conclusions may
be debatable.

The book by Yin [118] is a thorough presentation of both Bayesian and frequentist
adaptive methods in clinical trial design, but the two approaches are based on funda-
mentally different paradigms and a comparison of Bayesian and non-Bayesian designs is
possible only in restricted cases. As an example, when several experimental treatments are
available for testing, Wason and Trippa [119] compare Bayesian adaptive randomization,
which allocates a greater proportion of future patients to treatments that have performed
well, to multi-arm multi-stage designs, which use pre-specified stopping boundaries to
determine whether experimental treatments should be dropped. The authors show that in
this case both are efficient, but neither is superior: it depends on the true state of nature.

In conclusion, it is worth quoting the words of Stallard et al. [120]: “Bayesian adaptive
methods are often more bespoke than frequentist approaches . . . They require more design work than
the use of a more standard frequentist method but can be advantageous in that design choices and
their consequences are considered carefully”.
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Abstract: In Bayesian analysis of clinical trials data, credible intervals are widely used for inference
on unknown parameters of interest, such as treatment effects or differences in treatments effects.
Highest Posterior Density (HPD) sets are often used because they guarantee the shortest length.
In most of standard problems, closed-form expressions for exact HPD intervals do not exist, but they
are available for intervals based on the normal approximation of the posterior distribution. For small
sample sizes, approximate intervals may be not calibrated in terms of posterior probability, but for
increasing sample sizes their posterior probability tends to the correct credible level and they become
closer and closer to exact sets. The article proposes a predictive analysis to select appropriate sample
sizes needed to have approximate intervals calibrated at a pre-specified level. Examples are given for
interval estimation of proportions and log-odds.

Keywords: bayesian inference; highest posterior density intervals; normal approximation; predictive
analysis; sample size determination

1. Introduction

The use of Bayesian methods for design, analysis and monitoring of clinical trials is
becoming more and more popular. For instance, in some recent contributions [1,2] the
Authors note that “compared with its frequentist counterpart, the Bayesian framework has
several unique advantages, and its incorporation into clinical trial design is occurring more
frequently.” Acknowledgements have been arriving also from official institutions. In 2010
FDA, recognizing the merits of Bayesian inference, authorized and encouraged its use in
medical device clinical trials. Similarly Bittle and He observe that “ [...] in a major shift, the
American College of Cardiology and American Heart Association have recently proposed
using Bayesian analysis to create clinical trials guidelines” [3].

There are at least two main motivations for using Bayesian methods. The first is that,
unlike frequentist analysis, the Bayesian approach allows the integration of information
from a current experiment with pre-trial knowledge. The second advantage is that Bayesian
inferential methods are derived from probability distributions that are directly defined
on the quantity of interest in the trial (i.e., the parameter). This makes communication
between statisticians and experts in the field much more effective than it is when frequentist
methods are employed.

With no significant loss of generality, suppose we are concerned with inference on
the unknown effect of a new treatment, that we assume to be our parameter of interest.
Bayesian methodology is based on elaborations of the posterior distribution of the pa-
rameter, which merges pre-experimental knowledge (i.e., the prior distribution) and trial
information (i.e., the likelihood function) on this parameter via Bayes theorem. Inferential
tools—such as point estimates, set estimates or test statistics—are simply special func-
tionals of the posterior distributions. Nowadays analytic and computational methods for
handling complex Bayesian problems are available, even in high dimensional settings.
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Nevertheless, the availability of closed-form expressions makes the use of Bayesian analysis
more accessible also to non-statisticians. For this reason a relevant part of the available
Bayesian literature in clinical trials resorts heavily to normal approximations [4].

Interval estimation is one of the most common techniques used to summarize infor-
mation on an unknown parameter. Bayesian inference usually relies on exact Highest
Posterior Density intervals (HPD). The (1 − γ)-HPD interval is the subset of the parameter
space of probability (1 − γ) whose points have density higher than the density of any
value of the parameter outside the interval. When the posterior distribution is symmetric,
HPDs are also equal-tails (ET) intervals, i.e., they are limited respectively by the γ/2 and
the 1−γ/2 quantiles of the posterior density of the parameter. HPDs are, typically, not easy
to compute, but of minimal length among intervals of given credibility. For a predictive
comparison between HPDs and ETs see [5]. Explicit closed-form expressions for the bounds
of common exact credible intervals are in most of the cases, not available even in very
common models. However, their computation can be simplified by approximating the
exact posterior distribution with a normal density and finding the equal-tails intervals,
i.e., the γ/2 and the 1 − γ/2 quantiles of the approximated (symmetric) normal density.

In many standard models the posterior density has a unique mode internal to its
support. The degree of skewness of the posterior distribution with respect to its mode
depends on the shapes of the likelihood function and of the prior distribution [6]. As
shown in Figure 1 asymmetry affects the quality of approximate credible intervals that
in general may differ substantially from exact HPDs. This means that, in general, for
approximate intervals: (a) their actual posterior probability is not equal to the nominal
credibility of the exact interval; (b) they are not the shortest intervals among those of given
posterior probability.
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Figure 1. Posterior density, given a prior density of hyperparameters (α, β) = (10.8, 9.2), and likelihood approximation,
given x̄n = 0.45 (top row) and x̄n = 0.8 (bottom row) for n = 10 (left column) and n = 100 (right column). Exact credible
intervals (HPD: Highest Posterior Density) are denoted by empty circles, likelihood approximated credible intervals (LNA:
Likelihood Normal Approximation) are denoted by black circles. The probability that θ belongs to the approximate interval
under the exact posterior distribution is highlighted in grey.
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Under standard and fairly general conditions [7], the degree of asymmetry of the
likelihood function is strictly related to the sample size: as the number of experimental
units increases, the shape of the likelihood becomes closer and closer to a Gaussian function
whose mode is the maximum likelihood estimate and whose precision is measured by
the square root of the observed Fisher Information [8]. Likelihood normalization carries
along the same tendency of the posterior distribution and, for sufficiently large sample
sizes, the posterior density can be approximated by a normal density with data-dependent
parameters. This is the so-called Bayesian Central Limit Theorem. As a consequence, as the
sample size increases, exact and approximate intervals become closer and closer and the
accuracy of approximate intervals improves.

Example 1 (Single arm phase II trial). Let us consider an example for binary data,
where θ is the probability of response to a treatment. The setup, the choice of the prior
hyperparameters and a sensitivity analysis will be fully described in Section 4. A Beta prior
of mean 0.54 is considered. Figure 1 shows the Beta posterior distributions of θ (solid line)
and their normal approximations based on the likelihood (dotted line) for four different
data sets. It also reports bounds of approximate intervals (black circle) and of exact HPD
intervals (empty circles). Gray areas highlight the probability of the approximate intervals
w.r.t. the exact posterior probability distributions. More specifically, when comparing
right panels (n = 100) and left panels (n = 10) better approximations of the posteriors
are observed, due to the larger sample size. Furthermore, the comparison between the
two rows of panels (sample mean x̄n = 0.45 and x̄n = 0.80, respectively) shows that
the distance between the posterior mode and the likelihood mode (i.e., the maximum
likelihood estimate) affects the quality of the approximation: in this example, the larger the
difference, the greater the discrepancy between exact and approximate intervals.

The problem we discuss in this paper is the selection of the minimal number of
observations to obtain approximate sets that are sufficiently accurate. This sample size
determination (SSD) problem is addressed from a pre-posterior perspective, i.e., by taking
into account the randomness of the posterior density and of credible intervals.

In the existing literature besides a very general introduction to credible intervals [6,7,9,10]
one can find reviews on Bayesian SSD in [11–13], articles specifically dedicated to Bayesian
SSD using credible intervals in [14–17] and some contributions focused on binomial pro-
portions, such as [18–20]. Recently, methods that take into account the variability of prior
opinion have been developed: for instance, some contributions [15,21,22] deal with ro-
bustness with respect to the prior distribution, whereas a more recent proposal is about
a consensus-based SSD criterion in the presence of a community of priors [23]. The idea
of controlling the conflict between alternative procedures is also used for point estima-
tion [24,25].

In the framework of Bayesian SSD based on credible intervals, our innovative purpose
is to look for a sample size sufficiently large so that the approximate likelihood interval pro-
vides an accurate approximation to the HPD interval determined from the exact posterior
distribution of the parameter of interest. It is worth recalling that whereas the HPD interval
is obtained from the prior-to-posterior analysis, the likelihood normal approximation is
independent on the prior distribution. In this sense our proposed criterion yields the
smallest sample size such that the role of the prior in the posterior distribution is made
negligible by the information provided by the data. This provides an additional motivation
for our proposal, i.e., to find the study dimension that guarantees a substantial equivalence
between closed-form formulas based on the normal approximation and exact Bayesian in-
tervals, or, conversely, to evaluate the expected discrepancy between approximate intervals
and exact Bayesian intervals.

The paper is organized as follows. In Section 2, after introducing notation, we pro-
pose a measure of discrepancy between exact and approximate intervals to be analyzed
from a preposterior perspective: we select the minimal sample size so that the expected
discrepancy is sufficiently small. Section 3 specifically refers to the Beta-Binomial model
when the paramer of interest is the proportion (Section 3.1) and the logodds (Section 3.2)
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respectively. Section 4 illustrates some numerical examples related to the setup of the
phase II clinical trial of Example 1 and makes comparison with other SSD methods. Finally,
Section 5 contains some concluding remarks.

2. Methodology

Assume that X1, X2, . . . , Xn is a sample from fn(·|θ) (either a density or a probability
mass function), where θ ∈ Θ is an unknown scalar parameter and Θ is the parameter
space. The quantity of interest may be either θ or a relevant function ψ = g(θ). Following
the Bayesian inferential approach, we assume that prior information on θ is available
(from experts or from historical data) and converted in a prior probability density function,
denoted as π(·). Given an observed sample xn = (x1, x2, . . . , xn), let

π(θ|xn) =
fn(xn|θ)π(θ)

m(xn)

be the posterior distribution of θ, where m(xn) =
∫

Θ fn(xn|θ)π(θ)dθ denotes the marginal
distribution of the the data, computed at the observed xn. In the following we assume that
π(θ|xn) has a unique mode.

2.1. Exact and Approximate Intervals

Let C(xn) = [�(xn), u(xn)] be an exact credible interval of level 1 − γ, that is a subset
of the parameter space such that

P[θ ∈ C(xn)|xn] = 1 − γ. (1)

In the following, we will focus on HPD intervals. C is HPD if

π(θ|xn) ≥ π(θ′|xn), ∀θ ∈ C(xn) and ∀θ′ /∈ C(xn),

or, equivalently, if
C(xn) = {θ ∈ Θ : π(θ|xn) ≥ kγ},

where kγ is such that (1) holds. The values of � and u are the roots of the two equations

π(�|xn) = π(u|xn) and
∫ u

�
π(θ|xn)dθ = 1 − γ,

and they typically do not have a closed-form expression.
In general, π(θ|xn) is not symmetric with respect to its unique mode. Its level of

skewness depends on the constitutive elements of Bayesian analysis—the likelihood
(i.e., model and observed data) and the prior distribution— and it determines the level of
discrepancy between approximate and exact credible intervals. However, as the sample
size increases, the shape of both the likelihood function and the posterior density tend
to become more and more Gaussian. This happens under standard regularity conditions:
(a) the support of the Xi’s does not depend on θ; (b) the derivatives with respect to θ of
likelihood and posterior density at least up to the second order exist; (c) the maximum
likelihood estimate of θ, θ̂, is in the interior of the parameter space [6–8]. More specifically,
for sufficiently large n we have that

θ|xn ≈ N[θ̂, In(θ̂)
−1], (2)

where In(θ) = − d2

dθ2 ln L(θ; xn) is the expected Fisher Information and L(θ; xn) is the
likelihood function. Note that this approximation of the posterior distribution does not
take into account the prior. From Equation (2) the (1 − γ)-likelihood approximate interval for
θ is defined as C̃(xn) = [�̃(xn), ũ(xn)] where

�̃ = θ̂ − z1− γ
2

In(θ̂)
−1/2 and ũ = θ̂ + z1− γ

2
In(θ̂)

−1/2, (3)

40



Int. J. Environ. Res. Public Health 2021, 18, 595

with zε denoting the ε-quantile of the standard normal distribution. As a consequence, as n
increases, any measure of discrepancy between a chosen feature of exact and approximate
intervals tends to become more and more negligible.

When the quantity of interest is ψ = g(θ), under the same regularity conditions stated
above and assuming that the first derivative of g exists and is not equal to 0, the delta
method provides the following normal approximation [26]

ψ|xn ≈ N[g(θ̂), g′(θ̂)2 In(θ̂)
−1], (4)

and the bounds of the (1 − γ) likelihood approximate credible interval for ψ are respectively

�̃ = g(θ̂)− z1− γ
2
· |g′(θ̂)| · In(θ̂)

−1/2 and ũ = g(θ̂) + z1− γ
2
· |g′(θ̂)| · In(θ̂)

−1/2. (5)

2.2. A Measure of Discrepancy and Predictive Analysis

The set C̃ = [�̃, ũ] is calibrated if its exact posterior probability is equal to 1 − γ:

P(θ ∈ C̃|xn) = F(ũ|xn)− F(�̃|xn) = (1 − γ), (6)

where F(·|xn) is the exact posterior cumulative distribution function of the parameter of
interest. The departure from this situation can be measured by∣∣P(θ ∈ C̃|xn)− (1 − γ)

∣∣ (7)

which quantifies the discrepancy between the actual posterior probability of C̃ (the gray area
of each panel of Figure 1 in Example 1) and its nominal value 1 − γ. Notice that, under the
typical assumption 0 < γ 
 1

2 , this discrepancy takes values in (0, 1− γ). More specifically,
it is equal to 0 when C̃ is perfectly calibrated and it is equal to 1 − γ when P(θ ∈ C̃|xn) = 0.
Hence, a relative measure based on (7) is

P(xn) =

∣∣P(θ ∈ C̃|xn)− (1 − γ)
∣∣

1 − γ
(8)

Before observing the data, P(Xn) is a random object. Therefore the progressive
calibration of C̃(Xn) can be studied by looking at its expected value

eP
n = Ed[P(Xn)],

that is computed with respect to the sampling distribution of the data fn(·|θd) for a design
value θd. In the following we assume that all the required regularity conditions hold such
that the numerical sequence {eP

n , n ∈ N} converges to zero.
In order to obtain a calibrated approximate interval, we must select the smallest

sample size such that eP
n is sufficiently small. More formally, for a suitable threshold εP > 0,

n�
P = min{n ∈ N : eP

n < εP}. (9)

In some cases the values of eP
n can be obtained with exact calculations. More often

they are obtained via Monte Carlo (MC) simulation. In the latter case, for each sample size
n and design value θd, we proceed according to the following steps:

(i) draw N samples xn
(1), . . . , xn

(N) from fn(·; θd);
(ii) compute �̃(xn

(j)) and ũ(xn
(j)), for j = 1, . . . , N;

(iii) compute P(xn
(j)), for j = 1, . . . , N;

(iv) set eP
n � ∑N

j=1 P(xn
(j))

N ;
with a large number of draws, e.g., N = 10000.
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In the following example, in order to assess the discrepancy between C̃ and C we also
consider the absolute distance between their bounds

B(xn) = |�̃(xn)− �(xn)|+ |ũ(xn)− u(xn)|

and we compare n�
P with

n�
B = min{n ∈ N : eB

n < εB}, (10)

where
eB

n = Ed[B(Xn)],

and εB > 0 is a chosen threshold. Note that, unlike P(xn) (and eP
n ), the discrepancy B(xn)

(and eB
n ) depends on the unit of measurement of the data and its range is case-specific.

Therefore the choice of εB is a critical issue, unless the parameter space is bounded (as in
Example 1 where the parameter space is (0, 1)). Similar measures of discrepancy based on
the bounds of credible intervals have been recently proposed [23].

3. Examples: The Beta-Binomial Model

In order to illustrate the ideas sketched above we now consider an example within
the Beta-Binomial model. Let Xi|θ ∼ Ber(θ), i = 1, . . . , n (i.i.d.), θ ∈ (0, 1) and θ ∼ Be(α, β),
α, β > 0. Then, from standard results [6], θ|xn ∼ Be(ᾱ, β̄), where ᾱ = α + sn, β̄ = β + n − sn
and sn = ∑n

i=1 xi. In the following we first analyze credible intervals for θ and then for the
log-odds ψ = g(θ) = ln θ

1−θ .

3.1. Credible Intervals for a Proportion

In this model exact HPD credible intervals for θ do not have closed-form expressions.
However, HPD bounds are easily obtained using the hdi() function of the HDInterval
package of R, [27], which simply requires the R function qbeta() in input. Conversely, closed-
form expressions for approximate intervals are easily obtained as follows. Recalling that
θ̂ = x̄n and In(θ) = n

θ(1−θ)
, from Equation (3) the bounds of the likelihood approximate

interval are

�̃ = x̄n − z1− γ
2

√
x̄n(1 − x̄n)

n
and ũ = x̄n + z1− γ

2

√
x̄n(1 − x̄n)

n
.

3.2. Credible Intervals for the Log-odds

As before, exact credible intervals for ψ do not have a closed-form expression.
HPD bounds can be otained via MC simulation as follows:

(i) draw θ(1), . . . , θ(M) from the posterior Beta density, where M is a large number;
(ii) compute ψ(j) = g(θ(j)), for j = 1, . . . , M;
(iii) use the R function HDInterval::hdi with the MC draws ψ(1), . . . , ψ(M) in input.

Closed-form expression of approximate credible intervals for ψ are obtained from
Equation (5) noting that

g(θ̂) = ln
x̄n

1 − x̄n
and g′(θ̂) = 1

x̄n(1 − x̄n)
.

Specifically, we have

�̃ = ln
x̄n

1 − x̄n
− z1− γ

2
·
√

1
nx̄n(1 − x̄n)

and ũ = ln
x̄n

1 − x̄n
+ z1− γ

2
·
√

1
nx̄n(1 − x̄n)

.

Note that in the Beta-Binomial model the values of eP
n can be obtained using either

exact calculations or MC simulations as described in Section 2.2.
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4. Application to Clinical Trials

Let us assume that in an early phase trial we are interested in estimating the rate
of response, θ, to an experimental treatment using a credible interval. As in Example 1
we consider the setup of a single-arm phase II trial. Specifically, the goal of the study is
to test the combination of lenalidomideandrituximab in patients with recurrent indolent
non-follicular lymphoma [28–30]. The endpoint is the overall response rate θ̂, that is the
proportion of eligible patients who achieved complete, unconfirmed or partial response.

In the trial conducted between 2009 and 2011, 21 responses were observed out of
39 eligible patients. These hystorical data are used to elicit a Beta prior density for θ.
More specifically, we set the prior mean equal to α/(α + β) = 0.54 and we consider several
values for the prior sample size (i.e., the amount of information contained in the prior)
that for the Beta model is α + β [31]. For illustrative purposes in the following example
we set α + β equal to 5, 10 and 20. Moreover, for comparison, we also consider a uniform
density as non-informative prior (e.g., α = β = 1). The design value θd is set equal to 0.45,
that is the lowest acceptable value for the overall response rate [28]. In order to evaluate
the impact of the design parameter we also consider θd = 0.8 that represents a much more
optimistic design scenario.

Figure 2 shows the behaviour of eP
n for increasing values of the sample size n under

different prior assumptions. Table 1 reports the optimal sample sizes n�
P and n�

B obtained
using criteria (9) and (10) for several choices of the prior hyperameters, when θd = 0.45 and
θd = 0.8, given εP = εB = 0.01 (i.e., 1% of the width of the parameter space). Table 1 also
contains the optimal sample sizes obtained using the Average Length Criterion ALC [13],
given a threshold for the interval width as small as 0.1, for both exact (n�

L) and approximate
intervals (n�

L̃
).
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Figure 2. Plots of eP
n as a function of n for several values of the prior hyperparameters (α, β), with θd = 0.45 (left column)

and θd = 0.8 (right column).

The most relevant comments are the following.

1. Effect of sample size. As expected, the values of eP
n decrease as n increases and depend

on the specific choices of α, β and θd as commented in the following remarks.
2. Effect of prior sample size. For each value of n, the larger α + β, the greater the values

of eP
n . In fact, as the prior becomes more and more concentrated around the prior

mean 0.54, the weight of the prior in the posterior distribution increases with respect
to the role of the likelihood. This makes the discrepancy between Bayesian exact
intervals and their likelihood approximation more striking. Moreover, when the
uniform non-informative prior is considered, the smallest values of eP

n are observed
(see solid line in Figure 2). As a consequence, larger values of the prior sample size
imply greater values of n�

P, as shown in Table 1.
3. Effect of the difference between design value and prior mean. When the distance between

θd and the prior mean α/(α + β) is relatively large and, at the same time, the prior
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sample size α + β dominates n, the posterior mode and the maximum likelihood
estimate are well separated. In other words, Equation (4) does not provide a good
approximation of the posterior density of θ. This explains the larger values of eP

n ,
in the right panel of Figure 2, where |θd −E(θ)| = 0.35, with respect to those observed
in the left panel, where |θd − E(θ)| = 0.09. As before, the effect of the difference
between design value and prior mean on eP

n also reflects on the values of the optimal
sample sizes reported in Table 1. For instance, under the most informative prior,
if |θd − E(θ)| = 0.09, then n�

P = 182; conversely, when |θd − E(θ)| = 0.35, a huge
number of experimental units (e.g., n�

P = 2911) is required to have a sufficiently small
expected discrepancy.

4. Comparison with n�
B. As expected, the trend of n�

B w.r.t. to (α, β) and θd is consistent
with that of n�

P.
5. Comparison with ALC. For each θd, n�

L becomes slightly smaller when the prior sample
size gets larger and the corresponding posterior is more concentrated (see Table 1).
Conversely, since approximate intervals do not depend on the prior, n�

L̃ is not affected
by the choice of prior hyperparameters. Furthermore, when the design value is closer
to the boundary of the parameter space, the posterior distribution and, consequently,
its approximation, become more concentrated, yielding shorter intervals. Hence the
values of n�

L and of n�
L̃ are uniformly smaller for θd = 0.80 than for θd = 0.45.

It is interesting to note the opposite impact of the prior sample size α+ β on n�
P and n�

B
on the one hand, and on n�

L on the other hand. In fact, larger values of α+ β determine
shorter intervals and smaller values of n�

L. On the contrary, when θd �= E(θ), a more
concentrated prior implies a more remarkable discrepancy between the posterior and
its likelihood approximation and, consequently, yields greater values of n�

P and n�
B.

Table 1. Optimal sample sizes for several choices of the prior hyperameters and of the design values,
given εP = εB = 0.01 and εL = 0.1.

θd (α, β) (1, 1) (2.7, 2.3) (5.4, 4.6) (10.8, 9.2)

0.45 n�
P 49 80 119 182

n�
B 42 96 180 347

n�
L 265 262 257 247

n�
L̃

267 267 267 267

0.80 n�
P 35 118 646 2911

n�
B 91 228 482 992

n�
L 170 169 169 167

n�
L̃

172 172 172 172

One of the drawbacks of approximate intervals for θ is that it is not guaranteed that
(�̃, ũ) ⊆ [0, 1]. A common solution in the applications is to trasform the parameter into
the log odds scale so that the normal approximation of the posterior improves. As an
example we implemented the credible intervals introduced in Section 3.2. Figure 3 shows
the behavior of eP

n as a function of n for the same choices of hyperparameters and design
values used in the previous example. Similar remarks apply.
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Figure 3. Plots of eP
n as a function of n for several values of the prior hyperparameters (α, β) with θd = 0.45 (left panel) and

θd = 0.8 (right panel), when the logodds ψ is the parameter of interest.

5. Conclusions

The control of relevant aspects of interval estimates is the starting point for the defini-
tion of several SSD criteria both from the frequentist and from the Bayesian perspective.
For instance, in the Bayesian side, traditional criteria rely on the pre-posterior control of
length and position of credible intervals. In this article we focus on a different request:
we look for a sample size sufficiently large so that the approximate likelihood interval
provides an accurate approximation to the HPD interval determined from the exact poste-
rior distribution of the parameter of interest. Since the likelihood normal approximation
does not depend on the prior distribution, another way to interpret the criterion is that it
provides the smallest sample size such that the role of the prior in the posterior distribution
is made negligible by the information provided by the data. This kind of analysis can be
read in two different ways. On the one side, one can know the number of units needed to
use safely closed-form and handy formulas (those provided by the normal approximation)
in the place of exact Bayesian intervals. On the other hand, a data analyst who uses ap-
proximate intervals instead of exact Bayesian intervals can know the price of this choice in
terms of expected discrepancy.

From another perspective this kind of preposterior analysis allows one to know
what the study dimension should be for a consensus between a Bayesian interval and a
frequentist interval, i.e., a non-informative analysis.

In general, the criterion we propose does not control the main goal of a clinical trial,
that can be, for instance, accuracy of estimation or efficacy/inefficacy of a given treatment.
For this reason, our criterion should be put beside additional criteria specifically related
to the main goal of the trial. For instance in our examples of Section 4 we consider the
optimal sample sizes based on ALC. Then, taking the maximum between the two sample
sizes obtained using the two criteria, one can control both interval length and accuracy
of approximation.

Possible extensions of this work are listed below.

1. Other models. The methodology proposed in the paper can be easily extended to
other models and setups relevant to clinical trials applications. A natural extension is
to two-arms designs for the comparison of two proportions (difference or log odds
ratio), in which the additional issue of units allocation arises [32]. For a predictive
approach to allocation based on the control of posterior variances, see for instance
[33]. See also [5] for related ideas in the Poisson model.

2. Probability vs Expectation. In Section 2.2 we propose to summarize the predictive
distribution of the discrepancy using the expected value w.r.t. fn(·|θd). An alternative
is to take into account the whole probability distribution of P and to determine the
smallest n such that P[P(Xn) > εP] is sufficiently small.

45



Int. J. Environ. Res. Public Health 2021, 18, 595

3. Design prior. For simplicity in this article we have performed preposterior calculations
using the sampling distribution fn(·|θd). An alternative is to consider the so-called
two–priors approach [23,24,30,34]) which avoids local optimality by replacing the design
value with the design prior.

4. Decision-theoretic approach. The approach proposed in the paper is performance-
based. Alternatively one could follow some previous works and rephrase the problem
in a decision-theoretic framework and define a measure of discrepancy based on the
posterior expected loss of C and C̃. We will elaborate on this in the future.
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Abstract: In meta-analysis, the structure of the between-sample heterogeneity plays a crucial role
in estimating the meta-parameter. A Bayesian meta-analysis for binary data has recently been
proposed that measures this heterogeneity by clustering the samples and then determining the
posterior probability of the cluster models through model selection. The meta-parameter is then
estimated using Bayesian model averaging techniques. Although an objective Bayesian meta-analysis
is proposed for each type of heterogeneity, we concentrate the attention of this paper on priors over
the models. We consider four alternative priors which are motivated by reasonable but different
assumptions. A frequentist validation with simulated data has been carried out to analyze the
properties of each prior distribution for a set of different number of studies and sample sizes. The
results show the importance of choosing an adequate model prior as the posterior probabilities for
the models are very sensitive to it. The hierarchical Poisson prior and the hierarchical uniform prior
show a good performance when the real model is the homogeneity, or when the sample sizes are
high enough. However, the uniform prior can detect the true model when it is an intermediate model
(neither homogeneity nor heterogeneity) even for small sample sizes and few studies. An illustrative
example with real data is also given, showing the sensitivity of the estimation of the meta-parameter
to the model prior.

Keywords: bayesian meta-analysis; clustering; binary data; priors; frequentist validation

1. Introduction

Meta-analysis has been widely applied in many research areas and is of particular
importance in healthcare studies. When there exist different randomized controlled clinical
trials (or studies) of a particular medical treatment, a meta-analysis may be conducted to
determine what final conclusion can be drawn on the important question from each study,
the effectiveness of the treatment.

One of the cases that has received more attention in the literature is the meta-analysis
for binary data [1]. On the one hand, because it is very common for effectiveness to be
measured through a binary variable according to whether or not a certain objective has
been achieved (to survive, do not relapse or to reach a low viral load). Charles et al. [2]
found that half of trials calculated their sample size based on a binary outcomes. On the
other hand, binary outcomes have different statistical considerations to using continuous
outcomes. The Bayesian random-effects model for meta-analysis given by Sutton and
Abrams [3] would not be suitable for modeling binary data:

xi ∼ N (θi, τi), i = 1, . . . , k

θi ∼ N (θ, τ), (1)

θ ∼ [−,−] τ ∼ [−,−],
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where xi denotes an observed effect for each of k studies, θ the estimated pooled effect, and
τ2 is an estimate of the between-study variance. For binary data, the preceding normal
hierarchical model has been applied to the logit transformation yi = log[xi/(ni − xi)] with
the reparametrization log[θi/(1 − θi)], where xi denotes the number of successes at the
ith study [4–7]. However, this normal approximation does not work properly when the
samples sizes (ni) are small or when the number of successes is zero, even if a continuity
correction is applied to the original data, as it was shown by Sweeting et al. [8].

Moreno et al. [9] proposed an objective Bayesian meta-analysis model for binary
data in which no continuity correction is required. The Bayesian model proposed for the
study i is based on the binomial distribution {Mi : Bin(xi, θi, ni), π(θi)}, and the linking
distribution between the parameters of each study θi and the meta-parameter θ, π(θi, θ),
belongs to the Fréchet class of bidimensional distributions with fixed marginals π(θi) and
π(θ). The objective Bayesian analysis assumes that these marginals are uniform priors,
Unif(θi|0, 1) and Unif(θ|0, 1).

The model parameters will therefore be the parameters for the k studies, θ1, . . . , θk, and
the meta-parameter θ. However, if some of the θ′i s are equal the dimension of the model
would be reduced. In [10], the authors proposed to study the between-sample heterogeneity
as a model selection problem, clustering the parameters θ1, . . . , θk based on the samples
(x1, n1), . . . , (xk, nk). They adopted a Bayesian approach based on product partition models
proposed in [11,12]. Bayesian model selection process requires the definition of a specific
model prior.

In the absence of information about the models, the uniform prior is the most common
prior assumed in a Bayesian model selection problem. However, this prior does not consider
the structure of the cluster problem and other alternative model priors are possible such as
considering the uniform distribution in each of the hierarchy levels of the clusters, or even
considering the Poisson-Intrinsic prior proposed by Casella et al. [13] which penalizes the
number of clusters. Although all these priors can be considered as not informative as they
do not add new information to that provided by the data, the prior probabilities assigned
to each partition vary. Due to the sensitivity of the estimation of the meta-parameter to the
chosen cluster, we analyze in this paper the characteristics of these model priors and in
which cases each one my be preferable.

A frequentist evaluation is carried out with simulated data, where different number
of studies, sample sizes, and real clusters are considered. The rest of the paper is organized
as follows. The binomial Bayesian model is presented in Section 2, where the Bayesian
procedure for clustering the samples and the likelihood of the meta-parameter are also
given. In this section, the four model priors to be compared will be presented. The simu-
lated data and the results of the frequentist validation are described in Section 3. Section 4
provides one illustrative example with a real dataset. Finally, Section 5 summarizes the
main conclusions drawn and presents some concluding remarks.

2. The Bayesian Binomial Model

Assume a meta-analysis involving k studies that provide k independent discrete sam-
ples which follow a binomial distribution {Bin(xi|ni, θi), i = 1, . . . , k}, where θi represents
the treatment effectiveness, ni the number of patients, and xi the number of successful treat-
ments, conditional on the study i. We assume weak prior information on the conditional
treatment effectiveness θi. Accordingly, the uniform prior Unif(θi|0, 1) is used [14,15]. The
Bayesian sampling model (Mi) for i = 1, . . . , k studies is then given by

Mi :
{

Bin(xi|ni, θi), π(θi) ∝ 1(0,1)(θi)
}

, (2)

where

Bin(xi|ni, θi) =

(
ni
xi

)
θ

xi
i (1 − θi)

ni−xi , xi = 0, 1, . . . , ni, (3)

and 1A is the indicator function that takes a value of 1 to all elements of A, and 0 elsewhere.
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The meta-model is defined by a patient in a virtual study, which is not affected by
between-study variability. The variable x is a binary latent variable and the meta-parameter
θ defines the probability of success for this virtual patient. The distribution of this meta-
variable x is the Bernoulli meta-model Ber(x|θ), where the meta–parameter θ represents
the true (unconditional) treatment effect. The objective Bayesian meta-model M is then
given by

M :
{

Pr(x|θ) = θx(1 − θ)1−x, π(θ) = 1(0,1)(θ)
}

. (4)

2.1. The Linking Distribution

A distribution π(θi|θ) is needed to link the experimental parameters θi and the meta-
parameter θ. This linking distribution should ensure there is coherence between the condi-
tional and marginal distributions of the experimental parameters and the meta-parameter.
This requires that the corresponding bivariate distribution belongs to the class of bivariate
distributions with given marginals. The class of bivariate distributions solving this problem
is called the Frèchet class:∫ 1

0
π(θi, θ)dθi = π(θ) and

∫ 1

0
π(θi, θ)dθ = π(θi). (5)

Following Moreno et al. [9], a candidate π(θi, θ) is constructed using the intrinsic pri-
ors for model selection [16]. The conditional intrinsic linking distributions {π I(θi|θ, t), t =
1, 2, . . .} arises from the model comparison between the meta-model M and the experimen-
tal model Mi. For any positive integer t, the intrinsic method gives the conditional intrinsic
prior as a Beta-Binomial mixture,

π I(θi|θ) =
t

∑
z=0

Bin(z|t, θ)× Beta(θi|z + 1, t − z + 1). (6)

In general, the bivariate intrinsic prior π I(θi, θ|t) enjoys two interesting properties.
One is that it belongs to the Fréchet class with marginals π(θi) and π(θ) following a
uniform distribution. A second one is that the concentration degree of π I(θi|θ, t) around
θ is controlled by the training sample size t, the larger the t the larger the concentration
degree. Note that the correlation coefficient between θi and θ is ρ = t/(t + 1). In practice,
the hyperparameter t is fixed, assuming a large enough correlation between θi and θ. We
assume in our examples a correlation of 0.98, which implies that t = 48. Hence, for the sake
of simplicity in notation, we refer to the linking distribution π I(θi|θ) rather than π I(θi|θ, t).

As it is assumed that θi, i = 1, . . . , k are conditional independent given θ, the linking
distribution of θ1, . . . , θk conditional on θ is given by

π I(θ1, . . . , θk|θ) =
k

∏
i=1

π I(θi|θ). (7)

2.2. Clusters

The previous section assumes that there are k experimental parameters θi, i = 1, . . . , k
to be estimated. However the dimension of the experimental model can be reduced if some
of the θi’s are equal. Following Moreno et al. [10], model estimation in this parametric
setting is a problem of clustering the parameters θ1, . . . , θk, based on the samples x1, . . . , xk
from the experiments. We first define what is meant by cluster. The samples xi and xj, i �= j,
from f (x|θi, n) and f (x|θj, n), respectively, are said to be in the same cluster if θi = θj. The
between-sample heterogeneity is then determined by the number of clusters and by the
location of the samples (x1, n1), . . . , (xk, nk) within these clusters.

To cluster the samples we adopt the product partition model approach proposed by
Barry and Hartigan [12], together with a Bayesian model selection procedure based on
Bayes factors for the intrinsic priors for the model parameters.
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We employ the following notations and expressions in the meta-analysis conducted [13].
For a given p, we define a partition of the samples into p clusters by the vector rp = (r1, . . . , rk),
where ri, i = 1, . . . , k, is an integer between 1 and p denoting the cluster to which xi is assigned.
Figure 1 shows the possible clustering structures for k = 3, and their corresponding rp.

x1x2x3

x1|x2x3
x2|x1x3
x3|x1x2

x1|x2|x3

Homogeneity Type 2–Heterogeneity Heterogeneity

r1 = (1, 1, 1)
r2 = (1, 2, 2)
r2 = (1, 2, 1)
r2 = (1, 1, 2)

r3 = (1, 2, 3)

Figure 1. Clustering structure and different heterogeneity structures with k = 3 studies.

2.3. The Likelihood of θ for a Particular Partition

The likelihood of θ will depend on the partition of the samples. Given a partition
rp = (r1, . . . , rk), the sampling distribution of x = (x1, . . . , xk) given in (2) is

f (x|p, rp, θp) =
p

∏
j=1

(
mj
sj

)
θ

sj
j (1 − θj)

mj−sj , (8)

where θp = (θ1, . . . , θp) is an unknown parameter of dimension p, the component θj in
(8) corresponds to ri = j, and mj = ∑i:ri=j ni and sj = ∑i:ri=j xi are the sample size and
number of success of the cluster j. The likelihood of a particular partition, for example,
r2 = (1, 2, 2), is

f (x|2, r2 = (1, 2, 2), θ2) =

(
n1

x1

)
θx1

1 (1 − θ1)
n1−x1

(
n2 + n3

x2 + x3

)
θx2+x3

2 (1 − θ2)
(n2+n3)−(x2+x3).

The heterogeneity partition rk = (1, 2, 3, . . . , k) has the corresponding likelihood
function given by

f (x|k, rk, θk) =
k

∏
i=1

(
ni
xi

)
θ

xi
i (1 − θi)

ni−xi ,

and the homogeneity partition r1 = (1, 1, . . . , 1) has the corresponding likelihood function
given by

f (x|1, r1, θ1) =

(
∑k

i=1 ni

∑k
i=1 xi

)
θ

∑k
i=1 xi

1 (1 − θ1)
∑k

i=1(ni−xi).

Now, integrating out θp with the intrinsic prior π(θp|p, rp) =
∫

π I(θ1, . . . , θp|θ)1(0,1)

(θ) dθ, we obtain the likelihood of θ, conditional on the cluster model (p, rp) given by

f (x|p, rp, θ) =
p

∏
j=1

∫ 1

0
f (x|p, rp, θp)π(θj|θ) dθj =

= (1 + t)p(1 − θ)tp
p

∏
j=1

Γ(sj + 1)Γ(mj + t − sj + 1)
Γ(mj + t + 2) 3F2(aj, bj,

θ

θ − 1
), (9)

where 3F2(v, w, z) denotes the generalized hypergeometric function with argument z
and vector parameters v and w of dimensions 3 and 2. In this case, the parameters
aj = (−t,−t, sj + 1) and bj = (1,−mj − t + sj) are related with the number of 1’s and 0’s
in cluster j, respectively.
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2.4. The Likelihood of θ the Prior Distribution over the Partitions

To derive the likelihood function of θ we need to integrate out (9) with respect to a
discrete prior on (p, rp). The (unconditional) likelihood of θ for the data x is given by

f (x|θ) =
k

∑
p=1

(
∑
rp

f (x|p, rp, θ)π(p, rp|k)
)

. (10)

The prior distribution on the partitions π(p, rp|k) plays an important role in the esti-
mation of the parameter θ [13]. We consider here four priors on (p, rp) which are motivated
by reasonable but different assumptions. The four selected prior distribution assume the
absence of prior information about the models, but ranges from the assignment of high
prior probability at the boundary p = 1 and p = 4 (homogeneity and heterogeneity struc-
tures, respectively) to other intermediate situations that moderate the a priori assignment
to these two clusters or considers them all equally probable.

• The Uniform prior.
The first prior proposed is the uniform prior (U), which gives the same probability to
every model, that is,

πU(p, rp|k) = 1
Bk

, (11)

where Bk, the Bell number, is the number of subsets a set of size k can be partitioned
into. Figure 2 shows the prior probabilities for each partition when four studies are
considered. In this example, the Bell number is 15. This choice does not take into
account the level of complexity of each partition.

Figure 2. Uniform prior probabilities for the partitions with k = 4 studies.

• The Hierarchical Uniform Prior with 2 levels (HU2).
As recommended by Casella et al. [13], a hierarchical uniform prior can be appropriate
to take into account the different levels of complexity of the partitions. This prior
distribution distinguishes two levels of complexity in the partitions. The first level is
given by the number of clusters p in which the k samples are grouped. The second
level will be given by the number of possible partitions of the k samples into p clusters.
Let Rp represent this set of partitions into p clusters, which we call the cluster class.
The number of partitions in Rp is given by the Stirling number of the second kind
S(k, p) and can be written as
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S(k, p) = ∑
1≤k1≤...≤kp

(
k1 + . . . + kp

k1 · · · kp

)
1

R(k1, . . . , kp)
, (12)

where
(

k1 + . . . + kp

k1 · · · kp

)
is the multinomial coefficient and R(k1, . . . , kp) =

∏k
i=1[∑

p
j=1 I(kj = i)]! corrects the count by considering the redundant strings cor-

responding to the vector (k1, . . . , kp). For instance, to calculate the Stirling number
S(4, 2), there are two possible vectors (k1, k2), the vector (1, 3), and the vector (2, 2),
and the Stirling number would be

S(4, 2) =
(

4
1, 3

)
1

R(1, 3)
+

(
4

2, 2

)
1

R(2, 2)
=

4!
1!3!

1
1!1!

+
4!

2!2!
1
2!

= 4 + 3 = 7, (13)

which is the number of possible partitions for p = 2 and k = 4.
The hierarchical uniform distribution for 2 levels will be given by the decomposition

πHU2(p, rp|k) = π(rp|p, k)π(p|k) = 1
S(k, p)

1
k

. (14)

Figure 3 shows the prior probabilities for each partition using the hierarchical uniform
prior with 2 levels with 4 studies. Note that this hierarchical distribution assigns a
higher prior probability to cases of homogeneity and heterogeneity.

Figure 3. Hierarchical Uniform prior with 2 levels probabilities for the partitions with k = 4 studies.

• The Hierarchical Uniform Prior with 3 levels (HU3).
Following Casella et al. [13] and Moreno et al. [10], the prior specification for (p, rp)
can be decomposed in three levels:

πHU3(p, rp|k) = π(p, rp|Rp;k1,...,kp , k)π(Rp;k1,...,kp |p, k)π(p|k). (15)

Unlike the previous prior distribution, the hierarchical uniform prior with 3 levels
considers the number of ways the integer k can be partitioned into p clusters. We will
call it the number of configuration classes within each Rp and it will be denoted by
b(k, p). In our illustrative example with k = 4, this value is equal to 1 for p = 1, 3, 4
(b(4, 1) = b(4, 3) = b(4, 4) = 1), and only for the cluster class p = 2 there are
two configuration classes, corresponding to the configurations x|xxx and xx|xx, so
b(4, 2) = 2.
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The hierarchical uniform prior with 3 levels is given by the expression

πHU3(p, rp|k) = k1! · . . . · kp!
k!

R(k1, . . . , kp)

b(k, p)
1
k

. (16)

Figure 4 shows the prior probabilities for each partition using the hierarchical uniform
prior with 3 levels and 4 studies.

Figure 4. Hierarchical Uniform prior with 3 levels probabilities for the partitions with k = 4 studies.

• The Hierarchical Poisson Prior with 3 levels (HP3).
Casella et al. [13] argue that when analyzing a cluster problem of a sample size k,
the extreme case of having k clusters should be given a priori a smaller probability
than that given to any other case. Extending this argument for any k, it might be
reasonable that the prior distribution on the number of clusters π(p|k) might be a
truncated Poisson distribution P(p|λ), where λ is an unknown parameter. We can
assume an intrinsic prior π I(λ|λ0 = 1) for λ, constructed by testing the Poisson null
hypothesis H0 : λ = λ0 versus H1 : λ ∈ R+ [17],

π I(λ|λ0 = 1) =
λ−1/2

Γ(1/2)
e−(λ+1)

0F1(1/2, λ) , (17)

where 0F1(1/2, λ) denotes the confluent hypergeometric function. The reason for
taking λ0 = 1 is that the one cluster model is the reference model throughout the
analysis. The resulting marginal intrinsic distribution for p is

π I(p|k) = mI(p)

∑k
p=1 mI(p)

, p = 1, . . . , k, mI(p) =
∫ +∞

0

λpe−λ

p!
π I(λ|λ0 = 1)dλ. (18)

We cannot assume a Poisson distribution for the other two levels of the hierarchical
structure because there is no a clear order in relation to complexity. For this reason,
a uniform distribution is assumed for the other two levels. The hierarchical Poisson
prior will be given by

πHP3(p, rp|k) = k1! · . . . · kp!
k!

R(k1, . . . , kp)

b(k, p)
π I(p|k). (19)
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Figure 5 shows the prior probabilities for each partition using the hierarchical Poisson
prior with 4 studies. The prior probability for the homogeneity cluster is more than
four times higher than the prior probability of the heterogeneity case.

Figure 5. Hierarchical Poisson prior with 3 levels probabilities for the partitions with k = 4 studies.

Finally, from (10) and the priors defined in (11), (14), (16) and (19), the (unconditional)
likelihood of θ for the data x is given by

f (x|θ) =
k

∑
p=1

(
∑
rp

f (x|p, rp, θ)π(p, rp)

)
. (20)

2.5. Bayesian Model Averaging in the Meta-Analysis

The BMA approach to meta-analysis involves averaging over all the possible models
(heterogeneity structures or partitions) when making inferences about the parameter of
interest θ.

In this case, the posterior probabilities correspond to those of any heterogeneity
structure given by a pair (p, rp), which is represented by

Pr(p, rp|x, k) =
mrp(x|p, rp)π(p, rp)|k

∑k
p=1

(
∑rp mrp(x|p, rp)π(p, rp|k)

) , (21)

where mrp(x|p, rp) =
∫

f (x|p, rp, θp)π(θp|p, rp) dθp is the marginal of the data x condi-

tional on model (p, rp), with f (x|p, rp, θp) and π(θp|p, rp). These posterior model proba-
bilities Pr(p, rp|x) are the weights for the meta inference.

The posterior distribution for the parameter of interest θ becomes

π(θ|x) = ∑
rp

π(θ|x, p, rp)Pr(p, rp|x, k), (22)

where

π(θ|x, p, rp) =
f (x|p, rp, θ)∫ 1

0 f (x|p, rp, θ) dθ
, 0 < θ < 1. (23)

The posterior distribution in (22) is computed numerically using Wolfram Mathematica
(see code in the Supplementary Material Section).
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3. Simulated Data and Frequentist Validation

3.1. Simulated Data

This section presents the simulated data used in the frequentist validation. The data
have been simulated from binomial distributions, where the number of studies included in
the meta-analysis (k), the partition for the data (rp), and the sample size within each study
(n) vary between simulations.

The values for the number of studies (k) in the meta-analysis are 3, 5. Other greater
values of k are obviously possible. For instance, we developed the case k = 8 (see sup-
plementary material Section) where the conclusions obtained are similar to that in the
cases k = 3 and 5. Therefore, in order to facilitate the reading of the Table 1 we only
present the cases k = 3 and k = 5. These numbers of studies are manageable to do this
simulation exercise. In this respect, Davey et al. [18] conducted an extensive review of the
Cochrane Database of Systematic Reviews (CDSR) and pointed out that just under 75% of
the meta-analyses contained five or fewer studies.

The sample size within each study is also a crucial parameter of the simulation. For
simplicity we assume a common sample size for the k studies and this sample size takes
values of 10, 30, 100, and 300. Finally different “true” partitions are considered for each
k, where the heterogeneity and homogeneity cases are always included and one or two
intermediate cases are also analyzed. Table 1 shows the parameters of the simulated data.

Table 1. Parameters for the simulation data.

True Model (rp) Parameters (θi’s) Sample Sizes (ni)

k = 3

1, 1, 1 (0.5, 0.5, 0.5) (10, 30, 100, 300)
1, 1, 2 (0.5, 0.5, 0.2) (10, 30, 100, 300)
1, 2, 3 (0.7, 0.5, 0.2) (10, 30, 100, 300)

k = 5

1, 1, 1, 1, 1 (0.5, 0.5, 0.5, 0.5, 0.5) (10, 30, 100, 300)
1, 1, 1, 2, 2 (0.5, 0.5, 0.5, 0.2, 0.2) (10, 30, 100, 300)
1, 1, 2, 2, 3 (0.7, 0.7, 0.5, 0.5, 0.2) (10, 30, 100, 300)
1, 2, 3, 4, 5 (0.9, 0.7, 0.5, 0.3, 0.1) (10, 30, 100, 300)

The θi parameters used in the simulation are sufficiently disparate between clusters
to expect that with moderate sample sizes, the Bayesian selection process will be able to
detect the true model. For all simulation scenarios, 500 simulations were performed. To
analyze the properties of the prior distributions over posterior probabilities of the partitions
we show the proportion of times the true model is found as the model with the highest
posterior probability and the mean posterior probability in those cases in which the true
model is found as the most probable. We also show the number of cases the homogeneity
cluster (r1 = (1, 1, . . . , 1)) and the heterogeneity case (rk = (1, 2, 3, . . . , k)) are found as the
most probable model.

3.2. Frequentist Evaluation

Figures 6 and 7 show the results of the frequentist validation for the case k = 3 and
true partitions r1 = (1, 1, 1), r2 = (1, 1, 2) and r3 = (1, 2, 3) corresponding to a situation
of homogeneity, intermediate heterogeneity, and heterogeneity, respectively. As expected,
for the true case of homogeneity r1, the uniform prior shows worse performance as it is
the only one that does not assume an a priori preference for the homogeneity. However,
the results show how the uniform prior reaches a proportion of correct choices close to
70% with sample sizes greater than 100. The mean posterior probabilities reach values
greater than 30% and 40% for sample sizes of 100 and 300, respectively. Observe that
b(3, p) = 1, 1 ≤ p ≤ 3, thus the results from HU2 and HU3 priors are identical. The
hierarchical Poisson prior, which assigns a higher prior probability to the homogeneity
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case, reaches a proportion of correct choices higher than 95% even with sample sizes of
10, and posterior probabilities higher than 50%. All the prior distributions show a good
performance for high sample sizes.

Figure 6. Frequentist validation for the case k = 3 and true partitions r1 = (1, 1, 1), r2 = (1, 1, 2) and
r3 = (1, 2, 3). (Left column) proportion of times the true partition is found as the most probable.
(Right column) mean of the posterior probability for the true partition when it is found as the
most probable.
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Figure 7. Frequentist validation for the case k = 3 and true partitions r1 = (1, 1, 1), r2 = (1, 1, 2) and
r3 = (1, 2, 3). (Left column) proportion of times the homogeneity case is found as the most probable.
(Right column) proportion of times the heterogeneity case is found as the most probable.

When the true partition is an intermediate one, the results vary. Figure 6 shows the
results for the true case r2 = (1, 1, 2). The uniform prior shows the best performance
although the proportion of right choices is smaller than 50% for n = 10. The mean posterior
probability reaches a value of 80% with a sample size of 300. With the hierarchical Uniform
priors the true model is never chosen as the most probable for a sample size of n = 10. In
this case, the mean of the posterior probability for the true partition when it is found as
the most probable does not exist and it is shown as 0 in the figure. For small sample sizes
these prior distributions found the heterogeneity case as the most probable (Figure 7). The
hierarchical Uniform priors only achieve the 50% of right choices for a sample size of 300.
The hierarchical Poisson prior improves the behavior of the hierarchical Uniform priors
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although for a small sample size of n = 10, it chooses the homogeneity case more than 85%
of the simulations (Figure 7).

When the true model is the heterogeneity case, i.e., r3 = (1, 2, 3), the hierarchical
Uniform priors (HU2 and HU3) show the best performance even with small sample sizes.
Surprisingly, the uniform prior shows worse results than those of the hierarchical Poisson
prior. This can be explained by the higher prior probabilities assigned to intermediate
partitions by the uniform prior, which hinder the identification of the heterogeneity case as
the true model. The proportion of right choices and the mean posterior probabilities for
the true model are near to 100% for all the prior models when the sample size is 300.

Figures 8 and 9 show the results of the frequentist validation for the case k = 5 and
true partitions r1 = (1, 1, 1, 1, 1), homogeneity case, r2 = (1, 1, 1, 2, 2) and r3 = (1, 1, 2, 2, 3),
intermediate situations and r5 = (1, 2, 3, 4, 5), heterogeneity case.

The analysis of the homogeneity case with k = 5 shows a bad performance of the
uniform prior, even worse than observed for k = 3. The proportion of right choices only
exceed 50% for a sample size of 300. As it is shown in the Figure 9, the uniform prior found
as the most probable model some intermediate models as the proportion of cases in which
the heterogeneity case is chosen is 0. As it was found with k = 3, the hierarchical Poisson
prior shows a better performance than the HU2 and HU3 which becomes similar as the
sample size increases. Some results obtained for the HU2 and HU3 priors are quite similar,
showing an overlapping behavior in some cases.

Once again, the analysis of the intermediate cases with k = 5 shows a similar behavior
to that observed with k = 3. The uniform prior reaches a higher proportion of correct
choices, although for the case of two clusters (p = 2), the hierarchical Poisson improves
it for sample sizes greater than 100. With a moderate number of clusters (p = 3), all the
prior models show difficulties to choose the true model with small sample sizes. In the case
of the hierarchical Poisson prior, it chooses the homogeneity case for small sample sizes,
while the uniform prior chooses other intermediate models (Figure 9). The hierarchical
uniform priors never choose the true model with sample sizes smaller than 300, showing
preference for the heterogeneity case.

For the heterogeneity case r5 = (1, 2, 3, 4, 5), the proportion of right choices show a
U-shape for all model priors except the Uniform prior. For small sample sizes, the greater
prior probability assigned to the extreme cases leads to a preference for the heterogeneity
case (the homogeneity case is never chosen as it is shown in Figure 9). As the sample
size increases, the importance of the prior information is reduced and other intermediate
partitions are chosen, probably due to the small difference in the true probability of success
between the 5 studies (see Table 1). Finally, with a sample size of 300, all model prior
distributions choose the true model.

An additional analysis for the case k = 8 is shown in the Supplementary Material
Section. The results are very similar to those obtained for the case k = 5.
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Figure 8. Frequentist validation for the case k = 5 and true partitions r1 = (1, 1, 1, 1, 1),
r2 = (1, 1, 1, 2, 2), r3 = (1, 1, 2, 2, 3), and r5 = (1, 2, 3, 4, 5). (Left column) proportion of times the true
partition is found as the most probable. (Right column) mean of the posterior probability for the true
partition when it is found as the most probable.
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Figure 9. Frequentist validation for the case k = 5 and true partitions r1 = (1, 1, 1, 1, 1),
r2 = (1, 1, 1, 2, 2), r3 = (1, 1, 2, 2, 3), and r5 = (1, 2, 3, 4, 5). (Left column) proportion of times the ho-
mogeneity case is found as the most probable. (Right column) proportion of times the heterogeneity
case is found as the most probable.
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4. An Illustrative Example with Real Data

In this section, we show an illustrative example with real data to analyze the impact
of the prior models over the estimation of the meta-parameter θ. With the objective
to determine the effectiveness of granulocyte transfusions compared to no granulocyte
transfusions for treating infections in patients with neutropenia or disorders of neutrophil
function in reducing mortality, Stanworth et al. [19] conducted a meta-analysis. The dataset
in Table 2 is extracted from Stanworth et al. [19] and corresponds to the mortality analysis
in four studies (k = 4, subgroup analysis for studies transfusing greater than 1 × 1010

granulocytes at days 20–22) for granulocyte transfusions for treating infections in patients
with neutropenia or neutrophil dysfunction treated with transfusion (Treatment).

Table 2. Data in Stanworth et al. [19].

Study
Treatment

Events Total

Herzig 1977 (x1) 1 16
Higby 1975 (x2) 2 17
Scali 1978 (x3) 0 13

Vogler 1977 (x4) 7 17

This is a good example to apply the model proposed by Moreno et al. [9] as the
number of cases is small and there are even no cases in one study. For k = 4, there are
15 possible partitions and the estimation of the meta-parameter θ will depend on the
partition considered. Figure 10 shows the posterior mean conditioned on each partition.
The posterior mean varies from the 0.1929 obtained for the partition r2 = (1, 1, 1, 2) to
0.1344 for the partition r3 = (1, 2, 3, 2).

Figure 10. Posterior mean of the meta–parameter θ for each partition.

The four prior models are applied to this dataset. The prior probabilities assigned to
each partition can be shown in Figures 2–5. To include into the analysis the model uncer-
tainty, the posterior distributions for θ are all averaged in the BMA posterior distribution,
and this BMA posterior distribution depends on the model priors assumed. Table 3 shows
the top cluster models for the four model priors.
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Table 3. Top cluster models in Stanworth et al. for treatment data.

Prior # 1: Uniform Prior # 2: HU with 2 levels Prior # 3: HU with 3 Levels Prior # 4: HP with 3 Levels
Cluster Model Post. Prob. Cluster Model Post. Prob. Cluster Model Post. Prob. Cluster Model Post. Prob.

x1x2x3|x4 0.19 x1|x2|x3|x4 0.37 x1|x2|x3|x4 0.37 x1|x2|x3|x4 0.21
x1x3|x2|x4 0.14 x1x2x3|x4 0.11 x1x2x3|x4 0.10 x1x2x3x4 0.18
x1x2|x3|x4 0.11 x1x3|x2|x4 0.09 x1x3|x2|x4 0.09 x1x2x3|x4 0.14
x1|x2x3|x4 0.11 x1x2x3x4 0.08 x1x2x3x4 0.08 x1x3|x2|x4 0.8
x1|x2|x3|x4 0.09 x1x2|x3|x4 0.08 x1x2|x3|x4 0.08 x1x3|x2x4 0.08

the rest <0.09 the rest <0.07 the rest <0.07 the rest <0.07

BMA estimates of the meta-parameter θ

Posterior mean: 0.164 Posterior mean: 0.159 Posterior mean: 0.159 Posterior mean: 0.163
95% HDI: 0.050–0.317 95% HDI: 0.049–0.312 95% HDI: 0.049–0.311 95% HDI: 0.048–0.327

Top cluster models and their posterior probabilities are sensitive to the model prior.
For the uniform prior model, the most probable model is {x1x2x3|x4}, with a posterior
probability of 0.19. However, this model is found as the second most probable model for
the hierarchical uniform priors, and reaches the third position for the Poisson prior. These
last models found the heterogeneity case as the most probable model.

Table 2 shows a different mortality rate between studies, where study 4 stands out
with a mortality rate of 41.18%, while the mortality rate for the other studies do not exceed
12%. The uniform prior is the only model capable of detecting this structure as the most
probable model. The other prior models discard the homogeneity case but cannot detect
the intermediate model, showing preference for the heterogeneity case. In this example,
the uniform prior would be the best choice.

This analysis also points out the importance of the BMA estimation as it allows the
model uncertainty to be included in the estimation of the meta-parameter. As can be seen,
the estimation of the meta-parameter by BMA is less sensitive to the choice of the prior
distribution for the models, ranging from 0.159 for the hierarchical Uniform priors to 0.164
for the Uniform prior.

5. Conclusions

Bayesian methods for the design, analysis, and synthesis of clinical trials have been
developed in several areas including meta-analysis where the structure of the between-
sample heterogeneity is essential in estimating the meta-parameter. As part of the design
of the Bayesian framework, we address the question from a different standpoint, arguing
that between-sample heterogeneity is a clustering problem and that model uncertainty can
be incorporated into the inference using a Bayesian procedure. Under this procedure, the
posterior probabilities of the cluster models are computed and the definition of the prior
distribution over the models takes on special importance.

Meta-analysis for binary data is an increasingly used tool for estimating the effective-
ness of a certain treatment. Meta-analysis for binary data presents interesting statistical
challenges that have been addressed in the literature, such as the presence of zeros, that
make it difficult to apply logit transformations to the data [20,21]. The definition of an
objective Bayesian meta-analysis for binary data that does not require transformations to
the data represented an advance in literature [9].

The objectivity of this analysis is given by the prior distribution assumed for the
experimental parameters (θi) and the meta-parameter (θ) [22]. However, when the between-
sample heterogeneity is considered in the analysis as a problem of clustering the experi-
mental parameters (θi), the objectivity remains in doubt since the Bayesian model selection
requires the definition of the prior distributions over the models. The hierarchical structure
of the clusters does not allow to conclude that the Uniform prior distribution is the best
or unique option. Moreno et al. [10] proposed to use the hierarchical Uniform prior with
three levels, but other options are possible.
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In this paper we analyze the properties of four model priors assuming the absence of
prior information about the cluster model: the Uniform prior, the hierarchical Uniform prior
with two and three levels and the hierarchical Poisson prior. There are other priors proposed
by the literature for the problem of clustering, such as the Ewens–Pitman prior [23–25] or
the Jensen–Liu prior [26]. However, these prior distributions require the assessing of a
hyperparameter that reflects the a priori information about the models.

A first conclusion achieved from the frequentist validation is that none of the prior
distributions is completely non-informative. The posterior probabilities for the models
are very sensitive to the model priors, even with moderately large sample sizes. A useful
guideline for daily practice could be as follows. If you consider that the homogeneity
case is probable, the hierarchical Poisson prior for small samples sizes, or the hierarchical
Uniform prior for moderately large sample sizes are the best options. If you consider that
the heterogeneity case is probable, the hierarchical Uniform priors are preferable. Finally,
if you consider that the real cluster is not the homogeneity or heterogeneity cases, the
Uniform prior can be used for small number of studies and sample sizes.

A second conclusion is that carrying out a meta-analysis based on a single partition
(even if it is the partition with the maximum posterior probability) can obtain biased results
as it ignores a very important part of the uncertainty around the estimation of the meta-
parameter. The BMA procedure offers a natural way to incorporate this model uncertainty
into the estimation of θ [27].

As the BMA procedure implies estimating the meta-parameter for all possible parti-
tions, computational difficulties arise when the number of studies k is moderately large
due to time required for estimation. In that case, a set of good cluster models can certainly
by found using a stochastic algorithm [13].
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Abstract: The aim of this narrative review is to introduce the reader to Bayesian methods that, in our
opinion, appear to be the most important in the context of rare diseases. A disease is defined as
rare depending on the prevalence of the affected patients in the considered population, for example,
about 1 in 1500 people in U.S.; about 1 in 2500 people in Japan; and fewer than 1 in 2000 people in
Europe. There are between 6000 and 8000 rare diseases and the main issue in drug development is
linked to the challenge of achieving robust evidence from clinical trials in small populations. A better
use of all available information can help the development process and Bayesian statistics can provide
a solid framework at the design stage, during the conduct of the trial, and at the analysis stage.
The focus of this manuscript is to provide a review of Bayesian methods for sample size computation
or reassessment during phase II or phase III trial, for response adaptive randomization and of for
meta-analysis in rare disease. Challenges regarding prior distribution choice, computational burden
and dissemination are also discussed.

Keywords: Bayesian; rare disease; prior distribution; meta-analysis; sample size

1. Introduction

A disease is defined as rare depending on the prevalence of the affected patients in
the considered population. In the United States, a disease is rare if it affects fewer than
200,000 people in the U.S. [1] (or about 1 in 1500 people); in Japan, if it affects fewer than
50,000 patients in Japan (or about 1 in 2500 people); and in the European Union if the
prevalence is no more than 5 per 10,000 (that is, fewer than 1 in 2000 people), but the
definition excludes diseases that are not also life-threatening, chronically debilitating,
or inadequately treated [2]. There are between 6000 and 8000 rare diseases [3], 71.9% of
which are genetic and 69.9% which exclusively affect paediatric populations, and it is
estimated that the global population prevalence of rare diseases is of 3.5–5.9%, which
implies that 263–446 million persons are affected at any stage in their life [4]. The usual
level of rigorous clinical trial evaluation of treatments is required in rare diseases just as
much as in more common ones. Although in some cases, particularly in phase II trials,
single-arm trials might be considered (see, for example, Grayling et al. [5]), randomized
controlled trials are to be preferred when this is possible. For example, the European
regulatory guidance [2] affirms that “patients with [rare] conditions deserve the same
quality, safety and efficacy in medicinal products as other patients; orphan medicinal
products should therefore be submitted to the normal evaluation process"; this is also in
agreement with U.S. guidance [6].

The main issue in drug development for rare diseases is linked to the challenge of
achieving robust evidence from clinical trials in small populations when trial sample
sizes are necessarily limited [7]. Even if for some rare diseases the population size is
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relatively large (for instance, Friedreich Ataxia in the EU) [8], the majority of rare dis-
eases are less frequent [9]. Small population clinical trials have been the focus of much
methodological research activity in the last two decades. From a regulatory perspec-
tive, the European Medicines Agency (EMA) described a methodological framework,
summarizing several possible approaches, in the guidance “Guideline on Clinical Trials
in Small Populations” [10] and the Food and Drug Administration (FDA) in the draft
guidance on rare disease [6]. The European Union’s Seventh Framework Programme
for Research, Technological development and Demonstration (EU FP7), acknowledging
the need for additional methodological research work, funded three projects in 2013;
the Integrated Design and Analysis of Small Populations Group Trials (IDeAl) project
(www.ideal.rwth-aachen.de), the Innovative Methodology for Small Populations Research
(InSPiRe) project (www.warwick.ac.uk/inspire), and the Advances in Small Trials Design
for Regulatory Innovation and Excellence (Asterix) project (www.asterix-fp7.eu) [8,11–13].

The drug development process involves on-going learning as data are observed
through the series of clinical trials, and, above all in rare diseases, there is a considerable
effort to optimize this learning process [14,15]. A better use of all available information can
help the process and Bayesian statistics provides an opportunity to do this in a formal way
(at the design stage, during the conduct of the trial, and at the analysis stage) [16,17]. Like
drug development, the Bayesian approach can be seen as an on-going learning process:
it starts with a prior belief (quantified as a prior distribution for the unknown model
parameters), which is then updated with the new evidence (likelihood data from the
new trial/experiment) to yield a posterior belief (expressed as a posterior probability
distribution for the unknown model parameters). In this way, Bayesian statistics provides
a mathematical method for calculating the predictive probabilities of future events, given
the actual trial and the knowledge from prior trials. Moreover, a formal Bayesian analysis
can incorporate different utilities or prior beliefs coming from different stakeholders and
quantify how these could impact potential decision-making.

Bayesian methods and designs are well established and mostly accepted, by both
clinicians and regulatory agencies, in early phase clinical trials. Due to the greater flexibility,
in both design and analysis, of the Bayesian paradigm with respect to the frequentist one
and since type I and II errors do not have to be controlled at this stage, Bayesian adaptive
designs are mostly chosen for these stages [18]. As early phase trials in all diseases
use small sample sizes, designs, specifically developed for rare diseases are unnecessary.
Thus, in this manuscript we will focus on novel Bayesian approaches firstly developed
for confirmatory/randomized trials in the rare disease setting, where more conventional
approaches may be unfeasible.

The aim of this narrative review is to show to the reader Bayesian methods that, in our
opinion, appear to be the most important in the context of rare diseases. Its purpose is
not to present a comprehensive compendium of Bayesian statistics in rare diseases, but to
give a starting point for the reader on some uses of novel Bayesian methods in this field.
All methods are presented in a general way, without mathematical formalism, so that a
reader who already have a basis of Bayesian statistics can understand the general idea,
along with the corresponding principal(s) reference(s), in such a way the reader can find
the details for methods they wish to explore in more detail. In the following sections,
three specific topics dealing with the application of a Bayesian design are introduced.
The first topic, in Section 2, regards methods for sample size computation or reassessment
during randomized phase II or phase III trial. The second topic, a recent method proposed
for response adaptive randomization, is presented in Section 3. Section 4 presents the
fourth topic of Bayesian meta-analysis methods developed for evidence combination in
rare diseases. Finally, we discuss frequent challenges faced when choosing a Bayesian
design; in particular, the priors distributions choice, which include the issue of the quan-
tity of information and commensurability between prior information and actual data;
the computational burden required; and dissemination issues.
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2. Sample Size Determination/Re-Estimation

Usual sample size determination approach focus on frequentist properties, that is,
type I error and study power. However, in a rare disease setting, accruing the number of
patients required to perform a fully-powered significance test after the trial may be infeasi-
ble. Increasing the allowed type I error can be a solution to reduce the required sample
size. However, as recalled in the introduction, this practice is not generally supported by
regulatory agencies. As an alternative, some authors have proposed the use of a Bayesian
decision-theoretic framework [19]. A Bayesian decision-theoretic approach can be applied
when we would like a treatment recommendation not based on type I error but on maximiz-
ing an expected gain for the total population. According this approach, we can compare the
costs of clinical trial evaluation with the potential benefits to current and future patients,
assessing how the cost-benefit balance differs between large and small patient populations
when, in the latter, patients recruited to a clinical trial could be a substantial proportion
of the population. The design of the study, including the sample size, can then be chosen
on the basis of the expected gain, with the sample size that maximizes the expected gain
chosen for the clinical study. Here the concept of a “gain” is interpreted very broadly and
can be defined from the patient, sponsor, regulatory, public health, or society perspective,
or from a combined perspective. Stallard et al. [20] have shown that for a wide range of
distributions, including those for continuous, binary or count responses, and gain function
forms, the optimal trial sample size is proportional to the square root of the population
size, with the constant of proportionality depending on the gain function form and prior
distribution of the parameters of the distribution of the data. A smaller sample size may
thus be appropriate for a trial in a rare disease than in a more common one.

Bayesian statistics can also be adopted to overcome some challenges in the calculation
of sample sizes from the frequentist perspective. For example, for normally distributed
outcomes, values for variances need to be specified, but, especially in the case of small
populations, may be based on very little information, for example, that from only one very
small pilot study. When using a Bayesian approach, the aggregation of prior information on
the variance with newly collected data is more formalized. Brakenhoff et al. [21] proposed
a framework incorporating the employment of power priors in order for operational
characteristics to be controlled in case of prior-new data conflict.

Bayesian group sequential designs could also be used to provide interim stopping
criteria, based on efficacy and/or futility. Even if the frequentist operating character-
istics of these designs are usually checked, they are not designed to optimize them.
A practical guide for their implementation and reference for software can be found in
Gsponer et al. [22].

3. Response Adaptive Randomization

While randomization is the established method for obtaining scientifically valid treat-
ment comparisons in clinical trials, as the trial progresses, increasing evidence may suggest
that one study group is responding or doing much better than another. As a consequence,
novel randomization methods, such as response adaptive randomization [23] (RAR), have
been proposed to address this ethical question continuously updating assignment prob-
abilities based on response of the different groups to their respective treatments so as to
allocate more patients to better-performing treatments. Both, frequentist and Bayesian
approach can be applied, however, the latter one has gained more popularity due to its
flexibility [24,25]. In the same manner as the previous decision theoretic idea, this approach
could be considered in rare disease setting, where future patients in the general population
is limited, to balance the benefits to current trial patients and future ones. Nonetheless,
standard adaptive randomization may lead to estimation bias [26], with the potential for
the trial to reach an erroneous conclusion. Therefore, novel and calibrated RAR approaches
should be preferred. The small sample sizes in trials in rare diseases may also mean that it
is possible to calibrate RAR methods in a way that would be infeasible in larger trials.
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A recent paper suggests a novel randomized response-adaptive design specifically
developed for a rare disease trial [27]. It uses the framework of finite-horizon Markov
decision processes and dynamic programming (DP) to recruit more patients to the more
beneficial arms while guaranteeing a minimum sample size to each treatment arm. The au-
thors show that the design has good operating characteristics, in term of (i) the percentage
of patients allocated to the superior arm, which is much higher than in the traditional fixed
randomized design; (ii) the power, which is higher than optimal DP; and (iii) bias and
mean square error of the treatment effect estimator, which are small.

4. Meta-Analysis

Meta-analyses are used to combine evidence from multiple studies. Differences in
study characteristics, such as trial design and study populations, can bring to heteroge-
neous treatment effects and these must be accounted for in the meta-analysis formulation.
To deal with the between-trial heterogeneity, random-effects meta-analysis has become
the gold standard, and the most used method is the normal–normal hierarchical model
(NNHM) [28]. In a rare disease, the limited number of trials and their small sample size
may impact the validity of usual frequentist meta-analysis methods. A Bayesian approach
offers another way to perform random-effect meta-analyses within the NNHM framework.
One of the advantages is that the solution remains coherent for small numbers of studies,
although careful prior specification is required. Friede et al. [29] showed that, when doing
meta-analysis with only two studies, Bayesian random-effects meta-analyses with priors
covering plausible heterogeneity values offer a good compromise. They compared the
Bayesian method to the NNHM, to the Hartung-Knapp-Sidik-Jonkman method (HKSJ) and
to the modified Knapp-Hartung method (mKH). On one hand, the coverage of the standard
method, based on normal quantiles, was unsatisfactory; on the other hand, very large
(therefore uncertain) confidence intervals resulted from the HKSJ and mKH. An acceptable
trade-off between these two extremes was achieved, in general, by Bayesian intervals that
showed suitable characteristics. Usually, the Bayesian approach is computationally more
demanding. However, optimized free software are available, such as the bayesmeta R
package, which uses a general semi-analytical approach to solve the meta-analysis problem
via the DIRECT approach [30] and provides an efficient and user-friendly interface to
Bayesian random-effects meta-analysis [31].

When dealing with binary outcomes, the binomial-normal hierarchical model is usu-
ally preferred to the NNHM, which then relies on asymptotic approximations. A challenge
in this setting in rare diseases is that we could face the probability to have no events due
to the small sample sizes. Frequentist approaches are known to induce bias and to result
in improper interval estimation of the overall treatment effect in a meta-analysis with
zero events [13]. On the other hand, Bayesian models are known for being sensitive to
the choice of heterogeneity prior distributions in sparse settings, therefore, the need to
identify priors with robust properties is crucial. Pateras et al. [32] proposed a general way
to set prior distributions. Via simulations, they showed that a uniform heterogeneity prior,
bounded between -10 and 10, on the log heterogeneity parameter scale shows appropriate
95% coverage and induces relatively acceptable under/over estimation of both the overall
treatment effect and heterogeneity, across a wide range of heterogeneity levels.

The Bayesian meta-analysis approach also allows implementation of a number of more
advanced analysis strategies. A series of studies may be used to inform the analysis when
the focus is not on an overall synthesis, but rather on a particular study that is to be viewed
in the light of previously accumulated evidence. For example, Wandel et al. [33] used a
Bayesian meta-analytic approach to inform a phase III study with phase II data. They
investigated the use of shrinkage estimates to support data from a single trial in the light
of external information. The method allows quantifying and discounting the phase II data
through the predictive distribution relevant for phase III. Bayesian meta-analysis approach
can also be adapted to incorporate external information from historical controls [34] or
borrow information from other arms in a randomized control trial, for example, in a basket
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design [35,36]. Such approaches could prove very valuable in the setting of rare diseases
where trials are necessarily small.

5. Challenges

As stated above, the Bayesian approach can be more flexible than the frequentist
counterpart. However, the flexibility comes along with a number of possible challenges.
Even if Bayesian methods can bring substantial benefits, their validity and effectiveness
require expertise and care. In the following, we will describe some points that should be
addressed when planning a Bayesian analysis.

5.1. Prior Distributions Choices

In Bayesian statistics, external information can be easily incorporated into the prior
distributions. An informative prior distribution for the unknown parameters could be
determined through elicitation of expert knowledge, from data from other trials or from
a search of the literature to identify results obtained in trials of similar drugs, or the
same drug in a different population, via the so called “extrapolation". Extrapolation
approaches are well known in paediatrics, where the proper dosage for children is estimated
starting from adults’ data, and in bridging studies, where the drug is tested in a new
geographical population, for example, in Asian, given the results in a previous one, for
example, Caucasian. This concept can be translated in rare disease, since rare diseases
prevalence may vary by continent (i.e., IgA nephropathy is rather rare in the EU but more
frequent in Asia and Africa) and we can be to adopt proofs of efficacy from the larger
populations to the smaller one [8].

However the prior distribution is obtained, the use of an informative prior to make
inferences about medical treatments based on small sample size trials remains inherently
controversial, however. Choice of a prior distribution must therefore be done carefully,
since the use of informative priors may be seen as introducing bias into posterior inferences
and inflating type I error rates. This is a general problem common in many different
fields, and several authors have addressed the issue of eliciting experts’ opinions, building
priors upon the elicited values, and performing Bayesian analyses using the resulting
priors. See O’Hagan et al. [37] for a complete review. The elicitation needs to be made
as meticulous and objective as possible to catch expert expertise. One way is to follow a
recognized protocol that is designed to address and minimize the cognitive biases [38].
In the following, we summarize two approaches that have already been used in the context
of rare disease.

The first approach describes how to obtain a consensus between experts. This research
was motivated by the design of the MYPAN trial, a multicentre RCT comparing mycophe-
nolate mofetil (MMF) with cyclophosphamide (CYC) for the treatment of polyarteritis
nodosa, a rare and serious inflammatory blood vessel disease in children [39]. The authors
proposed to add priors on the probability of success of one arm and on the log-odds ratio
of the probabilities. Then, a behavioral aggregation process, by which experts interact to
reach a mutually agreeable consensus through constructive discussions, was chosen for
systematic elicitation from clinicians of their beliefs concerning treatment efficacy. In par-
ticular, experts’ individual prior beliefs were obtained at the beginning of the process;
then, the full group was asked to reach a consensus. The results are then used to establish
Bayesian priors for unknown model parameters and the authors have also considered the
possibility of considering results from related trials. A similar strategy was used in a trial
of adalimumab versus pamidronate for children with CNO/CRMO [40].

The second approach focuses on reflecting, when eliciting experts’ opinions, how
these depend on differences in experience, training and medical practice [41]. Motivating
by a 70-patient randomized trial to compare two treatments (the same described in the first
approach) for idiopathic nephrotic syndrome in children (NCT 01092962), the authors pro-
posed a Bayesian methodology for constructing a bivariate parametric prior starting from
elicited graphical information. The method involves four steps: (i) each physician builds
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manually two histograms, one for each treatment parameter using the “bins-and-chips”
graphical method of Johnson et al. [42]; (ii) then, for each physician and each treatment
parameter, a marginal prior, characterized by location and precision hyperparameters,
is fitted to the elicited histogram; (iii) a bivariate prior is built by averaging the marginals
over a latent bivariate distribution; (iv) finally, an overall prior is obtained as a mixture of
the individual physicians’ priors. The approach also suggests a framework for performing
a sensitivity analysis of posterior inferences to prior location and precision.

Incorporating external information, whatever the source type (other trial, experts’
elicitation, etc.), has to be done properly, as the information can be in conflict with the
actual data or the amount of information can overwhelm trial data. Several methods that
allow prior information to be incorporated if it is in accordance with the trial data and
otherwise to be down-weighted have been proposed [34,43,44]. Moreover, the effective
sample size allows to quantify the information in the prior to be specified in term of the
number of hypothetical patients used to build the prior [45]. Different prior building
approaches may be used for different parameters; for example, historical control can
be included via a power prior approach and experts’ opinion can be used for the new
treatment effect. An adaptation of the power prior approach, that is useful particularly for
borrowing evidence from a single historical study, was proposed in rare disease setting [46].
Borrowing information from a historical trial is often related the type I error inflation.
By determining the amount of similarity between the new and historical data, this method
uses predictive probabilities and is parameterized in order to control the type I error.

5.2. Computational Burden

Estimation of posterior distributions can be challenging when prior distributions do
not have simple conjugate forms. Specific Markov chain Monte Carlo algorithms, such as
the Gibbs sampling or the Hamiltonian Monte Carlo, can be used to obtain an approxi-
mation of posteriors. Even if freely available software and the increasing computational
power of computers may help the Bayesian implementation, writing, coding and testing
the models usually requires a bigger effort than choosing a frequentist approach. In general,
the more complex the model or the prior distribution, the longer the computational time to
obtain the result. Validation of the method via simulation is one of the common way used
in Bayesian setting. Simulating several possible scenarios can allow the user to calibrate
model parameters (i.e., the quantity of information in the prior distribution) to obtain
desired operational characteristics, such as the type I error control or the power. Choosing a
fast and reliable approximation method is, however, crucial when simulations are required.

5.3. Dissemination

Even if the Bayesian approach has been shown to capture the thinking behavior of
clinicians [41], Bayesian methods and results are sometimes still viewed with suspicion
by clinicians and traditional statisticians. The influence of the prior distribution may be
considered disturbing and the lack of p-values can give the feeling that regulatory agencies
will not consider the results obtained. In effect, Bayesian methodologies are usually less
discussed in public regulatory guidelines than the frequentist counterpart. However, the
FDA Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials [47]
shows the regulatory agencies efforts in this direction. The guidance gives several Bayesian
insights that could be used in general, not only in medical device field. Several sections
explain how to well plan a Bayesian clinical trial, what to consider when choosing prior
distributions, and how to analyze the data. Then, in the technical details sections, the FDA
points out the importance of simulations to obtain operating characteristics of the planned
design, to assess the type one error rate, power, etc. While also other recommendations
for Bayesian analyses have been developed [17,48,49], they were primarily addressed to
researchers, not to readers unfamiliar with Bayesian approaches [50]. Therefore, efforts are
needed to well explain the Bayesian philosophy to non-statisticians. An example is given in
Ferreira et al. [51] and Ferreira et al. [50], where the authors help clinicians interpretation
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of Bayesian clinical trial though a side-by-side comparison with the frequentist approach.
On one hand, they teach how to transfer frequentist ideas, such as the p-values or hypothe-
ses testing, to the Bayesian framework, such as posterior probabilities and Bayes factor, and,
on the other hand, they give insights on what to check when reading a Bayesian report.

6. Conclusions

The aim of this article has been to review the use of Bayesian methods in confirmatory
trials in rare diseases, though many of the approaches described could also be applied in
clinical trials in other more common disease areas.

The formal Bayesian approach permits the incorporation of accumulating information
into the analysis of the actual trial and, therefore, the updating of belief. This feature
is extremely attractive in rare disease setting, where usually sample sizes and the op-
portunities to performs clinical trials are limited. Incorporation of previous information
should be strongly considered and the Bayesian approach, with its flexibility, could be
seen as a future gold standard in this field. As shown in the manuscript, the accumulated
information can be used in the prior distribution settings, in sample size optimization
and/or in randomization. Depending on the trial, where and when using this kind of
information is used has to be carefully chosen and simulations are strongly suggested to
evaluate method performances.
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Abstract: Bridging studies are designed to fill the gap between two populations in terms of clinical
trial data, such as toxicity, efficacy, comorbidities and doses. According to ICH-E5 guidelines,
clinical data can be extrapolated from one region to another if dose–reponse curves are similar
between two populations. For instance, in Japan, Phase I clinical trials are often repeated due to
this physiological/metabolic paradigm: the maximum tolerated dose (MTD) for Japanese patients is
assumed to be lower than that for Caucasian patients, but not necessarily for all molecules. Therefore,
proposing a statistical tool evaluating the similarity between two populations dose–response curves
is of most interest. The aim of our work is to propose several indicators to evaluate the distance
and the similarity of dose–toxicity curves and MTD distributions at the end of some of the Phase
I trials, conducted on two populations or regions. For this purpose, we extended and adapted the
commensurability criterion, initially proposed by Ollier et al. (2019), in the setting of completed
phase I clinical trials. We evaluated their performance using three synthetic sets, built as examples,
and six case studies found in the literature. Visualization plots and guidelines on the way to interpret
the results are proposed.

Keywords: bridging studies; distribution distance; oncology; phase I; dose-finding; dose–response;
bayesian inference

1. Introduction

Bridging studies are designed to fill the gap between two populations in terms of
clinical trial data, such as toxicity, efficacy, comorbidities and doses. A bridging data
package consists of selected data from the Clinical Data Package of the population in the
new region, including pharmacokinetic, any pharmacodynamic, dose–toxicity or dose–
efficacy data, and if appropriate, a bridging study to extrapolate the foreign dose–response
data to the new region [1].

According to the International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use E5 (ICH-E5) guidelines, data can be extrapolated from
one region to another if “a bridging study [...] indicates that a different dose in the new
region results in a safety and efficacy profile that is not substantially different from the one
derived from the original region; it will often be possible to extrapolate the foreign data to
the new region, with an appropriate dose adjustment, if this can be adequately justified
(e.g., by pharmacokinetic and/or pharmacodynamic data)” [1]. This is the reason why
proposing a statistical tool evaluating the similarity between two foreign dose–response
curves is of great interest. If this is proven, then, other clinical trials data can be used and
extrapolated for the new region.
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In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) recommends the
re-evaluation of a drug if there are insufficient data from Japanese patients [2]. Indeed,
Phase I clinical trials in oncology, which aim to estimate the maximum tolerated dose
(MTD), are often repeated. Ogura et al. [3] pointed out that MTD differences between pop-
ulations could be due to the different distribution of genetic polymorphisms in enzymes
involved in drug metabolism or of biomarker incidences in different populations. In partic-
ular, in Japan, Phase I trials are repeated based on a physiological/metabolic paradigm:
MTDs for Japanese patients are often lower than the ones of for Caucasian patients [4].
Based on this assumption, Maeda and Kurokawa [5] have performed an intensive study
comparing the MTD of 21 molecularly targeted cancer drugs in Japanese versus Caucasian
populations. They found out that this assumption does not hold well: in their study, the
MTD was lower for Japanese patients in only two cases, there were no differences between
the two populations with 10 drugs and MTD was incommensurable as the evaluated dose
range acted different with nine drugs. Moreover, Mizugaki et al. [6] have analyzed data of
single-agent Phase I trials at the National Cancer Center Hospital between 1995 and 2012,
comparing the dose-limiting toxicity (DLT) profiles and MTDs of Japanese trials with the
trials from Caucasian populations.

Recently, methods for bridging dose-finding design have been proposed where pre-
vious population data were used to either calibrate the prior distribution of the Bayesian
model parameter(s) or to choose the “working model” of the design for prospective tri-
als [7]. Liu et al. [8] proposed using a Bayesian model to average the dose-finding method
where the previous trial data were used to build three different skeletons which would
then be averaged during the study. Moreover, Takeda and Morita recently defined an
“historical-to-current” parameter that could describe the degree of borrowing from one
population to the other [9]. Ollier et al. [10] proposed a bridging method where a borrowing
parameter was estimated sequentially in a response adaptive design which quantifies the
amount of reasonable borrowing according to the similarity between the two populations’
estimates. Usually,the proposed methods focus on one parameter, strictly related to the
MTD and not on the full dose–toxicity response curve. All these methods were proposed
with the purpose of using the foreign data to plan and conduct the future Phase I trial
in the new region. Indeed, at this stage, the idea is to use the foreign data to calibrate
model-based priors to be used in the new region trial. However, in most cases, the trial
in the new region will not be planned this way, but rather by using the MTD information
from the foreign region only, if available. The sophisticated statistical approach will not
be used.

Another option is to compare the two dose–response curves estimated from each
region and to evaluate how similar they are. In this case, the overall purpose is different
from before; if the curves prove to be similar (under the uncertainty estimation), the
new purpose will be to extrapolate other trial data—such as that of Phase II—to the new
region and to avoid further repetition of clinical investigations. For dose–response curves,
Bretz et al. [11] introduced an asymptotic test to evaluate the difference of the minimum
efficient dose among several groups of subjects, according to a threshold. However, this
method was built for later clinical phases and presents weaknesses when applied to a small
sample size. By contrast, Bayesian methods could mitigate the issue of estimation based on
a small sample size setting, since they do not rely on asymptotic approximations and prior
distributions can be used to ensure more stability in computation. Thereafter, the degree
of similarity could be considered directly at the posterior distributions level. Therefore,
methods proposing to estimate the similarity between dose–toxicity curves should be
proposed when there is the need to evaluate if the safety data can be extrapolated or not.

The aim of our work is to propose some Bayesian indicators that evaluate the distance
and the similarity of (1) dose–toxicity curves, taking into account the variability, (2) the
MTD posterior distributions, by extending and adapting the commensurability criterion
initially proposed by Ollier et al. [10]. These indicators were applied to several Phase I trials
presented in Maeda and Kurokawa [5] and Mizugaki et al. [6], evaluating the similarity
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between Western dose–toxicity data to Eastern ones. The proposed tools should be used
by trial stakeholders in order to decide if other trials data could be extrapolated from
the new region, and, if so, to avoid the repetition of multiple clinical trials. In the next
section, the original commensurability parameter is summarized along with the proposed
extensions and the dose–toxicity model used. The case studies are described in Section 3,
while Section 4 details the computational settings. The results are given in Section 5,
followed by a Discussion section.

2. Methods

In this section, we briefly recall the Bayesian commensurability measure used in
Ollier et al. [10], which was originally adopted into a power prior setting [12]; we then
propose extensions and modifications to this measure to be applied at the end of the study.
We also introduce the Bayesian dose–toxicity model, which will be used for retrospective
data analyses.

Let Dc denote the Caucasian data, Dc =
{(

yj, xj
)}

nc
, nc the sample size of Dc, and

yj the binary outcome of the j-th patient which received dose xj. In a similar way, we
can define Da, the Japanese data and associated parameters. Let us also set a model
for the probability of toxicity vs dose; pT(x) = f (x, β), where f (.) denotes a convenient
monotonous link function parametrized by β. The likelihood function for each population
can be written as L(β|Dm) = ∏nm

j=1 f (x, β)yj(1 − f (x, β))1−yj , for m = c, a.

2.1. Commensurability Distances

Ollier et al. [10] suggested to consider the likelihood function as a distribution, divided
by a normalization constant. This type of normalized likelihood can also be seen as the
resulting Bayesian posterior distribution when constant (probably improper) priors are
used for the analysis. Then, the authors defined a measure of “commensurability” between
the two data-sets through a distance d(Dc, Da), the Hellinger one, in the parameters space
via the following relation

d2(Dc, Da) =
1
2

∫ ⎛⎝
√√√√ L(β|Dc)

min(1, na
nc )∫

L(β|Dc)
min(1, na

nc ) dβ
−
√√√√ L(β|Da)

min(1, nc
na )∫

L(β|Da)
min(1, nc

na ) dβ

⎞⎠2

dβ. (1)

The commensurability measure, denoted by γ, is then defined as γ = dq(Dc, Da), with
q ∈ R+. Values of q higher than 1 will reduce the computed distance, while values lower
than 1 will lead to a more conservative method, increasing the computed distance. In case
of sequential trials, the authors proved that, when coupled with the power prior approach,
a conservative value of γ leads to a better result in terms of operating characteristics, as a
percentage of the right MTD selection. However, at the end of the trial, we are interested in
comparing the achieved results, without any discount in the resulting distance. Therefore,
in this paper, we will focus on the original Hellinger distance, which is q = 1. This
computed distance is a positive number between 0 and 1, it tends towards the maximum
value when the two datasets are quite different, and towards zero when they are close to
each other. Each likelihood is divided by a normalization constant in order to ensure that it
can be viewed as a probability distribution. The variance of the likelihood density depends
on the sample size of the trial. To make the two likelihoods comparable in terms of precision
(variance), if nc > na, L(β|Dc) is raised to a power of less than 1, otherwise, L(β|Da) is
raised to a power of less than 1. Following this method, the variance of likelihood density
of the trial with more patients is increased to almost fit the one of the trial with fewer
patients. Practical examples are given in Ollier et al. [10].

A straightforward modification of the distance in Equation (1) was performed by
changing the underlying flat prior into a proper one. The posterior distribution obtained
with the weighted likelihood is then used in the Hellinger formula. Thus, denoted by
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πpost,c(β|Dc) ∝ L(β|Dc)
min(1, na

nc )πprior(β) and by πpost,a(β|Da) ∝ L(β|Da)
min(1, nc

na )πprior(β)
the posterior distribution of β given Dc and Da, respectively, we have

d2
mod(Dc, Da) =

1
2

∫ (√
πpost,c(β|Dc)−

√
πpost,a(β|Da)

)2
dβ. (2)

This modification will ensure more stability in computation when the likelihoods
involve more than one parameter. When flat/constant priors are used for πprior(β),
Equation (2) is equivalent to Equation (1). Even if, theoretically, two different priors
can be chosen for the two trials, we suggest using a single one for the sake of comparability.

Both previous distances work at the parameter level. They check if the whole dose–
toxicity curve is similar or not. Using a single parameter model for the dose–toxicity
relationship, as a one parameter logistic model used in the continual reassessment method
(CRM) [13], is also equivalent to check the MTD distance. However, in models with more
parameters, such as the Bayesian Logistic Regression Model (BLRM) [14] where we have
two parameters, intercept and slope, we check if the bivariate distribution of β is the same.
Since the distance is difficult to interpret in case of the multidimensional parameters space,
we propose a summary distance using the resulting posterior MTD distribution. In our
setting, the MTD, x∗, is estimated as the dose linked to a pre-specified toxicity target τ,
that is, x∗ = f−1(τ|β), where f−1(.) is the inverse function of f (.). The posterior MTD
distribution, πMTD,m(x∗|Dm), is obtained evaluating x∗ through the posterior distribution
of the parameter, πpost,m(β|Dm), for m = c, a. Therefore, we can define

d2
MTD(Dc, Da) =

1
2

∫ (√
πMTD,c(x∗|Dc)−

√
πMTD,a(x∗|Da)

)2
dx∗. (3)

Note that this distance always involves a one dimensional integral.
Previous distances focused on understanding the similarity of the whole dose–toxicity

curve between two populations. However, even with different slopes and intercepts, two
populations can still have the same MTD. Those differences should generally indicate a
difference in responsiveness to a drug and it is important to know when MTDs are similar
but not the underlying curves. Therefore, we propose to couple the distances, previously
described, with a measure denoting the difference in MTD point estimations. We can build
this measure as a percentage using the median of the posterior MTD distributions, such as

dp1(Dc, Da) =

(
medc

meda

)1−2I(medc<meda)

− 1, (4)

where I(.) is the indicator function, which assumes the value 1 if the statement in paren-
theses is true and zero otherwise, and medi with i = c, a, is the median of the posterior
MTD distribution of Caucasians and Japanese, respectively. This formulation was chosen
for its easy interpretation, indeed, we check how much the highest MTD differs in per-
centage in respect to the lowest one. For this reason, the formula implies the exponent
1 − 2I(medc < meda), which allows us to always have the highest estimate at the numer-
ator, and the −1 term. Similarly to the three previous measures, Equation (4) tends to
zero when the two MTDs are very similar. However, this measure does not have an upper
bound. We propose the use of the median since it is less impacted by outliers than the
mean. The maximum a posteriori is another possible candidate, that is

dp2(Dc, Da) =

(
x̃∗c
x̃∗a

)1−2I(x̃∗c <x̃∗a )
− 1, (5)

where
x̃∗i = arg max

x∗
πMTD,i(x∗|Di).
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To summarize, the first three measures d, dmod, and dMTD are bounded between 0 and
1. Even if they are not built as percentages, their interpretation could be strictly linked to
the percentage. Otherwise, the last two measures dp1 and dp2 have a ratio-like measure,
lower bounded at 0. In practice, they give the information on the number of times the
maximum MTD is higher than the lowest one.

2.2. Dose–Toxicity Model

In this section, we describe the model selected for the link function f (.). Instead of
the CRM, originally used in Ollier et al. [10], which is better suited to prospective trials
than retrospective analyses (retrospective CRM requires special techniques), we opted for a
more flexible BLRM model, with two parameters, the intercept β0 and the (logarithm of
the) slope β1 [14]. The dose–toxicity relationship is represented by

logit{pT(x)} = β0 + exp(β1) log
(

x
xr

)
where β ∈ R2, xr denotes a reference dose and exp(β1) assures a positive final slope in
the model. In this case, f−1(.) is equal to the logit function and the BLRM formulation is
similar to the one of Zheng and Hampson [15]. To close the Bayesian model, we suggest a
bivariate normal distribution as prior for (β0, β1).

Following the described model, the final MTD is estimated as x∗ = xr exp logit(τ)−β0
exp(β1)

.
In order to minimize the overdispersion generated by this formula, we compared the
distribution of the log ratio of the MTD and the reference dose, x∗∗ = log(x∗/xr) (instead
of the real MTD). Therefore, we have also changed Equations (4) and (5), accordingly,
to the new formulation (x∗∗) in order to preserve the original distance meaning, that is
dp1(Dc, Da) = exp|medc − meda| − 1 and dp2(Dc, Da) = exp|x̃∗c − x̃∗a | − 1.

Finally, in a previous sensitivity analysis (not shown), even when comparing the
distribution of the log ratio of the MTD and the reference dose, we faced instability in
computation due to the issue of outliers. We have found that truncating the posterior
distribution of x∗∗ between the 10 and 90 percentiles gives a good compromise between
preserving trial information and computation stability.

3. Case Studies

To show the results and the interpretation of the proposed measures, we first introduce
four different synthetic datasets (1 for Caucasian and 3 for Japanese), to check the results
when two datasets are similar or not. We fixed the Caucasian dataset first: setting τ
equal to 0.3, the MTD at dose 600 mg/day. The same setting was used for the Japanese
synthetic-1 set. Moreover, the two datasets were generated to have the same dose–toxicity
shape. Japanese synthetic-2 set shares the same MTD with the Caucasian set, but has a
different dose–toxicity shape: the Japanese dose–toxicity is steeper at the MTD than the
Caucasian one. The Japanese synthetic-3 set has a different dose–toxicity curve and MTD
(200 mg/day). The data are summarized in Table 1.

Then, we applied our methods to eight examples found in the literature. Our research
started by looking at the drugs presented in Maeda and Kurokawa [5] and Mizugaki et al. [6].
We selected only drugs for which both Caucasian and Japanese trial data were available.
We then extracted the number of toxicities and the number of allocated patients to the
administered doses in each trial. All those data are shown in Table 2, each time with the
reference article. The MTD declared at the end of the trial is shown in a box. As we can see
from Table 2, Caucasians and Japanese trials were not usually used with the same set of doses.
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Table 1. Number of dose-limiting toxicity and total number of patients accrued at each dose for 1 Caucasian trial and
3 Japanese synthetic trials. In the first column, the trial population is specified. A dash (-) means that the dose was not
tested in the specified population. A box denotes the dose that has been defined as maximum tolerated dose (MTD).

Doses

Example (mg/day) 100 200 400 500 600 800

Caucasian (DLTs/nb pt) 0/3 0/3 0/6 - 3/9 2/3

Japanese
Synthetic-1 (DLTs/nb pt) - - - 1/10 2/8 2/2

Synthetic-2 (DLTs/nb pt) - - 0/3 0/9 4/12 3/3

Synthetic-3 (DLTs/nb pt) 0/3 1/6 3/3 - - -

Table 2. Value of dose-limiting toxicity and total number of patients accrued at each dose for all trials analysed in this
manuscript. In the first column, the trial population is specified. A dash (-) means that the dose was not tested in the
specified population. A box denotes the dose that has been defined as MTD, if the MTD was reached in the trial. For
Sorafenib, the doses were given twice daily (bid).

Investigated Drug Doses

Erilubin (mg/m2) 0.25 0.5 0.7 1.0 1.4 2 2.8 4

Caucasian [16] (DLTs/nb pt) 0/1 0/4 - 0/3 - 1/7 2/3 3/3

Japanese [17] (DLTs/nb pt) - - 0/3 0/3 2/6 3/3 -

Lapatinib (mg/day) 500 650 900 1000 1200 1600 1800

Caucasian [18] (DLTs/nb pt) 0/13 1/15 0/11 1/3 1/12 1/13 -
Japanese [19] (DLTs/nb pt) - - 0/6 - 0/6 1/6 1/6

Sorafenib (mg bid) 100 200 400 600

Caucasian [20] (DLTs/nb pt) 0/3 1/6 0/8 3/7

Japanese [21] (DLTs/nb pt) 0/3 1/12 0/6 1/6

Ixabepilone (mg/m2) 7.4 15 30 40 50 57 65

Caucasian [22] (DLTs/nb pt) 0/3 0/3 0/3 - 3/22 3/3 2/3

Japanese [23] (DLTs/nb pt) - 0/3 0/3 1/6 2/2 - -

Edotecarin (mg/m2) 6 8 11 13 15

Caucasian [24] (DLTs/nb pt) 0/3 0/3 0/6 1/9 4/9
Japanese [25] (DLTs/nb pt) - 0/3 1/6 1/9 2/6

E7070 (mg/m2) 50 100 200 400 600 700 800 900 1000

Caucasian [26] (DLTs/nb pt) 0/4 0/3 0/3 0/3 0/4 2/7 2/4 - 3/3

Japanese [27] (DLTs/nb pt) - - - 0/3 0/3 0/6 1/6 2/3 -

4. Settings

We chose τ, the target toxicity probability, to be used to define the MTD, which equals
0.3 for the three synthetic set examples, while it equals 0.25 for the real case studies. Most of
real case studies followed an algorithm base allocation; therefore, it seemed more natural to
have a threshold lower than 0.3, which is more frequently used when model based designs
are adopted in oncology.
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A non-informative bivariate prior distribution, commonly used in this setting, was
chosen for the BLRM model as follows:(

β0
β1

)
∼ N

((
logit(0.1)

log 1

)
,
[

4 0
0 4

])
.

The hyperprior parameters of the bivariate prior were chosen after a preliminary sensitiv-
ity analysis (not shown) in order to ensure computational stability. In detail, this prior choice
suggests a mean prior probability of toxicity at the reference dose, xr, of 0.1 and that the slope
has the prior median centered at zero. Therefore, xr was chosen in the first half of the total
dose panel for each example. In detail, 400 mg/day was set for the three synthetic examples,
1 mg/m2 for Erilubin, 900 mg/day for Lapatinib, 200 mg/day for Sorafenib, 30 mg/m2 for
Ixabepilone, 8 mg/m2 for Edotecarin and 700 mg/m2 for E7070.

All distances were computed with q = 1, which is why we focus on the square root of
Equation (1)–(3) and on the original value for Equation (4) and (5). The reference doses
selected are reported along with the results in Table 3. All computations were performed
in R, version 3.5.2. Monte Carlo approximations were adopted for all integrals involved,
and uniform prior distribution on compact supports was set to approximate weighted
likelihoods (as posterior distributions) in Equation (4). Details can be found in R scripts in
the Supplementary Materials.

Table 3. Results in terms of d, dmod, dMTD, dp1 and dp2 for the synthetic examples and the real case
studies. xr denotes the reference dose selected for the Bayesian Logistic Regression Model (BLRM).

Drug d dmod dMTD dp1 dp2

Synthetic-1 0.23 0.18 0.19 0 0
Synthetic-2 0.53 0.37 0.41 0.02 0.02
Synthetic-3 0.91 0.83 1.00 1.50 1.27

Erilubin 0.92 0.83 0.91 0.47 0.43
Lapatinib 0.58 0.39 0.50 7.29 0.35
Sorafenib 0.45 0.43 0.57 10.07 0.75

Ixabepilone 0.77 0.56 0.62 0.34 0.26
Edotecarin 0.38 0.24 0.32 0.32 0.04

E7070 0.63 0.63 0.88 0.59 0.23

5. Results

The computed distances under all the proposed methods are shown in Table 3. When
the MTD and the dose–toxicity curves are similar, like in synthetic-1 data, d, dmod, dMTD
are lower than 0.23 and dp1 = dp2 = 0. When only the MTDs are similar (synthetic-2 data)
but not the dose–toxicity curves, dp1 = dp2 = 0.02 but d, dmod, dMTD are higher than 0.37.
Finally, when both curves and MTDs (synthetic-3 data) differ dp1 = 1.50, dp2 = 1.27 and d,
dmod, dMTD are higher than 0.83.

Taking these cases’ studies as reference, we then analyse the data from published
papers with Caucasian and Japanese datasets. Erilubin has the highest values of d, dmod and
dMTD, greater than 0.80, which suggests differences between the dose–toxicity curves. It is
also shown in Figure 1. Its values of dp1 and dp2 are around 0.45. Ixabepilone and E7070
have quite large d, dmod and dMTD, greater than 0.56 and they also have similar results in
term of dp2. The value of dp1 is different in these two examples and reflects the presence of
unbalanced heavy tails in the E7070 case. The heavy tail concern is observed, in at least
one population, in all examples except for Erilubin. The results obtained in Table 3 show
that dp1 is directly impacted by this phenomenon. For example, Lapatinbib and Sorafenb
have a very high value of dp1, greater than 7.29, whereas the maximum a posteriori, dp1,
has more stable and usual results. Edotecarin has close values of d, dmod and dMTD, around
0.3, representing similar dose–toxicity curves.

Figure 2 and Figure A1, in the Appendix A, show how the Caucasian posterior
distribution is different in the three synthetic examples even if it comes from the same
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Caucasian dataset. This behaviour is due to the variance adjustment given by min
(

1, na
nc

)
.

In general, the posterior peak is preserved and the variance increases when the exponent is
less than 1 (as in the synthetic-3 example).

Figure 1. MTD posterior distributions for Erilubin, Ixabepilone, Lapatinib, Sorafenib, Edotecarin and E7070 case studies.
Posterior medians are represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori is
represented by a dashed line for Caucasian and a two-dash line for Japanese.
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Figure 2. MTD posterior distributions for the Synthetic-1, Synthetic-2 and Synthetic-3 examples. Posterior medians are
represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori by a dashed line for Caucasian
and a two-dash line for Japanese.

Figure 3 represents the distance between dose–toxicity curves, dmod, and maximum
of the posterior MTD distribution, dp2. For the sake of interpretability, we have equally
divided the axes into three parts, each one denoting a small, moderate or high distance,
respectively. In this plot, Sorafenib has moderate distances between curves and high
difference between MTDs. This is the opposite for Erilubin, where there is a moderate
difference between MTD and a large distance between curves. When MTDs are similar
or close (first column of the gradient), Edotecarin has similar dose–toxicity curves, while
the distance between curves of Ixabepilone and E7070 is moderate. Lapatinib shows a
moderate distance of both dose–toxicity curve and estimated MTDs.
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Figure 3. Gradient plot representing the distance between dose–toxicity curves, dmod (y-axis), and maximum of the posterior
MTD distribution, dp2 (x-axis). The intensity of the color varies along with the increasing distance value and coherence.
Small dose–toxicity distance and high MTD distance is incoherent, as such it is plotted in a darker color.

6. Discussion

The aim of our work was to propose several Bayesian indicators to support further
decisions when using a bridging data package [1]. Bayesian methods permit the definition
of a similarity degree based on posterior distribution, which do not rely on asymptotic
approximations and can be used also in small sample size settings. Specifically, we proposed
Bayesian indicators which evaluate the distance and the similarity of dose–toxicity curves
and MTD. When evaluating a drug among different populations, assessing the dose–response
curves similarity is of most importance, since, if it is proved, other clinical trial data can be
used, as well as extrapolation from one population to the other. Maeda and Kurokawa [5]
pointed out the difficulty of defining a commensurability measure for different populations.

We presented and studied five criteria, where three of them, d, dmod and dMTD, mea-
sure the similarity between dose–toxicity curves, and two of them, dp1 and dp2, measure
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the distance between the median and the maximum a posteriori of the MTD posterior distri-
butions. The first three measures are bounded between 0 and 1 and their interpretation
could be linked to a proportion. The second ones, dp1 and dp2 have a ratio-like value with
a lower bound at 0. In practice, they represent a relative risk measure.

Our approach allows for the identification and discussion of similarities and differ-
ences between dose–toxicity curves and MTDs. However, as small samples were used in
these studies, estimation of the entire dose–toxicity curve, when only part of the doses
in the panel were evaluated, is complex and leads to an estimation with high variability.
This is reflected in the values of d, dmod and dMTD, which in our real case studies were
above 0.2. When high differences between d and dmod are observed, this is probably due to
computational difficulties in Equation (1), especially in computing the weighted likelihood
without a stabilization term. In general, dmod is lower than dMTD. This could be expected
for two reasons: (i) dMTD introduces, via the transformation, more variability (increased in
the density estimation step); (ii) dMTD is computed after truncating the posterior induced
distribution of the MTD. Moreover, we showed that dp2, based on the maximum a posteri-
ori, is more stable than dp1, which is based on the median, in the presence of unbalanced
heavy tails. Therefore, dp2 could be suggested as a more reliable measure in this setting.
We have attempted the analysis while varying the variance matrix of the bivariate normal
prior distribution and dp1 was less stable (results not shown).

The MTD definition can vary according to the trial and to the population. Therefore,
even if the same MTD is claimed in both Caucasian and Japanese populations, our analysis
can identify differences. For instance, in the Japanese trial of Sorafenib, 400 mg/day is
defined in the clinical trial as the MTD, but at the closest higher dose level, 600 mg/day,
only one patient experienced toxicities (16.7%). Otherwise, in the Caucasian trial, three
patients out of seven experienced toxicity at 600 mg/day (42.6%). Even if the two trials
find the same MTD, the toxicity probability associated with each one differs. That is the
reason why our results showed otherwise. Indeed, in the published clinical trials, there is
a discrepancy between the method section defining the MTD and the real given MTD at
the end of the trial. Our methods are based on data only and allow for evaluation of the
actual similarity.

We decided to present the plot of the posterior densities (of the parameters and of the MTD)
as it shows the super-position (or not) of the information. Plotting directly one-dimensional
dose–response curves could, instead, be misleading and give hazardous interpretation.

A first limitation of our work is that we used published data, where the reporting
can be sometimes incomplete in terms of DLTs and doses. For instance, in the paper of
Burris et al. [18], we had to re-compose the DLT table and the dose-allocation sequence.
Therefore, some interpretation discrepancy can be found in our Table 2. The issue of poor
reporting in cancer trials was already raised by Zohar et al. [28] and Comets and Zohar [29].
As a second limitation, we did not provide fixed cut-offs for each criterion. In our opinion,
the choice of the cut-offs depends on the application and on the quantity of information in
the two trials. The more information we have, the more stringent cut-offs can be considered.
Figure 3 only represents a proposition on the way to display the results.

The criteria proposed in this manuscript may be extended to be used in other settings.
For example, when several trials are available, a meta-analysis of the dose–toxicity curves
or of the MTDs can be considered [30–32]. In this case, pairwise distances can be previously
estimated, in an empirical Bayes approach, and then be used to model the heterogene-
ity parameter(s) or to set prior distribution(s). Other extensions, which do not involve
necessarily Phase I studies, could be considered: (i) in adults–children extrapolation; (ii)
when we are interested to jointly evaluate efficacy and toxicity [33]; (iii) when comparing
outcomes (efficacy or toxicity) of the same drug in different indications; (iv) when dealing
with similarities in subgroups; (v) in comparing historical control data with respect to the
actual trial in randomized Phase III trials.

Being able to quantify distance and bridging between two populations at the end of
early Phase I trials can be useful to better characterize the dose–toxicity relationship and
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differences. In case of small or acceptable differences, the extrapolation process can be
considered, as suggested in the ICH-E5.

Supplementary Materials: The following are available at https://www.mdpi.com/1660-4601/18/4
/1639/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

bid bis in die: twice a day
BLRM Bayesian Logistic Regression Model
CRM Continual reassessment method
DLT dose-limiting toxicity

ICH
International Conference on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use

MTD maximum tolerated dose
PMDA Pharmaceuticals and Medical Devices Agency

Appendix A. Bivariate Posterior Plots

Figures A1 and A2 show the bivariate posterior distributions of β0 and β1 when
using dmod.

Figure A1. Bivariate posterior distributions of β0 and β1 when using dmod for the three synthetic examples.
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Figure A2. Bivariate posterior distributions of β0 and β1 when using dmod for the real case studies
shown in Table 2.
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Abstract: Bayesian inference is increasingly popular in clinical trial design and analysis. The sub-
jective knowledge derived from an expert elicitation procedure may be useful to define a prior
probability distribution when no or limited data is available. This work aims to investigate the state-
of-the-art Bayesian prior elicitation methods with a focus on clinical trial research. A literature search
on the Current Index to Statistics (CIS), PubMed, and Web of Science (WOS) databases, considering
“prior elicitation” as a search string, was run on 1 November 2020. Summary statistics and trend
of publications over time were reported. Finally, a Latent Dirichlet Allocation (LDA) model was
developed to recognise latent topics in the pertinent papers retrieved. A total of 460 documents
pertinent to the Bayesian prior elicitation were identified. Of these, 213 (45.4%) were published in
the “Probability and Statistics” area. A total of 42 articles pertain to clinical trial and the majority
of them (81%) reports parametric techniques as elicitation method. The last decade has seen an
increased interest in prior elicitation and the gap between theory and application getting narrower
and narrower. Given the promising flexibility of non-parametric approaches to the experts’ elicitation,
more efforts are needed to ensure their diffusion also in applied settings.

Keywords: prior elicitation; latent dirichlet allocation; clinical trial

1. Introduction

The frequentist inference paradigm has been the main statistical approach to the
design and analysis of clinical trials since the 1940s [1].

However, the improvements in statistical computing methods and the introduction
of the Markov Chain Monte Carlo (MCMC) algorithm have facilitated the spread of the
Bayesian methods, also in the field of clinical trials [2].

The prior distribution is a key element of Bayesian inference and represents the
information about a parameter of interest that is combined with the likelihood to yield the
posterior distribution. The prior information may be derived from either expert beliefs
(subjective prior) or relevant empirical data (objective prior) [3,4].

Especially when few data are available to estimate the likelihood, for example in
clinical trials in rare diseases [5] and poor accrual setting [6], an informative inference
complemented with an expert elicitation procedure may be useful to translate into prior
probability distribution the available expert knowledge about treatment effect [7,8]. The
Bayesian priors obtained through the elicitation of expert opinion can be used to aug-
ment scarce data about treatment effect, especially in clinical trial design and analysis [9].
Eliciting expert’s opinions, in the Bayesian paradigm, may demonstrate the presence of un-
certainty in treatment effect belief in a quantifiable and illustrative manner. Moreover, this
information can be used to plan a study, for example, the sample size calculations [10] and
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interim analysis [11]. Elicited prior distributions can be used to augment the information
given by scarce therapeutic data [8].

Moreover, it is interesting to consider that, the development of user-friendly inter-
faces, as SHELF (SHeffield ELicitation Framework) [12] or MATCH (Multidisciplinary
Assessment of Technology for Healthcare) [13] software, for prior elicitation, facilitates the
application of the method in the clinical research and other applied settings.

The SHELF software carries out elicitation of probability distributions for uncertain
quantities from a group of experts. Each expert provides a small number of probability
opinions corresponding to points on a cumulative distribution function. The SHELF tool
fits a range of parametric distributions displaying them in the form of fitted probabilities
and percentiles. For multiple experts, a weighted linear pool of the subjective distributions
can be calculated [12].

Another useful tool provided in the literature is MATCH, which provides a web-based
interface for the SHELF routine with the aim of being more user-friendly, including also
features for the conduction of the elicitation process remotely [13].

The elicitation process is usually performed by asking the experts to report a few
summaries of treatment effect, generally medians, modes, and percentiles of the probability
distribution.

Some authors assessed that the role of a facilitator is fundamental in the elicitation
process. The facilitator translates some percentiles, defined by experts, into a probability
distribution. This process is generally based on parametric distributions (Gamma or Beta,
Student, Normal or Log-Normal) [14]. This task becomes more complicated when the
opinions are asked of several experts. In this case, each expert opinion may be separately
translated into distributions, and finally, it is possible to pool them into a unique prior
distribution.

The elicitation approach accounts for the subjective expert’s uncertainty about the
treatment effect under investigation, and the consequences of this uncertainty in final
inference can be investigated using sensitivity analysis techniques [8].

Quantiles information about expert beliefs is generally easier to elicit than moments [15].
Probability distributions are in several cases defined by moments, and some authors
have investigated procedures to derive the parameters of a distribution using mean and
standard deviation [16]. However, instead of considering direct estimates of the mean and
standard deviation, it is possible to ask an expert for a specific discrete set of points on the
distribution for example quantiles [17]. The mean and standard deviations can be derived
from applying specific weights to the quantiles [18], or fitting distributions on the discrete
points [19].

Quantiles information are widely adopted, to fit prior probability distributions, not
only in a parametric but also in the semiparametric and non-parametric setting; for example,
it is possible to ask the expert the quantiles (usually at least two) of the subjective prior
distribution. These points may be plotted, and it is possible to smooth a distribution
function drawn through them using a semiparametric or non-parametric representation of
the expert’s opinion [20,21].

In a parametric setting, the elicitation process assumes that experts’ opinion may
be represented by a good note family of probability distributions identified by hyper-
parameters. Thus, the elicitation consists of the definition of appropriate values for hyper-
parameters to represent the experts’ belief [7].

It is widely assessed that the main limit of a parametric approach is to constrain expert
belief into a pre-specified distribution [22]. Therefore, non-parametric and semi-parametric
hybrid approaches have also been proposed in the elicitation process [21].

This work is aimed to investigate the state-of-the-art of Bayesian prior elicitation
methods, focusing on the discrepancy between the available methodological approaches
in the statistical literature and the elicitation procedures applied within the clinical trial
research.
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In this general framework, another issue is the identification of the main research
topics and the definition of the peculiarities of papers using parametric and non-parametric
approaches in a clinical trial concerning identified research themes. A tool that automat-
ically allows classifying the overall elicitation literature could reduce the manual text
classification burden and characterise topic patterns over the time.

2. Materials and Methods

2.1. Search Strategy

A search on the Current Index to Statistics (CIS), PubMed, Scopus, Embase, and Web
of Science (WOS) electronic databases, finalised to identify all papers dealing with prior
elicitation and published from 1 January 1980 to 1 November 2020, was performed. The
search string “prior elicitation” was used. This search string is very general to ensure that
all relevant results would be included in the final analysis. The pertinent articles were
identified after duplicate removal. The overall prior elicitation literature and the articles
pertaining to the prior elicitation in the clinical trial have been screened by reading the title
and abstract.

2.2. Overall Data Description

Summary statistics were reported to describe the corpus of papers pertinent to the
prior elicitation theme.

The prior elicitation-relevant articles have been classified in those published in “Prob-
ability and Statistics” journals (here in after referred to as Statistical papers) according to
the Journal Citation Reports® [23] classification. The prior elicitation publication trend
according to the statistical papers versus other journals has been reported.

As for articles concerning drug clinical trials, the frequencies of published papers have
been reported according to publication time and prior elicitation methods, in parametric
and in not (or semi) parametric settings.

2.3. State-of-the-Art of Prior Elicitation in Clinical Trials

Methodological approaches to the prior elicitation currently used in clinical trial
literature have been described, evaluating the main characteristics of parametric and non-
parametric approaches adopted in trial design and analysis distinguishing by type of
outcome considered in the study.

For a general comparison purpose, available methods for expert elicitation in the
overall pertinent prior elicitation literature have been also reported and described.

2.4. Text Mining Analysis
2.4.1. LDA Algorithm

A text mining (topic model) analysis has been conducted to automatically identify the
main topics characterising the overall publications on prior elicitation. The literature on
clinical trials could constitute a limited subset of the total literature on prior Elicitation. For
this reason, this subset was used as a validation set by classifying the documents manually
and comparing the outcome of the manual classification with the automatic one. Topic
modelling is an unsupervised machine learning technique that is capable of automatically
clustering word groups (topics) and similar expressions that best characterise a set of
documents [24].

2.4.2. Data Pre-Processing

The titles and abstracts of prior elicitation pertinent papers have been pre-processed.
Punctuation, stop words, white spaces, and numbers were removed. Redundant words
(prior, elicitation, expert, Bayesian, analysis) were also removed. All words were converted
to lowercase.
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Once the text corpus has been cleaned, a Document-Term Matrix (DTM) has been
created. A DTM is a matrix, reporting documents (articles) by rows and words by columns;
a generic element of DTM is the word counts.

To detect topics, a Latent Dirichlet Allocation (LDA) [24] analysis has been performed
on the DTM matrix of pertinent articles. LDA is a technique leading to the automatic
discovery of themes in a collection of documents. The method assumes that each document
(articles) is a mixture of topics. Documents and words are observed elements instead topics
are latent structures discovered by the LDA algorithm.

The method aims to infer the latent topic structure given the words and document.
LDA recreates the documents in the corpus by adjusting the relative importance of topics
in documents iteratively using a Gibbs sampler algorithm [25].

Gibbs sampling works by performing a random walk. The starting point of the walk
is chosen at random; for this reason, it may be useful to discard the first steps (burn-in
period). Overall, 10,000 iterations have been considered in the computation, and 100 draws
have been discarded as burn-in. A total of five Markov chains with different starting points
were generated.

2.4.3. Number of Topics

The number of topics has been chosen following the maximisation criterion of the
Deveaud measure [26]. The method is based on the idea of computing distances between
pairs of topics over several instances of the model while varying the number of topics.
The model iterations are done by varying the number of topics of the LDA model, then
estimating again the Dirichlet distributions. The optimal amount of topics is reached when
the overall Kullback–Leibler dissimilarity between topics achieves its maximum value [27].

2.4.4. Validation and Convergence Assessment

The algorithm has been validated on the clinical trial pertinent articles. Furthermore,
the overall accuracy has been calculated, comparing the manual and automatic classification.

The convergence of the LDA algorithm has been evaluated showing the Log-Likelihood
in correspondence of the first 500 iterations. If the Log-Likelihood estimate stabilises after
the first iterations, then the convergence is deemed acceptable [25].

2.4.5. Results

Once the algorithm has been validated, the distribution of the publication topics iden-
tified by the algorithm on the prior elicitation literature has been characterised according to
the year of publication and the field of application (trial versus other pertinent literature).

Computations have been performed using R 3.3.2 [28] System with topicmodels [29]
package.

3. Results

3.1. Overall Data Description

A total of 3725 articles have been found performing the literature review. Among them,
470 articles are identified as pertinent to the Bayesian prior elicitation theme (Figure 1).
Of these, 213 are published in Statistical Journals according to Journal Citation Reports®

classification [23].
As per the temporal pattern of the prior elicitation literature, it is possible to observe

that, until 2010, there is a greater number of publications in the statistical literature com-
pared to other research areas; the pattern is reversed starting from 2009 to November 2020
(Figure 2).

Concerning the clinical trial research setting, it is possible to observe that 42 articles
out of 470 deal with this research argument. Moreover, according to temporal trends, an
increase in the number of publications concerning clinical trials is observed over time;
2 articles between 1992 and 2000, 10 in the period comprised between 2001 and 2008,
15 between 2009 and 2016, and 15 between 2017 and 2020.
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Figure 1. Prisma Flowchart.

 

Figure 2. Articles pertinent to Prior Elicitation (n = 470) according to Journal type and year.

3.2. State-of-the-Art Prior Elicitation in the Clinical Trial

Table 1 shows the characteristics of the 42 papers pertinent to clinical trial literature.
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3.2.1. Parametric Approaches
Continuous and Time to Event Outcomes

Considering continuous and time to event outcomes, Normal or Log-Normal priors
are the preferred distributions for the elicitation procedure in 22 research articles.

The Normal prior distribution is used in several fields of application:

• Survival endpoints

The Gaussian distribution is a used solution to define priors on hyper-parameters
for a survival function assuming a Weibull time to event shape relation [37]. The author
proposed Bayesian methods for right-censored survival data for populations with a sur-
viving (cure) fraction. A real dataset from a melanoma clinical trial has been considered
for the application. The normal random variable has been considered to parametrise the
Weibull scale hyperparameter in an uninformative manner with high variance [37]. In fact,
according to the Bayes and Laplace postulate, the absence of information concerning the
treatment effect may be translated into equal prior probabilities for a discrete event and a
flat prior (high variance) for the continuous endpoints [71].

In several cases, log-hazard ratios are also modelled as a normal distribution. His-
tograms representing the prior beliefs of each investigator were constructed and interpo-
lating the Log Hazard ratio with a Gaussian distribution [49,62]. This approach has been
employed also in cancer survival studies by performing a weighted averaging pooling of
expert opinions [42].

The poling of the expert opinion may be performed by calculating the average of the
height of the prior distributions for each parameter value (average pooling) or computing
a geometric mean of the original densities (logarithmic pooling). Both techniques allow for
different weights to be given to each opinion depending on the clinician’s experience in the
area under study [72].

• Models hyperparameters

The normal approximation of experts’ opinion is also implemented to model parame-
ters of Bayesian logistic regression. The method models the response as a Bernoulli random
variable assuming the regression coefficients as a mixture of three normal distributions
reflecting increase, decrease, and no substantive change in the response [51].

Moreover, the Gaussian priors have been considered also to define the hyperparame-
ters for an adjusted hierarchical model for the miscounting count predictions of the Poisson
and negative binomial models. The parametrisation has been proposed and applied to a
large randomised controlled trial on Chronic Obstructive Pulmonary Disease [50]. The
author derived the prior parameters from the historical information by using an adaptive
prior weighting approach, accounting for a potential prior-data conflict. The idea is to
discounting the prior information whatever the prior-data conflict exists [73].

• Study design

The Normal distribution has been also proposed in multi-stage trials to elicitate a
prior for the treatment effect estimation and then calculating the probability that the trial
will produce a favourable outcome; the decision to proceed with a larger trial has been
translated in a prior probability distribution incorporating the information provided by a
smaller trial [30]. The treatment effect has been elicitated via univariate quartile elicitation
method: the Gaussian prior parameters have been derived fitting a probability distribution
on the expert quantiles via least-squares procedure [13].

The normal prior elicitation is also considered for the Bayesian clinical trial design.
Recent research evaluates the prior impact on the observed data model by introducing
the effective current sample size (ECSS) prior approach. Special emphasis is put on the
robust mixture, power, and commensurate priors defined on a normal and beta parametri-
sation [69].

The Gaussian random variable is considered in literature also to perform a prior
elicitation for a survival function in the context of a Bayesian clinical trial planning [55].
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The author proposes an assurance method, which is an alternative to a power calculation
analysis based on the probability of a successful trial outcome computation via Elicitation
of a prior probability distribution about the study treatment effect. The prior distribution
for the difference in the time point-specific survival rate between treatment and control
arm has been elicitated via univariate quantile elicitation method [13] by using a truncated
Gaussian prior ensuring the support of the time-specific survival rate would be comprised
between 0 and 1 [55].

• Treatment effect estimation

Another application of this prior parametrisation is used to elicitate the mean change
score in a rare disease trial once the consensus among the experts has been reached [54].
The study endpoint under consideration was a mean change score measured 100 mm visual
analog scale (VAS) assumed to follow a Gaussian distribution. The prior parameters were
elicited by averaging individual quantile opinions among experts.

In other cases, continuous outcomes, defined on log scales, are modelled eliciting
experts’ opinions with normal distributions [59]. Individual responses achieved from
the graphical elicitation method were summed and normalised to obtain a unique prior
distribution which is the mean of the single expert normal priors [59].

Additionally, cost data, typically highly skewed, are elicited using Log-Normal trans-
formation [60]. The research showed that the use of genuine prior information can provide
more realistic conclusions in particular for cost-effectiveness analyses of trial data where
sample sizes are relatively small. A genuine prior is represented by an informative distribu-
tion which assumes a higher probability to some values than to others within parametric
space [60].

• Multivariate distributions and mixture of priors

In several cases, the overall prior distribution is developed by a weighted mixture
of the single expert priors [63]. The mixture of expert’s Log-Normal priors has been used
also to elicitate a prior distribution for the sources of bias affecting the final trial estimate
which may be reported in a meta-analysis. The elicited opinions are used to develop
prior distributions representing the biases in each study useful to perform a bias-adjusted
meta-analysis [64].

A Bayesian method has been proposed and applied to a colon cancer trial where the
expert information is used to perform a variable selection procedure [34]. A bivariate
Normal random variable has been considered to parametrise the covariate effect, instead, a
Beta variable is used to define the covariate weight in the feature selection procedure. The
expert’s opinions have been pooled using a Bayesian Model Average approach [74].

In the CHARM clinical trial, the log-hazard of cardiovascular death has been modelled
via Multivariate Normal distribution [68]. The analysis has been performed on a specific
group of patients; the group-specific treatment effects have been estimated by using
a Bayesian approach with informative Multi-Normal priors obtained eliciting expert’s
opinions, interpolating the single opinion histogram with a normal random variable, and
averaging across opinions.

The bivariate normal parametrisation has been also considered, in a two-stage phase
I–II clinical trial design to optimise dose–schedule regimes where a flexible Bayesian
hierarchical model has been used to account for the relation among patients subgroups
and treatment regimens [48].

Other parametric distributions are considered in the literature for the continuous
outcomes, for example, surgical learning curve parameters (first procedure and plateau
level) are obtained averaging different experts’ opinion, using a power–law function [39].

The inverse gamma distributions served, instead, to model the accrual rate monitoring
in a clinical trial. The posterior predictive accrual distribution has been obtained combining
prior information on the accrual rate, provided by experts or historical data, with the
information known up to the monitoring time point [40].
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In another case, Laplace’s and Jeffreys’s priors are elicited to estimate a competing risks
model with covariates [75]. Laplace’s prior has been considered for nonidentifiable model
parameters, instead, Jeffreys’s prior has been considered for identifiable parameters [75].

Laplace’s distribution is a continuous probability distribution also note as a double ex-
ponential because its density can be seen as the association of two densities of exponential
laws. Laplace’s law can also be obtained from the difference of two independent exponen-
tial variables with the same parameter [76]. This distribution has been used extensively
as a sparsity-inducing mechanism to perform feature selection simultaneously within
classification or regression. The mechanism is implemented in the LASSO regression. This
prior places stronger confidence on zero regression coefficient than does a normal prior
centred on zero [77].

The Jeffreys prior instead is a non-informative prior distribution. In agreement with
the Jeffreys rule, a prior distribution is uninformative if its density function is proportional
to the square root of the determinant of the Fisher information matrix [71,78].

Categorical Outcomes

Generally, prior probability distributions for binary outcomes are elicited in terms of
Beta priors [31,45,46,56,58]. Aupiais and colleagues, for example, proposed a non-inferiority
approach, in a Bayesian framework, for sequential monitoring of rare dichotomous safety
events, incorporating experts’ opinions to define the margin. The acceptable difference
between adverse event rates across arms, according to the expert opinions, was modelled
using a mixture of beta distributions [31].

• SHELF elicitation procedure

The SHELF elicitation procedure is a widely used approach to elicitate Beta event
rate in a clinical trial [12] and is the most commonly used software for elicitation (Table 1).
Jansen et al. [45], for example, elicited the prior distribution for the 24-h trauma mortality in
patients with haemorrhagic complications combining beta distributions using the SHELF
elicitation procedure. The single expert distributions were elicited using the roulette
method than a linear poling of the distributions has been performed [45].

In the roulette method, the expert provides probabilities of the treatment effect lying
in a particular “bin” by allocating “gaming chips” to that bin. The method provides a
graphical representation of the provided expert beliefs [14].

Another research underlines the feasibility of a SHELF elicitation procedure for the
evaluation of drug safety or efficacy in a hypothetical early-stage trial. A beta prior has
been considered for the elicitation of the expert’s opinions [46].

A sequential update of the experts’ opinion is also reported in veterinary trials by
using a SHELF elicitation procedure on the beta event rate. This research has demonstrated
the usefulness of probabilistic elicitation for evaluating the diversity and strength of experts’
beliefs concerning the efficacy of systemic antibiotics as dry cow therapy [43].

This software is often used for the computer-based elicitation procedure; the distribu-
tions are interactively elicited by showing to the experts the priors obtained through the
software. Other elicitation procedures are based on (1) informal discussion (2) structured
questionnaires (3) Structured interviewing with poling of opinions [72].

• Dose-response curves

In some cases, a normal distribution has been assumed on parameters characterising
the dose-toxicity curve in Phase I clinical trial [32]. A phase I clinical trial is generally
aimed to find a maximum tolerated dose, which is often a monotonically increasing dose-
response curve following a logistic distribution. For example, the definition of a toxicity
response may be based on the approach of eliciting a range for the probability of toxicity at
the lowest dose level, and the value of the maximum tolerated dose. The prior for both
parameters distribution may be considered as a uniform distribution over these ranges [57].
A non-parametric shape function, for a maximum, tolerated dose may also be reported.
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Another option, addressed in the literature, is the of the toxicity probability at each dose
level considering a Beta prior distribution [38].

The Log-Normal and Normal prior parametrisation has been used also to develop
generalised priors for different Bayesian Dose–Response parametric models [67].

A parametric distribution is also adopted in the literature for categorical endpoints by
using the log transformation of odds ratios modelling binary data using elicited Normal
priors [5]. Opinion on the relative efficacy of treatment was modelled as a normal distribu-
tion, the parameters of which were determined by asking experts questions concerning the
distribution quantile.

3.2.2. Non-Parametric Approaches

A total of eight articles [9,33,36,47,52,53,61,70] out of 42 treating expert elicitation in
clinical trials consider non-parametric methods for the elicitation of the expert opinion.
The principal non-parametric approaches applications are classified within:

• Histogram approach

Graphical visualisation of the expert opinion in histogram defined on parameters of a
log-hazard function is a possible approach used to perform elicitation of the expert opinion.
The method is flexible leading to define hazard regression coefficient with parametric
distributions also allowing for non-parametric adjustments using more general copula
combinations of marginal distribution [36]. Individual expert histograms representing the
prior beliefs about the treatment effect are also used in other cases to derive non-parametric
prior averaging individual expert opinion [9,61].

• Study design and power prior approach

The use of historical information to define the prior distribution in a non-parametric
context is a method recently used in the literature [53]. Informative prior elicitation is
typically a challenging task even in the presence of historical data (objective prior) [79].
Ibrahim and Chen [80] proposed the power prior approach to incorporate the historical
data in the analysis of a current study. The method is based on the raising of the likelihood
function of the historical data to a power parameter between 0 and 1 (power parameter).
This parameter represents the proportion of the historical data incorporated in the prior.
Diaconis and Ylvisaker [81] and Morris [13] studied conjugate priors for the exponential
families by assuming a fixed power parameter. Ibrahim and Chen [80] considered the
uncertainty component on power parameters.

The approach is widely used for the design and analysis of clinical trial data. The
method is useful for handling problems related to a lack of exchangeability between the
historical and current data, and the risk that prior information overwhelms the clinical trial
data information [82].

In a sequential clinical trial, for example, a power prior approach is considered to
weight the prior information together with the ESS (Effective Sample Size) approach is used
to set the maximum desired amount of information to be shared from historical data at
each step of the trial [52]. The ESS method leads to define the prior in terms of the number
of hypothetical patients used to develop the prior. The procedure leads to quantify how is
informative a prior distribution [83].

Recently, some efforts are evidenced in the literature to incorporate, in the study
design phase, the alternative procedure to the prior definition. The method is tailored on a
phase IIA trial and represents a Bayesian counterpart of a Simon two-stage design using
historical data and semi-parametric prior’s elicitation methods [33].

• Dose findings in early phase trials

Non-parametric approaches are also considered to find a maximum tolerated dose
in Phase I clinical trials using the Continual Reassessment Method design and proposing
a suitable informative prior distribution on the relationship between outcome data and
covariates [47,84]. In a dose-finding trial, non-parametric elicitation procedures are used
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eliciting expert quantiles opinion corresponding to the toxicity probability at each dose
level [70].

3.2.3. Field of Application

Phase II-III trial. The prior elicitation has been applied (16 studies) to the trials for
an efficacy assessment within phase II or III trials (Table 1). The priors are defined for
the drug efficacy assessment, especially in an informative setting (Table 1). However,
in several cases, sensitivity analyses to the prior choices have been proposed, including
both the results for the non-informative and informative analysis [31,37,61,63,68]. Con-
cerning the prior distribution sensitivity analysis, the robust Bayesian approach has been
proposed by Greenhouse and Wasserman and applied to the clinical trial data, especially
to help the monitoring committee to decide whether or not early stopping a trial. The
method investigates how the inferences might change as the prior varies over a class of
distributions [85].

In other cases, different hypotheses are defined on the informative prior parameters [9,62].
Different levels of discounting are also considered on the historical information incorpo-
rated in the prior definition by using a power prior approach [56].

Early Phase I-II. Seven studies implemented the prior elicitation in early phases trial
for the safety assessment (Table 1); the greater part of them (4) considered informative
priors [38,47,48,52].

3.3. Topic Model Analysis

The analysis was performed on textual data of 470 articles. Two topics were selected
for analysis because the maximum value of the Deveaud metric is 2.3 and has been reached
in correspondence of two topics. Among the most frequent words (Figure S1, Supplemen-
tary Material), the redundant words (“result”, “assess”, “data”, “probabl”, “approach”,
“propos”, “provid”, “base”, “knowledge”, “approach”, “develop”, “perform”, “also”,
“present”) have been removed from the LDA computation algorithm.

The features pertinent to each topic are shown in Table 2. The most pertinent word on
each topic, allow to characterise them by their structure of meaning.

1. The first one, here in after referred to as applied topic, is more related to the empirical
application of the prior elicitation methods

2. The second topic, here in after referred to as theoretical topic, seems to be related to
the theoretical implications of the prior elicitation procedure

Table 2. Pertinent words according to each LDA topic. In bold are represented the most impor-
tant words.

Applied Theoretical

1 study model

2 effect distribut

3 estim inform

4 opinion paramet

5 uncertainti posterior

6 test sampl

7 process function

8 risk paper

9 practic statist

10 case predict
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Table 1 shows that 28 papers are manually classified as applied works (applied topic),
and 14 papers concern a theoretical topic. The articles reporting both theoretical and
practical applications have been classified as applied topic papers. The overall accuracy
computed on manually screened 42 trial articles is equal to 83% (7 articles have been
misclassified by the LDA algorithm).

Observing the predictions of the LDA algorithm according to publication year (Figure 3)
it is possible to observe that the prior elicitation procedure is prevalently addressed in
Theoretical topic literature until 2010. The pattern is reversed in recent years evidencing
an increasing interest on prior elicitations methods also in the generally applied research
literature. The number of published papers concerning the prior elicitation increases both
in a theoretical and applied framework. This growth continues in parallel with the increase
of interest of the scientific literature for the Bayesian approach in general. The pattern of
publication of papers containing the word “Bayes” on Pubmed (Figure S2, Supplementary
Material), we observe a relevant growth starting from the first half of 2000.

 

Figure 3. Classification of prior elicitation pertinent articles according to LDA topics and publication
years.

Moreover, comparing LDA results about trial articles with the overall pertinent liter-
ature on prior elicitation, it is possible to observe a greater proportion of applied papers
in trial pertinent literature, and evidence that a consistent part of theoretical literature is
allocated in not pertinent articles (Table 3).

Table 3. Classification of articles according to LDA topics and pertinence to the clinical trial literature.

Applied Theoretical Total

Pertinent to clinical trials 16% (31) 4% (11) 42

Not pertinent to clinical trials 84% (164) 96% (264) 428

Total 195 275 470

4. Discussion

Study findings indicate that starting from 2010, it is also possible to observe a spread-
ing of the prior elicitation techniques in research fields different from the theoretical
statistics. This aspect may be related to the recent increase in the popularity of the Bayesian
methods in a general setting and the clinical trial research [2]. In recent years, Bayesian
methods have increasingly being used in the design, monitoring, and analysis of clinical
trials due to their flexibility [86].
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The increase in popularity of Bayesian methods in a clinical trial involves a need for
statisticians to define tools useful for the definition of robust and defensible informative
prior distributions [87].

Empirical data may be used to define such priors (objective prior) whenever possible.
However, in some cases, the limitations in data availability may preclude the construction
of a data-based prior. In this situation, an expert elicitation procedure may be a solution
used to define prior distributions [87].

In clinical trial publications, parametric distributions are mostly employed in applied
settings. Semi-parametric or non-parametric priors are poorly used within this field,
confining them mainly to the theoretical field. This aspect concerns especially less diffused
approaches involving non-parametric methods for prior elicitation method. The reason
behind the limited application of the non-parametric methods is surely related to the
computational effort associated with the definition of a prior distribution which is more
flexible and adaptable to the expert opinion but, in several cases, leads to obtaining
posterior distributions difficult to be expressed in the closed-form [88].

It is important to consider that, in some research contexts, the translation of the experts’
opinions into a pre-specified family distribution may be considered a limitation because
many different distributions may be more suitable to the experts’ opinions generally
expressed in quantiles [14].

In recent years, not only parametric but also non-parametric methods to the elicitation
of expert opinion are treated especially in the theoretical literature.

However, in clinical trial research, the conventional parametric methods are the more
adopted procedures to the elicitation of expert opinion, leaving non-parametric methods
predominantly in a statistical field.

Given the potential of prior elicitation to a better decision on making, more efforts are
needed to ensure diffusion of the prior elicitation facilities, not only in theoretical statistical
research but also in applied clinical trial settings, both at the design and analysis stage.

5. Conclusions

The prior elicitation methods are recently appealing not only to statistical literature
but also in other research settings. It is possible to observe that the methods are increasingly
used in general literature and clinical trial research.

However, in this framework, conventional parametric methods are more popular in
clinical trial research. The non-parametric approaches are, in several cases, treated specially
in the theoretical literature which is mainly focused on a statistical argumentation.
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Abstract: In the conduction of trials, a common situation is related to potential difficulties in recruiting
the planned sample size as provided by the study design. A Bayesian analysis of such trials might
provide a framework to combine prior evidence with current evidence, and it is an accepted approach
by regulatory agencies. However, especially for small trials, the Bayesian inference may be severely
conditioned by the prior choices. The Renal Scarring Urinary Infection (RESCUE) trial, a pediatric
trial that was a candidate for early termination due to underrecruitment, served as a motivating
example to investigate the effects of the prior choices on small trial inference. The trial outcomes
were simulated by assuming 50 scenarios combining different sample sizes and true absolute risk
reduction (ARR). The simulated data were analyzed via the Bayesian approach using 0%, 50%, and
100% discounting factors on the beta power prior. An informative inference (0% discounting) on
small samples could generate data-insensitive results. Instead, the 50% discounting factor ensured
that the probability of confirming the trial outcome was higher than 80%, but only for an ARR higher
than 0.17. A suitable option to maintain data relevant to the trial inference is to define a discounting
factor based on the prior parameters. Nevertheless, a sensitivity analysis of the prior choices is
highly recommended.

Keywords: power-prior; poor accrual; Bayesian trial

1. Introduction

Difficulties in the enrolment of the overall trial sample size, as indicated at the design
stage, could be caused by several factors (i.e., high costs, regulatory barriers, narrow
eligibility criteria, and cultural attitudes toward research in almost all research fields).
Effects can be different depending on the population’s characteristics and the intervention
under evaluation [1].

Prior research evaluating the reasons for termination across a broad range of trials
reported that insufficient enrolment is the most common reason, with a frequency ranging
from 33.7% to 57%, depending on the definition used [2,3]. The slow or low accrual problem
is common in clinical research on adults, primarily in oncology [4–6] and cardiology [7],
as well as in pediatric research, in which 37% of clinical trials are terminated early due to
inadequate accrual [8]. Pediatrics is a research field that requires particular attention, since
accrual issues are associated with methodological and ethical challenges [9]. It is essential
to consider that the management and conduct of pediatric trials are more complicated than
those of adult trials in terms of practical, ethical, and methodological problems [10].

From a statistical point of view, low accrual results in a reduced sample size, compro-
mising the ability to accurately answer the primary research question due to a reduction in
the likelihood of detecting a treatment effect [11]. The scientific community has conveyed
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that early termination of a trial due to poor accrual leads to inefficiency in clinical research,
with consequent increases in costs [12] and a waste of resources, as well as a waste of the
efforts of the children involved in the trial [13].

For these reasons, alternative and innovative approaches to pediatric clinical trial
design have been a recent topic of debate in the scientific community [9,14]. Alternative
methods for pediatric trial design and analysis have been proposed by recent guidelines in
the field, i.e., the ICH (International Council for Harmonisation) Topic E11 guidelines [15],
the guidance for trial planning and design in the pediatric context [16], and the EMA
(European Medicines Agency) guidelines [16–18].

It is noteworthy that data from trials terminated prematurely for poor accrual can
provide useful information for reducing the uncertainty about the treatment effect in a
Bayesian framework [11].

In recent years, Bayesian methods have increasingly been used in the design, monitor-
ing, and analysis of clinical trials due to their flexibility [19,20]. Considering the research
setting described in this work, the Bayesian methods used for accrual monitoring are
also interesting [21]. These methods are well suited to designing and analyzing studies
conducted with small sample sizes and are particularly appropriate for studies involving
children, even in cases of rare disease outcomes [9].

In clinical trials that are candidates for early termination due to poor accrual reasons,
a Bayesian approach may be useful for incorporating the available knowledge on the
investigated treatment effect, reported in the literature or elicited by experts’ opinions [22].
In addition, in a Bayesian setting, prior information combined with data may support the
final inference for a trial conducted on a limited number of enrolled patients [23,24].

In pediatric trials, for example, the awareness that a treatment is effective in adults
increases the probability of its efficacy in children. This knowledge may be quantitatively
translated into a prior probability distribution [9,14].

However, when there is a small sample size, the final inference may be severely
conditioned by a misleading prior definition [24]. In this framework, the Food and Drug
Administration (FDA) suggests performing a sensitivity analysis on prior definitions [25],
especially for very small sample sizes [26]. In this regard, the power prior approach is
used to design and analyze small trials to control for the weight of historical information,
translated into prior distributions, through prior discounting factors [27,28]. The use
of historical information to define the prior distribution in a nonparametric context is
a method recently used in the literature [29]. Informative prior elicitation is typically a
challenging task even in the presence of historical data (objective prior) [30]. Ibrahim and
Chen [28] proposed the power prior approach to incorporate the historical data in the
analysis of a current study. The method is based on the raising of the likelihood function
of the historical data to a power parameter between 0 and 1 (power parameter). This
parameter represents the proportion of the historical data incorporated in the prior.

Hobbs modified the conventional approach, accounting for commensurability of
the information in the historical and current data to determine how much the historical
information is used in the inference [31]. Other power-prior proposals calibrate the type I
error by controlling the degree of similarity between the new and historical data [32,33].
The prior-data conflict has also been addressed and incorporated in the power prior in a
commensurability parameter defined by using a measure of distribution distance in a group
sequential design clinical trial [34]. A mixture of priors, for the one-parameter exponential
family, has been also considered in a sequential trial, to incorporate the historical data
accounting for rapid reaction to prior-data conflicts by adding an extra weakly-informative
mixture component [35].

In general, the power prior approach is widely used for the design and analysis
of clinical trial data. The method is useful for handling problems related to a lack of
exchangeability between the historical and current data, and the risk that prior information
overwhelms the clinical trial data information [27].
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The optimal amount of discounting factors for an informative prior remains to be
discussed [14].

This study investigated the effects of the prior choices on the final inference, especially
for studies conducted with limited sample sizes, such as pediatric trials. A pediatric trial
candidate for early termination due to underrecruitment, the RESCUE trial, served as a
motivating example for the simulation study proposed.

A set of possible trial outcomes were simulated. The simulation plan was designed to
evaluate the effects of the prior choices on the trial results by evaluating different scenarios
depending on the number of patients involved in the study and the magnitude of the true
treatment effect.

2. Materials and Methods

2.1. Motivating Example

The RESCUE trial was a randomized controlled double-blind trial. The purpose of the
study was to evaluate the effect of adjunctive oral steroids in preventing renal scarring in
young children and infants with febrile urinary tract infections. The primary outcome was
the renal scar absolute risk reduction (ARR) between the treatment arms. The study was
designed expecting an ARR of 0.20 to determine a renal scar reduction from 40% to 20%.

After two years, only 17 recruited patients completed the follow-up for the study
outcome (6 in treatment and 11 in control) due to procedural problems and poor compliance
with the study therapy and final diagnosis [16–18].

2.2. Simulation Plan

The possible trial outcomes were simulated by assuming several scenarios combining
different sample sizes and true ARRs. The simulated data were analyzed via the Bayesian
approach using a beta prior distribution whose parameters were derived from trials con-
ducted in research settings similar to the RESCUE trial. The beta-binomial model was
considered because it is the most widely used approach among the Bayesian methods to
summarize event rates in clinical trials [36]. This parametrization is easily computationally
tractable and is very precise [37].

Informative, low-informative, and uninformative priors were selected for the analyses
according to the discounting levels placed on the prior parameters.

The classical, non-Bayesian approach was considered a benchmark.
This simulation study is defined by:

1. Data generation hypotheses.
2. Analysis of simulated data.
3. Presentation of the results of simulations.

A flowchart synthesizing the simulation plan is reported in Figure S1, Supplemen-
tary Material.

2.3. Data Generation Hypotheses
2.3.1. Simulation Scenarios

The simulation plan consisted of 50 scenarios. Each scenario represents a single
combination of the treatment effect (ARR) and the sample size used to generate the data.
Fifty scenarios were considered, since they combined ten different sample sizes (ranging
from 15 to 240) within five assumed ARRs (Table 1). The ARR ranged from −0.07 to
−0.27, with an increment of 0.07, according to the treatment effects suggested by the
literature [38,39].

117



Int. J. Environ. Res. Public Health 2021, 18, 2095

Table 1. Simulation scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sample
size

15 40 65 90 115 140 165 190 215 240 15 40 65 90 115 140 165 190 215 240 15 40 65 90 115

True
ARR

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.17 0.17 0.17 0.17 0.17

Scenario 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Sample
size

140 165 190 215 240 15 40 65 90 115 140 165 190 215 240 15 40 65 90 115 140 165 190 215 240

True
ARR

0.17 0.17 0.17 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

ARR=Absolute Risk Reduction.

2.3.2. Data Generation within Scenarios

For each scenario, the trial data were randomly generated 5000 times. The data were
drawn from a binomial random variable, assuming a true event rate in the control arm of
πcontrol = 0.33. This event rate is in-between the results provided by Huang et al. [38] and
Shaikh et al. [39] for the control group.

The treatment arm data were generated using a binomial random variable hypoth-
esizing an ARR, one for each experiment, in compliance with the simulation plan pro-
vided in Table 1, where the sample size is showed overall. However, it is assumed that
the control arm contains 60% of the sample size to reflect the group imbalance in the
motivating example.

2.4. Analysis of the Simulated Data

The 5000 randomly generated data points were analyzed via the Bayesian method by
considering: (1) the informative prior, (2) the low-informative prior, and (3) the uninforma-
tive prior. A frequentist analysis was performed for comparison purposes.

The data were simulated 5000 times by a binomial random variable in a frequentist
approach. For each of the repeated simulations, the ARR was calculated and the binomial
confidence interval was estimated.

2.4.1. Prior Definition

A mixture of beta priors was considered for the outcome evaluation, using data
provided by the literature [38,39]. The clinical trial results were combined in a mixture
of distributions. The beta distributions comprising the mixture of priors for each scar
event rate in the treatment and control groups were derived from other trials’ historical
information [27].

The functional form of the distribution is characterized by the shape α and scale β

parameters Π ∼ Beta(α,β) [40], where Π is the parameter that characterizes the event
rate on which to make inference. The shape value α is defined by the number of events
x observed in other trials, while the β value corresponds to the number of subjects not
experiencing the event (n − x) [41].

1. Huang et al. [38] reported probabilities of scarring of π̂treat (Huang) = 6
18 = 0.33

and π̂control (Huang) = 39
65 = 0.66 in the treatment and control arms, respectively.

Considering this information, the informative beta prior can be derived as:

Πtreat (Huang) ∼ Beta(6, 12)

Πcontrol (Huang) ∼ Beta(39, 26)

2. Shaikh et al. [39] reported, instead, probabilities of scarring of π̂treat (Shaikh) = 0.098
(12|123) and π̂control (Shaikh) = 0.168 (22|131) in the treatment and control arms,
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respectively. Considering this information, the informative beta prior can be derived
as:

Πtreat (Shaikh) ∼ Beta(12, 111)

Πcontrol(Shaikh) ∼ Beta(22, 109)

The information was combined in a mixture of beta priors:

• For the treatment arm, the beta mixture is defined as:

Πtreat = γΠtreat (Huang) + (1 − γ)Πtreat (Shaikh)

The expected value for the mixture random variable is, for the treatment arm, a
weighted mean of the expectations over the mixture components:

E
[
Πtreat ] = γE[Πtreat(Huang)

]
+ (1 − γ)E[Πtreat(Shaikh)]

If we denote the beta shape αtreat(Huang) and αtreat(Shaikh), respectively for the Huang
and Shaikh studies, and βtreat(Huang) and βtreat(Shaikh) the scales for the considered
studies, the mixture expected value may be computed as:

E[Πtreat ] = γE
[
Πtreat(Huang)

]
+ (1 − γ)E

[
Πtreat(Shaikh)

]
E[Πtreat ] = γ

αtreat(Huang)

αtreat(Huang)+βtreat(Huang)
+ (1 − γ)

αtreat(Shaikh)

αtreat(Shaikh)+βtreat(Shaikh)

= γ
6

6 + 12
+ (1 − γ)

12
12 + 111

If we assume an equal weight value γ = 0.5, E[Πtreat ] = 0.215.
• The mixture variance is given by:

Var[Πtreat ] =
[
γ
(

Var
[
Πtreat(Huang)

]
+ E

[
Πtreat(Huang)

]
− E[Πtreat ]

)]
+

+
[
(1 − γ)

(
Var

[
Πtreat(Shaikh)

]
+ E

[
Πtreat(Shaikh)

]
− E[Πtreat ]

)]
where the variances of the mixture components are:

Var
[
Πtreat(Huang)

]
=

αtreat(Huang)βtreat(Huang)

(αtreat(Huang)+βtreat(Huang))
2(αtreat(Huang)+βtreat(Huang) + 1)

Var[Πtreat(Shaikh)] =
αtreat(Shaikh)βtreat(Shaikh)

(αtreat(Shaikh)+βtreat(Shaikh))
2(αtreat(Huang)+βtreat(Shaikh) + 1)

Equal weight was assumed for the components of the mixture, therefore, γ = 0.5,
E[Πtreat ] = 0.215, and SD[Πtreat ] = 0.08.

• For the treatment arm, the mixture is defined as:

Πcontrol = γΠcontrol (Huang) + (1 − γ)Πcontrol (Huang)

with E[Πcontrol ] = 0.38 and SD[Πcontrol ] = 0.05 and γ = 0.5.

2.4.2. Discounting the Priors: The Power Prior Approach

Different levels of penalization (discounting) were provided for the historical in-
formation using a power prior approach [28] to perform a sensitivity analysis on the
prior choices. The historical information can be included in the final inference using a
Beta(α1,β1) prior, where:

α1 = 1 + α0d0
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β1 = 1 + β0d0

The α0 and β0 values are the parameters defined by the number of successes and
failures derived from the literature and are α0 and β0, respectively. The value d0 defines
the amount of historical information to be included in the final inference. The discounting
factor is otherwise defined as (1 − d0) × 100 and represents the level of penalization
(discounting) of the historical information derived from other studies.

1. If d0 = 0, the data provided by the literature are not considered, indicating a 100%
discount of the historical information. According to this scenario, the prior is an
uninformative Beta(1, 1) distribution.

2. If d0 = 1, then all of the information provided by the literature is considered in setting
the prior, indicating a 0% discount of the historical data.

Analyses of the simulated trials were conducted using three different priors:

• Power prior without discounting (informative, d0 = 1). A beta informative prior was
derived considering the number of successes and failures found in the literature [42],
as defined in the method section.

• Power prior 50% discounting (low-informative, d0= 0.5). The beta prior with a 50%
discount, defined in the literature as a substantial-moderate discounting factor [43],
was defined based on the beta parameters comprising the mixture of priors specified
in the informative scenario.

• Power prior 100% discounting (uninformative, d0= 0). A mixture of Beta(1, 1) priors
was defined.

Effective Sample Size (ESS) Calculation

The ESS was computed on the mixture of beta distribution by using the Morita
approach to quantify the prior influence on the final inference using the RBesT package in
R (R Foundation for Statistical Computing, Vienna, Austria) [44]. For the mixture of beta
prior (equal weight) without power prior discounting (d0 = 1), an ESS of 55 and 98 was
achieved for treatment and control arm. However, discounting the beta parameters for
d0 = 0.5 (low-informative prior), the ESS is equal to 24 and 48.

The prior distributions are presented in Figure 1.

2.4.3. Posterior Estimation

A beta-binomial model was employed to analyze the difference in event rates between
arms [45]. The posterior distribution for the ARR outcome requires the estimation of the
posterior distribution of the scar proportion in each arm separately, and was computed
with the following Markov chain Monte Carlo (MCMC) resampling procedure [46]:

• A first resampling of the proportion of scarring Π∗
treat from Πtreat|Xtreat , which is the

posterior distribution for the treatment group.
• A second resampling of Π∗

control from Πcontrol|X2 .
• The posterior distribution for the parameter related to the difference in proportions

was obtained by calculating ARR = Π∗
treat − Π∗

control from the distributions previously
resampled [47].

The resampling procedures were performed using an MCMC estimation algorithm,
as indicated in the literature [46], using 3 chains, 6000 iterations, and 1000 adaptations.

An example of the inference results is reported in the Supplementary Material, show-
ing the priors and the posterior distributions calculated on a single database generated by
assuming an ARR equal to 0.17.

The computations were performed using OpenBUGS (Free Software Foundation,
Boston, MA, USA) [48] and R version 3.3.2 [49]; the simulation R codes are reported in the
Supplementary Material.
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Figure 1. Prior distributions: The prior distributions are defined by an equal-weighted mix-
ture (γ = 0.5) of beta priors. The components of the mixture prior are, for the treatment arm,
Πtreat (Huang) ∼ Beta(6, 12) and Πtreat (Shaikh) ∼ Beta(12, 111). The mixture of priors (γ = 0.5 ) for
the control arm is defined by Πcontrol (Huang) ∼ Beta(39, 26) and Πcontrol(Shaikh) ∼ Beta(22, 109). No
discounting on the beta priors parameters has been provided (d0 = 1) for the Informative priors.
The information has been partially discounted for the low-informative prior scenario (d0 = 0.5). The
priors parameters are full discounted for the uninformative prior scenario (d0 = 0), collapsing to a
Beta(1, 1) distribution.

2.4.4. Convergence Assessment

The Geweke method [50] was considered to assess the convergence of the MCMC
results within iterations. Geweke’s statistics test was computed for each analysis con-
ducted on the simulated data. Geweke’s Z-score plot was also visually inspected to assess
the convergence.
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2.5. Results of the Simulations

Four sets of 200 results summarizing 50 scenarios in combination with four methods
of analysis were defined as:

1. The proportion of the 5000 simulated trials for which the credibility intervals (CIs), or
confidence intervals, for a frequentist analysis do not contain an ARR equal to 0. The
proportion of intervals not containing the 0 and containing the data generator ARR
was also calculated.

2. The mean length across 5000 simulated trials of the CI.
3. The mean of the posterior median estimate across 5000 simulated trials or the mean

of the point-estimated ARR across 5000 simulated trials for the frequentist analysis.
4. The mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
t=1

∣∣∣∣ARRtrue − ˆARRt

ARRtrue

∣∣∣∣
ARRtrue is the true treatment effect considered to generate the data; ˆARRt is the
estimated treatment effect (posterior median, or point estimate, for the frequentist
analysis) achieved for each simulation t within the n = 5000 simulated trials.

3. Results

The proportion of 5000 simulated trials ensuring that the 95% CI does not contain
an ARR equal to zero is greater than 90% for all of the informative scenarios, even if
the sample size is smaller than 50, except for the 0.07 true ARR. For the 0.07 ARR, this
proportion declines as the data used to estimate the likelihood increases (Figure 2, Panel
A). This proportion is higher than 80% only for sample sizes greater than 70, and the
true ARR is greater than 0.17 for the low-informative priors (Figure 2, Panel B). The
pattern of the simulation results is similar, considering the proportion of simulations for
which the CI does not include the 0, and includes the true data generator ARR (Figure S3,
Supplementary Material).

Similar behavior is observed among the uninformative Bayesian (Figure 2, Panel C)
and frequentist (Figure 2, Panel D) estimates, for which this proportion reaches 80% for an
ARR greater than 0.22 and sample sizes greater than 120.

The 95% CI length decreases as the sample size increases for all of the Bayesian
parametrizations and the frequentist estimates (Table S1, Supplementary Material). The
informative (Figure 3, Panel A) and low-informative priors (Figure 3, Panel B) showed more
variability in the posterior length of the CIs across different true ARR values. The CI lengths
are more similar for different data generation ARR assumptions for the uninformative
(Figure 3, Panel C) and frequentist (Figure 3, Panel D) simulations. In general, especially
for smaller sample sizes, the estimates are less precise for the frequentist and Bayesian
uninformative prior scenarios than for the informative and low-informative prior estimates
(Table 1).

The posterior median ARR estimates are influenced by the prior choices, especially
for the informative prior. The estimated ARRs are similar to each other for smaller sample
sizes across the true treatment effect, while the posterior median ARR estimates converge
to the true ARR for larger sample sizes (Figure 4, Panel A). A similar pattern is observed for
the low-informative scenarios; however, for smaller sample sizes, greater variability in the
posterior median estimates is observed across the different ARRs used to generate the data
(Figure 4, Panel B). The ARR is overestimated for small sample sizes in the uninformative
prior scenarios (Figure 4, Panel C). Instead, the frequentist estimates across the simulated
trial are similar to the true treatment effect for all of the sample sizes (Figure 4, Panel D).

The MAPE estimate decreases as the sample size increases for all the prior parametriza-
tions (Table S1, Supplementary Material). A lower true ARR (i.e., 0.07) ensures a decreasing
effect that is more evident than a higher true ARR (Table S1, Supplementary Material).

122



Int. J. Environ. Res. Public Health 2021, 18, 2095

Also, the MAPE seems to be constant for a higher true ARR in informative (Figure 5,
Panel A) and low-informative prior (Figure 5, Panel B) simulations. For the uninformative
(Figure 5, Panel C) and frequentist scenarios (Figure 5, Panel D), instead, a reduction in
MAPE is also evident for higher true ARR values. The MAPE values are higher for the
frequentist scenarios than all of the Bayesian estimates, including those provided via the
uninformative prior (Table S1, Supplementary Material).

Panel A Informative Prior Panel C Low informative Prior

Panel C Uninformative Prior Panel D Frequentist

Figure 2. The proportion of CIs within simulated trials not including the zero absolute risk reduction (ARR) according to
the sample size, and true ARR for informative prior (Panel A), low-informative prior (Panel B), uninformative prior (Panel
C), and frequentist analysis (Panel D).
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Panel A Informative Prior Panel C Low informative Prior

Panel C Uninformative Prior Panel D Frequentist

Figure 3. Simulation results for the 95% CI length according to the sample size and true ARR for informative prior (Panel
A), low-informative prior (Panel B), uninformative prior (Panel C), and frequentist analyses (Panel D).

The hypothesis of the stationarity of the chain was not rejected according to Geweke’s
statistic for all of the analyses conducted on the simulated data and for all of the prior
parametrizations. The Z-scores within iterations was also visually inspected. An exam-
ple within simulations (ARR = 0.07 and sample size = 65) is reported in the Figure S2,
Supplementary Material. The Z-score lies within the acceptance stationarity region (±2)
or all chains and all the prior parametrizations; the pattern is very similar for all the
considered scenarios.

An example of a possible inference result is shown in the Supplementary Material.
The posteriors were calculated for a generated trial data reporting 8 events over 56 in the
treatment arm (π̂treat = 0.14) and 30 events over 84 in the control arm (π̂control = 0.36). The
data generator ARR is 0.17, while the observed ARR is 0.22. Considering the different
priors, the inference results are located in mean on the same event rate; however, the
uncertainty in the posterior distribution increases, considering the uninformative prior
assumption (Figure S4, Supplementary Material).
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Panel A Informative Prior Panel C Low informative Prior

Panel C Uninformative Prior Panel D Frequentist

Figure 4. Simulation results for the estimated ARR (posterior median, or point estimate, for frequentist analysis) according
to the sample size and true ARR for informative prior (Panel A), low-informative prior (Panel B), uninformative prior (Panel
C), and frequentist analyses (Panel D).
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Panel A Informative Prior Panel C Low informative Prior

Panel C Uninformative Prior Panel D Frequentist

Figure 5. Simulation results for the mean absolute percentage error (MAPE) estimate according to the sample size and
true ARR for informative prior (Panel A), low-informative prior (Panel B), uninformative prior (Panel C), and frequentist
analyses (Panel D).

4. Discussion

Regulatory agencies advocate an increase in pediatric research, which is motivated by
the need for more information on treatment labeling to guide pediatricians and to offer
more suitable and safe treatments for children [14]. However, in various cases, pediatric
trials have demonstrated difficulties in enrolling participants [51]. The RESCUE trial
represents a typical example of a complex trial in pediatric research affected by poor
accrual. The difficulties encountered in the enrolment and retention of participants are
related to procedural problems related to the study protocol [51,52] and poor adherence to
the therapy.

Bayesian data analysis may overcome challenges in the conduction of trials similar
to the RESCUE study, allowing investigators to combine information provided by current
trial data with evidence provided by the literature, as recommended by regulatory agencies
to deal with small sample sizes [15].

The present findings show that Bayesian inference can detect a small treatment effect
for small sample sizes (lower than 50), even if the prior is fully uninformative compared
to a maximum likelihood approach. This result confirms the potential benefits of using a
Bayesian method on small sample sizes. However, the literature suggests paying attention
to the use of uninformative prior distributions for small clinical trials, because there is the
possibility of including in the final inference extreme treatment effects that are potentially
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unexpected from a clinical point of view. For this reason, it is suggested to use evidence
from previous trials to inform these prior distributions [53].

For this reason, a key issue in Bayesian analysis is the choice of prior. This simulation
study demonstrated that, especially for small studies, the trial results could be influenced
by the prior choices and weakly influenced by the data when using fully informative priors.
In particular, a prior distribution incorporating favorable treatment effect information on
small sample sizes is likely to conditionate the inference in favor of the treatment, even if, in
truth, the effect is null or minimal. All of this implies that the prior in these contexts should
be defined by using validated empirical evidence [27]. Conversely, this study suggests
that the full informative prior elicited by considering large effect size tends to direct the
inference towards the existence of a treatment effect for all the sample size scenarios. For
this reason, we recommend, especially when the treatment effect hypothesized for the
study design is large and the sample size is small, the use of a low-informative prior for
achieving more data-driven results.

The situation is different if a discounting factor is placed on the prior parameters.
Looking at the estimated values of ESS, the historical information retained in the prior
in the low-informative scenario is halved, compared to the informative parameterization.
This implies that the inference is more data-oriented, assuming a discounting of 0.5. The
probability of confirming the trial results is demonstrated to be more data-dependent and,
for sample sizes less than 50, is higher than 80% only for ARRs higher than 0.17.

As the power prior parameter increases, the prior becomes more informative, and the
estimated precision (length of CI) increases. Looking at the differences between observed
and estimated ARR, the inferential results, comparing the various parameterizations of the
prior discounting factor, tend to converge toward the same conclusions in the direction of
the generating data effect size starting from a sample size of 150 subjects. All this implies
that, for studies conducted on a considerable number of patients, it is possible to tune
the prior toward a more informative solution (d0 > 0.5), obtaining results representing a
suitable compromise between the available historical information and what is suggested
by the data.

In the literature, some reasons are addressed for a suitable discounting of historical
prior information. First, the historical data and the current trial evidence may be hetero-
geneous concerning the study design and conduct [28]. Moreover, as also demonstrated
by this simulation analysis, especially for small trials, an informative historical prior may
overwhelm the current trial evidence [27].

Another issue outlined in this paper is the potentially misleading information on the
treatment effect provided by the posterior median effect for a sample size smaller than
50 patients. This source of bias is evident not only for informative inference but also for
low-informative and uninformative analyses. Conversely, the frequentist point estimate is
unbiased in terms of the mean because of the proportion estimator’s asymptotical unbi-
asedness over repeated resamples. However, in the frequentist approach, the variability of
results across sample replications is very high for small samples, even though the effect,
on average, is unbiased [54]. Bayesian estimates, on the other hand, return scenarios
of inferential results that are less variable, especially if a minimum amount of historical
information is incorporated into the prior.

The frequentist approach considers all the parameters to be fixed; the data are a
realization of a random variable. Instead, Bayesian methods assume that all the parameters
are random and the data are fixed [54]. This point of view leads to incorporating the
available knowledge on the prior parameters into a probability distribution. For this
reason, it is important to ensure that the information on which informative priors are based
is accurate; otherwise, the resulting estimates and posterior standard deviations could be
biased if misleading informative priors are utilized [55].

In this regard, the Bayesian approach leads to thinking about inference in terms of a
probability distribution on the treatment effect, rather than a point estimate or confidence
interval. Therefore, a Bayesian approach is oriented toward a progressive uncertainty
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reduction (on a posterior probability distribution) in treatment effect estimation. Historical
information contributes sequentially to the reduction of this uncertainty [56]. The uncer-
tainty can be measured in terms of the CI width. The simulation results demonstrate a
narrower CI for small sample sizes (similarly across different true ARRs) for Bayesian
analyses compared to the frequentist approach. This effect has also been reported in the
literature [57].

The present results show that Bayesian methods can outperform frequentist methods
with small samples by providing increased efficiency and an increased ability to determine
non-null effects. However, the appropriate prior distribution choice, especially on small
datasets, plays a fundamental role. Researchers might need to consult experts, meta-
analyses, or review studies in the area of interest to obtain informative, accurate priors that
can meaningfully contribute to posterior distributions. Furthermore, a sensitivity analysis
on priors (i.e., defining the robustness of conclusions that may be affected by decisions
made on the priors) is highly recommended for pediatric trials [14], which is in line with
the literature [24] and FDA recommendations [25].

Study Limitations

This study was conducted considering only the conjugate prior beta setting. It may be
interesting to explore the impact of inference in the posterior case obtained in a nonclosed
form. For example, instead of directly placing a parameter derived on the beta prior, it
may be advisable to consider expert elicitation about treatment effects to define the specific
prior distribution. Moreover, future research development is needed to investigate the
effect of an eventual prior-data conflict on the trial results according to different study size.

5. Conclusions

Bayesian inference is a flexible tool compared to frequentist inference, especially
for trials conducted in a poor accrual setting. A full informative Bayesian inference,
conducted on small samples, can generate data-insensitive results. On the other hand, the
use of an uninformative prior distribution may include, in the final inference, clinically
unproven extreme treatment effect hypotheses. A power prior approach on sample sizes
smaller than 50 patients seems to be a good compromise between these two methods.
However, the choice of parameters and discounting factors should be negotiated with
expert pediatricians and should be guided by an appropriate consultation of the scientific
literature. In agreement with the FDA recommendations, a sensitivity analysis of priors is
highly recommended.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/2095/s1, Figure S1: Simulation Plan, Figure S2: Geweke’s Z-statistics for Informative, Figure
S3: The proportion of CIs within simulated trials, Figure S4. Prior and posterior density estimates,
Table S1: Simulation results according to the prior choices, and Simulation Codes.
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Abstract: Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) is a novel laparoscopic in-
traperitoneal chemotherapy approach offered in selected patients affected by non-resectable peri-
toneal carcinomatosis. Drugs doses currently established for nebulization are very low: oxaliplatin
(OXA) 120 mg/sm, cisplatin (CDDP) 10.5 mg/sm and doxorubicin (DXR) 2.1 mg/sm. A model-based
approach for dose-escalation design in a single PIPAC procedure and subsequent dose escalation
steps is planned. The starting dose of oxaliplatin is 100 mg/sm with a maximum estimated dose of
300 mg/sm; an escalation with overdose and under-dose control (for probability of toxicity less than
16% in case of under-dosing and probability of toxicity greater than 33% in case of overdosing) will be
further applied. Cisplatin is used in association with doxorubicin: A two-dimensional dose-finding
design is applied on the basis of the estimated dose limiting toxicity (DLT) at all combinations. The
starting doses are 15 mg/sm for cisplatin and 3 mg/sm for doxorubicin. Safety is assessed according
to Common Terminology Criteria for Adverse Events (CTCAE version 4.03). Secondary endpoints
include radiological response according to Response Evaluation Criteria in Solid Tumor (version 1.1)
and pharmacokinetic analyses. This phase I study can provide the scientific basis to maximize the
optimal dose of cisplatin, doxorubicin and oxaliplatin applied as PIPAC.

Keywords: cisplatin; doxorubicin; oxaliplatin; dose escalation; phase I; PIPAC; peritoneal carcinomatosis

1. Introduction

Peritoneal carcinomatosis (PC) is both a consequence of different primary tumors, syn-
chronous or metachronous, and the clinical presentation of primitive peritoneal neoplasms.
Despite significant recent advances in the management of peritoneal carcinomatosis, this
diagnosis still is linked frequently to a poor prognosis. The unfavorable outcome is often
accompanied by clinical symptoms that dramatically impact on quality of life and represent
a real challenge for the managing health care provider.

Curative approach is, unluckily, reserved to a small minority of patients amenable to
combined procedures based on cytoreductive surgery and locoregional treatments. The
majority of patients is still nowadays treated by palliative approach.

1.1. The Failure of Systemic Treatment

The treatment of PC by palliative systemic chemotherapy (sCT) is still, nowadays,
often the standard of care. Some cheering improvement in survival are recorded in PC
from colonic cancer in which median survival for non-surgical amenable patients raised
from six to 24 months by novel drugs agents, as FolfOX/FolfIRI ± bevacizumab [1]. In
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other PC, such as from gastric cancer, results are not so encouraging: literature reported
median overall survival ranging from 4 to 13 months [2,3]. In ovarian cancer, intravenous
chemotherapy with platinum compounds, taxanes, anthracyclines, gemcitabine, topotecan
and trabectedin in various combinations and sequences are the mainstay of recurrence
treatment. These regimens achieve median overall survival rates after the first, second,
third, fourth and fifth relapse of 17.6 (95% CI 16.4–18.6), 11.3 (10.4–12.9), 8.9 (7.8–9.9), 6.2
(5.1–7.7) and 5.0 (3.8–10.4) months, respectively [4]. It is remarkable that the intraperitoneal
availability of drugs by sCT is low; consequentially, the systemic treatment is often in-
efficient in bulky disease. Furthermore, the cumulative toxicity of intravenous repeated
chemotherapeutic regimens is responsible for progressive decrease of patients’ compliance
to therapy.

1.2. The Failure of the Intraperitoneal Chemotherapy

Intraperitoneal chemotherapy (IPC) has the potential to improve drug delivery to the
tumor with generally accepted systemic side effects [5]. The rationale of this approach
is represented by the possibility to consider the peritoneal cavity as a “pharmacologic
sanctuary”, due to the presence of the peritoneal-plasma barrier that allows a high drug
concentration in the abdominal cavity associated to minimal leakage towards systemic
circulation. IPC is reported to be effective but is still burdened by pharmacological lim-
itation, such as low homogeneity in drug distribution in the abdominal cavity [6] and
technical problems like the high complication rate related to the intraperitoneal catheter
(infections, obstruction, bleeding, dislocation): only 40% of patients are able to complete the
expected chemotherapy cycles [7,8]. Furthermore, the poor drug penetration into peritoneal
bulky disease (and adhesions-entrapped tumor nodules) in intraperitoneal administra-
tion is responsible for mediocre results if IPC is not preceded by optimal cytoreductive
surgery [9].

1.3. PIPAC as a Promising Intraperitoneal Chemotherapy Delivery Technique

PIPAC takes advantage of the physical properties of gas and pressure avoiding the
pharmacokinetic limitations of IPC [10]: under-pressure application and drug microniza-
tion enhance drugs uptake, peritoneal distribution and penetration depth [11–13].

Based on animal experimental data, PIPAC has been tested in patients with recurrent peri-
toneal carcinomatosis: It has been administered alone or after systemic fluorouracil [13–15].
Concomitant systemic treatment is possible with most used regimens, considering no
systemic chemotherapy for two weeks before and one week after PIPAC procedure.

Two intraperitoneal regimens are used for PIPAC procedures: cisplatin in combination
with doxorubicin and oxaliplatin as monotherapy. At least three PIPAC procedures are
done at six- to eight-week intervals, but treatment can be pursued depending on disease
response and patient tolerance.

So far, the dosages of these drugs have been set at approximately 20% of the dose
used in HIPEC. Only one phase 1 study increased the doses of cisplatin and doxorubicin
applied as PIPAC, setting them to a dosage still too low—10.5 mg/sm and 2.1 mg/sm,
respectively [16]. Similarly, the oxaliplatin dose used for PIPAC has recently been the
subject of a dose escalation study reporting that the recommended phase 2 dose should be
120 mg/sm [17].

The feasibility, safety and tolerance of repeated PIPAC treatment are confirmed by
retrospective and prospective studies. Limited hepatic and renal toxicity are reported,
associated to acceptable local toxicity: nausea and diffuse abdominal pain are the most
complained complications. No acute or cumulative renal, gastrointestinal and hepatic
toxicity are described [18–20]. Furthermore, surgical complications are rare. Whereas no
mortality is observed in prospective trials, the mortality in retrospective studies is 2.7% [21].

At least, PIPAC has been shown to be safe regarding occupational health aspects such
as operation theatre air contamination with aerosol chemotherapy particles [22].
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Considering the efficacy of the procedure, not only retrospective studies, but also
phase 2 trials described PIPAC as treatment able to induce regression of peritoneal nodules.
Clinical response is reported in 62–88% of patients with ovarian cancer, in 50–91% of
patients with gastric cancer, in 71–86% of colorectal cancer and 67–75% of peritoneal
mesothelioma [21]. Moreover, in patients with advanced peritoneal carcinomatosis, PIPAC
has been able to improve quality of life by up to 89% [23].

On the basis of the cited literature, this phase 1 study aims to determine the dose-
related safety profile and tolerability of PIPAC with cisplatin, doxorubicin and oxaliplatin
by assessment of dose-limiting toxicities and adverse events.

2. Materials and Methods

This is a prospective, single center, open-label, non-randomized, two-arm study.
The trial was originally designed in 2015 as a single arm study with repeated dose

targeting patients not amenable to standard systemic chemotherapy. This approach sig-
nificantly compromised the progress of the study since the majority of patients presented
general clinical conditions suitable for a systemic treatment. The protocol was, therefore,
modified, through an amendment, by creating two study arms:

- Cohort A: patients receiving standard systemic chemotherapy cycles in association
with PIPAC.

- Cohort B: patients ineligible to receive standard systemic chemotherapy who will be
treated using the PIPAC procedure alone. A dose escalation design was planned for
this arm.

Ethics approval was obtained according to the guidelines of the Declaration of Helsinki
and approved by the Ethics Committee of Candiolo Cancer Institute, FPO—IRCCS (Eu-
draCT number 2015–000866-72 version 3.0—4 February 2018) and by the Italian drug
agency (AIFA—Agenzia Italiana del FArmaco—5 April 2018); the trial is registered on
ClinicalTrials.gov, number NCT02604784.

2.1. PIPAC Administration

PIPAC procedure is performed as previously described [24]. Briefly, an open ac-
cess with a midline 5–6 cm incision is performed and a single-port platform (QuadPort+
Olympus) is positioned according to our original technique (Figure 1). A 12 mmHg CO2
pneumoperitoneum is inflated. Ascites is removed if present and the amount documented.
Video documentation is started; PC extent is evaluated according to the Peritoneal Cancer
Index (PCI) and multiple peritoneal biopsies are taken for histological examination and
baseline tissue drug concentration detection. A nebulizer (Capnopen®, Capnomed, Villin-
gendorf, Germany) is connected to a high-pressure injector and inserted into the peritoneal
cavity; the tightness of the abdomen is documented with a CO2 zero-flow. The camera
and the nebulizer are maintained in position by a self-retaining retractor (Thompson). The
pressurized aerosol containing cisplatin and doxorubicin or oxaliplatin at the respective
dose according to the dose escalating design is applied through the nebulizer. The flow
rate is set at 30 mL/min and the maximal upstream pressure is 200 PSI. The injection is
remote-controlled in order to avoid occupational exposure. The capnoperitoneum is then
maintained for 30 min at 37 ◦C. At the end, the aerosol is exsufflated through two sequen-
tial micro-particle filters into the air-waste system of the hospital. Single-port platform is
removed; no abdominal drain tube is applied. Nasogastric tube and urinary catheter are
removed at the end of the operation.

2.2. Study Population

Eligible patients should present peritoneal mesothelioma, primary peritoneal tumor or
unresectable peritoneal metastasis from ovarian, gastric, intestinal and appendiceal cancer.
Suitability and eligibility of the patient have to be validated by a multidisciplinary team.
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Figure 1. Schematic of single-port PIPAC set-up. The nebulizer connected to a standard injector and
a laparoscope are inserted through a Quadport+ platform.

2.3. Inclusion Criteria

Patients eligible for recruitment must meet all of the following criteria:

- Unresectable peritoneal metastasis on peritoneal cytology/histology;
- Age between 18 and 80 years;
- Eastern Cooperative Oncology Group (ECOG) performance status ≤2;
- Adequate liver function [AST/SGOT and/or ALT/SGPT ≤2.5 × ULN (upper limit

of the normal range) or ≤5 × ULN if liver metastases are present, serum bilirubin
≤1.5 × ULN];

- Adequate renal function (serum creatinine ≤ 1.5 × ULN or creatinine clearance
>50 mL/min);

- Cardiac and pulmonary function preserved;
- Adequate bone marrow function [absolute neutrophil count (ANC) ≥ 1.5 × 109/L,

hemoglobin (Hb) ≥9 g/dL, platelets (PLT) ≥100 × 109/L];
- Total recovery or a CTCAE grade ≤1 from all adverse clinical events of previous

chemotherapy, including surgery and radiotherapy, except for alopecia;
- No chemotherapy/major surgery in the last four weeks prior to the PIPAC procedure;
- Written informed consent signed.

2.4. Exclusion Criteria

Any of the following is considered an exclusion criterion:

- Extra abdominal metastatic disease (with the exception of isolated pleural carcinomatosis);
- Bowel obstruction;
- History of allergic reactions to cisplatin/doxorubicin/oxaliplatin or their derivatives;
- Severe renal failure, myelosuppression, severe hepatic failure, severe heart failure,

recent myocardial infarction, severe arrhythmia;
- Immunosuppressed patients, undergoing immunosuppressive therapy;
- Previous treatment with reaching the maximum cumulative dose of doxorubicin,

daunorubicin, epirubicin, idarubicin and/or other anthracyclines and anthracenedions;
- Pregnancy;
- Patients of both sexes with reproductive potential who refuse to use an adequate

method of contraception;
- Major surgery or systemic chemotherapy less than four weeks prior to PIPAC procedure.
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2.5. Study Objective

The primary endpoint of the study is to determine the incidence of dose-limiting toxic-
ity of PIPAC with cisplatin, doxorubicin or oxaliplatin (according to the primary pathology)
performed once in patients with peritoneal carcinomatosis. Toxicity will be graded using
the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events
(CTCAE) version 4.03.

Secondary endpoints will be: pharmacokinetics of cisplatin, doxorubicin and oxali-
platin as pressurized aerosol by the intraperitoneal route; evaluation of the clinical tumor
response based on RECIST criteria (version 1.1) after PIPAC.

2.6. Statistical Design

Cisplatin and doxorubicin will be used in patients with peritoneal carcinomatosis of
ovarian and gastric origin and in primary tumors of the peritoneum. A dose escalation
model based on a two-agents combination design published by Riviere is adopted [25]. It
is an extension of the Continual Reassessment Method in case of two-dimensional dose-
escalation, which identifies the MTD of the combination of cisplatin and doxorubicin based
on the probability of dose limit toxicity (DLT) of each combination of the two agents.

An empirical logistic model in a Bayesian framework is adopted. The model of the
probability of toxicity at a given dose combination is defined as following:

logit(π(d1j,d2kα,β1,β2,β3) = α + β1d1,j + β2d2,k + β3d1,jd2,k (1)

where β1 represents the toxicity effect of agent 1 (cisplatin), β2 of agent 2 (doxorubicin),
and β3 is the interaction effect potentially due to the combination of the agents.

For parameters α and β3, a vague normal prior distribution centered at 0 to indicate
that a priori either positive or negative values are favored, letting the observed number
of patients with toxicity driving the posteriori distribution. For parameters (β1, β2), an
exponential distribution with mean 1 is chosen, based on the consideration that (β1, β2)
should numerically be in a neighborhood of 1.

The working model is defined by dose levels d1,j for cisplatin and d2,k for doxorubicin,
which have been identified on the basis of a modified Fibonacci series.

The first cohort of participants will be treated with cisplatin 15 mg/sm body surface in
150 mL NaCl 0.9% and doxorubicin 3 mg/sm (cohort 1); the following cohort will receive
CDDP 30 mg/sm and DXR 6 mg/sm (cohort 2) and the third cohort CDDP 50 mg/sm and
DXR 10 mg/sm (cohort 3). Dose escalation will be continued by the protocol according to
the probability model up to a maximum of CDDP 100 mg/sm (that is the dose currently
used in HIPEC procedure) and DXR 30 mg/sm.

The different dose increases will be adopted as reported in Table 1.

Table 1. Cisplatin and doxorubicin dose escalation design.

Level Cisplatin (CDDP) Doxorubicin (DXR)

1 15 mg/sm 3 mg/sm
2 30 mg/sm 6 mg/sm
3 50 mg/sm 10 mg/sm
4 67 mg/sm 13 mg/sm
5 88 mg/sm 18 mg/sm
6 93 mg/sm 23 mg/sm
7 100 mg/sm 30 mg/sm

The recommended doses of both agents are those of the dose level combination
associated with a probability of DLT closes to the DLT probability target at 25%. An
escalation with overdose and under-dose control (for probability of toxicity less than 16%
in case of under-dosing; and probability of toxicity greater than 33% in case of overdosing)
is further applied. No skipping dose is allowed, nor intra-patient dose escalation.
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As a stopping rule, the maximum number of 42 patients is considered.
Oxaliplatin will be used in patients presenting peritoneal carcinomatosis of intestinal origin.
An extension of the Continual Reassessment Method based on a two-parameter

probability model proposed by Neuenschwander will be used to identify the recommended
dose of oxaliplatin [26].

The first cohort of patients will be treated with oxaliplatin 100 mg/sm body surface in
150 dextrose solution 5% (cohort 1); the following cohort will receive oxaliplatin 135 mg/sm
(cohort 2) and 155 mg/sm for the third one (cohort 3).

After each cohort is assessed, a probability of toxicity, given the data observed (i.e., the
number of patients who experienced toxicity), is computed on the basis of the following
2-parameters logistic regression model

logit(π(d*j;α,β) = logα + β × d*j, α,β > 0 (2)

where the parameters (α, β), which are positive valued, ensure a monotonically increasing
dose-toxicity relationship; d*j is a dose standardized to a reference dose, so that log α can
be interpreted as the log-odds of toxicity when d*i is the reference dose.

Parameters (α, β) will be calibrated to reflect information about toxicities, correspond-
ing to assuming a toxicity probability of oxaliplatin at the maximum dose of 460 mg equal
to 25% and a toxicity probability at the starting dose of 120 mg equal to 10. Calibration
of the parameters will be carried out according to the approach proposed in Thall [27],
assuming a zero a priori correlation.

An escalation with overdose and under-dose control (for probability of toxicity less
than 16% in case of under-dosing; and probability of toxicity greater than 33% in case of
overdosing) is further applied. No skipping dose is allowed, nor intra-patient dose escalation.

The dose escalation design of oxaliplatin is presented in Table 2.

Table 2. Oxaliplatin dose escalation design.

Level Oxaliplatin (OXA)

1 100 mg/sm
2 135 mg/sm
3 155 mg/sm
4 180 mg/sm
5 200 mg/sm
6 235 mg/sm
7 270 mg/sm
8 300 mg/sm

2.7. Outcome Measures

Patient demographics, clinical features, surgical treatment details, AEs, clinical labora-
tory evaluations and safety data of cisplatin, doxorubicin and oxaliplatin administered as
PIPAC will be collected.

Toxicity will be graded using CTCAE version 4.03. DLT is defined as any severe
chemotherapy-related grade ≥3 toxicity. Patients will be assessed on day 0, 1, 2 (until the
date of discharge), 15, 28 for toxicities, adverse events, hematology and chemistries.

Clinical response will be assessed with contrast enhanced computed tomography
according Response Evaluation Criteria in Solid Tumor (RECIST v. 1.1).

Doxorubicin, cisplatin and oxaliplatin plasma levels will be assayed with blood sam-
ples drawn prior to and 30, 60, 120 min and 6, 12, 24 h after PIPAC procedure at each
dose level.

3. Discussion

Peritoneal carcinomatosis is still nowadays one of the toughest oncological challenge,
with a poor prognosis due to a weak response to systemic treatments.
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The intraperitoneal chemotherapy administration was found to be effective [5], but
still burdened by complications related to the infusion catheter which have always limited
its repeatability. Moreover, its effectiveness is restricted by drug intraperitoneal distribution
and tumor penetration [28].

PIPAC seems to have achieved a better distribution and penetration taking advantage
of the pressurized drug micronization and aerosolization, while maintaining the virtues
of the standard intraperitoneal administration (lower systemic toxicity and higher tissue
penetration as compared to systemic chemotherapy).

Not only retrospective studies, but also phase II trials demonstrated promising results
in terms of efficacy. A German phase II study reported a histological tumor regression and
PC Index improvement in 26/34 (76%) and in 26/34 (76%) patients with advanced ovarian
cancer submitted to three PIPAC procedures [18]. Another Italian study with sixty-three
patients with peritoneal carcinomatosis of different origins reported an objective response
in 14 patients (35%). In this study, PIPAC was often associated to systemic chemotherapy:
the combined treatment did not induce significant hepatic and renal toxicity and the author
suggested it as valid therapeutic option in patients with advanced peritoneal disease [19].
A further phase 2 study in patients with peritoneal disease from gastric cancer reported a
radiological complete, partial response or stable disease in 40% of patients [29].

To date, the promising early results demonstrated encouraging response rates to
PIPAC approach, which came along with expected benefit survival and a reduction of
symptoms related to the disease diffusion. Higher drugs doses could improve efficacy and
make PIPAC a promising treatment for advanced peritoneal diseases or refractory ascites.

This is one of the very few phase 1 studies about PIPAC born from the hypothe-
sis that higher drug doses could be safely administered as pressurized intraperitoneal
aerosol [30,31].

High dose of platinum-based chemotherapy given by intraperitoneal route are re-
ported to be well tolerated [32]; moreover, the doses of cisplatin, oxaliplatin and doxoru-
bicin used in HIPEC procedure are usually higher [33–35].

Local drug administration limits systemic toxicities thanks to the possibility to consider
the peritoneum as a sanctuary in which the peritoneal layer acts as barrier; with cisplatin
100 mg/sm administered via HIPEC, the maximum drug concentration detected in plasma
is 1.71 μg/mL [35].

Platinum based intraperitoneal chemotherapy have dose-dependent efficacy [36]:
higher intraperitoneal doses result in higher intratumoral concentrations with a consequent
higher efficacy. Moreover, the combination of CDDP and DXR appears to be one of the
most effective available regimens with acceptable local-regional toxicity [37]. A dose
escalation study is, therefore, essential to evaluate cisplatin, doxorubicin and oxaliplatin
pharmacokinetics and relative tissue concentrations.

4. Conclusions

This phase I study aims to identify the recommended doses of oxaliplatin, cisplatin
and doxorubicin applied as PIPAC through an evidence-based approach. The results of
this study could be the starting point of subsequent phase 2 studies aimed to evaluate and
maximize the effectiveness of this promising technique.
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Abstract: Background: In a randomized controlled trial (RCT) with binary outcome the estimate of
the marginal treatment effect can be biased by prognostic baseline covariates adjustment. Methods
that target the marginal odds ratio, allowing for improved precision and power, have been devel-
oped. Methods: The performance of different estimators for the treatment effect in the frequentist
(targeted maximum likelihood estimator, inverse-probability-of-treatment weighting, parametric
G-computation, and the semiparametric locally efficient estimator) and Bayesian (model averaging),
adjustment for confounding, and generalized Bayesian causal effect estimation frameworks are
assessed and compared in a simulation study under different scenarios. The use of these estimators is
illustrated on an RCT in type II diabetes. Results: Model mis-specification does not increase the bias.
The approaches that are not doubly robust have increased standard error (SE) under the scenario
of mis-specification of the treatment model. The Bayesian estimators showed a higher type II error
than frequentist estimators if noisy covariates are included in the treatment model. Conclusions:
Adjusting for prognostic baseline covariates in the analysis of RCTs can have more power than
intention-to-treat based tests. However, for some classes of model, when the regression model is
mis-specified, inflated type I error and potential bias on treatment effect estimate may arise.

Keywords: randomized controlled trial; causal inference; doubly robust estimation; propensity score

1. Introduction

Baseline covariates impact the outcome in many randomized controlled trials, and a
recent systematic review reported that 84% of the trials present adjusted analysis. Among
them, 91% pre-specified in the protocol such adjusted analysis [1]. It has been shown that
models that adjust for baseline covariates can substantially improve the statistical power of
the analysis when the covariates are moderately to strongly prognostic.

While this is justified for continuous outcomes, for binary outcomes, which require
non-linear models, covariate adjustment may change the magnitude of the treatment effect,
and thus the situation is subtler [2]. Due to the non-collapsibility of odds ratios, the non-
adjusted and adjusted analyses estimate the marginal and the conditional treatment effect,
respectively. However, the overall effect of adjusting for baseline covariates in logistic
regression is still an increase in power. This is because the marginal estimate is always
closer to the null effect than the conditional one, and the impact of the loss of precision
on the power of the conditional estimate is offset by the larger effect size, leading to a net
increase in power for the adjusted analyses [2,3].
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The large amount of baseline covariates collected in an RCT opens the possibility
to select the combination of covariates that results in the most favorable treatment effect
estimate and/or the lowest p-value [4].

This is well-recognized in the “Guideline on adjustment for baseline covariates in
clinical trials”, issued by the European Medicines Agency (EMA) in 2015, which requires
pre-specification in the protocol of the variables to be included in the primary analysis for
preventing the potential selection of the combination of covariates that may influence the
treatment effect, especially in non-linear models [5].

However, pre-specification of the variables to be adjusted for is not always feasible as
all prognostic variables may be not known in advance.

Under the frequentist approach, doubly robust and semi-parametric efficient esti-
mators allow for the separation of treatment effect estimation from baseline covariate
adjustment [6–8]. This is achieved by the inverse-probability-of-treatment weighting
(IPTW) estimator, the parametric G-computation, the semiparametric locally efficient (SLE)
estimator and the more recent targeted maximum likelihood estimator (TMLE). Under the
Bayesian framework, model averaging is an alternative to the more common approach of
model selection [9], which relies on estimation from a single model. While Bayesian model
averaging (BMA) successfully accounts for model uncertainty in making a prediction, its
advantages are less straightforward when used within the causal inference framework.
In the context of causal treatment effect estimation, BMA tends to assign large posterior
probabilities to models that may not accurately adjust for confounding. To overcome this
drawback, the Bayesian adjustment for confounding (BAC) algorithm has been proposed
as an alternative approach based on the specification of both an outcome and a treatment
model, as in the propensity score framework [10].

However, since BMA and BAC are based on models that likely contain noisy prog-
nostic covariates, they lose precision in estimating the treatment effect. To overcome this
limitation, the generalized Bayesian causal effect estimation (GBCEE) has been proposed
as a further unbiased and efficient estimator [11].

This study investigates which methods of adjusting for baseline covariate in the
analysis of RCTs with binary endpoint maximize the statistical power while retaining the
type I error rate and unbiased estimate of treatment effect. Such comparison is justified
because type I error and power are still the study operating characteristics of concern
healthcare regulators require when appraising the results of confirmatory clinical trials [12].

In the following, in Section 2.1, the motivation example is introduced. Then in
Section 2.2, the simulation study is explained, and the frequentists and Bayesian estimators
are briefly presented. Results of both simulation and the illustrative study will be reported
in Section 3 and finally discussed in Section 4.

2. Materials and Methods

2.1. Illustrative Study and Simulated Data

Our simulation study was based on the motivating example of re-analyzing the PRO-
LOGUE RCT [13]. The PROLOGUE study is among the largest trials investigating whether
DPP-4 inhibitors provide cardiovascular protective effects to patients with type 2 diabetes
by slowing carotid stiffness progression associated with conventional diabetes treatment.

The study participants were either allocated to add-on DPP-4 inhibitor (sitagliptin)
treatment or to continue therapy with conventional anti-diabetic agents. The primary end-
point was the arterial stiffness of annual changes, which resulted in being not significantly
different between the two groups. However, the study showed that the decrease in glycated
haemoglobin (HbA1c) in patients treated with sitagliptin was superior to conventional
therapy, proving a better glycemic control. As a re-analysis of the PROLOGUE study, we
then investigated a potential sitagliptin effect on the improvement of HbA1c.
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2.2. Simulation Study

The simulation study was carried out to compare the performance of several estimators
applied to obtain a marginal treatment effect estimate in the case of a binomial outcome
and was based on the same scheme adopted in Zhang et al. [14].

There was a 50% chance of being assigned to either the treatment or the control group.
The treatment assignment variable (Z) was generated as Bernoulli with P(Z = 1) = P(Z = 0)
= 0.5. The assignment Z = 1 corresponds to the treatment group. The baseline covariates
were generated as follows:

• X1, X3, X8 follow a Normal (0,1) distribution;
• X4 follows a Bernoulli (0.3) distribution;
• X6 follows a Bernoulli (0.5) distribution;
• X2 was generated as 0.2 × X1 + 0.98 U1
• X5 was generated as 0.1 × X1 + 0.2 × X2 + 0.97 U2
• X7 was generated as 0.1 × X3 + 0.99 U3

where U1, U2, U3 are Normal (0,1) variables.
Finally, Y was generated as Y = logit (P(Y = 1 |Z, X)) = α + βZ + γX, where

X = (X1, . . . , X8) is the matrix of covariates, α = 0.9, β = 1.3, γ = (0.5, 1.3, 0.5, 1.5, 0, 0, 0, 0).
The parameter β is the conditional treatment effect; α is the intercept and γ is the vector of
the coefficients of covariates X1, . . . , X8. Thus, X1, . . . , X4 variables represent prognostic
patient features for treatment effect.

To find the marginal treatment effect, one million individuals were simulated, and
30 repetitions were performed. The marginal treatment effect was then calculated as the
mean of the treatment effects as the log odds ratios using unadjusted logistic regression.
The true marginal treatment effect resulted in being equal to −0.871 ± 0.004.

For the simulation study, 5000 datasets of sample size n = 200 were generated. For
the frequentist estimators, several scenarios were defined to evaluate the effects of model
selection and are reported in Table 1.

Table 1. Scenarios under which the estimators were compared. The model for outcome generation is
Y = logit P(Y|Z, X) = 0.9 + 1.3Z + 0.5X1 + 1.3X2 + 0.5X3 + 1.5X4 .

Scenario Outcome Model Estimated
Prognostic Variables in the
Outcome Model Estimated

Non-Prognostic Variables in the
Outcome Model Estimated

Correct E(Y|Z, X) = α+ βZ+
γ1X1 + γ2X2 + γ3X3 + γ4X4

X1, X2, X3, X4 none

Misspecification E(Y|Z , X) =
α+ βZ + γ3X3 + γ5X5

X3 X8

All-variables
E(Y|Z, X) = α+ βZ+

γ1X1 + γ2X2 + γ3X3 + γ4X4 +
γ5X5 + γ6X6 + γ7X7 + γ8X8

X1, X2, X3, X4 X5, X6, X7, X8

Frequentist estimators were compared on all the three scenarios. Bayesian estimators were compared on all-variables scenario, only.

The model estimated under the correct scenario is the same used to generate the
outcome data when all prognostic variables are known. The model estimated under the
mis-specification scenario includes only one prognostic variable and an additional noisy
variable. Finally, the model estimated under the all-variables scenario includes all the
prognostic variables as well as non-prognostic variables and mimics the situation of using
all patient features for the treatment effect estimation in the case of uncertainty about
knowledge on prognostic variables.

2.2.1. Frequentist Estimators

The frequentist estimators employed for the estimation of the treatment effect are
briefly presented. In describing the estimators, we will refer to the treatment model as the
conditional probability (likelihood) of being treated given the covariates, i.e., P(Z|X) , and
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to the outcome model as the probability, i.e., likelihood, of the outcome given the treatment
and the prognostic covariates, i.e., P(Y|Z, X).

G-computation. To address confounding, G-computation relies on the estimation of the
outcome model, i.e., the conditional expectation of the outcome given the treatment and
the prognostic covariates. Contrary to the propensity score methods, it does not require
estimating the exposure mechanism or treatment model, i.e., the conditional probability of
being treated given the observed confounders [15].

Doubly Robust Estimation. Doubly robust (DR) estimation combines the outcome model
and treatment model. Both the models are unbiased only if they are correctly specified.
The DR estimation ensures that when combining the two models for the treatment effect
estimation, only one of them must be correctly specified to obtain an unbiased estimate.
The estimates of the parameters of interest of the outcome model and the treatment model
are used to predict patients’ responses under the treatment condition and the treatment
assignment (propensity score), respectively. Inversely weighting the expected response
under treatment condition by the propensity score allows us to represent the estimator of
the quantity of interest as an unbiased estimate plus a second term. This term reduces to 0
if either the treatment model or the outcome model are correctly specified and if, and only
if, the possibly incorrect conditional density has the same support as the true conditional
density [6].

Semi-Parametric Locally Efficient Estimator. It uses a semi-parametric model for the
outcome model, which is used to generate predicted values separately from the treatment
model. Finally, it computes the average treatment effect as the mean difference in predicted
outcome pair across individuals [16].

Targeted Maximum Likelihood Estimator. TMLE is a doubly robust, maximum-likelihood–
based estimation method that includes a secondary targeting step that optimizes the bias-
variance tradeoff for the estimation of the parameter of interest. TMLE is particularly
attractive for causal effect estimation in RCT analysis. First, it is a doubly robust method,
which yields unbiased estimates if the treatment model is correctly specified, which is the
case of RCT setup [17].

Augmented Inverse Probability Weighting. Propensity scores are estimated and used
to create inverse probability weights; all observations are weighted. Finally, it computes
the average treatment effect as the mean difference between weighted outcomes among
exposed and unexposed [18].

2.2.2. Bayesian Estimators

Bayesian Model Averaging. BMA is an extension of the Bayesian inference methods. In
addition to the usual modelling of parameter uncertainty through the prior distribution, it
models the uncertainty of the model selection process, obtaining a posterior parameter and
posterior probability model through Bayes’ theorem. In the present work, we considered
Zellner’s g distribution as a-priori distribution on coefficients for the variable selection [19]
and the Bayesian adaptive sampling algorithm for the model selection [9].

Bayesian Adjustment for Confounding. As in the propensity score framework, BAC
requires the definition of the outcome model, which is a function of the treatment and
potential confounders, and the treatment model, which is a function of the potential
confounders to treatment assignment. Then it applies a Bayesian variable selection process
in both models to select covariates and introduces a dependence parameter between the
outcome and treatment model, ω, which denotes the prior odds of including a confounder
in the outcome model, given that the same confounder is in the exposure model. In the
special case of dependence parameter ω = 1, BAC reduces to BMA [10].

Generalized Bayesian Causal Effect Estimation. The generalized Bayesian causal effect
estimation (GBCEE) algorithm performs variable selection and delivers doubly robust
estimates. It employs a prior distribution that targets the selection of true confounders and
predictors of the outcome. It thus takes advantage of the Bayesian framework to account
for uncertainty in the model selection process. It is different from BMA in building the
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prior distribution. It uses a prior distribution tailored to identify the potential confounders,
which uses information from the data and thus relies on the empirical Bayes approach.
Finally, it adds a doubly robust estimation, employing the posterior distribution of the
parameters and adopting the TMLE framework to estimate the causal effect that protects
against model mis-specification [11].

3. Results

3.1. Simulation Study

For each method, we computed the bias as the difference between the average of the
estimates and the true effect. The standard error (SE) of the estimates, the Monte Carlo
standard error for the standard deviation (MC SD) and the coverage probability (CP), i.e.,
the proportion of simulation replicates in which the 95% confidence intervals included the
true effect. For the frequentist estimators, 95% confidence intervals were computed. For
the Bayesian estimator GBCEE, 95% confidence intervals were computed as well, using
50 non-parametric bootstrap replicates with the percentile method. For the BAC and BMA
approach, the 95% credible intervals were computed.

Type I error and power were also calculated. For both frequentist and Bayesian
estimators, type I error was computed simulating 5000 datasets under the null hypothesis
that the treatment is not effective. For BAC and BMA, type I error was estimated by the
proportion of the simulations incorrectly declared the treatment effective, based on the
posterior probability P(β < 0|Y, X1, . . . , X8) ≥ 0.95.

Similarly, the power was calculated as the proportion of simulations that declare the
trial successful based on the given decision criteria when the target treatment effect is
assumed to be the true value. This approach has been recommended by the FDA [20].

The performance of the frequentist estimators was assessed under three scenarios:
the ideal case of the correct model specification (correct scenario); the case of important
prognostic variable not identified in the model specification (mis-specification scenario);
finally, the case when noisy prognostic variables are introduced in the model (all-variables
scenario). In the all-variables scenario, for SLE estimator, a model selection process was
foreseen based on backward and forward stepwise techniques.

Bayesian estimators’ performance was assessed on the all-variables scenario only
since they do not require selecting a final model but allow for averaging over the space of
potential models that could have generated the data.

Results of the simulation study are reported in Table 2. The bias is similar across all
methods, while more variation is observed in the power of the estimators, ranging between
84.6% and 94.9%. For Bayesian estimators, the power is given by the posterior probability
of observing a treatment marginal effect greater than zero. A slight inflation of type I error
is observed, except for BMA, however, it is not greater than 6.5%.

3.2. Illustrative Study

To illustrate the effect of baseline adjustment on the treatment effect estimation, we
applied the introduced methods to re-analyze the PROLOGUE RCT [13].

The PROLOGUE RCT aimed to investigate whether DPP-4 inhibitors provide cardio-
vascular protective effects to patients with type 2 diabetes.

The study participants were either allocated to add-on DPP-4 inhibitor (sitagliptin)
treatment or to continue therapy with conventional anti-diabetic agents. The study showed
that the decrease in glycated haemoglobin (HbA1c) in patients treated with sitagliptin was
superior to conventional therapy, proving a better glycemic control.

We set as outcome an improvement of at least 1% in HbA1c, obtaining a dichotomised
outcome. This choice is motivated by the observation that two large-scale studies—the UK
Prospective Diabetes Study (UKPDS) and the Diabetes Control and Complications Trial
(DCCT)—demonstrated that improving HbA1c by 1% (or 11 mmol/mol) for people with
type 1 diabetes or type 2 diabetes cuts the risk of microvascular complications by 25%.
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Table 2. Results of the simulation study. In semiparametric locally efficient (SLE)/all-variables scenario, a model selection
process based on backward (SLE backward) and forward (SLE forward) stepwise techniques were foreseen.

Method Scenario BIAS SE MC SD Power
Type II
Error

CP
Type I
Error

SLE All variables −0.010 0.246 0.015 0.947 0.053 0.941 0.061
SLE Backward All variables −0.011 0.247 0.015 0.947 0.053 0.941 0.061
SLE Forward All variables −0.010 0.246 0.015 0.947 0.053 0.941 0.061

TMLE All variables −0.011 0.248 0.015 0.947 0.053 0.939 0.065
G-Comp All variables −0.011 0.248 0.015 0.943 0.057 0.944 0.060
AIPTW All variables −0.011 0.248 0.015 0.942 0.058 0.942 0.058

DR All variables −0.013 0.298 0.010 0.943 0.057 0.940 0.059
SLE Mis-specification −0.010 0.246 0.015 0.856 0.144 0.951 0.051

TMLE Mis-specification −0.011 0.248 0.016 0.852 0.148 0.947 0.056
G-Comp Mis-specification −0.011 0.248 0.016 0.846 0.154 0.949 0.054
AIPTW Mis-specification −0.008 0.244 0.015 0.847 0.153 0.948 0.053

DR Mis-specification −0.008 0.244 0.015 0.847 0.153 0.948 0.052
SLE Correct −0.008 0.244 0.015 0.949 0.051 0.946 0.056

TMLE Correct −0.012 0.296 0.010 0.949 0.051 0.946 0.054
G-Comp Correct −0.012 0.296 0.010 0.949 0.051 0.947 0.052
AIPTW Correct −0.012 0.298 0.011 0.949 0.051 0.948 0.052

DR Correct −0.013 0.295 0.011 0.949 0.051 0.947 0.053
GBCEE All variables −0.014 0.147 0.022 0.916 0.084 0.952 0.063

BAC All variables −0.015 0.299 1 0.046 0.902 0.098 0.945 0.045
BMA All variables −0.051 0.451 1 0.090 0.922 0.078 0.942 0.02

1 The value is the standard deviation of the posterior distribution. Semi-parametric Locally Efficient (SLE) Estimator: Targeted Maximum
Likelihood Estimator (TMLE); G-Computation (G-Comp); Augmented Inverse Probability Weighting (AIPTW); Doubly Robust (DR);
Generalized Bayesian Causal Effect Estimation (GBCEE); Bayesian Adjustment for Confounding (BAC); Bayesian Model Average (BMA).

As prognostic covariates, we used age (years), gender (female, male), body mass
index (BMI, kg/cm2), systolic blood pressure (SBP, mmHg), low-density lipoprotein (LDL,
mg/dL), high-density lipoprotein (HDL, mg/dL), HbA1c (%), fasting plasma glucose
(FPG, mmol/L), dyslipidemia (LDL ≥ 130 mg/dL odds ratio (OR) HDL < 35 mg/dL
OR triglyceride ≥ 150 mg/dL OR total cholesterol (=LDL + HDL + (Triglyceride/5)) ≥
200 mg/dL).

In Figure 1, the unadjusted OR of improving HbA1c by 1% is reported along with 95%
confidence interval. Frequentist estimates are reported with 95% confidence intervals, and
finally, Bayesian estimates with 95% credible intervals are listed.

Figure 1. Odds ratio 1% change in Hba1c at 24 months.
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4. Discussion

We have presented a study to compare different approaches to address covariate
adjustment to estimate treatment effect in RCTs.

Baseline covariates adjustment impacts the outcome in many RCTs in terms of power,
type I error and bias of the marginal effect estimation.

In fact, variable selection methods based on p-values, and large observed differences
between arms and stepwise approaches, have increased type I error rates [4]. The guide-
line on adjustment for baseline covariates in clinical trials issued by the EMA in 2015
strongly recommends pre-specifying the variables to be included in the primary analysis
in the protocol to avoid bias and potential selection of the combination of covariates that
may favour the treatment [4]. Moreover, the Consolidated Standards of Reporting Trials
(CONSORT) [21] and the International Conference on Harmonization [22] recommend to
pre-specify the potential prognostic variables to employ in adjusted analysis. However,
there is still debate on how to identify prognostic covariates correctly.

Several approaches have been proposed to estimate a marginal causal effect, which is
the standard measure of treatment effect reported when analyzing RCTs [23]. Although
it is known from the literature that adjustment for prognostic covariates can increase
the efficiency of the analysis, there is still a lack of attempts to assess comparatively the
performance of all the methods under real scenarios of analysis, including adjustment for
non-prognostic variables and model mis-specification.

We compared several frequentist and Bayesian estimators under different scenarios.
The selected estimators were: SLE estimation, TMLE, G-computation, AIPTW, DR estimator,
GBCEE, BMA and the Bayesian adjustment for confounding algorithm. We assessed their
performance under three scenarios: the ideal case of the correct model specification; the
case of important prognostic variable not identified in the model specification (model
mis-specification); finally, the case when noisy prognostic variables are introduced in the
model (all variables selected in the adjusted analysis). Since the Bayesian estimators can
handle the uncertainty of the model selection process assigning a posterior probability
to each set of covariates [24], they were assessed only under the scenario of all variables
included in the adjusted analysis.

Our results from the simulation study showed that model mis-specification does not
increase the bias. This holds also for the G-computation estimator, which is not theoretically
guaranteed to be a consistent estimator under model mis-specification.

The approaches that are not doubly robust have increased MC SD. They also showed
increased SE under the scenario of mis-specification.

Across different scenarios, frequentist estimators showed a similar precision (SE
ranges between 0.244 and 0.298). This observation is particularly interesting since the
correct specification of a parametric model with many covariates is nearly impossible [17].
Bayesian estimators behave differently, showing a high precision for GBCEE (SE = 0.147).
The uncertainty of BMA is not directly comparable with SE, since it is the standard deviation
computed on the posterior distribution. Thus it showed a larger uncertainty (0.451), which
is expected since it embeds the uncertainty of estimates in the posterior probability function.

Covariate adjustment reduced type II error but under the scenario of mis-specification
of the outcome model. The Bayesian estimators showed a higher type II error than frequen-
tist estimators under the scenario, including all prognostic variables and noisy covariates
in the model specification. On the other hand, BMA showed the largest bias, even if offset
by the smallest type I error, which is not surprising since it has been shown that the bias
can be relevant when covariates are only slightly associated with the outcome [11].

In the re-analysis of PROLOGUE RCT, we estimated the odds ratio of improving
HbA1c using the frequentist and the Bayesian estimators introduced for avoiding con-
founding. Among the Bayesian estimators, GBCEE resulted similar to other frequentist
estimators due to its doubly robust property. In contrast, BMA and BAC showed a smaller
treatment effect, compared to the unadjusted estimate.
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Adjusting for prognostic covariates leads to an increase in power, as seen by observing
that the adjusted estimate is farther from the null value of 1 than the unadjusted estimate
(odds ratio equal to 1 indicates no treatment effect). Compared to the unadjusted analysis,
we did not observe a dramatic increase of SE, thus a loss of precision, except for BMA and
BAC. However, the GBCEE Bayesian estimators showed performances comparable to other
frequentist estimators.

5. Conclusions

Adjusting for baseline covariates predictive of outcome in the analysis of RCTs can
have more power than intention-to-treat based tests. However, for some classes of model,
when the regression model is mis-specified, inflated type I error and potential bias on
treatment effect estimate may arise. Estimators that allow for separating the baseline
covariate adjustment from the treatment effect estimation can avoid potential bias for
covariates’ post hoc selection retaining the focus on objective inference on treatment effect.
Among Bayesian estimators, BMA presents the largest bias.

Our simulations were carried out in the context of a binary outcome. Similar conclu-
sions are likely to be applied to the hazard ratio since odds-ratio and hazard ratio showed
the same non-collapsibility issue.

Limitations of this study rely on the assumption of independent, identical distribution
of data, which is not necessarily the case in RCTs. Patients in RCTs often have wide vari-
ability in their response to treatment resulting in heterogeneity of treatment effect. Further
research should include realistic synthetic datasets, which capture the relationships across
clinical features among patients. Probabilistic models, classification-based imputation mod-
els, and generative adversarial neural networks are an example of data-driven approaches
of synthetic data generation methods [25].
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Abstract: In clinical trials, futility rules are widely used to monitor the study while it is in progress,
with the aim of ensuring early termination if the experimental treatment is unlikely to provide the
desired level of efficacy. In this paper, we focus on Bayesian strategies to perform interim analyses
in single-arm trials based on a binary response variable. Designs that exploit both posterior and
predictive probabilities are described and a slight modification of the futility rules is introduced
when a fixed historical response rate is used, in order to add uncertainty in the efficacy probability
of the standard treatment through the use of prior distributions. The stopping boundaries of the
designs are compared under the same trial settings and simulation studies are performed to evaluate
the operating characteristics when analogous procedures are used to calibrate the probability cut-offs
of the different decision rules.

Keywords: Bayesian monitoring; futility rules; interim analysis; posterior and predictive probabili-
ties; stopping boundaries

1. Introduction

In clinical trials, the implementation of data monitoring for early termination repre-
sents a frequently used strategy. In many trials, participants are followed for a relatively
long period and, therefore, it may be desirable to conduct interim analyses during the
course of the trial with the aim of early stopping the study if there is convincing evidence
of benefit or harm. The Bayesian approach is particularly suited to this experimental
context, since it naturally entails sequential updating of the interim decision rules as
data accumulate.

Let us focus on single-arm designs that are typically used in phase II trials, whose
primary goal is not to provide definitive evidence of drug efficacy, but to avoid further in-
vestigations for unpromising drugs. In this early phase, ethical concerns make it especially
important to establish convincing futility stopping rules to reduce the number of patients
who receive ineffective treatments. A binary efficacy variable is typically considered and
the response rate of the experimental treatment is usually compared with a constant target
value that should ideally represent the response rate for the standard of care therapy.
Generally, this target value is fixed by exploiting historical information about the efficacy
of the standard treatment that is typically available.

Under a Bayesian framework, monitoring strategies of single-arm phase II trials are
typically based on either posterior probabilities or predictive probabilities [1]. Thall and
Simon [2] proposed a Bayesian procedure that continually evaluates, as data accumulate,
the posterior probability that the experimental treatment is superior to the standard one,
until reaching a maximum planned sample size N. At any interim stage, given the current
data, the futility rule determines the termination of the trial if the posterior probability
of interest is lower than a fixed threshold. An important feature of the design is that it
avoids the specification of a fixed target to evaluate the efficacy of the experimental drug,
while accounting for the uncertainty in the response rate of the standard agent by the
use of prior distributions. This makes it possible to incorporate in a more realistic way

Int. J. Environ. Res. Public Health 2021, 18, 8816. https://doi.org/10.3390/ijerph18168816 https://www.mdpi.com/journal/ijerph

151



Int. J. Environ. Res. Public Health 2021, 18, 8816

pre-experimental knowledge about the standard treatment [3]. The design proposed by
Thall and Simon [2] has been extended to accommodate the monitoring of both efficacy and
safety endpoints [4–6]. Zhou et al. [7] presented a unified approach to construct a Bayesian
optimal design for phase II trials (BOP2) based on posterior probabilities, that can handle
binary and more complicated endpoints through the use of a Dirichlet-multinomial model.
Differently from the proposal of Thall and Simon [2], the BOP2 design does not exploit
prior distributions to introduce uncertainty in the historical response rate. However, a merit
of the design is that its futility rule compares the posterior probability that the response
rate of the experimental treatment exceeds the target level with a threshold that varies as a
function of n/N, where n is the current sample size. This allows to have a more relaxed
stopping rule at the initial stages of the trial, when the accumulated information is limited,
in order to avoid early stopping of the study on the basis of fortuitously negative results.
More recently, simulation tools have been exploited to compare the use of alternative
probability boundaries with different shapes as functions of the interim sample size [8].

For interim monitoring, Bayesian methods based on predictive probabilities are also
widely used in practice [9]. The idea is to evaluate the chance of having a desired outcome
at the scheduled end of the trial conditional on the observed interim data [10]. Lee and
Liu [11] described how to implement predictive decision rules in single-arm phase II trials
based on a binary endpoint. The condition to establish if the experimental treatment can
be declared successful at the conclusion of the trial is based on the posterior probability
that its response rate exceeds a fixed target level. At any interim stage, it is possible
to obtain the predictive probability that this condition is attained by enumerating all
possible future outcomes. According to the futility rule, the trial is stopped for lack
of efficacy if this predictive probability is below a threshold of interest. The predictive
probability monitoring is considered conceptually appealing because it takes into account
the uncertainty in future data [12]: it mimics the decision-making process of claiming
the drug promising or non-promising by projecting the result to the end of the trial [13].
This very flexible approach has been also applied to more complex trial settings, such as
randomized phase II trials [14], platform studies [15], trials that simultaneously monitor
efficacy and safety [16], and studies based on time-to-event endpoints [17] or longitudinal
outcomes [18].

In this paper, we focus on Bayesian single-arm designs based on both posterior and
predictive probabilities. More specifically, we aim at comparing the phase II design of Thall
and Simon [2] with slightly modified versions of the designs due to Zhou et al. [7] and Lee
and Liu [11] that account for the uncertainty in the response rate of the standard treatment.
All three designs allow to enumerate the stopping boundaries of the futility rules before the
trial starts. For each current sample size of interest, these boundaries are provided in terms
of the maximum number of responses that, if observed, leads to the termination of the
study for lack of efficacy. This common characteristic makes the designs particularly easy
to implement in practice, because it avoids the need to implement Bayesian computation at
interim analyses during the trial. We compare the stopping boundaries of the three designs
under the same trial settings and using analogous procedures to calibrate the probability
cut-offs of the different decision rules. The frequentist performance of the designs have
been also evaluated through simulations.

The outline of the paper is as follows. Section 2 provides some preliminaries on the
Bayesian problem setting when the focus is on of a single-arm trial based on a binary
endpoint. In Sections 3 and 4, we review the futility monitoring rules based on posterior
and predictive probabilities, respectively. We also introduce modified versions of the
designs due to Zhou et al. [7] and Lee and Liu [11], that exploit prior distributions of the
probability efficacy of the standard treatment. The calibration of the probability thresholds
is also discussed. In Section 5 we present the results of simulation studies that evaluate and
compare the operating characteristics of the Bayesian designs. Finally, Section 6 contains a
conclusive discussion.
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2. Bayesian Problem Settings

Let us consider a single-arm phase II trial based on a binary endpoint that represents
the efficacy of an experimental treatment, E, and assume that a standard treatment, S,
exists for the disease under study. The parameter of interest of the trial is the response
rate of E, denoted by pE. Due to the non-comparative nature of the study, pE is typically
compared with a fixed target value p∗S, usually obtained by exploiting historical data on the
efficacy probability of S. In practice, p∗S is typically set equal to the historical estimate of the
response rate of the standard therapy or equal to the estimate plus a minimum clinically
meaningful improvement. Then, the new treatment is considered sufficiently promising if
pE exceeds p∗S.

Let N be the maximum sample size planned for the entire study. We assume that
the number of responses in the current n (n ≤ N) patients at a certain interim time, X,
follows a binomial distribution with parameters n and pE. We denote by beta(·; α, β), and
Beta(·; α, β) the probability density function and the cumulative distribution function of
a beta distribution with parameters α and β, respectively. By introducing a beta prior
distribution for pE, π(pE) = beta(pE; αE, βE), from standard Bayesian conjugate analysis it
follows that the corresponding posterior distribution is still a beta density,

π(pE|x, n) = beta(pE; αE + x, βE + n − x). (1)

Therefore, the posterior probability that pE exceeds the target p∗S can be easily com-
puted as

1 − Beta(p∗S; αE + x, βE + n − x). (2)

Aside from computational convenience, the beta prior distribution is typically em-
ployed because of its capability of assuming a wide variety of shapes reflecting various
degrees of prior belief. In general terms, in order to elicit different kinds of available infor-
mation or to represent reasonable skeptical or enthusiastic opinions regarding a success
probability p, the hyperparameters α and β of a beta prior are often expressed in terms
of (i) a measure of central location and (ii) a parameter representing the prior sample size.
For instance, by setting

α = nprior pprior + 1 and β = nprior(1 − pprior) + 1,

we obtain a prior density with mode at pprior and prior sample size nprior, that reflects the
dispersion of the distribution around its mode. The larger the value of nprior, the more
concentrated is the beta prior [19]. A similar and alternative way of proceeding is to
choose the prior mean as the measure of centrality of interest, pprior. In this latter case,
the hyperparameters are fixed as α = nprior pprior and β = nprior(1 − pprior).

3. Futility Rules Based on Posterior Probabilities

3.1. The Design of Thall and Simon

Thall and Simon [2] proposed a Bayesian single arm design for phase II trials, where at
each interim look the futility rule is based on the posterior probability that the experimental
treatment is more effective than the standard one. In the original proposal, data are
monitored continuously until the maximum planned sample size is reached, but actually
the design can be implemented by using cohorts of different sizes.

Let us denote by pS the unknown response rate of the standard treatment. Instead
of using a pre-specified target value p∗S in order to establish if the treatment E can be
considered sufficiently promising, the authors fully exploit the Bayesian approach and
treat both pE and pS as random variables. Thus, we consider two independent prior
distributions,

π(pE) = beta(pE; αE, βE) and π(pS) = beta(pS; αS, βS).

153



Int. J. Environ. Res. Public Health 2021, 18, 8816

The prior π(pS) is constructed as an informative distribution based on historical data about
S, whose weight can be discounted by using suitable procedures that allow to enlarge the
prior variance [20,21]. Alternative strategies to build informative prior distributions for
a response rate in phase II trials are provided in the literature [22–24]. For pE, instead, it
could be reasonable to elicit a non-informative or a very diffuse prior density, since little
pre-experimental information is generally available about the novel therapy. Many authors
suggest to center this prior density at a value pprior

E considered the most likely, while fixing
the prior sample size equal to one [8,19,25,26]. As stated by Tan and Machin [26] “such
a prior distribution is sufficiently vague to allow for the possibility that pE may take any
value in the range (0, 1), although its most likely value is pprior

E ”.
Then, given x responses observed out of n current patients treated with the experi-

mental agent, the joint posterior distribution of (pE, pS) is

π(pE, pS|x, n) ∝ beta(pE; αE + x, βE + n − x)beta(pS; αS, βS). (3)

The experimental drug is considered sufficiently promising if pE > pS + δ, where δ
denotes the minimally acceptable increment in the efficacy rate for E compared with S.
Therefore, the posterior probability that the experimental treatment is worthy of further
evaluation can be computed as

ΠE,S(pE > pS + δ|x, n) =∫ 1−δ

0

[
1 − Beta(pS + δ; αE + x, βE + n − x)

]
beta(pS; αS, βS)dpS, (4)

where ΠE,S indicates the probability measure corresponding to the posterior distribution
in (3). The integral in (4) can be evaluated numerically. The use of a prior distribution for
pS allows to incorporate uncertainty in the historical response rate of the standard agent
and, if no uncertainty is introduced by setting π(pS) equal to a degenerate density at the
target p∗S, the posterior quantity in (4) is simply reduced to (2) for δ = 0.

The futility stopping rule consists in terminating the trial and declaring the experi-
mental drug not sufficiently promising if

ΠE,S(pE > pS + δ|x, n) ≤ C, (5)

where C is a pre-specified probability threshold. Thall and Simon [2] suggest to set C as a
small value, so that the criterion in (5) allows to terminate the study if, given the current
data, it is very unlikely that the experimental treatment has superior efficacy over the
standard one. However, regulators currently require the attainment of targeted frequentist
operating characteristics to approve Bayesian designs, and simulations are commonly
used to adjust tuning parameters to satisfy pre-specified constraints on the type I error
probability [27].

In our setting, and under the hypothesis testing framework, an appropriate null
hypothesis H0 specifies values of the parameters under which the novel treatment is
considered not worthy of further evaluation, while the alternative H1 specifies values of
the parameters under which the treatment is considered sufficiently promising. Therefore,
we have that H0 : pE ≤ pS + δ and H1 : pE > pS + δ. Of course, the rejection of H0
corresponds to the continuation of the trial. As C increases, it becomes harder to reject the
null hypothesis and the type I error rate decreases. Therefore, assuming a suitable scenario
under H0, C is typically calibrated through simulation techniques as the smallest value
that controls the type I error probability at a desired level. For instance, let us consider
a trial with N = 40, δ = 0.1 and interim analyses conducted continuously after the first
Nmin = 10 patients have been treated. Suppose that historical data indicate 0.4 as the
estimate of the response rate of the standard treatment and suggest that is highly feasible
that pS lies in the range [0.3, 0.5]. To take into account this prior knowledge when eliciting
the beta prior distribution for pS, we express the hyperparameters in terms of the prior
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mode and a suitable value for the prior sample size, as described in Section 2. Specifically,
we set the mode equal to 0.4 and fix the prior sample size so that it is approximatively equal
to 0.99 the prior probability assigned to the interval [0.3, 0.5]. This way of proceeding leads
to the prior π(pS) = beta(pS; 63, 94), based on a prior sample size equal to 155. The beta
prior density for pE is assumed to be π(pE) = beta(pE; 1.4, 1.6), which also has its mode at
0.4, but is much more diffuse being based on a prior sample size equal to 1. Then, for each
element in a set of possible thresholds C, we simulate 100000 clinical trials assuming that
the true pE is equal to 0.4 (scenario under H0) and compute the type I error rate as the
frequency of simulated trials that reach the maximum sample size and conclude rejecting
the null hypothesis. The calibrated value of the threshold is the smallest element in the set
that controls the error probability at the level 0.1. In the specific case considered we obtain
the value 0.278.

Furthermore, since ΠE,S(pE > pS + δ|x, n) is a monotonic function of the number of
current responses, it is possible to obtain the rejection regions of the design prior to the
onset of the trial. Under the setup described above, the stopping boundaries are provided
in Table 1.

Table 1. Stopping boundaries of the design by Thall and Simon [2], when N = 40, Nmin = 10, δ = 0.1,
π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate
is 0.1.

n 10 13 15 17 19 21 23 26 28 30 32 34 36 38 40

rn 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

In practice, the trial terminates for low efficacy if the number of responses after treating
n patients is less than or equal to the corresponding boundary rn.

3.2. The BOP2 Design

Zhou et al. [7] proposed a Bayesian optimal phase II (BOP2) design that is based on
posterior probabilities and accommodates various types of endpoints. In the case of a
binary efficacy endpoint, two essential differences from the design of Thall and Simon [2]
are:

1. the experimental treatment is considered sufficiently promising if pE exceeds a con-
stant target p∗S;

2. the posterior probability of interest is compared with a threshold that varies with the
interim sample size.

In other words, in line with the majority of phase II Bayesian designs, the BOP2 design
does not introduce uncertainty on the efficacy rate of the standard therapy. Moreover,
the design takes into account the weight of the current information in relation to the amount
of future data. Let us recall that the decision rule in (5) depends on the constant cut-off C:
the larger the cut-off is chosen, the more stringent is the criterion for going on with the trial.
Instead of considering a fixed probability threshold, Zhou et al. [7] allow it to monotonically
increase with the fraction of accumulated information, n/N. The idea is that, when n is
small, a more relaxed stopping rule, based on smaller values of the probability threshold,
is preferred to avoid terminating the trial for fortuitously negative results. As the trial
proceeds and more data are accumulated, it is desirable to have a more stringent condition,
based on larger values of the cut-off, in order to correctly identify ineffective treatments.

At a certain stage of the trial, when x responses have been observed out of n current
patients, the futility rule of the BOP2 design consists in stopping the trial if

ΠE(pE > p∗S|x, n) ≤ C(n),
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where ΠE indicates the probability measure corresponding to the posterior distribution
in (1) and

C(n) = λ
( n

N

)γ
. (6)

The strictly positive tuning parameters, λ and γ, are selected by maximizing the power
of the design while controlling the type I error rate at a certain level under suitable scenarios.
As an alternative strategy, Zhou et al. [7] suggest to choose λ, γ and the maximum sample
size N that yield the minimum expected sample size under H0, while ensuring desirable
levels for the type I and type II error rates. In this latter case, N is not fixed, but represents
a design parameter to be optimized.

3.2.1. Accounting for Uncertainty on pS in the BOP2 Design

In line with Thall and Simon [2], we modify the decision rule of the BOP2 design by
introducing a prior distribution on pS that accounts for the uncertainty in the response rate
of the standard treatment. The trial, therefore, terminates at the interim look if

ΠE,S(pE > pS + δ|x, n) ≤ C(n), (7)

where C(n) is the threshold in (6) whose tuning parameters can be calibrated by using the
strategies described above. From now on, we will refer to the design based on the modified
futility rule in (7) by using the acronym BOP2m, while the design of Thall and Simon [2]
will be indicated as the TS design.

Let us consider again the trial continuously monitored with N = 40, Nmin = 10,
δ = 0.1, π(pS) = beta(pS; 63, 94), and π(pE) = beta(pE; 1.4, 1.6). We calibrate the tuning
parameters λ and γ through simulations by maximizing the statistical power when pE
is equal to 0.6 (scenario under H1), while ensuring that the type I error rate is smaller
than or equal to the nominal level 0.1 when the true pE is 0.4 (scenario under H0). More
details about the grid search algorithm used to adjust the parameters will be provided in
Section 5. The resulting calibrated values are λ = 0.38 and γ = 0.95 and we provide the
corresponding stopping boundaries in Table 2.

Table 2. Stopping boundaries of the modified version of the design by Zhou et al. [7], when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the
type I error rate is 0.1.

n 10 11 13 15 17 19 21 22 24 26 28 30 32 33 35 37 39 40

rn 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In the left panel of Figure 1 we show the behavior of the calibrated thresholds C and
C(n) as a function of the current sample size n. Differently from the threshold used in
the TS design, that remains constant, the threshold of the BOP2m design increases as data
accumulate: it is smaller than C for very low values of n and exceeds C when n approaches
the maximum planned sample size. As a consequence, the BOP2m design makes it harder
to terminate the trial at early stages of the study, while it is easier to stop at later stages,
as it is evident looking at the right panel of Figure 1 where the stopping boundaries of both
the designs are represented.
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Figure 1. Behavior of the calibrated thresholds C and C(n) as a function of n (left panel) and stopping boundaries of the
TS and BOP2m designs (right panel), when λ = 0.38, γ = 0.95, N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94),
π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate is 0.1.

4. Futility Rules Based on Predictive Probabilities

4.1. The Design of Lee and Liu

In the Bayesian phase II design proposed by Lee and Liu [11], at any interim analysis,
the futility rule is based on the evaluation of the predictive probability that the trial will
show a conclusive result at the planned end of the study, given the observed data.

Given x responses observed in the current n patients, let Y be the random variable
representing the number of responses out of the potential future N − n patients. It is well
known that the posterior predictive distribution of Y is

mN(y|x, n) = beta-binom(y; N − n, αE + x, βE + n − x), (8)

for y = 0, 1, · · · , N − n. At the conclusion of the study, when the result Y = y will
be available, the experimental treatment will be declared sufficiently promising if the
following condition will be satisfied

ΠE(pE > p∗S|x + y, N) > θT ,

where θT is a pre-specified probability cut-off. However, at the interim look Y has not
yet been observed and it is possible to exploit the posterior predictive distribution in (8)
to calculate the probability of a positive conclusion should the trial be conducted to the
maximum planned sample size, that is

PP =
N−n

∑
y=0

mN(y|x, n)I
{

ΠE(pE > p∗S|x + y, N) > θT

}
, (9)

where I{·} denotes the indicator function. In practice, PP is obtained by summing the
predictive probabilities of all the possible future outcomes that, given the accumulated
information, will allow to declare that the experimental treatment is sufficiently promising
at the end of the trial. The futility rule of the design is, therefore, to stop the trial and
consider the experimental treatment not sufficiently good if PP is below a suitable fixed
threshold θL. A low value of PP in fact indicates that the new drug is likely to be declared
ineffective by the end of the study. The thresholds θT and θL can be specified in order to
optimize frequentist operating characteristics of the design.
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Let us notice that this predictive design has two similarities with the BOP2: it does
not account for uncertainty in the response rate of the standard treatment and it makes a
compromise between the current information and the amount of future data. In fact, no
prior distribution on pS is considered. Moreover, the decision rule based on predictive
probability in (9) focuses on the expected results at the scheduled end of the trial and is
affected by the number of remaining patients. More specifically, while in the BOP2 design
the posterior quantity of interest is compared with a threshold that varies as a function
of n, in the design of Lee and Liu the probability threshold θL is fixed, but the predictive
probability PP varies as a function of the number of future patients and the futility rule
generally results to be less stringent at the initial stages of the trial, when there is still a
large number of patients to enrol.

4.1.1. Accounting for Uncertainty on pS in the Design of Lee and Liu

Similarly to the BOP2 design, the predictive design of Lee and Liu [11] can also be
modified to account for the uncertainty in the response rate of the standard therapy by
introducing a beta prior distribution on pS. Then, the decision rule stops accrual for
futility if

PPm =
N−n

∑
y=0

mN(y|x, n)I
{

ΠE,S(pE > pS + δ|x + y, N) > θT

}
< θL. (10)

Let us notice that PPm is reduced to PP if pS has a point mass distribution at p∗S and
δ = 0. From now on, the abbreviation LLm will be used to indicate the design based on the
futility rule in (10).

It can be interesting to investigate how the predictive probability PPm is affected by
the ratio between the amount of current information and the weight of future data, with the
aim of better understand the behavior of the stopping boundaries of the LLm design as n
increases. Let us refer again to the trial settings considered in the previous section: N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94) and π(pE) = beta(pE; 1.4, 1.6). In practice,
the experimental treatment is considered sufficiently promising if pE exceeds pS + 0.1,
under the prior assumption that pS is centred on 0.4 and varies in the interval [0.3, 0.5]
with high probability. Moreover, we assume that the study is monitored continuously end
set the probability threshold θT equal to 0.8. We consider fixed values for the observed
response rate obtained at the interim stage and, for each value of n between Nmin and
N − 1, we compute the corresponding predictive probability of interest. In the left panel
of Figure 2, we show the behavior of PPm as a function of n for low values of the fixed
response rate observed ad interim, while in the right panel higher values of the current
response rate are considered. First of all, let us notice that the saw-toothed behavior of PPm
in both the graphs is a consequence of the discrete nature of the predictive distribution
of future data [28]. Moreover, as expected, the larger the response rate supposed to be
observed out of n patients, the higher the predictive probability of a positive conclusion
at the planned end of the trial. More importantly, we can note that in the left panel of
Figure 2, even if there are some small fluctuations, the shape of PPm is basically decreasing.
The fixed observed response rate can be obtained for different couples of the observed
number of successes xobs and the current sample size n. For instance, when it is equal to
0.4, we have that PPm is equal to 0.0763, 0.0069, and 0.0000 for xobs/n equal to 4/10, 8/20
and 12/30, respectively. In practice, if n is small, there is still a high number of patients
to be enrolled and, even if the observed response rate is low with respect to the design
expectations, there is a non-negligible predictive probability that the study will conclude in
favor of the experimental therapy. Instead, when n increases and the same response rate is
obtained, the number of potential future patients decreases and it becomes very unlikely
that the experimental treatment will be claimed sufficiently promising at the conclusion of
the trial. The current information, in fact, has a stronger impact on the value of PPm as the
future sample size decreases. The basically increasing behavior of PPm shown in the right
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panel of Figure 2 can be explained with an analogous reasoning. If the fixed response rate
registered at the interim stage is high, as the number of future patients decreases, we have
a stronger confidence that the superiority of the experimental treatment will be claimed at
the scheduled end of the trial. This explain the behavior of PPm.
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Figure 2. Behavior of PPm as a function of n for different values of the response rate assumed to be observed at the interim
stage, when N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and θT = 0.8.

Furthermore, since PPm is a monotonic function of the number of current responses,
it is possible to obtain the stopping boundaries of the LLm design before the beginning
of the study. The smaller n, the lower the number of responses needed to let PPm reach
the desired level θL to go on with the trial. Therefore, similarly to the BOP2m design,
the predictive design typically makes it harder to stop the trial when the accumulated
information at the interim stage is limited because based on a few patients. In order to have
a fair comparison between the designs, under the trial settings previously considered, we
use simulations to adjust the probability thresholds θL and θT , so that the statistical power
is maximized when pE is equal to 0.6 and the type I error rate is controlled at the level 0.1
when the true pE is 0.4. The resulting calibrated values are θL = 0.011 and θT = 0.59, and
we provide the corresponding stopping boundaries in Table 3.

Table 3. Stopping boundaries of the modified version of the design by Lee and Liu [11], when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the
type I error rate is 0.1.

n 10 11 13 15 17 19 21 23 25 27 28 30 32 33 35 36 37 38 39 40

rn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In Figure 3, these stopping boundaries are compared with those of the TS and BOP2m
designs provided in the previous sections and based on probability thresholds similarly
calibrated. With respect to both the Bayesian designs based on posterior probabilities,
the futility rules of the predictive design are less stringent at the initial stages of the trial.
For small values of n, the LLm design requires lower values for the minimum number
of responses necessary to let the trial proceed. On the contrary, when n is close to the
maximum planned sample size, more responses are needed to avoid the termination of the
study under the LLm design.

159



Int. J. Environ. Res. Public Health 2021, 18, 8816

Sample size at the interim stage (n)

S
to

p
p
in

g
 b

o
u
n
d
a
ri

e
s 

( 
r n

 )

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

TS design
LLm design

Sample size at the interim stage (n)
S

to
p
p
in

g
 b

o
u
n
d
a
ri

e
s 

( 
r n

 )

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

BOP2m design
LLm design

Figure 3. Comparison of stopping boundaries (TS vs. LLm (left panel) and BOP2m vs LLm (right panel)), when N = 40,
Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), π(pE) = beta(pE; 1.4, 1.6) and the nominal level for the type I error rate is 0.1.

To compare the performance of the three Bayesian designs, we consider a dense set
of values for pE in the interval [0.3, 0.8] and, for each value, we simulate 100,000 clinical
trials to empirically evaluate the probability of rejecting H0. Its behavior as a function of
the true pE is shown in Figure 4 for each design. As expected, when pE is equal to 0.4,
the probability of rejecting H0 is below the level 0.1 for all the Bayesian designs. This is
in fact a consequence of the calibration procedure of the probability cut-offs that ensures
a type I error rate controlled at 0.1 under the null scenario where the response rate of
the experimental drug is 0.4. When pE is higher than 0.4, the probability of rejecting H0
corresponds to the statistical power, i.e., the probability of correctly concluding in favor of
the experimental treatment. As pE varies, the BOP2m design and LLm design yield very
similar power levels, which are substantially higher compared with those of the TS design.
Thus, more power is gained by using futility rules that gradually become stringent as more
patients are enrolled.
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Figure 4. Behavior of the empirical probability of rejecting H0 for different values of the true pE, when
N = 40, Nmin = 10, δ = 0.1, π(pS) = beta(pS; 63, 94), and π(pE) = beta(pE; 1.4, 1.6). The stopping
boundaries used are provided in Sections 3.1, 3.2.1 and 4.1.1 for the TS, the BOP2m and the LLm
designs, respectively.
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5. Comparison of the Operating Characteristics

In this section, we present the results of simulation studies aimed at evaluating and
comparing the performance of the Bayesian futility rules previously described. More
specifically, we consider the TS design and the modified versions of the BOP2 design and
the predictive design due to Lee and Liu [11], presented in Sections 3.2.1 and 4.1.1.

We assume that the first interim analysis is conducted after observing Nmin = 10
patients and, subsequently, data are monitored using cohorts of size m (with m equal
to 1 or 5) until the maximum sample size N is reached (with N equal to 40 or 80). To
calibrate the probability thresholds of the Bayesian designs, we specify different scenarios
by identifying two values for pE: one under the null hypothesis (pH0

E ) and the other one
under the alternative (pH1

E ). In particular, we consider four possible values for pH0
E and

fix the corresponding pH1
E equal to pH0

E + 0.2. For each scenario, we elicit specific prior
distributions for pE and pS obtained by expressing the hyperparameters in terms of the
desired prior mode and a suitable prior sample size, as described in Section 2. The modes
of both the beta prior densities are set equal to pH0

E , but their variability is quite different.
In fact, the prior sample size of π(pS) is selected to ensure that a large prior probability
is assigned to a short interval centred at the prior mode. Specifically, we assign a prior
probability about equal to 0.99 to the interval (pH0

E − 0.1, pH0
E − 0.1). Instead, the prior

sample size of π(pE) is set equal to 1, in order of to obtain a flat density based on very
weak information. We show the resulting prior distributions in Figure 5 for each of the four
scenarios taken into account.

Let us recall that, when we simulate a high number of clinical trials under the as-
sumption that the true pE is pH0

E , the proportion of trials that conclude in favor of the
experimental treatment (i.e., that lead to the rejection of the null hypothesis) represents
an empirical evaluation of the type I error rate, while it represents an evaluation of the
statistical power if the true value of pE used to simulate is pH1

E . Given N, m and a specified
scenario (pH0

E , pH1
E ), we calibrate the probability cut-off of the TS design by considering

a dense set of possible values of C. For each value in the set, we simulate 100,000 trials
assuming that the true pE is pH0

E , compute the empirical type I error probability and select
the smallest value of C that controls the type I error rate at the nominal level 0.1. For the
BOP2m design, a grid search is used to calibrate the tuning parameters λ and γ. For both
of them, we consider a dense set of values in the interval (0, 1] and exhaustively enumerate
all possible combinations. For each combination, we simulate 100,000 trials assuming that
the true pE is pH0

E and find the set of values of (λ, γ) that jointly yield a type I error rate
lower than or equal to 0.1. Among the elements of this set of couples, we identify the
one that maximizes the empirical statistical power obtained by simulating 100,000 trials
under the assumption that the true pE is pH1

E . An analogous procedure is used to calibrate
the probability thresholds of the LLm design. In this latter case, the grid search is per-
formed by considering a dense set of values for θT and θL in the intervals (0.3, 0.99) and
(0.01, 0.5), respectively.

Once the probability boundaries of the Bayesian design have been calibrated to have
good frequentist operating characteristics, for each scenario we simulate 100,000 trials using
different true values of pE, that are pH0

E , pH0
E +0.1, pH0

E +0.2, and pH0
E +0.3. The performance

of the Bayesian designs are evaluated by computing (i) the proportion of simulated trials
where the null hypothesis is rejected (PRH0), (ii) the probability of early termination (PET),
empirically obtained through the proportion of simulated trials that terminate before
reaching the maximum sample size, and (iii) the average of the actually achieved sample
size (ASS). The obtained results are provided in Tables 4 and 5 for different values of N
and m, when δ = 0.1. For each scenario used to calibrate the probability thresholds, we
have highlighted in gray the operating characteristics under the null hypothesis. Thus,
the values of PRH0 in gray represent the empirical type I error rate, that in all cases is no
higher of 0.1 for construction. Generally, the BOP2m and the LLm designs show similar
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operating characteristics. When the true pE is larger than pH0
E , these two designs yield

higher power levels and smaller risks of incorrectly terminating the trial early than the TS
design. For instance, let us consider the scenario where pH0

E = 0.3 and pH1
E = 0.5. When

N = 40 and m = 5, if the true response rate of E is 0.5, the empirical power is equal to
0.783, 0.886, and 0.875 for the TS, the BOP2m and the LLm designs, respectively. Moreover,
the percentage of trials incorrectly terminated early is 21.2%, 8.8%, and 9.5% under the
three designs, respectively. On the other hand, the TS design shows a higher probability
of early termination under the null hypothesis. Furthermore, the TS design has a higher
tendency to terminate the trial at the early stages and, as a consequence, it is characterized
by lower expected values of the actually achieved sample size, which are especially desired
under the null hypothesis. We can note that the LLm design generally yields the highest
value of average sample size when pE is equal to pH0

E . This is because, when n is close to the
maximum sample size, the predictive design typically requires higher observed response
rates to let the trial proceed with respect to the other designs.
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Figure 5. Beta prior distributions of pE and pS for each of the scenarios used in the simulation studies.
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Table 4. Operating characteristics of the TS, BOP2m and LLm designs, when Nmin = 10, δ = 0.1, N = 40 and the type I
error rate is controlled at the level 0.1. The lines in gray represent the operating characteristics under the null hypothesis.

Scenarios Operating Characteristics When N = 40 and m = 1

Used to Calibrate TS BOP2m LLm

pH0

E pH1
E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.098 0.902 16.56 0.099 0.901 20.88 0.084 0.868 28.11

0.3 0.475 0.525 27.04 0.540 0.460 31.79 0.548 0.364 36.68

0.4 0.819 0.181 35.33 0.894 0.106 38.01 0.923 0.053 39.55

0.5 0.957 0.043 38.81 0.987 0.013 39.7 0.996 0.003 39.97

0.3 0.5 0.3 0.091 0.898 16.52 0.099 0.901 20.44 0.097 0.872 22.43

0.4 0.428 0.561 26.04 0.483 0.517 30.53 0.502 0.447 32.48

0.5 0.786 0.212 34.54 0.860 0.140 37.42 0.882 0.103 38.16

0.6 0.952 0.048 38.70 0.984 0.016 39.64 0.988 0.011 39.73

0.4 0.6 0.4 0.093 0.900 15.97 0.094 0.888 20.57 0.072 0.903 25.56

0.5 0.401 0.591 24.76 0.462 0.512 30.35 0.428 0.514 34.38

0.6 0.762 0.236 33.64 0.860 0.132 37.51 0.864 0.110 39.01

0.7 0.943 0.057 38.37 0.987 0.013 39.72 0.992 0.006 39.94

0.5 0.7 0.5 0.093 0.899 15.80 0.094 0.893 20.14 0.074 0.904 24.90

0.6 0.405 0.587 24.69 0.463 0.516 30.09 0.433 0.519 34.06

0.7 0.777 0.222 33.95 0.872 0.123 37.62 0.879 0.102 39.07

0.8 0.958 0.042 38.80 0.992 0.008 39.80 0.996 0.003 39.97

Scenarios Operating Characteristics When N = 40 and m = 5

Used to Calibrate TS BOP2m LLm

pH0

E pH1
E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.093 0.869 18.41 0.070 0.881 22.28 0.086 0.626 30.99

0.3 0.499 0.467 29.10 0.487 0.436 32.53 0.553 0.157 37.99

0.4 0.852 0.142 36.60 0.883 0.098 38.31 0.926 0.016 39.77

0.5 0.973 0.027 39.31 0.989 0.010 39.80 0.996 0.001 39.99

0.3 0.5 0.3 0.098 0.878 16.92 0.096 0.826 23.89 0.097 0.815 22.70

0.4 0.442 0.534 26.28 0.501 0.397 33.23 0.497 0.388 32.42

0.5 0.783 0.212 34.19 0.886 0.088 38.51 0.875 0.095 37.90

0.6 0.941 0.058 38.30 0.991 0.008 39.85 0.984 0.015 39.60

0.4 0.6 0.4 0.097 0.890 16.69 0.097 0.856 21.93 0.073 0.727 28.22

0.5 0.415 0.572 25.58 0.469 0.470 31.22 0.432 0.286 36.04

0.6 0.776 0.222 34.09 0.865 0.119 37.80 0.868 0.041 39.42

0.7 0.947 0.053 38.46 0.989 0.011 39.78 0.993 0.002 39.97

0.5 0.7 0.5 0.097 0.885 16.10 0.096 0.873 21.59 0.075 0.766 28.10

0.6 0.408 0.575 24.85 0.469 0.489 31.06 0.439 0.319 35.98

0.7 0.775 0.222 33.96 0.877 0.114 37.93 0.883 0.042 39.51

0.8 0.958 0.042 38.80 0.993 0.007 39.84 0.997 0.001 39.99
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Table 5. Operating characteristics of the TS, BOP2m and LLm designs, when Nmin = 10, δ = 0.1, N = 80 and the type I
error rate is controlled at the level 0.1. The lines in gray represent the operating characteristics under the null hypothesis.

Scenarios Operating Characteristics When N = 80 and m = 1

Used to Calibrate TS BOP2m LLm

pH0

E pH1
E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.099 0.901 29.02 0.095 0.905 38.91 0.065 0.910 50.73

0.3 0.643 0.357 59.85 0.723 0.277 69.21 0.709 0.241 75.26

0.4 0.926 0.074 75.22 0.979 0.021 78.93 0.989 0.008 79.75

0.5 0.987 0.013 79.09 0.999 0.001 79.92 1.000 0.000 79.99

0.3 0.5 0.3 0.100 0.900 27.64 0.099 0.901 37.47 0.087 0.888 51.87

0.4 0.579 0.421 55.80 0.664 0.336 66.29 0.696 0.262 74.73

0.5 0.900 0.100 73.52 0.967 0.033 78.35 0.987 0.011 79.68

0.6 0.983 0.017 78.81 0.998 0.002 79.89 1.000 0.000 79.98

0.4 0.6 0.4 0.099 0.901 26.68 0.096 0.898 37.57 0.100 0.878 51.55

0.5 0.548 0.452 53.46 0.639 0.355 65.59 0.693 0.273 74.20

0.6 0.887 0.113 72.66 0.967 0.033 78.33 0.987 0.011 79.64

0.7 0.982 0.018 78.81 0.999 0.001 79.91 1.000 0.000 79.98

0.5 0.7 0.5 0.098 0.902 26.26 0.100 0.893 36.87 0.098 0.884 46.84

0.6 0.547 0.453 53.23 0.649 0.344 65.51 0.688 0.286 72.22

0.7 0.896 0.104 73.17 0.973 0.027 78.58 0.987 0.012 79.48

0.8 0.988 0.012 79.20 0.999 0.001 79.95 1.000 0.000 79.98

Scenarios Operating Characteristics When N = 80 and m = 5

Used to Calibrate TS BOP2m LLm

pH0

E pH1
E True pE PRH0 PET ASS PRH0 PET ASS PRH0 PET ASS

0.2 0.4 0.2 0.098 0.895 29.59 0.082 0.887 40.49 0.066 0.794 55.39

0.3 0.645 0.352 60.38 0.713 0.255 70.04 0.717 0.129 76.89

0.4 0.929 0.071 75.44 0.979 0.020 78.96 0.991 0.003 79.89

0.5 0.987 0.013 79.11 0.999 0.001 79.91 1.000 0.000 80.00

0.3 0.5 0.3 0.093 0.894 28.38 0.098 0.882 42.09 0.088 0.796 55.70

0.4 0.577 0.415 56.26 0.687 0.293 69.43 0.703 0.168 76.08

0.5 0.900 0.100 73.54 0.977 0.022 78.99 0.988 0.006 79.80

0.6 0.982 0.018 78.78 0.999 0.001 79.95 1.000 0.000 79.99

0.4 0.6 0.4 0.099 0.885 29.00 0.097 0.893 39.49 0.099 0.815 51.69

0.5 0.571 0.420 56.22 0.644 0.346 66.67 0.690 0.212 74.20

0.6 0.907 0.093 74.10 0.970 0.029 78.60 0.986 0.009 79.62

0.7 0.987 0.013 79.12 0.999 0.001 79.94 1.000 0.000 79.98

0.5 0.7 0.5 0.093 0.896 27.21 0.082 0.880 39.39 0.099 0.800 48.58

0.6 0.549 0.444 54.19 0.631 0.326 67.09 0.691 0.205 72.98

0.7 0.904 0.096 73.82 0.977 0.022 78.98 0.988 0.009 79.54

0.8 0.990 0.010 79.33 1.000 0.000 79.98 1.000 0.000 79.99
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6. Discussion

The aim of this paper is to describe and compare Bayesian procedures used for futility
monitoring of single-arm trials based on binary data. In this context, the Bayesian TS
design [2] is very popular and has inspired several extensions and variations. We compare
this design with the BOP2 design proposed by Zhou et al. [7] and the predictive design
of Lee and Liu [11]. To have a fair comparison and to add flexibility to the decision rules,
in line with Thall and Simon [2] we introduce a little change in these two latter designs to
take into account the uncertainty in the response rate of the standard therapy.

The stopping boundaries of the Bayesian designs reflect the intent expressed by their
futility rules. For instance, compared with the design of Thall and Simon, the BOP2 aims
at introducing more relaxed rules at the early stages of the trial and, as a consequence,
the minimum observed response rate required at the interim stage to avoid the termination
of the trial increases as a function of the current sample size. Analogous considerations
applies for the predictive design. The simulation results show that the statistical power is
higher for the designs that define early stopping boundaries that take into account the ratio
between the number of patients enrolled and the amount of future data. These designs also
ensure lower probabilities of incorrectly terminating the trial early. However, they yield
higher expected values of the actually achieved sample size under the assumption that the
null hypothesis is true. We summarize below the main features of the three designs along
with their advantageous characteristics shown in the simulation studies.

TS • Simpler and easier to implement
• Lower values of the ASS under H0

BOP2m • Takes into account the ratio between n and N
• Higher power and lower PET under H1 if compared with TS

LLm • Takes into account the number of remaining patients
• Resembles more closely the clinical decision-making process
• Higher power and lower PET under H1 if compared with TS

Clearly, the decision rules compared are affected by the procedures used to calibrate
the probability cut-offs of the designs. These adjustments are usually required by regula-
tory authorities to control the false positive rate of Bayesian procedures in a frequentist
sense. Different calibration methods could be used, in order for instance to minimize the
expected sample size under the null hypothesis, while controlling the type I error rate at a
desired level.

Finally, let us notice that Thall and Simon [2] and Lee and Liu [11] also consider
stopping rules for superiority of the experimental treatment. The same criteria could be
implemented in the BOP2 design. However, in phase II single-arm trials investigators
generally prefer to allow early stopping due to futility but not due to efficacy, because it is
not considered unethical to continue the trial if the new treatment shows to be extremely
effective [29]. This way of proceeding is consistent with the “ethical imperative for early
termination” that characterizes the well-known two-stage scheme for single-arm phase II
studies proposed by Simon [30] and that occurs when the treatment has unacceptably low
efficacy. Instead, if the drug has substantial activity, there is interest in studying additional
patients to better assess its safety and response. Many Bayesian two-stage designs exploit
the Simon’s scheme to conduct a phase II study (see [19,26,31], among others).
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Abbreviations

List of Abbreviations
TS Design due to Thall and Simon [2]
BOP2m Modified version of the BOP2 design due to Zhou et al. [7] to account for uncertainty in pS
LLm Modified version of the design of Lee and Liu [11] to account for uncertainty in pS
PRH0 Proportion of simulated trials where the null hypothesis is rejected
PET Probability of early termination
ASS Average of the actually achieved sample size
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Abstract: Immunotherapy and chemotherapy combinations have proven to be a safe and effica-
cious treatment approach in multiple settings. However, it is not clear whether approved doses of
chemotherapy developed to achieve a maximum tolerated dose are the ideal dose when combining
cytotoxic chemotherapy with immunotherapy to induce immune responses. This trial of a modulated
dose chemotherapy and Pembrolizumab, with or without a second immunomodulatory agent, uses
a Bayesian design to select the optimal treatment combination by balancing both safety and efficacy
of the chemotherapy and immunotherapy agents within each of two cohorts. The simulation study
provides evidence that the proposed Bayesian design successfully addresses the primary study aim to
identify the optimal dose combination for each of the two independent patient cohorts. This conclu-
sion is supported by the high percentage of simulated trials which select a treatment combination that
is both safe and highly efficacious. The proposed trial was funded and was being finalized when the
sponsoring company decided not to proceed due to negative findings in another patient population.
The proposed trial design will continue to be relevant as multiple chemotherapy and immunotherapy
combinations become the standard of care and future research will require evaluating the appropriate
doses of various components of multiple drug regimens.

Keywords: Bayesian trial design; early phase dose finding; treatment combinations; optimal dose
combination; oncology

1. Introduction

The global incidence of lung cancer was 2.2 million in 2020, resulting in an estimated
1.7 million deaths [1]. In the United States, the 2021 estimated incidence of new diagnoses is
235,760 and the estimated number of deaths was 131,880. Lung cancer represents 12.4% of
all new cancer cases in the US and remains the leading cause of cancer death for both men
and women. Only 18% of patients are diagnosed with localized disease and an additional
22% are diagnosed with regional disease with the remaining having distant spread at the
time of diagnosis. The 5-year survival for patients with localized and regional disease is
59.8% and 32.9% respectively [2].

Immune checkpoint inhibitors (ICI), such as those that inhibit programmed death
ligand 1 (PD-1) or its ligand (PD-L1), have been approved as first and second-line treatments
for non-small cell lung cancer (NSCLC) and are currently being evaluated in the neo-
adjuvant and adjuvant setting. Pembrolizumab, a PD-1 inhibitor, is commonly used to
treat patients with advanced NSCLC, either alone or in combination with chemotherapy.
These agents have improved overall survival and can result in durable disease control
and meaningful increases in long-term survival. Although treatment with anti-PD-1 or
anti-PD-L1 antibodies can induce clinical responses in the setting of many advanced
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cancers, these ICIs fail to induce durable responses in a large proportion of patients. Thus,
there remains a critical need to identify combinatorial approaches to augment anti-PD-
1 responses and overcome immune resistance mechanisms. The efficacy of checkpoint
inhibitors may be further enhanced by overcoming immune resistance mechanisms within
the tumor microenvironment. Various agents have demonstrated potential to synergize
with ICIs to enhance an immune response, including agents that target indoleamine
2,3-dioxygenase (IDO), vascular endothelial growth factor (VEGF), histone deacetylase
(HDAC), or poly-ADP-ribose polymerase (PARP), among others. In addition, combinations
of other checkpoint inhibitors (CPIs), such as those that target CTLA4, TIGIT, and LAG-3
have shown promise. In advanced NSCLC, a combination of PD-1 and CTLA4 has been
shown to improve overall survival compared to chemotherapy alone and this strategy is
now FDA approved [3,4].

Immunotherapy and chemotherapy combinations have proven to be a safe and effica-
cious treatment approach in multiple settings and there is potential to further elucidate a
synergistic relationship between these modalities [5–7]. It is not clear whether approved
doses of chemotherapy, which were developed to achieve a maximum tolerated dose
(MTD), are the ideal dose when combining cytotoxic chemotherapy with immunotherapy
to induce immune responses. Lower doses of chemotherapy may maximize this syner-
gistic effect and allow for a combination with less toxicity. Further exploring the role of
immunotherapy combinations with chemotherapy offers even more potential to improve
response rates and survival in a disease with significant morbidity and mortality. The
Checkmate 9LA study evaluated a combination of ipilimumab, a CTLA4 inhibitor, with
nivolumab, a PD-1 inhibitor, with only two cycles of chemotherapy rather than the standard
four cycles. This trial showed superior overall survival with this combination compared to
four cycles of chemotherapy alone. However, the doses of chemotherapy given for those
two cycles were at the standard dose [3].

The clinical question of interest for this study of patients with NSCLC is to explore po-
tential benefits of lower doses of chemotherapy as well as adding a second immunotherapy
agent to the commonly used standard of care regimen of platinum-doublet chemother-
apy and pembrolizumab. To address this clinical question, the trial was proposed with
a Bayesian design to select the optimal treatment combination by balancing both safety
and efficacy of the chemotherapy and immunotherapy agents within each of two cohorts.
For an overview of Bayesian design of adaptive clinical trials, we refer the reader to Gio-
vagnoli [8] and the references therein. There are no existing dose-finding methods available
to address the multitude of challenges presented by research objectives of this study. Our
team adapted relevant components of existing methods to develop an appropriate and
flexible design strategy. There is an increased demand to tailor early-phase clinical trial
designs to the trial’s research objectives in order to treat study participants as efficiently
as possible rather than reorienting the objectives to apply an “off-the-shelf” method, po-
tentially missing the opportunity to answer promising and relevant research questions.
Details of the design are provided in Section 2, followed by simulation results in Section 3.
Discussion and conclusion follow in Sections 4 and 5, respectively.

2. Methods

This trial is an early phase study evaluating the safety and efficacy of the combi-
nation of modulated dose chemotherapy and Pembrolizumab, with or without second
immunomodulatory agent as neoadjuvant therapy for stage IB-IIIA surgically resectable
NSCLC patients in two cohorts. The patient cohorts are defined by patients with adeno-
carcinoma (Cohort A) and squamous cell carcinoma (Cohort B). Standard histology-based
chemotherapy regimens vary for the two patient cohorts, and it is not known whether one
cohort is expected to have systematically greater or lesser toxicity than the other cohort.
Thus, the cohorts are considered independently. Patients will receive 4 cycles of neoad-
juvant combination therapy followed by surgical resection with a primary objective of
determining the optimal dose combination (ODC). The ODC will incorporate both safety
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and efficacy and will be defined as the combination with the highest response rate among
combinations with an acceptable level of toxicity. The primary outcomes guiding accrual
decisions include the frequency of treatment-related dose-limiting toxicities (DLTs) and
the frequency of pathologic response, assessed between 12 and 28 weeks from the start
of treatment.

2.1. Treatment Combinations by Patient Cohort

It is anticipated that 65% of the participant population will be from Cohort A and 35%
from Cohort B based on prevalence of squamous and non-squamous histology. Treatment
details are provided in Table 1, where treatment combinations are labeled as Arms A1
through A6 for Cohort A and Arms B1 through B6 for Cohort B. The ODC in each cohort is
the combination that is estimated to have an acceptable toxicity profile, as measured by
DLTs, and a good response profile as measured by pathologic response. Adverse events
are assessed and graded using the National Cancer Institute’s Common Terminology
Criteria (CTCAE).

Table 1. Treatment combinations by cohort.

Cohort A: Adenocarcinoma Patients

Pembrolizumab 200 mg IV Q3W

Chemotherapy (mg/m2)

Cisplatin 25 50 75
Pemetrexed 150 375 500

Immune agent 2 Dose level 1 A4 A5 A6
0 A1 A2 A3

Cohort B: Squamous Cell Carcinoma Patients

Pembrolizumab 200 mg IV Q3W

Chemotherapy (mg/m2)

Cisplatin 25 50 75
Gemcitabine 400 800 1200

Immune agent 2 Dose level 1 B4 B5 B6
0 B1 B2 B3

As data accumulate, each evaluable participant is classified as experiencing a DLT
(yes/no) and experiencing a response (yes/no). Based on the expectedness of adverse
events, the maximum allowable DLT rate is 30%. Any combination with an estimated DLT
probability ≤ 30% is considered “acceptable” in terms of safety.

2.2. Bayesian Dose-Finding Design

The intention of this design is to determine cohort-specific ODC where treatment
combination allocation is based on a Bayesian continual reassessment method accounting
for both toxicity and efficacy [9]. The study is designed to accrue eligible participants using
cohorts of size one. Allocation to treatment combinations is implemented for each patient
cohort independently, and the process is the same in both cohorts. With regard to safety, it
is assumed that increasing the dose level while holding the other agent fixed will result
in an increased probability of DLT. Using this assumption, modeling incorporates a set of
four possible orderings for DLT probabilities among the treatment combinations in Table 2
and a working model for DLT probabilities corresponding to the four possible orders in
Table 3. This process is considered separately for each of the two patient cohorts.
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Table 2. Possible orders of DLT probabilities.

Order (m) Combination

1 1–2–4–3–5–6
2 1–2–4–5–3–6
3 1–4–2–5–3–6
4 1–4–2–3–5–6

Table 3. Working model of DLT probabilities under each ordering.

Combination

Order (m) 1 2 3 4 5 6

1 0.03 0.10 0.15 0.10 0.22 0.30
2 0.03 0.05 0.22 0.10 0.15 0.30
3 0.03 0.10 0.22 0.05 0.15 0.30
4 0.03 0.10 0.15 0.05 0.22 0.30

The continual reassessment method (CRM) is fit for toxicity within each ordering using
the working model and the accumulated data. For each working model in each cohort,
m = 1, . . . , 4 in Table 3, the DLT probabilities are modeled using a class of one-parameter

power models Pr(DLT at combination i) ≈ pexp(θmc)
mci , where the pmci are the working model

values for order m given in Table 3, i indexes the dose combination and c indexes the cohort.
DLT probability estimation embodies characteristics of the continual reassessment

method (CRM) [10], so we use its features to specify design parameters. The skeleton
values for toxicity were selected using to the algorithm of Lee and Cheung [11], using
recommended specifications that yield good operating characteristics. CRM designs have
been shown to be robust and efficient with the use of “reasonable” skeletons, where adjacent
values have adequate spacing. The algorithm is available as a function, getprior, within the
R [12] package dfcrm [13] and requires a spacing measure ρ to generate reasonable spacing
between adjacent combinations in the skeleton. Simulation results in Lee and Cheung [11]
indicate that the optimal range of ρ is [0.04, 0.10] for common target toxicity rates (i.e.,
0.20–0.33). The value ρ = 0.04 lies in the optimal range and provides a set of reasonably
spaced skeleton values. The skeletons should represent the various possible orderings of
regimen–toxicity curves, according to the toxicity assumptions displayed in Table 2. The
class of skeletons in Table 3 was generated using the algorithm and the locations of these
values were adjusted to correspond to the six orderings in Table 2 using the getwm function
in R package pocrm [14].

The prior distribution on the parameter θ for all working models is given by g(θ) = N(0, 0.48),
a normal distribution with mean 0 and standard deviation 0.48. The standard deviation for the prior
distribution was chosen according to Algorithm 9.1 in Cheung [15] using values of σLI

θ = 0.75,
λ1 = 0.6, λ2 = 1.4 and a grid width of 0.03. According to Cheung [15], there are two practical
advantages for choosing a normal distribution in this setting. First, posterior computations
using Gauss–Hermite quadrature [16] under the above parametrization are accurate, and
the second, Bayesian CRM utilizing a class of one-parameter models that includes the power
model is invariant to the mean of a prior that forms a location-scale family. This property
allows for the prior mean to be zero and the prior to be completely specified by its standard
deviation, simplifying the process of calibration. A uniform prior distribution, τ(m) = 1/m,
is placed on each working model for each cohort so that all working models are considered
equally likely a priori. Based on the observed toxicity data Dc = {(yci, nci); i = 1, . . . , 6},
where yci is the number of DLTs, nci is the number of subjects treated on combination i, and
c specifies the cohort. The likelihood for ordering m is given by

Lm(Dc|θ) ∝
6

∏
i=1

(
pexp(θm)

mci

)yci
(

1 − pexp(θm)
mci

)nci−yci
(1)
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Using Bayes theorem, the posterior probability for each working model given the data can
then be calculated as

P(m|Dc) =
τ(m)

∫
Lm(Dc|θ)g(θ)dθ

∑5
m=1 τ(m)

∫
Lm(Dc|θ)g(θ)dθ

(2)

After accrual of each participant into the trial the model associated with the largest
posterior probability is selected and the DLT probability estimates, π̂ci, are updated using
the chosen working model using the Bayesian form of the CRM [9] so that

π̂ci =

∫
pexp(θm)

mci Lm(Dc|θ)g(θ)dθ∫
Lm(Dc|θ)g(θ)dθ

(3)

If a tie occurs between the posterior model probabilities of two or more models, then the
selected model would be randomly chosen from among the tied models. The estimated
DLT probabilities are used to define a set of “acceptable” combinations with regard to
safety. The maximum tolerated dose combination (MTDC) is defined as the combination
with estimated DLT probability closest to the maximum allowable DLT rate of 30%. Any
combination with estimated DLT rate less than or equal to that of the MTDC would be
considered acceptable in terms of safety.

The probability of response δci at combination i in cohort c is modeled using a beta-
binomial model

zci|δci ∼ Binomial(δci) ; δci ∼ Beta(τci, νci) (4)

where Beta(τci, νci) is a beta distribution with parameters τci and νci. Based on the number
of responses zci and the number of treated participants nci on combination i in cohort c, the
posterior distribution of δci follows a beta distribution so that

δci|(zci, nci) ∼ Beta(τci + zci, νci + nci − zci) (5)

Using a non-informative Beta(0.5, 0.5) prior distribution in each cohort, the probabilities
of pathologic response for each combination are estimated based on the posterior mean
δ̂ci = (zci + 0.5)/(nci + 1), separately for each cohort. Once the set of acceptable combina-
tions is determined in each cohort, the recommended combination varies depending on
how many participants have entered the study to that point. For the first third of the trial
(1/3 the maximum sample size), the combination recommendation in each cohort is based
on randomization using a weighted allocation scheme. The recommended combination for
the next entered participant is chosen at random from the set of acceptable combinations,
with each acceptable combination weighted by its estimated response probability. Based
on the estimates δ̂ci, we calculate the randomization probability

Rci =
δ̂ci

∑ δ̂ci
(6)

and randomize the next participant in cohort c to an acceptable combination i with
probability Rci. This approach allows for acceptable combinations with higher estimated
response probabilities to have a higher chance of being randomly chosen as the next
recommended combination. For the latter two-thirds of the trial (final 2/3 of maximum
sample size), the recommended combination for the next entered participant is defined as
the acceptable combination with the highest estimated response probability so that the next
participant is assigned the combination i satisfying argmaxδ̂ci. As each participant enters
the study, a new recommended combination is obtained, and the next entered participant
would be allocated to the updated recommended combination. The trial is designed to
stop once sufficient information about the optimal combination in each cohort is obtained,
according to the stopping rules defined in the following section.
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2.3. Sample Size and Stopping Rules

The maximum target sample size is 60 based on obtaining sufficient information to
determine the optimal dose combination in each cohort, which is defined by the combina-
tion with the highest response rate among combinations with acceptable toxicity. Stopping
rules are incorporated for both safety considerations and efficient use of participants by
stopping accrual to a cohort once a sufficient number of patients are treated at the ODC.
If the set of acceptable combinations is empty at any point, accrual to the study will be
halted. This stopping guideline will trigger a review by the study investigators and DSMC
to determine if the study should be modified or permanently closed to further accrual.
Accrual to the study for a cohort will end if the recommended treatment combination
for the next participant is to a combination that already has 12 patients treated at that
combination. If occurring, this treatment combination is determined to be the optimal dose
combination for the cohort. Otherwise, accrual will continue until 60 patients are accrued
to the study.

Twelve patients receiving the optimal combination will allow for adequate data to
assess the pathologic response rate. Based on a Beta(0.5, 0.5) prior, if 5 out of 12 patients
receiving the ODC experience pathologic response, then the posterior distribution of δci
is Beta(5.5, 7.5) according to Equation (5). The probability that the response rate for the
optimal combination exceeds the standard of care is given by,

Pr(δci > 0.28|zci = 5, nci = 12) (7)

=
∫ 1

0.28

Γ(13)
Γ(5.5)Γ(7.5)

δ4.5
ci (1 − δci)

6.5 (8)

≈ 0.853, (9)

where i and c indicate the combination and cohort, respectively.

3. Simulation Results

A simulation study provides operating characteristics that convey the design’s ability
to address the aims of the study. In dose-finding clinical trials, operating characteristics
provide the scientific justification for the selected design and sample size, similar to that of
a power analysis in a phase III clinical trial [17].

3.1. Design of Simulation Study

Simulations were run in R to display the performance of the design described in
Section 2, with results presented in Tables 4 and 5. Six scenarios are considered, allowing
for a broad range of possible relationships between treatment dosage, DLT, and efficacy
rates. In each scenario, 1000 simulated trials were run. For each treatment combination,
Table 4 presents the true DLT and efficacy rates (row 1), percentage of selection as the
ODC (row 2), and the average number of participants treated (row 3). In Table 4, optimal
combinations are indicated in bold type, and unsafe combinations are indicated in red type.
Table 5 displays the average sample size overall and by cohort. While the overall maximum
sample size is 60 participants, it is assumed that 65% of participants are diagnosed with
adenocarcinoma, and the remaining 35% are diagnosed with squamous cell carcinoma.
This provides maximum sample sizes of 39 and 21 for Cohorts A and B, respectively. The
following six scenarios were chosen to display the operating characteristics for this design,
providing a wide variety of dose-toxicity-efficacy relationships.

1. All doses are safe. Intermediate chemo dose maximizes efficacy.
2. All doses are safe. More chemo yields better efficacy.
3. Highest chemo dose with immune agent 2 is unsafe. More chemo yields better efficacy.
4. Highest chemo dose with immune agent 2 is unsafe. Intermediate chemo dose

maximizes efficacy.
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5. Highest chemo dose with and without immune agent 2 are unsafe. Intermediate
chemo dose maximizes efficacy.

6. Two cohorts have different safety and efficacy profiles.

Table 4. Operating characteristics for Cohorts A and B.

Row 1: (True % DLT, True % Efficacy);
Row 2: % Selection as OTC; Row 3:

Average Participants Treated.

Immune
Agent 2

Cohort A Cohort B

Cisplatin, Pemetrexed (mg/m2) Cisplatin, Gemcitabine (mg/m2)

25, 150 50, 375 75, 500 25, 400 50, 800 75, 1200

Scenario 1: All doses are safe. Intermediate
chemo dose maximizes efficacy.

Dose 1
(0.03, 0.35) (0.08, 0.50) (0.20, 0.45) (0.03, 0.35) (0.08, 0.50) (0.20, 0.45)

11.4 33.4 18.7 13.0 30.3 18.1
3.9 5.8 4.2 3.2 4.4 2.7

0
(0.01, 0.25) (0.05, 0.40) (0.15, 0.35) (0.01, 0.25) (0.05, 0.40) (0.15, 0.35)

4.7 21.5 10.2 6.7 20.8 11.1
3.1 5.3 3.7 2.6 4.3 2.6

Scenario 2: All doses are safe. More chemo
yields better efficacy.

Dose 1
(0.03, 0.55) (0.08, 0.67) (0.20, 0.78) (0.03, 0.55) (0.08, 0.67) (0.20, 0.78)

9.5 19.9 30.9 14.1 21.0 24.6
3.5 4.4 5.0 3.1 3.3 3.3

0
(0.01, 0.45) (0.05, 0.57) (0.15, 0.68) (0.01, 0.45) (0.05, 0.57) (0.15, 0.68)

4.3 13.2 22.2 5.7 16.5 18.1
2.9 4.7 4.5 2.3 4.2 3.1

Scenario 3: Highest chemo dose with
immune agent 2 is unsafe. More chemo

yields better efficacy.

Dose 1
(0.22, 0.55) (0.27, 0.67) (0.32, 0.78) (0.22, 0.55) (0.27, 0.67) (0.32, 0.78)

22.2 16 5.9 20 17.8 6.7
5.2 3.9 1.5 3.8 3.2 1.3

0
(0.20, 0.45) (0.25, 0.57) (0.30, 0.68) (0.20, 0.45) (0.25, 0.57) (0.30, 0.68)

12.7 28 15.2 12.2 28.3 14.7
4.2 6.5 3.8 3.1 5.6 2.7

Scenario 4: Highest chemo dose with
immune agent 2 is unsafe. Intermediate

chemo dose maximizes efficacy.

Dose 1
(0.22, 0.60) (0.27, 0.85) (0.32, 0.70) (0.22, 0.60) (0.27, 0.85) (0.32, 0.70)

9 19.3 1.7 8.6 15.8 1.7
3.7 4.2 1 2.5 2.7 0.7

0
(0.20, 0.55) (0.25, 0.83) (0.30, 0.68) (0.20, 0.55) (0.25, 0.83) (0.30, 0.68)

6.7 57.5 5.8 10.3 58.9 4.5
3.3 9.2 2.5 2.7 8.6 1.6

Scenario 5: Highest chemo dose with/out
immune agent 2 is unsafe. Intermediate

chemo dose maximizes efficacy.

Dose 1
(0.10, 0.70) (0.22, 0.85) (0.42, 0.70) (0.10, 0.70) (0.22, 0.85) (0.42, 0.70)

12.6 26.8 1.6 10.9 23.2 1.7
5.2 4.2 1.2 2.7 3.5 0.8

0
(0.08, 0.65) (0.20, 0.83) (0.40, 0.68) (0.08, 0.65) (0.20, 0.83) (0.40, 0.68)

7.5 47.5 4 9.7 50.7 3.8
3.5 8.3 2.5 2.7 7.8 1.5

Scenario 6: Two cohorts have different safety
and efficacy profiles.

Dose 1
(0.03, 0.55) (0.08, 0.67) (0.20, 0.78) (0.10, 0.70) (0.22, 0.85) (0.42, 0.70)

7.4 20.5 33.7 13.5 19.6 2
2.6 4.6 4.6 2.8 3.1 0.8

0
(0.01, 0.45) (0.05, 0.57) (0.15, 0.68) (0.08, 0.65) (0.20, 0.83) (0.40, 0.68)

3 13.6 21.8 11 49.3 4.6
3.2 4.6 5.5 2.7 7.2 1.6

Table 5. Average sample size across simulations.

Scenario Cohort A Cohort B Overall

1 25.4 19.8 45.2
2 24.8 19.2 44
3 25.1 19.7 44.8
4 23.9 18.8 42.7
5 24.9 19 43.9
6 25.1 18.2 43.3

3.2. Sample Size and Accrual

Accrual to the study for a cohort was designed to end once the next recommendation
is to assign the next participant to a combination that already has 12 patients treated at that
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combination. Accrual is estimated to be 2–3 patients per month, allowing for accrual to
be complete within two years. If the minimum follow-up period for participants already
on study is not satisfied at the time a new participant is ready to be put on study, then the
participant may be accrued to any combination by random allocation, which has accrued
at least one participant and is in the acceptable safety set. At the time of combination
allocation for the next participant, model-based estimates are calculated for both DLT and
response probabilities using the available observed data from all participants accrued to the
study at that time. It is important to note that in this design approach, some model-based
decisions may be made using slightly less efficacy data than DLT data due to the longer
minimum observation window for efficacy. Adjusting for 10% dropout and ineligibility,
the maximum sample size should not exceed 67 patients.

3.3. Summary of Operating Characteristics

The selected design performs well by providing a high rate of ODC selection in
the optimal combinations and a low rate of ODC selection in less desirable treatment
combinations, either because of safety concerns or insufficient efficacy. Consider Scenario 1
in Cohorts A and B, where the optimal combination is the treatment combination of
immune agent 2 and the intermediate dosage of chemotherapy (indicated in bold type).
While all treatment combinations are considered safe, three treatment combinations with
low DLT rates and high rates efficacy are highlighted in gray. For Cohort A, these three
treatment combinations comprise more than 70% of the recommended ODCs while treating,
on average, 58.7% of the trial participants. In Cohort B, these three treatment combinations
comprise 69.9% of the recommended ODCs while treating, on average, 59.6% of the trial
participants. In contrast, consider Scenario 4, where the treatment combination with
immune agent 2 and the highest level of chemotherapy is unsafe. Treatment combinations
with the intermediate dosage of chemotherapy, both with and without immune agent 2,
have the highest level of efficacy as well as acceptable toxicity. Very few simulated trials
resulted in an ODC recommendation of the unsafe treatment combination (1.7% for both
Cohorts A and B). The two optimal treatment combinations comprise 76.8% and 74.7% of
the ODC recommendations for Cohorts A and B, respectively. Additionally, more than
half of simulated trial participants are treated on the two optimal combinations (56.1% and
60.1% for Cohorts A and B, respectively).

The maximum sample size is 60 eligible participants; however, the simulation results
in Table 5 indicate that across all scenarios considered, the maximum average trial size
is 46 participants. The design used for the trial both performs well and uses resources
efficiently by stopping the study once the design recommends a treatment combination in
which 12 participants have been treated in the cohort.

4. Discussion

The design for this study was chosen by balancing the primary study aims and
adaptation of existing methods in developing a flexible design strategy. Careful selection of
the dose-finding method allows the study design to address the primary study aim without
reorienting the study goals to fit a simpler design. In this case, the primary aim of the
study is to identify the ODC for each of the two independent patient cohorts. Simulation
studies are provided to evaluate the operating characteristics of this design and highlight
the ability of the design to identify the ODC and other desirable treatment combinations in
a high percentage of trials. Additionally, simulations guide the anticipated final sample
size needed to draw meaningful conclusions about the efficacy of the selected ODC.

Treatment regimens varied for the two patient cohorts, and it was not anticipated that
either cohort would have systematically greater or lesser toxicity than the other cohort.
Because of this, the cohorts were considered independently. If prior information indicated
that one cohort was expected to have greater or lesser toxicity, appropriate changes in the
design would have been made to use this order information in identifying the ODC for
each cohort. Study design options for treatment combinations are limited, especially when
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considering the additional complexity of clinical aims. While several methods are available
to account for two or more groups of participants, these designs consider dose-finding for
a single agent [18–21]. The approach outlined in this paper to tailor the study design to
the complex research objectives provides the framework that demonstrates how adaptive
designs can be modified within a single trial to address the objectives specific to the study
while advancing early development of novel treatment regimens. This manuscript aims to
provide an example for designing complex early-phase trials with multiple objectives in
various cohorts.

5. Conclusions

This phase I study design aims to identify the optimal dose combination for each
of two cohorts of patients with non-small cell lung cancer, based on multiple endpoints.
Simulation studies indicate that the design is well suited to address the study aims while
conserving study resources.

During the finalization of this trial protocol, the company sponsoring the study
decided not to move forward with this trial due to recent negative findings in another
patient group [22]. While this trial was not initiated, plans were near completion and this
example highlights the benefits of using a Bayesian design for early phase clinical trials.

As multiple chemotherapy and immunotherapy combinations become the standard
of care, future research will likely require evaluating the appropriate doses of the various
components of the multiple drug regimen. The Bayesian phase I design described here
allows for evaluation of both safe and efficacious doses for various drug combinations
commonly used in NSCLC and incorporates standard histology-based chemotherapy
regimens in the same trial.
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Abbreviations

Abbreviations
CPI Checkpoint inhibitor
DLT Dose-limiting toxicity
HDAC Histone deacetylase
ICI Immune checkpoint inhibitor
IDO Indoleamine 2,3-dioxygenase
MTD Maximum tolerated dose
NSCLC Non-small cell lung cancer
ODC Optimal dose combination
PARP Poly-ADP-ribose polymerase
PD-1 Programmed death-1
PD-L1 Programmed death ligand-1
VEGF Vascular endothelial growth factor
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