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Integrated Drought Monitoring and Evaluation through
Multi-Sensor Satellite-Based Statistical Simulation
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Abstract: To proactively respond to changes in droughts, technologies are needed to properly
diagnose and predict the magnitude of droughts. Drought monitoring using satellite data is essential
when local hydrogeological information is not available. The characteristics of meteorological,
agricultural, and hydrological droughts can be monitored with an accurate spatial resolution. In this
study, a remote sensing-based integrated drought index was extracted from 849 sub-basins in Korea’s
five major river basins using multi-sensor collaborative approaches and multivariate dimensional
reduction models that were calculated using monthly satellite data from 2001 to 2019. Droughts
that occurred in 2001 and 2014, which are representative years of severe drought since the 2000s,
were evaluated using the integrated drought index. The Bayesian principal component analysis
(BPCA)-based integrated drought index proposed in this study was analyzed to reflect the timing,
severity, and evolutionary pattern of meteorological, agricultural, and hydrological droughts, thereby
enabling a comprehensive delivery of drought information.

Keywords: remote sensing; integrated drought monitoring; meteorological drought; hydrological
drought; agricultural drought; Bayesian principal component analysis (BPCA); statistical simulation

1. Introduction

Droughts, along with floods, are some of the most common and inevitable natural
disasters faced by human beings [1–4]. Therefore, many researchers have been trying to
monitor and predict droughts accurately, and the development of drought monitoring
techniques based on satellite remote sensing (RS) data (as a representative method) has
garnered special interest in recent years [4–9]. The onset and magnitude of drought in
the region is still a challenge for researchers because of a lack of ground meteorological
observatories [4]. However, satellite-based RS data partially solve the problem by provid-
ing information in a fast and cost-effective way. The advantage of RS-based monitoring
using satellite data is that it is possible to monitor droughts in large areas and ungauged
basins, and we can utilize multiple satellite imagery data to have accurate results; there-
fore, monitoring drought by using satellites has proven to be an efficient and reliable
tool [6,10–13].

There are four kinds of droughts in the academic sense: meteorological, agricul-
tural, hydrological droughts, and their socioeconomic impacts [2,14–16]. A meteorological
drought is caused by a deficit through the shortage of rainfall and is mainly a short-term
drought event [6]. An agricultural drought is determined based on the vitality of vegetation
and the pattern of quantitative changes in soil moisture; it indicates short or medium-term
drought situations [6,13]. A hydrological drought is commonly a mid or long-term drought
condition; this drought identification is made based on a shortage of water resources
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required by human-environmental systems, such as river discharge, efficient water levels
of dams, and reservoir storage [17]. A socioeconomic drought consists of a wide range
that takes meteorological, agricultural, and hydrological droughts into account and is
characterized by the temporal and spatial processes of water demand and supply [18].

A variety of drought indicators that help prevent disasters and reduce and allocate
water resources have been developed to quantify different drought conditions, such as
severity, duration, and frequency [3,5,17,19–25]. The standardized precipitation index
(SPI; [19]) and the Palmer drought severity index (PDSI; [26]) are the most commonly used
meteorological drought indices. The SPI standardization concept was also applied to other
drought indices, such as the standardized runoff index (SRI; [20]) and standardized soil
moisture index (SSI [22]).

Because RS technology provides an alternative approach for analyzing drought events
across a wide range of regions, many studies have introduced RS-based drought in-
dices [5,7,23,24,27]. Zhang and Jia [27] proposed the microwave integrated drought index
(MIDI) to monitor meteorological drought over semi-arid regions and the continental
United States of America. Cunha et al. [23] calculated the normalized differences vege-
tation index (NDVI) and land surface temperature (LST) data to monitor the effects of
drought on vegetation in real-time. Sur et al. [24] analyzed Korea’s drought conditions
through a comparative analysis of the existing drought indices (SPI and PDSI) based on a
satellite image-based drought index from 2004 to 2013. It was confirmed that the results
of the evaporative stress index (ESI), and the energy-based water definition index (EWDI)
showed high applicability for severe drought situations since 2010. Cong et al. [5] selected
three widely used satellite drought indices as indicators suitable for drought monitoring in
northeastern China and investigated the spatiotemporal patterns and trends of rainfall and
drought; the indices were normalized monthly precipitation anomaly percentage (NPA),
vegetation health index (VHI), and normalized vegetation supply water index (NVSWI).
Zhang et al. [28] combined the global land data assimilation system version 2 (GLDAS-2)
soil moisture data and NDVI with crop phenology data and assessed drought evolution
and crop growth. Sur et al. [7] developed a new agricultural drought index called the agri-
cultural dry condition index (ADCI) by combining various hydrometeorological variables
and verified the applicability of the ADCI on the yield of paddy and arable crops in Korea.

Through the review of previous studies, we can assume that information can be
integrated from multi-sensor satellite data and multivariate analyses to effectively achieve
comprehensive drought assessment goals. In addition to providing information based
on different drought conditions (meteorological, agricultural, and hydrological), it is
necessary to develop and apply an integrated drought index that considers complex factors
that can provide comprehensive information about droughts and the required proactive
response to drought situations. Inspired by this idea, our study seeks to diagnose complex
droughts by using multi-sensor collaborative approaches and multivariate dimensional
reduction models. In this study, we proposed an integrated drought assessment method
to comprehensively convey drought information to the public and conducted statistical
simulations to determine spatial sensitivity to various types of droughts to provide tailored
information on local drought responses in a changing climate.

2. Materials and Methods
2.1. Multi-Sensor Drought Indices
2.1.1. Standardized Precipitation Index (SPI)

The SPI is a drought index developed with the idea that it is initiated by a decrease in
precipitation, thereby causing water shortage (compared to the relative water demand).
In other words, it was developed from the above assumption that decreased precipitation
has different effects on groundwater, reservoir storage, soil moisture, and river runoff. The
SPI is an efficient way to calculate the impact of individual water sources on droughts by
setting time units accumulated over a given period of time (over 1, 3, 6, and 12 months), and
calculating the drought index by using the amount of precipitation on a time basis [19,28].
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The SPI is also recommended by the World Meteorological Organization (WMO) for
tracking meteorological droughts [21,25].

2.1.2. Agricultural Dry Condition Index (ADCI)

The ADCI is an agricultural drought index that takes into account the vegetation
conditions, soil moisture, and LST of the affected region. First, the vegetation condition
index (VCI) is applied for vegetation analysis. Sur et al. [7] proposed the ADCI as a new
agricultural drought index, which is a combination of the three indices mentioned above
(SMSI, VCI, and TCI). The cause of the agricultural drought was developed based on
the concept of reducing the vitality of vegetation due to the lack of soil moisture and
overheating of the surface temperature caused by high temperatures, developing into
agricultural drought as this phenomenon continues. The ADCI can be calculated by using
the Equation (1) given below:

ADCI = 0.6 ∗ SMSI + 0.2 ∗VCI + 0.2 ∗ TCI. (1)

The VCI is a suitable index for agricultural drought monitoring, such as temporal
and spatial vegetation changes and the onset and intensity of drought [29,30]. Kogan [29]
developed the VCI, which was standardized using the maximum and minimum values
of the NDVI developed based on the notion that droughts do not provide normal water
supply to plants (Equation (2)).

VCI =
NDVI − NDVImin

NDVImax − NDVImin
, (2)

where NDVImin and NDVImax represent the minimum and maximum values of NDVI for
the entire period of the pixel. The following is the LST-related index, called the temperature
condition index (TCI), which is an index developed by Kogan [29] based on the fact that
LST affects the stress of vegetation and is one of the drought factors that affect soil moisture.
The TCI is a standard LST that uses the maximum and minimum LST values and as shown
in the following equation (Equation (3)).

TCI =
LSTmax − LST

LSTmax − LSTmin
(3)

Finally, soil moisture needs to be considered for determining the ADCI. The soil
moisture saturation index (SMSI) assumes that soil moisture is directly proportional to
thermal inertia (TI). One of TI’s simple approximations is the apparent thermal inertia
(ATI), which can be derived in Equation (4); note that we assume that the solar energy
is uniform.

ATI =
(1− α)

LSTday − LSTnight
, (4)

where α is the land surface albedo and LSTday and LSTnight are the surface temperatures
during day and night, respectively. The SMSI can be calculated using the ATI, as shown in
the following equation (Equation (5)).

SMSI =
ATI − ATImin

ATImax − ATImin
(5)

2.1.3. Water Budget-Based Drought Index (WBDI)

The water budget-based drought index (WBDI), which was proposed by Sur et al. [18],
was developed by adopting the water balance perspective and by using precipitation and
evaporation as input variables. The evaporation of water balance is caused primarily by
changing the state of water, which is achieved by changing the temperature [31]. The WBDI

3



Remote Sens. 2021, 13, 272

is defined as the difference between precipitation and evaporation as surface runoff and
sub-surface runoff in the water budget equation, as given below (Equation (6)):

P− E = dS + R, (6)

where P is the precipitation (mm), E is actual evaporation (mm), dS is soil moisture change
(mm), and R is the potential runoff (mm). The above results are treated as possible runoff
in the basin and expressed in an index, as given below (Equation (6)):

WBDI = z(P− E), (7)

where z denotes the standardization. Instead of monitoring the current precipitation and
drought conditions through evaporation, the WBDI, estimated by using the water balance
formula, defines a hydrological drought through potential (near future) runoff, thereby
adopting a short-term prognosis approach.

2.2. Study Area and Remote Sensing Data

In this study, we used the moderate resolution imaging spectroradiometer (MODIS),
precipitation estimation from remotely sensed information using an artificial neural net-
work climate data record (PERSIANN-CDR), and global precipitation measurement (GPM)
integrated multi-satellite retrievals for GPM (GPM IMERG) to calculate various drought
indices. Through the MODIS satellite, the LST (MOD11A1), NDVI (MOD13A3), actual
evapotranspiration (AET; MOD16A2), and albedo (MCD43B2) data from 2001 to 2019 were
collected (Table 1). To obtain the precipitation data, we used the PERSIANN-CDR data
from 1983 to 1997 that was generated by the center for hydrometeorology and remote
sensing (CHRS) at the University of California in Irvine; the data were obtained before the
tropical rainfall measuring mission (TRMM). The TRMM data from 1998 were utilized, and
among many data, the gridded TRMM3B42 data were collected until 2014 (at the end of
TRMM’s life), which was provided by the National Aeronautics and Space Administration
(NASA) [32]. Following 2014, we used data from GPM IMERG that obtained data until
2019 to calculate the meteorological drought index [33]. Among the GPM IMERG data,
the data after the last four months of the calibration were used to enhance the reliability
of the precipitation data. Due to the different spatial and time resolutions of the collected
data, the spatial resolution was set at 1 × 1 km and the time resolution was considered to
be monthly, which is consistently reprocessed. The main areas of this study were the five
major rivers of the Korean Peninsula, and we analyzed 849 sub-basins (Figure 1).

Table 1. Remote sensing (RS) data used in this study.

Product Resolution Data Period

MODIS

MOD11A1 Land Surface
Temperature 1 km, daily

2001–2019MOD13A3 Vegetation Indices 1 km, monthly

MOD16A2 Evapotranspiration 0.5 km, 8 days

MCD43B2 Albedo 1 km, 8 days

PERSIANN-CDR PERSIANN-CDR Precipitation 25◦, daily 1983–1997

TRMM TRMM3B42 Precipitation 25◦, 3 h 1998–2014

GPM GPM IMERG Precipitation 10◦, 30 min 2015–2019
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Figure 1. Geographical location of the five major river basins and the 849 sub-basins in Korea. 

2.3. Integrated Drought Monitoring with Multi-Sensor Based Statistical Simulations 
The types of RS data, mainly used for drought monitoring, depend on the type of 

satellite used; however, data such as precipitation, vegetation, surface temperature, soil 
moisture, and evaporation are mostly used. The data can be used individually. However, 
drought phenomena may not be sufficient for drought analysis based on a single indicator 
because it is related to a number of variables [34]. However, it may be more useful to 
combine information in the form of an appropriate drought index for more accurate mon-
itoring of complex drought phenomena. 

Hao and AghKouchak [23,34] proposed the multivariate standardized drought index 
(MSDI) based on a copula distribution or nonparametric joint distribution for a bivariate 
model of precipitation and soil moisture. However, with recent advances in technology, 
the size and complexity of data tend to increase. Such complexity makes it difficult to 
detect the dependence between the response variable and covariates because of the enor-
mous number of available covariates [35]. To resolve these problems, an approach to re-
ducing the number of covariates (through dimension reduction) is being used. Principal 
component analysis (PCA) is a tool that is commonly used for dimension reduction [36] 
and is a feature transformation method that directly transforms the variables (in di-
mension reduction methods) without losing much of the data’s inherent attribution 
information. In this study, for the three different multi-variables acquired from the sat-
ellite data, an integrated drought index is calculated through the application of the 
Bayesian PCA (BPCA; [37,38]) and intentionally biased bootstrap (IBB; [39]) simulation 
for characterizing three aspects of meteorological (using SPI), agricultural (using 
ADCI), and hydrological (using WBDI) droughts. The BPCA approach can estimate the 
intrinsic dimensionality of the multi-dimensional dataset with missing data, which is 
suitable for application to satellite data, and has been evaluated as an accurate and 

Figure 1. Geographical location of the five major river basins and the 849 sub-basins in Korea.

2.3. Integrated Drought Monitoring with Multi-Sensor Based Statistical Simulations

The types of RS data, mainly used for drought monitoring, depend on the type of
satellite used; however, data such as precipitation, vegetation, surface temperature, soil
moisture, and evaporation are mostly used. The data can be used individually. However,
drought phenomena may not be sufficient for drought analysis based on a single indicator
because it is related to a number of variables [34]. However, it may be more useful to
combine information in the form of an appropriate drought index for more accurate
monitoring of complex drought phenomena.

Hao and AghKouchak [23,34] proposed the multivariate standardized drought index
(MSDI) based on a copula distribution or nonparametric joint distribution for a bivariate
model of precipitation and soil moisture. However, with recent advances in technology, the
size and complexity of data tend to increase. Such complexity makes it difficult to detect
the dependence between the response variable and covariates because of the enormous
number of available covariates [35]. To resolve these problems, an approach to reducing the
number of covariates (through dimension reduction) is being used. Principal component
analysis (PCA) is a tool that is commonly used for dimension reduction [36] and is a feature
transformation method that directly transforms the variables (in dimension reduction
methods) without losing much of the data’s inherent attribution information. In this
study, for the three different multi-variables acquired from the satellite data, an integrated
drought index is calculated through the application of the Bayesian PCA (BPCA; [37,38])
and intentionally biased bootstrap (IBB; [39]) simulation for characterizing three aspects
of meteorological (using SPI), agricultural (using ADCI), and hydrological (using WBDI)
droughts. The BPCA approach can estimate the intrinsic dimensionality of the multi-
dimensional dataset with missing data, which is suitable for application to satellite data,
and has been evaluated as an accurate and robust model [37,38,40]. The BPCA analysis is
performed by using the following three procedures: principal component (PC) regression,
Bayesian estimation, and an expectation-maximization (EM)-like repetitive algorithm [38].
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The IBB applied for statistical simulation of drought indices is a kind of weighted
bootstrap that follows constraints that are designed to select resampling probabilities
and conditionally applied to data; this helps to improve the statistical performance and
minimizes the distance of weighted distributions [39,41]. This study employed the IBB
to evaluate regional drought changes in meteorological (SPI), agricultural (ADCI), and
hydrological (WBDI) droughts and analyzed the relative sensitivity of each drought index
to the RS-based integrated drought index (RSIDI) calculated by using the BPCA (Figure 2).
The IBB applied in this study is described as follows.
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Figure 2. Procedure of intentionally biased bootstrap (IBB) analysis for integrated drought management.

The IBB simulation re-samples the observations Xi to n replacement (e.g., bootstrap-
ping) by intentionally increasing or decreasing the data by as much as δµ. The data Xi are
increasingly ordered by assigning different weights Wi,n according to the magnitudes of
the observations, as given below:

Wi,n = i/n, (8)

where i = 1, 2, 3, . . . , n, and the data matrix is rearranged in the same order as the ordered
Xi. The assigned weight Wi,n represents the probability of selection for Xi data in the IBB
simulation. The intentional change of increase or decrease (δµ) can be calculated as given
in Equation (9).

δµ = µ̃− µ̂ =
1
ψ

n

∑
i=1

Wi,nXi −
1
n

n

∑
i=1

Xi, (9)

ψ =
n

∑
i=1

Wi,n. (10)
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Equation (9) can be generalized with a weight order (r) as Equation (11).

δµ(r) = µ̃(r)− µ̂ =
1
ψr

n

∑
i=1

Wr
i,nXi −

1
n

n

∑
i=1

Xi (11)

The selection of the weight order (r) can be performed by using the self-organizing
migrating algorithm (SOMA; [42]) with the following objective function (Equation (12)):

minimize
[
δµ − δµ(r)

]2. (12)

Note that if r < 0, then δµ(r) < 0, which implies a drier state, and if r > 0, then δµ(r)
> 0, which implies a wetter state. When r < 0, lower values indicating the dry state are
resampled more frequently than higher values indicating the humid state, causing δµ(r)
to decrease. In addition, to objectively determine the accuracy of drought monitoring
using three satellite-based drought indices, this study conducted a receiver operation
characteristics (ROC) analysis. The ROC analysis was performed to evaluate the validity of
the RSIDI calculations using the three drought indices (SPI, ADCI, and WBDI). The range
of drought indices used in this study is given in Table 2.

Table 2. Range of the drought indices used in this study.

Drought Condition SPI ADCI WBDI RSIDI

Normal >0 >40 >0 >0

Attention −1.0–0 30–40 0–−0.5 −1.0–0

Caution −1.0–−1.5 20–30 −0.5–−1.0 −1.0–−1.5

Alert −1.5–−2.0 10–20 −1.0–−1.5 −1.5–−2.0

Serious <−2.0 0~10 <−1.5 <−2.0

3. Results

In this study, the RSIDI was extracted for 849 sub-basins over the five major Korean
river basins using a BPCA-based combination model for the three drought indices for
2001–2019. As a result of the evaluation of the proportion of variation (POV) of the three
drought indices by region, the BPCA-based RSIDI explained the average POV (68.9%) of
the 849 sub-basins (Han River basin: 68.1%, Nakdong River basin: 68.7%, Geum River
basin: 71.3%, Youngsang River basin: 71.7%, and Sumjin River basin: 71.0%), showing a
high POV, especially in the southern part of the country. In addition, the calculated RSIDI
showed a relatively high correlation with SPI (median: 0.96) and WBDI (median: 0.96).
In the case of the ADCI (maximum: 0.91, median: 0.53), the correlation with RSIDI was
broad in the region and showed a relatively weak correlation in some areas of the Han and
Nadkong River basins; however, on an average, the correlation was 0.53 (p-value < 0.001) in
849 sub-basins, indicating that the RSIDI can provide robust and comprehensive integrated
drought information by maintaining the inherent characteristics of the three drought indices
(Figure 3). By resolving the system equations for each drought index, it has been shown
that the relative contribution of the RSIDI to each time-series can be assessed. Figure 4
illustrates the relative contribution of each drought index to the Gojicheon stream (#10011)
of the Han River basin.

In the following section, the droughts in 2001 and 2014, which are the representative
severe drought years of severe droughts that have occurred since the 2000s, were assessed
using the RSIDI produced by multi-sensor satellite data and multivariate analysis. The
application of integrated drought monitoring based on satellite data was evaluated through
spatial-temporal variability analysis between the RSIDI and other drought indices using
the ROC analysis to test the accuracy of the models. In addition, the onset, intensity, and
evolution patterns of droughts were compared to each drought index, and the applicability
of the RSIDI was evaluated through an IBB simulation.
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Figure 4. Time series of integrated drought index (IDI) for 2001–2019 in the Gojicheon stream in the Han River basin. (a) IDI
index and (b) relative contribution evaluation.

3.1. Drought Impact Assessment and Drought Monitoring

The RSIDI was evaluated for the 2001 drought (Figures 5 and 6). The severe spring
drought in 2001 began in the fall of 2000 and lasted until the spring of 2001. In spring,
when the agricultural water demand was the highest due to the rice planting, the supply
of agricultural water was insufficient, causing serious agricultural damages. In most parts
of the Korean Peninsula, less than 50% of the average annual rainfall was recorded, and in
some areas, only 10 to 30% of the average annual rainfall resulted in the most extensive
agricultural drought damage in June [43]. The drought that occurred in 2001 was mostly
resolved after more than 150 mm of rainfall since mid-June.

The SPI and WBDI illustrate the drought from April to May was a serious event, and
the drought centered in the central region since September also appears to be approaching
the serious stage (Figure 5). The ROC analysis between the RSIDI and three drought indices
also showed that the WBDI had the highest with 0.90, followed by SPI at 0.78, and ADCI
at 0.65. For ADCI, the observed indicators showed significant spatial variation compared
to the other drought indices, and in the 2000 drought, the effects of changes in the SMSI
resulted in a weaker or earlier drought peak than those observed in cases of other drought
indices (Figure 6). These features appear to be more sensitive to short-term droughts as the
ADCI applied in this study was used only for the surface soil moisture.
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Figures 7 and 8 show the results of the evaluation of the 2014 drought. In 2014, a
drought occurred around the Han River basin; in the same year, the Gangwon Province had
70% of the average annual rainfall and the Gyeonggi Province area around Seoul had 59%,
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which was less compared to the previous years’ average annual rainfall. In particular, in
2014, a dry monsoon phenomenon occurred in which a drought that began in spring (due
to the El Niño phenomenon) continued to cause no rainfall or a significantly lower amount
of rainfall [44]. The rainfall between June 2014 and July 2014 was 48% (compared to the
average in the past years), and the national water storage level also dropped significantly
to 64% over the previous year. In August, the average water level of multi-purpose dams
in Korea was only 36.1%. The droughts lasted until 2015, resulting in less than 70% of the
average rainfall, and the hydrological droughts, with reservoirs in many multipurpose
dams, reached dangerous levels [45]. Similar to the results of 2001, the RSIDI obtained
could effectively describe the time and spatial occurrence patterns of the SPI and the WBDI,
while the ADCI was analyzed to have delayed drought due to changes in SMSI. The ROC
statistical analysis also confirmed that WBDI was highest and ADCI was relatively low in
2014 (SPI: 0.81, ADCI: 0.61, WBDI: 0.88). Through evaluation of past droughts, the RSIDI
explained the three drought characteristics (meteorological, agricultural, and hydrological)
well and confirmed the applicability of the integrated drought index through ROC analysis.
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3.2. Drought Transition Evaluation by Statistical Simulations

This study simulated the impact on the spatiotemporal distribution of different
drought conditions, such as agricultural and hydrological perspectives, by altering the
intended difference of δµ(r) (Equation (11)) of the meteorological drought index (SPI)
1000 times to represent the changes in SPI. As δµ(r) was intentionally changed, all the
sub-basins experienced various changes in their ADCI and WBDI. Figure 9 shows that
statistical simulations indicate that the changes in the state of agricultural (ADCI) and
hydrological (WBDI) droughts correspond to the changes in meteorological drought (SPI).
In addition, the results of the IBB simulation for up to three months of a lagged analysis
were shown in Figure 10. Natural disasters, including droughts, are managed in four
stages (Attention, Caution, Alert, and Serious) in Korea. In this study, the changes in other
drought conditions were identified by intentionally changing the meteorological drought
condition by using a IBB simulation.

First, when the meteorological drought (SPI) conditions were simulated from a stage
of Normal to a stage of Attention (Figures 9a and 10a), the ADCI conditions, except for
some parts of the Han River basin, showed a stage of Attention (96.6%, 820 out of 849 sub-
basins). According to the results of the one-month delay, the ADCI status in parts of the
Han and Nakdong River basins changed to Normal; however, 77.1% of the entire basin
(45.8% of the two-month delay) was still in a stage of Attention. Over time, the ADCI
conditions have shifted from a state of Attention to Normal in the southwestern part of the
Han, Youngsang River, and Sumjin River basins. Even if the SPI conditions are simulated
from the Normal stage to a stage of Attention, the results of the SPI are similar to those
of time and space, and there are many sub-basins that are converted to the Normal stage
over time. When the meteorological drought (SPI) conditions were simulated from the
Normal stage to a stage of Caution (Figures 9b and 10b), excluding the parts of the Han
River basin, more than 98.6% showed the ADCI to be in the Attention stage and 15.9%
showed a stage of Caution. According to the results of the one-month delay, the ADCI in
the northern parts of the Han River was still in a state of Caution; however, 88.5% of the
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entire basin was in the stage of Attention. Over time, the ADCI conditions shifted from a
state of Attention to Normal in the southwestern parts of the Han, Youngsan, and Sumjin
River basins. Although the mid-term drought (SPI6) was simulated from a Normal stage
to a stage of Attention, changes in the spatiotemporal pattern of the ADCI were similar to
the results obtained for SPI3, in which the scope of Attention conditions was reduced, and
the number of sub-basins converted to “Normal” over time increased in the southern parts
of the country.
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and (b) Case II (SPInormal → SPICaution). The simulation results for the five basin areas are provided in the boxplot, and the
results for the change in drought conditions are indicated in color in the map.

For WBDI, when the SPI drought conditions were simulated from Normal to a stage
of Attention, the WBDI conditions, excluding the Han River basins, showed a stage of
Alert (99.2%, 842 out of 849 sub-basins). As a result of the one-month delay, the WBDI
status shifted from 75.7% of the total basin to a state of Attention, but 50.7% of the Han
River basin and some areas of the Geum and Youngsan River basins were still in Caution
levels. Over time, the WBDI conditions tended to shift from a state of Attention to Normal
in the southwestern parts of the Han and Geum River basins. The SPI drought conditions
were simulated from Normal to Caution; more than 93.8% of the total basins showed their
WBDI in a stage of Caution. Over time, the WBDI status shifted to a Normal state around
the southwestern Han and Geum River basins.

When the drought conditions of the RSIDI were simulated from Normal to Attention
(Figure 11a), in all three drought indices (SPI, ADCI, and WBDI), the drought conditions
shifted to a state of Attention, confirming that the RSIDI expressed the overall drought in
space effectively. If drought conditions were simulated from Normal to Caution, the SPI
results showed that 78.6% of the total basins were in the same state as drought conditions
in the RSIDI. However, we inferred that the Han River basin was relatively insensitive
due to its status of Attention. Compared to the drought conditions of the SPI, the drought
conditions of the ADCI and WBDI were shown to be mitigated by one level in the Han
River and some areas of the Nakdong River, and the spatial conditions changed in the two
drought indices (ADCI and WBDI) were similar.
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4. Discussion and Conclusions

As climate change accelerates due to global warming, changes in hydrological cycles
occur significantly, and water use and prediction of water resources may become difficult.
In particular, in Korea, chronic drought has occurred continuously since the 1990s during
the transition from winter to spring [46]. To cope with these droughts, technologies to
identify and predict the magnitude of spatiotemporal droughts are required. Drought
monitoring using satellite data will be essential to secure spatial resolution for accurate
and spatial droughts when ground-based hydrometeorological data are not available,
as well as monitoring the different characteristics of meteorological, agricultural, and
hydrological droughts.

Korea’s drought-related affairs are mainly handled by the Korea Meteorological Ad-
ministration (KMA), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry
of Environment (MOE), Ministry of Land, Infrastructure, and Transport (MOLIT), and the
Ministry of Public Safety and Security (MPSS) [47]. The KMA diagnoses precipitation and
drought in drought areas by assessing the SPI and PDSI and provides this information to
the local governments. The MAFRA analyzes agricultural water through the soil moisture
index (SMI), reservoir drought index (RDI), and integrated agricultural drought index. The
MOLIT monitors dam water; the MOE monitors emergency water resources and water
quality according to the drought stage and implements the appropriate countermeasures.
The MPSS oversees the drought situation when it becomes extreme. However, some point
out that the current drought measurement indices of different agencies are different in
drought management, causing confusion and making it difficult to respond to drought
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proactively. Different ministries have different standards for determining the degree of
drought. Additionally, it is not sufficient for a single drought indicator to characterize all
the complex drought evolution processes [22]. The development and application of an
integrated drought index are necessary to take into account the complex factors related to
water use, such as the meteorological, agricultural, and hydrological perspectives. Thus,
this study proposed an RS-based integrated drought index that was extracted from 849 sub-
basins in Korea’s five major river basins using multi-sensor collaborative approaches and
multivariate dimensional reduction models, calculated through monthly satellite data.
Droughts in 2001 and 2014, representative years of severe drought since the 2000s, were
evaluated using the integrated drought index, and statistical simulations were used to
diagnose the sensitivity and transition of drought. The BPCA-based integrated drought
index proposed in this study was analyzed to reflect the timing, severity, and evolutionary
pattern of meteorological, agricultural and hydrological droughts, enabling comprehensive
delivery of drought information. Although the results relied on limited observations, it is
expected that drought hotspot analyses and statistical simulations using IBB and BPCA-
based RSIDI will identify the drought characteristics of the sub-basin, thereby promoting
their use in preemptive drought response through drought prediction and early warning.

Drought monitoring and accurate drought forecasting are still the main challenges
in a relatively changing environment that has a long lead-time and natural and artificial
factors. Therefore, future works to improve drought monitoring and prediction require
further research, such as high-quality data assimilation, improving model development
through major processes related to droughts, selecting or predicting optimal ensembles,
and hybrid drought forecasting.
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Abstract: Typhoons or mature tropical cyclones (TCs) can affect inland areas of up to hundreds of
kilometers with heavy rains and strong winds, along with landslides causing numerous casualties
and property damage due to concentrated precipitation over short time periods. To reduce these
damages, it is necessary to accurately predict the rainfall induced by TCs in the western North Pacific
Region. However, despite dramatic advances in observation and numerical modeling, the accuracy
of prediction of typhoon-induced rainfall and spatial distribution remains limited. The present study
offers a statistical approach to predicting the accumulated rainfall associated with typhoons based on
a historical storm track and intensity data along with observed rainfall data for 55 typhoons affecting
the southeastern coastal areas of China from 1961 to 2017. This approach is shown to provide an
average root mean square error of 51.2 mm across 75 meteorological stations in the southeast coastal
area of China (ranging from 15.8 to 87.3 mm). Moreover, the error is less than 70 mm for most stations,
and significantly lower in the three verification cases, thus demonstrating the feasibility of this
approach. Furthermore, the use of fuzzy C-means clustering, ensemble averaging, and corrections to
typhoon intensities, can provide more accurate rainfall predictions from the method applied herein,
thus allowing for improvements to disaster preparedness and emergency response.

Keywords: typhoon-induced rainfall; prediction; statistical model; fuzzy C-means clustering; China

1. Introduction

Coastal areas with high population densities and rapid growth and urbanization have relatively
vulnerable structures to coastal flooding, such as the sea-level rise and storm surge due to climatic
extremes [1,2]. The losses caused by these disasters have also continued to increase in recent years.
The western North Pacific (WNP) is one of the oceanic regions most prone to typhoons [3–9]. Since China
is located on the west coast of the WNP, it is greatly affected by typhoons, particularly along the east
coast [10]. The strong winds, heavy precipitation, and storm surge of typhoons pose serious threats to
China’s social economy and national personal safety. For example, the super typhoon “Mangkhut”
affected many provinces and regions over South China in September 2018. The number of people
affected was close to 3 million, with ~1200 houses damaged and ~174.4 thousand hectares of crops
being affected. The direct economic loss exceeded CNY 5.2 billion (USD 77.5 million) [11].

Failure to properly manage water resources due to incorrect rainfall forecasts during the typhoon
season can lead to serious flooding or water shortage, regardless of how well forecast and water
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management was carried out before the typhoon [10,12]. In recent years, however, the development
of satellite observations and mathematical modeling, along with integration and data assimilation
techniques using various observational datasets, typhoon tracking and intensity prediction have
continuously improved [13–20]. Nevertheless, typhoon-induced rainfall prediction remains very
difficult and less accurate than typhoon track prediction [21–29]. For example, Li et al. [26] established a
non-parametric statistical method using numerical models and typhoon intensity predictions to estimate
the maximum daily rainfall and three-day cumulative rainfall amounts. Previously, Ebert et al. [27]
noted that a satellite-based tracking of tropical rain could improve the short-term prediction of
typhoon-induced heavy rainfall. More recently, Kim et al. [28] hypothesized that typhoons with similar
tracks have similar rainfall patterns, and demonstrated the use of tracks, intensities, and precipitation
data for 91 typhoons affecting the Korean Peninsula over the course of several decades to establish a
statistical model for forecasting typhoon-induced rainfall over that region.

Although typhoon-induced rainfall prediction models are constantly being improved, the rainfall
conditions related to typhoons differ from region to region and most of the aforementioned methods
were developed according to one or other specific regions [26–30]. While the establishment of a
typhoon-induced rainfall prediction model requires accurate track and intensity forecasts; however,
complex physical processes such as the interaction between typhoon and land also need to be considered.
These factors may cause rapid changes in precipitation during the passage of typhoons [21,22]. Therefore,
typhoon-induced rainfall prediction is particularly challenging work.

The purpose of the present study is to establish a new statistical prediction model based on the
principle of track similarity, using fuzzy C-means clustering, intensity correction, and other methods
to optimize typhoon-induced accumulated rainfall (TAR) forecasts over China. The following section
introduces the data used to develop the prediction model and describes how the TAR of each typhoon
in the western North Pacific in recent decades is determined. Then, in Section 3, typhoons with tracks
similar to that of the target typhoon are selected. In addition, TAR correction is conducted based
on typhoon intensity, and the optimal number of similar-track typhoons is selected for ensemble
averaging. After substituting the previous typhoon data, the results of the prediction model are given.
Finally, Section 4 provides a summary and conclusions, including a discussion of the advantages of
this method as well as the limitations that can be improved in future work.

2. Data and Methods

2.1. Data

To establish the TAR prediction model, the daily rainfall data without any gaps between 1961 and
2017 from 537 meteorological stations in China (Figure 1a; http://data.cma.cn) were used, along with
best-track data for a total of 1536 typhoons in the WNP were used during the period 1961–2017
(Figure 1b). Typhoon intensity correction was performed and the effects of ensemble averaging and
typhoon similarity levels were analyzed using primarily the 55 tropical cyclone (TC) datasets affecting
75 meteorological stations in the southeast coastal area of China listed in Table 1. The 6-hourly location
and intensity data for the typhoons, including the specific date, time, longitude, latitude, maximum wind
speed, and typhoon number, were obtained from the Regional Specialized Meteorological Center
(RSMC)—Tokyo.

Due to the proximity of typhoons to mid-latitude regions, typhoons will transition into tropical
storms under the impacts of landfall, cold air mixing, and other factors, leading to a rapid weakening
of their intensities. Nevertheless, the impact of the associated rainfall will impact large areas and
generate disasters such as debris flows and floods that may cause losses of life and property. Therefore,
in order to better estimate the rainfall that a typhoon can cause, the present study includes the period
after each typhoon turns into a tropical storm.
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Figure 1. Weather stations and typhoon track data used in the present study: (a) the locations of the
meteorological stations (n = 537); and (b) the long-term average of the tropical cyclone (TC) track
density in the western North Pacific (WNP) region during the period 1961–2017. The solid line in (b)
indicates the location of the WNP subtropical high represented by 5880 gpm during the study period.

Table 1. The 55 typhoons used in the present study.

No Name ID Maximum Wind (kt) No Name ID Maximum Wind (kt)

1 FREDA 7713 55 29 MORAKOT 0309 45

2 ROSE 7804 45 30 VAMCO 0311 35

3 DELLA 7812 45 31 DUJUAN 0313 80

4 GORDON 7908 55 32 KOMPASU 0409 45

5 PERCY 8014 100 33 RANANIM 0413 80

6 MAURY 8108 50 34 AERE 0417 80

7 IRVING 8217 85 35 SANVU 0510 50

8 WAYNE 8304 110 36 BILIS 0604 60

9 WYNNE 8402 55 37 BOPHA 0609 55

10 VAL 8517 45 38 WUTIP 0707 35

11 ELLEN 8620 70 39 NURI 0812 75

12 GERALD 8714 80 40 HAGUPIT 0814 90

13 NONAME 8803 35 41 MOLAVE 0906 65

14 FAYE 8907 55 42 FANAPI 1011 95

15 GORDON 8908 100 43 NANMADOL 1111 100

16 DOT 9017 75 44 SAOLA 1209 70

17 AMY 9107 95 45 CIMARON 1308 40

18 BRRENDAN 9108 60 46 UTOR 1311 105

19 GARY 9207 55 47 TRAMI 1312 60

20 BECKY 9316 55 48 USAGI 1319 110

21 TIM 9405 95 49 KALMAEGI 1415 75

22 CAITLIN 9412 45 50 LINFA 1510 50

23 HELEN 9505 50 51 NIDA 1604 60

24 GLORIA 9608 65 52 CHANTHU 1617 85

25 SALLY 9616 85 53 PAKHAR 1714 55

26 OTTO 9802 65 54 GUCHOL 1717 35

27 MAGGIE 9903 75 55 KHANUN 1720 75

28 TRAMI 0105 40
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2.2. Calculation of Typhoon-Induced Accumulated Rainfall (TAR)

The first step in establishing the TAR prediction model is to calculate the TAR for each local station.
The specific calculation process is as follows:

(1). Determine whether the rainfall for a specific location is caused by the typhoon. Only when the
distance between a typhoon and a specific location is less than a certain value can the typhoon
be considered to have an impact on that location’s rainfall. The selection criterion used in the
present study is that the distance between the typhoon and the meteorological station must be
less than or equal to 500 km. [9,31–33]

(2). As the typhoon will have a continuous impact on the rainfall in a specific area, the rainfall on the
day in which the region is affected is considered, along with that of the day before and the day
after, as being caused by the typhoon. That is, the total duration of rainfall caused by a typhoon
in a specific location is represented by the time period of the typhoon entering and leaving a
500 km range of the area within a time window ± 1 day of its landfall.

(3). The TAR values for each typhoon at each station are obtained by adding up the daily rainfall in
the previously determined period.

It was noted that a substantial error would arise if coexisting typhoons were used to establish a
TAR prediction model, which would result in an inaccurate model forecast. To prevent this problem,
typhoons of this type were discarded during the prediction model establishment process.

2.3. Selection of Typhoons Using the Fuzzy C-Means Clustering Algorithm

In the present study, the fuzzy C-means clustering (FCM) algorithm was used to select typhoons
with similar tracks. This is a partitioning algorithm in which objects with the greatest similarities are
grouped into the same cluster and objects with few similarities into separate clusters. The FCM was
proposed by Bezdek [34] as an improvement on the hard C-means clustering method and enables
an estimate of the degree to which each data point belongs to a certain cluster, i.e., the degree of
membership. In detail, the FCM divides n vectors Xi (i = 1, 2,..., n) into a number (c) of fuzzy groups
and identifies the clustering center of each group so that the value function of the dissimilarity index
is minimized. A fuzzy division is then used to assign a degree of membership between 0 and 1 and
examine how well each data point belongs to each group. According to the FCM, the membership
matrix U assigns the values of the elements between 0 and 1, while the constraints of the normalization
dictate that the total membership of the dataset must always be equal to unity, as indicated by
Equation (1):

c∑

i=1

ui j = 1, ∀ j = 1, · · · , n (1)

Then, the value function (or objective function) of the FCM is given by Equation (2):

J(U, c1, · · · , cc) =
c∑

i=1

Ji =
c∑

i=1

n∑

j

um
ij d

2
i j (2)

where ui j is between 0 and 1, ci is the clustering center of the fuzzy group i, and di j = ‖ci − xi‖ is the
Euclidean distance between the i-th clustering center and the j-th data point.

In the process of clustering typhoons using the FCM method, the membership coefficient Wik is
calculated. This indicates the probability, Xi, that each typhoon belongs to the target typhoon group
Ck [28,35]. The value of Wik is determined by the partial derivative of the sum of squared errors (SSE)
according to Equations (3) and (4):

SSE =
K∑

k=1

n∑

i=1

WikPd(xi, ck)
2 (3)
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Wik =
{ 1

d(xi,ck)
2 }

1
p−1

∑K
K=1 { 1

d(xi,ck)
2 }

1
p−1

(4)

where d(xi, ck)
2 is the distance between each typhoon track and the target typhoon track.

When using the FCM method to cluster all the typhoon tracks, these must first be divided into
lines with the same number of location points. In the present study, all typhoons were uniformly
interpolated according to the typhoon with the largest number of location points in its track data.
In addition, the FCM membership coefficient was used as a criterion for screening typhoons that
were similar to the target typhoon: the larger the coefficient value, the higher the typhoon similarity.
For example, the eight typhoons with the greatest similarity to typhoons Usagi (#1319) and Nesat
(#1117) according to the FCM method are indicated in Figure 2. Typhoon Usagi (#1319) made landfall
on the coast of Fujian Province in southern China in 2013 and affected the surrounding areas of Taiwan
and southern provinces of China (Figure 2a), whereas typhoon Nesat (#1117) passed through Hainan
Province and Qiongzhou Strait in 2011 and then caused serious damage to the surrounding areas,
including Hainan, Guangdong, and other provinces (Figure 2b). The results in Figure 2 indicate that
the tracks of typhoons Nuri (#0812) in 2008 and Sharon (#9404) in 1994 are the most similar to those of
Usagi (#1319) and Nesat (#1117), respectively.

Figure 2. Top eight typhoon tracks most similar to those of: (a) Usagi (#1319) and (b) typhoon Nesat
(#1117). The identification number and similarity level of the selected typhoons are indicated in the key.

3. Results

3.1. Correcting the TAR Using Typhoon Intensity Information

Since it is impossible for different typhoons to have exactly the same intensity and structure,
every typhoon is unique. Therefore, it is not theoretically possible to accurately predict the amount of
rainfall caused by a typhoon based only on the track of one typhoon only. In other words, even when
two typhoons have exactly the same tracks, differences in their intensities will result in different rainfall
amounts, with higher intensity typhoons usually resulting in more rainfall [36]. Therefore, a typhoon
wind intensity correction (TWIC) was used in the present study to further reduce the error in the
TAR prediction model. The effects of the TWIC and ensemble averaging were first assessed using the
training datasets of 55 TCs and then verified for model performance later in Section 3.3.

The eastern and southern coastal areas of China were selected as target areas for prediction during
the training of this model because these are the areas that are most frequently affected by typhoons,
whereas the inland areas of China are rarely affected. In the process of TAR correction based on TC
wind speed, data from typhoons affecting 75 weather stations along the southeastern coast of China
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(Pearl River Basin and Southeast River Basin) were used. Typhoons that occur simultaneously in the
same region were not used for this process, as it is difficult to obtain their individual TAR periods and
rainfall amounts accurately.

After processing the data, the 55 most representative typhoons with high data accuracy and
their corresponding similar-track typhoons were finally selected. The TC wind speed and average
rainfall values during the passage of these typhoons were then calculated from the data obtained from
75 stations in the southeast coastal area of China. Using these data, the linear regression equation
relating the TC wind speed of the 75 weather stations and the average TAR during typhoon passage
was obtained (Figure 3) and the best fit was given by Equation (5):

PTAR = 0.654V + 10.891 (5)

Figure 3. Linear relationship between the TC wind speed (V, m/s) and the average typhoon-induced
accumulated rainfall (TAR) (PTAR, mm). The average TAR and TC wind speed were obtained using the
most similar typhoons from 55 storms and 75 stations.

The equation shows that there is a positive correlation between the TC wind speed (V, m/s) and the
average TAR (PTAR, mm). This shows a significant relationship (p < 0.05) between the TC wind speed
and the average TAR (R2 = 0.654 ± 0.291). During the training process for the TAR prediction model,
this linear equation was adopted to apply an intensity correction to all typhoons with similar tracks.

3.2. Effects of Track Similarity, Ensemble Averaging, and Intensity Correction on the TAR Predictions

The similarity level of the typhoon track, the number of ensemble averages, and whether the
typhoon intensity is corrected may have an impact on the TAR prediction. To examine the influence of
the typhoon track similarity level, the accuracy of the prediction result is judged by the root mean
square error (RMSE), where a smaller error indicates a more accurate result. The results presented
in Figure 4 (black line) show that the use of a single typhoon with the most similar track to predict
the TAR values of the target typhoon in the target areas from 1961 to 2017 gives an average RMSE
of 62.2 mm. However, if the typhoon with the second-best track similarity is used alone for the
prediction, the RMSE is slightly decreased to 60.8 mm, while using only the typhoon rainfall data with
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the third-best track similarity decreases the average RMSE to 58.7 mm. Thereafter, the average RMSE
continues to decrease as the similarity of the selected typhoon increases. In general, the prediction
error decreases with the use of individual typhoons with increasing track similarity levels, but the use
of only a single typhoon in the TAR prediction process may nevertheless result in an unsatisfactory
error reduction even if its track is very similar to that of the target typhoon.

Figure 4. A comparison of the change in the RMSE of the prediction obtained with the increasing
number of ensemble typhoons used before (black line) and after (red line) TC wind intensity correction.
“X” represents the optimal ensemble number after TC wind intensity correction.

To further reduce the prediction errors, ensemble averaging (EA) was then considered [21,37].
To detect the influence of EA on the TAR prediction result, the number of high track-similarity typhoons
used in the prediction at each station was increased step-by-step to form an ensemble, then their
average TAR values were calculated and compared with the observed values. The results in Figure 4
(black line) indicate that as the number of typhoons in the ensemble increases, the RMSE initially
decreases to a minimum of 51.5 mm with an ensemble of the 27 most similar typhoons, and gradually
increases thereafter.

Then, to study the influence of typhoon wind intensity correction upon TAR prediction, the TAR
obtained after TWIC was calculated using the EA method, and the results were compared with those
obtained without TWIC in Figure 4. Here, the red line indicates a decrease of 0.5–0.9 mm in the average
RMSE after the TWIC. In other words, the TWIC helps reduce the error in TAR predictions. In addition,
the above results indicate an optimal ensemble number of 26 when using the EA method to predict
the TAR.

Based on the results of the above analysis, the operational process of the statistical TAR prediction
model used in the present study for the southeast coastal area of China is as follows:

(1). The model is used when the predicted typhoon track is judged as potentially having an impact
on rainfall in the target area (i.e., when the distance between the typhoon center and the stations
is less than 500 km).

(2). According to the historical typhoon tracks, the top 27 typhoons that are most similar to the track
of the target typhoon are selected.

(3). The TWIC equation is used to correct the TAR according to the typhoon intensity for selected
typhoons observed at 75 stations.

(4). The TAR of selected typhoons is averaged after intensity correction.
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The spatial distribution of the RMSE (mm) and correlation coefficients of 55 typhoons at 75 stations
in the eastern and southern coastal areas of China from 1961 to 2017 estimate using this TAR prediction
model during the training period are presented in Figure 5. Here, the RMSE of the 55 typhoons at
the majority of stations is seen to be below 70 mm. The particularly large error and low correlation at
the southern and eastern coastlines of China may be due to the impact of the co-existing rainy front
in southeastern China and the relatively strong TC passing through the coastal areas, since a strong
rainfall intensity with considerable regional variations can reduce the accuracy of TAR predictions.

Figure 5. Graphs showing the average RMSE (a) and correlation coefficient (b) calculated using the
prediction model for 55 typhoons at 75 stations during the model training period.

3.3. Model Performance

Typhoon Sarika (#1621), which affected the coastal area of southern China in 2016, typhoon Nesat
(#1709), which affected the coastal area of southeast China in 2017, and typhoon Utor (#0104),
which passed between Hainan Island and Taiwan, were then used to evaluate the actual performance
of the TAR prediction model. The three typhoons had different tracks as they approached and made
landfall in China, with Sarika (#1621) crossing Hainan Island and moving northwestward to land along
the southern coastline of Guangxi Province in China, while Nesat (#1709) landed in Fujian Province
through the Taiwan Strait after passing through northern Taiwan and then moving southwest. The FCM
approach was used to selected typhoons with the most similar tracks, then their TAR intensities were
corrected according to the aforementioned equation and were then averaged. The most similar tracks
obtained from the FCM analysis are presented in Figure 6. By averaging the TC wind intensity-corrected
historical TAR records of these typhoons, the TAR values of Sarika (#1621), Nesat (#1709), and Utor
(#0104) at the 75 stations in the southeastern coastal and southern coastal areas of China were predicted
and compared with the observed values. The results indicate RMSE values of 35.7, 55.5, and 47.2 mm
for typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621), respectively. Thus, the error in the results
of TAR prediction for two of the three typhoons using the proposed statistical model is lower than the
average error (51.2 mm) obtained using 55 typhoons during the model training period.
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Figure 6. Verification of the prediction model established in the present study: (a) the TC tracks used;
(b–d) the selected typhoon trajectories most similar to those of (b) typhoon Nesat (#1709); (c) typhoon
Utor (#0104); and (d) typhoon Sarika (#1621). The typhoon numbers and similarity levels are indicated
in the key.

The observed TAR values for typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621) are
presented, along with the differences between observed and predicted values, in Figure 7. Here,
the predicted TAR spatial pattern for typhoon Nesat (#1709) is seen to be very similar to the observed
outcome, except that the TAR for part of the area farther away from the coast is overestimated.
For typhoon Utor (#0104), the predicted results show significant differences in the Southeastern
and Pearl river basins, being slightly overestimated in the former and underestimated in the latter
compare to the observation. For typhoon Sarika (#1621), the distribution of predicted TAR values in the
southern and southeastern coastal areas of China is very similar to the actual observations, although it is
overestimated in Fujian Province and underestimated in Guangdong Province. These results are further
illustrated by the violin plots (boxplot-density trace synergism) in Figure 8. In conclusion, the results
of the TAR prediction model presented in this study are effectively similar to the actual observations
and indicate the overall good performance of the model for predicting the spatial distribution of
TAR values.
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Figure 7. TAR estimation at 75 stations along the southern and southeastern coasts of China for
typhoons Nesat (#1709), Utor (#0104), and Sarika (#1621): (a) the observed values; and (b) the difference
between observed and predicted values.
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Figure 8. Violin plots (boxplot-density trace synergism) of the TAR difference between the observed
and predicted values for 75 stations along the southern and southeastern coasts of China for typhoons
Nesat (#1709), Utor (#0104), and Sarika (#1621). The white circles indicate the median value of the TAR
difference for 75 stations.

4. Summary and Conclusions

A statistical approach for predicting typhoon rainfall was developed herein based on the historical
storm track, intensity, and rainfall data for 55 typhoons affecting the southeastern coastal areas of
China from 1961 to 2017. Specifically, the statistical model was based on the principle of track
similarity. Since tropical cyclones (TCs) with similar tracks tend to produce relatively similar rainfall
patterns, therefore, historical TC rainfall data with similar tracks were used to predict the accumulated
rainfall caused by the target TC. In addition, TC intensity correction and ensemble averaging for
multiple similar TC tracks were used to reduce prediction errors. The fuzzy C-means clustering (FCM)
algorithm was used to select the typhoons with the most similar tracks to that of the target typhoon.
The typhoon-induced accumulated rainfall (TAR) values of the selected typhoons observed at each
of the 75 stations were corrected according to typhoon intensity, and then averaged to provide an
estimate of the target typhoon’s TAR value at each station.

The results indicated an average error of 51.2 mm across the 75 stations in the coastal area of
southern China. In addition, three typhoons that were excluded from the model training process
(i.e., Nesat (#1709), Utor (#0104), and Sarika (#1621)) were subsequently used to generate a forecast
according to their best-track data and, thus, verify the predictive performance of the model. The resulting
RMSE for the predicted TAR of Utor (#0104) is slightly high (55.5 mm), while those of Nesat (#1709)
and Sarika (#1621) were 35.7 and 47.2 mm, respectively. The latter two errors were lower than the
average error (51.2 mm) obtained during the model training period, thus proving the feasibility of the
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model for use in actual predictions. Subsequently, the spatial distribution results of the TAR values
for the three typhoons predicted by this model at 75 stations were analyzed and found to be similar
to the actual observations. This further demonstrated the overall good performance of the model in
predicting the spatial distribution of the TAR values.

Nevertheless, the TAR prediction model presented in this study is limited to predicting only
the accumulated rainfall caused by typhoons; it cannot predict the change in rainfall over time at
all locations. Although numerical weather prediction (NWP) models are more advanced in this
respect, the results predicted by the proposed statistical model have greater significance in certain
contexts—especially for regulating reservoir discharge and flood control. The roles of the proposed
model are to provide a more accurate forecast of the TAR at the target site, to coordinate the prediction
of traditional numerical models, and to ensure that the region has responded well to typhoon-related
rainfall measures.

Predicting rainfall caused by typhoons is challenging because, in addition to the track and intensity
of the typhoon, many factors such as the regional terrain, the interaction of the typhoon with the land,
and the speed of the storm translation can have certain effects upon the TAR. Notably, the TAR prediction
model established in the present study did not consider these factors. Additionally, the number of
typhoon samples used to build the TAR prediction model in the southern and southeastern coastal
areas of China was not large. If additional factors are considered in future research, such as a correction
for storm translation speed and size, and if the effective sample size is increased by using more typhoon
data, the predicted results might become more accurate. In addition, confirmation is required via a
comparison with NWP-based ensemble prediction models. All these approaches can help improve the
performance of the TAR prediction model over China.
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Abstract: Non-linear behavioral links with atmospheric teleconnections were identified between the
Indian Ocean Dipole (IOD) mode and seasonal precipitation over East Asia (EA) using statistical
models. The analysis showed that the lower the lag time, the higher the correlation; more than a two-
fold correlation for non-linear regression with a kernel density estimator than for the linear regression
method. When the IOD peaked, a pattern of significant reductions in seasonal precipitation during the
negative IOD period occurred throughout the Korean Peninsula (KP). The occurrence of the positive
IOD was in line with the El Niño phenomenon and generated greater seasonal precipitation than
only the positive IOD, which takes place from March to May. This change occurred more in the cold
tongue El Niño than the warm pool El Niño, inducing much higher spring precipitation throughout
the KP. When negative IODs and La Niña coincided, there was slightly greater precipitation from
March to May compared to the sole occurrence of negative IODs. In positive (negative) IOD years,
there was anti-cyclonic (cyclonic) circulation in the South China Sea (SCS), helping to transport
moisture to EA. The composite precipitation anomalies in the positive (negative) IOD years show
above (below) normal precipitation in southern China. In contrast, other parts of the EA experienced
drier (humid) signals than normal years. In positive IOD years, the anti-cyclonic circulation strength
of the Bay of Bengal and the SCS continued until autumn and spring of the following year. This
shows possible remote connections between climate events related to the tropical Indian Ocean and
variations in precipitation over EA.

Keywords: Indian Ocean Dipole mode; El Niño–Southern Oscillation; singular spectrum analysis;
mutual information; non-stationarity of seasonal precipitation

1. Introduction

The frequency and intensity of extreme climate events have gradually increased; this
has been attributed to rising global temperatures [1–3]. Seasonal variations in regional
water resource availability are also closely linked to the characteristic changes in global
climate [2,4–7]. These trends have significant implications for the efficient prediction and
management of available water resources. It is increasingly important to understand the
relationship between extreme climatic events and the seasonal variability of water resources
using hydro-meteorological variables.

Long-term hydro-meteorological changes are highly correlated with large-scale at-
mospheric teleconnections that predict the behavior of non-linear climate systems using
ocean-related climate indices, such as the El Niño–Southern Oscillation (ENSO) and the In-
dian Ocean Dipole (IOD) mode [8–12]. Many studies on ENSO and the IOD report the shared
understanding that these systems are major sources of large-scale atmospheric environmen-
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tal changes. These systems are also closely correlated with seasonal variations, such as
precipitation and streamflow within local patterns of hydro-meteorological change [10–15].

The IOD mode defined by Saji et al. [10] is characterized by extreme rainfall and wet
conditions in the East African region during positive IOD (p-IOD) years. During negative
IOD (n-IOD) years, wet conditions typically occur in the western part of the Indian Ocean
and Indonesia; this is directly impacting East Africa, triggering dry conditions. Several
studies have argued that the IOD phenomenon currently precedes ENSO events evidenced
by the rise in sea surface temperature (SST), leading the latter by three to six months [16,17].
However, correlation analyses between SST anomalies of ENSO and IOD in the tropical
ocean region indicates that the IOD is a phenomenon that occurs independently of ENSO,
and is an internal mode within the Indian Ocean region. The results from past research
also demonstrate that the Indian Ocean SST is experiencing changes to its trends over time,
affecting the cycle, intensity, and genesis of the IOD mode [10,18–21].

A previous study on the potential mechanism of IOD patterns over the East Asian (EA)
region presented the Bonin high formation mechanism during August for the deep ridge
near Japan [22]. This theory was based on the hypothesis that an equivalent-barotropic
ridge near Japan was formed because of the upper troposphere (Silk Road pattern). Fur-
thermore, Guan and Yamagata [23] suggested that the IOD event was closely related
to teleconnections around Japan, Korea, and the northeastern part of China during the
sweltering and dry summer of 1994. They determined that the monsoon–desert mecha-
nism [24], producing dry conditions over the EA region, connects a Rossby wave source
with IOD-induced heating around the Bay of Bengal. The upper troposphere propagates
northeastward from southern China, and the Rossby wave pattern influences precipitation
changes over EA. Zhang et al. [25] examined the effects of the IOD on summer precipi-
tation over eastern China. They found that IOD forcing in the preceding autumn has a
pronounced, albeit delayed, influence on the precipitation in the following summer, partic-
ularly over the Yangtze-Huaihe River Valley. Weng et al. [26] discovered a possible link
between the Indian Ocean SSTA pattern and summer precipitation in China by anomalous
mid- and low-level tropospheric circulations. Cai et al. [27] identified the IOD impact on
Australian winter rainfall using the Rossby wave train.

IOD and ENSO patterns are considered the main causes of large-scale atmospheric
change, leading to significant changes in the hydro-meteorological patterns of several EA
countries [12,22,23,28–30]. Recent studies have suggested that global surface temperature
rise may have to slow down due to significant heat transfer from the Pacific to Indian
Oceans via the Indonesian Throughflow [31–33]. Studies on Indo-Pacific thermocouples
are required to improve the current understanding of climatic variability and quantitatively
diagnose such variability at a regional scale. Existing quantitative studies on the character-
istics of the IOD and ENSO phenomena, relating to Korean watersheds and their regional
assessments, are relatively inadequate. This study analyzed the influence of long-term
precipitation variability in the EA region by examining p-IOD and n-IOD events [10]. The
classification of IOD events in accordance with the patterns of p-IOD and n-IOD events
was also analyzed, and the analysis of the evolution patterns of the IOD was based on
the approach of Saji and Yamagata [20]. This study addresses three specific objectives:
(1) to analyze the significant changes in large-scale pattern and long-term precipitation
variability in the EA, and in the KP region sub-watershed using ocean-related, abnormal
climate phenomena, in accordance with the IOD mode index; (2) to investigate linkages
between atmospheric teleconnections and possible mechanisms between different phases
of the IOD and seasonal precipitation over the KP using statistical methods; and (3) to carry
out a diagnostic study on the non-stationarity and possibility of seasonal precipitation
prediction, using climate indices during significant IOD and ENSO seasons over the KP.
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2. Materials and Methods
2.1. Data

SST data obtained from the National Center for Environmental Prediction and the
National Center for Atmospheric Research (NCEP-NCAR) reanalysis v2 were used to
classify the IOD events in the Tropical Indian Ocean (TIO). IOD Mode Index (DMI) data
were obtained from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
and the Hadley Centre Sea Ice and Sea Surface Temperature dataset. The DMI is defined as
the SST anomaly difference between the western (50◦E–70◦E, 10◦S–10◦N) and southeastern
(90◦E–110◦E, 10◦S–equator) regions of the TIO region [10]. The DMI calculated by the
Asia-Pacific Economic Cooperation Climate Center (APCC), Busan, South Korea, was used;
this utilizes monthly SST from the National Oceanic and Atmospheric Administration
(NOAA) Extended Reconstructed Sea Surface Temperature (ERSST) v4 in the TIO region.
The Global Precipitation Climatology Center (GPCC) monthly precipitation, which has a
regular grid with a spatial resolution of 0.5◦ × 0.5◦ latitude by longitude from Deutscher
Wetterdienst in Germany was used to diagnose precipitation variability and its long-term
changes in the EA region. In addition, spatially averaged daily precipitation data provided
by the Water Resources Management Information System (WAMIS) were used to undertake
a detailed examination of the regional impact in five major Korean river basins in the KP
(Figure 1). The average precipitation was calculated using the Thiessen polygon network
from 125 precipitation gauge stations for 117 sub-watersheds within these five major river
basins foMIr 1966–2016. For the composite analysis, monthly vector wind anomalies at
850 hPa were used; these were obtained from the NCEP-NCAR. Student’s t-test was used
for statistical significance testing for composite analysis.
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2.2. Classification of IOD Events

This study used the methodology proposed by Saji and Yamagata [20] to classify
positive and negative IOD events in the TIO region. The process included data pre-
processing and exclusion of data that did not meet the following criteria:

(1) Pre-processing of data: SST anomalies in the Western Indian Ocean (10◦S–10◦N,
60◦–80◦E) and eastern Indian Ocean (10◦S–0◦, 90◦–110◦E), and zonal wind anomalies
over the equator (Ueq, area-averaged wind anomaly over 5◦S–5◦N, 70◦–90◦E), were
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first detrended. A three-month running mean was then applied once over the three
time-series datasets to reduce the impact of intra-seasonal fluctuations;

(2) Identifying criteria: The DMI and Ueq needed to exceed 0.5 σ in amplitude for at least
three months. In addition, the SSTA in the west and east Indian Ocean have opposite
signs, and the magnitude should exceed 0.5 σ for at least three months.

Figure 2 shows the DMI region in the Indian Ocean and the normalized anomaly time
series for the DMI between the Hadley Centre Sea Ice and the Sea Surface Temperature
dataset (HadISST) by the NOAA Climate Prediction Center (CPC), and the method pro-
posed by Saji et al. [10]. Two time-series datasets were compared using a similar method;
the 13 strongest p-IOD, and the 15 strongest n-IOD years were classified based on the
HadISST data from 1956 to 2018.
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Figure 2. The dipole mode index (DMI) region in the Indian Ocean and normalized anomaly time
series for DMI. (a) DMI region in the Indian Ocean, (b) normalized anomaly time series of the DMI.
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correlation coefficient.

2.3. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a non-parametric spectral estimation method that
reduces dispersion by changing the coordinates in time series through techniques derived
from principal component analysis (PCA); this enables the extraction of information from
noisy time series. By removing the non-harmonic components from the original time series
data, the long-term frequency and trend may easily be understood [34]. SSA embeds
the data of a time series Xi(1 < i < N) in a vector space of dimension M, and applies the
empirical orthogonal function (EOF) method. This enables the projection of original data
in the orthogonal functions EOF 1 and EOF 2. By composing the axes using these EOFs,
the trend, cycle, and tendency of total variance in the data, are more clearly apparent.

To separate the non-harmonic components, the size of the eigenvalues was defined by
an orthogonal process. The orthogonal function was calculated between α1

i and α2
i ; these

are the orthogonal coefficients of the principal component (PC1) and PC2 time series that
correspond with the harmonic components in the original coordinates, X and Y. Finally,
it was converted to the reconstruction component (RC) as R1

i and R2
i . The estimation

forecasting model may be configured to reflect specific characteristics such as frequency
and trend in the original data. By using Equation (1) to reconstruct the data, the original
data may be replaced with a new time series with a constant frequency and less noise:
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where αk
i is an orthogonal coefficient; Ek

j is the empirical orthogonal function (1 ≤ k ≤ M);
M indicates a dimension; and τ is the sampling rate. Additional detailed information is
available from Moon and Lall [35].

2.4. Mutual Information

Mutual information (MI) is one of the most popular measures that determines the
extent to which one random variable (Y) may communicate information on another random
variable (X). This may also be considered an exercise in reducing uncertainty on one random
variable given some knowledge of another variable. This is a useful tool to calculate non-
linear correlations between different datasets. Non-linear correlations indicate that the
ratio of change between variables is not constant. Here, MI was used to extract information
regarding the non-linear correlation between climate indices and seasonal precipitation
in the KP. In general, the nonlinear correlation is high or low as the sum of MI values
quantitatively represents the correlation. The MI method has a conditional occurrence
probability by section. If the MI is large, the non-linear correlation between the two
datasets is also large. Where appropriate lag times are selected, the MI technique may
also be used to estimate the probability density function using a kernel function in a
non-parametric manner.

If there are two types of time series datasets, such as (s1, s2, s3, · · · , sn, q1, q2, q3, · · · , qn);
where n is the observed period, then the MI between observations si and qj is defined by
Equation (2) [35]:

MIs,q
(
si, qj

)
= log2

(
Ps,q
(
si, qj

)

Ps(si)Pq
(
qj
)
)

(2)

where Ps,q
(
si, qj

)
indicates the joint probability density function between s and q, calculated

by a time series of
(
si, qj

)
, and Ps(si) and Pq

(
qj
)

are the marginal probability densities
calculated from si and qj, respectively. The average mutual information (Is,q) of the two
discrete random variables s and q can be defined using Equation (3):

Is,q = ∑
i,j

Ps,q
(
si, qj

)
log2

(
Ps,q
(
si, qj

)

Ps(si)Pq
(
qj
)
)

(3)

where Ps,q
(
si, qj

)
is the joint probability distribution function of X and Y, and Ps(si) and

Pq
(
qj
)

are the marginal probability distribution functions of s and q, respectively. This
equation is useful to determine whether the components in multivariate sampling are
independent or dependent. In particular, Martinerie et al. [36] and Gao and Zheng [37]
used MI techniques to construct a state space for appropriate lag time selection in an
orthogonal time series.

The MI analysis between the two datasets was performed using Equation (4), proposed
by Joe [38], following the standard normal distribution of the axis (X, Y) and its linear
correlation analysis:

I(X; Y) = −0.5 log
[
1− ρ(X, Y)2

]
(4)

where I(X; Y) indicates the calculated average MI value through MI analysis, and ρ(X, Y)
is the linear correlation between X and Y.

MI based on the non-linear correlation coefficient may be used to obtain λ[0 ≤ λ ≤ 1].
To calculate λ by estimating the average MI value following the standard normal distri-
bution in the two variables X and Y, Equation (5) proposed by Joe [38] and Granger and
Lin [39] was used:

λ̂(X, Y) =
√

1− exp
[
−2 Î(X, Y)

]
(5)

where Î(X, Y) is the average MI value from the two variables X and Y and λ̂(X, Y) is a
non-linear correlation coefficient estimated from the average MI value between the two
variables (X, Y). In this study, a linear regression (LR) method using Equation (5) was used
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with the estimated average MI values and non-linear regression using Equation (5) with
two-dimensional Kernel density estimators (KDE) [34]. The 95% confidence limits were
estimated using 1000 bootstrap resampling replications, enabling more accurate calculation
of the confidence limits, given the limited data. The advantages of the MI and SSA used in
this study are highly suitable to capture non-parametric relationships from data without
imposing structures or restrictions on the model. SSA helps to identify similar spectral
components in two or more time series, which may be interpreted as connections between
these series. However, wavelet coherence considers two time series. SSA is primarily
driven by data, while wavelet analysis may be influenced by the selection of the parent
wavelet function [40].

In general, abnormal SSTs in the TIO region may have triggering effects on the tro-
posphere temperature rise due to enhanced air–sea interaction [41–43]. Atmospheric
teleconnection links with the jet stream can affect variations in local precipitation world-
wide, even in the EA region [44,45]. The effects of precipitation variability over the KP and
EA regions due to changes in IOD patterns were diagnosed. Although they are geographi-
cally remote areas, they may affect and hydrologically correlate by atmospheric-dynamic
processes and associated mechanisms [10,20]. The p-IOD and n-IOD events were analyzed
from April (when developing had commenced), through September (when it peaked), and
up to November, where it had begun to disappear. This study analyzed the impact of
IOD evolution patterns on the KP within a three-month window, accommodating for a
one-month delay. To understand the role of IOD events in atmospheric variability over the
KP, linear and non-linear correlations were analyzed, along with the lag time correlations
between the IOD and local precipitation variations.

3. Analysis and Results
3.1. Nonlinear Atmospheric Teleconnections over the KP

The non-linear lag time correlations were calculated using MI, and their lag-time
correlations were simulated from lag-0 to lag-11 (Figures 3 and 4). Figure 3 shows the joint
probability kernel density functions among the normalized three-month moving average
precipitation and p-/n-IOD indices over the KP. The result of the joint probability kernel
density function is based on the MI results for lag-1 month non-linear correlations. For
the precipitation of the KP, the probable mode values corresponding to the vertices of the
joint probability density function were 0.632, 0.603, and 0.601 at lag times of 1, 3, and 6,
respectively; the probable mode values tended to decrease with respect to lag time. There
was a positive correlation between seasonal precipitation and IOD pattern changes in each
lag time over the KP. This result was based on the analysis of the location of central points
of the joint probability kernel density functions with precipitation and the IOD index, using
MI techniques.
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Figure 4 presents the linear and non-linear correlation coefficients (CCs) with their
95% confidence limits between climate indices and precipitation for the five major Korean
rivers using the KDE and LR approaches. The lag-0 correlation had the highest correlation
for LR and KDE, which was correlated with the IOD index and KP precipitation (LR: 0.315,
KDE: 0.684). These time lags indicate a non-linear correlation between climate indices and
monthly precipitation; as such, there is a possibility for a diagnostic study on the seasonal
or sub-seasonal prediction of local precipitation over the KP using ocean-related large-scale
climate indices.

3.2. Evolution Pattern of the Indian Ocean Dipole and Its Local Impacts over the KP

Figure 5 presents analysis results for the change in precipitation in the KP according
to the evolution pattern of the p-IOD years from April to November. Total precipitation in
the KP decreased significantly from the long-term average, with −11.90% in April–June,
−8.63% in May–July, −14.32% in June–August, −9.92% in July–September, −15.23% in
August–October, and −7.14% in September–November. The total amount of precipitation
change was analyzed using Student’s t-test; it was found that there was a significant
decrease in the southern part of the KP at a 95% confidence level. For the p-IOD phases,
the pattern of decreased precipitation was more likely to occur at a significant level in the
southern part than the mid-northern part of the KP. The changes in this pattern persisted
significantly between April and November in the p-IOD years. During the August–October
period (autumn in Korea), a distinct pattern of decreased precipitation was observed mainly
in the central and southern KP.
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Figure 5. Evolution pattern of the seasonal precipitation in the KP in the Indian Ocean Dipole
mode during p-IOD years. Hatched polygons indicate statistically significant changes of season
precipitation at a 5% significance level. Each figure shows seasonal precipitation anomalies over
three months, from April to November.

Figure 6 presents the results from the analysis of changes in precipitation in the KP
according to the evolution pattern of the n-IOD years from April to November. Total precipi-
tation in the KP tended to decrease or increase more than usual, with−0.71% in April–June,
+7.91% in May–July, −1.39% in June–August, −4.05% in July–September, 7.89% in August–
October, and −1.07% in September–November. A pattern of significant decreased precipi-
tation in the central part of the KP was observed. However, a pattern of increased precip-
itation occurred in the southern part of the KP during May–July. For the n-IOD phases,
contrary to the p-IOD phases, the pattern of significant decreased precipitation was more
likely to appear in the northern KP, as opposed to the central or southern KP. These changes
appear to be conspicuous between April and November, when an n-IOD was observed.
During p-IOD events (Figure 7a,c), the annual/June–September precipitation in the KP was
−7.14%/−14.74% lower than the long-term average annual/June–September precipitation
(1971–2000). During n-IOD events (Figure 7b,d), the annual/June–September precipitation
in the KP slightly decreased to −1.07%/−3.31%. The composite analysis revealed that
the June–September precipitation during p-IOD events was substantially lower than that
during long-term normal years. In contrast, n-IOD events had annual/June–September
precipitation that was slightly below normal conditions.
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Figure 6. Evolution pattern of the seasonal precipitation in the KP in the Indian Ocean Dipole
mode during n-IOD years. Hatched polygons indicate statistically significant changes of season
precipitation at a 5% significance level. Each figure shows seasonal precipitation anomalies over
three months, from April to November.
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The mechanisms of major climate phenomena associated with tropical oceans, such
as ENSO and IOD, are not yet fully understood because it is still a challenge to simulate
them completely using physical climate models of the global environment. In addition, an-
alyzing and predicting climate phenomena through physical models involves considerable
difficulties. Based on the physical model results, applying them to hydrologic circulation
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systems in a specific EA region, such as KP and China, may follow the problem of scientific
reliability and understanding. Therefore, this study analyzed non-linear behavior links
with atmospheric teleconnections between hydro-meteorological variables and the climate
index using statistical models over the KP with the ocean-related major climate indices,
including ENSO and IOD. Statistical approaches have the disadvantage of making it diffi-
cult to expect significant levels of results because of the limited number of observations.
However, it is one of the most important methods that can be used to complement the
prediction results of physical models.

3.3. Nonstationarity of Seasonal Precipitation Anomalies for Different Phases of the IOD

Figures 8 and 9 show changes in the 30-year mean precipitation in five major rivers of
the KP. In each figure, Case I shows change over time in the 30-year mean precipitation
without excluding the effects of the IOD. Case II is the result of excluding the precipitation
in the p-IOD years, and Case III excludes the precipitation in the n-IOD years.
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IOD crosses the peak and enters a period of decline. The IOD showed a statistically sig-
nificant decline through the basins of the five rivers, in contrast to precipitation during 
the peak IOD season. The decline in seasonal precipitation from March–May was notice-
able in the Youngsan and Sumjin River Basins in the southern coastal region of Korea. 

Figure 8. Changes in seasonal precipitation anomalies (August–October) when the IOD peaked. In
each panel, Case I shows the changes over time in the 30-year mean precipitation without excluding
the effects of IOD separately. Case II is the result of excluding the precipitation in the positive IOD
years, and Case III shows the change in the 30-year mean precipitation, excluding the precipitation in
the n-IOD years.
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Figure 9. Changes in seasonal precipitation anomalies (March–May) of the following years when the
IOD peaked. In each panel, Case I shows the changes over time in the 30-year mean precipitation
without excluding the effects of IOD separately. Case II is the result of excluding the precipitation
in the p-IOD years, and Case III shows the change in the 30-year mean precipitation, excluding the
precipitation in the n-IOD years.

Figure 8 illustrates the seasonal precipitation from August to October when the IOD
peaked; this precipitation from August to October in all five major rivers had a statistically
significant increase (p < 0.001). This change in precipitation occurred in the Han River Basin
and was relatively abundant in the southern part of the KP. In the Youngsan River Basin,
Cases I and III showed a statistically significant increase in the 30-year mean precipitation
analysis. Although there was an increase in seasonal precipitation, this change was not
statistically significant (p > 0.05). In the Han River Basin, Cases I and II showed statistically
significant increases; in contrast, in Case III, there was an increase in seasonal precipitation,
although it was not statistically significant (p > 0.05). As shown in the GPCC composite
analysis, the p-IOD years in the Youngsan River Basin led to reduced precipitation from
the long-term normal throughout the KP. This was particularly the case in the central part
of the KP, where a precipitation reduction occurred in the Han River Basin. Notably, the
central river basins of the KP (Han and Geum River Basins) have experienced a sharp
decline in seasonal precipitation since 2013, and the southern basins have tended to shift
from increased seasonal precipitation to declining or plateauing patterns since 2007.

Figure 9 shows changes in the 30-year mean precipitation in March–May, when the
IOD crosses the peak and enters a period of decline. The IOD showed a statistically
significant decline through the basins of the five rivers, in contrast to precipitation during
the peak IOD season. The decline in seasonal precipitation from March–May was noticeable
in the Youngsan and Sumjin River Basins in the southern coastal region of Korea.

At times, the IOD co-occurs with ENSO; as such, in this study, the effects of IOD and
ENSO on seasonal precipitation changes were analyzed when the IOD peaked, and when
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the IOD and ENSO entered a period of decline. The effect of the combination of IOD and
ENSO is shown in the composite precipitation analysis (Table 1). For the p-IOD phases
in the August to October period, the pattern of significant decreases in precipitation was
more likely to appear over the entire KP. In contrast, during the p-IOD years, the entire
KP experienced precipitation that was 2.6–9.4% greater than the average precipitation in
March–May. The occurrence of p-IOD coincided with El Niño events, resulting in more
seasonal precipitation in March–May than the occurrence of only p-IODs. This occurred
more frequently with cold tongue (CT) El Niño than warm pool (WP) El Niño, resulting
in significantly greater spring precipitation across the KP. For the n-IOD years, there was
lower precipitation than usual in the Han River Basin (7.4%), followed by the Sumjin River
Basin (5.2% reduction in March–May precipitation), and the Youngsan River Basin (3.4%
reduction in March–May precipitation). When n-IOD co-occurred with La Niña, there was
slightly greater precipitation in March–May than for n-IOD in isolation. These findings
indicate that IOD events strongly influence precipitation and its sub-watersheds in the
KP. This shows a linkage of possible teleconnections and characteristic changes between
tropical Indian-Ocean-related major climactic events and local precipitation variability over
the KP.

Table 1. Changes in seasonal precipitation from the long-term normal (1966–2016) (unit: %).

River Basin
August–October March–May

p-IOD Years n-IOD Years p-IOD Years n-IOD Years p-IOD/El Niño n-IOD/La Niña

Han River −11.0 0.8 6.5 −7.4 7.0 (20.5) −1.5

Nakdong River −26.8 −2.0 2.6 2.3 13.6 (20.4) 8.9

Geum River −24.6 4.3 4.0 3.9 11.8 (22.0) −1.5

Sumjin River −26.0 5.2 3.1 −5.2 18.8 (25.1) 7.4

Youngsan River −25.9 6.0 9.4 −3.4 13.3 (20.6) 8.7

p-IOD years (1967, 1972, 1977, 1982, 1983, 1994, 1997, 2006, 2007, 2012, and 2015), n-IOD years (1971, 1974, 1975, 1981, 1989, 1992, 1993, 1996,
1998, 2010, 2014, and 2016). The numerical values in parentheses show the results of Case I, coinciding with CT El Niño.

3.4. Large-Scale Air–Sea Environment and Precipitation Variations over East Asia

Based on the p-IOD and n-IOD years defined above, a composite analysis of autumn
(August–October) SSTA in the TIO was conducted (Figure 10). During the p-IOD years,
cold SST anomaly patterns appeared in the eastern Indian Ocean, including Indonesia and
the maritime continent; warm SSTA patterns emerged in the equatorial region of the Indian
Ocean. The warm and cold SST distributions were not extensive, although strong signals
were observed in the East Indian Ocean. Conversely, although not strongly dependent on
IOD phases, there was a warm and cold SSTA distribution over large areas in the western
Indian Ocean. Furthermore, in most areas where warm and cold signals appeared, the
confidence level was greater than 95%.

Many recent studies have shown that these different SST anomaly patterns in the TIO
region may affect air changes in circulation. Moreover, they detected several teleconnection-
based significant changes in different regions of experiencing seasonal precipitation in
Northeast Asia. The large-scale physical mechanism of the developing and decaying IOD
phases in the atmosphere has not yet been clearly understood. However, there are several
reliable studies; some are diagnostic studies, while others are regional impact assessments
of the p-IOD and n-IOD [10,17–20]. After a p-IOD (n-IOD), basin-scale warming (cooling)
was referred to as the Indian Ocean Basin (IOB) mode [32]. These influences on the IOB
may affect the climate of EA in the following season.
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Figure 10. Composite anomalies of mean SST in the TIO region during positive and negative IOD
years, from August to May in the following year. NOAA Extended Reconstructed Sea Surface Tem-
perature version 5 (ERSSTv5) monthly data were used for the SSTA composite analysis; climatology
data were used for the normal years from 1956 to 2018. Dotted points indicate values over 95%
confidence based on Student’s t-test.

Figure 11 shows the composite anomalies (1981–2010 climatology) of the GPCC precip-
itation and 850 hPa wind over northeast Asia during strong IOD events, in the same way as
SSTA. During the warm boreal season, southwesterly winds from the Indian Ocean and the
South China Sea (SCS) were dominant and advected a large amount of moisture from the
Indian Ocean to EA [34]. In p-IOD (n-IOD) years, there was an anticyclonic (cyclonic) circu-
lation in the SCS. This large circulation may help to transport (prevent) moisture to EA. The
composite precipitation anomalies of p-IOD (n-IOD) years showed that they were above
(below) normal over the southern parts of China. In contrast, other parts of EA, including
the KP, experienced drier (wetter) signals than normal years (Figure 11a,b). In p-IOD years,
southern China and the SCS are mainly affected by the southwesterly winds, and this
pattern continues until the following spring. In particular, heavy precipitation occurred in
southern China during the boreal winter season; this is consistent with the findings of Qui
et al. [35]. During n-IOD years, easterly winds were observed in EA (Figure 11e–h).
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Figure 11. Composite anomalies of the GPCC precipitation and 850 hPa low-level wind anomalies
from autumn (August–September–October) to spring (March–April–May) of the following year
during IOD events over the northeast Asia region. The left (middle) panel indicates the p-IOD
(n-IOD) events, and the right panel shows the large-scale circulation differences between p-IOD and
n-IOD years. Dots denote values over 95% confidence based on Student’s t-test.

4. Conclusions

Understanding the relationship between air–sea environments and precipitation vari-
ations in EA for areas experiencing high seasonal variability and uncertainty regarding
seasonal precipitation data is critical to develop a sustainable freshwater management
system. In this study, statistical models were used to analyze non-linear behavior links
of atmospheric teleconnections between climate indices and seasonal precipitation. The
IOD mode, a major ocean-related climatic factor in the Indian Ocean, was used to analyze
long-term changes in seasonal precipitation over the EA region. The primary results are
summarized as follows:

(1) The analysis of atmospheric teleconnections was conducted using PCA and SSA
techniques. Non-linear lag correlations between climate indices and seasonal pre-
cipitation were calculated using the MI technique, and their lag-time correlations
were simulated from lag-0 to lag-11. Teleconnection-based non-linear and linear CCs
were conducted between climate indices and seasonal precipitation using LR and
KDE based on the MI results. Results from non-linear CCs were higher than those
from linear correlations, and IOD was found to directly influence the precipitation
anomaly time series over the KP. This study demonstrates a method for teleconnection-
based long-range water resource management to reduce climate uncertainty when an
abnormal SSTA occurs in the TIO region;

(2) When the IOD reached its peak (August to October), a significant decrease in seasonal
precipitation during the n-IOD period was observed throughout the KP. For the spring

46



Remote Sens. 2021, 13, 1806

period (March to May), seasonal precipitation during p-IOD years coincided with
the El Niño phenomenon, which was higher than those of only p-IOD years. These
changes occurred more frequently in the CT El Niño than in the WP El Niño years.
For the co-occurrence of n-IODs and La Niña, there was greater precipitation than
when only n-IODs occurred in isolation;

(3) The characteristics of non-stationary 30-year averaged seasonal precipitation were
detected throughout the KP. The precipitation in autumn (August to October) was
observed to increase significantly (p < 0.001) when excluding the p-IOD year across
the KP. In contrast, seasonal precipitation in the central river basins of KP had plum-
meted since 2013 and decreased in the southern basins of the KP since 2007. Spring
precipitation showed statistically significant declines across the five major rivers in the
KP when IODs peaked and entered a period of decline. The decline in seasonal pre-
cipitation from March to May was noticeable in the southern coastal regions of Korea;

(4) During p-IOD years, there were more precipitation signals than usual in the south-
ern part of China, including the SCS and the southern part of Japan, with cyclonic
circulation patterns. A high-pressure anti-cyclonic pattern was observed over eastern
China and the KP. There was a drier signal in n-IOD years than normal in the SCS and
southern China, along with a high-pressure anti-cyclonic pattern. Conversely, inland
and eastern regions of China and Japan showed wetter signals than usual, with a
cyclonic circulation pattern. However, the KP was located between the two cyclonic
circulations, and the district precipitation signal was not visible. The signal was less
dry than the p-IOD years.

The results of this diagnostic study may be utilized in decision-making processes
to minimize climate-related disasters, such as floods and droughts, through seasonal
prediction. Additionally, these results may inform the development of optimal strategies to
ensure best management practices for water use under a changing climate.
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Abstract: This study analyzed the sensitivity of rainfall patterns in South China and the Indochina
Peninsula (ICP) using statistical simulations of observational data. Quantitative changes in rainfall
patterns over the ICP were examined for both wet and dry seasons to identify hotspots sensitive
to ocean warming in the Indo-Pacific sector. The rainfall variability was amplified by combined
and/or independent effects of the El Niño–Southern Oscillation and the Indian Ocean Dipole (IOD).
During the years of El Niño and a positive phase of the IOD, rainfall is less than usual in Thailand,
Cambodia, southern Laos, and Vietnam. Conversely, during the years of La Niña and a negative
phase of the IOD, rainfall throughout the ICP is above normal, except in parts of central Laos, northern
Vietnam, and South China. This study also simulated the change of ICP rainfall in the wet and
dry seasons with intentional IOD changes and verified IOD-sensitive hotspots through quantitative
analysis. The results of this study provide a clear understanding both of the sensitivity of regional
precipitation to the IOD and of the potential future impact of statistical changes regarding the IOD in
terms of understanding regional impacts associated with precipitation in changing climates.

Keywords: rainfall variability; Indian Ocean Dipole (IOD); El Niño–Southern Oscillation (ENSO);
intentional statistical simulation

1. Introduction

Spatiotemporal variation in precipitation extremes can result from the amplification of changes in
atmosphere–ocean interactions and the intensification of the hydrological cycle on both regional and
global scales attributable to the effects of global climate change [1–6]. Changes in the magnitude and
frequency of regional rainfall are closely related to the occurrence of floods and droughts. They have
important implications not only in terms of their socioeconomic impact, but also in relation to the
management of local and/or regional hydropower, irrigation, and environmental water resources [7–9].
The occurrence of extreme precipitation, which is highly likely to continue into the future, is increasingly
regarded as an area of concern by the public because many countries have experienced such extreme
events in recent years [7,10–13]. In particular, there has been rapid increase in both the amount of
damage and the number of fatalities associated with the occurrence of extreme rainfall in developing
countries because of their vulnerable infrastructure, high density of human activities, and poor land
use practices and development ([14,15].

The El Niño–Southern Oscillation (ENSO) is known for its active and predictable short-term
behavior within the global climate system [16], characterized by irregular but periodic changes in the

Remote Sens. 2020, 12, 1458; doi:10.3390/rs12091458 www.mdpi.com/journal/remotesensing51



Remote Sens. 2020, 12, 1458

behavior of winds and sea level temperatures over the tropical eastern Pacific Ocean. Since the 2000s,
new forms of El Niño have appeared more frequently in the central Pacific [17,18]. However, little is
yet known about the causes of these new types of El Niño, some of which have been reported to have a
noticeable effect on the supply of warm seasonal freshwater and hydrological extremes in Pacific Rim
countries [5,19–22]. Research over the past two decades has identified a distinct climate anomaly in
the Indian Ocean, known as the Indian Ocean Dipole (IOD) [23–26]. The IOD is an atmosphere–ocean
coupling mode characterized by the opposition of anomalies of sea surface temperature (SST) in the
west and east of the tropical Indian Ocean [23,24,27]. A positive (negative) IOD pattern is characterized
by water warmer (cooler) than normal in the western tropical Indian Ocean (10◦ S–10◦N, 50◦–70◦E)
and water cooler (warmer) than normal in the southeastern tropical Indian Ocean (10◦ S to the equator,
90◦–110◦E). These events usually begin around May or June and they terminate rapidly in early winter
after reaching a peak between August and October [24]. Long-term climatic change has high correlation
with large-scale atmospheric teleconnections and it has been reported to be predictable in relation to
the behavior of nonlinear climate systems, particularly in terms of ocean-related climatic drivers such
as ENSO and the IOD mode [23,24]. ENSO and IOD patterns are known as leading causes of large
atmospheric change and they are related closely to seasonal variations in precipitation in the Indian
Ocean region and around the world [18,28–30].

Recent studies have suggested that the observed slowdown in the rise of global mean surface
atmospheric temperature is closely related to the considerable transport of heat from the Pacific
Ocean into the Indian Ocean via the Indonesian Throughflow [31–33]. Investigation of Indo-Pacific
thermocouples can help both to improve understanding of the regional-scale climatic variability that
is globally relevant and to diagnose quantitatively such variability in a changing climate. However,
there has been little previous quantitative research on rainfall variation across the Indochina Peninsula
(ICP) in relation to IOD phenomena and ENSO evolution. Therefore, based on historical observations,
this study undertook quantitative analysis of the changes in SST in the Indo-Pacific sector and the
associated interseasonal variation of precipitation over the ICP. The study had three primary areas of
interest: (1) the spatiotemporal changes in magnitude and frequency of precipitation during the dry
and wet seasons, (2) the relationship between the changes in weather extremes and large-scale climatic
patterns over the ICP, and (3) identification of IOD-sensitive hotspots using the intentionally biased
bootstrapping (IBB) technique based on limited historical observations.

2. Materials and Methods

2.1. Precipitation Dataset and Climate Change Indices

This study used the high-resolution (0.5◦ × 0.5◦) daily Climate Prediction Center Global Unified
Precipitation dataset for 1979–2018, which was obtained from the website of NOAA’s Earth System Research
Laboratory’s Physical Research Division (https://www.esrl.noaa.gov/psd/). The Global Precipitation
Climatology Center monthly precipitation dataset with 1.0◦ × 1.0◦ spatial resolution for the period
1948–2018, which is based on quality-controlled data from 67,200 stations worldwide [34], was also used to
identify seasonal precipitation variability over the ICP region (5◦–25◦N, 90◦–115◦E) (Figure 1). To identify
changes in the frequency and intensity of rainfall, six major climate change indices [35], based on the daily
Climate Prediction Center data from 1979–2018, were analyzed for both the wet season (May–October)
and the dry season (November–April). These indices included the seasonal total precipitation (PRCPTOT)
on wet days, seasonal total of the 95th percentile of precipitation (R95pTOT) on wet days (≥1.0 mm),
seasonal maximum 1-day precipitation (RX1day), simple precipitation intensity index (SDII) with a daily
precipitation amount on wet days of ≥1.0 mm, maximum number of consecutive dry days (CDD) with a
daily precipitation amount of <1.0 mm, and maximum number of consecutive wet days (CWD) with a
daily precipitation amount of ≥1.0 mm. Wet and dry days were calculated separately for both the wet
season (May–October) and the dry season (November–April).
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Figure 1. Map of the Indochina Peninsula (5◦–25◦N, 90◦–115◦E).

2.2. Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO)

The monthly SST anomaly (SSTA) from NOAA’s Extended Reconstructed Sea Surface Temperature
(ERSST) dataset v5 in the Tropical Indian Ocean (TIO) was used to calculate the IOD mode index.
This is defined as the SSTA difference between the western (10◦ S–10◦N, 50◦–70◦E) and southeastern
(10◦S to the equator, 90◦–110◦E) regions of the TIO [24]. From 1948–2017, a 3-month running average
was applied to the IOD mode index data (August–September–October), which is the peak phase
period, with ±1 SD to determine the years with positive and negative modes of the IOD (Figure 2).
To characterize different types of ENSO event, monthly Niño3 (5◦ S–5◦N, 150◦E–90◦W) and Niño4
(5◦S–5◦N, 160◦E–150◦W) data for the period 1948–2018 were used for El Niño development phases
(December–January–February).
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Figure 2. Dipole mode in the tropical Indian Ocean (TIO) and Niño region in the Pacific Ocean.
The Indian Ocean Dipole (IOD) index is defined based on the sea surface temperature anomaly difference
between the western (10◦ S–10◦N, 50◦–70◦E) and southeastern (10◦S to the equator, 90◦–110◦E) regions
of the TIO shown in the upper panel. In the lower panel, the IOD time series during 1948–2017 is
shown by the solid line, and the ±1 SD of the IOD is marked by dotted lines.

In this study, the pattern of El Niño was divided into two groups depending on where the peak
and persistent anomalies in SST occurred in the tropical Pacific: (1) Eastern Pacific (EP), El Niño
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occurring in the EP; and (2) Central Pacific (CP), El Niño emerging in the CP. This study employed two
new indices (Equation (1)) to identify the two types of El Niño events through a simple transformation
of the Niño3 and Niño4 indices, as proposed by Ren and Jin [36]:

NCT = N3 − αN4

NWP = N4 − αN3,
α =

{
0.4, N3N4 > 0
0, otherwise.

(1)

Here, N3 and N4 indicate the Niño3 and Niño4 indices, respectively.
Assessment of the relative impacts of the IOD and ENSO on rainfall across the ICP was based

mainly on composite analyses. During the period 1979–2018, the effects of ENSO and the IOD were
evaluated in terms of rainfall across the ICP during both the wet season (May–October) and the dry
season (November–April).

2.3. Trend Detection

A nonparametric Mann–Kendall test is commonly used to detect a monotonic pattern in a
time series of climate data based on the null hypothesis that the data are independent and sorted
randomly [37,38]. The null hypothesis H0 is random in the order of the sample data (Xi, i = 1, 2..., n)
and it has no trend, whereas the alternative hypothesis H1 represents the monotonous tendency of X.
The S statistic for Kendall’s tau is calculated as follows:

S = n−1_
i=1

n_
j=i+1

sgn
(
Xj −Xi

)
(2)

and

sgn(_) =



1 if _ > 0
0 if _ = 0
−1 if _ < 0

. (3)

The S statistic is calculated using the following mean and variance:

E(S) = 0, (4)

V(S) =
n(n− 1)(2n + 5) − –n

m=1tmm(m− 1)(2m + 5)

18
(5)

where tm measures the ties of extent m. The standardized test statistic Z is estimated as follows:

Z =



S−1√
V(S)

S > 0

0 S = 0
S+1√
V(S)

S < 0
. (6)

The existence of autocorrelation in a dataset affects the probability of detecting a trend when
it does not exist and vice versa, but this is often ignored. Thus, the modified nonparametric trend
test developed by Hamed and Rao [39] was applied in this study. The corrected Z value is derived
as follows:

Z =



S−1√
V∗(S)

S > 0

0 S = 0
S+1√
V∗(S)

S < 0
(7)

where
V∗(S) = V(S) ∗ n

n∗S
(8)
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n
n∗S

= 1 +
2

n(n− 1)(n− 2)
∗ n−1_

i=1
(n− i)(n− i− 1)(n− i− 2)_S(i) (9)

and where _S(i) is an autocorrelation function of the rank with respect to the observations. The sign
of Z represents the trend direction, and the magnitude of Z is associated with the significance level,
where |Z| > 1.64 for the 10% significance level and |Z| > 1.96 for the 5% significance level.

2.4. Intentionally Biased Bootstrapping Method

Bootstrapping analysis is a statistical method that can generate replicated datasets from source
data, and it can evaluate the variability of their quantiles without performing separate analytical
calculations [40]. However, the intentionally biased bootstrapping (IBB) technique applied in this
study is a method that allows assessment of the relative effects of a response variable by deliberately
increasing or decreasing the mean of the explanatory variable to a certain level while resampling it
with the response variable [41].

Figure 3 shows the IBB resampling process applied in this study, and a brief description of the IBB
analysis process is given below.
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Figure 3. Procedure of the intentionally biased bootstrapping (IBB) resample analysis applied in
this study.

Among n observations xi (i = 1, 2, 3, . . . , n), suppose that the mean of the generated data is
deliberately increased or decreased by ∆µ for resampling of the observations with bootstrapping. As a
result, high (low) values are likely to be resampled and low (high) values could be less likely to be
selected. Thus, IBB can be obtained by allocating different weights Si,n depending on the following
observation values (Equation (10)):

Si,n = i/n. (10)

The weight Si,n assigned after scaling and adjustment contributes to the probability of selection
for the data observed in the IBB procedure. The average of the resampled data can be expressed as in
Equation (11):

µ̃ =
1
ψ

∑n

i=1
Si,nxi (11)
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where xi represents the i-th incremental value and ψ =
∑n

i=1 Si,n. The average amount of increase or
decrease ∆µ is shown in Equation (12):

∆µ =
1
ψ

∑n

i=1
Si,nxi − 1

n

∑n

i=1
xi. (12)

To obtain another value of ∆µ, the weights can be regeneralized in the order of the weight sequence
(r); thus, ∆µ̃(r) is derived as follows:

∆µ̃(r) = µ̃(r) − µ̂ =
1
ψr

∑n

i=1
sr

i,nxi − 1
n

∑n

i=1
xi. (13)

If the average value of increase or decrease is given as ∆µ, then the weight “r” can be calculated
accordingly. In this study, the selection of the weight sequence was performed using a Self-Organizing
Migrating Algorithm with the objective function to minimize [∆µ− ∆µ̃(r)]2. This approach follows a
past study of extreme droughts during spring (March–May) in the Indochina peninsula [42]; however,
no climate change indices for both the wet season (May–October) and the dry season (November–April)
were integrated in that study, taking into account both the dipole mode in the tropical Indian Ocean
and SST warming in the Pacific Ocean. In addition, the IBB technique was employed to generate
resampled datasets for the IOD and the response to the intensity and frequency of rainfall in order to
identify IOD-sensitive hotspots over the ICP. The statistical significance of the analysis results was
assessed using the significance level of the 95th percentile.

3. Results

3.1. Seasonal Precipitation Patterns across the ICP

The ICP is a region in which monsoon rains occur in different seasons in association with seasonal
winds and mountain areas. Geographically, the ICP has the Arakan Mountains in the west, the
Bilauktung Mountains and the Dawna Mountains in the center, and the Annamese Mountains in
the east. Meteorologically, the ICP is divided into three monsoon periods: the southwest monsoon
during June–November, southeast monsoon during September–November, and northeast monsoon
during November–February. This study considered the wet season (May–October) and the dry
season (November–April) to identify the potential impact on regional rainfall associated with
atmosphere–ocean feedback in the Indian and Pacific oceans.

Figure 4 shows the seasonal average precipitation during the wet and dry seasons across the
ICP region during 1979–2018. The total precipitation during the wet season across the ICP is about
1000–1500 mm. In addition, it has been confirmed that precipitation variability is dependent on specific
regions (Figure 4a). The precipitation variability was found to differ significantly between inland
(<1000 mm) and coastal areas (>2000 mm). Precipitation on the western coast of Cambodia, the coast
of western Thailand, and Myanmar during June–November is attributable to the influence of the
southwest and southeast monsoons. Moreover, a clear difference in precipitation is evident between
eastern and western parts of the Arakan Mountains in Myanmar. As water vapor from Bangorman
decreases over the mountains, the Arakan Mountains show an arid climate to the east and a pattern of
strong precipitation to the west.

During the dry season, total precipitation across the ICP is about 150–200 mm, indicating that
rainfall variability is not significantly dependent on specific regions (Figure 4b). In particular, in the dry
season, because of the influence of the northeast monsoon during November–February, high rainfall
is received in central coastal areas of Vietnam, e.g., near the city of Danang. Similarly, in the case
of Myanmar, eastern parts are dry because of the influence of the Arakan Mountains. The climatic
characteristics of the ICP are distinctive not only because of the effects of monsoons and mountain
areas, but also because of the characteristics of local areas and because of specific temporal effects. The
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precipitation patterns of the ICP are likely to change according to the characteristics of the wet and dry
seasons, as well as because of the influence of ocean-related climate factors (e.g., the IOD and ENSO).Remote Sens. 2020, 12, 1458 7 of 18 
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3.2. Spatiotemporal Variation in Precipitation over the ICP

Figures 5 and 6 illustrate the long-term trend of precipitation over the ICP during the period
1979–2018 for the wet and dry seasons, respectively. They show the results of the six major climate
change indices that represent the magnitude and frequency of precipitation. For each figure, the
direction of the trend is displayed in blue (increase) and red (decrease). Figure 5a,b and Figure 6a,b
show the long-term trends of PRCPTOT and R95pTOT. These seasonal indices can be used to assess
total precipitation. It can be seen that the characteristics of their spatial distribution are similar. During
the wet season, there is a noticeable decrease in precipitation at the 5–10% significance level in northern
Cambodia, some parts of Laos, and southern Thailand. In addition, it can be seen that there is a marked
trend of increase at the 5–10% significance level in northwestern Myanmar, parts of western Thailand,
central Vietnam, and southern parts of China (Figure 5a,b).

During the dry season, there is a noticeable increase in precipitation at the 5–10% significance level
along eastern and southern coastal areas of the ICP (i.e., Vietnam and Cambodia) and some southern
coastal regions of Thailand (Figure 6a,b). The R95pTOT climate index also shows a trend of increase
in precipitation to the west of the Arakan Mountains in Myanmar (Figure 6b). Therefore, long-term
changes in the pattern of precipitation across the ICP during the wet season show a trend of decrease
(increase) in central inland areas (some coastal areas). During the dry season, there is a general trend of
increase in precipitation across the ICP. Notably, the trend of increase in precipitation in southeastern
coastal areas appears significant.

Figures 5c,d and 6c,d illustrate the long-term trends in RX1day and SDII. The RX1day and SDII
climate indices can be used to assess rainfall intensity. It can be seen that the characteristics of the spatial
distribution of the two indices are similar. Moreover, the characteristics of their spatial distribution are
also similar to PRCPTOT and R95pTOT. It can be seen that during the rainy season the intensity of
rainfall in central and northern Myanmar, central and southern Vietnam, and southern China increases,
whereas the rainfall intensity decreases in Laos, Cambodia, northeastern Myanmar, and South Vietnam.
During the dry season, rainfall intensity generally increases across the ICP, although it shows a clear
pattern of decrease in Laos, as in the wet season.
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Figure 5. Long-term trend in seasonal precipitation for the wet season (May–October) over the ICP 
during 1979–2018. (a–f) show the analysis results of the six major climate change indices that reflect 
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displayed in blue and red, respectively. The magnitude of Z is associated with the significance level, 
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Figure 5. Long-term trend in seasonal precipitation for the wet season (May–October) over the ICP
during 1979–2018. (a–f) show the analysis results of the six major climate change indices that reflect the
magnitude and frequency of precipitation. In each panel, positive and negative trends are displayed in
blue and red, respectively. The magnitude of Z is associated with the significance level, i.e., |Z| > 1.64 is
for the 10% significance level and |Z| > 1.96 is for the 5% significance level.

Figures 5e,f and 6e,f show the long-term trends in CDD and CWD. The CDD and CWD indices
can be used in assessment of droughts and floods, respectively. Therefore, it is unsurprising that the
CDD and CWD indices exhibit opposite spatial distribution characteristics. During the rainy season,
the CDD value across the ICP largely tends to increase, although it decreases in some coastal areas,
e.g., Vietnam. The CWD index shows the reverse tendency.
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Figure 6. Long-term trend in seasonal precipitation for the dry season (November–April) over the ICP
during 1979–2018. (a–f) show the analysis results of the six major climate change indices that reflect the
magnitude and frequency of precipitation. In each panel, positive and negative trends are displayed in
blue and red, respectively. The magnitude of Z is associated with the significance level, i.e., |Z| > 1.64 is
for the 10% significance level and |Z| > 1.96 is for the 5% significance level.

During the dry season, an increase (decrease) of the CDD (CWD) index can be clearly observed at
the 5–10% significance level (Figure 6e,f). The CDD index increases along the southeast coast of the
ICP, e.g., in areas of Vietnam, Cambodia, and southern Thailand, whereas the CWD index exhibits the
opposite trend. An increase (decrease) in the CDD index suggests that drought is more (less) likely to
occur, while a decrease (increase) in the CWD index means that the occurrence of drought is less (more)
likely. Therefore, during the rainy season, floods are expected to increase along the southeastern coast
of the ICP (e.g., in Vietnam, Cambodia, and Thailand), while drought is more likely to occur during
the dry season.
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3.3. Precipitation Variability Associated With the IOD and ENSO

The IOD, Asian monsoon, and other regional climatological patterns can lead to local or global
climate change, particularly in Indian Ocean Rim countries, which can cause severe flooding or
droughts depending on IOD variability [26]. Composite analysis can clarify the role of the Southeast
Asian Summer Monsoon in precipitation variability across the ICP region associated with years of
strong IOD and ENSO after identifying that tropical climate phenomena are the main factors that
influence precipitation variability over the ICP during the wet and dry seasons. However, this role
differs depending on the combination of the two climate phenomena and on the season.

Figure 7 shows the results of composite rainfall anomalies (shown as a percentage relative to
normal) over the ICP during the wet and dry seasons in relation to the IOD and ENSO. The patterns
of rainfall anomalies indicate significant difference between positive and negative IOD years. For
positive IOD years, the wet season rainfall (Figure 7a) shows a decrease of <20% in southern parts of
the ICP, whereas there is a marked increase in rainfall centered over the Arakan Mountains in western
Myanmar. It can be seen that the amount of rainfall received during the dry season (Figure 7c) is
similar to that in the wet season, but there is 40–50% less rainfall than usual in certain mainland regions
of Southeast Asia, especially Yangon and Mawlamyine in Myanmar and in eastern Cambodia.

In negative IOD years, intense positive anomalies of rainfall can be seen in central Cambodia and
southern parts of Vietnam. A slight strong-pitched anomaly pattern is evident during the wet season
(Figure 7b) around the coastline of both Bangladesh and Myanmar, whereas weak-pitched positive
anomalies (about 10–15% relative to the long-term average) are found throughout the ICP. However,
changes in rainfall pattern are not evident during the dry season (Figure 7d), and although the amount
varies depending on region, rainfall is generally >30–50% above the long-term average. As in the wet
season, the dry season also shows relatively strong positive rainfall patterns with positive anomalies of
>80–100% in Cambodia and both central and southern Vietnam.

Sometimes droughts and flooding are likely to converge because of remote connections during
IOD–ENSO periods, and they can have a significant impact on the modulation of the large-scale oceanic
and atmospheric environment, especially in the Indian Ocean and in Pacific Rim countries [25,26,43].
Thus, consideration of both combined and independent effects of ENSO and the IOD on seasonal
precipitation variability can provide improved predictive expertise, and reveal new insight into tropical
climate change and global warming impacts [28].

Figure 8 shows composite rainfall anomalies (November–April) during positive and negative IOD
years that coincided with ENSO. During positive IOD and El Niño years (Figure 8a), there is less rainfall
than usual across Thailand, Cambodia, southern Laos, and Vietnam. In particular, southern regions of
Myanmar (from Yangon to Mawlamyine) that border the Andaman Sea show a distinct decrease in
rainfall by more than 50% in comparison with the long-term mean (1981–2010). However, in contrast,
there is 20–40% more rainfall than usual in northern parts of the ICP, e.g., northern Myanmar (around
97E, 22N), northeastern parts of Laos (around 102E, 21N), and Vietnam. Furthermore, in Guangzhou
in China, rainfall is up to 60% higher in comparison with average years. These rainfall signals are
stronger in WP El Niño years than in CT El Niño years (figures not shown). During negative IOD and
La Niña years (Figure 8b), rainfall above the long-term average is observed throughout the ICP, except
for parts of central Laos (around 105E, 17N) and northern Vietnam (around 107E, 21N). The pattern of
increased rainfall appears strongly throughout Myanmar and regions around Ho Chi Minh City in
Vietnam. However, in the region adjacent to India and Bangladesh, as well as the Shenzhen area of
China, strong negative anomalies are evident.
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Figure 7. Composite of seasonal rainfall anomaly (%) during positive and negative IOD years: (a) rainfall
anomaly in wet season during positive IOD years, (b) rainfall anomaly in wet season during negative
IOD years, (c) rainfall anomaly in dry season during positive IOD years, and (d) rainfall anomaly in
dry season during negative IOD years. Positive (negative) values show increasing (decreasing) rainfall
departure from the long-term average (1981–2010).

3.4. Identification of IOD-Sensitive Hotspots through IBB Simulations

Section 3.3 discussed the significant impact on rainfall anomalies in the ICP that are attributable to
the combined or independent effects of ENSO and the IOD. In particular, both positive IOD events with El
Niño and negative IOD events with La Niña interact in modulating rainfall anomalies over the ICP. The
IOD and ENSO are strongly correlated, and their variations are mutually forced or triggered [43,44]. For
the period of 1979–2018, the correlation between the peak phase of the IOD and the two types of El Niño
index proposed by Ren and Jin [36] was analyzed. The results showed that the IOD has a strong positive
correlation with the CT El Niño (NCT) (ρ = 0.4850, p-value = 0.0018). However, the IOD also has positive
correlation with the WP El Niño (NWP), but not at a statistically significant level (ρ = 0.110, p-value =

0.5013). These results are also reflected in the results of the IBB simulation (Figure 9). Figure 9 shows
the results of 1000 simulations for the NCT and NWP indices performed by applying the IBB technique
to the IOD index based on historical observations for the period of 1979–2017. By applying a +1 SD
increase of the IOD, the mean difference between the observation of NCT and simulated NCT shows
a statistically significant increase at the 95% significance level (diff. = 0.392, Interquartile range (IQR)
= 0.228). However, the difference in the mean value of the NWP index, although increased slightly, is
not statistically significant (diff. = 0.097, IQR = 0.094). By applying a −1 SD decrease of the IOD, the
simulation results show changes similar to the case with a +1 SD increase of the IOD (NCT: diff. = 0.360,
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IQR = 0.108, NWP: diff. = 0.088, IQR = 0.098). Therefore, for changes in the IOD, the linear increase (or
decrease) in the NCT index is more pronounced than the change in the NWP index.
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Figure 8. Composite rainfall anomaly in dry season (November–April) associated with the IOD and El
Niño–Southern Oscillation (ENSO): (a) rainfall anomaly during years with positive IOD and El Niño,
and (b) rainfall anomaly during years with negative IOD and La Niña. Positive (negative) values show
increasing (decreasing) rainfall departure from the long-term average (1981–2010).
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Figure 9. Mean differences of the two types of El Niño with ±1 SD of the IOD. In the main panel,
contours (5th, lower quadrant, median, upper volatile, and 95th level) summarize the IOD index and
CT El Niño (NCT) or WP El Niño (NWP) index using the intentionally biased bootstrapping model.
Both left and right panels deliberately apply ±1 SD of the IOD to show results of 1000 simulations for
the NCT and NWP indices. Red dots in each panel represent the average value of the observations.

The spatiotemporal connection between SST and winds shows strong coupling through
precipitation and ocean dynamics [24]. This dipole mode accounts for about 12% of SST variability in
the Indian Ocean, and its duration of activity can greatly affect both the intensity and the frequency
of rainfall in the Indian Ocean Rim countries, including the ICP. Based on statistical simulations of
historical observations (1979–2018), Figures 10 and 11 show rainfall variation and the most sensitive
hotspot areas in the wet and dry seasons of the ICP attributable to IOD changes.
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Figure 10. Spatial distributions of the percentage changes in major precipitation indices for the wet
season (May–October) over the ICP region for intentional increases or decreases by 0.25 SD of the
IOD index using the intentionally biased bootstrapping simulation. For each panel, the statistically
significant area of change at the 95% significance level is shown by an “x” symbol.
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Figure 11. Same as Figure 10, but for the dry season (November–April) over the ICP region.
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The spatial distribution of differences in PRCPTOT is shown in Figure 10, given the condition of
increases or decreases by 0.25 SD of the IOD index in the wet season. For a +1 SD increase of the IOD,
PRCPTOT is >90% higher than usual throughout Myanmar, and weak positive anomaly patterns are
evident in southwestern China. In contrast, a pattern of decrease of PRCPTOT of 15–20% less than
the long-term average is evident in Cambodia and southern Vietnam, i.e., in areas of the downstream
reaches of the Mekong River. However, no statistically significant changes occur in the central ICP
region, except in some parts of central Laos and Thailand. This spatial distribution of rainfall anomaly
is also found for the RX1day index, although occasional patterns of increase or decrease are evident and
the spatial extent is reduced. In addition, throughout Myanmar, the CDD index is decreased by >25%
in comparison with the long-term average year, while the CWD index is increased by 35–50%. For the
CDD index, a statistically significant pattern of decrease is found across Vietnam, Cambodia, and Laos.
The most significant changes in the CWD index are across Myanmar (increase of 35–50%), southern
Cambodia, and the southeast coast of Vietnam (decrease of 15–20%). The other ICP regions generally
show a pattern of weak increase in terms of CWD. For a −1 SD decrease of the IOD, PRCPTOT, RX1day,
and CWD all show distinct patterns of increase in the Laos and Vietnam basins, while the CDD index
shows a predominant pattern of decrease, except in certain areas. Analysis indicates that other regions
have a reverse pattern compared with the case of the +1 SD increase of the IOD. Consequently, it is
determined that changes in rainfall during the wet season in the ICP region are sensitive to changes in
the IOD.

Given the condition of increases or decreases by 0.25 SD of the IOD index for the dry season, the
spatial distribution of the rainfall indices is shown in Figure 11. For a decrease of −1 SD of the IOD,
there is more rainfall (PRCPTOT and RX1day) than usual throughout the ICP, especially in Laos and
Vietnam. For a +1 SD increase of the IOD, negative anomaly patterns of PRCPTOT are dominant in
southern Vietnam, eastern Cambodia, and northeastern Thailand, while weak patterns of positive
anomaly are evident in areas of Myanmar and South China. Compared with the changes in the rainfall
indices during the wet season, changes in the rainfall indices are intensified and the spatial influence is
more extensive. However, for the CDD and CWD indices, either the positive anomaly patterns are
weakened or the negative anomaly patterns appear for a +1 SD increase of the IOD. Especially for
the CWD index, a pattern of decrease by more than 10–20% compared with the long-term average is
found in Thailand, whereas the Myanmar region shows a pattern of increase of 15–25%. In this study,
we simulated the changes in both wet and dry season rainfall across the ICP according to intentional
IOD changes, and IOD-sensitive hotspots were verified through quantitative analysis. The findings
of this study could help elucidate the long-term changes in rainfall expected in the ICP region in a
changing climate.

4. Summary and Conclusions

This study analyzed changes in the magnitude and frequency of precipitation during the dry and
wet seasons over the ICP, taking into account both the dipole mode in the tropical Indian Ocean and
SST warming in the Pacific Ocean. The main results are summarized as follows.

1. According to analyses of the long-term trend in seasonal rainfall across the ICP during 1979–2018,
rainfall showed significant decreases in northern Cambodia, parts of Laos, and southern
Thailand during the wet season (May–October). Moreover, significant increases were evident
in northwestern Myanmar, some parts of western Thailand, central Vietnam, and southern
China. During the dry season (November–April), PRCPTOT rose noticeably in eastern and
southern coastal areas of the ICP (i.e., Vietnam and Cambodia) and some southern coastal regions
of Thailand.

2. During the wet season, the CDD index increased or decreased in some coastal areas such as
Vietnam. However, during the dry season, increases in CDD and decreases in CWD were evident
in the ICP. In particular, a pattern of decline in CWD dominated southeastern coastal areas of the
ICP, including Vietnam, Cambodia, and southern Thailand.
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3. The IOD showed strong positive correlation with the CT El Niño. However, although the IOD
exhibited positive correlation with the WP El Niño, the relationship was not statistically significant.
The variability of rainfall pattern and amount across the ICP was confirmed to be amplified by
combined and independent effects of ENSO and the IOD. During years of positive IOD and
El Niño, there was less rainfall than usual throughout Thailand and Cambodia, southern Laos,
and Vietnam. In particular, the southern part of Myanmar, which borders the Andaman Sea,
showed a decrease in regional rainfall of >50% in comparison with the long-term average. In
contrast, northern parts of India and China, including Myanmar, northeastern Laos, and Vietnam,
received 20–40% more rainfall than usual. Years with a negative IOD mode and La Niña showed
rainfall above the long-term average across the ICP, except for certain parts, e.g., Central Laos
and northern Vietnam.

4. Through application of the IBB technique, this study simulated the change of rainfall pattern
and amount across the ICP for the wet and dry seasons according to intentional IOD changes,
and IOD-sensitive hotspots were verified through quantitative analysis. For the wet season, a
+1 SD increase of the IOD resulted in >90% more PRCPTOT than usual across Myanmar in the
northwestern ICP. Conversely, in Cambodia and southern Vietnam, rainfall patterns were 15–20%
less than the long-term average in the region of the lower Mekong River. In addition, the CDD
index decreased throughout Myanmar by >25% compared with the long-term average. The most
significant change in the CWD index was in Myanmar, i.e., a 35–50% increase. However, a pattern
of decrease appeared across the southeastern coast of the ICP in southern Cambodia and Vietnam.
For a +1 SD increase of the IOD in the dry season, negative anomaly patterns of PRCPTOT were
found to be dominant in South Vietnam, eastern Cambodia, and northeastern Thailand, and
more rainfall than usual occurred throughout the ICP, especially in Laos and Vietnam, when
considering a −1 SD decrease of the IOD.

Although the results of this study are based on limited observations, they provide a clear
perspective on the sensitivity of local precipitation to atmosphere–ocean interactions, and they reveal
the potential future impact of statistical changes to the IOD, improving our understanding of the
associated regional impact on precipitation under the effects of climate change.
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Abstract: This study comprehensively evaluates eight satellite-based precipitation datasets in
streamflow simulations on a monsoon-climate watershed in China. Two mutually independent
datasets—one dense-gauge and one gauge-interpolated dataset—are used as references because
commonly used gauge-interpolated datasets may be biased and unable to reflect the real performance
of satellite-based precipitation due to sparse networks. The dense-gauge dataset includes a
substantial number of gauges, which can better represent the spatial variability of precipitation.
Eight satellite-based precipitation datasets include two raw satellite datasets, Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate
Prediction Center MORPHing raw satellite dataset (CMORPH RAW); four satellite-gauge datasets,
Tropical Rainfall Measuring Mission 3B42 (TRMM), PERSIANN Climate Data Record (PERSIANN
CDR), CMORPH bias-corrected (CMORPH CRT), and gauge blended datasets (CMORPH BLD); and
two satellite-reanalysis-gauge datasets, Multi-Source Weighted-Ensemble Precipitation (MSWEP)
and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS). The uncertainty related
to hydrologic model physics is investigated using two different hydrological models. A set of
statistical indices is utilized to comprehensively evaluate the precipitation datasets from different
perspectives, including detection, systematic, random errors, and precision for simulating extreme
precipitation. Results show that CMORPH BLD and MSWEP generally perform better than other
datasets. In terms of hydrological simulations, all satellite-based datasets show significant dampening
effects for the random error during the transformation process from precipitation to runoff; however,
these effects cannot hold for the systematic error. Even though different hydrological models indeed
introduce uncertainties to the simulated hydrological processes, the relative hydrological performance
of the satellite-based datasets is consistent in both models. Namely, CMORPH BLD performs the
best, which is followed by MSWEP, CMORPH CRT, and TRMM. PERSIANN CDR and CHIRPS
perform moderately well, and two raw satellite datasets are not recommended as proxies of gauged
observations for their worse performances.

Keywords: satellite-based precipitation; hydrological modeling; error propagation; monsoon-
climate watershed
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1. Introduction

Precipitation is one of the most important meteorological variables in the hydrologic cycle and
is often used as the fundamental input to environmental models for agricultural, meteorological,
and hydrological studies [1]. However, precipitation measured by pluviometers usually suffers from
many problems, such as sparse station distribution at high altitudes or in rural areas, missing data,
and short time periods [2]. Meanwhile, artificial errors in measurements are inevitable [3]. In addition,
surface observational networks have indicated decreasing coverages and spatial densities, which may
limit the future capacity to measure precipitation for many parts of the world [4,5].

As a proxy for gauged precipitation, gridded precipitation with high spatial and temporal coverage
has been developed, which can be generally classified into three categories based on different data
sources: (1) gauge-interpolated, (2) reanalysis-based, and (3) satellite-based precipitation [6–10].

Gauge-interpolated precipitation, such as the Global Precipitation Climatology Centre (GPCC) [11]
and Climate Research Unit (CRU) [12], is generated by interpolating gauged data to grids with different
spatial resolutions [13,14]. Thiessen polygons, Kriging, and inverse distance weighting (IDW) are the
most widely used interpolation algorithms [2,15]. More sophisticated interpolation methods take extra
geographical or physical information into consideration, such as topography and atmospheric lapse
rate [13,14].

Reanalysis-based precipitation is produced by assimilating various observations (e.g., weather
stations, satellites, ships, and buoys) into a climate model to generate various meteorological variables
with a consistent spatial and temporal resolution [4,16–18]. The reliability of reanalysis-based
precipitation relies on assimilated observations, climate model parameters, and the interactions
between models and observations. Several reanalysis datasets have been made freely available,
such as the National Centers for Environmental Prediction/National Center for Atmosphere Research
Reanalysis (NCEP/NCAR) [19], the European Centre for Medium-Range Weather Forecasts Reanalysis
(ERA) [20], and the NCEP Climate Forest System Reanalysis (CFSR) [21].

Satellite-based precipitation, with a global and continuous temporal scale, estimates precipitation
using polar-orbiting passive microwave (PMW) sensors on low-Earth-orbiting satellites and
geosynchronous infrared (IR) sensors on geostationary satellites [22–24]. PMW sensors could observe
the emissions and lower-atmosphere scattering signals of rainfall, snow, and ice contents, while IR
sensors indirectly measure the lower-level rainfall rate by collecting cloud-top temperature and
cloud height [25]. Usually, in regions with gauges, satellite-based datasets are modified by gauged
measurements to offset their limited abilities [26]. Over the past 30 years, a number of precipitation
datasets that combine gauges, PMW, and IR data to produce precipitation estimates are available with
the spatial resolution on 0.25 latitude/longitude or finer. These include monthly Global Precipitation
Climatology Project (GPCP) [27], daily Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks (PERSIANN) [28], Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) [29], and Global Precipitation Measurement (GPM) [30].

Although gauge-interpolated and reanalysis-based precipitation may be more appropriate for
climate change studies for their long-term data records, it is often difficult to verify their reliabilities
in regions with sparse weather station networks [31,32]. Satellite-based datasets could estimate
precipitation with a global and homogeneous spatial coverage; this spatial continuity could provide
valuable information for hydrological modeling, especially for ungauged watersheds. In recent
years, a few global-scale studies are revealing that the performances of satellite-based datasets differ
regionally and temporally and correlate to topography, seasonality, and climatology [6,23,33,34].
However, the lack of global and sufficiently dense precipitation references makes these results of
satellite-based precipitation still unreliable and inadequate for operational purposes, such as flood
forecasting [35]. Therefore, a regional ground validation of satellite-based precipitation datasets
based on dense gauges references, especially for their hydrological performances, still requires to
be conducted [36–44]. Although most studies revealed the potential of satellite-based precipitation
datasets for hydrological simulations, they also report error sources during the hydrological modeling
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of satellite-based datasets. Generally, two main sources are (1) the error of the satellite-based datasets
and (2) the error propagation of satellite-based datasets through the hydrological model [45].

The monsoon regions, having an obvious seasonal variation of precipitation, have always been
a research focus of satellite-based precipitation datasets [46–52]. For example, Prakash et al. [51]
compared four satellite-based precipitation datasets (Climate Prediction Center MORPHing-raw
satellite dataset (CMORPH RAW), Naval Research Laboratory (NRL)-blended, PERSIANN, and TRMM
3B42) with the gauged-interpolated dataset in one Indian monsoon region with respect to their abilities
to simulate the seasonal rainfall and the rainfall detection abilities over regions with diverse topography.
The results show that although all four datasets underestimate the summer seasonal mean rainfall
(June to September), TRMM 3B42 generally performs better than the other three datasets mainly
due to its incorporation of rain gauge observations. Mou et al. [49] compared five satellite-based
precipitation datasets (TRMM 3B42, its real-time dataset TRMM 3B42RT, GPCP-1DD, PERSIANN
Climate Data Record (PERSIANN CDR), and CMORPH RAW) and a gauge-interpolated dataset (Asian
Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources
(APHRODITE)) at daily, monthly, seasonal, and annual scales with rain gauges over Malaysia. It
was found that TRMM 3B42 and APHRODITE performed the best, while PERSIANN CDR slightly
overestimated observed precipitation, and the other three satellite-based datasets showed the worst
performance. In addition, all six precipitation datasets show better performances in southern Peninsular
Malaysia, which receives higher precipitation, while worse performances appear in the western and
dryer Peninsular Malaysia.

There also have been some studies executed in the monsoon regions aiming to evaluate the
applicability of satellite-based datasets in hydrologic simulations [53–60]. For example, Tong et al. [58]
evaluated four satellite-based datasets (TRMM 3B42, TRMM 3B42RT, CMORPH RAW, and PERSIANN)
through comparing with the gauged China Meteorological Administration dataset (CMA) in streamflow
simulations over the Tibetan Plateau based on the distributed Variable Infiltration Capacity (VIC)
hydrological model. It was found that the error sources of these datasets are systematically different
in different seasons. Furthermore, TRMM 3B42 shows comparable performance to CMA for both
monthly and daily streamflow simulations due to its monthly gauge adjustment. However, the other
three satellite-based datasets only show potentials or little capability for streamflow simulations over
TP. In addition, five satellite-based precipitation datasets (TRMM 3B42, TRMM 3B42RT, CMORPH
RAW, CMORPH CRT, and CMORPH BLD) were used by Wang et al. [59] to simulate the daily
streamflow by driving the distributed Vegetation Interface Processes (VIP) model over two river basins
in the southeastern Tibetan Plateau. The results show that these satellite-based datasets perform
better in summer than other seasons, and CMORPH BLD performs the best for runoff simulations.
TRMM 3B42 and CMORPH CRT show much better performance than their uncorrected counterparts:
TRMM 3B42RT and CMORPH RAW.

From the previous studies, we found that first, there are relatively few evaluations focusing on
satellite-based precipitation datasets in the monsoon regions of southern China, which is a flood-prone
area. Both the flood predictions and water resource management are mainly based on hydrological
simulations. Moreover, most existing studies in the monsoon characterized regions only compare
several commonly used satellite-based datasets (such as TRMM and CMORPH serial datasets) and some
promising recently released precipitation datasets, such as PERSIANN CDR, Climate Hazards Group
InfraRed Precipitation with Stations V2.0 (CHIRPS), and Multi-Source Weighted-Ensemble Precipitation
V2.0 (MSWEP) have not been thoroughly evaluated. Second, it is crucial to ensure that the gauged
benchmark reference is sufficient to reflect the real performance of satellite-based precipitation when
testing satellite-based datasets. However, many studies compared the satellite-based datasets based on
the sparse-gauge datasets or gridded datasets generating from sparse gauges, which may not accurately
reflect the spatial characteristic of precipitation [47,49,54,59,60]. Furthermore, when evaluating the
accuracies of satellite-based datasets, the gauged references in some studies are not independent of
the satellite-based datasets, which uses the gauged precipitation as part of their source data [49,52,58].
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Third, despite the fact that some studies show that the performance of hydrological simulation is
highly dependent on the satellite-based datasets themselves in the monsoon regions, the uncertainties
of hydrological models caused by different models’ complexities could also influence the hydrological
simulation. The impact of these two uncertainties has not been carefully examined.

The latest review article of Maggioni et al. [35] pointed out that one of the future research
areas for satellite-based precipitation datasets is to study the conditions (climate type, basin area,
acceptable error in the output, and model structure) under which satellite-based precipitation could be
successfully used in hydrological models. In order to provide a comprehensive understanding of the
error of the satellite-based precipitation and its error propagation through hydrological models for
monsoon-characterized watersheds, this study tests the reliability of eight satellite-based precipitation
datasets in hydrological modeling for a large-sized (>80,000 km2) monsoon-characterized watershed
(Xiangjiang River Basin) in southern China. Even though one of the main usages of the satellite-based
datasets is for ungauged watersheds or watersheds with spare weather stations, the test of their reliability
requires a watershed with dense gauges. The Xiangjiang River Basin, which has 267 precipitation
gauges (referred to as the dense-gauge precipitation dataset in the study), can meet this requirement
for an 80,000 km2 surface area. All the eight satellite-based precipitation datasets include TRMM 3B42
(TRMM), PERSIANN, PERSIANN CDR, CMORPH RAW, CMORPH bias-corrected (CMORPH CRT),
CMORPH gauge blended (CMORPH BLD), MSWEP, and CHIRPS. In addition to using the dense-gauge
precipitation dataset as a reference, an independent gridded gauge-interpolated precipitation dataset
is also used, which incorporates much fewer stations from the National Meteorological Information
Center dataset from the China Meteorological Administration (CN05) [61]. As high-density gauged
precipitation is usually not available in China, CN05 is commonly used for meteorological and
hydrological studies over most watersheds [62–64]. This study could be extended to test whether CN05
is capable of being used as a reliable reference for using satellite-based datasets over other watersheds
where gauges are much less dense. To investigate the uncertainty related to hydrological models,
the lumped Xinanjiang (XAJ) model and the semi-distributed Soil and Water Assessment Tool (SWAT)
model, with different complexities, are used.

2. Study Area and Datasets

2.1. Study Area

The Xiangjiang River Basin has a complex topography with elevation ranging from 0 to 2100 m
above sea level and is located between 24.5◦–28.1◦N and 110.5◦–114.0◦E in the southern part of China
(Figure 1). The Xiangjiang River originates from Haiyang Mountain in Guangxi province with a
drainage area of 80,669 km2 and a total length of 801 km, making it one of the largest tributaries of the
Yangtze River [3,65]. The Xiangjiang River Basin, located in the subtropical and warm temperate zone,
which is dominated by the East-Asian monsoon climate with heavy summer rainfall in the south, is an
ideal experimental basin with a good relationship between precipitation and runoff [65]. The average
temperature is around 17 ◦C, and the annual precipitation is close to 1500 mm with occasionally
little snowfall in the winter. More than 70% of the annual precipitation occurs between March and
August. In addition, there are abundant water resources in the Xiangjiang River Basin; the study
of satellite-based precipitation could provide valuable information for flood forecasting and water
resources management for the administrative department.
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In this study, eight satellite-based datasets are selected and can be further classified into three 
categories: (1) satellite-only (PERSIANN and CMORPH RAW), in which their quality fully depends 
on the raw satellite data, (2) satellite-gauge (TRMM, PERSIANN CDR, CMORPH CRT, and 
CMORPH BLD), in which their quality partly depends on gauge data, and (3) 
satellite-reanalysis-gauge/blended (MSWEP and CHIRPS), in which reanalysis data are blended. 
These datasets share the same spatial resolution of 0.25° × 0.25° for latitude and longitude, and the 
common period between 2003 to 2013. 

Although PERSIANN and CMORPH RAW both incorporate PMW and IR to estimate rainfall, 
the proportion of PMW and IR is totally different between these two datasets. Specifically, 
CMORPH RAW is primarily based on PMW remote sensing of rainfall, while PERSIANN is mainly 
based on IR imagery [66,67]. Each satellite-gauge and blended (gauges, satellites, and reanalysis 
data) dataset blends different source data by using different data fusion methods. In general, 
CMORPH BLD and MSWEP directly incorporate daily gauge data, while TRMM and CMORPH 
CRT directly incorporate monthly gauge data. Unlike these four datasets specially designed to 
provide the best instantaneous accuracy, PERSIANN CDR (monthly precipitation) and CHIRPS 
(5-day precipitation) have been designed to achieve the best simulations of the most temporally 
homogeneous record. 

Specifically, TRMM blended GPCC with their satellite-only counterparts TMPA 3B42RT 
(which, similar to CMORPH RAW, is also estimated primarily by PMW remote sensing of rainfall) 
by the inverse error variance weighting method [68]. CMORPH CRT was produced by blending the 
CMORPH RAW dataset with Climatic Prediction Center (CPC) and GPCC via the probability 
density function matching a bias correction method [69]. The optimal interpolation method was 
used to combine the CMORPH CRT with daily gauge analysis to produce the CMORPH BLD [69]. 
Instead of using gauged observations directly, PERSIANN CDR was adjusted to match the monthly 
satellite-gauge GPCP, which uses gauge-interpolated GPCC, to remove its monthly biases [6,70]. 
Although both MSWEP and CHIRPS are categorized as blended datasets, the data sources and 

Figure 1. The location of Xiangjiang River Basin and its river channel, precipitation gauge stations
(dense-gauge precipitation gauge stations, original stations of CN05, and international exchange
stations) and discharge stations.

2.2. Data

In this study, eight satellite-based datasets are selected and can be further classified into three
categories: (1) satellite-only (PERSIANN and CMORPH RAW), in which their quality fully depends on
the raw satellite data, (2) satellite-gauge (TRMM, PERSIANN CDR, CMORPH CRT, and CMORPH
BLD), in which their quality partly depends on gauge data, and (3) satellite-reanalysis-gauge/blended
(MSWEP and CHIRPS), in which reanalysis data are blended. These datasets share the same spatial
resolution of 0.25◦ × 0.25◦ for latitude and longitude, and the common period between 2003 to 2013.

Although PERSIANN and CMORPH RAW both incorporate PMW and IR to estimate rainfall,
the proportion of PMW and IR is totally different between these two datasets. Specifically, CMORPH
RAW is primarily based on PMW remote sensing of rainfall, while PERSIANN is mainly based on
IR imagery [66,67]. Each satellite-gauge and blended (gauges, satellites, and reanalysis data) dataset
blends different source data by using different data fusion methods. In general, CMORPH BLD and
MSWEP directly incorporate daily gauge data, while TRMM and CMORPH CRT directly incorporate
monthly gauge data. Unlike these four datasets specially designed to provide the best instantaneous
accuracy, PERSIANN CDR (monthly precipitation) and CHIRPS (5-day precipitation) have been
designed to achieve the best simulations of the most temporally homogeneous record.

Specifically, TRMM blended GPCC with their satellite-only counterparts TMPA 3B42RT (which,
similar to CMORPH RAW, is also estimated primarily by PMW remote sensing of rainfall) by the
inverse error variance weighting method [68]. CMORPH CRT was produced by blending the CMORPH
RAW dataset with Climatic Prediction Center (CPC) and GPCC via the probability density function
matching a bias correction method [69]. The optimal interpolation method was used to combine
the CMORPH CRT with daily gauge analysis to produce the CMORPH BLD [69]. Instead of using
gauged observations directly, PERSIANN CDR was adjusted to match the monthly satellite-gauge
GPCP, which uses gauge-interpolated GPCC, to remove its monthly biases [6,70]. Although both
MSWEP and CHIRPS are categorized as blended datasets, the data sources and fusion methods are
totally different. MSWEP is mainly produced by giving weights to each dataset on each grid from
different data sources (daily and monthly gauges such as CPC and GPCC, reanalysis from ERA-Interim,
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Japanese 55-year Reanalysis (JRA 55) and satellite from CMORPH RAW, Global Satellite Mapping of
Precipitation (GSMap MVK) and TRMM 3B42RT) based on their comparative performances at the
surrounding gauges [71]. However, CHIRPS mainly uses the NOAA Climate Forecast System (CFS)
reanalysis datasets to fill the missing values calculated by satellite datasets (from such as TRMM 3B42)
and five-day gauged precipitation from datasets such as World Meteorological Organization’s Global
Telecommunication System [72]. More details of the above datasets are shown in Appendix A.

The reliability of the eight satellite-based precipitation datasets is evaluated by comparing
it with two gauged precipitation datasets, including the dense-gauge dataset and the gridded
gauge-interpolated dataset (CN05). As an important experimental basin, the Xiangjiang River Basin
owns the dense-gauge precipitation dataset derived from a dense ground network of 267 precipitation
stations with complete temporal coverage from 1963 to 2013, which is offered by the local hydrological
department: the Water Conservation Bureau of Hunan Province. CN05, as a national gauge-interpolated
dataset, is composed of daily precipitation estimates at the spatial resolution of 0.5◦ for the quasi-China
coverage of 54◦N to 18◦S latitude from 1961 to 2016. CN05, independent from the dense-gauge
precipitation dataset, is generated by blending daily precipitation data (2472 Chinese national weather
gauges and 44 gauges locating in this study region) with Chinese mainland Digital Elevation Model
(DEM) data (resampled from the Global 30 Arc Second Elevation Dataset, with a spatial resolution
of 0.5◦ × 0.5◦) using Thin Plate Spline algorithm (TPS) [73]. It is worth noting that CN05 is not
independent of the eight satellite-based datasets. This is because two of the 44 gauges of CN05 in the
study region are selected as the international exchange gauges that provide measured components
(such as GPCC and CPC) from four satellite-gauges and two blended datasets. This means that the
gauged components of the satellite-gauge and blended datasets come from the same source. In other
words, factors that influence the performances of satellite-based datasets come from other data sources
(satellite or reanalysis) or the blending strategies between and within various source data. Compared
with the eight above-mentioned daily satellite-based precipitation datasets, which define a day as
0–23:59 UTC, both dense-gauge and CN05 precipitation datasets use the same daily precipitation
time interval, from 8 UTC of one day to that of the next day. This ensures that the daily precipitation
measurement in China, in the eastern eight zones, is executed simultaneously with daily precipitation
measurements under the 0–23:59 UTC standard. A brief summary of the eight satellite-based datasets
and two gauged datasets is presented in Table 1. The locations of 267 dense-gauge precipitation
datasets, 44 precipitation gauges of source data of CN05, and two international exchange gauges are
shown in Figure 1.

For hydrological modeling, temperature data from 13 stations and streamflow time series at
the watershed outlet are also used. In addition, a Digital Elevation Model (DEM) dataset with a
spatial resolution of 30 m, a land-use dataset with a spatial resolution of 1 km, and a soil dataset from
Harmonized-world-soil-datasets (HWSD) are used to establish the semi-distributed SWAT model.
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3. Methodology

The comparison of datasets is carried out in both precipitation evaluations and hydrological
simulations. When evaluating the precipitation, we compared the differences among all satellite-based
precipitation datasets on both areal mean and grid scales to better understand the hydrological
impacts of the errors from the satellite-based datasets. This is because the areal mean precipitation
and the spatial distribution of precipitation are respectively decisive factors in the lumped XAJ and
semi-distributed SWAT models used in this study. When an evaluation is executed at the grid-scale,
the dense-gauge observations are interpolated by the IDW method to 151 grids with a spatial resolution
of 0.25◦ × 0.25◦, which is the same with eight satellite-based precipitation data [74]. For CN05 with a
spatial resolution of 0.5◦ × 0.5◦, the precipitation in four 0.25◦ grids within one 0.5◦ grid shares the
same value.

3.1. Hydrological Models

In this study, two hydrological models with different complexities, such as a conceptual
lumped model and a physically-based semi-distributed model, are utilized for hydrological
modeling. Both models have been successfully established in the Xiangjiang River Basin for many
studies [3,44,75,76]. Compared to the lumped XAJ, which uses the areal mean precipitation as the
model input, the semi-distributed SWAT uses precipitation from a single rain gauge closest to each
sub-basin’s centroid as the model input. Details of these two models are described below.

3.1.1. Xinanjiang Model (XAJ)

The XAJ model is a lumped conceptual rainfall–runoff model of a set of 15 variables developed in
the 1970s [77,78]. It has been successfully used in humid regions of China [79–81]. Outflow simulation
from the total outlet of the basin mainly consists of three phases: evapotranspiration, runoff generation,
and runoff routing. Four parameters account for evapotranspiration, two account for runoff generation,
and nine account for runoff routing. Its hydrological cycle is based on the water balance equation:

St + Wt = S0 + W0 +
t∑

i=1

(
Rday −Qsur f − Ea −Qlat −Qgw

)
, (1)

where St and S0 are the mean and initial free water storage capacity, Wt and W0 are the mean and
initial tension water storage, Rday is the amount of precipitation on day i, Qsur f is the amount of surface
runoff on day i, Ea is the amount of evapotranspiration on day i, Qlat is the amount of lateral flow on
day i, and Qgw is the amount of groundwater flow on day i.

The evapotranspiration is calculated by dividing the soil into three layers: an upper layer, a lower
layer, and a deep layer. The storage curve calculates the total runoff according to the hypothesis that
when the soil moisture content reaches the field capacity, all rainfall turns into a runoff. The rainfall
exceeding infiltration is transformed into the surface runoff Qsur f , and the rainfall that has infiltrated
belongs to the lateral flow Qlat and groundwater flow Qgw.

3.1.2. Soil and Water Assessment Tool Model (SWAT)

SWAT, a physically-based semi-distributed model, is designed to predict the effects of land
management practices on the hydrology, sediment, and contaminant transport [82]. SWAT could be
operated under different soil compositions, land uses, and management conditions in an agricultural
watershed [3,83]. Different from the XAJ model, which uses the whole basin as the operation unit,
SWAT divides the entire basin into several unit basins, and each unit basin is further divided into
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several Hydrologic Research Units (HRUs). Each HRU is calculated individually based on relatively
homogeneous land use, land cover, and soil types. The water balance of SWAT is described below as:

SWt = SW0 +
t∑

i=1

(
Rday −Qsur f − Ea −Wseep −Qgw

)
, (2)

where SWt is the final soil water content, SW0 is the initial soil water content on day i, t is the time,
Rday is the precipitation amount on day i, Qsur f is the surface runoff amount on day i, and Wseep is the
water amount entering the vadose zone from the soil profile on day i.

The Penman–Monteith method is used to estimate evapotranspiration Ea [84]. The surface runoff

volume Qsur f is calculated by a Soil Conservation Service Curve Number method, and groundwater
flow Qgw is simulated by creating a shallow aquifer. The outlet simulation of basin is calculated by the
Muskingum method for each sub-basin’s simulation results [85].

3.1.3. Model Calibration and Validation

XAJ and SWAT models are respectively calibrated using the Shuffled Complex Evolution
(SCE-UA) algorithm [86] and Sequential Uncertainty Fitting version 2 (SUFI2) algorithm [87], using the
Nash–Sutcliffe efficiency (NSE shown in Table 2) coefficient as the objective function. Two models are
calibrated from 2004 to 2010 and validated from 2011 to 2013, and 2003 is used as the spin-up year.

3.2. Statistical Analysis Methods

A set of statistical indices is utilized to evaluate the performance of eight satellite-based datasets
in preserving precipitation and simulating watershed runoff. For precipitation evaluation, the indices
include (1) four categorical statistics for detection error, (2) three quantitative metrics, of which two
of them could reflect the systematic and random errors, and (3) four extreme precipitation statistics.
There is one metric for hydrological evaluation to determine the overall hydrological performances and
three hydrological statistics to reflect the characteristic values for streamflow. Additionally, the error
propagation from precipitation to streamflow is qualified by two absolute ratios. A list of the indices
can be found in Table 2, and more details are explained in the following section.

3.2.1. Precipitation Indices

Detection, systematic, and random errors are three main error sources of satellite-based datasets [35,88].
False alarms (when gauges do not observe the satellite-detected precipitation) and missed rain (when
the gauge-observed precipitation are not actually detected by satellites) constitute the detection
errors [89]. When the satellite correctly detects precipitation, errors of estimated precipitation compose
systematic and random errors [90–93].

In this study, four categorical statistics: the frequency bias index (FBI), the probability of detection
(POD), the false alarm ratio (FAR), and the equitable threat score (ETS) are used to quantify the
detection errors of each satellite-based dataset [1]. The FBI reflects the tendency to underestimate or
overestimate rainfall events. The FAR (POD) measures the fraction of false alarms (rain occurrences)
that were correctly detected. The ETS provides an overall skill measurement of the correctly detected
rain events (observed and/or detected).

The three quantitative statistics of precipitation are the relative bias (RB), unbiased root mean
squared error (ubRMSE), and the coefficient of determination (R2). RB reflects the systematic error,
which is the relative difference in the long-term mean values of the two series. Although RMSE shows
the amplitude of differences between the two series, it could not directly reflect the random error unless
the system error is removed by subtracting the mean difference from the RMSE to get the ubRMSE.
R2 indicates the correlation between two series.

Four extreme statistics are selected from the recommended list by the joint World Meteorological
Organization Commission for Climatology/World Climate Research Programme project on Climate
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Change Detection and Indices (https://www.climdex.org/indices.html). These are the annual total
precipitation when daily precipitation amount on a wet day > 99th percentile (R99pTOT), the annual
daily precipitation amount on a wet day (SDII), the maximum length of wet and dry spells (CWD
and CDD). P99pTOT is one threshold index, and SDII reflects the intensity of extreme precipitation.
CWD (CDD) shows the duration of extreme precipitation (non-precipitation) events.

3.2.2. Hydrological Indices

The widely used metrics NSE is used to evaluate the performance of each precipitation dataset for
hydrological simulations. NSE is calculated as the ratio of residual variance to measured discharge
variances [94]. Simulated discharges using these datasets were also compared against their gauged
counterparts using three hydrological statistics: daily mean discharge, winter low flow (5th percentile
of the winter flow), and summer high flow (95th percentile of the summer flow).

3.2.3. Error Propagation Indices

Two absolute ratios (γ) between error metrics (RB and ubRMSE) for the runoff and precipitation
series are used to quantify the error propagation through the precipitation–runoff process. γRB and
γubRMSE respectively reflect the systematic and random error propagation effects. They are always
greater than 0 due to their absolute values, and values larger (smaller) than 1 indicate the amplification
(dampening) of the error from precipitation to runoff.

78



Remote Sens. 2020, 12, 3550

Ta
bl

e
2.

Li
st

of
st

at
is

ti
ca

li
nd

ex
es

us
ed

in
th

is
st

ud
y.

C
at

eg
or

y
In

de
x

Eq
ua

ti
on
/D

es
cr

ip
ti

on
R

an
ge

an
d

O
pt

im
al

V
al

ue

Pr
ec

ip
it

at
io

n
in

di
ce

s

C
at

eg
or

ic
al

st
at

is
ti

cs

FB
I

a+
b

a+
c

(0
,∞

),
1

PO
D

a
a+

b
(0

,1
),

1
FA

R
c

a+
c

(0
,1

),
0

ET
S

a+
H

e
a+

b+
c−

H
e
(H

e
=

( a
+

b)
( a
+

c)
N

w
he

re
N

is
th

e
to

ta
ln

um
be

r
of

es
ti

m
at

es
)

(−
∞,

1)
,1

Q
ua

nt
it

at
iv

e
m

et
ri

cs

R
B

∑
i=

n
i=

1
(S

i−
G

i)
∑

i=
n

i=
1

G
i

(−
∞,
∞)

,0

ub
R

M
SE

√
∑

n i=
1
( G

i−
S i
)2

n
−( ∑

n i=
1
( G

i−
S i
)

n

) 2
(0

,∞
),

0

R
2

[∑
i=

n
i=

1
(G

i−
G
) (

S i
−S
)]

2

∑
i=

n
i=

1
(G

i−
G
)2

∑
i=

n
i=

1
(S

i−
S)

2
(0

,1
),

1

Ex
tr

em
e

st
at

is
ti

cs

R
99

pT
O

T
A

nn
ua

lt
ot

al
pr

ec
ip

it
at

io
n

w
he

n
da

ily
pr

ec
ip

it
at

io
n

am
ou

nt
on

a
w

et
da

y>
99

th
pe

rc
en

ti
le

-

SD
II

A
nn

ua
ld

ai
ly

pr
ec

ip
it

at
io

n
am

ou
nt

on
w

et
da

y
-

C
W

D
M

ax
im

um
le

ng
th

of
w

et
sp

el
l,

m
ax

im
um

nu
m

be
r

of
co

ns
ec

ut
iv

e
da

ys
w

it
h

da
ily

pr
ec

ip
it

at
io

n
≥

1
m

m
-

C
D

D
M

ax
im

um
le

ng
th

of
dr

y
sp

el
l,

m
ax

im
um

nu
m

be
r

of
co

ns
ec

ut
iv

e
da

ys
w

it
h

da
ily

pr
ec

ip
it

at
io

n
<

1
m

m
-

H
yd

ro
lo

gi
ca

li
nd

ic
es

Ev
al

ua
ti

on
m

et
ri

cs
N

SE
1
−[ ∑

n i=
1
(Y

ob
s

i
−Y

si
m

i
)2

∑
n i=

1
(Y

ob
s

i
−Y

)2

]
(−
∞,

1)
,1

H
yd

ro
lo

gi
ca

ls
ta

ti
st

ic
s

D
M

D
D

ai
ly

m
ea

n
di

sc
ha

rg
e

-
W

LF
W

in
te

r
lo

w
flo

w
(5

th
pe

rc
en

ti
le

)
-

SH
F

Su
m

m
er

hi
gh

flo
w

(9
5t

h
pe

rc
en

ti
le

)
-

Er
ro

r
pr

op
ag

at
io

n
in

di
ce

s

γ
R

B
R

B
of

ru
no

ff
R

B
of

pr
ec

ip
it

at
io

n
(−
∞,
∞)

,-

γ
ub

R
M

SE
ub

R
M

SE
of

ru
no

ff
ub

R
M

SE
of

pr
ec

ip
it

at
io

n
(0

,∞
),

-

79



Remote Sens. 2020, 12, 3550

4. Results and Discussion

4.1. Precipitation Evaluation

4.1.1. Seasonal Patterns of Precipitation Datasets

Figure 2 presents the seasonality (spring: March–May, summer: June–August, autumn:
September–November, winter: December–February; wet season: April–September and dry
season: October–March) of the mean precipitation for all ten precipitation datasets (eight
satellite-based precipitation datasets, one gauged precipitation (i.e., the dense-gauge dataset), and one
gauge-interpolated precipitation (i.e., CN05)). All stations or grids within the watershed are averaged
to a single time series to calculate the seasonal mean values. The figure graphically demonstrates that
CN05 agrees well with the dense-gauge observation for all four seasons. Specifically, CN05 presents
a small RB within ±7.0% for seasonal precipitation (−2.4% for spring, −6.1% for summer, −1.7% for
autumn, and 0.3% for winter). With the exception of satellite-only datasets, which considerably
underestimate the precipitation for all seasons, the satellite-based datasets also reasonably represent
the observed seasonality. However, all of them are worse than CN05 for all seasons. The better
performance of PERSIANN CDR among satellite-based datasets for seasonal precipitation, especially
in spring, summer, and autumn, could reflect the effects of its blending strategies. PERSIANN
CDR maintains monthly precipitation that is consistent with the monthly GPCP, and GPCP is mainly
composed of gauged precipitation datasets (e.g., GPCC) [70]. In addition, all the satellite-gauge datasets
overestimate the dense-gauge precipitation in summer and the wet season while underestimating
in winter. In addition, both blended datasets (MSWEP and CHIRPS) overestimate the precipitation
all year round. TRMM, CMORPH BLD, and MSWEP fit the dense-gauge precipitation better in the
dry season than the wet season, while PERSIANN CDR, CMORPH CRT, CHIRPS, and satellite-only
datasets perform better in the wet season than the dry season.
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Figure 2. Mean seasonal precipitation (spring: March–May, summer: June–August, autumn:
September–November, winter: December–February, dry season: October–March and wet season:
April–September) of 2003–2013 from the dense-gauge precipitation and eight gridded datasets
(National Meteorological Information Center dataset from the China Meteorological Administration
(CN05), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN), Climate Prediction Center MORPHing-raw satellite dataset (CMORPH RAW),
Tropical Rainfall Measuring Mission (TRMM), PERSIANN Climate Data Record (PERSIANN CDR),
CMORPH bias-corrected (CMORPH CRT), CMORPH gauge blended (CMORPH BLD), Multi-Source
Weighted-Ensemble Precipitation V2.0 (MSWEP) and Climate Hazards Group InfraRed Precipitation
with Stations V2.0 (CHIRPS)).
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The spatial distributions of summer precipitation are also presented for all datasets in Figure 3.
The dense-gauge datasets are presented as color dots, while all the other datasets are presented as
grids. Generally, summer precipitation is heavier in high elevation areas (southeastern, southwestern,
and southern parts) than in other regions. CN05 clearly missed quite some regional intensive
precipitation (such as the heavy precipitation in the southeastern parts of the region), which can even
be captured by MSWEP and CHIRPS. The bad performance of CN05 may be caused by two reasons:
(1) its lower spatial resolution (0.5◦ × 0.5◦) and (2) its less gauged source data compared with the
dense-gauged dataset. Satellite-only datasets underestimate precipitation for all grids, even though
PERSIANN can capture the heavy precipitation signal in mountain areas. Although all satellite-gauge
datasets could capture this spatial distribution pattern, these datasets still underestimate the heavy
precipitation in mountain areas (southern and southeastern parts) while overestimating the small
precipitation in central plain regions. The spatial distributions of winter precipitation, as shown in
Appendix B in Figure A1, display similar patterns, as CN05 still performs relatively worse than the two
blended datasets: MSWEP and CHIRPS. The better performance of blended datasets for the spatial
distribution of seasonal precipitation may be due to their reanalysis components.
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4.1.2. Error Structures of Precipitation Datasets

Figure 4A presents two types of the daily gridded precipitation information for the dense-gauge,
CN05, and eight satellite-based datasets: (1) bar charts represent the frequency distribution of
precipitation under seven different rain rate classes (0, 0–1, 1–5, 5–10, 10–25, 25–50 and >50 mm/day)
and (2) line charts represent the contribution of the precipitation amount under each rain rate class to
the total precipitation. As shown in the bar charts, PERSIANN CDR, CMORPH CRT, and CMORPH
BLD are close to the gauged counterparts of where the precipitation frequencies decrease from 0 to
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0–1 mm and slightly increase under the 1–5 mm class, and then decrease until the >50 mm class.
These tendencies of precipitation frequency under the 0, 0–1, and 1–5 mm classes are inaccurately
represented by MSWEP. Another two satellite-based datasets (TRMM and CHIRPS) overestimate
the frequencies of no rain (0 mm) and heavy rain (>50 mm) and underestimate little rain (0–1 mm).
Line charts show that the largest precipitation contribution of all datasets except for TRMM and
CMORPH CRT occurs at the 10–25 mm class. Large differences in the precipitation contribution among
datasets occur at the 25–50 mm and >50 mm classes.

The detection errors of each satellite-based dataset are quantified based on the FBI, FAR, POD,
and ETS in terms of the 11-year (2003–2013) annual, wet season, and dry season precipitation
processes. Figure 4B presents the distribution of the FBI for nine precipitation datasets (CN05 and
eight satellite-based datasets). FBI values of CMORPH RAW at the 25–50 (13.66) and >50 (89.35)
intervals being larger than 6 are not demonstrated, which is the same as Figure 4C,D. Although both
satellite-gauge and blended datasets poorly simulate the annual FBI values in the rain rates of 0 mm
(e.g., the FBI of MSWEP is 2.55) and 0–1 mm (e.g., the FBI of TRMM is 3.95), they overall outperform
the satellite-only categories, which have worse annual FBI results under more than half of the rain
rate classes (Figure 4B). Figure 4C,D further demonstrates that more overestimations of FBI values of
satellite-only datasets under most rain rate classes (5–10, 10–25, 25–50, and >50 mm) occur in the dry
season than the wet season. The larger underestimation of precipitation events in the dry season is in
good agreement with the seasonal precipitation amount in Section 4.1.1 and could further explain the
sources of poor performances for satellite-only datasets. This may be because of the underestimation of
precipitation events with the rain rate classes being larger than 10 mm during the wet season and the
underestimation of all precipitation events during the dry season. As the rain rate class increases, the
FBI of satellite-gauge datasets improves until the precipitation class exceeds 50 mm for both seasons.
The annual FBI values of CMORPH CRT (0.78), TRMM (0.62), and CHIRPS (0.49) at this class are less
than 1, indicating that these datasets overestimate the number of heavy rain events. This may also
explain the overestimation of the percentage of heavy rains (Figure 4A).

FAR, POD, and ETS of satellite-based datasets also show obvious seasonal patterns. Two
satellite-only datasets significantly deteriorate with the increasing rain rate classes in terms of the
annual FBI, FAR, and POD, indicating their inability to capture the heavy precipitation. These two
datasets clearly perform better in the wet season than in the dry season, especially in terms of the POD
(Figure 4I,J) and ETS (Figure 4L,M). However, CMORPH BLD and MSWEP show an opposite seasonal
pattern, as the better performance occurs in the dry season than the wet season in terms of the three
statistics. In addition, both of them maintain their superiority among all the satellite-gauge datasets.
Although gauge-interpolated CN05 shows relatively worse performances than CMORPH BLD and
MSWEP, it shares similar seasonal patterns with them and also outperforms the other six satellite-based
datasets with regard to POD and ETS under the most rain rate classes (0–1, 1–5, 5–10, and 10–25 mm).

Figure 5 shows the RB, ubRMSE, and R2 of nine precipitation datasets (CN05 and eight
satellite-based datasets) at both grid (shown as boxplots) and watershed-average scales (shown
as radar plots). Generally, the performances of each precipitation dataset under two different scales are
basically consistent in terms of all three quantitative statistics. Figure 5A,B show that CN05 presents a
better RB than the eight satellite-based datasets. Among all satellite-gauge datasets, TRMM, PERSIANN
CDR, and CMORPH CRT show the smallest RBs, indicating their smaller systematic errors, at both
grid and watershed-averaged scales. CMORPH BLD and two blended datasets (MSWEP and CHIRPS)
generally show positive RB under both scales, especially for CHIRPS, which overestimates the daily
precipitation for more than 86.1% of the grids and has an RB of 16.5% at the watershed-average scale.
In contrast, satellite-only datasets considerably underestimate the mean precipitation at both scales.

Random errors of CN05 and satellite-based datasets are quantified using the ubRMSE (Figure 5C).
CN05 shows relatively larger random errors than the satellite-based datasets except for CMORPH RAW
and CHIRPS. In addition, large differences are observed among satellite-based datasets. Specifically,
CMORPH BLD presents the smallest ubRMSE with the median value of 6.31 mm at the grid scale
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(Figure 5C) and 2.09 mm at the watershed-average scale (Figure 5D), while CHIRPS presents the largest
ubRMSE with the median value of 10.94 mm at the grid scale and 6.28 mm at the watershed-average
scale. MSWEP performs the best among all nine precipitation datasets with a median value of 5.83 mm
at the grid scale and 2.14 mm at the watershed-average scale.
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designed to provide the best instantaneous accuracy of precipitation (TRMM, CMORPH CRT, 
CMORPH BLD, and MSWEP) perform relatively better than those aimed to achieve the most 
temporally homogeneous record (PERSIANN CDR and CHIRPS). Within the four better-behaved 
satellite-based datasets, those that directly incorporate daily gauge data (CMORPH BLD and 

Figure 4. Frequency distribution of daily rainfall (A, shown as bar graph), contribution of rain rate
classes to the annual accumulation (A, shown as line chart) as well as frequency bias index (FBI), false
alarm ratio (FAR), probability of detection (POD), and equitable threat score (ETS) values of the 11-year
annual (B,E,H,K), wet season (C,F,I,L), and dry season (D,G,J,M) precipitation process of 2003–2013
on a grid scale for seven daily precipitation thresholds over the Xiangjiang River Basin for the nine
gridded datasets (CN05, TRMM, CHIRPS, PERSIANN CDR, CMORPH CRT, CMORPH BLD, MSWEP,
PERSIANN and CMORPH RAW) and the dense-gauge dataset.

Figure 5E,F presents the R2 values for all nine precipitation datasets, and both clearly reflect the
influence of the blending methods and the incorporated gauged datasets on R2. Datasets designed
to provide the best instantaneous accuracy of precipitation (TRMM, CMORPH CRT, CMORPH
BLD, and MSWEP) perform relatively better than those aimed to achieve the most temporally
homogeneous record (PERSIANN CDR and CHIRPS). Within the four better-behaved satellite-based
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datasets, those that directly incorporate daily gauge data (CMORPH BLD and MSWEP) clearly
perform better than those that directly incorporated monthly gauge data (TRMM and CMORPH
CRT). Two satellite-only datasets show the worst performance among all the satellite-based datasets.
Similarly, CN05 is also less correlated with the dense-gauge dataset than half of the satellite-based
datasets (TRMM, CMORPH CRT, CMORPH BLD, and MSWEP).
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Figure 5. Relative bias (RB), unbiased root mean squared error (RMSE), and R2 of the daily precipitation
for the nine gridded datasets on both grid (shown as boxplot in (A,C,E)) and watershed (shown as
radar plot in (B,D,F)) scales. In radar plots at right sides, red and blue lines represent the optimal values
(RB (0), unbiased RMSE (0) and R2(1)) and the results of gridded datasets of each statistic, respectively.

4.1.3. Simulation of Extreme Precipitation

The results of four extreme precipitation statistics are presented in Figure 6 for nine datasets
(CN05 and eight satellite-based datasets) at both grid (shown as relative bias compared to the
dense-gauge precipitation dataset in boxplots) and watershed (shown as the absolute value in radar
plots) scales. In the radar plots, red and blue lines represent the results of the dense-gauge and each
dataset, respectively.

R99pTOT (Figure 6A,B) reflects the total precipitation of heavy rain. The R99pTOT values
of satellite-gauge and blended datasets except PERSIANN CDR and CHIRPS are similar to the
dense-gauge observation, especially for more than 50% grids having biases within ±20.0% at the
grid scale. Specifically, PERSIANN CDR underestimates R99pTOT with more than 56.3% of grids
having negative bias being smaller than −20% and a relative bias of 9.3% at the watershed scale.
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However, CHIRPS overestimates R99pTOT at both scales (with more than 63.6% of grids having
positive bias being larger than 20%, and a relative bias of 45.3% at the watershed scale). Additionally,
two satellite-only datasets underestimate R99TOT.

The SDII values are shown in Figure 6C,D, and the similar results of SDII and R99pTOT can
be explained by two factors: (1) heavy precipitation accounts for a large proportion of the annual
precipitation amount, and (2) the number of wet days is similar for all nine datasets. The CWD is
presented in Figure 6E,F at the grid and watershed-average scales, respectively. The CDD is presented
in Figure 6G,H. The results show that CMORPH BLD maintains its superiority among all the datasets
in simulating these two extreme statistics. However, the other seven satellite-based datasets could not
accurately capture the CDD and the CWD at the same time, especially for the CDD, which is used as a
criterion for representing droughts. For example, CMORPH CRT shows a small bias of CWD at both
grid (with more than half of the grids have a bias of between ±10.0%) and watershed-average scales
(CMORPH CRT: 18 days and the dense-gauge: 19 days). On the contrary, the CDD of CMORPH CRT
is not accurately estimated with more than 50.0% of the grids having a bias larger than 10.0% and bias
of 44.7% at the watershed-average scale (CMORPH CRT: 55 days and the dense-gauge: 38 days).
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CN05 better represents these four extreme precipitation statistics than all satellite-based datasets,
especially for CDD, as shown in Figure 6G,H. It also shows tiny detection and systematic errors
in the previous comparison in Section 4.1.2. However, CN05 misses quite some regional intensive
seasonal precipitation and has larger random errors and worse R2 compared with more than half
of the satellite-based datasets. In other words, the bad performance of CN05 indicates that some
satellite-based datasets are effective in representing the spatial distribution of precipitation. However,
this effect can be missed by gauge-interpolated datasets using sparse gauges with a relatively coarser
spatial resolution. Therefore, there is a risk of having CN05 as the reference when investigating the
statistical properties of satellite-based precipitation, especially for high-precision datasets.

4.2. Hydrological Simulations

Eight satellite-based datasets and gauge-interpolated CN05 are further compared against the
dense-gauge dataset in hydrological modeling by both XAJ and SWAT models calibrated by observed
streamflow. Both models are adequately calibrated with NSE values of 0.89 (XAJ) and 0.86 (SWAT) for
calibration, and 0.89 (XAJ) and 0.84 (SWAT) for validation (Table 3).

Table 3. Comparison of Nash–Sutcliffe efficiency (NSE) of both Xinanjiang (XAJ) and Soil and Water
Assessment Tool (SWAT) models in daily step simulation based on the dense-gauge and the nine
precipitation datasets.

Datasets Period XAJ
NSE

SWAT
NSE

Dense-gauge Calibration (2004–2010) 0.89 0.86
Validation (2011–2013) 0.89 0.84

CN05

(2004–2013)

0.86 0.83
PERSIANN −0.4 −0.31

CMORPH RAW −0.97 −0.95
TRMM 0.73 0.72

PERSIANN CDR 0.56 0.58
CMORPH CRT 0.75 0.73
CMORPH BLD 0.84 0.81

MSWEP 0.78 0.79
CHIRPS 0.44 0.48

For illustrating the intra-annual variability of the hydrological process, Figure 7 shows the mean
monthly hydrographs of observed and the simulated streamflow of the dense-gauge and the other
nine precipitation datasets based on two models. The reason for using a monthly hydrograph rather
than a daily hydrograph is to avoid noises when calculating the climatology due to the relatively short
time period (i.e., 10 years) [95,96]. It can be observed that (1) the most precise simulation of discharge
is achieved by the gauge-interpolated CN05 among all nine precipitation datasets. CMORPH BLD,
MSWEP, TRMM, and CMORPH CRT offer better performance than the other satellite-based datasets.
CHIRPS and PERSIANN CDR, respectively, overestimate and underestimate the observed discharge
for almost the whole year. (2) During the flood periods (from April to August), the simulation processes
of both the dense-gauge and the other nine datasets based on the XAJ model are obviously larger than
results based on the SWAT model. Similar results were also discovered by Xu et al. [3], who used
XAJ and SWAT models to test the ability of two reanalysis datasets in simulating flood events in the
Xiangjiang River Basin.
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Figure 7. Simulation results of mean monthly hydrographs (2004–2013) using nine gridded datasets
and the dense-gauge dataset in the SWAT together with XAJ models.

To further quantify the performance of satellite-based datasets in representing streamflow time
series, the NSE values of two hydrological models based on daily streamflow are calculated and
presented in Table 3. Results based on the XAJ model show that three satellite-gauge precipitation
datasets (TRMM, CMORPH CRT, and CMORPH BLD) and blended datasets (MSWEP) are satisfactory
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in simulating streamflow time series, with NSE being larger than 0.72. CMORPH BLD (NSE = 0.84)
outperforms all other satellite-based datasets. CHIRPS (NSE = 0.44) and PERSIANN CDR (NSE = 0.56)
show moderate performances. Satellite-only datasets cannot represent the observed streamflow time
series with NSE = −0.97 for CMORPH RAW and NSE = −0.40 for PERSIANN. The semi-distributed
SWAT shows the similar daily simulation performance of each dataset with the lumped XAJ, but the
performance of satellite-gauge datasets in SWAT is slightly worse than that in the XAJ except for
PERSIANN CDR. Similar to PERSIANN CDR, both blended datasets, CHIRPS (NSE = 0.44/0.48 for
XAJ/SWAT) and MSWEP (NSE = 0.78/0.79 for XAJ/SWAT), perform better in SWAT than in XAJ.
Despite some differences in the simulation performances of the two models, the relative sort orders of
the datasets based on NSE are almost consistent in both models. The best simulation was achieved by
satellite-gauge CMORPH BLD, which was followed by blended MSWEP, TRMM, and CMORPH CRT.
CHIRPS. PERSIANN CDR performed moderately; however, satellite-only datasets showed the worst
performance. This consistency indicates that using different models does not significantly alter the
relative performances of streamflow simulation of satellite-based precipitation datasets.

Three hydrological statistics (daily mean discharge, winter low flow, and summer high flow)
are further used to compare the daily simulated discharge of both the dense-gauge and the nine
alternative datasets against their observed counterparts. Figure 8 presents the annualized results
(shown as the relative bias between the simulated discharge of each precipitation dataset and the
observed discharge) of three statistics from 2004 to 2013. XAJ and SWAT models show similar
results for daily mean discharge (Figure 8A); however, SWAT obviously underestimates the other
two hydrological statistics (Figure 8B,C), especially for the winter low flow. Based on three statistics,
CMORPH BLD consistently performs better than other satellite-gauge datasets. PERSIANN CDR
and CHIRPS respectively underestimate and overestimate the observed discharge for both models.
Blended MSWEP performs well, although its daily maxima discharge in the XAJ model shows an
obvious overestimation (the results of 8 years are more than 0) and underestimation in the SWAT
model (the results of 7 years are less than 0). Similar to previously used indexes, satellite-only datasets
still show the worst performance.
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Figure 8. Boxplot of the relative bias of the daily mean discharge (A), summer high flow (B), and
winter low flow (C) simulated using the nine gridded datasets and the dense-gauge dataset based on
SWAT (red) together with XAJ (blue) models. Each boxplot is constructed with one value from each
year of 2004–2013.

4.3. Error Propagation

RB and ubRMSE of streamflow respectively reflect the systematic and random errors of each
dataset in simulating the streamflow. Figures 9 and 10 respectively show the RB and ubRMSE of annual,
wet, and dry seasons streamflow and their corresponding propagation factors (γRB and γubRMSE)
simulated using CN05 and eight satellite-based precipitation datasets from 2004 to 2013.

4.3.1. Systematic Error Propagation

Generally, TRMM, with the minimal RB (systematic error) of annual streamflow performs the
best among all datasets, which is then followed by CMORPH CRT and CMORPH BLD, displaying
comparable performance with CN05 (Figure 9A). Two satellite-only datasets considerably underestimate
the annual streamflow. However, their results of the systematic error propagation factor (γRB shown
in Figure 9B) are larger than 1, indicating amplification of the systematic error when translating the
precipitation into a runoff. TRMM, PERSIANN CDR, and CHIRPS have the same amplified effect for
the systematic error of the precipitation, while γRB values for the other five datasets are around 1.

There is a seasonal trend for the RB of streamflow for all datasets in which the range of RB values
for the wet season streamflow (Figure 9C) is much smaller than that for the dry season (Figure 9E).
This narrow RB range means a smaller inter-annual difference in the wet season. As for RB, six out of
nine datasets (all datasets except CMORPH BLD, MSWEP, and CHIRPS) show smaller RBs (closer to
0) in the wet season than in the dry season. Thus, the more apparent amplification of the systematic
error of precipitation to runoff (the larger results of γRB) occurs in the dry season compared to the wet
season for nearly all nine datasets except for satellite-only datasets (Figure 9D,F).

Moreover, the hydrological models also influence the RB of streamflow. During the wet season,
SWAT generally performs much better than XAJ for more than half of the datasets (all datasets except
for TRMM, PERSIANN, and CHIRPS, Figure 9C). While during the dry season, XAJ outperforms SWAT
for more than half of the datasets (all datasets except for CMORPH CRT and MSWEP, Figure 9E).
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Figure 9. Relative bias of streamflow (A,C,E) and relative bias propagation factor (B,D,F) of the whole
year, the wet season and the dry season for the nine gridded datasets based on SWAT (red) together
with XAJ (blue) models. Each boxplot is constructed with one value of each year from 2004 to 2013.

4.3.2. Random Error Propagation

Figure 10A demonstrates that the streamflow values of ubRMSE are not distinctive among nine
datasets, except for two satellite-only data, which have significantly larger values. Among the rest of
the datasets, PERSIANN CDR and CHIRPS show the largest random errors of streamflow. CN05 shows
the minimum ubRMSE of streamflow; however, this is different from its relatively larger ubRMSE of
the precipitation (as demonstrated in Section 4.1.2). This discrepancy in the ubRMSE of precipitation
and streamflow for CN05 is due to its largest dampening effect of random error. All the other eight
datasets have similar dampening effects with γubRMSE being smaller than 1 (Figure 10B), and CMORPH
BLD along with MSWEP have the largest γubRMSE among these datasets.

ubRMSE of streamflow also has a seasonal trend with its values and ranges in the wet season
(Figure 10C) being larger than those in the dry season (Figure 10E) for all datasets. This seasonal
difference also applies to the random error propagation factor γubRMSE (Figure 10D,F). ubRMSE of the
same precipitation dataset generated from different hydrological models is different (Figure 10C,E).
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Specifically, SWAT generates a larger ubRMSE than that of the XAJ model for nearly all datasets (nine
datasets except for PERSIANN CDR and CHIRPS), especially during the wet season (Figure 10D,F).
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Figure 10. Unbiased RMSE of streamflow (A,C,E) and unbiased RMSE propagation factor (B,D,F)
of the whole year, the wet season and the dry season for the nine gridded datasets based on SWAT
(red) together with XAJ (blue) models. Each boxplot is constructed with one value of each year
from 2004–2013.

Satellite-only datasets directly estimate precipitation through PMW or IR sensors [22–24].
Their worst performances among all eight satellite-based datasets reflect the defectiveness of the existent
remote sensing retrievals algorithms and the necessity to blend with gauged measurement to account
for their limited abilities, such as distinguishing rain particles and electromagnetic interferences
from rough terrain and trees to sensors [26]. Theoretically, PMW is more accurate than VIS–IR,
because the former physically links the sensors’ signal to the size and phase of the hydrometeors,
which is presented within the observed atmospheric column [1,24,91]. However, CMORPH RAW
(mainly based primarily on PMW) performs worse than PERSIANN (mainly based on IR), which is
opposite for some other regional studies in the Asian monsoon regions, such as Japan [97] and the
Tibet Plateau [98]. This inconsistent result may reflect the influence of integrating methods (PMW and
IR) on the performance of satellite-only datasets and the region-dependent nature of these methods.
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Compared with satellite-only datasets (CMORPH RAW and PERSIANN), better performances in
both precipitation and hydrological simulations are clearly achieved by their improved satellite-gauge
versions (CMORPH CRT, CMORPH BLD, and PERSIANN CDR). This improvement proves
the validity of the blending algorithms using gauge precipitation to enhance the precipitation
estimation performances of the satellite-only datasets. Satellite-gauge CMORPH BLD outperforms all
satellite-gauge datasets in both precipitation and hydrological simulations, which is mainly due to the
effectiveness of using bias correction and blending algorithms by incorporating the daily precipitation
gauge dataset to improve CMORPH RAW [36]. Among blended datasets, MSWEP shows comparable
good performance with CMORPH BLD. The superiority of MSWEP could be mainly explained by two
factors: (1) the gauged component utilized by MSWEP takes up a higher proportion (30.0% to 50.0%)
in the final precipitation dataset compared to the other satellite-based datasets; and (2) the reanalysis
data used in MSWEP may bring more potential information [71,99].

CN05 outperforms all satellite-based datasets in hydrological simulation. This satisfactory
performance suggests that CN05 is fully able to act as the proxy of the dense-gauge precipitation
dataset in the hydrological simulation in the Xiangjiang River Basin, although it could not act as the
reference data to directly evaluate the statistical properties of satellite-based precipitation.

Additionally, the datasets used for model calibration would influence the hydrological
performances of satellite-based datasets for the validation period, and many studies suggested
recalibrating hydrological models directly using satellite-based datasets [60,100,101]. However,
only the dense-gauge precipitation was used in this study to calibrate the hydrological models, and all
satellite-based datasets then used the same set of optimal parameters for hydrological modeling. This is
based on the assumption that the dense-gauge dataset is more accurate than the satellite-based datasets,
excluding the effects of uncertainty in model parameters on hydrological simulations. Even though
the satellite product-forced model performance may be degraded, when using the dense-gauge
precipitation for model calibration, all satellite-based datasets used the same set of optimal parameters
for hydrological modeling. In addition, one test based on the XAJ model has been conducted to
prove that the calibration dataset would not change the relative hydrological performance of these
satellite-based datasets, which are shown in Appendix C as Table A1 (NSE value for both calibration
and validation periods) and Figure A1 (mean monthly hydrograph during 2004–2013). Therefore, it is
rational to compare the performance of each satellite-based dataset. For those watersheds where the
dense-gauge precipitation dataset is not available, the hydrological model may be calibrated using
satellite-based datasets or other gridded datasets.

5. Conclusions

This study evaluates eight high-resolution satellite-based precipitation datasets (satellite-only:
PERSIANN and CMORPH RAW, satellite-gauge: TRMM PERSIANN CDR, CMORPH CRT and
CMORPH BLD and blended: MSWEP and CHIRPS) and a gauge-interpolated CN05 based on a
dense-gauge dataset for hydrological modeling over a monsoon prone watershed in China. We can
draw the following conclusions:

(1) All satellite-gauge and blended datasets are able to capture the seasonality of precipitation in the
study region, even though biases are observed. Specifically, the satellite-gauge CMORPH BLD
generally outperforms all other satellite-based datasets with the smallest detection, systematic,
random errors, and most precise extreme precipitation simulation. However, satellite-only
datasets perform the worst with respect to almost all the precipitation indices. Although CN05
presents the smallest systematic errors, CN05 cannot be used as the reference data to statistical
analysis of the satellite-based datasets because it is missing some seasonal local precipitation and
has larger random errors and a smaller R2.

(2) There are large differences among satellite-gauge datasets in hydrological simulations. Datasets
designed to provide the best instantaneous precipitation (TRMM, CMORPH CRT, CMORPH
BLD, and MSWEP) perform better than those designed to achieve the most temporally
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homogeneous record (PERSIANN CDR and CHIRPS). Among the four better-behaved datasets,
two directly incorporating daily gauge data (CMORPH BLD and MSWEP) outperform two
directly incorporating monthly gauge data (TRMM and CMORPH CRT). However, satellite-only
datasets (CMORPH RAW and PERSIANN) are the least capable of simulating streamflow, which is
not recommended to use in the hydrological application. CN05 outperforms all satellite-based
datasets in the hydrological simulation, indicating its capability to act as reference data during
the hydrological evaluation.

(3) With different model structures, XAJ and SWAT models perform differently for each satellite-based
dataset, and differences in model performances also depend on seasons. Generally, the XAJ model
performs better than the SWAT model in terms of random errors of streamflow simulations for
both wet and dry seasons and in terms of systematic errors for the dry season. However, compared
with the hydrological model uncertainties, the uncertainties from different satellite-based datasets
dominate the uncertainty of hydrological simulation. In other words, the hydrological model
structure does not affect the overall performance ranking of satellite-based precipitation datasets
in hydrological simulations in this study.

(4) The random error from all datasets show a general decrease from precipitation to runoff with
γubRMSE being smaller than 1, but this does not hold for the systematic error with γRB varying
in different datasets. In addition, the seasons and the hydrological models affect the error
propagation from precipitation to streamflow for all datasets. The systematic (γRB) and random
(γubRMSE) error propagation factors of the wet season are larger than those of the dry season.
The XAJ model shows a more amplified error propagation effect of the systematic errors, while the
random errors are more amplified by the SWAT model.

There are still some limitations in this study. For example, the eight satellite-based datasets were
compared over only one monsoon-prone watershed, and the conclusion may not be the same for
other regions. In addition, the differences between using a dense-gauge dataset and satellite-based
datasets to calibrate hydrological models were not fully investigated. For some data-lacking regions,
the satellite-based datasets may be directly used to calibrate the hydrological models when the
dense-gauge dataset is available. Therefore, in future studies, more watersheds from various climate
regimes should be used to generalize the conclusions drawn from this study. In addition, the
impacts of using different satellite-based datasets to calibrate the hydrological models on hydrological
performances also need to be investigated.
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Appendix A

A detailed description of the satellite-based precipitation datasets used in this study.

Appendix A.1. Tropical Rainfall Measuring Mission 3B42 Dataset (TRMM)

TRMM 3B42, one of the TRMM Multi-satellite Precipitation Analysis datasets, provides 3 h
precipitation estimates for the quasi-global coverage of 50◦S to 50◦N latitude, with coverage going
back to 1998. TRMM 3B42’s algorithm combines rainfall estimates from infrared and microwave
satellites with gauge data and is operated in four major steps. (1) The Goddard Profiling Algorithm
is used to convert and combine passive microwave data from plentiful sensors (TMI: the TRMM
microwave imager, AMSU: Advanced Microwave Sounding Unit, AMSU-E: Advanced Microwave
Sounding radiometer-Earth, and SSM/I: Special Sensor Microwave Imager) to 3 h precipitation estimates.
(2) The infrared precipitation estimate from geostationary satellites is produced by histogram matching
of the passive microwave precipitation estimate. (3) Then, microwave and infrared precipitation data
are blended using infrared data to fill in the missing data where microwave data are not available.
(4) The rainfall data are added up to monthly totals and blended with GPCC monthly precipitation data
by using the inverse error variance weighting method to obtain the TRMM 3B43 values. The monthly
sums of precipitation estimates are adjusted to make the results equal to the TRMM 3B43 monthly
value. The final adjusted estimates are the TRMM 3B42 [68].

Appendix A.2. Three Climate Prediction Center Morphing Technique Datasets (CMORPH RAW, CMORPH
CRT, and CMORPH BLD)

CMORPH records precipitation from 1998 to the present with a 0.07◦ spatial and 0.5-hourly
temporal resolution [66]. CMORPH blends passive microwave-based rainfall estimates from low-orbit
satellite sensors (TMI, SSM/I, AMSR-E, AMSU-B) using spatial propagation information obtained from
the IR data of geostationary satellites. In this study, three different CMORPH datasets are compared:
the raw satellite data (CMORPH RAW), CMORPH CRT, and CMORPH BLD. The CRT dataset is
produced by blending the RAW dataset with the CPC gauge dataset and the GPCP over lands and
ocean surfaces via the probability density function matching the bias correction method. An optimal
interpolation method is used to combine the CRT dataset with gauge analysis to produce the BLD
dataset [69].

Appendix A.3. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks
Dataset (PERSIANN) and PERSIANN-Climate Data Record Dataset (PERSIANN CDR)

PERSIANN and PERSIANN CDR record precipitation from 2000 to the present with a spatial
coverage that covers 50◦S to 50◦N latitude. PERSIANN utilizes infrared brightness temperature images
from geostationary satellites to compute the rainfall rate estimation by the neural network function
classification method [67]. Low-orbit satellite sensors (e.g., TMI, AMSR-E, AMSU-B, and SSM/I)
provide passive microwave observations to update the ANN parameters. This method could narrow
down the uncertainties of the relationship between cloud-top brightness temperature and precipitation
estimated according to cloud properties and atmospheric conditions. Whenever independent
estimates of precipitation are available, an adaptive training feature facilitates updating the network
parameters [67]. Differing from PERSIANN, which is attainable in near-real time and only based on
satellite measurements, PERSIANN CDR, initially designed for long-term climatic event research, is a
pre-trained NCEP hourly precipitation dataset that merges the GPCP gauged dataset with its rainfall
estimates [70].

Appendix A.4. Climate Hazards Group Infrared Precipitation with Station Dataset (CHIRPS)

With its period from 1981 to the present, CHIRPS is particularly designed for drought monitoring
studies [102]. The latest version 2.0 dataset, issued in February 2015 is used in this study. CHIRPS is
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mainly produced by four steps. (1) TRMM 3B42 is used to calibrate the Cold Cloud Duration (CCD)
thermal infrared data to get the 5-day CCD, which is further transformed to the fractions of the long-term
mean rainfall estimation. (2) The fractions are multiplied with the monthly precipitation climatology
created using rain gauge stations from the Food and Agriculture Organization (FAO) and the Global
Historical Climatology Network-Monthly (GHCN) datasets in order to remove the systematic bias and
produce the CHIRP dataset. (3) A modified IDW method is used to combine the CHIRP dataset with
the rain gauge datasets from many archives, including the Global Telecommunication System (GTS),
to obtain the CHIRPS. (4) Since the above three steps are carried out at the 5-day timescale, daily CCD
data and the NOAA Climate Forecast System (CFS) atmospheric model rainfall field data are used to
disaggregate the CHIRPS to daily rainfall estimates by a simple redistribution method [72].

Appendix A.5. Multi-Source Weighted-Ensemble Precipitation Dataset (MSWEP)

MSWEP is a newly raised global precipitation dataset (1979–present) with a 3-hourly temporal
resolution. In order to acquire the best possible rainfall estimates, MSWEP is unique in its use of an
unprecedented variety of data sources, such as gauges, atmospheric reanalysis models, and satellites.
In brief, the main procedures carried out to generate the MSWEP dataset are composed of four
steps. (1) The long-term mean of the MSWEP, which is mainly based on the Climate Hazards Group
Precipitation Climatology (CHPclim) dataset, is bias corrected by using country-specific catch-ratio
equations methods. (2) Several satellites (e.g., CMORPH, Global Satellite Mapping of Precipitation
(GSMap MVK) and TRMM) and reanalysis (e.g., ERA-Interim, and the Japanese 55-year Reanalysis
(JRA 55)) precipitation datasets are assessed in terms of their temporal variability to determine their
potential contents in the MSWEP. (3) The long-term climatic mean is temporally downscaled in a
gradual manner from monthly to daily by applying the weighted averages of precipitation anomalies
from the gauge, reanalysis, and satellite datasets. (4) The long-term climatic mean is further temporally
downscaled to the 3-hourly timescale to generate the final MSWEP dataset [71].
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Appendix C.

Table A1. NSE of daily streamflow time series simulated by XAJ model calibrated by using eight
satellite-based datasets, CN05, and the referenced dense-gauged dataset for calibration (2004–2010)
and validation (2011–2013) periods.
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Abstract: Chlorophyll-a (Chl-a) is one of the major indicators for water quality assessment and recent
developments in ocean color remote sensing have greatly improved the ability to monitor Chl-a on a
global scale. The coarse spatial resolution is one of the major limitations for most ocean color sensors
including Moderate Resolution Imaging Spectroradiometer (MODIS), especially in monitoring the
Chl-a concentrations in coastal regions. To improve its spatial resolution, downscaling techniques
have been suggested with polynomial regression models. Nevertheless, polynomial regression has
some restrictions, including sensitivity to outliers and fixed mathematical forms. Therefore, the
current study applied genetic programming (GP) for downscaling Chl-a. The proposed GP model in
the current study was compared with multiple polynomial regression (MPR) to different degrees (2nd-,
3rd-, and 4th-degree) to illustrate their performances for downscaling MODIS Chl-a. The obtained
results indicate that GP with R2 = 0.927 and RMSE = 0.1642 on the winter day and R2 = 0.763 and
RMSE = 0.5274 on the summer day provides higher accuracy on both winter and summer days than all
the applied MPR models because the GP model can automatically produce appropriate mathematical
equations without any restrictions. In addition, the GP model is the least sensitive model to the
changes in the input parameters. The improved downscaling data provide better information to
monitor the status of oceanic and coastal marine ecosystems that are also critical for fisheries and
fishing farming.

Keywords: spatial downscaling; MODIS chlorophyll-a; sentinel-2A MSI; multiple polynomial
regression; genetic programming

1. Introduction

Coastal marine ecosystems are the most important habitats for species that live in the world’s
most productive ecosystems, such as fish and marine mammals [1]. The influences of the proximity
to land, large quantities of nutrients delivered via streams, and sewage discharge lead to increased
susceptibility of these ecosystems to rapid changes in water quality through both anthropogenic and
natural mechanisms. Therefore, it is essential to monitor water quality in coastal ecosystems to mitigate
the adverse impacts of human-related activities in these environments [1,2].

A phytoplankton cell is a planktonic photosynthesizing organism [3], and phytoplankton biomass
can serve an index to provide information about marine ecosystem health. Coastal ecosystems
throughout the world are affected by the fast growth of the phytoplankton population, often resulting
from water column stratification or increases in nutrients [2]. Harmful algal blooms, like dinoflagellate,
Gymnodinium breve (commonly referred to as “red tide”) produce neurotoxins such as saxitoxin and
gonyautotoxin that cause water quality degradation, which have considerable consequences for marine
environments such as fish death [4–7]. The chlorophyll-a (Chl-a) concentration has been recognized
as a direct indicator of phytoplankton biomass because all phytoplanktons contain Chl-a and high
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Chl-a concentrations show more desirable environmental conditions for phytoplankton growth [3].
Therefore, by monitoring changes in the Chl-a concentration distribution, long-term trends in the water
quality of coastal and oceanic systems can be assessed to a point where the negative effects can be
mitigated [2,8,9]. However, traditional techniques such as in situ field sampling, moored instruments,
drifting instruments, and fluorometry used for Chl-a measurement are expensive laboratory-based
instruments and have some spatiotemporal limitations.

Over the last two decades, there has been an increase in remote sensing applications as a substitute
for traditional techniques for near-real-time measurements of global phytoplankton biomass, including
both qualitative and quantitative estimates [10,11]. However, there are two major challenges associated
with extracting information from remote sensing data: 1) the sheer amount of data, and 2) variable
precision and continuity among remote sensing-derived products. [12]. To solve such issues, many
techniques have been developed, such as reflectance-based classification algorithms [13], spectral band
ratios [14–16], spectral band-difference algorithms [17–19], bio-optical models [20,21], and analytical
techniques [22,23].

The retrieval of Chl-a concentrations in coastal areas by the abovementioned techniques is
performed using coarse spatial resolution ocean color sensors such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Coastal Zone Color Scanner (CZCS), MEdium Resolution Imaging
Spectrometer (MERIS), and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Although the high
temporal resolution of these sensors (e.g., 1–2 days for MODIS, 3 days for MERIS, and 1 day for
SeaWiFS) makes them suitable for continuous monitoring, their spatial resolution (e.g., 4 km for
MODIS, 300 m for MERIS, and 1.1 km for SeaWiFS) is not satisfactory due to their orbital characteristics
and technical configurations.

Recent studies have introduced spatial downscaling algorithms as an alternative solution to
the coarse spatial resolution of ocean color sensors. Spatial downscaling has been widely used for
downscaling coarse spatial resolution data by utilizing the high-resolution remote sensing reflectance
measurements, for instance for land surface temperature [24–26], precipitation [27–30], and soil
moisture [31,32]. Fu, et al. [33] combined coarse spatial resolution MODIS Chl-a measurements
with high spatial resolution Landsat 8 OLI band combinations using a polynomial regression model
(fourth-order polynomial regression) to downscale MODIS Chl-a maps from 4 km to 30 m spatial
resolution. However, polynomial regression models have some restrictions, such as sensitivity to
outliers and the use of fixed mathematical forms to define the relationship between the predictor and
predictand variables. Machine learning (ML) approaches have been suggested to deal with these
restrictions and have received increasing attention for downscaling studies as powerful alternative
tools, but only limited applications for downscaling of Chl-a [34–36].

Among ML models, genetic programming (GP) have recently received much attention in a
number of fields including water resource management studies [37]. The idea behind the GP was
inspired by biological evolution that makes it a collection of techniques for finding the best solution in
the space of possible solutions. This unique feature of GP made it a suitable technique for various
water resource management applications, including ocean engineering and hydrology, hydrological
forecasts, and groundwater modeling [37]. Therefore, the current study assessed the accuracy of GP for
Chl-a downscaling and compared its results with the results of three multiple polynomial regression
(MPR) models, including second-order (2nd), third-order (3rd), and fourth-order (4th) polynomials.
The developed models were utilized for Chl-a downscaling over the western coast of South Korea.

2. Study Area

The study area was part of the Korean West Sea, which is located in the eastern part of the Yellow
Sea (35◦15′ − 36◦30′ N, 125◦45′ − 126◦45′ E; area of 10,705 km2) (Figure 1). The Yellow Sea is a shallow
marine ecosystem with the average and maximum water depths of 44 m and 103 m, respectively [38].
There is clear seasonality in sea surface temperature (SST) over the Yellow Sea, where January is
the coldest month with an average SST of 4–7 ◦C and July is the warmest, with an average SST of
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26–27 ◦C [39]. There are a total of 339 fish species in the Korean West Sea [40]. Over the past few
years, some fish species, such as small yellow croaker, hairtail, large yellow croaker, and flatfish have
exhibited continuous declines due to overharvesting, degraded marine ecosystem quality, and several
unknown factors [41].
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The increase in the level of the eutrophication, as a result of human activities such as dense
agricultural practices along the coastal area, is another reason for environmental pollution over the
study area that have significant negative effects on marine ecosystems, such as fish death, and a
loss of important protein for the people dependent upon them [1]. Furthermore, in the Yellow Sea
waters, there are other constituents than phytoplankton, such as inorganic particles and dissolved
organic matter that are the major obstacle for simple empirical algorithms to determine the statistical
relationship between Chl-a concentration and spectral bands [42]. Additionally, a very limited number
of studies have attempted to investigate the optical properties of the Yellow Sea, such as phytoplankton,
from the ocean color images. As a result, monitoring the Chl-a concentration, as an important index to
evaluate the extent of eutrophication, at fine resolution is a crucial task in this area.

3. Materials and Methods

The main objective of this research was to develop an approach for MODIS Chl-a downscaling
and produce Chl-a concentration maps for complex coastal regions. Figure 2 displays the detailed
explanation of the procedure used. The downscaling approach was accomplished in four steps:
(1) remote sensing data, including MODIS Chl-a at 4 km (defined as Y4k) and S-2A at 10 m (defined as
X10), were acquired, and S-2A data were resampled to 4 km MODIS resolution (denoted as X4k); (2) the
most important S-2A band combinations (X4k) were chosen by utilizing the support vector machine
recursive feature elimination (SVM-RFE) method; (3) MODIS Chl-a downscaling from 4 km to 10 m was
performed by regressing X4k to Y4k, calculating the residual at 4 km (ε4k), and adding the interpolated

105



Remote Sens. 2020, 12, 1412

residual (ε10) to the estimated fine-resolution Chl-a (Ŷ10); (4) the obtained downscaled maps were
compared with visual comparison, validated with in situ data, and all the applied methods were
assessed using sensitivity analysis. A complete explanation of the aforementioned steps is described in
Section 3.1, Section 3.2, Section 3.3, Section 3.4.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 28 

  

Figure 2. Downscaling workflow. Note that the goal of the present research is to downscale Moderate
Resolution Imaging Spectroradiometer (MODIS) Chl-a from coarse resolution (4 km) to high resolution
(10 m).

3.1. Data Description

In the current study, a downscaling approach was proposed based on GP and MPR techniques
to produce high-resolution MODIS Chl-a data by relating coarse-resolution MODIS Chl-a data to
high-resolution Sentinel-2A MSI (S-2A) data. There are some challenges associated with downscaling
Chl-a: 1) MODIS Chl-a and S-2A measurements have different revisit times of 8 and 10 days, respectively;
2) in situ data used for validation of the downscaling model are irregularly distributed in space and
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rarely accessible; 3) to obtain reasonable results for downscaling Chl-a, a remote sensing image should
have cloud coverage less than 10%. It has been reported that sea fog is frequently observed around
the Korean peninsula with a maximum occurrence in the West Sea in summer with a mean frequency
of 5.3 days in July [43]. The frequency is less than 1 day during fall and winter. Therefore, the
above-mentioned challenges imposed some limitations for selection of images on every season. Hence,
two MODIS and S-2A Level-1C (hereafter S-2A) datasets were acquired on February 2 (winter) and
August 4 (summer) in 2016. All images had less than 10% cloud coverage and were almost concurrent
with in situ measurements (±5 days).

The Chl-a concentration maps used in the current study were used from MODIS Chl-a concentration
standard mapped images (SMIs) with a 4 km resolution. The SMIs were created from bands 13
(0.653 µm),14 (0.681 µm), and 15 (0.750 µm) of the MODIS sensor (hereafter referred to as MODIS
Chl-a). Due to strong fluorescence signals from Chl-a at these spectral bands, these bands were
suitable for the detection of the Chl-a concentration [44,45]. For retrieval of Chl-a concentration,
the standard OC3/OC4 (OCx) band ratio algorithm combined with color index (CI) introduced by
Reference [46] was implemented. The MODIS Chl-a data were obtained from the Giovanni website
(https://giovanni.gsfc.nasa.gov/giovanni/).

S-2A band images (Table 1) for high-resolution data were acquired from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/). S-2A products include 13 bands with the top-of-atmosphere
(TOA) Reflectance. All bands were processed by radiometric and geometric correction using a
UTM/WGS84 projection. Recent studies have reported that S-2A is more powerful than Landsat 8 OLI
in distinguishing areas affected by algal blooms because S-2A has three near-infrared (NIR) bands
and Landsat 8 OLI has only one NIR band [47–51]. The three additional NIR bands of S-2A make it
feasible to develop more suitable algorithms for the retrieval of the Chl-a concentration in intense
bloom conditions [52].

Table 1. Sentinel-2A MSI spectral band characteristics.

Band Name Central Wavelength (µm) Spatial Resolution (m)

B1-Coastal aerosol 0.443 60
B2-Blue 0.490 10

B3-Green 0.560 10
B4-Red 0.665 10

B5-Vegetation red edge 0.705 20
B6-Vegetation red edge 0.740 20
B7-Vegetation red edge 0.783 20

B8-NIR 0.842 10
B8A-Narrow NIR 0.865 20
B9-Water vapor 0.940 60

B10-SWIR-Cirrus 1.375 60
B11-SWIR 1.610 20
B12-SWIR 2.190 20

The in situ Chl-a measurements used in the analysis were obtained for seven stations from the
Korea Institute of Ocean Science and Technology (KIOST) website (http://joiss.kr). The locations of
the stations are shown in Figure 1. Multidepth sampling was used to collect water samples from
the surface layer (0–15 cm depth). A fairly large water sample was collected and the sample was
filtered to concentrate the chlorophyll-containing organisms followed by mechanical rupturing of
the collected cells, and extraction of the chlorophyll from the disrupted cells into the organic solvent
acetone. The extract was then analyzed by a spectrophotometric method using fluorescence. Therefore,
to validate the downscaling models, a total of 14 samples at two depths (Table 2) were employed.
The remote sensing and in situ data acquisition dates are shown in Table 2, with in situ data from
1 February 2016, corresponding to remote sensing data from 2 February 2016, and in situ data from
1 August 2016, corresponding to remote sensing data from 4 August 2016.
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Table 2. Paired Dates of the Acquired Satellite Imagery and Chl-a Measurements of the Study Area.

MODIS Sentinel-2A MSI Chl-a Measurements

2016.2.2 2016.2.2 2016.2.1
2016.8.4 2016.8.4 2016.8.1

3.2. Preprocessing

The image preprocessing methods the same as (1) MODIS gap filling, (2) resampling, (3) land-water
separation, and (4) subsetting were used to prepare all satellite images for further processes. Then,
feature selection was employed to determine the most important band combinations for Chl-a prediction.
First, the grid-fill method [53] was used to fill the missing values in the MODIS Chl-a images. This
software has high computational efficiency and fills missing values in an iterative relaxation scheme
using Poisson’s equation. For validation, random removal of the original Chl-a pixel values was
conducted to provide data to validate the grid-fill method. For this purpose, 5% of the original data
were deleted from the outside boundary of the study region and preserved for cross-validation. Then,
the corresponding values of the deleted data were estimated by utilizing the grid-fill method, and the
difference between the original pixel values and the reconstructed values was evaluated. Consequently,
the spatial distribution of Chl-a concentrations was produced.

At the second step, all S-2A images were mosaicked and then resampled to a resolution of 10 m
(X10). Since the study region had a remarkable number of islands (Figure 1), the reflectance caused by
islands could decrease the accuracy of the applied models. Therefore, the third step of preprocessing
aimed to separate water from land pixels to improve the downscaling results. The most commonly
used indices, namely, the normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI), have already been employed for land-water separation purposes [54–58]. In the
current study, land-water separation was performed by utilizing the NDWI index. The formula of this
index is as follows:

NDWI =
ρGreen − ρNIR

ρGreen + ρNIR
(1)

where ρGreen and ρNIR are the green and near-infrared (NIR) reflectances of S-2A with 10 m resolution.
Based on the NDWI computed images, water pixels have positive values, while negative pixels are
usually classified as vegetation or soil features.

At the fourth step, the study area boundaries were used to produce a spatial subset of both MODIS
Chl-a and S-2A images, and the S-2A dataset was resampled from 10 m (X10) to 4 km resolution of
MODIS Chl-a (X4k) using the nearest neighbor method [59]. Then, MODIS Chl-a and S-2A images at
4 km (Y4k and X4k) were used as dependent and independent variables, respectively, to develop GP
and MPR models. Additionally, the developed models were applied to S-2A images at 10 m (X10) to
estimate downscaled Chl-a at 10 m spatial resolution.

At the fifth step, the SVM-RFE feature selection method was employed to specify the most
important bands of the S-2A dataset (X4k). This method is a widely used technique for feature selection
that has been utilized in a wide variety of remote sensing research studies [60–62]. To perform
feature selection, multiple mathematical operations, including multiplication, addition, subtraction,
rationing, averaging, and square transformation, were used to calculate 597 various combinations
of the resampled S-2A bands at 4 km, and the computed combinations served as the input for the
feature selection method. Then, SVM-RFE was trained on the calculated dataset using the MODIS
Chl-a concentration (Y4k) and S-2A band combinations (X4k) as the predictand and predictor variables,
respectively. As a result, relevant combinations for the downscaling procedure were chosen.
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3.3. Downscaling

The downscaling model used in the current study was a regression-based approach considering
the statistical relationship between MODIS Chl-a and S-2A bands at 4 km and 10 m spatial resolution.
The straightforward formulation of this relationship is expressed as in Equation (2).

Ŷ = f(X) (2)

where X is the selected S-2A bands (predictor variables) at 4 km (X4k) and 10 m (X10), Ŷ is the estimated
MODIS Chl-a at 4 km (Ŷ4k) and 10 m (Ŷ10), and f represents a nonlinear regression function developed
by GP and MPR techniques.

First, a relationship between Y4k and X4k was established using all the applied methods as
2nd-degree MPR, 3rd-degree MPR, 4th-degree MPR, and GP. From the 636 pixels of the independent
(X4k) and dependent (Y4k) variables, 445 pixels were used for training, and the remaining 191 pixels
were reserved for the validation of the models. Standardization was a prerequisite step before training
all the applied methods to ensure that all variables remained on the same scale. Therefore, the
standardization of all independent variables (X4k) in the training and validation set was performed by
subtracting the mean and dividing by the standard deviation of the training set. This preprocessing
sped up the convergence and allowed efficient training of the network. Then, the estimated Chl-a at
4 km (Ŷ4k) was subtracted from the original MODIS Chl-a at 4 km (Y4k) as follows:

ε4k = Y4k − Ŷ4k (3)

where ε4k is the low-resolution residual at 4 km.
A simple kriging interpolation technique [63,64] was utilized to interpolate the ε4k to 10 m

resolution (ε10) using the center points of the MODIS Chl-a pixels. Finally, to produce the downscaled
map of Chl-a at 10 m resolution (Y10), the developed model as Ŷ10 = f(X10) in Equation (2) was added
to ε10, which is expressed in the function below (Equation (4)):

Y10 = Ŷ10 + ε10. (4)

3.4. Sensitivity Analysis

For a given mathematical model, a sensitivity analysis (SA) measures how much the uncertainty
and fluctuations of the input variable contribute to the outputs or performance of the system. In general,
SA may be performed by two different techniques, local and global SA, with the former exploring the
important model factors for a given set of factor values, and the latter apportioning the uncertainty in
outputs to the uncertainty in each input factor to identify the important factors [65]. In the current
study, the Morris method [66], as the most widely used global SA method, was employed to quantify
the sensitivity of the GP and MPR models. This method is also called the once-at-a-time (OAT) method
because, in each run, a new value is assigned to only one input variable. To carry out SA, the Morris
sensitivity measure index (µ∗) was used as in Equation (5):

µ∗i =

r∑
n=1
|EEi,n|
r (5)

where i is the number of input variables, r is the number of sample points in the parameter space
(indexed n) and EEi,n is the elementary effects (EEs) assessed for the i-th input variable using the
n-th sample point. EEs are employed to specify noninfluential inputs for a computationally costly
mathematical model or for a model with a great number of input parameters, where the costs of
evaluating other SA methods such as variance-based methods are not reasonably priced.
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3.5. Mathematical Background

3.5.1. Multiple Polynomial Regression

The polynomial model is a form of a regression method that can be used when the relationship
between an independent and dependent variable is curvilinear [67]. The nth order polynomial model
with one variable Equation (6) is the general form of the polynomial model that indicates the nonlinear
relationship between one predictand and one predictor variable.

Y = β0 + β1X + β2X2 + . . .+ βmXn + ε (6)

where β1, β2, . . . , βm are the unknown regression coefficients and ε is random error. Furthermore, MPR
can also be defined with different degrees. For instance, a quadratic (second-order, n = 2) polynomial
model can be given as in Equation (7).

Y = β0 + β1X1 + β2X2 + β11X2
1 + β22X2

2 + β12X1X2 + ε (7)

To select the best model between different MPR degrees for MODIS Chl-a downscaling, three
degrees of models, including second-order (2nd), third-order (3rd), and fourth-order (4th), were trained
and compared.

3.5.2. Genetic Programming

GP is one of the most recent data-driven techniques developed by Koza [68] and is a collection
of techniques for finding a highly fit individual in the space of possible solutions. In GP, individuals
are mathematical formulas created by combinations of functions (e.g., sin, cos, ÷, ×, +) and variables
(e.g., x, y, 6). Each individual takes the role of a possible solution for a given problem. Figure 3 shows
four simple formulas (individuals) created by functions and variables as an example. Each individual
has its fitness value to optimize. GP applies evolutionary computation to find the best individual for
optimized fitness values.
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Generally, the GP technique follows four steps to find the fittest individual: (1) an initial random
population of individuals composed of functions and variables is created; (2) the fitness of each
individual in the population is validated with a problem-specific fitness function, and the most
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appropriate individuals are selected to survive in the new population as parents; (3) once parents are
selected, they create better types known as offspring or new generations by producing algorithms
known as genetic operators (i.e., crossover, mutation, and duplication); (4) then, the individuals
are assessed for fitness; (5) the process from (2) to (4) is repeated over many generations until an
individual satisfies a given success criterion (e.g., the number of generations exceeds the specified
number of iterations).

Figure 3 illustrates the crossover and mutation operations in GP. Individuals in GP are shown in
tree form with different characteristics, such as size, shape, and content. The crossover and mutation
operations are performed to produce new offspring (the panels in the lower row) from the parent (the
panels in the upper row). Additionally, Figure 3 displays how crossover and mutation change the final
functions and eliminate an input variable y at the second offspring (the lower right panel).

In the current study, the gplearn package [69] in Python software was used for GP implementation.
In general, GP has two major parameters (population size and generation size) that should be
optimized to generate high performance. The optimum values of the mentioned parameters were
computed by utilizing the harmony search (HS) algorithm introduced by Geem, et al. [70] using 10-fold
cross-validation. For more information about the HS method, readers are referred to Geem, Kim and
Loganathan [70] and Lee and Singh [59].

4. Results

4.1. Preprocessing

The scatter plots between the original MODIS Chl-a and their reconstructed values with the
grid-fill method are shown in Figure 4. According to the results, a good match between the original
MODIS Chl-a and their filled values can be seen with R2 = 0.996 for winter (panel (a)) and R2 = 0.939 for
summer (panel (b)). Therefore, it can be concluded that the grid-fill method exhibits good performance
for the reconstruction of MODIS Chl-a values. Note that the reason for the better performance of the
method on the winter day than on the summer day might be related to the presence of more missing
values in the selected scene of the summer day that occurs due to high cloudiness on the summer day.

The most important combinations of S-2A images, among the 597 cases, were chosen by utilizing
the SVR-RFE method. Four high-ranked combinations were selected as the final variables, namely,
B1/B3, B2/B3, B1/(B3+B4), and B2/(B3+B4). These selected predictors are a combination of bands 1
(Coastal aerosol), 2 (Blue), 3 (Green), and 4 (Red).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 28 
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Figure 4. 1:1 scatter plots of the original MODIS Chl-a vs. reconstructed Chl-a by the grid-fill method
on (a) the winter day (2016.2.2) and (b) the summer day (2016.8.4).

4.2. Downscaling Results

For downscaling, MPR with three degrees (2nd, 3rd, and 4th) and GP were trained with the four
determined band combinations as predictors and MODIS Chl-a as a predictand at low-resolution (4 km).
Then, a residual correction was performed utilizing the described methodology in the downscaling
section (Section 3.3), and Equations (3)–(4) to produce high-resolution Chl-a maps (Y10). To assess the
accuracy of the downscaling technique, the final downscaled maps (i.e., Y10) were validated with the
original MODIS Chl-a maps at a pixel size of 4 km. For this purpose, sample values were extracted
from the downscaled maps (Y10) within a 3 × 3 window around the center of each MODIS Chl-a pixel,
and the mean of each sample was calculated and compared with the original MODIS Chl-a (Figure 5
and Table 3).
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Figure 5. 1:1 scatter plots of the original MODIS Chl-a at 4 km pixel size vs. downscaled MODIS
Chl-a at 10 m pixel size; (a) the winter day (2016.2.2): (a-1) 2nd-degree MPR, (a-2) 3rd-degree MPR, (a-3)
4th-degree MPR, (a-4) GP, and (b) the summer day (2016.8.4): (b-1) 2nd-degree MPR, (b-2) 3rd-degree
MPR, (b-3) 4th-degree MPR, and (b-4) GP.
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Table 3. Comparison of Performance Indices for All Models after Residual Correction.

Date Performance Statistics Model

2nd Degree
MPR

3rd Degree
MPR

4th Degree
MPR

GP

2016.2.2 MAE 0.108 0.144 0.150 0.108
(Winter) MBE −0.014 −0.012 −0.020 0.011

RMSE 0.168 0.207 0.219 0.164
R2 0.922 0.886 0.872 0.927

2016.8.4 MAE 0.360 0.383 0.409 0.341
(Summer) MBE −0.056 −0.044 −0.068 −0.030

RMSE 0.562 0.542 0.595 0.527
R2 0.732 0.753 0.704 0.763

Notes: MAE is mean absolute error, MBE is mean bias error, RMSE is the root mean square error, and R2 is the
coefficient of determination.

On the winter day, as shown in Table 3, the performance measurements of the GP model were
slightly better than those of the 2nd-degree MPR. According to the performance indices, the accuracy
of the models was ranked as GP > 2nd-degree MPR > 3rd-degree MPR > 4th-degree MPR for the winter
day. For the summer day, the rank was GP > 3rd-degree MPR > 2nd-degree MPR > 4th-degree MPR.
Overall, the GP exhibited the best performance for the winter and summer days.

This finding shows the superiority of GP over the MPR method with different degrees of Chl-a
downscaling. The possible reason for this result might be related to the flexible structure of the GP
model compared with the fixed formulation of MPR models. While MPR models use a fixed form to
define the relationship between the predictor and predictand variables, the evolution process in GP
allows its function to take any feasible formulation. This flexibility gives GP the ability to adopt any
form of functions to capture various relationships between the predictor and predictand variables, even
highly nonlinear relations. Therefore, this unique feature of GP increases the probability of finding the
best relationship in the downscaling procedure, resulting in a better prediction than the MPR models.

The accuracy of the models is presented in Figure 5. The best match between the MODIS Chl-a
and simulated values can be seen in the GP model (see the panels in the fourth column in Figure 5),
with R2 = 0.927 and RMSE = 0.1642 on the winter day, compared to the MPR models (2nd-, 3rd-, and
4th-degree). The same result can be seen on the summer day (the best performance in the GP model),
as shown in the bottom panels of Figure 5. Furthermore, it can be seen that all the applied models
estimate Chl-a better at lower concentrations than at higher concentrations, particularly in the range of
1.5–3.5 mg m−3, as presented in Figure 5.

4.3. Model Evaluation

4.3.1. Visual Comparison

The detailed maps of the downscaling approach for the winter and summer days are shown in
Figures 6 and 7, respectively. The good agreement between the original MODIS Chl-a (the panels in the
first column in Figure 6) and the estimated Chl-a maps (the panels in the last column in Figure 6) can
be seen for the GP and 2nd-degree MPR. From Figure 6, the major trend of Chl-a is fairly modeled with
GP and 2nd-degree MPR but specific and substantially high values are not captured in both models
such as the values in the near coastal area. However, the residual model can additionally capture this
high variability and produce a reliable estimate in the final stage, as seen in the last column of Figure 6.
According to the results illustrated in Table 3, and the panels in the last column of Figure 6, 4th-degree
MPR cannot estimate the Chl-a values at 10 m resolution as accurately as the other models, especially
in coastal areas. This phenomenon indicates that the GP and 2nd-degree MPR can capture the most
variation in high Chl-a concentrations at 4 km resolution.
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Figure 6. Detailed maps showing the downscaling steps for all models on the winter day (2016.2.2);
(a) 2nd-degree MPR, (b) 3rd-degree MPR, (c) 4th-degree MPR, and (d) GP.

By estimating the Chl-a concentrations on the summer day, similar model behaviors became
obvious on the summer day compared to the winter day (Figure 7). Among all the applied models,
GP estimations in coastal areas showed better agreement with the original MODIS Chl-a on both the
winter and summer days than all the applied MPR models. Since coastal areas play a vital role in
marine ecosystems and human health, GP estimations are considerable for water quality monitoring in
coastal areas.

From Figure 7, the simulation results became worse in the sea (the second and last column panels
in Figure 7), and all models tended to underestimate some high Chl-a values. The possible reason for
this result might be the higher spatial variability of the MODIS Chl-a concentration on the summer
day than on the winter day (Figure 8), which is different from the normal distribution (δ = 0.522,
θ = 0.733). Therefore, all the applied models did not fairly estimate the Chl-a values in the sea, and
their accuracy decreased on the summer day compared to that on the winter day (Figure 5 and Table 3).
From Figures 6 and 7, the Chl-a concentration gradient follows a similar pattern with water depth in
all maps, and its concentration decreases as water depth increases. Therefore, the region close to the
seashore shows a high Chl-a concentration, while the region in the sea presents a low concentration
of Chl-a.
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Figure 7. Detailed maps showing the downscaling steps for all models on the summer day (2016.8.4);
(a) 2nd-degree MPR, (b) 3rd-degree MPR, (c) 4th-degree MPR, and (d) GP.
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4.3.2. In Situ Validation 

Figure 8. Histogram and fitted normal distribution of MODIS Chl-a for (a) the winter day (2016.2.2)
and (b) the summer day (2016.8.4). δ and θ are the coefficient of variation (COV) and skewness
coefficient, respectively. Note that the COV and skewness coefficient values for a normal distribution
are zero. The skewness coefficient indicates that the distribution of the summer day data presents more
non-normality than that of the winter day.

115



Remote Sens. 2020, 12, 1412

4.3.2. In Situ Validation

The results of the downscaling models were assessed with the in situ Chl-a data of seven stations
along the study area (Figure 1) to validate model performances. For this purpose, sample values were
extracted within a 3 × 3 window around the center of each station point, and the mean of each sample
was calculated and compared with the in situ data. The results in terms of the R2 and RMSE are
presented in Figure 9 for the winter day (left panel) and the summer day (right panel). The computed
p-values (Figure 9) shows that R2 of all models is statistically significant (p-values lower than 0.05).
In general, the R2 of the GP model was higher than that of the other models for the winter and summer
days, which were 0.59 and 0.47, respectively, as shown in Figure 9. Additionally, the RMSE of the
GP model was smaller than that of the other models for the winter and summer days, at 0.766 and
0.483, respectively.
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Figure 9. 1:1 scatter plots of downscaled MODIS Chl-a and in situ data for all methods using two
measured data at 0–15 cm depth; (a) the winter day (2016.2.2) and (b) the summer day (2016.8.4).

These results indicate that the GP model can estimate Chl-a concentrations more accurately than
the other models on both winter and summer days. From Figures 5 and 9, one can see that the
validation of the downscaling models with the original MODIS Chl-a and the in situ data provides
different levels of accuracy. This discrepancy shows the uncertainties in remote sensing data, indicating
that the performance of the downscaling model is greatly affected by the accuracy of the remote
sensing reflectance.

4.3.3. Sensitivity Analysis

To explore the sensitivity of the applied models to the changes in input parameters, the sensitivity
measure index (µ∗) was calculated, as shown in Equation (5), for all predictor variables on both winter
and summer days (Figures 10 and 11). The results of SA indicate that all the applied models are
sensitive to the surface reflectance changes (µ∗ values range from 0 to 1.45 for the winter and 0 to
2.42 for the summer day), and this sensitivity varies between the applied models. Figures 10 and 11
show that the 2nd-degree MPR model is the most sensitive model (µ∗ values ranged from 0.09 to 1.24
for the winter and 0.94 to 2.42 for the summer day), while the GP model is the least sensitive model
(µ∗ = 1.45 and 1.4 for B2/B3 band combination in winter and summer days, respectively) to the changes
in the predictor variables. In addition, the sensitivity of the MPR models increases on the summer day
compared to that of the winter day, while the GP model shows a slight decrease to the changes of the
B2/B3 band combination on the summer day compared to that of the winter day.
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It can be concluded that although GP and 2nd-degree MPR show comparable accuracy (Figure 5
and Table 3) on both winter and summer days, the GP model with the least sensitivity to the changes in
the input parameters is more effective than the 2nd-degree MPR for downscaling Chl-a. Additionally,
SA results show that the accuracy of all models is strongly related to the accuracy of the remote sensing
data; this further confirms the need for atmospheric correction as an essential task in the downscaling
procedure [71].

5. Discussion and Conclusions

In the current study, a downscaling framework composed of GP and MPR models was developed
to downscale MODIS Chl-a from 4 km to 10 m pixel size using S-2A band combinations at 10 m as
predictor variables. The MODIS Chl-a at 4 km was downscaled in four main steps: (i) acquiring
MODIS Chl-a and S-2A images at 4 km and 10 m, respectively; (ii) applying feature selection to select
the most important S-2A band combinations as predictor variables; (iii) employing the trained MPR
with three degrees (2nd, 3rd, and 4th) and GP model to downscale MODIS Chl-a; (iv) assessment of the
results with original MODIS Chl-a maps at a pixel size of 4 km and in situ measurements.

By comparing the performance of all the models applied for downscaling, the GP model presents
more accurate results and less sensitivity to the changes in all variables for downscaling Chl-a.
The superiority of the GP model over MPR models is related to the flexible formulation structure of the
GP compared to the fixed formulation of the MPR models. The flexible structure of the GP allows
its function to take any feasible formulation so that it increases the probability of finding the best
input-output relationship between thousands of formula. Visual comparison of the applied models
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showed that although the major trend of Chl-a is fairly modeled with GP and 2nd-degree MPR, but
specific and substantially high values are not captured with both models such as the values in near
coastal areas. This drawback of the models can be solved with the residual correction that makes it an
essential procedure to improve the accuracy of the spatial downscaling model.

Among all the applied models, the GP model provided better estimations in coastal areas than
all the MPR models. Therefore, GP can serve as a feasible alternative model to estimate Chl-a
concentrations in coastal areas with complex characteristics, where water quality monitoring plays a
vital role in the protection of marine ecosystems and human health. Moreover, the results indicate
that the performance of the models greatly depends on the spatial variability of the MODIS Chl-a
concentration. Its distributional characteristics (e.g., normal or skewed) can be a good option for
model selection criteria. Therefore, to ensure the validity of the GP model in other coastal areas,
it is recommended to assess the normality to select the GP model for spatial downscaling of the
MODIS Chl-a.

Although the downscaling procedure used in the current study was applied on two selected days,
one in winter and one in summer based on data availability, it produced reasonable results due to
using the S-2A dataset with 10 m spatial resolution. Future studies can be focused on extending this
procedure at a higher temporal resolution. In addition, more research can be conducted with deep
learning techniques for downscaling Chl-a concertation. In addition to the surface reflectance, more
predictors such as NDVI and NDWI, due to the strong Chl-a absorption at red-NIR spectral regions,
may be used in determining Chl-a concentration.
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Abstract: Assessing satellite-based precipitation product capacity for detecting precipitation and
linear trends is fundamental for accurately knowing precipitation characteristics and changes, es-
pecially for regions with scarce and even no observations. In this study, we used daily gauge
observations across the Huai River Basin (HRB) during 1983–2012 and four validation metrics to
evaluate the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks-Climate Data Record (PERSIANN-CDR) capacity for detecting extreme precipitation and
linear trends. The PERSIANN-CDR well captured climatologic characteristics of the precipitation
amount- (PRCPTOT, R85p, R95p, and R99p), duration- (CDD and CWD), and frequency-based indices
(R10mm, R20mm, and Rnnmm), followed by moderate performance for the intensity-based indices
(Rx1day, R5xday, and SDII). Based on different validation metrics, the PERSIANN-CDR capacity to
detect extreme precipitation varied spatially, and meanwhile the validation metric-based performance
differed among these indices. Furthermore, evaluation of the PERSIANN-CDR linear trends indicated
that this product had a much limited and even no capacity to represent extreme precipitation changes
across the HRB. Briefly, this study provides a significant reference for PERSIANN-CDR developers to
use to improve product accuracy from the perspective of extreme precipitation, and for potential
users in the HRB.

Keywords: extreme precipitation index; PERSIANN-CDR; KGE; linear trend; Huai River Basin

1. Introduction

With successive and rapid warming during the past decades, increasing evidence
suggests that climate extremes (e.g., extreme precipitation, heatwaves, and droughts)
have changed across the world [1]. Of climate extremes, extreme precipitation is believed
to be one major cause of the water-related disasters, e.g., floods and landslides [2–5].
These water-related disasters often result in enormous loss of life and destruction and have
become a major obstacle to the sustainable development of society and the economy [6–8].
The Global Emergency Disaster Database stated that from 1970 to 2013 across the world,
more than ten thousand water-related disasters happened, impacting more than 6.6 billion
people, and leading to more than USD 2600 billion in damage, with the death of 3.5 million
people [9]. In one word, the adverse impact induced by extreme precipitation on life and
socio-economy are enormous, and therefore it is very necessary and critical to understand
extreme precipitation (e.g., spatial patterns, changes, and underlying mechanisms) to
reduce the related disasters and to develop reasonable prevention strategies.

Despite that, studying extreme precipitation still presents immense challenges be-
cause of difficulties in obtaining accurate, uninterrupted, and uniform precipitation data
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at the regional and global scale. So far, three pathways are employed to measure precipi-
tation, i.e., direct observation with various gauges and retrievals from radar and satellite
techniques. Gauge precipitation is believed to be the most accurate measurement [10].
However, due to inaccessibility and higher costs for installations and maintenance, there are
issues to using gauge precipitation, i.e., limited spatial representativeness and coverage,
time discontinuity, and short time span [11]. In view of this, gauge precipitation cannot
fully satisfy the specific requirements of academic studies and practical applications, e.g.,
long-term (>30 years), continuous (space and time) precipitation observations for climate
studies. Radar-based precipitation retrievals have filled gaps in gauge precipitation to some
extent, e.g., more extensive coverage. However, radar-based precipitation still has potential
issues, e.g., the backwardness of radar technology in some countries and radar blockage
due to topography [12–14]. In the past decades, very great advances have been made in
technologies of satellites and sensors. Subsequently, various satellite-based precipitation
products have been proposed based on radiance information received by satellite-carried
sensors and different statistical and/or physics-based retrieval algorithms, such as Tropical
Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (GSFC; [15]);
the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center
(CPC) morphing technique (CMORPH; [16]); the Global Satellite Mapping of Precipita-
tion Microwave-IR Combined Product (GSMaP; [17]), the Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks (PERSIANN; [18]); the In-
tegrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG; [19]);
and the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS; [20]).
These satellite-based products provide an opportunity for academic studies and practical
applications to fulfill various requirements of precipitation data.

Considering specific needs and goals, it is necessary to conduct quantitative evalu-
ations of a given satellite-based precipitation product using dependable reference data,
which can improve the confidence level of the related academic studies and ensure high
efficiencies in practical applications. Studies have extensively assessed various satellite-
based precipitation data over the world with a variety of statistical metrics [11,21–23].
For example, Shen et al. [21] suggested that CMORPH performed better than TRMMM and
PERSIANN in capturing spatial and temporal variations in most of China, especially for re-
producing summer precipitation characteristics. Tan et al. [22] compared multiple satellite-
based precipitation estimates over Malaysia and found that TRMM showed higher coin-
cidence with the observational precipitation. Results from Alijanian et al. [11] showed
that Multi-Source Weighted-Ensemble Precipitation (MSWEP), PERSIANN-Climate Data
Record (CDR), and TRMM could better identify rainfall and non-rainfall events in Iran,
and PERSIANN-CDR had higher capacity than the other datasets in representing heavy
rainfall. These studies provided references for theoretical understanding, and development
of satellite-retrieved methodologies and their practical applications.

In China, more and more evidence indicates that extreme precipitation and related
disasters have varied [24]. Taking the Huai River Basin (HRB) as an example, it frequently
suffers from floods, with more than 350 floods during the past 50 decades and local and
regional floods occurring nearly every two years [25]. Since the beginning of the 21st
century, several severe extreme precipitation events (e.g., 2003, 2005, and 2007) and re-
lated floods happened in the HRB [25,26]. Incomplete statistics reported that more than
58 million people in the HRB were affected by the 2003 floods, with the flood-affected
arable area exceeding 52,000 km2, 390 thousand houses collapsed, and direct economic
losses of more than CNY 35 billion [27]. Yin et al. [28] projected that extreme precipitation
with return periods of 20- and 50-years during 2001–2050 would considerably increase
with exacerbating global warming, particularly in some places with increases of more
than 30%; this implies that the HRB has the potential to face a larger flood risk in future.
Therefore, reasonably managing extreme precipitation-induced floods and taking efficient
prevention measures are very important for regional and national food security and food
production capacity. To this end, selecting a reliable, long-term, continuous precipita-

124



Remote Sens. 2021, 13, 1747

tion measurement strategy with a relatively high spatio-temporal resolution is of much
significance when attempting to mitigate the extreme precipitation-induced flood risk
in the HRB; consequently, we chose the PERSIANN-CDR precipitation product here for
evaluation with a high density of gauge records. Despite the fact that this product has been
assessed over different regions of the world and even in China [23,29–32], issues still exist.
For example, how good is the overall performance (e.g., Kling–Gupta Efficiency (KGE),
which integrates impacts of bias, variability, and correlation coefficient on the overall
performance [33]) of the PERSIANN-CDR in detecting extreme precipitation, and does this
product reproduce linear trends of extreme precipitation? Particularly, the latter issue has
been paid more and more attention in recent years (e.g., [34,35]) because the assessments
regarding precipitation trends are the necessary foundation on which to accurately explore
precipitation long term changes, especially for the regions with limited and even no obser-
vations. Therefore, this study aimed to: (1) comprehensively validate the PERSIANN-CDR
performance in detecting different extreme precipitation indices (e.g., the precipitation
amount-, duration-, and intensity-based indices) over the HRB, based on four validation
metrics (i.e., three continuous validation metrics and one overall performance metric),
and (2) detect the PERSIANN-CDR capacity to reproduce linear trends of various extreme
precipitation indices. Results of this study will serve as a valuable reference for potential
users in the HRB and for the PERSIANN-CDR developers to use to improve the algorithm
for obtaining a more accurate extreme precipitation product.

2. Data and Methodology
2.1. Study Region and Data

The HRB is located in eastern China between 30–39◦N and 111–123◦E (Figure 1).
It has a drainage area of approximately 33,000 km2, covering the northern parts of Jiangsu
and Anhui, a small part of Hubei, and most of Shandong and Henan. The HRB has a
vast plain, with many lakes and depressions, and is moderately mountainous (elevation
generally from 1000 to 2000 m above sea level) near the western boundary, mid-eastern
part, and Shandong peninsula. A typical semi-humid monsoon climate prevails in this
basin, with regional average annual temperature of 14 ◦C and precipitation of 806 mm.
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Figure 1. Location of the HRB with gauges and PERSIANN-CDR grids. The digital elevation model
(DEM) with a spatial resolution of 90 m is from http://srtm.csi.cgiar.org/ (accessed on 1 January 2021).

The daily PERSIANN-CDR product has near-global (60◦S–60◦N) coverage with a
time span from 1983 to the present and a spatial resolution of 0.25◦ × 0.25◦. It is a new
retrospective satellite-based dataset developed by the U.S National Climatic Data Center
(NCDC) Climate Data Record program in NOAA [36] and can be downloaded from the U.S
NOAA National Centers for Environment Information (NCEI; https://www.ncdc.noaa.
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gov/cdr/atmospheric/precipitation-persiann-cdr, accessed on 1 January 2021) and the
Centre for Hydrometeorology and Remote Sensing (CHRS) data portal (http://chrsdata.
eng.uci.edu, accessed on 1 January 2021). For this evaluation, daily precipitation observed
at more than 200 gauges during 1983–2012 were collected from the China Meteorological
Administration (CMA). The basic quality issues within the observation precipitation data,
e.g., sensors and measurement errors and inherent errors in measurement procedures
and methods [37–39], were solved by the CMA. However, it should be noted that data
quality issues of missing values and inhomogeneity (e.g., inhomogeneity due to changes
in measurement procedures, methods, and locations [36–38]) within observations still
remained, and thus we preprocessed the observation data following the procedures below.
Firstly, we determined days with missing values for each year and each site. Sites with
data available for more than 330 days per year were retained, and missing values of
these sites were filled with data from nearby sites by bilinear regression. Subsequently,
time series homogeneity was examined with the Pettitt test [40], and the sites with time
series not passing the significance test (p < 0.05) were removed. Finally, 182 sites remained
(Figure 1). To match the PERSIANN-CDR data, we followed Katiraie-Boroujerdy et al. [41]
and gridded the sites into grids with a resolution 0.25◦ × 0.25◦ (Figure 1). The final
observational value for a certain grid was calculated by averaging daily records of the
gauge(s) within this grid. Here, the study period is 1983–2012, considering the data
availability of both the PERSIANN-CDR and observations.

2.2. Methodology
2.2.1. Extreme Precipitation Index

Due to a lack of a unified definition of extreme event indicators in different regions,
further research of global extreme weather and climate events has been hindered to some
extent. For addressing this issue, the World Meteorological Organization (WMO) and the
World Climate Research Program (WCRP) jointly established the Expert Team on Climate
Change Detection and Indices (ETCCDI) in the early 21st century and defined a series
of climate indices to study extreme climate change globally and regionally. Since then,
the ETCCDI extreme climate indices have been extensively used across the globe [41–46].
In this study, we selected 12 indices to comprehensively evaluate the performance of the
PERSIANN-CDR across the HRB. Considering characteristics of extreme precipitation,
we categorized the 12 indices into four classes (Table 1), i.e., (1) precipitation amount-based
indices, (2) precipitation duration-based indices, (3) precipitation frequency-based indices,
and (4) precipitation intensity-based indices.

2.2.2. Validation Metrics

To quantitatively evaluate the performance of PERSIANN-CDR data, we selected
a relatively new, widely-used validation metric, the Kling–Gupta Efficiency (KGE; [33]),
which can be used to measure overall performance. The equations can be expressed as

KGE = 1 −
√
(R − 1)2 + (β − 1)2 + (γ − 1)2, (1)

R =
∑N

i=1(Si − µs)(Oi − µo)√
∑N

i=1(Si − µs)
2
√

∑N
i=1(Oi − µo)

2
, (2)

β =
µs

µ0
, (3)

γ =
σs/µs

σ0/µ0
, (4)

where Si is the PERSIANN-CDR precipitation value of the ith data pair, and Oi is the
observational value. µs and µo (σs and σo) are means (standard deviations) of PERSIANN-
CDR and observational precipitation, respectively. KGE ranges between—∞ and 1, of which
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1 implies a perfect overall performance. R is the correlation coefficient. β measures the
average tendency of PERSIANN-CDR precipitation to be larger (i.e., β > 1) or smaller (i.e.,
β < 1) than the observation, with an optimal value of 1. Regarding γ, its optimal value of 1
represents that the PERSIANN-CDR can perfectly reproduce the observational precipitation
variability, while values below and above 1, respectively, indicate the underestimated and
overestimated variability. After calculating these metrics at each grid with the above
equations, their spatial maps were drawn using the ArcGIS 10.2 software package for
conveniently comparing the PERSIANN-CDR performance at space.

Table 1. Definitions of the selected 12 extreme precipitation indices.

Class Name Definition Unit

Precipitation amount-based indices

PRCPTOT Total precipitation on days with precipitation
≥ 1 mm mm

R85p Total precipitation due to events exceeding the
85th percentile of the study period mm

R95p Total precipitation due to events exceeding the
95th percentile of the study period mm

R99p Total precipitation due to events exceeding the
99th percentile of the study period mm

Precipitation duration-based indices
CDD

Consecutive dry days. Maximum number of
consecutive dry days (i.e., when precipitation

< 1 mm)
days

CWD
Consecutive wet days. Maximum number of
consecutive wet days (i.e., when precipitation

≥ 1 mm)
days

Precipitation frequency-based indices

R10mm Number of days with precipitation ≥ 10 mm days
R20mm Number of days with precipitation ≥ 20 mm days

Rnnmm Number of days with precipitation ≥ nn mm
(nn = 40 mm here) days

Precipitation intensity-based indices

Rx1day Maximum 1-day precipitation total mm/day
Rx5day Maximum 5-day precipitation total mm/(5 days)

SDII

Simple daily intensity index Total precipitation
divided by the number of wet days (i.e., average

precipitation of the days with precipitation
≥ 1 mm)

mm/day

3. Results
3.1. Evaluation of Precipitation Amount-Based Indices

Multi-year annual PRCPTOT, R85p, R95p, and R99p from observational precipitation
were generally characterized by a decrease from southeastern to northwestern, with the HRB
means of 812.60 mm, 441.15 mm, 233.68 mm, and 76.64 mm, respectively (Figure 2a1–a4).
Overall, the PERSIANN-CDR could capture a similar spatial distribution for each amount-
based index, with spatial Rs of 0.94 for PRCPTOT, 0.92 for R85p, 0.89 for R95p, and 0.81 for
R99p (Figure 2b1–b4). Despite that, evident differences in the climatological values of these
amount-based indices existed between observation and PERSIANN-CDR (Figure 2b1–b4);
the HRB β > 1.0 indicated that the PERSIANN-CDR overestimated the climatological values
of the amount-based indices. Meanwhile, the spatial variabilities of the climatological
values were all overestimated, with HRB γ values of 1.40, 1.32, 1.45, and 1.56 for PRCPTOT,
R85p, R95p and R99p, respectively. To have an integrative consideration of β, γ, and R,
the PERSIANN-CDR showed high (i.e., KGEs ≥ 0.38) performance overall in spatially
representing the climatological value of each amount-based index, especially for R95p with a
KGE of 0.58.
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Figure 2. Spatial patterns of multi-year annual means of observational amount-based indices and the
scatterplots between observation and PERSIANN-CDR. a1–a4 (b1–b4) are for PRCPTOT, R85p, R95p,
and R99p, respectively. In a1–a4, the blue numbers represent the HRB mean for a given extreme
precipitation index. The red dashed line within b1–b4 is the 1:1 line.

Generally, each of the four amount-based indices was differently overestimated
at > 90% of grids by the PERSIANN-CDR (Figure 3a1–a4). Larger overestimations (i.e.,
β > 1.4) for PRCPTOT and R85p were mainly located in the southern part (Figure 3a1,a2),
while for R95p and R99p larger overestimations were widely distributed across the HRB
except for small part of southern HRB (Figure 3a3,a4). For PRCPTOT (R85p), γ values were
between 1.0 and 1.2 at >90% of grids, corresponding to overestimated temporal variability;
generally, in southwestern and easternmost HRB, temporal variability at <10% of grids was
underestimated (Figure 3b1,b2). Regarding R95p and R99p (Figure 3b3,b4), overestimated
temporal variabilities existed at >90% of grids, of which >30% of grids had γ > 1.2, mainly
in the central-northern part for R95p and in the northern and southeastern parts for R99p.
Checking temporal Rs for PRCPTOT at all the grids (Figure 3c1), the values were all >0.50,
with 81% of grids showing Rs > 0.70 widely distributed across the HRB. As for R85p (Figure
3c2), most (>85%) grids showed temporal Rs > 0.50, especially for western, southeastern,
and northeastern HRB, with temporal Rs > 0.70, while it was noted that there were still
some grids with Rs < 0.40 sporadically in the central-northern part. Seen in Figure 3c3,
50% of grids showed Rs > 0.50 for R95p, accompanied by <10% of grids with Rs > 0.70 in
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southwestern HRB; of the remaining grids, their corresponding Rs < 0.2 indicated that the
PERSIANN-CDR had much limited ability in reproducing temporal fluctuations of R95p.
Figure 3c4 illustrates that the PERSIANN-CDR could capture temporal fluctuations of
R99p at only 15% of grids, mainly in western HRB; moreover, negative Rs in northeastern
HRB suggested that the product had no capacity in reproducing temporal fluctuations of
R99p. At > 90% of grids, KGEs for both PCPTOT and R85p were >0.20, especially in central-
northern HRB, with KGEs > 0.40 indicating better overall performance (Figure 3d1,d2).
For R95p (Figure 3d3), there existed 66% of grids with KGEs > 0.2, particularly those in the
southern part with KGEs > 0.40, whereas in the northern part around 30% of grids with
KGEs < 0.20 showed limited overall performance for representing R95p. Except for the 16%
of grids in the southwestern part with KGEs between 0.2 and 0.4, the PERSIANN-CDR
lacked the ability to represent R99p over the remaining grids (Figure 3d4).
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At space, the observational PRCPTOT, R85p, R95p, and R99p trends had a similar
distribution, i.e., decreased over western and southeastern parts, but increased in other
regions, with the HRB trends of 4.17 mm/yr, 3.68mm/yr, 3.13 mm/yr, and 1.69mm/yr,
respectively (Figure 4a1–a4). Moreover, the percentage of the grids with positive trends
for each index was always ≥ 56%. As shown in Figure 4b1–b4, each of the PERSIANN-
CDR amount-based indices corresponded to underestimated trends at most (>50%) grids;
for the regional mean, the HRB β < 0.5 suggested that the PERSIANN-CDR seriously
underestimated the trends of these amount-based indices, especially for the PRCPTOT
with opposite changes (i.e., β = −0.18) between the observation and the PERSIANN-
CDR. Except for PRCPTOT, the spatial variabilities of R85p, R95p, and R99p trends were
overestimated with the HRB γ values >1.00. The PERSIANN-CDR showed a moderate
performance (spatial R = 0.39) in producing spatial patterns of PRCPTOT trends, but much
limited capacity (spatial Rs < 0.20) existed for the other three indices. Based on KGE, it is
evident that the PERSIANN-CDR had no ability (i.e., KGEs < 0) to present the trends of
these amount-based indices.
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3.2. Evaluation of Precipitation Duration-Based Indices 

Figure 4. Spatial patterns of the temporal trends of the observational amount-based indices (a1–a4),
and the scatterplots between observation and PERSIANN-CDR. a1–a4 (b1–b4) are for PRCPTOT,
R85p, R95p, and R99p, respectively. In a1–a4, the black numbers represent the HRB trends of the
observational amount-based indices, while the blue (red) numbers indicate grid percentages with
increasing (decreasing) trend across the HRB. The red dashed line in b1–b4 is the 1:1 line.

3.2. Evaluation of Precipitation Duration-Based Indices

For the HRB, the observational multi-year annual means of CDD and CWD were
45.22 days and 5.08 days, respectively (Figure 5a1,a2), corresponding to spatial distribu-
tions of a decrease from northwest to southeast and an increase from northwest to southeast.
Based on spatial Rs of 0.86 for CDD and 0.71 for CWD (Figure 5b1,b2), the PERSIANN-CDR
better detected spatial distributions of climatological characteristics of these two duration-
based indices. It is evident that for the HRB, the PERSIANN-CDR seriously underesti-
mated and overestimated magnitudes of climatological CDD and CWD values, respectively,
with β values of 0.68 and 1.95 (Figure 5b1,b2). For spatial variability, larger overestimation
existed for CDD with the HRB γ of 1.44, while CWD corresponded to a slight underestima-
tion (γ = 0.98). In terms of KGE, this PERSIANN-CDR had no ability to represent CWD,
while better overall performance (KGE = 0.44) existed for CDD (Figure 5b1,b2).
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At all the grids, CDD were underestimated (β < 1.00), followed by > 95% of grids
with larger underestimations (β < 0.80) (Figure 6a1). Conversely, the PERSIANN-CDR
much overestimated CWD (β > 1.40) across the HRB (Figure 6a2). Based on γ, temporal
variabilities of CDD were underestimated at > 90% of grids (Figure 6b1), and larger
underestimations (γ < 0.9) mainly appeared in western HRB, followed by some grids with
overestimations (γ > 1.00), mainly in some parts of eastern HRB. For CWD (Figure 6b2),
overestimations (underestimations) of temporal variabilities occurred at 25% (75%) of grids
but were characterized by sporadic distribution across the study region. Regarding CDD
(Figure 6c1), the PERSIANN-CDR had strong ability (R > 0.50) to represent temporal
fluctuations at 40% of grids in northwestern HRB, but moderate or limited ability at
other grids. Except for only 5% of grids with a certain capacity, the PERSIANN-CDR had
limited or no capacity (R < 0.20) in reproducing temporal fluctuations of CWD across the
HRB (Figure 6c2). Seen in Figure 6d1, the PERSIANN-CDR had the ability (KGE > 0.30) to
represent CDD at >60% of grids in northern HRB, followed by no ability, mainly in southern
HRB. Smaller (near to 0) and negative KGEs at all the grids suggested the PERSIANN-CDR
had no ability in capturing CWD across the HRB (Figure 6d2).

In view of observations, the two duration-based indices for the HRB differently in-
creased, with a rate of 0.24 days/yr for CDD and 0.02 days/yr for CWD (Figure 7a1,a2).
Spatially, the positive trends of the observational CDD occurred at 84% of grids, followed by
decreasing trends at 16% of grids in central-northern and southwestern parts (Figure 7a1).
There existed >30% of grids with decreased CWD, generally in western HRB, while in-
creased CWD was widely distributed across eastern HRB, with a grid percentage around
70% (Figure 7a2). For the HRB, the CDD trends were overestimated by the PERSIANN-
CDR, with β of 1.20 (Figure 7b1), while the product seriously underestimated (β = 0.12) the
CWD trends (Figure 7b2). In terms of γ, the PERSIANN-CDR overestimated spatial vari-
abilities of both CDD and CWD trends, especially for CWD, with a serious overestimation
(γ = 10.58) (Figure 7b1,b2). Overall, there was no ability (R < 0.10) for the PERSIANN-CDR
to produce spatial patterns of the trends of the duration-based indices, accompanied by no
KGE-based ability (KGE near to 0 and even < 0) (Figure 7b1,b2).
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Figure 7. Spatial patterns of the temporal trends of the observational duration-based indices and
the scatterplots between observation and PERSIANN-CDR. a1,a2 (b1,b2) are for CDD and CWD,
respectively. In a1,a2, the black numbers represent the HRB trends of the observational duration-
based indices, while the blue (red) numbers indicate grid percentages with increasing (decreasing)
trend across the HRB. The red dashed line in b1,b2 is the 1:1 line.

3.3. Evaluation of Precipitation Frequency-Based Indices

Multi-year annual R10mm, R20mm, and Rnnmm from observational precipitation were
characterized by a decrease from northwest to southeast, with the HRB means of 22.93 days,
11.73 days, and 8.86 days, respectively (Figure 8a1–a3). Overall, the PERSIANN-CDR could
better capture spatial distributions of climatological R10mm, R20mm, and Rnnmm, with spa-
tial Rs of 0.96, 0.91, and 0.90, respectively (Figure 8b1–b3). For the HRB, magnitudes and
spatial variabilities for climatological value of each frequency index were differently underesti-
mated and overestimated by the PERSIANN-CDR, respectively (Figure 8b1–b3). Specifically,
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the PERSIANN-CDR showed the largest Rnnmm underestimation in magnitude (spatial vari-
ability) with the HRB β (γ) of 0.68 (1.30) (Figure 8b1–b3). Based on KGE, this product had
better overall performance (i.e., KGE > 0.55) in representing the three frequency-based indices,
particularly for R10mm and R20mm, with KGEs > 0.60 (Figure 8b1–b3).
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the scatterplots between observation and PERSIANN-CDR. a1–a3 (b1–b3) are for R10mm, R20mm,
and Rnnmm, respectively. In a1–a3, the blue numbers represent the HRB mean for a given extreme
precipitation index. The red dashed line in b1–b3 is the 1:1 line.

Seen in Figure 9a1, except for 4% of grids in the southern part with smaller overestima-
tions (β between 1.00 and 1.10), the PERSIANN-CDR differently underestimated R10mm
at the remaining grids. Regarding R20mm and Rnnmm, the underestimations (β < 1.00) oc-
curred at an overwhelming majority (>98%) of grids, of which > 80% of grids corresponded
to larger underestimations (β < 0.60) (Figure 9a2,a3). Based on γ, temporal variabilities
of the three frequency-based indices were differently underestimated at >75% of grids
(Figure 9b1–b3); larger underestimations (γ < 0.8) for R20mm in northern HRB and for
Rnnmm in northern and central-southern parts (Figure 9b2,b3). Moreover, there were some
grids with overestimated temporal variabilities (γ > 1.00) of the frequency-based indices,
e.g., R10mm and R20mm at >15% of grids, generally in southern HRB (Figure 9b1,b2).
It is evident that the PERSIANN-CDR had strong ability (R > 0.50) to represent temporal
fluctuations of R10mm at 89% of grids, which were widely distributed across the HRB;
for R20mm and Rnnmm, there existed >50% of grids with R > 0.50, mainly in southern HRB
(Figure 9c1–c3). Obviously, the PERSIANN-CDR exhibited a better overall performance
(KGE > 0.40) in detecting R10mm at all the grids (Figure 9d1). Except for <15% of grids,
generally in northwestern and northeastern HRB with no estimation ability, southern HRB
corresponded to KGEs > 0.20 for Rn20mm and Rnnmm (Figure 9d2,d3), particularly for
most grids of southern HRB, with KGEs > 0.5.
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As shown in Figure 10a1–a3, the HRB R10mm, R20mm, and Rnnmm increased by
0.03 days/yr, 0.03 days/yr, and 0.02 days/yr, respectively. At space, the trends of the
observational frequency-based indices generally had a decrease in the western part and
an increase in eastern parts; moreover, there were always ≥ 65% of grids with positive
trends for the three indices. For the HRB, the PERSIANN-CDR seriously underestimated
(β < 0.50) the trends of all the frequency-based indices, and even for R20mm and Rnnmm,
the PERSIANN-CDR showed the opposite trends (Figure 10b1–b3). The metric of γ
suggested that this product overestimated spatial variabilities of R10mm (Figure 10b1).
There was no ability (R ≤ 0.11) for the PERSIANN-CDR to produce spatial patterns of
R10mm, R20mm, and Rnnmm trends, accompanied by no KGE-based ability (KGE < 0)
(Figure 10b1–b3).
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3.4. Evaluation of Precipitation Intensity-Based Indices

For Rx1day, Rx5day, and SDII, the observational multi-year annual means were
96.05 mm/day, 148.97 mm/(5 days), and 12.99 mm/day for the HRB, respectively, gen-
erally characterized by an increase from the northwest to southeast (Figure 11a1–a3).
The spatial Rs of 0.25 for Rx1day, 0.38 for Rx5day, and 0.52 for SDII indicated that the
PERSIANN-CDR could reproduce spatial patterns of climatological characteristics of the
intensity-based indices (Figure 11b1–b3). The HRB β values < 0.80 for the intensity-based
indices suggested that the three indices were underestimated by the PERSIANN-CDR,
especially for SDII (β = 0.49), followed by R1xday (β = 0.64). For Rx1day and Rx5day,
the HRB γ values < 1.0 indicated that spatial variabilities of the two PERSIANN-CDR
intensity-based indices were smaller than the observations (Figure 11b1,b2), followed by
SDII with γ of 1.37. Based on KGE, this product had a moderate overall performance (KGE
> 0.20) in representing the three intensity-based indices.
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of grids, followed by 41% of grids with limited and even no ability (Figure 12d3). 

Figure 11. Spatial patterns of multi-year annual means of the observational intensity-based indices
and the scatterplots between observation and PERSIANN-CDR. a1–a3 (b1–b3) are for Rx1day, Rx5day,
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precipitation index. The red dashed line in b1–b3 is the 1:1 line.

In general, the intensity-based indices were underestimated by PERSIANN-CDR
except for only 3% of grids with slight overestimations (β between 1.00 and 1.20) for
Rx5day in the northeastern part (Figure 12a1–a3). There were more than 80% of grids
with overestimated temporal variabilities for the three indices, especially in northwestern
and central-eastern HRB, with γ > 1.40 for Rx1day and Rx5day, and in northwestern and
southeastern HRB, with γ > 1.30 for SDII (Figure 12b1–b3). The PERSIANN-CDR had
strong or moderate ability (R > 0.30) in detecting temporal fluctuations of R1xday at 39%
of grids, but ability was sporadically distributed across the HRB (Figure 12c1). For Rx5day
(Figure 12c2), there existed 68% of grids with R > 0.30, of which 30% of grids with better
R-based performance (R > 0.50) were generally in southern HRB; moreover, the PERSIANN-
CDR showed limited (R < 0.30) or no ability in reproducing temporal variability, particularly
in the northern part with R < 0.20 and even negative. For SDII (Figure 12c3), >90% of grids
with R > 0.30 suggested that the PERSIANN-CDR had the ability to reproduce temporal
variability across the HRB, especially for western and southeastern parts, with better R-
based performance (R > 0.50). Spatially, the product had the ability (KGE > 0.20) to represent
Rx1day at 28% of grids, mainly in middle HRB, but no ability at 72% of grids (Figure 9d1).
With exception of 40% of grids having no ability, generally in northern HRB, the PERSIANN-
CDR corresponded to a better overall performance for Rx5day across southern HRB,
especially in the southeastern part, with KGE > 0.40 (Figure 9d2). The PERSIANN-CDR
exhibited a certain overall performance (KGE > 0.20) in detecting SDII at 59% of grids,
followed by 41% of grids with limited and even no ability (Figure 12d3).
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southeastern parts, showed different reductions (Figure 13a2). There were 34% of grids 
with decreased SDII, mainly in the southwestern and southeastern parts, followed by in-
creases at the remaining grids (Figure 13a3). Broadly, the HRB β values for the intensity-
based indices were all ≤ 0.52, suggesting underestimated trends by the PERSIANN-CDR, 
especially for Rx5day trends, with many underestimations (β = 0.20) (Figure 13b1–b3). In 
terms of the HRB γ, the PERSIANN-CDR underestimated spatial variabilities (γ < 0.90) 
for the HRB Rx1day and SDII trends but overestimated (γ < 1.31) Rx5day trends (Figure 
10b1–b3). The PERSIANN-CDR had a certain R-based performance (spatial R around 0.20 
or > 0.30) in producing spatial patterns of these indices’ trends (Figure 13b1–b3). There 
was no ability (KGE < 0.10) for the PERSIANN-CDR to represent these trends (Figure 
10b1–b3). 

Figure 12. Spatial patterns of different validation metrics for the intensity-based indices.

All the observational precipitation intensity-based indices for the HRB increased but
at different rates, i.e., 0.23 mm/(day yr) for Rx1day, 0.76 mm/(5 days yr) for Rx5day,
and 0.03 mm/(day yr) for SDII (Figure 13a1–a3). Generally, the measured Rx1day in-
creased at most (59%) grids, followed by 41% of grids with decreased Rx1day, while the
spatial distribution was scattered (Figure 13a1). For the observational Rx5day, 74% of
grids corresponded to an increase, particularly in western HRB (excluding southwestern
part) with a rate 1.00 mm/(5 days yr), while the remaining grids, generally in the south-
western and southeastern parts, showed different reductions (Figure 13a2). There were
34% of grids with decreased SDII, mainly in the southwestern and southeastern parts,
followed by increases at the remaining grids (Figure 13a3). Broadly, the HRB β values
for the intensity-based indices were all ≤ 0.52, suggesting underestimated trends by the
PERSIANN-CDR, especially for Rx5day trends, with many underestimations (β = 0.20)
(Figure 13b1–b3). In terms of the HRB γ, the PERSIANN-CDR underestimated spatial
variabilities (γ < 0.90) for the HRB Rx1day and SDII trends but overestimated (γ < 1.31)
Rx5day trends (Figure 10b1–b3). The PERSIANN-CDR had a certain R-based performance
(spatial R around 0.20 or > 0.30) in producing spatial patterns of these indices’ trends
(Figure 13b1–b3). There was no ability (KGE < 0.10) for the PERSIANN-CDR to represent
these trends (Figure 10b1–b3).
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4. Conclusions and Discussion

Attempts to validate various satellite-based precipitation products’ capacity in rep-
resenting precipitation characteristics from different perspectives have been widely con-
ducted all over the world. However, information about their capacity in detecting ex-
treme precipitation and related changes (i.e., linear trends) is scarce. As a result, we col-
lected daily observations from 182 gauges across the HRB during 1983–2012 and exam-
ined the PERSIANN-CDR capacity to represent precipitation amount- (PRCPTOT, R85p,
R95p, and R99p), duration- (CDD and CWD), frequency- (R10mm, R20mm, and Rnnmm),
and intensity-based (Rx1day, R5xday, and SDII) indices and their linear trends. The conclu-
sions can be summarized as follows.

(1) Validation for amount-based indices. Overall, the PERSIANN-CDR could well capture
climatological characteristics of the amount-based indices, but with overestimations
in magnitudes and spatial variabilities for the HRB. At most grids, both magnitudes
and temporal variabilities of each amount-based index were differently overestimated.
Generally, the PERSIANN-CDR had better R- and KGE-based performance in produc-
ing the amount-based indices (excluding R99p) across the HRB. The linear trend of
each amount-based index was underestimated at most grids. Except for PRCPTOT,
overestimations (limited capacity) existed for spatial variabilities (spatial patterns) of
the other indices’ trends. Broadly, the PERSIANN-CDR had no KGE-based ability to
present the trends of the four indices.

(2) Validation for duration-based indices. Though the PERSIANN-CDR better detected
spatial distributions of climatological characteristics of the duration-based indices,
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it underestimated and overestimated climatological values of the HRB CDD and
CWD, respectively. For spatial variabilities, overestimations existed for the climato-
logical CDD, but underestimations for the climatological CWD. The PERSIANN-CDR
showed no KGE-based ability and better overall performance in representing the
climatological CWD and CDD, respectively. Over most of the HRB, CDD (CWD)
were underestimated (overestimated), with underestimations of temporal variabilities.
For most grids, the PERSIANN-CDR had strong and moderate ability to represent
temporal fluctuations of CDD, with moderate KGE-based performance; however,
the opposite results were found for CWD. The HRB CDD and CWD trends were
overestimated and underestimated, respectively, followed by overestimated spatial
variabilities. Overall, the PERSIANN-CDR had no R-based ability in producing
spatial patterns of the trends of the duration-based indices, accompanied with no
KGE-based ability.

(3) Validation for frequency-based indices. The PERSIANN-CDR could better capture
spatial distributions of climatological R10mm, R20mm, and Rnnmm, with better
KGE-based performance. For the HRB, magnitudes and spatial variabilities for the
climatological values of each frequency-based index were differently underestimated
and overestimated, respectively. Across the HRB, the R10mm underestimations and
the R20mm and Rnnmm overestimations were widely distributed. For temporal
variabilities, all the frequency-based indices were underestimated at most grids.
In general, the PERSIANN-CDR had strong ability to represent temporal fluctuations
of the three indices across the HRB. Moreover, there existed KGE-based ability for
this product to detect these indices, especially for R10mm, with a better overall
performance. For the HRB, the PERSIANN-CDR seriously underestimated the trends
of the frequency-based indices and overestimated spatial variabilities of R10mm.
No R-based ability and KGE-based ability existed for the PERSIANN-CDR to capture
the trends of the frequency-based indices.

(4) Validation for intensity-based indices. The PERSIANN-CDR had ability to repro-
duce spatial patterns of climatological characteristics of the intensity-based indices,
but with underestimated magnitudes. Except for SDII, the other two indices both
corresponded to different underestimations in spatial variabilities of climatologi-
cal values. This product had a moderate KGE-based performance in representing
climatological values of the intensity-based indices. Across the HRB, the intensity-
based indices were generally underestimated, but their temporal variabilities were
overestimated. With the exception of R1xday, the PERSIANN-CDR exhibited abil-
ity to reproduce temporal variabilities of Rx5day and SDII across most of the HRB.
No KGE-based ability was detected at most grids for Rx1day, while the PERSIANN-
CDR corresponded to a better and a certain KGE-based performance for Rx5day and
SDII at most grids, respectively. As for the trends, underestimations existed in mag-
nitudes and spatial variabilities for the intensity-based indices (except for Rx5day).
The PERSIANN-CDR showed a certain R-based ability in reproducing spatial patterns
of these indices’ trends, but no KGE-based abilities existed.

A comprehensive assessment of the PERSIANN-CDR extreme precipitation over the
HRB was conducted by comparing here with gauge measurements. However, it should be
noted that there existed some issues—e.g., mismatch in spatial scale between point-scale
gauge and areal satellite precipitation, inherent uncertainties for gauge observations (in-
cluding calibration flaws, wind-related undercatch, wetting-evaporation losses, etc.), and in-
homogeneity of observations—influencing the confidence level of our findings [39,47–52].
Because of precipitation with large variability at a small spatial extent, a sparse gauge
network is difficult to use to fully detect precipitating processes at a given PERSIANN-CDR
grid. Therefore, to minimize the related uncertainties into validation results, a sufficient
number of gauges should be collected [47]. Commonly, gauges have flaws in calibration,
consequently resulting in measured values with uncertainties. For instance, some studies
have stated that calibration flaws tended to underestimate gauge observations, particu-
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larly for greater rainfall intensities [48]. Under wind-related undercatch effect, the catch
efficiency of gauges becomes lower, more or less, mainly due to raindrops missing the
funnel or falling at an inclination. As a result, the gauged-recorded precipitation is often
smaller than the true values, and underestimations are closely associated with ambient
wind speed, raindrop size distribution, and gauge design [49]. Moreover, the gauge values
are likely to be underestimated because of evaporation from water adhering to the inside
walls of the gauges (i.e., wetting losses) and exposure of the water surface within a gauge
to atmosphere (i.e., evaporation losses) [50]. Simply, these influential factors of gauge mea-
surements have an aggregate impact of underestimating gauge precipitation, which then
propagate impact into our results [51]. In this study, although gauges with inhomogeneous
observations were removed with the Pettitt test (a better method to examine observations’
homogeneity when lacking meta-data for gauges; [40]), no guarantee shows that the records
at the remaining gauges were all homogenous, potentially weakening the confidence level
of this study.

Regardless, our study provides some significant reference data for PERSIANN-CDR
developers and potential users in the HRB and other regions. For example, the different
capacity of PERSIANN-CDR to detect various extreme precipitation indices suggests that
PERSIANN-CDR developers might try to develop specific algorithms and/or correction
procedures for increasing a certain validation metric-based performance; for potential users,
some PERSIANN-CDR extreme precipitation indices (e.g., CWD, Rx1day, and Rx5day)
with poor performance should be excluded from use. The poor performance of PERSIANN-
CDR for detecting linear trends of all the selected indices implies that more effort should
be devoted by the developers to improving PERSIANN-CDR’s abilities; moreover, more at-
tention should be paid by potential users of PERSIANN-CDR when conducting studies of
long-term changes in extreme precipitation.
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