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This Special Issue includes (but is not limited to) papers that were accepted at the International

Conference on Mathematics and its Applications in Science and Engineering (ICMASE 2020), held

in Ankara Hacı Bayram Veli University, Turkey, between 9th and 10th July, 2020 and conducted

online due to the COVID-19 pandemic. The aim of this conference was to exchange ideas,

discuss developments in mathematics, develop collaborations and interact with professionals and

researchers from all over the world. The following topics of interest were explored: Functional

Analysis, Approximation Theory, Real Analysis, Complex Analysis, Harmonic and non-Harmonic

Analysis, Applied Analysis, Numerical Analysis, Geometry, Topology and Algebra, Modern Methods

in Summability and Approximation, Operator Theory, Fixed Point Theory and Applications,

Sequence Spaces and Matrix Transformation, Spectral Theory and Differential Operators, Boundary

Value Problems, Ordinary and Partial Differential Equations, Discontinuous Differential Equations,

Convex Analysis and its applications, Optimization and its application, Mathematics Education, the

application of Variable Exponent Lebesgue Spaces, applications of Differential Equations and Partial

Differential Equations, Fourier Analysis, Wavelet and Harmonic Analysis Methods in Function

Spaces, applications of Computer Engineering, and Flow Dynamics.

However, the talks were not restricted to these subjects alone, and we expect to include more

topics in the future, since we will now be hosting the conference annually.

In 2020, this conference was also organized as a final multiplier event of the Rules Math Project,

supported by the EU, and in the future, we aim to dedicate a considerable level of attention to

educational studies (in mathematics).
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Abstract: We propose two efficient numerical approaches for solving variable-order fractional
optimal control-affine problems. The variable-order fractional derivative is considered in the
Caputo sense, which together with the Riemann–Liouville integral operator is used in our new
techniques. An accurate operational matrix of variable-order fractional integration for Bernoulli
polynomials is introduced. Our methods proceed as follows. First, a specific approximation of
the differentiation order of the state function is considered, in terms of Bernoulli polynomials.
Such approximation, together with the initial conditions, help us to obtain some approximations
for the other existing functions in the dynamical control-affine system. Using these approximations,
and the Gauss—Legendre integration formula, the problem is reduced to a system of nonlinear
algebraic equations. Some error bounds are then given for the approximate optimal state and control
functions, which allow us to obtain an error bound for the approximate value of the performance
index. We end by solving some test problems, which demonstrate the high accuracy of our results.

Keywords: variable-order fractional calculus; Bernoulli polynomials; optimal control-affine problems;
operational matrix of fractional integration

MSC: 34A08; 65M70 (Primary); 11B68 (Secondary)

1. Introduction

The Bernoulli polynomials, named after Jacob Bernoulli (1654–1705), occur in the study of
many special functions and, in particular, in relation with fractional calculus, which is a classical
area of mathematical analysis whose foundations were laid by Liouville in a paper from 1832
and that is nowadays a very active research area [1]. One can say that Bernoulli polynomials
are a powerful mathematical tool in dealing with various problems of dynamical nature [2–6].
Recently, an approximate method, based on orthonormal Bernoulli’s polynomials, has been developed
for solving fractional order differential equations of Lane–Emden type [7], while in [8] Bernoulli
polynomials are used to numerical solve Fredholm fractional integro-differential equations with
right-sided Caputo derivatives. Here we are interested in the use of Bernoulli polynomials with respect
to fractional optimal control problems.

An optimal control problem refers to the minimization of a functional on a set of control and state
variables (the performance index) subject to dynamic constraints on the states and controls. When such
dynamic constraints are described by fractional differential equations, then one speaks of fractional
optimal control problems (FOCPs) [9]. The mathematical theory of fractional optimal control has born

Axioms 2020, 9, 114; doi:10.3390/axioms9040114 www.mdpi.com/journal/axioms1
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in 1996/97 from practical problems of mechanics and began to be developed in the context of the
fractional calculus of variations [10–12]. Soon after, fractional optimal control theory became a mature
research area, supported with many applications in engineering and physics. For the state-of-the-art,
see [13–15] and references therein. Regarding the use of Bernoulli polynomials to numerically solve
FOCPs, we refer to [2], where the operational matrices of fractional Riemann–Liouville integration
for Bernoulli polynomials are derived and the properties of Bernoulli polynomials are utilized,
together with Newton’s iterative method, to find approximate solutions to FOCPs. The usefulness of
Bernoulli polynomials for mixed integer-fractional optimal control problems is shown in [16], while the
practical relevance of the methods in engineering is illustrated in [17]. Recently, such results have been
generalized for two-dimensional fractional optimal control problems, where the control system is not
a fractional ordinary differential equation but a fractional partial differential equation [18]. Here we are
the first to develop a numerical method, based on Bernoulli polynomials, for FOCPs of variable-order.

The variable-order fractional calculus was introduced in 1993 by Samko and Ross and deals
with operators of order α, where α is not necessarily a constant but a function α(t) of time [19].
With this extension, numerous applications have been found in physics, mechanics, control, and signal
processing [20–24]. For the state-of-the-art on variable-order fractional optimal control we refer
the interested reader to the book [25] and the articles [26,27]. To the best of our knowledge,
numerical methods based on Bernoulli polynomials for such kind of FOCPs are not available in
the literature. For this reason, in this work we focus on the following variable-order fractional optimal
control-affine problem (FOC-AP):

min J =
∫ 1

0
φ(t, x(t), u(t))dt (1)

subject to the control-affine dynamical system

C
0 D

α(t)
t x(t) = ϕ

(
t, x(t), C

0 D
α1(t)
t x(t), . . . , C

0 D
αs(t)
t x(t)

)
+ b(t)u(t) (2)

and the initial conditions
x(i)(0) = xi

0, i = 0, 1, . . . , n, (3)

where φ and ϕ are smooth functions of their arguments, b �= 0, n is a positive integer number such
that for all t ∈ [0, 1], 0 < α1(t) < α2(t) < . . . < αs(t) < α(t) ≤ n, and C

0 Dα(t)
t is the (left) fractional

derivative of variable-order defined in the Caputo sense. We employ two spectral methods based
on Bernoulli polynomials in order to obtain numerical solutions to problem (1)–(3). Our main idea
consists of reducing the problem to a system of nonlinear algebraic equations. To do this, we introduce
an accurate operational matrix of variable-order fractional integration, having Bernoulli polynomials
as basis vectors.

The paper is organized as follows. In Section 2, the variable-order fractional calculus is briefly
reviewed and some properties of the Bernoulli polynomials are recalled. A new operational matrix of
variable-order is introduced for the Bernoulli basis functions in Section 3. Section 4 is devoted to two
new numerical approaches based on Bernoulli polynomials for solving problem (1)–(3). In Section 5,
some error bounds are proved. Then, in Section 6, some FOC-APs are solved using the proposed
methods. Finally, concluding remarks are given in Section 7.

2. Preliminaries

In this section, a brief review on necessary definitions and properties of the variable-order
fractional calculus is presented. Furthermore, Bernoulli polynomials and some of their properties
are recalled.

2



Axioms 2020, 9, 114

2.1. The Variable-Order Fractional Calculus

The two most commonly used definitions in fractional calculus are the Riemann–Liouville integral
and the Caputo derivative. Here, we deal with generalizations of these two definitions, which allow
the order of the fractional operators to be of variable-order.

Definition 1 (See, e.g., [25]). The left Riemann—Liouville fractional integral of order α(t) is defined by

0 Iα(t)
t y(t) =

1
Γ(α(t))

∫ t

0
(t − s)α(t)−1y(s)ds, t > 0,

where Γ is the Euler gamma function, that is,

Γ(t) =
∫ ∞

0
τt−1 exp(−τ)dτ, t > 0.

Definition 2 (See, e.g., [25]). The left Caputo fractional derivative of order α(t) is defined by

C
0 D

α(t)
t y(t) =

1
Γ(n − α(t))

∫ t

0
(t − s)n−α(t)−1y(n)(s)ds, n − 1 < α(t) < n,

C
0 D

α(t)
t y(t) = y(n)(t), α(t) = n.

For 0 ≤ β(t) < α(t) ≤ n, n ∈ N, γ > 0, and ν > −1, some useful properties of the Caputo
derivative and Riemann–Liouville fractional integral are as follows [25]:

0 Iα(t)
t tν =

Γ(ν + 1)
Γ(ν + 1 + α(t))

tν+α(t), (4)

0 Iγ
t (

C
0 D

γ

t y(t)) = y(t)−
�γ�−1

∑
i=0

y(i)(0)
ti

i!
, t > 0, (5)

0 In−α(t)
t (y(n)(t)) = C

0 D
α(t)
t y(t)−

n−1

∑
i=�α(t)�

y(i)(0)
ti−α(t)

Γ(i + 1 − α(t))
, t > 0, (6)

0 Iα(t)−β(t)
t (C

0 D
α(t)
t y(t)) = C

0 D
β(t)
t y(t)−

�α(t)�−1

∑
i=�β(t)�

y(i)(0)
ti−β(t)

Γ(i + 1 − β(t))
, t > 0, (7)

where �·� is the ceiling function.

2.2. Bernoulli Polynomials

The set of Bernoulli polynomials, {βm(t)}∞
m=0, consists of a family of independent functions that

builds a complete basis for the space L2[0, 1] of all square integrable functions on the interval [0, 1].
These polynomials are defined as

βm(t) =
m

∑
i=0

(
m
i

)
bm−iti, (8)

where bk, k = 0, 1, . . . , m, are the Bernoulli numbers [28]. These numbers are seen in the series
expansion of trigonometric functions and can be given by the following identity [29]:

t
et − 1

=
∞

∑
i=0

bi
ti

i!
.

Thus, the first few Bernoulli numbers are given by

3
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b0 = 1, b1 = −1
2

, b2 =
1
6

, b3 = 0, b4 = − 1
30

, b5 = 0, b6 =
1
42

.

Furthermore, the first five Bernoulli polynomials are

β0(t) = 1,

β1(t) = t − 1
2

,

β2(t) = t2 − t +
1
6

,

β3(t) = t3 − 3
2

t2 +
1
2

t,

β4(t) = t4 − 2t3 + t2 − 1
30

.

For an arbitrary function x ∈ L2[0, 1], we can write

x(t) =
∞

∑
m=0

amβm(t).

Therefore, an approximation of the function x can be given by

x(t) � xM(t) =
M

∑
m=0

amβm(t) = AT B(t), (9)

where
B(t) = [β0(t), β1(t), . . . , βM(t)]T (10)

and
A = [a0, a1, . . . , aM]T .

The vector A in (9) is called the coefficient vector and can be calculated by the formula (see [2])

A = D−1〈x(t), B(t)〉,

where 〈·, ·〉 is the inner product, defined for two arbitrary functions f , g ∈ L2[0, 1] as

〈 f (t), g(t)〉 =
∫ 1

0
f (t)g(t)dt,

and D = 〈B(t), B(t)〉 is calculated using the following property of Bernoulli polynomials [29]:

∫ 1

0
βi(t)β j(t)dt = (−1)i−1 i!j!

(i + j)!
bi+j, i, j ≥ 1.

It should be noted that
X = span {β0(t), β1(t), . . . , βM(t)}

is a finite dimensional subspace of L2[0, 1] and xM, given by (9), is the best approximation of function
x in X.

3. Operational Matrix of Variable-Order Fractional Integration

In this section, we introduce an accurate operational matrix of variable-order fractional integration
for Bernoulli functions. To this aim, we rewrite the Bernoulli basis vector B given by (10) in terms of
the Taylor basis functions as follows:

B(t) = QT(t), (11)

4
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where T is the Taylor basis vector given by

T(t) =
[
1, t, t2, . . . , tM

]T

and Q is the change-of-basis matrix, which is obtained using (8) as

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . . 0
− 1

2 1 0 0 0 . . . 0
1
6 −1 1 0 0 . . . 0
0 1

2 − 3
2 1 0 . . . 0

...
...

...
...

...
...

bM (M
1 )bM−1 (M

2 )bM−2 (M
3 )bM−3 (M

4 )bM−4 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since Q is nonsingular, we can write

T(t) = Q−1B(t). (12)

By considering (11) and applying the left Riemann–Liouville fractional integral operator of order
α(t) to the vector B(t), we get that

0 Iα(t)
t B(t) = 0 Iα(t)

t (QT(t)) = Q(0 Iα(t)
t T(t)) = QSα(t)

t T(t), (13)

where Sα(t)
t is a diagonal matrix, which is obtained using (4) as follows:

Sα(t)
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Γ(1+α(t)) tα(t) 0 0 0 · · · 0

0 1
Γ(2+α(t)) tα(t) 0 0 · · · 0

0 0 2
Γ(3+α(t)) tα(t) 0 · · · 0

...
...

...
...

...
0 0 0 0 · · · Γ(M+1)

Γ(M+1+α(t)) tα(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, by using (12) in (13), we have

0 Iα(t)
t B(t) = QSα(t)

t Q−1B(t) = Pα(t)
t B(t), (14)

where Pα(t)
t = QSα(t)

t Q−1 is a matrix of dimension (M + 1)× (M + 1), which we call the operational
matrix of variable-order fractional integration α(t) for Bernoulli functions. Since Q and Q−1 are
lower triangular matrices and Sα(t)

t is a diagonal matrix, Pα(t)
t is also a lower triangular matrix. In the

particular case of M = 2, one has

Pα(t)
t =

⎡⎢⎢⎣
1

Γ(α(t)+1) tα(t) 0 0(
1

2Γ(α(t)+2) − 1
2Γ(α(t)+1)

)
tα(t) 1

Γ(α(t)+2) tα(t) 0(
1

6Γ(α(t)+1) − 1
2Γ(α(t)+2) +

2
3Γ(α(t)+3)

)
tα(t)

(
2

Γ(α(t)+3) − 1
Γ(α(t)+2)

)
tα(t) 2

Γ(α(t)+3) tα(t)

⎤⎥⎥⎦ .

4. Methods of Solution

In this section, we propose two approaches for solving problem (1)–(3). To do this,
first we introduce

n = max
0<t≤1

{�α(t)�} .

5
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Then, we may use the following two approaches to find approximations for the state and control
functions, which optimize the performance index.

4.1. Approach I

In our first approach, we consider an approximation of the nth order derivative of the unknown
state function x using Bernoulli polynomials. Set

x(n)(t) = AT B(t), (15)

where A is a 1 × (M + 1) vector with unknown elements and B is the Bernoulli basis vector given
by (10). Then, using the initial conditions given in (3), and Equations (5), (14), and (15), we get

x(t) = 0 In
t (x(n)(t)) +

n−1

∑
i=0

x(i)(0)
ti

i!

= AT(0 In
t B(t)) +

n−1

∑
i=0

xi
0

ti

i!

= AT Pn
t B(t) +

n−1

∑
i=0

xi
0

ti

i!
.

(16)

Moreover, using (6), (14), and (15), we get

C
0 D

α(t)
t x(t) = AT Pn−α(t)

t B(t) +
n−1

∑
i=�α(t)�

xi
0

ti−α(t)

Γ(i + 1 − α(t))
:= F[A, t] (17)

and
C
0 D

αj(t)
t x(t) = AT P

n−αj(t)
t B(t) +

n−1

∑
i=�αj(t)�

xi
0

ti−αj(t)

Γ(i + 1 − αj(t))
:= Fj[A, t], j = 1, . . . , s. (18)

By substituting (16)–(18) into the control-affine dynamical system given by (2), we obtain
an approximation of the control function as follows:

u(t) =
1

b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)]
. (19)

Taking into consideration (16) and (19) in the performance index J, we have

J[A] =
∫ 1

0
φ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
dt.

For the sake of simplicity, we introduce

G[A, t] = φ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
F[A, t]− ϕ

(
t, AT Pn

t B(t) +
n−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
.

In many applications, it is difficult to compute the integral of function G[A, t]. Therefore, it is
recommended to use a suitable numerical integration formula. Here, we use the Gauss–Legendre
quadrature formula to obtain

J[A] � 1
2

N

∑
i=1

ωiG
[

A,
ti + 1

2

]
, (20)

where ti, i = 1, 2, . . . , N, are the zeros of the Legendre polynomial of degree N, PN(t), and ωi are the
corresponding weights [30], which are given by

6



Axioms 2020, 9, 114

ωi =
2(

d
dt PN(ti)

)2
(1 − t2

i )
, i = 1, . . . , N. (21)

Finally, the first order necessary condition for the optimality of the performance index implies

∂J[A]

∂A
= 0,

which gives a system of M + 1 nonlinear algebraic equations in terms of the M + 1 unknown elements
of the vector A. By solving this system, approximations of the optimal state and control functions are,
respectively, given by (16) and (19).

4.2. Approach II

In our second approach, we set

C
0 D

α(t)
t x(t) = AT B(t). (22)

Then, using (7) with β(t) ≡ 0, we obtain that

x(t) = 0 Iα(t)
t (C

0 D
α(t)
t x(t)) +

�α(t)�−1

∑
i=0

x(i)(0)
ti

Γ(i + 1)

= AT(0 Iα(t)
t B(t)) +

�α(t)�−1

∑
i=0

xi
0

ti

i!

= AT Pα(t)
t B(t) +

�α(t)�−1

∑
i=0

xi
0

ti

i!
.

(23)

Furthermore, we get

C
0 D

αj(t)
t x(t) = AT P

α(t)−αj(t)
t B(t) +

�α(t)�−1

∑
i=�αj(t)�

xi
0

ti−αj(t)

Γ(i + 1 − αj(t))
:= Fj[A, t], j = 1, . . . , s. (24)

Taking (22)–(24) into consideration, Equation (2) gives

u(t) =
1

b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
�α(t)�−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)]
. (25)

By substituting the approximations given by (23) and (25) into the performance index, we get

J[A] =
∫ 1

0
φ

(
t, AT Pα(t)

t B(t) +
�α(t)�−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
�α(t)�−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
dt.

7
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By introducing

G[A, t] = φ

(
t, AT Pα(t)

t B(t) +
�α(t)�−1

∑
i=0

xi
0

ti

i!
,

1
b(t)

[
AT B(t)− ϕ

(
t, AT Pα(t)

t B(t) +
�α(t)�−1

∑
i=0

xi
0

ti

i!
, F1[A, t], . . . , Fs[A, t]

)])
,

then this approach continues in the same way of finding the unknown parameters of the vector A as in
Approach I.

5. Error Bounds

The aim of this section is to give some error bounds for the numerical solution obtained by the
proposed methods of Section 4. We present the error discussion for Approach II, which can then be
easily extended to Approach I.

Suppose that x∗ is the optimal state function of problem (1)–(3). Let f (t) := C
0 Dα(t)

t x∗(t) with
f (t) ∈ Hμ(0, 1) (Hμ(0, 1) is a Sobolev space [31]). According to our numerical method, fM(t) = AT B(t)
is the best approximation of function f in terms of the Bernoulli polynomials, that is,

∀g ∈ X, ‖ f − fM‖2 ≤ ‖ f − g‖2.

We recall the following lemma from [31].

Lemma 1 (See [31]). Assume that f ∈ Hμ(0, 1) with μ ≥ 0. Let LM( f ) ∈ X be the truncated shifted
Legendre series of f . Then,

‖ f − LM( f )‖2 ≤ CM−μ| f |Hμ;M(0,1),

where

| f |Hμ;M(0,1) =

⎛⎝ μ

∑
j=min{μ,M+1}

‖ f (j)‖2
2

⎞⎠
1
2

and C is a positive constant independent of function f and integer M.

Since the best approximation of function f in the subspace X is unique and fM and LM( f ) are
both the best approximations of f in X, we have fM = LM( f ). Therefore, we get that

‖ f − fM‖2 ≤ CM−μ| f |Hμ;M(0,1). (26)

Hereafter, C denotes a positive constant independent of M and n.

Theorem 1. Suppose x∗ to be the exact optimal state function of problem (1)–(3) such that

f (t) := C
0 Dα(t)

t x∗(t) ∈ Hμ(0, 1), with μ ≥ 0, and x̃ be its approximation given by (23). Then,

‖x∗(t)− x̃(t)‖2 ≤ CM−μ| f |Hμ;M(0,1). (27)

Proof. Let Y = L2[0, 1] and 0 Iα(t)
t : Y → Y be the variable-order Riemann–Liouville integral operator.

By definition of the norm for operators, we have

‖0 Iα(t)
t ‖2 = sup

‖g‖2=1
‖0 Iα(t)

t g‖2.

8
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In order to prove the theorem, first we show that the operator 0 Iα(t)
t is bounded. Since ‖g‖2 = 1,

using Schwarz’s inequality, we get∥∥∥0 Iα(t)
t g

∥∥∥
2
=

∥∥∥∥ 1
Γ(α(t))

∫ t

0
(t − s)α(t)−1g(s)ds

∥∥∥∥
2

≤ ‖g‖2

∥∥∥∥ 1
Γ(α(t))

∫ t

0
(t − s)α(t)−1ds

∥∥∥∥
2

=

∥∥∥∥∥ tα(t)

Γ(α(t) + 1)

∥∥∥∥∥
2

≤ C,

where we have used the assumption α(t) > 0, which gives tα(t) < 1 for 0 < t ≤ 1, and a particular
property of the Gamma function, which is Γ(t) > 0.8. Therefore, 0 Iα(t)

t is bounded. Now, using (26),
and taking into account (7) and (23), we obtain that

‖x∗(t)− x̃(t)‖2 =

∥∥∥∥∥0 Iα(t)
t f (t) +

�α(t)�−1

∑
i=0

x(i)(0)
ti

Γ(i + 1)
−
(

0 Iα(t)
t (AT B(t)) +

�α(t)�−1

∑
i=0

xi
0

ti

i!

)∥∥∥∥∥
2

=
∥∥∥0 Iα(t)

t ( f (t)− AT B(t))
∥∥∥

2

≤
∥∥∥0 Iα(t)

t

∥∥∥
2

∥∥∥ f (t)− AT B(t)
∥∥∥

2

≤ CM−μ| f |Hμ;M(0,1).

The proof is complete.

Remark 1. Since we have α(t)− αj(t) > 0, j = 1, 2, . . . , s, with a similar argument it can be shown that∥∥∥∥∥∥C
0 D

αj(t)
t x∗(t)−

⎛⎝AT P
α(t)−αj(t)
t B(t) +

�α(t)�−1

∑
i=�αj(t)�

xi
0

ti−αj(t)

Γ(i + 1 − αj(t))

⎞⎠∥∥∥∥∥∥
2

≤ CM−μ| f |Hμ;M(0,1).

With the help of Theorem 1, we obtain the following result for the error of the optimal control
function. For simplicity, suppose that in the control-affine dynamical system given by (2) the function
ϕ appears as ϕ := ϕ(t, x) (cf. Remark 2).

Theorem 2. Suppose that the assumptions of Theorem 1 are fulfilled. Let u∗ and ũ be the exact and approximate
optimal control functions, respectively. If ϕ : R2 −→ R satisfies a Lipschitz condition with respect to the second
argument, then

‖u∗(t)− ũ(t)‖2 ≤ CM−μ| f |Hμ;M(0,1). (28)

Proof. Using Equation (2), the exact optimal control function is given by

u∗(t) = 1
b(t)

( f (t)− ϕ (t, x∗(t))) (29)

and the approximate control function obtained by our Approach II is given by

ũ(t) =
1

b(t)

(
AT B(t)− ϕ (t, x̃(t))

)
. (30)

9
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By subtracting (30) from (29), we get

u∗(t)− ũ(t) =
1

b(t)

(
f (t)− ϕ (t, x∗(t))− AT B(t) + ϕ (t, x̃(t))

)
. (31)

Since the function ϕ satisfies a Lipschitz condition with respect to the second variable, there exists
a positive constant K such that

|ϕ(t, x1)− ϕ(t, x2)| < K|x1 − x2|.

Therefore, using (26) and (27), and also taking into account b(t) �= 0, we have

‖u∗(t)− ũ(t)‖2 ≤ 1
‖b(t)‖2

(∥∥∥ f (t)− AT B(t)
∥∥∥

2
+ K ‖x∗(t)− x̃(t)‖2

)
≤ CM−μ| f |Hμ;M(0,1),

which yields (28).

Remark 2. For the general case ϕ := ϕ(t, x, x1, . . . , xs), the same result of Theorem 2 can be easily obtained by
assuming that ϕ satisfies Lipschitz conditions with respect to the variables x, x1, . . . , xs.

As a result of Theorems 1 and 2, we obtain an error bound for the approximate value of the
optimal performance index J given by (20). First, we recall the following lemma in order to obtain the
error of the Gauss–Legendre quadrature rule.

Lemma 2 (See [30]). Let g be a given sufficiently smooth function. Then, the Gauss–Legendre quadrature rule
is given by ∫ 1

−1
g(t)dt =

N

∑
i=1

ωig(ti) + EN(g), (32)

where ti, i = 1, . . . , N, are the roots of the Legendre polynomial of degree N, and ωi are the corresponding
weights given by (21). In (32), EN(g) is the error term, which is given as follows:

EN(g) =
22N+1(N!)4

(2N + 1)[(2N!)]3
g2N(η), η ∈ (−1, 1).

Now, by considering the assumptions of Theorems 1 and 2, we prove the following result.

Theorem 3. Let J∗ be the exact value of the optimal performance index J in problem (1)–(3) and J̃ be its
approximation given by (20). Suppose that the function φ : R3 −→ R is a sufficiently smooth function with
respect to all its variables and satisfies Lipschitz conditions with respect to its second and third arguments,
that is,

|φ(t, x1, u)− φ(t, x2, u)| ≤ K1|x1 − x2| (33)

and
|φ(t, x, u1)− φ(t, x, u2)| ≤ K1|u1 − u2|, (34)

where K1 and K2 are real positive constants. Then, there exist positive constants C1 and C2 such that

∣∣J∗ − J̃
∣∣ ≤ C1M−μ| f |Hμ;M(0,1) + C2

(N!)4

(2N + 1)[(2N!)]3
. (35)

Proof. Using (20) and (32), we have

J̃ =
1
2

N

∑
i=1

ωiφ

(
ti + 1

2
, x̃
(

ti + 1
2

)
, ũ

(
ti + 1

2

))
=

∫ 1

0
φ (t, x̃(t), ũ(t)) dt − ξN , (36)

10
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where

ξN =

(
1
2

)
22N+1(N!)4

(2N + 1)[(2N!)]3

(
1
2

)2N ∂2Nφ (t, x̃(t), ũ(t))
∂t2N

∣∣∣∣
t=η

=
(N!)4

(2N + 1)[(2N!)]3
∂2Nφ (t, x̃(t), ũ(t))

∂t2N

∣∣∣∣
t=η

for η ∈ (0, 1). Therefore, taking into consideration (33)–(36), we get

∣∣J∗ − J̃
∣∣ = ∣∣∣∣∫ 1

0
φ(t, x∗(t), u∗(t))dt −

∫ 1

0
φ (t, x̃(t), ũ(t)) dt + ξN

∣∣∣∣
=

∣∣∣∣∫ 1

0
φ(t, x∗(t), u∗(t))dt −

∫ 1

0
φ(t, x̃(t), u∗(t))dt +

∫ 1

0
φ(t, x̃(t), u∗(t))dt −

∫ 1

0
φ (t, x̃(t), ũ(t)) dt + ξN

∣∣∣∣
≤ K1

∫ 1

0
|x∗(t)− x̃(t)| dt + K2

∫ 1

0
|u∗(t)− ũ(t)| dt + max

0<t<1
|ξN |

≤ C1 M−μ| f |Hμ;M(0,1) + C2
(N!)4

(2N + 1)[(2N!)]3
,

where we have used the property of equivalence of L1 and L2-norms and

C2 = max
0<t<1

∣∣∣∣∂2Nφ (t, x̃(t), ũ(t))
∂t2N

∣∣∣∣ .

The proof is complete.

Remark 3. A similar error discussion can be considered for Approach I by setting f (t) := x∗(n)(t) with
f (t) ∈ Hμ(0, 1) and taking into account the fact that the operators In, Iα(t) and Iαj(t), for j = 1, 2, . . . , s, are
bounded.

Remark 4. In practice, since the exact control and state functions that minimize the performance index are
unknown, in order to reach a given specific accuracy ε for these functions, we increase the number of basis
functions (by increasing M) in our implementation, such that

max
1≤i≤M

|F[A, ti]− ϕ (ti, x̃(ti), F1[A, ti], . . . , Fs[A, ti])− b(ti)ũ(ti)| < ε (Approach I),

and
max

1≤i≤M

∣∣∣AT B(ti)− ϕ (ti, x̃(ti), F1[A, ti], . . . , Fs[A, ti])− b(ti)ũ(ti)
∣∣∣ < ε (Approach II),

where
ti =

i
M + 1

, i = 1, 2, . . . , M.

6. Test Problems

In this section, some FOC-APs are included and solved by the proposed methods, in order to
illustrate the accuracy and efficiency of the new techniques. In our implementation, the method
was carried out using Mathematica 12. Furthermore, we have used N = 14 in employing the
Gauss–Legendre quadrature formula.

Example 1. As first example, we consider the following variable-order FOC-AP:

min J =
∫ 1

0

[(
x(t)− t2

)2
+

(
u(t)− 1

Γ(3 − α(t))
t2−α(t)e−t +

1
2

et2−t
)2

]
dt (37)

11
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subject to

C
0 D

α(t)
t x(t) = ex(t) + 2etu(t), 0 < α(t) ≤ 1,

x(0) = 0.

The exact optimal state and control functions are given by

x(t) = t2, u(t) =
1

Γ(3 − α(t))
t2−α(t)e−t − 1

2
et2−t,

which minimize the performance index J with the minimum value J = 0. In [26], a numerical method based on
the Legendre wavelet has been used to solve this problem with α(t) = 1. For solving this problem with α(t) = 1,
according to our methods, we have n = 1. In this case, both approaches introduced in Section 4 give the same
result. By setting M = 1, we suppose that

x′(t) = AT B(t) = a1

(
t − 1

2

)
+ a0,

where

A = [a0, a1]
T and B(t) =

[
1, t − 1

2

]T
.

The operational matrix of variable-order fractional integration is given by

P1
t =

[
t 0

− t
4

t
2

]
.

Therefore, we have

x(t) = AT P1
t B(t) = a0t +

1
2

a1(t − 1)t. (38)

Moreover, using the control-affine dynamical system, we get

u(t) =
1
2

e−t
(

AT B(t)− eAT P1
t B(t)

)
=

1
2

e−t
(

a1

(
t − 1

2

)
+ a0 − ea0t+ 1

2 a1(t−1)t
)

. (39)

By substituting (38) and (39) into (37), using the Gauss–Legendre quadrature for computing J,
and, finally, setting

∂J
∂a0

= 0,
∂J
∂a1

= 0,

we obtain a system of two nonlinear algebraic equations in terms of a0 and a1. By solving this system, we find

a0 = 1, a1 = 2,

which gives the exact solution

x(t) = t2 and u(t) = te−t − 1
2

et2−t.

As it is seen, in the case of α(t) = 1, our approaches give the exact solution with M = 1 (only two basis
functions) compared to the method introduced in [26] based on the use of Legendre wavelets with m̂ = 6 (six
basis functions).

Since the optimal state function is a polynomial of degree 2, Approach I gives the exact solution with M = 1

for every admissible α(t). On the other hand, if α(t) �= 1, then C
0 Dα(t)

t x(t) ∈ H1(0, 1). Therefore, according
to the theoretical discussion and the error bound given by (35), the numerical solution given by Approach II
converges to the exact solution, very slowly, that can be confirmed by the results reported in Table 1 obtained
with α(t) = sin(t) and different values of M. Furthermore, by considering a different α(t), and by applying the

12
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two proposed approaches with M = 5, the numerical results for the functions x and u are displayed in Figures 1
and 2. Figure 1 displays the numerical results obtained by Approach I, while Figure 2 shows the numerical
results given by Approach II. For these results, we have used

α1(t) = 1, α2(t) = sin(t), α3(t) =
t
2

, α4(t) =
t
3

. (40)

Moreover, the numerical results for the performance index, obtained by our two approaches, are shown in
Table 2. It can be easily seen that, in this case, Approach I gives higher accuracy results than Approach II. This is
caused by the smoothness of the exact optimal state function x.

Table 1. (Example 1.) Numerical results obtained by Approach II for the performance index with
different M and α(t) = sin(t).

M 1 2 3 2 5

J 6.80 × 10−3 2.33 × 10−3 1.76 × 10−3 1.57 × 10−3 1.56 × 10−3

Figure 1. (Example 1.) Comparison between the approximate state (left) and control (right) functions
obtained by Approach I with M = 5 and different α(t) (40).

Figure 2. (Example 1.) Comparison between the approximate state (left) and control (right) functions
obtained by Approach II with M = 5 and different α(t) (40).

Table 2. (Example 1.) Numerical results for the performance index with M = 5 and different α(t) (40).

Method α1(t) α2(t) α3(t) α4(t)

Approach I 3.05 × 10−33 3.26 × 10−33 6.89 × 10−33 2.08 × 10−33

Approach II 2.74 × 10−33 1.56 × 10−3 1.71 × 10−4 2.50 × 10−5

13
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Example 2. Consider now the following FOC-AP borrowed from [32]:

min J =
∫ 1

0

[(
x(t)− t

5
2

)4
+ (1 + t2)

(
u(t) + t6 − 15

√
π

8
t
)2

]
dt (41)

subject to
C
0 D

3
2
t x(t) = tx2(t) + u(t) (42)

and the initial conditions x(0) = x′(0) = 0. For this problem, the state and control functions

x(t) = t
5
2 , u(t) = −t6 +

15
√

π

8
t

minimize the performance index with the optimal value J = 0. We have solved this problem by both approaches.
The numerical results of applying Approach I to this problem, with different values of M, are presented in
Figure 3 and Table 3. Figure 3 displays the approximate state (left) and control (right) functions obtained by
M = 1, 3, 5, 7, together with the exact ones, while Table 3 reports the approximate values of the performance
index. Here, we show that Approach II gives the exact solution by considering M = 1. To do this, we suppose that

C
0 D

3
2
t x(t) = AT B(t) = a1

(
t − 1

2

)
+ a0

with

A = [a0, a1]
T and B(t) =

[
1, t − 1

2

]T
.

Therefore, we have

x(t) = AT P
3
2

t B(t) =
2

3
√

π
(2a0 − a1)t

3
2 +

8
15
√

π
a1t

5
2 , (43)

where

P
3
2

t =

⎡⎣ 4
3
√

π
t

3
2 0

− 2
5
√

π
t

3
2 8

15
√

π
t

3
2

⎤⎦ .

Using the dynamical control-affine system given by (42), we get

u(t) = a1

(
t − 1

2

)
+ a0 − t

(
2

3
√

π
(2a0 − a1)t

3
2 +

8
15
√

π
a1t

5
2

)2

= − 64a2
1

225π
t6 +

(
32a2

1
45π

− 64a0a1

45π

)
t5 +

(
16a0a1

9π
− 16a2

0
9π

− 4a2
1

9π

)
t4 + a1t + a0 − a1

2
.

(44)

By substituting (43) and (44) into (41), the value of the integral can be easily computed. Then, by taking
into account the optimality condition, a system of nonlinear algebraic equations is obtained. Finally, by solving
this system, we obtain

a0 =
15
√

π

16
, a1 =

15
√

π

8
.

By taking into account these values in (43) and (44), the exact optimal state and control functions are
obtained. Lotfi et al. have solved this problem using an operational matrix technique based on the Legendre
orthonormal functions combined with the Gauss quadrature rule. In their method, the approximate value of the
minimum performance index with five basis functions has been reported as 7.82 × 10−9 while our suggested
Approach II gives the exact value only with two basis functions.

14
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Figure 3. (Example 2.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach I with different values of M.

Table 3. (Example 2.) Numerical results for the performance index obtained by Approach I with
different M.

M 1 3 5 7

J 5.24 × 10−4 7.59 × 10−6 4.65 × 10−7 5.86 × 10−8

As we see, in this example, Approach II yields the exact solution with a small computational cost, while the
precision of the results of Approach I increases by enlarging M. Note that here the optimal state function is not
an infinitely smooth function.

Example 3. As our last example, we consider the following FOC-AP [32]:

min J =
∫ 1

0

⎡⎢⎣et
(

x(t)− t4 + t − 1
)2

+ (1 + t2)

⎛⎝u(t) + 1 − t + t4 − 8000

77Γ
(

1
10

) t
21
10

⎞⎠2
⎤⎥⎦ dt

subject to

C
0 D

1.9
t x(t) = x(t) + u(t),

x(0) = 1, x′(0) = −1.

For this example, the following state and control functions minimize the performance index J with minimum
value J = 0:

x(t) = t4 − t + 1, u(t) = −t4 +
8000

77Γ
(

1
10

) t
21
10 + t − 1.

This problem has been solved using the proposed methods with different values of M. By considering
M = 1, the numerical results of Approach I are shown in Figure 4. In this case, an approximation of the
performance index is obtained as J = 7.21 × 10−1. By choosing M = 2, according to our numerical method,
we have n = 2. Therefore, we set

x′′(t) = AT B(t),

where

A = [a0, a1, a2], B(t) =
[

1, t − 1
2

, t2 − t +
1
6

]T
.

Hence, using the initial conditions, the state function can be approximated by

x(t) = AT P2
t B(t)− t + 1 =

a2

12
t4 +

a1 − a2

6
t3 +

( a0

2
− a1

4
+

a2

12

)
t2 − t + 1,
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where

P2
t =

⎡⎢⎣
t2

2 0 0
− t2

6
t2

6 0
t2

36 − t2

12
t2

12

⎤⎥⎦ .

In the continuation of the method, we find an approximation of the control function u using the control-affine
dynamical system. Then, the method proceeds until solving the resulting system, which yields

a0 = 4, a1 = 12, a2 = 12.

These values give us the exact solution of the problem. This problem has been solved in [32] with five basis
functions and the minimum value was obtained as J = 5.42 × 10−7 while our suggested Approach I gives the
exact value with only three basis functions.

In the implementation of Approach II, we consider different values of M and report the results in Table 4
and Figure 5. These results confirm that the numerical solutions converge to the exact one by increasing the
value of M. Nevertheless, we see that since the exact state function x is a smooth function, it takes much less
computational effort to solve this problem by using Approach I.

Table 4. (Example 3.) Numerical results for the performance index obtained by Approach II with
different M.

M 2 4 6 8

J 3.79 × 10−4 5.42 × 10−7 1.21 × 10−8 7.36 × 10−10

Figure 4. (Example 3.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach I with M = 1.

Figure 5. (Example 3.) Comparison between the exact and approximate state (left) and control (right)
functions obtained by Approach II with different values of M.
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7. Conclusions

Two numerical approaches have been proposed for solving variable-order fractional optimal
control-affine problems. They use an accurate operational matrix of variable-order fractional
integration for Bernoulli polynomials, to give approximations of the optimal state and control functions.
These approximations, along with the Gauss–Legendre quadrature formula, are used to reduce the
original problem to a system of algebraic equations. An approximation of the optimal performance
index and an error bound were given. Some examples have been solved to illustrate the accuracy and
applicability of the new techniques. From the numerical results of Examples 1 and 3, it can be seen that
our Approach I leads to very high accuracy results with a small number of basis functions for optimal
control problems in which the state function that minimizes the performance index is an infinitely
smooth function. Moreover, from the results of Example 2, we conclude that Approach II may give

much more accurate results than Approach I in the cases that the smoothness of C
0 Dα(t)

t x(t) is more
than x(n)(t).
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Abstract: A number of applications from mathematical programmings, such as minimization
problems, variational inequality problems and fixed point problems, can be written as equilibrium
problems. Most of the schemes being used to solve this problem involve iterative methods, and for that
reason, in this paper, we introduce a modified iterative method to solve equilibrium problems in real
Hilbert space. This method can be seen as a modification of the paper titled “A new two-step proximal
algorithm of solving the problem of equilibrium programming” by Lyashko et al. (Optimization and
its applications in control and data sciences, Springer book pp. 315–325, 2016). A weak convergence
result has been proven by considering the mild conditions on the cost bifunction. We have given the
application of our results to solve variational inequality problems. A detailed numerical study on
the Nash–Cournot electricity equilibrium model and other test problems is considered to verify the
convergence result and its performance.

Keywords: pseudomonotone bifunction; Lipschitz-type conditions; equilibrium problem; variational
inequalities

1. Introduction

An equilibrium problem (EP) is a generalized concept that unifies several mathematical problems,
such as the variational inequality problems, minimization problems, complementarity problems,
the fixed point problems, non-cooperative games of Nash equilibrium, the saddle point problems
and scalar and vector minimization problems (see e.g., [1–3]). The particular form of an equilibrium
problem was firstly established in 1992 by Muu and Oettli [4] and then further elaborated by Blum and
Oettli [1]. Next, we consider the concept of an equilibrium problem introduced by Blum and Oettli
in [1]. Let C be a non-empty, closed and convex subset H of a real Hilbert space and f : H×H → R is
bifunction with f (v, v) = 0, for each v ∈ C. A equilibrium problem regarding f on the set C is defined
in the following way:

Find p ∈ C such that f (p, v) ≥ 0, for all v ∈ C. (1)

Many methods have been already established over the past couple of years to figure out the
equilibrium problem in Hilbert spaces [5–15], the inertial methods [11,16–18] and others in [18–24].
In particular, Tran et al. introduced an iterative scheme in [8], in that a sequence {un} was generated
in the following way:

Axioms 2020, 9, 127; doi:10.3390/axioms9040127 www.mdpi.com/journal/axioms19
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⎧⎪⎪⎨⎪⎪⎩
u0 ∈ C,
vn = arg min{λ f (un, y) + 1

2‖un − y‖2 : y ∈ C},

un+1 = arg min{λ f (vn, y) + 1
2‖un − y‖2 : y ∈ C},

(2)

where 0 < λ < min
{ 1

2c1
, 1

2c2

}
and c1, c2 are Lipschitz constants. Lyashko et al. [25] in 2016 introduced

an improvement of the method (2) to solve equilibrium problem and sequence {un} was generated in
the following way: ⎧⎪⎪⎨⎪⎪⎩

u0, v0 ∈ C,
un+1 = arg min{λ f (vn, y) + 1

2‖un − y‖2 : y ∈ C},

vn+1 = arg min{λ f (vn, y) + 1
2‖un+1 − y‖2 : y ∈ C},

(3)

where 0 < λ < 1
2c2+4c1

and c1, c2 are Lipschitz constants.
In this paper, we consider the extragradient method in (3) and to provide its improvement by

using the inertial scheme [26] and continue to improve the step size rule for its second step. The step
size is not fixed in our case, but it is dependent on a particular formula by using prior information of
the bifunction values. A weak convergence theorem dealing with the suggested technique is presented
by having the specific bi-functional condition. We have also considered how our results are presented
to the problems of a variational inequality. A few other formulations of the problem of variational
inequalities are discussed, and many computational examples in finite and infinite dimensions spaces
are also presented to demonstrate the applicability of our proposed results.

In this study, we study the equilibrium problem through the following assumptions:

( f1) A bifunction f : H×H → R is said to be (see [1,27]) pseudomonotone on C if

f (v1, v2) ≥ 0 =⇒ f (v2, v1) ≤ 0, for all v1, v2 ∈ C.

( f2) A bifunction f : H×H → R is said to be Lipschitz-type continuous [28] on C if there exist
c1, c2 > 0 such that

f (v1, v3) ≤ f (v1, v2) + f (v2, v3) + c1‖v1 − v2‖2 + c2‖v2 − v3‖2, for all v1, v2, v3 ∈ C.

( f3) lim sup
n→+∞

f (vn, z) ≤ f (v∗, z) for each z ∈ C and {vn} ⊂ C satisfying vn ⇀ v∗;

( f4) f (u, ·) is convex and subdifferentiable on H for each u ∈ H.

The rest of this paper will be organized as follows: In Section 2, we give a few definitions
and important lemmas to be used in this paper. Section 3 includes the main algorithm involving
pseudomonotone bifunction and provides a weak convergence theorem. Section 4 describes some
applications in the variational inequality problems. Section 5 sets out the numerical studies to
demonstrate the algorithmic efficiency.

2. Preliminaries

In this section, some important lemmas and basic definitions are provided. Moreover, EP( f , C)
denotes the solution set of an equilibrium problem on the set C and p is any arbitrary element
of EP( f , C).

A metric projection PC(u) of u onto a closed, convex subset C of H is defined by

PC(u) = arg min
v∈C

{‖v − u‖}.

Lemma 1. [29] Let PC : H → C be a metric projection from H onto C. Then

20
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(i) For all u ∈ C, v ∈ H and

‖u − PC(v)‖2 + ‖PC(v)− v‖2 ≤ ‖u − v‖2.

(ii) w = PC(u) if and only if
〈u − w, v − w〉 ≤ 0, for all v ∈ C.

Lemma 2. [29] For all u, v ∈ H with � ∈ R. Then, the following relationship is holds.

‖�u + (1 −�)v‖2 = �‖u‖2 + (1 −�)‖v‖2 −�(1 −�)‖u − v‖2.

Assume that g : C → R be a convex function and subdifferential of g at u ∈ C is defined by

∂g(u) = {w ∈ C : g(v)− g(u) ≥ 〈w, v − u〉, for all v ∈ C}.

Given that f (u, .) is convex and subdifferentiable on H for each fixed u ∈ H and subdifferential of
f (u, .) at x ∈ H defined by

∂2 f (u, .)(x) = ∂2 f (u, x) = {z ∈ H : f (u, v)− f (u, x) ≥ 〈z, v − x〉, for all v ∈ H}.

A normal cone of C at u ∈ C is defined by

NC(u) = {w ∈ H : 〈w, v − u〉 ≤ 0, for all v ∈ C}.

Lemma 3. [30] Assume that C is a nonempty, closed and convex subset of a real Hilbert space H and h : C → R

be a convex, lower semi-continuous and subdifferentiable function on C. Then, u ∈ C is a minimizer of a function
h if and only if 0 ∈ ∂h(u) + NC(u) where ∂h(u) and NC(u) denotes the subdifferential of h at u and the normal
cone of C at u, respectively.

Lemma 4. [31] Let an, bn and cn are non-negative real sequences such that

an+1 ≤ an + bn(an − an−1) + cn, for all n ≥ 1, with
+∞

∑
n=1

cn < +∞,

where b > 0 such that 0 ≤ bn ≤ b < 1 for all n ∈ N. Then, the following relations are true.

(i)
+∞

∑
n=1

[an − an−1]+ < +∞, with [s]+ := max{s, 0};

(ii) limn→+∞ an = a∗ ∈ [0,+∞).

Lemma 5. [32] Let a sequence {an} in H and C ⊂ H and the following conditions have been met:

(i) for each a ∈ C, limn→+∞ ‖an − a‖ exists;
(ii) each weak sequentially limit point of {an} belongs to set C.

Then, {an} weakly converges to an element in C.

3. Main Results

In this section, we present our main algorithm and provide a weak convergence theorem for our
proposed method. The detailed method is given below.

Remark 1. By Expression (5), we obtain

λn+1

[
f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖vn − un+1‖2

]
≤ μ f (vn, un+1). (4)
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Lemma 6. Let {un} be a sequence generated by Algorithm 1. Then, the following inequality holds.

μλn f (vn, y)− μλn f (vn, un+1) ≥ 〈ρn − un+1, y − un+1〉, for all y ∈ C.

Algorithm 1 Modified Popov’s subgradient extragradient-like iterative scheme.

Step 1: Choose u−1, v−1, u0, v0 ∈ H and a sequence ℘n is non-decreasing such that 0 ≤ ℘n ≤ ℘ < 1
3 ,

λ0 > 0 and 0 < σ < min
{

1−3℘
(1−℘)2+4c1(℘+℘2)

, 1
2c2+4c1(1+℘)

}
and μ ∈ (0, σ).

Step 2: Evaluate

un+1 = arg min{μλn f (vn, y) +
1
2
‖ρn − y‖2 : y ∈ C},

where ρn = un + ℘n(un − un−1).

Step 3: Updated the step size in the following order:

λn+1 =

⎧⎪⎪⎨⎪⎪⎩
min

{
σ, μ f (vn ,un+1)

f (vn−1,un+1)− f (vn−1,vn)−c1‖vn−1−vn‖2−c2‖un+1−vn‖2+1

}
,

if μ f (vn ,un+1)
f (vn−1,un+1)− f (vn−1,vn)−c1‖vn−1−vn‖2−c2‖un+1−vn‖2+1 > 0,

λ0 else.

(5)

Step 4: Evaluate

vn+1 = arg min{λn+1 f (vn, y) +
1
2
‖ρn+1 − y‖2 : y ∈ C},

where ρn+1 = un+1 + ℘n+1(un+1 − un). If un+1 = vn = ρn or ρn+1 = vn+1 = vn then Stop.
Else, take n := n + 1 and go back to Step 2.

Proof. By the use of Lemma 3, we get

0 ∈ ∂2

{
μλn f (vn, y) +

1
2
‖ρn − y‖2

}
(un+1) + NC(un+1).

From above there is a ω ∈ ∂2 f (vn, un+1) and ω ∈ NC(un+1) such that

μλnω + un+1 − ρn + ω = 0.

Therefore, we obtain

〈ρn − un+1, y − un+1〉 = μλn〈ω, y − un+1〉+ 〈ω, y − un+1〉, for all y ∈ C.

Due to ω ∈ NC(un+1) then 〈ω, y − un+1〉 ≤ 0, for each y ∈ C. It implies that

μλn〈ω, y − un+1〉 ≥ 〈ρn − un+1, y − un+1〉, for all y ∈ C. (6)

Given that ω ∈ ∂2 f (vn, un+1), we have

f (vn, y)− f (vn, un+1) ≥ 〈ω, y − un+1〉, for all y ∈ H. (7)

By combining Expressions (6) and (7), we obtain

μλn f (vn, y)− μλn f (vn, un+1) ≥ 〈ρn − un+1, y − un+1〉, for all y ∈ C.
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Lemma 7. Let {vn} be a sequence generated by Algorithm 1. Then, the following inequality holds.

λn+1 f (vn, y)− λn+1 f (vn, vn+1) ≥ 〈ρn+1 − vn+1, y − vn+1〉, for all y ∈ C.

Proof. The proof is same as the proof of Lemma 6.

Lemma 8. If un+1 = vn = ρn and ρn+1 = vn+1 = vn in Algorithm 1, then vn ∈ EP( f , C).

Proof. The proof of this can easily be seen from Lemmas 6 and 7.

Lemma 9. Let f : H × H → R be a bifunction and satisfies the conditions ( f1)–( f4). Then, for each
p ∈ EP( f , C) �= ∅, we have

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1 − λn+1)‖un+1 − ρn‖2 + 4c1λn+1λn‖ρn − vn−1‖2

− λn+1(1 − 4c1λn)‖ρn − vn‖2 − λn+1(1 − 2c2λn)‖un+1 − vn‖2.

Proof. By Lemma 6, we obtain

μλn f (vn, p)− μλn f (vn, un+1) ≥ 〈ρn − un+1, p − un+1〉. (8)

Thus, p ∈ EP( f , C) and the condition ( f1) implies that f (vn, p) ≤ 0. From (8), we have

〈ρn − un+1, un+1 − p〉 ≥ μλn f (vn, un+1). (9)

From Expression (4), we obtain

μ f (vn, un+1) ≥ λn+1
(

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖vn − un+1‖2). (10)

Combining expression (9) and (10), implies that

〈ρn − un+1, un+1 − p〉 ≥ λn+1

[
λn
{

f (vn−1, un+1)− f (vn−1, vn)
}

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(11)

By Lemma 7, we have

λn
{

f (vn−1, un+1)− f (vn−1, vn)
} ≥ 〈ρn − vn, un+1 − vn〉. (12)

Thus, combining (11) and (12) we get

〈ρn − un+1, un+1 − p〉 ≥ λn+1

[
〈ρn − vn, un+1 − vn〉

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(13)

We have the following mathematical expressions:

2〈ρn − un+1, un+1 − p〉 = ‖ρn − p‖2 − ‖un+1 − ρn‖2 − ‖un+1 − p‖2.

2〈ρn − vn, un+1 − vn〉 = ‖ρn − vn‖2 + ‖un+1 − vn‖2 − ‖ρn − un+1‖2.
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From the above equation and (13), we have

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1 − λn+1)‖un+1 − ρn‖2 − λn+1(1 − 2c2λn)‖un+1 − vn‖2

− λn+1‖ρn − vn‖2 + λn+1(2c1λn)‖vn−1 − vn‖2

We also have

‖vn−1 − vn‖2 ≤ (‖vn−1 − ρn‖+ ‖ρn − vn‖
)2 ≤ 2‖vn−1 − ρn‖2 + 2‖ρn − vn‖2.

Finally, we get

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1 − λn+1)‖un+1 − ρn‖2 + 4c1λnλn+1‖ρn − vn−1‖2

− λn+1(1 − 4c1λn)‖ρn − vn‖2 − λn+1(1 − 2c2λn)‖un+1 − vn‖2.

Theorem 1. Assume that f : H×H → R satisfies the conditions ( f1)–( f4). Then, for some p ∈ EP( f , C) �= ∅,
the sequence {ρn}, {un} and {vn} generated by Algorithm 1, weakly converge to p ∈ EP( f , C).

Proof. By Lemma 9, we obtain

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1 − λn+1)‖un+1 − ρn‖2 + 4c1λnλn+1‖ρn − vn−1‖2

− λn+1(1 − 4c1λn)‖ρn − vn‖2 − λn+1(1 − 2c2λn)‖un+1 − vn‖2. (14)

By definition of ρn in the Algorithm 1, we have

‖ρn − vn−1‖2 = ‖un + ℘n(un − un−1)− vn−1‖2

= ‖(1 + ℘n)(un − vn−1)− ℘n(un−1 − vn−1)‖2

= (1 + ℘n)‖un − vn−1‖2 − ℘n‖un−1 − vn−1‖2 + ℘n(1 + ℘n)‖un − un−1‖2

≤ (1 + ℘)‖un − vn−1‖2 + ℘(1 + ℘)‖un − un−1‖2. (15)
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Adding the term 4c1σλn+1(1 + ℘)‖un+1 − vn‖2 on both sides in (14) with (15) for n ≥ 1, we have

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ ‖ρn − p‖2 − (1 − σ)‖un+1 − ρn‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

+ 4c1σλn
[
(1 + ℘)‖un − vn−1‖2 + ℘(1 + ℘)‖un − un−1‖2]

− λn+1(1 − 4c1σ)‖ρn − vn‖2 − λn+1(1 − 2c2σ)‖un+1 − vn‖2 (16)

≤ ‖ρn − p‖2 − (1 − σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2 − λn+1(1 − 4c1σ)‖ρn − vn‖2

− λn+1(1 − 2c2σ − 4c1σ(1 + ℘))‖un+1 − vn‖2 (17)

≤ ‖ρn − p‖2 − (1 − σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2

− λn+1

2
(1 − 2c2σ − 4c1σ(1 + ℘))

[
2‖un+1 − vn‖2 + 2‖ρn − vn‖2] (18)

≤ ‖ρn − p‖2 − (1 − σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2

− λn+1

2
(1 − 2c2σ − 4c1σ(1 + ℘))‖un+1 − ρn‖2. (19)

Given that 0 < λn ≤ σ < 1
2c2+4c1(1+℘)

, then the last inequality turns into

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ ‖ρn − p‖2 − (1 − σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2. (20)

From the definition of ρn, we have

‖ρn − p‖2 = ‖un + ℘n(un − un−1)− p‖2

= ‖(1 + ℘n)(un − p)− ℘n(un−1 − p)‖2

= (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘n(1 + ℘n)‖un − un−1‖2. (21)

From ρn+1, we obtain

‖un+1 − ρn‖2 = ‖un+1 − un − ℘n(un − un−1)‖2

= ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − 2℘n〈un+1 − un, un − un−1〉 (22)

≥ ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − 2℘n‖un+1 − un‖‖un − un−1‖

≥ ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − ℘n‖un+1 − un‖2 − ℘n‖un − un−1‖2

= (1 − ℘n)‖un+1 − un‖2 + (℘2
n − ℘n)‖un − un−1‖2. (23)
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Combining the Expressions (20), (21) and (23) we have

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘n(1 + ℘n)‖un − un−1‖2

− (1 − σ)
[
(1 − ℘n)‖un+1 − un‖2 + (℘2

n − ℘n)‖un − un−1‖2]
+ 4c1σλn(1 + ℘)‖un − vn−1‖2 + 4c1σ(℘+ ℘2)‖un − un−1‖2 (24)

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+
[
℘(1 + ℘)− (1 − σ)(℘2

n − ℘n) + 4c1σ(℘+ ℘2)
]
‖un − un−1‖2

− (1 − σ)(1 − ℘n)‖un+1 − un‖2 (25)

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ rn‖un − un−1‖2 − qn‖un+1 − un‖2, (26)

where
rn =

[
℘(1 + ℘)− (1 − σ)(℘2

n − ℘n) + 4c1σ(℘+ ℘2)
]
;

qn = (1 − σ)(1 − ℘n).

Assume that
Γn = Ψn + rn‖un − un−1‖2,

where Ψn = ‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2. Next, (26) implies that

Γn+1 − Γn

= ‖un+1 − p‖2 − ℘n+1‖un − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2 + rn+1‖un+1 − un‖2

− ‖un − p‖2 + ℘n‖un−1 − p‖2 − 4c1σλn(1 + ℘)‖un − vn−1‖2 − rn‖un − un−1‖2

≤ ‖un+1 − p‖2 − (1 + ℘n)‖un − p‖2 + ℘n‖un−1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

+ rn+1‖un+1 − un‖2 − 4c1σλn(1 + ℘)‖un − vn−1‖2 − rn‖un − un−1‖2

≤ −(qn − rn+1)‖un+1 − un‖2. (27)

Next, we have to compute

(qn − rn+1) = (1 − σ)(1 − ℘n)− ℘(1 + ℘) + (1 − σ)(℘2
n − ℘n)− 4c1σ(℘+ ℘2)

≥ (1 − σ)(1 − ℘)2 − ℘(1 + ℘)− 4c1σ(℘+ ℘2)

= (1 − ℘)2 − ℘(1 + ℘)− σ(1 − ℘)2 − 4c1σ(℘+ ℘2)

= 1 − 3℘− σ
(
(1 − ℘)2 + 4c1(℘+ ℘2)

)
≥ 0. (28)

By the use of (27) and (28) for some δ ≥ 0 implies that

Γn+1 − Γn ≤ −(qn − rn+1)‖un+1 − un‖2 ≤ −δ‖un+1 − un‖2 ≤ 0. (29)

The relation (29) implies that {Γn} is non-increasing. From Γn+1 we have

Γn+1 = ‖un+1 − p‖2 − ℘n+1‖un − p‖2 + rn+1‖un+1 − un‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≥ −℘n+1‖un − p‖2.
(30)
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By definition Γn, we have

‖un − p‖2 ≤ Γn + ℘n‖un−1 − p‖2

≤ Γ1 + ℘‖un−1 − p‖2

≤ · · · ≤ Γ1(℘
n−1 + · · ·+ 1) + ℘n‖u0 − p‖2

≤ Γ1

1 − ℘
+ ℘n‖u0 − p‖2. (31)

From Equations (30) and (31), we obtain

−Γn+1 ≤ ℘n+1‖un − p‖2

≤ ℘‖un − p‖2

≤ ℘
Γ1

1 − ℘
+ ℘n+1‖u0 − p‖2. (32)

It follows (29) and (32) that

δ
k

∑
n=1

‖un+1 − un‖2 ≤ Γ1 − Γk+1

≤ Γ1 + ℘
Γ1

1 − ℘
+ ℘k+1‖u0 − p‖2

≤ Γ1

1 − ℘
+ ‖u0 − p‖2. (33)

By letting k → +∞ in (33), we obtain

+∞

∑
n=1

‖un+1 − un‖2 < +∞ implies that lim
n→+∞

‖un+1 − un‖ = 0. (34)

From Expressions (22) with (34), we obtain

‖un+1 − ρn‖ → 0 as n → +∞. (35)

From (32), we have

− Ψn+1 ≤ ℘
Γ1

1 − ℘
+ ℘n+1‖u0 − p‖2 + rn+1‖un+1 − un‖2. (36)

From Expression (18) and using (21), we have

λn+1(1 − 2c2σ − 4c1σ(1 + ℘))
[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Ψn − Ψn+1 + ℘(1 + ℘)‖un − un−1‖2 + 4c1σ℘(1 + ℘)‖un − un−1‖2.

(37)
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Fix k ∈ N and using above expression for n = 1, 2, · · · , k. Summing them up, we obtain

λn+1(1 − 2c2σ − 4c1σ(1 + ℘))
k

∑
n=1

[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Ψ0 − Ψk+1 + ℘(1 + ℘)

k

∑
n=1

‖un − un−1‖2 + 4c1σ℘(1 + ℘)
k

∑
n=1

‖un − un−1‖2

≤ Ψ0 + ℘
Γ1

1 − ℘
+ ℘k+1‖u0 − p‖2 + rk+1‖uk+1 − uk‖2

+ ℘(1 + ℘)
k

∑
n=1

‖un − un−1‖2 + 4c1σ℘(1 + ℘)
k

∑
n=1

‖un − un−1‖2, (38)

letting k → +∞, and due to sum of the positive terms series, we obtain

+∞

∑
n=1

‖un+1 − vn‖2 < +∞ and
+∞

∑
n=1

‖ρn − vn‖2 < +∞. (39)

Moreover, we obtain
lim

n→+∞
‖un+1 − vn‖ = lim

n→+∞
‖ρn − vn‖ = 0. (40)

By using the triangular inequality, we get

lim
n→+∞

‖un − vn‖ = lim
n→+∞

‖un − ρn‖ = lim
n→+∞

‖vn−1 − vn‖ = 0. (41)

It is follow from the relation (24), we obtain

‖un+1 − p‖2

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘(1 + ℘)‖un − un−1‖2

+ 4c1σ(1 + ℘)‖un − vn−1‖2 + 4c1σ(℘+ ℘2)‖un − un−1‖2, (42)

with (34), (39) and Lemma 4 imply that the sequences ‖un − p‖, ‖ρn − p‖ and ‖vn − p‖ limits exist for
every p ∈ EP( f , C). It means that {un}, {ρn} and {vn} are bounded sequences. Take z an arbitrary
sequential cluster point of the sequence {un}. Now our aim to prove that z ∈ EP( f , C). By Lemma 6
with Expressions (10) and (12), we write

μλnk f (vnk , y) ≥ μλnk f (vnk , unk+1) + 〈ρnk − unk+1, y − unk+1〉
≥ λnk λnk+1 f (vnk−1, unk+1)− λnk λnk+1 f (vnk−1, vnk )− c1λnk λnk+1‖vnk−1 − vnk‖2

− c2λnk λnk+1‖vnk − unk+1‖2 + 〈ρnk − unk+1, y − unk+1〉
≥ λnk+1〈ρnk − vnk , unk+1 − vnk 〉 − c1λnk λnk+1‖vnk−1 − vnk‖2

− c2λnk λnk+1‖vnk − unk+1‖2 + 〈ρnk − unk+1, y − unk+1〉 (43)

where y in C. Next, from (35), (40), (41) and due to boundedness of {un} gives that the right hand side
reaches to zero. Due to μ, λnk > 0 and vnk ⇀ z, we have

0 ≤ lim sup
k→+∞

f (vnk , y) ≤ f (z, y), for all y ∈ C. (44)

Thus, z ∈ C implies that f (z, y) ≥ 0, for all y ∈ C. It proves that z ∈ EP( f , C). By Lemma 5,
the sequence {un} converges weakly to p ∈ EP( f , C).

If ℘n = 0 in Algorithm 1, we have a better version of Lyashko et al. [25] extragradient method in
terms of step size improvement.
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Corollary 1. Let f : H×H → R satisfy the conditions ( f1)-( f4). For some p ∈ EP( f , C) �= ∅, the sequence
{un} and {vn} generated in the following way:

(i) Given u0, v−1, v0 ∈ H, 0 < σ < min
{

1, 1
2c2+4c1

}
, μ ∈ (0, σ) and λ0 > 0.

(ii) Compute ⎧⎪⎨⎪⎩
un+1 = arg min

y∈C
{μλn f (vn, y) + 1

2‖un − y‖2},

vn+1 = arg min
y∈C

{λn+1 f (vn, y) + 1
2‖un+1 − y‖2},

where

λn+1 =min
{

σ,
μ f (vn, un+1)

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖un+1 − vn‖2 + 1

}
.

Then, the sequences {un} and {vn} converge weakly to p ∈ EP( f , C).

4. Applications

Now, we consider the applications of Theorem 1 to solve the variational inequality problems
involving pseudomonotone and Lipschitz continuous operator. A variational inequality problem is
defined in the following way:

Find p∗ ∈ C such that
〈

F(p∗), v − p∗
〉 ≥ 0, for all v ∈ C.

We consider that F meets the following conditions.

(F1) Solution set VI(F, C) is non-empty and F is pseudomonotone on C, i.e.,〈
F(u), v − u

〉 ≥ 0 implies that
〈

F(v), u − v
〉 ≤ 0, for all u, v ∈ C;

(F2) F is L-Lipschitz continuous on C if there exists a positive constants L > 0 such that

‖F(u)− F(v)‖ ≤ L‖u − v‖, for all u, v ∈ C.

(F3) lim sup
n→+∞

〈F(un), v − un〉 ≤ 〈F(p∗), v − p∗〉 for every v ∈ C and {un} ⊂ C satisfying un ⇀ p∗.

Corollary 2. Assume that F : C → H meet the conditions (F1)–(F3). Let {ρn}, {un} and {vn} be the sequences
are generated in the following way:

(i) Choose u−1, v−1, u0, v0 ∈ H and a sequence ℘n is non-decreasing such that 0 ≤ ℘n ≤ ℘ < 1
3 , λ0 > 0,

0 < σ < min
{

1−3℘
(1−℘)2+2L(℘+℘2)

, 1
3L+2℘L)

}
and μ ∈ (0, σ).

(ii) Compute {
un+1 = PC(ρn − μλnF(vn)), where ρn = un + ℘n(un − un−1),
vn+1 = PC(ρn+1 − λn+1F(vn)), where ρn+1 = un+1 + ℘n+1(un+1 − un),

while

λn+1 =min
{

σ,
μ〈Fvn, un+1 − vn〉

〈Fvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
.

Then, the sequence {ρn}, {un} and {vn} converge weakly to p.
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Corollary 3. Assume that F : C → H meets the conditions (F1)-(F3). Let {un} and {vn} be the sequences are
generated in the following way:

(i) Choose v−1, u0, v0 ∈ H, 0 < σ < min
{

1, 1
3L
}

and λ0 > 0.
(ii) Compute {

un+1 = PC(un − μλnF(vn)),
vn+1 = PC(un+1 − λn+1F(vn)),

while

λn+1 =min
{

σ,
μ〈Fvn, un+1 − vn〉

〈Fvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
.

Then, the sequence {un} and {vn} converge weakly to p.

5. Computational Illustration

Numerical findings are discussed in this section to show the efficiency of our suggested method.
Moreover, for Lyashko et al.’s [25] method (L.EgA), our proposed algorithm (Algo.1) and we use error
term Dn = ‖un+1 − un‖.

Example 1. Consider the Nash–Cournot equilibrium of electricity markets as in [7]. In this problem, there are
total three electricity producing firms: i (i = 1, 2, 3). The firm’s 1,2,3 have generating units named as I1 = {1},
I2 = {2, 3} and I3 = {4, 5, 6}, respectively. Assume that uj denote the producing power of the unit for
i = {1, 2, 3, 4, 5, 6}. Suppose that the value p of electricity can be taken as p = 378.4 − 2 ∑6

j=1 uj. The cost of
the manufacture j unit follows:

cj(uj) := max{ ◦
cj(uj),

•
cj(uj)},

where
◦
cj(uj) :=

◦
αj
2 u2

j +
◦
β juj +

◦
γj and

•
cj(uj) :=

•
αjuj +

•
β j

•
β j+1

•
γj

−1•
βj (uj)

(
•
βj+1)
•
βj . The values are provided in

◦
αj,

◦
β j,

◦
γj,

•
αj,

•
β j and

•
γj in Table 1. Profit of the firm i is

fi(u) := p ∑
j∈Ii

uj − ∑
j∈Ii

cj(uj) =
(

378.4 − 2
6

∑
l=1

ul

)
∑
j∈Ii

uj − ∑
j∈Ii

cj(uj),

where u = (u1, · · · , u6)
T with reference to set u ∈ C := {u ∈ R6 : umin

j ≤ uj ≤ umax
j }, with umin

j and umax
j

give in Table 2. Define the equilibrium bifunction f in the following way:

f (u, v) :=
3

∑
i=1

(
φi(u, u)− φi(u, v)

)
,

where

φi(u, v) :=
[

378.4 − 2
(

∑
j �∈Ii

uj + ∑
j∈Ii

vj

)]
∑
j∈Ii

vj − ∑
j∈Ii

cj(vj).

This model of electricity markets can be viewed as an equilibrium problem

Find u∗ ∈ C such that f (u∗, v) ≥ 0, for all v ∈ C.

Numerical conclusions have shown in Figures 1–4 and Table 3. For these numerical experiments we take
u−1 = v−1 = u0 = v0 = (48, 48, 30, 27, 18, 24)T and λ = 0.01, σ = 0.026, μ = 0.024, ℘n = 0.20, λ0 = 0.1.
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Table 1. Parameters for cost bi-function.

Unit j
◦
αj

◦
βj

◦
γj

•
αj

•
βj

•
γj

1 0.04 2 0 2 1 25
2 0.035 1.75 0 1.75 1 28.5714
3 0.125 1 0 1 1 8
4 0.0116 3.25 0 3.25 1 86.2069
5 0.05 3 0 3 1 20
6 0.05 3 0 3 1 20

Table 2. Values used for constraint set.

j umin
j umax

j

1 0 80
2 0 80
3 0 50
4 0 55
5 0 30
6 0 40

Figure 1. Example 1 while tolerance is 0.01.

Figure 2. Example 1 while tolerance is 0.001.
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Figure 3. Example 1 while tolerance is 0.0001.

Figure 4. Example 1 while tolerance is 0.00001.

Table 3. Figures 1–4 numerical values.

L.EgA Algo.1

TOL Iter. time (s) Iter. time (s)

0.01 125 7.3692 61 3.4055
u∗
L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

u∗
Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.001 2761 193.3939 2063 150.6757
u∗
L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

u∗
Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.0001 11,526 818.7184 4687 324.3571
u∗
L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

u∗
Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.00001 20,946 1449.3959 7307 526.9766
u∗
L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

u∗
Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

Example 2. Assume that the following cost bifunction f defined by

f (u, v) =
〈
(AAT + B + C)u, v − u

〉
,

on the convex set C = {u ∈ Rn : Du ≤ d} while D is an 100 × n matrix and d is a non-negative vector.
In the above bifunction definition we take A is an n × n matrix, B is an n × n skew-symmetric matrix,
C is an n × n diagonal matrix having diagonal entries are non-negative. The matrices are generated as;
A = rand(n), K = rand(n), B = 0.5K − 0.5KT and C = diag(rand(n,1)). The bifunction f is monotone and
having Lipschitz-type constants are c1 = c2 = 1

2‖AAT + B + C‖. Numerical results are presented in the
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Figures 5–8 and Table 4. For these numerical experiments we take u−1 = v−1 = u0 = v0 = (1, 1, · · · , 1)T and
λ = 1

10c1
, σ = 1

8c1
, μ = 1

8.2c1
, ℘n = 1

5 , λ0 = 1/4c1.

Figure 5. Example 2 for average number of iterations while n = 5.

Figure 6. Example 2 for average number of iterations while n = 10.

Figure 7. Example 2 for average number of iterations while n = 20.
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Figure 8. Example 2 for average number of iterations while n = 40.

Table 4. Numerical results for Figures 5–8.

L.EgA Algo.1

n T. Samples Avg Iter. Avg time(s) Avg Iter. Avg time(s)

5 10 35 0.8066 6 0.1438
10 10 51 1.1779 6 0.1302
20 10 84 1.7441 7 0.1801
40 10 30 0.6859 8 0.1999

Example 3. Assume that F : R2 → R2 is defined by

F(u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)

with C = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. It is not hard to check that F is Lipschitz continuous
with L = 5 and pseudomonotone. The step size λ = 10−6 for Lyashko et al. [25] and λ0 = 0.1, σ = 0.129,
℘n = 0.20 and μ = 0.119. Computational results are shown in the Table 5 and in Figures 9–12.

Figure 9. Example 3 while u0 = (1.5, 1.7).
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Figure 10. Example 3 while u0 = (2, 3).

Figure 11. Example 3 while u0 = (1, 2).

Figure 12. Example 3 while u0 = (2.7, 2.6).
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Table 5. Numerical results for Figures 9–12.

L.EgA Algo.1

u0 Iter. time(s) Iter. time(s)

(1.5, 1.7) 20 0.7506 8 0.5316
(2.0, 3.0) 21 0.7879 8 0.6484
(1.0, 2.0) 23 1.1450 14 0.9730
(2.7, 2.6) 19 0.7254 7 0.5835

Example 4. Let F : R2 → R2 is defined by

F(u) =

(
(u2

1 + (u2 − 1)2)(1 + u2)

−u3
1 − u1(u2 − 1)2

)

and C = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. Here, F is not monotone but pseudomonotone on C and
L-Lipschitz continuous through L = 5 (see, e.g., [33]). The stepsize λ = 10−2 for Lyashko et al. [25] and
λ0 = 0.01, σ = 0.129, ℘n = 0.15 and μ = 0.119. The computational experimental findings are written in
Table 6 and in Figures 13–15.

Figure 13. Example 4 while u0 = (10, 10).

Figure 14. Example 4 while u0 = (−10,−10).
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Figure 15. Example 4 while u0 = (10, 20).

Table 6. Figures 13–15 numerical values.

L.EgA Algo.1

u0 Iter. time(s) Iter. time(s)

(10, 10) 67 1.9151 31 1.0752
(−10,−10) 92 2.5721 71 2.0469
(10, 20) 60 1.7689 41 1.1864

6. Conclusions

We have established an extragradient-like method to solve pseudomonotone equilibrium
problems in real Hilbert space. The main advantage of the proposed method is that an iterative
sequence has been incorporated with a certain step size evaluation formula. The step size formula is
updated for each iteration based on the previous iterations. Numerical findings were presented to show
our algorithm’s numerical efficiency compared with other methods. Such numerical investigations
indicate that inertial effects often generally improve the effectiveness of the iterative sequence in
this context.
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19. Koskela, P.; Manojlović, V. Quasi-Nearly Subharmonic Functions and Quasiconformal Mappings.
Potential Anal. 2012, 37, 187–196. [CrossRef]

20. Ur Rehman, H.; Kumam, P.; Argyros, I.K.; Shutaywi, M.; Shah, Z. Optimization Based Methods for Solving
the Equilibrium Problems with Applications in Variational Inequality Problems and Solution of Nash
Equilibrium Models. Mathematics 2020, 8, 822. [CrossRef]

21. Rehman, H.U.; Kumam, P.; Dong, Q.L.; Peng, Y.; Deebani, W. A new Popov’s subgradient extragradient
method for two classes of equilibrium programming in a real Hilbert space. Optimization 2020, 1–36. [CrossRef]

22. Yordsorn, P.; Kumam, P.; ur Rehman, H.; Ibrahim, A.H. A Weak Convergence Self-Adaptive Method
for Solving Pseudomonotone Equilibrium Problems in a Real Hilbert Space. Mathematics 2020, 8, 1165.
[CrossRef]
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Abstract: A plethora of applications in non-linear analysis, including minimax problems,
mathematical programming, the fixed-point problems, saddle-point problems, penalization and
complementary problems, may be framed as a problem of equilibrium. Most of the methods
used to solve equilibrium problems involve iterative methods, which is why the aim of this
article is to establish a new iterative method by incorporating an inertial term with a subgradient
extragradient method to solve the problem of equilibrium, which includes a bifunction that is strongly
pseudomonotone and meets the Lipschitz-type condition in a real Hilbert space. Under certain mild
conditions, a strong convergence theorem is proved, and a required sequence is generated without
the information of the Lipschitz-type cost bifunction constants. Thus, the method operates with the
help of a slow-converging step size sequence. In numerical analysis, we consider various equilibrium
test problems to validate our proposed results.

Keywords: equilibrium problem; variational inequalities; strongly pseudomonotone bifunction;
Lipschitz-type conditions

1. Background

Assume that a bifunction f : H×H → R satisfying the conditions f (v, v) = 0 for each v ∈ K.
A equilibrium problem [1,2] for f on K is said to be:

Find v∗ ∈ K such that f (v∗, v) ≥ 0, ∀ v ∈ K. (1)

where K is a non-empty closed and convex subset of a Hilbert space H. Next, we present the definitions
of the important classification of the problems of equilibrium [1,3]. A function f : H×H → R on K
for γ > 0 is said to be

(i) strongly monotone if

f (v1, v2) + f (v2, v1) ≤ −γ‖v1 − v2‖2, ∀ v1, v2 ∈ K;

(ii) monotone if
f (v1, v2) + f (v2, v1) ≤ 0, ∀ v1, v2 ∈ K;

(iii) γ-strongly pseudo-monotone if

f (v1, v2) ≥ 0 =⇒ f (v2, v1) ≤ −γ‖v1 − v2‖2, ∀ v1, v2 ∈ K;

Axioms 2020, 9, 137; doi:10.3390/axioms9040137 www.mdpi.com/journal/axioms41
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(iv) pseudo-monotone if
f (v1, v2) ≥ 0 =⇒ f (v2, v1) ≤ 0, ∀ v1, v2 ∈ K;

and
(v) satisfy the Lipschitz-type conditions on K for L1, L2 > 0, such that

f (v1, v3)− L1‖v1 − v2‖2 − L2‖v2 − v3‖2 ≤ f (v1, v2) + f (v2, v3), ∀ v1, v2, v3 ∈ K.

The above well-defined simple mathematical problem (1) includes many mathematical and
applied sciences problems as a special case, consisting of the fixed point problems, vector and scalar
minimization problems, problems of variational inequalities (VIP), the complementarity problems,
the Nash equilibrium problems in non-cooperative games, and inverse optimization problems [1,4,5].
This problem is also seen as a problem of Ky Fan inequality based on his initial contribution [2].
Several researchers have developed and generalized numerous findings on the nature of a solution
to an equilibrium problem. (e.g., see [2,4,6,7]). Due to the basic formulation of a problem (1) and its
application in both the theoretical and applied sciences, it has been extensively studied in recent times
by several authors [8,9] (see also [10–16]).

Many methods have been previously established and considered their convergence investigation
to deal with the problem (1). There is an impressive number of numerical methods have been designed
along with their well-defined convergence analysis and theoretical properties to solve the problem (1)
in different dimensional spaces [17–22]. Regularization is one of the most significant methods to figure
out various ill-posed problems in the many fields of pure and applied mathematics. The prominent
aspect of the regularization method is to employ it on monotone equilibrium problems and the initial
problem converts into strongly monotone equilibrium sub-problem. Therefore, each computationally
efficient sub-problem is strongly monotone and a unique solution exists.

A proximal method is another approach to deal with equilibrium problems that rely on numerical
minimization problems [23]. This method has also been identified as the extragradient method [24]
based on the initial contribution of the Korpelevich [25] method to solve the saddle point problems.
Hieu [26] established an algorithmic sequence {un} as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0 ∈ K
vn = arg min

v∈K
{ζn f (un, v) + 1

2‖un − v‖2},

un+1 = arg min
v∈K

{ζn f (vn, v) + 1
2‖un − v‖2},

(2)

while {ζn} meet the following conditions:

C1 : lim
n→+∞

ζn = 0 and C2 :
+∞

∑
n=1

ζn = +∞. (3)

Inertial-like methods are two-step iterative methods, where the next iteration is carried out by
employing the previous two iterations [27,28]. The inertial interpolation term is required to boost the
sequence and help to improve the convergence rate of the iterative sequence. Such inertial methods
are essentially used to speed up the iterative sequence to the appropriate solution and to improve
the convergence rate. Numerical descriptions demonstrate that inertial effects also enhance the
numerical performance. Such impressive attributes increase the curiosity of researchers in creating
inertial methods. Recently, various inertial methods have also been established for specific types of
equilibrium problems [29–32].

In this paper, we use the projection method that is simple to carry out due to its low cost and
efficient numerical computations. Inspired by the works of Fan et al. [33], Thong and Hieu [34],
and Censor et al. [35], we set up an accelerated extragradient-like algorithm to solve the problem (1)
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and other special class of equilibrium problem, such as variational inequalities. We prove a strong
convergence theorem corresponding to the sequence generated to solve the problem of equilibrium
under certain mild conditions. At the end, the computational tests show that the algorithm is more
efficient than the current ones [26,29,36–38].

The rest of the article has been organized as follows. Section 2 consists of some basic results which
are used throughout the article. Section 3 includes our proposed method and its convergence analysis.
Section 4 includes numerical experiments that demonstrate practical effectiveness.

2. Preliminaries

Assume that a convex function g : K → R and subdifferential of g on v1 ∈ K is defined as follows:

∂g(v1) = {v3 ∈ H : g(v2)− g(v1) ≥ 〈v3, v2 − v1〉, ∀ v2 ∈ K}.

A normal cone for K on v1 ∈ K is defined as follows:

NK(v1) = {v3 ∈ H : 〈v3, v2 − v1〉 ≤ 0, ∀ v2 ∈ K}.

Lemma 1 ([39]). Assume the three sequences αn, βn and γn are in [0,+∞) such that

αn+1 ≤ αn + βn(αn − αn−1) + γn, for alln ≥ 1, having
+∞

∑
n=1

γn < +∞,

where 0 < β with 0 ≤ βn ≤ β < 1 for each n ∈ N. Thus, we have

(i)
+∞

∑
n=1

[αn − αn−1]+ < +∞, with [q]+ := max{q, 0};

(ii) limn→+∞ αn = α∗ ∈ [0,+∞).

Lemma 2 ([40]). For each v1, v2 ∈ H and r ∈ R, the following equality holds

‖rv1 + (1 − r)v2‖2 = r‖v1‖2 + (1 − r)‖v2‖2 − r(1 − r)‖v1 − v2‖2.

Lemma 3 ([41]). Let {pn} and {qn} ⊂ [0,+∞) be two sequences such that

+∞

∑
n=1

pn = +∞ and
+∞

∑
n=1

pnqn < +∞.

Then, lim infn→+∞ qn = 0.

Lemma 4 ([42]). Assume that a function h : K → R is subdifferentiable, convex, and lower semi-continuous
on K. Then, v1 ∈ K is a function h minimizer if and only if 0 ∈ ∂h(v1) + NK(v1) while ∂h(v1) and NK(v1)

stand for the subdifferential of h on v1 ∈ K and a normal cone of K at v1, respectively.

Suppose that f : H×H → R satisfies the following conditions:

(C1) f (v1, v1) = 0, for all v1 ∈ K and f is strongly pseudomonotone on K;
(C2) f meet the Lipschitz-type condition with two constants L1 and L2; and
(C3) f (v1, .) is convex and sub-differentiable on H for fixed each v1 ∈ H.

3. Main Results

The following is the main method (Algorithm 1) in more detail.
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Algorithm 1. Modified subgradient extragradient method for equilibrium problems.

Step 0: Choose u−1, u0 ∈ H arbitrarily. Let ζn satisfy the conditions (3). {θn} and {ϑn} are control
parameter sequences.
Step 1: Compute

vn = arg min
v∈K

{ζn f (wn, v) +
1
2
‖wn − v‖2},

where wn = un + θn(un − un−1). If vn = wn, then STOP and wn ∈ EP( f ,K).
Step 2: Compute a set

Hn = {z ∈ H : 〈wn − ζntn − vn, z − vn〉 ≤ 0},

where tn ∈ ∂2 f (wn, vn).
Step 3: Compute

ηn = arg min
v∈Hn

{ζn f (vn, v) +
1
2
‖wn − v‖2}.

Step 4: Compute
un+1 = (1 − ϑn)wn + ϑnηn,

where {ϑn} and {θn} are real sequences meet the conditions:

(i) {θn} sequence is non-decreasing and 0 ≤ θn ≤ θ < 1 for each n ≥ 1;
(ii) there exists ϑ, δ, σ > 0 such that

δ >
4θ
[
θ(1 + θ) + σ

]
1 − θ2 , (4)

and

0 < ϑ ≤ ϑn ≤ δ − 4θ
[
θ(1 + θ) + σ + 1

4 θδ
]

4δ
[
θ(1 + θ) + σ + 1

4 θδ
] . (5)

Set n := n + 1 and switch to Step 1.

Lemma 5. Suppose that f : H×H → R satisfies the conditions (C1)-(C3). For v∗ ∈ EP( f ,K) �= ∅, we have

‖ηn − v∗‖2 ≤ ‖wn − v∗‖2 − (1 − 2L1ζn)‖wn − vn‖2 − (1 − 2L2ζn)‖ηn − vn‖2

− 2γζn‖vn − v∗‖2.

Proof. By value of ηn and Lemma 4, we have

0 ∈ ∂2

{
ζn f (vn, v) +

1
2
‖wn − v‖2

}
(ηn) + NHn(ηn).

Thus, there exists ω ∈ ∂ f (vn, ηn) and ω ∈ NHn(ηn) such that

ζnω + ηn − wn + ω = 0.

Thus, the above implies that

〈wn − ηn, v − ηn〉 = ζn〈ω, v − ηn〉+ 〈ω, v − ηn〉, ∀ v ∈ Hn.

Since ω ∈ NHn(ηn), it implies that 〈ω, v − ηn〉 ≤ 0, for all v ∈ Hn. This gives that

ζn〈ω, v − ηn〉 ≥ 〈wn − ηn, v − ηn〉, ∀ v ∈ Hn. (6)
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By ω ∈ ∂ f (vn, ηn), we have

f (vn, v)− f (vn, ηn) ≥ 〈ω, v − ηn〉, ∀ v ∈ H. (7)

From (6) and (7), we obtain

ζn f (vn, v)− ζn f (vn, ηn) ≥ 〈wn − ηn, v − ηn〉, ∀ v ∈ Hn. (8)

By the use of v = v∗, we get

ζn f (vn, v∗)− ζn f (vn, ηn) ≥ 〈wn − ηn, v∗ − ηn〉. (9)

By given v∗ ∈ EP( f ,K), f (v∗, vn) ≥ 0, which implies that f (vn, v∗) ≤ −γ‖vn − v∗‖2. From the
expression (9), we obtain

〈wn − ηn, ηn − v∗〉 ≥ ζn f (vn, ηn) + γζn‖vn − v∗‖2. (10)

Due to the Lipschitz-type continuity of a bifunction f ,

f (wn, ηn) ≤ f (wn, vn) + f (vn, ηn) + L1‖wn − vn‖2 + L2‖vn − ηn‖2. (11)

Expressions (10) and (11) gives that

〈wn − ηn, ηn − v∗〉 ≥ ζn
{

f (wn, ηn)− f (wn, vn)
}

− L1ζn‖wn − vn‖2 − L2ζn‖vn − ηn‖2 + γζn‖vn − v∗‖2.
(12)

By value ηn ∈ Hn,
〈wn − ζntn − vn, ηn − vn〉 ≤ 0.

The above implies that

〈wn − vn, ηn − vn〉 ≤ ζn〈tn, ηn − vn〉. (13)

tn ∈ ∂2 f (wn, vn) gives that

f (wn, v)− f (wn, vn) ≥ 〈tn, v − vn〉, ∀v ∈ H.

Substituting v = ηn into the above expression,

f (wn, ηn)− f (wn, vn) ≥ 〈tn, ηn − vn〉. (14)

Expressions (13) and (14) imply that

ζn
{

f (wn, ηn)− f (wn, vn)
} ≥ 〈wn − vn, ηn − vn〉. (15)

Combining expressions (12) and (15) implies that

〈wn − ηn, ηn − v∗〉 ≥ 〈wn − vn, ηn − vn〉
− L1ζn‖wn − vn‖2 − L2ζn‖vn − ηn‖2 + γζn‖vn − v∗‖2. (16)

We have the following facts:

2〈wn − ηn, ηn − v∗〉 = ‖wn − v∗‖2 − ‖ηn − wn‖2 − ‖ηn − v∗‖2.
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2〈vn − wn, vn − ηn〉 = ‖wn − vn‖2 + ‖ηn − vn‖2 − ‖wn − ηn‖2.

Thus, we finally obtain

‖ηn − v∗‖2 ≤ ‖wn − v∗‖2 − (1 − 2L1ζn)‖wn − vn‖2 − (1 − 2L2ζn)‖ηn − vn‖2

− 2γζn‖vn − v∗‖2.

Theorem 1. The sequences {wn}, {vn}, {ηn} and {un} generated by Algorithm 1 strongly converge to v∗.

Proof. By the value of un+1, we have

‖un+1 − v∗‖2 = ‖(1 − ϑn)wn + ϑnηn − v∗‖2

= ‖(1 − ϑn)(wn − v∗) + ϑn(ηn − v∗)‖2

= (1 − ϑn)‖wn − v∗‖2 + ϑn‖ηn − v∗‖2 − ϑn(1 − ϑn)‖wn − ηn‖2

≤ (1 − ϑn)‖wn − v∗‖2 + ϑn‖ηn − v∗‖2. (17)

From Lemma 5, we obtain

‖ηn − v∗‖2 ≤ ‖wn − v∗‖2 − (1 − 2L1ζn)‖wn − vn‖2 − (1 − 2L2ζn)‖ηn − vn‖2

− 2γζn‖vn − v∗‖2. (18)

By combining expressions (17) and (18), we get

‖un+1 − v∗‖2 ≤ (1 − ϑn)‖wn − v∗‖2 + ϑn‖wn − v∗‖2 − 2γϑnζn‖vn − v∗‖2

− ϑn(1 − 2L1ζn)‖wn − vn‖2 − ϑn(1 − 2L2ζn)‖ηn − vn‖2 (19)

= ‖wn − v∗‖2 − ϑn(1 − bζn)
[‖wn − vn‖2 + ‖ηn − vn‖2] (20)

= ‖wn − v∗‖2 − ϑn(1 − bζn)

2
[
2‖wn − vn‖2 + 2‖ηn − vn‖2]

≤ ‖wn − v∗‖2 − ϑn(1 − bζn)

2
[‖wn − vn‖+ ‖ηn − vn‖

]2

≤ ‖wn − v∗‖2 − ϑn(1 − bζn)

2
‖ηn − wn‖2, (21)

where b = max{2L1, 2L2}. It continues from un+1 such that

‖un+1 − wn‖ = ‖(1 − ϑn)wn + ϑnηn − wn‖ = ‖ϑn(ηn − wn)‖. (22)

Combining (21) and (22), we have

‖un+1 − v∗‖2 ≤ ‖wn − v∗‖2 − (1 − bζn)

2ϑn
‖un+1 − wn‖2. (23)

Since ζn → 0, thus there is n0 > 0 in order that ζn ≤ 1
2b for each n ≥ n0. This implies 1−bζn

2 ≥ 1
4

for every n ≥ n0. The expression (23) for n ≥ n0, turn as

‖un+1 − v∗‖2 ≤ ‖wn − v∗‖2 − 1
4ϑn

‖un+1 − wn‖2. (24)
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By description of wn, we have

‖wn − v∗‖2 = ‖un + θn(un − un−1)− v∗‖2

= ‖(1 + θn)(un − v∗)− θn(un−1 − v∗)‖2

= (1 + θn)‖un − v∗‖2 − θn‖un−1 − v∗‖2 + θn(1 + θn)‖un − un−1‖2.

(25)

By value of wn, we have

‖un+1 − wn‖2 = ‖un+1 − un − θn(un − un−1)‖2

= ‖un+1 − un‖2 + θ2
n‖un − un−1‖2 + 2θn〈un − un+1, un − un−1〉 (26)

≥ ‖un+1 − un‖2 + θ2
n‖un − un−1‖2 − ρnθn‖un+1 − un‖2 − θn

ρn
‖un − un−1‖2

≥ (1 − ρnθn)‖un+1 − un‖2 +
(

θ2
n −

θn

ρn

)
‖un − un−1‖2, (27)

where ρn = 1
δϑn+θn

. Combining (24), (25), and (27) gives that

‖un+1 − v∗‖2 ≤ (1 + θn)‖un − v∗‖2 − θn‖un−1 − v∗‖2 + θn(1 + θn)‖un − un−1‖2

− 1
4ϑn

[
(1 − ρnθn)‖un+1 − un‖2 +

(
θ2

n −
θn

ρn

)
‖un − un−1‖2

]
(28)

= (1 + θn)‖un − v∗‖2 − θn‖un−1 − v∗‖2 − 1
4ϑn

(1 − ρnθn)‖un+1 − un‖2

+
[
θn(1 + θn)− 1

4ϑn

(
θ2

n −
θn

ρn

)]
‖un − un−1‖2

= (1 + θn)‖un − v∗‖2 − θn‖un−1 − v∗‖2 − 1
4ϑn

(1 − ρnθn)‖un+1 − un‖2

+ γn‖un − un−1‖2, (29)

where

γn = θn(1 + θn)− 1
4ϑn

(
θ2

n −
θn

ρn

)
= θn(1 + θn) +

1
4ϑn

(
θn

ρn
− θ2

n

)
> 0. (30)

By the above expression and the choice of {ρn}, we have

γn = θn(1 + θn) +
1

4ϑn

(
θn

ρn
− θ2

n

)
≤ θ(1 + θ) +

1
4

θδ. (31)

We substitute
Ψn = ‖un − p‖2 − θn‖un−1 − p‖2 + γn‖un − un−1‖2.

It follows (29) such that

Ψn+1 − Ψn = ‖un+1 − p‖2 − θn+1‖un − p‖2 + γn+1‖un+1 − un‖2

− ‖un − p‖2 + θn‖un−1 − p‖2 − γn‖un − un−1‖2

≤ ‖un+1 − p‖2 − (1 + θn)‖un − p‖2 + θn‖un−1 − p‖2

+ γn+1‖un+1 − un‖2 − γn‖un − un−1‖2

= −
(

1
4ϑn

(1 − ρnθn)− γn+1

)
‖un+1 − un‖2. (32)

We claim that
1

4ϑn
(1 − ρnθn)− γn+1 ≥ σ.
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The above inequality implies that

1
4ϑn

(1 − ρnθn)− γn+1 ≥ σ

iff (1 − ρnθn)− 4ϑnγn+1 ≥ 4ϑnσ

iff (1 − ρnθn)− 4ϑn(γn+1 + σ) ≥ 0

iff
δϑn

δϑn + θn
− 4ϑn(γn+1 + σ) ≥ 0

iff − 4(γn+1 + σ)(δϑn + θn) ≥ −δ (33)

(31) and (5) give that

−4(γn+1 + σ)(δϑn + θn) ≥ −4
[
θ(1 + θ) +

1
4

θδ + σ
]
(δϑn + θn) ≥ −δ. (34)

Expression (32) implies that

Ψn+1 − Ψn ≤ −σ‖un+1 − un‖2 ≤ 0, for alln ≥ n0. (35)

Thus, we obtain a non-increasing sequence {Ψn} for n ≥ n0. By the value of Ψn+1, we have

Ψn+1 = ‖un+1 − p‖2 − θn+1‖un − p‖2 + γn+1‖un+1 − un‖2

≥ −θn+1‖un − p‖2.
(36)

By the value of Ψn, we have

Ψn = ‖un − p‖2 − θn‖un−1 − p‖2 + γn‖un − un−1‖2

≥ ‖un − p‖2 − θn‖un−1 − p‖2.
(37)

Thus, expression (37) for n ≥ n0 is such that

‖un − p‖2 ≤ Ψn + θn‖un−1 − p‖2

≤ Ψn0 + θ‖un−1 − p‖2

≤ · · · ≤ Ψn0(θ
n−n0 + · · ·+ 1) + θn−n0‖un0 − p‖2

≤ Ψn0

1 − θ
+ θn−n0‖un0 − p‖2. (38)

By (36) and (38) for all n ≥ n0, we get

−Ψn+1 ≤ θn+1‖un − p‖2

≤ θ‖un − p‖2

≤ θ
Ψn0

1 − θ
+ θn−n0+1‖un0 − p‖2. (39)

It follows from (35) and (39) that

σ
k

∑
n=n0

‖un+1 − un‖2 ≤ Ψn0 − Ψk+1

≤ Ψn0 + θ
Ψn0

1 − θ
+ θn−n0+1‖un0 − p‖2

≤ Ψn0

1 − θ
+ ‖un0 − p‖2. (40)
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Sending k → +∞ implies that

+∞

∑
n=1

‖un+1 − un‖2 < +∞. (41)

It continues from that
lim

n→+∞
‖un+1 − un‖ = 0. (42)

Equations (26) and (42) provide that

lim
n→+∞

‖un+1 − wn‖ = 0. (43)

By the value of un+1, we have

‖un+1 − wn‖ = ‖(1 − ϑn)wn + ϑnηn − wn‖ = ϑn‖ηn − wn‖. (44)

By Equations (43) and (44), we obtain

lim
n→+∞

‖ηn − wn‖ = 0. (45)

By the use of triangular inequality and (42) with (43), we obtain

lim
n→+∞

‖un − wn‖ ≤ lim
n→+∞

‖un − un+1‖+ lim
n→+∞

‖un+1 − wn‖ = 0 (46)

and
lim

n→+∞
‖un − ηn‖ ≤ lim

n→+∞
‖un − wn‖+ lim

n→+∞
‖wn − ηn‖ = 0. (47)

Expressions (28) and (41) with Lemma 1 imply that

lim
n→+∞

‖un − v∗‖2 = b for some b ≥ 0. (48)

Expressions (46) and (47) imply that

lim
n→+∞

‖wn − v∗‖2 = lim
n→+∞

‖ηn − v∗‖2 = b. (49)

Thus, Lemma 5 implies that

(1 − 2L2ζ)‖wn − vn‖2 ≤ ‖wn − v∗‖2 − ‖ηn − v∗‖2. (50)

The above expression with (48) and (49) gives that

lim
n→+∞

‖wn − vn‖ = 0 and lim
n→+∞

‖vn − v∗‖2 = b. (51)

The argument referred to above concludes that the sequences {wn}, {vn}, {ηn}, and {ηn} are
bounded for each v∗ ∈ EP( f ,K) the limn→+∞ ‖un − v∗‖2 exists. It follows from (19) and (25) that
we have

2γϑnζn‖vn − v∗‖2 ≤ −‖un+1 − v∗‖2 + (1 + θn)‖un − v∗‖2 − θn‖un−1 − v∗‖2

+ θn(1 + θn)‖un − un−1‖2

≤ (‖un − v∗‖2 − ‖un+1 − v∗‖2) + 2θ‖un − un−1‖2

+ (θn‖un − v∗‖2 − θn−1‖un−1 − v∗‖2).

(52)
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The above expression for k ≥ n0 gives that

k

∑
n=n0

2γϑnζn‖vn − v∗‖2 ≤ (‖un0 − v∗‖2 − ‖uk+1 − v∗‖2) + 2θ
k

∑
n=n0

‖un − un−1‖2

+ (θk‖uk − v∗‖2 − θ0‖un0 − v∗‖2)

≤ ‖un0 − v∗‖2 + θ‖uk − v∗‖2 + 2θ
k

∑
n=n0

‖un − un−1‖2, (53)

letting k → +∞ in (53), we obtain

k

∑
n=n0

2γϑnζn‖vn − v∗‖2 < +∞. (54)

From Lemma 3 and (54),
lim inf ‖vn − p‖ = 0. (55)

By expressions (46), (47), (49), (51) and (55),

lim
n→+∞

‖vn − p‖ = lim
n→+∞

‖wn − p‖ = lim
n→+∞

‖ηn − p‖ = lim
n→+∞

‖un − p‖ = 0. (56)

This completes the proof.

Next, we consider the application of our results to solve variational inequality problems.
A function G : H → H is said to be

(G1) strongly pseudo-monotone over K for γ > 0 if

〈G(v1), v2 − v1〉 ≥ 0 implies that 〈G(v2), v1 − v2〉 ≤ −γ‖v1 − v2‖2, ∀v1, v2 ∈ K;

and
(G2) L-Lipschitz continuity on C if

‖G(v1)− G(v2)‖ ≤ L‖v1 − v2‖, ∀v1, v2 ∈ K.

Let a bifunction f (v1, v2) :=
〈

G(v1), v2 − v1
〉

for all v1, v2 ∈ K then equilibrium problem turns
into problem of variational inequality with L = 2L1 = 2L2. By the value of vn,

vn = arg min
v∈K

{
ζn f (wn, v) +

1
2
‖wn − v‖2

}
= arg min

v∈K

{
ζn〈G(wn), v − wn〉+ 1

2
‖wn − v‖2

}
= arg min

v∈K

{
ζn〈G(wn), v − wn〉+ 1

2
‖wn − v‖2 +

ζ2
n

2
‖G(wn)‖2 − ζ2

n
2
‖G(wn)‖2

}
= arg min

v∈K

{1
2
‖v − (wn − ζnG(wn)‖2

}
− ζ2

n
2
‖G(wn)‖2

= PK(wn − ζnG(wn)). (57)

Similar to above, the value of ηn turns into

ηn = PHn(wn − ζnG(vn)).
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Corollary 1. Assume that an operator G : K → H satisfies Conditions (G1)–(G2). Let {wn}, {vn}, {ηn},
and {un} be the sequences generated as follows:

(S1) Let u−1, u0 ∈ H arbitrarily.
(S2) Choose ζn satisfying condition (3) and {θn}, {ϑn} are control parameters.
(S3) Compute

vn = PK(wn − ζnG(wn)),

where wn = un + θn(un − un−1). If vn = wn, then STOP.
(S4) Determine a half space first Hn = {z ∈ H : 〈wn − ζnG(wn)− vn, z − vn〉 ≤ 0} and evaluate

ηn = PHn(wn − ζnG(vn)).

(S5) Compute
un+1 = (1 − ϑn)wn + ϑnηn,

where {θn} and {ϑn} satisfies the following conditions:

(i) non-decreasing sequence {θn} through 0 ≤ θn ≤ θ < 1, for each n ≥ 1; and
(ii) there exists ϑ, δ, σ > 0, thus that

δ >
4θ
[
θ(1 + θ) + σ

]
1 − θ2 (58)

and

0 < ϑ ≤ ϑn ≤ δ − 4θ
[
θ(1 + θ) + σ + 1

4 θδ
]

4δ
[
θ(1 + θ) + σ + 1

4 θδ
] . (59)

Then, {wn}, {vn}, {ηn}, and {un} strongly converge to v∗ ∈ VI(G,K).

4. Numerical Illustration

Numerical findings are summarized in this section to demonstrate the effectiveness of the
proposed methods. The following control parameters are used in this section.

(1) For Hieu et al. [26] (Hieu-EgA), we use Dn = ‖un − vn‖2.

(2) For Hieu et al. [29] (Hieu-mEgA), we use θ = 0.5 and Dn = max{‖un+1 − vn‖2, ‖un+1 − wn‖2}.

(3) For Algorithm 1 (iEgA), we use αn = 0.50, βn = 0.80, and Dn = ‖wn − vn‖2.

Example 1. Let bifunction f have the following form

f (u, v) = 〈Au + Bv + c, v − u〉

where c ∈ R5 and A and B are

A =

⎛⎜⎜⎜⎜⎜⎝
3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎠ B =

⎛⎜⎜⎜⎜⎜⎝
1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎠
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and

c =

⎛⎜⎜⎜⎜⎜⎝
1
−2
−1
2
−1

⎞⎟⎟⎟⎟⎟⎠
where Lipschitz parameters L1 = L2 = 1

2‖A − B‖ [26]. The feasible set K ⊂ R5 is

K := {u ∈ R5 : −5 ≤ ui ≤ 5}.

Table 1 and Figures 1–3 show the numerical results by u−1 = u0 = v0 = (1, · · · , 1), and TOL = 10−12.

Table 1. Example 1: Numerical values for Figures 1–3.

Hieu-EgA [26] Hieu-mEgA [29] iEgA Algorithm 1
n TOL ζn Iter. Time Iter. Time Iter. Time

5 10−12 1
log(n+3)(n+1) 320 5.8584 59 0.5979 64 0.2830

5 10−12 1
n+1 222 3.1116 43 0.4158 39 0.1696

5 10−12 log(n+3)
n+1 122 1.5466 40 0.3732 33 0.1581

Figure 1. Example 1: Numerical comparison for Algorithm 1 while ζn = 1
(n+1) log(n+3) .

Figure 2. Example 1: Numerical comparison for Algorithm 1 while ζn = 1
n+1 .
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Figure 3. Example 1: Numerical comparison for Algorithm 1 while ζn =
log(n+3)

n+1 .

Example 2. Let a bifunction f be defined on the convex set K as

f (u, v) =
〈
(BBT + S + D)u, v − u

〉
,

where B is a 50× 50 matrix, S is a 50× 50 skew-symmetric matrix, and D is a 50× 50 diagonal matrix. The set
K ⊂ R50 is defined by

K := {u ∈ R50 : Au ≤ b}
with matrix A as 100 × 50 and vector b as a non-negative vector. Observe that f is monotone and Lipschitz-type

constants are c1 = c2 = ‖BBT+S+D‖
2 . We generate random matrices in our case [B = rand(n), C = rand(n),

S = 0.5C − 0.5CT , D = diag(rand(n, 1))] and the numerical findings regarding Example 2 are shown in
Figures 4–7 with u−1 = u0 = v0 = (1, · · · , 1) and TOL = 10−12.

Figure 4. Example 2: Numerical comparison for Algorithm 1 while ζn = 1
n+1 .
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Figure 5. Example 2: Numerical comparison for Algorithm 1 while ζn = 1
n+1 .

Figure 6. Example 2: Numerical comparison for Algorithm 1 while ζn =
log(n+3)

n+1 .

Figure 7. Example 2: Numerical comparison for Algorithm 1 while ζn =
log(n+3)

n+1 .

Example 3. Let G : R5 → R5 be defined by

G(u) = Au + B(u) + c,
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where n × n symmetric semi-definite matrix A and B(u) is the function depends on the proximal operator [43]
through h(u) = 1

4‖u‖4 such that

B(u) = arg min
v∈Rn

{‖u‖4

4
+

1
2
‖v − u‖2

}
.

The feasible set K is considered as

K := {u ∈ R5 : −2 ≤ ui ≤ 5}.

The entries of A and c are taken as follows:

A =

⎛⎜⎜⎜⎜⎜⎝
3 1 0 1 2
1 5 −1 0 1
0 1 −4 2 −2
1 0 2 6 −1
2 1 −2 −1 4

⎞⎟⎟⎟⎟⎟⎠ c =

⎛⎜⎜⎜⎜⎜⎝
1
−2
−1
2
−1

⎞⎟⎟⎟⎟⎟⎠
Figures 8–11 and Table 2 show the numerical results by using u−1 = u0 = v0 = (1, · · · , 1) and

TOL = 10−12.

Table 2. Example 3: Numerical results for Figures 8–11.

Hieu-EgA [26] Hieu-mEgA [29] iEgA Algorithm 1
n TOL ζn Iter. Time Iter. Time Iter. Time

5 10−10 1
(n+1) log(n+3) 440 29.7625 190 16.2712 247 10.8531

5 10−10 1
n+1 198 13.8482 104 11.8096 145 5.8483

5 10−10 log(n+3)
n+1 178 12.2979 98 7.8478 120 5.2870

5 10−10 1√
n+1

251 16.7337 110 9.6097 148 6.0004

Figure 8. Example 3: Numerical comparison for Algorithm 1 while ζn = 1
(n+1) log(n+3) .
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Figure 9. Example 3: Numerical comparison for Algorithm 1 while ζn = 1
n+1 .

Figure 10. Example 3: Numerical comparison for Algorithm 1 while ζn =
log(n+3)

n+1 .

Example 4. Suppose that K ⊂ G : R2 → R2 is defined by

G

(
v1

v2

)
=

(
v1 + v2 + sin(v1)

−v1 + v2 + sin(v2)

)
, for all (v1, v2) ∈ R2.

where K = [−5, 5]× [−5, 5]. It is easy that G is Lipschitz continuous and strongly pseudomonotone operator.
Figures 12–15 show the numerical results with u−1 = u0 = v0 and TOL = 10−10.
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Figure 11. Example 3: Numerical comparison for Algorithm 1 while ζn = 1√
n+1

.

Figure 12. Example 4: Numerical comparison for Algorithm 1 while u0 = (1, 1) and ζn = 1
n+1 .

Figure 13. Example 4: Numerical comparison for Algorithm 1 while u0 = (4, 4) and ζn = 1
n+1 .
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Figure 14. Example 4: Numerical comparison for Algorithm 1 while u0 = (−1,−1) and ζn = 1
n+1 .

Figure 15. Example 4: Numerical comparison for Algorithm 1 while u0 = (−2,−2) and ζn = 1
n+1 .

5. Conclusions

In this paper, we set up a new method by combining an inertial term with an extragradient
method for solving a family of strongly pseudomonotone equilibrium problems. The introduced
method involves a sequence of diminishing and non-summable step size rule and the method operates
without previous information of the Lipschitz-type constants. Four numerical examples are described
to show the computational performance of the proposed method in relation to other existing methods.
Numerical experiments clearly point out that the method with an inertial term performs better than
those without an inertial term.
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14. Koskela, P.; Manojlović, V. Quasi-Nearly Subharmonic Functions and Quasiconformal Mappings.

Potential Anal. 2011, 37, 187–196. [CrossRef]
15. ur Rehman, H.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects

extended to equilibrium problems. Comput. Appl. Math. 2020, 39. [CrossRef]
16. Hammad, H.A.; ur Rehman, H.; la Sen, M.D. Advanced Algorithms and Common Solutions to Variational

Inequalities. Symmetry 2020, 12, 1198. [CrossRef]
17. Hieu, D.V.; Quy, P.K.; Vy, L.V. Explicit iterative algorithms for solving equilibrium problems. Calcolo 2019, 56.

[CrossRef]
18. Hieu, D.V. New inertial algorithm for a class of equilibrium problems. Numer. Algorithms 2018, 80, 1413–1436.

[CrossRef]
19. Anh, P.K.; Hai, T.N. Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications.

J. Glob. Optim. 2018, 73, 637–657. [CrossRef]
20. Anh, P.N.; Anh, T.T.H.; Hien, N.D. Modified basic projection methods for a class of equilibrium problems.

Numer. Algorithms 2017, 79, 139–152. [CrossRef]
21. ur Rehman, H.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The Inertial Sub-Gradient

Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry 2020, 12, 463.
[CrossRef]

22. ur Rehman, H.; Kumam, P.; Argyros, I.K.; Deebani, W.; Kumam, W. Inertial Extra-Gradient Method for
Solving a Family of Strongly Pseudomonotone Equilibrium Problems in Real Hilbert Spaces with Application
in Variational Inequality Problem. Symmetry 2020, 12, 503. [CrossRef]

23. Flåm, S.D.; Antipin, A.S. Equilibrium programming using proximal-like algorithms. Math. Program. 1996,
78, 29–41. [CrossRef]

24. Tran, D.Q.; Dung, M.L.; Nguyen, V.H. Extragradient algorithms extended to equilibrium problems.
Optimization 2008, 57, 749–776. [CrossRef]

25. Korpelevich, G. The extragradient method for finding saddle points and other problems. Matecon 1976, 12,
747–756.

59



Axioms 2020, 9, 137

26. Hieu, D.V. New extragradient method for a class of equilibrium problems in Hilbert spaces. Appl. Anal.
2017, 97, 811–824. [CrossRef]

27. Polyak, B. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math.
Math. Phys. 1964, 4, 1–17. [CrossRef]

28. Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.
SIAM J. Imaging Sci. 2009, 2, 183–202. [CrossRef]

29. Hieu, D.V.; Cho, Y.J.; bin Xiao, Y. Modified extragradient algorithms for solving equilibrium problems.
Optimization 2018, 67, 2003–2029. [CrossRef]

30. Rehman, H.U.; Kumam, P.; Dong, Q.L.; Peng, Y.; Deebani, W. A new Popov’s subgradient extragradient
method for two classes of equilibrium programming in a real Hilbert space. Optimization 2020, 1–36.
[CrossRef]

31. Yordsorn, P.; Kumam, P.; ur Rehman, H.; Ibrahim, A.H. A Weak Convergence Self-Adaptive Method
for Solving Pseudomonotone Equilibrium Problems in a Real Hilbert Space. Mathematics 2020, 8, 1165.
[CrossRef]

32. Yordsorn, P.; Kumam, P.; Rehman, H.U. Modified two-step extragradient method for solving the
pseudomonotone equilibrium programming in a real Hilbert space. Carpathian J. Math. 2020, 36, 313–330.

33. Fan, J.; Liu, L.; Qin, X. A subgradient extragradient algorithm with inertial effects for solving strongly
pseudomonotone variational inequalities. Optimization 2019, 1–17. [CrossRef]

34. Thong, D.V.; Hieu, D.V. Inertial extragradient algorithms for strongly pseudomonotone variational
inequalities. J. Comput. Appl. Math. 2018, 341, 80–98. [CrossRef]

35. Censor, Y.; Gibali, A.; Reich, S. The Subgradient Extragradient Method for Solving Variational Inequalities in
Hilbert Space. J. Optim. Theory Appl. 2010, 148, 318–335. [CrossRef] [PubMed]

36. ur Rehman, H.; Kumam, P.; Argyros, I.K.; Alreshidi, N.A.; Kumam, W.; Jirakitpuwapat, W. A Self-Adaptive
Extra-Gradient Methods for a Family of Pseudomonotone Equilibrium Programming with Application in
Different Classes of Variational Inequality Problems. Symmetry 2020, 12, 523. [CrossRef]

37. ur Rehman, H.; Kumam, P.; Argyros, I.K.; Shutaywi, M.; Shah, Z. Optimization Based Methods for Solving
the Equilibrium Problems with Applications in Variational Inequality Problems and Solution of Nash
Equilibrium Models. Mathematics 2020, 8, 822. [CrossRef]

38. ur Rehman, H.; Kumam, P.; Shutaywi, M.; Alreshidi, N.A.; Kumam, W. Inertial Optimization Based Two-Step
Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth
Control Equilibrium Models. Energies 2020, 13, 3292. [CrossRef]

39. Attouch, F.A.H. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a
Nonlinear Oscillator with Damping. Set-Valued Var. Anal. 2001, 9, 3–11. [CrossRef]

40. Heinz, H.; Bauschke, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; CMS Books
in Mathematics; Springer International Publishing: Berlin/Heidelberg, Germany, 2017.

41. Ofoedu, E. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive
mapping in real Banach space. J. Math. Anal. Appl. 2006, 321, 722–728. [CrossRef]

42. Tiel, J.V. Convex Analysis: An Introductory Text, 1st ed.; Wiley: New York, NY, USA, 1984.
43. Kreyszig, E. Introductory Functional Analysis with Applications, 1st ed.; Wiley: New York, NY, USA, 1978.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

60



axioms

Article

Towards the Dependence on Parameters for the Solution of the
Thermostatted Kinetic Framework

Bruno Carbonaro † and Marco Menale *,†

Citation: Carbonaro, B.; Menale, M.

Towards the Dependence on

Parameters for the Solution of the

Thermostatted Kinetic Framework.

Axioms 2021, 10, 59. https://

doi.org/10.3390/axioms10020059

Academic Editors: Jesús Martín

Vaquero, Deolinda M. L. Dias

Rasteiro, Araceli Queiruga-Dios and

Fatih Yilmaz

Received: 13 February 2021

Accepted: 31 March 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli”, Viale Lincoln 5,
I-81100 Caserta, Italy; bruno.carbonaro@unicampania.it
* Correspondence: marco.menale@unicampania.it
† These authors contributed equally to this work.

Abstract: A complex system is a system involving particles whose pairwise interactions cannot be
composed in the same way as in classical Mechanics, i.e., the result of interaction of each particle
with all the remaining ones cannot be expressed as a sum of its interactions with each of them (we
cannot even know the functional dependence of the total interaction on the single interactions).
Moreover, in view of the wide range of its applications to biologic, social, and economic problems,
the variables describing the state of the system (i.e., the states of all of its particles) are not always
(only) the usual mechanical variables (position and velocity), but (also) many additional variables
describing e.g., health, wealth, social condition, social rôle . . . , and so on. Thus, in order to achieve
a mathematical description of the problems of everyday’s life of any human society, either at a
microscopic or at a macroscpoic scale, a new mathematical theory (or, more precisely, a scheme
of mathematical models), called KTAP, has been devised, which provides an equation which is a
generalized version of the Boltzmann equation, to describe in terms of probability distributions
the evolution of a non-mechanical complex system. In connection with applications, the classical
problems about existence, uniqueness, continuous dependence, and stability of its solutions turn out
to be particularly relevant. As far as we are aware, however, the problem of continuous dependence
and stability of solutions with respect to perturbations of the parameters expressing the interaction
rates of particles and the transition probability densities (see Section The Basic Equations has not
been tackled yet). Accordingly, the present paper aims to give some initial results concerning these
two basic problems. In particular, Theorem 2 reveals to be stable with respect to small perturbations
of parameters, and, as far as instability of solutions with respect to perturbations of parameters
is concerned, Theorem 3 shows that solutions are unstable with respect to “large” perturbations
of interaction rates; these hints are illustrated by numerical simulations that point out how much
solutions corresponding to different values of parameters stay away from each other as t → +∞.

Keywords: kinetic theory; complex systems; stability; parameters; differential equations

MSC: 82B40; 37F05; 45M10; 35B30; 34A12

1. Introduction

The present paper deals with the system of equations governing the behavior of so-
called complex systems (see Section 2 for details). Roughly speaking, a complex system is a set
of a large number of individuals (particles) whose behavior is strongly influenced by their
mutual interactions, in addition to external forces and possibly to a thermostat [1–4], so that
the evolution of the system cannot be by no means deterministic, but must be described in
terms of the probability distribution fuction on the set of possible values of a suitable variable
describing the state of each individual. In this connection, it must be carefully noted that—
though the notion of a complex system was originated in a purely mechanical framework
and could be traced back to Boltzmann’s Kinetic Theory of Gases [5–8]—a complex system
is not nowadays considered as simply consisting of material particles, whose state is
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completely described by the two variables position and velocity. The notion of complex
system has been exported in several different contexts (biology [9,10], medicine [11–15],
economy [16,17], psychology [18,19], social dynamics [20–23] . . . ), in which the state
variables are non-mechanical and, in at least one case, vectorial [24].

Though the behavior of each particle of the system is of course deterministic, i.e., it
is uniquely determined by its interactions with other particles; nevertheless, the number
of particles and interactions is so large as to prevent us from following the evolution of
the state of each particle. Accordingly, the model is based on the choice to describe the
evolution of the system as a whole, turning the attention to the probability distribution on
the states of particles; thus, the evolution equation takes the form (1) (see Section 2). As
usual for nonlinear differential and integral equations, also in this case we have to tackle
the classical problems about existence, uniqueness, continuous dependence, and stability
with respect to initial values (and boundary values, when required). These problems have
been tackled in [25–30].

In many cases of interest, the solutions to the problems about stability and continuous
dependence of solutions depend on the coefficients of the equations, especially in the cases
in which they are not constants but functions of the independent variables. In this last case,
the question of whether two solutions, corresponding to the same assigned data but to two
different systems of coefficients, are close when such are the coefficients spontaneously
arises. This question seems to be of special relevance for Equation (1). As we shall see in
more detail in Section 2, in Equation (1), denoting by u the state variable and by Du the
state space, that is the set of all possible values of u, we find two kinds of coefficients:

1. the coefficient η(u∗, u∗), a function defined on D2
u, expressing the interaction rate

of the particles whose state is u∗ with the particles whose state is u∗, i.e.,— roughly
speaking—the number of their interactions per unit time;

2. the coefficient A(u∗, u∗, u), a function defined on D3
u, expressing the transition proba-

bility, i.e., the probability (density) that any individual in the state u∗, when interacting
with a particle in the state u∗, falls in the state u.

In any context, it is obvious that, to different prescriptions on the form of function
η(u∗, u∗) or of function A(u∗, u∗, u), there will correspond different probability distribu-
tions on Du (or, in a strictly statistical interpretation, different distributions of relative
frequencies on Du over the system). However, what should we expect about the depen-
dence of the difference of distributions on the difference between prescribed coefficients?
Should an accordingly small difference between the corresponding distributions corre-
spond to small perturbations to the interaction rate or to the transition distribution?

These questions are quite similar to those posed in all the classical problems associated
with differential and integro-differential equations, but—as far as we are aware—have not
been tackled yet for Equation (1). Nevertheless, in view of the large number of applications
of complex systems (and of Equation (1), which describes their evolution) to so many
basic problems of collective life of the whole mankind (for instance, let us mention the
prediction of the evolution of epidemic diseases, or of the emergence of unsustainable
economic inequalities), these questions are of special relevance in the framework of KTAP.
In addition, the present paper is the first attempt to tackle them and to give some initial
results about both the continuous dependence of solutions of Equation (1) on the coefficients
and their instability. In connection with this last topic, the paper also offers some numerical
simulations that show the separation between solutions corresponding to different values
of parameters.

The contents of the paper are distributed as follows: in Section 2, we recall the structure
of KTAP theory and Equation (1), and report the Cauchy problem associated with it, in
the case in which the activity variable is assumed to be continuous (Section 2.1), as well as
in the case in which it is assumed to be discrete (Section 2.2); Section 3 will be devoted to
draw the notion of dependence of solutions on the parameters, and we state and prove a
result concerning the continuous dependence of solutions on parameters, again in both the
continuous case (Section 3.1) and the discrete case (Section 3.2), and, in Section 4, we give
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first results about instability of solutions (in both cases); in this connection, special attention
should be paid to the numerical simulations presented in Section 4.3 for the discrete
case that offers a clear perception of the fact that the solutions to Equation (4) depend
continuously on the parameters, but stay apart from each other when the perturbation
of the parameters is greater than a well-defined threshold value. Finally, in Section 5, we
outline some research perspectives based on some general and meaningful conclusions
that can be drawn from the results found in the previous sections.

2. The Basic Equations

2.1. The Continuous Activity Framework

Let Du ⊆ R and F > 0. According to what has been laid out in the Introduction, this
paper is devoted to the analysis of properties of solutions f (t, u) : [0,+∞[×Du → R+ of
the following nonlinear integro-differential equation, with quadratic nonlinearity:

∂t f (t, u) + F∂u((1 − uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u), (1)

where the operator J[ f , f ](t, u) is defined as follows:

J[ f , f ](t, u) = G[ f , f ](t, u)− L[ f , f ](t, u)

=
∫

Du×Du
η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗+

− f (t, u)
∫

Du
η(u, u∗) f (t, u∗) du∗,

(2)

and

• η(u∗, u∗) : Du × Du → R+;
• A(u∗, u∗, u) : Du × Du × Du → R+ with the property:∫

Du
A(u∗, u∗, u) du = 1, ∀u∗, u∗ ∈ Du;

• E1[ f ](t) =
∫

Du
u f (t, u) du.

The Cauchy problem associated with Equation (1) reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t f (t, u) + F∂u((1 − uE1[ f ](t)) f (t, u)) =
J[ f , f ](t, u) (t, u) ∈ [0,+∞[×Du

f (0, u) = f 0(u) u ∈ Du.

(3)

Let
E0[ f ](t) =

∫
Du

f (t, u) du

and
E2[ f ](t) =

∫
Du

u2 f (t, u) du.

Consider the function space K(Du) defined as

K(Du) :=
{

f (t, u) ∈ [0,+∞[×Du → R+ : E0[ f ](t) = E2[ f ](t) = 1
}

.

The existence and uniqueness of solutions

f (t, u) ∈ C
(
(0,+∞)× Du; L1(Du)

)
∩K(Du)
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of the Cauchy problem (3) are proved in [25], under the condition

f (t, u) = 0, u ∈ ∂Du.

The existence of solutions of the nonequilibrium stationary problem related to (1) is proved
in [31]. A proof of the convergence of the solution of (3) to the nonequilibrium stationary
solution as time goes to infinity is given in [32].

In many cases of interest, as for example in the description of the diffusion of epidemics
η(u∗, u∗) can be supposed to be constant, i.e., there exists η > 0 such that η(u∗, u∗) = η,
for all u∗, u∗ ∈ Du.

Remark 1. If C is a complex system, homogeneous with respect to the mechanical variables, i.e.,
space and velocity, (1) describes the evolution of the distribution function f (t, u) of C, and is called
thermostatted kinetic framework [2].

The microscopic state is described by a scalar variable u, called activity, which attains its
values in a real continuous subset Du. In this frame:

• η(u∗, u∗) is the interaction rate between the particles that are in the state u∗ and the particles
in the state u∗;

• A(u∗, u∗, u) is the transition probability density i.e., the probability (density) that a particle
in the state u∗ falls into the state u after interacting with a particle in the state u∗;

• F > 0 is the value of the external force field acting on the system C;
• E0[ f ](t) is the density, E1[ f ](t) is the linear momentum and E2[ f ](t) is the global energy;
• G[ f , f ](t, u) is the gain-term operator and L[ f , f ](t, u) is the loss-term operator.

Equation (1) and the related problem (3) describe the evolution of a system C such that the
global activation energy, E2[ f ](t), is kept constant by means of a thermostat [33].

2.2. The Discrete Activity Framework

Let Iu = {u1, u2, . . . , un} be a discrete subset of R. The operator Ji[f](t), for i ∈
{1, 2, . . . , n} is defined as:

Ji[f](t) = Gi[f](t)− Li[f](t)

=
n

∑
h=1

n

∑
k=1

ηhkBi
hk fh(t) fk(t)− fi(t)

n

∑
k=1

ηik fk(t),

where ηhk : Iu × Iu → R+, for h, k ∈ {1, 2, . . . , n}, and the functions Bi
hk : Iu × Iu × Iu → R+

(where i, h, k ∈ {1, 2, . . . , n}) obey the condition

n

∑
i=1

Bi
hk = 1, h, k ∈ {1, 2, . . . , n}.

Let f(t) = ( f1(t), f2(t), . . . , fn(t)), where, for any i ∈ {1, 2, . . . n},

fi(t) := f (t, ui) : [0,+∞[×Iu → R+

is a solution of the nonlinear ordinary differential equation

d fi
dt

(t) = Ji[f](t) + Fi(t)−
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2[f]

)
fi(t), (4)

for F(t) = (F1(t), F2(t), . . . , Fn(t)) with Fi(t) > 0. The 2-nd order moment function E2[f](t)
of f takes now the form

E2[f](t) =
n

∑
i=1

u2
i fi(t).

64



Axioms 2021, 10, 59

Consider the function space:

R2
f = R2

f

(
R+;E2

)
=
{

f ∈ C
(
[0,+∞];

(
R+

)n
)

: E2[f] = E2

}
where E2 ∈ R+. The existence and uniqueness of solutions to the Cauchy problem
associated with Equation (4), with initial data f0 such that ∑n

i=1 u2
i f 0 = 1, has been proved

in [34] under the following assumption:

H1 There exist η, F > 0, such that Fi(t) ≤ F, for t > 0, and ηhk ≤ η, for h, k ∈ {1, 2, . . . , n}.

A nonequilibrium stationary solution of Equation (4), for i ∈ {1, 2, . . . , n}, is a function fi
satisfying the equation

Ji[f] + Fi −
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2

)
fi = 0. (5)

Let R̃2
f denote the function space:

R̃2
f

(
R+;E2

)
=
{

f ∈ (
R+

)n : E2[f] = E2

}
.

The existence of nonequilibrium stationary solutions g(u) ∈ R̃2
f has been proved in [28], under

the assumption H1.
In particular, under the further assumptions:

H2
n

∑
i=1

uiBi
hk = 0, for all h, k ∈ {1, 2, . . . , n},

H3
n

∑
i=1

u2
i Bi

hk = u2
h, for all h, k ∈ {1, 2, . . . , n},

it has been proved in [28] that any nonequilibrium stationary solution is unique if the force
field verifies the constraint

F > 2ηE2
2

(
1 +

1
‖u‖2

2

)
.

Proposition 1 ([28]). If assumptions H1–H3 are met, together with the assumption

H4

E0[f] = E2[f] = 1

then

1. The evolution equation of E1[f](t) =
n

∑
i=1

ui fi(t) takes the form

E′
1[f](t) +

(
η +

n

∑
i=1

u2
i fi

)
E1[f](t)−

n

∑
i=1

uiFi = 0; (6)

2. as t → +∞,

E1[f](t) → K :=

n

∑
i=1

uiFi

η +
n

∑
i=1

u2
i Fi

; (7)

3. Denoting by f0 the initial data of the Cauchy problem related to (4), one has

|E1[f](t)− K| ≤ c exp

[
−
(

η +
n

∑
i=1

u2
i Fi

)
t

]
, (8)
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where c is a constant depending on the system.

Remark 2. In [35], the existence of solutions of Equation (4) and of the related nonequilibrium
stationary problem has been proved for more general values of the real discrete variable ui.

Remark 3. Equation (4) has been proposed in [34] in order to model a complex system which
partitioned in n subsystems, called functional subsystems. In particular:

• the function fi(t), for i ∈ {1, 2, . . . , n}, denotes the distribution function of the i-th func-
tional subsystem;

• the function F(t) = (F1(t), F2(t), . . . , Fn(t)) is the external force field acting on the
whole system;

• The term

α :=
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2

)
represents the thermostat term, which allows for keeping constant the quantity E2[f](t):

• the term ηhk is the interaction rate related to the encounters between the functional subsystem
h and the functional subsystem k, for h, k ∈ {1, 2, . . . , n};

• the function Bi
hk denotes the transition probability density that the functional subsystem h

falls into the i after interacting with the functional subsystem k, for i, h, k ∈ {1, 2, . . . , n};
• the operator Ji[f](t), for i ∈ {1, 2, . . . , n}, models the net flux to the i-th functional subsystem;

Gi[f](t) denotes the gain term operator (incoming flux) and Li[f](t) the loss term operator
(outgoing flux).

Remark 4. Let p ∈ N. Equation (4) can be further generalized as follows:

d fi
dt

(t) = Ji[f](t) + Fi(t)−
n

∑
i=1

(
up

i (Ji[f] + Fi)

Ep[f]

)
fi(t).

This framework allows for keeping the p-th order moment

Ep[f](t) =
n

∑
i=1

up
i fi(t).

of the distribution f constant.

Remark 5. The convergence of any solution of (4) to a corresponding nonequilibrium stationary
state (solution to (5)), as time goes to infinity, has been proved in [27].

3. The Continuous Dependence on the Parameters

3.1. The Continuous Activity Framework

Let A(u∗, u∗, u), Ã(u∗, u∗, u), η and η̃ two classes of parameters for Equation (1).
Let J[ f , f ](t, u) = G[ f , f ](t, u) − L[ f , f ](t, u) be the operator related to the parameters
A(u∗, u∗, u) and η, and J̃[ f , f ](t, u) = G̃[ f , f ](t, u)− L̃[ f , f ](t, u) the operator related to the
parameters Ã(u∗, u∗, u) and η̃.

The related Cauchy problems, with the same initial data f 0(u), are defined as follows:⎧⎪⎨⎪⎩
∂t f (t, u) + F∂u((1 − uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u)

f (0, u) = f 0(u),

(9)
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⎧⎪⎨⎪⎩
∂t f (t, u) + F∂u((1 − uE1[ f ](t)) f (t, u)) = J̃[ f , f ](t, u)

f (0, u) = f 0(u).

(10)

By [25], there exist two functions f (t, u) ∈ C
(
(0,+∞)× Du; L1(Du)

)∩K(Du) and f̃ (t, u) ∈
C
(
(0,+∞)× Du; L1(Du)

) ∩ K(Du) that are solutions to problem (9) and to problem (10),
respectively.

The present paper aims to give a contribution in two directions:

1. the continuous dependence of the solutions of Equation (1) on the parameters A(u∗, u∗, u)
and η;

2. a first attempt towards the instability of the solutions of Equation (1) for certain values
of the two classes of parameters (A(u∗, u∗, u), η) and (Ã(u∗, u∗, u), η̃).

The first result will be a proof of the continuous dependence of solutions to Equation (1)
with respect to the parameters.

Let Θ(u∗, u∗, u) be the function defined as:

Θ(u∗, u∗, u) := |ηA(u∗, u∗, u)− η̃Ã(u∗, u∗, u)|.

Theorem 1. Let f (t, u), f̃ (t, u) ∈ C
(
(0,+∞)× Du; L1(Du)

)∩K(Du) the solutions to problems
(9) and (10), respectively. Assume that Θ(u∗, u∗, u) ∈ L1(Du × Du × Du). If there exist δ, δ̂ > 0
such that |η − η̃| < δ and ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

≤ δ̂ then, for all T > 0:∥∥ f (t, u)− f̃ (t, u)
∥∥

C((0,T)×Du ;L1(Du)) ≤
(
δ + δ̂

)
T e(2η+η̃)T . (11)

Proof. Integrating Equation (1) from 0 to t and recalling that f (0, u) = f 0(u) in mind,
one has

f (t, u) = f 0(u) +
∫ t

0
J[ f , f ](τ, u) dτ

− F
∫ t

0
∂u((1 − uE1[ f ](τ)) f (τ, u)) dτ,

(12)

where ∫ t

0
J[ f , f ](τ, u) dτ =

∫ t

0
G[ f , f ](τ, u) dτ −

∫ t

0
L[ f , f ](τ, u) dτ

=
∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗ dτ

− η
∫ t

0
f (τ, u) dτ.

The integral expression (12) for the solutions f (t, u) and f̃ (t, u) becomes

f (t, u) = f 0(u) +
∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗ du∗ dτ

− η
∫ t

0
f (τ, u) dτ − F

∫ t

0
∂u((1 − uE1[ f ](τ)) f (τ, u)) dτ,

(13)

and

f̃ (t, u) = f 0(u) +
∫ t

0

∫
Du×Du

η̃ Ã(u∗, u∗, u) f̃ (t, u∗) f̃ (t, u∗) du∗ du∗ dτ

− η̃
∫ t

0
f̃ (τ, u) dτ − F

∫ t

0
∂u
(
(1 − uE1[ f̃ ](τ)) f̃ (τ, u)

)
dτ

(14)
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respectively.
Subtracting side by side Equation (14) from Equation (13), we readily get

f (t, u)− f̃ (t, u) =

=
∫ t

0

∫
Du×Du

(
η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗)

)
du∗ du∗ dτ

+
∫ t

0

[
η̃ f̃ (τ, u)− η f (τ, u)

]
dτ

+ F
∫ t

0
∂u
(

f̃ (τ, u)− f (τ, u) + f (τ, u) uE1[ f ](τ)− f̃ (τ, u) uE1[ f̃ ](τ)
)

dτ

(15)

which leads immediately to the estimate

| f (t, u)− f̃ (t, u)| ≤
≤
∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

∣∣∣∣
+

∣∣∣∣η̃ ∫ t

0
f̃ (τ, u) dτ − η

∫ t

0
f (τ, u) dτ

∣∣∣∣
+ F

∣∣∣∣∫ t

0
∂u
(

f̃ (τ, u)− f (τ, u) + f (τ, u) uE1[ f ](τ)− f̃ (τ, u) uE1[ f̃ ](τ)
)

dτ

∣∣∣∣.
(16)

Since f (t, u) = f̃ (t, u) = 0 for u ∈ ∂Du, the third term on the right-hand side of inequality
(16) vanishes, so that we obtain the relation

| f (t, u)− f̃ (t, u)| ≤
≤
∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

∣∣∣∣
+
∫ t

0

∣∣η̃ f̃ (τ, u)− η f (τ, u)
∣∣ dτ

(17)

and, by straightforward calculations, one finds that the first term on the right-hand side of
(17) can be estimated as follows:∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

∣∣∣∣ ≤
≤

∫ t

0

∫
Du×Du

η f (τ, u∗)A(u∗, u∗, u)| f (τ, u∗)− f̃ (τ, u∗)| du∗ du∗ dτ

+
∫ t

0

∫
Du×Du

η̃ f̃ (τ, u∗) Ã(u∗, u∗, u)| f̃ (τ, u∗)− f (τ, u∗)| du∗ du∗ dτ

+
∫ t

0

∫
Du×Du

f̃ (τ, u∗) f (τ, u∗)
[
ηA(u∗, u∗, u)− η̃Ã(u∗, u∗, u)

]
du∗ du∗ dτ.

(18)

Now, using inequality (18) and integrating both sides of relation (17) on Du, we get

‖ f (t, u)− f̃ (t, u)‖L1(Du)
≤ η

∫ t

0
‖ f (τ, u)− f̃ (τ, u)‖L1(Du)

dτ

+ η̃
∫ t

0
‖ f (τ, u)− f̃ (τ, u)‖L1(Du)

dτ + ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

+
∫ t

0

∫
Du

|η̃ f̃ (τ, u)− η f (τ, u)| du dτ.

(19)

Since:

|η̃ f̃ (τ, u)− η f (τ, u)| = |η̃ f̃ (τ, u)− η f̃ (τ, u) + η f̃ (τ, u)− η f (τ, u)|
≤ f̃ (τ, u)|η̃ − η|+ η| f̃ (τ, u)− f (τ, u)|,
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relation (19), bearing in mind that |η − η̃| < δ and ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)
≤ δ̂, may

be rewritten in the form

‖ f (t, u)− f̃ (t, u)‖L1(Du)
≤

∫ t

0
(η + η̃)‖ f (τ, u)− f̃ (τ, u)‖L1(Du)

dτ

+ ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)
+ |η̃ − η|t

+ η
∫ t

0
‖ f (τ, u)− f̃ (τ, u)‖L1(Du)

dτ

≤
∫ t

0
(2η + η̃)‖ f (τ, u)− f̃ (τ, u)‖L1(DU) dτ +

(
δ + δ̂

)
t.

(20)

By Grönwall’s inequaility [36],

‖ f (t, u)− f̃ (t, u)‖L1(Du)
≤ (δ + δ̂)t e(2η+η̃)t. (21)

By (20) and (21), relation (11) is proved, i.e., for T > 0,∥∥ f (t, u)− f̃ (t, u)
∥∥

C((0,T)×Du ;L1(Du)) ≤ (δ + δ̂)T e(2η+η̃)T .

Remark 6. It is worth pointing out that

1. the assumption |η − η̃| < δ is an estimate of the distance between the interaction rates;
2. the assumption ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

≤ δ̂ is an estimate on the distance between the
transition probability densities, “weighted” by the interaction rates.

Remark 7. The conclusion (11) of Theorem 1 ensures the continuous dependence of solutions on
the parameters A(u∗, u∗, u) and η. Indeed,

∥∥ f (t, u)− f̃ (t, u)
∥∥

C((0,+∞)×Du ;L1(Du))
δ,δ̂→0−−−→ 0.

3.2. The Discrete Activity Framework

This section aims to prove the continuous dependence of the solutions of Equation (4)
on the parameters ηhk and Bi

hk when f0, F(t) = F, constant in time, and T > 0 are fixed.

Let f(t) = ( f1(t), f2(t), . . . , fn(t)), f̂(t) =
(

f̂1(t), f̂2(t), . . . , f̂n(t)
)

be the solutions of
the systems ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d fi
dt

(t) = Ji[f](t) + Fi(t)−
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2[f]

)
fi(t) t ∈ [0, T]

f(0) = f0,

(22)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d fi
dt

(t) = Ĵif](t) + Fi(t)−
n

∑
i=1

(
u2

i
(

Ĵif] + Fi
)

E2[f]

)
fi(t) t ∈ [0, T]

f(0) = f0,

(23)

respectively; the operators J[f] and Ĵ[f] are defined by the parameters ηhk, Bi
hk, and η̂hk, B̂i

hk,
respectively.

The following stability result holds.
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Theorem 2. Let f(t) = ( f1(t), f2(t), . . . , fn(t)), f̂(t) = ( f̂1(t), f̂2(t), . . . , f̂n(t)) be the solutions
of (12) and (13), respectively. Assume ηhk ≤ η, η̂hk ≤ η̂, for h, k ∈ {1, 2, . . . , n}, and Fi ≤ F, for
i ∈ {1, 2, . . . , n}, for η, η̂, F > 0. If Λ := ∑n

i=1 ∑n
h,k=1

∣∣ηhkBi
hk − η̂hkB̂i

hk

∣∣, then

max
t∈[0,T]

∥∥∥f(t)− f̂(t)
∥∥∥

1
≤ Λ T e(η+η̂+∑n

i=1 u2
i Fi)T (24)

where

‖f(t)− f̂(t)‖1 :=
n

∑
i=1

| fi(t)− f̂i(t)|.

Proof. Bearing assumption H4 in mind, and integrating Equations (22) and (23) on [0, t],
we get

fi(t) = f 0
i +

∫ t

0

(
Ji[f](t) + Fi −

(
n

∑
i=1

u2
i (Ji[f](t) + Fi)

)
fi(t)

)
dt, (25)

and

f̂i(t) = f 0
i +

∫ t

0

(
Ĵif](t) + Fi −

(
n

∑
i=1

u2
i

(
Ĵi[f̂](t) + Fi

))
f̂i(t)

)
dt (26)

for i ∈ {1, 2, . . . , n}. Now, subtracting (26) from (25), we find

fi(t)− f̂i(t) =

=
∫ t

0
Ji[f](t)− Ĵi[f̂](t) dt

−
∫ t

0

[(
n

∑
i=1

u2
i (Ji[f](t) + Fi)

)
fi(t)−

(
n

∑
i=1

u2
i

(
Ĵi[f̂](t) + Fi

)
f̂i(t)

)]
dt.

(27)

By taking the side-by-side sum on i ∈ {1, 2, . . . , n} of these last relations, we arrive at

n

∑
i=1

∣∣∣ fi(t)− f̂i(t)
∣∣∣ ≤
≤

∫ t

0

n

∑
i=1

∣∣∣Ji[f](t)− Ĵi[f̂](t)
∣∣∣

+
∫ t

0

n

∑
i=1

∣∣∣∣∣
(

n

∑
i=1

u2
i (Ji[f](t) + Fi)

)
fi(t)−

(
n

∑
i=1

u2
i

(
Ĵi[f̂](t) + Fi

)
f̂i(t)

)∣∣∣∣∣ dt.

(28)

Now, first of all, observe that∫ t

0

n

∑
i=1

|Ji[f](t)− Ĵi[f̂](t)| ≤

≤
∫ t

0

n

∑
i=1

∣∣∣∣∣ n

∑
h,k=1

(
ηhk Bi

hk fh(t) fk(t)− η̂hk B̂i
hk f̂h(t) f̂k(t)

)∣∣∣∣∣ dt

+
∫ t

0

n

∑
i=1

∣∣∣∣∣ fi(t)
n

∑
k=1

ηik fk(t)− f̂i(t)
n

∑
k=1

η̂ik f̂k(t)

∣∣∣∣∣.
(29)
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The integrand in the first term on the right-hand side of (29) can be estimated as follows:∣∣∣ηhk Bi
hk fh(t) fk(t)− η̂hk B̂i

hk f̂h(t) f̂k(t)
∣∣∣ =

=
∣∣∣ηhk Bi

hk fh(t) fk(t)− Bi
hk ηhk fh(t) f̂k(t) + Bi

hk ηhk fh(t) f̂k(t)− η̂hk B̂i
hk f̂h(t) f̂k(t)

∣∣∣
≤
∣∣∣ηhk Bi

hk fh(t)
(

fk(t)− f̂k(t)
)
+ f̂k(t)

(
ηhk Bi

hk fh(t)− η̂hk B̂i
hk f̂h(t)

)∣∣∣
≤ ηhk Bi

hk fh(t)
∣∣∣ fk(t)− f̂k(t)

∣∣∣
+ f̂k(t)

∣∣∣ηhk Bi
hk fh(t)− η̂hk B̂i

hk fh(t) + η̂hk B̂i
hk fh(t)− η̂hk B̂i

hk f̂h(t)
∣∣∣

≤ ηhk Bi
hk fh(t)

∣∣∣ fk(t)− f̂k(t)
∣∣∣+ f̂k(t) fh(t)

∣∣∣ηhk Bi
hk − η̂hk B̂i

hk

∣∣∣
+ η̂hk B̂i

hk

∣∣∣ fh(t)− f̂h(t)
∣∣∣.

(30)

By using this estimate, the first integral on the right-hand side of (29) turns out to be
majorized as follows:

∫ t

0

n

∑
i=1

∣∣∣∣∣ n

∑
h,k=1

(
ηhk Bi

hk fh(t) fk(t)− η̂hk B̂i
hk f̂h(t) f̂k(t)

)∣∣∣∣∣ dt

≤
∫ t

0

n

∑
i=1

n

∑
h,k=1

ηhk Bi
hk fh(t)

∣∣∣ fk(t)− f̂k(t)
∣∣∣ dt +

∫ t

0

n

∑
i=1

n

∑
h,k=1

η̂hk B̂i
hk f̂k(t)

∣∣∣ fh(t)− f̂h(t)
∣∣∣ dt

+
∫ t

0

n

∑
h,k=1

f̂k(t) fh(t)
n

∑
i=1

∣∣∣ηhk Bi
hk − η̂hk B̂i

hk

∣∣∣ dt

≤ η
∫ t

0
‖f(t)− f̂(t)‖1 dt + η̂

∫ t

0
‖f(t)− f̂(t)‖1 dt + Λ t.

(31)

As far as the second term on the right-hand side of (28) is concerned, one has

n

∑
i=1

u2
i Ji[f](t) =

n

∑
i=1

u2
i (Gi[f](t)− Li[f(t))

=
n

∑
i=1

u2
i

(
n

∑
h,k=1

ηhk Bi
hk fh(t) fk(t)− fi(t)

n

∑
k=1

ηik fk(t)

)

=
n

∑
h,k=1

(
n

∑
i=1

u2
i Bi

hk

)
ηhk fh(t) fk(t)−

n

∑
i=1

u2
i fi(t)

n

∑
k=1

ηik fk(t) = 0

(32)

which in turn implies

∫ t

0

n

∑
i=1

∣∣∣∣∣
(

n

∑
i=1

u2
i (Ji[f](t) + Fi)

)
fi(t)−

(
n

∑
i=1

u2
i

(
Ĵi[f̂](t) + Fi

)
f̂i(t)

)∣∣∣∣∣ dt ≤

≤
∫ t

0

(
n

∑
i=1

u2
i Fi

)
‖f(t)− f̂(t)‖1 dt.

(33)

Finally, by using relations (31) and (33), inequality (28) becomes

‖f(t)− f̂(t)‖1 ≤
∫ t

0

(
η h + η̂ k +

n

∑
i=1

u2
i Fi

)
‖f(t)− f̂(t)‖1 dt + Λ t (34)

and now Grönwall’s inequaility [36] yields

‖f(t)− f̂(t)‖1 ≤ Λ T e(η h+η̂ k+∑n
i=1 u2

i Fi) t
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leading at once to (24).

Remark 8. The conclusion of Theorem 2 is the continuous dependence of solution of Equation (4)
on the parameters of the system, i.e., the interaction rate ηhk and the transition probability density
Bi

hk. In fact,

max
t∈[0,T]

‖f(t)− f̂(t)‖1
Λ→0−−−→ 0.

Remark 9. The coefficient Λ defined in Theorem 2 is a first estimate of the distance between the
two classes of parameters, i.e., (ηhk, Bi

hk) and (η̂hk, B̂i
hk).

4. A First Attempt towards the Instability with Respect to the Parameters

4.1. The Continuous Activity Framework

This section aims to give a first result about instability of solutions of Equation (1) with
respect to the parameters, interaction rate η, and transition probability density A(u∗, u∗, u).

Theorem 3. Let f (t, u), f̃ (t, u) ∈ C
(
(0,+∞)× Du; L1(Du)

) ∩ K(Du) be the solutions to prob-
lems (9) and (10), respectively. Assume that Θ(u∗, u∗, u) ∈ L1(Du × Du × Du). If there exist two
constants M1 and M̂1, with M1 > M̂1 such that |η − η̃| > M1 and ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

≤
M̂1, then, for all T > 0:

∥∥ f (t, u)− f̃ (t, u)
∥∥

C((0,T)×Du ;L1(Du)) ≥
(M1 − M̂1)

1 + (η + η̃)T
T > 0. (35)

Proof. As in Theorem 1, by using the integral formulation of (1) and by straightforward
calculations, one has

| f (t, u)− f̃ (t, u)| =
∣∣∣∣∣
∫ t

0

(
η̃ f̃ (τ, u)− η f (τ, u)

)
dτ

+
∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

+ F
∫ t

0
∂u
(
( f̃ (τ, u)− f (τ, u) + f (τ, u) uE1[ f ](τ)− f̃ (τ, u) uE1[ f̃ ](τ))

)
dτ

∣∣∣∣∣
≥
∣∣∣∣∫ t

0

(
η̃ f̃ (τ, u)− η f (τ, u)

)
dτ

∣∣∣∣
−
∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

∣∣∣∣
− F

∣∣∣∣∫ t

0
∂u
(
( f̃ (τ, u)− f (τ, u) + f (τ, u) uE1[ f ](τ)− f̃ (τ, u) uE1[ f̃ ](τ))

)
dτ

∣∣∣∣

(36)

whence, by integrating the (36) on Du, we obtain

‖ f (t, u)− f̃ (t, u)‖L1(Du)
≥

∫
Du

∣∣∣∣∫ t

0

(
η̃ f̃ (τ, u)− η f (τ, u)

)
dτ

∣∣∣∣ du

−
∫

Du

∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ

∣∣∣∣ du

− F
∫

Du

∣∣∣∣∫ t

0
∂u
(
( f̃ (τ, u)− f (τ, u) + f (τ, u) uE1[ f ](τ)− f̃ (τ, u) uE1[ f̃ ](τ))

)
dτ

∣∣∣∣.
(37)

Since f (t, u) = f̃ (t, u) = 0 for u ∈ ∂Du, the third term on the right-hand side of the (37)
vanishes.
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The first term at the right-hand side of inequality (37) is estimated as follows:∫
Du

∣∣∣∣∫ t

0

(
η̃ f̃ (τ, u)− η f (τ, u)

)
dτ

∣∣∣∣ du ≥
∣∣∣∣∫ t

0

∫
Du

η̃ f̃ (τ, u)− η f (τ, u) du dτ

∣∣∣∣
= |η̃ − η| t.

(38)

Consider now the second term of the right-hand side of inequality (37). First of all,

−
∫

Du

∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)

− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ
∣∣ du ≥

−
∫

Du

∫ t

0

∫
Du×Du

|η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)

− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗)
∣∣ du∗ du∗ dτ du.

(39)

By straightforward calculations,∣∣η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗)
∣∣ =

=
∣∣∣η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)− η A(u∗, u∗, u) f (τ, u∗) f̃ (τ, u∗)

+ η A(u∗, u∗, u) f (τ, u∗) f̃ (τ, u∗) + η̃ Ã(u∗, u∗, u) f (τ, u∗) f̃ (τ, u∗)

− η̃ Ã(u∗, u∗, u) f (τ, u∗) f̃ (τ, u∗)− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗)
∣∣∣

=
∣∣∣η A(u∗, u∗, u) f (τ, u∗)

(
f (τ, u∗)− f̃ (τ, u∗)

)
− η̃ Ã(u∗, u∗, u) f̃ (τ, u∗)( f (τ, u∗ − f (τ, u∗)))

+ f (τ, u∗) f̃ (τ, u∗)
(
η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)

)∣∣∣
≤ η A(u∗, u∗, u) f (τ, u∗)

∣∣ f (τ, u∗)− f̃ (τ, u∗)
∣∣

+ η̃ Ã(u∗, u∗, u) f̃ (τ, u∗)
∣∣ f (τ, u∗)− f̃ (τ, u∗)

∣∣
+ f (τ, u∗) f̃ (τ, u∗)

∣∣η A(u∗, u∗, u)− η̃Ã(u∗, u∗, u)
∣∣.

(40)

In virtue of inequalities (39) and (40),

−
∫

Du

∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)

−η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ
∣∣ du ≥

≥ −η
∫ t

0

∫
Du

f (τ, u∗)
∫

Du
| f (τ, u∗)− f̃ (τ, u∗)|

∫
Du

A(u∗, u∗, u) du du∗ du∗ dτ

− η̃
∫ t

0

∫
Du

f̃ (τ, u∗)
∫

Du
| f (τ, u∗)− f̃ (τ, u∗)|

∫
Du

A(u∗, u∗, u) du du∗ du∗ dτ

−
∫ t

0

∫
Du

∫
Du×Du

f (τ, u∗) f̃ (τ, u∗)
∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)

∣∣ du∗ du∗ du dτ

= −η t‖ f (t, u)− f̃ (t, u)‖L1(Du)
− η̃ t‖ f (t, u)− f̃ (t, u)‖L1(Du)

−
∫ t

0

∫
Du

∫
Du×Du

f (τ, u∗) f̃ (τ, u∗)
∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)

∣∣ du∗ du∗ du dτ

(41)

and, using Hölder’s inequality,
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∫ t

0

∫
Du

∫
Du×Du

f̃ (τ, u∗) f (τ, u∗)
∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)

∣∣ du∗ du∗ du dτ ≤

≤
∫ t

0

∫
Du

∫
Du

f̃ (τ, u∗)
(

max
u∗∈Du

f (τ, u∗)
) ∫

Du

∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)
∣∣ du∗ du∗ du dτ

≤
∫ t

0

∫
Du

∫
Du

(
max

u∗∈Du
f (τ, u∗)

) ∫
Du

∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)
∣∣ du∗ du∗ du dτ

≤
∫ t

0

∫
Du×Du×Du

∣∣η A(u∗, u∗, u)− η̃ Ã(u∗, u∗, u)
∣∣ du∗ du∗ du

= ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)
t.

(42)

Thanks to relations (41) and (42), inequality (39) becomes

−
∫

Du

∣∣∣∣∫ t

0

∫
Du×Du

η A(u∗, u∗, u) f (τ, u∗) f (τ, u∗)

−η̃ Ã(u∗, u∗, u) f̃ (τ, u∗) f̃ (τ, u∗) du∗ du∗ dτ
∣∣ du ≥

≥ −(η + η̃)t‖ f (t, u)− f̃ (t, u)‖L1(Du)
− ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

t.

(43)

Finally, by (38) and (43), inequality (37) yields

(1 + (η + η̃)t)‖ f (t, u)− f̃ (t, u)‖L1(Du)
≥ |η̃ − η| t − ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

t.

Then:

‖ f (t, u)− f̃ (t, u)‖L1(Du)
≥ |η̃ − η| − ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

1 + (η + η̃)t
t. (44)

Relation (35) is then proved by using the (44), and keeping in mind the fact that
|η − η̃| > M1 and ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

≤ M̂1, with M1 > M̂1:

∥∥ f (t, u)− f̃ (t, u)
∥∥

C((0,T)×Du ;L1(Du)) ≥
|η̃ − η| − ‖Θ(u∗, u∗, u)‖L1(Du×Du×Du)

1 + (η + η̃)T
T

≥ (M1 − M̂1)

1 + (η + η̃)T
T.

Remark 10. In Theorem 3, the instability is related to the variation of the interaction rate.

Remark 11. For instance, if Du = [0, 1
2 ] is taken into account with A = Ã, then the right-hand

side of relation (35) is strictly positive, so that the instability of the solutions follows at once.

4.2. The Discrete Activity Framework

In this section, we want to outline a first step of a study of instability in the discrete
framework (4). This is an important issue in view of future numerical analysis.

Theorem 4. Let f(t) = ( f1(t), f2(t), . . . , fn(t)), f̂(t) = ( f̂1(t), f̂2(t), . . . , f̂n(t)) be the solutions
of Equations (22) and (23), respectively. Let η, η̂, F >= 0 such that ηhk ≤ η, η̂hk ≤ η̂, for
h, k ∈ {1, 2, . . . , n}, and Fi ≤ F, for i ∈ {1, 2, . . . , n}. Furthermore, let

Γ(t) := min
f,f̂∈(C([0,T]))n

{
n

∑
i=1

∣∣∣∣∣
∫ t

0

n

∑
h,k=1

ηhk Bi
hk fh(t) fk(t)− η̂hk B̂i

hk f̂h(t) f̂k(t)

∣∣∣∣∣
}

.
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Then,

max
[0,T]

‖f(t)− f̂(t)‖1 ≥ max
[0,T]

Γ(t)− (η + η̂)t
1 +

(
∑n

i=1 u2
i Fi

)
t
. (45)

Proof. Bearing the (27) in mind, and by using the (32), straightforward calculations show,
for i ∈ {1, 2, . . . , n}:∣∣∣ fi(t)− f̂i(t)

∣∣∣ ≥
≥
∣∣∣∣∣
∫ t

0

n

∑
h,k=1

ηhk Bi
hk fh(s) fk(s)− η̂hk B̂i

hk f̂h(s) f̂k(s) ds

∣∣∣∣∣
−
∣∣∣∣∣
∫ t

0

(
f̂i(s)

n

∑
k=1

η̂ik f̂k(s)− fi(s)
n

∑
k=1

ηik fk(s)

)
ds

∣∣∣∣∣
−
(

n

∑
i=1

u2
i Fi

)∣∣∣∣∫ t

0

(
f̂i(s)− fi(s)

)
ds
∣∣∣∣.

(46)

By taking the sum on i ∈ 1, 2, . . . , n of relations (46), we find

‖f(t)− f̂(t)‖1 ≥

≥
n

∑
i=1

∣∣∣∣∣
∫ t

0

n

∑
h,k=1

ηhk Bi
hk fh(s) fk(s)− η̂hk B̂i

hk f̂h(s) f̂k(s) ds

∣∣∣∣∣
−

n

∑
i=1

∣∣∣∣∣
∫ t

0

(
f̂i(s)

n

∑
k=1

η̂ik f̂k(s)− fi(s)
n

∑
k=1

ηik fk(s)

)
ds

∣∣∣∣∣
−

n

∑
i=1

(
n

∑
i=1

u2
i Fi

)∣∣∣∣∫ t

0

(
f̂i(s)− fi(s)

)
ds
∣∣∣∣.

(47)

Now, observe that

n

∑
i=1

∣∣∣∣∣
∫ t

0

(
f̂i(s)

n

∑
k=1

η̂ik f̂k(s)− fi(s)
n

∑
k=1

ηik fk(s)

)
ds(s)

∣∣∣∣∣ ≤
≤

∫ t

0

n

∑
i=1

f̂i(s)
n

∑
k=1

η̂ik f̂k(s) ds +
∫ t

0

n

∑
i=1

fi(s)
n

∑
k=1

ηik fk(s) ds

≤ (η + η̂)t,

(48)

and
n

∑
i=1

(
n

∑
i=1

u2
i Fi

)∣∣∣∣∫ t

0

(
f̂i(s)− fi(s)

)
dt
∣∣∣∣ ≤

(
n

∑
i=1

u2
i Fi

)∫ t

0
‖f(t)− f̂(t)‖1. (49)

Using these two last relations, inequality (47) may be rewritten in the form

‖f(t)− f̂(t)‖1 ≥ Γ(t)− (η + η̂)t −
(

n

∑
i=1

u2
i Fi

)∫ t

0
‖f(t)− f̂(t)‖1,

so that

‖f(t)− f̂(t)‖1 ≥ Γ(t)− (η + η̂)t
1 +

(
∑n

i=1 u2
i Fi

)
t
,

and inequality (45) is achieved.
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Remark 12. By using inequality (45), we see that, if Γ(t) > (η + η̂)t, then an instability appears
in the framework (4). In addition, it is important to note that this is a condition involving the
parameters of the system, i.e., interaction rate and transition probability density.

4.3. Numerical Simulations

This section aims to present some numerical simulations in the framework described
by (22). Specifically, the parameters of the system, i.e., interaction rate and transition
probability, acquire different values. All the simulations that follow have been performed
by using the routine Ode45 of MatLab.

Let n = 3, which is three functional subsystems that are taken into account. The initial
data are the vector:

f0 = (3/8, 1/2, 1/8).

The interaction rate parameter has the following form:

ηhk = exp(−η |h − k|), η > 0.

In the first set of simulations, the transition probability is constant, whether the interaction
rate varies. Specifically, three cases are considered:

• η = 1;
• η = 3;
• η = 6.

The solution f(t) = ( f1(t), f2(t), f3(t)) is of course different from value to value of the
interaction rate. Specifically, Figure 1 shows the three plots of the solution f(t) respectively
corresponding to the three different values of η listed above. In addition, Figure 2 offers
a comparison between the solutions corresponding to the values η = 3 and η = 3, 2,
respectively.

In the second set of simulations, the interaction rate is constant, while the transition
probability density acquires different real values. Precisely, Figure 3 shows the three plots of
the solution f(t) respectively corresponding to three different values of Bi

hk. The considered
cases are:

•

Bi
hk = cihk

1
s

g(|h − i|), i, h, k ∈ {1, 2, . . . , n},

where g is a non-increasing function of |h − i| and s, and the parameters cihk, for
i, h, k ∈ {1, 2, . . . , n}, are positive real numbers, depending on the particular system
taken into account;

• B̂i
hk that differs from Bi

hk only for h = 3 and k = 2;
• Bi

hk uniform.

Furthermore, Figure 4 shows the solutions corresponding to the values Bi
hk and B̂i

hk in
the same plot in order to compare their behaviors in time.

It is worth being stressed that the shape of solution strictly depends on the value of the
parameters of the system (see Figures 1 and 3) as the results reported in Sections 4.1 and 4.2
show for both the continuous and the discrete framework. Moreover, bearing the
Figures 2 and 4 in mind, a small perturbation of a parameter may determine that the
related solution has the same shape, but they are not so “close” to each other.
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Figure 1. From top left to bottom η = 1, η = 3, γ = 6. f1 dot-dashed, f2 dashed, f3 full.

Figure 2. In black the solution for η = 3, in red the solution for η = 3, 2.
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Figure 3. From top left to bottom Bi
hk, B̂i

hk perturbed and uniform distribution. f1 dot-dashed, f2

dashed, f3 full.

Figure 4. In black the solution for Bi
hk, in red the solution for B̂i

hk.
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5. Conclusions and Research Perspectives

The results proved in Sections 3 and 4 are, in some sense, complementary. The former
shows that the difference between two arbitrary solutions of Equation (1), corresponding
to two different sets of parameters, i.e., different systems of interaction rates and different
probability distributions on the results of interactions, varies with a suitable measure of the
difference between the systems of parameters, and the variation is continuous; the latter
shows that, if the difference between the interaction rates is sufficiently large in a suitable
sense, then the corresponding solutions—though starting from the same initial value—will
move at once away from each other and will stay apart at any future time, i.e., their distance
has a constant positive lower bound. In addition, the numerical simulations plotted in the
figures shown in Section 4.3 seem to give a good visual counterpart of this result.

As far as we are aware, no similar results have been previously reported in the lit-
erature about KTAP, perhaps because the study of the dependence of solutions on the
perturbations of parameters (interaction rates and transition probabilities) seems to be too
difficult in relation to its relevance for applications, so that tackling it is considered as an
almost useless effort. However, on the contrary, results like the ones found and reported in
the present work are probably intended for becoming of the greatest relevance for applica-
tions, with special concern with social and economic sciences. In this connection, we can
observe that economic interactions in any human society are ruled by the government: in a
country in which some commercial transactions are allowed, they will produce exchanges
of goods and money, with a subsequent modification of the distribution of wealth; but, in
another country, where the same transactions are forbidden, the interaction rate referred to
them is zero, and we must expect that the distribution of wealth could not be modified by
these transactions, regardless of the values of transition probabilities that are allowed to be
the same in both cases. This remark has worked as a suggestion of a search for instability
results of the kind of Theorems 3 and 4. Of course, these Theorems cannot be considered
as more than a first step on the way towards much more general instability results, for at
least the good reason that they only refer to the very special case in which the interaction
rates are constant with respect to the couples of states. Accordingly, this research about
instability requires to be deepened along at least three lines, which will be the object of
future work.

As laid out in the Introduction, KTAP is not a theory or simply a model, but a whole
scheme of models to describe and—above all—predict the behavior of complex systems.
In addition, as a matter of fact, our prime scope is its application to human collectivities,
in order to suggest some ways to solve the problems raised by many and diffused bad
mental habits that control not only human behaviors but also the criteria according to
which legislators decide the (inter-)actions that can be allowed and the (inter-)actions that
must be forbidden. Laws can modify both interaction rates and transition probabilities, so a
complete and detailed view of the behaviors they produce could avoid that past mistakes
from being repeated in the future.

In this line of thought, first of all, one should find possible conditions of instability in
the quite general case in which interaction rates are arbitrary functions defined on Du × Du:
from a purely mathematical viewpoint, this will require in turn a suitable definition of
their distance.

Next, one has to find possible instability conditions on the transition probabilities,
also in the case in which the interaction rates are left unchanged.

Finally, one has to study the reciprocal influence between the perturbation of interac-
tion rates and the perturbation of transition probabilities. In this connection, it should be
noted that Theorem 3 already furnishes a first hint in this direction.

These three lines of search give good and hopefully—on a pragmatic ground—useful
perspectives for the development of the study started and reported in the present paper.
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Abstract: The objective of this paper is to introduce an iterative method with the addition of an
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is based on the Mann-type iterative scheme and the extragradient method. By imposing certain
mild conditions on a bifunction, the corresponding theorem of strong convergence in real Hilbert
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and to compare it to other methods in the literature.
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1. Introduction

Suppose that C is a nonempty closed and convex subset of a real Hilbert space H.
The inner product and induced norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let
f : H×H → R be a bifunction and f (y, y) = 0, for all y ∈ C. The equilibrium problem
(EP) [1,2] for a bifunction f on C is defined in the following way:

Find u∗ ∈ C such that f (u∗, y) ≥ 0, ∀ y ∈ C. (EP)

The equilibrium problem is a general mathematical problem in the sense that it unifies
various mathematical problems, i.e., fixed-point problems, vector and scalar minimization
problems, problems of variational inequality, complementarity problems, Nash equilibrium
problems in noncooperative games, saddle point problems, and inverse optimization prob-
lems [2–4]. The equilibrium problem is also known as the well-known Ky Fan inequality
due to the result [1]. Many authors established and generalized several results on the
existence and nature of the solution of the equilibrium problems (see for more detail [1,4,5]).
Due to the importance of this problem (EP) in both pure and applied sciences, many
researchers studied it in recent years [6–17] and other in [18–22].

Axioms 2021, 10, 76. https://doi.org/10.3390/axioms10020076 https://www.mdpi.com/journal/axioms

83



Axioms 2021, 10, 76

Tran et al. in [23] introduced iterative sequence {un} in the following way:⎧⎪⎪⎪⎨⎪⎪⎪⎩
u0 ∈ C,
yn = arg min

z∈C
{χ f (un, z) + 1

2‖un − z‖2},

un+1 = arg min
z∈C

{χ f (yn, z) + 1
2‖un − z‖2},

(1)

where 0 < χ < min
{ 1

2c1
, 1

2c2

}
. This method is also known as the extragradient method

in [23] due to the previous contribution of Korpelevich [24] to solve the saddle-point prob-
lems. The iterative sequence generated by the above-mentioned method is weakly conver-
gent to the solution with prior knowledge of Lipschitz-type constants. These Lipschitz-like
constants are often not known or are difficult to compute. Recently, Hieu et al. [25] intro-
duced an extension of the method (1) for solving the equilibrium problem. Let us consider
that [p]+ := max{p, 0} and choose u0 ∈ C, μ ∈ (0, 1) with χ0 > 0 such that⎧⎪⎨⎪⎩

yn = arg min
z∈C

{χn f (un, z) + 1
2‖un − z‖2},

un+1 = arg min
z∈C

{χn f (yn, z) + 1
2‖un − z‖2},

(2)

where {χn} is updated in the following manner:

χn+1 = min
{

χn,
μ(‖un − yn‖2 + ‖un+1 − yn‖2)

2[ f (un, un+1)− f (un, yn)− f (yn, un+1)]+

}
.

Inertial-like methods are well-known two-step iterative methods in which the next
iteration is derived from the previous two iterations (see [26,27] for more details). To speed
up the iterative sequence convergence rate, an inertial extrapolation term is used. Nu-
merical examples show that inertial effects improve numerical performance in terms of
execution time and the expected number of iterations. Recently, many existing methods
were established for the case of equilibrium problems (see [28–31] for more details).

In this paper, inspired by the methods in [23,25,26,32], we introduce a general inertial
Mann-type subgradient extragradient method to evaluate the approximate solution of
the equilibrium problems involving pseudomonotone bifunction. A strong convergence
result corresponding to the proposed algorithm is well-established by assuming certain
mild conditions. Some of the applications for our main results are considered to solve the
fixed-point problems. Lastly, computational results show that the new method is more
successful than existing ones [23,33,34].

2. Preliminaries

A metric projection PC(u) of u ∈ H onto a closed and convex subset C of H is defined by

PC(u) = arg min
y∈C

{‖y − u‖}.

In this study, the equilibrium problem under the following conditions:

(c1). A bifunction f : H×H → R is said to be pseudomonotone [3,35] on C if

f (y1, y2) ≥ 0 =⇒ f (y2, y1) ≤ 0, ∀ y1, y2 ∈ C.

(c2). A bifunction f : H×H → R is said to be Lipschitz-type continuous [36] on C if there
exist constants c1, c2 > 0 such that

f (y1, y3) ≤ f (y1, y2) + f (y2, y3) + c1‖y1 − y2‖2 + c2‖y2 − y3‖2, ∀ y1, y2, y3 ∈ C.

(c3). lim sup
n→∞

f (yn, y) ≤ f (q∗, y) for all y ∈ C and {yn} ⊂ C satisfy yn ⇀ q∗.
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(c4). f (u, ·) is convex and subdifferentiable on H for each u ∈ H.

A cone on C at u ∈ C is defined by

NC(u) = {t ∈ H : 〈t, y − u〉 ≤ 0, ∀ y ∈ C}.

Let a convex function � : C → R and subdifferential of � at u ∈ C is defined by

∂�(u) = {t ∈ H : �(y)−�(u) ≥ 〈t, y − u〉, ∀ y ∈ C}.

Lemma 1. [37] Let � : C → R be a subdifferentiable, lower semicontinuous, and convex function
on C. Then, u ∈ C is said to be a minimizer of � if and only if 0 ∈ ∂�(u) + NC(u), where ∂�(u)
stands for the subdifferential of � at u ∈ C and NC(u) is a normal cone of C on u.

Lemma 2. [38] Assume that PC : H → C be a metric projection such that

(i) ‖y1 − PC(y2)‖2 + ‖PC(y2)− y2‖2 ≤ ‖y2 − y1‖2, y1 ∈ C, y2 ∈ H.

(ii) y3 = PC(y1) if and only if 〈y1 − y3, y2 − y3〉 ≤ 0, ∀ y2 ∈ C.

(iii) ‖y1 − PC(y1)‖ ≤ ‖y1 − y2‖, y2 ∈ C, y1 ∈ H.

Lemma 3. [39] Assume that {�n} ⊂ (0,+∞) is a sequence satisfying, i.e., �n+1 ≤ (1 −
�n)�n +�nðn, for all n ∈ N. Moreover, let {�n} ⊂ (0, 1) and {ðn} ⊂ R be two sequences,
such that limn→∞ �n = 0, ∑∞

n=1 �n = +∞ and lim supn→∞ ðn ≤ 0. Then, limn→∞ �n = 0.

Lemma 4. [40] Assume that {�n} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that �ni < �ni+1 for all i ∈ N. Then, there is a nondecreasing sequence
mk ⊂ N such that mk → ∞ as k → ∞, and the following conditions are fullfiled by all (sufficiently
large) numbers k ∈ N:

�mk ≤ �mk+1 and �k ≤ �mk+1 .

In fact, mk = max{j ≤ k : �j ≤ �j+1}.

Lemma 5. [41] For all y1, y2 ∈ H and ð ∈ R, the following inequalities hold.

(i) ‖ðy1 + (1 − ð)y2‖2 = ð‖y1‖2 + (1 − ð)‖y2‖2 − ð(1 − ð)‖y1 − y2‖2.

(ii) ‖y1 + y2‖2 ≤ ‖y1‖2 + 2〈y2, y1 + y2〉.

3. Main Results

We propose an iterative method for solving equilibrium problems involving a pseu-
domonotone that is based on Tran et al. in [23], and the Mann-type method [32] and the
inertial scheme [26]. For clarity in the presentation, we use notation [t]+ = max{0, t} and
follow conventions 0

0 = +∞ and a
0 = +∞ (a �= 0).

Lemma 6. A sequence {χn} generated by (5) is monotonically decreasing, converges to χ > 0,
and has a lower bound min

{ μ
2 max{c1,c2} , χ0

}
.

Proof. Assume that f (tn, zn)− f (tn, yn)− f (yn, zn) > 0 such that

μ(‖tn − yn‖2 + ‖zn − yn‖2)

2[ f (tn, zn)− f (tn, yn)− f (yn, zn)]
≥ μ(‖tn − yn‖2 + ‖zn − yn‖2)

2[c1‖tn − yn‖2 + c2‖zn − yn‖2]

≥ μ

2 max{c1, c2} . (3)

This implies that {χn} has a lower bound min
{ μ

2 max{c1,c2} , χ0
}

. Moreover, there exists
a fixed real number χ > 0, such that limn→∞ χn = χ.
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Lemma 7. Suppose that Conditions (c1)–(c4) are satisfied. Then, sequence {un} generated by the
Algorithm 1 is a bounded sequence.

Algorithm 1 (Explicit Accelerated Strong Convergence Iterative Scheme)

STEP 0: Choose u−1, u0 ∈ C, φ > 0, χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1 − �n) and {�n} ⊂
(0, 1) satisfies the following conditions:

lim
n→∞

�n = 0 and
+∞

∑
n=1

�n = +∞.

STEP 1: Compute tn = un + φn(un − un−1) and choose φn such that

0 ≤ φn ≤ φ̂n and φ̂n =

{
min

{
φ
2 , ςn

‖un−un−1‖
}

if un �= un−1,
φ
2 otherwise,

(4)

where ςn = ◦(�n), i.e., limn→∞
ςn
�n

= 0.

STEP 2: Compute

yn = arg min
y∈C

{χn f (tn, y) +
1
2
‖tn − y‖2}.

If tn = yn, then STOP the sequence. Else, go to STEP 3.

STEP 3: Construct a half-space Hn = {z ∈ H : 〈tn − χnωn − yn, z − yn〉 ≤ 0} where
ωn ∈ ∂2 f (tn, yn) and compute

zn = arg min
y∈Hn

{χn f (yn, y) +
1
2
‖tn − y‖2}.

STEP 4: Compute un+1 = (1 − ρn − �n)un + ρnzn.

STEP 5: Compute

χn+1 = min
{

χn,
μ‖tn − yn‖2 + μ‖zn − yn‖2

2[ f (tn, zn)− f (tn, yn)− f (yn, zn)]+

}
. (5)

Set n := n + 1 and go back to Step 1.

Proof. From the value of zn, we have

0 ∈ ∂2

{
χn f (yn, y) +

1
2
‖tn − y‖2

}
(zn) + NHn(zn).

For ω ∈ ∂ f (yn, zn) there exists ω ∈ NHn(zn) such that

χnω + zn − tn + ω = 0.

This implies that

〈tn − zn, y − zn〉 = χn〈ω, y − zn〉+ 〈ω, y − zn〉, ∀ y ∈ Hn.

Due to ω ∈ NHn(zn), it implies that 〈ω, y − zn〉 ≤ 0 for each y ∈ Hn. Thus, we have

〈tn − zn, y − zn〉 ≤ χn〈ω, y − zn〉, ∀ y ∈ Hn. (6)

Moreover, ω ∈ ∂ f (yn, zn) and owing to the subdifferential, we have

f (yn, y)− f (yn, zn) ≥ 〈ω, y − zn〉, ∀ y ∈ H. (7)
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From Expressions (6) and (7), we obtain

χn f (yn, y)− χn f (yn, zn) ≥ 〈tn − zn, y − zn〉, ∀ y ∈ Hn. (8)

Due to the definition of Hn, we have

χn〈ωn, zn − yn〉 ≥ 〈tn − yn, zn − yn〉. (9)

Now, using ωn ∈ ∂ f (tn, yn), we obtain

f (tn, y)− f (tn, yn) ≥ 〈ωn, y − yn〉, ∀ y ∈ H.

By letting y = zn, we obtain

f (tn, zn)− f (tn, yn) ≥ 〈ωn, zn − yn〉, ∀ y ∈ H. (10)

Combining Expressions (9) and (10), we obtain

χn
{

f (tn, zn)− f (tn, yn)
} ≥ 〈tn − yn, zn − yn〉. (11)

By substituting y = u∗ in Expression (8), we obtain

χn f (yn, u∗)− χn f (yn, zn) ≥ 〈tn − zn, u∗ − zn〉. (12)

Since u∗ ∈ Ep( f , C), we have f (u∗, yn) ≥ 0. From the pseudomonotonicity of bifunc-
tion f , we achieve f (yn, u∗) ≤ 0. It follows from Expression (12) that

〈tn − zn, zn − u∗〉 ≥ χn f (yn, zn). (13)

From the description of χn+1, we obtain

f (tn, zn)− f (tn, yn)− f (yn, zn) ≤ μ‖tn − yn‖2 + μ‖zn − yn‖2

2χn+1
(14)

From (13) and (14), we obtain

〈tn − zn, zn − u∗〉 ≥ χn{ f (tn, zn)− f (tn, yn)}
− μχn

2χn+1
‖tn − yn‖2 − μχn

2χn+1
‖zn − yn‖2.

(15)

Combining Expressions (11) and (15), we have

〈tn − zn, zn − u∗〉 ≥ 〈tn − yn, zn − yn〉
− μχn

2χn+1
‖tn − yn‖2 − μχn

2χn+1
‖zn − yn‖2.

(16)

We have the given formula in place:

− 2〈tn − zn, zn − u∗〉 = −‖tn − u∗‖2 + ‖zn − tn‖2 + ‖zn − u∗‖2. (17)

2〈yn − tn, yn − zn〉 = ‖tn − yn‖2 + ‖zn − yn‖2 − ‖tn − zn‖2. (18)

Combining (16)–(18), we obtain

‖zn − u∗‖2 ≤ ‖tn − u∗‖2 −
(

1 − μχn

χn+1

)
‖tn − yn‖2 −

(
1 − μχn

χn+1

)
‖zn − yn‖2. (19)
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Since χn → χ, then there is number � ∈ (0, 1 − μ) that

lim
n→∞

(
1 − μχn

χn+1

)
= 1 − μ > � > 0.

Thus, there exists a finite number n1 ∈ N, such that(
1 − μχn

χn+1

)
> � > 0, ∀ n ≥ n1. (20)

From Expression (19), we obtain

‖un+1 − u∗‖2 ≤ ‖tn − u∗‖2, ∀ n ≥ n1. (21)

From Expression (4), we have φn‖un −un−1‖ ≤ ςn, for all n ∈ N and limn→∞

(
ςn
�n

)
= 0

implies that

lim
n→∞

φn

�n

∥∥un − un−1
∥∥ ≤ lim

n→∞

ςn

�n
= 0. (22)

From Expression (21) and {tn}, we have

‖zn − u∗‖ ≤ ∥∥tn − u∗∥∥ =
∥∥un + φn(un − un−1)− u∗∥∥

≤ ∥∥un − u∗∥∥+ φn
∥∥un − un−1

∥∥
≤ ∥∥un − u∗∥∥+ �n

φn

�n

∥∥un − un−1
∥∥

≤ ‖un − u∗‖+ �n1ג, (23)

where for some fixed 1ג > 0 and

φn

�n

∥∥un − un−1
∥∥ ≤ ,1ג ∀ n ≥ 1. (24)

It is given that u∗ ∈ Ep( f , C) and by definition of {un+1}, we have∥∥un+1 − u∗∥∥ =
∥∥(1 − ρn − �n)un + ρnzn − u∗∥∥

=
∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)− �nu∗∥∥

≤ ∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)
∥∥+ �n

∥∥u∗∥∥. (25)

Next, we compute∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)
∥∥2

= (1 − ρn − �n)
2∥∥un − u∗∥∥2

+ ρ2
n
∥∥zn − u∗∥∥2

+ 2
〈
(1 − ρn − �n)(un − u∗), ρn(zn − u∗)

〉
≤ (1 − ρn − �n)

2∥∥un − u∗∥∥2
+ ρ2

n
∥∥zn − u∗∥∥2

+ 2ρn(1 − ρn − �n)
∥∥un − u∗∥∥∥∥zn − u∗∥∥

≤ (1 − ρn − �n)
2∥∥un − u∗∥∥2

+ ρ2
n
∥∥zn − u∗∥∥2

+ ρn(1 − ρn − �n)
∥∥un − u∗∥∥2

+ ρn(1 − ρn − �n)
∥∥zn − u∗∥∥2

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ ρn(1 − �n)
∥∥zn − u∗∥∥2 (26)

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ ρn(1 − �n)(‖un − u∗‖+ �n1ג)
2

≤ (1 − �n)
2∥∥un − u∗∥∥2

+ �2
nג

2
1 + 2�n1)1ג − �n)‖un − u∗‖2. (27)

The above expression implies that∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)
∥∥ ≤ (1 − �n)

∥∥un − u∗∥∥+ �n1ג. (28)
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Combining Expressions (25) and (28), we obtain∥∥un+1 − u∗∥∥ ≤ (1 − �n)
∥∥un − u∗∥∥+ �n1ג + �n

∥∥u∗∥∥
≤ max

{∥∥un − u∗∥∥, 1ג +
∥∥u∗∥∥}

≤ ...

≤ max
{∥∥u0 − u∗∥∥, 1ג +

∥∥u∗∥∥}. (29)

Therefore, we conclude that {un} is bounded sequence.

Theorem 1. Let {un} be a sequence generated by Algorithm 1, and Conditions (c1)–(c4) are
satisfied. Then, {un} strongly converges to u∗ = PEp( f ,C)(0).

Proof. By using definition of {un+1}, we have∥∥un+1 − u∗∥∥2
=
∥∥(1 − ρn − �n)un + ρnzn − u∗∥∥2

=
∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)− �nu∗∥∥2

=
∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)

∥∥2
+ �2

n
∥∥u∗∥∥2

− 2
〈
(1 − ρn − �n)(un − u∗) + ρn(zn − u∗), �nu∗〉. (30)

From Expression (26), we have∥∥(1 − ρn − �n)(un − u∗) + ρn(zn − u∗)
∥∥2

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ ρn(1 − �n)
∥∥zn − u∗∥∥2. (31)

Combining Expressions (30) and (31) (for some 2ג > 0), we obtain∥∥un+1 − u∗∥∥2

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ ρn(1 − �n)
∥∥zn − u∗∥∥2

+ �n2ג

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ �n2ג

+ ρn(1 − �n)
[
‖tn − u∗‖2 −

(
1 − μχn

χn+1

)
‖tn − yn‖2 −

(
1 − μχn

χn+1

)
‖zn − yn‖2

]
. (32)

From Expression (23), we have∥∥tn − u∗∥∥2 ≤ ‖un − u∗‖2 + �n3ג, (33)

for some 3ג > 0. Substituting (33) into (32), we obtain

∥∥un+1 − u∗∥∥2

≤ (1 − ρn − �n)(1 − �n)
∥∥un − u∗∥∥2

+ �n2ג

+ρn(1 − �n)
[
‖un − u∗‖2 + �n3ג −

(
1 − μχn

χn+1

)
‖tn − yn‖2 −

(
1 − μχn

χn+1

)
‖zn − yn‖2

]
= (1 − �n)2‖un − u∗‖2 + �n2ג + ρn(1 − �n)�n3ג

−ρn(1 − �n)
[(

1 − μχn
χn+1

)
‖tn − yn‖2 +

(
1 − μχn

χn+1

)
‖zn − yn‖2

]
≤ ‖un − u∗‖2 + �n4ג − ρn(1 − �n)

[(
1 − μχn

χn+1

)
‖tn − yn‖2 +

(
1 − μχn

χn+1

)
‖zn − yn‖2

]
,

(34)

for some 4ג > 0. It is given that u∗ = PEp( f ,C)(0) and by using Lemma 2 (ii) (Ep( f , C) is a
convex and closed set ([23,34])), we obtain

〈u∗, u∗ − y〉 ≤ 0, ∀ y ∈ Ep( f , C). (35)
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The remainder of the proof shall be taken into account in the following two parts:

Case 1: Assume that there is a fixed number n2 ∈ N (n2 ≥ n1) such as

‖un+1 − u∗‖ ≤ ‖un − u∗‖, ∀ n ≥ n2. (36)

It implies that limn→∞ ‖un − u∗‖ exists, and due to (34), we obtain

ρn(1 − �n)
[(

1 − μχn

χn+1

)
‖tn − yn‖2 +

(
1 − μχn

χn+1

)
‖zn − yn‖2

]
≤ ‖un − u∗‖2 + �n4ג − ‖un+1 − u∗‖2. (37)

Due to the existence of limn→∞ ‖un − u∗‖, �n → 0 and χn → χ, we infer that

lim
n→∞

‖yn − tn‖ = lim
n→∞

‖yn − zn‖ = 0. (38)

We can calculate that

lim
n→∞

‖zn − tn‖ ≤ lim
n→∞

‖tn − yn‖+ lim
n→∞

‖yn − zn‖ = 0. (39)

It follows that ∥∥un+1 − un
∥∥ =

∥∥(1 − ρn − �n)un + ρnzn − un
∥∥

=
∥∥un − �nun + ρnzn − ρnun − un

∥∥
≤ ρn

∥∥zn − un
∥∥+ �n

∥∥un
∥∥. (40)

The term is referred to above that

lim
n→∞

‖un+1 − un‖ = 0. (41)

Thus, this implies that {yn} and {zn} are bounded. The reflexivity of H and the
boundedness of {un} guarantee that there is a subsequence {unk}, such that {unk} ⇀ x̂ ∈ H
as k → ∞. Next, our aim to prove that x̂ ∈ Ep( f , C). Using (8), due to χn+1 and (11),
we write

χnk f (ynk , y) ≥ χnk f (ynk , znk ) + 〈tnk − znk , y − znk 〉
≥ χnk f (tnk , znk )− χnk f (tnk , ynk )−

μχnk
2χnk+1

‖tnk − ynk‖2

− μχnk
2χnk+1

‖ynk − znk‖2 + 〈tnk − znk , y − znk 〉
≥ 〈tnk − ynk , znk − ynk 〉 −

μχnk
2χnk+1

‖tnk − ynk‖2

− μχnk
2χnk+1

‖ynk − znk‖2 + 〈tnk − znk , y − znk 〉,

(42)

while y is an any arbitrary member in Hn. It continues from (38) and (39) that the right-hand
side approaches to zero. From χ > 0, Condition (c3) and ynk ⇀ x̂, we have

0 ≤ lim sup
k→∞

f (ynk , y) ≤ f (x̂, y), ∀ y ∈ Hn. (43)

The following is that f (x̂, y) ≥ 0, ∀y ∈ C; thus x̂ ∈ Ep( f , C). It continues from that

lim sup
n→∞

〈u∗, u∗ − un〉 = lim sup
k→∞

〈u∗, u∗ − unk 〉 = 〈u∗, u∗ − x̂〉 ≤ 0. (44)

Due to limn→∞
∥∥un+1 − un

∥∥ = 0., we can deduce that

lim sup
n→∞

〈u∗, u∗ − un+1〉 ≤ lim sup
k→∞

〈u∗, u∗ − un〉+ lim sup
k→∞

〈u∗, un − un+1〉 ≤ 0. (45)
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Next, consider the following value∥∥tn − u∗∥∥2
=
∥∥un + φn(un − un−1)− u∗∥∥2

=
∥∥un − u∗ + φn(un − un−1)

∥∥2

=
∥∥un − u∗∥∥2

+ φ2
n
∥∥un − un−1

∥∥2
+ 2〈un − u∗, φn(un − un−1)〉

≤ ∥∥un − u∗∥∥2
+ φ2

n
∥∥un − un−1

∥∥2
+ 2φn

∥∥un − u∗∥∥∥∥un − un−1
∥∥

=
∥∥un − u∗∥∥2

+ φn
∥∥un − un−1

∥∥[2∥∥un − u∗∥∥+ φn
∥∥un − un−1

∥∥]
≤ ∥∥un − u∗∥∥2

+ φn
∥∥un − un−1

,5ג∥∥

(46)

Substituting qn = (1 − ρn)un + ρnzn, we have

un+1 = qn − �nun = (1 − �n)qn − �n(un − qn) = (1 − �n)qn − �nρn(un − zn). (47)

where un − qn = un − (1 − ρn)un − ρnzn = ρn(un − zn). Consider that∥∥qn − u∗∥∥2

=
∥∥(1 − ρn)un + ρnzn − u∗∥∥2

=
∥∥(1 − ρn)(un − u∗) + ρn(zn − u∗)

∥∥2

= (1 − ρn)2
∥∥un − u∗∥∥2

+ ρ2
n
∥∥zn − u∗∥∥2

+ 2
〈
(1 − ρn)(un − u∗), ρn(zn − u∗)

〉
≤ (1 − ρn)2

∥∥un − u∗∥∥2
+ ρ2

n
∥∥zn − u∗∥∥2

+ 2ρn(1 − ρn)
∥∥un − u∗∥∥∥∥zn − u∗∥∥

≤ (1 − ρn)2
∥∥un − u∗∥∥2

+ ρ2
n
∥∥zn − u∗∥∥2

+ ρn(1 − ρn)
∥∥un − u∗∥∥2

+ ρn(1 − ρn)
∥∥zn − u∗∥∥2

= (1 − ρn)
∥∥un − u∗∥∥2

+ ρn
∥∥zn − u∗∥∥2

≤ (1 − ρn)
∥∥un − u∗∥∥2

+ ρn
∥∥tn − u∗∥∥2

≤ (1 − ρn)
∥∥un − u∗∥∥2

+ ρn
[∥∥un − u∗∥∥2

+ φn
∥∥un − un−1

5ג∥∥
]

≤ ∥∥un − u∗∥∥2
+ φn

∥∥un − un−1
.5ג∥∥

(48)

Next, consider that∥∥un+1 − u∗∥∥2

=
∥∥(1 − �n)qn + ρn�n(zn − un)− u∗∥∥2

=
∥∥(1 − �n)(qn − u∗) +

[
ρn�n(zn − un)− �nu∗]∥∥2

≤ (1 − �n)2
∥∥qn − u∗∥∥2

+ 2
〈
ρn�n(zn − un)− �nu∗, (1 − �n)(qn − u∗) + ρn�n(zn − un)− �nu∗〉

= (1 − �n)2
∥∥qn − u∗∥∥2

+ 2
〈
ρn�n(zn − un)− �nu∗, qn − �nqn − �n(un − qn)− u∗〉

= (1 − �n)
∥∥qn − u∗∥∥2

+ 2ρn�n
〈
zn − un, un+1 − u∗〉+ 2�n

〈
u∗, u∗ − un+1

〉
≤ (1 − �n)

∥∥qn − u∗∥∥2
+ 2ρn�n

∥∥zn − un
∥∥∥∥un+1 − u∗∥∥+ 2�n

〈
u∗, u∗ − un+1

〉
(49)

for some 5ג > 0. Combining Expressions (46), (48), and (49), we obtain∥∥un+1 − u∗∥∥2 ≤ (1 − �n)
∥∥un − u∗∥∥2

+ (1 − �n)φn
∥∥un − un−1

5ג∥∥

+ 2ρn�n
∥∥zn − un

∥∥∥∥un+1 − u∗∥∥+ 2�n
〈
u∗, u∗ − un+1

〉
≤ (1 − �n)

∥∥un − u∗∥∥2
+ �n

[
φn

�n
(1 − �n)

∥∥un − un−1
5ג∥∥

+ 2ρn
∥∥zn − un

∥∥∥∥un+1 − u∗∥∥+ 2
〈
u∗, u∗ − un+1

〉]
. (50)

Due to (45), (50), and the implemented Lemma 3, we conclude that
∥∥un − u∗∥∥ → 0 as

n → ∞.

Case 2: Assume there is a subsequence {ni} of {n} that

‖uni − u∗‖ ≤ ‖uni+1 − u∗‖, ∀ i ∈ N.

Using Lemma 4, there is a {mk} ⊂ N sequence, such as {mk} → ∞,

‖umk − u∗‖ ≤ ‖umk+1 − u∗‖ and ‖uk − u∗‖ ≤ ‖umk+1 − u∗‖, for all k ∈ N. (51)
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Similar to Case 1, Relation (37) gives that

ρmk (1 − �mk )
[(

1 − μχmk
χmk+1

)
‖tmk − ymk‖2 +

(
1 − μχmk

χmk+1

)
‖zmk − ymk‖2

]
≤ ‖umk − u∗‖2 + �mk4ג − ‖umk+1 − u∗‖2.

(52)

Due to �mk → 0 and χmk → χ, we deduce the following:

lim
n→∞

‖tmk − ymk‖ = lim
n→∞

‖zmk − ymk‖ = 0. (53)

It continues on from that

∥∥umk+1 − umk

∥∥ =
∥∥(1 − ρmk − �mk )umk + ρmk zmk − umk

∥∥
=

∥∥umk − �mk umk + ρmk zmk − ρmk umk − umk

∥∥
≤ ρmk

∥∥zmk − umk

∥∥+ �mk

∥∥umk

∥∥ −→ 0. (54)

We use the same reasoning as that in Case 1:

lim sup
k→∞

〈u∗, u∗ − umk+1〉 ≤ 0. (55)

Now, using Expressions (50) and (51), we have∥∥umk+1 − u∗∥∥2

≤ (1 − �mk )
∥∥umk − u∗∥∥2

+ �mk

[
φmk
�mk

(1 − �mk )
∥∥umk − umk−1

5ג∥∥

+2ρmk

∥∥zmk − umk

∥∥∥∥umk+1 − u∗∥∥+ 2
〈
u∗, u∗ − umk+1

〉]
.

≤ (1 − �mk )
∥∥umk+1 − u∗∥∥2

+ �mk

[
φmk
�mk

(1 − �mk )
∥∥umk − umk−1

5ג∥∥

+2ρmk

∥∥zmk − umk

∥∥∥∥umk+1 − u∗∥∥+ 2
〈
u∗, u∗ − umk+1

〉]
.

(56)

It implies that

∥∥umk+1 − u∗∥∥2 ≤
[

φmk

�mk

(1 − �mk )
∥∥umk − umk−1

5ג∥∥

+2ρmk

∥∥zmk − umk

∥∥∥∥umk+1 − u∗∥∥+ 2
〈
u∗, u∗ − umk+1

〉]
. (57)

Since �mk → 0, and
∥∥umk − u∗∥∥ is bounded. Thus, with Expressions (55) and (57),

we have
‖umk+1 − u∗‖2 → 0, as k → ∞. (58)

The above implies that

lim
n→∞

‖uk − u∗‖2 ≤ lim
n→∞

‖umk+1 − u∗‖2 ≤ 0. (59)

As a result, un → u∗. This completes the proof of the theorem.

By letting φn = 0, we obtain a strong convergence of the result in [25].

Corollary 1. Let f : C × C → R be a bifunction satisfying Conditions (c1)–(c4). Choosing
u0 ∈ C, χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1 − �n) and {�n} ⊂ (0, 1) satisfies the following conditions:

lim
n→∞

�n = 0 and
∞

∑
n

�n = +∞.
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Let {un} be a sequence that is generated in the following manner:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yn = arg min

y∈C
{χn f (un, y) + 1

2‖un − y‖2},

zn = arg min
y∈Hn

{χn f (yn, y) + 1
2‖un − y‖2},

un+1 = (1 − ρn − �n)un + ρnzn,

(60)

where Hn = {z ∈ H : 〈un − χnωn − yn, z − yn〉 ≤ 0} and ωn ∈ ∂2 f (un, yn). The step size is
updated in the following way:

χn+1 = min
{

χn,
μ‖un − yn‖2 + μ‖zn − yn‖2

2[ f (un, zn)− f (un, yn)− f (yn, zn)]+

}
.

Then, sequence {un} converges strongly to u∗ ∈ Ep( f , C).
4. Applications to Solve Fixed-Point Problems

We propose our results to focus on fixed-point problems regarding κ-strict pseudo-
contraction mapping. The fixed-point problem (FPP) for S : H → H is defined in the
following manner:

Find u∗ ∈ C such that S(u∗) = u∗. (FPP)

We assume that the following conditions were met:

(c1*) A mapping S : C → C is said to be κ-strict pseudocontraction [42] on C if

‖Ty1 − Ty2‖2 ≤ ‖y1 − y2‖2 + κ‖(y1 − Ty1)− (y2 − Ty2)‖2, ∀ y1, y2 ∈ C;

(c2*) A mapping that is weakly sequentially continuous on C if

S(yn) ⇀ S(q∗) for any sequence in C satisfying yn ⇀ q∗.

If we consider that mapping S is weakly continuous and a κ-strict pseudocontraction,
then f (u, y) = 〈u − Su, y − u〉 satisfies the conditions (c1)–(c4) (see [43]) and 2c1 = 2c2 =
3−2κ
1−κ . The values of yn and zn in Algorithm 1 can be written as follows:⎧⎪⎪⎨⎪⎪⎩

yn = arg min
y∈C

{χn f (tn, y) + 1
2‖tn − y‖2} = PC

[
tn − χn(tn − S(tn))

]
,

zn = arg min
y∈Hn

{χn f (yn, y) + 1
2‖tn − y‖2} = PHn

[
tn − χn(yn − S(yn))

]
.

(61)

Corollary 2. Suppose C is a nonempty, convex, and closed subset of a Hilbert space H and
S : C → C is weakly continuous and κ-strict pseudocontraction with solution set Fix(S) �= ∅.
Let u−1, u0 ∈ C, φ > 0, χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1 − �n) and {�n} ⊂ (0, 1) fulfill the items,
i.e., limn→∞ �n = 0 and ∑∞

n=1 �n = +∞. Moreover, choose φn satisfying 0 ≤ φn ≤ φ̂n such that

φ̂n =

⎧⎨⎩min
{

φ
2 , ςn

‖un−un−1‖
}

if un �= un−1,
φ
2 else,

(62)

where ςn = ◦(�n), i.e., limn→∞
ςn
�n

= 0. Assume that {un} is the sequence generated in the
following manner: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tn = un + φn(un − un−1),
yn = PC

[
tn − χn(tn − S(tn))

]
,

zn = PHn

[
tn − χn(yn − S(yn))

]
,

un+1 = (1 − ρn − �n)un + ρnzn,
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where Hn = {z ∈ H : 〈(1 − χn)tn + χnS(tn)− yn, z − yn〉 ≤ 0}. Compute

χn+1 = min

{
χn,

μ‖tn − yn‖2 + μ‖zn − yn‖2

2
[〈
(tn − yn)− [T(tn)− T(yn)], zn − yn

〉]
+

}

Then, {un} strongly converges to u∗ ∈ Fix(S , C).

Corollary 3. Suppose C to be a convex and closed subset of a Hilbert space H and S : C → C
is weakly continuous and κ-strict pseudocontraction with solution set Fix(S) �= ∅. Let u0 ∈ C,
χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1− �n) and {�n} ⊂ (0, 1) fulfills the requirement, i.e., limn→∞ �n =
0 and ∑∞

n=1 �n = +∞. Assume that {un} is the sequence formed as follows:⎧⎪⎨⎪⎩
yn = PC

[
un − χn(un − S(un))

]
,

zn = PHn

[
un − χn(yn − S(yn))

]
,

un+1 = (1 − ρn − �n)un + ρnzn,

where Hn = {z ∈ H : 〈(1 − χn)un + χnS(un)− yn, z − yn〉 ≤ 0}. Compute

χn+1 = min

{
χn,

μ‖un − yn‖2 + μ‖zn − yn‖2

2
[〈
(un − yn)− [T(un)− T(yn)], zn − yn

〉]
+

}

Then, sequence {un} converges strongly to u∗ ∈ Fix(S , C).
5. Applications to Solve Variational-Inequality Problems

Next, we consider the application of our results in the problem of classical variational
inequalities [44,45]. The variational-inequality problem (VIP) for an operator L : H → H
is stated in the following manner:

Find u∗ ∈ C such that
〈L(u∗), y − u∗〉 ≥ 0, ∀ y ∈ C. (VIP)

We assume that the following conditions were met:

(L1) The solution set of problem (VIP) denoted by VI(L, C) is nonempty.
(L2) An operator L : H → H is said to be pseudomonotone if〈L(y1), y2 − y1

〉 ≥ 0 =⇒ 〈L(y2), y1 − y2
〉 ≤ 0, ∀ y1, y2 ∈ C.

(L3) An operator L : H → H is said to be Lipschitz continuous through L > 0, such that

‖L(y1)−L(y2)‖ ≤ L‖y1 − y2‖, ∀ y1, y2 ∈ C;

(L4) lim sup
n→∞

〈L(yn), y − yn
〉 ≤ 〈L(q∗), y − q∗

〉
for all y ∈ C and {yn} ⊂ C satisfy yn ⇀ q∗.

If we define f (u, y) :=
〈L(u), y − u

〉
for all u, y ∈ C. Then, problem (EP) becomes the

problem of variational inequalities described above where L = 2c1 = 2c2. From the above
value of the bifunction f , we have⎧⎪⎪⎨⎪⎪⎩

yn = arg min
y∈C

{χn f (tn, y) + 1
2‖tn − y‖2} = PC(tn − χnL(tn)),

zn = arg min
y∈Hn

{χn f (yn, y) + 1
2‖tn − y‖2} = PHn(tn − χnL(yn)).

(63)

Corollary 4. Suppose that L : C → H is a function satisfying the assumptions (L1)–(L4). Let
u−1, u0 ∈ C, φ > 0, χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1 − �n) and {�n} ⊂ (0, 1) satisfies the
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items, i.e., limn→∞ �n = 0 and ∑∞
n=1 �n = +∞. Moreover, choose φn satisfying 0 ≤ φn ≤ φ̂n,

such that

φ̂n =

⎧⎨⎩min
{

φ
2 , ςn

‖un−un−1‖
}

if un �= un−1,
φ
2 else,

(64)

where ςn = ◦(�n), i.e., limn→∞
ςn
�n

= 0. Assume that {un} is the sequence generated in the
following manner: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

tn = un + φn(un − un−1),
yn = PC(tn − χnL(tn)),
zn = PHn(tn − χnL(yn)),
un+1 = (1 − ρn − �n)un + ρnzn,

where Hn = {z ∈ H : 〈tn − χnL(tn)− yn, z − yn〉 ≤ 0}. Compute

χn+1 = min

{
χn,

μ‖tn − yn‖2 + μ‖zn − yn‖2

2
[〈L(tn)−L(yn), zn − yn

〉]
+

}
.

Then, sequences {un} converge strongly to u∗ ∈ VI(L, C).

Corollary 5. Suppose that L : C → H is a function meeting conditions (L1)–(L4). Let u0 ∈ C,
χ0 > 0, {ρn} ⊂ (a, b) ⊂ (0, 1− �n) and {�n} ⊂ (0, 1) satisfies the conditions, i.e., limn→∞ �n =
0 and ∑∞

n=1 �n = +∞. Assume that {un} is the sequence generated in the following manner:⎧⎪⎨⎪⎩
yn = PC(un − χnL(un)),
zn = PHn(un − χnL(yn)),
un+1 = (1 − ρn − �n)un + ρnzn,

where Hn = {z ∈ H : 〈un − χnL(un)− yn, z − yn〉 ≤ 0}.
Compute

χn+1 = min

{
χn,

μ‖un − yn‖2 + μ‖zn − yn‖2

2
[〈L(un)−L(yn), zn − yn

〉]
+

}
.

Then, sequences {un} converge strongly to u∗ ∈ VI(L, C).

Remark 1. Condition (L4) could be exempted when L is monotone. Indeed, this condition, which
is a particular case of Condition (c3), is only used to prove (43). Without Condition (L4), inequality
(42) can be obtained by imposing monotonocity on L. In that case,

〈L(y), y − yn〉 ≥ 〈L(yn), y − yn〉, ∀ y ∈ C. (65)

By allowing f (u, y) = 〈L(u), y − u〉 in (42), we have

lim sup
k→∞

〈L(ynk ), y − ynk 〉 ≥ 0, ∀ y ∈ Hn. (66)

Combining (65) with (66), we conclude that

lim sup
k→∞

〈L(y), y − ynk 〉 ≥ 0, ∀ y ∈ C. (67)

Let yt = (1 − t)z + ty, for every t ∈ [0, 1]. By using the convexity of set C, yt ∈ C for every
t ∈ (0, 1). Since ynk ⇀ z ∈ C and 〈L(y), y − z〉 ≥ 0 for every y ∈ C, we have

0 ≤ 〈L(yt), yt − z〉 = t〈L(yt), y − z〉. (68)
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Therefore, 〈L(yt), y − z〉 ≥ 0, t ∈ (0, 1). Since yt → z as t → 0 and due to L continuity, we
have 〈L(z), y − z〉 ≥ 0, for each y ∈ C, which provides z ∈ VI(L, C).

Remark 2. From Remark 1, it can be concluded that Corollaries 4 and 5 still hold, even if we
remove Condition (L4) in the case of monotone operators.

6. Numerical Illustrations

Numerical results are presented in this section to demonstrate the efficiency of our
proposed method. The MATLAB codes were run in MATLAB version 9.5 (R2018b) on an
Intel(R) Core(TM)i5-6200 CPU PC @ 2.30 GHz 2.40 GHz, RAM 4.00 GB.

Example 1. Let there be m companies that manufacture the same product. Assume vector u of
each item ui represents the quantity of the material produced by a company i. We consider that cost
function P to be a declining affine function that relies on μ = ∑m

i=1 ui, i.e., Pi(μ) = φi −ψiS, where
φi > 0, ψi > 0. The formula for profit of every company i is taken as Fi(u) = Pi(S)ui − qi(ui),
where qi(ui) is the tax value and cost for developing item ui. Moreover, consider that Ci =
[umin

i , umax
i ] is the set of actions related to each company i, and the plan to figure out the model

as C := C1 × C2 × · · · × Cm. In addition, each member wants to achieve its peak turnover by a
good level of production on the basis that the performance of other firms is an input parameter. The
commonly used modelling methodology is based on the famous Nash equilibrium principle. A point
u∗ ∈ C = C1 × C2 × · · · × Cm is the level of equilibrium of the model if

Fi(u∗) ≥ Fi(u∗[ui]), ∀ui ∈ Ci, ∀i = 1, 2, · · · , m,

wile u∗[ui] is obtain from u∗ by letting ζ∗i with ui. Furthermore, we consider f (u, y) := Δ(u, y)−
Δ(u, u) while Δ(u, y) := −∑m

i=1 Fi(u[yi]). An equilibrium level of the model is defined by

Find u∗ ∈ C : f (u∗, z) ≥ 0, ∀ z ∈ C.

Bifunction f converts into the following form (see [23]):

f (u, y) = 〈Pu + Qy + c, y − u〉

where c ∈ Rm and P, Q matrices of order m. Matrix P is positive semidefinite, and matrix Q − P
is negative semidefinite with Lipschitz-type constants c1 = c2 = 1

2‖P − Q‖ (see [23]) for details.
P, Q are taken randomly. (Two diagonal matrices randomly A1 and A2 take elements from [0, 2]
and [−2, 0] respectively. Randomly O1 = RandOrthMat(m) and O2 = RandOrthMat(m)
orthogonal matrices are generated. Then, a positive semidefinite matrix B1 = O1 A1OT

1 and a
negative semidefinite matrix B2 = O2 A2OT

2 are achieved. Lastly, set Q = B1 + BT
1 , S = B2 + BT

2
and P = Q − S.). The constraint set C ⊂ Rm be defined by

C := {u ∈ Rm : −10 ≤ ui ≤ 10}.

Numerical explanations for the first 200 iterations of three methods are considered in Figures 1–6
and Table 1 by letting initial points u0 = u−1 = (1, 1, · · · , 1, 1)T. For Algorithm 3.2 (mAlg2)
in [34]: χ = 1

4c1
and ρn = 1

100(n+2) ; For Algorithm (mAlg3) in (60): χ0 = 0.20, μ = 0.70,

�n = 1
100(n+2) , ρn = 0.5(1 − �n); For Algorithm 1 (mAlg1): χ0 = 0.20, μ = 0.70, φ = 0.60,

ςn = 1
(n+1)2 , �n = 1

100(n+2) and ρn = 0.5(1 − �n).
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Figure 1. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R5.

Figure 2. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R10.

Figure 3. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R20.
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Figure 4. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R50.

Figure 5. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R100.

Figure 6. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for R200.
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Table 1. Figures 1–6 execution time required for first 200 iterations.

Execution Time in Seconds

m mAlg2 mAlg3 mAlg1

5 2.55846812 2.73622248 2.923849848
10 2.89823133 2.99853685 3.341848537
20 3.23847254 3.51835212 3.332562246
50 3.93645046 4.05462157 4.084188882

100 4.57837436 5.32873548 5.723835682
200 5.86241836 6.28194713 6.825465869

Example 2. Assume that set C ⊂ L2([0, 1] is defined by

C := {u ∈ L2([0, 1]) : ‖u‖ ≤ 1}.

Let us define an operator L : C → H, such that

L(u)(t) =
∫ 1

0

[
u(t)− H(t, s) f (u(s))

]
ds + g(t),

where H(t, s) = 2tse(t+s)

e
√

e2−1
, f (u) = cos(u) and g(t) = 2tet

e
√

e2−1
. In the above H = L2([0, 1]) is

a Hilbert space with inner product 〈u, y〉 =
∫ 1

0 u(t)y(t)dt, ∀u, y ∈ H and induced norm is

‖u‖ =
√∫ 1

0 |u(t)|2dt. Numerical explanations for the first 200 iterations of three methods are
considered in Figures 7–10 by letting initial points u0 = u−1 = (1, 1, · · · , 1, 1)T. For Algorithm
3.2 (mAlg2) in [34]: χ = 1

3c1
and ρn = 1

100(n+2) ; For Algorithm (mAlg3) in (60): χ0 = 0.50,

μ = 0.50, �n = 1
100(n+2) , ρn = 0.7(1 − �n); For Algorithm 1 (mAlg1): χ0 = 0.50, μ = 0.50,

φ = 0.70, ςn = 1
(n+1)2 , �n = 1

100(n+2) and ρn = 0.7(1 − �n).

Figure 7. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for u0 = 1 + t + 2t2.
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Figure 8. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for u0 = 1 + 2t + 3et.

Figure 9. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for u0 = 1 + 2t + sin(t).

Figure 10. Algorithm 1 compared to Algorithm (60) and Algorithm 3.2 in [34] for u0 = 1 + 3t2 +

cos(t).
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7. Conclusions

We studied a Mann-type extragradient-like scheme for determining the numerical
solution of equilibrium problem involving pseudomonotone function and also prove a
strong convergent theorem. Computational conclusions were established to illustrate
the computational performance of our algorithms relative to other approaches. Such
computational experiments showed that the inertial effect increases the efficacy of the
iterative method in this sense.
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Citation: Kontrec, N.; Panić, S.;
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Abstract: Reliability, the number of spare parts and repair time have a great impact on system
availability. In this paper, we observed a repairable system comprised of several components. The
aim was to determine the repair rate by emphasizing its stochastic nature. A model for the statistical
analysis of the component repair rate in function of the desired level of availability is presented.
Furthermore, based on the presented model, the approach for the calculation of probability density
functions of maximal and minimal repair times for a system comprised of observed components
was developed as an important measure that unambiguously defines the total annual repair time.
The obtained generalized analytical expressions that can be used to predict the total repair time
for an observed entity are the main contributions of the manuscript. The outputs of the model
can be useful for making decisions in which time interval repair or replacement should be done to
maintain the system and component availability. In addition to planning maintenance activities, the
presented models could be used for service capacity planning and the dynamic forecasting of system
characteristics.

Keywords: repair rate; mathematical modeling; availability; probability; maintenance

1. Introduction

Maintenance comprises a set of procedures and methods for keeping a system in an
operational state or returning the system to a functional state after failure [1]. Depending
on the activity and time for their implementation, maintenance can be corrective or pre-
ventive. Corrective maintenance implies a set of activities to be undertaken after a system
stopped working, i.e., stopped performing its main function. In other words, the corrective
maintenance activities are to be implemented only in cases of failure occurring as a result of
an error (human, procedural or an error made by testing equipment), due to deterioration,
environmental effect or damage caused by improper handling. In this category of mainte-
nance, repairing or replacing a part, not before the exact moment of failure, is considered
more efficient. The preventive maintenance implies periodical checking of the system’s
conditions and parameters to prevent the occurrence of failure. This concept of preventive
maintenance is based on the supervision and control of the system’s conditions while it is
still in function and on the undertaking of those activities which delay the occurrence of
failure and keep the system in its operational state. Since the occurrences of unplanned
failures and damage to the system are almost unavoidable, even in cases when a system
is regularly maintained, corrective maintenance should not be disregarded. All activities,
whether in the form of preventive or corrective maintenance, require a certain period for
their implementation. This time frame is usually called downtime and refers to a period
when the observed component or system is not available. Because a large number of factors
influence the duration of delay, these can be divided into waiting and active downtimes.
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The waiting downtimes are delays that occur due to waiting for spare parts, administrative
procedures, deliveries, staff, etc. The active downtime refers to the time used for the repair
or replacement of a component or system. As numerous factors can affect the time for
repair, we can conclude that it is a random variable. Systems or components are divided
into repairable and non-repairable. In non-repairable systems, the distribution of time to
failure is most commonly observed. Many authors have dealt with these issues in their
papers [2–4]. On the other hand, there are repairable systems, i.e., systems that can be
returned to their functional state with certain activities, after the occurrence of failure. The
key performance measures of both repairable and non-repairable systems are availability
and reliability. The availability is defined as a probability that a system will perform its
function in a time [5]. When it comes to military aircraft and weapon industry, availability
can be defined as “a measure of the degree to which an item is in an operable state and
can be committed at the start of a mission when the mission is called for at an unknown
(random) point in time” [6].

Maintenance contracts are most likely utilized when the system’s availability is vital.
Their characteristic is that no specific maintenance activities such as servicing, repairs and
required materials are paid for, but only the performances of the system result from the
undertaking maintenance activities. This concept originates from the military industry, i.e.,
it is related to the maintenance of military aircraft and weapon systems. These types of con-
tracts are called performance-based logistic (PBL) contracts. In other words, it is a strategy
utilized in complex systems to lower maintenance expenses and increase their reliability
and availability [7]. Maintenance contracts have also found their use in civilian companies,
under the name performance-based contracts (PBC) [8]. In practice, when the airplane’s
engine is serviced under the PBL contract, maintenance is not charged by the number of
working hours used for engine repair or by the number of used spare parts, but by the
time during which the airplane is available after repairs i.e., number of hours the engine
is in the operational state [9]. Kang et al. [10] have observed systems whose maintenance
was regulated with PBL contracts. They concluded that the mean time between failures
(MTBF), mean time To repair (MTTR) and the number of spare parts have the greatest
impact on availability. Evaluating the availability of a certain component or system is a
common topic in the related literature. Inherited availability and methods for its evaluation
in repairable systems have been researched in papers [11–13]. Papers [9,14–16] provided
major contributions concerning the issue of calculating the availability of repairable sys-
tems and operating under the maintenance contracts. Moreover, some control problems
with interval analysis are presented in [17,18] and some statistical analyses that can be
used for this purpose are presented in [19,20]. A similar issue was researched in paper [21],
in which it was concluded that the repair time and reliability have a significantly greater
effect on the system’s availability than the number of spare parts in the inventory. Thus,
according to reviewed literature, it can be concluded that the reliability and repair rate
have the greatest impact on availability. In this paper, we observed a system modeled using
an alternating renewal process and we analyzed the system repair rate in order to provide
support in decision-making process when it comes to system maintenance planning. The
main contribution of our paper is the new method that relies on the observation of the
annual repair rate. This method was based on the determination of the maximal repair rate
of units that compose a corresponding entity, including its magnitude and performance
measures that unambiguously define the total repair rate of an observed entity and which
have not been discussed in renewal theory literature to date. We calculated two new pa-
rameters that are interesting for the observation, maximal and minimal repair rate of each
unit that constitute the corresponding entity by observing them as stochastic variables. In
this way, we obtained analytical expressions that can be used to predict the total repair time
of the corresponding entity. These generalized PDF expressions are our main contribution.
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2. Mathematical Method for System Repair Rate Analysis

The stochastic modeling of a component or system repair time is not new and has
already been justified in the paper [22]. There, the author emphasizes the importance of the
stochastic modeling of the system maintenance by observing a one-unit reparable system
with a non-negligible repair time. The homogeneous, nonhomogeneous and compound
Poisson process for system maintenance modeling was investigated. In this paper, we used
a model presented in [23], where the authors studied similar systems such as that in [22]
with the assumption that the MTBF is Rayleigh distributed. Based on these assumptions,
they investigated the repair rate in dependence of the desired level of availability. Only
repairable components and systems were taken into consideration, i.e., the systems that
alternate between successive up and down intervals. Thus, the alternating renewal pro-
cess [24] was used to model such a system. This process can be observed as a series of
independent and non-negative random variables such as the time to failure and time to
repair. It was assumed that each time the failure occurs, the component will be restored and
start to behave the same as the new one. Notably, we only observed perfect repair, although
in the literature and in practice, there are two types of repair: perfect and imperfect. While
perfect repair means that the unit can be reused in the state “as good as new”, imperfect
repair is defined as an action after which the unit is not “as good as new” but it is in
usable/operational condition.

The purpose of maintenance contracts is to reduce the costs and increase system
availability that can be further calculated as expected operative time E(t) and a renewal
cycle (E[T] + E[R] i.e., sum of the expected operative time and time to repair) [25]:

A = lim
t→∞

A(t) =
E[T]

E[T] + E[R]
, (1)

The expected operative time is a random variable which, if probability density function
exists, can be calculated as

E[t] =
∞∫

0

tp(t)dt. (2)

In [4], the authors assumed that this variable is Rayleigh distributed with the following
probability density function (PDF):

p(t) =
2t
σ

exp
(−t2

σ

)
. (3)

Assuming that the expected time to failure of the component is a Rayleigh-distributed
random variable, the authors provided the expression for the PDF of the repair rate in
dependence of unit’s availability as

p(μ) =
8A2

(1 − A)2μ3πσ0
exp

(
−4A2

(1 − A)2μ2πσ0

)
, (4)

where A is availability, μ is the repair rate, and σ0 = E(σ). Based on Equation (4), the
cumulative probability density function CDF can be expressed as

F(μ) =

μ∫
0

p(μ)dμ = 1 − exp
( −4A2

(1 − A2)μ2πσ0

)
(5)
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Based on these calculations for a single component or subsystem, in this paper, we
proposed a new model for calculating the maximal and minimal repair rate of the system
comprised of two or more components. The PDF function of the first component is:

p1(μ) =
8A1

2(
1 − A1

2
)

μ3πσ01

exp

⎛⎝ −4A1
2(

1 − A1
2
)

μ2πσ01

⎞⎠, (6)

where A1 is the set level of availability of the first unit and, i.e., the mathematical expectation
of the Rayleigh-distributed parameter for that component. The cumulative density function
(CDF) is then:

F1(μ) = 1 − exp

⎛⎝ −4A1
2(

1 − A1
2
)

μ2πσ01

⎞⎠ (7)

Using the same equation, we can determine the PDF of the second unit p2(μ) with
availability A2 and σ02

= E(σ) as

p2(μ) =
8A2

2(
1 − A2

2
)

μ3πσ02

exp

⎛⎝ −4A2
2(

1 − A2
2
)

μ2πσ02

⎞⎠ (8)

and the CDF:

F2(μ) = 1 − exp

⎛⎝ −4A2
2(

1 − A2
2
)

μ2πσ02

⎞⎠. (9)

For a system composed of two parts, we can calculate the maximal repair rate as
μmax = max(μ1, μ2). In that case, the PDF is:

pμmax (μ) = p(μ1 > μ2) ∨ p(μ2 > μ1) = p1(μ)F2(μ) + p2(μ)F1(μ) (10)

while the CDF is:
Fμmax (μ) = F1(μ)F2(μ). (11)

Furthermore, when a system is comprised of n parts, then the repair rate can be
calculated as μmax = max(μ1, μ2, . . . , μn). The general form of the repair rate’s PDF is then:

pμmax (μ) =
n

∑
i=1
i �=j

pi(μ)
n

∏
j=1

Fj(μ) (12)

and the general form of the CDF is:

Fμmax(μ) =
n

∏
i=1

Fi(μ) (13)

Similarly, we can calculate the minimal repair rate as μmin = min(μ1, μ2), so the PDF
is:

pμmin(μ) = p1(μ)(1 − F2(μ)) + p2(μ)(1 − F1(μ)) (14)

while the CDF is:
Fμmin(μ) = 1 − (1 − F1(μ))(1 − F2(μ)) (15)
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General forms of the PDF and CDF equations when the system is comprised of n parts
and repair rate is μ = min(μ1, μ2, . . . , μn) are:

pμmin(μ) =
n

∑
i=1
i �=j

pi(μ)
n

∏
j=1

(
1 − Fj(μ)

)
(16)

and the general form of the CDF for this system is:

Fμmin(μ) = 1 −
n

∏
i=1

(1 − Fi(μ)). (17)

3. Numerical Results and Discussions

To verify the model presented in the previous section, we used the data calculated
in [10,21]. In these papers, the authors observed the unmanned aerial vehicle (UAV), i.e.,
its three major components: engine, propeller and avionics. The available data of the major
interest for our paper are as follows:

- Each UAV is supposed to have 120 flight hour per month, which further means
1440 flight hours per year;

- MTBF for UAV’s engine is 750 flight hours, while for avionics this is 1000 h and 500 h
for propeller per year.

- Thus, based on that in [21], the failure rate was calculated as 1.92 (failures per year)
for the engine, 2.88 for the propeller and 1.44 for avionics.

As can be seen, all three figures present the PDF of the UAV’s engine, propeller
and avionics, respectively, for different values of availability (any other value could also
be selected).

As the availability A increases, the maximum PDF values moves to the right, which
further means that maximum PDF values are obtained for higher annual repair rate values,
i.e., as A grows a higher value of μ is needed to achieve maximum PDF. For example,
as it can be seen on Figure 1 that present maximum annual repair rate in dependence of
availability for UAV’s engine, to achieve the availability of 85% the number of repairs per
year should be around 10, for availability of 90% the repair rate should be around 15 and
for 95% it should be around 30. The same interpretation could be given for Figures 2 and 3
that presents the dependence of the annual repair rate of availability for UAV’s propeller
and avionics.

Figure 1. PDF of UAV’s engine repair rate.
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Figure 2. PDF of UAV’s propeller repair rate.

Figure 3. PDF of UAV’s avionics repair rate.

Similarly, we can calculate the annual expected time for the maximum and minimum
repair rate of the UAV system. We have to take into consideration all three critical com-
ponents of the UAV system: engine, propeller and avionics. Here, we set the availability
at A = 0.80, A = 0.85, A = 0.9, A = 0.95. Since in this case we are observing a system
comprised of three critical UAV components, the PDF maximal repair rate can be calculated
as: μmax = max(μ1, μ2, μ3) According to the Equation (12), the PDF of the repair rate is:

pμmax(μ) = p1(μ)F2(μ)F3(μ) + p2(μ)F1(μ)F3(μ) + p3(μ)F1(μ)F2(μ) (18)

while the CDF is:
Fμmax(μ) = F1(μ)F2(μ)F3(μ). (19)

Figures 4 and 5 represent the PDF and CDF, respectively, of the UAV’s repair rate
depending on time; the repair rate was calculated as the maximum of its components’
repair rate and based on the presented equations. The desired level of availability is set to
80%, 85%, 90% and 95%. Actually, in Figure 4, we observed the magnitude of the maximum
repair rate of the system comprised of the engine, propeller and avionics. It can be seen
that the maximum PDF of this parameter shifts to the right again as the value of availability
increases, which means that with the higher values of A, the maximum value of the repair
rate of the whole system is more likely to take on a higher value. Figure 5 shows that for
smaller values of A, the range of values that the maximum repair rate could take is smaller,
but when the availability increases, the range that maximum repair rate values can take
also increases.
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Figure 4. PDF of repair rate for μ = max(μ1, μ2, μ3).

Figure 5. CDF of repair rate for μ = max(μ1, μ2, μ3).

Similarly, we can determine the minimal repair rate of the observed UAV, comprised
of three critical components as μmin = min(μ1, μ2, μ3), so the PDF is:

pμmin(μ) = p1(μ)(1 − F2(μ))(1 − F3(μ)) + p2(μ)(1 − F1(μ))(1 − F3(μ))+

+ p3(μ)(1 − F1(μ))(1 − F2(μ)), (20)

while the CDF is:

Fμmin(μ) = 1 − (1 − F1(μ))(1 − F2(μ))(1 − F3(μ)) (21)

Figures 6 and 7 represent the PDF and CDF, respectively, of the UAV’s repair rate de-
pending on time and the repair rate is calculated as the minimum of its components’ repair
rate. The desired level of availability is set to 80%, 85%, 90% and 95% as in the previous
example. From Figures 6 and 7, we can also see that as the A parameter increases, the
maximum PDF values migrate to the right as in previous case. However when compared
to Figures 4 and 5 we can see that for the same values of parameter A, maximum PDF
values are obtained for lower annual repair rate values and this repair rate value represents
lower system performance bound for observed entity. The presented figures show the
probability that the repairs conducted in a certain time frame will provide the desired level
of system availability.

109



Axioms 2021, 10, 96

Figure 6. PDF of repair rate for μmin = min(μ1, μ2, μ3).

Figure 7. CDF of repair rate for μmin = min(μ1, μ2, μ3).

4. Conclusions

The analysis presented in this paper can be applied to other repairable systems, not
only to ones where the component time to failure is modeled with Rayleigh distribution.
After determining the characteristics of the repair rate of an individual unit, the statistical
analysis of the repair rate of a system consisting of several components is presented, which
was the main contribution of this paper. Actually, a novel method for the determination
of the maximal and minimal repair rate of the entity comprised of the observed units is
presented. The obtained generalized PDF expressions can be used to predict total repair
time. The presented method provides two new measures that comprehensively define the
total repair time and have not been studied in this way before. In the numerical section,
the proposed model was applied to a UVA system consisting of three key components: the
motor, propeller, and avionics. PDFs of repair rate for each component, as well as the PDF
and CDF maximum and minimum repair rates for the entire UAV system. The obtained
information is graphically presented and it can be concluded that as that maximum PDF
values are obtained for higher annual repair rate values as the availability increases, i.e., as
A grows, a higher value of repair rate is needed to achieve a maximum PDF. The similar
behavior is noticed when we observed the minimal annual repair rate but in this case the
maximum PDF values are obtained for lower annual repair rate values and this repair
rate value represent a lower system performance bound for an observed entity. Based
on that, we can predict the time interval by which the maintenance action will have to
be successfully completed in order to achieve the desired level of availability. Although
we set availability to certain levels, numerical analysis can be repeated with different
availability values.
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Abstract: This work proposes an interval-based uncertain Susceptible–Infected–Recovered (SIR)
epidemic model. The interval model has been numerically solved by the homotopy analysis method
(HAM). The SIR epidemic model is proposed and solved under different uncertain intervals by
the HAM to obtain the numerical solution of the model. Furthermore, the SIR ODE model was
transformed into a stochastic differential equation (SDE) model and the results of the stochastic and
deterministic models were compared using numerical simulations. The results obtained were com-
pared with the numerical solution and found to be in good agreement. Finally, various simulations
were done to discuss the solution.

Keywords: homotopy analysis method; uncertainty; interval analysis; simulation; stochastic; suscep-
tible; infected; recovered

1. Introduction

Interval analysis is a method developed by mathematicians in the 1950s as a way
of handling bounds or rounding errors and measurement errors in mathematical com-
putation. It is useful in formulating numerical methods that yield desirable results. In
short, it defines each value as a range of possibilities. This work aims to formulate interval
arithmetic that solves upper and lower endpoints for the range of values of a particular
function in one or more variables. These limitations are not necessarily the supremum or
infimum since the exact solution of those values can be very intractable or even impos-
sible. The treatments of interval arithmetic for real intervals of quantities with the form
[u, v] = {x ∈ R : u ≤ x ≤ v}, where u = −∞ and v = ∞, are permitted. The permission

is based on the fact that if one of the real intervals is infinite, we would have an unbounded
interval, and if both are infinite, we would have the extended real number system. Con-
sidering the classical calculation with real numbers, simple arithmetic operations and
functions on elementary intervals must initially be defined. It is after this that complicated
functions can be evaluated from the basic elements. In interval arithmetic, we state the
range of possible outcomes explicitly.

Thus, the results are no longer stated as numbers but as intervals, which denotes
imprecise values. With the size of the intervals, we express the extent of uncertainties, which
are similar to error bars to a metric. The evaluations of the outer bounds of intervals are
enabled by simple arithmetic operations, for example, basic arithmetic and trigonometric.
Interval arithmetic was introduced by [1] as an approach to bound rounding errors in
mathematical computation. The theory of interval analysis emerged considering the
computation of both the exact solution and the error term as a single entity, that is, the
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interval. Though a simple idea, it is a very powerful technique with numerous applications
in mathematics, computer science, and engineering.

In their survey, they discussed the basic concepts of interval arithmetic and some of its
extensions. They also reviewed the successful application of this theory in computer science,
in particular. The authors of [2] investigated the solution of linear and nonlinear ordinary
differential equations with the fuzzy initial condition. They proposed two Euler-type
methods to obtain a numerical solution to the problem. They also compared their solution
with existing results. They observed that the results obtained were tighter than the results
from the existing method. The authors of [3] also investigated the numerical solution
of n-th order fuzzy differential equations in the fuzzy environment using a homotopy
perturbation method (HPM). They used triangular fuzzy convex normalized sets for the
fuzzy parameter and variables.

They also compared their results obtained with the existing solution in terms of plots
to show the efficiency of their method. The authors of [4] gave an overview of applications
of interval arithmetic and discussed the verification methods for linear and nonlinear
systems of equations. They also then discussed item software in the field and gave some
historical remarks. The authors of [5] provided algorithms for computing the operations of
interval arithmetic. They generated data that are sufficiently detailed to convert directly to
a program to efficiently implement the interval operations. Finally, they extended these
results to the case of general intervals, which are defined as connected sets of rules that are
not necessarily closed. For this present work, we considered an interval-based uncertain
epidemic model.

A related mathematical model was proposed first for SIR transmission dynamics
and then the HAM was applied to find the solution. This method employs the concept
of the homotopy from topology to generate a convergent series solution of nonlinear
systems. The convergent series solution of nonlinear systems was enabled by utilizing
a homotopy–MacLaurin series to deal with the nonlinearity in the system. The HAM is
much better than most of the existing analytic approximation method because most of
the existing methods are valid only for weakly nonlinear problems [6]. It overcomes the
restrictions of all other analytic approximation methods and is valid for highly nonlinear
problems [6]. The HAM is always valid even if small physical parameters exist or not, it
provides an easy way to guarantee the convergence of approximation series, and lastly,
it provides sufficient freedom to choose the equation type of sub-problems and the base
function of solutions [6]. The strength of the HAM to naturally exhibit convergence of
the series solution is strange in most analytic and semi-analytic approaches to nonlinear
PDEs [7]. Recently, [8] used the HAM approach to solve the SIS and SIR models of [9]. The
authors of [10], extended the work of [8] to solve the SIR epidemic model in the presence
of a constant vaccination strategy. The authors of [7] also applied the HAM to solve the
SIR epidemic model. They obtained an explicit analytic solution of the coupled nonlinear
differential equations describing the epidemic model proposed. They also compared the
numerical results, which showed that the two results are in good agreement. The authors
of [11] studied a new approach for solving the SIR epidemic model using the HAM that
was based on dividing the entire domain into subintervals.

Other works on the homotopy analysis method with the SIR model can be found
in [12–20]. The aim of this work was to obtain the numerical solution of an interval-based
uncertain SIR epidemic model using the HAM and comparing their stochastic version.
The homotopy analysis method (HAM) has been applied here to study the solution of
the epidemic model under uncertain intervals. The results obtained by the HAM were
compared with the approximate solution and were found to be in strong agreement. We
have also developed the stochastic version of the SIR epidemic model presented in this
paper in order to measure the effect of randomness of the variables in the model. To the
best of our knowledge, no work has been done in the area of an interval-based uncertain
SIR epidemic model and very few works have been done on the stochastic model of SIR
epidemic models so far. The paper is organized as follows: in Section 2, preliminaries
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and basic definitions are presented. In Section 3, the presentation of the proposed model
is made. In Section 4, we describe the interval-based uncertain model. In Section 5, we
present the homotopy analysis approach to a non-linear system, while in Section 6, we
present the solution of the SIR epidemic model by the HAM. In Section 7, we present the
solution, numerical results, and a discussion on the interval-based uncertain SIR epidemic
model. Section 8 showcases the stochastic version of the model. In Section 9, the graphical
illustrations of our results are discussed. In Section 10, the numerical solution of the SDE
model are discussed. In Section 11, we present the discussion, conclusion, and possible
extensions, and finally, the references are presented.

2. Preliminaries

In this section, we present some notations, definitions, and preliminaries that are used
further in this paper.

A. Interval Arithmetic [1]

Interval arithmetic is defined on the sets of intervals, instead of sets of real numbers.
Interval arithmetic defines a set of operations on intervals, as follows:

Y ∗ W = {x : ∃ u ∈ Y ∧ ∃ v ∈ W : x = u ∗ v},

where u and v are intervals.

B. Closed Interval [1]

A closed interval, denoted by [m, n], is the set of real numbers given by

[m, n] = {x ∈ R : m ≤ x ≤ n}.

C. Endpoint notation, interval equality [1]

Two intervals, A and B, are said to be equal if they are the same sets. Hence, opera-
tionally this occurs if their corresponding endpoints are equal; A = B if A = B and A = B.
Here A, represents the left endpoint of an interval A while A represents the right endpoint
of an interval A, such that A =

[
A, A

]
.

D. Midpoint of A [1]

The midpoint of A is given by

m(A) =
1
2
(

A + A
)
.

E. Interval Arithmetic and Operations [1]

The key point in the definition of arithmetic operations is that computing intervals are
computing with sets. Let

A = [a : a ∈ A] and B = [b : b ∈ B]

Then, the following properties hold:

(i) The sum of two intervals, A and B, is the set

A + B = {a + b : a ∈ A, b ∈ B}.

(ii) The difference of two intervals, A and B, is the set

A − B = {a − b : a ∈ A, b ∈ B}.

(iii) The product of A and B is given by

A ∗ B = {a ∗ b : a ∈ A, b ∈ B}.
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(iv) The quotient of A/B is defined as

A
B

=
{ a

b
: a ∈ A, b ∈ B, b �= 0

}
.

3. Model Formulation

A population comprising three kinds of individuals, denoted by S (susceptible human),
I (infected human), and R (recovered human), are considered. The susceptible human ((S(t))
is the number of susceptible humans at time t, that is, humans who are vulnerable and
are yet to contract the disease but have a probability of contracting it. The infected human
((I(t)) is the population of the infected and infectious persons who have the disease and
can transmit it to others, while the recovered human ((R(t)) is the population of recovered
humans who cannot get the disease or transmit it, because they have natural immunity,
they have recovered from the disease and are immune to re-infection, they have been
placed in isolation, or they have died.

The population of susceptible humans is generated through the reduction of the rate
of transmission β with the infected, such that the rate of change of the population of
susceptible humans is given by the following:

dS
dt

= −βSI, β > 0. (1)

The rate of change of the population of infected humans is increased by the rate
of transmission β with the susceptible, and reduced by the rate at which the infected
population becomes isolate or recovered γ. Hence it is given by

dI
dt

= −βSI − γI, β > 0, γ > 0. (2)

The population of recovered humans is generated by the rate at which the infected
population becomes isolated or recovered. Hence it is given by

dR
dt

= γI, γ > 0. (3)

Hence, the governing equation by [9] related to the present model is given by

dS
dt

= −βSI,

dI
dt

= −βSI − γI, (4)

dR
dt

= γI.

Subject to the initial conditions,

S(0) = S0, I(0) = I0, R(0) = R0.

4. Interval-Based Uncertain Model

As mentioned in the introduction, if we assumed that the parameters involved in a
model are given in terms of an interval then it will become an interval-based model and
the solution has to be handled carefully. As such, let us suppose that we have the rate of
transmission β and the rate at which the infected population become isolated or recovered
γ in terms of intervals β̃ =

[
β, β

]
and γ̃ =

[
γ, γ

]
then the corresponding interval model

may be written as
dS
dt

= −β̃SI,
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dI
dt

= −β̃SI − γ̃I, (5)

dR
dt

= γ̃I,

with the initial conditions

S0 = S(0), I0 = I(0), R0 = R(0)

where S, I, and R are all now in interval form.
It may be noted from the open literature that the involved parameters, such as β

and γ, are usually given in term of some ranges, so we have investigated the problem
considering those ranges in terms of intervals. Hence, the intervals of β and γ are taken as
the following:

(i) β̃ = [0.01, 0.03],
(ii) γ̃ = [0.005, 0.015].

Next, the above interval model has been solved by the homotopy analysis method
(HAM). We provide, in the next section, some mathematical results.

5. Mathematical Results

We assume here that all parameters in Equation (5) are positive intervals. For the
SIR model (5) to be meaningful biologically, we need to prove that all its stated variables
are non-negative (except S) for all time, that is, the solutions of the Equation (5) with
non-negative initial data will remain non-negative for all time t > 0.

Proposition 1. If the initial values S ≥ 0, I ≥ 0, R ≥ 0, then the solutions (S(t), I(t), R(t))
of the model (5) are non-negative for all t ≥ 0.

Proof. Let Ωp = {t > 0; S(t) > 0, I(t) > 0, R(t) > 0}, We say that, from the equations of
Equation (5) that

dS
dt

= −β̃SI,

where β̃ =
[

β, β
]

and γ̃ =
[
γ, γ

]
. Therefore,

d
dt

S(t) exp
[(

β̃I
)

t
]
= 0.

Hence, S(t1) exp
[(

β̃I
)

t
]
− S(0) = 0, so S(t1) = −S0 exp

[(
β̃I
)

t1

]
< 0.

Then,
d
dt I(t) exp

[(
−β̃S + γ̃

)
t
]
= 0,

I(t) exp
[(

−β̃S + γ̃
)

t
]
− I(0) = 0,

I(t1) = I(0) exp
[
−
(
−β̃S + γ̃

)
t1

]
.

Such that
I(t1) = I(0) exp

[(
β̃S − γ̃

)
t1

]
> 0.

Similarly,
R(t1) = R(0)(γ̃I)t1 > 0.

Hence, the solutions (S(t), I(t), R(t)) of the Equation (5) are non-negative (except S) for
all t > 0. �

Proposition 2. Suppose Equation (5) has a unique interval-based positive solution (S, I, R)
defined on a horizon of infinite time.
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Proof. We established that Equation (5) can be rewritten in the following form:

dS
dt

= f1(S, I, R)S,
dI
dt

= f2(S, I, R)I,

where S + I + R = 1, so R = 1 − S − I.

The functions f1 and f2 are C∞. Thus, according to the Cauchy–Lipschitz theorem [21],
Equation (5) has a unique positive solution (S, I) on the infinite time horizon, whenever
S0 > 0, I0 > 0. �

Corollary 1. The compact domain Ω1 = {(S, I, R) ∈ Ω : 0 ≤ S + I + R ≤ 1} is positively
invariant and attracts all trajectories from Ω.

Proposition 3. The domain Ω is positively invariant through the positive semi-wave
produced by Equation (5).

Proof. Equation (5) can be rewritten as follows:

d
dt

⎛⎝ S
I
R

⎞⎠ =

⎛⎝ f1(S, I, R)
f2(S, I, R)
f3(S, I, R)

⎞⎠ = F(S, I, R).

Applying the assumption that

f1(S = 0, I, R) = 0 for (I, R) ≥ 0,

f1(S = c, I, R) = −β̃cI ≤ 0 for (I, R) ≥ 0,

f2(S, I = 0, R) = 0 for (S, R) ≥ 0,

f3(S, I, R = 0) = γ̃I ≥ 0 for (S, I) ≥ 0.

Thus, the field remains on the domain Ω.

In contrast, we show that by setting S(t) and I(t) as continuous intervals, such that
S(0) = S0 > 0 and I(0) = I0 > 0, if I

(̃
t
)
< 0, then by the intermediate value theorem, there

exists τ1 ∈ [
0, t̃

]
, such that I(τ1) = 0. By applying the second equation of Equation (5), we

obtain I(t) = I(τ1)eg = 0 for t ≥ t0, where g is the base of −β̃I(t) −γ̃I. Therefore, I(t) = 0
for t ≥ τ1 which is a contradiction. We apply the same arguments to S(t). We show this
according to Proposition 4. �

Proposition 4 ([22]). Suppose S(t), I(t), R(t) is a solution of Equation (5), then S(t) ≥ 0,
I(t) ≥ 0 and R(t) ≥ 0 for all t > 0.

If we add the first two equations of Equation (5) together, we obtain

d
dt

[S(t) + I(t)] = −γ̃I ≤ 0.

Now, by applying Proposition 4 and S(0) + I(0) = N, we have S(t) + I(t) ≤ N. From
Proposition 4, we also have N − S(t)− I(t) = R(t). Hence, we conclude that R(t) ≥ 0.
From Proposition 4, we have S(t) + I(t) ≤ 0, which implies that N − S(t) − I(t) ≤ N.
Therefore, R(t) = N − S(t)− I(t) ≤ N because

dI
dt

÷ dS
dt

=
dI
dS

=

(
γ̃I
β̃SI

− 1

)
dS,
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then ∫ t

0
dI =

∫ t

0

(
γ̃

β̃
S − 1

)
dS,I(t)− I0 =

γ̃

β̃
loge S0 − S(t)− S0.

Therefore,

I(S(t)) = I0 + S0 +
γ̃

β̃
loge

(
S(t)
S0

)
.

The quantity γ̃

β̃
S − 1 is positive if S < γ̃

β̃
. From Equation (5), it is clear that I(0) = −∞

and I(S0) = I(0) > 0.
Hence, there exists a point S∞, uniquely, 0 < S∞ < S0 such that I(S∞) = 0 and

I(S) > 0 for S∞ < S ≤ S0. The point (S∞, 0) is called the equilibrium point of the first two
Equations of (5) since both dS/dt and dI/dt vanish at t = 0. We show this according to
Proposition 5.

Proposition 5 ([22]). If (S(t), I(t),R(t)) is a solution of the interval base uncertain model
Equation (5) then S(t) + I(t) ≥ N, and 0 ≤ R(t) ≤ N for all t > 0.

By dividing dS
dt by dR

dt , which yields

dS
dR

=
−β̃SI

γ̃I
=

−β̃S
γ̃

.

therefore,
∫ t

0
dS
S =

∫ t
0

(
− β̃

γ̃

)
dR. By the initial condition, we obtain

loge

(
S(t)
S0

)
= loge S(t)− loge S(0) = − β̃

γ̃

∫ t
0 dR,

loge

(
S(t)
S0

)
= − β̃

γ̃ [R(t)− R(0)],

loge

(
S(t)
S0

)
= − β̃

γ̃ R(t) + β̃
γ̃ R0.

So that S(t)
S0

= e−
β̃
γ̃ R(t)·e

β̃
γ̃ R0 , and

S(t) = S0e−
β̃
γ̃ [R(t)−R(0)].

From Proposition 5, 0 < R(t) ≤ N and we have that S0e−
β̃N

γ̃ ≤ S0e−
β̃
γ̃ [R(t)−R(0)] ≤ S0.

Because S0 > 0, we conclude that 0 < S(t) ≤ S0 for all t ≥ 0. We show this according to
Lemma 1.

Lemma 1 ([22]). Suppose (S(t), I(t), R(t)) be a solution of Equation (5) in the domain

Γ2 = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ N} then 0 < S(t) ≤ S0 and S(t) = S0e
β̃(R(t)−R(0))

γ̃ ≥
S0e−

β̃N
γ̃ for all t ≥ 0.

Recall that from the first equation of Equation (5) and Proposition 5, we have
dS
dt = −β̃SI ≤ 0 and we say S(t) is a decreasing function, then lim

t→∞
S(t) = S∞, such that S∞

is a finite number. Recall also from Equation (5), the third equation dR
dt = γ̃I ≥ 0 and we

say R(t) is an increasing function. Hence, by Proposition 5, lim
t→∞

R(t) = R∞, then R∞ is a

finite number. We show this according to Lemma 2.

Lemma 2 ([22]). If (S(t), I(t), R(t)) is a solution of Equation (5), then S(t) → S∞ as
R(t) → R∞ as t → ∞ , such that S∞ and R∞ are finite numbers.
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Recall from Proposition 5 and from Lemma 2, lim
t→∞

R(t) = R∞. So that lim
t→∞

∫ t
0 I(m)dm = R∞

γ̃ .

Therefore,
∫ dR

dt =
∫

γ̃Idt = R(t) = γ̃
∫ t

0 I(m)dm implies that lim
t→∞

R(t)
γ̃ = lim

t→∞

∫ t
0 I(m)dm.

Then, lim
t→∞

∫ t
0 I(m)dm converges. Therefore, ∑∞

v=0 I(v) is convergent and lim
t→∞

I(t) = 0.

Alternately, we integrate the first equation of Equation (5):∫ ∞

0

dS
dt

dt = −β̃
∫ ∞

0
S(t)I(t)dt.

Because S∞ − S0 = −β̃
∫ ∞

0 S(t)I(t)dt and S0 − S∞ = β̃
∫ ∞

0 S(t)I(t)dt, then

S0 − S∞ ≥ β̃
∫ ∞

0
S(t)I(t)dt,

which implies that I(t) is integrable in the interval [0, ∞), and hence, lim
t→∞

I(t) = 0. We show

this according to Lemma 3.

Lemma 3 ([20]). If (S(t), I(t), R(t)) is a solution of Equation (5) then I(t) → 0 as t → ∞ .

We hereby present below the procedure for the HAM for the benefit of finding the
numerical solution of our interval-based uncertain model. Consider a nonlinear equation
of the form

A[v(t)] = 0, (6)

where A is a linear operator, t denotes the time, and v(t) is an unknown function. Let v0(t)
denote an initial approximation of v(t) and Z denote an auxiliary linear operator [21]. We
construct the zero-order deformation equation

(1 − q)Z[ϕ(t; q)− ϑ0(t)] = qh1H(t)A(t; p), (7)

where q ∈ [0, 1] is the embedding parameter and h �= 0 is a non-zero auxiliary function.
When q = 0 and q = 1, the zero-order deformation equation becomes, respectively,

ϕ(t; 0) = ϑ0(t) (8)

and
ϕ(t; 1) = ϑ0(t). (9)

Thus, as q increases from 0 to 1, the solution ϕ(t; q) varies continuously from the initial
approximation ϑ0(t) of the exact solution ϑ(t). Such a kind of continuous variation is called
deformation in topology. Expanding ϕ(t; p) by the Taylor series in the power series of q,
we have

ϕ(t; q) = ϑ0(t) +
∞

∑
m=1

ϑmqm, (10)

where

ϑm(t) =
1

m!
∂m ϕ(t; q)

∂qm (11)

is the deformation derivative. If the auxiliary linear operator A, the initial approximation
v0(t), the auxiliary parameter hI and the auxiliary function H(t) are properly chosen so that

(i) the solution ϕ(t; q) of the zero-order deformation Equation (6) exists for all q ∈ [0, 1],
(ii) the deformation derivative (11) exists for all m = 1, 2, . . .,
(iii) the series (10) converge at q = 1,

then, we have the series solution:

ϕ(t; 1) = ϑ0(t) +
∞

∑
m=1

ϑm(t). (12)
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Define the vector as

→
ϑ m(t) = {ϑ0(t), ϑ1(t), . . . , ϑm(t)}. (13)

According to the definition (10), the governing equation can be derived from the zero-
order deformation Equation (6). Differentiating (6) m-times with respect to the embedding
parameter q, then by setting q = 0, and finally, dividing by m, we have the m-th order
deformation equation

Z[bm(t)− λmϑm−1(t)] = hH(t)Pm

(→
ϑ m−1(t)

)
, (14)

where

Pm

(→
ϑ m−1(t)

)
=

1
(m − 1)!

∂m−1 A[ϕ(t; q)]
∂qm−1 , (15)

λm =

{
0 if m ≤ 1,

1 if m > 1.
(16)

Note that according to definition (16), the right-hand side of (15) depends only on
→
ϑ m−1(t). Thus, we easily gain the series ϑ1(t), ϑ2(t), . . . by solving the linear higher-order
deformation Equation (15) using the well-known symbolic computation software such as
Maple, Matlab, or Mathematica. Prediction and controlling the infection was studied in
detail not only in [22] but also in other papers, for example [4,23–36]. We discuss in the
next section the homotopy analysis method.

6. Homotopy Analysis Method

For this section, we solved the interval-based uncertain model (5) by considering inter-
vals of the transmission as β̃ = [0.01, 0.03] and the interval of recovery as γ̃ = [0.005, 0.015],
respectively. To solve the interval-based uncertain model Equation (5) by the HAM, we
consider the first equation in the interval-based uncertain model Equation (5) and choose
the linear operator

A[S(t; q)] =
dS(t; q)

dt
(17)

with the property that
A[α1] = 0, (18)

where α1 is a constant of integration. The inverse operator A−1 is given by

A−1(·) =
∫ t

0
(·)dt. (19)

Let the nonlinear operator be defined as

A[S(t; q)] =
dS(t; q)

dt
− βS(t; q)I(t; q). (20)

The proper selection of the auxiliary parameter and function during the implementa-
tion of the HAM method can yield uniformly valid and accurate solutions [19].

By constructing the zero-order deformation equation we have the following:

(1 − q)A[S(t; q)− S0(t; q)] = qh1H(t)A[S(t; p)], (21)

where

(i) if q = 0 then S(t; 0) = S0(t),
(ii) if q = 1 then S(t; 1) = S(t).
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Therefore, we have the m-th order deformation equation

A[Sh,m(t)− λSm−1(t)] = h1H(t)P
(→

S m−1(t)
)

, m ≥ 1, (22)

where

Pm

(→
S m−1(t)

)
=

dm−1Sm−1(t)]
dt

− β̃SI. (23)

The solution of the m-th order deformation Equation (22) for m > 1 and using h1 = −1
and H(t) = 1 is given by

Sm(t) = λmSm−1(t)−
∫ t

∞

[
dm−1Sm−1(t)

dt
+ β

m−1

∑
k=0

Sk(t)Im−1−k(t)

]
dt, m ≥ 1. (24)

Following earlier steps, we obtain

Im(t) = λm Im−1(t)−
∫ t

∞

[
dm−1 Im−1(t)

dt
− β

m−1

∑
k=0

Sk(t)Im−1−k(t) + γIm−1(t)

]
dt (25)

and

Rm(t) = λmRm−1(t)−
∫ t

∞

[
dm−1Rm−1(t)

dt
− γIm−1(t)

]
dt, (26)

where m ≥ 1 in both last equations.

7. Numerical Results and Discussion

In this section, we present the results of the homotopy analysis method for solving
an interval-based uncertain model. The solutions of the interval-based uncertain model
with interval β̃ = [0.01, 0.03] and constant value γ = 0.01 in Table A1, and with interval
γ̃ = [0.01, 0.015] and constant value β = 0.01 in Table A2. Tables A3 and A4 present the
minimum, maximum, and midpoints of the susceptible, infected, and recovered human
population with intervals of β and γ. The results of the HAM show strong agreement
with the approximation technique. In Table A3, we present the result obtained by the
Runge–Kutta of fourth order method for the susceptible, infected, and recovered humans.
Then, we observed that the results are in good agreement with the homotopy analysis
method (HAM) in Table A4.

In Table A1, we present the result of the susceptible, infected, and recovered humans,
where β is considered an interval and γ is given as a constant. In Table A2, β is considered
a constant and γ is given as an interval. It is observed from Table A1 that as time increases,
the lower bound (minimum) and the upper bound (maximum) are decreasing for the
susceptible human population. It is also detected that the lower bound (minimum) and the
upper bound (maximum) of both the infected and recovered human populations increase
with time.

In Table A2, it is observed that the same situation seems to be occurring in both the
lower bound (minimum) and the upper bound (maximum) for the susceptible humans. It
is also noticed that the lower bound (minimum) and the upper bound (maximum) of both
the infected and recovered human populations increase with time.

It is seen from Tables A3 and A4 that the lower bound (minimum) and the upper
bound of the susceptible population is decreasing with time, as seen from Tables A1 and A2.
At the same time, the lower bound (minimum) and the upper bound (maximum) of both
the infected and recovered human populations increase with time. In Tables A3 and A4,
the interval [β = 0.02, γ = 0.01] denotes the center for the intervals β̃ = [0.01, 0.03] and
γ̃ = [0.01, 0.015], while in Tables A1 and A2, the interval [β = 0.02, γ = 0.01] represents
the center for β and constant value γ. In the next section we discuss the stochastic version
of the model.
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8. Stochastic Version of the Model

In this part, we denote the complete probability space with a filtration {Ft}t≥0 with
(Ω,F, Q) and it satisfies the condition that it is increasing and continuous while F0 have
every Q-empty sets. We introduce randomness into Equation (5) and assume that the
white noise depends on the size of the corresponding populations where we applied the
corresponding pattern fi(S(t).I(t), R(t))dW(t), such that fi represents the intensity of the
random perturbation i ∈ [1, 3] and W(t)t≥0 is a single dimensional Brownian motion that
is defined on a complete probability space

(
Ω,F, {Ft}t≥0, Q

)
. Then, the stochastic model

of the SIR system (5) is described by the stochastic differential equations (SDEs):

dS =
(
−β̃SI

)
dt + f1S(t)dW(t),

dI =
(

β̃SI − γ̃I
)

dt + f2 I(t)dW(t),

dR = γ̃Idt + f3R(t)dW(t).

(27)

Let X(t) = (S(t), I(t), R(t)). Then, we can rewrite Equation (5) in the pattern of a
single dimensional SDE of the form

dX(t) = F(X(t), t)dt + G(X(t), t)dW(t)

such that F : R2
+ ×R2

+ → R2
+ , which is given by

F =

⎛⎝ −β̃SI
β̃SI − γ̃I

γ̃I

⎞⎠ (28)

and the function G : R2
+ ×R2

+ → R2
+ is given by

G =

⎛⎝ f1S(t)
f2 I(t)
f3R(t)

⎞⎠. (29)

In the next section, we discuss the graphical illustration of our results.

9. Graphical Illustration of Our Results

Figure 1 shows the plot of the maximum, midpoint, and the minimum of the suscepti-
ble human intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum
value is decreasing, the midpoint is also decreasing, as is the minimum point. It is clearly
seen from the plot that the uncertainty lies between the upper and lower bounds. Figure 2
shows the plot of the maximum, midpoint, and the minimum of the infected human
intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum value is
increasing, the midpoint is also increasing, as is the minimum point. It is clearly seen from
the plot that the uncertainty lies between the upper and lower bounds. Figure 3 shows
the plot of the maximum, midpoint, and the minimum of the recovered human intervals
β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum value is increasing,
the midpoint is also increasing, as is the minimum point. It is clearly seen from the plot
that the uncertainty lies between the upper and lower bounds. We discuss in Section 10 the
numerical solutions of the stochastic differential equation model.
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Figure 1. Plot of the dynamic behaviors of the susceptible and infected populations under the
intervals β̃ = 0.01 and γ̃ = 0.01.

Figure 2. Plot of the dynamic behaviors of the susceptible and infected populations under the
intervals β̃ = 0.01 and γ̃ = 0.01.
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Figure 3. Plot of the dynamic behaviors of the susceptible and infected populations under the
intervals β̃ = 0.03 and γ̃ = 0.015.

10. Numerical Solution of the SDE Model

In this section, we present the simulation of the SDE model (27) with the use of the
Milstein method given the parameter value intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].
We obtained our numerical results of the SDE model for 500 runs of the stochastic model
simulation and the results of the corresponding deterministic model are presented in
Figures 1–4, in which we display the time series solution of all the variables in the SDE
model. It was obtained that in the Figures 1–4, the SDE model simulations are lower than
their deterministic model simulation.

Figure 1 shows the simulations of the dynamic behaviors of the susceptible and the
infected populations under the intervals β̃ = 0.01 and γ̃ = 0.005. It was observed that the
stochastic simulations of the susceptible and the infected populations were lower than their
deterministic simulations. Figure 2 shows the simulations of the dynamic behaviors of the
recovered population under the intervals β̃ = 0.01 and γ̃ = 0.005. It was observed that the
stochastic simulations of the recovered population were higher than their deterministic
simulations. Figure 3 shows the simulations of the dynamic behaviors of the susceptible
and the infected populations under the intervals β̃ = 0.03 and γ̃ = 0.015. It was observed
that the stochastic simulations of the susceptible and the infected populations were lower
than their deterministic simulations. Figure 4 shows the simulations of the dynamic
behaviors of the recovered populations under the intervals β̃ = 0.03 and γ̃ = 0.015. It was
observed that the stochastic simulations of the recovered population were lower than their
deterministic simulations.
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Figure 4. Plot of the dynamic behaviors of the susceptible and infected populations under the
intervals β̃ = 0.03 and γ̃ = 0.015.

11. Discussion and Conclusions

In this work, we have studied the interval-based uncertain model of a three-compartment
mathematical model rigorously. The homotopy analysis approach has been employed to
solve the system of nonlinear equations of SIR interval uncertainty, in particular. The results
obtained were compared with the known solution and are found to be in good agreement.
Hence, it was established here that the homotopy analysis method has greater advantages
over other analytical methods in many different ways. The HAM is a series expansion
method that is directly dependent on small or large physical parameters, and hence, it
is applicable for not only weakly but also strongly nonlinear problems. It also allows
for the strong convergence of the solution over larger spatial and parameter domains. It
also gives excellent flexibility in the expression of the solution and how the solution is
explicitly obtained. It provides a simple way to ensure the convergence of the solution
series. Comparing the stochastic and deterministic versions of the model, we saw that
the population of the susceptible, infected, and recovered populations fell between the
intervals obtained in the interval-based model. These suggest that the interval-based model
give a very good range for the general SIR epidemic model. In the future, we plan to use
fuzzy differential equations to capture the dynamics, and we also plan to look into a more
practical problem that may be grounded with epidemiological data.
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Appendix A

The solutions obtained by the homotopy analysis method and the Runge–Kutta of
the fourth order method for various intervals β̃ =

[
β, β

]
and γ̃ =

[
γ, γ

]
and for various

constant values of β and γ are stated in Tables A1–A4. Further, Figures A1–A3 are plotted
with the maximum, center, and minimum of susceptible, infected and recovered humans
under the intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].

Table A1. The solutions obtained by the homotopy analysis method with the interval β̃ = [0.01, 0.03] and the constant
value of γ = 0.01.

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.1 [19.095,
19.700] 19.396 19.397 [15.270,

15.875] 15.573 15.587 [10.015,
10.015] 10.015 10.015

0.2 [18.183,
19.398] 18.791 18.791 [15.542,

16.757] 16.150 16.178 [10.031,
10.032] 10.032 10.031

0.3 [17.268,
19.097] 18.183 18.182 [15.813,

17.642] 16.728 16.770 [10.046,
10.049] 10.048 10.048

0.4 [16.357,
18.794] 17.576 17.572 [16.086,

18.524] 17.305 17.363 [10.062,
10.067] 10.065 10.065

0.5 [15.452,
18.492] 16.972 16.962 [16.358,

19.398] 17.878 17.955 [10.078,
10.086] 10.082 10.082

0.6 [14.560,
18.190] 16.375 16.354 [16.631,

20.260] 18.446 18.545 [10.095,
10.106] 10.101 10.101

0.7 [13.684,
17.887] 15.786 15.749 [16.903,

21.107] 19.418 19.131 [10.112,
10.127] 10.120 10.119

0.8 [12.828,
17.585] 15.207 15.149 [17.176,

21.932] 19.554 19.712 [10.129,
10.148] 10.139 10.139

0.9 [11.997,
17.283] 14.640 14.555 [17.447,

22.734] 20.091 20.286 [10.146,
10.170] 10.158 10.159

1.0 [11.193,
16.982] 14.088 13.969 [17.719,

23.508] 20.614 20.852 [10.164,
10.193] 10.179 10.179

Table A2. The solutions obtained by the homotopy analysis method with the interval γ̃ = [0.01, 0.015] and the constant
value of β = 0.01.

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.1 [19.699,
19.700] 19.700 19.700 [15.255,

15.286] 15.270 15.270 [10.015,
10.015] 10.015 10.015

0.2 [19.398,
19.399] 19.399 19.398 [15.511,

15.572] 15.542 15.542 [10.031,
10.032] 10.032 10.031

0.3 [19.095,
19.098] 19.097 19.097 [15.767,

15.860] 15.814 15.813 [10.046,
10.049] 10.048 10.048

0.4 [18.792,
18.797] 18.795 18.794 [16.023,

16.148] 16.086 16.086 [10.062,
10.067] 10.065 10.065
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Table A2. Cont.

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.5 [18.489,
18.496] 18.493 18.492 [16.280,

16.437] 16.359 16.358 [10.078,
10.086] 10.082 10.082

0.6 [18.184,
18.195] 18.190 18.190 [16.536,

16.726] 16.631 16.631 [10.095,
10.106] 10.101 10.101

0.7 [17.880,
17.894] 17.887 17.887 [16.792,

17.015] 16.904 16.903 [10.112,
10.127] 10.120 10.119

0.8 [17.576,
17.594] 17.585 17.585 [17.047,

17.304] 17.176 17.176 [10.129,
10.148] 10.139 10.139

0.9 [17.272,
17.294] 17.283 17.283 [17.302,

17.593] 17.448 17.447 [10.146,
10.170] 10.158 10.159

1.0 [16.968,
16.995] 16.982 16.982 [17.556,

17.881] 17.719 17.719 [10.164,
10.193] 10.179 10.179

Table A3. The solutions obtained by the Runge–Kutta of the fourth order method with intervals β̃ = [0.01, 0.03] and
γ̃ = [0.01, 0.015].

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.1 [19.095,
19.699] 19.397 19.397 [15.278,

15.898] 15.588 15.587 [10.008,
10.023] 10.015 10.015

0.2 [18.180,
19.398] 18.789 18.791 [15.556,

16.804] 16.179 16.178 [10.015,
10.048] 10.031 10.031

0.3 [17.263,
19.095] 18.179 18.182 [15.835,

17.713] 16.774 16.770 [10.023,
10.073] 10.048 10.048

0.4 [16.347,
18.793] 17.570 17.572 [16.113,

18.619] 17.366 17.363 [10.031,
10.101] 10.066 10.065

0.5 [15.438,
18.490] 16.964 16.962 [16.392,19.519] 17.956 17.956 [10.039,

10.129] 10.084 10.082

0.6 14.541,
18.187] 16.364 16.354 [16.670,

20.406] 18.538 18.545 [10.048,
10.159] 10.103 10.101

0.7 [13.659,
17.884] 15.772 15.749 [16.948,

21.277] 19.113 19.131 [10.056,
10.189] 10.123 10.119

0.8 [12.822,
17.581] 15.202 15.149 [17.225,

22.127] 19.676 19.712 [10.065,
10.222] 10.143 10.139

0.9 [11.962,
17.279] 14.620 14.555 [17.502,

22.953] 20.227 20.286 [10.073,
10.256] 10.165 10.159

1.0 [11.152,
16.976] 14.064 13.969 [17.778,

23.750] 20.764 20.852 [10.083,
10.291] 10.186 10.179

Table A4. The solutions obtained by the homotopy analysis method with intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.1 [19.094,
19.699] 19.397 19.399 [15.255,

15.891] 15.573 15.572 [10.008,
10.023] 10.015 10.015

0.2 [18.181,
19.399] 18.790 18.792 [15.511,

16.789] 16.149 16.148 [10.015,
10.048] 10.031 10.031

0.3 [17.265,
19.098] 18.181 18.184 [15.767,

17.690] 16.729 16.726 [10.023,
10.073] 10.048 10.048
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Table A4. Cont.

S I R

Time (t) [min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

[min, max]
Midpoint of
[min, max]

[β = 0.02,
γ = 0.01]

0.4 [16.350,
18.797] 17.574 17.576 [16.024,

18.589] 17.307 17.304 [10.031,
10.100] 10.066 10.065

0.5 [15.443,
18.496] 16.969 16.968 [16.279,

19.482] 17.881 17.882 [10.039,
10.129] 10.084 10.082

0.6 [14.547,
18.195] 16.371 16.363 [16.536,

20.363] 18.500 18.457 [10.048,
10.158] 10.103 10.100

0.7 [13.667,
17.894] 15.780 15.761 [16.792,

21.228] 19.010 19.029 [10.056,
10.189] 10.123 10.119

0.8 [12.807,
17.594] 15.201 15.164 [17.047,

22.073] 19.560 19.597 [10.065,
10.221] 10.143 10.138

0.9 [11.972,
17.294] 14.633 14.573 [17.302,

22.893] 20.098 20.158 [10.073,
10.255] 10.164 10.164

1.0 [11.164,
16.968] 14.066 13.989 [17.556,

23.686] 20.621 20.712 [10.082,
10.289] 10.186 10.179

 
Figure A1. Plot of the maximum, center, and minimum of susceptible humana under the intervals
β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].

 
Figure A2. Plot of the maximum, center, and minimum of infected humans under the intervals
β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].
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Figure A3. Plot of the maximum, center, and minimum of recovered humans under the intervals
β̃ = [0.01, 0.03] and γ̃ [0.01, 0.015].
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Abstract: Entrepreneurship is a theme of global interest, and it is the subject of investigations
conducted by many researchers and projects. In particular, the Global Entrepreneurship Monitor
project is a global project that involves several countries and years of surveys on entrepreneurship
indicators. This study focuses on the 12 indicators of the entrepreneurial ecosystem defined by the
Entrepreneurial Framework Conditions (EFCs). The EFCs are specifically related to the quality
of the entrepreneurial ecosystem. Using clustering techniques, the present study analyzes how
European experts’ perceptions on the EFCs of their home country have changed between 2000 and
2019. The main finding is the existence of significant differences between the clusters obtained over
the years and between countries. Therefore, in theoretical terms, this dynamical behavior in relation
to the entrepreneurial conditions of economies should be considered in future works, namely, those
concerning the definition of the number of clusters, which, according to the internal validation
measures computed in this work, should be two.

Keywords: entrepreneurship; clustering; longitudinal analysis

MSC: 62H30; 62P20; 91-10

1. Introduction

In the last decades, the topic of entrepreneurship has gained increasing attention.
Political leaders viewed entrepreneurial activity as a source of innovation, competitiveness
and economic development, and academics set about deepening the knowledge about
this core topic, resulting in it now representing a hybrid field comprised of different
perspectives and theories [1]. Entrepreneurship is explained as an individual’s ability to
place ideas into practice; articulate project planning and management; take calculated
risks; innovate; and creative with the purpose of achieving previously defined goals [2].
Thus, is it suggested that entrepreneurship may be a catalyst for economic growth and
national competitiveness. In fact, as [3] explain in their extensive systematic literature
review on entrepreneurial ecosystems, the growing interest in this topic is being guided
largely by the interest demonstrated by policy makers in increasing entrepreneurial activity
via the creation of new companies and promotion of self-employment.

The Global Entrepreneurship Monitor (GEM) research project, funded in 1997, is
the largest ongoing study of entrepreneurial dynamics in the world [4]. The first report
of this project was launched in 1999 and encompassed 10 developed economies—eight
from the OECD (Canada, Denmark, Finland, France, Germany, Israel, Italy and the United
Kingdom) as well as Japan and the United States of America [4], and it has grown to include
a wide amount of economies over the world [5]. According to the GEM 2019/2020 Global
Report, fifty economies participated in the GEM 2019 adult population survey, including
21 European countries.
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The GEM survey is based on collecting primary data through an adult population
survey (APS) of at least 2000 randomly selected adults (18–64 years of age) in each econ-
omy. Additionally, national teams collect experts’ opinions about components of the en-
trepreneurship ecosystem through a national expert survey (NES) [4].

The present study focus on the 12 indicators compiled by the NES survey data concern-
ing the entrepreneurial ecosystem defined by GEM, i.e., the Entrepreneurial Framework
Conditions (EFCs), detailed in Table A1 in Appendix A.

Although the original GEM model expects national business activity to change with
general national framework conditions, studies show that entrepreneurial activity varies
according to the EFCs [2]. In line with that result, the aim of the present work is to study
the changes that have occurred in the European experts’ perceptions over the last two
decades (between 2000 and 2019) in different countries.

There are already several studies that use GEM data in their research. Recently, [2],
explained the entrepreneurial performance of economies taking into account the variables
present in the EFCs combining factorial analysis with cluster analysis to group economies
(countries). In addition, Pilar et al. [6] analyzed entrepreneurs’ perceptions about condi-
tions to create new and growing firms and their significance in the economic development
level (EDL) of countries, using NES 2013. Braga et al. [7] analyzed GEM data in order to
understand what leads certain countries’ individuals to display higher levels of initiative to
manage or create a high-growth business. In [8], NES datasets for 2011 until 2013 were ana-
lyzed to study the effects of different types of entrepreneurship expert specialization on the
perceptions about the EFCs. Furthermore, the work of Autio et. al [9] also contributed to
the understanding of the theoretical, managerial and policy implications of entrepreneurial
innovation using GEM data.

Based on the similarities in economic performance across European countries, this
study is mainly concerned with the evolution of experts’ perceptions on the entrepreneurial
framework in Europe, grouping countries in different clusters and analyzing how this
grouping differs throughout the years. To achieve this goal, the present study uses multi-
variate cluster analysis to group all European economies according to the experts’ percep-
tions on the EFCs of their home country (similarly to the methodology adopted by [2]).
In the next section, the dataset, methods and results are presented, and in the last section,
the discussion is given and future research directions are suggested.

2. Materials and Methods

2.1. Dataset

For citizens to become entrepreneurs, the conditions for entrepreneurship in their
countries must be favorable. The GEM conceptual framework is based on the assumption
that national economic growth is the result of the inter-dependencies between the EFCs and
the personal traits and capabilities of individuals to identify and seize opportunities [10].
Thus, the behavior of these GEM indicators over the last two decades in Europe (between
2000 and 2019) are studied in this work. Although they do not directly measure the real
conditions of the country, they measure them indirectly through the European experts’
perceptions.

The two main sources of primary data of the GEM project are as follows:

• The adult population survey (APS), which provides standardized data on entrepreneurial
activities and attitudes within each country—at least 2000 randomly selected adults
(18–64 years of age)in each economy.

• The national expert survey (NES) investigates the national framework conditions
for entrepreneurship by means of standardized questionnaires; national teams collect
experts’ opinions about components of the entrepreneurship ecosystem through
a national expert survey.

In a previous study [11], the period from 2010 to 2016 was analyzed. Substantial
changes in the clusters of European economies through these years were observed. In
particular, it was found that despite the economic and financial similarities between Portu-
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gal, Italy, Greece and Spain, countries that all faced a dramatic period between 2010–2012,
Portugal took off from the remaining countries after 2012, and only in 2016 was it caught
up by Spain.

The present study aims at extending that work by considering the period before
the crisis and after 2016 in order to obtain a wider view on European entrepreneurs’
perceptions. For such purpose, multivariate cluster analysis techniques are used to group
all of the European economies according to the experts’ perceptions on the EFCs of their
home country.

Therefore, the present study considers the 12 indicators of the entrepreneurial ecosys-
tem, i.e., the EFCs, defined by the GEM project, for the whole the period of available
data, namely from 2000 until 2019. The description of the EFCs is given in Table A1
in Appendix A.

The number of economies that participated in the NES survey between 2000 and 2019
ranges from a minimum of 11 countries in 2000 to a maximum of 29 countries in 2014 (see
Figure 1).

Figure 1. Number of economies in NES survey between 2000 and 2019.

Figure 2 illustrates the variation of each EFCs throughout the years and between coun-
tries. In general, large amplitudes, as observed for EFCs 2, 3, 4 and 11, reflect the differences
in intra-country perceptions. The longitudinal volatility of the median, easily observed
in EFCs 1, 8, 11 and 12, illustrates the annual differences in perceptions. This means that
an intra-annual and intra-country difference is to be expected. The purpose of this study is
to detect these differences by analyzing how countries are grouped, according to similar
perceptions, over the years in the last two decades.

Figure 2. Cont.
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Figure 2. Box plots of the 12 EFCs in the period of 2010–2019.

2.2. Methodology

Cluster analysis includes several multivariate statistical procedures that can be used
to classify objects or individuals into relatively homogeneous groups (clusters), taking into
account similarities or dissimilarities between them. Sokal and Sneath presented the most
popular application of these methodologies in the book [12] as early as 1963 for biological
classification of species. From then on, the use of classification techniques became common
practice in the most diverse of areas: in medicine to classify diseases, in the social sciences to
define homogeneous cultural and scientific areas [13–15] and in marketing for segmenting
markets and customers [16,17], among others.

Given a set of n individuals for whom there is information on the form of p variables,
a method of cluster analysis proceeds to group individuals according to the existing
information in such a way that individuals belonging to the same group are as similar
as possible and always more similar to the elements of the same group than to elements
of the other groups [18].

An initial difficulty in cluster analysis is that there is no single criterion, similarity
measure or technique for defining the groups. The literature on the subject, as well
as the available statistical packages, presents us with a very wide range of criteria, always
aiming to obtain coherent groups that are significantly different from each other.

The choice of clustering technique depends on the type of variables to be consid-
ered (continuous, ratios, ordinal, nominal or binary) and must take into account different
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scales of measurement of the variables. In this case, it is common practice to standard-
ize the variables, because any measure of similarity/dissimilarity will reflect the weight
of the variables that have higher values and dispersion; thus, it is advisable that the vari-
ables have the same unit of measure.

Cluster analysis methods can be grouped into four types [18]:

• Optimization techniques—based on the early choice of a number of clusters, k, and
a division of all cases is made by the pre-established k groups. Next, the optimization
of the chosen criterion is performed. In general, it is intended that within each group,
the elements are as similar as possible and as different as possible from elements
in other groups;

• Hierarchical techniques—based on a matrix of similarities (or differences) in which
each element of the matrix describes the degree of similarity (or difference) between
each two cases, based on the chosen variables. These techniques can be agglomera-
tive or divisive. In the first case, the procedure starts with n groups including one
individual that are grouped successively until only one group is obtained including
all n individuals. In the divisive, 0 the reverse process is applied: one starts from
a group with all of the individuals and successive divisions are applied until obtaining
n groups;

• Density or mode-seeking techniques—groups are formed by looking for regions that
contain a relatively dense concentration of cases.

• Other techniques—these include those that allow groups to overlap (fuzzy clusters),
additive partitive methods (kmeans and hill climbing), those that do not use a similar-
ity matrix but that can be directly applied to the original data and others that are not
included in the previous types;

Furthermore, there are several measures that can be used as measures of distance
or dissimilarity between the elements of a data matrix. The most used distances are
as follows:

• Euclidean distance between two cases (i and j) is the square root of the sum of the squares
of the differences between values of i and j for all variables (v = 1, 2, . . . , p), that is,

dij =

√√√√ p

∑
v=1

(
Xiv − Xjv

)2; (1)

• Minkowski distance can be considered as a generalization of Euclidean distance
(coincide when r = 2):

dij =

(
p

∑
v=1

∣∣Xiv − Xjv
∣∣r)1/r

; (2)

• Mahalanobis distance considers the covariance matrix Σ for the calculation of distances

dij =
(
Xi − Xj

)T ∑ −1(Xi − Xj
)

(3)

where Xi and Xj are the vectors of variable values for individuals i and j, respectively.

Considering the matrix of observed data X = (xui) =

⎡⎢⎢⎣
x11 x12 · · · x1p
x21 x22 · · · x2p
· · · · · · · · · · · ·
xn1 xn2 · · · xnp

⎤⎥⎥⎦,

where xui is the value of variable i (i = 1, . . . , p) for individual u (u = 1, 2, . . . , n). For
a population of dimension N, the covariance matrix Σ is given as

∑ =
1
N

N

∑
u=1

[
(Xu − μ)(Xu − μ)T

]
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where row u, for individual u, of the matrix X is the vector of the p variables under study, i.e.,

Xu =

⎡⎢⎢⎣
xu1
xu1
· · ·
xup

⎤⎥⎥⎦
and μ = 1

N

N
∑

u=1
Xu is the vector of the population means.

Other similarity indices can also be used, as long as they respect the following metric
properties: symmetry, triangular inequality, differentiability of non-identicals and indiffer-
entiability of identicals.

The indices used include, in addition to distances, correlation coefficients, association
coefficients and probabilistic similarity measures, according to [19]. The correlation coeffi-
cients are more suitable if the variables have different scales and dispersion, the association
coefficients are particularly useful when the variables are binary qualitative, and the prob-
abilistic similarity measures are only used if the similarity index is to be the probability
gaining information based on the initial variables.

Therefore, different definitions of distances may result in different final solutions
for grouping individuals.

At each step of the agglomerative process, the similarity/distances matrix is recalcu-
lated, and the recurrence (Equation (4)) must be satisfied:

dk(i,j) = αi · dki + αj · dkj + β · dii + γ
∣∣∣dki − dkj

∣∣∣ (4)

where dk(i,j) is the distance between the group k and the group (i, j) formed by the junction
of the groups (or elements) i and j.

Although the recurrence equation is always the same, the coefficients αi, αj, β and γ
differ according to the agglomerative method or criterion. The agglomerative method
or criterion can be the following:

• Single linkage or criterion of the nearest neighbor, for which the similarity between
two groups is the maximum similarity between any two cases belonging to those
groups. That is, for the two groups (i, j) and (k), the distance between the two is given
by Equation (5).

d(i,j)k = min
{

dik; djk

}
. (5)

In this case, the coefficients in recurrence Equation (4) are

αi = αj =
1
2 ; β = 0 and γ = − 1

2 .

• Complete linkage or the criterion of the furthest neighbor uses the process inverse
to the previous one; that is, given two groups, the distance between the two is given
by Equation (6).

d(i,j)k = max
{

dik; djk

}
. (6)

In this case, the coefficients in recurrence Equation (4) are

αi = αj =
1
2 ; β = 0 and γ = 1

2 .

• Average defines the distance as the average of the distances between all pairs of in-
dividuals constituted by elements of the two groups. This strategy is, in a way,
intermediate in relation to the first two described.
In this case, the coefficients in recurrence Equation (4) are

αi =
ni

ni+nj
; αj =

nj
ni+nj

, β = 0 and γ = 0.
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• Centroid defines the distance between two groups as the distance between their cen-
troids, points defined by the means of the variables that characterize the individuals
in each group.
In this case, the coefficients in recurrence Equation (4) are

αi =
ni

ni+nj
; αj =

nj
ni+nj

, β = −αi · αj and γ = 0.

• Ward method [20] is based on the loss of information resulting from the grouping
of individuals and measured by adding the squares of the deviations from individual
observations relative to the averages of the groups in which they are classified.
In this case, the coefficients in recurrence Equation (4) are

αi =
nk+ni

nk+ni+nj
; αj =

nk+nj
nk+ni+nj

, β = − nk
nk+ni+nj

and γ = 0.

There is no better criterion for (dis)aggregation of cases in cluster analysis. It is
common practice to use several criteria and to compare the results. If these are similar, it is
possible to conclude that the results have been obtained with a high degree of stability and,
therefore, that they are reliable [18].

Another problem with cluster analysis is the adequate number of clusters to consider.
Sometimes, there is prior knowledge, on the part of the researcher, of the number of groups
in which the study population should be divided; in which case, this information can be used.

Other criteria for defining the number of clusters that can be used are major changes
in the fusion coefficient, the co-phenetic correlation values, the comparison of the appli-
cation of different numbers of clusters and the comparison of the similarity of the results
obtained, the degree of convergence of methods and internal and external validation
measures.

The connectivity measure, proposed by Handl et al. in [21], the Dunn index [22] and
Silhouette Width [23] are the main internal validation measures.

Given a set of n individuals for whom there is information on the form of p variables,
the is defined by Equation (7):

Conn(C) =
n

∑
i=1

l

∑
j=1

xi,nij . (7)

where nij is the jth nearest neighbor of observation i,

xi,nij =

{
0 if i and j are in the same cluster
1
j if otherwise ,

C = {C1, C2, . . . , Ck} is a partition of the n observations into k disjoint clusters and l is
a parameter giving the number of nearest neighbors to use, [21]. This measure has values
between 0 and ∞ and should be minimized.

The Dunn Index [22] is given by Equation (8),

D(C) =
min

Ck ,Cl∈C,Ck �=Cl

(
min

i∈Ck ,j∈Cl
dist(i, j)

)
max
Cm∈C

diam(Cm)
, (8)

where diam(Cm) is the maximum distance between observations in cluster Cm. This mea-
sure has values between 0 and ∞ and should be maximized.

Silhouette Width [23] is given by Equation (9):

S(i) =
bi − ai

max(bi, ai)
, (9)
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where ai is the average distance between i and all other observations, such as

bi = min
Ck∈C\C(i)

∑
j∈Ck

dist(i, j)
n(Ck)

where C(i) is the cluster containing observation i, dist(i, j) is the considered distance
between observations i and j, and n(C) is the cardinality of cluster C. This measure has
values between −1 and 1 and should be maximized.

These measures are implemented by Brock et al. [24] in the package clValid. This
package comprises the internal validation measures and, in addition, the stability
and biological validation measures. Internal validation measures take only the dataset
and the clustering partition as input and use intrinsic information in the data to assess
the quality of the clustering. The stability measures are a special version of internal
measures. They evaluate the consistency of a clustering result by comparing it with
the clusters obtained after each column is removed, one at a time. Biological validation
evaluates the ability of a clustering algorithm to produce biologically meaningful clusters.

There are several cluster validation measures defined in the literature [25–28]. It is not
possible to obtain the best result always with the same validation measure. Thus, several
authors have proposed merging several validation measures, such as the Davies–Bouldin
index, the Calinski–Harabasz index and the Dunn index, which allow for comparisons
of several solutions and the selection of the internal optimal solution [26–28]. However,
these validation measures focus on internal validation, but it is also important to take
into account the external ones. For this reason, hybrid validation measures that combine
these two types of validation have been emerging and are described by Gajawada and
Toshniwal (2012) [29]. Improved measures have also been proposed based on the most
common ones already mentioned; for example, since the numerical procedure to calculate
the Silhouette Width criterion is rather demanding, the Simplified Silhouette Width Crite-
rion (SSWC)—which instead of the average value, uses the distance between the elements
and the clusters centroids, thus deeming the partition with the largest SSWC index to be
the most appropriate partition—is usually applied[28].

3. Results and Discussion

In order to study the European countries based on the EFCs experts’ perceptions
during the period of 2000-2019, cluster analysis was used to group the countries into ho-
mogeneous groups. As discussed in Section 2, several measures and methods can be used
for grouping countries.

In [11], the hierarchical cluster technique, Euclidean distance and the Ward method
were used in order to analyze, for the period of 2010–2016, European entrepreneurs’
perceptions. The present study considers the whole period of available data (between 2000
and 2019), extending that work. In that previous work, the statistical software R version
3.4.0 was used, and three clusters were considered, justified by GEM project’s definition
of economic development level, which considers three types of economies: (i) economies
driven by factors of production; (ii) efficiency-oriented economies; and (iii) innovation-
oriented economies. It was found that for each year, the countries that constitute each
of the clusters observe substantial changes in the clusters throughout the years. In particular,
while in 2010 and 2011 Portugal was in clusters with the second-best overall average EFCs
perceptions, in 2012, Portugal was in the group with the lowest EFCs perceptions. However,
from 2013 to 2016, Portugal recovered in terms of experts’ perceptions and moved into
the group with the second-best overall average. The behavior of Portugal was compared
with that of Italy, Greece and Spain.

Considering the complete set of data, the present work intends to study the behavior
of the European Expert’s perceptions about their economies’ entrepreneur conditions.
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In order to determine the best number of clusters, internal validation measures were
computed for all of the years and for hierarchical, pam, kmeans and fanny methods,
as illustrated in Figure 3 (for the year 2019) and summarized in Table 1.

Figure 3. Clusters’ internal validation measures for the year 2019.

Table 1. Optimal cluster number (k) and method for internal measures.

Connectivity Dunn Index Silhouette Width
Year k Method k Method k Method

2000 2 hierarchical 5 hierarchical 2 hierarchical
2001 2 hierarchical 4 pam 2 hierarchical
2002 2 hierarchical 2 hierarchical 2 hierarchical
2003 2 hierarchical 5 kmeans 3 hierarchical
2004 2 hierarchical 3 hierarchical 2 hierarchical
2005 2 hierarchical 5 hierarchical 2 hierarchical
2006 2 hierarchical 4 hierarchical 2 hierarchical
2007 2 hierarchical 5 pam 2 hierarchical
2008 2 pam 5 hierarchical 2 pam
2009 2 hierarchical 4 kmeans 2 hierarchical
2010 2 hierarchical 4 hierarchical 2 kmeans
2011 2 kmeans 5 pam 2 kmeans
2012 2 hierarchical 4 hierarchical 2 kmeans
2013 2 hierarchical 5 kmeans 2 kmeans
2014 2 hierarchical 5 pam 2 hierarchical
2015 2 hierarchical 5 pam 2 hierarchical
2016 2 fanny 5 kmeans 2 kmeans
2017 2 hierarchical 3 kmeans 2 hierarchical
2018 2 pam 5 hierarchical 2 pam
2019 2 pam 5 kmeans 2 pam

The connectivity measure, Equation (7), varies between 0 and ∞ and should be
minimized. Thus, looking at Figure 3 and Table 1, the optimal score for this measure, and
for the year 2019, is obtained using the pam method and k = 2 clusters. Observing the
results for all the years, for most, the optimal connectivity value is found for k = 2 and
for the hierarchical method. The Dunn index, Equation (8), presents values between 0 and
∞ and should be maximized. It can be observed in Figure 3 and Table 1, that the best values
of this measure are obtained for larger number of clusters. Silhouette Width, Equation (9),
has values between −1 and 1 and should be maximized. This is achieved mostly when
k = 2 clusters are considered and by using the hierarchical method.

Table 2 shows that the optimal validation measures are obtained mostly for two
clusters and for hierarchical methods. Furthermore, observing the dendrograms in Figure 4
for the years 2000 and 2009, and considering the cutting line at height = 7, the same
conclusion is reached.
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Figure 4. Dendrograms for the years 2000 and 2019.

The software R, version 3.4.0, was used, and k = 2 clusters were considered, as sug-
gested in Table 1. The agglomeration of countries obtained for each year is presented
in Table 2. For each year, the average of all the EFCs is shown in brackets for all countries
(first and fourth columns), countries in Cluster 1 (second and fifth columns) and those
in Cluster 2 (third and sixth columns). Note that Cluster 1 has an average below the global
average and Cluster 2 has an average above the global average.

Analyzing the results inn Table 2, apart from Italy (IT) and Slovakia (SK), which remain
in cluster 1, and Ireland (IE), Iceland (IS), Netherlands (NL) and Switzerland (CH), which
maintain the allocation to cluster 2 throughout the two decades, the remaining countries’
allocations vary between the two clusters.

The agglomerations of the economies present different numbers of economies and
also somewhat different averages and variability. Table 3 shows, for each year, the number
of economies in each cluster and for all of the economies. This table also shows the average,
standard deviation and coefficient of variation (CV) in %, of the average of the 12 EFCs. The
average of the EFCs for all economies varies from 2.67 in 2010 to 2.92 in 2000, while larger
variability is observed in 2015 (CV = 12.8%). Since 2009, when the number of economies
started to significantly increase, the CV has been larger than 9.5%, reflecting the diversity
of the economies participating in the survey. When analyzing each of the clusters, it can be
seen that for Cluster 1, the lowest average was 2.37, observed in 2015, and the maximum
was 2.88 in 2000. For Cluster 2, the minimum average was 2.78, observed in 2004, and
the maximum was 3.4 in 2016. In 2016, only three of the 25 economies (i.e., 12%) were
agglomerated in Cluster 2, while the other 22 economies were in Cluster 1, which had
a CV of 8.8%, the largest observed in Cluster 1. In 2011 and 2011, Cluster 2 agglomerated
only 9% and 14%, respectively, of the economies, leading to large averages—3.24 and 3.18,
respectively.

Some particular cases that are worthy of discussion are as follows: Denmark (DK), which
was allocated to the cluster with the lowest average only in 2000, while for the other 11 years
for which there are data, it was always in Cluster 2. In fact, for 2000 as well as for 2011, 2013 and
2016, the economies allocated to Cluster 1 represent more than 85% of the economies for which
there were data. This could explain why economies such as Germany (DE), Finland (FI),
France (FR) Belgium (BE) and the United Kingdom (GB), which for the majority of the years
were allocated to Cluster 2, were in most cases in 2000, 2011, 2013 and 2016 allocated to the
cluster with the lowest average EFCs. Other countries, such as Portugal (PT), Greece (GR)
and Spain (ES)m present more variability in the allocation to the two clusters.
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Table 2. Clusters of European Economies from 2000 until 2019.

Year Cluster 1 Cluster 2 Year Cluster 1 Cluster 2

2000 (2.92) BE, DK, FI, FR, DE, IT,
NO, ES, SE, GB (2.88) IE (3.34) 2010 (2.67)

BA, HR, FR, GR, HU, IT,
MK, ME, NO, PT, RU, SI,

ES, SE, GB (2.55)

FI, DE, IS, IE, LV,
CH (2.99)

2001 (2.85) HU, IT, NO, PT, ES, SE
(2.61)

BE, DK, FI, FR,
DE, IE, NL, GB

(3.04)
2011 (2.68)

BA, HR, CZ, FI, FR, DE,
GR, HU, IE, LV, LT, NO,
PL, PT, RU, SK, SI, ES,

SE, GB (2.63)

NL, CH (3.24)

2002 (2.72) BE, HR, HU, NO, SI, SE
(2.50)

DK, FI, FR, DE,
IS, IE, NL, ES,
CH, GB (2.85)

2012 (2.76)
BA, HR, GR, HU, IT, LT,
PL, PT, RO, RU, SK, SI,

ES, SE (2.53)

AT, BE, CH, DK, EE,
FI, FR, DE, IE, LV,
MK, NL, NO, GB

(2.99)

2003 (2.71) HR, GR, IT, NO, SI, SE
(2.49)

BE, DK, FI, FR,
DE, IS, IE, NL,

ES, CH, GB (2.84)
2013 (2.74)

BA, BE, CZ, DE, EE, ES,
FR, GB, GR, HR, HU, IE,
IT, LT, LU, MK, NO, PL,
PT, RO, RU, SK, SE, SI

(2.67)

CH, FI, LV, NL
(3.18)

2004 (2.70) HR, HU, PL, SI (2.47)
BE, DK, FI, DE,
GR, IS, IE, NL,

NO, PT, ES (2.78)
2014 (2.81)

BA, HR, GR, HU, IT, NA,
PL, RO, RU, SK, SI, ES,

GB (2.58)

AT, BE, DK, EE, FI,
FR, DE, IE, LV, LT,

LU, NL, NO, PT, SE,
CH (3.00)

2005 (2.79) HR, HU, IT, SI (2.41)

AT, BE, DK, FI,
DE, GR, IS, IE,

LV, NL, NO, ES,
CH, GB (2.90)

2015 (2.76) BG, ES, GR, HR, HU, IT,
RO, SK, (2.37)

BE, CH, DE, EE, FI,
GB, IE, LU, LV, MK,
NL, NO, PL, PT, SE,

SI (2.95)

2006 (2.81) HR, CZ, HU, IT, LV, RU,
SI (2.60)

BE, DK, FI, DE,
GR, IS, IE, NL,

NO, ES, GB (2.94)
2016 (2.73)

AT, FI, FR, DE, IE, LV,
LU, PT, ES, BG, HR, CY,
GR, HU, IT, MK, PL, RU,

SK, SI, SE, GB (2.64)

CH, EE, NL (3.40)

2007 (2.88) HR, GR, IT, RO, RU, RS,
SI, ES (2.64)

AT, BE, DK, FI,
IS, IE, NO, CH,

GB (3.09)
2017 (2.78) BA, BG, HR, CY, GR, IT,

PL, SK, ES (2.52)

EE, NL, FR, DE, IE,
LV, LU, SI, SE, CH,

GB (2.99)

2008 (2.73) BA, HR, GR, IT, MK,
RU, RS, SI, ES (2.59)

DK, FI, DE, IE,
NO (2.98) 2018 (2.78) BG, HR, GR, IT, PL, RU,

SK (2.46)

AT, CY, FR, DE, IE,
LV, LU, NL, SI, ES,
SE, CH, GB (2.96)

2009 (2.73) BA, HR, GR, HU, IT, LV,
RU, RS, SI, ES, GB (2.52)

BE, DK, FI, DE,
IS, NL, NO, CH

(3.02)
2019 (2.85)

BY, BG, HR, CY, GR, IT,
MK, PL, PT, RU, SK

(2.61)

DE, IE, LV, LU, NL,
NO, SI, ES, SE, CH,

GB (3.10)

AT—Austria, BA—Bosnia and Herzegovina, BE—Belgium, BG—Bulgaria, BY—Belarus, CH—Switzerland, CY—Cyprus, CZ—Czech
Republic, DE—Germany, DK—Denmark, EE—Estonia, ES—Spain, FI—Finland, FR—France, GB—United Kingdom, GR—Greece, HR—
Croatia, HU—Hungary, IE—Ireland, IS—Iceland, IT—Italy, LT—Lithuania, LU—Luxembourg, LV—Latvia, ME—Montenegro, MK—North
Macedonia, NA—Kosovo, NL—Netherlands, NO—Norway, PL—Poland, PT—Portugal, RO—Romania, RS—Serbia, RU—Russia, RU—
Russia, SE—Sweden, SI—Slovenia, SK—Slovakia.

To understand the pattern and exemplify differences in the cluster agglomeration over
the years, we compared the allocations of the top European Economies with the best three
and the three worst total early-stage entrepreneurial activity (TEA) values. TEA is a GEM
indicator that represents the percentage of the 18–64-year-old population who are either
a nascent entrepreneur or owner-manager of a new business.

Italy (TEA = 2.79), Poland (TEA = 5.39) and Belarus (TEA = 3.78) are the three countries
with lower TEA values, and, in fact, Italy remains in Cluster 1 throughout the two decades,
Poland, besides being allocated to Cluster 2 in 2015, is allocated to Cluster 1 in the remaining
years. Belarus has only information in 2019, and it is allocated to Cluster 1, as expected.

On the other hand, the allocation of Latvia, which registers a higher TEA value for 2019
(TEA = 15.43), changes between Cluster 1 and Cluster 2, throughout the years. Slovakia,
with the second-highest TEA value (TEA = 13.33), contrary to what was excepted, maintains
its allocation to Cluster 1 in all years with information. Portugal (TEA = 12.89), the country
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with the third-highest TEA value, also presents differences in its allocation between Cluster
1 and cluster 2 throughout the years.

Table 3. Characterization of the clusters in Table 2.

Year Cluster 1 Cluster 2 All Economies
# Av. StD CV # Av. StD CV # Av. StD CV

2000 10 2.88 0.175 6.1 1 3.34 — — 11 2.92 0.216 7.4
2001 6 2.61 0.153 5.9 8 3.04 0.07 2.3 14 2.85 0.244 8.6
2002 6 2.50 0.118 4.7 10 2.85 0.099 3.5 16 2.72 0.203 7.5
2003 5 2.49 0.065 2.6 11 2.84 0.123 4.3 16 2.71 0.203 7.5
2004 4 2.47 0.048 1.9 11 2.78 0.187 6.7 15 2.70 0.221 8.2
2005 4 2.41 0.057 2.4 14 2.90 0.156 5.4 18 2.79 0.250 9.0
2006 7 2.60 0.071 2.7 11 2.94 0.144 4.9 18 2.81 0.209 7.4
2007 8 2.64 0.088 3.3 9 3.09 0.074 2.4 17 2.88 0.243 8.4
2008 9 2.59 0.161 6.2 5 2.98 0.049 1.6 14 2.73 0.234 8.6
2009 11 2.52 0.131 5.2 8 3.02 0.173 5.7 19 2.73 0.294 10.8
2010 15 2.55 0.181 7.1 6 2.99 0.118 3.9 21 2.67 0.261 9.8
2011 20 2.63 0.210 8.8 2 3.24 0.061 1.9 22 2.68 0.272 10.1
2012 14 2.53 0.145 5.7 14 2.99 0.178 6.0 28 2.76 0.286 10.4
2013 24 2.67 0.229 8.6 4 3.18 0.133 4.2 28 2.74 0.283 10.3
2014 13 2.58 0.158 6.1 16 3.00 0.166 5.5 29 2.81 0.267 9.5
2015 8 2.37 0.126 5.3 16 2.95 0.253 8.6 24 2.76 0.352 12.8
2016 22 2.64 0.233 8.8 3 3.40 0.095 2.8 25 2.73 0.333 12.2
2017 9 2.52 0.137 5.4 11 2.99 0.278 9.3 20 2.78 0.322 11.6
2018 7 2.46 0.200 8.1 13 2.96 0.206 7.0 20 2.78 0.319 11.5
2019 11 2.61 0.115 4.4 11 3.10 0.202 7.1 22 2.85 0.298 10.5

The obtained results indicate the need to consider annual and intra-country dynamics
in studies on the topic of entrepreneurship, especially if they analyze data from GEM.
Most studies (for example, the recent study of [2,11]) perform cross-sectional studies
combining information from GEM with group economies. However, neglecting to consider
a longitudinal dynamic may result in biased results.

4. Conclusions

In order to understand the dynamics of the European entrepreneurial framework
conditions over the last two decades, cluster analysis was used to group the countries
in homogeneous groups based on the EFCs experts’ perceptions during the period of
2000–2019.

The cluster analysis revealed that there are significant differences between the clusters
obtained over the years and also that the distribution of the countries in each cluster con-
siderably varies.

This study contributes to the existing literature in the sense that it clarifies the existence
of a dynamic, entrepreneurial behavior of economies regarding entrepreneurial framework
conditions, which should be considered in future works.

In the future, as a result of the differences encountered in countries’ agglomerations
through time, a longitudinal clustering approach will be performed to compare results
instead of the desegregated cross-sectional approach for each year. Furthermore, we intend
to analyze the impact of the EFCs on entrepreneurship intentions and on total early-stage
entrepreneurial activity (TEA) in Europe, making use of dynamic longitudinal models,
in particular the system GMM procedure, to capture the intra-year and intra-country
variability.
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Appendix A

Table A1. Description of Entrepreneurial Framework Conditions (EFCs). Source: [11].

EFC Description Indicator

1 The availability of financial resources—equity and debt—for small and
medium enterprises (SMEs) (including grants and subsidies) Financing for entrepreneurs

2 The extent to which public policies support
entrepreneurship—entrepreneurship as a relevant economic issue Governmental support and policies

3 The extent to which public policies support entrepreneurship—taxes
or regulations are either size neutral or encourage new and SMEs Taxes and bureaucracy

4 The presence and quality of programs directly assisting SMEs at all levels
of government (national, regional, municipal) Governmental programs

5
The extent to which training in creating or managing SMEs is

incorporated within the education and training system at primary and
secondary levels

Basic school entrepreneurial education and
training

6
The extent to which training in creating or managing SMEs is

incorporated within the education and training system in higher
education, such as vocational education, college, business schools, etc.

Post-school entrepreneurial education and
training

7 The extent to which national research and development will lead to new
commercial opportunities and is available to SMEs R&D transfer

8 The presence of property rights, commercial, accounting and other legal
and assessment services and institutions that support or promote SMEs Commercial and professional infrastructure

9 The level of change in markets from year to year Internal market dynamics
10 The extent to which new firms are free to enter existing markets Internal market openness

11
Ease of access to physical resources—communication, utilities,

transportation, land or space—at a price that does not discriminate
against SMEs

Physical and services infrastructure

12
The extent to which social and cultural norms encourage or allow actions

leading to new business methods or activities that can potentially
increase personal wealth and income

Cultural and social norms
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Abstract: We develop a local convergence of an iterative method for solving nonlinear least squares
problems with operator decomposition under the classical and generalized Lipschitz conditions.
We consider the case of both zero and nonzero residuals and determine their convergence orders.
We use two types of Lipschitz conditions (center and restricted region conditions) to study the
convergence of the method. Moreover, we obtain a larger radius of convergence and tighter error
estimates than in previous works. Hence, we extend the applicability of this method under the same
computational effort.
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1. Introduction

Nonlinear least squares problems often arise while solving overdetermined systems of
nonlinear equations, estimating parameters of physical processes by measurement results,
constructing nonlinear regression models for solving engineering problems, etc. The most
used method for solving nonlinear least squares problems is the Gauss–Newton method [1].
In the case when the derivative can not be calculated, difference methods are used [2,3].

Some nonlinear functions have a differentiable and a nondifferentiable part. In this
case, a good idea is to use a sum of the derivative of the differentiable part of the operator
and the divided difference of the nondifferentiable part instead of the Jacobian [4–6].
Numerical study shows that these methods converge faster than Gauss–Newton type’s
method or difference methods.

In this paper, we study the local convergence of the Gauss–Newton–Secant method
under the classical and generalized Lipschitz conditions for first-order Fréchet derivative
and divided differences.

Let us consider the nonlinear least squares problem:

min
x∈Rp

1
2
(F(x) + G(x))T(F(x) + G(x)), (1)
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where residual function F + G : Rp → Rm (m ≥ p) is nonlinear in x, F is a continuously
differentiable function, and G is a continuous function, the differentiability of which,
in general, is not required.

We propose the following modification of the Gauss–Newton method combined with
the Secant-type method [4,6] for finding the solution to problem (1):

xn+1 = xn − (AT
n An)

−1 AT
n (F(xn) + G(xn)), n = 0, 1, . . . , (2)

where An = F′(xn) + G(xn, xn−1), F′(xn) is a Fréchet derivative of F(x); G(xn, xn−1) is a
divided difference of the first order of function G

(
x
)

[7] at points xn, xn−1; and x0, x−1
are given.

Setting An = F′(xn), for solving problem (1), from (2) we obtain an iterative Gauss–
Newton-type method:

xn+1 = xn − (F′(xn)
T F′(xn))

−1F′(xn)
T(F(xn) + G(xn)), n = 0, 1, . . . . (3)

For m = p, problem (1) turns into a system of nonlinear equations:

F(x) + G(x) = 0. (4)

In this case, method (2) is transformed into the combined Newton–Secant
method [8–10]:

xn+1 = xn − (F′(xn) + G(xn, xn−1))
−1(F(xn) + G(xn)), n = 0, 1, . . . , (5)

and method (3) into the Newtons-type method for solving nonlinear equations [11]:

xn+1 = xn − (F′(xn))
−1(F(xn) + G(xn)), n = 0, 1, . . . . (6)

The convergence domain is small (in general), and error estimates are pessimistic.
These problems restrict the applicability of these methods. The novelty of our work is in
the claim that these problems can be addressed without adding hypotheses. In particular,
our idea is to use a center and restricted radius Lipschitz conditions. Such an approach to
the study of the convergence of methods allows for extending the convergence ball of the
method and improving error estimates.

The remainder of the paper is organized as follows: Section 2 deals with the local
convergence analysis. The numerical experiments appear in Section 3. Section 4 contains
the concluding remarks and ideas about future works.

2. Local Convergence Analysis

Let us consider, at first, some auxiliary lemmas needed to obtain the main results. Let
D be an open subset of Rp.

Lemma 1 ([4]). Let e(t) =
∫ t

0
E(u)du, where E is an integrable and positive nondecreasing

function on [0, T]. Then, e(t) is monotonically increasing with respect to t on [0, T].

Lemma 2 ([1,12]). Let h(t) =
1
t

∫ t

0
H(u)du, where H is an integrable and positive nondecrea-

sing function on [0, T]. Then, h(t) is nondecreasing with respect to t on (0, T].

Additionally, h(t) at t = 0 is defined as h(0) = lim
t→0

(
1
t

∫ t

0
H(u)du

)
.

Lemma 3 ([13]). Let s(t) =
1
t2

∫ t

0
S(u)u du, where S is an integrable and positive nondecreasing

function on [0, T]. Then, s(t) is nondecreasing with respect to t on (0, T].
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Definition 1. The Fréchet derivative F′ satisfies the center Lipschitz condition on D with L0
average if

‖F′(x)− F′(x∗)‖ ≤
∫ ρ(x)

0
L0(u)du, for each x ∈ D ⊂ Rp, (7)

where ρ(x) = ‖x − x∗‖, x∗ ∈ D is a solution of problem (1), and L0 is an integrable, positive, and
nondecreasing function on [0, T].

The functions M0, L, M, L1 and M1 introduced next are as the function L0: integrable,
positive, and nondecreasing functions defined on [0, 2R].

Definition 2. The first order divided difference G(x, y) satisfies the center Lipschitz condition on
D × D with M0 average if

‖G(x, y)− G(x∗, x∗)‖ ≤
∫ ρ(x)+ρ(y)

0
M0(u)du, for each x, y ∈ D. (8)

Let B > 0 and α > 0. We define function ϕ on [0,+∞) by

ϕ(t) = B
[

2α +
∫ t

0
L0(u)du +

∫ 2t

0
M0(u)du

][∫ t

0
L0(u)du +

∫ 2t

0
M0(u)du

]
. (9)

Suppose that equation
ϕ(t) = 1 (10)

has at least one positive solution. Denote by γ the minimal such solution. Then, we can
define Ω0 = D ∩ Ω(x∗, γ), where Ω(x∗, γ) = {x : ‖x − x∗‖ < γ}.

Definition 3. The Fréchet derivative F′ satisfies the restricted radius Lipschitz condition on Ω0
with L average if

‖F′(x)− F′(xτ)‖ ≤
∫ ρ(x)

τρ(x)
L(u)du, xτ = x∗ + τ(x − x∗), 0 ≤ τ ≤ 1, for each x ∈ Ω0. (11)

Definition 4. The first order divided difference G(x, y) satisfies the restricted radius Lipschitz
condition on Ω0 with M average if

‖G(x, y)− G(u, v)‖ ≤
∫ ‖x−u‖+‖y−v‖

0
M(u)du, for each x, y, u, v ∈ Ω0. (12)

Definition 5. The Fréchet derivative F′ satisfies the radius Lipschitz condition on D with L1
average if

‖F′(x)− F′(xτ)‖ ≤
∫ ρ(x)

τρ(x)
L1(u)du, for each x ∈ D. (13)

Definition 6. The first order divided difference G(x, y) satisfies the radius Lipschitz condition on
D with M1 average if

‖G(x, y)− G(u, v)‖ ≤
∫ ‖x−u‖+‖y−v‖

0
M1(u)du, for each x, y, u, v ∈ D. (14)

Remark 1. It follows from the preceding definitions that L = L(L0, M0), M = M(L0, M0), and
for each t ∈ [0, γ]

L0(t) ≤ L1(t), (15)

L(t) ≤ L1(t), (16)

M(t) ≤ M1(t), (17)
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since Ω0 ⊆ D. By L(L0, M0), we mean that L (or M) depends on L0 and M0 by the definition of
Ω0. In case any of (15)–(17) are strict inequalities, the following benefits are obtained over the work
in [4] using L1, M1 instead of the new functions:

(a1) An at least as large convergence region leading to at least as many initial choices;
(a2) At least as tight upper bounds on the distances ‖xn − x∗‖, so at least as few iterations are

needed to obtain a desired error tolerance.

These benefits are obtained under the same computational effort as in [4], since the
new functions L0, M0, L, and M are special cases of the functions L1 and M1. This technique
of using the center Lipschitz condition in combination with the restricted convergence
region has been used by us on Newton’s, Secant, Newton-like methods [14,15], and can be
used on other methods, too, with the same benefits.

The proof of the next result follows as the corresponding one in [4], but there are crucial
differences, where we use (L0, L) instead of L1 and (M0, M) instead of M1 used in [4].

We use the Euclidean norm. Note that the following equality is satisfied for the
Euclidean norm ‖A − B‖ = ‖AT − BT‖, where A, B ∈ Rm×p.

Theorem 1. Let F + G : Rp → Rm be continuous on an open convex subset D ⊂ Rp, F be a
continuously differentiable function, and G be a continuous function. Suppose that problem (1) has
a solution x∗ ∈ D; the inverse operation

(AT∗ A∗)−1 = [(F′(x∗) + G(x∗, x∗))T(F′(x∗) + G(x∗, x∗))]−1 (18)

exists, such that ‖(AT∗ A∗)−1‖ ≤ B; (7), (8), (11), and (12) hold, and γ given in (10) exists.
Furthermore,

‖F(x∗) + G(x∗)‖ ≤ η, ‖F′(x∗) + G(x∗, x∗)‖ ≤ α; (19)

B
R

( ∫ R

0
L0(u)du +

∫ 2R

0
M0(u)du

)
η < 1 (20)

and Ω = Ω(x∗, r∗) ⊆ D, where r∗ is the unique positive zero of the function q given by

q(r) = B
[(

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)( ∫ r

0
L(u)udu +

∫ r

0
M(u)du

)
+
(

2α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)( ∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

)
+
(1

r

∫ r

0
L0(u)du +

1
r

∫ 2r

0
M0(u)du

)
η

]
− 1. (21)

Then, for x0, x−1 ∈ Ω, the iterative sequence {xn}, n = 0, 1, . . . , generated by (2), is well
defined, remains in Ω, and converges to x∗. Moreover, the following error estimates hold for each
n = 0, 1, 2, . . .:

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ C2‖xn − x∗‖+ C3‖xn−1 − x∗‖‖xn − x∗‖
+C4‖xn − x∗‖2, (22)
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where

g(r) =
B

1 − ϕ(r)
; C1 = g(r∗)

1
2r∗

∫ 2r∗

0
M0(u)du η; (23)

C2 = g(r∗)
(

1
r∗

∫ r∗

0
L0(u)du +

1
2r∗

∫ 2r∗

0
M0(u)du

)
η; (24)

C3 = g(r∗)
(

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

)
1
r∗

∫ r∗

0
M(u)du; (25)

C4 = g(r∗)
(

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

)
1
r∗

∫ r∗

0
L(u)udu. (26)

Proof. We obtain

lim
r→0+

1
r

∫ r

0
L0(u)du ≤ lim

r→0+

L0(r)r
r

≤ L0(0), (27)

lim
r→0+

1
r

∫ 2r

0
M0(u)du ≤ lim

r→0+

M0(2r)2r
r

≤ 2M0(0), (28)

since L0 and M0 are positive and nondecreasing functions on [0, R], and [0, 2R], respectively.
Taking into account Lemma 1 for a sufficiently small η, q(0) = B(L0(0) + 2M0(0))η − 1 < 0.
With a sufficiently large R, the inequality q(R) > 0 holds. By the intermediate value the-
orem, the function q has a positive zero on (0, R) denoted by r∗. Moreover, this zero

is the only one on (0, R). Indeed, according to Lemma 2, the function
(1

r

∫ r

0
L0(u)du +

1
r

∫ 2r

0
M0(u)du

)
η is non-decreasing with respect to r on (0, R]. By Lemma 1, functions∫ r

0
L(u)du,

∫ r

0
M(u)du, and

∫ 2r

0
M(u)du are monotonically increasing on [0, R]. Further-

more, by Lemma 3, the function
∫ r

0
L(u)udu = r2

( 1
r2

∫ r

0
L(u)udu

)
is monotonically in-

creasing with respect to r on (0, R]. Therefore, q(r) is monotonically increasing on (0, R].
Thus, the graph of function q(r) crosses the positive r-axis only once on (0, R). Finally,
from the monotonicity of q and since q(γ) > 0, we obtain r∗ < γ, so Ω(x∗, r∗) ⊂ Ω0.

We denote An = F′(xn) + G(xn, xn−1). Let n = 0. By the assumption x0, x−1 ∈ Ω,
we obtain the following estimation:∥∥∥I − (AT∗ A∗)−1 AT

0 A0

∥∥∥ =
∥∥∥(AT∗ A∗)−1(AT∗ A∗ − AT

0 A0)
∥∥∥

=
∥∥∥(AT∗ A∗)−1

[
AT∗ (A∗ − A0) + (AT∗ − AT

0 )(A0 − A∗) + (AT∗ − AT
0 )A∗

]∥∥∥
≤
∥∥∥(AT∗ A∗)−1

∥∥∥[‖AT∗ ‖‖A∗ − A0‖+ ‖AT∗ − AT
0 ‖‖A0 − A∗‖+ ‖AT∗ − AT

0 ‖‖A∗‖
]

≤ B
[
α‖A∗ − A0‖+ ‖AT∗ − AT

0 ‖‖A0 − A∗‖+ α‖AT∗ − AT
0 ‖
]
. (29)

Using conditions (11) and (12), we obtain

‖A0 − A∗‖ = ‖(F′(x0) + G(x0, x−1))− (F′(x∗) + G(x∗, x∗))‖
= ‖F′(x0)− F′(x∗) + G(x0, x−1)− G(x∗, x∗)‖
≤ ‖F′(x0)− F′(x∗)‖+ ‖G(x0, x−1)− G(x∗, x∗)‖
≤

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du, (30)
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where ρk = ρ(xk). Then, from inequality (29) and the equation q(r) = 0, we obtain by (10)

‖I − (AT∗ A∗)−1 AT
0 A0‖ ≤ B

[
2α +

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
≤ B

[
2α +

∫ r∗

0
L0(u)du

+
∫ 2r∗

0
M0(u)du

][∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
< 1. (31)

Next, from (29)–(31) and the Banach lemma [16], it follows that (AT
0 A0)

−1 exists, and∥∥∥(AT
0 A0)

−1
∥∥∥ ≤ g0 = B

{
1 − B

[
2α +

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[ ∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]}−1

≤ g(r∗) = B
{

1 − B
[
2α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]}−1

. (32)

Hence, x1 is correctly defined. Next, we will show that x1 ∈ Ω(x∗, r∗).
Using the fact

AT∗ (F(x∗) + G(x∗)) = (F′(x∗) + G(x∗, x∗))T(F(x∗) + G(x∗)) = 0, (33)

x0, x−1 ∈ Ω(x∗, r∗) and the choice of r∗, we obtain the estimate

‖x1 − x∗‖ =
∥∥∥x0 − x∗ − (AT

0 A0)
−1[AT

0 (F(x0) + G(x0))− AT∗ (F(x∗) + G(x∗))
]∥∥∥

≤
∥∥∥−(AT

0 A0)
−1
∥∥∥ ∥∥∥− AT

0

[
A0 −

∫ 1

0
F′(x∗ + t(x0 − x∗))dt

−G(x0, x∗)
]
(x0 − x∗) + (AT

0 − AT∗ )(F(x∗) + G(x∗))
∥∥∥. (34)

So, considering the inequalities∥∥∥A0 −
∫ 1

0
F′(x∗ + t(x0 − x∗))dt − G(x0, x∗)

∥∥∥
=
∥∥∥F′(x0)−

∫ 1

0
F′(x∗ + t(x0 − x∗))dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
=
∥∥∥ ∫ 1

0

[
F′(x0)− F′(x∗ + t(x0 − x∗))

]
dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
=
∥∥∥ ∫ 1

0

[
F′(x0)− F′(xt

0)
]
dt + G(x0, x−1)− G(x0, x∗)

∥∥∥
≤

∫ 1

0

∫ ρ0

tρ0

L(u)dudt +
∫ ρ−1

0
M(u)du =

∫ ρ0

0
L(u)udu +

∫ ρ−1

0
M(u)du

≤ 1
r2∗

∫ r∗

0
L(u)udu ρ2

0 +
1
r∗

∫ r∗

0
M(u)du ρ−1, (35)

‖A0‖ ≤ ‖A∗‖+ ‖A0 − A∗‖ ≤ α +
∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du, (36)

we obtain
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‖x1 − x∗‖ ≤ g0

{[
α +

∫ ρ0

0
L0(u)du +

∫ ρ0+ρ−1

0
M0(u)du

]
×
[ ∫ ρ0

0
L(u)udu +

∫ ρ−1

0
M(u)du

]
‖x0 − x∗‖+ η

[ ∫ ρ0

0
L0(u)du

+
∫ ρ0+ρ−1

0
M0(u)du

]}
≤ g0

{[
α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ 1

r2∗

∫ r∗

0
L(u)uduρ2

0 +
1
r∗

∫ r∗

0
M(u)du ρ−1

]
‖x0 − x∗‖

+η
[ 1

r∗

∫ r∗

0
L0(u)duρ0 +

1
2r∗

∫ 2r∗

0
M0(u)du(ρ0 + ρ−1)

]}
(37)

< g(r∗)
{[

α +
∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

][ ∫ r∗

0
L(u)udu +

∫ r∗

0
M(u)du

]
+

1
r∗

[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
η

}
r∗ = p(r∗)r∗ = r∗,

where

p(r) = g(r)
{[

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

][ ∫ r

0
L(u)udu +

∫ r

0
M(u)du

]
+

1
r

[ ∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

]
η

}
. (38)

Therefore, x1 ∈ Ω(x∗, r∗), and estimate (22) holds for n = 0.
Let us assume that xn ∈ Ω(x∗, r∗) for n = 0, 1, ..., k and estimate (22) holds for n =

0, 1, ..., k − 1, where k ≥1 is an integer. We shall show xn+1 ∈ Ω and that the estimate (22)
holds for n = k.

We can write

‖I − (AT∗ AT∗ )−1 AT
k Ak‖ = ‖(AT∗ A∗)−1(AT∗ A∗ − AT

k Ak)‖
= ‖(AT∗ A∗)−1(AT∗ (A∗ − Ak) + (AT∗ − AT

k )(Ak − A∗) + (AT∗ − AT
k )A∗)‖

≤ B
(

α‖A∗ − Ak‖+ ‖AT∗ − AT
k ‖‖Ak − A∗‖+ α‖AT∗ − AT

k ‖
)

≤ B
[
2α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

][ ∫ ρk

0
L0(u)du (39)

+
∫ ρk+ρk−1

0
M0(u)du

]
≤ B

[
2α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ ∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
< 1.

Consequently,
(

AT
k Ak

)−1 exists, and

‖(AT
k+1 Ak+1)

−1‖ ≤ gk = B
{

1 − B
[
2α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]
×
[ ∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]}−1
≤ g(r∗). (40)
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Therefore, xk+1 is correctly defined, and the following estimate holds:

‖xk+1 − x∗‖ = ‖xk − x∗ − (AT
k Ak)

−1[AT
k (F(xk) + G(xk))− AT∗ (F(x∗)

+G(x∗))]‖ ≤ ‖ − (AT
k Ak)

−1‖
∥∥∥− AT

k

[
Ak −

∫ 1

0
F′(x∗ + t(xk − x∗))dt

−G(xk, x∗)
]
(xk − x∗) + (AT

k − AT∗ )(F(x∗) + G(x∗))
∥∥∥

≤ ‖− (AT
k Ak)

−1‖
∥∥∥− AT

k

[
Ak −

∫ 1

0
F′(x∗ + t(xk − x∗))dt

−G(xk, x∗)
]
(xk − x∗) + (AT

k − AT∗ )(F(x∗) + G(x∗))
∥∥∥ (41)

≤ gk

{[
α +

∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

][ ∫ ρk

0
L(u)udu

+
∫ ρk−1

0
M(u)du

]
‖xk − x∗‖+ η

[ ∫ ρk

0
L0(u)du +

∫ ρk+ρk−1

0
M0(u)du

]}
≤ g(r∗)

{[
α +

∫ r∗

0
L0(u)du +

∫ 2r∗

0
M0(u)du

]
×
[ 1

r2∗

∫ r∗

0
L(u)uduρ2

k +
1
r∗

∫ r∗

0
M(u)duρk−1

]
‖xk − x∗‖

+η
[ 1

r∗

∫ r∗

0
L0(u)duρk +

1
2r∗

∫ 2r∗

0
M0(u)du(ρk + ρk−1)

]}
< p(r∗)r∗ = r∗.

This proves that xk+1 ∈ Ω(x∗, r∗) and estimate (22) for n = k.
Thus, by the induction method, (2) is correctly defined, xn ∈ Ω(x∗, r∗), and esti-

mate (22) holds for each n = 0, 1, 2, . . ..
It remains to be proven that xn → x∗ for n → ∞.
Let us define functions a and b on [0, r∗] as

a(r) = g(r)
{[

α +
∫ r

0
L0(u)du +

∫ 2r

0
M0(u)du

][ ∫ r

0
L(u)udu +

∫ r

0
M(u)du

]
+
[1

r

∫ r

0
L0(u)du +

1
2r

∫ 2r

0
M0(u)du

]
η

}
; (42)

b(r) = g(r)
1
2r

∫ 2r

0
M(u)du η. (43)

According to the choice of r∗, we obtain

a(r∗) ≥ 0, b(r∗) ≥ 0, a(r∗) + b(r∗) = 1. (44)

Using estimate (22), the definition of functions a, b and constants
Ci (i = 1, 2, 3, 4), we have

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ (C2 + C3r∗ + C4r∗)‖xn − x∗‖
= a(r∗)‖xn − x∗‖+ b(r∗)‖xn−1 − x∗‖. (45)

According to the proof in [17], under the conditions (42)–(45), the sequence {xn}
converges to x∗ for n → ∞.

Corollary 1 ([4]). The convergence order of method (2) for the problem (1) with zero residual is

equal to
1 +

√
5

2
.
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If η = 0, we have the nonlinear least squares problem with zero residual. Then,
the constants C1 = 0 and C2 = 0, and estimate (22) takes the form

‖xn+1 − x∗‖ ≤ C3‖xn−1 − x∗‖ ‖xn − x∗‖+ C4‖xn − x∗‖2. (46)

This inequality can be written as

‖xn+1 − x∗‖ ≤ (C3 + C4)‖xn−1 − x∗‖ ‖xn − x∗‖. (47)

Then, we can write an equation for determining the convergence order as follows:

t2 − t − 1 = 0. (48)

Therefore, the positive root, t∗ = 1 +
√

5
2

of the latter equation is the order of conver-
gence of method (2).

In case G(x) ≡ 0 in (1), we obtain the following consequences.

Corollary 2 ([4]). The convergence order of method (2) for problem (1) with zero residual is quadratic.

Indeed, if G(x) ≡ 0, then C3 = 0, and estimate (22) takes the form

‖xn+1 − x∗‖ ≤ C4‖xn − x∗‖2, (49)

which indicates the quadratic convergence rate of method (2).

Remark 2. If L0 = L = L1 and M0 = M = M1, our results specialize to the corresponding ones
in [4]. Otherwise, they constitute an improvement as already noted in Remark 1. As an example,
let q1, g1, C1

1, C1
2, C1

3, C1
4, r1∗ denote the functions and parameters where L0, L, M0, M are replaced

by L1, L1, M1, M1, respectively. Then, we have in view of (15)–(17) that

q(r) ≤ q1(r), (50)

g(r) ≤ g1(r), (51)

C1 ≤ C1
1, (52)

C2 ≤ C1
2, (53)

C3 ≤ C1
3, (54)

and

C4 ≤ C1
4. (55)

Hence, we have

r1∗ ≤ r∗, (56)

the new error bounds (22) being tighter than the corresponding (6) in [4], and the rest of the
advantages (already mentioned in Remark 1) holding true.

Next, we study the convergence of method (2) if L0, L, M0, M are constants, as a
consequence of Theorem 1.

Corollary 3. Let F + G : Rp → Rm be continuous on an open convex subset D ⊂ Rp, F be a
continuously differentiable, and G be a continuous function on D. Suppose that problem (1) has a
solution x∗ ∈ D, and the inverse operation

(AT∗ A∗)−1 = [(F′(x∗) + G(x∗, x∗))T(F′(x∗) + G(x∗, x∗))]−1 (57)
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exists, such that ‖(AT∗ A∗)−1‖ ≤ B.
Suppose that the Fréchet derivative F′ satisfies the classic Lipschitz conditions

‖F′(x)− F′(x∗)‖ ≤ L0‖x − x∗‖, for each x ∈ D, (58)

‖F′(x)− F′(y)‖ ≤ L‖x − y‖, for each x, y ∈ Ω0 (59)

and the function G has a first order divided difference G(x, y) that satisfies

‖G(x, y)− G(x∗, x∗)‖ ≤ M0(‖x − x∗‖+ ‖y − x∗‖), for each x, y ∈ D, (60)

‖G(x, y)− G(u, v)‖ ≤ M(‖x − u‖+ ‖y − v‖), for each x, y, u, v ∈ Ω0, (61)

where Ω0 = D ∩ Ω

(
x∗,

√
B2α2 + B − Bα

B(L0 + 2M0)

)
.

Furthermore,

‖F(x∗) + G(x∗)‖ ≤ η, ‖F′(x∗) + G(x∗, x∗)‖ ≤ α, B(L0 + 2M0)η < 1 (62)

and Ω = Ω(x∗, r∗) ⊆ D, where

r∗ =
4(1 − BT0η)

Bα(4T0 + T) +
√

B2α2(4T0 + T)2 + 8BT0(2T0 + T)(1 − BT0η)
, (63)

T0 = L0 + 2M0, T = L + 2M. Then, for each x0, x−1 ∈ Ω, the iterative sequence {xn} ,
n = 0, 1, ..., generated by (2) is well defined, remains in Ω, and converges to x∗, such that the
following error estimate holds for each n = 0, 1, 2, . . .:

‖xn+1 − x∗‖ ≤ C1‖xn−1 − x∗‖+ C2‖xn − x∗‖
+C3‖xn−1 − x∗‖‖xn − x∗‖+ C4‖xn − x∗‖2, (64)

where

g(r) = B[1 − B(2α + (L0 + 2M0)r)(L0 + 2M0)r]−1; (65)

C1 = g(r∗)M0η; C2 = g(r∗)(L0 + M0)η; (66)

C3 = g(r∗)(α + (L0 + 2M0)r∗)M; (67)

C4 = g(r∗)(α + (L0 + 2M0)r∗)
L
2

. (68)

The proof of Corollary 3 is analogous to the proof of Theorem 1.

3. Numerical Examples

In this section, we give examples to show the applicability of method (2) and to

confirm Remark 2. We use the norm ‖x‖ =

√
p
∑

i=1
x2

i for x ∈ Rp.

Example 1. Let function F + G : R2 → R3 be defined by

F(x) + G(x) =

⎛⎝ 3u2v + v2 − 1 + |u2 − 1|
u4 + uv3 − 1 + |v|
v − 0.3 + |u − 1|

⎞⎠, (69)

F(x) =

⎛⎝ 3u2v + v2 − 1
u4 + uv3 − 1

v − 0.3

⎞⎠, G(x) =

⎛⎝ |u2 − 1|
|v|

|u − 1|

⎞⎠, (70)
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where x = (u, v). The solution of this problem x∗ ≈ (0.917889, 0.288314) and
η ≈ 0.079411.

Let us give the number of iterations needed to obtain an approximate solution of this
problem. We test method (2) for the different initial points x0 = δ(1.1, 0.5)T , where δ ∈ R,
and use the stopping criterion ‖xn+1 − xn‖ ≤ ε. The additional point x−1 = x0 + 10−4. The
numerical results are shown in Table 1.

Table 1. Results for Example 1, ε = 10−8.

δ = 0.1 δ = 1 δ = 5 δ = 10 δ = 100

Number of iterations 12 8 15 17 25

In Table 2, we give values of xn+1, ‖xn+1 − xn‖ and the norm of residual at each itera-
tion.

Table 2. Iterative sequence, norm of growth, and residual for Example 1, x0 = (0.8, 0.2)T , ε = 10−6.

n xn+1 ‖xn+1 − xn‖ ‖F(xn+1) + G(xn+1)‖
0 (0.937901, 0.312602) 0.178033 0.143759
1 (0.918455, 0.290216) 2.965298 × 10−2 7.973496 × 10−2

2 (0.917850, 0.288333) 1.977741 × 10−3 7.941104 × 10−2

3 (0.917888, 0.288313) 4.346993 × 10−5 7.941092 × 10−2

4 (0.917889, 0.288314) 7.873833 × 10−7 7.941092 × 10−2

Example 2. Let function F + G : D ⊆ R → R3 be defined by [5]:

F(x) + G(x) =

⎛⎝ x + μ
λx3 + x − μ

λ|x2 − 1| − λ

⎞⎠, (71)

F(x) =

⎛⎝ x + μ
λx3 + x − μ

0

⎞⎠, G(x) =

⎛⎝ 0
0

λ|x2 − 1| − λ

⎞⎠, (72)

where λ, μ ∈ R are two parameters. Here x∗ = 0 and η =
√

2|μ|. Thus, if μ = 0, then we have a
problem with zero residual.

Let us consider Example 2 and show that r1∗ ≤ r∗ and the new error estimates (64) are
tighter than the corresponding ones in [4]. We consider the case of the classical Lipschitz
conditions (Corollary 3). Error estimates from [4] are as follows:

‖xn+1 − x∗‖ ≤ C1
1‖xn−1 − x∗‖+ C1

2‖xn − x∗‖
+C1

3‖xn−1 − x∗‖‖xn − x∗‖+ C1
4‖xn − x∗‖2, (73)

where

g1(r) = B[1 − B(2α + (L1 + 2M1)r)(L1 + 2M1)r]−1; (74)

C1
1 = g1(r1∗)M1η; C1

2 = g1(r1∗)(L1 + M1)η; (75)

C1
3 = g1(r1∗)(α + (L1 + 2M1)r1∗)M1; (76)

C1
4 = g1(r1∗)(α + (L1 + 2M1)r1∗)

L1

2
. (77)

They can be obtained from (64) by replacing r∗, L0, L, M0, M in g(r), C1, C2, C3, C4 by
r1∗, L1, L1, M1, M1, respectively. Similarly,
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r1∗ =
4(1 − BT1η)

5BαT1 +
√

25B2α2T2
1 + 24BT2

1 (1 − BT1η)
, T1 = L1 + 2M1. (78)

Let us choose D = (−0.5; 0.5). Thus, we have B = 0.5, η =
√

2|μ|, α =
√

2,
L0 = max

x∈D
3|λ||x|, L = max

x,y∈Ω0
3|λ||x + y|, L1 = max

x,y∈D
3|λ||x + y|, M0 = M = M1 = |λ|.

Radii are written in Table 3.

Table 3. Radii of convergence domains.

λ μ L0 L L1 M r∗ r1∗
0.4 0 0.6 1.004205 1.2 0.4 0.319259 0.235702
0.1 0.2 0.15 0.3 0.3 0.1 1.192633 0.885163

Tables 4 and 5 report the left and right side of error estimates (64) and (73). We
obtained these results for ε = 10−8 and starting approximations x−1 = 0.2001, x0 = 0.2.
We see that the new error bounds (64) are tighter than the corresponding (73) from [4].

Table 4. Results for λ = 0.4, μ = 0.

n |xn+1 − x∗| The Right Side of (64) The Right Side of (73)

0 4.364164 × 10−3 0.125318 0.169740
1 1.425535 × 10−5 1.245455 × 10−3 1.529729 × 10−3

2 2.179258 × 10−11 8.675961 × 10−8 1.060957 × 10−7

3 3.542853 × 10−22 4.314684 × 10−16 5.272102 × 10−16

Table 5. Results for λ = 0.1, μ = 0.2.

n |xn+1 − x∗| The Right Side of (64) The Right Side of (73)

0 2.063103 × 10−3 5.909333 × 10−2 8.484100 × 10−2

1 5.453349 × 10−7 9.113893 × 10−3 1.080560 × 10−2

2 2.054057 × 10−14 9.051468 × 10−5 1.057648 × 10−4

3 1.447579 × 10−18 2.390964 × 10−8 2.792694 × 10−8

4. Conclusions

We developed an improved local convergence analysis of the Gauss–Newton–Secant
method for solving nonlinear least squares problems with nondifferentiable operator.
We use a center and restricted radius Lipschitz conditions to study the method. As a
consequence, we obtain a larger radius of convergence and tighter error estimates under
the same computational effort as in earlier papers. This idea can be used to extend the
usage of other methods with inverses, such as Newton-type, Secant-type, single-step,
or multi-step, to mention a few. This should be our future work. Finally, it is worth
mentioning that except for the methods used in this paper, some of the most representative
computational intelligence algorithms can be used to solve the problems, such as monarch
butterfly optimization (MBO) [18], the earthworm optimization algorithm (EWA) [19],
elephant herding optimization (EHO) [20], the moth search (MS) algorithm [21], the slime
mould algorithm (SMA), and Harris hawks optimization (HHO) [22].
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Abstract: We consider computing an arbitrary singular value of a tensor sum: T := In ⊗ Im ⊗ A +

In ⊗ B ⊗ I� + C ⊗ Im ⊗ I� ∈ R�mn×�mn, where A ∈ R�×�, B ∈ Rm×m, C ∈ Rn×n. We focus on the shift-
and-invert Lanczos method, which solves a shift-and-invert eigenvalue problem of (TTT − σ̃2 I�mn)

−1,
where σ̃ is set to a scalar value close to the desired singular value. The desired singular value is
computed by the maximum eigenvalue of the eigenvalue problem. This shift-and-invert Lanczos
method needs to solve large-scale linear systems with the coefficient matrix TTT − σ̃2 I�mn. The
preconditioned conjugate gradient (PCG) method is applied since the direct methods cannot be
applied due to the nonzero structure of the coefficient matrix. However, it is difficult in terms of
memory requirements to simply implement the shift-and-invert Lanczos and the PCG methods since
the size of T grows rapidly by the sizes of A, B, and C. In this paper, we present the following two
techniques: (1) efficient implementations of the shift-and-invert Lanczos method for the eigenvalue
problem of TTT and the PCG method for TTT − σ̃2 I�mn using three-dimensional arrays (third-order
tensors) and the n-mode products, and (2) preconditioning matrices of the PCG method based on the
eigenvalue and the Schur decomposition of T. Finally, we show the effectiveness of the proposed
methods through numerical experiments.

Keywords: tensor sum; singular value; shift-and-invert Lanczos method; preconditioned conjugate
gradient method

MSC: 65F15; 65F08

1. Introduction

We consider computing an arbitrary singular value of a tensor sum:

T := In ⊗ Im ⊗ A + In ⊗ B ⊗ I� + C ⊗ Im ⊗ I� ∈ R�mn×�mn, (1)

where A ∈ R�×�, B ∈ Rm×m, C ∈ Rn×n, In is the n × n identity matrix, and the symbol
“⊗” denotes the Kronecker product. The tensor sum T arises from a finite difference
discretization of three-dimensional constant coefficient partial differential equations (PDE)
defined as follows:[−a · (∇ ∗∇)

+ b · ∇+ c
]
u(x, y, z) = g(x, y, z) in Ω, u(x, y, z) = 0 on ∂Ω, (2)

where Ω = (0, 1)× (0, 1)× (0, 1), a, b ∈ R3, c ∈ R, and the symbol “∗” denotes element-
wise products. If a = (1, 1, 1), then a · (∇ ∗∇) = Δ. Matrix T tends to be too large even if
A, B and C are not. Hence it is difficult to compute singular values of T with regard to the
memory requirement.
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Previous studies [1,2] provided methods to compute the maximum and minimum
singular values of T. By the previous studies, one can compute only the maximum and
minimum singular values of T without shift. On the other hand, one can compute arbitrary
singular values of T with the shift by this work. The previous studies are based on the
Lanczos bidiagonalization method (see, e.g., [3]), which computes the maximum and
minimum singular values of a matrix. For insights on Lanczos bidiagonalization method,
see, e.g., [4–6]. The Lanczos bidiagonalization method for T was implemented using
tensors and their operations to reduce the memory requirement.

The Lanczos method with the shift-and-invert technique, see, e.g., [3], is widely known
for computing an arbitrary eigenvalue λ of a symmetric matrix M ∈ Rn×n. This method
solves the shift-and-invert eigenvalue problem: (M − σ̃In)−1x = (λ − σ̃)−1x, where x is
the eigenvector of M corresponding to λ, and σ̃ is a shift point which is set to the nearby
λ (σ̃ �= λ). Since the eigenvalue problem has the eigenvalue (λ − σ̃)−1 as the maximum
eigenvalue, the method is effective for computing the desired eigenvalue λ near σ̃. For
successful work using the shift-and-invert technique, see, e.g., [7–13].

Therefore, we obtain a computing method for an arbitrary singular value of T based
on the shift-and-invert Lanczos method. The method solves the following shift-and-invert
eigenvalue problem: (TTT − σ̃2 I�mn)

−1x = (σ2 − σ̃2)−1x, where σ is the desired singular
value of T, x is the corresponding right-singular vector, and σ̃ is close to σ (σ̃ �= σ). This
shift-and-invert Lanczos method requires the solution of large-scale linear systems with the
coefficient matrix TTT − σ̃2 I�mn. Here, TTT − σ̃2 I�mn can be a dense matrix whose number
of elements is O(n6) even if T is a sparse matrix whose number of elements is O(n4) when
A, B, C ∈ Rn×n are dense.

Since it is difficult regarding the memory requirement to apply the direct method,
e.g., the Cholesky decomposition, which needs generating matrix TTT − σ̃2 I�mn, the pre-
conditioned conjugate gradient (PCG) method, see, e.g., [14], is applied, even though it
is difficult in terms of memory requirements to simply implement this shift-and-invert
Lanczos method and the PCG method since the size of T grows rapidly by the sizes of A,
B, and C.

We propose the following two techniques in this paper: (1) Efficient implementations
of the shift-and-invert Lanczos method for the eigenvalue problem of TTT and the PCG
method for TTT − σ̃2 I�mn using three-dimensional arrays (third-order tensors) and the
n-mode products, see, e.g., [15]. (2) Preconditioning matrices based on the eigenvalue
decomposition and the Schur decomposition of T for faster convergence of the PCG method.
Finally, we show the effectiveness of the proposed method through numerical experiments.

2. Preliminaries of Tensor Operations

A tensor means a multidimensional array. Particularly, the third-order tensor
X ∈ RI×J×K plays an important role. In the rest of this section, the definitions of some
tensor operations are shown. For more details, see, e.g., [15].

Firstly, a summation, a subtraction, an inner product, and a norm for X ,Y ∈ RI×J×K

are defined as follows:

(X ±Y)ijk := X ijk ±Y ijk, (X ,Y) :=
I

∑
i=1

J

∑
j=1

K

∑
k=1

X ijkY ijk, ‖X ‖ =
√
(X ,X ),

where X ijk denotes the (i, j, k) element of X . Secondly, the n-mode product of a tensor
X ∈ RI1×I2×···×IN and a matrix M ∈ RJ×In is defined as

(X ×n M)i1...in−1 jin+1...iN =
In

∑
in=1

X i1i2...iN Mpin ,

where n ∈ {1, 2, . . . N}, ik ∈ {1, 2, . . . , Ik} for k = 1, 2, . . . N, and j ∈ {1, 2, . . . , J}. Finally,
vec and vec−1 operators are the following maps between a vector space RI JK and a tensor
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space RI×J×K: vec : RI×J×K → RI JK and vec−1 : RI JK → RI×J×K. vec operator can
vectorize a tensor by combining all column vectors of the tensor into one long vector.
Conversely, vec−1 operator can reshape a tensor from one long vector.

3. Shift-and-Invert Lanczos Method for an Arbitrary Singular Value over Tensor Space

This section gives an algorithm for computing an arbitrary singular value of the tensor
sum T. Let σ and x be a desired singular value of T and the corresponding right singular
vectors, respectively. Then, the eigenvalue problem of T is written by TTTx = σ2x. Here,
introducing a shift σ̃ ≈ σ, the shift-and-invert eigenvalue problem is

(TTT − σ̃2 I�mn)
−1x =

1
σ2 − σ̃2 x. (3)

The shift-and-invert Lanczos method (see, e.g., [3]) computes the nearest singular
value σ based on Equation (3). Reconstructing this method over the �× m × n tensor space,
we obtain Algorithm 1 whose memory requirement is of O(n3) when n = m = �.

Algorithm 1: Shift-and-invert Lanczos method for an arbitrary singular value over
tensor space

1: Choose an initial tensor Q0 ∈ R�×m×n;
2: V := Q0, β0 := ||V ||;
3: for k = 1, 2, . . . , until convergence do
4: Qk := V/βk−1;
5: V := vec−1

{(
TTT − σ̃2 I�mn

)−1vec(Qk)
}

;
(Computed by Algorithms 3 or 4 in Section 4)

6: V := V − βk−1Qk−1;
7: αk := (Qk,V);
8: V := V − αkQk;
9: βk := ||V ||;

10: end for

11: Approximate singular value σ =

√
σ̃2 +

1
λ̃(k)

, where λ̃(k) is the maximum eigenvalue

of T̃k.

At step k, we have the following T̃k by Algorithm 1:

T̃k :=

⎛⎜⎜⎜⎜⎜⎝
α1 β1
β1 α2 β2

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk

⎞⎟⎟⎟⎟⎟⎠ ∈ Rk×k.

To implement Algorithm 1, we need to iteratively solve the linear system

V := vec−1
{(

TTT − σ̃I�mn

)−1
vec(Qk)

}
, (4)

whose coefficient matrix is �mn × �mn, that is, the memory requirement is O(n6) when
n = m = �. Here, the convergence rate of the shift and invert Lanczos method depends on
the ratio of gaps between the maximum, the second maximum, and the minimum singular
values σ1, σ2, σm of (TTT − σ̃2 I�mn)

−1 as follows: (σ2
1 − σ2

2 )/(σ
2
1 − σ2

m).
In the next section, we consider solving the linear systems with memory requirement

of O(n3) when n = m = �.
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4. Preconditioned Conjugate Gradient (PCG) Method over Tensor Space

This section provides an efficient solver of Equation (4) using tensors. This linear
system is rewritten by v =

(
TTT − σ̃2 I�mn

)−1qk, where v := vec(V) and qk := vec(Qk).
Then we solve

(
TTT − σ̃2 I�mn

)
v = qk, where v and qk are unknown and known vectors.

Since the coefficient matrix is symmetric positive definite, we can use the preconditioned
conjugate gradient method (PCG method, see, e.g., [14]), which is one of the widely used
solvers. However, it is difficult to simply apply the method due to the complex nonzero
structure of the coefficient matrix TTT − σ̃2 I�mn. For applying the PCG method, we consider
transforming the linear system

(
TTT − σ̃2 I�mn

)
v = qk by the eigendecomposition and the

complex Schur decomposition as shown in the next subsections.

4.1. PCG Method by the Eigendecomposition

Firstly, T is decomposed into T := XDX−1, where X and D are a matrix whose column
vectors are eigenvectors and a diagonal matrix with eigenvalues, respectively. Then, it
follows that(

TTT − σ̃2 I�mn

)
v = qk ⇔

(
(XDX−1)H(XDX−1)− σ̃2 I�mn

)
v = qk

⇔
(

DXHXD − σ̃2XHX
)(

X−1v
)
= XHqk,

where D is the complex conjugate of D. We rewrite the above linear system into Ãỹ = b̃,
where Ã := DXHXD − σ̃2XHX, ỹ := X−1v, and b̃ := XHqk. Here, X is easily computed
by small matrices XA, XB, and XC whose column vectors are eigenvectors of A, B, and C as
follows: X = XC ⊗ XB ⊗ XA. Moreover, eigenvalues of T in D are obtained by summations
of each eigenvalue of A, B, and C.

The PCG method for solving Ãỹ = b̃ is shown in Algorithm 2. Since this algorithm
computes ỹ, we need to compute v = Xỹ. Section 4.1.1 proposes a preconditioning matrix
and Section 4.1.2 provides efficient computations using tensors.

Algorithm 2: PCG method over vector space for Ãỹ = b̃

1: Choose an initial vector x0 ∈ R�mn and p0 = 0 ∈ R�mn, and an initial scalar β0 = 0;
2: r0 = b̃ − Ãx0;
3: z0 = M−1r0;
4: for k′ = 1, 2, . . . , until convergence do
5: pk′ = zk′−1 + βk′−1 pk′−1;
6: p̂k′ = Ãpk′ ;
7: αk′ = (zk′−1, rk′−1)/

(
pk′−1, p̂k′

)
;

8: xk′ = xk′−1 + αk′ pk′ ;
9: rk′ = rk′−1 − αk′ p̂k′ ;

10: zk′ = M−1rk′ ;
11: βk′ = (zk′ , rk′)/(zk′−1, rk′−1);
12: end for
13: Obtain an approximate solution ỹ ≈ xk′ ;

4.1.1. Preconditioning Matrix

Algorithm 2 solves (
M−1 ÃM−H

)(
MHỹ

)
= M−1b̃,

where M ∈ R�mn×�mn is a preconditioning matrix. M must satisfy the following two condi-
tions: (1) a condition number of M−1 Ã is close to 1; (2) the matrix-vector multiplication of
M−1 is easily computed.
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Therefore, we propose a preconditioning matrix based on the eigendecomposition
of T

M := DD − σ̃2 I�mn. (5)

Since M is the diagonal matrix, the second condition of the preconditioning matrix is
satisfied. Moreover, if T is symmetric, X is the unitary matrix, that is, XHX = I�mn. In the
case of the symmetric matrix T, we obtain M = Ã. Namely, the proposed matrix satisfies
the first conditions when T is symmetric. So, even if T is not exactly symmetric, if T is
almost symmetric, then we can expect the preconditioning matrix M to be effective.

4.1.2. Efficient Implementation of Algorithm 2 by the Eigendecomposition

Similarly to obtaining Algorithm 1, to improve an implementation of Algorithm 2, we
reconstruct �mn dimensional vectors into �× m × n tensors via vec−1 operator as follows:
X k′ := vec−1(xk′), Rk′ := vec−1(rk′), P k′ := vec−1(pk′), Z k′ := vec−1(zk′), and P̂ k′ :=
vec−1(p̂k′). Most computations of vectors are simply transformed into computations of
tensors because of the linearity of vec−1 operator.

In the rest of this section, we show the computations of vec−1(Ãvec(P k′)
)

and
vec−1(M−1vec(Rk′)

)
, which are required in the PCG method, using the 1, 2, and 3-

mode products for tensors and the definition of T. First, from the definitions of Ã and
X, vec−1(Ãvec(P k′)

)
= vec−1(DXHXDvec(P k′))− σ̃2vec−1(XHXvec(P k′)) holds. Let

D = vec−1(diag(D)), where diag(D) returns an �mn-dimensional column vector with
diagonals of D. Then, Dijk := λ

(A)
i + λ

(B)
j + λ

(C)
k , where λ

(A)
i , λ

(B)
j , and λ

(C)
k denote the

eigenvalues of A, B, and C. Note that (vec−1(Dvec(P k′)))ijk = Dijk(P k′)ijk since we com-
pute (Dpk′)i = Dii(pk′)i for i = 1, 2, . . . , �mn. Using the relation between the Kronecker
product and the mode products via vec−1 operator, we compute

vec−1(Ãvec(P)
)

= D ∗
{
(D ∗P k′)×1 XH

A XA + (D ∗P k′)×2 XH
B XB + (D ∗P k′)×3 XH

C XC

}
− σ̃2

(
P k′ ×1 XH

A XA +P k′ ×2 XH
B XB +P k′ ×3 XH

C XC

)
, (6)

where “∗” denotes elementwise product.
Next, from the definition of the diagonal matrix M in Equation (5), we easily obtain(

M−1
)

ii
=

1
(D)ii(D)ii − σ̃2

, i = 1, 2, . . . , �mn.

Here, let M = vec−1(diag(M−1)). Then it follows that Mijk = 1/(DijkDijk − σ̃2).
vec−1(M−1vec(Rk′)

)
is computed by

vec−1
(

M−1vec(Rk′)
)
= M ∗Rk′ . (7)

As shown in Algorithm 3, the PCG method can be implemented using the precondi-
tioning matrix M and the aforementioned computations, where the linear system Ãỹ = b̃
is transformed into Ã vec(Ỹ) = vec(B̃), where vec(B̃) := b̃ = vec(Qk ×1 XH

A +Qk ×2
XH

B +Qk ×3 XH
C ) and vec(Ỹ) := ỹ. Algorithm 3 requires only small matrices A, B, and

C and �× m × n tensors X k′ ,Rk′ ,P k′ , and Z k′ . Therefore the memory requirement is of
O(n3) in the case of n = m = �.
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4.2. PCG Method by the Schur Decomposition

Firstly, the Schur decomposition of T is T := QRQH, where R and Q are upper
triangular and unitary matrices, respectively. Then,(

TTT − σ̃2 I�mn

)
v = qk ⇔

(
(QRQH)H(QRQH)− σ̃2 I�mn

)
v = qk

⇔
(

RHR − σ̃2 I�mn

)
(QHv) = QHqk.

This linear system denotes Ãỹ = b̃, where Ã := RHR − σ̃2 I�mn, ỹ := QHv, and
b̃ := QHqk. The PCG method for Ãỹ = b̃ is shown in Algorithm 2. R and Q are obtained
from the complex Schur decomposition of A, B, and C as follows: R = In ⊗ Im ⊗ RA +
In ⊗ RB ⊗ I� + RC ⊗ Im ⊗ I� and Q = QC ⊗ QB ⊗ QA from the definition of T, where
A = QARAQH

A , B = QBRBQH
B , and C = QCRCQH

C by the Schur decomposition of A, B,
and C.

Algorithm 3: PCG method over tensor space for the 5-th line of Algorithm 1 [Pro-
posed inner algorithm using the eigendecomposition]

1: Choose an initial tensor X 0 ∈ R�×m×n and P0 = O�×m×n, and an initial scalar β0 = 0;
2: R0 = (Qk ×1 XH

A +Qk ×2 XH
B +Qk ×3 XH

C )

−[D ∗ {(D ∗X 0)×1 XH
A XA + (D ∗X 0)×2 XH

B XB + (D ∗X 0)×3 XH
C XC}

−σ̃2(X 0 ×1 XH
A XA +X 0 ×2 XH

B XB +X 0 ×3 XH
C XC)

]
;

3: Z0 = M ∗R0;
4: for k′ = 1, 2, . . . , until convergence do
5: P k′ = Z k′−1 + βk′−1P k′−1;
6: P̂ k′ = D ∗ {(D ∗P k′)×1 XH

A XA + (D ∗P k′)×2 XH
B XB + (D ∗P k′)×3 XH

C XC
}

−σ̃2(P k′ ×1 XH
A XA +P k′ ×2 XH

B XB +P k′ ×3 XH
C XC

)
;

7: αk′ = (Z k′−1,Rk′−1)/
(
P k′−1, P̂ k′

)
;

8: X k′ = X k′−1 + αk′P k′ ;
9: Rk′ = Rk′−1 − αk′P̂ k′ ;

10: Z k′ = M ∗Rk′−1;
11: βk′ = (Z k′ ,Rk′)/(Z k′−1,Rk′−1);
12: end for
13: Obtain an approximate solution Ỹ ≈ X k′ ;
14: V = Ỹ ×1 XA + Ỹ ×2 XB + Ỹ ×3 XC;

4.2.1. Preconditioning Matrix

A preconditioning matrix for Ãỹ = b̃ satisfies the conditions in Section 4.1.1. Therefore,
we propose the preconditioning matrix based on the Schur decomposition

M := DRDR − σ̃2 I�mn,

where DR is a diagonal matrix with diagonals of R. Since M is also the diagonal matrix,
the above second conditions are satisfied. Moreover, if T is symmetric, R is a diagonal
matrix, that is, R = DR. Therefore M = Ã in the case of the symmetric matrix T. From
this, we expect that the preconditioning matrix M is effective if T is not symmetric but
almost symmetric.

4.2.2. Efficient Implementation of Algorithm 2 by the Schur Decomposition

We show the computations of vec−1(Ãvec(P k′)
)

and vec−1(M−1vec(Rk′)
)

for the
PCG method over tensor space using the 1, 2, and 3-mode products for tensors and the
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definition of T. First, from the definitions of Ã and R, we have vec−1(Ãvec(P k′)
)
=

vec−1(RH(Rvec(P k′))− σ̃2vec(P k′)
)
. Therefore,

vec−1(Ãvec(P k′)
)
= P k′ ×1 RH

A RA +P k′ ×2 RH
B RB +P k′ ×3 RH

C RC − σ̃2P k′ .

Next, from M = DRDR − σ̃2 I�mn, we easily obtain(
M−1

)
ii
=

1
(DR)ii(DR)ii − σ̃2

, i = 1, 2, . . . , �mn.

Similarly to Section 4.1.2, let D = vec−1(diag(DR)) and M = vec−1(diag(M−1)).
Then, we have Mijk = 1/(DijkDijk − σ̃2), where Dijk = (RA)ii + (RB)jj + (RC)kk.
vec−1(M−1vec(Rk′)) is computed by (7).

As shown in Algorithm 4, the PCG method can be implemented using the precondi-
tioning matrix M and the aforementioned computations, where the linear system Ãỹ = b̃
is transformed into Ã vec(Ỹ) = vec(B̃), where vec(B̃) := b̃ = vec(Qk ×1 QA +Qk ×2
QB +Qk ×3 QC) and vec(Ỹ) := ỹ. Algorithm 4 just requires small matrices A, B, and
C and � × m × n tensors X k′ ,Rk′ ,P k′ , and Z k′ , namely, do not require large matrix T.
Therefore the memory requirement is of O(n3) in the case of n = m = �.

Algorithm 4: PCG method over tensor space for the 5-th line of Algorithm 1 [Pro-
posed inner algorithm using the Schur decomposition]

1: Choose an initial tensor X 0 ∈ R�×m×n and P0 = O�×m×n, and an initial scalar β0 = 0;
2: R0 = (Qk ×1 QA +Qk ×2 QB +Qk ×3 QC)

−(X 0 ×1 RH
A RA +X 0 ×2 RH

B RB +X 0 ×3 RH
C RC − σ̃2X 0

)
;

3: Z0 = M ∗R0;
4: for k′ = 1, 2, . . . , until convergence do
5: P k′ = Z k′−1 + βk′−1P k′−1;
6: P̂ k′ = P k′ ×1 RH

A RA +P k′ ×2 RH
B RB +P k′ ×3 RH

C RC − σ̃2P k′ ;

7: αk′ = (Z k′−1,Rk′−1)/
(
P k′−1, P̂ k′

)
;

8: X k′ = X k′−1 + αk′P k′ ;
9: Rk′ = Rk′−1 − αk′P̂ k′ ;

10: Z k′ = M ∗Rk′ ;
11: βk′ = (Z k′ ,Rk′)/(Z k′−1,Rk′−1);
12: end for
13: Obtain an approximate solution Ỹ ≈ X k′ ;
14: V = Ỹ ×1 QA + Ỹ ×2 QB + Ỹ ×3 QC;

5. Numerical Experiments

This section provides results of numerical experiments using Algorithm 1 with
Algorithm 3 and Algorithm 1 with Algorithm 4. There are the two purposes of this ex-
periments: (1) to confirm convergence to the singular value of T nearest to the shift by
Algorithm 1, and (2) to confirm the effectiveness of the proposed precondition matrix
in Algorithms 3 and 4. For comparison, the results using Algorithms 3 and 4 in the case
of M = I are also given as the results by the CG method. All the initial guesses of
Algorithms 1, 3, and 4 are tensors with random numbers. The stopping criteria used in
Algorithm 1 was βk||eT

k sk
MAX|| < 10−8, where sk

MAX is the eigenvector corresponding
to the maximum eigenvalue of T̃k and ek denotes the k-th canonical basis for k dimen-
sional vector space. Algorithms 3 and 4 were stopped when either the relative residual
||Rk′ ||/||B̃|| < 10−12 or the maximum number of iterations k′ > 20, 000 were satisfied.

All computations were carried out using MATLAB R2021a version on a workstation
with Xeon processor 3.7 GHz and 128 GB of RAM.
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In the following subsection, we show the results computing the 5-th maximum,
median, and 5-th minimum singular values σ of the test matrices T. For all the cases, for
the first purpose, we set the shift value in Algorithm 1 as

σ̃ = σ − 10−2, (8)

where σ̃’s and σ’s are the perturbed singular values of T and the aforementioned singular
values computed by the svd function in MATLAB, respectively.

Test matrices T in Equation (1) are obtained from a seven-point central difference
discretization of the PDE (2) in over an (n + 1)× (n + 1)× (n + 1) grid. The test matrices
T in Equation (1), whose size is n3 × n3, are generated from

A = B = C, A :=
1
h2 aM1 +

1
2h

bM2 +
1
3

cIn, (9)

where h = 1/(n+ 1), M1 and M2 are symmetric and skew-symmetric matrices given below.

M1 =

⎛⎜⎜⎜⎜⎜⎝
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn×n, M2 =

⎛⎜⎜⎜⎜⎜⎝
0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn×n.

Numerical Results

In all tables, the number of iterations of the shift-and-invert Lanczos method (“the
Lanczos method" hereafter) and the average of the number of iterations of the CG or PCG
method based on the eigendecomposition or the Schur decomposition are summarized.
“Not converged” denotes Algorithm 3 or 4 did not converge.

We show the first results in the case of almost symmetric matrix with a = c = 1
and b = 0.01 in Equation (9) for the shift (8). From Tables 1–3, the numbers of iterations
of Lanczos methods using any inner algorithms were almost the same. Focusing on the
effectiveness of the proposed preconditioning matrix M, the numbers of iterations of both
PCG methods were less than 19 regardless of the size of T. On the other hand, the numbers
of iterations of both CG methods linearly increased depending on the size of T. From these
facts, the preconditioning matrix M is effective in the case of almost symmetric matrix
T. Moreover, the number of iterations of the shift and invert Lanczos method for the
median singular value is larger than the number for other singular values since the distance
between the maximum and second maximum singular values of (TTT − σ̃2 I�mn)

−1 for the
median singular value of T is closer than the cases of other singular values.

Here, the running time of Table 1 is summarized in Table 4. All the running time
by the PCG method were less than the time by the CG method. Moreover, the running
time by the PCG methods of Algorithms 3 and 4 were similar since the computational
complexities of these algorithms are similar. Thus, the running time is strongly correlated
with the number of iterations of Algorithms 3 and 4.

In addition, convergence histories of n = 15 in Tables 1 and 2 are shown in
Figures 1 and 2. Figure 2 displays that the relative residual norms unsteadily decreased
when the number of iterations of the shift and invert Lanczos method is not small.
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Table 1. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 43.0 4 16.0 4 35.8 4 15.0
10 4 90.0 4 17.0 4 86.5 4 15.0
15 3 134.7 3 17.0 3 128.0 3 17.0
20 4 180.0 4 17.0 4 169.3 4 17.0
25 3 225.7 3 17.0 3 211.0 3 17.0
30 3 273.0 3 17.0 3 252.3 3 17.0

Table 2. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 15 139.3 15 13.0 15 109.1 15 15.0
10 7 1081.0 7 13.0 7 943.7 7 15.0
15 41 5201.6 39 15.0 39 4858.1 41 17.0
20 13 8339.5 4 16.0 4 6847.3 4 15.0
25 (Not converged.) 48 17.0 (Not converged.) 48 17.0
30 (Not converged.) 8 19.0 (Not converged.) 8 15.0

Table 3. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of almost symmetric matrix T with
a = c = 1 and b = 0.01 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 3 124.7 3 13.0 3 97.9 3 14.6
10 3 748.1 3 13.0 3 654.9 3 14.1
15 3 4872.5 3 14.9 3 4531.1 3 16.7
20 3 775.5 3 13.8 3 2358.8 3 15.0
25 3 1494.0 3 16.8 3 1472.0 3 16.8
30 3 2158.0 3 16.8 3 2088.0 3 15.0

Table 4. Running time (seconds) of the Lanczos method using the CG/PCG method in the case of
the 5-th max. singular value of almost symmetric matrix T with a = c = 1 and b = 0.01 in (9) for the
shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos with CG Lanczos with PCG Lanczos with CG Lanczos with PCG

n

5 0.114 0.071 0.095 0.061
10 0.578 0.095 0.566 0.086
15 1.402 0.137 1.448 0.192
20 6.639 0.437 6.446 0.335
25 13.632 0.558 12.686 0.432
30 35.121 1.145 33.203 0.836
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Figure 1. Convergence histories with relative residual norm of the Lanczos method for the 5-th max.
singular value of the almost symmetric matrix T whose size is n = 15.

Figure 2. Convergence histories with relative residual norm of the Lanczos method for the median
singular value of the almost symmetric matrix T whose size is n = 15.

Next, we show the second results in the case of slightly symmetric matrix with a = c = 1
and b = 0.1 in Equation (9) for the shift (8). From Table 5, both PCG methods did not converge
for computing the 5-th maximum singular values of slightly symmetric matrix T. It seems that
the linear system for TTT − σ̃2I�mn is ill-conditioned since 10−2 in the shift (8) is much less
than the 5-th maximum singular values of the matrix. In Appendix A, we show the results
using relative shift without the effect of the magnitude of the singular values. Table 6 shows
Algorithms 1 and 4, that is, the algorithms based on Schur decomposition, was more robust
than Algorithms 1 and 3, that is, the algorithms based on the eigendecomposition. From
Table 7, both PCG methods converged regardless of n, and the numbers of iterations of
both PCG methods were less than the number of iterations of both CG method. Namely, it
seems that the preconditioning matrix M can be effective in the case of a slightly symmetric
matrix T when computing the 5-th minimum and median singular values of T.

Table 5. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 50.0 (Not converged.) 4 37.8 (Not converged.)
10 4 100.0 (Not converged.) 4 87.3 (Not converged.)
15 3 152.0 (Not converged.) 3 131.0 (Not converged.)
20 4 205.5 (Not converged.) 4 172.0 (Not converged.)
25 3 262.0 (Not converged.) 3 230.0 (Not converged.)
30 3 306.7 (Not converged.) 3 259.0 (Not converged.)
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Table 6. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the median of singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 13 231.8 (Not converged.) 13 193.1 13 73.0
10 6 1582.7 6 55.0 6 1272.7 6 29.0
15 30 12,174.6 (Not converged.) 31 11061.9 31 97.0
20 4 13,777.8 (Not converged.) 4 8799.3 (Not converged.)
25 (Not converged.) (Not converged.) (Not converged.) 83 116.0
30 (Not converged.) (Not converged.) (Not converged.) 27 45.0

Table 7. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 3 195.5 3 59.0 3 163.9 3 68.4
10 3 949.8 3 58.0 3 771.2 3 44.0
15 3 616.0 3 63.0 3 597.3 3 94.5
20 3 859.8 3 63.0 3 2999.8 3 57.0
25 3 1695.7 3 63.0 3 1559.3 3 114.4
30 3 2388.0 3 63.0 3 2262.0 3 46.1

Finally, we show the third results in the case of marginally symmetric matrix with
a = c = 1 and b = 0.2 in Equation (9) for the shift (8). Both PCG methods did not converge
for computing the 5-th maximum singular values of T as shown in Table 8, similarly to
Table 5. Moreover, computing the median singular values of T sometimes did not converge
from Table 9. In Table 10, all methods converged for the 5-th minimum singular value of T.
The numbers of iterations by the PCG method with the proposed preconditioning matrix
were less than the number of iterations by the CG method in most cases. It seems that the
preconditioning matrix M can be effective in the case of the marginally symmetric matrix
T when computing the 5-th minimum singular values of T.

Table 8. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the 5-th max. singular value of marginally symmetric matrix T with
a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 4 52.8 (Not converged.) 4 39.8 (Not converged.)
10 4 107.0 (Not converged.) 4 93.0 (Not converged.)
15 3 162.0 (Not converged.) 3 135.7 (Not converged.)
20 4 217.8 (Not converged.) 4 206.3 (Not converged.)
25 3 271.3 (Not converged.) 3 248.0 (Not converged.)
30 3 334.0 (Not converged.) 3 260.0 (Not converged.)
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Table 9. Number of iterations of the Lanczos method and the average of numbers of iterations of the
CG/PCG method in the case of the median of singular value of marginally symmetric matrix T with
a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 11 481.4 (Not converged.) 10 355.6 (Not converged.)
10 6 2123.8 (Not converged.) 10 1550.8 10 4262.4
15 (Not converged.) (Not converged.) (Not converged.) (Not converged.)
20 15 13,268.7 89 6358.9 7 10019.9 108 160.0
25 (Not converged.) (Not converged.) (Not converged.) (Not converged.)
30 (Not converged.) 90 1150.0 (Not converged.) 28 11,764.0

Table 10. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th min. singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (8).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 313.9 5 295.8 5 213.9 5 1077.8
10 3 1247.8 3 187.0 3 1150.6 3 3048.8
15 3 650.0 3 201.0 3 606.7 3 177.0
20 3 929.3 3 6151.3 3 847.8 3 162.8
25 3 1800.3 3 205.0 3 1683.7 3 249.0
30 3 2585.7 3 1118.6 3 2371.3 3 181.0

6. Conclusions

We considered computing an arbitrary singular value of a tensor sum. The shift-and-
invert Lanczos method and the PCG method reconstructed over tensor space. We proposed
the preconditioning matrices which are the following two diagonal matrices: (1) whose
diagonals of the eigenvalues by the eigendecomposition, and (2) whose diagonals of the
upper diagonal matrix by the Schur decomposition. This preconditioning matrix can be
effective if the tensor sum is almost symmetric.

From numerical results, we confirmed that the proposed method reduces memory
requirements without any conditions. The numbers of iterations of the PCG method
by the proposed preconditioning matrix were reduced in most cases of the almost and
slightly symmetric matrix. Moreover, the numbers of iterations of the PCG method by
the proposed preconditioning matrix were also reduced in certain cases of the marginally
symmetric matrix.

For future work, we will consider a robust preconditioning matrix for slightly or
marginally symmetric tensor sum, a suitable preconditioning matrix for non-symmetric tensor
sum, parallel implementations of the proposed algorithms, and finding real-life applications.
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Abbreviations

The following abbreviations are used in this manuscript:

PCG Preconditioned Conjugate Gradient
CG Conjugate Gradient
PDE Partial Differential Equation

Appendix A

This appendix gives the numerical results in the case of the 5-th maximum and the
median singular values of slightly and marginally symmetric matrices by the relative shift

σ̃ = σ − 10−2σ, (A1)

where σ’s are the singular values of T computed by the svd function in MATLAB. The
condition of the numerical experiments except for the setting of the shift is the same as the
experiments in Section 5.

Firstly, we show the results in the case of slightly symmetric matrix with a = c = 1
and b = 0.1 in Equation (9) for the shift (A1) in Tables A1 and A2. Computing the 5-th
and the median singular values of the slightly symmetric matrix using the shift (A1), the
number of iterations of both PCG methods is much less than the number of iterations of
both CG methods.

Secondly, Tables A3 and A4 are the results in the case of marginally symmetric matrix
with a = c = 1 and b = 0.2 in Equation (9) for the shift (A1). From Tables A3 and A4, both
PCG methods converged faster than both CG method using the relative shift. Moreover,
the PCG method by Algorithm 4 is more robust than the PCG method by Algorithm 3.

Consequently, when we compute the 5-th maximum and the median singular values
of the slightly symmetric matrix, the numerical experiments of Section 5 and Appendix A
imply that the proposed preconditioning matrix can work in the case of a suitable shift.

Table A1. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 41.0 5 17.0 5 35.8 5 15.0
10 7 84.0 7 20.0 7 77.0 7 13.0
15 4 162.0 4 22.0 4 154.0 4 17.0
20 7 223.7 7 23.0 7 197.3 7 12.0
25 5 383.6 5 24.0 5 307.4 5 15.0
30 6 522.7 6 24.0 6 426.5 6 13.0

Table A2. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of slightly symmetric matrix T with
a = c = 1 and b = 0.1 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 23 139.3 23 38.0 23 105.9 23 14.0
10 10 1081.0 10 21.0 10 1074.4 10 22.0
15 21 5201.6 21 21.0 21 3470.4 21 14.0
20 17 7333.1 (Not converged.) 17 6242.4 17 16.0
25 11 16,034.1 11 32.0 11 14,360.6 11 14.0
30 (Not converged.) 12 23.0 (Not converged.) 12 17.0
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Table A3. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the 5-th max. singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 5 43.0 5 25.0 5 38.4 5 17.0
10 7 90.0 7 29.0 7 79.0 7 13.0
15 4 174.5 4 32.0 4 152.5 4 62.0
20 7 253.0 7 33.0 7 198.1 7 15.0
25 5 403.0 5 35.0 5 319.0 5 19.0
30 6 626.0 6 36.0 6 441.2 6 16.0

Table A4. Number of iterations of the Lanczos method and the average of numbers of iterations of
the CG/PCG method in the case of the median of singular value of marginally symmetric matrix T
with a = c = 1 and b = 0.2 in (9) for the shift (A1).

Method
Algorithms 1 and 3 (by Eigendecompn.) Algorithms 1 and 4 (by Schur Decompn.)

Lanczos CG Lanczos PCG Lanczos CG Lanczos PCG

n

5 24 138.3 (Not converged.) 25 115.6 23 17.0
10 10 1479.0 (Not converged.) 10 1119.2 10 18.0
15 21 4506.6 21 34.0 21 3787.0 21 16.0
20 17 8603.3 (Not converged.) 17 6604.5 17 21.0
25 11 18,267.0 (Not converged.) 11 14,991.6 11 30.0
30 (Not converged.) 13 35.0 (Not converged.) 13 31.0
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Abstract: There are many computational applications and engines used in mathematics, with some
of the best-known arguably being Maple, Mathematica, MATLAB, and Mathcad. However, although
they are very complete and powerful, they demand the use of commercial licences, which can be a
problem for some education institutions or in cases where students desire to use the software on an
unlimited number of devices or to access it from several of them simultaneously. In this contribution,
we show how GeoGebra, WolframAlpha, Python, and SageMath can be applied to the teaching
of different mathematical courses in engineering studies, as they are some of the most interesting
representatives of free (and mostly open source) mathematical software. As the best way to show a
topic in mathematics is by providing examples, this article explains how to make calculations for
some of the main topics associated with Calculus, Algebra, and Coding theories. In addition to this,
we provide some results associated with the usage of Mathematica in different graded activities.
Moreover, the comparison between the results from students that use Mathematica and students that
participate in a “traditional” course, solving problems and attending to master classes, is shown.

Keywords: coding theory; engineering; GeoGebra; mathematica; Python; SageMath; WolframAlpha

MSC: 97D10; 97D60; 97U10; 97U50; 97U70

1. Introduction

The Bologna Accord is an agreement on a common model of higher education reached
in 1999 that implies the creation of a common European area of university studies. It
emphasizes the creation of a European Area of Higher Education (EAHE) as a key to
promoting students’ mobility, aiming to simplify Europe’s educational qualifications and
ensuring that credentials granted by an institution in one country are comparable with
those earned elsewhere [1].

There are 48 countries currently involved in the Bologna Accord. The cornerstones
of such an open space are mutual recognition of degrees and other higher education
qualifications, transparency (readable and comparable degrees organized in a three-cycle
structure), and European cooperation in quality assurance.

Due to the Bologna Accord, the teaching of mathematics has suffered important
changes, such as the necessity to enhance the traditional teaching–learning process with
practical cases, the possibility to introduce some key concepts, and the reinforcement of the
learning process by using technology and specific mathematical software [2,3]. Nowadays,
there are many computational packages focused on mathematics, with Mathematica and
MATLAB being two of the best known [4,5]. However, even though they are certainly very
complete and powerful, they require the use of commercial licenses, which can be a problem
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for some education institutions or in cases where students desire to use the software on an
unlimited number of devices or to access them from several of them simultaneously.

In this paper, our goal is to show how free mathematical software (which most of
the time is also open source software, but not always) can be applied to the teaching of
different engineering courses at the University of Salamanca and Centro Universitario
U-tad, from first-year algebra or calculus to more specialized topics such as coding theory.
The University of Salamanca was founded by King Alfonso IX of León in 1218, which
makes it the oldest Spanish university in existence and one of the oldest in Europe. The uni-
versity offers 81 courses in the first and second cycles spread throughout five branches
of knowledge, including Science and Engineering [6]. U-tad is the acronym for Centro
Universitario de Tecnología y Arte Digital (Technology and Digital Art University Centre),
a private university centre founded in 2011 with a strong focus on the creation, program-
ming, and management of digital content, products, and services [7]. U-tad is based near
Madrid, and it currently offers three higher technical education courses, five undergraduate
degrees and twelve postgraduate courses.

Learning a programming language is highly important for pre-university and univer-
sity students. One of the goals of the Europe 2020 growth strategy [8] is the implantation
of information and communication technologies at all educational levels. In this sense,
Scratch and App Inventor are widely used in Spanish secondary education and high
schools, and Python is also included among the technology tools used in formal education
institutions [9]. However, the number of students that arrive at university with a fair
programming knowledge is still low. In fact, the first contact with a formal programming
language for most engineering students takes place during their first semester. At the
University of Salamanca and U-tad, for example, C is the first programming language that
is taught to students.

In this study, GeoGebra, WolframAlpha, Python, and SageMath have been used for
providing actual examples used in class, as they are good representatives of free mathemat-
ical software. In addition, we have analysed the relationship between the use of these tools
and the final grades obtained by engineering students. We have also included data about a
statistical study of two academic courses in which we proposed the use of Mathematica
(and as an alternative WolframAlpha) as a tool for solving mathematical problems.

The rest of this contribution is organized as follows: Section 2 describes other articles
associated with this topic. Section 3 presents the most relevant information about GeoGebra,
WolframAlpha, Python, and SageMath, while Section 4 provides several examples used at
class. After that, Section 5 provides some statistics associated with the usage of Mathematica
software in some engineering classes. Finally, in Section 6 we offer some conclusions and
ideas for future work.

2. Related Work

There are several publications that analyse the use of mathematical software for
teaching at different levels and from different points of view. For example, Hillmayr et al.
presented a comprehensive analysis about how the use of technology can enhance learning
in secondary school mathematics and science in [10]. They compared learning outcomes of
students using digital tools to those of a control group taught without the use of digital
tools. Their results showed that the use of digital tools had a positive effect on student
learning outcomes and that the use of intelligent tutoring systems or simulations (dynamic
mathematical tools) was significantly more beneficial than hypermedia systems. Moreover,
in [11] a taxonomy of five categories of tool-based mathematics software is considered:
(a) review and practice, (b) general, (c) specific, (d) environment, and (e) communication.
A description of the affordances and constraints of such categories of software is provided,
and how each one facilitates different aspects of student learning is discussed.

Other contributions study the use of different software for teaching mathematics.
Among them, we highlight the following: [12–20]. In comparison to those articles, this
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contribution focuses on a specific set of open source engines and provides examples used
in actual engineering classes.

3. Computational Engines

Engineering is considered “the application of mathematics and sciences to the building
and design of projects for the use of society” [21]. Moreover, mathematical theory and prac-
tical engineering challenges are linked to computational procedures [22]. Representation of
functions or surfaces, the calculation of the Taylor polynomial for a given function, solving
systems of linear equations or making calculations with matrices are some of the examples
that engineering students need everyday in their studies [23].

There are arguably three possibilities regarding the usage of computational engines:

• Commercial software: MATLAB, Mathematica, Maple, Mathcad, SPSS, etc.
• Free software: GeoGebra, WolframAlpha, SageMath, Maxima, Scilab, Octave, R,

FreeMat, Demetra+, etc.
• Programming languages such as Python or Julia.

Each of these options has its benefits and disadvantages. Applications such as MAT-
LAB or Mathematica are very powerful, but obviously they require commercial licences
and the installation of many software packages that in some cases have to be managed
manually and need to allocate several gigabytes of hard drive space. In addition to this,
those applications sometimes have processor and memory requirements that cannot be
satisfied by all type of students. Even though universities usually provide computing
resources to students, events such as the coronavirus pandemic have shown that students
cannot depend solely on the university infrastructure.

In comparison, the computational capabilities of free software engines are lower in
some instances, but for introductory subjects they may be more than enough. Finally,
programming languages such as Python are very versatile and allow one to perform
symbolic and numeric calculations, but many first-year students are not familiar with
them. Even though it could be argued that first-year students are also unfamiliar with the
syntaxis of mathematical engines, it is true that many computations can be achieved with a
sole command in those mathematical engines, while they would require creating a small
application using a programming language, with the difficulties that that option brings
(importing the proper libraries, formatting the code in a proper way, etc.).

In this paper, we have focused on GeoGebra, WolframAlpha, Python, and SageMath,
not only because they are free to use, but also because as a side effect that freedom allows
us to chose the best option for each topic inside a course, preventing educators from being
tied to a single solution.

Several authors have analysed the benefits and disadvantages of different educational
applications [24–26], and they found that all of them have similar characteristics and are
suitable for classes. Sometimes, the decision on which application to use depends on the
usage of the same software by the teacher in his/her own research activities [27].

It is important to mention other open source applications and libraries of mathematical
software different to those considered in detail in this work, which are included in Table 1.
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Table 1. Additional open source mathematical software applications.

Name Author(s) Web Page (accessed on 31 August 2021) Field

Axiom Axiom Team http://www.axiom-developer.org/ CAS

Cadabra K. Peeters et al. https://cadabra.science/ CAl

CoCoA L. Robbiano http://cocoa.dima.unige.it/ CmA

Demetra+ Eurostat https://github.com/jdemetra/jdemetra-app CDm

Flint W. Hart http://www.flintlib.org/ ODE

FreeMat S. Basu http://freemat.sourceforge.net/ Alg

GAP Araújo et al. https://www.gap-system.org/ DAl

Gfan A. Jensen http://home.imf.au.dk/jensen/software/
gfan/gfan.html AlG

GiNaC C. Bauer et al. https://www.ginac.de/ AlC

Gnuplot Gnuplot team http://www.gnuplot.info/ 2/3D

Gretl A. Cottrell http://gretl.sourceforge.net/ EcA

LiPS M. Melnick http://lipside.sourceforge.net/ LiP

Mathics B. Jones et al. https://mathics.org/ CAS

Maxima W. Schelter https://maxima.sourceforge.io/ CAS

Macaulay 2 D. Grayson et al. http://www.math.uiuc.edu/Macaulay2/ AlG

MPFR MPFR team https://www.mpfr.org/ FPA

MPIR B. Gladman et al. https://www.mpir.org/ Art

MuPAD-Combinat F. Hivert et al. http://mupad-combinat.sourceforge.net/ CAl

NTL V. Shoup http://www.shoup.net/ntl// NTh

Octave J.B. Rawlings et al. https://www.octave.org SyC

PARI/GP H. Cohen et al. http://pari.math.u-bordeaux.fr/ NTh

R R. Ihaka and R. Gentleman https://www.r-project.org/ CDm

Reduce T. Hearn http://www.reduce-algebra.com/ CAS

Scilab INRIA https://www.scilab.org/ NuC

Xcas B. Parisse http://xcas.sourceforge.net/fr/index.php CAS

3.1. GeoGebra

GeoGebra is an interactive geometry, algebra, statistics, and calculus application
available both as an online resource and a native application in Windows, macOS, and Linux
systems [28].

The GeoGebra website includes several services such as a calculator and a graphics
plotter, but the most widely used option is what is called GeoGebra Classic, which puts
together those individual tools.

Figure 1 shows the GeoGebra Classic interface, where it is possible to find modules
for two- and three-dimensional plotting, an input bar, and the CAS (Computer Algebra
System) module, among others.
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Figure 1. GeoGebra Classic screen.

GeoGebra’s interface is easy to use and allows the configuration of several aspects
associated with function representation, such as line width, colour, and style. These
representations can be integrated into online books that can be shared with students so,
for instance, they can navigate through all the examples and solutions associated with a
certain topic [29].

3.2. WolframAlpha

WolframAlpha is a computational knowledge engine developed by a subsidiary of
Wolfram Research, the company behind Mathematica [30]. Given that WolframAlpha is
a reduced version of the Mathematica software, all options must be entered as text in
the application’s input box. However, the website provides access to many examples, so
students can find the right expression in a relatively short time. Obviously, the advantage
of using WolframAlpha instead of Mathematica is that it can be accessed by anyone as a
web service free of charge.

One of the most interesting aspects of WolframAlpha is the possibility to use both
natural language and Mathematica syntax for computations, so even students with little or
no knowledge of the Mathematica syntax can use the engine without effort.

3.3. Python

Python is an interpreted, high-level, and general-purpose programming language that
emphasizes code readability [31]. Python was first released in 1991, but it was not until
the launch of versions 2.0 and 3.0 in 2000 and 2008, respectively, that Python was really
popularized among programmers. Since 1 January 2020, Python 2 is no longer officially
supported [32], which means that Python 3 is the only version which is active nowadays.

One of the advantages of Python over other programming languages is the number of
modules and extensions that can be used [33]. From an engineering point of view, some
of the most useful are NumPy (which defines types for numerical arrays and matrices
together with the basic operations that can be applied to them) [34], SymPy (a library for
symbolic mathematics) [35], and SciPy (which uses NumPy in order to perform advanced
mathematical, signal processing, optimization, and statistics calculations) [36].

3.4. SageMath

SageMath is a computer algebra system with features covering many aspects of
mathematics, including algebra, combinatorics, graph theory, numerical analysis, number
theory, calculus, and statistics [37].
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The first version of SageMath was released in 2005 as free and open source software
under the GNU General Public License version 2, with the initial goal of becoming an open
source alternative to Magma, Maple, Mathematica, and MATLAB.

Instead of developing another computational engine from scratch, SageMath inte-
grates many already existing open source packages such as NumPy, SciPy, matplotlib,
Sympy, Maxima, and R, among others, using a syntax similar to the one provided by Python.

SageMath can be installed as a stand-alone application or run in the cloud using
CoCalc [38], a web-based cloud computing service (see Figure 2).

Figure 2. CoCalc website.

4. Examples

4.1. Calculus

Many Calculus key concepts can be reinforced or at least better understood by stu-
dents when presented in a graphical way. Allowing students to replicate some model
computations in similar problems has the benefit of providing a durable link between what
is taught in class and what they study at home [39].

Figure 3 shows an example associated with the graphical representation of a function
and its asymptotes. If, for instance, we intend to show how the Taylor polynomials work,
we can include in the same solution the initial function and Taylor polynomials of different
degrees, so students can realize that a higher degree implies a better approximation for
real functions (see Figure 3).
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Figure 3. GeoGebra example about Taylor polynomials.

Regarding the calculus of several variables, GeoGebra is a suitable option given that it
allows students to rotate three-dimension images in any direction. As an example, Figure 4
shows how to represent the intersection of two surfaces.

Figure 4. Intersection of two surfaces using GeoGebra.

Switching to WolframAlpha, it is possible to perform calculations such as performing
the second derivative of a function and specializing the resulting expression at a point with
a single command.

WolframAlpha can also be very convenient in some instances where, together with
the requested calculation, the engine also provides a graphic representation of the solution,
as in the case of Figure 5.
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Figure 5. Search for function minimum points in WolframAlpha.

Both GeoGebra and WolframAlpha are supported by a large number of developers
who make available their work, so it is possible to access many great online demonstrations
and practical examples. This feature is particularly interesting when teaching theorems
and their applications, as it is a topic where many students face some difficulties. Some
examples are [40,41], where Lagrange’s theorem and the Ingetral Mean Value theorem are
described using WolframAlpha resources.

4.2. Algebra

This section shows how to use Python for solving different algebra problems using
parts of the code developed by Javier García Algarra [42]. In order to correctly execute the
following examples, it must be taken into account that NymPy and SymPy modules must
be imported through the following commands:

import numpy as np
import sympy as sp
from sympy.matrices import Matrix

For convenience, figures included hereafter have been executed as a worksheet in
CoCalc. The first example shows how to represent a polynomial and to obtain its roots (see
Figure 6).
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Figure 6. Polynomial manipulation.

If we need to solve a system of linear equations, we can use the code displayed in
Figure 7.

Figure 7. Solving a system of equations.

In Python, it is possible to define matrices either directly or through a lambda expres-
sion, which can be useful sometimes (see Figure 8).

Figure 8. Matrix definition.

Once we have defined matrix A, Figure 9 shows how to obtain its determinant, inverse
matrix, and associated eigenvalues in an easy way.

Figure 9. Matrix operations.
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It is also possible to define and operate matrices with symbolic content, as shown in
Figure 10.

Figure 10. Matrices with symbolic contents.

4.3. Coding Theory

In this section, we will demonstrate how to operate with linear codes using SageMath.
In the first example, we will define a generator matrix with coefficients defined over the
Galois field with three elements, GF(3), as shown in Figure 11.

Figure 11. Generator matrix definition.

Then, we can use G as the generator matrix of a (8, 5) code and request information
such as the length, dimension, mininum distance, and weight distribution of the code,
as shown in Figure 12.
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Figure 12. Information about the code.

Quite conveniently, we can obtain the generator matrix in systematic form as well as
the code’s parity check matrix (see Figure 13).

Figure 13. Systematic generator matrix and parity check matrix.

We are also able to check if a received vector is a proper codeword or not, in which
case its syndrome will be different from the zero vector, as shown in Figure 14.

Figure 14. Checking if a received vector is a codeword.
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In the case of cyclic codes, in addition to matrices, it is also possible to work with
polynomials, as can be seen in Figure 15.

Figure 15. Defining a cyclic code.

5. Experimental Study

In the experiment performed at the University of Salamanca, two groups of students
were selected. The first group, with 57 students studying for a Chemical Engineering
degree, represented the experimental group, while the control group was made up of
63 students studying for an Industrial Engineering degree. In the experimental group,
students were allowed to use WolframAlpha (or, alternatively, Mathematica, with the same
commands). In both cases, students attended a numerical analysis course with comparable
contents, so conclusions could be obtained from the comparison. The study took into
account the performance of students during the academic years 2018–2019 and 2019–2020.

For the experimental group, three questionnaires, two software exercises in the com-
puter room, and two exams were conducted during the first year associated with this
analysis. In contrast, during the second year, two questionnaires, three software exercises,
and two exams were monitored. Students from the control group did not participate in
software seminars and their only assessment activity was a final written exam at the end of
the semester.

The goal of the statistical study presented in this section is to analyse, firstly, the re-
lation between the different assessment activities and the results obtained when using
mathematical software instead of traditional problem-solving methods and, secondly,
to compare the results with students that did not participate in similar activities.

5.1. Chemical Engineering Degree

The numerical analysis course in the Chemical Engineering degree has 7.5 credits,
and the final mark was calculated over 10 points, where 5% corresponds to questionnaires,
10% to software activities, 15% to team work and solving additional problems, and the
remaining 70% corresponds to the grades associated with the written exams.

As has been mentioned before, for this study, data from two academic years was
collected. In the case of the 2018–2019 course, out of 57 students, seven students that
did not attend the different assessment activities have been discarded. Since the Bologna
Accord was put into effect, the number of drop-out students has reduced and every year a
fewer number of students leave mathematics courses.

Figure 16 shows the box plot representation for the student marks associated with the
different assessment activities, where the stars represent the extreme values.
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Figure 16. Box plot for the assessment activities results in the academic year 2018–2019.

In the case of software practices, Median > Mean, and Kurtosis = 1.468. In the case of
questionnaires and exams, these values are different, as can be seen in Table 2.

Table 2. Descriptive statistics for the academic year 2018–2019.

Concept Questionnaire Software Exam

N Valid 50 50 50
Missing 0 0 0

Mean 6.0322 3.2210 5.4018

Median 6.4350 7.2000 5.6400

Mode 0.00 a 7.75 5.25

Standard Deviation 2.12767 2.40013 1.73700

Variance 4.527 5.761 3.017

Skewness −1.038 −1.465 −1.465

Standard Error of Skewness 0.337 0.337 0.337

Kurtosis 0.993 1.468 2.723

Standard Error of Kurtosis 0.662 0.662 0.662

Range 9.22 9.00 8.00

Minimum 0.00 0.00 0.00

Maximum 9.22 9.00 8.00
a Multiple modes exist, the smallest value is shown.

Software activity is clearly what suits students the best. Engineering students usually
like to work with their hands, in the laboratory or with computers. Moreover, this activity
is typically accomplished by collaborating with their fellows, which usually is not the case
of exams and to a lesser extent of questionnaires. A consequence of this fact is the absence
of a correlation. The biggest one is between software and questionnaires (the Pearson
correlation coefficient is equal to 0.720).

We conducted an ANOVA to check the relation between the three activities: question-
naires, software and exams. We have found out that the data meet the homogeneity of
variances (the Levene statistic has a significance that is equal to 0.068), they are random
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samples (the test significance is equal to 0.568), and variables follow a normal distribution
(the Kolmogorov–Smirnov test significance is equal to 0.086).

Table 3 shows the results of the analysis of variance that indicates that the hypothesis of
equal means is accepted, i.e., the means for questionnaires, software, and exams are equal.

Table 3. ANOVA test results for the academic year 2018–2019.

Concept
Sum of

Squares
df

Mean
Square

F Significance

Between Groups 18.402 2 9.201 2.075 0.129
Within Groups 651.933 147 4.435
Total 670.336 149

In the 2019–2020 academic year, out of 48 students, eight alumni were discarded as
they did not fully participate in all the assessment activities. The statistical analysis is quite
similar to the one developed for the previous academic year. In this case, the correlation
between activities has been reduced: 0.197 between software and questionnaires. The final
average mark of students is 5.93 compared to 5.43 obtained the previous year.

With the goal to avoid the duplication of information we have included Figure 17,
where histograms and normal curves for the assessment activities during the 2019–2020
course are displayed.

Figure 17. Histogram and normal curve for (a) questionnaires, (b) software, and (c) exams.

5.2. Industrial Engineering

The Industrial Engineering mathematics course has six credits and the final mark,
which corresponds to the final exam, is calculated over 10 points. In this instance, the marks
from 63 students were collected from the 2019–2020 academic year. For the control group,
the final marks obtained in the final exam are shown in Table 4.

Table 4. Final results of Industrial Engineering students.

Mark Percentage

Not attending 25.40
Between 0 and 4.99 31.75
Between 5 and 6.99 19.05
Between 7 and 8.99 17.46
Between 9 and 10 6.35

In this case, only 42.86% of students passed the exam, and the qualification’s mean
was 4.74.
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5.3. Analysis of the Results

The analysis derived from the data obtained in the Chemical Engineering courses is
presented in Table 5.

Table 5. Mean and Standard Deviation for questionnaires (Q), Software (S) and Exams (E).

Course
Mean Standard Deviation

Q S E Q S E

2018–2019 6.0322 6.2210 5.4018 2.12767 2.40013 1.73700

2019–2020 5.5441 5.9195 6.5961 2.60838 2.14294 1.32373

The independent samples test was performed in order to obtain the relation between
the grades in different assessment activities grouped by year. As a result, we found
out that the same variance appears in both courses (the Levene’s test for equality of
variances coefficient is equal to 0.709) and the t-test for the equality of means returns
the 95% confidence interval of the difference equal to (−1.83377,−0.55491) assuming
equal variances and to (−1.82308, 0.56559) when equal variances are not assumed, with a
significance value of 0.00 in both cases.

Compared to the data obtained from Industrial Engineering students, it can be seen
that the mean is lower than the mean for Chemical Engineering students. This could be
interpreted as an indication that, when mathematical software is used at class, students
improve their understanding of the contents and obtain better results compared to students
that are being taught in the traditional way.

6. Conclusions

In this contribution, we have shown how to use some of the best-known free com-
putational packages in order to enhance the learning process for mathematical courses in
engineering studies. The usage of engines such as the ones implemented by GeoGebra,
WolframAlpha, Python or SageMath allows students to grasp the key concepts seen in class
and to practice problems at their leisure, resulting in better learning outcomes and grades.

Using free software has the additional benefit of allowing educators to choose the
best option for each topic inside a course, as they are not tied to a specific product that
can be optimal for some subjects but inadequate in some other instances. Some of the
examples shown throughout this article could even be used in high schools and academies,
which are two institutions less likely to commit themselves to investments in things such
as mathematical software licences.

An observation made by the authors of this paper during the elaboration of the
research is that first-year students are less inclined to use a programming language than a
computational engine in order to solve engineering problems, even if they were previously
familiar with the programming language in question. Some reasons for this are that
students (incorrectly) do not try to interrelate the knowledge obtained in different subjects
and that they prefer to use a command instead of coding a small application to obtain
fast results. Another conclusion is that students prefer not to install applications if they
can obtain the same results by connecting to a remote service providing online compilers
or calculators.

Additionally, an analysis of the results obtained when using mathematical software to
an engineering mathematics course is included. This analysis allows one to derive some
conclusions about the application of mathematical software to different activities such as
questionnaires, problems to be solved, and exams. In our study, students that participated
in a course that allowed the completion of some activities with the help of mathematical
software obtained better marks than students that attended to a more “traditional” course,
composed of master classes and problem solving sessions. In general, we believe that
students are able to achieve a better understanding of the contents of mathematical subjects
if they are allowed to use computational engines, which benefits both students and teachers.
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Abbreviations

The following abbreviations are used in this manuscript:

2D/3D 2D/3D plotting
AgC Algebraic combinatorics
AlC Algebraic computations
AlG Algebraic geometry
Alg Algebra
ArG Arithmetic geometry
Art Arithmetic
CAl Computational algebra
CAS Computer Algebra System
CDm Distributed computation
CmA Commutative Algebra
CSIC Consejo Superior de Investigaciones Científicas
DAl Discrete algebra
EAHE European Area of Higher Education
EcA Econometric analysis
FPA Floating-Point Arithmetic
InF Integer factorization
ITEFI Instituto de Tecnologías Físicas y de la Información
LiP Linear programming
MDPI Multidisciplinary Digital Publishing Institute
NTh Number theory
NuC Numerical computation
ODE Ordinary Differential Equation
SAl Symbolic algebra
SyC Symbolic computation

References

1. Bologna Process Secretariat. European Higher Education Area and Bologna Process. Available online: http://www.ehea.info/
(accessed on 30 August 2021).

2. Lavicza, Z. Integrating technology into mathematics teaching at the university level. ZDM-Math. Educ. 2010, 42, 105–119.
[CrossRef]

3. M. Tamur, D.J.; Kusumah, Y. The Effectiveness of the Application of Mathematical Software in Indonesia; a Meta-Analysis Study.
Int. J. Instr. 2020, 13, 867–884. [CrossRef]

4. Ahmad, O. Review of symbolic equation solving for engineering problems. In Proceedings of the 8th Asian Conference on
Engineering Education (ACEE 2019), Kota Kinabalu, Malaysia, 24–26 June 2019; pp. 39–45.

5. Vick, B. Applied Engineering Mathematics; CRC Press: Boca Raton, FL, USA, 2020.

190



Axioms 2021, 10, 253

6. University of Salamanca. The University at a Glance. Available online: https://www.usal.es/en/university-glance (accessed on
30 August 2021).

7. U-tad. Centro Universitario de Tecnología y Arte Digital. Available online: https://www.u-tad.com/en/ (accessed on 30 August
2021).

8. European Comission. Europe 2020. A European Strategy for Smart, Sustainable and Inclusive Growth. Available on-
line: https://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%2
0EN%20version.pdf (accessed on 30 August 2021).

9. Plaza, P.; Martín, S.; Sancristobal, E.; Blázquez, M.; Castro, M.; Díaz, G.; Pérez, C. Science and technology educational quality
scaling in Spain. In Proceedings of the 2020 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden, 21–24 October 2020;
pp. 1–8.

10. Hillmayr, D.; Ziernwald, L.; Reinhold, F.; Hofer, S.I.; Reiss, K.M. The potential of digital tools to enhance mathematics and science
learning in secondary schools: A context-specific meta-analysis. Comput. Educ. 2020, 153, 103897. [CrossRef]

11. Kurz, T.L.; Middleton, J.A.; Yanik, H.B. A taxonomy of software for mathematics instruction. Contemp. Issues Technol. Teach. Educ.
2005, 5, 123–137.

12. Kilicman, A.; Hassan, M.A.; Husain, S.S. Teaching and Learning using Mathematics Software “The New Challenge”. Procedia Soc.
Behav. Sci. 2010, 8, 613–619. [CrossRef]

13. Kusbeyzi, I.; Hacinliyan, A.; Aybar, O.O. Open source software in teaching mathematics. Procedia Soc. Behav. Sci. 2011, 15, 769–771.
[CrossRef]

14. Saadon, S.; Rambely, A.S.; Suradi, N.R.M. The Role of Computer Labs in Teaching and Learning Process in the Field of
Mathematical Sciences. Procedia Soc. Behav. Sci. 2011, 18, 348–352. [CrossRef]

15. Botana, F.; Abánades, M.A.; Escribano, J. Using a Free Open Source Software to Teach Mathematics. Comput. Appl. Eng. Educ.
2012, 22, 728–735. [CrossRef]

16. Berežný, Š. What software to use in the teaching of mathematical subjects? Acta Didact. Napoc. 2015, 8, 75–85.
17. Ochkov, V.F.; Bogomolova, E.P. Teaching Mathematics with Mathematical Software. J. Humanist. Math. 2015, 5, 265–286.

[CrossRef]
18. Sattar, F.; Tamatea, L.; Nawaz, M. Freeware and Open Source Software Tools for Distance Learning in Mathematics. Online J.

Distance Educ. E-Learn. 2015, 3, 26–32.
19. Joshi, D.R. Useful Applications/Software for Mathematics Teaching in School Education. Int. J. Inf. Technol. 2016, 1, 29–34.
20. Alonso Izquierdo, A.; González León, M.A.; Martín-Vaquero, J.; Dias Rasteiro, D.M.; Kováčová, M.; Richtáriková, D.; Rodríguez-
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