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Down and Matt J. Bell

Detecting Dairy Cow Behavior Using Vision Technology
Reprinted from: Agriculture 2021, 11, 675, doi:10.3390/agriculture11070675 . . . . . . . . . . . . . 1

Beatrice E. Waters, John McDonagh, Georgios Tzimiropoulos, Kimberley R. Slinger, Zoë J.
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Huggett and Matt J. Bell

Changes in Dairy Cow Behavior with and without Assistance at Calving
Reprinted from: Agriculture 2021, 11, 722, doi:10.3390/agriculture11080722 . . . . . . . . . . . . . 19

Shayan Ghajar and Benjamin Tracy

Proximal Sensing in Grasslands and Pastures
Reprinted from: Agriculture 2021, 11, 740, doi:10.3390/agriculture11080740 . . . . . . . . . . . . . 29

Yang Wu and Lihong Xu

Image Generation of Tomato Leaf Disease Identification Based on Adversarial-VAE
Reprinted from: Agriculture 2021, 11, 981, doi:10.3390/agriculture11100981 . . . . . . . . . . . . . 41

Jinpeng Yang, Yingbin He, Shanjun Luo, Xintian Ma, Zhiqiang Li, Zeru Lin and Zhiliang

Zhang

Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year
Types in the Agro-Pastoral Ecotone of North China
Reprinted from: Agriculture 2021, 11, 1061, doi:10.3390/agriculture11111061 . . . . . . . . . . . . 59

v





About the Editor

Matt J. Bell is an expert in agricultural systems and sustainable food production, with an interest

in the complex relationship between animals, plants, soil, nutrients, water and climate. There has

never been a greater need for solutions to enhance the way we produce food and how we manage

our land. His work combines the latest research approaches to explore innovative farm systems

approaches for farm-level application.

vii





Preface to ”Enhancing Farm-Level Decision Making

through Innovation”

Enhanced farm-level data sources and information in agricultural systems can allow farmers to

make more timely and informed interventions that ultimately help productivity. More sustainable

production practices are important for future food supplies. This Special Issue explores the use of

applications that implement modelling approaches for different animal and plant systems.

Models of biological systems can be used to explore changes in climatic conditions and inform

plant management options [1]. In this Special Issue, it was notable that five of the six papers

investigated image analysis approaches as a means to monitor animals or plants. Image analysis

has gained in interest due to continued developments in image capture technology and processing.

The work of Yang Wu and Lihong Xu [2] found that image generation can improve disease detection

in tomato leaves. Furthermore, Cavendish et al. [3], Waters et al. [4] and McDonagh et al. [5] showed

how camera surveillance technology can be used for the high-level detection of different behaviors in

cattle and sheep, with the potential to enhance management at critical periods of productive life, such

as parturition. Compared to other sensor technologies, camera surveillance allows both the mother

and its offspring to be monitored remotely. Shyan Ghajar and Benjamin Tracy [6] discussed how

developments in proximal sensing techniques now provide opportunities to collect detailed grassland

data that were previously lacking. The authors highlight that proximal sensing technologies, such as

handheld sensors or sensors mounted on unmanned aerial vehicles, can provide a range of measures,

such as plant species, height, biomass and nutritional content. However, the cost and complexity of

new hardware and software solutions can often be barriers and hinder current adoption.

This collection of papers highlights how innovation in farming systems can support the

sustainable development of food production
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Abstract: The aim of this study was to investigate using existing image recognition techniques to
predict the behavior of dairy cows. A total of 46 individual dairy cows were monitored continuously
under 24 h video surveillance prior to calving. The video was annotated for the behaviors of standing,
lying, walking, shuffling, eating, drinking and contractions for each cow from 10 h prior to calving.
A total of 19,191 behavior records were obtained and a non-local neural network was trained and
validated on video clips of each behavior. This study showed that the non-local network used
correctly classified the seven behaviors 80% or more of the time in the validated dataset. In particular,
the detection of birth contractions was correctly predicted 83% of the time, which in itself can be an
early warning calving alert, as all cows start contractions several hours prior to giving birth. This
approach to behavior recognition using video cameras can assist livestock management.

Keywords: dairy cows; computer vision; behaviors; monitoring; management

1. Introduction

At a time when the general public has concerns about how livestock are managed
and their welfare, tools that can improve animal welfare standards and increase the public
acceptance of farming are required. In recent years, the expectation has been for each
stockperson to look after more animals, as input costs (including labor) have increased
and finding skilled farm workers has become more challenging, and with the increased
size of the average dairy herd. With these challenges have come high-quality digital
camera systems that provide 24 h video surveillance capabilities, and the opportunity
for farmers to monitor their livestock remotely and whilst carrying out other farm tasks.
The use of cameras to monitor animals and their behaviors manually has been available
for decades, with animal behavior and welfare concerns commonly directed at housed
livestock production, such as dairy cows [1,2]. The monitoring of animals is essential for
their welfare and survival [3].

Automated image analysis techniques have developed that allow continuous mon-
itoring during the day and night, and require no prior training by the user other than
interpreting the output. Such continuous monitoring is not possible for a stockperson.
Recent technological advances in the field of computer vision based on the technique of
deep learning [4,5] have emerged which now make automated monitoring of video feeds
feasible. Computer vision combined with artificial intelligence (neural networks) can be
used for a number of animal monitoring tasks such as recognizing the type of animals
(recognition), detecting where the animals (and any other objects of interest) are located in
the image (detection), localizing their body parts, and even segmenting their exact shape

Agriculture 2021, 11, 675. https://doi.org/10.3390/agriculture11070675 https://www.mdpi.com/journal/agriculture
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(silhouette) from the image. Furthermore, adaptations of neural networks for analyzing
video can be used for a number of tasks such as recognition of specific animal behaviors
(e.g., standing, lying, walking, eating, and drinking) [6]. Major benefits of image analysis
are that it does not rely on human interpretation or intervention, transponder attachments
or invasive equipment (e.g., boluses and collars). Furthermore, it may provide more in-
formation compared to other monitoring systems at a relatively low cost. However, the
technology does rely on obtaining a large number of high-quality images. The need for
high-quality image datasets for agricultural solutions has been recognized by others [7].
Vision-based monitoring can not only detect and track individuals but also groups of
animals (i.e., herd, flock or mother with offspring). Vision technology that can continuously
monitor individual animals can potentially provide an objective assessment of an abnormal
behavioral state to allow early intervention and improved awareness by a stockperson.

The objective of this study was to investigate using existing image recognition tech-
niques to predict the behavior of dairy cows. This study collected a large number of
high-quality video images for a range of cow behaviors. Such a dataset was found to be
lacking but was required in the current study to train a computer vision model.

2. Materials and Methods

Approval for this study was obtained from the University of Nottingham animal
ethics committee before commencement (approval number 151, 2017).

2.1. Data

Video cameras (5 Mp, 30 m IR. Hikvision HD Bullet; Hangzhou, China) were used to
record Holstein–Friesian dairy cows at the Nottingham University Dairy Centre (Sutton
Bonington, Leicestershire, UK) prior to calving. Cameras were recording at 20 frames per
second, with a frame width of 640 pixels and height of 360 pixels. Three calving pens with
two surveillance cameras looking into each pen were used to obtain 24 h video footage of
46 individual cows between April and June 2018. Both cameras on each pen allowed full
coverage of the area (10 m × 7 m) and were approximately at a 45-degree angle looking
into the pen at a height of 4 m. Each calving pen holds a maximum of eight cows. Several
days prior to calving, each cow was moved into one of the three calving pens so that the
entire calving process could be monitored.

2.2. Image Annotation

The video recording for each cow was annotated from 10 h before calving by three
observers using custom-made scripts in the PyTorch 1.5 framework to label video clips. The
PyTorch framework was used as it allows several steps in the processing of images to be
carried out, such as behavioral annotations, video segmentation and model development
using the Python programming language as discussed below. The start of the observation
period was determined as 10 h from when the calf was fully expelled at birth using the
video recording. Seven behaviors were recorded (Table 1).

2
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Table 1. Studied behaviors and their description.

Behavior Description

Stand The cow is still on all four legs

Lie The midway transition of when the cow is about to lie down
to when it starts to rise again

Walk Movement of more than two steps

Shuffle Cow circles on the spot or moves slightly with a step or two

Contractions Visible straining while lying down

Eating Cow puts its head through the feeding barrier until the
moment it pulls its head back out from the feeding barrier

Drinking Head is over the water trough and regular head movement
towards the trough

A total of 19,191 individual behavioral observations were obtained from all 46 cows.
For the analysis, 15 video clips of each behavior that ranged between three to ten seconds
were extracted from individual cow footage to provide a total of 3969 video clips for
analysis (Table 2). If there were more than 15 video clips, then they would be evenly
sampled from available data. There were 248–686 video clips for each behavior for training
and validation. To ensure accuracy of video annotation and subsequent behavioral video
clips extracted, each behavioral video clip was checked by a single trained observer to be
correctly labelled and any errors corrected if required.

Table 2. Number of video clips for each behavior class in the training and validation datasets.

Label Behavior Training Validation Total

1 Stand 552 134 686
2 Lie 522 135 657
3 Walk 496 134 630
4 Shuffle 518 134 652
5 Contractions 501 112 613
6 Eating 392 91 483
7 Drinking 205 43 248

Totals 3186 783 3969

The output of the behavior annotations from each video clip was described in a N*3
matrix, where N is the total number of behaviors in the video (Table 3). Start and end
frames for annotated behaviors are recorded for each video clip. Each of the retained
video clips were cropped to remove excessive background and to focus on a single cow
(Figure 1).

Table 3. Example matrix of behavior annotations.

Start Frame End Frame Behavior Label

553602 556724 7
556725 557555 2
557556 557697 4
557698 580880 1
580881 581004 4
581005 581077 1
581078 581157 4

3
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Figure 1. Example of cropped and scaled videos. Top row shows a cow walking, middle row shows a cow shuffling and
bottom row is of a cow eating.

To be compliant with the non-local network [8], we used a fixed-size bounding box
that fully covered the cow over all frames (this is to emulate [8], who used the entire frame).
We used the image annotation tool ViTBAT [9] to generate the bounding boxes. The steps
taken to process images for model development are illustrated in Figure 2.
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Figure 2. Illustration of steps in data acquisition and image processing.

2.3. Computer Vision Model Used for Behavior Recognition

A custom-made script in the PyTorch 1.5 framework was used to combine the behav-
ioral matrix with cropped video images. This was performed using a non-local network [8]
using the ResNet-50 architecture [10]. Further detailed explanations are discussed in prior
research [8,10]. As shown in Equation (1), the non-local block computes the response at a
position as a weighted sum of the features at all positions in the input feature maps and is
defined as follows:

yi =
1

C(x) ∑∀j f
(

xi, xj
)

g
(
xj
)
, (1)

where x is the input features, y is the output features (same size as x), i is the current
position of interest, j enumerates over all possible positions, C(x) is the normalization
factor C(x) = ∑∀j f

(
xi, xj

)
, g is a linear embedding g

(
xj
)
= Wgxj, where Wg is learned

weight matrix and f
(

xi, xj
)

is a pairwise function that computes the correlations between
the feature at location i and those at all possible positions j.

The non-local network [8] is initialized using weights that are pre-trained on the
Kinetics image dataset [11], which includes 400 behaviors for humans. This approach
has been shown by [12] to improve action recognition accuracy by using a pre-trained
initialization starting point for modelling. To decrease training and testing times, the
current study used 8-frame input clips. The 8-frame clips were generated by randomly
cropping out 64 consecutive frames from the training video and then keeping 8 frames that
are evenly separated by a stride of 8 frames (Figure 3). Additionally, while training, the
spatial size is fixed to 224 pixels squared, which is randomly cropped from a video or its
horizontal flip, whose shorter side is randomly scaled between 256 and 320 pixels.
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Figure 3. Temporal sampling of each video clip with eight evenly spaced frames being selected from
a block of 64 consecutive frames.

2.4. Computer Vision Model Validation

To validate the performance of the model, we performed spatially fully convolutional
inference as described by [8]. Briefly, the shorter side is resized to 256 pixels and 3 crops of
256x256 pixels are used to cover the entire spatial domain. The final predicted output is the
average score for 10 evenly spaced 8 frame clips sampled along the temporal dimension of
a full-length video (Figure 4).

Figure 4. Ten clips of eight frames are sampled from blocks (64 frames) which are evenly sampled
over the entire video. Each clip produces its own score, and the final output is the average of all the
scores (a total of 5 blocks are shown for illustration purposes.)

3. Results and Discussion

Despite scientific value, pressing need and direct impact on animal health and welfare,
very little attention has been paid in developing an annotated video dataset of dairy cow
behaviors. Most research to date has been based on wearable accelerometer-based activity
monitoring sensors [13–15]. We introduce a new large-scale video dataset for the purpose
of cow behavior classification. Image banks containing a large number of high-quality
(i.e., accurate and high-resolution) images for different applications are needed to develop
vision-based technologies, such as behavior recognition in animals, as suggested by other
studies [7]. This study showed that automated monitoring of the cow during parturition is
possible, which for a high-value animal is beneficial to assist the stockperson and enhance
animal welfare.

Our dataset consisted of almost 4000 video clips of individual animal behaviors, each
between 3 and 10 s in length, which were on pregnant dairy cows prior to calving. There
was over 9 h and 42 min of captured video data, which was split into approximately 7 h
and 48 min for training and 1 h and 54 min for validation. In the field of computer vision,
action recognition has been applied on humans with a high degree of success [8]. We show
that the same model pre-trained on a dataset devised for human action recognition, namely
Kinetics [11], can be successfully adapted to detect the behavior of dairy cows. As shown
in Table 4, the accuracy of identifying contractions while lying was 83%—this in itself is
sufficient enough to predict the birth of a calf, as a cow will generally start contractions
approximately 1 to 2 h prior to giving birth. Standing, lying, eating and drinking behaviors
all scored greater that 84% and can also help with the monitoring of animal well-being.
Furthermore, changes in duration or frequency of behaviors studied may help identify
abnormal behavior patterns that can assist in animal management. For example, eating and
drinking can be detected with a high level of accuracy at over 90%, and these behaviors
can be used to identify health problems [16].
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Table 4. Evaluation of model predictions against validation dataset.

Stand Lie Walk Shuffle Contractions Eating Drinking

Target 1 No. 134 135 134 134 112 91 43

Output 2 No. 113 122 107 108 93 86 40

Accuracy 3 % 84 90 80 80 83 95 93
1 The target row shows how many video clips were tested for each behavior. 2 Output row shows how many behavior video clips the
model classified correctly. 3 The percentage of target behavior video clips correctly classified.

As well as working with cows, the proposed computer vision approach could be
adapted for other livestock species such as pigs, poultry, sheep, and horses to predict birth
and identify behavior patterns or behaviors that occur over many hours, which may be
missed by subjective and observational sampling. Furthermore, because the calving pen is
continuously monitored, it should also be possible to detect and track the behaviors of the
mother and its newborn offspring, which is not feasible using standard predictive animal
monitoring applications that are currently being used by the livestock industry.

The development of behavior recognition using continuous camera surveillance within
the farm environment is challenging. The current study identified several potential causes
of error in computer model predictions which are limitations of current vision-based
monitoring (Table 5).

Table 5. Potential causes of error in animal vision-based model predictions.

Problem Cause of Error

Pose

A cow’s pose changes not only in terms of its current behavior, but also in terms
of the direction it is facing from the camera. As a cow is a quadruped, this forces
the model to have a much higher generalization capability when compared to

bipeds such as humans.

Similarity
Distinguishing between two or more cows is a very difficult task even for

humans. This is because cows can often have similar colors or patch patterns on
their bodies.

Occlusion

Parts of a cow can be hidden if behind other cows, such as when all bunched up
while eating. The birth of the calf can also be occluded if the cow is facing
towards the surveillance camera. Cows can also be partially hidden under

bedding. Cows can even have self-occlusion, where the cow’s body blocks the
view to other parts such as the head. Spider webs can also blur/occlude cows

while the camera is in infrared night vision mode.

Lighting

Natural light comes through the ventilation spaces, which can produce
rectangular patches over the enclosure and on the cows. Over the course of the
day, the brightness of the enclosure changes. In the evening artificial lighting is
used, which gives an orange tint to the enclosure. Infrared night vision is used
during night-time, which turns the video footage into black and white. While

the camera is in night vision mode, it focuses on the center of the pen and loses
focus towards the extremities of the enclosure. Night vision also casts deep

shadows off the cows that may confuse object detection.

4. Conclusions

We show that computer vision can be successfully applied to predict individual dairy
cow behaviors with an accuracy of 80% or more for the behaviors studied. This approach
could be used for early detection of abnormal behavior in animals, birth events and the
need for assistance. Computer vision technology may help a stockperson make more timely
decisions based on the continuous tracking of individuals within groups of animals.

7
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Abstract: The aim of this study was to assess the duration and frequency of behavioral observations
of pregnant ewes as they approached lambing. An understanding of behavioral changes before
birth may provide opportunities for enhanced visual monitoring at this critical stage in the animal’s
life. Behavioral observations for 17 ewes in late pregnancy were recorded during two separate
time periods, which were 4 to 6 weeks before lambing and before giving birth. It was normal farm
procedure for the sheep to come indoors for 6 weeks of close monitoring before lambing. The
behaviors of standing, lying, walking, shuffling and contraction behaviors were recorded for each
animal during both time periods. Over both time periods, the ewes spent a large proportion of their
time either lying (0.40) or standing (0.42), with a higher frequency of standing (0.40) and shuffling
(0.28) bouts than other behaviors. In the time period before giving birth, the frequency of lying and
contraction bouts increased and the standing and walking bouts decreased, with a higher frequency
of walking bouts in ewes that had an assisted lambing. The monitoring of behavioral patterns, such
as lying and contractions, could be used as an alert to the progress of parturition.

Keywords: behavior; birth; management; observations; sheep

1. Introduction

A stockperson’s ability to assess animal behavior is a key component of their ability
to recognize and treat ill-health, and evaluate the wellbeing of their livestock [1,2]. The
visual assessment of livestock by humans is subjective and has several limitations such
as the cost of labor and time to regularly observe individual animals. Hence, several
monitoring technologies have been proposed in recent years that predict animal behaviors
from movement sensors on cattle or sheep [3–8]. New technologies that provide an
objective measure of animal behavior, such as sensors and cameras, could provide an aid
to improve animal management [9]. Furthermore, monitoring equipment can continuously
and remotely track livestock, something that would be unrealistic and too costly for human
observers to replicate [3].

Lambing is a critical time in the productive life of sheep and the development of the
newborn offspring that will eventually be sold or retained as flock replacements. Sheep
will often have multiples at birth, which can be physically challenging, stressful and a
painful process for the mother and offspring that may require a farmer’s intervention [10].
The parturition period is associated with several physiological, hormonal and behavioral
changes in the pregnant animal, with restless behavior exhibited by nesting and reduced
appetite along with birth contractions, which increase in frequency and intensity as birth
progresses [10,11]. Studying cows, Huzzy et al. [12] found a dramatic increase in the
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number of positional changes such as lying or standing at calving, and reported that the
animals tended to isolate themselves from the rest of the herd. Although there are several
studies on changes in cattle behavior before calving [10,12–15], there are few studies on
pregnant sheep [16,17]. The need for further research into enhanced monitoring approaches
of sheep during parturition has been identified by others [17], and assist a stockperson
during this critical period. The hypothesis of the current study was that there is a change in
sheep behavior before giving birth, and this change can be visually observed. This insight
may assist lambing management and future monitoring technologies.

The objective of this study was to assess the duration and frequency of behavioral
observations of pregnant sheep as they approached lambing. The sheep studied followed
normal husbandry procedure of being housed as a group at about 6 weeks before lambing
to allow for closer monitoring.

2. Materials and Methods

Approval for this study was obtained from the University of Nottingham animal
ethics committee before the study commenced (approval number 198, 2018).

2.1. Data

A total of 17 pregnant ewes were monitored using video camera surveillance (5 Mp,
30 m IR. Hikvision HD Bullet; Hangzhou, China) at the Nottingham University Farm
(Sutton Bonington, Leicestershire, UK; 52.8282◦ N 1.2485◦ W, 48 m a.s.l) when indoors
before lambing from February to March 2019. The study was designed to have similar
numbers of primiparous and multiparous ewes. The ewes monitored were predominantly
Lleyn breed, with 9 primiparous and 8 multiparous. Normal husbandry procedure for
the flock were followed, whereby all sheep came indoors for closer monitoring as a single
group at about 6 weeks before lambing, and returned to pasture after lambing. The
sheep were group housed on straw bedding, with an open feed trough for forage and
supplementary feed and a single water trough. A single camera was used to obtain
continuous video footage of each ewe. The camera position allowed full coverage of the
area and at an approximate 45-degree angle looking into the sheep pen. When the sheep
were housed at the start of the study they were weighed, marked with a number for camera
observations and individual identification recorded, and vaccinated for pasteurella and
clostridial disease, but after this the sheep were not handled until they had given birth.
The sheep did not receive any other health treatments, such for endo or ectoparasites,
during the study. The average age of primiparous ewes was 1.9 (s.d. 0.03) years and
multiparous 4.3 (s.d. 1.0) years. The average bodyweight of primiparous ewes was 57.9
(s.d. 2.6) kg and multiparous 64.2 (s.d. 6.4) kg. Sheep were group fed ad libitum haylage
consisting of 9.7 MJ/kg for metabolizable energy (ME), 486, 548, 138, 59 g/kg for dry
matter, neutral detergent fiber, crude protein and sugar, respectively (Sciantec Analytical
Services, Cawood, UK; using near-infrared spectroscopy analysis). Additionally, sheep
were supplemented with 350 g/day oats with wheat distillers grain mix (13.4 MJ/kg ME,
860, 250, 228 and 60 g/kg for dry matter, neutral detergent fiber, crude protein and sugar,
respectively). The diet was about 75% forage on a dry matter basis. The feed was allocated
as 2% of the average bodyweight for the group of ewes (about 1.2 kg/day), with the diet
formulated based on an estimated energy and protein requirement of 11 MJ/kg ME and
160 g/kg crude protein in the diet [18]. The same diet was fed throughout the study and
the amount allocated to the group was reduced as sheep gave birth and were removed
from the lambing pen. Need for a birth to be assisted by farm staff was recorded for each
ewe. The average daily temperature was 5.7 ◦C, rainfall was 2.9 mm and humidity was
90% during the study.

2.2. Observations

Two observation periods were used to investigate changes in behavior: Period 1
(4–6 weeks before lambing) and Period 2 (at lambing). There were 10 h of annotated video
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recordings for each ewe from Period 1 and three hours before the first lamb was born for
Period 2. Tracking of sheep in Period 2 before lambing was challenging because of the
similar appearance and behavioral changes. Three observers used custom made scripts
in PyTorch 1.5 framework to record the behavior profile of each ewe with time. A total
of 8257 individual behavioral observations were recorded from all 17 ewes. To ensure
accuracy of video behavior annotations, the video was segmented into short clips for
each behavior, and all video clips subsequently checked for accuracy by one of the three
observers. Five behaviors were recorded, which were:

1. Standing: The sheep is still on all four legs.
2. Lying: The midway transition of when the sheep is about to lie down to when they

start to rise again.
3. Walking: Movement of more than two steps.
4. Shuffle: Sheep circles on the spot or moves slightly with a step or two.
5. Contractions: Visible straining while lying down.

2.3. Statistical Analysis

The duration of behaviors in seconds and behavior frequency were determined for
both time periods. A total of 170 behavior records were obtained from 17 ewes (17 × 5
behaviors × 2 time periods).

Behavior records were analyzed using a generalized linear mixed model in Genstat
Version 19.1 (Lawes Agricultural Trust, 2018). A binomial error distribution and a logit link
function was fitted to the fixed effects of assistance, time period, behavior and parity for
the dependent variables of duration and frequency of behaviors in Equation (1):

Yijkl = μ + Ai × Tj × Bk + Pl + Eijkl (1)

where Yijkl is the dependent variable of behavior duration or frequency; μ = overall
mean; Ai = fixed effect for assistance at lambing (i = 0 for unassisted or 1 for assisted);
Tj = fixed effect of time period (j = 1 or 2); Bk = fixed effect of behavior (k = standing, lying,
walking, shuffling, contractions); Pl = fixed effect of parity (l = primiparous or multiparous);
Eijkl = random error term.

The back-transformed predicted means for behavior duration and frequency were
expressed as the proportion of total time or count during each time period. Significance
was attributed at p < 0.05.

3. Results

Of the 17 lambings, two were triplets, 13 were twins and two were singles. There
were four primiparous and two multiparous ewes that required assistance by the farm
stockperson, with all other lambings being unassisted.

Differences were found in the duration of behaviors (p < 0.001) with most of the time
spent either lying (0.40) or standing (0.42), with other behaviors being 0.08 or less across
time periods studied (Figure 1).

There was no effect of parity, time period, lambing assistance on duration of behaviors
(p > 0.05; Table 1 and Figure 2).
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Figure 1. Predicted mean (±SEM) proportion of time spent in doing different behaviors.

Table 1. Effects of parity, time period, and lambing assistance on the duration of behaviors as a proportion of time.

Variable Mean (s.e.) Df F Statistic p Value 5

Parity Primiparous 0.01 (77) 1 0.0000002 0.999
Multiparous 0.01 (77)

Time period 1 Period 1 0.001 (14.3) 1 0.0000002 0.999
Period 2 0.13 (0.05)

Assistance 2 Assisted 0.01 (78.5) 1 0.002 0.962
Unassisted 0.01 (77.2)

Behavior 3 4 8.7 <0.001

Time period × assistance Period 1/Assisted 0.001 (13.1) 1 0.04 0.850
Period 1/Unassisted 0.001 (15.6)

Period 2/Assisted 0.14 (0.09)
Period 2/Unassisted 0.13 (0.05)

Assistance × behavior Assisted/Contractions 0.000001 (0.01) 4 0.04 0.998
Assisted/Lying 0.41 (0.08)

Assisted/Shuffle 0.07 (0.04)
Assisted/Standing 0.43 (0.07)
Assisted/Walking 0.02 (0.02)

Unassisted/Contractions 0.000001 (0.02)
Unassisted/Lying 0.38 (0.08)

Unassisted/Shuffle 0.08 (0.04)
Unassisted/Standing 0.40 (0.08)
Unassisted/Walking 0.03 (0.05)

Time period × behavior Period 1/Contractions 0 (0) 4 0.5 0.715
Period 1/Lying 0.48 (0.04)

Period 1/Shuffle 0.07 (0.02)
Period 1/Standing 0.40 (0.04)
Period 1/Walking 0.04 (0.02)

Period 2/Contractions 0.14 (0.07)
Period 2/Lying 0.32 (0.09)

Period 2/Shuffle 0.09 (0.06)
Period 2/Stand 0.43 (0.10)

Period 2/Walking 0.02 (0.03)

Time period × behavior
× assistance 4 3 0.5 0.685

1 Period 1 was observations obtained 4 to 6 weeks before lambing when the sheep came indoors for close monitoring, and Period 2 was
observations obtained before the ewe gave birth. 2 Births were either assisted or unassisted by farm staff. 3 Predicted mean values shown in
Figure 1. 4 Predicted mean values shown in Figure 2. 5 Significance was attributed at p < 0.05.
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Figure 2. Predicted mean (±SEM) proportion of time that were (a) contractions, (b) lying, (c) shuffling, (d) standing and (e)
walking behavior for assisted (dashed line) or non-assisted (solid line) lambing in time Periods 1 or 2, with Period 2 ending
with the lambing event.

Differences were also found in the frequency of behaviors (p < 0.001) with standing
(0.40) and shuffling (0.28) being the most frequent, with other behaviors being 0.09 or less
across time periods studied (Figure 3).

In the time period before lambing, the frequency of lying and contraction bouts
increased and the standing and walking bouts decreased (p < 0.001; Table 2), with a higher
frequency of walking bouts in sheep that had an assisted lambing (p < 0.01; Figure 4). There
was no effect of parity on frequency of behaviors.
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Figure 3. Predicted mean (±SEM) proportion of observations for different behaviors.

Table 2. Effects of parity, time period, and lambing assistance on the frequency of behaviors as a proportion of observations.

Variable Mean (s.e.) Df F Statistic p Value 5

Parity Primiparous 0.02 (41.4) 1 0.0000001 0.999
Multiparous 0.02 (41.4)

Time period 1 Period 1 0.002 (7.8) 1 0.000001 0.999
Period 2 0.17 (0.01)

Assistance 2 Assisted 0.02 (38.7) 1 1.5 0.219
Unassisted 0.02 (44.3)

Behavior 3 4 53.4 <0.001

Time period × assistance Period 1/Assisted 0.002 (8.3) 1 0.05 0.822
Period 1/Unassisted 0.002 (7.4)

Period 2/Assisted 0.18 (0.01)
Period 2/Unassisted 0.16 (0.02)

Assistance × behavior Assisted/Contractions 0.000001 (0.01) 4 0.7 0.612
Assisted/Lying 0.06 (0.02)

Assisted/Shuffle 0.29 (0.03)
Assisted/Standing 0.41 (0.03)
Assisted/Walking 0.12 (0.02)

Unassisted/Contractions 0.000001 (0.01)
Unassisted/Lying 0.08 (0.02)

Unassisted/Shuffle 0.27 (0.02)
Unassisted/Standing 0.38 (0.02)
Unassisted/Walking 0.08 (0.02)

Time period × behavior Period 1/Contractions 0 (0) 4 17.1 <0.001
Period 1/Lying 0.03 (0.01)

Period 1/Shuffle 0.30 (0.03)
Period 1/Standing 0.46 (0.03)
Period 1/Walking 0.20 (0.02)

Period 2/Contractions 0.19 (0.02)
Period 2/Lying 0.17 (0.02)

Period 2/Shuffle 0.26 (0.02)
Period 2/Standing 0.33 (0.02)
Period 2/Walking 0.04 (0.01)

Time period × behavior
× assistance 4 3 5.0 <0.01

1 Period 1 was observations obtained 4 to 6 weeks before lambing when the sheep came indoors for close monitoring, and Period 2 was
observations obtained before the ewe gave birth. 2 Births were either assisted or unassisted by farm staff. 3 Predicted mean values shown in
Figure 3. 4 Predicted mean values shown in Figure 4. 5 Significance was attributed at p < 0.05.
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Figure 4. Predicted mean (±SEM) proportion of observations that were (a) contractions, (b) lying, (c) shuffling, (d) standing
and (e) walking behavior for assisted (dashed line) or unassisted (solid line) lambing in time Periods 1 or 2, with Period 2
ending with the lambing event. ** p < 0.01.

4. Discussion

The current study found that sheep spend most of their time either standing or lying
during pregnancy. There are surprisingly few studies investigating the duration and
frequency of behaviors of pregnant sheep. The current study suggests pregnant ewes
spend about 10 h per day lying and 10 h per day standing. This is similar to other ruminant
animals such as cattle when indoors, which have been found to spend between 10–12 h
per day lying [19]. The duration of behaviors did not appear to change during parturition;
however, the frequency of lying bouts, including contractions, increased in the period
before lambing. The sheep in the current study were within the last trimester of pregnancy,
and the lack of general movement can be expected in heavily pregnant animals with little
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distance to their food. Previous studies have shown that there are few differences in the
behavior of ewes before and during parturition because of factors such as breed, age of
ewe, nutrition, climate or location [16]. The current study also found no significant effect
of parity. In cows, Barrier et al. [13] found assisted animals displayed more frequent
contractions than those that were unassisted, and that this was often because of awkward
positioning of the calf at birth. A general state of restlessness is common in animals as
parturition approaches and can also be seen in cow studies, characterized by an increase
in lying frequencies as observed in the current study, general increased activity, reduced
feed intake, and an intensified stress response [12,14]. In the current study, inclusion of
additional behaviors, such as eating and drinking, would have been useful information
as these behaviors are known to change as lambing approaches. However, they could
not reliably be observed in sheep that were group housed as in the current study. A
study by Black and Krawczel [20] found a higher lying frequency was associated with
difficult calvings and that the cows that were not exercised were more uncomfortable
during parturition. The sheep with an assisted birth in the current study had a higher
frequency of walking bouts compared to unassisted births, which suggests restless behavior
patterns. Generally, the sheep before lambing in the current study reduced their standing
and walking bouts as lying bouts increased. Fogarty et al. [17] found a general increase
in walking behavior and frequency of posture changes (i.e., standing and lying) in ewes
before lambing. The change in frequencies of standing, lying and walking may provide
useful indicators for tracking the progression of birth.

Sheep are often managed in large groups. This makes close inspection of individual
animals difficult and timing of observations important for animal husbandry. Therefore,
to enhance a farmer’s capacity to manage individual animals in large groups, and detect
animals who are ill or injured, animal tracking technology has been developed [21,22].
Sensor technologies are not however free from challenges; these devices are extremely
sensitive and can be prone to damage from the dirt and dust that comes with farm en-
vironments. Their success will rely on the cost-benefit for livestock farming and added
value to farm operations such as supporting the intense monitoring of parturition during
day or night periods [23]. Sensor technologies could benefit sheep production by allowing
more frequent and effective behavior observations at this key stage. Increased behavior
monitoring would be extremely beneficial during parturition, as mortality will affect both
animal welfare and farm productivity. In sheep, accelerometers have previously been used
to detect behavioral states such as high and low general activity or some combinations of
lying, standing, grazing, walking and/or running [3,17,24]. Use of an accelerometer, with
machine learning, has been found to accurately predict 91% of lambing events within 3 h
of birth based on body posture alone [25]. Sensors detecting key behaviors, such as those
studied, present new opportunities for a continuous and real-time objective measurement
in farm animals [23].

The current study involved a relatively small flock of 17 ewes because of challenges
associated with complete video surveillance of animals over two time periods, and obstruc-
tion of view in group housing. Although the number of animals studied may have affected
the results of this study, they appear consistent with other animal studies as mentioned
above. Multiple cameras may have helped increase surveillance coverage and increased the
number of animals studied. However, the results from this study suggest that observing
changes in lying bouts and detection of contractions could assist farmers in monitoring
parturition to enhance sheep husbandry.

5. Conclusions

This current study investigating group housed ewes during late pregnancy found an
increased frequency of lying bouts, including contractions, before lambing. Pregnant ewes
spent a large proportion of their time either lying or standing, with a higher frequency of
standing and shuffling bouts. Ewes that required assistance at lambing had more walking
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bouts compared to ewes that were unassisted. The monitoring of behavioral patterns, such
as lying and contractions, could be used as an alert to the progress of parturition.
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Abstract: The aim of this study was to characterize calving behavior of dairy cows and to compare
the duration and frequency of behaviors for assisted and unassisted dairy cows at calving. Behavioral
data from nine hours prior to calving were collected for 35 Holstein-Friesian dairy cows. Cows were
continuously monitored under 24 h video surveillance. The behaviors of standing, lying, walking,
shuffle, eating, drinking and contractions were recorded for each cow until birth. A generalized
linear mixed model was used to assess differences in the duration and frequency of behaviors prior to
calving for assisted and unassisted cows. The nine hours prior to calving was assessed in three-hour
time periods. The study found that the cows spent a large proportion of their time either lying
(0.49) or standing (0.35), with a higher frequency of standing (0.36) and shuffle (0.26) bouts than
other behaviors during the study. There were no differences in behavior between assisted and
unassisted cows. During the three-hours prior to calving, the duration and bouts of lying, including
contractions, were higher than during other time periods. While changes in behavior failed to identify
an association with calving assistance, the monitoring of behavioral patterns could be used as an
alert to the progress of parturition.
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1. Introduction

There has been increased interest in the care and housing of cows with concerns for cow
welfare given the increasing size of the average dairy herd across developed countries [1].
Animal welfare concerns are commonly directed at farm animals, and in particular housed
and more intensive production systems with large numbers of animals [2]. With larger
herds the expectation is often that each dairy stockperson will look after more animals as
farms either seek to reduce labor costs or find it difficult to source skilled labor.

Close monitoring at calving is required by the stockperson to ensure the survival
of the mother and her offspring, with problems potentially impacting on future lifetime
performance. While some idea of expected calving date is often known, or estimated from
time of insemination and gestation length, this estimate is often imprecise and requires
some subjective judgement by the farmer with regular checks during late pregnancy to
ensure a successful outcome for the mother and offspring. To assist a stockperson at
calving, and given the importance of a successful birth and potential need for intervention,
a number of sensor technologies have been developed. These technologies have largely
been based on accelerometers and movement detection [3,4], or an alternative is computer
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vision [5,6], which have been developed to support farm management and improve animal
health and wellbeing, and ultimately productivity. The frequency of lying, standing and
tail movements of an animal have been found to change in the period prior to calving in
both dairy [7] and beef cattle [8], and may give some indication of the need for assistance.
Dystocia is fairly common in dairy cows and is a major cause of calf mortality [9,10].
Barrier et al. [10] found that calves which survived dystocia had poorer welfare in the
neonatal period and possibly beyond, with lower passive immunity transfer, higher mortal-
ity and higher indicators of physiological stress. Although preventing dystocia is close to
impossible, quick and timely intervention will help avoid the risk of poor health outcomes.
Individual evaluation and continuous monitoring of dairy cows around the time of calving
is important to identify any need for intervention or health problems as early as possible.
The impact on lifetime performance and labor cost is estimated to range from £110 to £400
per assisted calving [11].

The objective of this study was to characterize calving behavior of dairy cows and
compare the duration and frequency of behaviors for assisted and unassisted dairy cows at
calving. The hypothesize of the current study was that there would be a difference between
the behavior of cows that were assisted and unassisted at calving, which could provide
some insight for enhanced monitoring.

2. Materials and Methods

Approval for this study was obtained from the University of Nottingham animal
ethics committee before commencement of the study (approval number 198).

2.1. Data

Video cameras (5 Mp, 30 m IR. Hikvision HD Bullet; Hangzhou, China) were used to
record Holstein-Friesian dairy cows at the Nottingham University Dairy Centre (Sutton
Bonington, Leicestershire, UK) prior to calving. Cameras were recording at 20 frames per
second. Three calving pens with two surveillance cameras looking into each pen were
used to obtain 24 h video footage of 35 individual cows between April and June 2018.
Both cameras on each pen allowed full coverage of the area and were approximately at
a 45-degree angle looking into the pen. Each calving pen housed a maximum of eight
cows. At three weeks before expected calving, each cow was moved into one of the
three calving pens so that the entire calving process could be closely monitored. Of the
35 cows monitored, 17 were primiparous and 18 multiparous. The need for a birth to be
assisted was recorded for each cow and determined by the same experienced farm staff
from visual assessment on calving progress. Cows were managed and housed within their
normal environment.

2.2. Observations

The video recording for each cow was annotated from 9 h prior to giving birth
by three observers using custom made scripts in PyTorch 1.5 framework to record the
behavior profile of each cow with time. The start of the continuous observation period
was determined as 9 h from when the calf was fully expelled at birth using the video
recording, and considered a time when no visual signs of calving behavior are observed.
A total of 19,191 individual behavioral observations were recorded from all 35 cows. To
ensure accuracy of video behavior annotations, the video was segmented into short clips
for each behavior, and all video clips subsequently checked for accuracy by one of the three
observers. Seven behaviors were recorded, which were:

1. Standing: The cow is still on all four legs.
2. Lying: The midway transition of when the cow is about to lie down to when they

start to rise again.
3. Walking: Movement of more than two steps.
4. Shuffle: Cow circles on the spot or moves slightly with a step or two.
5. Contractions: Visible straining while lying down.
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6. Eating: Cow puts its head through the feeding barrier until the moment it pulls its
head back out from the feeding barrier.

7. Drinking: Head is over the water trough and regular head movement towards
the trough.

2.3. Statistical Analysis

For the analysis, the 9 h prior to giving birth was split into three-hour time periods,
with period three ending with the birth. The duration of behaviors in seconds and frequency
were determined for each time period. A total of 735 behavior records were obtained from
35 cows (35 × 7 behaviors × 3 time periods).

Behavior records were analyzed using a generalized linear mixed model in Genstat
Version 19.1 (Lawes Agricultural Trust, 2018). A binomial error distribution and a logit
link function added was fitted to the fixed effects of assistance, time period, behavior and
parity for the dependent variables of duration and frequency of behaviors in Equation (1):

Yijkl = μ + Ai × Tj × Bk + Pl + Eijkl (1)

where Yijkl is the dependent variable of behavior duration or frequency; μ = overall mean;
Ai = fixed effect for assistance at calving (i = 0 for unassisted or 1 for assisted); Tj = fixed
effect of time period (j = 1 to 3); Bk = fixed effect of behavior (k = standing, lying, walking,
shuffle, contractions, eating and drinking); Pl = fixed effect of parity (l = primiparous or
multiparous); Eijkl = random error term.

The back-transformed predicted means for behavior duration and frequency were
expressed as the proportion of total time or count during each time period. The three-hour
time periods allowed analysis of the proportion of time and frequency of behaviors to
be compared for several behaviors within a time period. Significance was attributed at
p < 0.05.

3. Results

Of the 35 calvings, there were four primiparous and four multiparous calvings that
required assistance by the farm stockperson, with all other calvings being unassisted.
The study found no difference in duration or frequency of behaviors between cows that
had an assisted or unassisted calving. Furthermore, there was no difference between
primiparous and multiparous cows (Table 1). Differences were found in the duration of
behaviors (p < 0.001) with the majority of time spent lying (0.49) or standing (0.35) with
other behaviors being 0.04 or less across the 9 h studied (Figure 1). In the final three hours
prior to calving, the proportion of time for lying and contractions increased and the time
spent standing, drinking and eating decreased (p < 0.001; Table 1 and Figure 2).

Table 1. Effects of parity, time period and calving assistance on the duration of dairy cow (n = 35) behaviors as a proportion of time.

Variable Mean (s.e.) df F Statistic p Value

Parity Primiparous 0.04 (0.01) 1 0.02 0.877
Multiparous 0.04 (0.01)

Time period 1 Period 1 0.03 (0.02) 2 0.2 0.795
Period 2 0.05 (0.01)
Period 3 0.05 (0.01)

Assistance 2 Assisted 0.05 (0.01) 1 0.2 0.631
Unassisted 0.04 (0.01)

Behavior 3 6 130 <0.001

Time period × assistance Period 1/Assisted 0.04 (0.02) 2 0.5 0.631
Period 1/Unassisted 0.03 (0.03)

Period 2/Assisted 0.06 (0.02)
Period 2/Unassisted 0.04 (0.01)

Period 3/Assisted 0.04 (0.02)
Period 3/Unassisted 0.05 (0.01)
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Table 1. Cont.

Variable Mean (s.e.) df F Statistic p Value

Assistance × behavior Assisted/Contractions 0.01 (0.01) 6 0.9 0.515
Assisted/Drinking 0.01 (0.01)

Assisted/Eating 0.03 (0.02)
Assisted/Lying 0.47 (0.03)

Assisted/Shuffle 0.04 (0.01)
Assisted/Stand 0.36 (0.03)

Assisted/Walking 0.02 (0.01)
Unassisted/Contractions 0.002 (0.004)

Unassisted/Drinking 0.01 (0.01)
Unassisted/Eating 0.06 (0.01)
Unassisted/Lying 0.52 (0.01)

Unassisted/Shuffle 0.03 (0.01)
Unassisted/Stand 0.34 (0.01)

Unassisted/Walking 0.01 (0.003)

Time period × behavior Period 1/Contractions 0 (0.001) 12 4.4 <0.001
Period 1/Drinking 0.01 (0.01)

Period 1/Eating 0.10 (0.02)
Period 1/Lying 0.47 (0.03)

Period 1/Shuffle 0.04 (0.01)
Period 1/Stand 0.37 (0.03)

Period 1/Walking 0.02 (0.01)
Period 2/Contractions 0.002 (0.002)

Period 2/Drinking 0.02 (0.01)
Period 2/Eating 0.08 (0.01)
Period 2/Lying 0.44 (0.03)

Period 2/Shuffle 0.04 (0.01)
Period 2/Stand 0.41 (0.03)

Period 2/Walking 0.02 (0.01)
Period 3/Contractions 0.07 (0.01)

Period 3/Drinking 0.004 (0.003)
Period 3/Eating 0.01 (0.01)
Period 3/Lying 0.58 (0.03)

Period 3/Shuffle 0.04 (0.01)
Period 3/Stand 0.28 (0.02)

Period 3/Walking 0.01 (0.01)
Time period × behavior × assistance 4 12 0.4 0.966

1 Periods 1, 2 and 3 were observations 7 to 9, 4 to 6 and 1 to 3 h before calving, respectively. 2 Births were either assisted or unassisted by
farm staff. 3 Predicted mean values shown in Figure 1. 4 Predicted mean values shown in Figure 2.
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Figure 1. Predicted mean (± SEM) proportion of time dairy cows (n = 35) spent doing different behaviors during the 9 h
prior to calving.
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Figure 2. Predicted mean (± SEM) proportion of time that were (a) contractions, (b) drinking, (c) eating, (d) lying, (e) shuffle,
(f) standing and (g) walking behavior for assisted (dashed line) or unassisted (solid line) dairy cow calvings (n = 35) in time
periods one to three, with period three ending with the birth.

Differences were also found in the frequency of behaviors (p < 0.001) with standing
(0.36) and shuffle (0.26) being most frequent, with other behaviors being 0.09 or less across
the 9 h studied (Figure 3).

In the final three hours prior to calving, the frequency of lying and contraction bouts
increased and the standing, shuffle, walking, drinking and eating bouts decreased (p < 0.001;
Table 2 and Figure 4).
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Figure 3. Predicted mean (±SEM) proportion of observations for different dairy cow (n = 35) behaviors
during the 9 h prior to calving.

Table 2. Effects of parity, time period and calving assistance on the frequency of dairy cow (n = 35) behaviors as a proportion
of observations.

Variable Mean (s.e.) df F Statistic p Value

Parity Primiparous 0.06 (0.01) 1 0.00003 0.996
Multiparous 0.06 (0.01)

Time period 1 Period 1 0.06 (0.01) 2 1.7 0.191
Period 2 0.07 (0.01)
Period 3 0.06 (0.01)

Assistance 2 Assisted 0.07 (0.01) 1 0.2 0.630
Unassisted 0.06 (0.01)

Behavior 3 6 140 <0.001

Time period × assistance Period 1/Assisted 0.07 (0.01) 2 2.1 0.119
Period 1/Unassisted 0.05 (0.02)

Period 2/Assisted 0.08 (0.01)
Period 2/Unassisted 0.07 (0.01)

Period 3/Assisted 0.05 (0.01)
Period 3/Unassisted 0.07 (0.01)

Assistance × behavior Assisted/Contractions 0.05 (0.01) 6 1.3 0.257
Assisted/Drinking 0.01 (0.004)

Assisted/Eating 0.01 (0.01)
Assisted/Lying 0.07 (0.01)

Assisted/Shuffle 0.24 (0.02)
Assisted/Stand 0.34 (0.02)

Assisted/Walking 0.09 (0.01)
Unassisted/Contractions 0.01 (0.01)

Unassisted/Drinking 0.01 (0.002)
Unassisted/Eating 0.03 (0.004)
Unassisted/Lying 0.06 (0.01)

Unassisted/Shuffle 0.27 (0.01)
Unassisted/Stand 0.38 (0.01)

Unassisted/Walking 0.09 (0.01)

Time period × behavior Period 1/Contractions 0.002 (0.003) 12 40.2 <0.001
Period 1/Drinking 0.02 (0.01)

Period 1/Eating 0.05 (0.01)
Period 1/Lying 0.03 (0.01)

Period 1/Shuffle 0.31 (0.02)
Period 1/Stand 0.45 (0.02)

Period 1/Walking 0.13 (0.02)
Period 2/Contractions 0.01 (0.01)

Period 2/Drinking 0.02 (0.01)
Period 2/Eating 0.04 (0.01)
Period 2/Lying 0.04 (0.01)

Period 2/Shuffle 0.31 (0.02)
Period 2/Stand 0.45 (0.02)

Period 2/Walking 0.13 (0.01)
Period 3/Contractions 0.28 (0.01)

Period 3/Drinking 0.004 (0.002)
Period 3/Eating 0.003 (0.002)
Period 3/Lying 0.29 (0.01)

Period 3/Shuffle 0.16 (0.01)
Period 3/Stand 0.21 (0.01)

Period 3/Walking 0.04 (0.01)
Time period × behavior × assistance 4 12 0.5 0.926

1 Periods 1, 2 and 3 were observations 7 to 9, 4 to 6 and 1 to 3 h before calving, respectively. 2 Births were either assisted or unassisted by
farm staff. 3 Predicted mean values shown in Figure 3. 4 Predicted mean values shown in Figure 4.
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Figure 4. Predicted mean (± SEM) proportion of observations that were (a) contractions, (b) drinking, (c) eating, (d) lying,
(e) shuffle, (f) standing and (g) walking behavior for assisted (dashed line) or unassisted (solid line) dairy cow calvings
(n = 35) in time periods one to three, with period three ending with the birth.

4. Discussion

This study found that when monitoring calving the duration and frequency of lying
and contraction bouts increased in the last three hours prior to birth compared to other
time periods studied. Observing contractions and their increased frequency, along with
increased frequency and time spent lying, can be used as indicators of progress in parturi-
tion. During the nine hours studied prior to calving, cows spent a large proportion of their
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time either lying or standing in their late pregnancy. No difference in behavioral patterns
were found between assisted and unassisted calvings in the current study, but have been
found by others [7,12]. The failure to find a difference between assisted and unassisted
calvings may have been influenced by observations being conducted until the calf was fully
expelled and any assistance being subjectively determined by farm staff. Additionally, only
23% (8 of the 35 cows) in the current study needed assistance when calving, and therefore
further observations of assisted births would add to the study.

Cows tend to be lying when contractions are occurring. The behavior of dairy cows has
been heavily researched due to concerns to dairy cow welfare and as an indicator of poor
health [13]. Lying is a highly motivated behavior in dairy cows, with cows prioritizing lying
over other behaviors such as feeding, and especially after a period when these behaviors
have been limited [13]. Typically, cows when indoors will spend between 10–12 h per day
lying, and between eight and 10 h per day when grazing [14]. The difference may reflect
more time needed for eating and walking when at pasture. In the current study cows spent
about 12 h per day lying and eight hours standing, with more time spent lying and less
time standing, drinking and eating as parturition progressed. Miedema et al. [7] found
the frequencies of lying and tail raising increased in the final six-hours before calving and
that changes in standing and lying could potentially be used as a predictor of calving. The
findings of the current study would also support the use of lying and standing transitions
as a means for farmers and technology to detect the progress of parturition and imminent
birth. Giaretta et al. [4] also found increased tail movements as an important indicator
of calving progress, along with decreased eating behavior and rumination time. Further
behaviors such as tail movements and rumination time may have added to the current
study since they are potentially visible on video footage.

Schuenemann et al. [12] suggested that dystocic births are characterized by an increase
in abdominal contractions for around 95 min until intervention is required. Therefore, if
contractions can be tracked accurately, and potentially with technology, a prediction of
dystocia could potentially be made given its importance in the monitoring of parturition.
Electronic devices such as abdominal belts or intravaginal thermometers to detect uterine
contractions and body temperature changes have been proposed as potential solutions [3,4].
Furthermore, the live video feed could be monitored using camera surveillance software to
track individual cow behavior since the cows are often indoors when calving [5,6]. Several
studies have proposed sensor technology for classifying cow behavior [15–17]. During the
study, changes in behavior were largely associated with standing, shuffle, walking and
lying, with bouts of lying increasing in the period prior to calving, which is consistent with
other studies [18]. This potential restlessness is known to relate to discomfort in animals
and may reflect late stages of pregnancy or boredom [19].

5. Conclusions

No differences among assisted and unassisted calvings were found. During the 9 h
that were studied before calving, cows spent a large proportion of their time either lying
or standing, with a higher frequency of standing and shuffle bouts than other behaviors.
The increased time and bouts of lying, including contractions, during the last three-hours
prior to calving, and the reduction in other behaviors, could provide a means of tracking
the progress of parturition by the stockperson and using technology. These findings could
help support dairy farmers at calving and increase the welfare of cows and their offspring,
and subsequent lifetime performance.
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Abstract: Reliable measures of biomass, species composition, nitrogen status, and nutritive value
provide important indicators of the status of pastures and rangelands, allowing managers to make
informed decisions. Traditional methods of sample collection necessitate significant investments in
time and labor. Proximal sensing technologies have the potential to collect more data with a smaller
investment in time and labor. However, methods and protocols for conducting pasture assessments
with proximal sensors are still in development, equipment and software vary considerably, and the
accuracy and utility of these assessments differ between methods and sites. This review summarizes
the methods currently being developed to assess pastures and rangelands worldwide and discusses
these emerging technologies in the context of diffusion of innovation theory.

Keywords: proximal; sensing; LiDAR; photogrammetry; grasslands; pastures

1. Introduction

Grasslands cover an estimated 40% of the Earth’s surface [1], performing vital ecosys-
tem services such as cycling nutrients, carbon, and water, and providing habitat for wildlife
and pasture for livestock [2]. However, grasslands are declining globally in extent, due to
land-use changes such as development, conversion to cropland, or abandonment [1,3] or
degrading due to climate change [4]. Assessing the health of a grassland necessitates the
collection of reliable data on its productivity, plant species composition, and potentially
its nutritive value [5]. Traditional techniques for collecting these data are time and labor-
intensive, requiring field visits, specialized equipment, and teams with expert knowledge
of local ecosystems. Advances in sensor technologies may reduce the time or labor required
to conduct such measurements. While recent applications of remote sensing technologies
in grasslands and pastures have been discussed in detail in prior research [6], proximal
sensing technologies such as handheld sensors or sensors mounted on unmanned aerial
vehicles (UAVs) flown at low altitude have received less attention.

Innovation diffusion is the study of how novel and potentially useful technologies
spread throughout a social system [7]. Innovation diffusion theories emerged out of studies
of the dissemination of novel agricultural practices and technologies [8]. As such, they
may be superior frameworks by which to evaluate the spread of innovative proximal
sensing technologies for measuring or predicting indicators of pasture or rangeland health
and function.

To diffuse successfully, an innovation must have five attributes demonstrating its
advantage over previous systems: relative advantage, definable as the perceived superiority
of the innovation over other methods; compatibility with the technological, cultural, social,
and economic systems into which it must be integrated; a complexity not exceeding that
of necessity; trialability, which is a term for the ease by which the innovation may be
tested without major commitment; and observability of the superior outcomes of the
innovation [7].

In this paper, we assess the current state of proximal sensing technologies as they
relate to measuring plant height and biomass, species composition, and nutritive value of
pastures and rangelands and assess the advantages and obstacles to their adoption within
the framework of theories on the diffusion of innovations.

Agriculture 2021, 11, 740. https://doi.org/10.3390/agriculture11080740 https://www.mdpi.com/journal/agriculture
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2. Measuring Plant Height and Predicting Aboveground Biomass

Measurements of sward height and biomass can provide data on the structure and
health of a grassland. Sward height measurements can indicate the vigor, habitat value,
or maturity of a grassland. Similarly, aboveground biomass is an indicator of grassland
or rangeland health and, when monitored long-term, can indicate whether a grassland is
gaining, losing, or maintaining its capacity to provide valuable ecosystem services such
as forage production or preservation of water quality [9]. Data on aboveground biomass
allow managers to determine appropriate levels of forage utilization to meet economic
goals while maintaining ecosystem services [10].

Traditional methods of measuring aboveground biomass rely on destructive harvest
of forage from small areas delineated by a quadrat or frame [11]. The harvested biomass
then must be dried in a dedicated oven before dry matter can be determined. This process
is labor-intensive, and the ovens needed for drying samples can be a significant investment.
On extensive rangelands, an additional limitation of this method is that samples are often
collected along a small transect that must represent areas of hundreds or thousands of
hectares in size due to limitations on time and labor available to technicians or scientists.
As such, improper site selection can mean that the calculated aboveground biomass is not
representative of the area, and management decisions based on the results may not have
the desired effect [12].

2.1. Traditional Alternatives to Destructive Harvest

A number of alternatives to hand-harvesting forage samples have been developed to
shorten the time required to assess biomass in a pasture. Plate meters are used for quick,
non-destructive estimations of pasture biomass by measuring the height of a sward under
compression by a plate on a measuring stick or pole. Plate meters are calibrated by taking
measurements in a pasture typical of the area in which they are to be used, harvesting
biomass on the site of each measurement, and comparing plate height to biomass with
a regression model to develop a predictive equation [13]. Plate meters vary in accuracy
depending on site and season, as morphology and stage of growth influence a tiller’s
resistance to compression [14]. Plate meters cannot be used if pasture species have robust
reproductive tillers or stems that hold the plate above the sward canopy, as this will lead
to inaccurate biomass predictions when plates are calibrated on vegetative swards [13].
Additionally, while the shortened sampling time compared to hand harvesting may allow
for more sites to be sampled, the number of samples and area that can be sampled is still
smaller than what can be accomplished with UAVs [15].

Robel poles are another non-destructive method of estimating pasture or rangeland
biomass [16]. A Robel pole is a rod marked with contrasting colors at set intervals that
is placed vertically in a sward. Personnel then stand at a set distance from the pole and
record the height at which the sward obscures its markings. This is performed from four
directions (often the cardinal directions) per placement, and the process is repeated until
the necessary sample size has been collected. Robel poles avoid many of the issues intrinsic
to plate meters by providing an indication of vegetative height and density without the
need for compressing tillers. However, they face many of the same logistical limitations: a
significant commitment of personnel and time to measure relatively small areas of often
large ecosystems.

2.2. Use of Proximal Sensors to Measure Plant Height and Predict Biomass

Methods for assessing pasture height and biomass using proximal sensors vary. How-
ever, the principle for most methods is similar to that of plate meters in that pasture height
measurements are initially compared to hand-harvested biomass to calibrate a predictive
equation [15]. Photographs, LiDAR, and ultrasonic measurements are the most common
methods used in proximal sensing pasture assessments [17,18].

Photographic determinations of pasture height may be carried out with a simple
red-green-blue (RGB) camera mounted onto a UAV or other vehicle [19] or held on a
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pole [20]. Ground control points (GCPs) are high-visibility objects used to provide a frame
of reference for determining the position of the UAV in the pasture being photographed
and are georeferenced using GPS after they are placed in the pasture [21]. The UAV is
flown over the pasture, taking pictures rapidly at low altitude. The pictures are then loaded
into a Structure from Motion (SfM) photogrammetry program which uses the GCP to
reconstruct the path of the UAV and generate a point cloud, from which a digital surface
model (DSM) and digital elevation model (DEM) are derived (Figure 1). By subtracting the
height of the DEM from the DSM, canopy height may be calculated for a given point [21].
As with plate meters, these height data are then combined with hand-harvested biomass
to derive a regression model to predict pasture biomass as a function of UAV-measured
height [22]. Once the model has been developed and tested, the UAV’s height data may be
used for determining biomass without the need for further hand-harvesting of biomass
samples [21].

Figure 1. The processes by which pasture height data are generated using Structure for Motion
photogrammetry and LiDAR in proximal sensing.

Light detection and ranging (LiDAR) generates point clouds much like SfM techniques
but relies on a different mechanism to do so. With LiDAR, a laser aimed at the ground
bounces back to a sensor, which records the time it took for the light to return, and from
this interval calculates the distance from the LiDAR equipment [20].

When combined with the position of the UAV, LiDAR data can provide thousands of
height measurements of a pasture or rangeland with a single flight [23]. Once the point
cloud has been generated, a DSM is developed. The calibration of biomass prediction
from height data is similar to the process used in SfM, with an initial comparison of
LiDAR-generated height data with hand-harvested biomass samples [20].

Ultrasonic sensors operate similarly to LiDAR in that they emit a signal and calculate
sward height based on the time it takes the signal to return to the sensor—the primary
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difference between the two being that one sensor uses ultrasound, and the other, light [24].
Ultrasonic sensors are mounted to vehicles both to facilitate more speedy measures and
because the height of the sensor relative to the ground needs to remain constant for the
sensor to correctly calculate sward height [17]. Recent improvements in ultrasonic sensor
technology allow the sensor to detect the distance of both the ground and the sward canopy,
resulting in more accurate measurements of height, as well as predictions of biomass [25].
However, the improved sensors are not yet commercially available.

Height measurements generated by proximal sensors can also be combined with spec-
tral reflectance measurements to more accurately estimate pasture biomass [26]. Spectral
reflectance indices are a measurement of the reflectance of objects at specific wavelengths.
In a pasture setting, spectral reflectance is influenced by a number of factors, including
chlorophyll concentration in leaves, plant species in the pasture, the presence and pro-
portion of senescent leaves, and the leaf area index (LAI) of the pasture, which is the
ratio of leaf area per given unit of ground area [27]. Spectral reflectance indices have
been used on their own to estimate biomass in pastures and rangelands, but the many
factors influencing reflectance at different wavelengths lead to difficulties in standardizing
approaches between sites. Additionally, as the LAI increases, the sensitivity of reflectance
indices decreases as less light is reflected back from denser swards [17]. In practical terms,
this means that the most productive pastures present the greatest difficulty in accurately
estimating biomass using spectral reflectance indices.

However, when spectral reflectance is combined with LiDAR or ultrasonic measure-
ments of pasture height in a linear model, predictions of pasture biomass can be more
accurate than by using either technique alone (Table 1). LiDAR combined with the NDVI
resulted in a 25% increase in prediction accuracy for green pasture biomass [27]. This
is a result of the capacity of spectral reflectance to differentiate between green biomass
and senescent material, while LiDAR measurements can detect only standing biomass
regardless of stage of growth [26]. Similarly, combining ultrasonic height measurements
with spectral measurements such as the normalized spectral vegetation index (NSVI) can
result in higher accuracy for predicting biomass than using either technology alone [26].

Table 1. Studies using proximal sensing technologies to estimate pasture height or dry matter (DM) yield.

Author(s) Year Technology Used 1 Variable R2 Pasture Type Location

Frick and Wachendorf [26] 2013 Combination of ultrasonic
and spectral sensors DM

0.83 in mixed swards
0.88–0.90 for species-specific

calibrations

Mixed grass and
legume swards Germany

Schaefer and Lamb [27] 2016 Combination of LiDAR
and spectral sensors Green DM 0.61

Tall fescue
(Schedonorous
arundinacea)

Australia

Cooper et al. [28] 2017 SfM, TLS DM SfM: 0.72
TLS: 0.57

Smooth brome
(Bromus inermis) South Dakota, USA

Wang et al. [23] 2017 LiDAR DM 0.34 Semi-arid steppe Inner Mongolia, China

Legg and Bradley [25] 2019 Ultrasonic sensor DM 0.7–0.8 Unspecified New Zealand

Grüner et al. [21] 2019 SfM DM
Height

0.64–0.75
0.59–0.81

Mixed grass and
legume swards Germany

Obanawa et al. [20] 2020
SfM from pole-mounted

and UAV-mounted
cameras; LiDAR

Height
0.94 for UAV SfM,

0.91 for handheld SfM,
0.93 for LiDAR

Annual ryegrass
(Lolium multiflorum) Japan

1 Abbreviations: LiDAR: light detection and ranging; SfM: structure from motion photogrammetry; TLS: terrestrial laser scanning; UAV:
unmanned aerial vehicle.

Structure from Motion, LiDAR, and ultrasonic sensor technologies generate useful pre-
dictions of forage height and biomass using current techniques. However, each has unique
advantages and disadvantages. The primary advantage of LiDAR is its accuracy. Obanawa
and colleagues reported a margin of error for measured pasture height of 12 ± 10 mm for
LiDAR compared to 24 ± 13 mm for SfM [20]. Additionally, ultrasonic sensors usually
assume a fixed distance to the ground due to being mounted on a vehicle, yet terrain and
bumpy driving may interfere with the validity of that assumption [17]. However, LiDAR
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equipment can be prohibitively expensive compared to the equipment needed for ultra-
sonic measurements or SfM. Another consideration is weather—SfM may be confounded
by days with highly variable light conditions, whereas LiDAR and ultrasonic technologies
are more robust to such situations. In summary, SfM and ultrasonic approaches may be
more accessible for many people due to the simplicity and cost of equipment, but for height
and yield estimations, LiDAR can be more accurate.

3. Grassland Species Composition

Determining the composition of plant communities in pastures and rangelands is
critical to assessing the ecological health of a landscape and making informed manage-
ment decisions. A census of plant species composition can identify species of economic
value, conservation concern, or undesirable species which may need suppression. Regular
monitoring of plant species composition can provide data on shifts in plant communities
resulting from past management, biotic and abiotic stressors, or disturbances such as fire
or drought [5]. Most surveys of plant species composition in pastures or rangeland require
the same dedication of time and labor as the assessments of biomass discussed above and
also face the same limitations in sampling area and representativeness of sites selected
for survey. However, measuring plant species composition also requires personnel with
proficiency in plant identification and familiarity with species local to sampling sites. The
seasonality of plant growth may also limit preferable survey seasons to certain times of
the year. Consequently, time and personnel availability remain substantial constraints
to the number and scope of surveys that can be conducted on any particular landscape.
Developing more efficient survey methods could increase the scope and frequency of
monitoring programs.

Surveys of species composition using UAVs rely on the collection of high-resolution
imagery for plant identification, followed by data processing and analysis. High-resolution
imagery can be collected with a variety of cameras mounted to UAVs, including unmodified
commercially available RGB cameras, or cameras specifically designed or modified to
capture light outside the visible range, such as NIR [29]. After images have been collected,
they may be evaluated to determine if blurring, overexposure, or other issues that preclude
reliable analysis are present. Remaining images are then processed with software, which
uses the timestamp and GPS data associated with each photo to create an orthomosaic—a
single image stitched together from the many collected by the drone [30]. The orthomosaic
may require additional processing prior to final analyses depending on the site, equipment,
software, and species being surveyed. Methods of analysis can then include visual tagging
of species by human operators or using mapping or image processing software to identify
objects or areas based on patterns of pixels in the orthomosaic [31].

Past research using UAVs to identify plants at the species level have largely focused on
a single highly visible species, such as tree species [32,33], weeds in monocropped farming
systems [34], woody invasive species [35], species with conspicuous blooms [36], or species
in arid landscapes with unique morphology [37]. These studies consistently found that
analyses of UAV-derived high-resolution imagery compared favorably with traditional
sampling methods when assessing the abundance and distribution of a target species.

We found only one study using UAV-derived high-resolution imagery to classify
multiple species simultaneously in a grassland setting. Lu and He used blue, green, and
NIR spectrum imagery processed with machine learning software to assess the abundance
and distribution of six species in a temperate grassland, including forbs and grasses [29].
The simultaneous assessment necessitated training the image analysis program to recognize
the species. This was achieved by identifying species in the field and photographing them
with the equipment to be used in the UAV surveys in order to generate differentiable
reflectance values for spectral analysis. This approach averaged 85% accuracy when
compared with on-ground assessments; however, the authors noted that the method failed
to detect plants below the sward canopy, whether from lodging or early growth stage.
Additionally, due to differences in spectral reflectance species had at different stages of
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their life cycles, it was necessary for the authors to sample some species multiple times
during the growing season to retrain the software.

Though comprehensive species inventories remain beyond the capabilities of proximal
sensing technology at present, UAV-derived high-resolution imagery has been used to map
cover classes in a variety of environments: desert ecosystems in West Asia [38], Western
rangelands of North America [30,39–41], and grasslands in the Tibetan plateau [42]. The
processes are similar to those outlined above for species identification but with lower-
resolution imagery and training personnel or programs to recognize vegetation types
rather than species based on pixel patterns [30].

Thus far, plant identification and mapping using proximal sensing technology is inca-
pable of replacing field work for comprehensive inventories of species on most landscapes.
Even when multiple species may be identified using sensor imagery, species lower in the
sward canopy may go undetected, and a field crew proficient in plant identification is
necessary for helping train image processing software to recognize species of interest. Nev-
ertheless, proximal sensing technologies have demonstrated their utility in expanding the
scope and frequency of monitoring programs in many contexts, as well as their usefulness
in collecting data about large shifts across landscapes. As such, they can readily augment,
rather than replace, traditional methods of conducting plant surveys for scientists and land
managers.

4. Nutritional Status and Nutritive Value

The process for estimating the nutritional status of plants—e.g., what concentrations
of nitrogen or phosphorus they may have—is functionally identical to the process for
estimating nutritive value of the sward for grazing animals. For both, a proximal sensor
collects images of the site across a range of spectra, while a field crew collects samples
of pasture from geotagged sites in the field. The samples are chemically analyzed for the
variables of interest, and then these values are compared to spectral data by means of linear
regression and/or machine learning to find the spectrum and equation that best explain
variance in the variable of interest [43].

Results using this technique vary, with high reported coefficients of determination
for some monospecific stands of forage [40] and more variable predictive capability in
heterogeneous swards [44] (Table 2). Approaches combining spectral data with other
environmental variables reported higher prediction accuracy than those relying on spectral
data alone, both in homogenous and heterogenous swards. A study of nutritive value of
alfalfa (Medicago sativa) in the United States reported 9–17% higher prediction accuracy
when combining spectral data and growing degree units than when models were based
on spectral data alone [45]. Another study on mixed temperate grasslands in Germany
reported a 21% increase in prediction accuracy for crude protein (CP) and 91% increase for
prediction accuracy of acid detergent fiber (ADF) when ultrasonic sward height measure-
ments were included in calibration models than with spectral data alone [46]. Similarly, a
study on perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) swards in
New Zealand reported 21% greater prediction accuracy for CP and 28% greater prediction
accuracy for metabolizable energy (ME) when spectral data were combined with selected
topographic and edaphic variables in models [47].
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5. Innovation Diffusion and Proximal Sensing Technologies

Returning to innovation diffusion theory, an innovation must have five characteristics
if it is to be widely adopted throughout a system: relative advantage over past methods;
compatibility with needs and values of potential adopters, as well as extant social, techno-
logical, and economic systems; complexity not exceeding that of necessity; trialability, or
capacity to be tested before committing to the innovation; and observability of the superior
outcomes of the innovation [7].

5.1. Relative Advantage

Proximal sensing technologies have the capacity to generate vastly more data than
traditional methods of pasture and rangeland assessment. Additionally, proximal sensors
mounted on UAVs can travel farther, faster than most fieldwork teams. For certain aspects
of assessing pasture or rangeland health, such as measuring height and productivity,
proximal sensing technology has a high degree of accuracy and clear relative advantage
over repeatedly hand-harvesting pasture. In other areas, however, such as comprehensive
assessments of pasture species, or measuring the nutritive value or nutrient status of a
sward, proximal sensing technology can augment but not replace traditional methods of
data collection at present.

5.2. Compatibility

Compatibility refers to the extent to which an innovation aligns with the needs, values,
and past experiences of potential adopters, as well as the extent to which it can be integrated
into extant social, economic, and technological systems [7]. Scientists and natural resources
professionals both need and value enhanced capacity for data collection [50]. Similarly,
farmers and ranchers face a trend of increasing intensification in agricultural production,
with an increased focus on data collection and precision agriculture [51]; however, in some
countries, the median age of agricultural producers is over 60 years [52], and age has been
shown to have an inverse relationship with willingness to adopt technological innovations
in some agricultural communities [53,54].

While proximal sensing technologies are in the process of emerging from and be-
ing further integrated into extant economic and technological systems, prior research on
analogous precision agriculture innovations demonstrates that a threshold of adoption
may need to be reached before industry-scale informational and technological support
for potential adopters is available [55]. At present, there are few studies on the rates of
adoption of proximal sensing technologies or related technologies such as UAVs by agri-
cultural producers, and extant studies focus primarily on row crop production rather than
pasture [56]. As such, it seems unlikely that the threshold of adoption of proximal sensing
technologies is high enough for farmers and ranchers to expect consistent commercial
support for proximal sensing technologies they may wish to integrate into their farms.

5.3. Complexity

The complexity of various proximal sensing technologies is likely to be a barrier to
adoption for many land managers such as farmers or conservation professionals. Tradi-
tional methods of assessing sward height and biomass, species composition, or nutritive
value are labor-intensive, yet straightforward. Individuals can be trained in height and
biomass data collection and nutritive sample harvesting in short order, and many man-
uals, tutorials, and courses on taking these measurements are available [57]. However,
assessing plant species composition requires knowledge of plant identification or the use
of botanical keys despite the simplicity of the processes often used. In contrast, proximal
sensing technologies are novel as well as diverse in their equipment, methods, and results.
Consequently, potential adopters must first familiarize themselves with the array of options
available, learn to use the sensor technology they deem most suitable for their purposes,
and then process the data generated by sensors. Alternately, potential adopters may be
able to outsource the data processing stage if the service is offered by organizations or
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companies to which they have access; just such an approach is being tested for remote
pasture sensing technology in an American dairy cooperative [58].

5.4. Trialability

In general, the barriers to adoption resulting from the complexity of proximal sensing
technologies present similar issues in terms of trialability. For example, if opting to use
UAV-mounted proximal sensors, operators must learn to pilot a drone and, depending
on local laws, may need certification or licensing to do so [59]. Data processing requires
computers with robust processors, as well as software capable of processing raw sensor
data [11]. However, some proximal sensing technologies are becoming more accessible
and require less expertise to use. Some smartphone apps have emerged for the use of
SfM for making 3D maps of objects and scenes. Similarly, a smartphone and tablet were
recently released with built-in LiDAR capable of generating point clouds from handheld
scanning [60].

Cost is another potential obstacle to the trialability of proximal sensing technologies.
Many proximal sensors represent a significant financial investment for land managers such
as farmers or conservation professionals, beyond what may constitute an acceptable loss
if the technology fails to meet their needs. Again, the emerging LiDAR-equipped tablets
and cell phones mentioned above may mitigate cost as an obstacle to adoption, to some
extent; the smartphone and tablet are a fraction of the cost of most other proximal sensors
and may be used simply by walking through a field or pasture. However, the point clouds
generated still require postprocessing for accurate determinations of pasture height. While
this may be done with open-source software, it still requires an investment of time to learn
the program and process the point cloud.

5.5. Observability

Observability, in Rogers’ theory, relates both to the visibility of positive outcomes of an
innovation as well as to the visibility of the innovation itself when used by adopters [3]. In
terms of observable outcomes, for scientists or natural resources professionals, the volume
of data generated by proximal sensing technologies is an observable advantage [46]. For
land managers such as farmers, observable advantages of proximal sensing technologies
may be more in the spheres of economic or ecological outcomes resulting from the data
generated. Prior research demonstrates that innovations that augment the capacity of
agricultural producers to make decisions benefiting their economic and ecological goals
are more likely to be adopted [56].

6. Conclusions

Proximal sensing technologies are becoming more accessible and useful over time,
and their increasing adoption for augmenting data collection programs for pasture and
rangeland research appears assured. However, many barriers to the widespread adoption
of these technologies by farmers remain: they are often complex to deploy in the field and
require postprocessing of data; many proximal sensing systems are expensive, reducing
their trialability by producers; and the technologies may require more widespread adoption
before sufficient informational and technological support is available. At present, proximal
sensors cannot replace traditional fieldwork and on-site monitoring programs, but they
can greatly enhance the amount of data collected as well as the scope of data collection
possible [11]. We conclude that their adoption will increase as the technology matures and
barriers to adoption such as cost and complexity decrease. Additional research quantifying
the use of these technologies by agricultural producers is needed, as is qualitative research
on perceptions of proximal sensing technologies and barriers to their adoption.
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Abstract: The deep neural network-based method requires a lot of data for training. Aiming at
the problem of a lack of training images in tomato leaf disease identification, an Adversarial-VAE
network model for generating images of 10 tomato leaf diseases is proposed, which is used to expand
the training set for training an identification model. First, an Adversarial-VAE model is designed
to generate tomato leaf disease images. Then, a multi-scale residual learning module is used to
replace single-size convolution kernels to enrich extracted features, and a dense connection strategy
is integrated into the Adversarial-VAE networks to further enhance the image generation ability.
The training set is expanded by the proposed model, which generates the same number of images
by training 10,892 images of 10 leaves. The generated images are superior to those of InfoGAN,
WAE, VAE, and VAE-GAN measured by the Frechet Inception Distance (FID). The experimental
results show that using the extension dataset that is generated by the Adversarial-VAE model to train
the Resnet identification model could improve the accuracy of identification effectively. The model
proposed in this paper could generate enough images of tomato leaf diseases and provide a feasible
solution for data expansion of tomato leaf disease images.

Keywords: Adversarial-VAE; tomato leaf disease identification; image generation; convolutional
neural network

1. Introduction

Leaf disease identification is crucial to control the spread of diseases and advance
healthy development of the tomato industry. Well-timed and accurate identification of
diseases is the key to early treatment, and an important prerequisite for reducing crop loss
and pesticide use. Unlike traditional machine learning classification methods that manually
select features, deep neural networks provide an end-to-end pipeline to automatically
extract robust features, which significantly improve the availability of leaf identification.
In recent years, neural network technology has been widely applied in the field of plant
leaf disease identification [1–9], which indicates that deep learning-based approaches have
become popular. However, because the deep convolutional neural network (DCNN) has a
lot of adjustable parameters, a large amount of labeled data is needed to train the model to
improve its generalization ability of the model. Sufficient training images are an important
requirement for models based on convolutional neural networks (CNNs) to improve
generalization capability. There are little data about agriculture, especially in the field of
leaf disease identification. Collecting large numbers of disease data is a waste of manpower
and time, and labeling training data requires specialized domain knowledge, which makes
the quantity and variety of labeled samples relatively small. Moreover, manual labeling is a
very subjective task, and it is difficult to ensure the accuracy of the labeled data. Therefore,
the lack of training samples is the main impediment for further improvement of leaf disease
identification accuracy. How to train the deep learning model with a small amount of
existing labeled data to improve the identification accuracy is a problem worth studying.
In general, researchers usually solve this challenge by using traditional data augmentation
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methods [10]. In computer vision, it makes perfect sense to employ data augmentation,
which can change the characteristics of a sample based on prior knowledge so that the
newly generated sample also conforms to, or nearly conforms to, the true distribution
of the data, while maintaining the sample label. Due to the particularity of image data,
additional training data can be obtained from the original image through simple geometric
transformation. Common data enhancement methods include rotation, scaling, translation,
cropping, noise addition, and so on. However, little additional information can be obtained
from these methods.

In recent years, data expansion methods based on generative models have become a
research hotspot and have been applied in various fields [11–15]. For example, in [11], the
author presents an approach for learning to translate an image from a source domain X to
a target domain Y in the absence of paired examples to learn a mapping G: X→Y, such that
the distribution of images from G(X) is indistinguishable from the distribution Y using an
adversarial loss. Usually, the two most common techniques for training generative models
are the generative adversarial network (GAN) [16] and variational auto-encoder (VAE) [17],
both of which have advantages and disadvantages. Goodfellow et al. proposed the GAN
model [16] for latent representation learning based on unsupervised learning. Through
the adversarial learning of the generator and discriminator, fake data consistent with the
distribution of real data can be obtained. It can overcome many difficulties, which appear
in many tricky probability calculations of maximum likelihood estimation and related
strategies. However, because the input z of the generator is a continuous noise signal and
there are no constraints, GAN cannot use this z, which is not an interpretable representation.
Radford et al. [18] proposed DCGAN, which adds a deep convolutional network based
on GAN to generate samples, and uses deep neural networks to extract hidden features
and generate data. The model learns the representation from the object to the scene in the
generator and discriminator. InfoGAN [19] tried to use z to find an interpretable expression,
where z is broken into incompressible noise z and interpretable implicit variable c. In
order to make the correlation between x and c, it is necessary to maximize the mutual
information. Based on this, the value function of the original GAN model is modified.
By constraining the relationship between c and the generated data, c contains interpreted
information about the data. In [20], Arjovsky et al. proposed Wasserstein GAN (WGAN),
which uses the Wasserstein distance instead of Kullback-Leibler divergence to measure
the probability distribution, to solve the problem of gradient disappearance, ensure the
diversity of generated samples, and balance sensitive gradient loss between the generator
and discriminator. Therefore, WGAN does not need to carefully design the network
architecture, and the simplest multi-layer fully connected network can do it. In [17], Kingma
et al. proposed a deep learning technique called VAE for learning latent expressions. VAE
provides a meaningful lower bound for the log likelihood that is stable during training
and during the process of encoding the data into the distribution of the hidden space.
However, because the structure of VAE does not clearly learn the goal of generating real
samples, it just hopes to generate data that is closest to the real samples, so the generated
samples are more ambiguous. In [21], the researchers proposed a new generative model
algorithm named WAE, which minimizes the penalty form of the Wasserstein distance
between the model distribution and the target distribution, and derives the regularization
matrix different from that of VAE. Experiments show that WAE has many characteristics of
VAE, and it generates samples of better quality as measured by FID scores at the same time.
Dai et al. [22] analyzed the reasons for the poor quality of VAE generation and concluded
that although it could learn data manifold, the specific distribution in the manifold it learns
is different from the real distribution. In the experiment, it shows that VAE can reconstruct
training data well, but it cannot generate new samples well. Therefore, a two-stage VAE is
proposed, where the first one is used to learn the position of the manifold, and the second is
used to learn the specific distribution within the manifold, which improves the generation
effect significantly.
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In order to meet the requirements of the training model for the large amount of image
data, this paper proposes an image data generation method based on the Adversarial-VAE
network model, which expands the image of tomato leaf diseases to generate images
of 10 different tomato leaves, overcomes the overfitting problem caused by insufficient
training data faced by the identification model. First, the Adversarial-VAE model is
designed to generate images of 10 tomato leaves. Then, in view of the obvious differences
in the area occupied by the leaves in the dataset and the insufficient accuracy of the feature
expression of the diseased leaves using a single-size convolution kernel, the multi-scale
residual learning module is used to replace the single-size convolution kernels to enhance
the feature extraction ability, and the dense connection strategy is integrated into the
Adversarial-VAE model to further enhance the image generative ability. The experimental
results show that the tomato leaf disease images generated by Adversarial-VAE have higher
quality than InfoGAN, WAE, VAE, and VAE-GAN on the FID. This method provides a
solution for data enhancement of tomato leaf disease images and sufficient and high-quality
tomato leaf images for different training models, improves the identification accuracy of
tomato leaf disease images, and can be used in identifying similar crop leaf diseases.

The rest of the paper is organized as follows: Section 2 introduces the related work.
Section 3 introduces the data enhancement methods based on Adversarial-VAE in detail
and the detailed structure of the model. In Section 4, the experiment result is described,
and the results are analyzed. Finally, Section 5 summarizes the article.

2. Related Work

2.1. Generative Adversarial Network (GAN)

The basic principle of GAN [16] is to obtain the probability distribution of the gen-
erator, making the probability distribution of the generator as similar as possible to the
probability distribution of the initial dataset, including the generator and discriminator.
The generator maps random data to the target probability distribution. In order to simulate
the original data distribution as realistically as possible, the target generator should mini-
mize the divergence between the generated data and the real data. Under real conditions,
since the data set cannot contain all the information, GAN’s generator model cannot fit
the probability distribution of the dataset well in practice, and the noise close to the real
data is always introduced, so that new information will be generated. In reality, because
the dataset cannot contain all the information, the GAN generator model cannot fit the
probability distribution of the dataset well in practice, and it will always introduce noise
close to the real data, which will generate new information. Therefore, the generated
images are allowed to be used as data enhancement for further improving the accuracy of
identification. The disadvantage of using GAN to generate images is it uses the random
Gaussian noise to generate images, which means that it is not possible to generate any
specified type of image. There is no way to decide which random noise can be used to
generate the desired image, unless all the initial distribution can be tried. The generator
network distinguishes between “real” and “fake” images through a confrontation process.
However, the images obtained in this way are only as real as possible, but this does not
guarantee that the content of the images is desired. In other words, it is possible that the
generator network generates background images to make it as true as possible, but in fact,
there is no real target in it.

2.2. Variational Auto-Encoder (VAE)

Variational auto-encoder (VAE) is an important generative model, which was proposed
by Diederik P. Kingma and Max Welling [17], including two parts: encoder and decoder.

Figure 1 is the composition model of VAE. The data we can observe is X, and X is
generated by the latent variable z; and z → X is the generator model from the perspective
of the auto-encoder. It is the decoder, and X → z is the recognition model, which is
similar to the encoder of the auto-encoder. VAE is now widely used to generate images.
When the generation model is trained, we can use it to generate images. Unlike GAN,
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the probability density function (PDF) of the image is known, while GAN does not know
the image distribution. Using the auto-encoder can obtain the encoding distribution of
such images through the encoding process of the output images, which is equivalent to
knowing the corresponding noise distribution to each image, and then the desired image
can be generated by selecting specific noise. When generating a new image, you only need
to give the model a random implicit vector with a standard normal distribution, so that
the desired image can be generated through the decoder, without the need to encode an
original image first. In practice, it is necessary to make a trade-off between the accuracy of
the model and the factor that the implicit vector obeys the standard normal distribution.
The accuracy of the model refers to the degree of similarity between the image generated
by the decoder and the original image.

 
Figure 1. Structure of the VAE network.

2.3. VAE-GAN

VAE-GAN [23] adds a discriminator to the original VAE. If you just operate VAE, the
image will be very blurred. After adding the discriminator, the output is forced to be as real
as possible. From the perspective of GAN, when training GAN, the generator has never
seen what the real image looks like. From the auto-encoder, the generator does not have to
cheat the discriminator and has seen what the real image looks like. If you first pass the
auto-encoder architecture and the generator has seen a real image, the VAE-GAN will be
more stable to learn. VAE-GAN consists of the encoder, generator, and discriminator. The
encoder is used to encode, that is, to convert the input image into a vector. The generator
is the decoder in VAE, which converts the vector into an output image. Since it is hoped
that the output after encoding and decoding is still itself, the input image and output
image should be the same as much as possible. The discriminator is used to judge whether
the image is realistic or fake (generated by the generator), and gives a scalar (score or
probability or binary classification result). The goal of the combination of the encoder and
generator is to keep an image as it is after encoding and decoding. Therefore, the updating
criterion of the encoder is to minimize the variance of the image before the encoder and
after the decoder, and to make the distribution of the image before the encoder and after
the decoder as consistent as possible (the distribution is described by KL divergence).
The updating criterion of the generator is to minimize the variance of images before the
encoder and after the decoder, and the scores of generated and reconstructed images after
the discriminator are also as high as possible. The updating criterion of the discriminator
is to try to distinguish between the generated, reconstructed, and realistic images, so the
scores for the original images are as high as possible, and the scores for the generated and
reconstructed images should be as low as possible.
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2.4. Two-Stage VAE

VAE is one of the most popular generation models, but the quality of the generation is
relatively poor. The gaussian hypothesis of encoders and decoders is generally considered
to be one of the reasons for the poor quality of the generation. The authors of [22] carefully
analyzed the properties of the VAE objective function, and came to the conclusion that the
encoder and decoder gaussian hypothesis of VAE does not affect the global optimal solution.
The use of other more complex forms does not obtain a better global optimal solution.

According to [22], VAE can reconstruct training data well but cannot generate new
samples well. VAE can learn the manifold where the data is, but the specific distribution
in the manifold it learned is different from the real distribution. In other words, every
data from the manifold will be perfectly reconstructed after VAE. For this reason, the first
VAE is used to learn the position of the manifold, and the second VAE is used to learn the
specific distribution within the manifold. Specifically, the first VAE transforms the training
data into a certain distribution in the hidden space, which occupies the entire hidden
space instead of on the low-dimensional manifold. The second VAE is used to learn the
distribution in the hidden space since the latent variable occupies the entire hidden space
dimension. Therefore, according to the theory, the second VAE can learn the distribution in
the hidden space of the first VAE.

3. Materials and Methods

3.1. Dataset

PlantVillage [24] is an internet public image library of plant leaf diseases initiated and
established by David, an epidemiologist at the University of Pennsylvania. This dataset
collects more than 50,000 images of 14 species of plants with 38 category labels. Among
them, 18,162 tomato leaves of 10 categories, which are respectively healthy leaves and
9 kinds of diseased leaves, were used as the basic data set of crop disease images for the
experiment. Figure 2 shows an example of 10 tomato leaves. In the practical application,
the image size was changed to 128 × 128 pixels during preprocessing in order to reduce
both the calculation and training time of model.

 
Figure 2. Examples of tomato leaf diseases: healthy, Tomato bacterial spot (TBS), Tomato early blight
(TEB), Tomato late blight (TLB), Tomato leaf mold (TLM), Tomato mosaic virus (TMV), Tomato
septoria leaf spot (TSLS), Tomato target spot (TTS), Tomato two-spotted spider mite (TTSSM), and
Tomato yellow leaf curl virus (TYLCV), respectively.

3.2. Adversarial-VAE Model for Generating Tomato Leaf Disease Images

The deep neural network has a large number of adjustable parameters, so it needs a
large amount of labeled data to improve the generalization ability of the model. However,
there has always been a data vacuum in agriculture, making it difficult to collect a lot of
data. At the same time, it is also difficult to label all collected data accurately. Due to a lack
of experience, it is difficult to judge whether the identification is accurate, so experienced
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experts are needed to accurately label the data. In order to meet the requirements of the
training model for the large amount of image data, this paper proposes an image data
generation method based on the Adversarial-VAE network model, which expands the
tomato leaf disease images in the PlantVillage dataset, and overcomes the problem of
over-fitting caused by insufficient training data faced by the identification model.

3.2.1. Adversarial-VAE Model

The Adversarial-VAE model of tomato leaf disease images consists of stage 1 and
stage 2. Stage 1 is a VAE-GAN network, consisting of an encoder (E), generator (G), and
discriminator (D). Stage 2 is a VAE network, consisting of an encoder (E) and decoder (D).

The detailed model of Adversarial-VAE is shown in Figure 3. In stage 1, the input
images are encoded and decoded, and the discriminator is used to determine whether
the images are real or fake to improve the model’s generation ability. The input to the
model is an image X of size 128 × 128 × 3, which is compressed into two vectors μ and
σ with a size of 256 after passing through the encoder network, and then combined into
a latent vector z with a size of 256. After passing through the generator network, size
expansion is realized to generate an image X with a size of 128 × 128 × 3. The input of the
discriminator network is the original image X, generated image X̂, and reconstructed image
X to determine whether the image is real or fake. Stage 2 encodes and decodes the latent
variable z. Specifically, stage 1 transforms the training data X into some distribution z in
the latent space, which occupies the whole latent space rather than on the low-dimensional
manifold of the latent space. Stage 2 is used to learn the distribution in the latent space.
Since latent variables occupy the whole dimension, according to the theory [22], stage 2
can learn the distribution in the latent space of stage 1. After the Adversarial-VAE model
is trained, z is sampled from the gaussian model and z is obtained through stage 2. z is
obtained through the generator network of stage 1 to obtain X̂, which is the generated
sample and is used to expand the training set in the subsequent identification model.

 
Figure 3. Structure of the Adversarial-VAE model.
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3.2.2. Components of Stage 1

Stage 1 is a VAE-GAN network composed of an encoder (E), generator (G), and
discriminator (D). It is used to transform training data into a certain distribution in the
hidden space, which occupies the entire hidden space rather than on the low-dimensional
manifold. The encoder converts an input image X of size 128 × 128 × 3 into two vectors of
mean and variance of size 256. The detailed encoder network of stage 1 is shown in Figure 4
and the output sizes of every layer are shown in Table 1. The encoder network consists of a
series of convolution layers. It is composed of Conv, 4 layers, Scale, Reducemean, Scale_fc
and FC. The 4 layers is made up of four alternating Scale and Downsample, and Scale is
the ResNet module, which is used to extract features. Downsample is used to decrease the
size of each feather map and increase the number of channels. After each layer, the number
of channels is doubled and the size is halved. The input of the model is a 128 × 128 × 3
image, the size of the input vector is changed to 128 × 128 × 16 after Conv layer, while
after 4 layers, the size is 8 × 8 × 256. Reducemean is global pooling, and the structure of
Scale_fc is shown in Figure 4 for better access to global information.

 
Figure 4. Encoder network.

Table 1. Output size of the layer in the encoder network.

Layer Input Conv Scale 0 Downsample 0 Scale 1 Downsample 1

Size 128 × 128 × 3 128 × 128 × 16 128 × 128 × 16 64 × 64 × 32 64 × 64 × 32 32 × 32 × 64

Layer . . . . . . Downsample 3 Scale 4 Reducemean Scale_fc FC

Size . . . . . . 8 × 8 × 256 8 × 8 × 256 256 256 256

The generator is both VAE’s decoder and GAN’s generator, and they have the same
function: converting vector to X. The decoder is used to decode, restoring the latent vector
z of size 256 to an image of size 128 × 128 × 3. The goal of the combination of the encoder
and generator is to keep an image as original as possible after the encoder and generator.
The detailed generator network of stage 1 is shown in Figure 5 and related parameters are
shown in Table 2. The generator network consists of a series of deconvolution layers, which
is composed of FC, 6 layers, and Conv. FC means fully connected. The input of the model
is a vector with 256, which is drawn from a gaussian distribution or reparameterization
from the output of the encoder network. The size is changed to 4096 after FC and to
2 × 2 × 1024 after Reshape further. Six layers are made up of six alternating Upsample
and Scale. Upsample is deconvolution layer, which is used to expand the size of the feature
map and reduce the number of channels. After each Upsample, the length and width of the
feature map are doubled, and the number of channels is halved. Scale is the Resnet module,
which is used to extract features. After 6 layers, the size is changed to 128 × 128 × 3.
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Additionally, after Conv, the size is changed to 128 × 128 × 3, which is the same size as the
input image.

Figure 5. Generator network.

Table 2. Output size of the layer in the generator network.

Layer Input FC Reshape Upsample 0 Scale 0 Upsample 1

Size 256 4096 2 × 2 × 1024 4 × 4 × 512 4 × 4 × 512 8 × 8 × 256

Layer . . . . . . Upsample 4 Scale 4 Upsample 5 Scale 5 Conv

Size . . . . . . 64 × 64 × 32 64 × 64 × 32 128 × 128 × 16 128 × 128 × 16 128 × 128 × 3

The discriminator will be able to differentiate the generated, reconstructed, and
realistic images as much as possible. Therefore, the score for the original image should
be as high as possible, and the scores for the generated and reconstructed images should
be as low as possible. Its structure is similar to that of the encoder, except that the final
two FCs with a size of 256 are generated at the end and replaced with FC with a size of 1.
The output is true or false, which is used to enhance the image generation ability of the
network, making the generated image more like the real image. The details are shown in
Figure 6 and related parameters are shown in Table 3.

 
Figure 6. Discriminator network.
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Table 3. Output size of the layer in the discriminator network.

Layer Input Conv Scale 0 Downsample 0 Scale 1 Downsample 1

Size 128 × 128 × 3 128 × 128 × 16 128 × 128 × 16 64 × 64 × 32 64 × 64 × 32 32 × 32 × 64

Layer . . . . . . Downsample 3 Scale 4 Reducemean Scale_fc FC

Size . . . . . . 8 × 8 × 256 8 × 8 × 256 256 256 1

3.2.3. Components of Stage 2

Stage 2 is a VAE network consisting of the encoder (E) and decoder (D), which is used
to learn the distribution of hidden space in stage 1 since the latent variables occupy the
entire latent space dimension. Both the encoder (E) and decoder (D) are composed of a
fully connected layer. The structure is shown in Figure 7. The input of the model is a latent
vector with size 256, which is drawn from a gaussian distribution.

 
Figure 7. Structure of stage 2 in the Adversarial-VAE model.

3.3. Improved Adversarial-VAE Model
3.3.1. Multi-Scale Convolution

In the PlantVillage dataset, there are obvious differences in the area occupied by the
leaves in the image, so the single-size convolution kernel is not accurate enough to check the
feature expression of disease leaves. Therefore, in order to make the extracted features more
abundant, a multi-scale convolution kernel is applied instead of a single-size convolution
kernel to construct the residual learning module so that tomato disease identification can
achieve a higher accuracy rate, as shown in Figure 8.

(a) (b) 

Figure 8. The original structure (a) and improved structure (b) of the Scale module.49
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In order to utilize the multi-scale convolution kernel, the convolutional layer in the
original residual learning module designed according to the Inception [25] structure, and
the computational amount required for the 5 × 5 convolution kernel is relatively large
to reduce the number of parameters and increase the calculation speed. During practical
application, the 5 × 5 convolution kernel is replaced by two 3 × 3 convolution kernels,
which does not allow the convolution layer to be extracted to different levels with different
receptive fields.

Specifically, a single 3 × 3 convolution kernel (Conv (3 × 3)) in ResNet is replaced
by multiple convolution kernels to expand the convolution width, and the information
obtained from each convolution kernel is added up through Concat. After BatchNorm and
Relu, the mixed feature of Conv (1 × 1) is used as the input of the next operation. Multiple
convolution cores here refer to 1 × 1 convolution kernel (Conv (1 × 1)), 1 × 1 convolution
(Conv (1 × 1)) followed by separable convolution (SepConv), and 1 × 1 convolution (Conv
(1 × 1)) followed by separable convolution (SepConv) followed by separable convolution
(SepConv). Depthwise convolutions are also used to construct a lightweight deep neural
network. In this case, the standard convolution is decomposed into depthwise convolution
and pointwise convolution. Each channel is convolution individually, which is used to
combine the information of each channel to reduce model parameters and computation.

3.3.2. Dense Connection Strategy

As another CNN with a deeper number of layers, Densenet has fewer parameters than
Resnet. Its bypass enhances the reuse of features, and the network is easier to train and has
a certain regularization effect, and alleviates the problems of gradient vanishing and model
degradation. The problem of gradient disappearance is more likely to occur when the
network depth is deeper. The reason is that the input information and gradient information
are transmitted between many layers. Now, dense connection is equivalent to each layer
directly connecting input and loss, so the phenomenon of gradient disappearance can be
reduced and the network depth can be increased. Therefore, the dense connection strategy
from DenseNet [26] is applied to the encoder network and generator network in stage 1.
Each layer uses the feature map as the input of the latter layer, which can effectively extract
the features of the lesion and alleviate the disappearing gradient. As shown in Figure 9,
due to the inconsistency of the feature scales of the front and back layers, 1 × 1 convolution
is used to achieve the consistency of feature scales. The dense connection strategy shares
the weights of the prior layers and improves the feature extraction capabilities.

3.4. Loss Function

Stage 1 is VAE-GAN network. In stage 1, the goal of the encoder and generator is to
keep an image as original as possible after code. The goal of the discriminator is to try to
differentiate the generated, reconstructed, and realistic images. The training pipeline of the
stage 1 Algorithm 1 is as follows:

Algorithm 1: The training pipeline of the stage 1.

Initial parameters of the models: θe, θg, θd
while training do

xreal ← batch of images sampled from the dataset.
zμ

real , zσ
real ← Eθe (xreal)

zreal ← zμ
real + εzσ

real with ε ∼ N(0, Id)
xreal ← Gθg (z

real)

z f ake ←prior P(z)
x f ake ← Gθg (z

f ake)

{Compute losses gradients and update parameters.}

θe←‖xreal − xreal‖+ KL(P( zreal
∣
∣
∣xreal)‖P(z))

θg←‖xreal − xreal‖ − Dθd
(xreal)− Dθd

(x f ake)

θd←Dθd
(xreal) + Dθd

(x f ake)− Dθd
(xreal)

end while

50



Agriculture 2021, 11, 981

Stage 2 is the VAE network. In stage 2, the goal of the encoder and decoder is to
keep an image as original as possible after codec. Therefore, the updating criterion of the
encoder is to minimize the variance of the image before the encoder and after the decoder,
and to make the distribution of the image as consistent as possible before the encoder
and after the decoder. The updated criterion of the decoder is to minimize the variance
of images before the encoder and after the decoder. The training pipeline of the stage 2
Algorithm 2 is as shown below:

Algorithm 2: The training pipeline of the stage 2.

Initial parameters of the models: θe, θd.
while training do

zreal ← Gaussian distribution.
uμ

real , uσ
real ← Eθe (z

real) .
ureal ← uμ

real + εuσ
real with ε ∼ N(0, Id).

zreal ← Dθd
(ureal) .

u f ake ←prior P(u).
z f ake ← Dθd

(u f ake) .
{Compute losses gradients and update parameters.}

θe←‖zreal − zreal‖+ KL(P(ureal
∣
∣
∣zreal)‖P(u)).

θd←‖zreal − zreal‖.
end while

 

 

Figure 9. Dense connection strategy in the encoder and generator.

3.5. Experimental Setup

The experimental configuration environment of this paper is as follows: Ubuntu16.04
LST 64-bit system, processor Intel Core i5-8400 (2.80 GHz), memory is 8 GB, graphics card
is GeForce GTX1060 (6G), and using the Tensorflow-GPU1.4 deep learning framework with
python programming language.
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3.6. Performance Evaluation Metrics

The FID evaluation model is introduced to evaluate the performance of the image
generation task. The FID score was proposed by Martin Heusel [27] in 2017. It is a metric
for evaluating the quality of the generated image and is specifically used to evaluate the
performance of GAN. It is a measure of the distance between the feature vector of the real
image and the generated image. This score is proposed as an improvement on the existing
inception score (IS) [28,29]. It calculates the similarity of the generated image to the real
image, which is better than the IS. The disadvantage of IS is that it does not use statistics
from the true sample and compare them to statistics from the generated sample.

As with the IS, the FID score uses the Inception V3 model. Specifically, the coding
layer of the model (the last pooled layer before the classified output of the image) is used
to extract the features specified by computer vision techniques for the input image. These
activation functions are calculated for a set of real and generated images. By calculating the
mean value and covariance of the image, the output of the activation function is reduced to
a multivariable gaussian distribution. These statistics are then used to calculate the real
image and generate activation functions in the image collection. The FID is then used to
calculate the distance between the two distributions. The lower the FID score, the better
the image quality. On the contrary, the higher the score, the worse the quality.

4. Results and Discussion

In order to verify the effectiveness of the leaf disease identification model proposed in
this paper, a total of 18,162 images of the tomato disease from PlantVillage are randomly
divided into a training set, verification set, and test set, of which the training set accounts for
about 60%, which means 10,892 images, as shown in Table 4. The verification set accounts
for about 20% or 3632 images, and the test set accounts for about 20% or 3636 images.
They are used to train the model, select the model, and evaluate the performance of the
proposed model.

Table 4. Detailed information of the tomato leaf disease dataset.

Class All Sample Numbers 60% of Sample Numbers

healthy 1592 954
TBS 2127 1276
TEB 1000 600
TLB 1910 1145
TLM 952 571
TMV 373 223
TSLS 1771 1062
TTS 1404 842

TTSSM 1676 1005
TYLCV 5357 3214

ALL 18,162 10,892

The Adversarial-VAE model is used to generate training samples, and the number of
generated samples is consistent with the number of samples corresponding to the original
training set, so the sample size is doubled, and the generated data is added to the training
set. For these datasets with generated images, all the generated images are placed in the
training set, and all the images in the test set are from the initial dataset. The test set
is completely derived from the initial dataset. The flowchart of the data augmentation
method is shown in Figure 10. In the figure, generative model refers to the generation part
of the Adversarial-VAE model, which is composed of stage 2 and the generator network
in stage 1. After the Adversarial-VAE model is trained, z is sampled from the Gaussian
model, and z is obtained through stage 2, and X is obtained through the generator network
of stage 1, which is the generated sample. For 10 kinds of tomato leaf images, we train
10 Adversarial-VAE models. For each class, we generate samples by sampling vectors
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corresponding to the number of categories from the gaussian model in order to generate a
different number of samples.

Figure 10. The workflow of the image generation based on Adversarial-VAE networks.

4.1. Generation Results and Analysis

The proposed Adversarial-VAE networks are compared with several advanced gener-
ation methods, including InfoGAN, WAE, VAE, VAE-GAN, and 2VAE, which are used to
generate tomato diseased leaf images. We compare the reconstructed image quality and
the generated image quality through the FID score as shown in Tables 5 and 6. Table 5 lists
the FID of the reconstruction images under the different neural network models. Table 6
shows the FID comparison between different generative methods. Reconstruction-FID
demonstrates the ability of this method to reconstruct the original input image. The lower
the value is, the better the reconstruction capability is. Generation-FID demonstrates the
ability of this method to generate new images. The lower the value is, the better the
reconstruction capability is.

Tables 5 and 6 show Reconstruction-FID and Generation-FID of 10 kinds of tomato
leaf images, respectively. From the tables, we can see that WAE is better at reconstruction
of the images than other methods. The average FID score is 105.74, which is the lowest
score, and it also obtained the lowest score in most categories except TBS and TYLCV,
which means WAE has excellent ability in reconstruction. Adversarial-VAE is the best in
the generation of the images. The average FID score is 161.77, which is the lowest score,
and it also obtained the lowest score in most categories, which means Adversarial-VAE has
more advantages in generation than the others.

Table 5. Reconstruction-FID comparison between different generative methods.

Reconstruction-
FID

InfoGAN
[19]

WAE
[21]

VAE
[17]

VAE-GAN
[23]

2VAE
[22]

Adversarial-
VAE

healthy 172.61 129.47 155.64 130.08 155.64 130.08
TBS 135.29 103.11 148.07 114.24 148.07 114.24
TEB 126.96 106.69 138.87 100.59 138.87 100.59
TLB 180.10 111.81 169.80 119.23 169.80 119.23
TLM 160.93 133.79 161.37 147.08 161.37 147.08
TMV 144.71 125.86 157.20 140.23 157.20 140.23
TSLS 120.24 90.43 139.41 108.57 139.41 108.57
TTS 107.88 81.74 137.89 99.67 137.89 99.67

TTSSM 114.22 91.23 141.42 106.89 141.42 106.89
TYLCV 140.11 83.23 133.05 79.76 133.05 79.76

AVERAGE 140.31 105.74 148.27 114.63 148.27 114.63

Generation-FID of Adversarial-VAE alone, Adversarial-VAE + multi-scale convolution,
Adversarial-VAE + dense connection strategy, and the improved Adversarial-VAE, which
used multi-scale convolution and the dense connection strategy, are compared in Table 7.
The average FID score is 156.96, which is the lowest score, and it also obtained the lowest
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score in most categories. As can be seen from the table, the improved model reduced the
FID score for most types of disease, with an average FID score reduction of 4.81. It shows
that the improved model has a better generative ability. The generated images are shown
in Figure 11 based on Adversarial-VAE. And Figure 12 shows the generated images based
on VAE networks.

Table 6. Generation-FID comparison between different generative methods.

Generation-
FID

InfoGAN
[19]

WAE
[21]

VAE
[17]

VAE-GAN
[23]

2VAE
[22]

Adversarial-
VAE

healthy 221.86 202.06 186.37 167.46 179.83 162.57
TBS 232.88 221.85 190.71 178.75 187.09 179.96
TEB 183.09 169.42 158.43 132.42 153.65 133.65
TLB 277.65 227.51 192.38 184.64 199.17 180.71
TLM 235.07 219.42 200.15 200.90 196.47 197.45
TMV 210.91 211.38 191.24 214.60 196.78 210.54
TSLS 199.31 182.59 156.61 148.31 152.93 146.11
TTS 199.87 208.23 191.90 163.99 185.01 161.07

TTSSM 195.08 210.70 175.97 147.95 173.95 146.83
TYLCV 182.74 172.82 151.22 99.60 146.89 98.76

AVERAGE 213.85 202.60 179.50 163.86 177.18 161.77

Table 7. Generation-FID comparison of the proposed generative method.

Generation-FID
Adversarial-

VAE
Alone

Adversarial-
VAE +

Multi-Scale
Convolution

Adversarial-
VAE + Dense
Connection

Strategy

Improved
Adversarial-

VAE

healthy 162.57 162.64 167.63 171.63
TBS 179.96 170.29 176.3 167.53
TEB 133.65 128.28 130.81 126.84
TLB 180.71 175.15 170.42 166.92
TLM 197.45 194.81 191.42 187.79
TMV 210.54 202.39 198.28 189.09
TSLS 146.11 151.91 147.11 151.8
TTS 161.07 155.89 166.72 165.84

TTSSM 146.83 144.54 143.74 142.32
TYLCV 98.76 98.31 98.64 99.79

AVERAGE 161.77 158.42 159.11 156.96

 

Figure 11. Examples of tomato diseased leaf generated by improved Adversarial-VAE networks:
healthy, TBS, TEB, TLB, TLM, TMV, TSLS, TTS, TTSSM, and TYLCV, respectively.
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Figure 12. Examples of tomato diseased leaf generated by VAE networks: healthy, TBS, TEB, TLB,
TLM, TMV, TSLS, TTS, TTSSM, and TYLCV, respectively.

4.2. Identification Results and Analysis

The original training set contains 10,892 images. After using improved Adversarial-
VAE, the training set is expanded to 21,784 images. For comparative experiments, the
original data set is expanded twice by replication, namely 21,784 images. Three experiments
are carried out to train the classification network as shown in Figure 13 to identify tomato
leaf diseases. During the operation, the training set and the test set are divided into batches
by batch training. The batch training method is used to divide the training set and the test
set into multiple batches. Each batch trains 32 images, that is, the minibatch is set to 32.
After training 4096 images, the verification set is used to determine the retained model.
After training all the training set images, the test set is tested. Each test batch is set to 32.
All the images in a training set are iterated through as an iteration (epoch) for a total of
10 iterations. The model is optimized in using the momentum optimization algorithm and
the learning rate is set at 0.001.

 
Figure 13. Structure of the classification network.

Table 8 shows the classification accuracy of the classification network trained with
the expanded training set generated by different generative methods. After training the
classification network with the original training set, the identification accuracy on the test
set is 82.87%; With the double original training set, the identification accuracy on the test
set is 82.95%, and after training the classification network with the training set expanded
by improved Adversarial-VAE, the identification accuracy reaches 88.43%, an increase
of 5.56%. Compared with the double original training set, it also improved by 5.48%,
which proves the effectiveness of the data expansion. The InfoGAN and WAE generative
models were used to generate samples for the training the classification network, but
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the classification accuracy was not improved, which can be understood as poor sample
generation and no effect was mentioned for training, as shown in Table 8.

Table 8. Classification accuracy of the classification network trained with the expanded training set generated by different
generative methods.

Classification
Alone

InfoGAN +
Classifica-

tion

WAE + Clas-
sification

VAE +
Classifica-

tion

VAE-GAN +
Classifica-

tion

2VAE + Clas-
sification

Improved
Adversarial-VAE +

Classification

Accuracy 82.87% 82.42% 82.16% 84.65% 86.86% 85.43% 88.43%

5. Conclusions

Leaf disease identification is the key to control the spread of disease and ensure healthy
development of the tomato industry. The deep neural network-based method requires
a lot of data for training. However, there is little data in many agricultural fields. In the
field of tomato leaf disease identification, it is a waste of manpower and time to collect
large-scale labeled data. Labeling of training data requires very professional knowledge.
All these factors lead to either the number and category of labeling being relatively small,
or the labeling data for a certain category being very small, and manual labeling is very
subjective work, which makes it difficult to ensure high accuracy of the labeled data.

To solve the problem of a lack of training images of tomato leaf diseases, an Adversarial-
VAE network model was proposed to generate images of 10 different tomato leaf diseases
to train the recognition model. Firstly, an Adversarial-VAE model was designed to generate
tomato leaf disease images. Then, the multi-scale residuals learning module was used to
replace the single-size convolution kernel to enhance the ability of feature extraction, and
the dense connection strategy was integrated into the Adversarial-VAE model to further
enhance the ability of image generation. The Adversarial-VAE model was only used to
generate training data for the recognition model. During the training and testing phase
of the recognition model, no computation and storage costs were introduced in the actual
model deployment and production environment. A total of 10,892 tomato leaf disease
images were used in the Adversarial-VAE model, and 21,784 tomato leaf disease images
were finally generated. The image of tomato leaf diseases based on the Adversarial-VAE
model was superior to the InfoGAN, WAE, VAE, and VAE-GAN methods in FID. The ex-
perimental results show that the proposed Adversarial-VAE model can generate enough of
the tomato plant disease image, and image data for tomato leaf disease extension provides
a feasible solution. Using the Adversarial-VAE extension data sets is better than using
other data expansion methods, and it can effectively improve the identification accuracy,
and can be generalized in identifying similar crop leaf diseases. In future work, in order to
improve the robustness and accuracy of identification, we will continue to find better data
enhancement methods to solve the problem of tomato leaf disease identification, which
can be applied to the detection networks.

This method was proposed based on improving the classification accuracy on the
basis of many labeled samples. At the beginning of this study, the most direct way was to
expand each class with one network, so that when new categories need to be added, only
one network needs to be trained with the samples of the new category, instead of retraining
with all samples. We also considered training only one network to generate data samples
of different categories by adding an input as a category control, but this has the side effect
of requiring several networks to be retrained if new categories need to be generated. If
there is no large amount of annotated data as training samples for training the generative
model, for example, disease leaves for another plant cannot cover the sample space, the
generative model cannot be directly trained in this way, and the number of samples needs
to be expanded first. In practice, it is difficult to collect disease leaf images, so the problem
of few-shot learning needs to be solved urgently. In summary, we will strive to achieve
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continuous improvement of the performance and try to apply it to practical agricultural
production.
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Abstract: Potato is the fourth staple crop in China after wheat, maize and rice. The agro-pastoral
ecotone (APE) in North China is a main region for potato production. However, potato yield has
been seriously constrained by water shortages because of low precipitation and highly variable pre-
cipitation patterns during the growing season in this area. In this study, the Agricultural Production
Systems Simulator (APSIM) model was used to simulate potato water-limited yield and historical
years were divided into different water-temperature year types to optimize the optimal planting
period (OPP) and cultivar of potato. The results showed that the potato yield varied in different
water-temperature year types. Fast-developing cultivar Favorita could obtain the highest yield in
most places and water-temperature year types due to its relatively short length of tuber formation
stage. In this study, we suggest changing the planting date according to the water-temperature year
type, which offers a new way to adapt to a highly variable climate. However, our method should
be adopted carefully because we only considered climate factors; other agronomic management
practices (adjusting planting density, plastic film mulch, conservation tillage etc.) also have a great
effect on planting date and cultivar selection, which should be further investigated in the future.

Keywords: potato management; tuber formation stage; precipitation patterns

1. Introduction

With the implementation of the “potato as the staple food” strategy, potato has gradu-
ally become the fourth staple crop after wheat, corn and rice in China [1]. The APE in North
China, characterized by suitable temperature and soil conditions [2–4], is a main region for
potato production in China [5]. Rainfed potato is one of the most common crops in this
region, accounting for 46.8% of the total crop yield [4]. Therefore, studies on increasing
potato production to ensure local food security are meaningful. However, the APE is a sen-
sitive zone to climate change, and highly variable precipitation distributions and amounts,
both temporally and spatially, result in large fluctuations in potato yield [4,6]. Thus, to
cope with the local highly variable climate and enhance potato production, adaptation
strategies must be adopted according to different seasonal precipitation patterns [5,7].

Among many agronomic adaptations, adjusting the planting date and selecting
suitable cultivars are two effective way to adapt to local and annual climate variations.
Tang et al. [5] conducted several planting experiments and found that the ratio of precipi-
tation to potential evapotranspiration around the potato tuber formation stage accounts
for 71% of the potato yield variation in Wuchuan County, a typical site in the middle APE

Agriculture 2021, 11, 1061. https://doi.org/10.3390/agriculture11111061 https://www.mdpi.com/journal/agriculture

59



Agriculture 2021, 11, 1061

of North China. Li et al. [7] showed that precipitation from the tuber formation stage to
maturity could explain 87% of potato yield variation. Yu and Wang [8] showed that rapidly
developing cultivars should be planted in a drier place, the eastern APE, according to
water consumption of different cultivars and precipitation distribution in critical growth
stage. In addition, different maturing cultivars can generate a series of growing season
lengths to help the potato’s critical growing period better match the local rainy season [9].
Therefore, adjusting the planting date and selecting suitable cultivars to meet the period
of the precipitation peak during the potato’s critical water stage is a useful method for
increasing potato yield [7,10,11]. Li et al. [12] optimized planting date and cultivar of potato
in North China using APSIM-potato and suggested late planting should be considered in
most locations of North China. Tang et al. [5] divided historical years into wet, dry and
normal years according to precipitation and found that the OPP of potato had delayed
trends from dry years to wet years in the middle APE. Li et al. [7] also conducted a two-year
field experiment to identify the optimal planting date in the middle APE, and his result
showed that planting date and cultivar should be selected according to different year types.

Although there have been many studies on optimizing OPP and cultivar of potato
in the APE of North China, these studies were constrained in specific site and years. In
addition, the effect of different water-temperature year types on optimized planting date
and cultivar was not investigated. An integrated study on the development of management
strategies (principally planting date and cultivar choice) in different water-temperature year
types is particularly essential for improving potato yield and ensuring local food security.
Long-term field experiments can help explore the relationship between meteorological
factors and the yield of different planting dates; however, experiments such as this are
time consuming and relatively expensive [13]. Agricultural system models provide a
powerful tool to capture interactions between crop growth and development, agronomic
management practices and environmental factors (e.g., planting date × cultivar × location)
across multiple seasons [14]. Studies investigating adaptation strategies (e.g., optimizing
planting date) to improve crop production using simulation models such as the APSIM
have been reported previously [10,11,15–17]. However, no study has focused on optimizing
the planting date and selecting suitable cultivars according to different water-temperature
year types across the APE in North China. Thus, in this study, we aimed to (1) optimize
planting dates and recommend the most suitable cultivar according to different water-
temperature year types in the APE of North China; and (2) investigate factors that affect
OPP in different water-temperature year types.

2. Materials and Methods

2.1. Study Region, Climate and Soil Data

Twelve agrometeorology experimental sites (AESs) spanning the APE of North China
were selected to explore the OPP and suitable cultivar in different water-temperature year
types (Figure 1). Climate data including sunshine hours (h), precipitation (mm), daily
maximum and minimum daily air temperature (◦C) from 1979 to 2019 were obtained from
the China Meteorological Administration (http://data.cma.cn, 1 March 2021). Sunshine du-
ration was converted to daily solar radiation using the Angstrom equation with parameters
0.5 for a and 0.25 for b [18,19]. Soil parameters (e.g., soil bulk density, soil organic carbon,
soil water pH, drained upper limit, etc.) of each layer were obtained from Han et al. [20], a
10 km resolution global soil profile dataset for crop modeling.
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Figure 1. Distribution of experimental site and meteorological sites across the APE in North China.
The full name of each meteorological site can be found in Table 1.

Table 1. Study meteorological sites and experiment site.

Site Latitude (◦) Longitude (◦) Altitude (m)

Dingbian (DB) 37.35 107.35 1360.3
Yulin (YL) 38.16 109.47 1157

Yuzhong (YZ) 35.52 104.09 1874.4
Dongsheng (DS) 39.50 109.59 1461.9

Siziwangqi (SZWQ) 41.32 111.41 1490.1
Duolun (DL) 42.11 116.28 1245.4

Linxi (LX) 43.36 118.04 799.5
Xiwuzhumuqinqi (XWZM) 44.34 117.38 995.9

Wengniuteqi (WNTQ) 42.56 119.01 634.3
Zhaluteqi (ZLTQ) 44.34 120.54 265

Tailai (TL) 46.40 123.45 149.5
Hailaer (HLE) 49.13 119.45 610.2

2.2. Serial Planting Experiments

A series of planting experiments were carried out in 2017 and 2018 in Wuchuan County
(111.41◦ E, 40.49◦ N, alt. 1756 m), located at the center of the APE in North China (Figure 1).
Three different maturing cultivars (fast-developing cultivar Favorita, mid-developing
cultivar Connibeck and slow-developing cultivar Kexin_1) were selected to investigate
the OPP and most suitable cultivar in different water-temperature year types. The three
cultivars have been proven suitable for planting in the APE of North China [11,12]. Potato
was planted in 4 × 7 m plots with three replicates on three planting dates (27 April, 15 May,
and 2 June in 2017 and 28 April, 16 May, and 3 June in 2018). The row spacing was 50 cm
and the planting density was 5 plants m−2. Urea (46% N), 37.5 kg/hm2 of potassium
chloride and 75 kg/hm2 of ammonium-diammonium phosphate (18% N) were applied
at planting as base fertilizers. Thirty millimeters of irrigation was applied at planting to
ensure potato emergence. After that, irrigation was not carried out during the whole potato
growing season. All experimental information was obtained from published literature [12].
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2.3. APSIM-Potato Model

APSIM-potato is a process-based crop model that has been tested and applied in vari-
able climates across the APE in North China [5,21,22]. It can mimic potato water dynamics,
phenology and yield [23]. The key APSIM modules used in our study were potato (simu-
lating potato crop growth and development) and manager (specifying planting, harvest,
irrigation and fertilizer rules). Daily weather data (maximum and minimum air tempera-
tures, solar radiation and precipitation), soil properties (e.g., organic carbon content, clay
content field saturation capacity, soil lower wilting, etc.) and management information
(e.g., planting dates, planting depth, fertilizer, etc.) are needed as inputs to the model.
APSIM-potato simulates daily potato growth and development in response to environmen-
tal conditions and crop management, including phenological stages, leaf area index, soil
water, biomass and tuber yield at a daily time step. The potato phenological phase was di-
vided into six phases from planting to maturity in APSIM potato, i.e., planting-germination,
germination-emergence, emergence-early tuber, early tuber-senescing, senescing-senesced
and senesced-maturity. Potato requires a certain cumulative thermal time to complete each
development stage. The daily dry matter accumulation rate is calculated by radiation inter-
ception and radiation-use efficiency and multiplied by water and nitrogen stresses. Potato
yield is simulated daily based on partitioning and reallocation of total dry matter to plant
organs [24]. Potato genetic parameters of photoperiod for emergence (x_pp_emergence,
◦Cd), thermal time of planting to emergence (y_tt_emergence, ◦Cd), emergence to early
tuber (tt_earlytuber, ◦Cd), early tuber to senescing phase (tt_senscing, ◦Cd) and other
parameters were received from published documents [12] (Table 2), which have been well
tested in the simulation of potato phenology and yield of different planting dates [12].
To better simulate soil water and thus potato yield, parameters of upper limit of stage 1
evaporation (U) and stage 2 evaporation coefficient which related to soil evaporation were
increased to 10 and 4.5 versus default values of 6 and 3.5 due to high evaporation in the
APE of China [11].

Table 2. Main potato phenology parameters of APSIM-potato.

Parameter Favorita Connibeck Kexin_1

Degree days from planting to emergence
(y-tt-emergence, ◦C d) 265 320 335

Degree days from emergence to early tuber formation
(tt-earlytuber, ◦C d) 185 205 210

Degree days from early tuber formation to senescing
(tt-senescing, ◦C d) 510 590 660

Photoperiod after emergence
(x_pp_emergence, h) 12

Maximum specific leaf area for delta LAI
(y_sla_max, mm2 g−1) 35,000–40,000

2.4. APSIM Simulation Set up

APSIM 7.10 was used to mimic water-limited potato yield using 41 years (1979–2019)
of climate data, and simulations were conducted at 12 locations roughly uniformly dis-
tributed across the APE in North China. Planting was simulated at a three-day interval in
a potential planting window for three cultivars at each location and each year. The first
date of the potential planting window was defined as a five-day running average of daily
average temperature higher than 8 ◦C [4], and the last date was defined when the five-day
running average of daily average temperature was lower than 0 ◦C [11,12]. APSIM was
set to harvest when potato matured or when the daily minimum temperature was lower
than 0 ◦C to prevent potato frost events due to the higher risk of frost events in the APE of
North China. The OPP of potato was defined by corresponding planting dates exceeding
95% of the peak 15-day running mean water-limited yield in different water-temperature
year types at each site.
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The crop received 30 mm of irrigation at planting to ensure that it would emerge
shortly after it was sown. After that, no irrigation was applied throughout the growth
period. APSIM-potato was simulated continuously from 1979 to 2019 with the soil parame-
ters (soil water, soil nitrogen and organic matter, etc.) at the end of last year not resetting,
which is more realistic. To avoid nitrogen stress, nitrogen was applied as NO3

− using a
separate fertilizer rule, which was maintained above 300 kg/hm2 in the top three layers of
the soil throughout the whole potato growing season [24].

2.5. Data Processing
2.5.1. Divide Historical Years into Different Water-Temperature Year Types

Forty-one years were divided into different water-temperature year types (dry-cool,
dry-hot, wet-cool and wet-hot years) according to the average temperature and the
amount of precipitation during the potato growth period in each location. Different
water-temperature year types were divided by the following rules (1):

Wet-Hot year: Pre_s > Pre_a & Tav_s > Tav_a
Wet-Cool year: Pre_s > Pre_a & Tav_s < Tav_a
Dry-Hot year: Pre_s < Pre_a & Tav_s > Tav_a
Dry-Cool year: Pre_s < Pre_a & Tav_s < Tav_a

(1)

where Pre_s is the total precipitation during the potato growing season in a specific year,
Pre_a is the average value of Pre_s from historical years, Tav_s is the mean temperature
during the potato growth season in a specific year and Tav_a is the average value of Tav_s
from historical years.

2.5.2. Statistical Analysis

Linear regression was conducted to test the relationship of potato yield and water and
temperature stresses. All statistical analyses and data processing were carried out using
the R programming language [25].

The coefficient of variance (CV) was used to represent the year-to-year variation in
precipitation in each month:

CV = S/X (2)

where S is the standard variation for precipitation and X is the mean value of precipitation.

3. Results

3.1. Precipitation Distribution in the APE of North China

The annual precipitation of different months in the potato growing season varied
significantly. DL had the lowest CV of 0.43 in June, and LX had the highest CV of 1.29 in
October (Table S1). Figure 2 shows an example of the precipitation distribution in different
water-temperature year types. The distribution and amount of precipitation varied in
water-temperature year types. The variation in precipitation distribution in dry-cool and
dry-hot years was relatively lower than that in wet-cool and wet-hot years. The other sites
of APE also showed similar features (data not shown).

3.2. Water and Temperature Stresses

The linear regression results showed that water stress in the tuber formation stage
explained the most variation in potato yield (Table S2); however, temperature only had a
minor effect on potato yield (Table S2, Figure 3). The average water stress in the potato
tuber formation stage of different planting dates was lower than 0.2 in dry-hot years and
dry-cool years; in contrast, the water stress was lower than 0.3 for most planting dates
in wet-hot years and wet-cool years (Figure 3). The average yields in dry-cool and dry-
hot years were less than those in cold-wet and warm-wet years. Generally, potato yield
increased or decreased with increased or decreased water stress in the tuber formation
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stage. However, in dry-cool years, potato yield decreased with decreasing water stress
when potato was planted after 15 June.

Figure 2. An example of precipitation and temperature distribution during the potato growing season
in different water-temperature year types at XWZM of the APE in North China. (a–d) represent the
dry-cool year, wet-cool year, dry-hot year and wet-hot year, respectively.

Figure 3. Example of the relationship between average simulated water-limited yield and planting
dates for a rapidly developing cultivar (Favorita) in different water-temperature year types at ZLTQ.
The blue dashed line indicates the average water stress during the early tuber phase, the red dashed
line shows the average temperature stress in the potato growing season, and the cyan rectangle
zone represents the optimal planting period at which yield >95% of the running peak mean yield in
different water-temperature year types.
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3.3. Potato Yield Variation

Potato yield varied in four water-temperature year types across the APE of North
China (Figures 4 and S1–S3). The highest yield was achieved by Favorita at TL in the
wet-hot year, with an average yield of 31,196 kg/hm2. The lowest yield was obtained by
Favorita at SZWQ in the dry-hot year, with an average yield of 1882 kg/hm2 (Tables S3–S5).
Favorita could obtain the highest yield in most locations across the APE in North China
in different water-temperature year types. In the dry-cool year, the greatest yield was
obtained by the mid-developing cultivar Favorita at DS for planting on 27 June, with an
average yield of 21,293 kg/hm2. In the dry-hot year, the highest yield was obtained by the
rapidly developing cultivar Favorita at TL for planting on 2 May, with an average yield
of 17,903 kg/hm2 (Figures 4 and S1). In the wet-hot year, the highest yield was obtained
by Favorita at TL for planting on May 17, with an average yield of 31,196 kg/hm2. In the
wet-cool year, the greatest yield was received by Favorita at TL for planting on 29 May,
with an average yield of 31,145 kg/hm2 (Figures S2 and S3). Potato yield varied across the
APE of North China in each type of water-temperature year; however, the trend of potato
yields of different cultivars was highly similar. Adjusting the planting date can increase
potato yield in each type of water-temperature year; however, in low-yield environments
such as SZWQ, potato yield is still very low after the planting date is optimized.

Figure 4. Yield variations across the APE of North China with regard to cultivars and planting dates in dry-cool years.
Different horizontal bands represent different cultivars. (a–l) refers to different meteorological stations in the APE of
North China.
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3.4. OPP Variation

The start date of OPP of potato and its duration varied across different water-temperature
year types and APE in North China (Figure 5). However, the OPP of different maturing
cultivars at each site of APE were similar. The earliest start date of OPP was 9 April, and the
latest start date of OPP was 11 July. Both were achieved by Kexin_1 at YL in a dry-cool year
(Table S4). The longest duration of OPP was 61 days achieved by the mid-developing cultivar
Connibeck at YL in a dry-cool year. The shortest duration of OPP was 4 days, achieved by
Favorita and Connibeck at YZ, DB and YL in dry-hot, dry-cool and wet-hot years, respectively
(Tables S5 and S6). The average duration of OPP in APE for cultivar Favorita, Connibeck and
Kexin_1 are 20.25, 22.25, 21.5 days, respectively, in dry-cool years, 22.25, 21.25, 22.25 days,
respectively, in dry-hot years, 23, 25, 26 days, respectively, in wet-hot years and 19, 20, 22 days,
respectively, in wet-cool years. Compared to wet-hot and wet-cool years, the distribution of
the start date and duration of OPP are more variable in dry-hot and dry-cool years (Figure 5).

Figure 5. OPP of three mature cultivars in different water-temperature year types across the APE of
North China. Different horizontal bands represent different meteorological stations of the APE in
North China. (a–d) refers to four different year types. Different colors represent different cultivars:
blue line for cultivar Favorita, red line for cultivar Connibeck and green line for cultivar Kexin_1.
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4. Discussion

4.1. Significance of Dividing Water-Temperature Year Type

The variance in annual precipitation during the potato growth period is very high
in the APE of North China. The highest precipitation was 525 mm, while the lowest
rainfall was 161 mm, and the coefficient of variation (CV) was 25% [4]. The CV of annual
precipitation of different months in the potato growing season also varied significantly
(Table S1). To adapt to the highly local variability of precipitation and increase potato
yield, Li et al. [12] suggested stabilizing yield by selecting a late planting coupled with mid-
and slow-developing cultivars, which is a simple and effective method. The difference
with his research is that we advocate changing agricultural management measures to cope
with variable climate according to annual precipitation patterns. Therefore, we simulated
the potato yield of three different maturing cultivars by using the APSIM-potato model,
and divided the historical years (1979–2019) into different water-temperature year types
(dry-hot, dry-cool, wet-hot and wet-cool years) across the APE in North China, which is a
new attempt to adapt the variability of precipitation distribution in the APE of North China.
The results showed that the potato yield and OPP varied in different water-temperature
year types across the APE (Figure 2).

The difference in OPP in different seasons indicated the necessity of year-type division.
The linear regression results indicated that water stress during the tuber formation stage
of potatoes played a dominant role in determining potato yield, while temperature had
little effect on yield (Table S2). However, we also found that different water-temperature
year types had different precipitation patterns, which means that adding temperature in
years dividing provides a method to classify the distribution of precipitation in detail. In
actual production and field management, farmers should be told the water-temperature
year type in that season by their local Agrometeorological Service, and plant potato at
OPP as far as possible and select the most suitable cultivar. This calls for more accurate
prediction of future climate [26]. The accuracy of current short-term climate prediction is
approximately 70% [27,28], which still cannot fully meet the requirements of agricultural
production [29]. Therefore, the identification of OPP will play a more important guiding
role in future agricultural production with the improvement of the accuracy of short period
and mid-long period climate prediction [7].

4.2. Potato Yield Variation across APE

The APE of North China is a typical arid agricultural area. Many studies have
shown that there is a strong correlation between crop yield and precipitation during the
growth period under dry land farming [30–33]. However, recent studies have shown that
precipitation distribution during crop growth periods has a greater effect on yield [34,35].
The potato tuber formation stage is a critical stage for potato yield and is highly sensitive
to water stress [36,37]. A previous study had already shown that there is a good correlation
between water conditions in the tuber formation stage and yield in the APE of North
China [5]. Our results also showed that the variation in potato yield in different water-
temperature year types across the APE in North China is mainly determined by the
difference in water stress in the tuber formation stage due to the varied amount and
distribution of precipitation. Thus, adjusting the planting date and selecting a suitable
cultivar to improve the water condition in the potato tuber formation stage can significantly
increase potato yields in the APE of North China (Figures 4 and S1–S3).

Irrigation could significantly increase potato yield in arid and semiarid environments.
In recent years, however, the groundwater level in this region has decreased by approx-
imately 0.5–1 m per year to meet the irrigation demand of crops in the APE of North
China [38,39] and has induced serious problems of soil salinization and groundwater de-
pletion [40]. In addition to irrigation, plastic film mulching can effectively improve potato
yield by reducing soil moisture emissions [41] and increasing soil water storage [42–44].
However, excessive application of plastic film mulching aggravates environmental pol-
lution [45–47]. Adjusting planting dates and selecting suitable cultivars are the simplest
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and most efficient measures that farmers can choose [48] and impose little pressure on
water resources, which is of great significance for ensuring regional food security and
sustainable agricultural development. Potato yield can be significantly improved by using
an adjusted planting period in different year types. However, other management measures,
such as tillage, were not considered in our study, which can also improve potato water
productivity and yield [49]. Moreover, in dry-hot and dry-cool years, such as SZWQ, potato
yield was still lower than that in wet-hot and wet-cool years after adjusting the planting
date and cultivar due to low precipitation (Figures 4 and 5). Tang et al. [10] proposed an
effective management strategy to collect rainfall and carry out supplementary irrigation at
an appropriate time. Further research should be carried out to study the OPP of potato in
combination with supplementary irrigation and cultivar.

4.3. Variation in OPP

Potato yield is closely related to precipitation in the APE of North China, and the
starting time of the OPP depends on the starting time of the rainy season [10]. Adjusting
the planting date can match the critical water demand stage of potato with the rainy
season, thus obtaining sufficient rainfall and minimizing water stress [9]. Our study found
that the amount and distribution of precipitation varied in different water-temperature
year types (Figure 2), which led to different water conditions in the tuber formation
stage corresponding to planting dates and thus resulted in the variance of OPP of potato
(Figures 3 and 5). The OPP of different maturing cultivars were very similar; however, the
OPP in different water-temperature year types were highly different. Thus, we suggest
selecting planting dates according to the water-temperature year type to adapt to various
distributions of precipitation.

The duration of OPP represented the variation of the water condition in the tuber
formation period of different planting dates. The longer duration of OPP indicates that
the variation in rainfall was lower, which resulted in similar water conditions in the
tuber formation stages of different planting dates, e.g., YL in dry-cool year and WNTQ
in dry-hot year. The shorter OPP indicates that rainfall was concentrated at a certain
period, which means that the water stress of the tuber formation stage varies greatly with
different planting dates. We further analyzed factors influencing OPP and yield in different
water-temperature year types (Figure 3). The OPP of different water-temperature year
types varied greatly from April to June, mainly affected by the water stress of the tuber
formation stage of different planting dates. However, the yield would be reduced due
to the shortening of the growth period when the potato sown too late, especially when a
cultivar with a long growth cycle was sown too late (Figure 3). This also explained why
the yield of Favorita was slightly higher than that of the other cultivars with a longer
growing period.

Li et al. [12] suggested that late planting coupled with fast developing cultivar Favorita
was recommended along an ‘N-S’ transect in North China, while late planting coupled
with slow developing cultivar Kexin_1 was recommended along a ‘W-E’ transect in North
China. However, our study found that Favorita can obtain the highest yield in most places
of the APE in North China. This is because Favorita can reduce the risk of encountering
frost events when planting late due to the relatively short growing period compared to
the other two cultivars. Moreover, the duration of the tuber formation stage of Favorita
was lower than that of the other two cultivars, which means that Favorita can easily find
suitable planting dates with lower water stress in the tuber formation stage (Table 2).

4.4. Uncertainties and Limitations

In this study, we suggest selecting OPP and cultivars according to the water-temperature
year type, which responds to the variable distribution of precipitation with changing manage-
ment practices. However, it is difficult to predict the distribution of precipitation even when
the approximate precipitation is known. Therefore, those places in the water-temperature year
type with a shorter duration OPP indicate that the distribution of precipitation is relatively
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similar with historical years, while those places with a longer duration OPP mean that the
distribution of precipitation in historical years is more variable, and planting date should be
selected carefully in this case. Additionally, readers should note the following limitations
in our study. We only considered the impacts of climate factors on potato yield; however,
other environmental factors, such as disease, insects and pests, can also impact potato yield
and planting date [50,51]. In addition, adjusting planting density, conservation tillage and
other agronomic management practices were not considered [12,52], which also have a great
impact on planting date and cultivar selection. These influencing factors need to be further
investigated in the future. Additionally, to calibrate crop model and further validate our
result, more field experiments should be carried out at other sites of the APE in North China
in the future.

5. Conclusions

Potato yield and OPP varied in different water-temperature year types; however, the
OPP showed little difference between different maturing cultivars. Generally, Favorita
obtained the highest yield in different water-temperature year types at most places in
the APE of North China. The yield and OPP of potato in different water-temperature
year types were mainly affected by water stress in the tuber formation stage due to the
varied distribution and amount of precipitation in different water-temperature year types.
Compared with unaltered management, increasing yield is recommended by selecting OPP
and suitable cultivars according to the water-temperature year type. This study offered a
new method to cope with the highly variable climate in the APE of North China, which can
help farmers make decisions when climate prediction precision is improved in the future.
However, we only considered the impact of climate factors on OPP of potato, but other
factors (disease and pests, planting density, conservation tillage, etc.) also have a great
effect on OPP and cultivar selection of potato. These factors need to be further explored
and more field experiments need to be performed at other sites of the APE in North China
in the future.
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of OSP. Table S4: An example of OSP for cultivar Connibeck in different water-temperature year
types across APE of North China. DOSP represent the duration of OSP. Table S5: An example of OSP
for cultivar Kexin_1 in different water-temperature year types across APE of North China. DOSP
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