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Editorial

Soil Water Erosion

Csaba Centeri

Department of Nature Conservation and Landscape Management, Institute for Wildlife Management and Nature
Conservation, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő,
Hungary; centeri.csaba@uni-mate.hu

Abstract: The purpose of this Special Issue is to provide an opportunity for researchers to publish
novel results that could help landowners, land-users, farmers, politicians, and other representatives
of our global society to protect, and, if possible, improve the quality and quantity of our precious soil
resources. Authors were encouraged to submit papers related to new ways of mapping, showing
more detailed input data, new modeling results, areas that had never been mapped before, etc. The
Special Issue provides novel results on the state of soil water erosion mapping and offers insight into
new or easier ways to mitigate and reverse soil degradation. Papers from this Special Issue cover a
good range of the world, from India through to Pakistan, Russia, China, Syria, Iran, Ethiopia, Italy, the
Czech Republic, Germany, and Hungary. Several models or parts of them were analyzed, including
USLE, MUSLE, USLE-M, RUSLE, EPIC, WEPP, WaTEM/SEDEM, GULTEM, and GYNDUL. Besides
soil erosion modelling, machine learning was also used in one of the articles for the evaluation of
gully development. One of the main subjects of the published research was sediments, which are
related to one of the most interesting questions in the topic of soil erosion: “Where is the huge amount
of soil being lost going?”

Keywords: soil degradation; soil erosion modeling; gully erosion; sedimentation; erosion models;
freeze–thaw effects; infiltration; preferential flow; badland; rainfall simulation

1. Introduction

Soil erosion by water is considered to be one of the major forms of soil degradation
(other than soil erosion by wind, acidification, salinization, desertification, etc.) and causes
the majority of problems related to the degradation of soil resources, leads to the largest
amount of soil loss, and covers the greatest extent of areas affected worldwide [1]. This
subject is very wide, and there are even many forms of soil water erosion, from splash
erosion to gully erosion and sedimentation. It would be worth running a Special Issue just
one the numerous soil erosion models now available. As the final product of soil water
erosion, sedimentation has been investigated by many interested parties. Each one of these
related issues would be worth a separate Special Issue, as all keywords listed have been
investigated by many researchers and have been the subject of many papers published
in various journals. There have been efforts to provide a wider view of problems related
to erosion, such as non-agricultural uses—e.g., industrial pollution and contamination;
the disposal of wastes; the restoration of polluted and degraded areas; and recreational
uses [2]. The IPCC Report [3] also describes numerous issues relating to desertification,
land degradation, sustainable land management, and their interlinkages in some of its
chapters—e.g., land–climate interactions, land degradation, etc.

This is the reason why this Special Issue does not aim to serve as a collection on one
very specific topic but rather to provide insight into a number of related topics, including
soil erosion modelling using the classic USLE as well as more recent models; field research,
including rainfall simulations; and mitigation technics and their related problems—e.g.,
the use of dams as sediment traps.

Water 2022, 14, 447. https://doi.org/10.3390/w14030447 https://www.mdpi.com/journal/water
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This Special Issue was also a subject of finding interested researchers. Who is submit-
ting manuscripts and what types of papers are submitted and from which countries? On
the one hand, the time of researchers is limited and, on the other hand, most researchers
wish to reach the widest possible audience, so it was rather difficult for someone to decide
if they wanted to publish in this Special Issue or another. We feel that the purpose of this
Special Issue was achieved, as various publications submitted showed a good variety of
information on soil water erosion and novel analyses.

I hope that this Special Issue will provide new and useful information on the miti-
gation of soil water erosion-induced problems across the entire world. I also believe that,
regardless of the localities used (which is an aspect that is often criticized when a paper is
under review), many other countries under different climatic conditions as well as people
in other geographical regions can learn from the presented results and methodologies and
thus move closer to achieving degradation-free land use, as this it is the core interest of the
population of Earth.

2. Summary of this Special Issue

Nowadays, as resources such as time and research personnel are limited, computer-
based methodologies are receiving more attention and greater popularity. Perhaps this is
also the reason why the first paper submitted to this Special Issue used machine learning
techniques [4]. These techniques were used to investigate gullies—more precisely, gully
head-cuts. A total of 119 gully head-cuts were identified and mapped in N.W. Iran. The
authors found that, based on goodness-of-fit and AUROC (Area Under the Receiver Op-
erating Characteristic is a performance metric that we can use to evaluate classification
models) of the success rate curve (SRC) and prediction rate curve (PRC), the results indicate
that the bagging-ADTree ensemble model had the best performance.

Following this approach, another gully erosion investigation was performed for land
management purposes by another author from Russia [5]. Four models were used: two
models calculated gully depth and width along with its longitudinal profile, while an-
other two models were used for the novel modification of the area-slope approach, which
gives the most probable position of possible gullies. The author suggested the use of the
dynamic gully erosion model GULTEM (GULly erosion and Thermoerosion Model) was
recommended for calculations of gully geometry transformation in time and space for the
most detailed projects of land management.

The third article related to gully erosion identified and assessed the areal and temporal
changes of badlands in Italy [6]. The case study area was in the Modena Province (Emilia
Apennines), which was important because there was no previous detailed investigation.
The authors revealed a general stabilization trend of the badlands in the study area due to
an intensified revegetation process around the badlands. This trend is mainly the result
of intensive land-use changes—namely the increase in forest cover and the reduction in
agricultural land (occurring in the study area from the 1970s onwards). There was another
article related to gullies, but its main purpose was to handle sediment-related issues [7]
which is also an important part of the whole issue.

Soil erosion models were used by various authors and some of the model details were
also analyzed. Kreklow et al. [8] compared rainfall erosivity (R-factor) estimation methods
with the utilization of weather radar data in Germany. Their results showed that R-factors
have increased significantly due to climate change and that the current R-factor maps need
to be updated. One of the possible options to accomplish this is using more recent and
spatially distributed rainfall data.

Almohamad [9] used the RUSLE model to show the impact of armed conflicts on
soil erosion through the land cover change in Syria. Land cover was decreased due to
the increase in forest fires as a result of armed conflict. Damage to coniferous forest and
transitional woodland and scrub, especially on steep slopes, had the biggest impact on
factor C after the fire. The soil loss was 200% to 800% higher than it had been in the
pre-fire situation.
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Keller et al. [10] performed a rainfall simulation for soil erodibility calculation using
various models, such as USLE (Universal Soil Loss Equation), RUSLE (Revised USLE),
USLE-M (USLE Modified), and EPIC (Erosion-Productivity Impact Calculator). Based on
the soil loss measured during the rainfall simulation, the authors found that the RUSLE
model resulted in the best performance in event soil loss estimation.

Another type of field experiment was conducted by Li et al. [11], who were interested
in the effects of infiltration on preferential flow characteristics and solute transport in
a Chinese area. The impact of three precipitation amounts of 20, 40, and 60 mm was
investigated. Solute concentration was found to peak around the end of the preferential
flow path and when preferential flow underwent lateral movement. The results indicated
that the infiltration volume and transport capacity of preferential flow had important
effects on the distribution of Br¯ and NO3¯ concentrations. The results can help in the
management of protected forests in China.

Su et al. [12] analyzed the effects of thawing on the slope erosion and hydraulics in
the sand-covered Loess Plateau in China. The authors conducted laboratory experiments
on meltwater flow to quantify the temporal and spatial distribution of the hydraulic
parameters of sandy soils concerning runoff and sediment yield under a constant flow on
unfrozen and frozen slopes of variable sand thickness. Their results showed that sand
can prolong the initial runoff time, and that unfrozen and frozen slopes have significantly
different initial runoff times. A significant linear relationship was found between the
cumulative runoff and the cumulative sediment yield.

Lu et al. [13] went further than Su et al. [10] by investigating the effects of freeze–thaw
cycling on the soil detachment capacities of three loamy soils on the Loess Plateau of China.
After 20 freeze–thaw cycles, the degree of decline of silt loam was the greatest (77.72%),
while sandy loam (63.18%) and clay loam (39.77%) showed smaller degrees of decline.
The soil detachment capacity of silt loam and sandy loam was positively correlated with
the freeze–thaw cycle and negatively with that of clay loam. The authors believe that
their results can provide references for further studies on the mechanism of soil erosion in
seasonal freeze–thaw regions.

The RUSLE model was used in numerous articles for estimating the sediment yield
of certain areas. One of these estimations was conducted in the watershed of the Chenab
River at the border of Pakistan and India [14]. The 30-year average annual sediment yield
was estimated as 4.086, 6.163, and 7.502 million tons based on different approaches.

Gurmu et al. [15] simulated sediment influx using the RUSLE model and compared it
to the amount of sediment removed during desilting campaigns. They found the sediment
deposition rate to be 308 m3/km and 1087 m3/km, respectively, for the Arata-Chufa
and Ketar schemes. The spatial soil losses amounted to up to 18 t/ha/yr for the Arata-
Chufa scheme and 41 t/ha/yr for the Ketar scheme. The authors concluded that overland
sediment inflow is not considered properly related to canal sedimentation, and this is a
major cause of excessive sedimentation problems (among others) in Sub-Saharan Africa.

Jáchymová et al. [16] used the RUSLE-based WATEM/SEDEM model in their research.
This modelling approach allowed for the modelling of sediment fluxes at 127,484 < risk
points, meaning that a good coverage for the entire Czech Republic could be achieved. Risk
points were defined for the study as follows: outlets of contributing areas 1 < ha, wherein
the surface runoff enters residential areas or vulnerable bodies of water. The authors
found that the most important factor for risk definition is a combination of morphometric
characteristics (specific width and stream power index), followed by the watershed area,
the proportion of grassland, the soil erodibility, and the rain erosivity (described by PC2).

Szabó et al. [17] analyzed the use of various rainfall simulators in the determination of
the driving forces of changes in sediment concentration and clay enrichment. The authors
compared a field and a laboratory rainfall simulator. They found that the slope gradient
is an effective regulator only in the laboratory. Rainfall intensity was also more effective
in the laboratory than in the field simulations. These findings suggest that soil-related
properties play a prominent role in driving sediment concentration in the field, whereas, in

3
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the laboratory, slope and rainfall intensity were found to be driving factors independent of
soil-regulated sediment concentrations.

As we can see, on the one hand, there is a great deal of information on soil water
erosion-related issues; on the other hand, as we go into more detail, there are always
new findings. After all, we can conclude that a lot more research is still needed [18] in
order to find the relations between the factors leading to water erosion. These findings
can help in mitigation. We highly encourage the creation of more Special Issues in this
same field of research.
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Abstract: To more effectively prevent and manage the scourge of gully erosion in arid and
semi-arid regions, we present a novel-ensemble intelligence approach—bagging-based alternating
decision-tree classifier (bagging-ADTree)—and use it to model a landscape’s susceptibility to gully
erosion based on 18 gully-erosion conditioning factors. The model’s goodness-of-fit and prediction
performance are compared to three other machine learning algorithms (single alternating decision
tree, rotational-forest-based alternating decision tree (RF-ADTree), and benchmark logistic regression).
To achieve this, a gully-erosion inventory was created for the study area, the Chah Mousi watershed,
Iran by combining archival records containing reports of gully erosion, remotely sensed data from
Google Earth, and geolocated sites of gully head-cuts gathered in a field survey. A total of 119 gully
head-cuts were identified and mapped. To train the models’ analysis and prediction capabilities,
83 head-cuts (70% of the total) and the corresponding measures of the conditioning factors were input
into each model. The results from the models were validated using the data pertaining to the remaining
36 gully locations (30%). Next, the frequency ratio is used to identify which conditioning-factor
classes have the strongest correlation with gully erosion. Using random-forest modeling, the relative
importance of each of the conditioning factors was determined. Based on the random-forest results,
the top eight factors in this study area are distance-to-road, drainage density, distance-to-stream,
LU/LC, annual precipitation, topographic wetness index, NDVI, and elevation. Finally, based on
goodness-of-fit and AUROC of the success rate curve (SRC) and prediction rate curve (PRC), the
results indicate that the bagging-ADTree ensemble model had the best performance, with SRC (0.964)
and PRC (0.978). RF-ADTree (SRC = 0.952 and PRC = 0.971), ADTree (SRC = 0.926 and PRC = 0.965),
and LR (SRC = 0.867 and PRC = 0.870) were the subsequent best performers. The results also indicate
that bagging and RF, as meta-classifiers, improved the performance of the ADTree model as a base
classifier. The bagging-ADTree model’s results indicate that 24.28% of the study area is classified
as having high and very high susceptibility to gully erosion. The new ensemble model accurately

Water 2020, 12, 16; doi:10.3390/w12010016 www.mdpi.com/journal/water5
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identified the areas that are susceptible to gully erosion based on the past patterns of formation,
but it also provides highly accurate predictions of future gully development. The novel ensemble
method introduced in this research is recommended for use to evaluate the patterns of gullying in
arid and semi-arid environments and can effectively identify the most salient conditioning factors
that promote the development and expansion of gullies in erosion-susceptible environments.

Keywords: gully head-cuts; machine learning modeling; soil erosion; Iran

1. Introduction

Gullies are common features in arid and semi-arid regions, and they are major causes of sediment
erosion; they supply from 10 to 94% of the total sediment yield in some watersheds [1]. High erosion
rates undercut agricultural sustainability and necessitate the search for (usually expensive) solutions
in the context of costly governmental policies. However, studying and predicting gully erosion is
difficult [2–4]. In terms of the ecosystem effects and environmental damages from gully erosion, studies
have focused on the influential factors and on identification of susceptible areas using geographic
information systems (GIS) and remote sensing (RS) [5–8]. This study develops a new model to detect
and predict gully locations with high spatial accuracy to reduce gully erosion damages.

One method that many have used is gully-erosion susceptibility mapping (GESM). This approach
can provide useful and easy-to-understand information to planners and hazard managers [9], but there
is no standard procedure for producing these maps. In recent decades, researchers have devised and
experimented with many GESM techniques and various traditional data-driven approaches, including
logistic regression (LR) [10,11], weights of evidence (WoE) [12,13], conditional analysis (CA) [14,15],
certainty factor (CF) [16], index or entropy (IOE) [17], analytical hierarchy process (AHP) [18,19], and
frequency ratio (FR) [12].

One of the difficulties in the regional GESM process is that the factors influencing gully erosion
require data usually derived from various sources at different spatial scales, which may contain
uncertainties and imprecisions. Traditional data-driven approaches cannot be used to determine
the relationships between geo-environmental factors and gully erosion occurrence because of the
limitations caused by imbedded statistical assumptions about variables’ independence and data
distributions in susceptibility analyses [20,21]. New modeling methods are needed that go beyond
traditional data-driven approaches, and methods that can deal with the above issues and can enhance
model performance.

Recently, machine-learning (ML) techniques have become popular for the spatial prediction
of natural hazards like wildfires [22], sinkholes [23], groundwater depletion and flooding [24–38],
droughts [39], earthquakes [40], land subsidence [41], and landslides [42–48]. ML is a type of artificial
intelligence (AI) that uses computer algorithms to analyze and forecast information by learning from
training data. ML algorithms that have been used for GESM include random forest (RF), boosted
regression tree (BRT), support vector machine (SVM), classification and regression trees (CART),
artificial neural networks (ANN), stochastic gradient tree-boost (SGT), maximum entropy (ME), and
multivariate adaptive regression splines (MARS) [13,49–58].

Ensemble models have been used in GESM due to their novelty and their ability to comprehensively
assess gully-erosion parameters for discrete classes of independent factors [51,52]. Although some
studies have been conducted on the spatial prediction of gullies, a standard framework considering all
influential factors for achieving a reasonable and reliable prediction has not been established. Some
studies and techniques should be used in different hydro-geomorphological environments to devise a
global framework for gully-erosion modeling. Additionally, some factors contribute to gullying that
are either difficult to recognize (and measure), or they are difficult to convert to raster formats for
modeling. Therefore, one of the future fields of gully modeling should focus on the detection and
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application of the unknown factors that influence gully formation. This may be achieved by combining
gullying research with GIS and data-mining tools to create a tool or technique that can map future,
unknown factors. This could help planners, decision makers, and environmental managers to prepare
gully erosion maps of the highest quality with the best possible accuracy to better manage gullying in
erosion-susceptible areas.

The main difference between this study and previously conducted studies is that this study
explores a new ensemble-intelligence approach that employs bagging as a meta-classifier with an
alternating decision tree (ADTree) as a base classifier to spatially predict gully erosion. The results
produced by this new ensemble-intelligence approach are compared to the results generated with a
single alternating decision tree, a rotational-forest-based alternating decision tree (RF-ADTree), and
benchmark logistic regression (LR) to assess and improve the accuracy of GESM. These ML modes
haven’t been used for GESM, so we assess the performance of the new ensemble model using a variety
of statistical metrics and the area under the curve (AUC).

The Chah Mousi watershed (northeastern Iran) is an arid region very prone to gully erosion.
Gullies are widespread throughout the region and cause land degradation and economic damages
every year. This study illustrates and compares individual and ensemble machine learning models to
assess gullying susceptibility. We test the efficacy of these models and compare them to find the most
suitable model for land use planning. The main objectives of this study are identifying and mapping the
extant gullies in the Chah Mousi watershed by (a) creating an inventory; (b) mapping, modeling, and
predicting the locations of gully head-cuts; (c) characterizing the roles of various geo-environmental
features as factors that control the distribution of gullies; and (d) evaluating gully erosion susceptibility
in the study area.

2. Materials and Methods

2.1. Study Area

The Chah Mousi watershed is in Semnan province, Iran, and is located between 35◦15′05” and
35◦37′12” N and 54◦35′44” and 55◦23′05” E (Figure 1). It is a relatively small area of approximately
2176.02 km2. The greatest change in elevation is along a NE to SE axis. The average elevation in the
northeastern quadrant is 2123 m.a.s.l. In the southeastern quadrant, it is 672 m.a.s.l. As the region is
relatively small, the slope degree varies significantly from flat to 67.8◦, although the average is about
3◦. Due to the predominance of flat landscapes, standing and slow-moving water is more typical
than runoff. The mean annual precipitation ranges from 48 to 206 mm, principally during the wet
season from January to March [59]. Temperatures typically reach a peak of 41 ◦C during summer,
especially in the south, and a low below 0 ◦C during winter in the northern parts of the region; though
average temperatures during the rest of the year range from 13 to 23 ◦C [59]. Together, these numbers
indicate the potential for meteorological stress on the land surface with high thermal and precipitation
variations and local spikes that may cause freezing and thawing of soils and expansion and contraction
within the regolith [13].

The land covers include agriculture, bare land, kavir (barren sandy and rocky desert), rangeland,
rock outcrops, salt lakes, wetlands, and salt lands. The latter are particularly vulnerable to dissolution
processes during the wet season as the salt crust is easily weathered, giving rise to pores that promote
changing groundwater levels and erosion of soils [60]. The distribution of salt crusts is evident in
the regional soil map (primarily in areas featuring aridisols and entisols and where the outcropping
lithologies are also reported). The main lithological units in the study area are marl, gypsiferous marl
and limestone, shale, sandstone, granite, conglomerate, and salt flat [60].
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Figure 1. Study area. (a) Location of the study area in Iran and Semnan Province. (b) Elevation and
Hillshade model of the study area.

2.2. Gully Mapping

Archival records containing reports of gully erosion that have been compiled by the Semnan
Agricultural and Natural Resources Research and Education Center were used as the first source
of locational data. Upon this historical foundation, gully locations and dimensions were identified
and measured using remotely sensed data viewed through Google Earth. Finally, a field survey was
conducted in the study region to update and refine the inventory (Figure 2). Sites of gully head-cuts
were geolocated with a DGPS (Differential Global Positioning System) device. The survey yielded
119 gully head-cuts (Figure 2) to be used for modeling. Of the overall dataset, 75 gullies (63.02%) were
identified from archives, 19 gullies (15.96%) collected using Google Earth, and 25 gullies (21.008%) were
collected in a field survey. All gullies were checked and mapped using DGPS with millimeter accuracy.
The universal transverse Mercator (UTM) coordinate system was used. The models described above
were applied to the locations of 83 head-cuts (70% of the total). The models were tested (or validated)
with the remaining 36 gully locations (30% of the total). As the models selected in this study correspond
to a family that predicts the presence or absence of a phenomenon, an equal number of locations (36 no
gully locations as validation data and 83 no gully locations as calibration data) were selected and tested
as well [52]. In turn, this procedure creates a balanced dataset for the subsequent analyses, although
it should be noted that the geomorphological features still debates whether balanced or unbalanced
datasets should be created prior to a susceptibility analysis [19,58]. Some of mapped gullies are shown
in Figure 3.

Figure 2. Location of training and validation gullies in the study area.
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Figure 3. Gullies in the study area.

2.3. Gully Erosion Conditioning Factors

Several factors affect a location’s susceptibility to gully erosion [17,19]. After completing a study
of the gully-erosion literature, and considering local conditions and data availability, 18 variables were
selected for inclusion in the modeling process. These include elements of topographical, geological,
and hydrological conditions.

The following topographical factors were considered: elevation, slope gradient, aspect, plan
curvature, convergence index (CI), slope length (LS), topographic wetness index (TWI), topographic
position index (TPI), and terrain ruggedness index (TRI). Each was calculated using PALSAR DEM
with 12.5 m spatial resolution applying the basic terrain analyses in SAGA GIS. A detailed explanation
of the equations used to calculate LS, TWI, and SPI is available in Arabameri et al. [19].

The description of the lithology was acquired from a geological map at a scale of 1:100,000
(Geological Survey Department of Iran, [59]). The map was digitized and 6 geological classes were
identified in the study area: A (including marl, gypsiferous marl, and limestone; dacitic to andesitic
volcano sediment; well-bedded green tuff and tuffaceous shale; dacitic to andesitic volcanic; dacitic to
andesitic volcano breccia; andesitic volcano breccia, sandstone, marl, and limestone; granite, pale-red
polygenic conglomerate, and sandstone), B (including phyllite, slate, and meta-sandstone; Jurassic
dacite to andesite lava flows), C (including Cretaceous rocks, in general), D (including light red to
brown marl and gypsiferous marl with sandstone intercalations; red marl, gypsiferous marl, sandstone,
and conglomerate), E (including fluvial conglomerate, piedmont conglomerate, and sandstone), and
F (salt flat, high-level piedmont fan and valley terrace deposits, low-level piedmont fan and valley
terrace deposits, and salt lake) (Figure 4p).

The hydrological gully erosion factors that were included in the modeling process are drainage
density, distance-to-stream, mean annual rainfall, and stream-power index (SPI). Drainage density
and distance-to-stream were calculated using the stream network information developed from the
PALSAR DEM in ArcGIS 10.5. Raster maps of these factors were prepared using line-density and
Euclidean-distance tools in ArcGIS 10.5. The SPI was calculated as follows:

SPI = As× tanβ (1)

where As is the specific catchment area, and β is slope (◦).
Annual precipitation data were obtained for the period from 1984 to 2014 recorded at the Toroud,

Razveh, Moalleman, and Hosseinan weather stations operated by the Iran Meteorological Organization
(IRIMO, 2014). The rainfall data were interpolated using the kriging interpolation tool in ArcGIS 10.5.
Gully erosion is also influenced by soils, land use, and vegetation [19]. Therefore, these factors are
represented by soil types, land use/land cover (LU/LC), and normalized difference vegetation index
(NDVI), and were used as conditioning factors. Soil type data were based on the information from the
Soil Conservation Section of Agricultural and Natural Resources Research Centre of Semnan Province.
LU/LC and NDVI data were obtained from Landsat 8 images (15 August 2017) with a 30 m resolution.
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The LU/LC map containing eight classes (agriculture, bare land, kavir, poor range, rock, salt lake, salt
land, and wetland) was prepared using the supervised classification method and maximum likelihood
in ENVI4.8 software. The map was verified using the kappa coefficient with 459 ground control points
(GCP). The kappa value of the resulting map was 0.976. The NDVI was calculated using Landsat 8
bands 4 (red) and 5 (infrared) data in ArcGIS 10.5.

Figure 4. Cont.

10



Water 2020, 12, 16

Figure 4. Cont.
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Figure 4. Gully erosion conditioning factors. (a) Elevation, (b) slope, (c) aspect, (d) plan curvature,
(e) convergence index (CI), (f) slope length (LS), (g) stream power index (SPI), (h) topography position
index (TPI), (i) terrain ruggedness index (TRI), (j) topography wetness index (TWI), (k) distance to
stream (l) drainage density, (m) rainfall, (n) distance to road (o) NDVI, (p) lithology (q) land use/land
cover (LU/LC), and (r) soil type.

Roads also affect gully erosion as they intercept and concentrate overland flow [17]. This factor is
represented by the distance to road in gully and non-gully locations, which is determined by vectorizing
topographic maps and Google Earth images, and then transforming the data to a raster map using line
density tools in ArcGIS 10.5.

2.4. Models

2.4.1. Rotational Forest (RF)

RF modeling is a relatively new ensemble algorithm that increases the accuracy and diversity
of base classifiers, and it was first proposed by Rodriguez et al. [39]. The success of RF modeling
depends on the rotation matrix generated by transformations and base classifiers [61,62]. The basis of
RF modeling is principal component analysis (PCA), which can extract features and create training
datasets for learning base classifiers [63]. RF has been applied to classification problems, such as
landslide-susceptibility research, land use mapping, and flash flood susceptibility research [64–66].

Suppose x = (x1, x2, x3, . . . , xn) is the vector of the landslide conditioning factor, y = (y1, y2) is
the vector of landslide or non-landslide class, X is the training dataset, A1, A2, A3, . . . , AL are the
classifiers in the ensemble, and B is the landslide conditioning factor set. The steps of training classifier
Ai are as follows. The rotation matrix Ri

a generated by the matrix of Ri is shown in Equation (2).

Ri =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai,1
(1), ai,1

(2), . . . , ai,1
(Q1) 0 · · · 0

0 ai,1
(1), ai,1

(2), . . . , ai,1
(Q2) · · · 0

...
...

. . .
...

0 · · · · · · ai,1
(1), ai,1

(2), . . . , ai,1
(Qk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

Ri is produced by the following four steps:

(i) Divide B into K subsets, and the number of gully conditioning factors of each subset is Q = n/K.
(ii) In case of the classifier Ai, let Bi,j be the jth, where j = 1, 2, 3, . . . and K is the subset of gully

conditioning factors. Xi,j is the gully conditioning factor of Bi,j from X. Bi,j is randomly selected
from the Xi,j with the 75% size by bootstrap algorithm. Then, Xi,j’ would be transformed to
achieve coefficient ai,1

(1), ai,1
(2), . . . , ai,l

(Qi), the size of ai,1′ is Q × 1.
(iii) Arrange a sparse rotation matrix Ri with the obtained coefficients.
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(iv) The confidence of each class is calculated by the average combination method in the given test
sample χ,

μk(η) =
1
L

∑L

i=1
γi,k(ηR

a
i ), k= 1, 2, 3, . . . , c (3)

where γi,k(ηRi
a) is the probability produced by the classifier Ai to the hypothesis that η belongs to

the class k.

2.4.2. Alternating Decision Tree

The alternating decision tree (ADTree) model is an ensemble model that consists of a boosting
algorithm and a decision tree [67]. It is a generalization of a decision tree in which each node is
replaced by a splitter node and a prediction node [68,69]. The base rule mapping from an instance to
real number involves a precondition c1, a base condition c2, and two real numbers a and b. If c1 ∩ c2,
the prediction is a, and the prediction is b when c1 ∩ −c2; − means negation. The values of a and b are
determined by Equations (4) and (5), respectively.

a =
1
2

ln
W+(c1 ∩ c2)

W−(c1 ∩ c2)
(4)

b =
1
2

ln
W+(c1 ∩ −c2)

W−(c1 ∩ −c2)
(5)

where W(p) is the total weight of training instance. The best c1 and c2 values are obtained by minimizing
the Zt(c1, c2), which is defined as Equation (6).

Zt(c1, c2) = 2
√

W+(c1 ∩ c2)W−(c1 ∩ c2) +
√

W+(c1 ∩ −c2)W−(c1 ∩ −c2) + W(−c2) (6)

Suppose that R is a set of base rules. Then, a new rule can be defined as Rt+1 = Rt + rt, rt(x), which
shows two prediction values (a and b) at every layer of the tree. x is a set of instances. The classification
of instances is the sign of the sum of all predicted values in Rt+1:

Class(x) = sign(
T∑

t=1

rt(x)) (7)

The algorithm first finds the best constant prediction for the whole data set [70]. Cross validation
is often used for selection [71].

2.4.3. Bagging

Bootstrap aggregation or bagging (BAG) was introduced by Breiman in 1996 [72]. The bootstrap
technique randomly selects and replaces samples to generate multiple samples to form a training
dataset. Every subset generated is used to build a decision tree, and they are later aggregated in
the final model. The accuracy of classification is improved by reducing the variance of classification
error [73,74]. In recent years, BAG has been widely applied in landslide susceptibility research and has
performed well [75–77].

2.4.4. Logistic Regression

Logistic regression (LR) is one of the most popular multivariate statistical analysis methods [78–80].
It can make a multivariate regression correlation between a dependent variable and several independent
variables [81,82]. The advantage of LR is that the variables can be continuous, discontinuous, or a
combination of the two [83,84]. In this study, the main purpose of using an LR model is to determine
the relationships between landslide occurrence and gully conditioning factors, calculated using
Equation (8).
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P =
1

1 + e−Z (8)

where P is the probability of gully occurrence and ranges from 0 to 1. Z is a linear sum of constants,
and its range is (−∞, +∞). The calculation equation of Z can be defined as Equation (9).

Z = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn (9)

where α is a constant, βi (i = 1, 2, 3, . . . n) is the coefficient of the model, and xi (i = 1, 2, 3, . . . n) is the
independent variable.

2.4.5. Frequency Ratio

The ratio between the frequency of occurrences and non-occurrences at a location within a given
causative factor class is called the FR [19]. Larger ratios suggest that those factor classes are more
important determinants of the occurrence (in this case, gully-erosion proneness or susceptibility.
As there are numerous pertinent factors at play in each location (or area defined by a pixel in
our digital map), the potential for gully erosion can be computed as the sum of all ratios for the
predisposing factor classes [19]. FR is empirical. It is, in fact, not a statistical method; it is not based on
statistical distributions.

2.4.6. Random Forest (RAF)

RAF uses multiple trees to classify locations based on a single conditioning factor [85]. The RAF
algorithm continuously replaces the factors affecting each pixel space, thereby creating numerous
decision trees. A combination of all decision trees in a study area provide the information to support
decision making [85]. An RAF contains 3 user-defined parameters: (1) the number of variables used to
construct each decision tree, which indicates the power of each independent tree; (2) the number of
trees included in the RF; and (3) the minimum number of nodes within the trees. The prediction power
of RAFs increase as the strength of independent trees increases and as the correlation between them
decreases. Sixty-six percent of the data (the testing data) are used to grow a tree, and the result is called
a bootstrap. A randomly introduced predictor variable splits a node in the tree’s construction during
the growing process. The remaining third of the data is used to evaluate (or validate) the fitted tree.
The average of all predicted values produced during several iterations of the algorithm creates the final
modeled prediction. In this model, two factors—the mean decrease accuracy and the mean decrease
Gini index—are used to prioritize the effective factors. Comparing the mean decrease accuracy to
the mean decrease Gini index determines the relative importance of the effective factors, especially
the relationships between environmental factors. RAF analyses were carried out in R 3.3.1 using the
“Randomforest” package [85].

2.5. Multicollinearity Assessment

In GESM, testing for collinearity among the effective factors in gullying is very important,
because the collinearity reduces the accuracy of the GESM [86–89]. The variance inflation factor
(VIF) and Tolerance (TOL) are very commonly used indicators for checking multicollinearity among
parameters [90,91]. TOL values less than 0.1 or 0.2 and VIF values greater than 5 or 10 indicate
collinearity between the parameters [17,19,86,89,92]. In the present study, the multicollinearity test of
gully erosion conditioning factors (GECFs) was done using Equations (10) and (11) in SPSS software:

Tolerance = 1−R2 J (10)

VIF = [
1

Tolerence
] (11)

where R2J is the regression coefficient for determining independent variable j.
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2.6. Methodology

As described above, an inventory of gullies was created, and the gully-erosion conditioning data
were compiled in a GIS to provide input for the modeling process (Figure 5). The gully sites were
divided into two datasets: 70% were used for training, and 30% were used for validation of the models.
An assessment of multicollinearity among the conditioning factors was performed. The relative
weights of the GECFs were determined using an RAF model, and an analysis of the spatial relationships
between GECFs and gullies was conducted with FR. GESMs were created using each of the four models:
ADTree, RF-ADTree, Bagging-ADTree, and LR. Finally, the models were evaluated and validated
using the receiver operating characteristic (ROC) curves and by calculating the area under the ROC
curve (AUC) for each model [93–95]. The AUC values are between 0 and 1, which can be interpreted
following these categories: 0.6–0.7 have poor, 0.6–0.7 medium, 0.7–0.8 good, 0.8–0.9 very good, and
0.9–1 excellent accuracy [9,17,19]. The four models used were objectively compared to determine the
most effective approach.

Figure 5. Flowchart of modeling procedure, where GIM is gully inventory map, GECFs is gully erosion
conditioning factors, GESM is gully erosion susceptibility map.

3. Results

3.1. Multicollinearity Assessment

A multicollinearity analysis of the GECFs was performed (Table 1). The analysis revealed that
TOL and VIF values for all factors are >0.1 and <5, respectively, indicating that the variables are not
significantly correlated and that they can be used in further analyses.

3.2. Spatial Relationship between Gully Locations and Conditioning Factors by Applying FR Model

Analyses of the spatial relationships between gully locations and GECFs (Table 2) showed that
classes of conditioning factors with FR values greater than 1 are susceptible to gully erosion [17].
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For instance, among topographical factors, locations up to 1000 m. a.s.l. are the most susceptible to
gully erosion—the highest value of FR is for sites with elevations from 797 to 931 m a.s.l. Locations
above 1000 m a.s.l. have low susceptibility, and elevations above 1509 m a.s.l. have the lowest
susceptibility and lowest FR values (FR = 0.000). All gullies in the study area occur on slopes below 15◦.
The highest FR values are found in slopes < 5◦ (1.080) and from 10 to 15◦ (1.119). There are no gullies on
slopes > 15◦. This is in accordance with the plan-curvature results. Flat areas have the highest FR value
(1.391) and concave slopes have gullies (0.967). Most gullies occur on slopes exposed to the east (1.941),
southeast (1.344), and northeast (1.184), whereas while northwest-, west-, and southwest aspects have
more gullies (NW (0.183), W (0.429), and SW (0.536)), there are very few gullies on north-facing slopes
(0.679). Based on convergence index, sites in the class of ≤38.8 (FR = 1.737) possess the most important
cause of gully occurrence in the study area.

Table 1. Multi-collinearity analysis of gully erosion conditioning factors.

Factors
Collinearity Statistics

TOL a VIF b

Aspect 0.904 1.123
Lithology 0.759 1.318

Slope 0.612 1.525
Normalized Difference Vegetation Index 0.596 1.674

Slope length 0.577 1.734
Convergence Index 0.559 1.780

Terrain Ruggedness Index 0.523 2.132
Distance to road 0.497 2.231

Soil type 0.431 2.312
Land use/land cover 0.423 2.383
Stream Power Index 0.419 2. 443

Elevation 0.415 2.504
Drainage density 0.411 2.561

Plan curvature 0.369 2.716
Topographic Wetness Index 0.357 2.903
Topographic Position Index 0.344 2.984

Rainfall 0.321 3.098
a TOL is tolerance. b VIF is variance inflation factor.

According to LS factor, areas with the lowest slope length have the highest susceptibility to gully
occurrence, so that class of <15.2 m, with FR = 1.244, showed the strongest relationship to gullying in
the study area.

Generally, TPI values > 0 indicate ridges, 0—flat areas (or constant slopes), and <0—valleys. This
is confirmed with the statistical relationships between gully locations and TPI values in the study area.
Most of the study area is flat and classes of TPI < 1.96 are those with the gully locations. This is in
accordance with TRI values that show terrain heterogeneity. Higher TRI values show increased local
relief heterogeneity. In contrast, lower TRI values indicate more level surfaces (e.g., planar surfaces or
various depositional landforms). The results showed that gullies occur in areas belonging to classes of
TRI values < 7.84, and the most susceptible are areas with TRI < 1.47. Despite the occurrence of gullies,
the terrain is quite homogenous; most of the study area is flat. TWI reveals the areas with drainage
depressions where water is likely to accumulate. Thus, the areas with high values of TWI should be
more susceptible to gully formation, which is in accordance with the results that showed that higher
TWI values (>11.8) have a higher occurrence of gullies in the study area. SPI values indicate potential
flow-erosion at a point in the topographic surface. Most of the gullies occur in areas where SPI values
are <14.9 (FR = 4.66).

Distance-to-stream and drainage density are important factors conditioning gully occurrence [17].
Gullies occur mainly in the areas close to streams (<100 m) [13]. In addition, most of the gullies occur
in areas receiving 68 to 85 mm of precipitation annually [16] (Table 2).

In lithological units, class of B (phyllite, slate and meta-sandstone, and Jurassic dacite to andesite
lava flows) showed the strongest correlation with gully occurrence in the study area.
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According to NDVI, class of 0.043 to 0.132 had the highest FR (1.34) and therefore the strongest
relationship to gully formation. Moreover, most of the gullies occur in areas of kavir and poor
rangeland, which had FR values of 1.961 and 0.672, respectively. Gully erosion occurs mainly in areas
with entisols/aridisols (Table 3).

Roads may intercept overland flow and promote gully formation. Most of the gullies occur near
roads (<1000 m) [16]; the strongest relationship is <500 m (FR = 6.43).

Table 2. Analysis of spatial relationship between conditioning factors and gully locations using
frequency ration model.

Factors Classes
Pixels in Domain Gullies

FR a

No % No %

Elevation (m)

<797 1,050,197 43.44 30 34.88 0.803
797–931 481,498 19.91 34 39.53 1.985

931–1081 354,322 14.65 9 10.47 0.714
1081–1251 334,954 13.85 9 10.47 0.755
1251–1509 157,674 6.52 4 4.65 0.713
>1509 39,161 1.62 0 0.00 0.000

Slope (◦)

<5 2,031,134 84.01 78 90.70 1.080
5–10 220,796 9.13 5 5.81 0.637

10–15 75,358 3.12 3 3.49 1.119
15–20 35,508 1.47 0 0.00 0.000
>20 55,006 2.28 0 0.00 0.000

Aspect

F 114,082 4.72 4 4.65 0.986
N 165,633 6.85 4 4.65 0.679

NE 213,654 8.84 9 10.47 1.184
E 362,097 14.98 25 29.07 1.941

SE 460,076 19.03 22 25.58 1.344
S 437,541 18.10 12 13.95 0.771

SW 314,526 13.01 6 6.98 0.536
W 196,799 8.14 3 3.49 0.429

NW 153,398 6.34 1 1.16 0.183

Plan curvature (100/m)
Concave 755,889 31.26 26 30.23 0.967

flat 909,452 37.61 45 52.33 1.391
convex 752,464 31.12 15 17.44 0.560

Convergence index
(100/m)

<-38.8 242,500 10.04 15 17.44 1.737
−38.8–−12.1 552,768 22.89 24 27.91 1.219
−12.1–11.3 804,611 33.31 22 25.58 0.768
11.3–38.8 561,527 23.25 17 19.77 0.850
>38.8 253,921 10.51 8 9.30 0.885

LS b (m)

<15.2 1,423,717 58.88 63 73.26 1.244
15.2–44.8 217,038 8.98 7 8.14 0.907
44.8–80.1 293,604 12.14 7 8.14 0.670
80.1–121.7 293,446 12.14 4 4.65 0.383
>121.7 190,001 7.86 5 5.81 0.740

SPI c

<8.3 722,773 29.89 23 26.74 0.895
8.3–9.9 868,697 35.93 23 26.74 0.744
9.9–12 524,225 21.68 18 20.93 0.965
12–14.9 223,684 9.25 9 10.47 1.131
>14.9 78,423 3.24 13 15.12 4.660

TPI d

<−7.11 30,179 1.25 3 3.49 2.795
−7.11–−1.38 266,501 11.02 12 13.95 1.266
−1.38–1.96 1,935,233 80.04 70 81.40 1.017
1.96–9.12 159,122 6.58 1 1.16 0.177
>9.12 26,771 1.11 0 0.00 0.000

TRI e

<1.47 1,774,798 73.41 67 77.91 1.061
1.4–3.92 444,246 18.37 14 16.28 0.886

3.92–7.84 135,731 5.61 5 5.81 1.036
7.84–13.74 49,383 2.04 0 0.00 0.000
>13.74 13,648 0.56 0 0.00 0.000
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Table 2. Cont.

Factors Classes
Pixels in Domain Gullies

FR a

No % No %

TWI f

<6.1 896,631 37.08 23 26.74 0.721
6.1–8.4 964,824 39.91 28 32.56 0.816
8.4–11.8 428,795 17.73 16 18.60 1.049
>11.8 127,552 5.28 19 22.09 4.188

Distance to stream (m)

<100 595,385 24.63 46 53.49 2.172
100–200 446,060 18.45 15 17.44 0.945
200–300 395,428 16.35 9 10.47 0.640
300–400 266,585 11.03 7 8.14 0.738
>400 714,344 29.55 9 10.47 0.354

Drainage density
(km/km2)

<0.94 623,893 25.80 14 16.28 0.631
0.94–1.28 966,283 39.97 20 23.26 0.582
1.28–1.75 632,567 26.16 26 30.23 1.156
>1.75 195,059 8.07 26 30.23 3.747

Rainfall (mm)

<68.3 490,619 20.29 6 6.98 0.344
68.3–85.7 974,984 40.33 55 63.95 1.586
85.7–106 830,826 34.36 25 29.07 0.846
106–133 77,808 3.22 0 0.00 0.000
>133 43,565 1.80 0 0.00 0.000

Distance to road (m)

<500 139,853 5.78 32 37.21 6.433
500–1000 132,330 5.47 9 10.47 1.912

1000–1500 127,256 5.26 4 4.65 0.884
1500–2000 123,104 5.09 0 0.00 0.000
>2000 1,895,259 78.39 41 47.67 0.608

NDVI g
<0.043 1,220,601 50.49 29 33.72 0.668

0.043–0.132 1,196,024 49.47 57 66.28 1.340
>0.132 860 0.04 0 0.00 0.000

Lithology

A 50,8381 21.05 10 11.63 0.552
B 22,537 0.93 2 2.33 2.492
C 31,795 1.32 0 0.00 0.000
D 339,429 14.05 21 24.42 1.737
E 183,945 7.62 13 15.12 1.985
F 1,328,922 55.03 40 46.51 0.845

LU/LC h

Agriculture 2,353 0.10 0 0.00 0.000
Bareland 20,180 0.84 0 0.00 0.000

Kavir 629,914 26.09 44 51.16 1.961
Poorrange 1,419,509 58.79 34 39.53 0.672

Rock 239,538 9.92 5 5.81 0.586
Saltlake 97,389 4.03 3 3.49 0.865
Saltland 4,703 0.19 0 0.00 0.000
Wetland 1,010 0.04 0 0.00 0.000

Soil type

Bad Lands 131,650 5.45 0 0.00 0.000
Rock

Outcrops/Entisols452,055 18.72 14 16.28 0.870

Rocky Lands 95,729 3.96 0 0.00 0.000
Salt Flats 392,583 16.26 7 8.14 0.501
Aridisols 387 0.02 0 0.00 0.000

Entisols/Aridisols1,342,192 55.59 65 75.58 1.360
a FR is a frequency ratio value. b LS is slope length. c SPI is Stream Power Index. d TPI is Topographic Position
Index. e TRI is Terrain Ruggedness Index. f TWI is Topographic Wetness Index. g NDVI is Normalized Difference
Vegetation Index. h LU/LC is land use/land cover.
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Table 3. Area and percentage of each susceptibility classes.

Models
Classes

ADTree Bagging-ADTree RF-ADTree LR

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Very Low 789.91 36.30 662.24 30.43 493.82 22.69 480.29 22.07
Low 411.20 18.90 499.29 22.95 655.34 30.12 547.92 25.18

Moderate 533.53 24.52 486.18 22.34 483.52 22.22 499.18 22.94
High 340.54 15.65 335.57 15.42 318.31 14.63 373.20 17.15

Very High 100.85 4.63 192.74 8.86 225.04 10.34 275.43 12.66

3.3. The Relative Importance of GECFs

RAF modeling revealed the importance of GECFs (Figure 6). Distance-to-road (16.95) was the most
important factor in gully occurrence in the study area. The other factors, in the order of importance
were drainage density (14), distance-to-stream (13.29), LU/LC (10.58), annual rainfall (9.1), TWI (6.91),
NDVI (6.6), elevation (6), SPI (5.2), TPI (4.67), CI (2.87), lithology (2.76), soil type (2.57), slope (1.4), plan
curvature (1.4), TRI (0.75), aspect (0.18), and LS (0.034).

Figure 6. Relative importance of conditioning factors using a random forest model.

3.4. Gully Erosion Susceptibility Mapping Using Machine Learning Models

Gully erosion susceptibility mapping using four machine-learning models provided four
predictions of gully formation zones (Table 3 and Figure 7a–d). According to all four models
used in the study, most of the study area is classified as having very low and low susceptibility to gully
erosion (ADTree—55.2% (1201.1 km2), Bagging-ADTree—53.38% (1161.4 km2), RF-ADTree—52.81%
(1149.1 km2), and LR—47.25% (1028.1 km2)). ADTree classified the largest total area of very low
susceptibility (36.30%) and the smallest total area of very high susceptibility (4.63%). The other models
classified 30.43% (Bad-ADTree), 22.69% (RF-ADTree), and 22.07% (LR) as very low susceptibility, and
8.86% (Bad-ADTree), 10.34% (RF-ADTree), and 12.66% (LR) as having very high susceptibility. Among
the models, LR classified the largest portion of the study area as highly susceptible (12.66%) and the
smallest portion as having very low susceptibility (22.07%).
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Figure 7. Gully erosion susceptibility map using (a) Alternating decision tree (ADTree), (b) Rotation
Forest (RF)-ADTree, (c) Bagging-ADTree, (d) Logistic regression.

3.5. Validation of Results

The results were validated using AUC values both in SRC (success rate curve) and PRC (prediction
rate curve) (Table 4, Figure 8a,b). Generally, the models tested achieved excellent accuracy. The success
rate curves, a degree-of-fit measure (i.e., comparison of the susceptibility maps with training dataset),
indicated that bagging-ADTree (0.964) was most accurate, and LR least accurate (0.867). The AUC
values computed for prediction rate curves, indicating the predictive power of the susceptibility maps,
confirmed that Bagging-ADTree was most accurate (0.978) and LR least (0.870).

Table 4. Validation of results.

Criteria Model AUC a Standard Error 95% Confidence Interval

SRC b

ADTree 0.926 0.0361 0.693 to 0.822
RF-ADTree 0.952 0.0332 0.747 to 0.867

Bagging-ADTree 0.964 0.0318 0.763 to 0.879
LR 0.867 0.0356 0.695 to 0.824

PRC c

ADTree 0.965 0.0412 0.764 to 0.929
RF-ADTree 0.971 0.0373 0.791 to 0.945

Bagging-ADTree 0.978 0.0334 0.818 to 0.960
LR 0.870 0.0549 0.656 to 0.854

a AUC is the area under the ROC (the receiver operating characteristic) curve. b SRC is success rate curve. c PRC is
prediction rate curve.
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Figure 8. Validation of results using (a) area under the curve of success rate curve and (b) prediction
rate curve.

4. Discussion

Different sources were used to prepare the input dataset. Because many factors used in GESM
were extracted from a digital elevation model (DEM), the quality of the DEM significantly influences
the accuracy of the results [96,97]. The Advanced Land Observing Satellite (ALOS) DEM with 12.5 m
spatial resolution was used as it has been shown to provide better accuracy than both the Shuttle Radar
Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and DEMs [98].

In this study, we developed and explored a new ensemble intelligence approach using bagging and
RF as a meta-classifier and with ADTree as a base classifier, to spatially predict gully head-cut erosion
in the Chah Mousi watershed. We produced GESMs based on a modeling procedure including training
and validation datasets, and 18 conditioning factors (elevation, slope angle, aspect, plan curvature, CI,
LS, SPI, TPI, TRI, TWI, distance to stream, drainage density, rainfall, distance to road, NDVI, lithology,
land use/land cover, and soil type). These factors were checked for collinearity with statistical metrics,
including TOL and VIF. The results reveal that all GECFs influenced gully erosion occurrence.

Based on FR analysis, the relationship between the factors and gully locations were
assessed. Conditioning-factor classes with FR values >1 indicated areas with greater gully-erosion
susceptibility [82]. Elevation plays an important role in vegetation and precipitation type and, therefore,
controls the spatial distribution and gully erosion processes [99]. Elevations in the study region below
1000 m a.s.l. are more susceptible to gully erosion. Thus, the higher occurrence of gully head cut
erosion in the lowland areas agrees with Dickson et al. [100]. However, Arabamiri et al. [19] determined
that elevations below 829 m were most prone to gullying. In terms of slope angle and curvature, the
FR analysis showed that slopes of less than 5◦ (including flat areas) were most likely to be sites of
gully occurrence. Because lower slope angles have greater soil depth, intensive rainfall impaction and
greater runoff from upslope will decrease soil strength resulting in the development and extension of
the gully channel [9]. Curvature causes accumulation of runoff and enhances the velocity and volume
of flow, so this variable positively correlates to locations of gully erosion. The slope aspect that controls
several climate conditions, such as the intensity of precipitation, moisture, evapotranspiration, and
vegetation cover [101], indirectly influences gully erosion. Among the slope-aspect classes, east- and
southeast-facing slopes are the most highly correlated to gully erosion. These two slope aspect classes
get more solar radiation in the northern hemisphere and, as a result, they experience more evaporation,
higher soil porosity (total pore space), lower soil strength, and lower vegetation density. This is in
accordance with Zabihi et al. [9], who reported that southward slope aspects are more susceptible
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to gully erosion. CI values below −39.6 100/m were most predictive of gully formation: the lower
the CI value, the greater is the potential for gully erosion. Arabameri et al. [17] concluded, based on
the WoE method, that CI values between 0 and 10 signify locations that are more susceptible to gully
occurrence in their study area. LS less than 15 m indicate a more likely formation of gullies and reflects
that gullies are more likely formed in flat areas with lower slope angles. This confirms the findings of
Gayen et al. [102], but conflicts with the results of Zabihi et al. [9], who shows a direct relationship
between LS and gully erosion locations. Zabihi et al. also implied that the higher the LS, the higher the
probability of gully erosion occurrence due to increasing runoff velocity and a decreasing detachment
and transport threshold of soil particles [103,104].

The most susceptible classes for the other GECFs were SPI between>14.9, TPI less than−7, TRI less
than 1.4, and TWI more than 11.8. These results are confirmed by the findings of Arabameri et al. [17]
who reported that, for example, the greater the TWI factor, the greater is the potential for gully
occurrence. High values of TWI increase the filtration rate and provide the conditions for piping and
roof collapse, resulting in the development of gully tunnels and, eventually, the appearance of gullies
on the surface [105].

Moreover, the nearer sites are to a river, the higher the susceptibility to gully erosion. In this
study, locations at distances less than 100 m from a stream were more likely to see gully formation.
Some researchers have confirmed these results [9,13,16,42]. The sheer force of flow can overcome and
decrease the strength of soil along the sides of gully forms and lead to the development of gullies of
greater dimensions.

Areas with drainage densities exceeding 1.75 km/km2 were most correlated to gully erosion.
The role of this factor can be made clearer when other factors are considered. For example, a location
with a lower slope angle and higher drainage density has a higher TWI, and if the soil at that location
was loose and erodible, gully erosion is easier to achieve. In the study area, the lower classes of annual
precipitation amounts (between 68.3 and 85.7 mm) were most susceptible to gully incidence. This
suggests that though rainfall has a positive role in gully formation, it is not the most important factor.
In other words, lower rainfall values are positively related to gullying.

Distances from roads are important to gully erosion and, like distances from rivers, the nearer
the site, the higher the potential for gully erosion. Distances of less than 500 m from a road were
positively correlated to gully locations, which underscores the importance of the roles of development
and disturbance of ground surfaces in promoting landscape degradation.

Results of the NDVI factor show that vegetation plays a very important role in protecting soil
against erosion, so that, with increasing vegetation, the sensitivity of an area to gully erosion decreases.
Vegetation cover greatly reduces the erosion of runoff through the increase in infiltration and protection
of soil through roots [106]. The findings agree with those of Arabameri et al. [13], Arabameri et al. [19],
and Chaplot et al. [107] stating that low values of NDVI have a positive association with gully erosion
and that it is easier for a gully to develop in areas with lower NDVI values. Generally, barren lands and
sparsely vegetated areas are more susceptible to erosion than forests, where vegetation cover strongly
reduces the erosive action of surface runoff.

Because gully erosion depends on the lithological properties of materials at Earth’s surface,
lithology is a vital factor in gullying [104]. As for lithology, Quaternary lithotypes have a high
susceptibility to gully erosion. The result is in agreement with findings reported by Arabameri et al. [13],
who found that Quaternary lithotypes have a strong effect on gully occurrences. In terms of land use,
which plays a key role in geomorphological and hydrological processes by controlling overland flow
runoff generation and sediment dynamics [108], the areas of kavir are most susceptible to gully erosion.
In these regions, the complete lack of vegetation leaves the soil exposed, and it is easily eroded by
precipitation. These results are in line with [13]. The entisol/aridisol soils are the most susceptible soils
to gully erosion occurring in the study area, which is in accordance with [19].

In terms of the FR values, the most important GECFs in the study area were the distance to
nearest road and drainage density. This is confirmed by the RAF algorithm analysis, which was used
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to rank the importance of the GECFs for the spatial prediction of gullies in the study area. This result
is consistent with [17,109,110]. Roads are impervious surfaces, and they disrupt natural drainage
systems due to improper culverts, concentration of surface runoffs, and by altering the hydrological
functions of hillslopes, which significantly contribute to overland flow and allow rapid run-off, easily
eroding bare soil and causing gullying [111,112]. An example of the effect of roads on gullying is
shown in Figure 9. Distance to a road is the most important factor. It is followed in importance by
drainage density, distance to stream, land use, rainfall, NDVI, elevation, SPI, TPI, CI, lithology, soil
type, plan curvature, TRI, aspect, and LS. Though other factors affect gully erosion, the above are the
most meaningful in the study area.

 

Figure 9. A sample of road effect on gully occurrence.

A novel ensemble intelligence approach, bagging-ADTree, and other ML algorithms—ADTree,
RF-ADTree and LR—were used to create gully erosion susceptibility maps. The goodness-of-fit and the
performance of the models were checked by AUROC of success and prediction rate curves. The results
illustrate that bagging ADTree and RF-ADTree outperformed ADTree and LR. These results are in
line with [42,113,114]. The new model accurately identified the areas that are susceptible to gully
erosion based on the past patterns of formation, but it also provides excellent predictions of future
development. The RF and bagging as a meta-classifier can decrease over-fitting and noise problems in
the training dataset. Some researchers have confirmed the prediction power of RF in applications to
some environmental problems [42,115–117].

For example, Tien Bui et al. [21] predicted gully locations in a semi-arid watershed of Iran using
ADTtree and its ensembles using RF meta-classifier. They concluded that the RF model could well
enhance the prediction power of ADTree as a base classifier. However, the RF-ADTree ensemble model
outperformed some benchmark models, including SVM based on the polynomial and RBF kernels,
LR, naïve Bayes, and ADTtree. Additionally, Shirzadi et al. [42] used four meta-classifiers, namely,
multiboost, bagging, RF, and random subspace (RS), for the spatial prediction of shallow landslides in
Bijar City, Kurdistan province, Iran. They used ADTree as a base classifier for the modeling process.
The four ensemble models were combined with the ADTree under two scenarios of different sample
sizes and raster resolutions. They reported that the RS model was more capable for sample sizes of
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60%/40% and 70%/30% with a raster resolution of 10 m. According to the results, the new proposed
ensemble model can spatially predict gully erosion occurrences with reasonably good accuracy.

5. Conclusions

Soil erosion is an important environmental challenge to ecosystem’s condition and function.
Land degradation and decreasing land productivity are a result of on-site and off-site erosion
in a gully-prone area. However, detection, prediction, and management of gully-prone areas
using protective measures and mitigation techniques are important efforts. Some quantitative and
qualitative methods and techniques have been developed and explored for modeling and preparing
the susceptibility assessments. However, due to differences in their probability distribution functions,
their performances are also different. For example, some of them do not fit the data that are available.
All models present advantages and disadvantages, so one of the most important aspects of the
modeling strategy is selecting the appropriate model. Machine-learning models are more often used
because of their ability to overcome over-fitting and noise challenges during the modeling process and
because they have higher goodness-of-fits and perform better compared to other conventional models.
Moreover, among the machine-learning classifiers, ensemble models are more powerful than single
classifiers. They randomly divide a training dataset into subsets and perform a single classifier, which
provides an output with the lowest error and the highest performance rather than the single classifier.
This process overcomes the weakness of the single classifier and achieves a more powerful classifier.
In response to the advantage of ensemble classifiers, a novel ensemble intelligence approach, namely
bagging-ADTree, was performed and gully erosion maps were obtained. Some other machine-learning
algorithms (including ADTree, Bagging-ADTree, and LR) were used for comparison and validation of
the results of the new model. The random forest model is used to determine the relative importance of
conditioning factors. The results indicate that distance-to-road and drainage density are very important
to gully occurrence in the study area. The validation indicated that although the models achieved high
goodness-of-fit scores and were powerfully predictive, the ensemble model was better than others
at spatially predicting gully erosion and produced a more accurate gully-susceptibility map of the
study area. Based on these results, we can recommend the new model, bagging-ADTree, for gully
modeling in other zones of potential gully erosion susceptibility, but offer one caution: there may be
other conditioning factors responsible for gully erosion in other areas. Finally, the results from a case
study of the Chah Mousi watershed show that selecting suitable predisposing factors and combining
machine-learning ensemble models with GISs can be used to efficiently predict an area’s susceptibility
to gully formation with high accuracy. Therefore, the gully-erosion susceptibility map generated by
the method can aid decision makers, planners, and engineers in their quests to identify and develop
the most effective protective measures to sustainably prevent and mitigate gully-erosion damage.
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Abstract: The type of modelling of gully erosion for the projects of land management depend on the
targets and degree of details of these projects, as well as on the availability of input data. The set
of four models cover a broad range of possible applications. The most detailed information about
predicted gullies, change of their depth, width, and volume throughout the gully lifetime is obtained
with the gully erosion and thermoerosion dynamic model. The calculation requires the time series of
surface runoff, catchment relief, and lithology and the complex of coefficients and parameters, some
of which can be estimated only by model calibration on the measurements. The difficulty in obtaining
some of these coefficients makes it necessary to use less complicated models. The stable gully model
predicts final gully depths and widths and is useful for projects where only stable gully geometry
is used. The modified area–slope approach is used in the two simplest models, where the position
on the slopes of possible gullies is calculated without details of the gully geometry. One of these
models calculates total erosion potential, taking into account all water runoff transforming a gully.
The second calculates gully erosion risk, using the information about slope inclination, contributing
area and maximum surface runoff.

Keywords: land management; gully geometry; dynamic erosion model; stable gully; area–slope
approach

1. Introduction

The need to assess possible gully position, depth, width and volume in agricultural
areas and areas of new development is well known [1–4]. This practical necessity of land
management causes the emergence of a wide variety of methods for assessing gully erosion
potential (see reviews [5,6]). However, in this diversity, there is an obvious bias towards
using the same theoretical approach, determining the critical slope and catchment area for
the formation of a gully (area–slope approach), proposed in [7,8]. Often it is enough for
practical purposes to estimate the points on the initial slope, where flow achieves threshold
conditions and gully erosion initiates. The area–slope approach contains a significant
empirical component (empirical coefficients) and the use of such models is restricted to the
region of empirical data collection ([9–11] and many others, see bibliography in [6]). Most
existing models of gully erosion, more or less empirical, find such threshold points and
predict a maximum length of gully. The limitation of this approach and ways to overcome
them are discussed in this paper.

It is not possible to estimate other measures of the gullies, such as depth, width, area
and volume within the area–slope approach. Therefore, additional empirical models are
used to calculate, for example, a gully width [12,13].

Maximum morphometric measures are not achieved simultaneously during the for-
mation of a gully. Observations and experiments show [14] that a gully formation has two
main stages. The first is the stage of rapid gully erosion, when during about 5% of the gully
lifetime, more than 90% of the gully length, more than 80% of its depth, and about 60% of
the area is reached. The second is the stage of gully stabilisation, when the area and last of
all, the volume increases. Therefore, models of gully erosion calculation naturally fall into
two groups for the prediction of gully morphology at these two stages.

Water 2021, 13, 3293. https://doi.org/10.3390/w13223293 https://www.mdpi.com/journal/water
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It is possible to use the area–slope approach to calculate threshold conditions of flow
not only in the gully head points but also in all points along the gully longitudinal profile.
This way led to the calculation of the longitudinal profile of the stable gully, at each point
of which flow velocity (controlled by slope, contributing area, resistance to flow and runoff
depth) is equal to the critical velocity of erosion initiation. The processes of gully head and
wall transformation by gravitation become important in this stage. Zorina [15] proposed
one of the first models of this type, and its modification is described further. The full
development of the stable gully takes many hundreds of years [16].

Most sophisticated dynamic models of gully evolution are based on the solution of an
equation of mass continuity [17,18]. Usually, dynamic models describe the first stage of rapid
gully formation, although such models can be run up to the stage of gully stabilization.

Different types of gully erosion models are used for different purposes, depending on
the targets of such calculations and on the existence of input data. We offer in this paper the
set of models, which cover the range of such targets in land management projects. This set
includes four models of gully erosion prediction, where all known approaches to solving
this problem are applied.

Two models calculate gully depth and width along its longitudinal profile:

(1) The dynamic model of gully formation in “real” time. Not only mechanical erosion
by water on a gully bed but also erosion by thermal action of water (if frozen soil is
present) and gravitation processes on the gully walls are included in this model.

(2) The model of finite stable gully describes gully geometry when water flow and
gravitation already do not deform the gully bed and walls.

In the next two models, the novel modification of the area–slope approach is used,
which gives the most probable position of possible gullies:

(3) The model of gully erosion potential, which takes into account the effect of all runoff
from the catchment.

(4) Express model of the risk of gully erosion, which takes into account only the maximum
surface runoff.

The main goal of this research article is to describe these four gully erosion models of
different levels of simplification, to show their similarities and differences, and to compare
the results of calculations of the characteristics of the same gully using these four models.
The sequential comparison of the calculation results obtained with different models for
the same object is novel and allows identifying the advantages and disadvantages of
the proposed models and developing recommendations for their use in practice. This
comparison makes it possible to choose which of the models gives the best results for
available input data and for the level of complexity of the land management project.

2. Methodology—Model Descriptions

2.1. The Models with Gully Longitudinal Profile Calculations
2.1.1. The Dynamic Model of Gully Erosion

The dynamic gully erosion and thermoerosion model GULTEM (or DYNGUL model
for erosion only) was proposed for calculations at the first stage of gully evolution. At this
stage, the erosion and thermoerosion are predominant at the gully bottom, and rapid mass
movement occurs on the gully walls. Gully channel transformation is very intensive, and
morphometric characteristics of the gully (length, depth, width, area, volume) are far from
stable and changing rapidly. This model is described in detail elsewhere [17,18], therefore,
only basic information is given here.

The two main processes to be described are:

(a) Formation of a rectangular cut in the initial slope by mechanical and thermal action
of the flowing water.

(b) Transformation of the rectangular cut into a trapezoidal shape by shallow landslides
during the period between adjacent runoff events.
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The rate of gully incision is controlled by water flow velocity, depth, temperature,
as well as by the soil mechanical pattern and the level of protection by vegetation. These
characteristics are combined in the equations of mass conservation:

∂Qs

∂X
= Cwqw + EW + EbD − CUf W (1)

and deformation:

(1 − ε)
∂V
∂t

=
∂Qs

∂X
(2)

where Qs = Q C is sediment transport rate (m3 s−1), Q—discharge (m3 s−1); X—longitudinal
coordinate (m); t—time (s); C—mean volumetric sediment concentration; Cw—sediment
concentration of the lateral input; qw—specific lateral discharge (m2 s−1); E—gully bed
erosion rate (m s−1); Eb—channel banks erosion rate (m s−1); V—gully “empty” volume
(m2); W—flow width (m); D—eroded bank height (m); Uf—particles fall velocity in the
turbulent flow (m s−1), ε—soil porosity.

During the episode of erosion, the accumulation of sediments on the gully bed is
assumed negligible. Therefore, Equations (1) and (2) can be transformed to:

ΔV
Δt

= EW + EbD (3)

The analysis of the experiment results in the natural gullies in different environments
and in experimental flumes [17,18] shows that in the conditions of steep slopes and cohesive
soils, common for gullies, the mean rate of bed erosion is linearly correlated with the
product of bed shear stress τ = g ρdS and the mean flow velocity U (i.e., stream power):

E ∼ τU = kEHqS (4)

where S is flow surface slope, d is flow depth (m), q = Q/W is specific discharge, g is
acceleration due to gravity, ρ is water density and kE is the combined erosion coefficient,
which depends on soil properties. H is Heaviside step function, equal to 0 when flow
velocity U is less than the critical velocity of erosion initiation Ucr, and equal to 1 when
U ≥ Ucr. Critical velocity depends on soil and vegetation cover properties [19].

Equation (4) links the dynamic model with the methods of gully potential estimation
based on the threshold slope-contributing area approach [8,9].

In the case of gully erosion in the frozen soil (thermoerosion), the water tempera-
ture becomes the main factor of erosion. Field and laboratory experiments [18] showed
that as the first approximation, the soil detachment rate is linearly correlated with water
temperature T ◦C and equal to the rate of thawing of frozen soil with the open surface:

ET = kTET (5)

where kTE is the coefficient of thermoerosion. Equation (5) is used for calculation only
for the case of direct contact of water with frozen soil, without any thaw layer. Therefore
the inequalities

E < ET or E > ET (6)

are checked in the calculation algorithm. If the rate of thermal erosion is less than the rate
of mechanical erosion (E > ET) and a thaw layer does not form. Then Equation (5) is used
for estimation of the gully bed lowering by thermoerosion. On the contrary, if the rate of
the thermal front movement in soil is more than the rate of mechanical erosion (E < ET)
then a thaw layer is formed, and Equation (4) is used in the model for the mechanical
erosion rate calculation.

The erosion rate of the gully banks can be estimated only in a first approximation as
some function of the rate of gully bed erosion, controlled by the ratio of lateral velocity v
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and longitudinal velocity U. Using this assumption, an approximate formula for the rate of
eroded bank erosion can be proposed:

Eb = kbE (7)

where kb is the bank erosion coefficient, the details see in [18].
Flow width W and depth d in the gullies usually is calculated via regime equations as

the power functions of discharge:
W = pwQmw (8)

d = pQm (9)

Flow velocity U is

U =
Q

Wd
(10)

or, according to the Chezy–Manning formula

U =

√
S

n
d2/3 (11)

where n is Manning’s roughness coefficient.
Gully walls become practically straight after rapid sliding, following the incision. In

this case, a model of straight slope stability can be used for the prediction of gully walls
inclination. It is possible for the practical needs to measure the gully walls inclinations at
the stable sections and use the measured angle ϕ for the further calculations.

When the bottom width, wall inclination ϕ and whole volume of the gully V are
known, the shape of the gully cross-section can be represented as a trapezoid with bottom
width Wb, depth

Dg =

[√
W2

b +
4V

tan(ϕ)
− Wb

]
tan(ϕ)

2
(12)

and top width

Wt = Wb + 2
Dg

tan(ϕ)
(13)

The result of the calculations was gully depth, bed and top width, volume for each
cross-section of the gully along each flowline and for each time step. The calculations
required information about initial relief of the gully catchment and about boundaries
of all lithological units, including topsoil with vegetation in the form of DTM (Digital
Terrain Model), the sequence of surface runoff values, and all parameters and coeffi-
cients used in Equations (4)–(13). The coefficients are empirical and local and must be
estimated for a given territory. The calibration of the model parameters, especially the
erosion/thermoerosion coefficients and critical velocity on measured data, is highly recom-
mended.

The dynamic model of gully erosion is the only one with which gully evolution can
be simulated in “real” time, and all details of this process (within postulated assumptions)
can be adequately described. The main problem was the simplification in the model of
the real process (such as straight slopes assumption) and, nevertheless, a large number
of parameters and coefficients, some of which required model calibration. The level of
simplification of all other models, described further, was significantly greater, and the result
of the modelling was less definite. However, these models require less initial information
and can be useful for preliminary investigations.

2.1.2. Stable Gully Model

The stability of the gully refers to such a stage when the gully bottom is not eroded by
water, and the gully walls do not change their shape. This requires two conditions: (1) flow
velocities U in the gully are less than critical velocities of erosion initiation Ucr for soils
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composing the gully bed; (2) gravitation processes become negligible and the gully walls
have reached the “angle of repose” for the given soil texture, cohesion and wetness.

In the STABGUL model, the critical velocity of erosion initiation Ucr was calculated
using the Chezy–Manning formula (Equation (11)), and the flow depth d was represented
as a power-law function of discharge (Equation (9)), which was calculated as the catchment
area F multiplied by the runoff depth M:

d = p(kMF)m (14)

where k is the coefficient for changing the dimension of the quantities included in the
formula. Then

Ucr =

√
S

n
d2/3 =

√
S

n
p2/3(kMF)2m/3 (15)

Therefore, the stable gully bed inclination is:

S =
(nUcr)

2

p4/3(kMF)4m/3 (16)

Equation (16) links the model of the stable gully to the methods of gully potential
estimation, based on the threshold contributing area-slope approach [8,9]. It can be written
in the form of an ordinary differential equation:

dZ
dL

= a(L)F(L)−b(L) (17)

where the contributing area F, coefficient a and exponent b are functions of length L
from the mouth of the gully with the initial altitude z00 to i-th point on the flowline
with initial altitude z0i. Equation (17) is solved numerically along all flowlines with the
known altitudes of the mouth of the stable gully z00, runoff depth M, critical velocity, bed
roughness, parameters in Equation (16), and the required functions of length. The result of
the solution is the partial altitudes zij of gully bed along flowlines for a given j-th runoff
depth Mj. The partial gully depth Dij at i-th point is

Dij = z0i − zij. (18)

The partial longitudinal profiles differ substantially from each other. To calculate
the most probable shape of the stable gully longitudinal profile, all discharges passing
through a channel must be taken into account. The channel deformations during a given
discharge are proportional to the magnitude of the sediment transport rate and duration of
this discharge [20]. Following this assumption, the following sequence of calculations was
proposed to calculate the most probable longitudinal profile of a stable gully:

(a) The entire range of runoff depths is divided into N equal intervals, and probability pk
of each j-th interval of runoff depth is calculated.

(b) For each j-th runoff depth Mj in the middle of the j-th interval, the partial longitudinal
profiles with bottom altitudes zij are calculated at each i-th point on the flowlines with
Equation (17).

(c) For each j-th runoff depth Mj the partial magnitude of the sediment transport rate Eij
is calculated with Equation (4), written without erosion coefficient as

Eij ∼
MjFi

Wij
S0i (19)

where S0 is the inclination of the initial slope. Flow width is calculated with Equa-
tion (8).
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(d) The most probable stable gully bottom altitudes Zpi are calculated weighted with
partial magnitudes of the sediment transport rate Eij and runoff depth probability
densities pj

Zpi =
∑N

j=1 zijEij pj

∑N
j=1 Eij pj

(20)

The result of these calculations is the most probable stable gully profile along each
flowline. The calculation requires information about the initial relief of the gully catchment
and about boundaries of all lithological units, including topsoil with vegetation in the
form of the DTM (Digital Terrain Model); the probability density function of surface runoff
depths, all parameters and coefficients used. As was already mentioned, these coefficients
are empirical and local and must be estimated for a given territory.

The most probable stable gully profile can be close to one of the partial longitudinal
profiles calculated with particular surface runoff. However, it did not coincide completely
with any of them. It was obvious that flow velocities along the most probable profile for
larger surface runoff values could be greater than the critical velocity of erosion initiation.
The ultimate stable gully profile was, therefore, lower than the most probable one.

2.2. Area–Slope Approach

The product of the critical slope S and the power-law function of contributing catch-
ment area F determine the condition of erosion initiation within this approach [7,8]:

a = SFb (21)

It is also can be written in the form:

S = aF−b (22)

In several works [9,21,22] Equation (21) is written in the form

amS−∝ = C (23)

where C is critical contributing area of the catchment. It was shown in [22] that C was
similar to Horton’s [23] critical distance for channel initiation.

Equations (21)–(23) bear equal information, as α = 1/b and am = a
1
b .

Equation (21) is an empirical analogue of the formula for the critical shear stress [24]
or the square of the critical flow velocity Ucr [25], at which erosion begins. The flow in
gullies is usually of turbulent type. Therefore, flow velocity U was expressed in terms of
the slope and catchment area using the Chezy–Manning formula (Equation (15)):

U2 =
S
n2 d4/3 =

S
n2 p4/3(kMF)4m/3 (24)

The parameter a in Formula (21) will be written as

a =
(nU)2

p4/3(kM)4m/3 (25)

and the exponent b as 4m/3.
According to [6], the empirical information for a set of investigated regions showed

that exponent b varied across a rather narrow range and its mean was about 0.4 (0.38).
Therefore, m in Equation (24) must be 0.3, and this value fits the measurements in the
gullies of the Yamal peninsula [26].

The coefficient a in Equation (21) was much more variable even within one catchment
area [6] since it depends on many factors. These were the shape of the gully channel, the
roughness of its bottom, the critical velocity of erosion initiation and the water runoff depth.

36



Water 2021, 13, 3293

The last characteristic was the most difficult to determine for calculation with Equation (21).
The surface runoff depth varies through time (and less, in space) and is a probabilistic
variable. The choice of the value (probability) of this quantity was largely subjective and at
least should be justified in each specific case.

The way to avoid this uncertainty was to transform Equation (24) thus that the
indefinite surface runoff depth is regarded not as a predictor but as a response:

Mcr =
(nUcr)

3/2m

S3/4m p1/m(kF)
(26)

It is worth noting that Equation (26) is the version of Equation (23), where both parts
are divided by the critical catchment area F (C in Equation (23)) and multiplied by the
runoff depth:

M = (am M)S−∝F−1 (27)

This version is novel and was not discussed in the literature. All parameters and
variables at the right side of Equation (26) can be determined unequivocally for every
point on a catchment. The calculated value of surface runoff depth is also unique for each
point at the catchment and has the meaning of critical. If at a given catchment point with
some slope and area, the actual runoff depth is greater than or equal to the critical value
calculated by the Equation (26)

M ≥ Mcr (28)

the erosion initiation is potentially possible at this point. This critical runoff depth Mcr and
risk of erosion initiation have determinable probability (duration) PM. Equation (26) is
used further in two following models of gully erosion potential estimation.

2.2.1. Total Erosion Potential (TEP) Model

The critical runoff depth Mcr is the minimal runoff depth, which initiates erosion.
Therefore, erosion occurs during all flows with runoff depths more than Mcr. The influence
of all flows with runoff depths more than Mcr must be taken into account to calculate the
gully erosion potential. In the TEP model, the similar procedure, as in the STABGUL model,
is proposed:

(a) The entire range of flow depths is divided into N intervals, and probability pj of each
j-th interval is calculated.

(b) For each j-th runoff depth Mj in the middle of the j-th interval, the partial erosion rate
Eij is calculated at each point i-th on the catchment with Equation (4).

Eij =

(
kE

Qj

Wj
S

)
i

=

[
kE
pw
(

MjF
)1−mwS

]
i

(29)

(c) Erosion potential Epi by flows with runoff depths more than critical is calculated
as the sum of partial erosion rates Eij, weighted with runoff depth probability pj,
beginning from the interval jcr with critical runoff depth Mcr:

Epi = ∑N
j=jcr Eij pj (30)

(d) To remove coefficients in Equation (29), relative erosion potential REi is estimated by
dividing Epi by its maximum value ENi:

ETPi =
∑N

j=jcr Eki pj

ENi
=

∑N
j=jcr

(
Mj
)1−mw pj

∑N
j=0
(

Mj
)1−mw pj

(31)

37



Water 2021, 13, 3293

The influence of morphometric characteristics S and F at the i-th point of the catchment
is reached through the value of Mcr from Equation (26), which determines the number of
intervals of M from jcr to N, used in the calculation of ETPi.

The value of ETPi varies from 1 (at Mcr = 0) to 0 (at Mcr ≥ Mmax). At Mcr = 0 (j = 0),
erosion begins at a given point for any, the smallest values of the runoff depth and ETPi is
maximum. Accordingly, at Mcr ≥ Mmax (j = N), the runoff depth never exceeds the critical
depth, and erosion will not occur at this point.

The input information to run TEP is simpler than for the previous models, as mor-
phometry for each flowline is not required. Instead, the digital models for flow accumu-
lation and slope are used, which can be calculated from DEM with most GIS. Empirical
coefficients and parameters in Equation (26) are used in this model. Hydrological informa-
tion is represented in the form of the probability density function of runoff depths, as in
the STABGUL model.

The output is the values of the relative erosion potential ETPi, calculated for each pixel
on the catchment area DEM. The probability density function of ETPi is usually negatively
skewed [26], it is better to use the logarithms of ETPi.

2.2.2. Express Estimation of Gully Erosion Risk

Probability density functions of runoff depth for a small catchment can often be
approximated with an exponential relationship [27]. For this case, ETPi in Equation (31)
is an inverse power-law function of Mcr. This is the base to formulate the express model
of gully erosion risk GER, (the term risk is used here instead of the term potential to
distinguish these two models) when power-law functions are used instead of Equation (31).
Using the exponent 2m/3 in Equation (26), the expression for such function of critical
runoff depth takes the form:

M2m/3
cr =

nUcr√
S p2/3(kF)2m/3 (32)

Therefore, Equation (31) is transformed to the expression of gully erosion risk EGR:

EGR = 1 −
(

Mcr

Mmax

)2m/3
(33)

As in Equation (31), the value of EGR varies from 1 (at Mcr = 0) to 0 (at Mcr ≥ Mmax),
which corresponds to a change in the degree of potential erosion risk. At Mcr = 0, erosion
begins at a given point for any, the smallest values of the runoff depth and EGR is maximum.
Accordingly, at Mcr ≥ Mmax, the runoff depth does not exceed the critical depth, and erosion
will not occur at this point.

The input information to run GER comes from digital models for flow accumulation
and slope, which can be calculated from DEM in most of GIS. Empirical coefficients and
parameters p, m, Ucr and n are used in this model. Hydrological information is restricted to
the maximum daily runoff depth. The outputs are the values of the gully erosion risk EGR,
calculated for each pixel on the catchment area DEM.

3. Results

Since each of the presented models of gully erosion was characterized by a certain
degree of simplification of the real process, it is rational to compare calculation results with
measurements of actual erosion. Of greatest interest is the comparison of calculations based
on the most complicated model GULTEM with actual data. If successful, the calculation
results for simpler models can be compared with calculations from GULTEM.

3.1. GULTEM Model Validation and Calibration

The common definition of validation offered by the Society for Computer Simulation
Technical Committee on Model Credibility [28] is “Substantiation that a computerized model
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within its domain of applicability possesses a satisfactory range of accuracy consistent with the
intended application of the model”. In our case, “a satisfactory range of accuracy” depends on
the quality of the measurements on the natural object and on the accuracy of the input
data necessary for calculations. The catchment selected for the validation and calibration
procedure (Figure 1) is situated on the Yamal Peninsula, West Siberia, close to the most
severely gullied part of the peninsula. The investigated gully P-1 did not exist in 1986. After
construction in 1986–1987 of the exploitation camp at the top of the catchment, erosion
and thermoerosion began due to the increased water supply and vegetation cover damage.
In 1988, the gully P-1 length was 450 m, in 1989—740 m, in 1990–1991—940 m and in
1995—965 m. The gully head reached the buildings of the exploitation camp, and repeated
filling of the gully head with heavy loam by bulldozers stopped the gully growth. The
observations showed that gully P-1 was still active in 2007 [18] and further (Figure 1),
increased in depth and volume, though the gully length did not increase further. Therefore,
the period 1991–1995 of not regulated gully activity was used for model validation and
calibration with two longitudinal profiles of the gully bed measured in July 1991 and 1995
(Figure 2).

 
Figure 1. The catchment of the large unnamed stable gully with tributary gully P-1 on the Yamal peninsula, Russia (the
image of 27 June 2016 from Google Earth). The star on the left part of the figure shows the catchment position.
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Figure 2. The longitudinal profiles of gully P-1, used for model calibration.

Empirical coefficients and parameters, required to run GULTEM, were estimated from
morphometric and hydraulic measurements on selected and adjacent catchments: the
coefficient of thermoerosion kTE = 2.5 × 10−5 m s−1 (◦C)−1; the gully walls inclination
ϕ = 0.6 rad; bank erosion coefficient kb was calculated via [18]; coefficients in Equation
(8) are pw = 3.0 m (m3/s)−mw and mw = 0.4; coefficients in Equation (9) are p = 0.21 m
(m3/s)−m and m = 0.3; Manning’s roughness coefficient n = 0.06 m−1 s; critical velocity of
erosion initiation Ucr = 0.2 m s−1. Meteorological information, in form of changing through
time air temperature and precipitation, was taken from ERA5 reanalysis. The sequences
of surface runoff depths were calculated with the hydrological model, validated on the
hydrological measurements on the selected catchment [27].

The combined erosion coefficient kE in Equation (4) varied in calibration procedure
in the range 6.5 × 10−5–6.5 × 10−4 m−1. The difference between calculated (Z95c) and
measured (Z95m) gully bed altitudes in 1995 was estimated with

RMSE =

√
∑N

1 [(Z95c − Z95m)dx]2

L
(34)

where N is the number of gully segments with the measured altitudes, dx—the distance
between segments, L—gully length in the year 1995. The best fit of Z95c and Z95m was at
kE = 3.6 × 10−4 with RMSE = 0.057 m (Figure 3). This value shows a consistency between
the model results and measurements and “a satisfactory range of accuracy”.
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Figure 3. The result of model calibration.

3.2. The Comparison of GULTEM and STABGUL Models

The calculations with GULTEM and STABGUL models were performed for the gully
P-1. The same empirical coefficients were used in both models. The probability density
function for surface runoff, used in STABGUL (Figure 4), was derived from a 30-year long
sequence of surface runoff depths [27], which was used in GULTEM calculations. The
GULTEM model was run for a 1200-year period (40 repetitions of a 30-year long sequence)
to obtain a stable longitudinal profile, suited for comparison with the stable gully calculated
from the STABGUL model.

 
Figure 4. Histogram of daily surface runoff at the gully P-1 catchment.
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The results of calculations with GULTEM in Figure 5 show a gradual increase of
the gully depths and the length of the stable segment of the gully bed through time. At
these segments of the gully, its depth does not change anymore. After about 1000 years
in calculations, almost the entire gully bed becomes stable, and flow velocities for any
discharge become less than critical at all points.

 
Figure 5. The sequence of gully P-1 incision depths calculated with GULTEM for the 1200-year
period with 30-year step (green lines 1; pentagrams on some of the lines indicate the age). Red line
2 shows the depths of the gully after 1000 calculation years. Blue line 3 shows the depths of the
most probable stable gully, black line 4—the depths of the ultimate stable gully, calculated with the
STABGUL model.

Calculations with STABGUL with the above-described algorithm resulted in the most
probable stable longitudinal profile with depths (line 3 in Figure 5), close to the depths
from GULTEM after about 120–150 calculation years. This period is close to the period
of stabilization of most human-induced gullies on the East European plain [29]. These
depths are about 40% less than from GULTEM after 1000 years of calculated erosion (line
2 at Figure 5). The ultimate stable longitudinal profile calculated with STABGUL for the
maximum runoff depth (line 4 at Figure 5) fits well with the stable profile after 1000 years
from GULTEM. This result shows that the most probable stable longitudinal profile from
the STABGUL model can accurately simulate a stable gully after 120–150 years of its
lifetime, which can further slowly be transformed to its ultimate stability. It also points out
the significance of high discharges on the process of gully erosion.

3.3. The Comparison of the GULTEM and TEP Models

The total erosion potential was calculated in the TEP model along the same flowline
and with the same empirical coefficients and hydrological data as gully depth in GULTEM.
The similarities and differences in the results (Figure 6) are explained by the similarities
and differences in the models’ formulations. Both models operate with the rate of erosion
E (Equation (4)), which depends on local slope inclination and specific discharge.
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Figure 6. The gully P-1 incision depths for 30-, 150- and 1200-years calculation periods with GULTEM.
Black dashed line shows total erosion potential, calculated with the TEP model.

At a given point, the gully depth in GULTEM and erosion potential in TEP are the
sum of the product of the erosion rate values and their durations. In GULTEM the products
are included to the sum if flow velocity is more than critical, in the TEP model, if runoff
depth is more than critical. Therefore, we can expect a correlation of the calculation results.
The differences shown are due to the significant simplification in the TEP model of the
erosion process. The result of calculations in the TEP model shows the potential of erosion,
its position at the catchment, and potential intensity, not gully geometry. In the TEP model,
the influence of the altitude of the basis of erosion at the gully mouth and the processes of
gully walls slumping are not taken into account. The main difference is the absence in the
TEP of the gully longitudinal profile self-forming evolution. Slope inclination in the TEP
model is the inclination of the initial slope. Therefore, the correlation between the results
of calculation with the two models quickly decreases with time (Figure 7).

 
Figure 7. The decrease of correlation with the increase of prediction time between total erosion
potential, calculated with the TEP model, and gully depths, calculated with GULTEM.
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3.4. The Comparison of TEP with GER Model

As in previous cases, gully erosion risk was calculated in the GER model along the
same flowline and with the same empirical coefficients and hydrological data. There
is a close relationship (power-law or logarithmic) between calculation results from the
TEP model of total erosion potential ETP and of gully erosion risk EGR in GER (Figure 8).
Therefore, the comparison of calculation results from the GER model and GULTEM is more
or less the same as in the previous paragraph.

 
Figure 8. The relationship between total erosion potential from TEP and gully erosion risk from GER
for the points along the bed profile of gully P-1, shown in Figure 2.

4. Discussion

The problems to be discussed are the availability to possible users of input information,
required for calculations with detailed models, and the limitations in simplified models.

The GULTEM is the only model of the four described in this article in which gully
evolution can be simulated in “real” time and gully geometry change though time can be
adequately simulated. In this model, it is possible to take into account the temporal trends
in hydrological information, common in the conditions of global climate change. The
temporal and spatial changes in land use, for example, properties of vegetation cover, are
also possible to include in the calculations. The large number of input empirical coefficients,
morphometric and hydrological data required to run GULTEM is a limitation of the model.
The calculations require information for all or particular flowlines in the form of digitized
2D longitudinal profiles of the altitudes of top catchment surface Z (see Figure 2) and of the
surfaces Zj of other underlying lithological units along these flowlines. The contributing
catchment areas F and coordinates x, y are also collected for the same points. If a digital
elevation model (DEM) is available for the catchment, most of this information can be
collected using standard tools included in any geographical information system (GIS). The
lithological composition of the territory may require investigations in the field.

Parameters and coefficients, used in Equations (4–13), are also better to obtain via
measurements at the selected territory, as in [18]. Values of some of these coefficients can
be found in special literature. The coefficients in regime Equations (8) and (9) for gullies are
discussed in [6,13], the coefficient of thermoerosion in [18], the critical velocity of erosion
initiation in [19,30], Manning’s roughness coefficient in [31,32]. The gully walls inclination
ϕ is assumed to equal the angle of repose for a given lithology (see discussion in [33]).

Experimental data on the values of the erosion coefficient kE for cohesive soils, com-
mon for gullies, is limited. Experiments and model calibration were provided on soils
of the Yamal peninsula [17,18], for silt loams in the gullies of the coast of George Lake in
Australia [34], loess soils in the Manawatu River basin and rendzina in the Waimakariri
River basin, New Zealand [35] and granodiorite saprolites at the basin of the Mbuluzi

44



Water 2021, 13, 3293

River (Swaziland) [36]. The variability of this coefficient is very high. In the direct mea-
surements of sediment budget in the gullies of the Yamal peninsula during the snow thaw
and summer rains the value of kE changes from 0.0008 to 0.01 for loams and silt loams with
cohesion from 10 to 40 KPa, estimated with a torvane shear tester, and up to 1.3 for loose
silt sand. The measurements in Australia showed a similar range of kE: for the loams with
cohesion 30–40 KPa 0.0028–0.0034, with cohesion 50–70 kPa—0.0008. The measurements
in New Zealand for the loess soil with cohesion 51 kPa showed kE = 0.004–0.005 for soil
with organic carbon content 2.4% and kE = 0.021 for the same soil with organic carbon
content 0.44%. For rendzina with cohesion 22 kPa and 3.5% content of organic carbon, kE
was 2 × 10−5. Model calibration for the gullies in Swaziland showed kE value 0.006 for
sandy saprolites with cohesion 4.5–9 kPa. The listed information was not enough to find
the relationship between kE and eroded cohesive soil properties, and the large range of its
values does not permit the recommendation of values for calculations on not-investigated
objects. The only way to use GULTEM for gully erosion prediction is to calibrate the
model on the measurements (see Section 3.1). Usually, such calibration is possible in the
framework of detailed projects of land management [36,37].

The complexity in erosion coefficient estimations is the reason to use simpler models
for preliminary applications. The models STABGUL, TEP and GER do not require the
erosion coefficient. Other parameters and coefficients used in these models, if not estimated
in the field measurements, can be found in special literature.

Probability density functions (PDF) of surface runoff values are used in STABGUL
and TEP models but for different erosion form lifetimes. The minimum prediction duration
in the STABGUL model is about 150 years. Therefore, it is assumed that the time series of
hydrological characteristics are stationary. This is not true in the current global climate
change, and predictions with STABGUL will not include the trends in the time series of
surface runoff. Keeping in mind this limitation, STABGUL is a powerful tool to find the
longitudinal profiles, lengths, depths, widths, areas and volumes of the gullies close to
the stage of stabilization [16]. This can be useful for the classification of the gullies in the
intensively gullied territory to separate stable gullies and those that are still active [38].

The total erosion potential model is based on the modification of the area–slope
approach in gully erosion investigations when critical runoff depth is calculated. The
TEP model estimates possible gully position in the catchment and erosion intensity. This
information can be enough in preliminary projects of land management. The absence of
the need for the flowline geometry is the significant simplification: the calculations are
performed directly for given points in the catchment, for which slope and contributing
area are measured. Calculations of the total erosion potential with the TEP model are more
flexible in the conditions of trends in hydrological time series. Much smaller prediction
periods are needed in the TEP model (one or a few decades), allowing it to use step
functions of PDFs to take into account temporal changes in hydrological statistics. The
main limitation of the TEP model is the absence of prediction of the gully geometry.

The GER model requires very limited hydrological data—only maximum daily surface
runoff depth for the prediction period. At the same time, the GER model output for a
certain catchment contains nearly the same information as total erosion potential from the
TEP model, which uses more hydrological data. This similarity is explained by the more
or less close relationship between parameters of PDFs of surface runoff values and their
maximums. Such relationships are different for different PDFs, as other parameters of
PDFs must be taken into account. Therefore, transfer from TEP to GER output will also
be different for different hydrological conditions, as unnamed parameters of PDFs are
implicitly used in such transfer.

5. Conclusions

The four models described here encompass all now existing approaches to gully
erosion prediction. Comparison of the results of calculations for the same gully using these
four models makes it possible to choose the model that is most suitable for use in a land
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management project depending on its objectives and the available information. The set
of gully erosion models discussed here can meet the requirements of land management
projects with different levels of detail.

Use of the dynamic gully erosion model GULTEM is recommended for calculations
of gully geometry transformation in time and space for the most detailed projects of
land management. Flowline geometry, soil texture, parameters and coefficients, used in
GULTEM, can be obtained via measurements at the selected territory and from DEMs. The
calculations take into account the temporal trends in hydrological information, important
for conditions of global climate change. The main difficulty in modelling is the estimation
of the erosion coefficient, which usually requires calibrating the model.

The input data for the stable gully model STABGUL is the same as for GULTEM, except
for the erosion coefficient, which is the most difficult to estimate. Therefore, STABGUL is
easier to apply. The STABGUL model is useful for projects where only final gully geometry
is required. Only stationary hydrological time series are used in the model.

Possible gully position in the catchment and erosion intensity are estimated with
the total erosion potential (TEP) and gully erosion risk (GER) models. The novel type of
area–slope approach allows effective use of hydrological information in the form of critical
surface runoff for erosion initiation. These models can be useful for preliminary estimates
of the possible effects of different land uses.

The presented models, with proper selection of initial data and necessary calibration,
can be used for territories with different climates, soils, and land use. They are most
effective for areas with possible linear disturbance of the natural vegetation cover, which
is typical for the use of land for pastures, for the initial stages of urbanization and the
industrial development of new territories.
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Abstract: Badlands are typical erosional landforms of the Apennines (Northern Italy) that form on
Plio-Pleistocene clayey bedrock and rapidly evolve. The present study aimed at identification and
assessment of the areal and temporal changes of badlands within a pilot area of the Modena Province
(Emilia Apennines), where no previous detailed investigation has been carried out. For this purpose,
a diachronic investigation was carried out to map the drainage basin and the drainage networks of the
linear erosion features in the study area during the last 40 years, and to evaluate changes in badlands
drainage basins morphometry and surface, land use and pluviometry. The investigation carried out
indicated a general stabilisation trend of the badlands in the study area. In fact, a reduction in the
bare surface area from 6187.1 m2 in 1973 to 4214.1 m2 in 2014 (31%), due to an intensified revegetation
process around the badland areas, has been recorded. This trend, in line with the results of research
carried out in other sector of the Northern Apennines, is mainly due to intensive land use changes,
mostly the increase in forest cover and the reduction of agricultural land, that occurred in the study
area from the 1970s onwards.

Keywords: badlands; morphological changes; land use change; Emilia Apennines (Northern Italy)

1. Introduction

Soil erosion is one of the most significant land degradation processes worldwide and
has produced diverse geomorphological effects in different environments according to
anthropogenetic and climatic forcing.

Badlands are deeply and densely dissected accelerated erosional landforms often
developed on unconsolidated or poorly cemented materials [1]. They are generally char-
acterised by steep, unvegetated slopes, a high drainage density and high erosion rates.
Badlands are similar to miniature fluvial systems, and it is possible to observe interconnec-
tions between hillslope processes and landforms [2]. The morphogenesis and evolution
of badlands are complex and still under debate. Among the controlling factors suggested
in the literature, those indicated as fundamental are as follows: (i) The lithology [3,4] and
physical, chemical and mineralogical properties (e.g., sediment size, clay mineralogy, Atter-
berg’s limits, porosity and pore water chemistry) [5,6]; (ii) climatic factors such as strong
seasonal humid/arid contrasts favoured by south-facing slopes [6–11]; (iii) the landscape
morphology/topography, particularly the slope gradient, orientation and exposure [12];
(iv) anthropic activities such as deforestation for land reclamation, land levelling, cropland
abandonment, extensive agriculture and pasture [13,14]. Moreover, badland areas are often
characterised by scarce or absent vegetation cover [15–19], related to unfavourable climate
conditions, and by the occurrence of mass wasting processes such as slides, earthflows,
mudflows and creeping [8,14,20,21].

Badlands are typically frequent in drylands [20,22–29], but they also occur in wetter
areas (from semiarid to humid), with annual rain ranging from 400 to 1200 mm/year, often
concentrated in the autumn after marked semiarid conditions during the summer period,
as in the Mediterranean Basin [30–35].
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Hillslope degradation is an important process that can have negative impacts on
agriculture and terrestrial ecosystems as a whole [36], causing the loss and depletion of
soil, decreases land productivity and accessibility, economic damage, risky conditions and
environmental changes in the landscape [37–45]. On the other hand, it can also increase the
geodiversity of a territory, contributing to its tourism development [14,46–48]. Moreover,
spectacular erosion landforms (i.e., badlands) have important ecological functions and
are considered hotspot areas of biodiversity [49]. The different phases of historical gully
erosion can reflect significant environmental changes such as changes in climate and
human–environment interactions [48]. During times of global change, it is of remarkable
interest to trace the environmental changes in different terrains, including badlands, and to
properly analyse and study these processes in order to plan effective strategies for landscape
conservation and enhancement.

For the last 30 years there has been a growing scientific interest in badlands and,
more in general, in gully erosion. This reflects the concern to increase knowledge of factors,
controls, dynamics and impacts of badlands in the context of global change [39,44,50–52].
The study of Martinez-Murillo and Nadal-Romero [53] reviewed studies during recent
decades on badlands, presenting a summary of the main specific research topics: origin,
lithology, human activities and land use, vegetation, hydrology, piping, erosion and erosion
rates, modelling and use of emerging technologies, reclamation and restoration, geoher-
itage and geotourism. Many studies have examined the effects of human activities and land
use changes on badlands [54–61]. Farming systems and practices, such as development
of livestock and croplands, rural abandonment and land levelling, can strongly affect
the persistence and the evolution of badlands. In particular, land levelling is responsible
for badland shrink in several parts of the world, as reported by Poesen [62]. Clarke and
Rendell [56] highlight how the remodelling and levelling activities to increase agricultural
productivity can cause the loss of badland landforms and an increase in soil erosion. Hill-
slope degradation in response of land use change, also promoted by agricultural policy,
has been extensively documented in semi-arid regions, particularly in many areas of the
Mediterranean Basin [35,56,63–69]. Reforestation is also blamed to play an active role
on landscape transformation and particularly in decreasing erosion rates in badland ar-
eas [35,70–73]. The relationship between changes in rainfall patterns (annual precipitation,
intensity and inter-annual variability) and badland inter-rill erosion has received attention
as well [56,66,67,74–80].

In Italy, badlands are spread widely and discontinuously in areas of the Apennines
mountain chain and Sicily, where Plio-Pleistocene marine clayey and marly terrains out-
crop [81]. In the Italian literature, the investigation of badland landforms and landscapes—
their identification, characterisation, and temporal and spatial variation—dates back to the
beginning of the last century and is mainly concentrated on central and southern parts of
Italy [2,6,11–14,17,23,28,49,55,67,80–102].

Badlands consisting of Pliocene and Pleistocene claystone are widespread in the pre-
Apennine hills in the Emilia Romagna region, but, apart from the studies by Bucciante [6]
and Farabegoli and Agostini [87], no recent and detailed work has been conducted. The lo-
cal erosion rates have been very high in this area, causing the development of widespread
badland landforms, accompanied by hazardous processes, such as the retrogression of
badland scarps and rapid soil depletion. The Modena Apennines are widely affected by
intense hillslope degradation, and typical badland examples are observed in the hilly area
between Fiorano and Marano sul Panaro. According to the Modena Province-Coordinated
Territorial Plan (PTCP), badlands are divided and mapped according to their landscape
value, as:

• Type A or peculiar badlands (type A sensu [17,83]), characterised by sharp and
dissected landforms with knife-shape slopes, sparse vegetation and high drainage.
This type of badland has a high intrinsic landscape value, and all interventions and ac-
tivities that could alter or compromise the conditions of the places, the morphogenetic
or biological processes, or the perception of the landscapes are forbidden [103];
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• Type B or typical badlands (type B sensu [17,83]), characterised by gentle slopes af-
fected by recurrent surficial slides and mudflows and a less-dense drainage system.
For this type of badland, with a medium landscape value, some anthropogenic activ-
ities (e.g., the installation of telecommunication lines and systems, and systems for
water supply) in the surrounding areas are allowed;

• Type C or pseudo-badlands, characterised by a gentle morphology, with little-to-no
landscape value. Anthropogenic activities are allowed in these areas, but measures to
mitigate the impacts on the landscape should always be taken;

In Modena Province, 8% of the badlands are Type A and cover an area of 3.6 km2,
48.2% belong to Type B and cover 10 km2, and 43.8% belong to Type C and cover 10.1 km2.

Starting from these premises, the present study focuses on badlands of a pilot area in
the Modena Province (Emilia Apennines, Northern Italy), representative of the morpho-
evolution and degradation processes that affect hilly areas of the Emilia Apennines.
The study area is part of the industrial district of Sassuolo-Fiorano-Maranello, the largest
tile making district in the world, that faced significant land use changes in the past century.
Moreover, the area represents a growing tourist attraction due to the high aesthetic value
of hilly landscapes and to the presence of the best developed and largest mud volcano
field of Italy. As mentioned above, no previous systematic studies on badlands in Emilia
Apennines have been conducted. Thus, the main aims of this study are the: (i) Identifica-
tion, morphometrical characterisation and mapping of spatial and temporal changes of
badlands; (ii) identification and characterization of the main geo-environmental features,
such as topographic aspect, climate, and human induced land use changes, to detect the
controlling factors in the morphodynamics of badlands in the study area.

For this purpose, a diachronic investigation is carried out, mapping the drainage basin
and the drainage networks of each badlands area over the last 40 years, and evaluating
changes in badland drainage basins morphometry and surface, land use and pluviometry.
The obtained results are compared with studies on badlands in Apennines and in the
central Mediterranean regions.

2. Study Area

The study area, located on the foothills of the Northern Apennines (Municipality of
Fiorano Modenese, Modena Province, Italy) has an extent of about 10 km2 and an elevation
ranging from 143 to 308 m a.s.l. (Figure 1). The area is; therefore, a low-hill territory,
belonging to the River Secchia catchment. The Torrente Fossa, the main stream channel in
the study area, is a right tributary of the River Secchia and flows in a SW–NE direction,
collecting the water of its left tributaries, Rio Chianca and Rio delle Salse.

Figure 1. Location of the study area (white dashed line) and localities cited in this paper (©2017 Google).
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2.1. Climatic Setting

The climate of the area is defined as temperate, a mild temperate climate (Cfa) accord-
ing to the Köppen classification [104]. An arithmetic mean of climate data for the period
1954–2018, related to three significant stations in the surrounding regions of the study
area (San Valentino, Castellarano and Sassuolo cf. Figure 1), are summarised in Table 1.
The mean annual rainfall is around 800 mm. Rainfall is concentrated in the spring and
autumn months, with a maximum precipitation in November at about 90 mm; conversely,
the summer months are hot and dry, with a minimum precipitation in July at only 39 mm
(Figure 2a). The mean annual temperature is about 13 ◦C. In July, the hottest month,
the temperature reaches 29 ◦C in July, the hottest month, and 2 ◦C in January, the coldest
(Figure 2b).

Table 1. Climate data of the study area.

1954–2018

Mean annual rainfall (mm) 840
Minimum annual rainfall (mm) 449
Maximum annual rainfall (mm) 1160

Absolute minimum monthly rainfall (mm) 39 (July)
Absolute maximum monthly rainfall (mm) 93 (November)

Mean annual temperature (◦C) 13
Minimum monthly temperature (◦C) 2 (January)
Maximum monthly temperature (◦C) 29 (July)

Figure 2. (a) Average monthly precipitation for the study area; (b) average monthly maximum, minimum and mean
temperature of 1954–2018.

2.2. Geological Setting

From a geological viewpoint, the area is located in the Modena Apennine margin,
where the outcropping units reflect the most recent (since the Upper Eocene) geological
history of the rising Apennine chain (Figure 3). In particular, marine silty-clayey rock
types belonging to the Argille Azzurre Formation (Lower Pliocene–Lower Pleistocene)
extensively crop out [105]. They are marly clays, grey and blueish-grey clayey and silty
marls, cropping out in medium-to-thin layers, with joints hardly visible owing to bioturba-
tion. Discontinuous, thin, laminated layers of fine biocalcarenites and yellowish siltites are
found locally [105,106]. The carbonate content is quite low (25–30%) [107], and the main
components are kaolin and montmorillonite [108]. The general setting of the strata shows
a NW–SE strike, with an 8◦-to-40◦ NE dip. In the SW part of the study area, the Termina
Formation (Tortonian–Lower Messian) crops out. The Termina Formation is composed of
greyish clayey marl characterised by undistinguished stratification and by the presence of
bioclasts, biosoma and glauconite, intercalated by thin layers of fine sandstone. Continental
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Quaternary deposits, which belong to the Modena Unit sediments dating from the sixth
century CE, crop out along the Torrente Fossa riverbed. This unit comprises gravel deposits
turning to alluvial terrace sand and silt deposits [105,106]. Corresponding to the Salse di
Nirano Natural Reserve, there are sediments belonging to the emissions of Salse. They are
considered Quaternary deposits and are composed of “mud flow” locally complemented
by debris related to the upwelling of water and hydrocarbons.

Figure 3. Litho-structural sketch of the study area.

From a tectonic viewpoint, the study area is located approximately 2 km southwest
of the active Pedo-Apennine thrust. An anticline, folding the Pliocene–Early Pleistocene
claystone, crosses the area, with its major axis trending NW–SE. Two main families of
steep, nearly perpendicular, tectonic discontinuities (high angle faults and/or fractures)
are oriented with NW-SW direction and, orthogonal to the latter, with SW-NE and ENE-
WSW direction.

2.3. Geomorphological Outlines

The geomorphological features of the study area are determined by the widespread
presence of clay. The main geomorphological processes and related landforms are associ-
ated to mass movements and surface runoff. Landslides are mainly ascribable to shallow
earth slides and earth flows, in most cases affecting cultivated fields. Many landslide de-
posits along the Rio Serra and Rio delle Salse valleys have been colonised by spontaneous
vegetation, which has contributed to their stabilisation. Solifluction is a secondary process
particularly widespread in the northern part of the area, particularly in slopes with fine
grain size lithologies and bare of vegetation, where it has been favoured by creep due
to grazing. Landforms and deposits due to running waters are particularly widespread.
The alluvial deposits are limited in the central region of the study area in correspondence
with Rio del Petrolio and Rio Chianca. Due to the mutual interaction between gravitational
processes and running water action, a remarkable badland morphology, developed on
slopes constituted by the Argille Azzurre Formation, characterises this area (Figure 4).
In fact, according to PTCT, Type A badlands make up more than 40%, covering an area
of 1.4 km2, while Type B and C badlands represent 29% each, covering 0.5 and 0.4 km2,
respectively. Landslides and earth flows can contribute to the regression of the badlands’
slopes and can fill the drainage network.
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Figure 4. Main geological and geomorphological features of the study area: (a) Active landslide; (b) solifluction characteris-
ing the Argille Azzurre Formation; (c) badland morphology characterising the Argille Azzurre Formation.

3. Materials and Methods

Initially badlands were mapped on 1:5000 topographical maps by aerial photo and
satellite image interpretation and field visits, allowing an inventory map of badlands to
be constructed. In our study, we consider only Type A badland [17,83] and every little
horseshoe type hydrographic unit characterised by bare soil or signs of intense denudations
were mapped.

The morphological evolutionary trend of the badlands in the study area was evaluated
according to the different steps described below.

3.1. Multitemporal Analysis of Aerial Photos and Satellite Images and Mapping of Badlands’
Drainage Basin Changes

The multitemporal mapping of the drainage basins of each badland area, with partic-
ular reference to the badlands’ head retreats and sidewall failures, was performed in GIS
(ESRI software ArcGis 10.2.1, ArcMap) through manual delineation method. Gully walls
and headcuts were digitalized on screen and on orthophotographs and satellite images
with appropriate and comparable scales (Table 2). Therefore, images dated to 1954 and
1981, with non-comparable scales, were excluded from the mapping. Considering this
source data, with a resolution of 0.5 m, the expected error is of ±2% [11,103]. Subsequently,
the area (A) of each drainage basin and its bare surface was calculated and uploaded
into a geodatabase, and the percentages of surface variations throughout the investigated
periods were calculated with respect to the initial surface area size in order to compare
their evolution and perform the succeeding morphometric analysis.

Table 2. Cartographic documents examined. GAI: Aerial Italian Group; RER: Emilia-Romagna Region; GN: Geoportale
Nazionale website; AGEA: Agenzia per le Erogazioni in Agricoltura; TeA: Consorzio Telerilevamento Agricoltura; B/W:
Black and white; C: Colour.

Type Year Scale Flight Color

Aerial photos 1954 1:66,000 Volo GAI B/W
Aerial photos 1973 1:15,000 Volo RER B/W
Aerial photos 1981 1:33,000 Volo Romagna B/W
Orthophotos 1988 1:10,000 National Web Map Service B/W
Orthophotos 1996 1:10,000 National Web Map Service B/W
Orthophotos 2006 1:10,000 National Web Map Service C

Orthophotos AGEA 2008 1:10,000 National Web Map Service C
Orthophotos AGEA 2011 1:10,000 National Web Map Service C

Orthophotos TeA 2014 1:10,000 Regione Emilia-Romagna Web Map Service C

3.2. Morphometric and Multiparametric Analysis

The drainage network in the digitalised basins was reconstructed through the aerial
photointerpretation of two pairs of orthophotos from the years 1973 and 2014 that show
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the most significant changes in the badland area and morphology. The stream network
was digitalised in GIS, through manual delineation method; the lengths of the channels (L),
the number, and the stream hierarchy were identified; and the following morphometric
indices were calculated: The drainage density (D) and the direct bifurcation ratio (Rdb).
These indices are related to the characteristics of the hydrographic system and depend on
the erosion rate. The D parameter is the sum of the lengths of all the streams and rivers in
a drainage basin (ΣL) divided by the total area of the drainage basin (A) [109,110]. The in-
tensification of the precipitation and slope acclivity cause the D to increase. The higher the
D, the higher the erosion rate for the ground. The direct bifurcation ratio is the ratio of the
number of stream branches of a given order (Ndu) to the number of stream branches of the
next higher order (Nu + 1) [109–111].

In order to correlate different factors, a multiparametric analysis was performed,
taking into account the following parameters: The direct bifurcation ratio, drainage density,
slope exposure, and basin evolution typology.

3.3. Pluviometric Data and Land Use

Although the pluviometric data were fragmented for the study area, three measuring
stations adjacent to the area, and located at San Valentino (314 m a.s.l.), Sassuolo (121 m) and
Castellarano (135 m), were taken into consideration and an arithmetic mean of data from
these stations was used for analysis. The dataset covers the period 1954–2018. In order to
better understand the role played by precipitation variability in badland development, total
annual and monthly precipitation data over a period of 60 years were computed. Moreover,
the rainfall intensity, maximum number of consecutive dry days and maximum number of
consecutive wet days were calculated. According to several authors [45,66,76,112], daily
rainfall >10.0 mm can be considered the threshold at which runoff commences in semiarid
environments. Accordingly, pluviometric events >2.0, >10.0 and <30.0, and >30.0 mm
were considered, and the trend from 1954 to 2018 was analysed. Finally, the average
annual precipitation over 10-year periods was then correlated with the results obtained
by the analysis of the evolutionary trend of the badland area and the multitemporal
photointerpretation analysis.

Because land use changes and variation in vegetation cover are possible driving factors
for badland evolution, land use changes were examined using two datasets for 1994 and
2014 provided by the Geoportale della Regione Emilia-Romagna, and the percentages of
the major land use classes, according to the CORINE Land Cover, were calculated.

4. Results and Discussion

4.1. Multitemporal Analysis and Mapping of Badland Areas

The multitemporal photointerpretation allowed the identification of the surface-area
changes caused by water runoff over the last 50 years. In 1954, the badlands were char-
acterised by a dense network of deep incisions, and steep and bare slopes with sharp,
knife-edge ridges. In 1973 and 1981, the vegetation cover increased, and rills and gullies
were less evident. Significant changes cannot be recognised in the aerial photos of 1988/89
and 1994 due to their small scales and black and white colours. From 2003 to the present,
the vegetation cover has colonised the foot of the slopes, and a general trend of decreasing
bare surface areas and a progressive increase in vegetation growing upward can be ob-
served. Moreover, the bottom of the gullies has frequently become filled with flow deposits
over the last 50 years.

The analysis of the orthophotos spanning 1973 to 2014 allowed the mapping and
digitalisation of 55 drainage basins (Figure 5). Inside each basin, the segment of furrows
was traced for the years 1973 and 2014, showing the most significant changes in badland
surface area (Figure 5). The multitemporal landform mapping provided information about
badland changes and evolution in time and space.
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Figure 5. Badlands inventory map (white line) in the study area (red dashed line). The box shows an example of the area
variation over a 40-year period and the segment of furrows traced.

Observing the spatial distribution of badlands, it can be noticed that 60% of badlands
is aligned preferentially along an ENE-WSW direction, perpendicular to the anticline which
cross the area, while the remaining 40% is aligned preferentially parallel to the anticline
with the major axis trending NW-SE, documented in local geological maps.

On average, the recorded trend highlighted a moderate reduction in the bare surface
area from 6187.1 m2 in 1973 to 4214.1 m2 in 2014 (31%), due to an intensified revegetation
process around the badland areas, while the total badland area did not show a significant
modification, from 575,778 m2 in 1973 to 583,565 m2. In fact, the increase of about 1.3% in
the total badland area is in line with expected error related to orthophotos resolution and
digitalization process.

In particular, for a 40-year period in the study area, it can be observed that:

• In 26 basins, there is no evidence of significant evolution of the upper margin of the
badland; the upper margin is indeed apparently stable;

• In 10 basins, the upper margin is moving downward because of the vegetation pre-
venting the erosion;

• In 11 basins, the ridge of the badlands is affected by a regression of the margin;
• Four basins are visible only in the aerial photos of 1973 and not in the orthophotos of

2014: This is due to intensified revegetation processes;
• Four basins are visible only in the orthophotos of 2014 and not in the aerial photos of

1973.

The changes in the bare surface area may suggest that, in the study area, the revegeta-
tion process is more intense than the erosion one.

4.2. Morphometric and Multiparametric Analysis

Regarding the morphometric analysis, the data relating to the geometric parameters
of the badland basins in 1973 and 2014 can be summarised as follows:

• D fluctuated between 0.018 and 0.064 m/m2 in 1973 and 0.006 and 0.044 m/m2 in
2014. The average values were 0.04 m/m2 (in 1973) and 0.02 m/m2 (in 2014) (Figure 6).
In 1973, the maximum value was 0.064 m/m2, and the minimum, 0.018 m/m2; in 2014,
the maximum was 0.044 m/m2, and the minimum, 0.006 m/m2. The averages were
0.04 m/m2 (in 1973) and 0.02 m/m2 (in 2014);

• Rdb fluctuated between 2 and 6 in 1973 and between 2 and 5 in 2014, showing that
the hydrographic system is not very articulated. The maximum value in 1973 was 6,
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and the maximum in 2014 was 5; the minimum value was 2 in both 1973 and 2014
(Figure 7).

Figure 6. Variation of drainage density (D) values in 1973 (in blue) and in 2014 (in orange).

Figure 7. Variation of Bifurcation Radio (Rdb) values in 1973 (in blue) and in 2014 (in orange).

Comparing the values of D in 1973 and in 2014, it can be noticed that D is generally
decreasing through time, indicating a decreasing erosion rate for the ground. This could be
mainly due to the decreasing total length of the channels of the hydrographic system (ΣL)
and not to the variation of the badland area extent. There was an increase in D in only five
basins—5, 21, 32, 34, and 48.

Comparing the values of Rdb in 1973 and in 2014, it can be observed that the Rdb
values are generally decreasing, which means that the hydrographic systems are not so
articulated and the erosion rate is decreasing. However, in 11 basins (13, 14, 16, 19, 21, 25,
26, 34, 43, 46, and 48), Rbd is increasing, and the values did not change in nine basins (1, 2,
5, 15, 17, 20, 22, 32, and 42).

Finally, we evaluated the correlation between the Rbd parameter and the D parameter
for both years (the D values increased a hundred times) (Figure 8). Both D and Rdb tended
to decrease over time, although with differently distributed values. In particular, only in
nine basins (numbers 8, 9, 18, 23, 27, 28, 29, 33, and 41) there was a significant decrease
in both D and Rdb; in four basins (numbers 3, 4, 40, and 47), Rdb decreased significantly,
unlike D, which showed a limited decrease; in seven basins (numbers 1, 2, 15, 17, 20,
22, and 42), D decreased significantly, but the corresponding Rdb values do not show
variations between the two years considered; finally, the increase in Rdb was also related
to an increase in D only in three basins, namely, numbers 21, 34, and 48.

The data obtained were then correlated with the type of evolution of badlands and
with slope aspect. Therefore, only basins characterised by significant evidence of evolution
through time were considered. In 11 basins, the scarp of the badlands was affected by a
regression, with the Rbd values showing a random trend and D values decreasing (showing
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a possible correlation). In 10 basins, the upper margin of the badlands is moving downward
because of the presence of the vegetation, and the Rbd and D values have random trends,
showing no correlation between the evolution typologies and the variation of parameters
over time.

Figure 8. Comparison between D values in 1973 and D values in 2014 (increased a hundred times) (in orange) and differences
between Rbd values in 1973 and Rbd values in 2014 (in blue) (y axis) and number of basins (x axis).

The slope exposure does not seem to have particularly influenced the evolution of
the badlands. In fact, 69% of badlands form preferentially on SW and S-facing flanks
(135◦–225◦); of the 11 badlands that show a regression of the upper margin, five basins
are exposed to western directions, five to a southern direction and only one to a northern
direction (Figure 9). On the other hand, all 10 basins that show a revegetation process are
exposed to southern directions.

Figure 9. Relationship between the slope aspect direction and mapped badlands in the study area.

4.3. Analysis of Pluviometric Data and Land Use Changes

The analysis of the annual precipitation during the period 1954–2018 showed a general
decreasing tendency for the average annual precipitation, although the decreases were very
low and characterised by a sinusoidal trend (Figure 10a); this is consistent with the results
reported by several authors on long-term climate variability in Italy [113–118]. A general
decrease in rainfall intensity (mm/rain day) also occurred during the period (Figure 10b).
Nevertheless, the decrease in intensity was less than that in total annual precipitation.
From the trend analysis of events >2.0, >10.0 and <30.0, and >30.0 mm, it emerges that
a significant decrease in pluviometric events >2.0, >10.0, and >30.0 mm has occurred
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(Figure 11), reflecting a general decrease in rainfall intensity and total annual precipitation.
No significant trend was recorded for >30.0 mm pluviometric events.

Figure 10. Pluviometric pattern for the study area: (a) Distribution of average annual precipitation
during the observation period; (b) annual intensity (mm/rain day).

Figure 11. Total annual number of rainy days > 2 mm, > 10 mm and <30 mm, and <30 during 1954–2018.

In order to evaluate the role of dry/wet cycles, the maximum numbers of consecu-
tive dry and wet daily events were calculated. The analysis shows a slight increase in
consecutive wet days and decrease in consecutive dry days. This trend is in line with the
bare surface area reduction recorded for the study area. In fact, a substantial decrease in
the amount and frequency of rainfall tend to reduce the effectiveness of rilling, leading to
less-intensive dynamics for the soil-erosion process.

The analysis of the average annual precipitation over 10-year periods (Figure 12)
and of the results obtained by multitemporal photointerpretation analysis showed that,
in 1954–1973, the variation of the average annual precipitation is represented by a decrease
of about 15%, accompanied by an increment in vegetation, as revealed by the multitemporal
photointerpretation analysis. In 1973–1983, the average annual precipitation decreased
by about 9%, and the analysis of the evolutionary trend of the badland areas revealed
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that in 7% there was a retrogression of badland scarps by about 9 m. No significant
differences were detected in the period 1983–1993, while an increase of 15% in average
annual precipitation was recorded in the subinterval 1994–2013. In this time period, 15% of
the badlands were characterised by active retrogressive movement, which may be related
to the precipitation increase recorded.

Figure 12. Average annual precipitation over 10-year periods. The average annual precipitation
decreases constantly from 921.82 mm/year to 661.56 mm/year (28%) in the period 1954–2003, while
a slight increase is recorded in the period 2004–2014.

Land use changes were deduced using two datasets for 1994 and 2014 provided by
the Geoportale della Regione Emilia-Romagna, and the percentages of the major land use
classes, according to the CORINE Land Cover, were calculated (Table 3). Arable lands and
shrub and/or herbaceous vegetation associations were significantly reduced in the study
area, by >30%, compared with the situation elucidated by the 1994 land use map, favouring
a revegetation process. In fact, forest areas increased by 34% (Table 3), while areas with
little or no vegetation slightly increased, by 5% (Figure 13).

Table 3. Land use change in the period 1994–2014 in the study area.

CODE Land Use 1994 (m2) 2014 (m2) Δ (%)

11 Urban fabric 118,361 301,359 155%
12 Industrial, commercial, and transport units 99,964 100,606 1%
13 Mine, dump, and construction sites 225,865 224,716 −1%
14 Artificial, non-agricultural vegetated areas 66,297 74,995 13%
21 Arable land 3,182,080 2,098,310 −34%
22 Permanent crops 159,478 365,372 129%
23 Pastures 14,033 517,243 3586%
31 Forest 1,861,610 2,497,780 34%

32 Shrubs and/or herbaceous
vegetation associations 1,862,140 1,195,760 −36%

33 Open spaces with little or no vegetation 1,254,490 1,320,920 5%
51 Inland waters 71,782 119,043 66%

The increase in the vegetation cover confirms a gradual stabilisation of the badland
slopes over time and is in line with results of the analysis of the detailed maps of the
vegetation cover and land use of the territory of the Salse di Nirano Natural Reserve—with
a surface area of approximately 75,000 m2—of 1973 and 2006. In 1973, areas with no
vegetation and sparse and discontinuous herbaceous cover accounted for approximately
15% of the total area, while in 2006 they were reduced to less than 5%. Arable lands were
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significantly reduced, by 62%, while the forest cover increased significantly from 7.5% in
1973 to 37% in 2006, tending to encompass the surrounding areas adjacent to badlands.
In general, the forests are in a juvenile state, mostly originated by the abonnement of
agriculture or iterated cutting in the past century. In 2006, different typologies of grassy
plants covered the ground, such as Agropyron pungens, Podospermum canum and Aster
linosyris, stabilising the slope and limiting the water erosion. Subsequently, bushes and
shrubs have taken root (e.g., Spartium junceum, Rosa canina, Prunus spinosa, and Cornus
sanguinea), which present strong root systems and make the slope more stable. Arboreal
plants have also colonised the slopes, such as Quercus pubescens, Ulmus minor and Fraxinus
ornus [119]. This trend is coincident with the institution in 1982 of the Regional Natural
Reserve of Salse di Nirano, and with the resulting land use restrictions and regulations
implemented for the area (Figure 14).

Figure 13. Land use change occurred in a sector of the study area over a 50-year period. (a) IGMI, GAI 1954 aerial photo
and (b) orthophotos TeA of 2014. Despite the images’ different resolution, the increase in forest cover and the reduction of
agricultural lands are evident.

Figure 14. Vegetation change occurred in badland n. 26 between the late 1980s (a) and 2006 (b) (pho-
tos: (a) M. Panizza; (b) M. Bedetti).

5. Discussion and Conclusions

The investigation conducted in the study area allowed the identification and assess-
ment of the areal and temporal changes of badlands over the last 40 years. In total, 55 Type
A badlands were identified and digitalised, together with their stream network. Badlands
are more extensively developed on SW and S-facing slopes, representing 69% of the total
badlands. The presence of two main families of nearly perpendicular tectonic discontinu-
ities, roughly parallel and orthogonal to the anticline axis, is likely to have influenced the
distribution of the badland slopes. In fact, the 60% of badlands is aligned along an ENE-
WSW direction, while the remaining 40% is aligned along a NW-SE direction. The drainage
density and the direct bifurcation ratio for the years 1973 and 2014 were calculated; both
decreased over time, showing a decreasing erosion rate for the ground. This trend was
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confirmed by the results of the multitemporal analysis of the orthophotos, which reveal
a reduction of the bare surface area from 6187.1 m2 in 1973 to 4214.1 m2 in 2014 due to
an intensified revegetation process. The area reduction of the badlands observed for the
study area is related to the land-cover changes, mainly due to agricultural activities, that
occurred from the 1970s onwards. These consist essentially of a significant increase in
more-protective land use types such as forests, permanent crops and pastures. This is
particularly significant in the badlands located within the Regional Natural Reserve of
Salse di Nirano, where the land use restrictions and regulations implemented along with
its institution in 1982 has played a predominant role in badland evolution. In fact, the lack
of typical management practices, such as regular mowing activities, and the reduction of
arable lands due to their progressive abandonment have contributed to favouring revegeta-
tion on the badland slopes. The pluviometric variation during the period 1954–2018 likely
favoured increase in revegetation processes, even if further analysis of pluviometric data
(e.g., annual number of consecutive dry and wet days and annual spell length of dry and
wet days spells) as well as temperature variation are needed.

The stabilisation trend of the badland area in the study area is in line with the results
of research carried out in the Northern Apennines by Bosino et al. [101], who observed that
73% of badlands show a decrease in average area of ca. 34% over a 40-year period, caused
by a combination of natural and anthropic processes. The authors state that the decrease
of average annual precipitation and of agricultural activity (especially vineyards) and the
increase of the forest cover caused a decrease in surface runoff, favouring revegetation
process and a reduction of badland areas. Piccarreta et al. [66] show, as well, a decrease in
degraded areas between 1955 to 2002 of about 28% for the areas around Pisticci, Aliano,
and Craco, in southern Italy. This reduction is mainly due to the widespread badland re-
modelling for the durum wheat cultivation. The levelling of gully heads for the production
of cereals and orchards is reported to be the contributing factor for a land degradation
decrease from 1949 to 1986 in the Basilicata region (southern Italy) [66] as well. However,
several studies carried out in areas of central and southern Apennines, characterised by
comparable climatic condition, reported an intensification of erosional processes and an
increase of degraded areas, both on short and long term. Within the Radicofani badlands
of southern Tuscany (central Italy), Ciccacci et al. [120] describe an increase of the total
area occupied by badlands between 1955 and 2006 accompanied by an intensification of
erosion rate. These changes appear to be due to the markedly increase of intense agricul-
tural practices by mechanical device through time. The anthropic pressure related to the
mismanagement of agricultural practices for durum wheat cultivation, which has led to
the reclamation of scrub lands and badlands, appears to have played a significant role in
the increasing of soil erosion in some areas in Basilicata (Southern Italy) [67] as well. In fact,
abandoned areas, previously devoted to sown ground cultivation, are affected by intense
erosional processes especially when extreme rainy event occurs, and deep gullies and
new badland channels can evolve rapidly [121]. Human activities, particularly pastures
or arable lands, played an important role in land degradation in Sicily (Southern Italy) as
well [14,122]. The human impact on land use changes has been credited as main triggering
drivers causing in increased soil erosion in several areas of the central Mediterranean
region [123–126].

Results from this study provide a first insight into badlands morphological changes
through time in a sector of Apennines that has been poorly investigated, highlighting the
evolutionary trend. Detailed field surveys to supplement and verify results obtained are
ongoing. Moreover, future research for the quantification of the morpho-evolution rate
through UAV-derived high-resolution digital elevation model comparison are planned.
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Abstract: Check dams play an irreplaceable role in soil and water conservation in the Chinese Loess
Plateau region. However, there are few analyses on the connection between check dams and the
downstream channel and the impact on structural connectivity and sediment interception efficiency.
Based on a field survey, this study classified the connection mode between check dams and the
downstream channel, and the actual control area percentage by discharge canal in dam land was
used to quantitatively evaluate the degree of the structural connectivity of sediment between the
check dam and the downstream channel. The analysis results show that the connection mode can be
divided into eleven categories with different structural connectivity. The different connection modes
and its combination mode of check dams and downstream channels in dam systems have a large
difference, and the structural connectivity of the dam system is less than or equal to that of the sum
of single check dams in a watershed. The degree of structural connectivity of a dam system will be
greatly reduced if there is a main control check dam with no discharge canal in the lower reaches of
the watershed. Compared with a single check dam, the structural connectivity of a dam system is
reduced by 0–42.38%, with an average of 11.18%. According to the difference in connection mode
and structural connectivity of check dams and dam systems in the four typical small watersheds,
the optimization methods for connection mode in series, parallel and hybrid dam systems were
proposed. The research results can provide a reference for the impact of a check dam on the sediment
connectivity and the sediment interception efficiency in a watershed and can also guide the layout of
a dam system and the arrangement of drainage facilities.

Keywords: watershed; sediment connectivity; connection mode; connection degree; Loess Plateau

1. Introduction

The Loess Plateau is the area most seriously affected by soil and water loss in the
world, and its soil and water loss control has been the focus of attention and research
by scholars. Since the 1950s, with the gradual implementation of a series of restoration
measures, such as returning farmland to forests (grass) and the construction of check dams,
the amount of sediment discharged into the Yellow River has decreased significantly. The
average annual sediment discharge at the Tongguan hydrological station has decreased
from 1.6 billion tons before the 1970s to 179 million tons in 2010–2020 [1], which shows that
the water and soil control and management of the Loess Plateau have achieved remarkable
results. However, the reduction of the sediment put into the Yellow River does not fully
explain that the soil erosion of the Loess Plateau has been effectively controlled because
the whole watershed has been treated as a “black box” when the sediment discharge was
monitored at the outlet, and it is difficult to explain the degree and process of soil erosion
on multiple scales in the watershed [2,3]. The low sediment load does not only not indicate
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that the watershed is in a healthy state [4], it may also ignore the hot spots of erosion in the
watershed and the potential harm caused by sedimentation [5].

Among the many soil and water conservation measures in the Chinese Loess Plateau
region, check dams are one of the most effective ways to intercept sediment and control
erosion in both the short-term and the long-term [6]. There were 56,422 check dams
in the area controlled by Tongguan hydrological station on the Loess Plateau, of which
41,008 check dams had been filled up [7,8], and there are still many uncounted small check
dams [9]. As soon as a check dam is built, it begins to play a role in flood control and
sediment retention in the dam-controlled watershed. Sediment deposition in check dams
leads to a decrease in bed slope, which makes significant alterations in the cross-sectional
geometry and characteristics of bed sediments [10–12]. However, the influence of check
dams on longitudinal and transverse sediment connectivity has not been analyzed in
depth. Some scholars considered that check dams disrupted the longitudinal sediment
connectivity in a catchment [13–15], while some others say the opposite [12].

Usually, most of the previous studies have focused on the sediment interception ef-
ficiency of check dams under the ideal conditions that the check dam could completely
intercept the upstream sediment [9], but less attention has been paid to the connection
mode of check dams and its effect on the sediment connectivity [12,16], and the analysis
about the connection mode and degree between check dam and downstream channel
based on the different drainage buildings and spillways (DBS) [16]. In fact, as the barrier
node of sediment transport in the channel, the connection modes and degrees of check
dam to the downstream channel are different due to the different types of drainage mea-
sures, the sediment interception efficiency is also quite different. Due to the influence of
extreme rainfall and human activities, many check dams have been damaged to varying
degrees [17]; the gaps formed in damaged dam bodies act as spillways when check dams
were damaged under extreme rainfall [18,19]. Whether it is the discharge channel, drainage
building and spillway to meet the design standards, the discharge channel excavated in
the course of agricultural production or the dam body damaged by natural or human
activities, all of these will lead to the connection between dam land and the downstream
channel. The discharge canal was built at the foot of the slope on one side of dam land
and caused the originally disconnected check dam to be connected to the downstream
channel. Therefore, many check dams have not completely intercepted the sediment from
the dam land from the dam-controlled watershed; part of the sediment is transported to
the downstream channel by the drainage building, discharge canal, spillway or dam body
damaged gap. The connection mode between the check dam and the downstream channel
is much more complicated, especially in a dam system; this has led to a huge difference
in the degree of sediment connectivity. It is necessary to find new methods to evaluate
the sediment interception efficiency of check dams based on the new understanding of
sediment connectivity.

Therefore, based on the field investigation, the objectives of this study were to
(1) analyze the connection mode between a single check dam and its downstream channel,
(2) select typical small watersheds to discuss the connection mode of dam system com-
posed of different connection modes of check dams, (3) evaluate the structural connectivity
of single check dams and dam systems and (4) propose the optimization methods of the
connection mode between check dams and downstream channels in the Chinese Loess
Plateau region. It is expected to provide some references for evaluating the effect of check
dams on the sediment connectivity and calculating the sediment interception efficiency of
check dams in the regions with check dams for soil and water conservation.

2. Materials and Methods

2.1. Study Area

In this study, four small watersheds with different watershed scales, including Hejia-
pan small watershed (3.27 km2) and Lujiabian small watershed (15.43 km2) of Chabagou
watershed, the Yangjuangou small watershed (54.00 km2) and the Majiagou small water-
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shed (74.70 km2) of Yanhe River basin were selected as the study areas (Figure 1). The
Chabagou watershed is the second tributary of the Wuding River basin, and the total
area is 205 km2 with an altitude of 870–1286 m. The total area of the Yanhe River basin
is 7687 km2, with an altitude of 454–1765 m. The study areas belong to the Loess hilly
and gully region of the Loess Plateau, with a broken and complicated topography. The
gully density in the Chabagou watershed and Yanhe River basin are 5–6 km/km2 and
2.1–4.6 km/km2, respectively. As a result of the dry continental climate, the average annual
rainfall of the Chabagou watershed and Yanhe River basin are about 450 and 500 mm,
respectively, with 70% concentrated from July to September, and most of them are short
heavy rainfalls [20], the average annual temperature is about 9.2 ◦C and 8.8–10.2 ◦C, re-
spectively [21,22]. Although returning farmland to a forest (grass) has been implemented,
more or less sloping cropland still exists [23], especially in the Chabagou watershed. The
soil types of Chabagou watershed are mainly loessial soil, the soil particles are mainly
composed of silt particles, with soil particles larger than 0.05 mm accounting for 25.8%,
soil particles between 0.01 and 0.05 mm accounting for 57.7%, and soil particles smaller
than 0.01 mm accounting for 16.5% of the total [24]. The soil types of the Yanhe River
basin are mainly loessial soil and heilusoil, of which loessial soil is widely distributed in
the Loess-hilly region, hillside and gully, and heilusoil is only distributed on the top of
Loess-hilly region, watershed and large gully terrace [25], which has poor soil erosion
resistance, so it is easy to cause water and soil loss.

Figure 1. Location of small watersheds.

2.2. Field Investigation and Classification of Connection Mode

To better understand the different connection modes of check dams with downstream
channels, we first carried out a detailed survey of check dams in the above four small
watersheds in the field, including the location, DBS, whether the dam body was damaged,
the discharge canals and its distribution in the dam land and the interconnection of all
the check dams in the dam system of the small watershed. Then the check dams were

71



Water 2021, 13, 2644

marked in detail on remote sensing of Google Earth, for facilitating the calculation of later
related parameters.

According to the survey results, the connection modes between check dams and
downstream channels can be classified into eleven categories: (1) Disconnected (Figure 2a);
(2) Connected through spillway (Figure 2b); (3) Connected through shaft (Figure 2c) or
horizontal pipe (Figure 2d); (4) Connected through shaft and spillway (Figure 2e), or
horizontal pipe and spillway (Figure 2f); (5) Connected through shaft, horizontal pipe
and spillway (Figure 2g); (6) Connected through dam body damaged gap (Figure 2h);
(7) Connected through discharge canal (DC) (Figure 2i); (8) Connected through discharge
canal to shaft (DS1) (Figure 2j); (9) Connected through discharge canal to spillway (DS2)
(Figure 2k); (10) Connected through discharge canal to shaft and spillway (DSS) (Figure 2l);
(11) Connected through discharge canal to dam body damaged gap (DD) (Figure 2m),
and this kind of check dam originally did not have a drainage building, the dam body
was damaged and formed a gap during its operation period or a gap was dug in the dam
body artificially for the convenience of drainage. Due to the differences in the degree
of ecological restoration and check dam management, the number of check dams and
connection modes in different watersheds varied greatly.

2.3. Distribution and Number of Check Dams in four Watersheds

Table 1 and Figure 3 show the number and distribution of check dams in four typical
watersheds. There are 8, 29, 49 and 50 check dams in the Hejiapan, Lujiabian, Yangjuangou
and Majiagou watersheds, respectively. The number of check dams that were disconnected
and connected through discharge canals are the highest, with 38 and 31, respectively, while
connected through shaft or horizontal pipe, spillway, dam body damaged gap, DD and
DS2 are relatively large, and the remaining are very small.

Figure 2. Cont.
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Figure 2. Different connection modes of check dams with a downstream channel.

Table 1. Number of check dams with different connection modes in the four typical watersheds.

Connection Modes
Number of Check Dams

Hejiapan Lujiabian Yangjuangou Majiagou Total

Disconnected 5 5 20 8 38
Shaft or horizontal pipe 1 3 / 10 14

Spillway / 2 2 6 10
Shaft and spillway or

horizontal pipe
and spillway

/ / / 2 2

Shaft, horizontal pipe
and spillway / / / 1 1

Dam body damaged gap / 2 2 4 8
Discharge canal to

shaft (DS1) / / / 1 1

Discharge canal to dam
body damaged gap (DD) 2 9 1 2 14

Discharge canal (DC) / 4 23 4 31
Discharge canal to

spillway (DS2) / 4 1 8 13

Discharge canal to shaft and
spillway (DSS) / / / 4 4

Total 8 29 49 50 136
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Figure 3. Distribution of check dams in four typical watersheds.

There are only three connection modes in the Hejiapan watershed, which are discon-
nected, connected through shaft and DD; the number of disconnected is the highest. There
are seven types of connection modes in the Lujiabian watershed; the largest number of
connection modes is DD, while the other types are fewer. There are six types of connection
modes in the Yangjuangou watershed; the number of disconnected and connected through
discharge canal is the largest, with 20 and 23, respectively, while the other types are very
few. There are eleven types of connection modes in the Majiagou watershed; the largest
number of connection modes are disconnected, connected through shaft or horizontal pipe,
spillway and DS2, while the other types are few.

2.4. Evaluation of Structural Connectivity Degree

In general, the area controlled by check dams is the entire area above the dam body in
the catchment. In fact, due to the different connection modes of check dams to downstream
channels, the actual area controlled by check dams is not the entire area above the dam
body. The actual control area of the 1–6 types of connection modes is the entire dam-
controlled area, while the 7–11 types of check dam with discharge canal are not the entire
dam-controlled area, which is divided into two parts: the dam land-controlled area and
the discharge canal-controlled area.

Figure 4 is a schematic diagram of check dams with discharge canals, in which part of
the sediment from the slope directly flows into the discharge canal and then is transported
to the downstream channel. Therefore, the sediment actually intercepted by the check dam
is only from the slope that the dam land-controlled area. Considering that the characteristics
of topography and vegetation of the check dam-controlled watershed are not very different,
the degree of structural connectivity of the sediment of check dams to downstream channels
(SCCD) can be evaluated by the ratio of the actual control area controlled by the discharge
canal to the area of the entire area above check dam body in the watershed.
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Figure 4. Check dam connected to the downstream channel through the discharge canal.

The different connection mode types of check dams with downstream channels are
identified on the remote sensing image. If there is a discharge canal in the dam land, the
check dam-controlled watershed is divided into discharge canal-controlled area and dam
land-controlled area. Based on the ArcGIS software platform using Formula (1), the SCCD
was calculated.

SCCD =
Adcc
Acdc

(1)

where SCCD is the degree of structural connectivity of sediment for different connection
mode check dams (%), the value of SCCD is between 0% and 100%, the smaller the value,
the weaker the degree of connectivity of sediment. Adcc is the discharge canal-controlled
area (km2), Acdc is the total area of the check dam-controlled watershed (km2).

According to the monitoring of the sediment in the Chabagou watershed and the
Yanhe River basin under the conditions of a single rainfall, the sediment in the dam land has
basically been unable to be transported to the dam body under non-rainstorm conditions
in recent years [24]. With the restoration of ecology and less human disturbance, there
is no sediment transport into the dam land. Therefore, it can be considered that under
non-rainstorm conditions, although the check dams with connection modes of types 1–6
are connected to the downstream channel through DBS, their structural connectivity is
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disconnected. However, for the check dams with connection mode of types 7–11, sediment
from the slope will be transported through the discharge canal to the downstream channel
even under non-rainstorm conditions.

3. Results

3.1. Connection Mode and Degree

Table 2 shows the average SCCD of different connection modes of check dams in
the four watersheds. From the perspective of different connection modes, check dams
without drainage canals are disconnected, while check dams with discharge canals have
different combinations of DBS and dam body damaged gap, resulting in a difference
of the SCCD. The order of the average SCCD of check dams with discharge canal is:
DSS > DS2 > DC > DD > DS1. The average SCCD of check dam with DS1 is the smallest,
only 5.32%. While the average SCCD of check dam with DD and DC is 49.83% and 50.06%,
respectively. The average SCCD of check dams with DSS and DSS2 is relatively high,
61.63% and 53.36%, respectively. It is for this reason that check dams of these two types
have a longer operation time, which makes the discharge canal longer, and leads to a lower
actual control area of dam land.

Table 2. Average SCCD of different connection modes in the four watersheds.

Connection Modes Number
Average SCCD (%)

Hejiapan Lujiabian Yangjuangou Majiagou Average

Disconnected 38 0 0 0 0 0
Shaft or horizontal pipe 14 0 0 / 0 0

Spillway 10 / 0 0 0 0
Shaft and spillway or

horizontal pipe and spillway 2 / / / 0 0

Shaft, horizontal pipe
and spillway 1 / / / 0 0

Dam body damaged gap 8 / 0 0 0 0
Discharge canal to

shaft (DS1) 1 / / / 5.32 ± 0 5.32 ± 0

Discharge canal to dam body
damaged gap (DD) 14 3.39 ± 0.03 58.20 ± 0.36 40.17 ± 0 63.42 ± 0.27 49.83 ± 0.37

Discharge canal (DC) 31 / 82.36 ± 0.09 42.99 ± 0.29 58.36 ± 0.06 50.06 ± 0.29
Discharge canal to

spillway (DS2) 13 / 54.69 ± 0.34 31.50 ± 0 55.43 ± 0.16 53.36 ± 0.23

Discharge canal to shaft and
spillway (DSS) 4 / / / 61.63 ± 0.23 61.63 ± 0.23

Sum/Average 136 1.13 ± 0.02 27.89 ± 0.33 19.11 ± 0.19 22.20 ± 0.28

From the perspective of the four watersheds, the average SCCD of check dams in the
Hejiapan watershed accounted for the lowest percentage, only 1.13%. The reason is that
the average actual control area percentage of the discharge canal is very low. The average
SCCD of check dams in the Yangjuangou watershed and the Majiagou watershed is 19.11%
and 22.20%, respectively. The average SCCD of the Lujiabian watershed is the largest,
at 27.89%. Although the average SCCD of check dams connected through DD and DS2
ate both less than 60%, the average SCCD of check dams with only a discharge canal is
82.36%, resulting in the actual control area of discharge canal accounting for the largest
proportion among the four watersheds. Therefore, if the structural connectivity of the
sediment of the four watersheds is ranked by the average SCCD of check dams, the order
is Lujiabian > Majiagou > Yangjuangou > Hejiapan. The SCCD is mainly affected by the
length of discharge canal, and the length of the discharge canal is ultimately affected by
the management degree of check dams. Due to the long operating life of the check dams in
the Yangjuangou watershed, coupled with inadequate management, the check dams are
generally damaged, many shafts, horizontal pipes and spillways have been completely
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destroyed or buried, resulting in a small number of check dams with drainage building
or spillway. Although the number of check dams with discharge canals is relatively large,
accounting for 55.10%, the length of the discharge canal is short, and the actual control
area percentage of the discharge canal is relatively low. On the contrary, check dams
of the Lujiabian watershed and the Majiagou watershed have better management, the
number of check dams with a discharge canal is also large, accounting for 65.52% and
46.00%, respectively, and the length of the discharge canal is longer, the actual control
area percentage of discharge canal is higher. Therefore, in order to reduce SCCD, the
management of check dams should not only pay attention to the safe operation of check
dams but also avoid the existence of discharge in the dam land or ensure the discharge
canal is as short as possible.

3.2. Degree of Structural Connectivity for Dam System

The dam systems have been formed on the Loess Plateau [26], and the dam systems are
composed of check dams with different connection modes. Whether they are series, parallel
or hybrid dam systems, the connection mode is more complicated and variable (Figure 5).

Figure 5. Position and connection modes of check dams in the four watersheds (the number is the SCCD of each check dam).

According to the different cascade modes of each dam system, the dam system of
the four watersheds can be divided into 27 small dam systems, and the area of each dam
system ranges from 0.82 to 71.50 km2, with an average value of 14.25 km2. The SCCD of a
single check dam is between 2.33% and 66.41%, with an average of 27.53%. While the SCCD
of each small dam system is between 0% and 42.38%, with an average of 11.18% (Table 3).
According to the different connection modes of each check dam in small dam systems, the
connection modes of dam systems can be divided into four categories: (1) Check dam at
the bottom of the dam system has a discharge canal, and if the upstream check dam has a
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discharge canal, it must be connected to the check dam at the bottom of the dam system
(dam systems #4, #11, #23 and #24). (2) Check dam at the bottom of the dam system has a
discharge canal, but other check dams upstream have no discharge canal (dam systems #5,
#7 and #9). (3) Check dams upstream and at the bottom of the dam system have discharge
canals, but the check dams between the upstream and the bottom of the dam system have
no discharge canals, which leads to the upstream check dam not being connected to the
check dam at the bottom of the dam system (dam systems #3, #6, #8, #10, #13, #17, #20,
#21, #25 and #27). (4) Check dam at the bottom of the dam system has no discharge canal,
while some other check dams have discharge canals (dam systems #1, #2, #9, #12, #14,
#15, #16, #18, #22 and #26). Compared with the SCCD of a single dam, the SCCD of the
first two types of dam systems have not changed, the SCCD of the third type of dam
system decreases 1.76–22.56%, with an average of 10.03%, and the last type of dam system
decreases 2.33–42.38%, with an average of 20.15%.

Table 3. SCCD of the sum of a single check dam and dam system in the four watersheds.

Watershed
Dam System

Number

Dam
System

Dam System
Area (km2)

Sum of Single
Check Dam

Dam System
Difference

(%)Adcc
(km2)

SCCD
(%)

Adcc
(km2)

SCCD
(%)

Hejiapan 1 1–8 3.02 0.07 2.33 0.00 0 2.33

Lujiabian

2 3–5 1.54 0.47 30.25 0.00 0 30.25
3 6–20 3.76 2.31 61.49 1.54 40.86 20.63
4 21–24 0.82 0.18 21.65 0.18 21.65 0
5 27–29 0.83 0.22 26.36 0.22 26.36 0
6 1–29 14.99 8.59 57.32 7.35 49.03 8.29

Yangjuangou

7 6–10 3.03 4.10 66.41 4.10 66.41 0
8 12–16 2.78 3.46 54.02 3.08 48.12 5.90
9 17–19 6.17 0.25 6.23 0.00 0 6.23
10 20–28 6.41 0.85 11.28 0.08 1.08 10.20
11 29–49 17.42 0.67 21.69 0.67 21.69 0
12 23–27 1.08 0.10 8.18 0.00 0.00 8.18
13 39–49 7.56 4.11 23.61 3.09 17.74 5.87
14 35–38 4.04 0.38 35.14 0.00 0 35.14
15 45–49 3.08 0.58 20.74 0.00 0 20.74
16 42–44 1.26 1.28 42.38 0.00 0 42.38
17 1–49 47.03 19.02 40.45 15.76 33.51 6.94

Majiagou

18 8–15 8.02 0.92 11.47 0.00 0 11.47
19 34–37 8.46 0.37 4.41 0.37 4.41 0
20 31–33 2.52 0.50 20.00 0.23 8.97 11.03
21 26–37 15.77 2.88 18.25 2.60 16.49 1.76
22 23–37 20.39 3.38 16.60 0.00 0 16.60
23 43–50 12.63 3.14 24.86 3.14 24.86 0
24 38–50 16.19 4.75 29.31 4.75 29.31 0
25 17–50 47.38 15.21 32.10 11.82 24.96 7.14
26 7–50 57.18 16.13 28.21 0.00 0.00 28.21
27 1–50 71.50 20.48 28.65 4.35 6.09 22.56

Therefore, if the four types of dam systems are ranked according to the reduction
degree of SCCD, the order is (4) > (3) > (2) = (1). If the check dam at the bottom of the
dam system has no discharge canal, the SCCD of the dam system has decreased the most,
and it is possible to intercept all the sediment from the whole catchment above under
non-rainstorm conditions so as to maximize the sediment interception efficiency of the dam
system. The SCCD of the other three types of connection modes with a discharge canal
have not changed or are little changed. Therefore, the SCCD of a dam system is less than or
equal to that of the sum of a single check dam; and the SCCD depends on the connection
mode between check dams and downstream channels in the watershed.
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4. Discussion

4.1. The Effect of Connection Mode on Structural Connectivity of Sediment

It is convenient to quantitatively evaluate the SCCD by using the actual control area
percentage of the discharge canal. The higher the SCCD, the lower the sediment interception
efficiency. At the same time, the influence of the height difference between dam land and the
outlet of DBS was considered, which can also reflect the functional connectivity of sediment
between the check dam and the downstream channel to a certain extent. Gao et al. [16]
defined the degree of check dam connected to the downstream channel through a spillway
is strong, but through shaft or horizontal pipe is weak. Hassanli et al. [27] also reported that
the sediment interception efficiency of a check dam built with broken and angular rocks is
higher than that built with rounded rocks, which is actually a combination of structural
connectivity and functional connectivity to measure the degree of connectivity between
a check dam and downstream channel. It was considered that the degree of connectivity
depends on the outlet size of drainage facilities, which has certain limitations, and the
influence of a discharge canal is not considered.

From the number of different connection modes between check dams and the down-
stream channel in the four small watersheds, it can be seen that the number of disconnected
and connected (connected through the spillway, shaft, horizontal pipe and dam body
damaged gap) are 38 and 35, respectively, accounting for 27.94% and 25.74%, respectively.
Among them, the sediment interception efficiency of the check dam that is disconnected is
100%, and the sediment interception efficiency of check dam with a shaft, horizontal pipe,
spillway and dam body damaged gap is also 100% if the sediment is not transported to the
dam body. However, even if the sediment is not transported to the dam body, the sediment
on the slope controlled by the discharge canal will not be intercepted in the dam land but
will be directly transported to the downstream channel through the discharge canal. While
there are 63 check dams with a discharge canal, accounting for 46.32% of the total, the
average SCCD of the 63 check dams with a discharge canal is 50.71%, which shows that
the existence of a discharge canal in the dam land has a great influence on the structural
connectivity of check dams, and also affects the functional connectivity.

In fact, the connection mode between check dams and a downstream channel is not
fixed; natural factors, such as rainfall, and human factors, such as lack of management, will
cause changes in the connection mode, especially in the Loess Plateau, due to frequently
occurring short heavy rainfall, which provides more possibilities for the changes [28–30]. If
the check dam is disconnected from the downstream channel is damaged in extreme rainfall,
it would be connected to the downstream channel through the dam body damaged gap; the
check dams connected through DBS would also become the check dams connected through
the dam body damaged gap due to the drainage buildings or spillway being damaged [31].

If the headrace is formed in dam land after a long period of erosion, the connection
mode will be changed: the headrace becomes the discharge canal, and a check dam without
a discharge canal is transformed into a check dam with a discharge canal. According to the
field surveys, it is found that the discharge canal in small and medium-sized check dams
only plays the role of sediment discharge, which has little influence on the dam land area
(Figure 6). While drainage channels of some check dams will encroach and shrink the dam
land area (Figure 7) and will not intercept sediment, some will become the sediment source
with aggravating erosion [27] and promoting sediment connectivity [12].
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Figure 6. Check dam with a discharge canal.

Figure 7. Discharge canals can encroach and shrink dam land area.

4.2. Optimization of Connection Mode in Dam System

From the analysis of structural connectivity of the small watersheds in this study, it can
be seen that the degree of structural connectivity of dam systems will be less than the sum of
single check dams. The larger dam systems in a watershed are composed of different small
dam systems, and the cascade modes of the small dam systems include series, parallel and
hybrid. The layout of a dam system can adjust the water and sediment process by changing
the degree of connectivity of channels. The simulation results with the MIKE model show
that different cascade modes of dam systems have different degrees of attenuation on
flood peak and total flood discharge: hybrid > parallel > series [32]. Zhang et al. [33] also
reported that hybrid and parallel systems, as well as check dams with DBS, had better
flood control capacity. In fact, this mainly focuses on the functional connectivity of dam
systems and does not consider the influence of the structural connectivity of check dams
and downstream channels separately. If the structural connectivity is considered, the
degree of sediment connectivity and sediment interception efficiency of check dams are
irregular, which is mainly affected by the connection mode.
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The Hejiapan and Lujiabian watersheds are mainly parallel dam systems due to the
low level of gully, while the Yangjuangou and Majiagou watersheds area mainly hybrid
dam systems due to the high level of gully. It is necessary to evaluate the connection mode
of each small dam system and consider the influence of different cascade modes on the
structural connectivity in the whole watershed when optimizing the connection mode of
check dams. The difference in connection modes and their combinations will lead to great
differences in the degree of connectivity and sediment interception efficiency of the whole
dam system.

Ideally, if all the check dams are not connected with the downstream channels, the
sediment interception efficiency of the whole dam system will be 100%. In fact, spillway,
shaft and horizontal pipes should be configured according to the actual situation and
the construction requirements of check dams when building check dams, and with the
extension of the operation time of check dams, the formation of gap due to the dam body
was damaged, and the formation of a discharge canal in the dam land is inevitable [31],
which eventually leads to various connection modes between the check dam and the
downstream channel, and the degree of structural connectivity is mainly affected by the
discharge canal. The existence of a discharge canal leads to the reduction of the actual
control area of the check dam, thus increasing the degree of structural connectivity.

The design of connection modes between a check dam and downstream channel
should follow the principles: the check dam must not be at the risk of dam-break under
extreme rainstorm conditions but should ensure the connectivity between the check dam
and downstream channel, and the excess water and sediment can be transported to the
downstream channel in time, thus ensuring the safe operation of a single check dam and the
dam system, minimizing the structural connectivity between check dam and downstream
channel, and retaining water and sediment in the dam land as much as possible under
extreme rainstorm conditions. Therefore, two preconditions should be followed: (1) all
check dams in the dam system should have DBS and ensure the outlet of the drainage
building is not blocked. Otherwise, check dams would be easily damaged under extreme
rainfall conditions. For example, in the “7·26” extreme rainstorm, the dam body was intact
when the discharge outlet of the shaft was opened in time, while some check dams were
damaged due to the discharge outlets of the shaft were blocked [19,34]. (2) The discharge
canal should be avoided in the dam land, and its length should be kept as short as possible,
especially in a large check dam-controlled watershed.

For example, in Figure 8: Check dams (#6 and #9) at the top of the series of dam
systems (#6→#5→#4 and #9→#8) and check dam (# 5) between the top and the bottom
of the series dam system can be the check dam with DBS or a discharge canal, and check
dams (#4 and #8) at the bottom of the series dam system can be a check dam with only DBS.
The advantage of this design is that, because the check dam at the bottom of the series dam
system has no discharge canal, the actual control area of the check dam is still the area of
the whole check dam-controlled watershed; that is, the SCCD is minimized.

Parallel dam systems can be divided into two situations: (1) The parallel check dams
are all single check dams, and there are no other check dams upstream (#3 and #7), these
single check dams are connected to a downstream channel through DBS or discharge canal.
(2) Series dam systems and single check dams together form a parallel dam system (#3,
#6→#5→#4, #7 and #9→#8). The series dam system is configured with the principle of a
series dam system, while the single check dam is configured with the connection mode
according to the principle of (1).

The series and parallel dam systems are combined to form smaller hybrid dam systems,
and the smaller hybrid dam systems further constitute the larger hybrid dam systems, in
which the connected mode should be optimized with reference to the principle of the series
and parallel dam systems. However, it should be noted that no matter whether it is the
small or the large hybrid dam system, the bottom key check dam (#1) is very important
for the structural connectivity of sediment in the whole dam system [27]. The key check
dam should not have a discharge canal and only be connected to the downstream channel
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through DBS, and if there have other check dams connected to the key check dam in series
upstream (#2), these check dams can only have a discharge canal or DBS.

Figure 8. Optimal connection mode in a dam system (the shaft, horizontal pipe and spillway can be
in separate or combined forms).

5. Conclusions

Based on the field survey, the connection modes between check dams and down-
stream channels are divided into eleven categories. The degree of structural connectivity
of sediment between the check dam and downstream channel was quantitatively eval-
uated according to the actual control area percentage of the discharge canal. When the
sediment cannot be transported to the dam body under non-rainstorm conditions, the
order of the structural connectivity of sediment of the 11 connection modes is: Discon-
nected = shaft or horizontal pipe = spillway = shaft and spillway, or horizontal pipe and
spillway = shaft, horizontal pipe and spillway = dam body damaged gap < discharge
canal to shaft < discharge canal to dam damage gap < discharge canal < discharge canal
to spillway < discharge canal to shaft and spillway. The different connection modes and
combination forms of check dams lead to a great difference in structural connectivity of
dam systems, the structural connectivity of the dam system is less than or equal to that
of the sum of single check dams. The degree of structural connectivity of a dam system
will be greatly reduced if the main control check dam of the dam system has no discharge
canal. The optimization method of the connection mode of the series, parallel and hybrid
dam systems is proposed according to the different cascade modes of dam systems. This
study only discusses the structural connectivity of sediment of single check dams and dam
systems, and the evaluation of functional connectivity based on structural connectivity
needs to be further analyzed in future research.
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Abstract: Rainfall erosivity exhibits a high spatiotemporal variability. Rain gauges are not capable
of detecting small-scale erosive rainfall events comprehensively. Nonetheless, many operational
instruments for assessing soil erosion risk, such as the erosion atlas used in the state of Hesse in
Germany, are still based on spatially interpolated rain gauge data and regression equations derived
in the 1980s to estimate rainfall erosivity. Radar-based quantitative precipitation estimates with high
spatiotemporal resolution are capable of mapping erosive rainfall comprehensively. In this study,
radar climatology data with a spatiotemporal resolution of 1 km2 and 5 min are used alongside rain
gauge data to compare erosivity estimation methods used in erosion control practice. The aim is to
assess the impacts of methodology, climate change and input data resolution, quality and spatial
extent on the R-factor of the Universal Soil Loss Equation (USLE). Our results clearly show that
R-factors have increased significantly due to climate change and that current R-factor maps need to
be updated by using more recent and spatially distributed rainfall data. Radar climatology data show
a high potential to improve rainfall erosivity estimations, but uncertainties regarding data quality
and a need for further research on data correction approaches are becoming evident.

Keywords: R-factor; soil erosion; USLE; rainfall intensity; modeling; radar climatology; RADKLIM;
rain gauge

1. Introduction

The R-factor is a measure of rainfall erosivity and an important input variable for estimating soil
losses by water using the Universal Soil Loss Equation (USLE) and its many variations [1]. Based on
the documented relationship between the amount of soil erosion and the kinetic energy of precipitation,
the rainfall erosivity can be derived directly from temporally highly resolved precipitation time
series [1–3]. The R-factor of one event is defined as the product of the kinetic energy and the maximum
30-min intensity of an erosive rainfall event. The R-factors of all events throughout a year are added to
obtain the annual R-factor, which is usually averaged over a period of at least ten years as an input to
the USLE.

In the past, measurement data from rain gauges or, more recently, from automated rain gauges
were used for estimating rainfall erosivity. Still today, the R-factors calculated from these point-scale
data for every station are spatially interpolated to derive maps of rainfall erosivity. This approach has
also been recently applied to generate a European erosivity map [4]. However, due to the small spatial
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extent of convective precipitation cells and a high variability of precipitation intensity within these
cells, which contributes significantly to rainfall erosivity, the spatial recording of the rainfall erosivity is
incomplete and patchy [5]. Rain gauges are not capable of detecting the spatial distribution of local heavy
rainfall hot spots or individual heavy rainfall events, which are highly relevant for erosion modelling.
Interpolating R-factors calculated from point measurements therefore results in a smoothing and an
underestimation of erosivity [6]. In order to capture the highly variable spatiotemporal distribution of
rainfall intensity during erosive rainfall events, highly resolved precipitation data, both spatial and
temporal, are needed. Weather radars are capable of providing such data, but the number of studies
deriving erosivity directly from such highly resolved datasets is still rather low [4].

In practice, R-factor maps are frequently derived by regression equations from spatially
interpolated summer precipitation sums or annual precipitation sums in order to obtain comprehensive
erosivity information. This methodology is much easier to apply than the direct event-based derivation
of the R-factor from gauge data, but it suffers from representativity issues. Again, data smoothing by
spatial interpolation and regression equations lead to smoothed R-factors. High R-factors often remain
limited to mountain tops, while the actual occurrence of heavy rainfall as a consequence of convective
events in the lowlands is not taken into account [7].

In Germany, for instance, the R-factor is derived by regional authorities for each federal state
according to the technical standard DIN 19708 [8], whereby most federal states use regional adjusted
regression equations. The derived erosivity maps serve inter alia as an input for soil erosion modelling
in order to evaluate the fulfilment of EU Cross-Compliance soil protection regulations. Based on these
evaluation outcomes, income support for farmers is calculated and requirements for erosion control
are imposed. However, the applied regression equations were usually derived based on data from
a few rain gauge recorders (usually < 20) integrating rainfall data from the 1960s to the 1980s [9].
The regression equations are only rarely updated (e.g., in North-Rhine Westfalia [10]) or, in many
federal states, not at all. However, several studies indicate spatial and temporal changes in precipitation
distribution and quantities as well as an increase and intensification of heavy rainfall and thus an
increase in precipitation erosivity due to climate change [6,11,12]. Consequently, the validity of the
currently applied regression equations, which were determined based on precipitation data of the
last climate period or even older data, must also be questioned, especially in regard to the current
atmospheric conditions.

In the German federal state of Hesse, a lot of information on soil quality and degradation, including
the R-factor, is collected in the technical information system “Erosion Atlas Hesse” [13,14]. The erosion
atlas is an important instrument for precautionary soil protection in Hesse since it shows areas with
a high risk of erosion and helps farmers to plan erosion control measures. Furthermore, it supports
urban land-use planning through the identification of sites that require additional protection measures.
The estimation of the R-factor for the erosion atlas is currently based on a regression equation derived
in 1981 from data of 18 rain gauges in Bavaria, which comprise time series of up to 14 years throughout
the period of 1958–1977 [9,15]. The precipitation data used for calculating the R-factor are spatially
interpolated mean summer precipitation sums (May to October) for the period of 1971–2000 on a
1 km2 grid [16]. There is evidence that rainfall distribution and intensity has changed since this time
period [12,17], emphasising the need for updated precipitation datasets and methods that estimate
rainfall erosivity.

The radar climatology dataset RADKLIM (“RADarKLIMatologie”) [18] addresses the need for
updating precipitation data. RADKLIM is a radar-based quantitative precipitation estimation dataset
provided by the German Weather Service (Deutscher Wetterdienst, DWD). It is available for the whole
of Germany starting from 2001 with a high spatial (1 km2) and temporal (up to 5 min) resolution [19].
The largely comprehensive nationwide detection of all precipitation events indicates a high potential
for the derivation of spatial information to calculate the R-factor. The high temporal resolution of
the data as well as recent advances in computer hardware enable the direct event-based calculation
of the R-factor. However, the differences in measurement method and scale between radar and rain
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gauges, especially in detecting heavy rainfall, must be taken into account when interpreting the results.
The precipitation totals in radar climatology tend to be slightly lower than the precipitation amounts
measured by rain gauges and this underestimation by radar climatology is particularly pronounced
for high precipitation intensities [20]. This is due to the averaging of precipitation over the area of the
radar pixels and path-integrated rainfall-induced attenuation of the radar beam [21].

For the direct event-based calculation of the R-factor based on radar data, Fischer et al. [22]
found similar effects and derived correction factors to compensate for the underestimation of the
R-factor calculated with radar climatology data. The proposed factors include a spatial scaling factor,
which reflects the attenuation of intensity peaks by averaging the precipitation over the radar pixel
area, and a method factor, which should compensate for the systematic underestimation of erosion by
the radar data compared to rain gauge measurements.

In addition, several studies have recently investigated the influence of the temporal resolution of
precipitation data on the calculation of the R-factor [22,23]. In principle, the authors agree that the level
of the R-factor decreases with decreasing temporal resolution. The intensity peaks, which are decisive
for determining the kinetic energy of the precipitation, are detected less accurately with decreasing
temporal resolution and are thus attenuated. However, authors disagree about the correction of this
effect, since the level of any correction factor depends on the temporal resolution of the rainfall data
that is used as a reference. Based on rain gauge and RADKLIM data for Germany, Fischer et al. [22]
use one minute as the highest possible resolution for a factor value of 1. Panagos et al. [23], on the
other hand, use a reference of 30 min as factor value of 1 in their European-wide study based on rain
gauge data. For the RADKLIM product with a 5-min resolution, this results in a temporal correction
factor of 1.05 [22] or 0.7984 [23], and for the RADKLIM product with hourly resolution, the temporal
correction factors are 1.9 and 1.5597, respectively.

The goal of this study was to compare the performance of different calculation methods for
the R-factor using rain gauge and radar rainfall data. The impacts, advantages, disadvantages and
correction approaches for several input datasets were analysed; additionally, updated regression
equations were derived. Taking the improvement in monitoring systems through a higher coverage
by measurements and discrepancies concerning methodology, input data quality and resolution,
observation period and correction approaches into account, the paper proposed these hypotheses for
the derivation of R-factors from radar climatology and rain gauge data for the period 2001–2016:

1. The newly calculated R-factors from both datasets are higher than the R-factors from earlier
calculations due to changes in climate, interannual rainfall distribution and rainfall intensity.

2. Since radar data include small-scale convective cells without gaps, the R-factors derived from
the radar climatology should be higher on average than those calculated from rain gauge
measurements. At the same time, the radar measurements underestimate the maximum
precipitation intensities. The latter can be compensated by the correction factors according
to Fischer et al. [22].

3. The spatial distribution of the R-factors derived from the radar climatology deviates from the
patterns of the R-factors calculated and interpolated by means of the regression equation due to
the comprehensive coverage of all heavy rainfall events.

2. Materials and Methods

2.1. Study Area

For this study, the federal state of Hesse was selected as the investigation area due to its central
location within Germany and its complex terrain, which allow for a good transferability of the outcomes.
The federal state of Hesse has a total area of approximately 21,115 km2. The area is characterised
by a diverse topography with several low mountain ranges and highlands crossed by depressions
and river valleys (see Figure 1). The highest elevation is 950 m.a.s.l., whereas the lowest elevation
is about 73 m.a.s.l. A large portion of the intensively used agricultural areas in the lowlands are
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oriented in Rhenish direction (SSW-NNO) [24]. The study area is located in the humid midlatitudes
in a transition zone between a maritime climate in north-western Germany and a more continental
climate in the south and east of Germany. Westerly winds influence the distribution of precipitation
and, thus, many of the intensively used agricultural areas are located in the rain shadow on the lee
side east of the mountain ranges.

 

Figure 1. (a) Location, height above sea level [m] and selected landscape units of the federal state of
Hesse, (b) spatial distribution of cropland areas in the study area.

2.2. Data Basis

2.2.1. Radar Climatology Data

The DWD currently operates 17 ground-based C-band weather radars. The nationwide coverage
was established in 2001. In 2018, the DWD published the radar climatology dataset RADKLIM,
which consists of gridded nationwide quantitative precipitation estimate composites with a spatial
resolution of 1 km2 and a temporal resolution of up to 5 min starting from 2001. For this study, we used
the YW product in 5-min resolution [18] and the RW product [25] in hourly resolution for the period
2001–2016. Their derivation procedure comprises various correction algorithms to compensate for
typical radar-related errors and artefacts such as clutter, spokes, signal attenuation and bright band
effects. Ground clutter can be caused by non-meteorological objects such as mountains, buildings,
wind energy plants or trees that disturb the radar signal and cause non-precipitation echoes. If the
radar beam is blocked in whole or in part by such objects, the sector behind these obstacles is shielded,
which causes a linear artefact, the so-called negative spoke. Signal attenuation may cause significant
underestimation of rainfall rates. It can be caused by a wet radome, by heavy precipitation events that
shield the sector behind or by range degradation at far range from the radar. Bright Band effects occur
in the melting layer where the comparatively large surface of melting snowflakes is covered by a film
of water, which may cause very strong radar signals.

For the derivation of the radar climatology, the reflectivity is converted to rain rates, and the
local radar station data are merged and transformed to a cartesian grid. Aggregated hourly rain rates
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are adjusted to ground-truth automated rain gauge measurements, which yields the RW product.
Finally, the hourly rain rates are disaggregated to the original 5-min intervals in order to obtain the
quasi-adjusted YW product [19]. For disaggregation, the hourly precipitation sum of the adjusted
RW product is distributed to the twelve 5-min intervals based on the temporal rainfall distribution
throughout the respective hour. The data processing was conducted by DWD. In the state of Hesse,
only the stations operated by DWD are used for radar data adjustments.

2.2.2. Rain Gauge Data

For this study, we combined two different rain gauge datasets in 1-min resolution. We used data
from 76 automated rain gauges throughout Hesse operated by DWD, which are freely available in
the DWD Open Data Portal [26], as well as from 52 rain gauges of the Hessian monitoring network
operated by HLNUG, which are not publicly available. Both datasets were carefully checked for
plausibility and a cleaning procedure was implemented to remove erroneous values. For a detailed
description of the data processing and cleaning procedure please refer to [27].

In general, the DWD rain gauge data are available for the period 2001–2016, whereas those of
the HLNUG stations only cover the period 2001–2015. However, the time series of the combined rain
gauge dataset varies strongly between stations. In this study, 21 stations with time series shorter than
nine years were excluded. The final dataset used for analysis consisted of 110 rain gauge stations.
Finally, the 1-min rain gauge data were aggregated to a temporal resolution of 5 min in order to match
the temporal resolution of the radar climatology data.

2.3. Methodology

2.3.1. R-factor Calculation According to DIN 19708

The R-factors were calculated according to the specifications of DIN 19708 [8] for the RADKLIM
YW product and the rain gauge data, both in 5-min resolution. According to DIN 19708 [8], which is
based on the results of Schwertmann et al. [2], erosive precipitation events have a precipitation sum of
at least 10 mm or a precipitation intensity exceeding 10 mm/h within a time window of 30 min (i.e.,
an actual precipitation quantity of 5 mm in 30 min). The maximum precipitation sum occurring within
a 30-min window of a rainfall event is identified by applying a moving window of six 5-min intervals
and is related to one hour by doubling it. This value is referred to as maximum 30-min intensity I30.
As defined by DIN 19708 [8], the total amount of precipitation is doubled and assigned to I30 if an
event lasts less than 30 min. Rainfall events are separated by a precipitation pause of at least 6 h.

The R-factor of a specific precipitation event results from the product of the maximum 30-min
intensity I30 [mm/h] and the kinetic energy E [kJ/m2] of the total rainfall during the event.

Revent = E·I30 (1)

The kinetic energy E of an erosive rainfall event was calculated with the following equation from
DIN 19708:

E =
i=n∑

i=1,n

Ei (2)

with
Ei = (11.89 + 8.73·log10(Ii))·Ni·10−3 f or 0.05 ≤ Ii ≤ 76.2

Ei = 0 f or Ii < 0.05

Ei = 28.33 ·Ni·10−3 f or Ii > 76.2

Thereby is
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i 5-min interval of the rainfall event
Ei kinetic energy of the rainfall in period i [kJ/m2]
Ni rainfall depth in period i, [mm]
Ii rainfall intensity in period i, [mm/h], that is Ii = Ni · 60 Min

5 Min
Finally, the R-factor per year for a given location is the sum of the Revent products [kJ/m2 mm/h =

N/(ha a)] of all erosive rainfall events in a year. Due to the great interannual variability of erosivity,
it is recommended to average the annual R-factors over a period of at least ten years [8]. For the
calculations based on the radar climatology this criterion was fulfilled everywhere, whereas the time
series of five rain gauges was limited to nine years.

For the calculation of the R-factor from both data sets, the development of new routines was
necessary. One difficulty is the large data volume of the YW product for the whole of Hesse,
which required a balancing of memory requirements and computing efficiency. The developed Python
routines are based on the HDF5 file format [28] with monthly pandas [29] DataFrames introduced by
Kreklow [30]. This enables a continuous calculation of the R-factor over all days of a month. However,
for reasons of efficiency, no smooth transitions between months were implemented. The routine
assumes an end of the precipitation event at the end of each month and carries out the calculation for
the amount of precipitation that has fallen up to that point. Thus, long lasting nightly precipitation
events may be divided into two events or one event can be classified as non-erosive due to the
interruption. However, since erosivity shows a clearly pronounced maximum in the late afternoon [5],
when convection is usually strongest, the inaccuracy in the calculation due to the interruption at the
turn of the month was regarded as negligible.

2.3.2. R-factor Calculation Using Regression

For the erosion atlas Hesse [13], the R-factor was derived using the following regression equation
from the mean long-term precipitation of the summer months May–October Nsu:

REA = 0.141·NSu − 1.48 (3)

For comparison of methodologies and effects of precipitation changes, additional R-factors were
calculated using this regression equation based on the hourly RW product of the radar climatology and
the condensed rain gauge dataset. In conjunction with the R-factors calculated according to DIN 19708
(see Section 2.3.1) and the erosion atlas Hesse, these additional R-factor estimates based on regression
allow to compare different combinations of input data and derivation methods.

All calculated R-factor derivatives are summarised in Table 1.
Since the R-factor is only important for estimating soil loss from agricultural land and not in forests

or urban areas, we conducted an additional analysis of all of the abovementioned R-factor derivatives
that only considered cropland areas. For this, all data pairs for which the respective RADKLIM pixel
contained less than ten hectares of cropland were removed. The resulting datasets are marked by the
appendix “Agri” in the R-factor index, e.g., RYW,DIN,Agri.

Consequently, the analyses of this study cover three different spatial extents for which data pairs of
all available datasets were created in order to enable meaningful comparisons for similar spatial scales:

(a) all 1 km2 pixels within Hesse (n = 23,320)
(b) all pixels containing at least ten hectares of cropland (n = 11,555)
(c) all rain gauge stations (n = 110)

In addition, the summer precipitation sums of RADKLIM and the rain gauges and their respective
R-factor derivatives RYW,DIN and RG,DIN were used to determine two new regression equations.
These serve to assess the following: the changes in the correlation between rainfall erosivity and
precipitation sums, changes in comparison to the existing regression equation used for the erosion
atlas, and the impact of sample size.
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2.3.3. Application of Scaling Factors

Recent studies propose various scaling/correction factors to compensate for the temporal resolution
of the input data and the differences between rain gauge and radar data. In order to be able to estimate
the influence of the correction factors and to compensate for the presumed underestimation of the
R-factor by the radar climatology, these factors were applied to the R-factors that were calculated
according to DIN 19708.

The scaling according to [22] for the R-factors calculated from radar climatology results from

RYW, F = RYW,DIN ·((spatial scaling + method f actor)·temporal scaling) (4)

with
spatial scaling f actor = 1.13; for a spatial resolution of 1 km2

method f actor = 0.35

temporal scaling f actor = 1.05; for a temporal resolution of 5 min

For the rain gauge data, the scaling reduces to

RG,F = RG,DIN·temporal scaling f actor (5)

with
temporal scaling f actor = 1.05; for a temporal resolution of 5 min

In order to include the strongly deviating temporal correction factor proposed by
Panagos et al. [23], a further calculation was performed for RG,DIN:

RG,P = RG,DIN·temporal scaling f actor (6)

with
temporal scaling f actor = 0.7984; for a temporal resolution of 5 min

3. Results

3.1. Statistical Comparison of the Calculated R-Factors

The R-factor RYW,DIN calculated from the original unscaled RADKLIM YW product according
to DIN 19708 ranges between 28.8 and 173.2 kJ/m2 mm/h with an average value of 58.0 kJ/m2 mm/h
(see Table 2 and Figure 2). It is thus 6.4% higher on average than the values of the erosion atlas REA,

whereas its range is 263.7% higher and its standard deviation is 122.7% higher. RYW,DIN shows thus a
much higher variability than the strongly smoothed REA which was derived from spatially interpolated
rainfall data using a regression equation (Equation (3)).

The R-factor calculated from the gauge dataset RG,DIN has an average of 80.6 kJ/m2 mm/h,
which is 47.8% higher than the average value of REA and 39% higher than the average of RYW,DIN.
At 107 of 110 stations the rain gauges show higher R-factors than the corresponding pixels of the
radar climatology. The average R-factor difference for all point-pixel pairs amounts to 20.5 kJ/m2

mm/h between RYWG,DIN and RG,DIN. For the 72 stations operated by DWD, which were used for radar
data adjustments, the average difference between RYWG,DIN and RG,DIN amounts to 19.1 kJ/m2 mm/h,
whereas the average difference at the 38 stations operated by HLNUG is slightly higher with 23.1 kJ/m2

mm/h. Compared to the erosion atlas, all 110 rain gauge stations show higher R values with an average
difference of 24.7 kJ/m2 mm/h.
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Table 2. Statistical summary of all R-factor derivatives.

R-factor n Method Data Source Mean Standard Deviation Min Median Max

RYW,DIN 23,320 DIN 19708 RADKLIM 58.0 14.7 28.8 54.6 173.2
RYW,DIN,Agri 11,555 DIN 19708 RADKLIM 54.2 12.0 28.8 52.3 146.1

RG,DIN 110 DIN 19708 Gauges 80.6 20.6 53.4 75.3 157.2
RYWG,DIN 110 DIN 19708 RADKLIM 60.1 15.8 31.0 57.8 104.7

REA 23,320 Regression Erosion atlas 54.5 6.6 42.1 52.8 81.8
REA,Agri 11,555 Regression Erosion atlas 52.8 5.3 42.1 51.7 81.0
RRW,Reg 23,320 Regression RADKLIM 53.2 6.8 32.8 53.0 77.0

RRW,Reg,Agri 11,555 Regression RADKLIM 51.9 6.4 32.8 52.1 71.4
RG,Reg 110 Regression Gauges 57.0 8.8 44.7 55.0 84.7

RRWG,Reg 110 Regression RADKLIM 53.1 7.8 35.9 52.4 73.0
REAG 110 Regression Erosion atlas 55.9 8.1 45.2 53.7 81.8
RYW,F 23,320 DIN scaled RADKLIM 90.1 22.8 44.5 84.8 269.1

RYW,F,Agri 11,555 DIN scaled RADKLIM 84.2 18.6 44.5 81.3 227.0
RG,F 110 DIN scaled Gauges 84.6 21.6 56.1 79.1 165.1

RYWG,F 110 DIN scaled RADKLIM 93.4 24.6 48.0 89.8 162.7
RG,P 110 DIN scaled Gauges 64.4 16.4 42.6 60.1 125.5

Figure 2. Boxplots of all R-factor derivatives grouped by spatial extent. In the lower subplots,
the average of the rain gauges (RG,DIN) and the rain gauges in pixels with cropland (RG,DIN,Agri) have
been added as a ground-truth reference. See Table 1 for explanation of the used abbreviations.
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Using the regression equation from the erosion atlas (Equation (3)) and the RADKLIM RW
product to derive RRW,Reg yielded comparable values as REA with a slightly lower mean and maximum,
significantly lower minimum, but a slightly higher median and standard deviation. For RG,Reg,
all statistical values were slightly higher than for REA and RRW,Reg. Consequently, before scaling,
the rain gauge dataset consistently produces the highest R-factors, but the magnitude of the differences
is governed by the derivation method. The input dataset has little influence on the statistical
characteristics of the outcome when using a regression equation and the major differences between
these regression-based derivatives are the spatial resolutions and spatial distributions (see Section 3.2).
When grouping all R-factor derivatives by the calculation method—irrespective of input data and
spatial extent—the mean of those R-factors derived according to DIN 19708 (without scaling) is 9.1 kJ/m2

mm/h higher than the mean of all R-factors derived using the regression equation. Furthermore,
with 15.8 kJ/m2 mm/h, the DIN method group showed on average a 122.2% higher standard deviation
than the regression method group (7.1 kJ/m2 mm/h), which underlines the smoothing effect that can
be obtained by using a regression equation instead of the event-based method according to DIN
19708. The difference between both methods is particularly well illustrated by the very steep empirical
cumulative distribution functions (ECDF) of all regression-based derivatives (see Figure 3).

Figure 3. Empirical cumulative distribution functions (ECDF) for all spatially highly resolved R-factor
derivatives. The ECDFs for the rain gauges (RG,DIN) and the rain gauges in pixels with cropland
(RG,DIN,Agri) have been added as a ground-truth reference.

Selecting pixels with cropland leads to an average decrease of RYW,DIN by 3.8 kJ/m2 mm/h (−6.6%).
The minimum did not change, while the maximum decreased by 27.1 to 146.1 kJ/m2 mm/h (see
Figures 2 and 3). Taking into account only the pixels with cropland and rain gauges, the count
was reduced to 54 (a total of 54 rain gauges are located in radar pixels with cropland), the average
R-factor (RYWG,DIN,Agri) decreased also by 3.8 to 56.3 kJ/m2 mm/h and the maximum decreased by
12.5 to 92.2 kJ/m2 mm/h. For RG,DIN, the impact of the data selection on the statistical distribution is
considerably higher due to the smaller sample size. Its average decreased by 6.1 to 74.5 kJ/m2 mm/h,
whereby the maximum decreased by 42.5 to 114 kJ/m2 mm/h when selecting only pixels with cropland.
Consequently, the removal of many high erosivity values in the mountainous regions (see Figure A1),
for which the uncertainty and underestimation of the radar data is particularly high, leads to a slightly
better agreement of the R-factors calculated according to DIN 19708 from RADKLIM and rain gauge
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data. Grouping the nine R-factor derivatives based on RYW,DIN, RRW,Reg and REA by spatial extent
resulted in a mean of 55.2 kJ/m2 mm/h for all pixels of the study area, 52.9 kJ/m2 mm/h for pixels with
cropland and 56.3 kJ/m2 mm/h for pixels with a rain gauge.

In regard to the data source, the results showing an underestimation of rainfall erosivity by the
radar climatology compared to rain gauge data are in line with the outcomes of Fischer et al. (2018),
thus the application of the proposed correction factors was considered to be useful and necessary.
After scaling, the R-factors of the radar climatology and rain gauges correspond much better (see
Figures 2 and 3). The difference between the two datasets shifts in favour of the radar climatology,
since on average RYW,F is 8.8 kJ/m2 mm/h higher than RG,F (see Table 2). In comparison to REA,
both R-factors were significantly higher after scaling. On average, RYW,F was 65.3% higher and RG,F
was 58.5% higher than the R-factor REA of the erosion atlas. Although the correction factor proposed
by Panagos et al. [23] reduces the R-factor to a level close to RYW,DIN, RG,P still showed an 18.2%
higher mean than REA. Irrespective of the dataset used for derivation and the application of correction
procedures, an increase of the R-factor compared to REA can thus be determined without doubt.

3.2. Spatial Distribution

For erosion control applications at a federal state scale which aim to identify regions with a
particularly high risk of erosion, the spatial distribution of rainfall erosivity is actually more relevant
than the absolute erosivity values. The lowest values of RYW,DIN occur in the north of Hesse, around
the West Hesse Depression, in an area for which no radar measurements were available during some
months of the years 2007 and 2014 due to radar hardware upgrades. The average value of the annual
R-factor without these two years shows that the minimum is nevertheless located in this area. This is
therefore in accordance with the R-factor REA (calculation based on regression), which also shows a
minimum in this area (see Figure 4). The areas of relatively low R-factors northwest of Fulda and in
the Upper Rhine Plain correspond well in both datasets, too. In the north-east of Hesse, however,
the newly calculated R-factor RYW,DIN showed slightly lower erosivity over a large area with a similar
spatial distribution. Both datasets showed an increase of the R-factor with increasing terrain height,
whereby RYW,DIN showed significantly higher values over a large area, especially in the Odenwald,
Taunus, Westerwald and at Vogelsberg. However, at Vogelsberg, a weakness of the radar climatology
to correctly quantify precipitation at higher altitudes was evident as the increase of the R-factor in
the lower slope areas was considerably higher than in the summit area. In the area of Wetterau,
a negative spoke of the Frankfurt Radar was clearly visible in RYW,DIN and all other R-factors derived
from RADKLIM. Still, in this area an increase of the R-factor compared to the erosion atlas can be seen
in most of the grid cells, in some places even up to 45% (see Figure 5a).

The scaling is able to compensate for the underestimation of the R-factor by the radar climatology,
which becomes particularly obvious in the northern parts of Hesse where the difference to the erosion
atlas shows mostly positive values except for a few single pixels (see Figure 5c). Moreover, Figure 5b
shows much better conformity with RG,DIN in the entire study area, which has already been indicated
in the previous section.
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Figure 4. R-factor comparison between RYW,DIN, RG,DIN (a), REA (b), RRW,Reg and RG,Reg (c).

Figure 5. R-factor percentage change of RYW,DIN against REA (a), scaled R-factors RYW,F and RG,F

(b) and percentage change of RYW,F against REA (c).

3.3. Derivation of Updated Regression Equations

The statistical comparisons in Section 3.1 show consistently lower values for all R-factors derived
by means of regression. Besides the method itself and the input data source, the observation time
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period of the data used for the derivation of the regression equation might play a role due to climate
change, which is why we derived an updated regression equation for comparison.

The new regression equations derived from the rain gauge data and the radar climatology both
show a strong correlation between summer precipitation and R-factor. The fitted regression line has a
considerably higher slope than the original one used for the erosion atlas (Equation (3)) (see Figure 6).
Some data points of RYW,DIN, which are mainly located in the area of the radar gap in northern Hesse,
are still below the regression line from the erosion atlas. For RG,DIN, however, all data points are above.
Consequently, for the period 2001–2016, the regression equation used in the erosion atlas provides a
value deviating from the R-factor according to DIN 19708 for all of the rain gauges.

Figure 6. Comparison of regression models between different R-factors and the respective mean
summer precipitation sums.

When considering the newly derived regression equations from the radar climatology, it is striking
that the equations for the entire data set and the pixels at the rain gauge locations are almost identical
(see Figure 6). Consequently, the spatial distribution of the rain gauge locations can be regarded as
very representative for mapping the overall distribution of rainfall erosivity in Hesse.

Another striking difference with regard to the sample size, however, is a series of several very high
values of RYW,DIN in the range between 400 and 500 mm summer precipitation. These are only included
in the R-factor of the entire radar climatology dataset, but are not significantly reflected in the regression
due to their relatively small number. Therefore, it can be assumed that extraordinarily intensive
individual events have a strong impact due to the comparatively short time series. These events could
only be detected by the high spatial resolution of the radar climatology and are not included in the rain
gauge dataset.

Using the new regression equation derived from the rain gauges (R = −43.22 + 0.3 NSu) with
the summer precipitation sums of the RADKLIM RW product for the federal state of Hesse leads
to a R-factor value range between 29.7 and 123.9 kJ/m2 mm/h with an average of 73.2 kJ/m2 mm/h.
It has thus a significantly lower maximum than all event-based R-factor derivatives. Its mean value
is slightly lower than that of RG,DIN (80.6 kJ/m2 mm/h) due to the slight overall underestimation of
precipitation by the radar climatology, and lies approximately in the centre between the averages of
RYW,DIN (58 kJ/m2 mm/h) and the corrected RYW,F (90.1 kJ/m2 mm/h).
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4. Discussion

An evaluation of the radar climatology dataset revealed that it slightly underestimates precipitation
quantities. This underestimation is particularly pronounced at higher altitudes and at high rainfall
intensities [31]. In particular, the latter plays a decisive role for rainfall erosivity since rainfall
intensity is directly linked to the kinetic energy of rainfall and, thus, its ability to detach soil particles.
The assumption that the R-factor calculated from the radar climatology according to DIN 19708 without
input data correction is too low could be confirmed by comparing it with the R-factor derived from the
rain gauge dataset. However, irrespective of the dataset used for derivation, the spatial scale and the
application of correction procedures, an increase of the R-factor compared to REA which is currently
used in the technical information system erosion atlas Hesse [13] can be determined without doubt.
This result highlights the need of updated R-factor methods for consultation and planning in Hesse.

The R-factors calculated by the regression equation from the erosion atlas, the summer precipitation
sums of radar climatology, and rain gauges showed only slightly higher average values than the
erosion atlas. Considering the significant differences to the R-factor derivations according to DIN
19708, this indicates that the regression equation used for the erosion atlas, which was derived
from precipitation data of the 1960s, 70s and 80s, is no longer representative of the current climate
conditions. Apparently, although there has only been a small increase in summer precipitation, there is
a change in the heavy rainfall characteristics and/or in the relationship between erosive rainfall and
total precipitation amount. This observation is in line with the projected changes in precipitation
characteristics with regard to climate change. For most of Europe, it is expected that precipitation will
increase during winter and decrease during summer [32,33]. Furthermore, the number of wet days
is expected to decrease, whereas the intensity and the return levels of daily precipitation events will
increase [12,32,34,35]. The combination of increasingly intense heavy rainfall and the reduced water
infiltration capacity of dry soils is expected to amplify the risk of floods [36] and is also very likely to
increase soil erosion. These observations indicate that the validity of regression equations for R-factor
calculation might decrease, particularly if mean summer precipitation sums are used instead of mean
annual sums. An additional influencing factor for higher R-factors calculated from rain gauge data
could be the better recording of intensity peaks by more accurate modern rain gauges as opposed to
the less accurate rain gauges used to collect the data for the 1971–2000 dataset [37].

Despite the discussed limitations, the regression-based approach has the advantage that it is
much easier to apply in practice than the method according to DIN 19708, which is computationally
much more expensive, especially when using it on spatially highly resolved data such as the radar
climatology. Moreover, the use of a regression equation with precipitation sums always leads to a
certain smoothing and is thus more robust against outliers than the event-based method when only
comparatively short precipitation time series are available. However, as our results have clearly
shown, the regression approach also requires frequent updates of the equations and hence a certain
maintenance of the methodology. Obviously, updates to the equations rely on the availability of rain
gauge data. For Germany, this is not a major issue anymore since temporally highly resolved rain
gauge data are freely available at the DWD Open Data Portal. In other countries, however, this may be
a greater obstacle.

With regard to the scaling of the R-factors which was proposed in recent studies [22,23], it should
be noted that a correction that increases the RADKLIM R-factor is undoubtedly necessary to compensate
for the systematic underestimation of precipitation data obtained from radar climatology. However,
the degree of correction is difficult to estimate due to a lack of reference. If the scaled R-factor of the
rain gauge dataset RG,F is regarded as a correct reference for validation, the correction applied for
RYW,F and RYWG,F appears somewhat too high, especially when looking at Figure 2. When considering
the identical sample size and the largely consistent location of the point-pixel data pairs of RYWG,F,
the advantage of the radar and the fact that more events tend to be recorded hardly matters. However,
the median of RYWG,F almost corresponds to the third quartile of RG,F. Here, a direct transferability of
the correction factors, which were derived from a four-year series of measurements of 12 rain gauges
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within one square kilometre in Bavaria [22], may be limited. Further research efforts and measurements
to extend these time series and derive correction factors of higher spatial representativity from more
than one single raster cell would have the potential to significantly reduce the uncertainty when using
radar climatology data—not only for rainfall erosivity estimation but for applications related to heavy
rainfall in general.

In contrast, the scaling according to Panagos et al. [23] to compensate for the temporal resolution
of the input data provides very questionable results. Taking into account the conducted plausibility
check of the radar climatology and the comparisons with the rain gauge data by Kreklow et al. [31],
an underestimation of the R-factor by the radar data is clearly demonstrated. Since the correction
factor proposed by Panagos et al. [23] reduces the R-factor of the rain gauges to a level almost identical
to that of the radar climatology, a correction factor that is too low must be assumed. The correction
factor does not appear to be representative for Hesse, due to the fact that its derivation is based on
a rain gauge dataset for the whole of Europe and equally includes data from maritime, continental,
temperate, subpolar and Mediterranean climates. Already for the two neighbouring countries Austria
and Italy, Fiener et al. [38] found significant differences in the magnitude and monthly distribution of
the R-factor, which indicates a lack of spatial representativity of the temporal scaling factor proposed
by Panagos et al. [23]. Such representativity issues have been subject to discussion between the
authors [4,38,39]. In addition, the original methodology for the calculation of the R-factor is based
on continuous precipitation recordings, which were aggregated to intervals of constant intensity [1].
Consequently, a temporal resolution of 1 min as a lowest reference chosen by Fischer et al. [22] is
much closer to the original method than the reference resolution of 30 min used by Panagos et al. [23].
The much lower reference resolution used by Panagos et al. [23] thus explains the significantly lower
temporal correction factor compared to the factor proposed by Fischer et al. [22].

With regard to practical application, it is recommended that the R-factor map currently used in
the erosion atlas should be updated. Our results show that the first and most important step is to use
more recent precipitation data for derivation, which are more representative under current climate
conditions. Obviously, using the event-based method according to DIN 19708 with radar climatology,
which was proposed by Auerswald et al. [6], provides the R-factor with the highest spatial detail,
but it may be locally biased by some extreme rainfall events or radar artefacts which are not balanced
out in the comparatively short radar time series. Moreover, a correction of R-factors derived from
radar climatology according to DIN 19708 is necessary to compensate for underestimation, but the
level of correction required is still subject to discussion. However, the radar climatology time series is
still considerably longer than the time series used for deriving the original regression equations by
Sauerborn [9], of which one was also used in the erosion atlas Hesse. Consequently, during a transition
period, the most robust and easy-to-use approach to obtain updated R-factors is by using an updated
regression equation derived from recent rain gauge data with summer precipitation sums calculated
from radar climatology data. On the one hand, this approach accounts for climate change by increasing
the R-factors according to reliable rain gauge observations. On the other hand, it makes use of the
high spatial resolution of radar data and comprises a certain smoothing, since precipitation sums are
less biased by local extreme events and by the underestimation of high rainfall intensities by weather
radar in comparison to the event-based R-factors derived according to DIN 19708. Moreover, due to
less snowfall and thus fewer uncertainties in the radar climatology data during the summer half-year,
the use of radar-based summer precipitation sums increases the robustness of the recommended
method compared to the use of radar-based annual precipitation sums.

Due to the central location of Hesse within Germany, the recommended updated regression
equation based on rain gauge data for Hesse (R = −43.22 + 0.3 NSu) has a high transferability for
most of Germany. However, for federal states in northern and eastern Germany which have a more
maritime or continental climate, regional regression equations should be calculated from recent local
rain gauge data.
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5. Conclusions

In this study, we compared several derivation approaches for the R-factor of the USLE and
evaluated the performance of radar climatology and rain gauge data for different methods and three
spatial extents. Moreover, two correction factors proposed in other studies were tested and updated
regression equations were derived for the German federal state of Hesse.

Regarding the three hypotheses put forward at the beginning of this study, our results can be
summarised as follows:

1. The newly derived R-factors from rain gauge and radar climatology data are indeed higher
than the R-factors from existing calculations due to climate and weather changes. For the study period
of 2001–2016, the regression equation used in the erosion atlas provides a lower R-factor than DIN
19708 for all of the rain gauges.

2. The contradiction between the theoretically higher R-factor of the radar climatology due to
the more complete recording of all erosive rainfall events on the one hand and the underestimation
of the R-factor due to the attenuation of intensity peaks, on the other hand, could be established.
In the spatial average as well as when looking at the point-pixel data pairs, which largely eliminates
the influence of the higher spatial resolution of the radar climatology data, the R-factors of the rain
gauges are significantly higher. However, when looking at the entire radar data set, some strikingly
high R-factor values, which were not captured by the rain gauges, become apparent. Due to their
comparatively small number, however, they have no significant influence on the spatial mean value.
In addition, these extraordinary high R-factors can also be a result of very intensive rainfall events in the
comparatively short observation period that might be smoothed by prolonging the radar climatology
dataset. The correction of the R-factors according to Fischer et al. [22] provides an improvement of the
results for the radar climatology, although a possible overcorrection cannot be excluded.

3. The spatial distribution of the newly calculated R-factor according to DIN 19708 and that from
the erosion atlas show a relatively good conformity with minima and maxima in similar regions as
well as a consistent mapping of a relief dependency. In the northeast of Hesse, the R-factor calculated
from the uncorrected radar climatology according to DIN 19708 shows comparatively lower values
than the erosion atlas. In contrast, it also shows large areas of higher R-factor values than the erosion
atlas, especially in the ridges of the low mountain ranges and in the central lowland areas of Hesse,
for example, the Wetterau. The updated regression equations, which are almost identical for all radar
pixels and the point-pixel data pairs, indicate that the rain gauge locations are very representative for
mapping the overall spatial distribution of rainfall erosivity in the study area.

The results of this study clearly indicate that the R-factor map currently used in the erosion atlas
should be updated. For a transition period until the radar climatology time series is long enough to
compensate for bias from extraordinarily intensive rainfall events, it is recommended to apply a new
regression equation derived from recent rain gauge measurements with summer precipitation sums
calculated from radar climatology data.

With the progressive improvement of the data basis (time series, quality and correction),
however, radar climatology data will be further incorporated into operational applications such
as risk management and erosion consulting.
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Olsen, P.; Tadić, M.P.; et al. Reply to the comment on "Rainfall erosivity in Europe" by Auerswald et al.
Sci. Total Environ. 2015, 532, 853–857. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

103





water

Article

Impact of Land Cover Change Due to Armed Conflicts
on Soil Erosion in the Basin of the Northern
Al-Kabeer River in Syria Using the RUSLE Model

Hussein Almohamad

Department of Geography, College of Arabic Language and Social Studies, Qassim University,
Buraydah 51452, Saudi Arabia; H.Almohamad@qu.edu.sa

Received: 17 October 2020; Accepted: 22 November 2020; Published: 26 November 2020

Abstract: Due to armed conflicts, the sudden changes in land cover are among the most drastic and
recurring shocks on an international scale, and thus, have become a major source of threat to soil and
water conservation. Throughout this analysis, the impact of land cover change on spatio-temporal
variations of soil erosion from 2009/2010 to 2018/2019 was investigated using the Revised Universal
Soil Loss Equation (RUSLE) model. The goal was to identify the characteristics and variations of
soil erosion under armed conflicts in the basin of the Northern Al-Kabeer river in Syria. The soil
erosion rate is 4 t ha−1 year−1 with a standard deviation of 6.4 t ha−1 year−1. In addition, the spatial
distribution of erosion classes was estimated. Only about 10.1% of the basin is subject to a tolerable
soil erosion rate and 79.9% of the study area experienced erosion at different levels. The soil erosion
area of regions with no changes was 10%. The results revealed an increase in soil erosion until
2013/2014 and a decrease during the period from 20013/2014 to 2018/2019. This increase is a result of
forest fires under armed conflict, particularly toward the steeper slopes. Coniferous forest as well as
transitional woodland and scrub are the dominant land cover types in the upper part of the basin,
for which the average post-fire soil loss rates (caused by factor C) were 200% to 800% higher than
in the pre-fire situation. In the period from 2013/2014 to 2019/2020, soil erosion was mitigated due
to a ceasefire that was agreed upon after 2016, resulting in decreased human pressures on soils in
contested areas. By comparing 2009/2010 (before war) with 2018/2019 (at the end of the war stage),
it can be concluded that the change in C factors slowed down the deterioration trend of soil erosion
and reduced the average soil erosion rate in more than half of the basin by about 10–75%. The area
concerned is located in the western part of the basin and is relatively far from the centers of armed
conflicts. In contrast, the areas with increased soil erosion by about 60–400% are situated in the
northeast and east, with shorter distances to armed conflict centers. These findings can be explained
by forest fires, after which the burned forests were turned into agricultural land or refugee camps and
road areas. Understanding the complex biophysical and socio-economic interactions of exposure
to land loss is a key to guarantee regional environmental protection and to conserve the ecological
quality of soil and forest systems.

Keywords: soil erosion; RUSLE; land cover change; armed conflict; Northern Al-Kabeer river Syria

1. Introduction

Soil erosion and its consequent land degradation in the marginal lands of the Mediterranean
is a serious problem, as it directly affects the environment and sustainable development [1–5].
The eastern Mediterranean area is especially vulnerable to erosion, since it is subject to long dry spells
accompanied by heavy rainfall falling on steep slopes with weak soil [2,6]. Erosion levels are predicted
to rise in the 21st century due to climate change [7]. While soil erosion results from the interplay
between soil erodibility and rainfall erosivity factors, maladjusted human activities such as slope
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agriculture, deforestation, expansion of urban areas and highways as well as overgrazing exacerbate the
issue [8,9]. Erosion has been growing due to land cover change and unsustainable land cover transition
management activities. The increase of wildfires are one of the most important sources of land-use
change in the Middle East [10,11]. This problem has been intensified by the emergence of numerous
armed conflicts. Syrian ecosystems are often vulnerable to wildfires. Accelerated deforestation cycles
due to wildfires in these ecosystems are a significant limiting factor in their sustainability. In the
mountainous regions of Syria, where dense forests cover much of the area, forest fires are the worst
human intrusion [12]. These fires have increased dramatically over the past 10 years along with
changes in land use due to the Civil War. Many regions were subject to extensive fires in conflict
areas, which led to the destruction of crops and forests [13,14]. In 2010, Syria had 116 kha of natural
forest, covering over 0.62% of its land area. From 2010 to 2019, Syria lost 16.18 kha of forest, which is
equivalent to a 14% decrease in tree cover since 2010 [15]. Although fires are a natural occurrence
that can have beneficial effects on the revitalization of vegetation, the high frequency and intensity of
these fires have caused the destruction of forest habitats. Warfare and armed conflicts are among the
most dramatic shocks, and can have tremendous impacts on communities and, hence, on land systems.
Although widely believed to have significant consequences on land-use transition and soil erosion,
research into how military wars influence land-use decisions and soil erosion as well as its trends is
rare. Studies have indicated that the impact of armed conflicts on forests and land use can be broadly
summarized as reaching in two directions: firstly, this interaction entails a shift in resources or land
usages caused by the intensified or inappropriate utilization of natural resources throughout the war.
Examples of this include intensified timber and fuelwood use close to refugee settlements [16,17], a lack
of habitat, where protected areas are shelters for terrorists, or areas being left unguarded, leading to
stolen natural resources throughout periods of fighting [18]. Secondly, the interaction between armed
conflicts and forests and land use suggests that biodiversity and ecosystems may also benefit from
military conflicts. This would, for example, be the case in the dispute areas where human activity is
reduced or in landmine-contaminated areas (e.g., the demilitarized area between North and South
Korea) [19,20]. Forest recovery has also been associated with more complex social and economic shifts
tied to civil war and global trade in El Salvador [17,21].

The Syrian coastal mountain fires are one of the most important sources of land-use change in the
Middle East. Erosion due to the wildfire impact is of great concern to land managers. Research on soil
degradation due to water erosion in Syria is restricted to a few studies focused on experimental and
modeling studies. For instance, Karydas et al. [22] found that the runoff coefficient was three times
greater on burned watershed than the unburned part. In an experimental study, in Ein Al-Jaouz/Tartous
the soil erosion rate was 0.1 t ha−1 year−1 for the area that was not burned and 7.2 t ha−1 year−1

when burned. Reference experimental sites in the Syrian coastal mountains region found that the
soil loss rates ranged between 9 and 56.5 t ha−1 year−1 in the burned forest compared to 1.4 and
15 t ha−1 year−1 before burning and 165 t ha−1 year−1 when the slope was 45% in the agricultural
system [23]. Mohammed et al. (2020) found that the average soil erosion rate ranged between 1.4 and
7.4 t ha−1 year−1 in the burned forest in five locations in the coastal region of Syria [24]. Abdo and
Salloum (2017) found a high soil erosion rate of 4% in the Alqerdaha basin of north-west Syria [25].
Barakat et al. (2014) [2] produced a soil erosion risk map based on the COoRdination of Information
on the Environment (CORINE) model for the middle and down the basin of the Northern Al-Kabeer
River and showed that 2% of the study area had a high-risk soil erosion rate, 22% a moderate-risk soil
erosion and 75% a low-risk soil erosion.

The impact of the war on erosion has not been addressed. Most studies were limited to the effect of
the war on agricultural production [13], the impact of the war on green spaces in the city of Aleppo [26]
and the impact of oil refining on the environment [27]. The conflict situation adversely affected the
agricultural sector, leading to a change in the land use patterns and a reduction in both the cultivated
land and forest areas.
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There are several models for predicting the magnitude of the erosion caused by water. The models
range from the empirical RUSLE (Revised Universal Soil Loss Equation [28]) and EPM (Erosion Potential
Method [29]) to the physical PESERA (Pan European Soil Erosion Risk Assessment), Water Erosion
Prediction Project [30,31] and WEPP (Water Erosion Prediction Project [32,33]).

These models vary considerably in factors and in the complexity involved in calculating each
factor [2,34–38]. Among them, the RUSLE model is considered as one of the widely applied empirical
model for estimating soil water erosion [39–41]. This model has not yet been verified in Syria [25],
but it has been verified in a number of Mediterranean regions (Portugal, Italy and the Palestinian
Autonomous Area) [42–45] that are similar to the study area. For example, Abu Hammad et al. [44]
checked the RUSLE in the study region and used field plots soil erosion measurements in the southeast
of the Ramallah District in the Palestinian Autonomous Area (65 km2). The results showed the RUSLE
soil loss was estimate to be three times the actual soil loss. By adjusting the RUSLE, according to the
prevailing conditions of the Mediterranean area, they improved the performance of the model three
times. Aiello et al. [45] also verified the rates of soil erosion at the sub-basin scale of the Bradano basin
(1500 km2) by comparison with the San Giuliano reservoir silting value. The total amount of gross soil
loss ranges between ~1.04 × 106 t year−1, as computed with the Revised Universal Soil Loss Equation
for Complex Terrain (RUSLE3D), and ~1.33 × 106 t year−1, as computed with the measured silting data.
The RUSLE estimation showed a good match with the measured silting data. We also verified the rates
of soil erosion in our study area at the sub-basin of the Northern Alkabeer basin by comparing them
with an analysis of the sediments in the reservoir provided by Hasan et al. [46] on 16 November 2017.
The RUSLE calculation showed good consistency with the measured sediment outputs. The total gross
soil loss ranges from 465,785 t year−1, as calculated with RUSLE, to 474,865 t year−1, as sedimentation
has been measured. The validation attempts of the RUSLE model showed its feasibility to estimate the
spatial distribution of soil loss for a region in the Mediterranean areas, to provide estimates for soil
erosion at the watershed scale and to ensure a good match with the measured silting data. Based on
this, we used the RUSLE model, considering that its input parameters are easily available [6,47,48].

In view of the above, the primary objective of this article is to estimate the impact of land cover
change on the spatio-temporal distribution and to identify characteristics of soil erosion for the basin
of the Northern Al-Kabeer river from 2009/2010 (hydrological year from September to August) to
2018/2019 under armed conflict. Estimates are to be made using the RUSLE model Remote Sensing
(RS) and Geographic Information Systems (GIS) technologies with free available data for conditions
before and during armed conflict in Syria. The second goal is to provide decision-makers and planners
with knowledge to take sufficient priority steps for forest and soil protection when the war is over.

2. Materials and Methods

2.1. Study Area

The research was performed in the basin of the Northern Al-Kabeer River of the Northern Province
of Latakia (Syria), one of the main coastal rivers. The Northern Al-Kabeer watershed covers an 845 km2

area (35◦29′11.546′′ to 35◦53′48.59′′ N, and 35◦48′14.36′′ to 36◦15′7.47′′ E) (Figure 1). The length of
the river within the Syrian lands is about 60 km. It originates from the northern end of the western
mountains of Latakia, specifically from the high mountains situated at the Turkish border and as
the Ansari Mountains of the northern province of Latakia. The altitudinal range is from around 1 m
above mean sea level in the western plain (the so-called Latakia Plains) to the northeastern coastal
mountains (1551 m) (Figure 1). About 81% of the total basin area includes hilly and mountainous
regions; the remaining 19% are flatlands. The region lies within the Mediterranean climate zone [49].
It is mainly characterized by seasonal atmospheric circulations, altitude and topography, has an average
annual temperature of 12–28 ◦C and an annual precipitation of 550–1100 mm. The main land-use areas
are forests and shrubland in the east basin, whereas components from agriculture field, forest groves of
citrus and olive trees and other fruits can be found in the western basin [49]. Forests cover widespread
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areas throughout the upper basin and parts of the central basin. The most important of these host
species are Pinus bruti, Quercus calliprino and Pistasia palaestina (Boiss) [50].

Figure 1. Location and topography of the study area in Syria.

2.2. Data

The key relevant data included in this study are based on five input parameters derivable from
the RUSLE model’s soil properties, precipitation, topography, cover and crop management as well as
conservation practices as follows:

Due to the lack of climatic data from earth stations during the war, we selected daily Climate
Hazards Group InfraRed Precipitation with Station data (CHIRP) V2.0 with a spatial resolution of 0.25◦
for this study. The rainfall is estimated from Rain Gauge and Satellite Observations. Monthly and
yearly data were calculated according to the hydrological year (September–August) for the years
2009/2010, 2013/2014 and 2018/2019.

In this research, freely available data from the Panchromatic Remote-sensing Instrument for Stereo
Mapping, Digital Elevation Model (PALSAR DEM) with a spatial resolution of 12.5 m were collected
from the Alaska Satellite Facility Distributed Active Archive Data Center (ASF DAAC) in GIS-ready
GeoTIFF format. Landsat TM remote sensing images in 2009/2010 and Landsat 8 Operational Land
Imager (OLI) data from 2013/2014 and 2018/2019 were collected from the Data Sharing Infrastructure
of Earth System Science (http://www.geodata.cn), with a spatial resolution of 30 m.

Soil data sets in SoilGrids system at 250 m, including soil type distribution map soil properties
(sand, clay, silt and organic carbon fractions), were compiled by International Soil Reference and
Information Centre (ISRIC)—World Soil Information.

2.3. Soil Erosion Using RUSLE Model

In the RUSLE model, the following five parameters were used to predict soil loss [51]:

A = R × K × LS × C × P (1)

here, A: computed spatial yearly soil loss (t ha−1 year−1); R: Rainfall erosivity factor (MJ mm ha h−1

year−1); K = soil erodibility factor (t h−1MJ−1 mm−1); LS = slope length factor and slope steepness
factor (unitless); C= land surface cover management factor (unitless); and P = conservation practice
factor or erosion control (unitless).
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Due to the ongoing war in the region and the high costs of field work measurements [52,53],
the study relied on secondary data available in the Geographic Information System (GIS) and remote
sensing. Field work was limited to field trips to verify fires, land use changes and soil erosion
in 2012–2016.

The R factor determines the erosivity of rainfall at a given location, depending on the amount
and intensity of rainfall and the rate of rainfall-related runoff [54]. The majority of sheet or rill erosion
is caused by high runoff flow as a consequence of heavy storms. In this analysis, the approach of
Arnoldus (1977) was employed, as it was derived under similar climate conditions as in the study
region and is commonly used in Syria [49,55] (see Appendix A). The rainfall erosivity factor (R) was
calculated using a method based on monthly average rainfall aggradations given by data from the
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) including the interpolation tool
Inverse Distance Weighted (IDW) in the program ArcGIS 10.7.

Soil erodibility factor (K) is a dynamic property that quantifies the susceptibility of soil particles in
sheet flow and rills to detachment and transport by a splash during runoff, water flow or both [53,56–58].
Soil erodibility is related to the combined impact of rainfall, drainage and soil loss penetration, and is
generally referred to as soil erosion factor (K). This study used the K factor (Figure 2a), estimated using
soil properties (sand, silt, clay and organic carbon fractions) at 5 cm depth compiled by ISRIC—World
Soil Information with a spatial resolution of 250 m [39]. The equation was used to estimate the erodibility
of soil, as suggested by [59] (see Appendix A).

(a)

Figure 2. Cont.

109



Water 2020, 12, 3323

(b)

Figure 2. Factor maps of soil erosion modeling of the Northern Al-Kabeer river basin. (a) Soil erodibility
factor map; (b) slope length and slope steepness (LS) factor map.

The LS factor reflects the influence of local topography on the soil erosion rate, integrating the
effects of the slope length (L) and slope steepness (S). The LS factor has been generated using the
PALSAR DEM with a spatial resolution of 12.5 m (2011), which has been collected from the Alaska
Satellite Facility Distributed Active Archive Data Center (ASF DAAC).

The slope length factor (L) is provided by the Desmet and Govers (1996) [60], and is enhanced by
the USLE estimation technique. It considers the upstream contribution area, where the impact of the
slope length is a function of the ratio of rill erosion to inter-rill erosion (caused by raindrop impact) and
is more appropriate for areas with complex slopes. Steep slopes (L) and rolling topography provide a
vital medium for a lower position of the springing runoffwater. The slope-steepness factor (S) shows
how easily water can flow over a given surface that interacts with the ground angle and affects the soil
erosion rate [40]. The estimation of the S-factor originally proposed by Wischmeier and Smith (1978)
was proposed by McCool et al. (1987) in the RUSLE model to achieve an improved representation of
the slope steepness factor, taking into account the ratio of the rill and inter-rill erosion. McCool et al.
(1987) found that soil erosion occurred more rapidly on slopes with a steepness of more than 9%.
Therefore, he used one algorithm for slopes < 9% and another for slopes > 9% (see Appendix A).

The Normalized Difference Vegetation Index (NDVI) is one method to estimate the C factor from
remotely sensed data and is the most widely used vegetation index. In Europe, van der Knijff et al. [61]
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developed the following relationship with the image satellite-based standardized vegetation difference
index (NDVI) between field-calibrated C factor values to produce a continuous C factor surface
(Equation (2)):

C = exp
[
−2

NDVI
(1−NDVI)

]
(2)

It was proposed to use the NDVI image acquired when soil erosion is strongly active during the
rainy season. Thus, the C factor layer (Figure 2b) used in our study was created using Landsat TM
remote sensing images in 2009/2010 and Landsat 8 Operational Land Imager (OLI) 2013/2014 and
2018/2019 for the rainy seasons (September–May) using Equation (2).

The Conservation Practice Factor in the RUSLE model expresses the effect of conservation practices
mitigating erosion by minimizing the volume and rate of water runoff. It is the ratio of soil loss to the
related loss of slope-parallel tillage with a particular support activity on cropland. As a result of the
lack of support activities in place in the Northern Al-Kabeer river basin, a value of 1.0 for the entire
region was assumed to support the conservation practice factor.

2.4. Role of Vegetation in the Soil Erosion Changes

In order to detect the role of vegetation in soil loss transition, the soil erosion modulus of various
times has been determined in tow scenarios according to Wang and Su [62]. The natural condition
and C factor fixation to detect the role of vegetation in soil loss transition and the contribution rate
of vegetation to soil erosion were analyzed by comparing the average soil erosion modulus under C
factor fixation scenarios with the real average soil erosion modulus in the natural condition:

- The first scenario showed the natural condition of the soil erosion modulus in the initial year in
each period of 2009/2010–2013/2014, 2013/2014–2018/2019 and 2009/2010–2018/2019, i.e., the actual
soil erosion modulus in each period.

- Scenario C factor fixation is the soil erosion modulus calculated by the C factor value using the
end year of each period, i.e., 2013/2014 and 2018/2019, while other factors values remain as used
at the initial year of each periods.

The wildfire inventory dataset was created using the GPS data from the field surveys in 2012–2016
and evaluated using the hotspots of MODIS and Google Earth images. These corrections were manually
done in the geographic information system ArcGIS 10.7. However, they did not include all wildfire
events due to difficulty in access as a result of fires, artillery and missile shelling.

3. Results

3.1. Distribution of Soil Erosion Factors in the Northern Al-Kabeer River Basin

The factors were mapped by ArcGIS environment in the Northern Al-Kabeer river basin.
The erosion layers were generated at a cell size of 12.5 m, following the DEM resolution, which was
the finest among the input datasets. The results indicate that the value of the K factor varied from
0.019 to 0.023 t h−1MJ−1 mm−1 (Figure 2a). Much of the Northern Al-Kabeer basin areas are covered
with a texture of sand, clay and loam. The value of the LS factor ranged from 0.03 to 200 for the entire
region (Figure 2b). The cover management factor (C) value varied between 0 and 1. The R factor value
ranges from 375 to 650 MJ mm ha−1 h−1 yr−1, with the maximum values in the north-eastern part of
the basin and the lowest values in the south-western part of the basin. (Figure 3a–c). The average
R factor was 430 MJ mm ha h−1 year−1 in 2010 and then increased to 505 MJ mm ha h−1 year−1 in
2013/2014, but decreased again to 445 MJ mm ha h−1 year−1 in 2019/2020. The value of the C factor
decreased in 2013/2014 in comparison to 2009/2010 due to the forest fire in 2012 and 2013. After that
it increased again until 2019/2020. The soil that is covered by trees and forests, and hence protected
from soil erosion, are classified as low (0.001–0.03). Built-up areas/settlements and barren land are
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associated with high soil loss and a value of 0.8–1. Similarly, there is less soil erosion associated with
farming. These are ranked as 0.18 and 0.28, respectively (Figure 3d–f).

(a)

Figure 3. Cont.
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(b)

Figure 3. Cont.
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(c)

Figure 3. Cont.
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(d) 

Figure 3. Cont.
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(e)

Figure 3. Cont.
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(f)

Figure 3. Factor maps of soil erosion modeling of the Northern Al-Kabeer river basin (a–c) map of
rainfall erosivity factor in 2009/2010, 2013/2014 and 2018/2019, respectively; (d–f) cover management
factor map in 2009/2010, 2013/2014 and 2018/2019, respectively.

3.2. Estimation and Spatial Distribution of Soil Erosion Rates in the Northern Al-Kabeer River Basin

To facilitate the analysis of the spatial distribution of the soil erosion rates and to promote the
visual comparison of the three maps, the basin’s soil loss was classified into eight categories [40,61,63]
(Table 1). The distribution of soil erosion maps in 2009–210, 2013–2014 and 2018–2019 was produced in
ArcGIS 10.7 (Figure 4; Table 1).
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(a)

Figure 4. Cont.
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(b)

Figure 4. Cont.
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(c)

Figure 4. Erosion classification map of the Northern Al-Kabeer watershed in (a) 2009/2010, (b) 2013/2014
and (c) 2018/2019.

Table 1. Soil erosion classes in 2009/2010, 2013/2014 and 2018/2019.

Erosion Classes (t ha−1 year−1)

2009/2010 2013/2014 2018/2019

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Very low—VL (0–0.5) 74.5 8.8 42.3 5.0 186.6 22.1

Low—L (0.5–1) 95.9 11.4 36.2 4.3 178.7 21.2

Low medium—LM (1–2) 198.8 23.5 84.1 9.9 217.1 25.7

Medium—M (2–5) 316.5 37.5 238.1 28.2 191 22.6

High Medium—HM (5–10) 113.5 13.4 252.7 29.9 52.3 6.2

High—H (10–20) 31.6 3.7 126.2 14.9 13.5 1.6

Very high—VH (20–50) 12.9 1.5 54.8 6.5 5.1 0.6

Extremely high—EH (>50) 1.4 0.2 10.8 1.3 0.7 0.1
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The average rate well exceeds the tolerance limit of 1 t ha−1 year−1 soil loss for the study areas.
In Table 1, it is observed that the soil erosion intensity in most of the study area was classified as low
medium to high medium (1–10 t ha−1 year−1), which is more than 66% of the river basin. About 24%
of the watershed is under the tolerant erosion rate. On the contrary, the distribution of soil losses in
the study area of over 10 t ha−1 year−1 (very high and extremely high soil classes) was lower and
accounted for around 10% of the total area. However, the rate of soil erosion remains high compared
to other basins in the Mediterranean region. The critically high watershed soil erosion is related to
the upstream portion of the river. Removal or alteration of the vegetation, destruction of the forest,
fires caused by human activities and shallow depth of the soil above the bedrock significantly increase
soil erosion. Overall, the far east and southeast portions of the basin (upstream region and eastern
portion of the downstream region of the Northern Al-Kabeer river) is characterized by soil loss, where a
shallow depth of the inceptisols (xerofluvents) soil and built up areas are causing erosion (Figure 4).
The very low erosion class was found mainly in the upstream region due to land cover by forest, and in
the downstream region due to the flat terrain (Figure 4).

From 2009/2010 to 2013/2014, the average annual soil erosion module increased and decreased
from 2013/2014 to 2018/2019 with an average of 3.6 t ha−1 year−1 and a standard deviation of 6.4 t ha−1

year−1 in 2009/2010; the average was 7.9 t ha−1 year−1 with a standard deviation of 12 t ha−1 year−1

in 2013/2014; and the average was 2.2 t ha−1 year−1 with a standard deviation of 4.3 t ha−1 year−1 in
2018/2019.

Tables 2–4 show the erosion change matrix between 2009/2010, 2013/2014 and 2018/2019. In the
period of 2009/2010 to 2013/2014, the soil erosion area of regions with no changes was 30%. The region
shows that the total area under very low erosion, low erosion, low medium erosion and medium
erosion in 2009/2010 was nearly 9%, 11%, 24% and 38% of the total area, respectively. Different results
were observed for the watershed, where the area under very low erosion, low erosion, low medium
erosion and medium erosion was 5%, 4%, 10% and 28%, respectively, in the year 2013/2014. The region
of elevated erosion can primarily be attributed to the change from low medium erosion to medium
erosion, medium erosion to high medium erosion and high medium erosion to high erosion. The low
medium erosion area decreased from 24% to 10%; this 14% transferred to medium erosion and high
medium erosion.

Table 2. Change the soil erosion matrix classes from 2009/2010 to 2013/2014 (%).

Soil Erosion Classes
Soil Erosion Classes 2013/2014 Grand Total

VL L LM M HM H VH EH

Soil erosion
classes 2009/2010

VL 4.23 1.80 1.25 1.03 0.36 0.08 0.04 0.02 8.81
L 0.47 1.77 3.65 3.25 1.63 0.44 0.12 0.03 11.35

LM 0.19 0.57 4.02 10.73 5.33 2.05 0.55 0.07 23.52
M 0.08 0.12 0.89 11.95 16.87 5.63 1.73 0.19 37.45

HM 0.02 0.02 0.10 0.91 5.02 5.46 1.68 0.23 13.43
H 0.01 0.01 0.02 0.21 0.50 1.07 1.69 0.23 3.74

VH 0.01 0.00 0.01 0.06 0.16 0.19 0.65 0.43 1.53
EH 0.01 0.00 0.00 0.02 0.02 0.02 0.02 0.08 0.17

Grand total 5.02 4.30 9.94 28.17 29.89 14.93 6.48 1.28 100.00

From 2013/2014 to 2018/2019, the soil erosion area of the watershed with initially no change
decreased to 10%. The areas of very low, low and low medium erosion classes increased, with amplitude
reductions of 17%, 17% and 16%, respectively. The areas of medium, high medium, high, very high
and extremely high erosion decreased, with amplitudes of 6%, 24%, 13%, 6% and 1%, respectively.
The region with decreased erosion was primarily because 10%, 10% and 6% area under medium erosion
class was classified as very low, low and low medium erosion classes, respectively. Additionally,
6%, 12%, and 11% transferred from high medium to low, low medium and medium erosion classes,
respectively. It is noted that the erosion had decreased significantly in a short time.
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Table 3. Change the soil erosion matrix classes from 2013/2014 to 2018/2019 (%).

Soil Erosion Classes
Soil Erosion Classes 2018/2019 Grand Total

VL L LM M HM H VH EH

Soil erosion
classes 2013/2014

VL 4.97 0.05 0.00 0.00 0.00 0.00 0.00 0.00 5.02
L 3.71 0.54 0.04 0.00 0.00 0.00 0.00 0.00 4.30

LM 5.34 3.69 0.87 0.06 0.00 0.00 0.00 0.00 9.95
M 5.94 10.08 9.55 2.48 0.10 0.01 0.00 0.00 28.16

HM 1.87 5.59 11.17 10.32 0.84 0.09 0.00 0.00 29.89
H 0.23 1.02 3.40 7.28 2.76 0.21 0.03 0.00 14.93

VH 0.02 0.18 0.65 2.31 2.17 0.93 0.20 0.01 6.47
EH 0.00 0.00 0.02 0.14 0.32 0.36 0.37 0.07 1.28

Grand total 22.08 21.15 25.70 22.60 6.19 1.60 0.60 0.08 100.00

From 2009/2010 to 2018/2019, the soil erosion area of the watershed with no alterations increased
to 30%. Very low, low and low medium classes showed increasing trends during this time period,
in contrast to a decrease in the change rate of high classes. This was due to vegetation regeneration after
fires. The area with a decreased rate of change was largely caused by the transition from low medium to
low erosion, medium to low medium and high medium to medium erosion classes. Approximately 8%
and 14% and 8% of areas transferred from low medium erosion to low erosion, and medium erosion to
low medium erosion and low erosion, respectively.

Table 4. Change the soil erosion matrix classes from 2009/2010 to 2018/2019 (%).

Soil Erosion Classes
Soil Erosion Classes 2018/2019 Grand Total

VL L LM M HM H VH EH

Soil erosion
classes 2009/2010

VL 7.22 0.95 0.42 0.16 0.03 0.01 0.01 0.00 8.81
L 5.76 3.10 1.56 0.75 0.12 0.04 0.01 0.00 11.35

LM 6.03 7.93 6.06 2.83 0.49 0.13 0.04 0.01 23.52
M 2.65 8.13 14.23 10.56 1.52 0.27 0.08 0.02 37.45

HM 0.28 0.82 2.89 6.75 2.28 0.30 0.09 0.01 13.43
H 0.08 0.16 0.41 1.22 1.32 0.44 0.09 0.01 3.74

VH 0.04 0.05 0.11 0.30 0.40 0.38 0.24 0.01 1.52
EH 0.02 0.01 0.01 0.03 0.02 0.02 0.05 0.02 0.17

Grand total 22.08 21.15 25.70 22.60 6.19 1.60 0.60 0.08 100.00

3.3. Impact of Vegetation for Soil Erosion Rates

Figure 5 illustrates spatial distribution of burned areas and front lines 2012–2019 and C factor
in burned areas. Extremely high C factors were obtained in areas covered by coniferous forests,
which were severely affected by the fire in 2013 and 2014 in southeast basin. These areas are located
near the front line in 2014, while the other parts are located in the southeast basin with considerable
distance. The main cause is exposed to artillery and missiles. In these areas, the average pre-fire C factor
was estimated to be around 0.02–0.1, whereas after the fire this value was estimated at an extremely
high value of 0.4–0.6. The cessation of fighting after 2016 contributed positively to the vegetation
recovery in most parts of the region. Moreover, the C factor is a parameter critical for burned areas
because the density of vegetation cover, which plays a role as a productive agent against soil erosion, is
highly significant for the occurrence of wildfires, especially in forested areas.
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(a)

Figure 5. Cont.
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(b)

Figure 5. Cont.
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(c)

Figure 5. Cont.
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(d)

Figure 5. (a) Spatial distribution of burned areas and front lines 2012–2019 and the C factor in burned
areas in (b) 2009/2010, (c) 2013/2014 and (d) 2018/2019.

Figure 6 shows the impact of factor (C) of the vegetation cover on soil erosion rates in different
periods. It displays the 2009/2010 to 2013/2014 time period. Due to the change in vegetation coverage
factors, the rate of soil erosion increased in most areas of the basin. The areas with the main increase of
soil erosion rates are located in the central and eastern parts of the basin. Coniferous forests as well
as transitional forests and scrublands are the dominant forms of land cover, for which the average
post-fire soil loss values (by reason of C factor) are 200% to 800% higher than in pre-fire conditions.
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(a)

Figure 6. Cont.
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(b)

Figure 6. Cont.
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(c)

Figure 6. The effect of the C factor on the rate of soil erosion over different periods. (a) 2009/2010–2013/2014
(b) 2013/2014–2018/2019 (c) 2009/2010–2018/2019.

The decline in vegetation due to forest fires in 2012, 2013 and 2014 were overall due to the civil
war, during which hundreds of shells and bombs were fired in this area (Figures 5 and 6). In addition,
forest logging operations took place after these fires because of the high prices of oil derivatives,
especially in the upper part of the basin near the border area between Syria and Turkey. In comparison,
the areas with reduced soil erosion are located in small patches in the western and southwestern
regions, where slow slopes and fruit trees dominate.

From 2013/2014 to 2018/2019, the C factor caused a decrease in the average soil erosion rate by
50–100% in most parts of the basin. This period was characterized by a humid climate, in addition
to a ceasefire agreed upon after 2016, which enabled the growth and renewal of vegetation cover.
The western portion, close to the river mouth, showed no significant change between the two years
and is characterized by low precipitation, low slope and low fruit tree coverage.

By comparing 2009/2010 (before war) with 2018/2019 (at the end of the war stage), it can be
concluded that the change in C factors slowed down the deterioration trend of soil erosion and reduced
the average soil erosion rate in more than half of the basin by about 10–75%.
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This area is located relatively far away from the centers of armed conflicts. In contrast, the areas
with increased soil erosion by about 60–400% are situated in the northeast and east, with shorter
distances to armed conflict centers. These findings can be explained by forest fires, after which the
burned forests were turned into agricultural land or refugee camps and road areas.

4. Discussion

Processes of soil erosion and surface degradation have various impacts on the worldwide land use
as well as on land condition. As a result, an increasing number of scientists and policy-makers need
to deal effectively with soil erosion issues and recognize how to mitigate their impact [2]. The most
commonly used soil erosion model, RUSLE, was adopted in the present study. In the most recent
10 years of this study, the average soil erosion of the Northern Al-Kabeer river basin was characterized
as mild (1–10 t ha−1 year−1), which accounted for more than 66% of the total area. This basin is
subject to a mean soil erosion rate of 3.6 t ha−1 year−1. Furthermore, only 10% of the area has a
tolerable soil loss rate, based on the 1 t ha−1 year−1 soil tolerance limit for Mediterranean highlands.
Many authors consider that the limit of 1 t ha−1 year−1 has been set as the acceptable soil loss tolerances
for environmental protection in the Mediterranean area, when considering the balance between soil
formation and erosion [61,64–66]. Mediterranean soils have a low degree of tolerance for soil loss,
which is much lower than soils of the temperate humid zone [64,65].

Overall, the average soil loss rate determined by RUSLE over the entire study region (3.6 t ha−1

year−1) before the war, approaches the under-average soil erosion rate recorded in other studies for
Mediterranean mountain forest areas. In northern Jordan, Alkharabsheh et al. (2013) and Farhan et al.
projected an average soil loss rate of 9 t ha−1 year−1 [37] and 10 t ha−1 year−1 [38], respectively,
whereas Karamesouti et al. (2016) reported an average soil loss rate of 16.9 t ha−1 year−1 in Athens
using the RUSLE model [2]. The average soil loss rate was 7.9 t ha−1 year−1 during the Syrian
civil war. During the period 2013–2014, several fires occurred due to indiscriminate shelling of the
area (Figure 7a,b). The method of cutting trees after forest fires (Figure 7c) began to be used for
heating and cooking in light of the rising oil prices. A large number of residents cultivated the burned
forest land (Figure 8) and planted it with olive trees with the aim to acquire property later. The soil
erosion rate decreased to 2.2 t ha−1 year−1 in 2018/2019, after the ceasefire agreement in 2016 and the
transformation of the watershed into a semi-protected area. These changes allowed the vegetation
cover to regenerate. The regeneration of vegetation in many watershed places has improved the
vegetation cover, as shown in the C Factor map of the current investigation. Mousa et al. (2011) also
found an adequate regeneration of most plant species that were in the protected area of west Syria
before the fire. This regeneration was either by seed or vegetative propagation, which took place two
years after the forest fire. For instance, Pinus brutia Ten., Quercus cerris L. subsp. pseudocerris (Boiss.)
Chalabi, Quercus infectoria Oliv., Phillyrea media L., Pistacia palaestina (Boiss)., Rhus cotinus L. and Laurus
nobilis L. forests/trees were regenerated after the occurrence of the forest fires [67]. Indeed, the majority
of fires occurred in 2012, and we found that most plant species were regenerated, especially in areas that
were exposed to light fires. This regeneration greatly reduced erosion compared to 2014. This indicates
that the forest is able to regenerate within a short period of time if adequate protection from grazing
and logging are put in place, resulting in reduced soil erosion. During the field tour, we found that
that the Pistacia palaestina (Boiss) (Figure 9) and Pistacia atlantica regenerated by vegetative propagation
three weeks after the fire. In addition, the vegetation cover and soil properties disturbances, such as
the aggregate stability and water repellency, are closely linked to the intensity of the fires.
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(a) (b)

(c)

Figure 7. Photos of burned forests of Pinus brutia Ten. in upstream river (a,b) burned forest by bombing
and (c) wood Logging after the forest was burned.

Figure 8. Photo of the burned forests changed into farmland in the Syrian-Turkish border area (Yamada),
22 October 2013.
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Figure 9. Vegetative regrowth of Pistacia palestina (Bioss) three weeks after a fire in Rabia (Autumn 2013).

Most of the basin experienced a significant increase in soil erosion rates during the period of
2013/2014 compared to 2009/2010, with the exception of some fruit tree areas in the direction towards
the mouth of the river. This area is not far from the battlefront and where farmers temporarily leave
their farming operations and property for security purposes [68]. There was an enhancement in the
vegetation cover, owing to the lack of soil tilling, growth of weeds and lack of pruning of fruit trees,
as reflected in the NDVI images of the present investigation.

Although soil erosion decreased in almost the entire study area in 2018/2019, soil erosion remained
high along the Syrian-Turkish border due to forest fires, the establishment of displacement camps, the
construction of roads and the conversion of burned forests into farmland. Many studies (e.g., [69–71])
agreed that a key function for the government is to ensure ownership rights for soil users: lack of
secure land tenure is a major impediment to taking erosion-control steps. For many soil conservation
initiatives, the need for secure land tenure is particularly significant, as many do not have discernible
short-term benefits. Stocking (2003) [71] noted that the greatest harm to the soil occurs where tenure,
for example with migrants and refugees, is most unpredictable. Local knowledge is low in such
conditions and soil mining is important for survival, at least in the short term.

During 2018/2019, vegetation cover increased by approximately 20–50% in the forest area that
burned in 2012 (Figure 5), which led to a decline in soil erosion by about 10–75% (Figure 4). Gyssels et al.
(2005) found sheet and rill erosion to be reduced by 75% in coverings of around 30 to 35%, and 90% in
coverings of around 60% [34]. The rate of soil erosion decreased with an increase in vegetation cover
and root biomass, whereas the soil erosion rate decreased with a rise in vegetation cover and root
biomass. The rate of soil erosion further decreased due to forest cover, roots and litter components
resulting in soil surface defense against raindrop effect, a decrease in flow velocity caused by roughness
and improved infiltration capability [2,10,34,72].

These results reflect the observations made during the field investigation. Areas with extremely
severe erosion (i.e., more than 10 t ha−1 year−1) experienced severe erosion in the field, as demonstrated
by many gullies and low vegetation cover. The soil loss increased with a rise in slope in burned
forests (Figure 10), which has also been recorded [23] for eight different slopes. This indicates that the
cumulative soil loss after rainfall increases with the slope gradient due to precipitation intensities and
is more pronounced due to higher slopes. Such areas have very steep slopes, showing the importance
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of using the slope percentage when examining soil erosion. This is consistent with the relationship
between erosion and the square of the slope [73]. The variations in the erosion chart (Figure 4) are
obviously seen to be identical to those of the LS (Figure 2b) and C factor maps (Figure 3e,f). The areas
were presented in the upper part of the basin. In terms of the spatial patterns in China, Hui et al. (2010)
also found that the LS and C measurements are highly correlated with those of erosion [73].

(a) (b)

Figure 10. Photos of soil erosion in burned forests at steep slopes in (a) Yamada and (b) Rabia.

Although the forest loss has decreased in the last three years in most of the study area, it is
possible that the forest area will recede again. This recurrence may be due to either renewed battles
or an influx of people coming back to the forested areas after the conflict, resulting in unplanned
development and settlement. Grime (2019) found that at the end of the armed conflicts in Sri Lanka,
Nepal, Peru and the Ivory Coast, on average, there was a 68.08% increase of annual forest loss in the
five years following the end of the conflicts. This average is based on analyses of forest-cover data
gathered with remote-sensing methods, as compared to the worldwide 7.20% mean [40].

It is imperative, in the reconstruction phase, that environmental systems be given great importance
in order to achieve sustainable development. This will require continued research to determine
interdisciplinary dialogue of soil erosion science, as well as development and innovation. This could
be a political will to create mechanisms that would aid the process of regeneration of war-torn areas,
by encouraging the delivery of environmental services. This in turn will minimize the possibility that
the region could become the target of potential socio-economic conflicts.

5. Conclusions

This study aimed to determine the impact of land cover change on soil erosion and its
spatio-temporal variability in the Northern Al-Kabeer watershed over the past 10 years, using the
RUSLE model and GIS. The impact of war on nature in the period of 2012–2014 was significantly
negative, mainly as a result of forest fires, which led to a more than 10-fold increase of erosion in steep
areas. It is observed that soil erosion increases as we move away from the center of the conflict towards
the east and north-east as this region has been exposed to fires, and part of it has been turned into
agricultural lands or refugee camps and roads near the Syrian-Turkish border. On the other hand,
erosion decreases as we move away from the center of armed conflict towards the west, with this region
being covered mostly with fruit trees in addition to some shrubs and forests that were abandoned
because of the vicinity to the center of the armed conflict.

After the cease-fire decision in 2016, nature and wildlife benefited from the armed conflict in
regions where human pressure decreased in contested areas and the area turned into a semi-nature
reserve contaminated with landmines. Despite this improvement, battles may resume again and
negatively affect the rest of the forests. Additionally, human interventions in forests usually increase
with the end of the war, as happened in Sri Lanka and Colombia, owing to the return of the residents
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to their homes and their desire to improve their standard of living through the conversion of forests
to agricultural lands or tourist facilities. It is apparent from the findings that, even though some
inconsistencies and inaccuracies are present, the RUSLE model can be implemented effectively at
the watershed scale with limited data requirements. The results of this study make a significant
contribution to enhancing our understanding of the effect of forest fires and land cover change on
soil erosion, and support the applicability of these models to forecast pre- and post-fire soil erosion
rates. However, further research is required to quantitatively expose soil erosion and its influencing
factors, and to validate the RUSLE model’s success in the field. Analyzed soil loss dynamics can
encourage decision-makers and planners to take appropriate forest and soil conservation priority
actions, thereby reducing Syria’s land loss and land degradation issues as a consequence of high annual
fire rates and armed conflicts.
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Appendix A. Description of RUSLE Model

Rainfall erosivity factor

Arnoldus (1977) proposed a modified version of the Fournier Index (F) to avoid pitfalls related to
the monthly distribution of erosive precipitation over the year. Arnoldus used the F established in
erosion-risk areas in North Africa and the Middle East for regions in the USA and Africa [56]. F is the
summation of squares of monthly rain fall to its annual rainfall. F is calculated as:

F =
12∑

i=1

Pi2

P
(A1)

where pi is the month’s average rainfall (mm) with the maximum rainfall and P is the mean annual
rainfall (mm).

Arnoldus (1977) computed the equation as R = 0.264 × F1.5, which was used to develop an
iso-erodent map for Morocco [74]. Similarly, the regression equations with R and F were obtained by
Renard and Freimund (1994) [75] as:

R = 0.07397× F1.847 (A2)

Soil Erodibility Factor (K)

The Equation (A3) was used to estimate the erodibility of soil, as suggested by [59]:

K = fcsand × fcl−si × forgc × fhisand (A3)

where fcsand is a low soil erodibility factor for soil with coarse sand and a high amount of soil with a
low sand content (Equation (A4)), fcl−si is a factor that provides low soil erodibility with high clay to
silt ratios (Equation (A5)), forgc is a factor that decreases soil erodibility for soil with a high organic
carbon content (Equation (A6)) and fhisand is a factor that decreases soil erosion with an exceptionally
high sand content (Equation (A7)).

fcsand = 0.2 + 0.3× exp
[
−0.256×ms ×

(
1− msilt

100

)]
(A4)
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fcl−si =

(
msilt

mc + msilt

)0.3

(A5)

forgc = 1− 0.0256× orgC
orgC + exp[3.72− (2.95× orgC)]

(A6)

fhisand = 1−
0.7×

(
1− ms

100

)
(
1− ms

100

)
+ exp

[
−5.51 + 22.9×

(
1− ms

100

)] (A7)

where, ms, msilt and mc are the percentage of sand, silt and clay, respectively, and orgC is the organic
carbon content of the layer (%).

Slope Length and Steepness Factors (LS)

The slope length factor (L) is provided by the Desmet and Govers (1996) [60], and is enhanced by
the USLE estimation technique (Equation (A8)):

Li, j

(Ai, j−in + D2)
m+1 −Am+1

i, j−in

Dm+2 × xm
i, jxi, j × 22.13m (A8)

where Li, j is slope length factor for the grid cell with coordinates (i.j); Ai, j−in is the flow accumulation or
contributing area at the inlet of a grid cell with coordinates measured in m2; D is grid cell size (meters);
xi, j is sinai, j + cosai, j; ai, j is the aspect direction of the grid cell with coordinates; m is a function of the
ratio β of the rill to inter-rill erosion. The m varies from 0 to 1 and reaches 0, while the ratio of rill to
inter-rill erosion is similar to 0. The exponent m of the following equation was implemented according
to the algorithm proposed by McCool et al. (1989) [76] (Equation (A9)):

m =
β

1 + β
(A9)

The β value is derived by the Equation (A10):

β =
( sinθ

0.0896

)
/
[
3(sinθ)0.8 + 0.56

]
(A10)

here, θ is the slope angle.
The estimation of the S-factor originally proposed by Wischmeier and Smith (1978) was proposed

by McCool et al. (1987) in the RUSLE model to achieve an improved representation of the slope
steepness factor, taking into account the ratio of rill and inter-rill erosion. McCool et al. (1987) found
that soil erosion occurred more rapidly on slopes with a steepness of more than 9%. Therefore, he used
one algorithm for slopes < 9% and another for slopes > 9% (Equations (A11) and (A12)):

S = 10.8× SINθ− 0.03 where slope gradient < 9% (A11)

S = 16.8× SINθ− 0.5 where slope gradient ≥ 9% (A12)
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Abstract: Climate change induces more extreme precipitation events, which increase the amount of
soil loss. There are continuous requests from the decision-makers in the European Union to provide
data on soil loss; the question is, which ones should we use? The paper presents the results of USLE
(Universal Soil Loss Equation), RUSLE (Revised USLE), USLE-M (USLE-Modified) and EPIC (Erosion-
Productivity Impact Calculator) modelling, based on rainfall simulations performed in the Koppány
Valley, Hungary. Soil losses were measured during low-, moderate- and high-intensity rainfalls on
cultivated soils formed on loess. The soil erodibility values were calculated by the equations of
the applied soil erosion models and ranged from 0.0028 to 0.0087 t ha h ha−1 MJ−1 mm−1 for the
USLE-related models. EPIC produced larger values. The coefficient of determination resulted in
an acceptable correlation between the measured and calculated values only in the case of USLE-M.
Based on other statistical indicators (e.g., NSEI, RMSE, PBIAS and relative error), RUSLE, USLE and
USLE-M resulted in the best performance. Overall, regardless of being non-physically based models,
USLE-type models seem to produce accurate soil erodibility values, thus modelling outputs.

Keywords: rainfall simulation; field measurement; water erosion model; USLE; event scale

1. Introduction

Water erosion is a worldwide problem that causes several economic and environmental
impacts [1] due to deteriorating soil functions [2,3]. The negative impacts can occur on-site
by reduced production and off-site by sediment transportation. Sediments can deliver
pollutants into surface waters or onto other lands, threatening sustainable land use [4].
As Miller et al. [5] announced, nearly 90 percent of the total soil loss of nitrogen and
phosphorus [6] can be delivered with the soil loss and later accumulated within the
sedimented area. Recognizing the severity of accelerated soil erosion processes, a soil
loss tolerance value was introduced [7,8] in the USA for soil conservation planning in the
1940s. Later, Mannering [9] and Skidmore [10] suggested the involvement of establishing
tolerable rates into the regulation of farming. Morgan [11] defined the tolerable amount
of soil loss as an amount that does not considerably decrease soil fertility; thus it is a key
factor of sustainable soil management. The concept of tolerable soil loss was applied in
soil conservation planning, as well as soil loss evaluation and mapping. The annual and
long-term average soil loss can serve as the basis of soil erosion predictions and nonpoint
source pollution control. With climate change, the occurrence of rare but more erosive
rainfall events is going to increase [12]; therefore, studying the effect of these events on
soil degradation is becoming more essential and crucial [13], because these events cause
the larger part of annual soil erosion. Therefore, many scientists [14–17] emphasize that

Water 2021, 13, 3517. https://doi.org/10.3390/w13243517 https://www.mdpi.com/journal/water

141



Water 2021, 13, 3517

the conservation strategies should take into account large storms rather than average
weather conditions.

With rising competition for the limited soil resources, soil erosion prediction has
become an essential part of soil conservation planning and practices, as there is a need for
simple and cost-effective soil erosion- and soil erodibility measurements [18–22]. There are
several types of soil erosion models; the new ones require a lot of input parameters. This
can be the reason why USLE (Universal Soil Loss Equation) [8] is still one of the most often
used models. Compared to other models, USLE is still the most cited of all soil erosion
models. USLE users do not need to calculate event rainfalls for the calculation of a yearly
average [23–25]. Still, it has been recognised that there is a need to predict soil losses on a
shorter time scale, which resulted in many studies with rainfall simulation measurements.
Some studies [26–29] warn us that these simulations reflect single rainfall events which
over- or underestimate average soil loss [30–34]. This phenomenon is common when the
EI30 index is used in estimating erosion on bare fallow areas [35,36]. Boardman [37] stated
that the application of USLE can assume unconcern in event-driven erosion, whereas it is
unsatisfactory for estimating soil loss at event scale. Foster et al. [38] recommended that
the erosivity factor, including rainfall amount, rainfall intensity and runoff amount, should
be better than the single-storm erosion index (EI30) by Wischmeier and Smith [8]. On the
other hand, Kinnel et al. [39] stated that USLE and similar models, such as RUSLE, can
predict the event soil loss for runoff-producing events when we assume that the event soil
loss is directly related to the product of event storm kinetic energy (E) and the maximum
30 min rainfall intensity (I30) [40]. This way, both USLE and RUSLE can model short-term
soil losses. To provide better predictions, several similar but modified models were built,
such as MUSLE [41], RUSLE [42], WEPP [43,44], USLE-M [45], etc.; while USLE and RUSLE
are detachment limited models that hypothesise that soil loss is not affected by the runoff
capacity of detached soil particles, USLE-M studies the runoff, operating, in this way, as a
transport-limited model.

In practical soil conservation measures, the most important element of soil erosion
modelling is soil erodibility or “K-factor”, as it became known by the work of Wischmeier
and Smith [8]. This factor is defined as the susceptibility of a soil to erode, representing
the effect of soil properties on soil loss and the resistance against surface water runoff [42].
Unfortunately, the utilization of soil erodibility is not consistent in the literature [22,46,47],
as it follows many inaccuracies and uncertainties within the soil erosion modelling soil
erodibility determinations [48–54] and soil loss estimations [55]. Cassol et al. [56] also
drew attention to the fact that the USLE K-factors can differ from annual estimation values
in the case they originate from individual rainstorm events. Although there is a well-
known standard procedure for the USLE model [57] (22.13 m long with 9% uniform slope,
natural and continuously tilled fallow field plots, long-term measurements), there are still
several studies with different circumstances trying to simplify the observations [49]. Many
pieces of literature exist, providing non-satisfying but detailed determination procedures;
as a result, some uncertainty concerning the accuracy of the reported K-values exists.
This means that different estimation methods behave differently and their results are
relevant just under the given circumstances. The K-factor has high variability and mostly
depends on the method of the experimental setup, the main soil properties and various and
numerous input parameters [49]. Besides, in event-based, mostly rain-simulated erosional
studies, erodibility is regarded as a dynamic variable due to the main exogenic forces [54],
especially the rainfall and erosional processes driven by rain splash. To serve the purpose
of simplifying the long-term measurements based on physical and chemical properties,
several nomographs were created in the models (USLE, RUSLE and EPIC). At the same
time, El-Swaify and Dangler [58] reported that erodibility estimation is quite risky, based
on soil classification only. Based on the modelling research studies performed so far, we
can conclude that there is a huge need for soil erodibility measurements [59].

Accordingly, the problem of how the soil erodibility values measured by event rainfall
simulation can be comparable arises. However, to date, no comparison has been made
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relatively to the ability of the USLE, RUSLE and USLE-M models, nor of USLE and EPIC
nomographs, in soil erodibility determination and soil loss estimations produced by individ-
ual high-intensity simulated rainfall events on different slope gradients and under different
soil moisture conditions on soils formed on loess parent rock in the Koppány River Valley.
Therefore, the specific objectives of this paper are the following: (a) to statistically test and
compare the erodibility factors calculated by the USLE, RUSLE and USLE-M [35,36,45]
models and the calculated values by the USLE and EPIC nomograph equations [60] based
solely on soil physical and chemical properties; (b) to determine the difference between
each predicted and measured soil loss based on high-intensity rainfall simulations; (c) to
determine how accurate the event rainfall simulation results are, compared to other similar
long term estimations; and (d) to establish how the different antecedent soil moisture
content can affect the erodibility values and soil loss estimation results.

2. Materials and Methods

2.1. Study Site and Soil Properties

The concerned area is situated in the north-eastern part of the South-Transdanubian
Region, on the east side of Somogy county, in Hungary. Gerézdpuszta is situated in the
Koppány valley, adjacent to the floodplain of the Koppány River (Figure 1). This landscape
is characterized by loess-covered asymmetric hilly areas, where the northern hillsides are
short and steep, while the southern areas are longer and have gentle slopes [61]. Due to
loess-like deposits, the area is prone to soil erosion; however, most of the arable lands are
under conventional tillage where large-scale farming is typical. The less eroded hillslopes
are characterized by Cambisols, while, in cultivated areas, Regosols and Colluviums can
be found [62]. The climate is moderately warm and wet. The annual average temperature
is between 10.0 ◦C and 10.2 ◦C and the average annual precipitation is between 605 mm
and 700 mm. Most of the hillsides are characterized by agricultural cultivation and almost
half of that is situated on slopes steeper than 12%; further, usually the farmers do not use
any soil protection measures.

Figure 1. The situation of the study site and the experimental area within the field.

The in situ experiments were performed on freshly tilled Regosol, on gentle slopes
(6.7%, 8.0% and 7.7%) and on steep slopes (18.32%, 17.26% and 17.5%), in 3 repetitions. The
soil properties of the 0–30 cm layer are reported in Table 1.
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Table 1. Soil properties of the examined soils in the 0–30 cm layer.

Soil Properties

Plasticity pHH2O

CaCO3 SOC

Coarse
Sand

Fine
Sand

Sand Silt Clay Soil
Permeability

Soil
Structure

Class
(mm)

(%) (%) >0.25 0.25–0.0 0.05–0.02 0.02–0.002 <0.002 mm h−1

Gentle slope 41 8.06 2.7 1.37 0.9 29 22 20.2 28
55.43

fine
granularSteep slope 44 8.22 13 1.39 1.1 26.5 19.2 23.8 29.3

The texture is sandy clay loam. The gentle slope section has low CaCO3 content, while
the steep slope has high CaCO3 content; the soil organic carbon content is low in both
sections. These characteristics indicate that the area has been severely prone to soil water
erosion for a long time.

Plasticity indicates the amount of distilled water needed to reach the state of plasticity
(or saturation). Soils are considered loam with values from 37 to 42 and clayey loam with
values from 43 to 49 (accuracy is ±2). The pH (H2O) was measured with a WTW inolab
pH7310 pH measuring device. SOC was measured with the wet combustion method. The
particle sizes were measured with a Fritsch Laser analyser. Soil permeability was measured
with a double-ring infiltrometer in the field. Soil structure was evaluated by experts on the
field before the rainfall simulations.

2.2. Rainfall Simulator and Experimental Design

The Shower Power (SP) 02 is a portable field unit applicable on a plot scale with
alternating nozzles which were designed and constructed by the Geographical Institute,
Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, in
2014. It is a portable field scale device with a measuring plot of 3 × 2 m; however—to
exclude the border effects—the irrigated plot size was 12 m2. The drop-forming unit was
an alternating axis equipped with two 80,100 Veejet nozzles placed next to each other with
a distance of 2 m and 3 m in height. This way the overlapping between the nozzles was
perfect, resulting in a uniform spatial intensity and drop-size distribution. The intensity
can vary in the range 30–100 mm h−1, depending on the axis alternation frequency. Using
the V-jet nozzles, the rainfall energy was 77% of natural rainfall when the pressure and
rainfall intensity of the simulator was constantly held at 0.41 KPa and 65 mm/h intensity
rate [63]. The average kinetic energy of the simulator was 24 J m−2 mm−1. The plot was
fenced using metal sheets pushed into the soil to a depth of 15 cm. At the bottom of the plot,
a pair of collector triangles gathered the runoff. During the rainfall simulation, the starting
and ending time of simulation, ponding and runoff time were recorded. The volume of
runoff was continuously measured by two scaled dishes as a function of time and the
whole runoff was collected separately into buckets. Time and temporary runoff subsample
values were measured and stored in controlling software. The subsample measurements
and sediment concentration determination were made from the proportion of the total soil
loss over the simulation. In the laboratory, the total amount of soil loss was oven-dried
for 48 h at 60 ◦C and soil loss was measured afterward. Altogether, 18 simulations were
conducted (Table 2). Further details in Appendix A.
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Table 2. Details of 18 rainfall simulations. The name of each treatment originates from the following: F—field experiment;
P—Gerézdpuszta, the location of the experiments; G—gentle slope, or S—steep slope.

Treatment ID
s

Measured
Rainfall Intensity

Rainfall Rainfall Duration Soil Moisture
Content

(%) (mm h−1) (mm) (s)

FPG1 6.7 15.06 19.18 4584 dry
FPG2 6.7 56.24 16.81 1076 moist
FPG3 6.7 84.68 10.63 452 wet
FPG4 8 22.65 28.96 4603 dry
FPG5 8 70.19 13.53 694 moist
FPG6 8 86.12 10.41 435 wet
FPG7 7.7 26.32 35.10 4801 dry
FPG8 7.7 56.92 15.19 961 moist
FPG9 7.7 80.44 12.4 555 wet
FPS1 18.32 20.87 26.64 4595 dry
FPS2 18.32 66.78 16.49 889 moist
FPS3 18.32 103.48 11.67 406 wet
FPS4 17.26 24.42 31.10 4585 dry
FPS5 17.26 49.89 10.53 760 moist
FPS6 17.26 63.16 8.05 459 wet
FPS7 17.6 18.68 19.9 4627 dry
FPS8 17.6 44.05 13.86 1121 moist
FPS9 17.6 76.69 11.18 525 wet

Three rainfall simulation treatment rates were sequentially applied: (1) dry antecedent
moisture content before the application of the low rainfall intensity rate (30 mm/h−1);
(2) moist antecedent moisture after the low rainfall intensity rate (30 mm/h−1) and before
the medium rainfall intensity (60 mm/h−1) (60 min after the previous treatment); and
(3) wet antecedent moisture content after the medium rainfall intensity rate (60 mm/h−1)
(after the ponds disappeared from the surface). In the first 8 experiments, the selected slope
section was gentle, while the following 8 experiments were prepared on a steep slope. The
real amount of rainfall was measured with the help of 0.5 L small buckets placed around
the plot borders. The measured soil loss from the dry, moist and wet rainfall simulation
treatments was used in this study. The total sum of the rainfall simulation experiments was
denoted later as the pooled dataset.

2.3. Soil Erosion Modelling

The evaluation of various soil erosion models was performed by comparing the
measured and predicted soil losses for each rainfall simulation for the applied slopes and
rainfall intensities. Since rainfall simulations were based on a specific design of rainfall
events, the models had to be used based on the single rainfall event inputs. The event-based
predictions were possible using the procedures for calculating individual design storm
rainfall erosivity values provided by the rainfall simulation measurements.

K-factor values were determined by five direct methods using a rainfall simulator and
by two indirect methods (based on soil physical properties).

The basis of the erodibility, K-factor calculation is provided by one of the several
estimation methods, the widely spread and well-known USLE equation by Wischmeier
and Smith [8]. The Revised Universal Soil Loss Equation (RUSLE) [64] computes with the
same formula, as follows:

A = R·K·L·S·C·P (1)

where A (t ha−1 y−1) is the annual soil loss, R (MJ mm ha−1 h−1 y−1) is the rainfall erosivity
factor, K (t ha h ha−1 MJ−1 mm−1) is the soil erodibility factor, L is the slope length
(dimensionless), S is the slope gradient factor (dimensionless), C is the cropping cover
management factor (dimensionless) and P is the agricultural (or support) practice factor
(dimensionless). This way the soil erodibility can be calculated as K = A R−1 L−1 S−1.
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A, the annual soil loss (t × ha−1 × y−1), is originated from the measured runoff in the
field on a 6 m2 plot area.

R, the rainfall erosivity index, is based on the equation by Foster et al. [38],

R = EI30 = EImax30 (2)

where E is the kinetic energy (MJ ha−1 mm−1) and I30 is the rainfall intensity (mm h−1).
Kinetic energy can be obtained from the following expression:

E = 0.119 + 0.0873 log10I (3)

LS, the slope length and gradient factor in USLE, is based on the equation by Pres-
bitero [65],

LS = (λ 22.13−1)m (65.41 sin2θ + 4.56 sin θ + 0.0654) (4)

where λ is the slope length; θ is the slope angle (◦); m is equivalent to 0.5 for s > 5%, 0.4 for
3% < s ≤ 5%, 0.3 for 1% < s ≤ 3% and 0.2 for s ≤ 1% slope gradient.

m, the exponent in RUSLE, based on Foster et al. [38], is defined as

m = β/(1 + β) (5)

where β is a function of slope, moderately susceptibility for rill and inter-rill erosion [42],
i.e.,

β = (sin θ/0.0896)/3(sin θ)0.8 + 0.56 (6)

where λ is the slope length, m is a variable length-slope exponent, β is a factor that varies
with slope gradient and θ is the slope angle (◦) for slopes 1–30◦.

S, in RUSLE, based on McCool et al. [42], where the slopes are shorter than 4.6 m, is

S = 3.0 (sin θ)0.8 + 0.56 (7)

USLE-M can be used to evaluate parameters from single runoff events, using a com-
bination of storm erosivity and runoff ratio, with QREI30 term [35,36,45,66] as the erosiv-
ity index.

Ae = QR EI30 KUM LS CUM PUM (8)

where QR (dimensionless) is the event runoff coefficient; EI30 is the event erosivity factor.
which has changed from the original EI30 to QREI30 factor; KUM is the soil erodibility factor
(t ha h ha−1 MJ−1 mm−1); L is the USLE slope-length factor; S is the USLE slope-steepness
factor; CUM is the crop factor; and PUM is crop management and support practice factor.
The subscript U represents the factor associated with the USLE which has to be modified
(subscript M).

The K-factor was also calculated with the following USLE nomograph’s equation [67]:

K = 2.77 × M1,14 × (10−7) × (12 − SOM) + 4.28 × (10−3) × (SS − 2) + 3.29 × (10−3) × (PP − 3) (9)

where M is (0.002–0.1 mm grain-size fraction in %) × (below 100–0.002 mm grain-size
fraction in %); SOM is the soil organic matter in %; SS is the soil structure class (1 = very fine
granular; 2 = fine granular; 3 = medium or coarse granular; 4 = blocky, platy, or massive);
and PP is the profile permeability class (1 = rapid (150 ≤ mm h−1); 2 = from moderate
to rapid (50–150 mm h−1); 3 = moderate (12–50 mm h−1); 4 = from slow to moderate
(5–15 mm h−1); 5 = slow (1–5 mm h−1); 6 = very slow (<1 mm h−1)).

The EPIC model k-value estimation was performed with the following formula by
Williams et al. [41]:
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K = {0.2 + 0.3 exp [−0.0256 SAN(1 − 0.01 SAN)]} (SIL/CLA + SIL)0.3 {1.0 − [0.25 C/[C + exp (3.72 − 2.95 C)]]}
{1.0 − [[0.7 SN1]/[SN1 + exp (−5.51 + 22.9 SN1)]} × 0.1317

(10)

where SAN refers to the content of sand (0.1 mm size < 2 mm) in %; SIL refers to the
silt particle content (0.002 mm size < 0.1 mm) in %; CLA refers to the clay particle size
(<0.002 mm) in %; C refers to the organic carbon content in %; and SN1 = −SAN/100. The
unit of the soil erodibility k-value is t ha h ha−1 MJ−1 mm−1.

The event soil loss and runoff values, erosivity indices and other input parameters of
different soil loss estimation methods were calculated by adding the measured variables at
the event scale. These latter gave the basis of K-factor determinations which were inserted
into the selected models. Soil loss predictions in the case of different models were obtained
by the substitution of the mean, measured soil- and model-specific K-factors.

2.4. Statistical Evaluation of the Model Performance

The Pearson correlation coefficient (r), coefficient of determination (r2), relative error
(RE) and Nash–Sutcliffe model efficiency index (NSEI) were adopted to evaluate the
models’ performance.

The Pearson correlation coefficient (r) and the coefficient of determination (r2) describe
the degree of collinearity of predicted and measured data. The correlation coefficient ranges
between −1 and 1 and indicates the linear relationship between measured and calculated
data. R2 ranges from 0 to 1, where the higher values indicate less error variance and above
0.5 can be considered acceptable.

The NSEI determines the relative magnitude of the residual variance compared to the
measured data variance. The NSEI indicates how well the plot of measured versus pre-
dicted data fits the 1:1 line. It is calculated with the following relationship (Equation (11)):

NSEI = 1 − ∑ N
i=1 (Ae,measured − Ae,calculated)

2

∑ N
i=1 (Ae,measured − Ae,mean)

2 (11)

where Ae,measured is the measured soil loss, Ae,calculated is the soil loss value calculated by the
models and Ae,mean is the mean of the measured values. When the model accounts for all
the variation in the measurements (Ae,calculated = Ae,measured), the index has a value of 1.0;
NSEI ranges between −∞ and 1.0. Values between 0.0 and 1.0 mean acceptable levels of
performance. Zero indicates that the model predictions are as accurate as of the mean of
the measured values. A negative NSEI indicates that the measured mean is better than
the predictions. Based on Ahmad et al.’s [68] study on erosion prediction evaluation, the
model performance criteria is NSEI > 0.4.

Some of the commonly used error indices were applied. The relative error (RE) and
the root-mean-square error (RMSE) were calculated to indicate the error between calculated
and measured models. In the case of these error indices, the value of 0 indicates a perfect fit.

RE = [K-calculated − K-measured]/K-measured as percent (12)

RMSE =

√
∑n

i=1(yi − ŷ)2

n
(13)

The percent bias (PBIAS) measures the average tendency of the predicted data to
be larger or smaller than their measured counterparts [69]. The optimal value is 0.0,
with low-magnitude values indicating an accurate model simulation, while positive val-
ues indicate under-estimation of bias and negative values indicate over-estimation of
bias (Equation (14)). The PBIAS can be considered very good if PBIAS < ± 15%; good,
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if 15% ≤ PBIAS < ±30%; satisfactory, if 30% ≤ PBIAS < ±55%; and unsatisfactory, if
PBIAS ≥ ±55%.

PBIAS =

⎡
⎣∑n

i=1

(
ymeasured

i − ypredicted
i

)
∗ (100)

∑n
i=1(y

measured
i )

⎤
⎦ (14)

The Mann–Whitney U test was used to determine whether the estimates from the
models were significantly different from the measured data (p < 0.05 means significant
difference). The applied software was GraphPad Prism.

3. Results

3.1. Evaluation of the Erodibility Estimated by the Applied Models

The first evaluation of erodibility values was performed by comparing the calculated
K-results based on the measured parameters by USLE, RUSLE and USLE-M and by the
EPIC and USLE nomographs (Figure 2). In the separated, calculated results, in the case
of the USLE and RUSLE models, the wet runs resulted in higher K-values than the dry
runs, while USLE-M indicated higher erodibility with dry runs. These results owe to the
high variance within the measured hydrological parameters. There was a higher difference
among different slope categories with USLE-M calculations resulting in higher values for
steep slopes, while the USLE and RUSLE models showed lower variation. The pooled
data indicate higher variability with a higher difference between the K-values calculated
by each model. The K-factors obtained by the USLE nomograph, in most cases, were
under the other calculated values, while the K-factors resulting from the EPIC nomograph
were above the USLE-type models. In the case of all models, the variability within the
measurements increased with the increase in soil moisture content and slope degree.

The mean values ranged from 0.0028 to 0.0087 for the USLE-type models (Table 3).

Table 3. Different soil erosion models and their calculated K-values from the measured parameters
of each rainfall simulation (KU—USLE; KRU—RUSLE; KU-M—ULSE-M; KEPIC—EPIC nomograph
equation; KNOMO—USLE nomograph equation).

Pooled Data

KU KRU KU-M KEPIC KNOMO

MEAN 0.0041 0.0028 0.0087

0.0112 0.0018

SD 0.0030 0.0024 0.0101
Min 0.0001 0.0000 0.0014
Max 0.0096 0.0095 0.0398

Median 0.0039 0.0026 0.0049
CV% 73.5113 86.3314 116.1762

CV rel 18.3778 21.5828 29.0440

Comparing the calculated values based on the measured rainfall simulation pa-
rameters with the results of soil texture-based nomographs, the EPIC model returned
a 0.0112 erodibility value, while USLE returned 0.0018. According to the coefficient of vari-
ations (CV), the most variable results occurred in the case of the USLE-M (CV = 116.17%)
model’s calculations.

148



Water 2021, 13, 3517

Figure 2. Comparison of calculated erodibility values by USLE, RUSLE and USLE-M (t ha h ha−1 MJ−1 mm−1), as well as
USLE and EPIC nomograph equations (t ha h ha−1 MJ−1 mm−1) according to (a) dry runs, (b) moist runs, (c) wet runs,
(d) gentle slope, (e) steep slope and (f) pooled data.

3.2. Evaluation of Event Soil Loss Estimation

Soil erosion measured results confirmed that the higher rainfall intensities with higher
soil moisture content (moist and wet runs) generated more runoff and soil loss during each
event containing higher suspended sediment concentration (Table 4).

Table 4. Erosion resulting from individual rainfall simulations (mean values in brackets).

Moisture
Rainfall Intensity

(mm h−1)
Runoff

(mm h−1)
Suspended Sediment
Concentration (g L−1)

Total Soil Loss
(g m−2 h−1)

dry 20.87–26.32 0.2–0.9 (0.5) 3.6–10.3 (7.04) 2.9–3.4 (3.21)
moist 44.05–70.19 14.1–22.8 (19.2) 9.01–19.25 (12.23) 150.5–438.5 (237.88)
wet 63.16–103.48 32.1–48.1 (37.5) 11.26–26.19 (16.53) 406.3–1061.5 (633.69)

The highest rates of erosion were recorded in storms of 63.16–103.48 mm h−1, where
the total soil loss ranged from 406.3 g m−2 h−1 to 1061.5 g m−2 h−1.
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Model evaluations were first performed by comparing the measured soil loss val-
ues with the predicted ones estimated by the USLE, RUSLE, USLE-M, EPIC and USLE
nomographs (Figure 3).

Figure 3. Comparison of measured soil loss (Am) (t ha −1) and the estimation results by the USLE, RUSLE, USLE-M
(t ha −1), USLE (UnomoA) and EPIC nomograph (EPICA) equations according to (a) dry runs, (b) moist runs, (c) wet runs,
(d) gentle slope, (e) steep slope and (f) pooled data.

Generally, for dry runs, the highest variability in soil loss estimation occurred in
the case of USLE, followed by the EPIC nomograph estimation. The closest results were
derived from USLE-M estimations. USLE, RUSLE and the nomographs overestimated
the measured amounts. Based on moist runs, soil losses estimated by USLE, RUSLE and
USLE-M were close to the measured ones, while the EPIC nomograph resulted in nearly
threefold higher values (also with higher variability). The nomograph underestimated the
measured soil loss. The wet rainfall simulation results indicate higher variance within the
data which resulted in a higher discrepancy among the estimations of USLE and USLE-M,
as well as the EPIC nomograph. The USLE nomograph underestimated the average soil
loss, while EPIC overestimated it. Correspondence could be found among the USLE,
RUSLE and USLE-M models. Separating the data by slope steepness, then, in the case of
the gentle slope, high variability occurred among the results in the attendance of many
outlier values. The estimation of the EPIC nomograph indicated almost threefold greater
loss than the measured one. The nearest soil loss values were those of USLE and RUSLE.
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In the case of the steep slope, the closest estimation was obtained by USLE-M, then RUSLE
and USLE, while other models indicated two- and threefold amounts of soil loss. Based on
all pooled data, the best estimations were obtained by RUSLE, USLE, then USLE-M, while
the EPIC nomograph overestimated the soil loss against the measured losses and the USLE
nomograph underestimated it. At the same time, soil loss estimations by RUSLE, USLE
and the USLE nomograph had the lowest variability.

The coefficient of determination shows an acceptable correlation between the mea-
sured soil loss and the predicted ones by USLE-M (Table 5).

Table 5. Soil loss calculations by different soil loss estimation models (AU—USLE; ARU—RUSLE;
AU-M—USLE-M; Anomo—USLE nomograph; AEPIC—EPIC nomograph) and their Pearson correlation
coefficient (r), coefficient of determination (r2), Nash–Sutcliffe coefficient (NSEI), root-mean-square
error (RMSE), relative error (RE), percent bias (PBIAS), relative difference (Rdiff) and p-value (Mann–
Whitney U test), used to test models’ performance.

AU ARU AU-M Anomo AEPIC

r 0.3988 0.2825 0.7706 0.3988 0.3988
r2 0.1591 0.0798 0.5938 0.1591 0.1591

NSEI −0.2744 0.0431 −1.7041 −0.3745 −15.5122
RMSE 0.1732 0.1300 0.3674 0.1868 2.2437

RE 0.1340 0.0359 −0.1779 −0.4970 2.1296
PB −13.3993 −3.5878 −50.9319 49.7031 −212.9582

p-value 0.7520 0.8672 0.3414 0.0615 <0.0001

The model efficiency of almost all models—except RUSLE—was negative in the
simulations. The negative NSEI values indicated that the mean measured soil loss from
the field was a better representation of soil erosion for the concerned simulations than
the estimations of specific soil erosion models. Based on the NSEI, the RUSLE model
resulted in the best prediction, followed by the USLE and USLE-M, while the nomograph
EPIC estimation seemed the worst predictor. RMSE values indicated that the best model
performance was obtained in the case of the RUSLE, USLE and USLE nomographs. Based
on the relative error (RE), a satisfactory relationship occurred between the measured and
predicted datasets in the case of RUSLE, USLE and the USLE-M, which is the third with
a negative value owing to higher measured soil loss. PBIAS (PB) with negative values
indicated over-estimation of bias almost in all cases, except the USLE nomograph, which
under-estimated the observed soil loss (Figure 4) with satisfactory estimation (49%); in
the case of USLE (−13%), RUSLE (−3%) and USLE-M (−50%), we obtained good and
satisfactory estimations. The estimates from the models departed significantly from the
measured data (p < 0.05) with the EPIC model.

The accuracy of model predictions and the tendencies of the models to over- or
underpredict soil losses are graphically visualized in Figure 4a–e.

The 1:1 line represents the perfect match between the measured and predicted values.
The data points fitting or positioned closer to the 1:1 line indicate accurate predictions,
while the values situated above the 1:1 line reveal overestimation and the ones situated
below refer to the data that underestimated the amount of soil losses. USLE and RUSLE
overestimated soil loss by an average of 13.4% and 3.6%, respectively (Figure 5a,b), while
the EPIC model showed the worse performance, with an average overestimation of 212.95%
(Figure 5d,e). RUSLE model predictions were sensitive for the measured values, when this
increased above 0.6 t/ha; then, the model predictions indicated underestimations. USLE-M
and the USLE nomograph (Figure 5c,e) underestimated the measured values by an average
rate of 17.7% and 49.7%, respectively. However, except for some outlier values, the USLE-M
showed the best performance and fit among the existing models which were not sensitive
to the changes within the measured values.
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Figure 4. Comparison between the measured event soil loss values and the predicted ones by (a) USLE (b) RUSLE,
(c) USLE-M, (d) USLE nomograph equation and (e) EPIC nomograph equation.
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Figure 5. Predicted soil loss (from dry, moist and wet rainfall simulation treatments) plotted against residual values (measured–
predicted soil loss): (a) USLE (b) RUSLE, (c) USLE-M, (d) USLE nomograph equation, (e) EPIC nomograph equation.

In the case of RUSLE and the USLE nomograph, high-density of points are close to
the origin. In the case of USLE and USLE-M, the scattering from the origin increases but
these are still independent and normally distributed, while, for the EPIC nomograph, the
residuals and their deviation increase with the increase in measured soil loss; therefore,
these are not independent.

4. Discussion

USLE and RUSLE resulted in higher soil erodibility values in the case of wet runs,
while, surprisingly, USLE-M resulted in higher K-values for dry runs. This is not consistent
with some studies where increased soil moisture content resulted in decreased sediment
concentration, thus decreased soil erodibility values [59,70–72]. At the same time, we can
conclude that the variability of the calculated erodibility values increased in parallel with
the increase in soil moisture content and slope degree.
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The effect of slope gradient on soil loss and soil erodibility is well known. In this study,
USLE-M indicated higher erodibility in steep slopes with higher variation than USLE- and
RUSLE-based erodibilities. Kinnel et al. [3] reported, in their study, that values of both
USLE-M and RUSLE varied with the slope gradient, which is parallel with our findings. In
the case of gentle slopes, the event soil loss estimation’s results showed high variance, but
the best estimations were obtained by RUSLE and USLE-M for both gentle and steep slopes.
These results indicate that, in the case of event soil loss measurements, many influencing
factors should be taken into account in order to conclude with a correct interpretation.

The mean of the calculated soil erodibility values obtained by different soil erosion
models ranged from 0.0028 to 0.0087 for USLE-type models. The previously reported
K-factor, according to Regosol in Hungarian literature (derived from in situ rainfall simula-
tion experiments), is 0.038 (t × ha × h × ha−1 × MJ−1 × mm−1) [73], which is significantly
higher than our calculated K-factors. This difference could be derived from the difference
in physical properties of the investigated Regosol, from the different initial soil moisture
content and the applied replicates. The different rainfall duration and intensities were elim-
inated during the calculations. Generally, the EPIC nomograph estimated larger erodibility
factors, while USLE estimated smaller ones. The observation of the EPIC nomograph’s
overestimation is in agreement with the findings by Zhang et al. [74] and Wang et al. [59],
who reported gross overprediction of soil loss in the case of nomograph estimators.

The event soil loss evaluation confirmed that the initial soil moisture content and
rainfall intensity has great importance in runoff and soil loss generation [75,76]; therefore,
it is important to emphasize this parameter when we publish results and draw conclusions
from these results, regarding the accuracy of models. For the dry run, when the amount of
soil loss and the rainfall intensity was the lowest, USLE-M obtained the best performance.
In the case of moist antecedent soil moisture content, where the soil loss and intensity
increased, the USLE-type models predicted soil loss rates close to the measured ones.
When the antecedent soil moisture content and intensity were higher, the estimated soil
loss values were more variable, where the best performance was again obtained by the
USLE-type models.

Based on the whole dataset and the statistical evaluation, the coefficient of determi-
nation resulted in an acceptable correlation between the measured and predicted values
only in the case of USLE-M. Based on other statistical indicators, such as NSEI, RMSE,
PBIAS and relative error, RUSLE and USLE, followed by USLE-M, resulted in the best
performance. PBIAS indicated overestimation of bias in almost all cases, except the USLE
nomograph. Similar results could be inferred by examining the graphical visualisation of
predicted and measured values fitted to the 1:1 line. The lowest overestimation occurred
with the application of RUSLE (3.6%) and USLE (13.4%), while a slight underestimation
was obtained in the case of USLE-M (17.7%). At the same time, RUSLE indicated sensitivity
in prediction, whereas, above 0.6 t/ha, event soil loss underestimation occurred in the
estimations, an observation similar to the findings by Kinnel et al. [39] and Nearing [77].
While the USLE nomograph resulted in constant underestimation, EPIC overestimated the
soil losses. Risse et al. [29], Tiwari et al. [78] and Kinnel et al. [36] reported that USLE over-
estimates the small annual and event soil losses while underestimating the high annual
and event soil losses. In this study, these findings do not occur, except for a general over-
prediction of soil losses. Di Stefano et al. [79] found that both USLE and USLE-M tended to
overestimate low event soil losses, while, in our study, the opposite was observed. These
observations are partly due to the size of the plot, which was a unit in their study, and the
values of the measured soil losses originated from natural rainfall and not from simulated
precipitation. Based on the residuals, the ranking is similar to the above-mentioned results
concerning the USLE-type models. Kinnel et al. [39] emphasized that USLE and RUSLE
can predict event soil losses, while USLE-M can predict event soil losses better than RUSLE.
These statements are just in partial agreement with our findings, whereas the capability
of USLE and RUSLE to predict event soil losses is confirmed; however, USLE-M did not
perform better than USLE or RUSLE. The nomographs are mostly based on solely soil
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physical parameters; therefore, in this study, we confirmed that they are unsatisfactory
for this kind of prediction and, applied alone, cannot be used to estimate individual soil
loss events [58]. It seems that the more rainfall simulation data are analysed, the more we
know about soil erodibility; however, due to the complex nature of soil, the data gathered
and analysed so far did not provide enough spatial coverage and in-depth knowledge
to cover all needs. Similar research studies have been conducted in the past decades,
dealing with both estimations and evaluations of the K-factor under natural and artificial
rainfall conditions [80]. Furthermore, similar experiments have been conducted in different
settings, e.g., tropical climate [81], that also supported the idea that more experiments and
evaluation are needed.

5. Conclusions

Using the measured event soil losses from six runoff plots under different antecedent
soil moisture content and rainfall intensities in loess covered Koppány River Valley, this
paper presents a set of measured K-values and soil loss data by a set of soil erosion
modelling methods, namely, USLE, RUSLE and USLE-M, as well as USLE and EPIC
nomographs. The differences in the measured and predicted soil losses were evaluated in
the case of different initial moisture content, rainfall intensities and slope gradients. The
results can serve as values for event rainfall simulations for areas without natural runoff
plots. The main conclusions are as follows:

(1) The K-values in Hungary for the loess-covered Koppány River Valley ranged from
0.0028 to 0.087 t ha h ha−1 MJ−1 mm−1. The calculated erodibility results vary
with initial soil moisture content and slope degree. Regarding the pooled data, the
CV% indicated less relative variability in the case of USLE and RUSLE, followed by
USLE-M.

(2) In respect to the event soil loss estimation, the results indicate high variance with the
increase in initial soil moisture content and slope steepness. Based on the pooled data,
the best estimations were obtained by RUSLE, USLE and USLE-M.

(3) Both soil erodibility and soil loss estimation draw attention to the importance of the
effect of soil moisture conditions.

(4) Investigating the measured and estimated soil losses statistically, we found that
RUSLE resulted in the best performance in event soil loss estimation. At the same
time, RUSLE indicated sensitivity for the measured values.

(5) Within these experiments, the USLE-type models’ capability for estimating event
soil losses was confirmed. At the same time, we cannot emphasize enough that the
non-standardized circumstances involving many affecting factors could result in high
variance among the results.

(6) This study points out the high variability of soil erodibility factors and soil loss
estimation values in the case of event rainfall simulations. Besides, it draws attention
to the importance of further studies on this topic, because rainfall simulation is
necessary for the determination of each soil type’s erodibility and short or long time
soil loss estimation. That is why we need to develop an accurate, standardized
method for event soil loss measurements, where the observable parameters are not
solely the type of soil and other soil properties because these methods cannot give
satisfactory results.

(7) This study focused on soils formed on loess parent material. These soils cover a
wide range of geographical regions. Thus, this study can provide useful information
for many areas that struggle with similar water erosion problems, suggesting using
erosion modelling as a tool for finding a solution.
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Appendix A

Table A1. Summary of the different individual rainfall, runoff and soil loss measurements.

Treatment s
Soil Moisture

Content
RIe Pe EI30 Qe QR QREI30 Aobs

% mm h−1 mm MJ mm ha−1 h−1 mm MJ mm ha−1 h−1 t ha−1

FPG1 6.7 moist 56.24 16.81 256.93 4.22 0.25 64.53 0.45
FPG2 6.7 wet 84.68 10.63 254.79 4.04 0.38 96.90 0.51
FPG3 8 dry 22.65 28.96 155.66 1.20 0.04 6.43 0.05
FPG4 8 moist 70.19 13.53 266.09 4.12 0.30 81.06 0.37
FPG5 8 wet 86.12 10.41 253.61 4.36 0.42 106.22 0.49
FPG6 7.7 dry 26.32 35.1 224.49 0.21 0.01 1.35 0.01
FPG7 7.7 moist 56.92 15.19 235.44 5.28 0.35 81.79 0.53
FPG8 7.7 wet 80.44 12.4 282.30 4.95 0.40 112.68 0.70
FPS1 18.32 dry 20.87 26.64 130.20 0.53 0.02 2.61 0.09
FPS2 18.32 moist 66.78 16.49 306.47 5.17 0.31 96.08 0.57
FPS3 18.32 wet 103.48 11.67 341.76 5.42 0.46 158.82 0.97
FPS4 17.26 dry 24.42 31.10 182.39 0.40 0.01 2.33 0.05
FPS5 17.26 moist 49.89 10.53 140.42 4.81 0.46 64.11 0.93
FPS6 17.26 wet 63.16 8.05 140.47 5.17 0.64 90.12 1.35
FPS7 17.6 moist 44.05 13.86 158.61 5.03 0.37 58.11 0.68
FPS8 17.6 wet 76.69 11.18 243.18 5.23 0.47 113.51 0.90

s (%), slope gradient; RIe (mm h−1), event rainfall intensity; Pe (mm), event rainfall amount; EI30 (MJ mm ha−1 h−1), rainfall erosivity
index; Qe (mm), event runoff amount; QR (dimensionless), event runoff coefficient; Aobs (t ha−1), event soil loss per unit area; μ, mean
value; CV, coefficient of variations.
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Abstract: Preferential flow has an important role as it strongly influences solute transport in forest
soil. The quick passage of water and solutes through preferential flow paths without soil absorption
results in considerable water loss and groundwater pollution. However, preferential flow and solute
transport under different infiltration volumes in southwestern China remain unclear. Three plots,
named P20, P40 and P60, were subjected to precipitation amounts of 20, 40 and 60 mm, respec-
tively, to investigate preferential flow and solute transport characteristics via field multiple-tracer
experiments. Stained soils were collected to measure Br− and NO3

− concentrations. This study
demonstrated that precipitation could promote dye tracer infiltration into deep soils. The dye tracer
reached the maximum depth of 40 cm in P60. Dye coverage generally reduced with greater depth,
and sharp reductions were observed at the boundary of matrix flow and preferential flow. Dye
coverage peaked at the soil depth of 15 cm in P40. This result demonstrated that lateral infiltration
was enhanced. The long and narrow dye coverage pattern observed in P60 indicated the occurrence
of macropore flow. Br− and NO3

− were found at each soil depth where preferential flow had moved.
Increasing precipitation amounts increased Br− and NO3

− concentration and promoted solute move-
ment into deep soil layers. Solute concentration peaked at near the end of the preferential flow path
and when preferential flow underwent lateral movement. These results indicated that the infiltration
volume and transport capacity of preferential flow had important effects on the distribution of Br−

and NO3
− concentrations. The results of this study could help expand our understanding of the

effects of preferential flow on solute transport and provide some suggestions for protection forest
management in southwestern China.

Keywords: multiple-tracer experiments; precipitation amounts; preferential flow; solute transport;
protection forest

1. Introduction

Preferential flow, considered as a typical soil water movement process in unsaturated
soils, has an important influence on water infiltration and solute transport [1–3]. It is a rapid
and nonequilibrium process that accounts for 11% to 54% of the entire water flow [4,5].
Preferential flow can cause water and solutes to rapidly bypass most of the soil matrix
through preferential flow paths, which are formed by cracks, biological activities, root
channels, erosive actions, soil shrinkage cracking and freezing–thawing phenomena [6–8].
Preferential flow thus drastically decreases the utilisation rate of water and nutrients and
positively increases the contamination risks of groundwater [9].

Preferential flow has received considerable attention because it is an important factor
that considerably influences water and nutrient transport in rainfall events. It is induced
by numerous factors, including soil texture and structure; channels formed by biological
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activities, such as roots and earthworms; crop management; antecedent soil water; rainfall
intensity and precipitation [6,10]. Soil types and structure have a complex effect on prefer-
ential flow because of their spatial heterogeneities, which can directly change the hydraulic
properties, quantities and distribution of soil macropores. Soil clay content could change
the soil pore structure and thus affect the type of preferential flow occurring in the soil [11].
The greater the clay content in the soil, the more obvious the macropore structure and
the more favourable the formation of preferential flow [12,13]. Biological activities create
complex channel systems that can serve as preferential flow paths, further influencing the
lateral and vertical movements of preferential flow [14]. The role of antecedent soil water in
preferential flow may differ under different soil and macropore conditions [15]. The effect
of rainfall intensity on preferential flow has been well discussed, and several studies have
shown that the proportion of macropore flow usually increases with the increase in rainfall
intensity when it is higher than the infiltration rate [6,10]. However, preferential flow and
its influence on water and solute transport under different precipitation amounts, which
can affect soil moisture and soil water repellency during rainfall events, have received
limited attention.

Vidon and Cuadra [10] showed that the proportion of the contribution of macropore
flow to total flow flux is positively correlated with precipitation amounts. However, the
spatial changes shown by preferential flow under different precipitation amounts have
not been fully described and quantitatively evaluated. Such information is crucial for
understanding the mechanism of preferential flow in different rainfall events. Moreover,
identifying the role of preferential flow in solute transport under different precipitation
volumes can help reduce groundwater pollution.

Tracing experiments are increasingly used to study preferential flow in the field and
laboratory [16,17]. The food-grade dye Brilliant Blue is widely applied to describe pref-
erential flow because of its advantages of low cost, high water solubility, limited toxicity,
stability and distinct visibility [15]. However, it cannot describe solute transport during
different steps of infiltration. Therefore, multiple-tracer experiments have been gradually
performed to characterise preferential flow and solute transport given the similarity of their
advantages with those of experiments with Brilliant Blue FCF [1,3]. In these experiments,
image processing is used to describe the distribution of preferential flow, and the concen-
trations of tracer ions are measured to characterise solute transport during infiltration.

The Three Gorges reservoir area is located in the combination of the middle and upper
reaches of the Yangtze River, with complex topography, large spatial variation of natural
resources and strong anthropogenic interference. It is a sensitive ecological area and an
important functional area for soil and water conservation in China. The protection forest
optimisation project of nearly 270,000 ha has been implemented to solve the problems
of unreasonable spatial distribution and structure of forest species, poor quality of forest
stands and low ecological protection effectiveness in the Three Gorges reservoir area of
the Yangtze River. However, fertilisers and pesticides are widely applied in the process of
optimising the construction of protective forests, which has an impact on the quality of wa-
ter resources in the Three Gorges reservoir area. High mean annual precipitation reaching
1031 mm increases groundwater contamination risks in this region [15]. More than 80% of
rainfall is received during April to October, with the region receiving the highest amount of
rainfall during June to August. The utilisation rate of water, fertilisers and pesticides may
be seriously influenced by preferential flow during these months. In addition, groundwater
contamination is promoted by the increase in the amount of solutes that infiltrate deep
soil together with preferential flow. Thus, determining preferential flow characteristics
and their effect on solute transport under different infiltration amounts is highly desirable.
The objective of the present study was to (1) characterise the distribution of preferential
flow and (2) determine solute transport with preferential flow under different infiltration
amounts via multiple-tracer experiments.
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2. Materials and Methods

Field Experiments

Field multiple-tracer experiments were conducted in protection forest soil in Simian
Mountain (28◦36′ N, 106◦23′ E), Chongqing Province, Three Gorges Area, China. This
area is located at the end of the Three Gorges reservoir area where it has a subtropical
humid monsoon climate with 17–19 ◦C annual mean temperature and 1000–1250 mm mean
annual precipitation received mainly from April to October. According to the Chinese soil
taxonomy, the soil type of the study area is yellow earth, which belongs to the class of
ferralsols, the subclass of wet-warm ferralsols. To improve the protective forest system,
people have been optimising the species and spatial configuration of the protection forests
in this region from 2000 to the present. Our study selected the protection forests which were
mainly dominated by Cunninghamia lanceolate and Quercus acutissima, and the understory
companion plant species include Itea oblonga, Eurga loquaiana, Plagiogyria distinctissima
and Aster ageratoides. In the first 3 years, pest and disease control were conducted in the
protection forest regularly. The pesticides (Use 0.75~1% Bordeaux, 75% chlorothalonil
wettable powder, or 65% Dyson zinc) were applied during July to August once a week
for 3 consecutive weeks, with 50 to 70 kg of the pesticides per mu. The type of fertiliser,
the amount of fertiliser applied, and the time of fertiliser application depend on the actual
forest growth.

Undisturbed soil cores with volumes of 100 cm3 and soil samples with weights of
approximately 500 g were collected at the depth intervals of 0–10, 10–20, 20–30, 30–40,
40–50 and 50–60 for the measurement of soil properties, including soil texture, bulk density,
total porosity and organic matter content, in the laboratory. Soil characteristics are listed
in Table 1.

Table 1. Soil characteristics of the studied field.

Depth (cm)
Sand Content (%)

(2–0.02 mm)
Silt Content (%)
(0.02–0.002 mm)

Clay Content (%)
(≤0.002 mm)

Bulk Density
(g·cm3)

Total Porosity (%)
Organic Matter

Content (%)

0–10 66.33 ± 6.03 28.76 ± 1.03 4.91 ± 0.09 1.05 ± 0.07 60.30 ± 8.83 4.78 ± 0.23
10–20 59.34 ± 3.34 30.67 ± 0.78 9.99 ± 0.23 1.13 ± 0.03 58.15 ± 3.08 4.33 ± 0.12
20–30 45.32 ± 2.92 42.19 ± 2.26 12.49 ± 0.43 1.22 ± 0.06 50.95 ± 1.98 3.21 ± 0.13
30–40 44.32 ± 3.00 43.18 ± 2.23 12.50 ± 0.48 1.30 ± 0.02 52.20 ± 1.89 2.56 ± 0.13
40–50 43.21 ± 4.25 46.03 ± 1.30 10.76 ± 0.92 1.29 ± 0.03 49.36 ± 1.23 2.01 ± 0.12
50–60 40.45 ± 3.74 49.06 ± 3.24 10.49 ± 0.45 1.27 ± 0.05 49.71 ± 0.89 1.54 ± 0.11

Note: Data in the table are the average value ± standard deviation.

In this study, three areas with similar site conditions were selected for the replication
of the field multiple-tracer experiments. In each area, three different infiltration levels of
20, 40 and 60 mm were established to simulate three different infiltration amounts, which
were designated as P20, P40 and P60, respectively. Each level had two plots, which were
treated with different solutions. A total of 18 plots were established for the six treatments,
with each type of treatment having three replicates (3 replicates × 6 plots each = 18 plots
total). For each plot, two rectangular iron frames, namely, an inner frame with dimensions
of 60 cm (length) × 60 cm (width) × 50 cm (height) and an outer frame with dimensions
of 80 cm × 80 cm × 50 cm, were concentrically embedded into the soil to a depth of
30 cm after the experimental surface had been cleaned and smoothed. After embedding,
the soil within 5 cm was compacted by using a wooden hammer to prevent dye tracer
infiltration along the frames. Due to the relatively high initial water content of the soil
in the study area, the accumulation of water will rapidly form on the soil surface layer.
Therefore, the solution was quickly applied to the soil surface of the inner frame to simulate
instantaneous ponding infiltration. In accordance with double-ring infiltration, the same
depth of freshwater was simultaneously applied to the soil surface of the outer frame
at each step to force the solution to infiltrate into the inner frame fully. The details of
the field multiple-tracer experiments are shown in Figure 1 and Table 2. These details
include the layout of the plots, the solute of the solution, the volume of the solution and
the time consumed for solution infiltration. The solution from step 2 (3) should be added
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only when the solution from step 1 (2) is completely infiltrated to avoid the mixing of
different solutions. The plots were covered with plastic tarpaulin to prevent evaporation
and rainfall. After 24 h from the beginning of the experiment, five vertical slices were
excavated from the core region of the dye area to avoid excavating disturbed soil edges.
Each vertical slice was spaced 10 cm apart. A fine mist of a solution of starch (50 g L−1) and
Fe2(SO4)3 (20 g L−1) was uniformly sprayed onto the excavated soil surface immediately
after a slice was exposed. The solution was an iodide indicator solution and showed a
distinct purple colour when it encountered iodine molecules. After sufficient reaction
for approximately 10 min, a digital camera (2560 × 1960) was used to photograph the
dye-stained patterns of the horizontal and vertical slices. Colour images were classified
as stained or unstained areas in accordance with the procedure of Yao et al. [15]. In this
study, each 1 mm × 1 mm area of the original slice was represented by one pixel. After
photography, soil samples weighing approximately 100 g were collected from the stained
area at a site 5 mm below each excavated soil surface to remove the solution of starch
and Fe2(SO4)3. These soil samples were collected to measure the concentrations of Br−
and NO3

−. The initial concentrations of Br− in the soil were ignored because they were
significantly lower than the applied concentrations. The concentration of NO3

− in plot 1
was considered as the initial concentration of NO3

− in the soil.

Figure 1. Diagram of the experimental set-up for multiple-tracer experiments.

Table 2. Periods of each step for P20, P40 and P60.

Level Plots
Sequence of Matrix

Solution Application
Total Applied Solution

Amount (mm)
Period of Mixture Solution

Infiltration (min)

P20
Plot 1 KI + KBr 20 13
Plot 2 KI + KNO3 20 15

P40
Plot 3 KI + KBr → KI + KBr 40 17 → 44
Plot 4 KI + KBr → KI + KNO3 40 20 → 39

P60
Plot 5 KI + KBr → KI + KBr → KI + KBr 60 14 → 38 → 35
Plot 6 KI + KBr → KI + KBr → KI + KNO3 60 15 → 45 → 40

Note: KI + KBr: Solution of KI (20 g L−1) and KBr (10 g L−1); KI + KNO3: Solution of KI (20 g L−1) and KNO3 (10 g L−1).

3. Results and Discussion

3.1. Spatial Variation Characteristics of Preferential Flow

We compared and calculated the data extracted from vertical sections under different
infiltration amounts. The dye coverage distributions and the images of dye flow patterns
in vertical sections are shown in Figure 2. The nonuniform or dissimilar distributions of
dye areas under different infiltration amounts suggested that different preferential flow
patterns had developed. As shown in Figure 2, most of the vertical slices were stained with
a dye coverage of more than 80% in the topsoil, indicating that the topsoil experienced
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matrix flow [15,18]. Meanwhile, the matrix flow depths for P20 (Figure 2a), P40 (Figure 2b)
and P60 (Figure 2c) were 1.6, 7 and 9.3 cm. These results were similar to the conclusion
of a study in plantation forests in the southwest karst region [19], which has shown that
the depth of matrix flow increased with the increase in infiltration amounts. The increase
in infiltration water corresponded to a longer rainfall period, increasing the potential
energy of water supply, and the increase in water potential gradient increased the uniform
infiltration of soil water. Additionally, the increase in infiltration water increased the water
content in the lower soil layer, slowed down the rate of water infiltration, and promoted
the lateral movement of water in the top soil layer to form matrix flow [20].

Figure 2. Images showing vertical slices from the dye-stained soil profiles and average dye coverage
of vertical slices with depth under different water amounts: (a) 20, (b) 40 and (c) 60 mm.

Due to the increased depth of matrix flow, it was also expected that dye would
infiltrate deeper under the higher infiltration amounts. Indeed, our results showed that the
maximum infiltration depths for P20, P40 and P60 were 25, 30 and 40 cm, respectively. The
consistency of these results with the findings of several other researchers [20,21] indicated
the extensive variation range of the movement of the water in the soil under high infiltration
amounts. However, our results showed that the matrix flow depth and the maximum
infiltration depth occurred in deeper soil layers compared to the study in the plantation
forests in the southwest karst region. This could be due to the fact that the sand content
and total soil porosity in the soils of our study area (66.33%; 60.30%) were higher than
those of the above study area (27.59%; 37.91%). Previous studies have reported that water
movement in clay soils was dominated by preferential flow with less matrix flow compared
to loamy soils, as the clay soils were fine-textured and well-structured and were more
conducive to the presence of macropores. Additionally, Yan [22] also found that the matrix
flow depth was 12 cm and the maximum infiltration depth was 28 cm in sandy soils with a
sand content of about 80%. Therefore, in future studies of preferential flow, the depth of
occurrence of preferential flow and the maximum depth of infiltration could be predicted
based on soil conditions and infiltration amounts.

In our study, infiltration amounts had a substantial effect on the spatial heterogeneities
of preferential flow despite the similar properties of the three plots (Figure 2). Reductions
in the patterns of dye coverage showed different trends amongst P20, P40 and P60. Com-
pared with that in P40 and P60, which showed considerably different patterns amongst
vertical slices with the reduction in depth, the pattern of decrement in P20 showed no
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evident change, indicating small spatial heterogeneity (Figure 2a). This result may be
attributed to the small depth of matrix flow that lacked sufficient head pressure to allow
the formation of preferential flow path networks. Thus, the dye tracer infiltrated into deep
soil layers only through a small part of preferential flow paths under low infiltration. In
P40, unexpected increases in dye coverage were detected as the soil depth increased to
15 cm in P40, demonstrating that high amounts of the dye tracer had infiltrated into these
layers (Figure 2b). Therefore, lateral preferential flow became increasingly evident with
the increase in infiltration amount because the infiltration amount exceeded the capacity
for the vertical transport of the preferential flow to block preferential flow paths. This
phenomenon could also be associated with preferential flow path characteristics, resulting
in the high lateral movement of the dye tracer. Root channels are considered as primary
preferential flow paths in forest soils [9,23]. An investigation into the root systems in the
study area revealed that the total root length of the root with root diameter <1 mm in the
10–20 cm soil layers was greater than that in the other soil layers except topsoil (0–5 cm)
(Table 3). Consequently, in this region, the large number of intricate root distributions
affected the connectivity of priority flow paths and thus increased lateral preferential flow
along root channels. The dye coverage distribution in P60 was consistent with that in P20.
Specifically, it lacked a peak and decreased gradually with soil depth. The dye coverage in
the vertical slices from P60 had large standard deviations. Three of the five dyed coverage
distribution curves showed sharp reductions in the 10–15 cm soil layers and an obvious
trailing phenomenon at the soil depths of 15–40 cm, indicating the existence of penetrating
macropore flow (Figure 2c). This result was largely explained by the fact that the increasing
amount of infiltration increased the head pressure of the preferential flow. This effect then
prompted the formation of the preferential flow network and increased the connectivity
of the preferential flow network. In this case, the transport patterns of preferential flow
could be divided into two types under the influence of spatial heterogeneity caused by
soil texture and roots and biological activities [24,25]. In one case, preferential flow paths
were connected vertically to form macropores, and water was transported rapidly through
macropores to deep soil layers, thus bypassing most of the soil matrix. By contrast, in
the absence of macropores, the unstable wetting front continued to expand because the
infiltration rate was lower than the saturated hydraulic conductivity of the soil. This result,
in turn, led to the finger-like preferential flow pattern of water and solutes. At the same
time, as the infiltration amount was increased, the flow pattern transformed from one
dominated by preferential flow to one dominated by matrix flow. Furthermore, macropore
flow and finger-like flow appeared as illustrated in Figure 2. The appearance of these flows
provided support for the above explanation.

Table 3. Root length (cm).

Soil Depth (cm)
Root Diameter

<1 mm 1–3 mm 3–5 mm 5–10 mm >10 mm

0–5 2549 ± 322 1284 ± 211 499 ± 142 125 ± 23 19 ± 12
5–10 1504 ± 97 528 ± 200 139 ± 53 54 ± 8 20 ± 11

10–15 2058 ± 88 426 ± 44 149 ± 40 138 ± 22 38 ± 10
15–20 2068 ± 282 394 ± 86 189 ± 40 104 ± 58 23 ± 10
20–25 720 ± 182 476 ± 112 111 ± 62 87 ± 54 38 ± 13
25–30 565 ± 300 212 ± 0 243 ± 13 44 ± 0 0 ± 0
30–35 373 ± 58 396 ± 58 158 ± 31 27 ± 1 0 ± 0
35–40 366 ± 21 122 ± 6 48 ± 6 0 ± 0 0 ± 0

Note: In each soil layer, the root length under different root diameter ranges is the sum of the root length of that root diameter, and the
volume of each soil layer is 125 cm3.

Combining these results, the soil in the study area was dominated by sandy loam,
and when the infiltration was less than 60 mm, the occurrence of preferential flow could
increase the connectivity of soil pores and enhance the water retention capacity of the
soil. However, when the infiltration was greater than 60 mm, macropore flow might be
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formed, which would transport water directly to the deeper soil layers to reduce the water
utilisation rate, increase the risk of groundwater contamination and possibly reduce the
stability of the soil body to induce geological disasters such as landslides.

3.2. Effect of Preferential Flow on Solute Transport

The occurrence and development of preferential flow have an important effect on
water and solute transport [26]. Br− and NO3

− were mixed with KI separately and
infiltrated at different stages to investigate the effect of different infiltration amounts on
solute transport. The detailed process of this experiment was performed in accordance
with reference methods. The concentration distributions of applied Br− and NO3

− in
P20, P40 and P60 are shown in Figures 3 and 4. The infiltration depths of the Br− and
NO3

− solutes were almost identical with those of preferential flow and increased with the
increase in infiltration water volume. These results were consistent with the findings of
earlier studies showing that soil-water movement depends strongly on rain intensity [27].
However, the different distributions of Br− and NO3

− concentrations after the experiment
suggested that different types of preferential flows had different effects on solute transport
(Figures 3 and 4).

Figure 3. Changes in Br− concentration with soil depth.

As shown in Figure 3, the concentration of Br− at 0–40 cm soil depth under differ-
ent infiltration intensities followed the order of plot 5 > plot 3 > plot 1, suggesting that
increases in infiltration could increase in concentration. Additionally, in these plots, Br−
concentration distributions displayed small, W-shaped serrated patterns with the increase
in soil depth and were highest in the topsoil layer. In other words, the Br− concentra-
tion distributions in these plots showed similar trends and decreased with soil depth but
peaked in different soil layers. In plot 1, Br− concentration peaked at the soil depth of
20 cm. In plot 3, Br− concentration peaked at the soil depth of 15 cm and then again at
25 cm. In plot 5, the first peak of the Br− concentration was observed at the soil depth
of 20 cm and the second at the soil depth of 35 cm. These results indicated that with the
increase in infiltration amount, the peak of Br− concentration appeared in deep soil layers
and at near the end of the preferential flow. The last peak of Br− concentration observed
in each plot was most likely attributed to the solution reaching the end of the preferential
flow paths where accumulation occurred and the wetting fronts continued to extend to
the surrounding area [28]. Consequently, high Br− concentration was found at about 5 cm
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before the maximum infiltration soil depth. The other peaks might be attributed to the
fact that when the upper infiltration water volume was increased to 40 mm and 60 mm,
infiltration exceeded the capacity for the vertical transport of preferential flow, resulting in
the accumulation of water and the development of lateral infiltration. Dye coverage in the
layer where the peak was higher than that in other layers also supported this interpretation
(Figure 2), suggesting that the distribution pattern of preferential flow was the key to
influencing solute transport.

Figure 4. Changes in NO3
− concentration with soil depth.

In comparison to plot 3 and plot 5, plot 4 and plot 6 used the solutions of KI and KNO3
instead of KI and KBr in the final infiltration phase. The main purpose of this measure
was to analyse the effect on the Br− concentration in the soil for infiltration volumes of
20–40 mm and 40–60 mm, respectively. As shown in Figure 3, the concentration of Br− in
plot 4 was similar to that in plot 3, indicating that the infiltration volume of 20–40 mm did
not change the distribution of Br− concentration. The distribution of Br− concentration in
plot 6 was significantly different from that in the preferential flow dyeing area. In plot 6,
unexpected increases in Br− concentration were detected as the soil depth increased from
0 cm to 20, demonstrating that a large amount of Br− in the surface layer was transported
to the deeper soil by the preferential flow when the infiltration volume was at 40–60 mm.
These results indicated that the solution from the second stage of infiltration mixed with the
solution from the first stage of infiltration in the soil and transported downward. The third
stage of infiltration pushed the pre-infiltrated solution downward with little interaction
(as an approximately piston flow) at depths of 0–10 cm soil layers, probably because the
first two stages of infiltration made the soil water saturated.

The NO3
− concentrations in plot 2, plot 4 and plot 6 represented the distribution of

NO3
− at 0–20 mm, 20–40 mm and 40–60 mm of infiltration water, respectively (Figure 4).

The NO3
− concentration shown in plot 1 was the original soil NO3

− content when the
NO3

− -containing tracer was not added. The original NO3
− concentration in the soil was

low and therefore had a slight influence on the distribution of NO3
− concentration in the

solute transport experiments. The pattern of NO3
− concentration in plot 2 was consistent

with that of Br− concentration in plot 1. This result indicated the absence of a significant
difference in the concentration distribution of different solutes transported with preferential
flow under a 20 mm infiltration volume. This is consistent with other studies that have
shown rapid downward transport of water through the native preferential flow paths at low
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infiltration volume [21,22]. The significantly lower concentration of NO3
− than that of Br−

at an infiltration of 20 mm may be attributed to the fact that NO3
− is more readily available

to plants and microorganisms than Br− and converted into other forms, such as N2 and
NH4

+. In plot 4, the highest NO3
− concentration was detected in the topsoil, and NO3

−
concentration in other soil layer was significantly lower than that in plot 2, suggesting that
the second stage solution was mainly concentrated on the soil surface and did not transport
to deeper soil layers with the preferential flow. In plot 6, NO3

− concentration decreased
with the increase in soil layers without significant peaks. This result was consistent with
previous studies indicating that increasing infiltration reduced the capillary effect of the
soil layer and promoted the vertical connectivity of preferential flow paths, resulting in
rapid solute transport to deep layers [1,29,30]. However, differently from previous studies,
there were no peaks observed in this study and the NO3

− concentration in plot 6 was
significantly higher than that in plot 4, suggesting that the solute infiltration process in the
third stage was accumulated and rapidly transported. This result may be due to the fact
that when the amounts of infiltration volume reached a certain threshold, the formation of
a penetrating macropore flow promoted the downward transport of solutes and reduced
lateral infiltration.

These observations suggested that when the amount of water infiltration exceeded
40 mm, preferential flow infiltration depth and development increased, and solutes could
infiltrate into deep soil layers along with macropore preferential flow during rainfall events.
Therefore, in the future management of protective forest cultivation, fertiliser application
and pesticide spraying before rain storms should be avoided as much as possible in order
to reduce the pollution of shallow groundwater by pesticides and nutrients, etc.

4. Conclusions

Our results indicated that infiltration amounts significantly affected dye flow patterns
and infiltration depth. When the infiltration volume was less than 40 mm, further increasing
infiltration amounts increased the lateral infiltration of preferential flow and increased
solute concentration. When the infiltration volume exceeded 40 mm, increasing infiltration
amounts resulted in the development of highly continuous and effective preferential
flow paths and increased the amount of solutes transported to deep soil layers through
macropores. The results shown in this study could provide some suggestions for protected
forest management and preferential flow hazard reduction. Nevertheless, the scale of this
study was small, and the results might be influenced by soil heterogeneity. Further research
should combine solute transport models with field tracing experiments to explore large-
scale preferential flow and solute transport characteristics during natural rainfall events.
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Abstract: Seasonal freeze-thaw processes have led to severe soil erosion globally. Slopes are
particularly susceptible to changes in runoff, it can be useful to study soil erosion mechanisms.
We conducted meltwater flow laboratory experiments to quantify the temporal and spatial distribution
of hydraulic parameters on sandy slopes in relation to runoff and sediment yield under constant
flow, different soil conditions (unfrozen slope: US; frozen slope: FS), and variable sand thickness.
The results showed that sand can prolong initial runoff time, and US and FS have significantly
different initial runoff times. There was a significant linear relationship between the cumulative runoff
and the cumulative sediment yield. Additionally, hydrodynamic parameters of US and FS varied
with time and spatially, as the distance between US and FS is linearly related to the top of the slope.
We found that the main runoff flow pattern was composed of laminar flow and supercritical flow.
There was a significant linear relationship between flow velocity and hydraulic parameters. The flow
velocity is the best hydraulic parameter to simulate the trend of slope erosion process. This study can
provide a scientific basis for a model of slope erosion during thawing for the Loess Plateau.

Keywords: loess; soil erosion; meltwater flow; runoff and sediment yield; hydraulic parameter

1. Introduction

The hydrodynamic properties of slopes have a decisive effect on runoff and sediment yield.
Their study can help in understanding the process and mechanism of slope soil erosion and
understanding the parameters of slope water dynamics, which are helpful in the construction of
predictive models of slope soil erosion [1–3].

The Loess Plateau is a sand-covered landform that experiences substantial wind and water
erosion [4–6]. Due to the differences in physical characteristics, infiltration, hydraulic conductivity,
and water holding capacity between the surface sand layer and loess layer, a distinct sand-soil interface
is formed between the sand layer and loess layer, and then the typical sand-soil dual structure is
formed [7–10]. Zhang et al. [11] found in field rainfall experiments that the runoff and sediment
yield processes on the sand-covered slopes are significantly different from those on loess slopes.
Under light rain, the sand-covered slopes store rainfall, minimizing runoff, and the sediment content
in any runoff that does occur is very large. Wu et al. [12] conducted a qualitative description of
the sand-soil interface flow on the sand-covered slope through field surveys. Many scholars have
studied the relationship between runoff and sediment yield, erosion processes, and the influence
of sand layer size composition on runoff and sediment yield process through laboratory simulated
rainfall experiments [6–8]. Tang et al. [13,14] quantitatively studied the spatiotemporal distribution
of hydraulic parameters under different rainfall intensities and different sand thickness and their
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relationship with runoff and sediment yield. This study showed that the Reynolds Number can
characterize the process of runoff and sediment yield on sand-covered slopes well [15]. However,
studies on hydraulic characteristics of this particular landform at the slope scale during soil erosion is
relatively limited.

The area of wind-water erosion on the Loess Plateau is in the middle latitude of the temperate
zone, with an annual average precipitation of 300–600 mm. About 1/3 of days are below 0 ◦C each year,
and it is windy and sandy in winter and spring with heavy rain in summer [16–19]. The hilly-gullied
loess region is significantly affected by freezing and thawing, and snowmelt runoff erosion is a major
manifestation of freeze-thaw erosion during thawing [20,21]. This erosion process is also found
elsewhere throughout the world. In inland northeastern Oregon, 86% of soil erosion events are caused
by freeze-thaw processes and snowmelt runoff [22]. In the northwest coastal region of the United
States along the Pacific, over 90% of the total annual snow erosion is caused by melting snow [20].
When the frozen soil thaws, its shear strength decreases, and its erodibility increases, thus making the
soil in the thawing period more susceptible to erosion [23–26]. The results of rainfall experiments by
Sharratt et al. [27] showed that the impermeable frozen layer of soil prevents water infiltration during
thawing, resulting in increased soil surface moisture content, surface runoff, with a high sediment
content and soil erosion. The freeze-thaw process changes the structure of the topsoil and thereby
influences the water erosion process as well [28,29]. At the same time, part of the hilly-gullied loess
region subject to freeze-thaw erosion overlaps with the flakes of sand. Although this area of overlap is
not large, it is widely distributed. Due to the overlapping of several types of erosion, “wind erosion,
water erosion and freeze-thaw erosion”, this superposition effect causes very serious soil erosion [30].
At present, scholars have done a lot of research on single-force erosion and wind-water composite
erosion on the Loess Plateau. However, little research has been done on the problems of soil and water
loss caused by multiple erosion types in the above areas.

Therefore, we studied sand-covered loess slopes using laboratory scouring experiments.
We analyzed soil erosion characteristics and the spatiotemporal variation in hydraulic parameters
of the sand-covered slopes when frozen or not, and described the relationship between hydraulic
parameters and runoff and sediment yield. This study can provide a scientific basis for the construction
of erosion forecast models for sand-covered loess slopes during thawing periods.

2. Materials and Methods

2.1. Material and Device

Two soil types were gathered from the Wangmaogou watershed (37◦34′13′′–37◦36′03′′ N,
110◦20′46′′–110◦22′46′′ E) of the Loess Plateau in Suide county, Shaanxi Province, China (Figure 1).
Soil particle size was measured using a Mastersizer 2000 sediment particle size analyzer. The loess was
comprised of 0.20% clay, 72.01% silt, and 27.79% sand. The sandy soil was comprised of 0.72% clay,
14.38% silt, and 84.9% sand. The soil was identified as a silt loam according to the soil classification
standard of the United States Department of Agriculture. The dry bulk density of the soil was 1.3 g/cm3,
its organic matter content was 2.0 g/kg, and its saturated water content was 46.41%.

To measure soil erosion characteristics, we used a two-part experimental device that consisted of
the frozen soil system and the scour experiment (Figure 2). The frozen soil system adopts a freeze-thaw
test system implemented by the Xi’an University of Technology. The internal dimensions of the
freeze-thaw were 4.5 m (length) × 2.5 m (width) × 2.5 m (height). Its internal temperature varied from
−30–40 ± 1 ◦C. The temperature error was less than 2.0 ◦C, and there was a refrigeration and heating
system, to maintain the experimental conditions. The system contained a runoff collection unit, soil box,
sink, steady flow flume, and a water tank. The size of the soil box is 2 m long, 0.2 m wide, and 0.2 m
deep with marks at 0.5 m increments on the side of the box to measure section velocities. From the top
of the slope to the slope are S1, S2, S3, and S4. A sink of 2 m length, 0.2 m width, and 0.05 m depth was
joined on the top of the soil box to make a stable concentrated flow.
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Figure 1. The geographical location of tested soil.

 

Figure 2. The scour experimental system.

2.2. Experimental Design

The scour experiments were conducted at the State Key Laboratory of Eco-hydraulics in the
northwest arid region of China (Xi’an University of Technology) in Xi’an in April 2017. We used a local
standard runoff plot and calculated the experimental flow rate from the mean precipitation during
thawing as 1 L/min after correction. The scour experiment included unfrozen (US) and frozen slopes
(FS) treatments and four sand thicknesses (0, 1, 2, and 3 cm). To ensure that the initial conditions
of the scour experiments were consistent, the slope grade was set to 12◦. The rainfall temperature
was maintained at 10 ◦C and remained constant. Each experiment was replicated three times and we
present the average of the three replicates. Each scour experiment lasted 15 min after the flow started
(Table 1). Before the experiments, the soil samples were air-dried and passed through a 10 × 10 mm
sieve to remove impurities such as plant roots. The soil samples were then moistened to a water
content of 15% and covered with plastic film for 24 h to evenly distribute the soil moisture. A layer
of gauze was laid on the bottom of the soil tank before the tank was filled with a 5 cm layer of sand.
To mimic the soil’s dry bulk density, the box was filled with soil in 5 cm layer intervals, and layers
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were mixed. To avoid confounds of being introduced by the box itself, the slope was designed to
ensure erosion would flow through the middle of the box by lowering the slope and raising the sides.
Once the box was filled, sand of different thicknesses (0, 1, 2, 3 cm) was layered above the soil in the
box, along with water to increase the sand’s water content. The soil tank was then frozen at −20 ◦C for
24 h and then placed on a scouring device bracket for testing. Since the room’s temperature was higher
than that of the freeze-thaw experiment system, the scour experiment also thawed.

Table 1. Design table of scour experimental.

State of Slope Treatment
Depth of Sand

(cm)
Flow Rate

(L/min)
Slope

(◦)
Initial Soil Moisture

Content (%)
Time
(min)

Unfrozen slopes
(US)

U0 0 1 12 15 15
U1 1 1 12 15 15
U2 2 1 12 15 15
U3 3 1 12 15 15

Frozen slopes
(FS)

F0 0 1 12 15 15
F1 1 1 12 15 15
F2 2 1 12 15 15
F3 3 1 12 15 15

The flow rate was determined before the experiment began to ensure the difference between the
actual flow and the intended treatment flow was less than 5% for three consecutive trials. After error
testing, a formal test was performed by recording the initial flow time and collecting runoff and
sediment samples every minute. Dye tracing (KMnO4) was used to measure the flow velocity of
different sections of the box by dividing the travel distance by the mean traveling time multiplied by
an adjustment coefficient of 0.65. Samples were collected and the sediment was separated and then
dried at 105 ◦C for 24 h and subsequently weighed.

2.3. Hydraulics Parameter Calculation and Methods

2.3.1. Calculation of Hydraulics Parameters

In this study, flow velocity (V), the Reynolds number (Re), Froude number (Fr), and the
Darcy–Weisbach roughness coefficient (f ) were selected as the research objects [31], then were calculated
by the expression:

V = Vm × 0.65 (1)

where V is the mean flow velocity (m/s), Vm is the observed velocity (m/s), and the flow travel distance
is divided by the mean travelling time:

Re =
VR
ν

(2)

where ν is the kinematic viscosity (m2/s), and R is the hydraulic radius (m), which can be replaced by
the value of average flow depth h:

h =
Q

VbT
(3)

where Q is the total runoff in time T (m3/s) and b is the width of water surface (m):
ν (m2/s) is the kinematic viscosity, it was calculated as follows:

v =
0.01775

1 + 0.0337t + 0.000221t2 (4)

where t is the water temperature (◦C):

Fr =
V√
gh

(5)
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where g is the acceleration due to gravity (m/s2), being 9.8 m/s2:

f =
8gh sinα

V2 (6)

where α is the slope (◦).
The coefficient of variation (CV) indicates the degree of data dispersion, the formula is as follows:

CV = (SD/Mean) × 100% (7)

where CV is the coefficient of variation (%), SD is the standard deviation, and Mean is the average value.

2.3.2. Methods

The Photoshop (Adobe Photoshop CS4 Extended 11.0.1) was applied to design the experimental
system. All statistical analyses were conducted using SPSS (IBM SPSS Statistics Version 21). Figures were
generated in Origin 8.5.

3. Results

3.1. Erosion, Runoff, and Sediment Yield

3.1.1. Characteristics Values of Runoff and Sediment Yield

Table 2 showed the characteristic values of runoff and sediment yield under different treatments.
Based on the initial runoff time of U0, the change in the initial runoff time under different treatments
was calculated. It is calculated that the initial runoff time of U1, U2, and U3 is significantly longer than
that of U0, and the initial runoff time of the slope surface under different sand thicknesses has been
extended by 3.5 (U1), 4.73 (U2), and 6.36 (U3) times. The initial runoff time of F0 is 37.9% earlier than
U0. The initial runoff time of F1, F2, and F3 did not change much compared with U0, but compared
with U1, U2, and U3, the initial runoff time was much longer. Sand-covered slopes prolong initial
runoff times and the effects become longer as the thickness of sand-cover increases. The initial runoff
time of FS was significantly shorter than US. The total runoff under different treatments increased in the
following order: U0 < U3 < U1 < U2 < F3 < F2 < F0 < F1. The CV of runoff under different treatments
was between 2.48% and 22.14%, and the fluctuation range of the runoffwas small, indicating that the
impact of sand cover and soil freezing on the slope runoff process is small. The total sediment yield
across different treatments declined in the order U0 < U1 < U2 < U3 < F0 < F1 < F2 < F3. Based on the
total sediment yield of U0, the total sediment yield under different treatments are 3.37 (U1), 4.35 (U2),
4.96 (U3), 8.38 (F0), 8.88 (F1), 10.85 (F2), and 10.98 (F3) times. The CV of the sediment yield of US was
between 27.8% and 63.3%, which indicates that the sediment yield process of US had a large degree of
fluctuation. The increasing sand thickness increased the CV which indicates that the sediment yield of
the slope varies drastically. The CV of FS was between 3.33% and 35.22%. Under the same conditions
of sand cover thickness, the CV of FS was much smaller than that of US, which indicates that the
sediment yield of FS was relatively stable.

Figure 2 showed the eroded topography under different treatments, with significant differences in
surface morphology. On the unfrozen slopes and frozen slopes with different sand thicknesses, a rill
appeared during the runoff process. However, under the same hydraulic conditions, the rill appeared
in different shapes. For the US, the rill initially developed on the slope top and bottom, which extended
to the slope middle at the same time. In U0, the rill showed a discontinuous distribution, and the
development of the rill was primarily on the top (S1) and bottom (S4) of the slope. In U1, U2, and U3,
the rills were continuous but shallow in depth. For the FS, the rill had the same characteristics.
During the experimental processes, the rill initially only developed on the slope top and gradually
extended to the slope bottom. The connected rill gradually appeared on the frozen slope (Figure 3).
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Table 2. Initial runoff time, runoff and sediment yield under different treatments.

Treatment Initial Runoff Time/(s)
Runoff Sediment Yield

Total Runoff/L CV/(%) Total Sediment Yield/kg CV/(%)

U0 39.38 9.64 22.14 0.93 27.80
U1 138.01 11.01 14.05 3.13 31.67
U2 186.36 11.3 15.51 4.03 51.16
U3 250.58 10.69 20.67 4.59 63.3
F0 24.45 13.82 2.48 7.76 3.33
F1 31.91 14.18 6.17 8.23 26.34
F2 34.02 13.46 13.86 10.04 26.22
F3 32.41 12.24 11.93 10.17 35.22

 

Figure 3. Eroded topography under different treatments. Note: S1 (2, 3, and 4), Section 1 (2, 3, and 4).

3.1.2. Correlation between Accumulative Runoff and Accumulative Sediment Yield

A function is fitted to the relationship between cumulative runoff and cumulative sediment yield
for each experiment. The fitted equation is M = CQ + D, where M (kg) is the cumulative sediment
yield, Q (L) is the cumulative runoff, and C and D are regression coefficients. All fitting equations
were significant at p < 0.001 (Table 3). The coefficient C was defined as the sediment yield coefficient.
MC was the mean of regression coefficient C. This coefficient obeys a certain change law. The MC of
the US and FS were 0.31 and 0.67, respectively. The MC of the FS was 2.16 times than that of the US,
indicating that the dependency of sediment yield on runoffwas stronger for the FS than for the US.

Table 3. Cumulative runoff and cumulative sediment yield fitted equation.

Treatment Fitted Equation MC

U0 M = 0.093 Q + 0.029 R2 = 0.997, p < 0.001

0.31
U1 M = 0.283 Q − 0.016 R2 = 0.990, p < 0.001
U2 M = 0.397 Q − 0.035 R2 = 0.972, p < 0.001
U3 M = 0.465 Q + 0.263 R2 = 0.930, p < 0.001

F0 M = 0.565 Q + 0.001 R2 = 0.999, p < 0.001

0.67
F1 M = 0.593 Q − 0.361 R2 = 0.987, p < 0.001
F2 M = 0.740 Q + 0.566 R2 = 0.986, p < 0.001
F3 M = 0.778 Q + 1.003 R2 = 0.993, p < 0.001
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3.2. Hydraulics of Slope Runoff

3.2.1. Spatiotemporal Variations of Flow Velocity

For the US, the flow velocity varies from 0.23 to 0.35 m/s during the tests, and its fluctuation
range is small (Figure 4a). For the FS, the flow velocity varies from 0.18 to 0.35 m/s during the test,
and its fluctuation range is relatively large (Figure 4). Under the condition of the same sand thickness,
the mean values of flow velocity on the FS were 85.92% (F0/U0), 96.13% (F1/U1), 84.84% (F2/U2),
and 88.47% (F3/U3) of the US, respectively. During the entire experiment, the flow velocity of the US
and FS generally showed a downward trend (Figure 4). However, due to the conversion from erosion
between inter-rill erosion to rill erosion during the erosion phase, the flow velocity changed due to the
occurrence of rills. In the early stage of runoff, erosion was mainly between inter-rill erosion, the slope
was relatively smooth, the runoff resistance was small, and the flow velocity was large. When the rill
was generated on the slope, the flow velocity decreased significantly, and it occasionally rose with the
backwater and reaches unconnected rills. In later stages of the experiment, the flow velocity tended to
stabilize because the rill no longer developed. The variability of the flow velocity was mainly due to
the increased resistance caused by the ground surface, the runoff energy consumption caused by the
water flow down-cut, and the collapse of the soil on the side of the rill. Due to the abundance and
looseness of sand, the fluctuation of U3 flow velocity is more severe.

  

(a) (b) 

Figure 4. Variations in flow velocity under different treatments over time. (a) Unfrozen slope,
(b) frozen slope.

In space, the V of the US and FS and the distance from the top of the slope can be represented
by a linear function (US: R2 = 0.893, p > 0.05; FS: R2 = 0.952, p < 0.05). For the US, the V increases
continuously as the distance from the top of the slope increases; for the FS, the V increases first to the
maximum and then decreases as the distance from the top of the slope increases. At the same section,
the V of the US decreases with the increase of the sand thickness, and then increases; the V of the
FS increases with the increase in the sand thickness. Regression analysis showed that the V can be
described by a linear function of the distance from the top of the slope (Table 4). The fitted equation
showed that there is a certain range in which the V increases continuously as the slope length increases.
Therefore, the slope length is very important. In some cases, precautions should be taken to mitigate
the harm of downhill scour. Setting intercepting trenches and terraces on the slope can greatly reduce
the slope length and thus reduce the erosion of runoff.
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Table 4. Variations of flow velocity with the distance from the top of the slope (m/s).

Treatment
Distance from the Top of the Slope E/m

Fitted Equation
0.5 1 1.5 2

U0 0.26 0.29 0.29 0.32
VU = 0.071E + 0.212
R2 = 0.893, p > 0.05

U1 0.21 0.27 0.33 0.29
U2 0.22 0.31 0.31 0.35
U3 0.23 0.33 0.37 0.39

F0 0.19 0.20 0.26 0.33
VF = 0.091E + 0.146
R2 = 0.952, p < 0.05

F1 0.18 0.21 0.31 0.37
F2 0.19 0.22 0.29 0.28
F3 0.24 0.25 0.33 0.32

Note: The parameter “E” means the distance from the top of the slope, the same to below.

3.2.2. Spatiotemporal Variations of the Reynolds Number

From open channel hydraulics, the runoff flow is laminar when the Re < 500, the runoff flow is
turbulent when the Re > 2000, and the runoff is transitional when the Re is between 500 and 2000.
During the entire experiment, the Re ranged from 149.2 to 533.69 under US and FS, indicating that
most of the runoff is laminar (Figure 5). For the US, the average value of the Re increased across
conditions in this order: U0 < U1 < U2 < U3. There was little change in Re in the U0 treatment over
time (range 155.63 to 204.82). The Re of U1, U2, and U3 increased over time, and the Re of U3 at the
end of the experiment exceeded 500. For the FS, the Re in F1, F2, and F3 were approximately identical,
all increasing slowly over time. The F0 increased rapidly from 0 to 5 min, and then showed a slow
downward trend.

  
(a) (b) 

Figure 5. Variations in Reynolds number under different treatments over time. (a) Unfrozen slope,
(b) frozen slope.

In space, the Re of the US and FS and the distance from the top of the slope can be represented
by a linear function (US: R2 = 0.712, p > 0.05; FS: R2 = 0.998, p < 0.01). For the US, the Re was largest
(Re > 500 for U1, U2, and U3) at 0.5 m from the top of the slope. As the distance from the top of the slope
increased, the Re decreased. In the same section, the Re of the sand-covered slope was significantly
larger than U0 (Table 5). For the FS, the Re was largest at 0.5 m from the top of the slope, and runoff
was a transitional flow; only the Re of F0 is greater than 500. As the distance from the top of the slope
increased, the Re decreased. As the distance from the top of the slope increased, the Re decreased.
In the same section, the Re of F0 was greater than that of the sand-covered slope. At the same sand
thickness, the Re of F0 was greater than U0. The Re of sand-covered slopes of US was larger than that
of FS.
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Table 5. Variations of Reynolds number with the distance from the top of the slope.

Treatment
Distance from the Top of the Slope E/m

Fitted Equation
0.5 1 1.5 2

U0 283.55 194.56 172.46 181.68
ReU = −135.01E + 484.59

R2 = 0.712, p > 0.05
U1 570.51 380.66 433.42 309.84
U2 636.61 375.33 371.24 392.56
U3 587.71 463.96 388.73 410.48

F0 518.21 499.82 444.29 430.38
ReF = −57.09E + 489.25

R2 = 0.998, p < 0.01
F1 433.68 410.35 340.95 350.17
F2 396.99 499.04 399.28 347.70
F3 488.91 328.52 326.88 371.09

3.2.3. Spatiotemporal Variations of the Froude Number

The critical value of subcritical flow and supercritical flow is 1. If the Fr is greater than 1, it is
a supercritical transition of flow, otherwise, it is a subcritical flow. The Fr gradually decreased over
time (Figure 6). The Fr in the US ranged from 3.88 to 5.24, and the Fr of the FS ranged from 2.93 to
4.85. This indicated that the runoff on the slope is supercritical during the experiment. For the US,
the Fr of U0 was greater than the Fr of the sand-covered slope. The changes in the Fr of U1, U2, and U3
over time were roughly the same. For the FS, the Fr decreased faster with time as compared to the US,
and showed a clear layering phenomenon.

  

(a) (b) 

Figure 6. Variations in the Froude number under different treatments over time. (a) Unfrozen slope,
(b) frozen slope.

In space, the Fr of the US and FS and the distance from the top of the slope can be represented by
a linear function (US: R2 = 0.899, p > 0.05; FS: R2 = 0.956, p < 0.05). The Fr under different treatments
increased with the distance from the top of the slope (except U2 and F3). The maximum Fr of U2 and
F3 occurred at 1.5 m from the top of the slope. For the US, the Fr of U0 in different sections was greater
than the Fr of sand-covered slopes. Under the same section, the Fr had no obvious change law with the
increase of sand thickness (Table 6). Under the same sand thickness, the Fr of the US was larger than
the Fr of the FS.
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Table 6. Variations of Froude number with the distance from the top of the slope.

Treatment
Distance from the Top of the Slope E/m

Fitted Equation
0.5 1 1.5 2

U0 3.37 4.47 4.67 5.32
FrU = 1.488E + 1.656
R2 = 0.899, p > 0.05

U1 1.86 2.89 3.67 3.66
U2 1.40 3.74 3.76 4.34
U3 1.76 2.98 4.07 4.29

F0 1.35 1.45 1.92 3.18
FrF = 1.362E + 0.656
R2 = 0.956, p < 0.05

F1 1.25 1.68 3.39 4.03
F2 1.37 1.62 2.72 2.86
F3 1.74 2.38 3.56 3.24

3.2.4. Spatiotemporal Variations of the Darcy-Weisbach Roughness Coefficient

As shown in Figure 7, the f has volatility, but generally increases gradually with time. The range
of the f for the US and the FS is 0.06~0.56 and 0.08~1.81, respectively. For the US, there was little
change in f of U0, and the change of the f of sand-covered slope with time showed strong fluctuation.
This phenomenon may be caused by sediment pick-up. This occurred due to the back water and
increased resistance, and forced the f value to increase during the experiment. For the FS, the f of F0
increased sharply with time, and the change of the f of F3 with time was relatively gentle. In the case
of frozen soil, the average value of the f decreased with the increasing sand thickness.

  
(a) (b) 

Figure 7. Variations in the Darcy-Weisbach roughness coefficient under different treatments over time.
(a) Unfrozen slope, (b) frozen slope.

In space, the f of the US and FS and the distance from the top of the slope can be represented by a
linear function (US: R2 = 0.719, p > 0.05; FS: R2 = 0.972, p < 0.05). Under different treatments, the f
decreased as the slope length increased. Given the same thickness of sand cover and the same section,
f was greater in FS than that in US (Table 7).
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Table 7. Variations of Darcy-Weisbach roughness coefficient with the distance from the top of the slope.

Treatment
Distance from the Top of the Slope E/m

Fitted Equation
0.5 1 1.5 2

U0 0.21 0.09 0.08 0.06
fU = −0.348E + 0.694
R2 = 0.719, p > 0.05

U1 0.72 0.25 0.13 0.13
U2 1.04 0.14 0.13 0.09
U3 0.65 0.24 0.11 0.09
F0 1.71 1.57 0.85 0.26

fF = −0.754E + 1.695
R2 = 0.972, p < 0.05

F1 1.57 0.95 0.33 0.16
F2 1.18 1.09 0.45 0.36
F3 0.78 0.43 0.17 0.19

3.3. Quantification of Hydrodynamic Parameters of Slope Erosion under US and FS

3.3.1. Relationship between Flow Velocity and Hydraulic Parameters under US and FS

The flow velocity is one of the basic factors that affect the hydraulic parameters such as Reynolds
number (Re), Froude number (Fr) and Darcy-Weisbach roughness coefficient (f ). Figure 8 showed the
relationship between flow velocity and hydraulic parameters. The Re decreased with increasing V in
both the US (R2 = 0.797) and the FS (R2 = 0.871), while the Fr increased with increasing V in the US
(R2 = 0.913) and the FS (R2 = 0.977). The f decreased with increasing V on the US (R2 = 0.857) and the
FS (R2 = 0.946). Comparing the fitting coefficients of the various relations, it can be found that due
to the influence of soil freezed, the flow velocity has less influence on the hydrodynamic parameters.
All the determination coefficients (R2) were high (from 0.797 to 0.977), and there was a significant linear
relationship between flow velocity and hydraulic parameters (p < 0.01). This may be due to the fact
that hydrodynamic parameters are also affected by flow depth and sediment concentration.

  
(a) (b) 

 
(c) 

Figure 8. Relationship between flow velocity and hydraulic parameters. (a) Re with V, (b) Fr with V,
(c) f with V.
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3.3.2. Interrelations of Flow Velocity and Hydraulic Parameters with Runoff Rate Response under US
and FS

Table 8 showed the correlation between runoff rate with flow velocity (V) and hydraulics
parameters (Re, Fr, and f ) under different treatments. It can be seen from the equation that the above
flow velocity and hydraulic parameters can be used to describe the runoff process under experimental
conditions to a certain extent (Table 8). In terms of fitting effect for the runoff process of the US, the test
parameters can be arranged in the order of V > Fr > Re > f. For the runoff process on the FS, the test
parameters can be arranged in the order of Fr > Re >V > f. The runoff rate, flow velocity, and hydraulics
parameters have a significant linear relationship (p < 0.01), and R2 is above 65%. By fitting the data of
flow velocity, hydraulic parameters, and sediment yield rate, it is found that although there is a certain
relationship between them, this relationship is not significant (p > 0.05).

Table 8. Correlation between runoff rate with flow velocity and hydraulic parameters.

Runoff/L
Hydraulic Parameters

V/(m/s) Re Fr f

US
R = −6.394V + 2.559 R = 0.0033Re − 0.443 R = −0.278Fr + 1.788 R = 1.207f + 0.445
R2 = 0.813, p < 0.01 R2 = 0.725, p < 0.01 R2= 0.767, p < 0.01 R2 = 0.655, p < 0.01

FS
R = −1.474V + 1.273 R = 0.0013Re + 0.437 R = −0.084Fr + 1.141 R = 0.167f + 0.791
R2 = 0.787, p < 0.01 R2 = 0.85, p < 0.01 R2 = 0.866, p < 0.01 R2 = 0.668, p < 0.01

Note: R was the runoff (L).

4. Discussion

4.1. Effects of Slope, Sand Cover, and Soil Freezing on Soil Erosion

For the US, the initial runoff time of the sand-covered slope increased, and the effect was clearer
with the increasing sand thickness (Table 2). This is consistent with the research results of Zhang et al.
and Tang et al. [8,13]. This relationship occurred due to the high porosity of aeolian sand soil [6].
The greater the sand thickness, the greater the water storage effect, and ultimately the initial runoff
time increases greatly. For the FS, the initial runoff time was significantly reduced under different sand
thicknesses because the water present in the soil surface layer and the water in the soil pores condense
to form an “ice cap”. In early stages, the “ice cap” hindered the inflow and infiltration, resulting in a
significant reduction in the initial runoff time [32,33].

The total runoff and total sediment yield on the slope are related to the degree of erosion on the slope
during soil erosion [7]. We found the total runoff under different treatments was 1.02 to 1.28 times than
that of U0, and the total sediment yield under different treatments was 1.97 to 10.94 times than that of
U0 (Table 2). Frozen soil and sand cover on the slope both lead to changes in the total runoff and total
sediment yield. The reasons are as follows: (1) When the temperature drops below 0 ◦C, the water stored
in the sand layer and the water in the soil pores freeze into ice, and the volume expands, which reduces
soil stability. The bottom layer of the water-tight layer forms an impervious layer, the runoff flows along
the contact surface, the friction between the water flow and the slope surface is reduced, and a small
ditch is quickly formed, which increases the amount of erosion and eventually leads to increased soil
erosion [34–38]; (2) frozen soil greatly shortens the initial runoff time and the appearance time of rill,
which makes it easier to generate runoff on the slope surface, and also more likely to generate a fine
ditch, leading to increased erosion [39–42]. The upper-most sand layer can prolong the initial runoff time
and store more water. When the slope begins to produce water, the stored water will drain along with
the runoff and carry more sediment, increasing sediment yield [4–6]. For the US and FS, the sediment
yield of sand covered slope is 3.37~4.96 and 1.06~1.13 times of U0 and F0, respectively. In this study,
the sediment yield under different treatments increased with the increasing runoff. There was a linear
relationship between the cumulative runoff and cumulative sediment yield under different treatments
(Table 3). This study further supported the previously reported relationships [43].
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4.2. Effects of Slope Sand Covered and Soil Freezed on Hydraulic Parameters

Runoff on the slope is the driving force of soil erosion [44]. The movement of sediment particles
will be affected by the runoff [45]. Therefore, there is a close relationship between slope runoff,
sediment movement, and hydraulic parameters. In this study, the underlying condition is the main
factor affecting hydraulic properties. The hydraulic characteristics of the slope are mainly affected
by various factors such as sand cover and soil frozen [15,46]. Sand cover on the slope changed the
infiltration capacity of the soil, which in turn changed the runoff of the slope. Therefore, the topography
of the sand cover slope changed greatly during the experiment (Figure 2). Compared with the rill
formed by U0, the sand-covered slope in the US formed wide and deep due to runoff erosion, and the
runoff depth is increased, resulting in changes in hydraulic characteristics. The research results of
Tang et al. [15] showed that the flow pattern of water greatly influences the erosion of sand-covered
slopes. This study showed that flow velocity and hydraulics parameters can describe the runoff process
under different treatments. Among them, R2 of V, Re, and Fr all reached more than 70% (Table 8).
Since the data of flow velocity can be obtained directly by the experiment, the flow velocity can be used
to better describe the runoff process of the US and FS. However, some seemingly effective hydraulic
parameters cannot explain the process of sediment yield on the FS. Frozen soil condenses the water
in the soil surface layer and pores into an “ice cap” that hinders runoff infiltration. The infiltration
capacity of the slope is reduced, the runoff on the slope is larger, and the erosion is greater [47–49].
Therefore, during the experiment, narrow and deep ditches were quickly formed on the FS, resulting in
changes in hydraulic characteristics. In addition, the limited observation technology during the erosion
process leads to poor fitting of hydraulic parameters and sediment yield on the FS. Despite these
shortcomings, the results of this study can still provide a reference for the establishment of a model of
erosion on sand-covered loess slopes during thawing.

4.3. Implications for the Relationship between Hydraulic Parameters and Slope Erosion

Global climate change will cause the local permafrost area to melt in advance in the seasonal
freeze-thaw area, thus changing the erosion situation in this area. Therefore, in the past few decades,
soil erosion resulting from climate warming has captured strong attention in cold regions [49–51].
During the thawing period of winter and spring, the soil erosion in the wind water erosion crisscross
zone of the Loess Plateau is usually the result of the combined action of water erosion, wind erosion,
and freeze-thaw erosion. However, the problem of soil erosion caused by the combined action is far
more than the harm of single action erosion itself. The superposition of different types of erosion
has led to huge changes in soil erosion [30,52–55]. In future research, the analysis and quantitative
description of composite erosion and single erosion should be encouraged. While it is necessary
to measure the impact of each type of erosion on total erosion, it is also necessary to analyze the
relationship between hydraulic parameters, runoff, and sediment yield. According to the different
effectiveness of hydraulic parameters, selecting the appropriate hydraulic parameters to establish an
evaluation model is key [56,57]. This information will help us clarify the feedback relationship between
the soil erosion process and the hydrodynamic process from a scientific perspective. At the same time,
erosion changes in local areas can also be predicted more comprehensively.

5. Conclusions

Flume tests were performed to study the mechanism of hydrodynamics erosion on the steep
sand-covered Loess slopes during the thawing period to improve our understanding of the mechanisms
of runoff and sediment yield and to establish a model of soil erosion during thawing. The results showed
that the initial runoff time increases with the increase of sand thickness. Under the same sand thickness,
the initial runoff time of FS is significantly shorter than the US. For the US, the total sediment yield of
different sand thicknesses was significantly higher than that of U0. The cumulative runoff and sediment
yield of different treatments can be expressed as a function of M = CQ + D. During the entire experiment,
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the flow velocity in the US and FS treatments generally showed a downward trend. The distance between
the hydraulic parameters of US and FS and the top of the slope can be expressed as a linear function.
The main flow pattern of runoff was composed of laminar flow and supercritical flow. Linear equations can
be used to describe the relationship between flow velocity and the main hydraulic parameters including
Reynolds number, Froude number, and Darcy-Weisbach roughness coefficient. Different hydrodynamic
parameters show varying degrees of effectiveness in describing slope erosion processes. Flow velocity is
the best hydraulic parameter to simulate the trend of slope erosion process.
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Abbreviations

The following abbreviations are used in this manuscript:

US unfrozen slope
U0 (1,2,3) unfrozen slope, the thickness of sand covering is 0 (1,2,3) cm
FS frozen slope
F0 (1,2,3) frozen slope, the thickness of sand covering is 0 (1,2,3) cm
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Abstract: Soil detachment is the initial phase of soil erosion and is of great significance to study in
seasonal freeze-thaw regions. In order to elucidate the effects mechanism of freeze-thaw cycles on
soil detachment capacity of different soils, a sandy loam, a silt loam, and a clay loam were subjected
to 0, 1, 5, 10, 15, and 20 freeze-thaw cycles before they were scoured. The results revealed that with
increased freeze-thaw cycles, soil bulk density and water-stable aggregates content decreased after
the first few times and then kept nearly stable after about 10 cycles, especially for sandy loam. The
shear strength of all soils gradually decreased as freeze-thaw cycles increased, except the values of
clay loam increased subsequent to the 5th and 15th cycles. After the 20th cycle, the degree of decline
of silt loam was the greatest (77.72%), followed by sandy loam (63.18%) and clay loam (39.77%). The
soil organic matter of clay loam was much greater than silt loam and sandy loam and all significantly
increased after freeze-thaw. Soil detachment capacity of silt loam and sandy loam was positively
correlated with freeze-thaw cycle, which was contrary to findings for clay loam. The values of clay
loam increased at first and then decreased during the cycles, reaching minimum values at about the
15–20th cycle. After the 20th cycle, the values of sandy loam and silt loam significantly increased 1.62
and 4.74 times over unfrozen, respectively, which was greater than clay loam (0.53 times). A nonlinear
regression analysis indicated that the soil detachment capacity of silt loam could be estimated well
by soil properties (R2 = 0.87, p < 0.05). This study can provide references for the study of the soil
erosion mechanism in seasonal freeze-thaw regions.

Keywords: freeze-thaw cycles; loamy soil; soil property; soil detachment capacity; Loess Plateau

1. Introduction

Soil erosion has become one of the most critical environmental problems influencing
sustainable development and agricultural productive capacity [1,2]. It comprises a series
of complex physical processes including detachment, entrainment, transport, and the
deposition of soil particles as the result of one or more natural or anthropogenic erosive
forces [3]. During the initial stages of soil erosion, soil detachment is defined as the process
by which constituent particles are separated from the matrix at a particular location on the
surface by erosive agents [4].

Soil detachment capacity is affected by slope, overland flow hydraulics parameters,
land use, biocrusts, and soil properties [5–9]. Among them, soil properties exert a profound
influence on soil erosion, to an even greater extent than flow discharge and slope under
some circumstances [10]. The process of soil detachment involves the interaction between
flow and soil particles. Water shear stress increased as result of the adhesion between
soil particles when soil particles were detached [6,7]. Additionally, the adhesion between
soil particles was positively proportional to clay content, soil bulk density, shear strength,
water stable aggregates content, and soil organic matter. However, the increase in sand
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content, soil porosity, and water content causes a decrease in adhesion [9–12]. These soil
properties were important indices for evaluating soil erodibility [13]. Previous research
has demonstrated a 2 to 3 times higher rate of soil erodibility during the winter-spring
thaw period than the rest of the year [14], while other studies have shown that temporal
variation in this variable might result from freeze-thaw action [15,16].

In recent decades, as global climate has tended to be warmer, the effects of freeze-thaw
in areas of high latitude and high elevation have been intensified [17,18]. Freeze-thaw
erosion does not always occur, but freeze-thaw action can provide effective material
sources for other erosion forces by affecting soil properties, and its distribution range is
larger than that of freeze-thaw erosion [19]. Generally, frozen soil melts from the surface
downward, and an impermeable layer forms at the boundary, with the underlying soil
remaining frozen [20]. Due to decreased friction at this border, water can easily flow [21].
Via laboratory simulation experiments, Ferrick and Gatto [22] found that average groove
depth, width, and degree of powdery soil erosion following freeze-thaw were significantly
greater than those of soils without freeze-thaw. Barnes et al. [23] used an erosion needle
method to monitor the impact of freeze-thaw cycles on gully erosion of clay soil in the
field over prolonged periods of time, finding freeze-thaw significantly increased erosion of
gullies, especially the lateral walls.

During a period of soil thawing, the frozen soil starts thawing with the process of
water and heat transfer, and the water changes and migrates in solid, liquid, and gas
phases [20,24]. Due to the different densities of water and ice, the constant phase change of
soil water causes ice crystal growth and water migration, the frequent frost heaving and
thawing of soil leading to changes in soil structures and properties [25]. However, with
the increase of freeze-thaw cycles, research results on the changes of soil properties have
not been completely consistent as a result of soil texture. For example, soil aggregates—
as important components of soil structure, its composition, and stability—influence soil
erodibility [26]. Since the 1950s, many studies have investigated the effects of freeze-thaw
action on the stability of soil aggregates. It has been shown that freeze-thaw significantly
decreased water stable aggregates [27–29]. However, the treatment of freeze-thaw cycles
led to disaggregation of micro aggregates and thus enhanced the formation of surface
sealing that reduced splash erosion [30]. Hence, the effects of freeze-thaw on the stability
of soil aggregates have been studied extensively over several decades; results have proved
contradictory because of differences in soil texture, structure, chemical properties, and
freeze-thaw cycles.

On the Loess Plateau of China from March to May every year are the periods of
thawing; the plateau belongs to a seasonal freeze-thaw area, so freeze-thaw, snowmelt,
and rainfall agents occur interactively or simultaneously. After the freeze-thaw cycles
in early spring, soil properties—such as bulk density, water stable aggregates, and shear
strength change—that lead to erosion easily occur when rain intensity or snowmelt is not
too great [31]. However, limited research has been carried out to date to understand how
freeze-thaw affects soil properties, and thus soil detachment capacity. The main aim of
this study was therefore to research the effects of freeze-thaw cycles on soil properties and
soil detachment capacity, and then to quantify the relationship between soil detachment
capacity and properties of sandy loam, silt loam, and clay loam under conditions of freeze-
thaw. This study can provide a scientific basis for the study of the mechanism of complex
erosion of freeze-thaw and water during thawing periods.

2. Materials and Methods

2.1. Soil Samples

The three soils used in this study (loessal soil, aeolian sandy soil, anthropogenic-
alluvial soil) were collected from the central and north of Loess Plateau and had the
widest distribution or were most affected by human activity (Figure 1). The minimum and
maximum daily temperatures can reach about −26 ◦C in February and 37 ◦C in July, and
mean annual precipitation is about 360 mm. During the freeze-thaw periods, the minimum
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and maximum recorded daily temperatures in this region can reach about −10 ◦C and
22 ◦C (March and April), and maximum daily precipitation can be as high as 198 mm.

Figure 1. Location of sampling points and soil types of Loess Plateau in China.

All the above three soils were taken from 0–20 cm of the surface of abandoned land.
Based on United States textural classification standards, the aeolian sandy soil, loessal soil,
and anthropogenic-alluvial soil used in this study were sandy loam, silt loam, and clay
loam, respectively (Table 1).

Table 1. Information on three soil samples.

Soil Samples Geographic Coordinates
Soil Texture %

Clay (<0.002) Silt (0.002–0.05) Sand (>0.05)

Aeolian sandy soil 110◦31′17′′ E 39◦58′12′′ N 11.14 14.84 74.02
Loessal soil 109◦15′46′′ E 36◦46′28′′ N 20.17 61.04 18.79

Anthropogenic-alluvial soil 107◦40′47′′ E 40◦54′21′′ N 32.18 23.68 44.14

2.2. Determination of Soil Properties

The soil samples were collected by a ring knife with a volume of 100 cm3. During
the sampling process, the handle was placed on the ring knife. The edge of the ring
knife was pressed down vertically into the soil with consistent force until the ring knife
was filled with soil samples. Then the ring knife filled with soil was taken out and the
excess soil around the ring knife was carefully cut off. Finally, the soil sample was put
into a dried cylindrical aluminum box in the oven. The soil moisture content and bulk
density were measured by oven-drying. Soil particle size distribution was determined
by using laser diffraction (Malvern Mastersizer 2000, Malvern, UK) [32,33]. Water stable
aggregates (>0.25 mm) were measured by the wet-sieving method. The content of larger
than 0.25 mm aggregate was computed from the size distribution of aggregates [29]. Soil
organic matter was measured by potassium bichromate by external heating. Shear strength
was measured by miniature adhesion instrument (Pocket shear 15.10, Royal Eijkelkamp
Company, Giesbeek, The Netherlands). Soil unconfined compressive strength (CS) before
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and after each freeze-thaw cycle was measured by soil firmness meter. The tests of all soil
properties were repeated three times.

2.3. Design of Freeze-Thaw and Scour Simulation Experiments

To remove stones, grass, and other debris, soil samples were stored in polyvinyl
chloride (PVC) cylindrical boxes (10 cm diameter, 5 cm depth) based on their bulk densities
in the field. There were nine holes at the bottom of each box and gauze covered box bottoms
before being filled with the soil samples. According to the measured average value of
the samples taken in the field, all the test soil samples were configured with an initial
mass water content of about 10%. Then they were frozen at −10 ◦C for 12 h and thawed
at room temperature between 5 and 10 ◦C for 12 h to simulate the natural phenomenon
of night freezing and day thawing. The slope gradient of experiments was controlled at
15◦, flow discharge constant was held at 6 L min−1, and the experiments used soils with
three textures (i.e., sandy loam, silt loam, and clay loam). The samples were subjected
to six distinct freeze-thaw cycles (0, 1, 5, 10, 15, and 20 times) and utilized a full-factorial
design that required 54 tests, each comprising three replications. All tests were carried out
between November and March in order to ensure that air and water temperatures were
similar to those recorded in the field during thawing.

Soil detachment capacities were obtained by performing flow scouring experiments.
To do this, a scouring device comprised of a water supply tank and flume (400 cm in length,
15 cm in width, and 5 cm in depth) made of PVC material (Figure 2) was used. Fine sand
was adhered to this flume to simulate field surface roughness, and a flowmeter was used
to control the scouring flow from the water supply tank. Each sample was placed in the
test section (10 cm in diameter, Figure 2) of the flume bed, located at a distance of 0.3 m
from the flume outlet, and the slope gradient and flow discharge were adjusted to 15◦ and
6 L min−1 prior to each experiment. Tests were timed as soon as they began and ended
when the depth of the eroded soil in the soil sample box reached 2 cm [9–11]. The wet soil
was then oven-dried at 105 ◦C for 24 h and then weighed.

Figure 2. Schematic diagram of experimental setup.

Soil detachment capacities was then calculated as follows:

SDC =
ww − wd

A·T (1)
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where SDC is soil detachment capacity (g m−2 s−1), ww is the dry weight of soil before
testing (g), wd is the dry weight after testing (g), T is the test’s duration(s), and A is the
sample cross-sectional area (m2).

2.4. Data Analyses

All data were analyzed by using SPSS 22.0 (International Business Machine Company,
Chicago, IL, USA), and detected significant differences in mean physical properties and soil
detachment capacity between soil types and number of freeze-thaw cycles were analyzed
via a one-way analysis of variance (ANOVA) followed by least significant difference
tests (LSD) (p < 0.05) and two-way ANOVA. A nonlinear regression method was used to
estimate the relationships between soil detachment capacity and the physical properties of
soils. Determination coefficients (R2) and Mann–Whitney U tests were used to evaluate
the effectiveness of the models. The figure plotting was conducted by Origin v. 2020
(OriginLab Corp., Northampton, MA, USA).

3. Results

3.1. The Effects of Freeze-Thaw Cycles on Soil Properties

On average, for bulk density, the values of sandy loam were the greatest (1.39 g cm−3),
followed by silt loam (1.29 g cm−3) and clay loam (1.17 g cm−3). With the increase of
freeze-thaw cycles, bulk density of the three soils decreased significantly and gradually
tended to be stable after the 10th freeze-thaw cycle, especially for sandy loam (Figure 3). It
could be seen that bulk density of the three soils all had no significant difference between
the 1st and 5th cycles, which was similar to the values between 15th and 20th cycles. After
a 20th freeze-thaw cycle, the bulk density of sandy loam, silt loam, and clay loam decreased
5.87%, 8.99%, and 9.07% under unfrozen, respectively.

Figure 3. Relationships between soil bulk density and freeze-thaw cycles of three soils. Note: The
letters indicated whether the differences in the test results were significant or not. “a, b” stands for
sandy loam, “A, B” stands for silt loam, “c, d” stands for clay loam. And different letters indicate a
significant difference of test results among the different freeze-thaw cycles and soils at the 0.05 level.
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Contrasted with bulk density, the water stable aggregates content (>0.25 mm) of clay
loam was the greatest with a mean of 50.58%, followed by silt loam (32.70%) and sandy
loam (11.73%) before freeze-thaw. Water stable aggregates content of clay loam ranged from
45.72% to 36.19% with a mean of 41.26% after the 1st to 20th freeze-thaw cycle, from 25.04%
to 16.83% with a mean of 20.70% for silt loam, and from 15.13% to 8.08% with a mean of
11.05% for sandy loam. The values of clay loam and silt loam decreased significantly after
a 1st freeze-thaw cycle, then increased initially and decreased afterward, especially for silt
loam; there were significant differences between each of their freeze-thaw cycles (Figure 4).
However, the values of sandy loam increased after the 1st freeze-thaw cycle, and there was
basically no significant change after the 10th freeze-thaw cycle. After a 20th freeze-thaw
cycle, the water stable aggregates of silt loam, clay loam, and sandy loam decreased 48.54%,
28.44%, and 7.04% under unfrozen, respectively.

Figure 4. Relationships between soil water stable aggregates and freeze-thaw cycles of three soils.
Note: The letters indicated whether the differences in the test results were significant or not. “a, b,
c, d” stands for clay loam, “A, B, C, D, E, F” stands for silt loam, “e, f, g” stands for sandy loam.
Different letters indicate a significant difference of test results among the different freeze-thaw cycles
and soils at the 0.05 level.

The soil organic matter of clay loam was greater than silt loam and sandy loam, no
matter before or after freeze-thaw, and the means of the three soils all significantly increased
with the increase in freeze-thaw cycle (p < 0.05, Figure 5). Significant changes in the means
of soil organic matter were no longer observed for all three soils after a 15th freeze-thaw
cycle. After a 20th freeze-thaw cycle, the means of sandy loam, silt loam, and clay loam
increased 1.27, 1.49 and 1.28 times over unfrozen, respectively.

The shear strength of silt loam was the largest (13.49 ± 1.27 kPa) before freeze-thaw,
followed by clay loam (11.67 ± 0.84 kPa), and last was sandy loam (6.38 ± 0.83 kPa). The
shear strength of all soils gradually decreased as freeze-thaw cycles increased, especially
after the 1st time, except the values for clay loam increased subsequent to the 5th and 15th
cycles (Figure 6). After a 20th cycle, the degree of decline of silt loam was the greatest
(77.72%), followed by sandy loam (63.18%), and clay loam (39.77%).
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Figure 5. Relationships between soil organic matters and freeze-thaw cycles of three soils. Note: The
letters indicated whether the differences in the test results were significant or not. “a, b, c, d” stands
for clay loam, “A, B, C, D, E” stands for silt loam, “e, f, g, h” stands for sandy loam. Different letters
indicate a significant difference of test results among the different freeze-thaw cycles and soils at the
0.05 level.

Figure 6. Relationships between soil shear strength and freeze-thaw cycles of three soils. Note: The
letters indicated whether the differences in the test results were significant or not. “a, b, c” stands for
clay loam, “A, B, C, D” stands for silt loam, “d, e, f” stands for sandy loam. Different letters indicate a
significant difference of test results among the different freeze-thaw cycles and soils at the 0.05 level.

The mean soil compressive strength before the freeze-thaw of clay loam (1.68 ± 0.14 KPa)
and silt loam (1.65 ± 0.05 KPa) were significantly higher than sandy loam (1.14 ± 0.19
KPa, p < 0.05). The values of clay loam decreased after the 1st freeze-thaw cycle, then
increased after the 5th freeze-thaw cycle, but no significant differences were found between
before and after freeze-thaw cycles (p > 0.05). However, this variable for silt loam initially
increased and then decreased after the 1st cycle, and no significant change in sandy loam
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was recorded before the 10th freeze-thaw cycle. Different freeze-thaw cycles exerted no
significant influence on the CS of sandy loam (p > 0.05, Figure 7).

Figure 7. Relationship between soil compressive strength and freeze-thaw cycles of three soils. Note:
The letters indicated whether the differences in the test results were significant or not. “a, b” stands
for clay loam, “A, B, C” stands for silt loam, “c, d” stands for sandy loam. Different letters indicate a
significant difference of test results among the different freeze-thaw cycles and soils at the 0.05 level.

3.2. Freeze-Thaw Cycles Impacts on Soil Detachment Capacity

The soil detachment capacities of three soils were calculated by using Equation (1).
The mean value of sandy loam (370.09 ± 53.61 g m−2 s−1) was greater than that of clay
loam (251.30 ± 39.87 g m−2 s−1) and silt loam (144.90 ± 10.28 g m−2 s−1) before freeze-thaw
cycles. The mean values of sandy loam and silt loam from the 1st to the 20th freeze-thaw
cycle significantly increased 1.38 and 3.56 times over unfrozen (p < 0.05). However, the
values decreased 1.29 times under unfrozen for clay loam. The means of sandy loam and
silt loam had no significant difference and were all 2.6 times over clay loam after a 20th
freeze-thaw cycle (Figure 8).

Figure 8. Soil detachment capacities before and after freeze-thaw cycles of three soils. Note: The
letters indicated whether the differences in the test results were significant or not. “a, b, c” stands for
before freeze-thaw cycles (FTCs), “A, B” stands for after freeze-thaw cycles. Different letters indicate a
significant difference of test results among the different freeze-thaw cycles and soils at the 0.05 level.
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The variation of three soils soil detachment capacities with freeze-thaw cycles in-
creased and is shown in Figure 9. The soil detachment capacity of clay loam increased after
the 1st freeze-thaw cycle, but then decreased gradually with the increase of freeze-thaw
cycles. The values after the 10th cycle were significantly less than the early stages of freeze-
thaw cycles (0–5 times, p < 0.05). After the 20th cycle, soil detachment capacity of clay loam
decreased 47.47% under unfrozen. The soil detachment capacity of sandy loam and silt
loam significantly increased 1.39 and 2.81 times over unfrozen after the 1st freeze-thaw
cycle, while as the number of cycles increased, there was no longer significant change until
the 15th cycle. After the 15th cycle, soil detachment capacity of silt loam became larger
than sandy loam, and after a 20th cycle the values of sandy loam and silt loam significantly
increased 1.62 and 4.74 times over unfrozen, respectively. After the 20th cycle, the soil
detachment capacity of silt loam was the greatest (709.65 ± 44.14 g m−2 s−1), then sandy
loam (601.33 ± 56.60 g m−2 s−1), and clay loam was last (132.00 ± 26.25 g m−2 s−1).

Figure 9. Variation of soil detachment capacity with freeze-thaw cycles. Note: The letters indicated
whether the differences in the test results were significant or not. “a, b, c” stands for sandy loam, “A,
B, C, D” stands for sandy loam, “d, e” stands for clay loam. Different letters indicate a significant
difference of test results among the different freeze-thaw cycles and soils at the 0.05 level.

3.3. Relationship between Soil Detachment Capacity and Soil Properties

Under the condition of freeze-thaw, there were significant correlations between soil
detachment capacities and different soil properties based on correlation analysis (p < 0.05).
The relationship between soil detachment capacity of sandy loam and soil properties could
only be well fitted by a linear function of shear strength (p < 0.05, Table 2). However, soil
detachment capacity of silt loam had a significant relationship with soil organic matter,
bulk density, water stable aggregates, and shear strength (p < 0.05), and it was negatively
correlated with bulk density and shear strength and positively correlated with soil organic
matter and water stable aggregates. Soil detachment capacity of clay loam also could
be fitted by a linear and exponential function of bulk density and soil organic matter for
clay loam (p < 0.05), but it was negatively correlated with soil organic matter, which was
contrary to findings for bulk density.
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Table 2. Regression analysis of soil detachment capacities of three soils and soil properties under the condition of freeze-thaw.

Soil Properties
Sandy Loam Silt Loam Clay Loam

Regression Equation R2 Regression Equation R2 Regression Equation R2

Soil organic matter - - y = 20.19e0.69x 0.74 * y = 3617.3e−0.27x 0.63 **
Bulk density - - y = −2165.1x + 3238.5 0.54 * y = 915.48x − 877.94 0.49 *
Water stable
aggregates - - y = 3255.1e−0.09x 0.85 ** - -

Shear strength y = −38.88x + 634.25 0.49 * y = −44.28x + 762.83 0.80 ** - -

Note: The number of samples for each soil property was 18; y is soil detachment capacity, x is soil properties. * Significant at p < 0.05,
** Significant at p < 0.01.

Generally, soil detachment capacities of different soils are difficult to obtain because
measured soil erosion processes under different soils, slopes, and flow discharges are
needed. Thus, it is helpful to develop regression equations based on easily measured
parameters of soils. A nonlinear regression analysis indicated that soil detachment capacity
(SDC) of silt loam could be estimated well by soil organic matter (SOM), bulk density
(BD), water stable aggregates (WSA), and shear strength (SS) (Equation (2), Figure 10).
Additionally, linear regression analysis indicated that soil detachment capacity of clay loam
could be estimated well by soil organic matter and bulk density (Equation (3), Figure 11).

SDCsilt = SOM0.68 × BD−2.63 × WSA−2.05 × SS0.23 × 8.85 × 104 (2)

SDCclay = −51.29 × SOM-20.96 × BD + 785.57 (3)

Figure 10. Measured soil detachment capacity vs. estimated ones using Equation (2) of silt loam.
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Figure 11. Measured soil detachment capacity vs. estimated ones using Equation (3) of clay loam.

4. Discussion

4.1. Effect of Freeze-Thaw on Soil Properties

With increasing subsequent freeze-thaw cycles (10–15 times), soil bulk density de-
creased to stable values (Figure 3) which indicates that freeze-thaw cycles had limited
effect on soil bulk density. Frequent phase changes of soil water slowly altered the porosity
ratio of soil, causing modifications in soil bulk density. However, there exists a critical
freeze-thaw cycle related to the soil remodeling properties and the limited degree of freeze-
thaw [34,35]. On the other hand, development of variation tendency and the stable state
of soil bulk density depend on soil texture and initial state. Bulk density of saline–sodic
soils would increase when the initial value was lower, while soils with larger initial values
would become looser in structure and decrease in bulk density [36]. In this study, the bulk
density of all three soils decreased with the increase of freeze-thaw cycles, which may be
due to the initial moisture content and that there were no impurities in the soils. Starkloff
et al. [37] found that looser sandy soil was more affected by freeze-thaw than silt soil of
Nordic countries by X-ray scanner, which contrasts with this study.

Generally, soil moisture transport and phase transition during freeze-thaw process
can lead to the fragmentation of aggregates. However, the influence of freeze-thaw cycles
on aggregates was not only related to soil texture but also to the size of aggregates. Smaller
aggregates were reformed under the action of soil deformation compression and soil
moisture adsorption after the large aggregates were broken. There were studies that
have shown that it can reach a peaking after 2–3 freeze-thaw cycles [38]. Additionally,
the negative effects of freeze-thaw on water stable aggregates are more pronounced for
aggregates larger than 0.25 mm, in comparison with micro aggregates [39]. For sandy loam
in this study, during the freeze-thaw process, fragmentation and recombination occurred
frequently, and the aggregate content reached the peak value before the 5th freeze-thaw
cycle (Figure 4). After 10th freeze-thaw cycle, it had no significant change, maybe because
of the lower content of water stable aggregates [40]. For silt loam and clay loam in this
study, aggregates contents were relatively high, and the crushing effect was greater than
recombination at the beginning of freeze-thaw. Nonetheless, aggregates contents peaked
after the 10th and 5th freeze-thaw cycle for clay loam and silt loam, respectively (Figure 4).
Overall, freeze-thaw decreased the aggregates stability of all soils, but the effect was more
severe on the silt soil (reduced by 48.54%), which was similar to existing research [27].
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Freeze-thaw breaks soil aggregates, exposes carbohydrates, fatty acids and sterols, and
increases their contact with and utilization by microorganisms. Extractable nutrients have
been observed to increase by 2 to 3 times [41]. Moreover, the increase of fine particulate
or clay, which has large surface areas, has strong adsorption capacity for organic matter,
resulting in redistribution or dissolution of soil organic matter [42]. Thus, the phase changes
of water led to contraction of organic matter, destruction of bonds with soil particles, and
led to increased release of soil organic matter in this study (Figure 5). Especially for silt
loam, the increase of organic matter content (1.49 times) was related to the decrease of
aggregates content (48.54%) and was the largest among the three soils. However, as freeze-
thaw cycles increased, soil organic matter would not rise significantly at all after the 10th
cycles due to its relatively small proportion of total soil carbon and the limited effect of
freeze-thaw cycles.

After freeze-thaw cycles, an important index to gauge soil resistance to erosion, the
shear strength of three soils significantly decreased, being supportive to most previous
studies showing that soil structure becomes looser, and the mechanical properties and
microstructure of soils change significantly [43–47]. Soil cohesion was determined by the
tensile forces of menisci at the particle contact surfaces as well as the contact relationships
between solid particles and liquid films [15]. In the process of freeze-thaw, the frequent
phase changes of the water between soil particles led to tensile forces being destroyed and
the extent of damage varied with freeze-thaw cycles and soil texture. The shear strength of
sandy loam and silt loam decreased after the first few freeze-thaw cycles and then kept
nearly stable after about the 5th to 15th cycles, which was similar to the aforementioned
other soil properties (Figure 6). However, shear strength of clay loam still increased after
the 15th freeze-thaw cycle, mainly because of the indirect effect of its higher soil aggregates
content after the 10th cycle and the increased soil organic matter [48].

4.2. Effect Mechanism of Freeze-Thaw on Soil Detachment Capacity

Soil detachment is the initial stage of soil erosion, and the most affected by freeze-thaw.
Soil erosion amounts during periods of thawing were higher than those of other seasons,
and they could reach 2–3 times [21–23]. Similarly, this study showed that soil detachment
capacity of sandy loam and silt loam under freeze-thaw was larger (by approximately
1.38 and 3.56 times) than that under unfrozen, which contrasts with clay loam (Figure 8).
Obviously, soil properties in this experiment proved to be the most important factor that
significantly influenced soil detachment capacity, determined by soil types and the number
of freeze-thaw cycles. The process of soil detachment in the Qinghai-Tibet plateau was
significantly lower than that of other regions of China, which was related to the degree of
freeze-thaw and soil properties, but the specific mechanism of the effect was unclear [49].

As the most important factors, shear strength and water stable aggregates were
strongly negatively correlated with soil erodibility [50–52]. Soil detachment capacity
significantly increased as a result of reductions in soil shear strength, and water stable
aggregates were destroyed by freeze-thaw [13]. In the case of sandy loam, for example, soil
detachment capacity was basically larger than silt loam and clay loam without freeze-thaw
cycles in this study. These discrepancies were mainly due to the fact that shear strength,
water stable aggregates, and soil organic matter of sandy loam were less, while the tensile
forces of coarse particles and the contact relationships between them and liquid films
were weaker in some cases than others [50,53]. Additionally, the soil properties had not
changed significantly, as freeze-thaw cycles increased after it had been destroyed by the
first freeze-thaw (Figures 3–7). This means that soil detachment capacity of sandy loam did
not significantly increase with the increase of freeze-thaw cycles and only had a significant
negative correlation with shear strength (Table 2).

Likewise, soil detachment capacity of silt loam was the greatest after the 20th freeze-
thaw cycle in this study (Figure 9). Higher powder content has been related to greater
formation of capillaries, leading to more rapid moisture migration and greater damage
due to freeze-thaw [50]. Therefore, silt loam was most prone to erosion when exposed to
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freeze-thaw. The process of soil detachment was complex, and in our experiments, it was
significantly influenced and well estimated by bulk density, soil organic matter, water stable
aggregates, and shear strength (Table 2, Figure 10). Compared to sandy loam and silt loam,
the decreased soil detachment capacity of clay loam after freeze-thaw mainly depended on
soil organic matter and soil bulk density mainly because increased freeze-thaw times, the
variation trend of water stable aggregates, and the relative complexity of shear strength
cannot represent the change of soil detachment capacity. Additionally, soil detachment
capacity cannot be determined well by a single factor, and the comprehensive effect of
various factors should be considered [9–11].

5. Conclusions

The effects of freeze-thaw cycles on the properties and soil detachment capacity of
three loamy soils were examined by using the artificial freeze-thaw and scour experiments.
Soil bulk density, water stable aggregates, and shear strength of three soils were negatively
correlated with freeze-thaw cycles. However, the change of soil organic matter was the
opposite. After 10 to 15 freeze-thaw cycles, soil properties were basically stable. Soil
detachment capacity of silt loam and sandy loam were positively correlated with freeze-
thaw cycles, which was contrary to findings for clay loam. The mean soil detachment
capacity of sandy loam was the greatest before and after freeze-thaw. After the 15th
freeze-thaw cycle, the soil detachment capacity of sandy loam was exceeded by silt loam.
A nonlinear regression function could be used to describe the relationship between the
soil detachment capacity of silt loam and soil organic matter, bulk density, water stable
aggregates, and shear strength. Soil organic matter and bulk density were the best hydraulic
parameters to simulate soil detachment capacity of clay loam.
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Abstract: Near real-time estimation of soil loss from river catchments is crucial for minimizing
environmental degradation of complex river basins. The Chenab river is one of the most complex
river basins of the world and is facing severe soil loss due to extreme hydrometeorological conditions,
unpredictable hydrologic response, and complex orography. Resultantly, huge soil erosion and
sediment yield (SY) not only cause irreversible environmental degradation in the Chenab river
catchment but also deteriorate the downstream water resources. In this study, potential soil erosion
(PSE) is estimated from the transboundary Chenab river catchment using the Revised Universal Soil
Loss Equation (RUSLE), coupled with remote sensing (RS) and geographic information system (GIS).
Land Use of the European Space Agency (ESA), Climate Hazards Group InfraRed Precipitation with
Station (CHIRPS) data, and world soil map of Food and Agriculture Organization (FAO)/The United
Nations Educational, Scientific and Cultural Organization were incorporated into the study. The SY
was estimated on monthly, quarterly, seasonal, and annual time-scales using sediment delivery ratio
(SDR) estimated through the area, slope, and curve number (CN)-based approaches. The 30-year
average PSE from the Chenab river catchment was estimated as 177.8, 61.5, 310.3, 39.5, 26.9, 47.1,
and 99.1 tons/ha for annual, rabi, kharif, fall, winter, spring, and summer time scales, respectively.
The 30-year average annual SY from the Chenab river catchment was estimated as 4.086, 6.163,
and 7.502 million tons based on area, slope, and CN approaches. The time series trends analysis
of SY indicated an increase of 0.0895, 0.1387, and 0.1698 million tons per year for area, slope, and
CN-based approaches, respectively. It is recommended that the areas, except for slight erosion
intensity, should be focused on framing strategies for control and mitigation of soil erosion in the
Chenab river catchment.

Keywords: RUSLE; soil erosion; sediment yield; Chenab river; remote sensing; GIS
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1. Introduction

Soil is a precious natural resource [1], plays a key role in the functioning ecosystem [2,3],
and provides valuable goods and services [4,5] essential for human security [6,7]. Soil
erosion is a natural geomorphic process and environmental problem [8,9] arising from
anthropogenic activities [10] agricultural intensification, deforestation, land degradation,
and global climate change [11,12]. Soil erosion is also considered as one of the significant
threats to the ecosystem [13–15], as it not only causes soil erosion from upper catchments
and deposition in rivers and lakes through the geologic ages worldwide [16,17], but also
carries nutrients, pesticides, chemicals, etc., and cause groundwater contamination [18–20].
It has been estimated that about 56% of global soil is being degraded by light to severe
forms of soil erosion caused has by water [21]. Accelerated forms of soil erosion by water
become a global problem [22,23], that not only cause rivers’ catchment problems [24,25] but
also act as barriers to achieving the United Nations Sustainable Development Goals [26].
Therefore, estimation of soil erosion by water from river catchment is in dire need [27], so
that proper soil erosion mitigation options can be focused [28].

Estimation of soil erosion (PSE and SY) from large and complex rivers’ catchments has
always been a big challenge to researchers worldwide [6,29–31]. Initially, soil erosion re-
search was conducted more than seven decades ago using north American datasets [32–34].
Several mathematical models, conceptual, empirical, process oriented, and physically
based, have been applied for soil erosion modeling/ estimation at different spatiotemporal
scales [35–42]. Scientists are also working on process-oriented soil erosion models such
as the Water Erosion Prediction Project [43,44], European Soil Erosion Model [45], Lim-
burg Soil Erosion Model [46], and Pan European Soil Erosion Risk Assessment [47]. The
research community is also improving the empirical model known as Universal Soil Loss
Equation (USLE) [48–52] which is not only practically sound [53,54] but can also be applied
over complex and large river basins [11,55–57]. The USLE and RUSLE are being applied
successfully for estimation of PSE and SY from rivers’ catchments throughout the world
under changing spatiotemporal conditions [6,58–63]. Large-scale soil erosion modeling has
been performed by using the RUSLE model in Europe [64], Canada [65], Australia [66],
and China [67].

The RUSLE was developed to estimate soil erosion by water in temperate climates,
and is an empirical model founded on the USLE [68]. The RUSLE model estimates the
average annual rate of soil erosion from complex river basins for multiple scenarios in-
cluding management practices, cropping systems, and erosion control practices [69]. The
RUSLE can also be used for estimation of average annual soil erosion rate from ungauged
river catchments using local hydrometeorological information and catchment characteris-
tics [70]. The RUSLE model considers the effect of many factors such as rainfall erosivity,
soil erodibility, slope length and slope steepness, cover management, and conservation
practices [71]. The soil loss occurs in three steps. Soil erosion starts with the detachment
of soil particles, followed by transport and sequent deposition [72]. The RUSLE model
neither estimates gully/channel erosion nor discusses the sediment deposition, so there is
a need to introduce SDR for estimation of sediment delivered to the outlet from the catch-
ment [73]. The SDR is estimated by researchers based on area, slope, and CN approaches
in rivers’ catchments globally [74–79]. The RUSLE model is applied along with the SDR for
estimation of sediment yield from rivers’ catchments [80–84].

The use of RUSLE for soil erosion needs detailed spatiotemporal in situ data [85] which
is not possible, as the transboundary Chenab river catchment is divided among Pakistan
(402 km2), Jammu and Kashmir (20,139.7 km2), and India (7939.27 km2) [86]. This clearly
reflects that 27.87%, 70.71%, and 1.42% area of the catchment lies in India, Jammu and Kash-
mir (Indian Control), and Pakistan, respectively. In such a complex transboundary river
catchment, the global gridded and RS-based datasets can be appropriate alternatives for
research purposes [87–89]. Recently, researchers have employed RS and GIS technologies
for evaluation of PSE and SY [90]. RS and GIS technologies provide detailed information
with a spatiotemporal resolution appropriate for quantifying soil erosion at a regional/local
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scale [91,92]. Moreover, use of RS and GIS can reasonably account for the spatiotemporal
variability of parameters and catchment heterogeneity [65]. For estimation of water-based
erosion, RUSLE coupled with RS and GIS is the most commonly adopted and feasible
technique to quantify the magnitude and spatial distribution of soil erosion/loss from
rivers’ catchments [62,93–97].

A 17 to 27-year study [98] of 9 sediment stations within the Chenab river catchment
revealed that there are very high erosion rates. A soil erosion study using the USLE model in
similar nearby area also revealed high, very high, and severe soil erosion [99]. Researchers
applied the sediment yield index model to the catchment of the Marusudar tributary of
the Chenab river, which revealed a high rate of soil erosion [100]. At present, no soil
erosion study has been conducted on the complete transboundary Chenab river catchment
using the RUSLE model. Keeping in view all the soil erosion issues of the transboundary
river catchments, the present study aims to estimate the spatially distributed PSE of the
transboundary Chenab river catchment using the RUSLE model integrated with RS and
GIS. The spatial distribution of PSE is one of the main targets of this study, so 55 sub-basins
were created from the Chenab river catchment. The study also aims to estimate SDR using
area, slope, and CN-based approaches, for estimation of sediment yield from the Chenab
river catchment. Both PSE and SY were estimated on annual, seasonal, quarterly, and
monthly time scales from 1991 to 2020.

2. Material and Methods

2.1. Study Area

The Chenab river catchment is shown in Figure 1. The geographic extent of the
Chenab river catchment lies 74◦–77.85◦ E and 32◦–34.3◦ N, while elevation ranges from
240 to 7085 m, and average slope of the river in the catchment is about 25 m/km. It
originates in the Kangra and Kulu district of the Himachal Pradesh, India. The Bhaga
and Chandra streams emerge from mega snowfields on opposing sides of the Baralcha
pass and join the Tandi, Jammu and Kashmir. The climate in the catchment typically
comprises two seasons in a year. The Rabi season spans from November to April, the
Kharif from May to October. Another climate classification also exists consisting of four
seasons, Fall (September, October, November), Winter (December, January, February),
Spring (March, April, May), and Summer (June, July, August). The snow-dominant Chenab
river catchment [88] receives 65% of precipitation in the monsoon (June, July, August)
or pre-monsoon (March, April, May), while 26% precipitation is received in the winter
season [101]. The higher altitude of the upper and middle parts of the Chenab river
catchment are snow-dominant regions. The mean annual rainfall varies from 278.5 to
2214.9 mm as shown in Figure 2.

Figure 1. Topographic map of the Chenab River catchment representing river, 55 sub-basins and
outlet.
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Figure 2. The 30-year average annual rainfall of the Chenab river catchment.

2.2. Methodology

The overall methodology of the research for estimation of PSE and SY is presented in
the flowchart (Figure 3). The topographic information, soil data, land use information, and
precipitation data were used to estimate all the factors to be used in the RUSLE model for
estimation of PSE. The SDRs were estimated based on area, slope and CN approaches, and
the SDRs were further used along with PSE to estimate the SY.

Figure 3. Flow chart for estimation of potential soil erosion and sediment yield.

2.2.1. Datasets Used in the Study

We used the Shuttle Radar Topography Mission Digital Elevation Model (90 m) for
watershed delineation, calculation of length and slope factors, and support practice factor
based on slope-contour approach. The land use change detection of the river catchment
is a major challenge [102] and helps to understand hydrological processes and associated
systems of the river basins [103–106]. Due to lack of in situ data, the global land cover
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map was used at a spatial resolution of 300 m, produced by the ESA Climate Change
Initiative [107]. We estimated land cover management factors using the land use map
produced by ESA at a spatial resolution of 300 m. The soil types and texture are also
important, along with land use, to understand the hydrological response of the river
catchment [108,109]. The Digital Soil Map of the world (DSMW) was used in this study,
which is produced by the FAO/ UNESCO. The erosivity factor for 30 years (1991–2020)
was estimated using the CHIRPS precipitation data at a spatial resolution of 0.25◦.

2.2.2. RUSLE Model for Estimation of Potential Soil Erosion

Wischmeier and Smith developed the USLE for estimation of soil erosion [68]. The
new equation (RUSLE) replaces USLE’s distinctive rainfall or runoff factor as the rainfall
erosivity factor [71]. We used RUSLE to estimate soil erosion at monthly, quarterly, sea-
sonally, and yearly time scales on a surface slope based on the runoff model, soil type,
farming practices, topography (slope), and supervision techniques [110]. The RUSLE is an
empirical equation that estimates PSE in tons per hectare (Equation (1)).

A = R × K × L × S × C × P (1)

where A is estimated monthly soil erosion (ton ha−1 month−1), R is rainfall erosivity factor
(MJ mm ha−1 h−1 month−1), K is soil erodibility factor (t MJ−1 ha−1 mm−1), L is slope
length factor, S is slope steepness factor, C is cover management factor, and P is supporting
practices. All these factors of RUSLE were mapped in GIS raster format at quarterly,
seasonally, and annual time scales.

Rainfall Runoff Erosivity Factor (R)

Without soil surface protection, the rainfall erosivity factor (R) triggers sheet and rill
erosion. Soil loss significantly depends on rainfall because it detaches soil particles from
the ground surface and transports them to the river channel [111]. Heavy rainfall events
having large droplets size can quickly detach soil particles, compared to droplets of smaller
size. The bulk of sheet or rill erosion occurs due to the high runoff generated by a heavy
rainfall storm. Rainfall has a significant effect on soil erosion due to the kinetic energy that
each raindrop contains, which causes soil particles to detach from the ground surface. We
used monthly CHIRPS data for 30 consecutive years (1991–2020) over the Chenab river
catchment. In order to estimate the rainfall-runoff erosivity factor of the Chenab river
catchment, we calculated R-factor by using Equation (2) developed by Jung et al. [112].

R = 0.0378 × X1.4190 (2)

where R is rainfall runoff erosivity factor (MJ mm ha−1 h−1 month−1), and X is monthly
rainfall amount (mm).

Soil Erodibility Factor (K)

The soil erodibility factor represents the soil’s vulnerability to degradation as evaluated
under normal unit plot conditions. Soil erodibility is the quantity of soil loss per unit of
rainfall erosive energy. We estimated the K factor by using Equation (3) developed by [113].
This depends on soil contents of organic carbon, silt, sand, and clay, obtained from FAO
soil data.

K = 0.1317· fcsand· fcl−si· forge· fhisand (3)

fcsand =

(
0.2 + 0.3 exp [−0.256 × ms ×

(
1 − msilt

100

)
, ]
)

(4)

fcl−si = (
msilt

mc + msilt
)

0.3
(5)

forge =

(
1 − 0.0256 × orgC

orgC + exp[3.72 − 2.95 × orgC]

)
(6)
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fhisand

(
1 − 0.7 × (1 − ms

100
)(

1 − ms
100
)
+ exp

[−5.51 + 22.9
(
1 − ms

100
)]
)

(7)

where ms is % sand content in topsoil, msilt is % silt content in topsoil, mc is % clay content
in top soil, and orgC is % organic carbon content in top soil. We estimated the K factor
by Equation (3). A maximum of four soil types were identified in the soil map using the
FAO soil data. The soil erodibility factor was estimated based on the sand, silt, and clay
percentages.

Slope-Length and Slope-Steepness Factor (LS)

The LS factor represents the effects of topography on soil erosion by including slope-
length factor (L) and slope-steepness factor (S), both of which influence overland flow
velocity [114]. The Topographic slope-length (L) and slope-steepness (S) reflect a ratio of
soil erosion under defined conditions compared to soil loss at a site with a “normal” slope
steepness of 9% and a slope length of 22.6 m [62]. Because the LS-factor causes high runoff
velocity and hence more runoff volume, the highest slope has the greatest danger of soil
erosion. The equation of LS is given as;

LS (
λ

22.13
)

m
× (

sin β

0.0896
)

n
(8)

β =
sin θ/0.0896

3 × sin θ0.8 + 0.56
(9)

where

θ is Slope of watershed (degree), n is 1.3
λ = slope-length (m) = flow acc. × cell size

m = variable slope length exponent = β
1+β

Cover Management Factor (C)

The dimensionless cover and management factor plays its role in reducing soil erosion,
and depends on the land use patterns of the area [115]. The C factor is the ratio between
soil loss from areas with protective cover and management to soil loss from continuously
clean tilled fallow land [116]. The C factor varies from 0 to 1 depending on land use
characteristics, excluding water bodies [117].

Supporting Conservation Practice Factor (P)

The P-factor is the ratio of soil loss induced by each type of conservation technique
to the comparable erosion generated by uphill and downhill sloped cropping [110,118]. It
modifies the volume and water discharge, hence affecting the magnitude of soil erosion.
The support conservation techniques used in the catchment, such as contouring, terracing,
strip cropping, etc., are referred to as the support practice factor. The P factor has a value
between 0 and 1, with 0 representing very good preservation practice, and one indicating
no preservation technique [45].

2.2.3. Estimation of Sediment Yield

SY = SDR × A (10)

where SY is in tons/month, SDR (fraction), and A is PSE (tons/month).

Estimation of Sediment Delivery Ratio

The SDR is the ratio of sediments delivered at outlet to the gross erosion of the catch-
ment upstream of the measurement location [119], and SDR represents several processes
which are involved in estimation of SY [120]. Although the United States Department
of Agriculture has published a handbook [121] in which the SDR is linked to drainage
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areas, there is no perfect process for estimating SDR. A variety of factors can influence SDR,
including sediment load, texture, proximity to the mainstream, channel density, basin area,
slope, length, land use, rainfall, and runoff. The Soil Conservation Service (SCS) curve is
the established relationship between SDR and drainage area. For example, a watershed
with a higher channel density has a higher SDR than a catchment with a lower channel
density. The SDR of a watershed with steep slopes is greater than that of a watershed with
flat and large valleys. The size of the area of interest should also be defined in order to
predict SDR. The higher the area size, the smaller the fraction of SDR since large areas have
more chance of trapping soil particles. The SDR equations have been derived by several
researchers in different river basins of the world [122–125]. The researchers correlated the
SDR with area [121] and developed their equation as follows:

SDR = 0.5656 × A−0.11 (11)

where A is the area of watershed in sq. miles (mi2).
The researchers [126] also correlated the SDR with the slope and developed the

equation as follows:
SDR = 0.627 × S0.403 (12)

where S is the slope of watershed in degree.
The relief-length ratio is prepared by getting the maximum and minimum value of

the elevation of the catchment, then by taking the difference of maximum and minimum
elevation and finally dividing it by the length of the river. SDR against CN is prepared
according to the empirical equation. According to the research [74], the SDR is related to
watershed area, relief-length ratio, and SCS CN, and the following equation was derived in
a study conducted on 15 Texas basins:

SDR = 1.366 × 10−11 × A−0.0998 × ZL0.3629 × CN5.444 (13)

where A is the area in km2 and ZL is the relief-length ratio in m/km.
The hydrologic soil group and ground cover are used to calculate the CN. In general,

the most reliable findings are achieved when each sub-catchment is homogeneous, with
as few CNs as possible. When a large number of CNs are averaged into a single sub-
catchment, the results are not necessarily the same as when multiple sub-catchments are
produced and combined together. A single sub-catchment, for example, will only have one
peak; however, merging many sub-catchments might result in a multi-peak hydrograph.

3. Results

3.1. Factors of the RUSLE Model

The 30-year average rainfall erosivity factor maps at annual, seasonal (rabi, kharif),
and quarterly time scales (fall, winter, spring, and summer) are presented in Figure 4.

The peak rainfall erosivity factor was 826.8, 277.9, 558.5, 199, 115.3, 217.7, and
426.8 MJ mm−1 ha−1 h−1 for annual, rabi, kharif, fall, winter, spring, and summer, re-
spectively. The spatial distribution of all the maps in Figure 4 reveals that the upper parts of
the catchment have lower rainfall erosivity, and the lower parts of the catchment have very
high erosivity because of high rainfall over the lower part as shown in Figure 2. Higher
rainfall erosivity has been observed in kharif season (May to October), and in summer
season. The maps of rabi season (November to April), fall, winter and spring seasons
reveal that higher erosivity has been observed in higher latitudes in the lower parts of the
catchments.

The estimated soil erodibility factor values using %sand, %silt, %clay, and % OC are
given in Table 1. The four soil types were found in the river catchment, and K value ranges
from 0.0174 to 0.023.
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Figure 4. 30-year average annual, seasonal, and quarterly rainfall erosivity factors for the Chenab
river catchment.

Table 1. Soil erodibility factor value calculated for soil type in the Chenab river catchment.

Soil Unit
Symbol

% Sand
Topsoil

% Silt
Topsoil

% Clay
Topsoil

% OC
Topsoil

K Factor
Value

I 58.9 16.2 24.9 0.97 0.0196588
Be 36.4 37.2 26.4 1.07 0.0223028
Lo 76 9.9 14.1 0.41 0.0174135
Jc 39.6 39.9 20.6 0.65 0.0232663

The 30-year average soil erodibility, slope-length and slope-steepness, cover manage-
ment, and supporting conservation practice factors map of the Chenab river catchment
is presented in Figure 5. The map of K factor reveals that most of the catchment is below
0.0197, while some portions of the catchment are in areas of high soil erodibility (greater
than 0.0197).

The LS factor map of the Chenab river catchment is presented in Figure 5, which
reveals that most of the catchment lies under two main classes, 0 to 5 in upper and middle
parts of the catchment, and 13 to 18 in lower parts of the catchment. Therefore, the effect
of LS on the PSE is not higher, as a higher LS factor area is not common in the catchment.
The land use map of Chenab river catchment prepared using land use data of ESA is
presented in Figure 6. The upper parts of the river catchment are covered with snow,
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consolidated bare land, grassland, and mosaic trees and shrubs. The middle to lower
parts of the catchment are covered with tree cover and mosaic cropland, while the lowest
parts of the catchment near to the outlet are covered with irrigated cropland. The cover
management factor values were estimated (Table 2) using the land use information of ESA.

Figure 5. Soil erodibility, slope-length and slope-steepness, cover management, and supporting
conservation practice factors in the Chenab river catchment.

Figure 6. Land use of the Chenab river catchment developed using European Space Agency land
use.
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Table 2. Cover management factor values of the Chenab river catchment.

Land Use and Land Cover Class C Factor Value Source

Snow Cover 0 [127]
Tree Cover Needle-leaved 0.0011 [127]

Mosaic tree and shrubs 0.0012 [127]
Tree Cover Broad-leaved 0.0013 [127]

Shrub land 0.0219 [127]
Grassland 0.0434 [127]

Mosaic Cropland 0.1231 [127]
Tree or shrub cover 0.2000 [127]
Sparse vegetation 0.2651 [127]
Cropland irrigated 0.5500 [127]
Cropland rainfed 0.6000 [127]

Consolidated bare areas 0.8000 [127]
Unconsolidated bare areas 0.9000 [127]

The cover management factor map was developed based on the C value of various
vegetative coverings, as illustrated in Figure 5. The snow-covered areas of the upper
catchment are under the lowest C values, while the bare areas in of the upper catchment
are under high C values, while most of the upper to middle parts of the catchment are
under medium C value (0.0434 to 0.1232). The middle to lower parts of the catchment are
under lower C values, and the extreme lower parts of the catchment are under slightly
higher C values.

In this research, data from the literature [128] was obtained for estimation of conserva-
tion management factor against % slope as presented in Table 3. As in situ crop information
cannot be obtained, the average of the conservation practices was used in order to estimate
the P value to be used in RUSLE. The P factor map for the Chenab river catchment is
presented in Figure 5. Most of the catchment is under a high value of P, while the catchment
areas near to the outlet are under lower values of P.

Table 3. Conservation management factor values for contouring, strip cropping, and terracing against
slope.

Slope (%) Contouring Strip Cropping Terracing

0.0–7.0 0.550 0.270 0.100
7.0–11.3 0.600 0.300 0.120
11.3–17.6 0.800 0.400 0.160
17.6–26.8 0.900 0.450 0.180

26.8> 1.000 0.500 0.200

3.2. Potential Soil Erosion

The 30-year annual average PSE from the Chenab river catchment is presented in
Figure 7. The 30-year average PSE from the Chenab river catchment was estimated as 177.8,
61.5, 310.3, 39.5, 26.9, 47.1, and 99.1 tons/ha for annual, rabi, kharif, fall, winter, spring, and
summer time scales, respectively. The minimum values of PSE are on the snow cover areas,
and lower values are seen also on tree cover and irrigated croplands. The bare areas near
the rivers and the upper latitudes of the lower parts of the catchments are under medium
PSE. On an annual time-scale, there is less area of catchment which has more than 10 PSE.
The kharif season shows higher PSE values compared to the rabi season, mainly due to
heavy precipitation in monsoon season and high magnitude of runoff due to rainfall-runoff
and snowmelt. The PSE in summer season is higher in different areas of the catchment as
compared to the fall, winter, and spring seasons.
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Figure 7. 30-year average potential soil erosion from the Chenab river catchment at different time-
scales.

The PSE distribution for all the mentioned time-scales is grouped into six soil erosion
intensity classes (slight, moderate, high, very high, severe, and very severe) as per the
literature [129] as shown in Figure 8.
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Figure 8. Catchment area percentage under different soil erosion classes based on PSE (ton/ha).

These six classes have value ranges from 0–5, 5–10, 10–20, 20–40, 40–80, and >80 tons/ha,
respectively. On an annual time-scale, most PSE is under slight intensity, while areas are
also under moderate, high, and very high, but the percentage of area in these three intensity
classes is less. In the kharif season, there is more area in high and very high intensity
classes as compared to the rabi season. In the summer season, there is area under very
high intensity of erosion as compared to fall, winter, and spring season. It is obvious from
Figure 8 that the percentage of area in 0–5 class is more than 90% for all the time periods.

3.3. Sediment Yield

The SY from the Chenab river catchment was estimated using area, slope, and CN-
based approaches. The CN for the Chenab river catchment is presented in Figure 9. The
CN values in the snow-covered areas and some lower parts of the Chenab river catchment
are higher, the central parts of the catchment are under medium CN values, and some
lower parts of the catchment are under low CN values. The sub-catchment-wise SDR based
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area, slope, and CN are presented in Figure 10. There is reliable agreement between the
SDRs based on area and slope, while the slope-based SDR is higher than the other. The
CN-based SDR was higher than the others, while the higher CN-based SDR values were
observed in sub-catchment numbers 10, 11, 12, 23, and 47.

Figure 9. CN map of the Chenab river catchment.

Figure 10. Mean Sediment delivery ratio in each micro-catchment.

In the area-based SDR, watershed (WS)-47 exhibited the highest SDR of 0.61 having a
0.5 sq. mile area, which contributes 0.0045% of the total area of the catchment, while the
WS-1 had the minimum SDR of 0.281 consisting of 565.8 sq. miles area which contributes
5.2% of the total area of the catchment/watershed. In the slope-based SDR, the WS-44
exhibited the highest SDR of 0.551 having a 270.118 sq. miles area which contributes 2.48%
of the total area of the watershed, while the WS-47 had the minimum SDR of 0.08 consisting
of a 0.5 sq. mile area which contributes 0.0045% of the total area of the watershed. In
the CN-based SDR, the overall ratio seemed high as compared to area and slope module,
in which WS-47 contributed the highest SDR of 1.53 having a 0.5 sq. mile area which
contributes 0.0045% of the total area of the watershed. On the other hand, the WS-43 had
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the minimum SDR consisting of 265.98 sq. miles area which contributes 2.44% of the total
area of the watershed.

The annual sediment yield pattern over the last 30 years is presented in Figure 11. A
similar pattern among area, slope, and CN-based annual SY has been observed. The highest
SY was observed in 2014, and it showed that the sediment load was highest due to intense
precipitation and surface runoff. In 2014, the area, slope and C-based SY was observed
as 7,886,149, 12,032,723, and 14,550,254 tons, respectively. However, in 1998, the SY had
the lowest value of 1,183,469, 1,733,782, and 2,067,188 tons based on area, slope and CN,
respectively. The time series trends analysis of SY indicated an increase of 0.0895, 0.1387,
and 0.1698 million tons per year for area, slope, and CN-based approaches, respectively.

Figure 11. Annual sediment yield from the Chenab river catchment 1991 to 2020.

The SY over the last 30-year in Rabi and Kharif season is presented in Figure 12.

Figure 12. Sediment yield from the Chenab river catchment for rabi and kharif seasons from
1991–2020.
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The overall contribution of the kharif season was higher than that of the rabi season.
In 2014, the highest SY of the kharif season based on area, slope, and CN was 5,574,869,
8,405,752, and 10,124,635 tons, respectively. In 2015, the highest SY of the rabi season based
on area, slope, and CN was 3,264,869, 5,015,752, and 8,104,635 tons, respectively. The SY
time series trends analysis of the rabi season indicated an increase of 0.0418, 0.064, and
0.0783 million tons per year for area, slope, and CN-based approaches, respectively. The
SY time series trends analysis of the kharif season indicated an increase of 0.0481, 0.0753,
and 0.0922 million tons per year for area, slope, and CN-based approaches, respectively.

The SY for fall, winter, spring, and summer is presented in Figure 13.

Figure 13. Sediment yield from the Chenab river catchment for fall, winter, spring, and summer
seasons from 1991–2020.
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The SY for fall period was higher in 1992, 2010, 2011, 2012, 2014, 2018, 2019, and 2020.
The SY for winter period was higher in 1992, 1994, 1996, 2008–2014, 2017, 2019, and 2020.
The SY for spring period was higher in 1991–1993, 1996, 2009–2012, 2014–2017. The SY for
the summer season was higher in 1991–1997 and 2009–2020.

The monthly sediment yield for the last 30 years is presented in Figure 14. The highest
SY values of 3,125,536 tons, 4,745,077 tons, and 5,643,741 tons for area, slope, and CN,
respectively, were observed in September 2014. Similarly, the lowest values of 11,484 tons,
17,904, and 21,811 tons for area, slope, and CN, respectively, were observed in November
1998. The time series trends analysis of SY indicated an increase of 0.0006, 0.001, and
0.0012 million tons per month for area, slope, and CN-based approaches, respectively.

Figure 14. Monthly sediment yield from the Chenab river catchment from 1991 to 2020.

4. Discussion

Soil erosion is a severe issue, particularly in the Chenab river catchment, where
various variables contribute to fast soil erosion and sedimentation. The rate of runoff
and sedimentation is accelerated by factors such as the region’s steep slope, temperature,
velocity of flowing water, and environmental conditions [130]. The impact of a raindrop
on the soil surface and the cutting force of running water causes soil particles to detach.
Raindrop splash, despite having a minimal effect, triggers downslope transport of eroded
soil particles [131]. High intensity rainfall makes the detachment of soil particles quicker
and causes the mass movement of sediments along the runoff generated. Early in the rainy
season, when the rainfall is intense but the vegetation has not developed enough to protect
the soil, is the most favorable time for erosion. In general, the time between plowing and
crop emergence is referred to as the farmer’s interval [132]. The CHIRPS precipitation
data was incorporated in this research as it has better performance over areas that usually
receive high rainfall [133].

Slope also varies, decrease in slope causing velocity to decrease, and ultimately to
sediment transport decreases [134], which further increases the rate of sediment deposition.
The topography and high elevation are usually the main reason for high intensity precipi-
tation [135]. The K factor of the study area varied from 0.019 to 0.023. The soil, having low
moisture content and permeability, represents a low K factor value. Soil erosion is closely
concerned with the state of land use and agriculture practices, and cover management, as
most of the Chenab river catchment was under 0 to 5 tons ha−1. The annual average PSE
rates throughout the world are estimated as 12 to 15 tons ha−1, while the river catchment
areas with a PSE of lower than 3 tons ha−1 year−1 are generally below the estimated
tolerable soil loss level and should be exempt from any mitigating activities.

Though different soil erosion studies have been carried out on the Chenab river
catchment with various models and techniques, this is the first time that estimation of PSE
and SY for the last 30 years has been performed using the RUSLE model and SDRs on
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annual, seasonal, quarterly and monthly time-scales The SDR is estimated using area, slope,
and CN-based approaches, and slope-based estimations are being applied by researchers
around the world [136–144]. It is also observed in the study that SDR decreased with
increase in area or stream length, and this is also observed by other researchers [124,145].
Moreover, topography-based SDR (slope) is scale dependent, and the scale dependency
of such SDR has also been observed by researchers [146–148]. The RUSLE and SDR
(mainly slope-based) are being applied by the scientific community for estimation of PSE
and SY [149–155]. The RUSLE is used at multiple spatial scales by dividing a pixel into
sub-regions with similar features and linking them to a GIS data structure [110]. Such
models are now commonly in use to create an environment-based information system
that allows for the estimation and evaluation of various management scenarios [156]. This
methodology, however, has certain limitations but provides reliable results by identifying
the high PSE areas. The RUSLE model was selected and applied to nearby similar rivers’
catchments [97,135,157].

The complete lower parts of the catchments are under high rainfall erosivity, therefore
soil and water conservation measures and crop management practices are needed in order
to reduce the rainfall erosivity, which will ultimately reduce the overall PSE and SY. The
organic content of the soil reduces soil erodibility because increase in organic matter reduces
the susceptibility of soil detachment, and increases infiltration, which further reduce runoff
and thus soil erosion. The organic content should be increased in high K values areas by
incorporating manure. With the novelty of providing soil loss estimates at finer spatial and
temporal scales, the findings of this study can be useful for assessing soil erosion in other
data-scarce areas, and can be helpful to resource conservation experts for making informed
decisions.

5. Conclusions

The following conclusions have been derived from a 30-year study of soil erosion
from the Chenab river catchment using RUSLE and SDR approaches;

• The analysis results depicted that the range of average annual PSE was from 0.0 to
177.8 tons/ha, while, in the Rabi and Kharif season, the range of average PSE was
between 0.0 to 61.5 tons/ha and 0.0 to 310.2 tons/ha. Similarly, in Fall, Winter, Spring,
and Summer timescales, the range of average PSE was from 0 to 39.5, 26.9, 47.1, and
99.1 tons/ha, respectively.

• The time series trends analysis of SY indicated an increase of 0.0895, 0.1387, and
0.1698 million tons per year for area, slope, and CN-based approaches, respectively.

• The annual SY estimated by area, slope and CN was highest in 2014 with 7,886,149,
12,032,723, and 14,550,254 tons, respectively. The average PSE of Kharif season was
highest (70%), followed by Fall (41%), Rabi (30%), Summer (26%), Spring (22%), and
Winter (11%) season.

• The annual SY estimated by area, slope and CN was minimum in 1998 with 1,183,469,
1,733,728, and 2,067,188, respectively. The average PSE of Kharif season was highest
for soil loss (71%), followed by Summer (49.5%), Rabi (29%), Spring (22%), Fall (18%),
and Winter (10.5%), respectively.

• Inter-comparison of SY estimated by SDR based on slope and CN showed the con-
sistency pattern and thus proved the authenticity of empirical models, but the SY
estimated by area-based SDR was less compared to the slope and CN-based SDR
Approaches.
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Abstract: Excessive soil erosion hampers the functioning of many irrigation schemes throughout
sub-Saharan Africa, increasing management difficulties and operation and maintenance costs. River
water is often considered the main source of sedimentation, while overland sediment inflow is
overlooked. From 2016 to 2018, participatory research was conducted to assess sediment influx in
two irrigation schemes in Ethiopia. Sediment influx was simulated using the revised universal soil
loss equation (RUSLE) and compared to the amount of sediment removed during desilting campaigns.
The sediment deposition rate was 308 m3/km and 1087 m3/km, respectively, for the Arata-Chufa
and Ketar schemes. Spatial soil losses amounts to up to 18 t/ha/yr for the Arata-Chufa scheme and
41 t/ha/yr for the Ketar scheme. Overland sediment inflow contribution was significantly high in
the Ketar scheme accounting for 77% of the deposited sediment, while only 4% of the sedimentation
at the Arata-Chufa scheme came from overland flow. Feeder canal length and the absence of canal
banks increased the sedimentation rate, however, this was overlooked by the stakeholders. We
conclude that overland sediment inflow is an often neglected component of canal sedimentation, and
this is a major cause of excessive sedimentation and management problems in numerous irrigation
schemes in sub-Saharan Africa.

Keywords: irrigation; sediment; overland flow; soil loss

1. Introduction

Excessive sediment influx hampers the function of many water resource systems
and irrigation infrastructures in sub-Saharan Africa, causing storage capacity reductions,
opportunity costs and safety hazards [1–7]. The impact of excessive sedimentation is
especially high in countries such as Ethiopia, where overland soil erosion is severe and
limited resources are available to address the problem [8–10]. Soil erosion is a major factor
limiting agriculture due to the loss of fertile topsoil. It has a prolonged effect on the
agricultural sector as the rate of soil loss exceeds the soil formation rate [11].

Soil erosion also affects the overall performance of irrigation schemes. Due to exces-
sive sedimentation, many irrigation schemes have been abandoned or operate far below
full capacity [12,13]. In Ethiopia, most irrigation systems are the river diversion type.
However, the country’s rivers carry huge sediment loads, and therefore are a major source
of sedimentation. Although soil erosion from the upland catchment is the ultimate source
of sedimentation in many irrigation schemes, the specific source of sedimentation varies
with the mechanism through which the sediment enters an irrigation scheme. An irrigation

Water 2021, 13, 1747. https://doi.org/10.3390/w13131747 https://www.mdpi.com/journal/water
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scheme can be threatened by sediment that comes from a river and an overland flow. River
sediment enters an irrigation scheme via an intake structure. For example, Gurmu et al. [14]
found that river sediment contributed more than 95% of the total sediment deposition in
the studied irrigation schemes. Nonetheless, overland erosion flow can also contribute
large quantities of sediment. The overland sediment inflow from onsite soil erosion of the
catchment area after the intake structure (upland of the main canal) happens when the
generated soil loss joins the canal after the intake structures. In some schemes, overland
flow is the only source of sedimentation. The Bebeks irrigation scheme, for instance, is
threatened only by overland sediment inflow [15]. The scheme is irrigated by entirely
sediment-free spring water, nonetheless it performs far below capacity, mainly due to the
sediment that entirely comes from an overland flow.

While many stakeholders recognize upstream erosion as a major driver of sedimen-
tation in irrigation canals, most focus on erosion occurring upstream of the intake [16].
However, much of the overland sediment inflow emanates from the catchment upland of
the main canal of the scheme itself. Moreover, deposition from overland flow is typically
concentrated in the main canals, as secondary and tertiary canals tend to be built at higher
elevations relative to field plots, with canals laid along the contour.

A lack of resources for operation and maintenance aggravates problems of excessive
sedimentation [17], as the physical infrastructure of many schemes is deteriorated. In
farmer-led schemes, farmers apply tacit knowledge to temporarily reduce the quantity
of sediment entering their irrigation schemes, for example, by delaying water abstrac-
tion when river sediment loads are particularly heavy [16] and diverting surface runoff
to prevent it from entering the canal (Figure 1). To clear excessive sedimentation, they
organize seasonal or annual desilting campaigns, which are labor-intensive and require
participation of many farmers over several days. For example, in one irrigation scheme
serving 430 ha with a main canal length of 12 km, some 3118 labor days were required per
campaign to remove the accumulated sediment [16]. Of the total time required for crop
cultivation, farmers were found to invest one-fourth of their time in sediment manage-
ment activities [16]. However, even with this management, farmers have been unable to
adequately and sustainably deal with problems of excessive sedimentation.

 

Figure 1. Farmers at the Ketar irrigation scheme diverting surface runoff to prevent sediment from entering the main canal,
25 August 2018.
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Sustainable sedimentation management requires identification of sedimentation sources
and quantification of their respective contributions. Yet, most studies on sediment transport
in irrigation schemes deal mainly with river sediment. Despite taking a greater share of
overall sedimentation quantity in the irrigation schemes, little is known about the con-
tribution of overland erosion flow to sedimentation problems. Therefore, in the current
research we quantified soil loss and sediment yield and compared it with the sedimentation
volume measured in two small-scale irrigation schemes in the Great Rift Valley Basin of
Ethiopia—one of the River Basins in the country that exhibit severe soil losses.

2. Materials and Methods

2.1. Location of the Study

Two representative small-scale irrigation schemes, namely Arata-Chufa and Ketar
from Ethiopia, were selected for the study. Both are gravity type river diversion schemes
and both are affected by river and overland sediment inflow. Furthermore, both schemes
are operated and maintained by farmers, and were in proper use at the time of the research.
Farmers devote time and labor to keep the schemes in working order, despite problems
of excessive sediment load and deposition. However, both schemes have differences
in the sources and quantity of sedimentation, command area size, type and layout and
management structure. Figure 2 presents the location of the two schemes in the Great Rift
Valley Basin of Central Ethiopia, on the lower reach of the Ketar River, a few kilometers
before it joins Lake Ziway. Geographically, Arata-Chufa is located at 7◦59′ N and 39◦02′ E
with an average elevation of 1740 m above mean sea level. Ketar was located at 7◦49′ N
and 39◦02′ E at a mean elevation of 2294 m above mean sea level. The Arata-Chufa scheme
covers 100 ha and serves 324 beneficiaries. The Ketar scheme covers 430 ha and serves
1074 beneficiaries.

 

Figure 2. Location of the Arata-Chufa and Ketar irrigation schemes and the catchments contributing overland sediment inflow.
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2.2. Field Data Collection

Field data collection began with an inventory of the schemes, to get acquainted with
the canal layout and to understand local conditions, sediment hotspots and canal desilting
periods. Farmers reported that desilting campaigns took two to three weeks, with the
work conducted only on two to three days in each of those weeks. Canal cleaning and
repair activities were undertaken at the end of the rainy season, before the start of the
new irrigation season. The summer (wet) season usually ceases in late August. Sediment
cleaning activities started in the last week of August and were completed in early September.
On average, sediment cleaning took 3 days at Arata-Chufa and 5.5 days at Ketar.

We measured the volume of sediment deposited in the canal and removed by the
farmers in two years: 2017 and 2018. The volume of sediment removed in the year before
the fieldwork, 2016, was estimated based on the flood marks on the sides of the canal with
the participation of farmers. Most canal sections were lined with concrete, which meant
that canal cross-sections were relatively uniform. For unlined canal sections, irregularities
in canal depth, width and shape were considered in measuring and calculating sediment
volumes. Canal transition and culvert sections were measured separately.

2.3. Soil Erosion Modeling

There are many empirical models for predicting soil losses and the corresponding
sediment yields. However, their scope of application is limited, as they were developed
using site-specific empirical data [18,19]. To deal with this shortcoming, numerical and
physically based distributed models have been developed. These, however, require large
amounts of input data for calibration and simulation [20] and show limited accuracy in
data-scarce conditions [19]. Recent advancements in GIS and remote sensing have enabled
empirical models to predict soil erosion cell by cell.

Since our study area is characterized by data scarcity, we modeled soil erosion using
the revised universal soil loss equation (RUSLE) developed by Wishmeier and Smith [21]
coupled with GIS and remote sensing. Due to its simplicity, RUSLE has been widely
applied globally and proven to be of value in the Ethiopian highlands [19,22]. Figure 3
presents our conceptual framework, in which RUSLE was used to identify the main upland
sediment sources and to quantify soil loss and sediment yield in the main canals of the
schemes under investigation from overland flow sources.

 
Figure 3. Conceptual framework for quantifying soil loss and sediment yield in the canals of the irrigation schemes from
overland flow sources.
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Usually, the irrigation schemes are closed during the wet season (June to August) and
irrigation is resumed after the farmers cleaned their scheme. During the wet season, the
sediment enters the canal from the onsite soil erosion of the catchment area upland of the
main canal. The volume of the sediment removed by the farmers incorporated both river
and overland sediment inflow. We compared the sediment yield computed by RUSLE to
the volume of sediment removed by farmers from the canals in their desilting campaigns to
estimate the relative contribution of overland sediment inflow to total sediment deposition
in the schemes. We conducted transect walks and participatory erosion mapping to identify
erosion hotspots and major gully formations. Note that although the RUSLE model is
limited in predicting gully erosion, major gully formations were absent in the study area.

Empirically RUSLE is expressed as follows:

A = R × K × LS × C × P (1)

where

A is the mean annual soil loss (t/ha/yr),
R is the rainfall erosivity factor (MJ mm/ha h yr),
K is the soil erodibility factor (t ha h /ha MJ mm),
LS is the slope length and steepness factor (dimensionless),
C is the land cover and management factor (dimensionless, ranges from zero to one),
P is the support practices factor (dimensionless, ranges from zero to one).

A 12.5 m × 12.5 m digital elevation model (DEM) was used to delineate the catchment
contributing overland sediment flow to the canals. First, a larger catchment was delineated
taking outlet points in the river a bit downstream to the schemes. Then, many sub-
catchments were redelineated considering numerous outlet points in the main canal and
the subcatchments were merged together. Using this method, the catchment contributing
overland sediment flow to the Arata-Chufa scheme was delineated as 1.14 ha and it was
delineated as 1082 ha for the Ketar scheme.

2.3.1. Rainfall Erosivity

Rainfall erosivity (the R factor) measures the ability of the impact of a raindrop to
detach a soil particle. It is determined based on rainfall kinetic energy and 30-min rainfall
intensity records. However, such rainfall measurements were hardly available for the study
area. We thus estimated the R factor, following Hurni [23], based on the mean annual
precipitation as follows:

R = 0.562 × P − 8.12 (2)

where P is the mean annual rainfall.
For the Arata-Chufa scheme, we used mean annual precipitation for 1987–2017 from

Arata station records (Figure 4). For the Ketar scheme, nine meteorological stations were
nearby. Rainfall interpolation mapping indicated that only the Ketar-Genet station was
sufficiently representative of the rainfall characteristics of the catchment of interest. We
therefore computed the rainfall erosivity factor using the mean annual precipitation data
from the Ketar-Genet station for 1978–2014 (Figure 4).
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Figure 4. Mean annual rainfall for the Ketar-Genet station (7◦82′ N and 39◦029′ E, altitude 2314 m) and Arata station (7◦83′

N and 39◦1′ E, altitude 2400 m).

2.3.2. Soil Erodibility

Soil erodibility (the K factor) represents the resistivity of soil particles to the impact of
a raindrop. K is determined based on soil physical and chemical properties, such as the
percentage of silt, clay and sand, organic carbon content and soil structure and permeabil-
ity [19]. Data scarcity was again an obstacle in the study area. Previous authors [19,24]
estimated K values based on observed soil color, as suggested by Hurni [23]. Williams [25]
estimated K as a function of the percentage of silt, clay and sand and the organic carbon
content of the topsoil. We explored different soil databases, including those of the Ethiopian
Ministry of Water, Irrigation and Energy, the Ministry of Agriculture and Natural Resources
and the Food and Agricultural Organization of the United Nations (FAO). Ultimately, we
used data from the International Soil Reference and Information Centre (ISRIC), as it had
better resolution (1 km × 1 km) than the other sources. The following function was used to
generate a K factor raster map for the catchments:

K = fcsand × fcl−si × forg × fhisand (3)

where

fcsand is the function of coarse sand content,
fcl−si is the function of the clay-to-silt ratio,
forg is the function of the organic carbon content,
fhisand is the function for high sand content.

Raster files for the above functions were processed in ArcGIS, using the data retrieved
from the ISRIC soil database (Figure 5), as follows:

fcsand =
[
0.2 + 0.3 × (−0.256 × ms ×

(
1 − msilt

100

)]
(4)

fcl−si =

[
msilt

mc + msilt

]0.3
(5)

forg =

[
1 − 0.25 × orgC

orgC + exp(3.72 − 2.95 × orgC)

]
(6)
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fhisand =

[
1 − 0.7 × (1 − ms

100
)(

1 − ms
100
)
+ exp

〈−5.51 + 22.9 × (1 − ms
100
)〉
]

(7)

where

ms is the sand content (%),
msilt is the silt content (%),
mc is the clay content (%),
orgC is the organic carbon content (%).

 

Figure 5. Physical and chemical properties of the soil in the study area. (A): Coarse sand content; (B): clay-to-silt ratio;
(C): organic carbon content; (D): high sand content. Source: Data from the International Soil Reference and Information
Centre (ISRIC). Available online at: https://data.isric.org/geonetwork/srv/eng/catalog.search#/home (accessed on
3 October 2019).
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2.3.3. Slope Length and Steepness

Slope length and steepness (the LS factor) represents the rate of soil loss per unit area
of land from a field of length 22.13 m and a uniform 9% slope steepness [21]. LS is thus a
topographic factor that reflects the sediment transport capacity of surface runoff [26]. The
slope length (L) is the distance from the beginning of surface runoff to a point where either
a change in slope occurs or the flow concentrates in depressions [21]. The approach initially
introduced by Wischmeier and Smith [21] to estimate LS did not fully account for the effects
of uphill slope and vegetation cover [27,28]. Compared to the other erosion parameters,
estimation of LS is more controversial for catchments with complex topography [27,28].
This is because downhill erosion is determined not only by the erosive power of rainfall
and the erodibility of a particular soil, but also by upslope flow accumulation due to uphill
topography and land use types and vegetation cover [27–29].

To calculate slope length (L) of a complex, three-dimensional terrain, many studies
(e.g., [19,24,26–28,30,31]) adopt a grid-based approach based on the upslope contributing
area. The current study used such an approach, as follows:

LS =

(
As

22.13

)m( sinβ

0.0896

)n
(8)

where As is the upslope contributing area and β is the slope angle.
Equation (5) was used in a GIS environment to generate an LS factor map of the

area contributing overland runoff flow to the main canals under study. For this pur-
pose, a 12.5 m × 12.5 m DEM was employed to derive the slope angle to compute the
topographic factor.

LS =

(
Flow accumulation ×Cell size

22.13

)0.4
×
(

sin slope
0.0896

)1.3
(9)

2.3.4. Land Cover and Management

Land cover and management (the C factor) considers the effect of land cover, soil
biomass and farming practices on the rate of soil loss [18,32]. The C factor is the ratio of
soil loss with a specific surface cover to the corresponding soil loss from a bare fallow
area [19–21]. For this study, we mapped the C factor in conformance with land use and land
cover maps obtained from the Ethiopian Ministry of Water, Irrigation and Energy and the
Ministry of Agriculture and Natural Resources. As the temporal and spatial scale of these
maps did not accurately represent real-time land use and land cover conditions in the study
area, we minimized uncertainty in C value determination [33,34] with supplementation
of land use and land cover data gathered during the fieldwork. The development of a C
factor map was supported by supervised classification of locally collected land use data,
following recommendations from different studies. For agricultural land use types, C
values were derived based on the type of farming and slope of the area (Table 1).
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Table 1. Land cover and management (C factor) and support practices (P factor) values used to compute soil loss with the
revised universal soil loss equation (RUSLE).

Land Use/Cover Description Slope (%) C P References

Cropland
Areas intensively cultivated to grain

crops with contour planting and no soil
and water conservation measures

0–7 0.17 0.65

[19,21,32–36]

7–11.3 0.20 0.70
11.3–17.6 0.30 0.75
17.6–26.8 0.34 0.80

>26.8 0.4 0.90
Bare soil Land surface without vegetation cover 0.4 0.65

Closed shrub Mixed shrub and grassland, with
50–70% of land area covered 0.1 0.8

Open shrub Mixed shrub and grassland, with fair to
good cover 0.12 0.75

Open grassland Fair to good grass cover (closed
grazing) 0.15 0.7

Sparse forest Open forest with grassland, with fair to
good cover 0.03 0.85

2.3.5. Support Practices

Support practices (the P factor) represents the effect of specific land management
practices in reducing runoff and resultant soil losses compared to a situation without those
practices with upslope or downslope cultivation [19,21]. The P factor accounts for the effect
of structural and non-structural erosion control measures on soil loss. Taye et al. [34] estab-
lished p values for agricultural and range lands with various soil and water conservation
measures in Northern Ethiopia. For the current study in Central Ethiopia, we determined
p values based on recommendations from the literature (Table 1).

2.4. Sediment Yield

The volume of sediment that ended up in the cross-section of the main canals was
computed as a function of the gross soil loss from the catchment contributing surface
runoff and the sediment delivery ratio (SDR). Haregeweyn et al. [37], Nyssen et al. [35]
and Williams and Berndt [38] developed SDR as a function of catchment physiography,
sediment particle size, runoff rate and land use or cover types. The attempt to develop
SDR for Ethiopian highlands by Haregeweyn et al. [37] was reportedly unsuccessful.
Jain et al. [39] computed SDR based on the relationship between suspended sediment and
discharge. In a similar study, Haregeweyn et al. [19], following Nyssen et al. [35], computed
SDR based on land use types with or without soil and water conservation practices and
they used a SDR of 30% for agricultural land and 25% for non-agricultural land. Bhattarai
and Dutta [40] derived SDR from overland flow travel time, which is dependent on the
terrain and land cover characteristics.

We used the approach suggested by Williams and Berndt [38], computing the SDR for
the study area as follows:

SDR = 0.627 × SLP0.403 (10)

where SLP is the slope of the main stream channel (‰).
This method has been found to yield reasonable estimates of sediment yield in data-

scarce regions [20,41]. As for many empirical equations, this method may not result in an
accurate estimate of SDR. Nonetheless, due to limited data availability in the study area,
using another option of SDR would still result in the same uncertainty. To minimize the
uncertainty, we compared the estimated SDR value computed using this approach with
the findings of other studies reported in the country.

We computed the RUSLE factors for the two irrigation schemes under study and used
Map Algebra in ArcGIS to quantify the corresponding soil loss and sediment yield. Various
statistical analyses were performed to classify the catchment based on soil erosion rates.
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3. Results

3.1. Raster Maps of RUSLE Factors

Raster maps depicting the RUSLE parameters were created for each scheme, Arata-
Chufa (Figure 6) and Ketar (Figure 7). These maps show the spatial distribution of
rainfall erosivity (Figures 6A and 7A), soil erodibility (Figures 6B and 7B), topogra-
phy (Figures 6C and 7C), land cover and management (Figures 6D and 7D) and sup-
port practices (Figures 6E and 7E). Figures 6F and 7F present the land cover map of
the catchment used to develop the RUSLE parameters for the Arata-Chufa and the Ketar
schemes, respectively.

 
Figure 6. Raster maps of catchment contributing overland sediment inflow to the main canal of the Arata-Chufa scheme.
(A–E) depict factors of the revised universal soil loss equation. (A): Mean annual soil loss (R factor); (B): soil erodibility (K
factor); (C): slope length and steepness (LS factor); (D): land cover and management (C factor); (E): support practices (P
factor). (F): Maps land cover in the study area.

R is uniform for the whole catchment as the mean annual precipitation from a single
station used to estimate the rainfall erosivity factor. Note that the catchments were quite
small, which limits spatial rainfall variability.

Pellic vertisols were the dominant soil types in the study area. These have a soil
erodibility (K factor) of about 0.15 for black cotton soil, estimated from the easily identifiable
soil color [22]. Using the ISRIC soil database, we estimated the K factor as 0.157 for Arata-
Chufa and as 0.195 for Ketar. These values were largely in line with the estimated values
based on soil color.
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Figure 7. Raster maps of catchment contributing overland sediment inflow to the main canal of the Ketar scheme. (A–E)
depict factors of the revised universal soil loss equation. (A): Mean annual soil loss (R factor); (B): soil erodibility (K factor);
(C): slope length and steepness (LS factor); (D): land cover and management (C factor); (E): support practices (P factor). (F):
Maps land cover in the study area.

The complexity of the terrain affects the computation of the LS factor or slope length
and steepness. The Arata-Chufa catchment exhibited moderate topographic variability,
with elevations ranging from 1725 to 1730 m above mean sea level. The elevation gradient
of the Ketar catchment was larger, with elevations ranging from 2258 m above mean sea
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level close to the main canal to 2488 m above mean sea level at the upstream escarpment of
the catchment.

At the Arata-Chufa scheme, sedimentation from surface runoff came mainly from
a gravel road that crossed the main canal and an open area of grazing land between the
main canal and this gravel road. At the Ketar scheme, various land cover and land use
types contributed to the overland sediment flow. Particularly, a rainfed cropland upland
of the main canal was the origin of most of the sediment, though there were also mixed
grasslands, shrub and open forest in the catchment, with bare areas in between. These
characteristics were considered in determining the C factor for the study area. C values
ranged from 0.13 to 0.40 for Arata-Chufa and from 0 to 0.4 for Ketar.

No large-scale interventions have been implemented to reduce soil erosion. However,
farmers use contour farming and a few have constructed soil bunds at the boundaries
of their field plots, particularly at the Ketar irrigation scheme. Moreover, farmers leave
biomass on the land after harvesting until the following plowing season. All of these
practices help to reduce soil erosion and thus were considered in determining the P factor
for the catchments. P values ranged from 0.75 to 0.80 for the Arata-Chufa scheme and from
0.65 to 1.00 for the Ketar scheme.

3.2. Estimation of Soil Loss Rate

The pixel-by-pixel estimate of soil loss rates for the catchment of the Arata-Chufa
scheme varies from 18 t/ha/yr for bare land (the gravel road) in the upstream part of
the catchment to zero for the largely grass-covered zone in the lower catchment, close
to the main canal (Figure 8A). Mean annual soil loss for the catchment was estimated
at 8.9 t/ha/yr, whereas the mean annual sediment yield to the Arata-Chufa main canal
from the corresponding catchment was 2.32 t/ha/yr. Sediment yields varied across the
catchment, ranging from zero to 4.3 t/ha/yr (Figure 8B).

 
Figure 8. Annual soil loss (A) and sediment yield (B) in the catchment contributing overland sediment inflow to the main
canal of the Arata-Chufa irrigation scheme.
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The grid-based soil loss modeling for the catchment at the Ketar scheme shows annual
soil losses ranging from 0, in the lower reach of the catchment, to 41 t/ha/yr (Figure 9A).
Particularly high soil loss rates were registered along the steep, narrow drainage channels
extending upland from the main canal. Mean annual soil loss of the catchment was
estimated at 18.5 t/ha/yr, whereas sediment yield to the catchment contributing sediment
to the Ketar main canal ranged from 0 to 6.2 t/ha/yr (Figure 9B).

 

Figure 9. Annual soil loss (A) and sediment yield (B) in the catchment contributing overland sediment
inflow to the main canal of the Ketar irrigation scheme.

3.3. Field Measurement of Sedimentation in the Schemes

Sedimentation, both river sediment and overland sediment inflow, in the main canals
of the schemes was measured at the end of the wet season. At the Arata-Chufa scheme,
sedimentation averaged 181 m3/yr. To remove this volume of sediment, some 256 farmers
worked 4.5 h a day for 5.5 days, together removing 0.22 m3 of sediment per day (Figure 10,
Figure A1, Table A1).
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Figure 10. Volume of sediment removed from the main canal of the (a) Arata-Chufa and (b) Ketar irrigation scheme.

At Ketar, much of the sediment was deposited over only 20% of the main canal
(2433 m). This critical section was 4.5 km from the intake and had a milder longitudinal
bed slope (0.130‰) compared to the other sections of the main canal. On average, 2644 m3

of sediment per year was removed from this section of the main canal (see Figure 10).
Totally 3118 farmers participated in the desilting campaigns, together removing 0.83 m3 of
sediment over three 5-h working days (Figure 10, Figure A1, Table A1).

Comparison of the volumes of sediment measured in 2017 and 2018 to the sediment
volumes estimated for the year prior to the fieldwork (2016) indicate a decrease in sediment
volumes from 2016 to 2018, by 10.3% and 4.2%, respectively, for the Arata-Chufa and Ketar
schemes. There is a strong correlation between the sediment volume in 2016 and the mean
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of the sediment volumes in 2017 and 2018, with the correlation being 0.76 for Arata-Chufa
and 0.83 for Ketar (Figure 11).

 

Figure 11. Correlation between the mean of the sediment volumes in 2017 and 2018 and the sediment volume estimated for
2016 using flood and sediment marks with farmer participation.

3.4. Overland Sediment Inflow Contribution

Overland flow sediment inflow concerns the part of the sediment that comes from the
erosion of the catchment area upland of the main canal after the diversion structure and
does not enter the scheme via regular intake structures. The onsite overland flow sediment
enters the schemes along the main canal lateral. The contribution of overland sediment
inflow is estimated by comparing the sediment yield modeled using RUSLE with the gross
sediment volume removed from the schemes. The irrigation season runs from September
to May (dry season) after dredging the deposited sediment that comes from river and
overland flow. During the fieldwork at Arata-Chufa, we observed sediment inflow from
surface runoff, despite the small size of the sediment-contributing catchment. Our erosion
models indicate that the gross soil loss from this catchment was 10 t/yr. The corresponding
sediment yield to the Arata-Chufa main canal was estimated as 2.6 t/yr (Table 2).

Table 2. Annual soil loss, sediment yield to contributing catchment and quantity of sediment dredged from the main canal
of the Arata-Chufa and Ketar schemes.

Soil Loss (A) Sediment Yield (Y) Measured Dredged Sediment

Rate Gross Rate Gross Gross (2016–2018)

(m3/ha/yr) (m3/yr) (m3/ha/yr) (m3/yr) (m3/yr)

Arata-Chufa irrigation scheme
25.2 28.7 6.6 7.52 181

Ketar irrigation scheme
52.4 56,697 9.5 2042 2644
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The Ketar scheme experienced higher soil loss from the catchment and correspond-
ingly large sediment inflow to the main canal. Gross annual soil loss was estimated
as 20,017 t, and the corresponding sediment yield to the main canal of the scheme was
estimated as 720 t, with a mean annual sediment yield of 3.44 t/ha (see Table 2).

The Arata-Chufa scheme was affected mainly by sediment delivered by the river
water feeding the scheme. Most erosion surface flow was conveyed into the river by a
channel along the gravel road, which crossed the main canal (Figure 12). Measurement
of sediment volumes in the main canal and soil erosion modeling indicate that surface
runoff contributed about 4.3% (7.5 m3) of the total volume of sediment deposited in the
main canal.

 
Figure 12. Layout of irrigation schemes and overland sediment flow in contributing catchment: (a) Arata-Chufa and (b)
Ketar. At Ketar, the main canal segments labeled ‘with bank’ have a ridge embankment that helps protect the canal against
overland sediment inflow.

The Ketar scheme main canal travelled some 4.5 km as a headrace canal from the intake
to the field plots through various land use types, though mostly croplands (see Figure 12).
Moreover, there was a lack of land conservation activities and the main canal was highly
deteriorated due to years of use and a lack of maintenance. These factors contributed
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to overland sedimentation inflow to the main canal. Another factor, however, was the
ridges, which had been formed alongside the main canal from sediment removed over
years of desilting campaigns. These ridges played an important role in reducing sediment
inflow to the canal. Nonetheless, sediment yield analyses show a large contribution of
overland sediment inflow to the total volume of sediment deposited in the Ketar main
canal. Specifically, overland flows accounted for some 77% (2042 m3) of the gross volume
of sediment deposited in the Ketar main canal.

The Arata-Chufa scheme had a shorter feeder canal. Here, the contribution of overland
sediment flow into the main canal was found to be minimal (Table 3). Notwithstanding
this, the main canal of the scheme became fully silted-up at the end of the cropping season,
that is, within a three to four months period. For such a scheme, therefore, overland
sediment will likely not be a priority concern. For the Ketar irrigation scheme, however,
the volume of overland sediment inflow per unit of main canal was high (167 m3/km)
(Table 3). Explanations for this high overland sediment inflow include the long length of
the main canal from intake to the first irrigation plot (4.5 km) and a lack of protection of
the main canal from overland sediment inflow.

Table 3. Overland sediment inflow to the schemes per unit of irrigable land, per length of main canal
and per user.

Per unit of Irrigable Land Per Length of Main Canal Per User

(m3/ha) (m3/km) (m3/farmer)

Arata-Chufa irrigation scheme
0.08 5.76 0.02

Ketar irrigation scheme
4.74 167.05 1.90

3.5. Soil Loss Severity Analysis

While sedimentation of the Arata-Chufa scheme was found to be due primarily to
the entry of sediment-laden river water, with the contribution of overland sediment flow
relatively low, it is noteworthy that 92% of overland sediment inflow to the Arata-Chufa
main canal came from the gravel road that crossed the main canal (Table 4, Figure 12).

Table 4. Severity classes of soil erosion loss for the area contributing sediment to the main canal of the Arata-Chufa and
Ketar irrigation schemes. The severity classes are adapted from [19].

Erosion Severity
Classes

Range of Soil
Loss

Area
Percentage of

Total Area
Mean Annual

Soil Loss
Total Annual

Soil Loss
Percentage of

Total Soil Loss

(t/ha/yr) (ha) (%) (t/ha/yr) (t/ha/yr) %

Arata-Chufa irrigation scheme
Very slight 0–5 0.29 25.44 3.12 0.90 8.42

Slight 5–15 0.75 65.79 10.78 8.09 75.21
Moderate 15–30 0.1 8.77 17.60 1.76 16.37

Severe 30–50 - - - - -
Very severe >50 - - - - -

Total 1.14 10.75

Ketar irrigation scheme
Very slight 0–5 1067.70 98.65 0.4 17055.00 70.58

Slight 5–15 10.93 1.01 9.2 3931.00 16.27
Moderate 15–30 3.53 0.33 21.3 2952.00 12.22

Severe 30–50 0.15 0.01 37.8 227.00 0.94
Very severe >50 - - - - -

Total 1082 24,165
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At the Ketar scheme, our soil erosion risk analysis indicates that 12% and 1% of
sediment deposition in the main canal originated, respectively, from lands classified as
‘moderately’ and ‘severely’ at risk from soil erosion (Table 4). These classes are considered
top priority when implementing structural and non-structural soil and water conservation
measures. However, the total area of the catchment experiencing moderate to severe
erosion rates was quite small compared to the entire catchment size. Indeed, the area
exhibiting the highest erosion rates accounted for only about 0.4% of the total catchment
area. Thus, to sustainably reduce excessive sedimentation, soil and water conservation
activities should be implemented addressing the entire catchment.

3.6. Uncertainity in the RUSLE Model

Due to nonlinear spatiotemporal variability of parameters, the RUSLE model is sen-
sitive to input variable uncertainties and the modeling results should be verified using
local measurement data [42]. In particular, the model is highly sensitive to the LS factor
(slope length and steepness) [43–45]. Moreover, the model cannot predict gully erosion.
We used local data to minimize uncertainty in the input parameters and therefore in the
model outcomes. Absence of gullies and an overall less complex catchment points to a
general reliability of the sediment yield predictions for the Arata-Chufa scheme. At the
Ketar scheme, land dynamics were more complex. Nonetheless, considering river sediment
and total sediment inflows, the sediment yield volumes estimated by the RUSLE model
were in a reasonable range.

4. Discussion

The annual soil losses estimated in this study are reasonably close to those reported
by other authors from studies in the country. However, our mean annual soil loss esti-
mate (18.5 t/ha/yr) is lower than the national-level estimate of 29.9 t/ha/yr by Haregeweyn
et al. [46] and figures reported for North and North-Western Ethiopia, that is,
27.5 t/ha/yr [19], 47.4 t/ha/yr [24], 42.67 t/ha/yr [47], 84 t/ha/yr [48], 30.6 t/ha/yr [49]
and 37 t/ha/yr [50]. In a nationwide study, Sonneveld et al. [51] reported that mean annual
soil losses varied from 0 in the east and south to greater than 100 t/ha/yr in the northern
and north-western escarpment. Kebede et al. [52] conducted a study in the Cheleleka
watershed of the Central Rift Valley Basin of Ethiopia, where the current study area was
also located. They reported annual soil losses in the range of 2.5–86 t/ha. The current
study’s mean annual soil loss estimate (18.5 t/ha/yr) is within this range and close to the
18.2 t/ha/yr estimated by Hui et al. [53].

There is high uncertainty associated with the values estimated using the revised
universal soil loss equation (RUSLE) model. To reduce the associated uncertainties, we
verified the RUSLE input parameters against the data collected during fieldwork. For
instance, the absence or presence of soil and water conservation activities, types of crop,
length of the growing period, post-harvest activities, soil type, land use type and absence or
presence of gullies were carefully analyzed while determining the RUSLE input parameters.
The empirical equation (Equation (10)), used to estimate the sediment delivery ratio (SDR),
is also subjected to uncertainty. The estimated value of SDR was 26% for the Arata-Chufa
and 18% for the Ketar scheme. The estimated SDR values by the current study are close to
30% for agricultural land and 25% for non-agricultural land estimated by Nyssen et al. [35]
as used by Haregeweyn et al. [37]. One reason why our estimated mean annual soil loss is
lower than the values reported by other authors for North and North-Western Ethiopia,
could be the complexity of the terrain. As noted, topographic complexity plays a substantial
role in the estimation of LS, which is a highly sensitive RUSLE parameter [54]. The current
study area had moderate topographic complexity, while North and North-Western Ethiopia
are well known for their rugged terrain and steep mountains.

Nearly 80% and 26% of the catchments at the Arata-Chufa and Ketar schemes, re-
spectively, exhibited soil loss rates greater than the tolerable limits of 7.2 t/ha/yr [55]
and 10 t/ha/yr [22]. Determination of appropriate tolerable limits is further dependent
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on local conditions, soil depth, rate of soil formation, terrain and rainfall characteristics.
Findings from the current study indicate a need to implement conservation measures
before it is too late and degradation becomes irreversible. In most places in the study area,
soil was being lost at a rate faster than soil formation, which ranges from 2 to 22 t/ha/yr
in Ethiopia [56]. Soil losses greater than 10 t/ha/yr are irreversible within a time span of
50–100 years [57]. Land degradation and a lack of conservation measures, particularly on
croplands, contributed to high sedimentation rates in the study area. Soil loss in the study
area had multiple effects. Among others, it caused deterioration of irrigation infrastructure
and soil fertility loss. Many water conveyance and distribution structures had become
dysfunctional due to excessive sedimentation and therefore could not deliver the required
services. Water shortages, especially late in the irrigation season, were a major problem due
to diminished canal capacities, leakages and malfunctioning water distribution structures.
Excessive sedimentation also placed a heavy work burden on farmers, to keep the schemes
operational. Reduced agricultural productivity due to a loss of nutrients in topsoil was
another undesirable effect of soil erosion faced by farmers in the study area. Irrigated fields
tended to be farmed under rainfed conditions during the wet season, which also led to an
increased risk of soil loss.

The main determinant of the volume of overland sediment inflow appeared to be the
layout of the irrigation scheme and upland land cover and land use. From the participatory
mapping and transect walk during the fieldwork, we observed that the main canal of the
Arata-Chufa scheme was mostly protected against potential overland sediment inflow.
Moreover, the main canal extended only some 400 m before it reached the field plots.
This short trajectory was of paramount importance in reducing sediment deposition from
overland flow. Moreover, sedimentation from surface runoff came from a limited area,
particularly, the gravel road that crossed the main canal downstream of the intake and
the open area of grazing land between the main canal and the gravel road. The risk of
overland sediment inflow at Ketar was substantially higher, as the canal traversed some
4.5 km from the intake to the field plots, through various land uses and land covers. Most
of the sediment deposited into the main canal of this scheme originated from the rainfed
croplands upland from the main canal.

We computed overland sediment yield into the canals by systematically delineating
and classifying the catchments into subcatchments. This included subcatchments where
banks protected the main canal against surface runoff and subcatchments without such
canal banks, with the latter being more vulnerable to overland sediment flow into the main
canal. Across the entire Ketar catchment, which covers 1082 ha, only 215 ha was found to
directly contribute overland sediment flow to the Ketar main canal (12.1 km). Furthermore,
over more than 30 years of desilting campaigns, Ketar farmers had dumped the sediment
removed from the canal alongside the canal, forming a ridge that served to protect some
parts of it from overland sediment inflow. However, this sediment ridge had grown to
such a height that further sediment dredging activities were nearly impossible. Thus, the
farmers were planning to organize a campaign to excavate the sediment accumulated on
the banks, to make canal cleaning easier. Considering that with the protection of these and
naturally occurring ridges, overland sediment flow still contributed nearly 77% of the total
sediment deposited in the main canal, it is recommended that such excavation be done in
tandem with construction of canal banks to prevent surface runoff inflow. This would help
farmers sustainably address sedimentation problems, and save labor that would otherwise
need to be invested in desilting campaigns.

Data scarcity is often a challenge in understanding processes of sedimentation in
irrigation schemes and in designing sustainable measures to address excessive sedimenta-
tion. Annual sediment deposition in irrigation canals varies depending on many factors,
including rainfall intensity and conservation measures to reduce soil loss. The sediment
volumes measured in the current study correlated well with the volumes of sediment
estimated with the participation of farmers based on flood and sediment marks on the
walls of the canals. This is an important finding, as resource limitations often challenge
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collection of real-time data. Our correlation analysis reveals that a participatory approach
can provide a source of reasonable data for conservation measures to deal with problems
of excessive sedimentation.

5. Conclusions

We measured sedimentation volumes in two irrigation schemes in the Great Rift Valley
Basin of Ethiopia in two successive years, 2017 and 2018, and estimated volumes for the
year prior to the fieldwork, 2016, based on flood and sediment marks with farmers’ support.
Sediment inflow to the irrigation scheme main canals from overland flow was modelled
using RUSLE. Erosion risk maps were prepared to predict the possible implementation
of soil and water conservation measures to reduce soil losses. At Arata-Chufa, 4.3% of
sedimentation in the canal was found to come from overland flow, while in Ketar this rate
was 77%.

Our soil erosion severity map indicates low to moderate erosion rates in most of the
areas under study. Some 84% of the Arata-Chufa catchment and 87% of the Ketar catchment,
respectively, demonstrated slight to very slight soil erosion. Areas that exhibited a severe
risk of erosion were found along surface drainage channels. Prioritizing soil and water
conservation measures in the areas with severe erosion risk would not significantly reduce
sediment inflow into the canals, as these covered only a small part of the catchment.
Addressing the whole catchment when implementing conservation measures or protecting
the main canal from surface runoff by constructing canal banks would be of greater help
in significantly and sustainably reducing sedimentation, particularly in the Ketar main
canal. Land degradation and a lack of soil conservation measures worsened soil erosion
in this study area. In the Ketar scheme, excessive sediment inflow with surface runoff
was aggravated by deterioration of the canal, the absence of canal banks and the long
distance between the intake and field plots. As a result, water availability diminished as
the irrigation season progressed. Moreover, water conveyance and distribution structures
became damaged and operation and maintenance costs increased.

Farmers were found to be generally unaware of the source of sedimentation in their
schemes. Identifying these sources and quantifying their contributions provides a crucial
starting point for sustainably addressing sedimentation problems. In the Ketar scheme,
the overland sediment inflow was found to be huge. This points to the importance of
considering overland sediment inflows when rehabilitating irrigation schemes or designing
new schemes, to attain optimum conveyance of water and sediment.

Based on these results, three key recommendations are proposed. First, as sources of
sedimentation differ for every scheme, identification and quantification of these sources
and areas with higher sediment contributions should be the starting point in addressing
problems of excessive sedimentation. Second, collaborating with farmers can help engi-
neers and researchers to acquaint with the system and also to provide reasonable data
within a short period of time. Third, reduced costs to clean irrigation canals should be
included as a direct benefit of soil conservation plans, in addition to such plans’ benefits
for upland farmers.

Author Contributions: Conceptualization, Z.A.G.; methodology, Z.A.G.; data curation, Z.A.G.;
formal analysis, Z.A.G.; writing—original draft preparation, Z.A.G.; review and editing, H.R., M.R.,
C.d.F. and M.A.; supervision, H.R., C.d.F. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Nuffic, Netherlands Initiative for Capacity building in Higher
Education of the Netherlands government. It was conducted under the framework of the “Capacity
Development of HEIs in Small-Scale Irrigation (and Micro Irrigation)” project (Nuffic/Niche/Eth/197).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

248



Water 2021, 13, 1747

Data Availability Statement: Data was obtained from the Ethiopian National Meteorological Agency,
Ministry of Water, Irrigation and Energy, the International Soil Reference and Information Center
(ISRIC) and are available from the respective organizations.

Acknowledgments: The authors are very grateful to Nuffic, UNESCO-IHE, Delft and Wageningen
University, Arba Minch University, Adama Science and Technology University, East Shoa and
Arsi Zone offices and Woreda Irrigation Development Authority of the Oromia regional state, the
Ethiopian National Meteorology Agency, and the Ministry of Agriculture and Natural Resources for
their financial and material support to the study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Table A1. Labour input and sediment output of the Arata-Chufa and Ketar irrigation scheme: adopted from Gurmu et al., 2019.

A B C D E F G

Year
Farmers
Involved

Working
Hours

Working Days
Sediment
Removed

Total Input Out Put

(Number) (h/Day) (Days) (m3) (Days) (m3/Day/Farmer)

Arata-Chufa

2016 - - - 194 -
2017 260 4.5 6 185 878 0.21
2018 252 4.5 5 163 709 0.23

Average 256 4.5 5.5 181 794 0.22

Ketar

2016 - - - 2720 - -
2017 1680 5 3 2690 3150 0.85
2018 1646 5 3 2522 3086 0.81

Average 1663 5 3 264 3118 0.83

Note that 8 h/day of daily working hours is used to estimate labor days and the values from columns A to F are recorded/measured data
and columns F and G are calculated values.

 

Figure A1. Farmers desilting the sediment from the main canal during the annual desilting campaign at the Ketar
irrigation scheme.
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Abstract: Accelerated soil erosion by water has many offsite impacts on the municipal infrastructure.
This paper discusses how to easily detect potential risk points around municipalities by simple spatial
analysis using GIS. In the Czech Republic, the WaTEM/SEDEM model is verified and used in large
scale studies to assess sediment transports. Instead of computing actual sediment transports in
river systems, WaTEM/SEDEM has been innovatively used in high spatial detail to define indices
of sediment flux from small contributing areas. Such an approach has allowed for the modeling of
sediment fluxes in contributing areas with above 127,484 risk points, covering the entire Czech Republic
territory. Risk points are defined as outlets of contributing areas larger than 1 ha, wherein the surface
runoff goes into residential areas or vulnerable bodies of water. Sediment flux indices were calibrated
by conducting terrain surveys in 4 large watersheds and splitting the risk points into 5 groups
defined by the intensity of sediment transport threat. The best sediment flux index resulted from
the correlation between the modeled total sediment input in a 100 m buffer zone of the risk point
and the field survey data (R2 from 0.57 to 0.91 for the calibration watersheds). Correlation analysis
and principal component analysis (PCA) of the modeled indices and their relation to 11 lumped
characteristics of the contributing areas were computed (average K-factor; average R-factor; average
slope; area of arable land; area of forest; area of grassland; total watershed area; average planar
curvature; average profile curvature; specific width; stream power index). The comparison showed
that for risk definition the most important is a combination of morphometric characteristics (specific
width and stream power index), followed by watershed area, proportion of grassland, soil erodibility,
and rain erosivity (described by PC2).

Keywords: soil erosion; sediment flux; total soil loss; watershed characteristics; PCA analysis; RUSLE
(Revised Universal Soil Loss Equation); WaTEM/SEDEM; Czech Republic; residential areas

1. Introduction

Rainfall-runoff events leading to soil erosion can also cause extensive off-site effects, damage to
the urban infrastructure, and can endanger human lives [1,2].

Various models can be used for modeling erosion and sediment transport. In general, these
models can be categorized as empirical/statistical, conceptual, and process-based [3]. The models
differ in the number of required inputs. Moreover, the quality and the representativeness of the model
outputs is very variable. Empirical models based on the universal soil loss equation [1,4–6] are widely
used for determining the erosion threat over large areas. In the Czech Republic, the RUSLE-based
WaTEM/SEDEM model [7–9] is verified and used in large scale studies [10–13]. This model provides a
sufficiently accurate estimate of the erosion intensity and the amount of transported soil material on
the basis of a relatively small amount of input data [14].

Water 2020, 12, 1787; doi:10.3390/w12061787 www.mdpi.com/journal/water253
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The spatial resolution and quality of input data for RUSLE-based models in the Czech Republic is
rather high, and the method is also used for cross compliance policy application here [15]. Therefore,
WaTEM/SEDEM outputs were considered as a relevant basis for definition of sediment flux risk in
residential areas for the entire Czech Republic in the framework of research project VG20122015092:
“Erosion Runoff—Increased Risk of the Residents and the Water Quality Exposure in the Context of the
Expected Climate Change”.

Instead of computing actual sediment transports in river systems, WaTEM/SEDEM was innovatively
used in high spatial detail, but only to define indices of sediment flux from small contributing areas.
Such an approach allowed for the modeling of sediment fluxes in contributing areas with above
127,484 risk points, covering the entire Czech Republic territory (78,866 km2). Risk points are defined
as outlets of contributing areas larger than 1 ha [16], wherein the surface runoff goes into residential
areas or vulnerable bodies of water (presented in detail in Section 2.1). Sediment flux indices are
calibrated by conducting terrain surveys and splitting the risk points into 5 groups defined by the
category of the sediment transport threat (1 to 5). In the following text, the contributing areas of the
risk points are called “risk watersheds”.

Erosion-related lumped watershed characteristics [17] can be divided into several groups:
Morphological, morphometric, land use (presence and state of vegetation), soil quality characteristics,
and climatic (precipitation characteristics). The most commonly observed parameter is the slope,
which seems to be crucial for the transition from soil cover disturbance to transportation of eroded
particles down the slope [18]. The parcel or watershed slope is an important factor for the effectiveness
of erosion control measures [19], but this is related to land use [20]. The morphometric parameters,
especially the shape of the watershed and the predominant shape of the slopes (convergent/divergent,
convex/concave) are important for a description of the rainfall-runoff, erosion, and transport process.
The impact of the shape of a watershed, expressed by the specific width (watershed area/watershed
length), the planar curvature (describing the convergence/divergence of the slopes), the curvature of the
profile (describing the convexity/concavity of the slopes), indices expressing the hydrological behavior,
and the erodibility of the watershed and the other morphometric parameters, has been described and
assessed in a number of studies [16,21–23]. All watershed characteristics interact, and together they
determine the final level of the threat of intensive sediment flux.

Another novelty of this paper lies in correlation analysis and principal component analysis
(PCA) of the modeled data and their relation to general watershed (contributing area) characteristics.
This way, the sensitivity of model outputs to the general watershed parameters could also be tested.
The motivation was the awareness that in many large regions the data of the same spatial resolution
and quality (as in the Czech Republic) are not available [24,25]. The research questions are therefore:

• What are typical parameters of a Czech watershed that produces a considerable amount of eroded
material and should be modeled in more detail by a process-based model?

• Can single lumped contribution area parameters replace WaTEM/SEDEM modeling if we want to
define five classes of the threat of sediment flux (e.g., not having a detailed DEM (Digital elevation
model) or spatially detailed land-use maps or soil maps)?

• Can a statistically selected combination of these characteristics provide a better estimate?

If the lumped source area characteristics can define the overall sediment flux risk, the approach
can then be used for simplifying the sediment transport assessment methods for regions with a lack of
WaTEM/SEDEM input data in a relevant level of detail.

The aim of the study is to use an extensive set of results of the VG20122015092 project to derive
a simplified statistical approach. Based on the characteristics of the watershed, which can be easily
identified on the basis of open source data, it would then be possible to identify localities where the
threat of intensive sediment runoff is high. Measures into the most high-risk areas can be then designed
by process-based models.
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2. Materials and Methods

2.1. Definition of Source Areas and Risk Points

First, raster-based GIS input data in 10 m spatial resolution were prepared for the entire area of
the Czech Republic, consisting of following layers:

• Digital elevation model (DTM) based on 1:10,000 scale vector contours enhanced by a
stereophotogrammetrical model in newly developed areas. Model was corrected for artificial
sinks in arable areas;

• Land use, defined by the Fundamental Base of Geographic Data of the Czech Republic
(http://geoportal.cuzk.cz/(S(aypz0pbaffy4rwohh4fljcu2))/default.aspx?lng=EN&mode=TextMeta&
text=dSady_zabaged&side=zabaged&menu=24), and updated by the national register of
agricultural areas (Land Parcel Identification System, 1:10,000 scale).

Second, flow accumulation over the entire Czech territory was provided, respecting fragmentation
of the DTM by land use (roads, other linear structures, and built-up areas).

Contributing areas larger than 1 ha [26] had defined drainage networks potentially at risk of
resulting in concentrated overland flows and sediment transport. By intersecting the drainage network
with the boundaries of residential areas, the risk points were defined. Residential areas were identified
as “all built-up classes” including gardens up to 50 m from house polygons. Rural gardens (parks)
were excluded.

All risk points were considered as potential outlets of sediment flux, so for every point a source
area was delineated (called “watershed” in further text). To reduce the number and spatial frequency
of the points in the presented results for municipality communities, the risk points closer than 50 m
and their watersheds were grouped assuming these outlets are always entering into the same part of
any residential area.

The analysis resulted in 127,484 risk points and their watersheds. Further analyses were focused
on the definition of the threat (in five classes) to define which points have no risk of sediment flux and
which can lead to infrastructure damages. WaTEM/SEDEM was used to define the levels of threat
of intensive sediment flux entering residential zones from these watersheds. After extensive terrain
surveys and comparison with the model results, the modeled sediment inflow into 100 m buffer zones
around residential areas was used as the proper parameter for risk definition.

2.2. Sediment Transport Modeling

For sediment transport modeling and for definitions of indices of erosion threat in risk points,
the WaTEM/SEDEM model was used [7–9]. WaTEM/SEDEM is a RUSLE-based model (Equation (1)):

A = R×K ×C× LS× P (1)

where: A—annual soil erosion rate (Mg/ha·year), R—rainfall erosivity factor (MJ·cm/ha·h·year),
K—soil erodibility factor (Mg·h/MJ·cm), LS—topographic factor (-), C—crop management factor (-),
and P—erosion control practice factor (-).

Unlike RUSLE, WaTEM/SEDEM calculates the sediment transport capacity based on Equation (2)
in each pixel, and then balancing every pixel, it determines the erosion/deposition:

TC = KTC × Eprill (2)

where: TC—transport capacity (Mg/ha·m), KTC—transport capacity coefficient (m), and Eprill—potential
for rill erosion (Mg/ha·year).

A detailed description of the model structure and its parametrization for the Czech Republic is
provided by [27].
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Distributed R-factor values in 1-km resolution were derived by Hanel [28,29]. Typical C-factor
values for land use categories in the Czech Republic are defined by Janeček [30] in accordance with the
USDA handbook 537 [4]. The C-factor for arable land was determined as an average value according
to the logged crop rotation [31] in each territorial unit (76 districts). A DEM with a spatial resolution of
10 m was used for calculating the LS-factor. K-factor values were determined in accordance with the
national methodology [32] based on soil quality maps (BPEJ, 1:5000 scale).

In the Czech Republic and in the 10-m resolution data used in this study, WaTEM/SEDEM was
calibrated previously in the Rimov watershed (488 km2) by [27]. Based on the calibration, the following
internal parameters of WaTEM/SEDEM were used in this study: PTEF (arable, forest, grassland =
0, 75, 75); parcel connectivity (arable, others = 40, 75); KTC (arable, others = 35, 55).

Modeling (in tiles) was provided over the entire area of the Czech Republic, considering all surface
waters and residential areas as points of delivery (in the terminology of WaTEM/SEDEM, the “river”
class of land use). The fully distributed modeling of sediment transports within streams applying
river topology maps and reservoirs was out of the scope of the project. Therefore, the model was
only used to derive an erosion/deposition map (called “netto erosion”) and sediment transport map
(called “inflow”). Model output, together with selected model input data, are in Figure 1.

Figure 1. The example of data input (distributed C-factor, K-factor, and R-factor) and WaTEM/SEDEM
outputs (netto erosion and inflow).

Raster-based GIS outputs (netto erosion and inflow) were further analyzed by zonal statistics of
all 130,000 watersheds to provide risk classification concerning sediment fluxes. Here we should point
out that the original calibration could also be used because the actual values of sediment transports in
outlet points were not of importance. The only need was to define the high-risk and low-risk classes of
the sediment entrance into residential areas, and not to compute the transported sediment volumes.
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2.3. Evaluation of the Level of Threat

The level of the threat of sediment transport into residential areas was determined for the risk
points. The aim was to classify the risk points into five classes depending on potential sediment fluxes.
Since the contributing areas of the risk points were starting only with 1 ha size, for many watersheds
we could assume rather high sediment connectivity [33]. Therefore, not only WaTEM/SEDEM sediment
delivery to the outlet (inflow) was considered, but also total soil loss and area-specific soil loss in each
watershed (example of watershed in Figure 2).

Figure 2. Three research catchments selected for the field survey (a). Sediment flux from threat
watershed flows into residential area through potentially threatened outlet (b).

Optimal approach for classifying all risk points would be the terrain survey, but the 79,000 km2 and
130,000 risk points could not be visited. For that reason, three research catchments (of ca. 100 km2 each)
were selected (Figure 2) to correctly set the five threat categories by terrain survey. The basins represent
the most common types of agricultural landscape in the Czech Republic. The Horany Basin represents
intensively used lowlands with large parcels, long straight slopes, and intensive crops (corn, sugar
beet, and cereals). The Vrchlice Basin represents upland landscapes with morphologically diverse
watersheds, steeper slopes, and intensive agriculture, and the Pilnikov Basin represents foothills with
steep convergent slopes, and a high proportion of cereals, forage, and grassland. In these basins,
the real threat categories (1–5) for the risk points were identified by field surveys. The field survey
results were compared with the zonal statistics of the WaTEM/SEDEM outputs for each risk watershed
to select a suitable model result for defining the threat categories.

The entire area of the watershed, soil erosion potential and evidence, the runoff trajectory, and the
watershed outlets into residential areas were observed. Concurrently, the real sediment transport
pathways in pre-selected profiles were surveyed. Information from residents about previous intensive
sediment flux was an important aspect of the field survey.

WaTEM/SEDEM modeling provided the output GIS layers for the soil loss, the sediment
transport/deposition in each pixel (netto erosion), and the total sediment input in each pixel (inflow).
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First, it was necessary to choose a best fitting model output for the correct description of the real threat
defined by five classes based on the terrain survey.

The tested model outputs of the model were (Table 1):

• Aspecific (Mg/ha·year)—the specific soil loss in the watershed;
• Atotal (Mg/pixel·year)—the total soil loss in the watershed;
• Inflow100 (Mg/year)—sediment transport to the outlet, the total sediment input in a 100-m buffer

zone of the risk point.

The statistical values of the tested model outputs were calculated for threat watersheds in the
calibration areas. Then the relationship between the model outputs values and the threat category was
evaluated. The Inflow100 was shown to be the most suitable model output for the threat of sediment
delivery into the risk point (Table 1).

Table 1. Correlation (correlation coefficient) between tested model outputs value and threat category
determined within field survey.

Aspecific Atotal Inflow100

Horany 0.27 0.46 0.57

Pilnikov 0.16 0.63 0.76

Vrchlice 0.34 0.56 0.91

Complete field survey 0.23 0.46 0.70

Aspecific—the specific soil loss in the watershed, Atotal—the total soil loss in the watershed, Inflow100—sediment
transport, the total sediment input in a 100-m buffer zone of the potentially threatened outlet.

In the complete database of threat watersheds for the Czech Republic, the Inflow100 ranges from
0 to 966 Mg/year. The distribution of values shows that the frequency of lower Inflow100 values is
higher than the frequency of higher Inflow100 values. The statistical distribution of Inflow100 values
in the watershed database was determined in order to set the threshold for the Inflow100 values that
define the five threat level categories. Normal distribution was excluded on the basis of the histogram
and the Q-Q plot (Figure 3a,b). The statistical distribution of the Inflow100 values corresponds to
the log-normal statistical distribution [34] (Figure 3c,d). The expected distribution of the watersheds
(in the complete database) in the sediment transport categories indicates that the threat level is not
evenly distributed. Watersheds in threat category 4 or 5 appear less frequently than watersheds in
category 1 (very low threat level).

 

Figure 3. The statistical distribution of Inflow100 values in the watershed threat database represented by
histograms and Q-Q plots. It does not corresponds to normal statistical distribution (a,b). It corresponds
to log-normal statistical distribution (c,d).
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2.4. Impact of Watershed Characteristics on the Threat

The following watershed characteristics are assessed for their impacts on the level of threat of
sediment flux in comparison with the results of WaTEM/SEDEM modeling.

Soil characteristics (soil texture, soil structure, amount of organic material) are expressed in
the K-factor. The precipitation characteristics (average number of intensive rainfall events during
the year and their erosivity) are expressed in the R-factor. The average K-factor and R-factor were
assessed for each watershed to simulate low-resolution data comparison. The land use was described
by the proportion of arable land, forest, and grassland. The morphological characteristics were
included in the analysis through the average slope (%) and the watershed area (ha). The analyzed
morphometric characteristics were the specific width of the watershed (m), i.e., the ratio between the
area of the watershed and the longest runoff line, the curvature of the profile (in the maximum slope
direction)—Curveprofile, and the planar curvature (perpendicular to the direction of the maximum
slope—Curveplane [35]. The hydrological index stream power index (m rad) (SPI) was considered.

SPI expresses the erosion potential of the surface runoff. It reflects the drainage area and the slope
in a specific location in the watershed, on the basis of Equation (3) [36]:

SPI = As·s (3)

where SPI is the local stream power index (m rad), As is the local specific drainage area per unit contour
length, and s is the local slope (%).

First, the correlation matrix expressing the relationship between the Inflow100 and the analyzed
watershed characteristics was set up. Based on our analysis of almost 130,000 potentially threatened
points, it can be assumed that there is a higher threat level in watershed with a high proportion of arable
land, a steep average slope and a specific width, a large watershed area, and a high value of the SPI
coefficient. A multi-variate statistical technique was run to verify this assumption. Within this analysis,
we tested the relationships among the watershed characteristics that are important for the Inflow100
(or for the final threat category). Principal component analysis (PCA) is one of the most widely used
types of multi-variate data analysis [37]. This method simplifies the complexity in high-dimensional
data while retaining trends and patterns. It does this by transforming the data into fewer components,
which describe a combination of observed dimensions [38]. In the presented analyses, the PCA method
transfers the variables (the threat watershed characteristics) to the principal components. The principal
components are a linear combination of the original variables (watershed characteristics). The main
aim of this transfer is to reduce the number of variables. R studio software [39] was used for the
statistical analyses.

3. Results

The Inflow100 values for the thresholds were set (Table 2) on the basis of the log-normal
distribution of the Inflow100 values and required logarithmic representation of the watersheds in
the threat categories. The final number of watersheds in the threat categories corresponds to the
logarithmic function.

Table 2. Number of threat watersheds in five threat categories.

Category 1 Category 2 Category 3 Category 4 Category 5 Total

Range (Inflow100 value) 0–2 2–7 7–20 20–55 >55

Watersheds in category 53,835 32,596 24,389 12,780 3884 127,484

Table 3 shows the average values for the analyzed characteristics in groups of risk watersheds
forming the five threat categories.
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Table 3. Average values of the analyzed characteristics in risk watersheds representing the five
threat categories.

Watershed Characteristics Category 1 Category 2 Category 3 Category 4 Category 5

Average
K-factor

(Mg h/MJ cm)

mean 0.36 0.38 0.39 0.40 0.41

range 0.60 0.57 0.46 0.53 0.44

1st and 3rd quartile distance 0.15 0.15 0.14 0.14 0.13

Average
R-factor

(MJ cm/ha h year)

mean 63 64 65 67 69

range 111 111 113 110 112

1st and 3rd quartile distance 21 19 17 16 15

Average
Slope (%)

mean 9 11 12 13 15

range 113 83 63 65 72

1st and 3rd quartile distance 10 11 10 9 9

Area of
Arable Land

(%)

mean 35 52 59 62 63

range 100 100 100 100 100

1st and 3rd quartile distance 86 96 83 68 61

Area of
Forest

(%)

mean 30 28 25 25 27

range 100 100 100 100 100

1st and 3rd quartile distance 61 55 43 41 42

Area of
Grassland

(%)

mean 35 20 17 14 11

range 100 100 100 98 98

1st and 3rd quartile distance 73 33 25 20 15

Total
Watershed

Area
(ha)

mean 7.12 9.7 14.24 19.77 30.81

range 1524.96 2238.15 1619.27 1374.07 813.49

1st and 3rd quartile distance 3.51 6.56 11.50 18.23 30.65

Average
Planar

Curvature
(-)

mean 0.00 0.00 −0.01 −0.01 −0.02

range 1.50 1.29 0.96 1.28 0.51

1st and 3rd quartile distance 0.03 0.03 0.03 0.03 0.03

Average
Profile

Curvature
(-)

mean 0.00 −0.01 −0.01 −0.01 −0.02

range 4.21 1.57 1.55 0.89 0.53

1st and 3rd quartile distance 0.03 0.03 0.03 0.03 0.03

Specific
Width

(m)

mean 15 16 16 17 17

range 419 116 53 88 34

1st and 3rd quartile distance 5 5 5 5 4

Stream
Power Index

(m rad)

mean 1257 2057 2697 3728 5571

range 488,700 174,800 59,510 105,000 50,820

1st and 3rd quartile distance 1376.1 2267.6 2785.3 3600 4881

An analysis was made of the simple linear correlation between Inflow100 values and individual
analyzed characteristics. The correlation matrix (Table 4) shows a considerable relationship (R > 0.20)
only between the Inflow100 and stream power index (SPI). The value of the correlation coefficient
between Inflow100 and SPI is 0.30.

Table 3 documents the relationship between the threat category of intensive erosion runoff
formation and the average values of the selected characteristics. The SPI coefficient and the proportion of
arable land, total area, slope, and specific width increases with higher threat categories. The proportion
of grassland decreases and the proportion of forest slightly decreases.

The PCA results for the complete database in Table 5 show the interdependence of the characteristics
and the complexity of the relationship between the characteristics and the Inflow100. The individual
components explain only a relatively low proportion of the data.
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Table 5. The variability proportion explained by components (PC1–PC11).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Proportion Explained 0.24 0.16 0.14 0.12 0.08 0.07 0.06 0.05 0.05 0.02 0

Cumulative Proportion 0.24 0.4 0.54 0.66 0.75 0.81 0.87 0.93 0.98 1 1

The correlation coefficients between the studied characteristics and five components are presented
in Table 6. The correlation coefficients between the Inflow100 and the components (PC1–PC5) were
calculated to identify the importance of the components (and indirectly of the characteristics) in relation
to the level of threat (Table 7).

Table 6. Correlation coefficients between the characteristics and components PC1–PC5.

PC1 PC2 PC3 PC4 PC5

K (Mg h/MJ cm) 0.17 0.42 −0.53 0.21 0.22

R (MJ cm/ha h year) 0.36 −0.26 0.06 0.07 0.87

Slope (%) 0.84 −0.04 −0.11 −0.01 −0.04

Arable land (%) −0.8 0.34 −0.16 0.04 0.2

Forest (%) 0.8 0.19 −0.34 0.12 −0.21

Grassland (%) 0.2 −0.65 0.58 −0.19 −0.03

Area (ha) 0.06 0.54 0.44 0.24 −0.02

Curveplane (-) −0 −0.3 −0.02 0.78 −0.06

Curveprofile (-) −0.1 −0.26 0.13 0.77 −0.08

Spec. width (m) −0.1 0.56 0.6 0.07 0.07

SPI (m rad) 0.6 0.5 0.37 0.06 0.04

Table 7. Correlation coefficients between components (PC1–PC5) and Inflow100.

R between PC and Inflow100

PC1 0.07

PC2 0.28

PC3 0.05

PC4 0.00

PC5 0.17

PC2 (R = 0.28) and PC5 (R = 0.17) are relatively important. PC2 has positive relationship with the
watershed area, the specific width, the SPI, and the K-factor. Conversely, the proportion of grassland
has a negative relationship with PC2. PC5 correlates considerably only with the R-factor.

4. Discussion

The accuracy of the modeled Inflow100 value is importantly influenced by the description of
watershed connectivity. The index of connectivity based on GIS analysis of landscape was derived
by Borselli [33]. Consequently, it was refined by Cavalli [40]. An essential input for determining
watershed connectivity is a digital terrain model with high resolution. Therefore, the connectivity based
on high-resolution DEM was not evaluated. The connectivity is involved in modeling by respecting
parcel boundaries and by setting a sediment transport capacity within WaTEM/SEDEM. Based on our
testing [41] and calibrating of the model in numerous previous studies [10–13] we believe in reliable
results in defining risk of the sediment fluxes from watersheds of average size of 11.3 ha.
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A combination of principal component analysis and correlation analysis between the component
values and the Inflow100 shows that the most important watershed characteristics for the threat
of sediment flux are morphometric characteristics (the shape of the watershed, expressed by the
specific width and SPI), the watershed area, the soil erodibility, and the proportion of grassland.
The studies focused on the important factors affecting the value of sediment transport show that
the influence of these factors depends on the size of the evaluated watershed. Morphological and
morphometric factors are particularly significant for smaller watersheds. The area is a key factor
influencing sediment transport in larger watersheds [42]. The presence and state of vegetation cover is
also important for runoff generation, erosion intensity, and nutrient transport. [1,43]. The soil quality
(organic material content, soil structure and texture) influences infiltration capacity, surface runoff
generation, and erosion intensity [44].

Rainfall erosivity also has an important impact on the threat level. According to the results of
many studies, rainfall intensity is a key factor that influences not only the total amount of runoff [19]
and the erosion event process [18], but also the characteristics of the runoff that is formed and its erosive
potential [1]. Rainfall erosivity influences the protective effect of vegetation, and in high erosivity
regions the soil conservation techniques have to be adapted [45].

Concerning the land use characteristics, the grassland decreasing accompanied by arable land
increasing influences sediment transport. On the other hand, the proportion of a forest is less correlated
to the Inflow100 rise. In general, land use has an important influence on the behavior of a watershed in
terms of erosion and transport processes [1]. However, land-use characteristics are related to other
characteristics (slope length, slope, soil quality, farming methods, etc.) that can have a fundamental
effect on runoff behavior [45]. For example, Wu and Wang [20] documented intensive soil erosion on
gardens and parcels with shrubs. These situations are consequences of the steepness of the slope on
these parcels, or of intensive farming. No direct impact of the average watershed slope on sediment
transport was proved by the correlation in our study. A number of studies have demonstrated a direct
impact of the parcel slope on erosion intensity [18,46]. In our case, the impact of a slope is related
(positively or negatively) to the other characteristics, in the same way as land use is. The multi-variate
data analysis presented here shows that the slope has a considerable influence on the erosion threat,
particularly in combination with the drainage area. This is expressed by the stream power index (SPI).

5. Conclusions

The presented study deals with the relationship between watershed characteristics and the level of
intensive erosion threat in the Czech Republic. Based on our study, we offer the following conclusions
relating to the defined scientific questions:

• A typical watershed producing a considerable amount of eroded material is a large convergent area
with a steep slope in the lower part and with a low proportion of grassland. The soil erodibility
and the frequency of intensive rainfall events are also important factors;

• Morphometric characteristics (the shape of the watershed and the slope in the lower part of the
watershed), the area of the watershed, the land use, and soil quality (its susceptibility to erosion)
are key factors for the sediment connectivity;

• A simple analysis of a watershed on the basis of widely available data (a digital elevation model,
soil characteristics, information about rainfall events in the watershed) can be used for determining
the threat level of intensive sediment flux. However, this analysis provides less accurate results
than mathematical models provide. The simple analysis presented here is a suitable tool for the
initial identification of areas that are susceptible to intensive erosion and transport formation;

• The statistics provided here can form a useful basis for a conceptual model for average conditions
in the Czech Republic. However, in different conditions (e.g., parcel sizes, morphology) it would
have to be calibrated again.
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Abstract: Soil erosion is a complex, destructive process that endangers food security in many parts of
the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity,
the methods used to carry it out vary greatly, and the comparison of the results is often difficult.
The present study aimed to examine the results of two rainfall simulators, testing their sensitivity
to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were
conducted on the same regosol under both field and laboratory conditions to compare the dominant
driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall,
various slope gradients, and different soil surface states (moisture content, roughness, and crust state)
were chosen as the response parameters, and their driving factors were sought. In terms of the overall
erosion process, the runoff, and soil loss properties, we found an agreement between the simulators.
However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and
therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and
rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall
simulator may affect the results of the research it is intended for, even if the differences occasioned by
various designs may be of a low order.

Keywords: comparability; infiltration; rainfall simulation; runoff; soil erosion

1. Introduction

Preventing soil erosion is one of the most significant environmental challenges that an increasing
global population has to face. Consequently, understanding the infiltration and soil erosion process is
a key task, and has generated a wide range of investigations [1].

Concerning interrill erosion, the most commonly regarded drivers are slope gradient, porosity,
canopy cover rate (the ratio of the soil surface covered by plants reducing the impact of splash erosion),
surface roughness, soil moisture, and organic matter content, including soil texture as representative of
surface conditions [2–5]. The other group of driver factors is precipitation-related, including elements
such as intensity, uniformity, drop size distribution, and kinetic energy. Taking such driver parameters

Water 2020, 12, 2856; doi:10.3390/w12102856 www.mdpi.com/journal/water267



Water 2020, 12, 2856

into account, studies aim to determine response properties, such as the quantity of eroded sediment [6],
temporal variation in runoff discharge and sediment concentration [7], or the aggregate size [8] and
particle size distribution (PSD) of the eroded sediment [9–11] in the contexts of organic carbon [12] and
nutrient loss [13].

A challenge faced by any soil erosion study is that the combined effects of these factors
and parameters create a dynamic and complex system of driving factors [14]. Even though the
considerable amount of data collected and measured provides a stable basis for the construction
of models and the models employed have become more precise, further measurements are
still needed to deepen our understanding [15]. As environmental circumstances (soil, canopy
cover, tillage operations, rainfall properties, etc.) vary across a wide spectrum, in the interests of
comparability, rainfall simulation was introduced. With the application of rainfall simulation,
most precipitation-related properties can be standardized, even though the results thus obtained may
be affected by the research design selected [16]. In the present study, the term “rainfall simulator” refers
to the applied research design including the entire measurement system. Both field and laboratory
rainfall simulators are widely used for modeling eroded environments [17–20]. They are useful
for understanding the parameters and interactions influencing sediment transport and selective
mechanisms under interrill erosion.

Although a large number of rainfall simulation studies have been conducted in the recent past,
only a few have compared simulator efficiency [14,21–23], making the comparison of studies conducted
using different kinds of simulators difficult. Moreover, the changes in the scale of the research,
from point to catchment, typically affect the sediment yield results [1]. In the <m2 scale, the absence of
linear erosion generally mitigates specific soil loss even though the increase of research sites triggers
decreasing specific soil loss due to sedimentation within the plot.

The present study, therefore, aimed to examine and compare the measured properties of the same
soil under different surface conditions (moisture content, slope gradient, and crust conditions) using
both field and laboratory rainfall simulations. Intensive rainfall and location-specific methodology were
used at two sites. The main hydrological properties (time to ponding and ponding period, time to runoff,
runoff-to-infiltration ratio, and the characteristics of runoff after precipitation), sediment concentration,
and clay enrichment were the basis of the comparison. The time to runoff is a key element in the
pre-runoff phase, as it decreases with increasing rainfall intensity and, at least generally, decreases with
increasing slope gradient [24] and higher initial soil moisture content [7]. Sediment concentration
was selected because, according to Iserloh et al. and Chaplot and Bissonnais [22,25], it is able to
represent soil loss and susceptibility to erosion well, but is independent of the length of rainfall, and can
therefore be used as a comparative value during multi-simulator studies. On the basis of the results
of Warrington et al. [9], the preferential loss of clay and its enrichment, compared to the original
soil, in runoff was found to be important in erosion control as most of the plant-available nutrients
as well as the soil organic matter and thus the buffer capacity and aggregate stability of the soil are
related to the clay fraction. Beyond making a simple comparison, the idea was to summarize the
results of the single parameters into a complex property (approach), which is relevant to the method
applied. The following specific objectives were thus pursued: (i) to determine the similarities and
differences between the soil properties measured in the two experiments; (ii) to identify the reasons
for any differences; and (iii) beyond the single properties, to attempt to find a complex approach that
would make the comparison of the simulators possible.

2. Material and Methods

2.1. Study Area and Soil Properties

The field experiments were conducted near Gerézdpuszta, situated in the Koppány Valley adjacent
to the floodplain of the Koppány River (Figure 1). This area is located in the east of the Somogy Region,
southwest Hungary.
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Figure 1. Location of the field experiment and the collection of soil samples for the laboratory
simulations in Hungary (Europe) at Gerézdpuszta settlement in Somogy county (area highlighted grey)
(a). Field rainfall simulation (b), the topography (c), and the land use (d) of the investigated catena.
Black dots indicate the locations of the field rainfall simulation plots.

Owing to the loess-like deposits, the area is prone to severe soil erosion; however, a further impact
on the soil is the reason why conventional tillage has become less popular in recent decades [26].
The hillslopes that are less eroded due to the lack of tillage are characterized by Cambisols, while mostly
Regosols and Colluviums can be found in the cultivated areas [27]. The climate is moderately warm
and wet, with an average annual temperature of 10.0–10.2 ◦C and average annual precipitation of
605–700 mm. Most of the hillsides are characterized by agricultural cultivation, almost half of which
is situated on slopes steeper than 12% [28]. The consequent tillage depths have resulted in hard
plough-pan with extremely low porosity and infiltration.

The field experiments and the sampling for the laboratory investigations were conducted on
recently tilled (seedbed preparation) Regosol, which had a silty clay loam texture, as well as low CaCO3

and organic carbon contents (Table 1).
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Table 1. Main properties of the examined topsoil (0–30 cm layer).

pHdw pHKCl CaCO3 (%) SOC * (%)
Particle Size Distribution (%)

Clay (<8 μ) Silt (8–50 μ) Sand (>50 μ)

Regosol 8.10 7.40 5.70 1.20 28.93 52.81 18.27

* Soil organic carbon.

Field rainfall simulations were carried out on plots that were 3 m in length and 2 m in width, in
triplicate. Altogether, 6 plots were investigated: 3 on the gentler parts of the slope (with an incline of
7–8%), and 3 on steeper parts (17–18%) (see Appendix A). The plots on the same parts of the slope were
placed 2–3 m from each other (Figure 1). The soil samples for laboratory simulations (from the topmost
0–25 cm tilled layer) were collected from the site at which the in situ simulations were conducted.
In the laboratory, the collected samples were loaded into the flume in the state in which they had
arrived. Initially, the flume was covered by woven geotextiles to ensure free drainage through the
flume bottom to the collector taps. The soil was compacted solely by the energy of two successive
(simulated) rainfall events (30 mm) to achieve the 20 cm soil depth required for the investigations. To
exclude the effects of splash erosion, we covered the soil surface by a polyethylene mesh during these
compaction pretreatments.

2.2. Rainfall Simulators Used in the Study

Two rainfall simulators were used in the experiment, the Shower Power (SP) and the “ELTE”
simulator. SP 02 is a frequently used [29,30], portable field unit that can be employed at the plot-scale
with alternating nozzles (Figure 2a,b). The device has a plot of 3 × 2 m; however, in this instance,
the irrigated plot size was 12 m2 to exclude border effects [30]. The drop forming unit, at a height of 3
m, comprises an alternating axis equipped with two adjacent 80100 Veejet nozzles spaced at 2 m [31].
This distance ensures complete overlap between the two nozzles to gain a uniform spatial intensity
and drop size distribution pattern. The intensity can be set to 30–100 mm h−1, depending on the
axis alternation frequency. The average kinetic energy of the simulator is 24 J m−2 mm−1, ensuring a
reasonable drop size distribution and kinetic energy simulation of an intense natural rain [31].
Field measurement results are presented in Table A1. The properties affecting the momentary intensity
and drop spectrum during a simulation (pressure regulation, evaporation, wind, pump properties)
may well vary in the field, causing anomalies in the preset intensity and kinetic energy [32]. Thus,
it was the real, independently measured rainfall intensities that had been collected (an average for
each single run) that were used for calculations instead of the preset ones.
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Figure 2. Photographs of the lab (a) and field (c) simulations and their primary parameters ((b,d),
respectively) of the simulators used during the study. Marker explanation: (1) nozzle position;
(2) triangular collector; (3) irrigated area; (4) plot boundary.

The ELTE simulator [33,34] is a point-scale laboratory device equipped with a fixed 1/2 HH
40 WSQ full-cone nozzle (Figure 2c,d). It was set at a height of 3 m using a constant pressure
of 20 kPa, which created a standard intensity of 80 mm h−1, with an average kinetic energy of
17 J m−2 mm−1, well representing the effects of an intense natural rainfall [35]. The ELTE simulator has
a sample/monolith carrier flume measuring (lwd) 100 × 50 × 20 cm. The steepness of the monolith
can be regulated over a range of 0–100%. On the bottom of the flume, under the geotextile cover,
a collector system is fitted to drain the leaching water through four taps. In the present investigation,
each tap was closed, modelling the quasi impermeable plough-pan layer detected in the field and
thus increasing/maximizing the comparability of the research design of the field and laboratory
measurements. This research design does not take the effect of splash out (runoff and sediment
loss due to raindrop reflex from the surface, which leave the flume across the borders) into account,
causing lower runoff and sediment yield values.

2.3. Experimental Design

A total of 18 simulation runs were conducted: 12 in the field and 6 in the laboratory (Table 2).
As the soil was the same, the impact of rainfall intensity, slope gradient, and soil surface parameters
(roughness, moisture content, and crust state) on soil loss could be examined. The notion of the
comparability of the erosion observed in the 2 experiments (comparing an in situ soil to a transported
disturbed soil sample) was based on conclusions reached by Thomaz and Pereira [36], who found that
the hydro-erosional responses of soils in a conventional tillage system or unstructured soils are similar.
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Table 2. Settings of the 18 laboratory and field rainfall simulation experiments. Identification (ID) code
fields are as follows: F: field experiment, L: laboratory experiment; G: gentle slope, S: steep slope; P:
plain (2% slope). Runs on steep slopes are in italics and runs under seedbed conditions are underlined.

Experiment ID Location
Rainfall
Intensity
(mm h−1)

Slope
Steepness

(%)

Amount of
Rain (mm)

Rainfall
Duration (s)

No. of
Sub-Samples

FG1 field plot 1 56 6.7 16.81 1076 10
FG2 field plot 1 84 6.7 10.63 452 10
FG3 field plot 2 70 8 13.53 695 9
FG4 field plot 2 86 8 10.41 435 10
FG5 field plot 3 56 7.7 15.19 961 10
FG6 field plot 3 80 7.7 12.40 555 10
FS1 field plot 4 66 18.3 16.49 889 10
FS2 field plot 4 103 18.3 11.67 406 10
FS3 field plot 5 49 17.2 10.53 760 10
FS4 field plot 5 63 17.2 8.05 459 10
FS5 field plot 6 44 17.6 13.86 1121 10
FS6 field plot 6 76 17.6 11.18 525 10
LG1 laboratory 118 5 93.68 2704 8
LG2 laboratory 141 5 78.65 2008 14
LS1 laboratory 109 12 63.40 2094 16
LS2 laboratory 102 12 23.89 843 16
LP1 laboratory 108 2 35.70 1190 13
LP2 laboratory 134 2 79.80 2144 13

A gentle slope of 5% was set in the laboratory, whereas all values <10% were classified as gentle in
the field. The steep slope in the laboratory measurements was 12%, while slopes >10% were considered
as steep in the field. Due to the dynamic nature of variable changes in surface roughness and moisture
content under the effects of precipitation, we conducted 8 dual experiments, resulting in a total of
16 simulations. The first simulation runs (FG1; FG3; FG5; FS1; FS3; FS5; LG1; LS1) modeled the seedbed
(recently tilled, relatively dry) soil with a rough surface, and the second runs (FG2; FG4; FG6; FS2; FS4;
FS6; LG2; LS2) were conducted over the sealed and smoothed soil with the evolved crust and higher
soil moisture content.

In the remaining two laboratory simulations (LP1; LP2), we simulated extremes of moisture
content (modeling “drought” and “inland inundation”) on a nearly flat surface (2% slope). A wide
moisture content interval was necessary because the soil moisture content is an important factor
controlling runoff [37], and its combined effect with the slope gradient could present an increased
impact [38].

Four degrees of intensity (55, 70, 80, and 100 mm h−1) were planned and set for the field simulations.
To measure the real amount of rainfall reaching, we placed the soil surface collector dishes next to the
plot borders. Owing to the changes in evaporation, wind, and fluctuation in water pressure at the
nozzles, the intensities as actually measured differed from those that had been set. For calculations,
we used the measured amount and intensities. The time was recorded during all simulated rainfalls.
All experiments were divided into 4 time periods: (1) time to ponding—in this period the infiltration
exceeded rainfall intensity. The length of this period is proportional to the initial infiltration capacity;
(2) ponding period (the length of which refers to the water storage capacity of the surface, or, in other
words, the surface roughness); (3) runoff; and (4) the post-rain runoff period (runoff after the rain
stops)—the length of this period also reflects the volume of water stored on the surface and indicates
the degree of spatial connectivity. As the length of the ponding period describes the surface storage
capacity, it is therefore an indirect measure of microtopography. During sample collection, all runoff
was measured and collected, and runoff volumes were related to time intervals. After precipitation
stopped, the runoff was collected into a separate bucket, and its volume was measured. The times
at which ponds appeared and the runoff started and ended, as well as the length of runoff time after
precipitation ended, were also recorded [29,30].
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2.4. Runoff and Soil Loss Characterization

The total amount of soil loss was weighed after drying for 48 h at 60 ◦C. The sediment concentration
(SC) of each sub-sample was calculated as the dry sediment mass per runoff volume (g L−1). The PSD
of each sub-sample was determined in triplicate with a laser diffractometer (Horiba LA-950). For the
PSD measurements, we selected the Mie theory of light scattering because it is more precise in the
determination of clay fractions than Fraunhofer diffraction [39]. The refractive indices (RI) based on
the Horiba software calculation were set to 1.63 (real RI) and 0.3 (imaginary RI).

The constant runoff rate was calculated using linear regression on the measured cumulative runoff
volumes with time (practically during the second part of period 3) on the basis of the method described
by Jakab et al. [30], in which the steepness of the fitted linear function provides the constant runoff
rate (Table A2). The runoff coefficient was determined as the percentage of the constant runoff rate
related to rainfall intensity. The clay enrichment CE values of each simulation were calculated as the
median clay content values of the sub-samples in relation to the median clay content of the in situ soil.
The upper limit for the clay fraction was set at 8 μm [40].

2.5. Statistical Analyses

To obtain an overall picture of the dataset, we produced box and whisker plots. Differences between
the parameters of the various laboratory and field samples were calculated using independent
samples Mann–Whitney U tests [41], while in other cases when more than 2 groups were compared,
an independent samples Kruskal–Wallis test [42] was used. It is difficult to determine the combined
impact of the most influential independent variables (e.g., SC) in a complex system. However, in many
cases, multivariate statistical tools can assist in resolving such problems. For example, variance analysis
has been employed in a study on the effect of rain intensity, slope length, and gradient on SC [25].
As in other studies [43–45], principal component analysis (PCA) [46] was used to determine how SC
influences response parameters measured in the soil.

In the present study, to explore how soil parameters affect the SC, primary (slope gradient (%),
rain intensity (mm h−1)) and derived properties (constant runoff/infiltration (%), ponding period length
(s), constant runoff rate (mm h−1)) of the field and laboratory measurements were selected as input
parameters for PCA. Since they are all related to hydrology and runoff formation and, furthermore,
independent of soil loss, they are suitable for the measurement and prediction of the likely susceptibility
of a given soil to erosion, and thus, also, the sole chosen explanatory parameter, SC. The median
diameter of the soil that was lost (μm) was also selected as a response parameter, since it also might
reflect SC.

Prior to PCA, we conducted Bartlett’s test [47] to investigate the applicability of the input
correlation matrices (field and laboratory) to PCA. Both the field (χ2(15) = 56.63, p = 9.47× 10−7) and
the laboratory datasets (χ2(15) = 85.87, p = 5.8× 10−12) were found to be statistically suitable for the
application of PCA. Thus, the variability of the variables input to PCA was compressed into principal
components on the basis of their linear relationships, as presented by Hatvani [48,49]. It should be
noted that the observations’ principal components (PCs) are referred to as PC scores. The elements
of the eigenvectors of the empirical correlation matrix will be referred to as loadings, with these
measuring the relationship of the coordinates and the PCs with the Pearson correlation coefficient.
Loadings outside the ±0.7 interval are considered as meaningful.

During PCA, we took the PCs into account on the basis of their scree plots [50] and their
eigenvalues, which had to be above 1 [51]. Thus, taking into account the previous considerations,
the input variables’ time series were practically reduced to vectors with uncorrelated coordinates
(PC scores) using the first two PCs.

All computations were performed using STATISTICA 10, IBM SPSS 26, R, and visualized in MS
Excel 2016.

273



Water 2020, 12, 2856

3. Results

3.1. Variations in Ponding and Runoff Related Properties

Ponding and time to runoff periods did not differ significantly in the lab and the field (U(NField = 12,
NLab = 6) = 49, p = 0.25) and (U(NField = 12, NLab = 6) = 56, p = 0.067) at α = 0.05. However, the duration
of runoff and post-rain runoff in the field and the lab were significantly different (U(NField = 12,
NLab = 6) = 69 and 11, respectively, p < 0.018) (Figure 3).

Figure 3. Durations of the ponding, runoff, and post-rain runoff periods at the field and laboratory
experiments. Asterisks refer to * crusted, ** wet, and *** dry surface conditions. F—field, L—laboratory;
P—plain (2% slope); G—gentle slope; S—steep slope; for details, see Table 2.

In the field, the time to runoff periods were shorter than 2 min. The time to ponding varied from
3 to 77 s, the ponding period varied from 9 to 73 s, and the time to runoff varied from 34 to 119 s.
Shorter ponding times corresponded to more intense precipitation (Table A3). The time intervals of the
before-runoff periods were shorter, and the post-rain runoff period was lengthened by the inhibited
infiltration due to crusting and the improved connectivity on the surface. On the crusted surfaces,
the duration of the ponding periods was only half that of the tilled surfaces, except for the following
dual experiments: FG1-2, FS1-2, and FS3-4. In these three exceptions, the tilled and crusted surfaces
entered the ponding stage for the same duration. The post-rain runoff on crusted surfaces was longer
by approximately 1–9 min when compared with that on the tilled surface in the same dual experiment.
The effect of slope steepness was only notable during the post-rain runoff period, which was longer on
gentle slopes. The median of this closing period was 465 s on gentle slopes and 198 s on steep slopes.

In the laboratory, the runoff in three experiments (LG1-2 and LS1) began after 6–15 min; two of
these plots were recently tilled, and one had a crusted surface on a slope of 5%, and which also
experienced the highest rainfall intensity of 141 mm h−1. The length of the ponding period decreased
with an increasing slope gradient, and the time to runoff decreased with the appearance of the crust.
No runoffwas detected after rain in experiments where the surface was crusted (LG2, LS2; LF2).

The runoff coefficients did not differ between the slope gradients or locations: H(18) = 0.711,
p = 0.701 (Figure 4). The constant runoff rate was significantly higher in the laboratory (U(NField = 12,
NLab = 6) = 66, p = 0.003) than in the field. This difference, however, was due to the inclusion of the
results of the extreme moisture and dry experiments (Figure 4). It mostly depended on the intensity
and moisture content/surface conditions, especially in the field.
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Figure 4. Comparison of the runoff coefficients, constant runoff rates (mm h−1), and time to runoff (s) in
accordance with the location, slope gradient, and surface moisture content/roughness. Boxes represent
the interquartile interval, the black line in the middle is the median, and the x is the average; the whiskers
indicate 1.5 × the interquartile interval. Values outside this are considered outliers.

3.2. Variations in Sediment Concentration and Composition

SC values increased and differed significantly (H(18) = 11.075, p = 0.004) with the slope gradient,
but were unaffected by the location or surface roughness (p ≥ 0.129; Figure 5). On the gentler (2–8%)
slopes, SC values of 9–14 and 8–11 g L−1 were recorded, while on the steep (12–18%) slopes, SC values
of 10–26 and 15–20 g L−1 were observed in the field and laboratory, respectively (Table A1).

 

Figure 5. Comparison of the sediment concentration and clay enrichment in relation to the location,
slope gradient, and surface properties. The most striking differences were caused by the slope gradient,
and the SC increased while the CE decreased with an increasing slope gradient.
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The lowest SC values of 5.5 and 9.2 g L−1 were measured in the runoff from the experiments with
a slope gradient of 2% slope and extremely wet or dry initial moisture contents, respectively. The SC
was higher in the field when surfaces were crusted (Table 3).

Table 3. Comparison of sediment concentrations (g L−1) among the different combinations of slope
gradients and surface types. LF1 and LF2 were excluded from this comparison as their experimental
setups were unique.

Slope Gentle Steep

Sediment concentration (g L−1)

Field tilled 9.93 ± 0.8 14.30 ± 4.2

Field crusted 11.01 ± 1.4 19.69 ± 5.0

The difference in PSD between the in situ soil and soil loss was expressed by the CE ratio. As
a general result, all soil loss had a CE > 1, except for the highest SC-related rain with the highest
runoff ratio (CE = 0.94). Moreover, CEs were significantly higher in the laboratory (U(NField = 12,
NLab = 6) = 61, p = 0.018) (Figure 5, Table A1) compared to the field measurements. In contrast, CE did
not vary significantly, neither with regards to the slope gradient (H(18) = 5.088, p = 0.079) nor the
surface roughness (H(18) = 6.868, p = 0.076).

3.3. Regulating Properties of SC for Various Rainfall Simulations

By analyzing the linear relationships of the response variables, we found that the first two PCs
(PC1 and PC2) were able to account for approx. 80% of the total original variance in both the laboratory
and field experiments together (Table 4a). After correlating the PC scores with the explanatory variable,
we found that the main influencing factors of SC differed between the field and laboratory (Table 4).

Table 4. Principal component loadings of the first two PCs and their explanatory power expressed as a
percentage in parentheses (a). Field and laboratory experiments are both included. Influential loadings
(loading outside the +/− 0.70 interval) are in italics, and (b) correlation coefficients between the PC
scores and the response variable’s data series, significant at α = 0.1, are marked with an asterisk (*).

(a)
Principal Component/Response

Variables

Field Laboratory

1st PC (50.49%) 2nd PC (27.23%) 1st PC (49.55%) 2nd PC (32.55%)

Slope gradient (%) 0.351 0.694 0.879 −0.063
Constant runoff/infiltration (%) 0.796 0.290 −0.111 0.965

Particle size median (μm) 0.748 0.567 0.502 0.746
Rain intensity (mm h−1) 0.643 −0.706 −0.788 −0.384

Ponding period (s) −0.760 0.031 −0.810 0.079
Constant runoff rate (mm h−1) 0.849 −0.496 −0.812 0.555

(b) Correlation
Coefficient/Explanatory Variable

Sediment concentration (SC) 0.71 * 0.57 * 0.89 * −0.27

The most influential parameters in the first PC for the field measurements were constant
runoff/infiltration, constant runoff rate, particle size median of soil loss with a positive load, and ponding
period with a negative sign indicating a response opposite to the others (Table 4a). Specifically, if the
surface was smooth (short ponding period), the constant runoff rate increased, the flow could transport
larger particles/aggregates, and the PSD median also increased. The first PC displayed a strong and
significant (p < 0.01) linear relationship with the explanatory variable SC (Table 4b). The variance
compressed into the second PC for the field measurements mostly accounted for the rainfall intensity,
which had a smaller linear effect on SC (Table 4b). The loadings of slope gradient did not fall within
the chosen ±0.7 interval in neither PC, indicating a secondary effect on SC in the field.
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As the slope gradient increased in the laboratory experiments, the rainfall intensity, ponding period,
and constant runoff rate decreased according to the first PC (Table 4a); however, the two most
determining variables (constant runoff/infiltration and particle size median) in the second PC displayed
a parallel change (Table 4a). Significant correlations were observed between the PCs and SC; it was
exclusively related to the first PC (Table 4b). Thus, while the actual surface state and development
acted together as influential processes on SC in the field, the first PC indicated that, in the laboratory,
the constant runoff/infiltration and the particle size median of the soil loss were independent of SC.

4. Discussion

In this study, the soil type, high rainfall intensities, and slope gradients were the matching
parameters during the experiments, while initial soil moisture content, surface state (crusting and
smoothening), and the device used varied.

No differences were found in time to runoff in either the laboratory or the field. This may suggest
that the disturbed soil transported in the laboratory yielded comparable infiltration values with that
measured in the field, even though the high variance makes the comparability difficult. In contrast,
a larger plot size may trigger poorer surface flow connectivity, resulting in higher ponding capacity
in the field, as reported by Langhans et al. [52]. The runoff coefficient values demonstrated the
impact of the crust on runoff in both locations, as roughness affected the drainage network [53] and
a sealed surface inhibited infiltration [54], although, without the measurement of surface roughness
and micro-topography, this is just an indication of its veracity. Initial soil moisture content could also
affect the initiation of runoff; it begins earlier on a wet surface, as reported by Jin et al. [7]. Gómez and
Nearing [55] also observed delayed time to runoff owing to higher surface roughness, but they did
not observe differences in the runoff coefficient. This might have been due to the changes in surface
connectivity, which could drastically affect the runoff volume even on rough surfaces [56]. Above and
beyond these processes, variations in research design (e.g., differences in kinetic energy, splash loss
due to a lack of fences in the laboratory) would surely have contributed to the difference.

As the infiltration–runoff equilibrium of the complex system is affected by several properties, it is
impossible to provide a clear explanation of the differences. The point is that the method used will
impact the results.

One of the main goals of this study was to test the comparability of field and laboratory SC and CE
results. Concerning the constant runoff and constant runoff rate measured in this study, we found that
the values from the experiments were similar when conducted on similar slope gradients (Figures 3
and 4). However, the research design (border effect in splash erosion (that is, unmeasured soil loss
due to the lack of fences) in the laboratory might decrease SC. At the same time, in the present study,
the CE was higher in the laboratory (Figure 5). Zemke [57] also demonstrated the enrichment of fine
particles in soil loss on small plots under simulated rainfalls. Presumably, this was due to the smaller
plot size, in which deposition of the coarse fraction within a plot is inhibited, as also suggested by
Jakab et al. [58], or is simply the result of the higher kinetic energy of the applied rainfall. In contrast,
the similar CE from tilled and crusted surfaces of the present study was in contrast to the results of
high-intensity small plot experiments on silty loams by Ding and Huang [11].

Concerning the overall erosion process, in the field, both the SC and CE influenced the surface
properties, as also reported by Koiter et al. [5]. In the laboratory, the velocity of the moving water and its
influencing factors (slope and rainfall intensity) were the main variables driving SC, and the available
soil particles and amount of water determined the CE. The above difference, however, is an artefact
of the different research designs, including, among others, the plot size, the border effect, and the
differences in the drop spectra and kinetic energy of the rain. To achieve more precise and detailed
results, additional measurements are needed with a greater degree of standardization in the conduct of
the experiments (e.g., using the same nozzles in the field and the laboratory). Moreover, given that the
above findings are the results of experiments carried out on a single soil, more investigations on other
soil types are required before the results can be generalized.
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5. Conclusions

Results gained using the two simulators agree with each other and reflect in similar ways on the
soil and surface properties. Therefore, both simulators are suitable for calculations concerning the
susceptibility of soils to erosion, and their results are comparable. The slope gradient was found to be an
effective regulator only in the laboratory. Rainfall intensity was also more effective in the laboratory than
in the field simulations. This, then, suggests that soil-related properties had a prominent role in driving
sediment concentration in the field, whereas in the laboratory, slope and rainfall intensity were found
to be driving factors independent of soil-regulated sediment concentrations. However, these findings
are based on a limited number of simulations and investigate only one type of soil, and some may
conclude that different rainfall simulators behave differently, resulting in the overestimation of the role
of various sub-processes. Thus, the research design of a rainfall simulator may affect the results even
though the differences thus evoked seem to be small in magnitude, probably beneath the sampling
error caused by natural spatial heterogeneity of the soil. Ideally, in the future, an optimal research
design will be to use paired scenarios for various simulation purposes. To do so, many comparative
measurements are needed.
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Appendix A

Table A1. Measured drop spectrum of the SP-02 rainfall simulator in the field at a pressure of 0.41 KPa
using WATOR (Macherey-Nagel) adsorption papers and digital image analysis.

Drop Diameter (mm) <0.5 0.5–1.0 1.0–2.0 2.0–3.0 3.0–4.0 4.0–5.0 >5.0 Total

No. of drops 641 504 224 116 50 19 8 1562
Kinetic energy (J m−2 mm−1) 0.006 0.101 1.396 5.124 6.918 6.328 5.102 24.975
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Table A2. Calculation of the final constant runoff (mm h−1) using linear regression on the measured
runoff/time dataset. Constant runoff is calculated as the steepness of the function (parameter a in
y = ax − b). The number of points gives the quantity of measured data used to fit on.

Experiment ID Fitted Equation
Coefficient of

Determination
Number of Points

FG1 y = 26.448x − 3.7086 0.998 6
FG2 y = 52.78x − 2.6902 0.993 7
FG3 y = 33.021x − 2.1606 0.999 7
FG4 y = 48.244x − 1.4549 0.999 6
FG5 y = 30.171x − 2.831 0.998 6
FG6 y = 48.066x − 2.4828 0.999 5
FS1 y = 33.761x − 3.1841 0.999 5
FS2 y = 60.976x − 1.4915 0.999 7
FS3 y = 29.21x − 1.2405 0.999 6
FS4 y = 46.646x − 0.8294 0.999 7
FS5 y = 19.737x − 1.2286 0.997 7
FS6 y = 44.645x − 1.2834 0.999 6
LG1 y = 58.022x − 20.557 0.998 30
LG2 y = 66.651x − 12.452 0.999 16
LS1 y = 44.694x − 11.695 0.994 9
LS2 y = 62.804x − 0.7752 0.999 12
LP1 y = 66.917x − 2.1461 0.999 9
LP2 y = 75.973x − 25.359 0.999 10
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