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Preface to “Coastal Waters Monitoring Using Remote
Sensing Technology”

At present, about 10% of the global population lives in the world’s coastal zones, mostly
concentrated in the world’s largest megacities. In many regions, the population is exposed to a
variety of natural hazards (e.g., extreme weather, such as damaging cyclones and storm surges),
to consequences of global climate change (e.g., sea level rise), and to the direct impacts of human
activities. In low-lying coastal areas, some factors combine negatively, thus increasing risks for coastal
dwellers. For example, climate-related sea level rise increases the risk of flooding and coastal erosion
during extreme events and can also cause salt water intrusion into rivers and coastal aquifers on
which people depend. Land subsidence, caused by groundwater, oil, and gas extraction in coastal
megacities, is another example of an amplifier of the impacts of climate-related sea level rise. In
addition, because of strong anthropogenic pressures, coastal zones are already suffering ecological
and biological stresses, for example, poor water quality, pollution, and destruction of marine
ecosystems. Space-based observations, complemented by in situ networks, have demonstrated their
capability to provide precise and systematic information about processes acting in the coastal zones
worldwide, among them extreme events and phenomena related to climate change and variability, as
well as evolving anthropogenic conditions. This volume is a collection of papers that originated as a
Special Issue, focused on some recent advances related to the usage of remote sensing observations
alone or in synergy with in situ measurements and modeling tools in order to monitor ocean processes
or exploit them in applications in the coastal zone. Examples include coastal sea level changes;
land-sea interaction (river flow and river plumes); water quality (phytoplankton and sediment load);
small-scale shelf currents; ocean tides; upwelling and sea surface temperature variability; wave
climate; bathymetry estimation. Applications refer to renewable energy; aquaculture; extreme events
(storm surges and hurricanes). The editors of this book are grateful to all the contributing authors,

reviewers, journal editors, and the production team.

Stefano Vignudelli, Jérome Benveniste
Editors
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Abstract: This paper discusses the use of a Geostationary Ocean Color Imager (GOCI) to monitor
the spatial-temporal distribution of suspended sediment (SS) along the coastal waters of northern
Taiwan which was affected by Typhoon Soudelor from 8 to 10 August 2015. High temporal resolution
satellite images derived from GOCI were processed to generate four-day average images of SS for
pre- and post-typhoon periods. By using these four-day average images, characteristics of SS along
the north of Taiwan coastal water can be tracked. The results show that SS concentration increased in
the four-day average image immediately after the typhoon (11-14 August), and then decreased in
the four-day average image 9 to 12 days after the typhoon (19-22 August). The mouths of the Dajia
River and Tamsui River were hotspots of SS, ranging from 9 to 15 g/m?® during the two post-typhoon
periods. Moreover, the maximum suspended sediment (SS;4x) and its corresponding time (t,,0x) can
be computed using GOCI hourly images for the post-typhoon period from 08:30 on 11 August to
08:30 on 22 August. The results show that S5, occurred in the west coastal water within 4 days
post-typhoon, and SS;;zx occurred in the east coastal water 9 to 12 days post-typhoon. Furthermore,
an exponential decay model was used to compute the time when 90% of typhoon-induced SS was
dissipated after Typhoon Soudelor (tgp). It was found that t9) in the mouths of the Tamsui River and
Heping River was the longest among all coastal waters of our study area, with a range of 360-480 h.
River discharge and ocean currents with suspended sediment concentration are discussed.

Keywords: GOCI; suspended sediment; Typhoon Soudelor; spatial-temporal distribution

1. Introduction

Suspended sediment (SS) is a key part of studying shallow waters, such as coastal
regions, because of its influence on the marine environment and ecosystems [1]. Therefore,
monitoring the characteristics of SS can aid in better understanding the bio-geomorphological
processes and validate spatially distributed hydrodynamic and transport models in coastal
water regions [2]. There are many monitoring methods, such as in situ measurements
with a cruise, station observations, numerical models, remote sensing, etc. In situ mea-
surements with a cruise, numerical models, and station observations are costly and time-
consuming [3,4]. Remote sensing provides a viable solution for monitoring SS in coastal
waters because it can cover large areas at the same time. Moreover, compared with other
methods, satellite images also offer richer spatial information and can overcome opera-
tional cost issues due to state-of-the-art technologies. For example, the first geostationary
ocean color observation satellite has been used for coastal water turbidity and Sentinel-3
missions for scientific observations of the ocean [5,6].

Many regions around the world are affected by tropical storms, including Taiwan.
Typhoon-induced suspended sediment (SS) in the coastal water region has an impact on

Remote Sens. 2021, 13, 194. https:/ /doi.org/10.3390/rs13020194
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the marine environment. For instance, Typhoon Morakot had an influence on the marine
environment in the East China Sea inner shelf and Okinawa Trough [7,8]. The heavy rains
and episodic cyclones associated with typhoons increase the total suspended sediment, sea
surface temperature, and phytoplankton. In addition, the high waves and strong wind
speeds of typhoons, inducing re-suspension of bottom sediments, have been discussed [9].
The ocean surface current related to Hurricane Sandy, Typhoon Morakot, and Typhoon
Saola caused the spreading of suspended sediments from the coast to the open sea [10-12].
No previous studies have used remote sensing to investigate the spatiotemporal distri-
bution of suspended sediment in Taiwan coastal waters, induced by a typhoon. We used
satellite images to do this in the north of Taiwan.

Several international studies have used satellite images to assess sediment in coastal
water regions. For example, remote sensing has been used to assess typhoon-induced
SS concentrations. In Apalachicola Bay, Florida, USA, observations of typhoon-induced
SS were conducted by using 250 m Terra MODIS (Moderate Resolution Imaging Spectro-
radiometer) images during Hurricane Frances [13]. The impact of Typhoon Saomai on
SS concentration in the East China Sea was calculated using Aqua and Terra MODIS im-
ages [14]. Combinations of multi-satellite images (including MODIS, MERIS (the Medium
Resolution Imaging Spectrometer), and GOCI) were used to show the dynamics of sus-
pended sediment associated with Typhoon Tembin in the East China Sea [15]. The sediment
transport in the Taiwan Strait induced by Typhoons Soulik and Morakot has been moni-
tored by using Aqua MODIS images [16,17]. The spatial-temporal distribution of SS has
not yet been considered because of the limitation of quality data under typhoons. Therefore,
this paper tries to bridge the gap between the spatial-temporal distribution of SS induced
by a typhoon and data limitations.

The Geostationary Ocean Color Imager (GOCI), a satellite sensor, can overcome
the limitation of quality data under typhoon weather conditions due to its temporal
resolution [18]. The GOCl is operated by the Korea Ocean Satellite Center (KOSC) at the
Korea Institute of Ocean Science and Technology (KIOST). It is the first ocean color satellite
placed in geostationary orbit to provide eight hourly images during the daytime (from 08:30
to 15:30 local time at one-hour intervals) with a spatial resolution of 500 m. GOCI covers
about 2500 km x 2500 km centering on the Korean Peninsula (at the center of 130° E, 36° N),
including the north of Taiwan. It has six visible bands from 412 to 680 nm and two near-
infrared bands at 745 and 865 nm. The bands at wavelengths of 555 and 660 nm are used for
suspended sediment extraction [19-22]. All of the existing studies related to GOCI-derived
suspended sediment focused on monitoring the temporal variation of water turbidity
and the diurnal dynamics of suspended sediment in coastal water. For instance, GOCI
hourly images have been used to monitor the diurnal and seasonal variability of suspended
sediment concentration in a macro-tidal estuary [23]. GOCI images have been used to
monitor the suspended sediment in Taihu Lake [24] and the coastal waters of Zhejiang,
China [25], as well as Gyeonggi Bay on the west coast of Korea [26]. Moreover, GOCI
also monitors long-term suspended sediment concentration and estimates ocean surface
currents hourly [27]. However, using GOCI to monitor the spatiotemporal distribution of
typhoon-induced SS in coastal waters has not been considered in previous case studies.

This study used GOCI to monitor the spatial and temporal distribution of SS pre- and
post-Typhoon Soudelor, which made landfall in Taiwan in August 2015. Furthermore, by
taking advantage of GOCI with time-series hourly images of SS after the typhoon, the
temporal decay of the SS pattern can be computed by an exponential regression, and the
time SS recovered to its pre-typhoon value can be estimated. This approach, which is the
core of the study, quantifies the typhoon-induced spatial and temporal distribution of SS
along Taiwan coastal water. Finally, factors such as river discharge and ocean currents
could have affected the discussed spatiotemporal distribution of SS.
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2. Materials and Methods
2.1. Study Area

The study area is located on the northern coast of Taiwan (Figure 1). There are 9 rivers
administered by the Taiwan central government (ATCG) [28]. Seven of the rivers are on
the west side of Taiwan Island, and two are on the east side.
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Figure 1. (a) Visualization of Geostationary Ocean Color Imager (GOCI) coverage area; (b) study area.

The statistics of the annual discharge of the 9 rivers were provided by the Taiwan River
Restoration Network [28]. Tamsui River has the largest annual discharge of 7443 m3/s,
followed by Lanyang and Dajia with 2773 m3/s and 2569 m>/s, respectively. Other rivers
have a lower discharge of less than 2000 m3/s, and the Fengshan River has the lowest
discharge of 376 m3/s.

2.2. Typhoon Soudelor

Typhoon Soudelor formed in the middle of the Pacific Ocean on 20 July 2015, and
became a super typhoon (category 5 on the Saffir-Simpson hurricane wind scale) on
29 July [29]. Typhoon Soudelor made landfall in the east of Taiwan at 04:40 local time on
8 August 2015 and brought torrential rain. The typhoon then moved north-westwards
through eastern China and degraded to a tropical depression on 9 August 2015 [30-33].

2.3. GOCI Satellite Images

In this study, GOCI level-2 images were downloaded from the NASA Ocean Color
website (https:/ /oceancolor.gsfc.nasa.gov/). Then, SS was extracted from GOCI hourly
images with a spatial resolution of 500 m. These hourly images were binned using the
arithmetic mean algorithm, implemented in SeaDAS [34,35], to create daily SS images with
a spatial resolution of 500 m (Figure 2).

During the period of Typhon Soudelor, cloud cover caused data voids in many of the
hourly GOCI images. The problem was more severe on 8-10 and 15-18 August, when
GOCI images were not available for our study area (Figure 2). To better visualize the spatial
distribution of typhoon-induced SS, i.e., minimize the data voids, 4 daily GOCI images
were further binned to generate a 4-day average image with a spatial resolution of 500 m.

A 4-day average image immediately before the typhoon (SSy_7), binned from the daily
SS images of 4-7 August 2015, was generated. Similarly, a 4-day average image immediately
after the typhoon (8511_14), binned from 11-14 August, was generated. Moreover, to
monitor the decrease in suspended sediment, a 4-day average image 9 to 12 days after
the typhoon (SS19_2), binned from the daily SS images of 19-22 August, was generated.
Figure 2 shows the data processing of GOCI images in this study.
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Figure 2. GOCI data processing for generating SSy4_7, SS11_14, and SS19_2,. SS: suspended sediment.

2.4. Quantitative Retrieval Algorithm of SS
In this paper, SS images were derived from level-2 GOCI images by using the algorithm
developed by Moon et al. (2010) based on in-situ SS samples (Equation (1)) [20]:
SS = 945.07 x (Rrs(555))"1%¥ 1)
where Rrs (555) is remote sensing reflectance at a wavelength of 555 nm, and SS is reported
in g/m?>. The algorithm was implemented in the GOCI Data Processing System (GDPS) by
KOSC [36].

2.5. Temporal Decay of SS after Typhoon

When showing the temporal history of hourly SS of a GOCI pixel (Figure 3), the
maximum SS value (SS;,x) was reached in a few days, varying with pixel locations, after
Typhoon Soudelor made landfall on Taiwan. In this research, SS;;qy of each pixel was
determined as the largest hourly SS value of that pixel from 11-22 August. The time when
the pixel reaches 55,4y is denoted as t,y.

An interesting feature in the temporal history of SS (Figure 3) is its decaying pattern,
where the SS value decreases after f,,,,. We proposed using a decaying model to quantify
the pattern by fitting an exponential curve to hourly SS data for each GOCI pixel via
regression. It was found (with internal trials) that a robust result of the regression was
obtained for GOCI pixels that had more than 5 hourly SS values available after their ;4.
Figure 3 shows an example of the regression result depicting the decaying exponential
model after t,,5,, despite the GOCI pixel not having data from 15 to 18 August due to
cloud cover.
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Figure 3. Example of temporal decay of suspended sediment (SS). Corresponding SSqp with fgg are denoted.

Ideally, taking advantage of this decaying model, the time for the pixel to return to
its pre-typhoon state could be estimated using the regression result. However, it was
found that the decaying exponential model of many GOCI pixels only approaches the pre-
typhoon state asymptotically, i.e., the regression line shown in Figure 3 does not intersect
with SSy_7. Instead, we demonstrate the use of this model by computing dissipation of
90% increased SS. This would fit for the application of coastal ecology management, as the
ecosystem is resilient to a certain increase in SS for a short period of time.

The amount of increased SS, denoted as SS,, for each GOCI pixel, can be computed as

SS, = SSax — 5S4 7 @
and SSg, which represents 90% of SS,, is dissipated from its maximum value (Figure 3).
SS90 = SSmax — 0.9 x SS, 3)

Furthermore, the time corresponding to SSgp can be identified via the regressed
exponential decay and is denoted as t9g (Figure 3).

3. Results
3.1. Spatial-Temporal Analysis of SS Pre- and Post-Typhoon Soudelor

During the pre-typhoon period (SS;_7 in Figure 4a), SS with a concentration of
3-6 g/m> was mainly distributed along the west coastal water. The mouths of both the
Dajia River and Tamsui River had an SS greater than 6 g/m?>. The SS concentration in the
east coastal water was less than 3 g/m5.

During the post-typhoon period of 11-14 August (551114 in Figure 4b), the SS of the
Taiwan coastal water generally increased. The SS along the west and east coastal waters
increased to values greater than 6 and 3 g/m?, respectively. Meanwhile, the mouths of the
Dajia River and Tamsui River (west coastal water) had SS values greater than 9 g/m? and
the Lanyang River mouth (east coastal water) had an SS value greater than 6 g/m?.

During the post-typhoon period of 19-22 August (SS19_»; in Figure 4c), the general
distribution of SS along the west coastal water was similar to that of the pre-typhoon period
(Figure 5a), except for the mouths of the Dajia River and Tamsui River having an SS value
greater than 9 g/ m3. A belt with relatively high SS values (greater than 3 g/ m3) was found
along the east coastal water with a width of approximately 3 km. In addition, the mouths
of both the Lanyang River and Heping River had SS values greater than 6 g/m?3.
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Figure 5. Temporal difference of SS: (a) SS11_14 — SS4_7; (b) SS19_22 — SS11_14-

Comparing the SS between the post-typhoon period of 11-14 August (SSq1_14) and pre-
typhoon (5S;_7), it was found that all pixels increased more than 1 g/m? (Figure 5a), except
for a tongue-shaped area (denoted by arrows in Figure 5a) located 10-20 km off the west
coastal water of Taiwan. In addition, the distribution of increased SS showed prominent
heterogeneity along the coastal water of Taiwan. A high increase in SS (i.e., greater than
6.0g/ m?) was found at the mouths of the Dajia, Daan, Tamsui, and Lanyang Rivers. Three
regions with a low SS increase (less than 2 g/m?) along the coast, from the Daan River
mouth to Zhonggan River mouth, the Fengshan River mouth to Tamsui River mouth, and
the Tamsui River to Lanyang River mouth, were also identified (Figure 5a).

Comparing the SS between two post-typhoon periods of 19-12 August (SS19_,) and
11-14 August (5S11_14), it was found that most of the pixels decreased while some remained
with increased SS values (Figure 5b). Most of the pixels decreased to less than 3 g/m?.
The Lanyang River mouth showed the most significant decrease of 6 g/m?, followed by
the Zhonggang and Taugian River mouths, with a reduction of 3 g/m3. In contrast, the
Dajia River mouth showed an increased SS value greater than 3 g/m? and the Heping
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River mouth showed an increased SS value of 6 g/m?3. It is also interesting to note that
neighboring regions with increased SS (greater than 3 g/m?) were found northeast of the
Tamsui River mouth and north of the Lanyang River mouth. The regions with increased SS
are indicated by arrows in Figure 5b.

With the GOCI average SS data, it was observed that SS in the west coastal water
was consistently greater than that on the east coastal water regardless of the effect of
Typhoon Soudelor. In addition, hotspots of high SS value (greater than 9 g/ m®) were
found at the Dajia and Tamsui River mouth in the two post-typhoon periods (§511_14 and
S$519-22). With the GOCI data for pre-typhoon (SS;_7) and post-typhoon (SS11_14), it was
observed that the Taiwan coastal water showed a prominent increase in SS induced by
Typhoon Soudelor.

3.2. SSmux and Enax

Figure 6a shows a visualization of the maximum suspended sediment (5S5,4x) for
each GOCI pixel of Taiwan coastal water during the post-typhoon period (from 08:30 on
11 August to 15:30 on 22 August). Figure 6b shows its corresponding time (#,4y) derived
from GOCI hourly data.

SSmax
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3
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Figure 6. (a) Maximum suspended sediment (5S,4x); (b) its corresponding time (#x)-

Generally, the west coastal water from the Dajia River mouth to the Tamsui River
mouth showed S5;,4y in the range of 9-15 g/ m® with a corresponding 5y of 0-80 h
(Figure 6b). This indicates that most of the west coastal water reached 5SS,y during the
post-typhoon period of 11-14 August (within four days after Typhoon Soudelor). The
exceptions were two strips with t,,,, greater than 264 h located 5 and 15 km away from
the Dajia River mouth (denoted by blue arrows in Figure 6b), and three regions with
tmax greater than 216 h located near the Tamsui River mouth (denoted by red arrows in
Figure 6b). Further small regions with t,4, greater than 264 h sporadically occurred in the
coastal water from the Houlong River mouth to Zhonggang River mouth and the Feshang
River mouth to Tamsui River mouth.

It is interesting to note that the general appearance of the 55,4, of the northeast coastal
water (indicated by the dotted white rectangle) was lower than the west and east coastal
waters, with a range of less than 6 g/ m3, while its t,,4, value showed a large variation of
0-272 h. Most of the coastal water of the northern coast had 5SS,y values in the range of
3-6 g/m?> with tyqy of 24-80 h (within four days after Typhoon Soudelor). At the west and
east ends (indicated by black and white arrows, respectively, in Figure 6) of the northeast
coast, 5S4y was in the range of 6-9 g/ m3 with a corresponding ty,,y greater than 264 h. It
also indicates that both SS,,,,, and f,,,y of the northern coastal waters are continuous data
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SSgo

(g/m%)

from the west and east coastal water. Even though there are no ATCG rivers in this region,
SSiax and 0, have been linked to river-derived suspended sediment.

The east coastal water generally took a long time to reach S5, with a range of
9-15g/ m’ compared to the west and northeast coastal waters, with t,,,x of 192-272 h
(9-12 days after Typhoon Soudelor). The exception is the coastal water near the Lanyang
River mouth, which reached an SS;,4x with #,,4 of 24-80 h (within 4 days after the typhoon).
The coastal water near Heping River mouth showed SS,,,x with a range of 6-15 g/ m?
corresponding to t;,,, greater than 240 h (11-12 days after the typhoon). Interestingly,
a region north of the Lanyang River mouth (indicated by yellow arrows) also showed
a local high SS,,4x of 9-15 g/ m3 with a corresponding t,,y value similar to the Heping
River mouth.

3.3. 5590 and i’go

Figure 7a shows a visualization of SSgp, which means 90% of increasing SS dissipated
from its maximum value for each GOCI pixel of Taiwan coastal water. Figure 7b shows the
corresponding time (fgo) via regressed exponential decay.

w
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Figure 7. (a) SS concentration of each pixel reduced to 90% after typhoon-induced impact; (b) its corresponding time fgq.

White contour lines indicate SS;_7; red contour lines indicate SSg.

The comparison between 5SSy (Figure 7a) and SS;_7 (Figure 4a) indicates that SSog
was similar to the pre-typhoon state (SS4_7), except for the SS of the Tamsui River mouth
(within 3-6 g/ m3; indicated by arrows in Figure 7a). Particularly, SS within 3-6 g/ m? was
observed mainly in the west coastal water, while it was less than 3 g/ mS in the east coastal
waters; SS greater than 6 g/m? also only appeared at the Tamsui and Dajia River mouths
(Figures 7a and 4a). There was a slight difference in SS located 40 km off the Tamsui River
mouth. SSgp showed that the SS of 3 g/ m? extended farther into the sea than in $S4_5.

The west coastal waters from the Dajia River mouth to the Tamsui River mouth
showed a tgy of more than 240 h, except for a tongue-shaped area with a range of 1040 km
off the west coastal water (indicated by arrows in Figure 7b), showing a toy of less than
240 h. The Tamsui River mouth extending within 20 km of the coastline indicated a fgg
with a range of 240480 h.

The northeast coastal water to the Lanyang River mouth (Figure 7a) showed an 559
associated with a tgg of less than 240 h, except for small scattered regions that appeared
closest to the coastline with a fgy of around 480 h (Figure 7b). Lastly, the east coastal waters
from the Lanyang to Heping River mouth showed a tgy of 360-480 h (Figure 7b).

It should be noted that some pixels available in the SSqy are not visualized by the
too. There are two cases in which the decaying model works without advantages, leading
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to the pixel in t9p not being visualized. When GOCI pixels (indicated by a red rectangle
in Figure 7) have a gap between S5,y and SS4_7, which is close (Figure 3), tgg is not
visualized due to no decay. When the number of GOCI pixels after ¢,y has fewer than
five values, it is also not visualized because of the lack of data (indicated by the black
rectangle in Figure 7). Otherwise, the proposed methodology, which uses an exponential
temporal decaying model, shows a distinct advantage when GOCI pixels have more than
five hourly SS values available after their f,,4. It is possible to compute the fgy with robust
results post-typhoon.

4. Discussion

According to previous studies in Taiwan, one possible reason for the SS derived from
a typhoon is that it is strongly affected by river discharge. For example, using a case
study in Choshui River, Taiwan, and Typhoon Mindulle, the authors of [37] indicated that
in a floodplain, more than half of the suspended sediment originating from mountain
rivers running into Taiwan coastal waters was generated by river discharge. The authors
of [38] observed the Jhoushui River and an adjacent coastal zone in the Taiwan Strait
and summarized that the river discharges most of the sediment during the relatively
short periods of torrential rain often associated with typhoons. Moreover, the authors
of [39,40] indicated that suspended sediment discharge during typhoon events was linked
to landslides and rainfall in Taiwan. The authors of [41] considered the impact of typhoons
on sediment discharge in Taiwan. River discharge also impacted the change in sediment
concentration in the Tamsui River, as discussed in [42]. Even though we have the same
opinion, there are no recorded data to support the Typhoon Soudelor case. Therefore,
examining the mechanical factors, such as river discharge, related to typhoons is beyond
the scope of this study. We only discuss this based on the mean annual discharge data,
which were provided by the Taiwan River Restoration Network [28,43].

In terms of the mean annual discharge related to the nine central rivers administered
by ATCG, the Tamsui River supplies the largest amount with 7443 m3/s, followed by the
Lanyang and Dajia Rivers with 2773 and 2596 m® /s, respectively. This is the reason why
the Tamsui, Dajia, and Lanyang River mouths act as hotspots with high SS values (5S4x
above 9 g/ m3) during the two post-typhoon periods (SS11_14 and SS19_5,). Meanwhile,
other rivers show a mean annual discharge lower than 2000 m®/s, and they influence the
coastal regions with 55, values in the range of 6-9 g/ m3. The central rivers are mainly
located in the western part of Taiwan, which may be why many GOCI pixels of the west
coastal waters are more influenced than those of the east coastal waters, regardless of the
effect of Typhoon Soudelor.

Other factors such as tide level, waves, wind speed, and surface currents that impact
the spatiotemporal distribution of SS should also be discussed. All of these factors have
been considered by many scientists. According to the authors of [44], by using shipboard
observations for estimation, transport and tidal currents in the Taiwan Strait were north-
ward (into the East China Sea). This is similar to the ocean surface current from GOCI
satellite imagery in summer around the north of Taiwan coastal water being northward [45].
Therefore, we also believe that after Typhoon Soudelor, the ocean surface was a major
factor in increasing the outbreak of suspended sediment north of Taiwan. However, due to
the limitation of recorded data on Typhoon Soudelor, the transport mechanism responsible
for the sediment warrants further investigation.

5. Conclusions

This paper proposes a new approach using the GOCI to monitor the spatial and
temporal distribution of suspended sediment in coastal areas affected by typhoons. Remote
sensing technology was used instead of other methods such as in situ measurements,
numerical models, and station observations to track post-typhoon sediment concentration
in Taiwan coastal waters.
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The spatial distribution of SS has been highlighted by using the GOCI four-day
average image of SS pre- and post-Typhoon Soudelor. As a result, several pixels with an
SS above 6 g/m? in the west coastal waters were consistently more significant than in
the east coastal waters regardless of the typhoon. The Dajia and Tamsui River mouths
were hotspots of increased SS and SSyuqx (above 9 g/m?®) during two post-typhoon periods
(11-14 and 29-22 August).

According to the GOCI hourly data after the typhoon, SS,,.x was in the range of
6-15 g/m?, corresponding to ty,qx within four days in the west coastal water, while the east
coastal water was 9-12 days. Furthermore, using exponential regression decay to visualize
5Sgg for each GOCI pixel in Taiwan coastal water indicates that SSgp was in an asymptotic
pre-typhoon state. The corresponding time tgy shows that GOCI pixels in both the Tamsui
and Heping River mouths generally took the longest time, in a range of 360—480 h.

River discharge could have a significant impact on the post-typhoon sediment charac-
teristics of Taiwan coastal waters. Other factors such as tide level, waves, wind speed, and
surface currents could also affect the spatiotemporal distribution of suspended sediment.
We suggest that this should be investigated in the future by using a successfully recorded
dataset with a new typhoon.
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Abstract: The paper presents the results of a comparison of water turbidity and suspended particulate
matter concentration (SPM) obtained from quasi-synchronous in situ and satellite remote-sensing
data. Field measurements from a small boat were performed in April and May 2019, in the northeast-
ern part of the Black Sea, in the mouth area of the Mzymta River. The measuring instruments and
methods included a turbidity sensor mounted on a CTD (Conductivity, Temperature, Depth), probe,
a portable turbidimeter, water sampling for further laboratory analysis and collecting meteorological
information from boat and ground-based weather stations. Remote-sensing methods included turbid-
ity and SPM estimation using the C2RCC (Case 2 Regional Coast Color) and Atmospheric correction
for OLI ‘lite” (ACOLITE) ACOLITE processors that were run on Landsat-8 Operational Land Imager
(OLI) and Sentinel-2A /2B Multispectral Instrument (MSI) satellite data. The highest correlation
between the satellite SPM and the water sampling SPM for the study area in conditions of spring
flooding was achieved using C2RCC, but only for measurements undertaken almost synchronously
with satellite imaging because of the high mobility of the Mzymta plume. Within the few hours when
all the stations were completed, its boundary could shift considerably. The ACOLITE algorithms
overestimated by 1.5 times the water sampling SPM in the low value range up to 15 g/m>. For
SPM over 20-25 g/m?, a high correlation was observed both with the in situ measurements and
the C2RCC results. It was demonstrated that quantitative turbidity and SPM values retrieved from
Landsat-8 OLI and Sentinel-2A /2B MSI data can adequately reflect the real situation even using
standard retrieval algorithms, not regional ones, provided the best suited algorithm is selected for
the study region.

Keywords: river plume; turbidity; suspended particulate matter; ocean color data; satellite remote
sensing; in situ measurements; C2RCC; ACOLITE; Landsat-8 OLI; Sentinel-2 MSI; Mzymta River;
Black Sea

1. Introduction

River discharge into sea plays an important role in the physical, chemical and biologi-
cal processes in the ocean, especially in the shelf areas, being the main source of suspended
and dissolved terrigenous and biogenic substances in the sea, as well as anthropogenic
pollution. These substances have significant and in many cases negative effects on coastal
ecosystem, including phytoplankton productivity, transport of pollutants in the shelf areas,
erosion of coasts, artificial beach formation, nutrient dynamics, etc. [1-3]. Therefore, moni-
toring the estuarine areas and understanding the dynamics of river water distribution over
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the sea shelves are important scientific and practical tasks. The influence of a huge num-
ber of geographic factors, hydrometeorological conditions and hydrophysical processes,
with great complexity and cost of field measurements, create a certain fragmentation of
information on the processes of river water spreading in the sea. This problem can be
solved only using satellite remote-sensing methods, which provide a unique opportunity
to observe almost simultaneously the entire region of interest repeatedly, day after day, for
many years.

Reaching a sea, river waters form plumes—mesoscale structures adjacent to the river
mouth. Plume water can be distinguished from seawater by its low salinity, tempera-
ture and usually by high turbidity and high content of suspended matter and dissolved
organics [4,5].

For a river plume area, the main difficulty is obtaining quantitative suspended par-
ticulate matter concentration (SPM) estimates, while qualitative information is abundant.
In satellite true color images (TCI), plumes can be clearly identified by contrasting differ-
ences between muddy river water and relatively clean surrounding seawater [6]. Multiple
investigations confirm that river plume boundaries and other turbidity inhomogeneities
obtained from contact measurements correlate quite well with satellite observations. For
example, a joint analysis of in situ and Aqua Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data allowed tracking propagation of a Vistula plume in coastal waters of the
Gulf of Gdansk during intense flooding in May 2010, but only on a qualitative level [7].

There are numerous studies on validation of satellite data using concurrent field
measurements [8-18]. This by far incomplete list shows that such works are under way in
various regions worldwide, which evidences their importance. Although various methods
and techniques of contact measurements and different remote-sensing data are employed,
the problem of adequate interpreting satellite data and obtaining products suitable for use
instead of expensive in situ data is still far from being solved.

Quantitative estimates of turbidity and SPM can be obtained from satellite remote
sensing data using various algorithms that, strictly speaking, should take into account
numerous factors, including varying chemical composition of ocean water, coastal shelf
waters, water of estuaries and fresh water bodies, geometrical parameters of satellite
sounding at a given moment, intrinsic properties of orbital equipment, and current climatic
conditions in the study area and much more [14,19-27]. A classic example of a study
of river runoff influence on coastal hydrological structure is presented in [28]. Using a
set of field measuring instruments, the authors performed a detailed investigation of the
properties of vertical hydrological structure of seawater affected by intrusion of fresh river
water, as well as sedimentation of suspended matter in the shelf zone. However, satellite
data were used only for qualitative consideration as an auxiliary tool.

After numerous comparisons and simultaneous measurements, it was found impossi-
ble to develop a universal algorithm for evaluating the standard characteristics of seawater
color based only on available data from satellite optical sensors because of extremely di-
verse set of characteristics and ambiguity in their interpretation under certain observation
conditions. As noted in [29], there are three main types of algorithms commonly used to
derive SPM from water reflectance: (1) empirical, (2) semi-analytical and (3) analytical
algorithms. Empirical single-band and band-ratio models have been commonly used in
coastal and estuarine areas [9,15,30]. These types of model are dependent on SPM and
water reflectance ranges, and require calibration with regional measurements [29]. Semi-
analytical or analytical models are based on the inherent optical properties and provide a
more global application [12,31,32].

To date, scientists from different countries have developed a number of specialized al-
gorithms to evaluate characteristics of coastal marine and lake waters [30,33-36]. Originally,
some of the standard algorithms were developed for the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) instrument, then for MODIS and MEdium Resolution Imaging Spectrom-
eter (MERIS) on the Envisat satellite [37,38], which operated for 10 years until 2012. An
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example of a successful application of the coastal algorithm on MERIS data is described
in [39].

The Ocean and Land Colour Instrument (OLCI) instrument on Sentinel-3 (launched in
2016) was developed in part to provide continuity with measurements made previously by
MERIS. The algorithms developed for MERIS were adapted for OLCI [40]. Some of them
were automated and made available in the specialized BEAM-VISAT software used by a
great number of researchers.

Examples of such algorithms are: Case 2 Regional (C2R) [37], FUB/WeW [38], Eu-
trophic Lake (EUL) and Boreal Lake (BL) [37], as well as the Maximum Chlorophyll Index
(MCI) and Fluorescence Line Height (FLH) [41,42]. It was expected that some of these
algorithms could be compatible with currently used Sentinel and Landsat sensors.

In this paper, for atmospheric correction, turbidity and SPM estimation the following
standard algorithms were used: C2RCC (Case 2 Regional Coast Colour, https://www.
brockmann-consult.de/portfolio/water-quality-from-space/) and algorithms provided by
the ACOLITE (http://odnature.naturalsciences.be /remsem /software-and-data/acolite)
software.

The C2RCC processor was originally developed by Doerffer and Schiller [37] and
now is implemented in the European Space Agency (ESA) Sentinel Toolbox SNAP soft-
ware (https:/ /step.esa.int/main/toolboxes/snap/). The latest development of C2RCC
neural networks and the algorithm for optically complex waters are described in [43].
The software calculates marine environment characteristics based on multispectral sensor
data from satellites of the latest generation (SeaWiFS, MERIS, MODIS, Visible Infrared
Imaging Radiometer Suite (VIIRS), OLCI, Operational Land Imager (OLI), and Multispec-
tral Instrument (MSI)). It is also applicable to historical data from sensors that finished
their operation long ago. Thus, it allows “recalculating”, for certain purposes, previously
calculated parameters to meet current requirements.

Another group of algorithms that we used in our study are implemented in the
ACOLITE processor and intended for calculating the main optical parameters. ACOLITE,
developed at the Royal Belgian Institute of Natural Sciences (RBINS), is based on the work
of a team of researchers led by Dr. Bouchra Nechad and described in detail in [31,44,45].
ACOLITE is specifically developed for marine, coastal, and inland waters and supports
free processing of Landsat-8 and Sentinel-2 data [46—-48].

Recently, ACOLITE has been frequently used for atmospheric correction of OLI and
MSI data [49]. Two atmospheric correction methods are implemented [50]: the Short Wave
Infrared (SWIR)-based exponential extrapolation method [51-53] (EXP) and a multi-band
dark spectrum fitting technique [50,54] (DSF). The DSF was developed for meter scale
resolution sensors and subsequently adapted for the decameter resolution sensors on
Landsat and Sentinel [50]. The software is successfully applied both for coastal zones and
inner water bodies [46-49,55,56].

Monitoring seawater quality in the northeastern part of the Black Sea is of prime
importance since this region is Russia’s largest marine recreational area. The motivation
of this study was to examine how well the different algorithms can assess turbidity and
SPM, key water quality parameters, in such a complex environment as the Black Sea Cau-
casian coastal zone with multiple mountainous rivers flowing into the sea. The plume
area of the Mzymta River, the most affluent river in the region, was chosen as the test
site. The main objective was to determine the relationships between water turbidity and
SPM obtained by contact and remote sensing methods and compare the performances
of the above algorithms. Strong spatial and temporal variability of sub-mesoscale hy-
drodynamics in the study area required careful selection and comparison of different
instruments and techniques for in situ measurements. Coupled with a detailed examina-
tion of surface and vertical plume structure, this ensured correct and accurate validation of
the satellite algorithms.

Contact measurements were conducted from a small boat using a turbidity sensor
mounted on a CTD (Conductivity, Temperature, Depth) probe, a portable turbidimeter

15



Remote Sens. 2021, 13, 143

and water sampling for further laboratory analysis. Quasi-synchronous satellite data were
processed using C2RCC and ACOLITE algorithms proposed by Nechad et al. [31,44,45]
and Dogliotti et al. [32].

Quite a number of works, for example [57-59], are devoted to the plume of Mzymta,
however, comparison of water quality parameters retrieved from concurrent contact and
satellite measurements was performed for the first time.

2. Study Area, Data and Methods
2.1. Study Area

The Mzymta River is the largest river of the Russia’s part of the Black Sea coast. It
originates on the slopes of the Main Caucasus Range and has a mountainous character
for most of its length. The total length of the river is 89 km and the catchment area is
885 km? [60]. The river recharge is mixed, including precipitation, melting snow and
glaciers and groundwater in the lower part. Mzymta has a high discharge in the warm
season, frequent autumn floods, and a stable low water in winter.

Mzymta flow rate varies from 0.4 to 2-3 m/s. The yield of suspended sediment is
directly dependent on water runoff: the greater the water discharge, the greater is the yield.
The average annual amount of suspended sediment is 488,200 tons and that of bottom
sediments is 141,000 tons [60]. The average annual discharge of the river is 45.6 m3/s [61].

Mzymta plume forms near the city of Adler where the river enters the Black Sea.
Plume water is fresher and colder than seawater. Having a highly dynamic character,
Mzymta plume is subject to a strong influence of wind and coastal system of currents [2,62],
the Coriolis force, the local landscape, and stratification of the ambient sea [58]. Due to
a narrow shelf zone in the southeastern Black Sea, the main element of the Black Sea
circulation, the Rim Current, is often strongly pressed against the coast, at a distance of
~6 km. Therefore, being involved in the cyclonic structure of the Rim Current, Mzymta
plume can spread for many kilometers along the coastline from the river mouth [63].
Interacting with sub-mesoscale and mesoscale vortex structures, the river water acts as
a tracer, which aids in the studies of water exchange between the coastal zone and deep
sea [64].

The infrastructure developed along the shores of Mzymta can bring a potentially
significant anthropogenic impact on its waters. In the upper part of the river, there is
the famous Krasnaya Polyana ski resort with a vast complex of hotels. At the mouth of
the river, popular tourist attractions include extreme rafting, bungee and BASE (building,
antenna, span, and earth) jumping. There are several trout farms in river bends, some of
them invite tourists. The hydropower plant in Krasnaya Polyana is also located on the river
and supplies electricity to the city of Sochi. The most developed is the lowland part of the
river in close proximity to the coast. The cities of Sochi and Adler stretch along the seashore
with numerous hotel complexes and swimming beaches. By the 2014 Winter Olympics, the
eastern part of the floodplain was densely developed to build the Olympic Village, a yacht
port and new artificial sandy beaches. Now, Sochi is the largest resort city in Russia, very
popular throughout the year (Figure 1). Such development can dramatically contribute to
pollution of the river water and, as a result, the coastal zone [65].
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Figure 1. Study area in the northeastern part of the Black Sea. 1 Imereti port; 2 Olympic Park; 3 wastewater outfall;

4 beaches.

A possible attempt to regulate Mzymta flow into the sea and to direct it away from
the yacht port in order to decrease its impact on the port protective walls can lead to
destruction of the beaches just east of the port (Figure 1). Without new terrigenous material,
the beaches will erode and their maintenance will be too expensive. Study, monitoring and
control of this area are urgently needed to understand the changes in the coastal ecosystem
due to active recreational activity and properly maintain such activity.

2.2. Data and Methods
2.2.1. Boat Measurements

Shipboard measurements were conducted from 23 April to 4 May 2019, in the estuary
zone of Mzymta from a small boat called Arabella with Imereti port as point of departure.
The route of Arabella within Mzymta plume consisted of 4 legs parallel to the coast, from
the river mouth to a visible edge of the plume. Each sailing was organized concurrently
with a satellite (Sentinel-2A /-2B MSI, Landsat-7 ETM + and Landsat-8 OLI) passage over
the study area. In total, seven boat trips were completed on 23-26, 28 April and 1-2 May
2019. The summary grid of stations included more than 150 points (see Figure 2). At
each station, CTD probing was performed from the surface to the bottom using a high-
precision instrument RBR-Concerto of the Canadian company Richard Bransker Research
Ltd. The main characteristics of the instrument are presented in Table 1. The CTD probe
was equipped with a turbidity meter (TM) from Seapoint Ltd. with measurement frequency
up to 6 kHz. Additionally, turbidity of the upper layer of water was measured at best
possible accuracy using a portable turbidimeter (PT) TN400 from Apera Instruments. At
CTD stations and in points of turbidity measurement, water sampling was performed for
further evaluation of SPM.
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Figure 2. Map of 2019 hydrological stations.
Table 1. The main characteristics of RBR-Concerto CTD instrument.
- . Typical Max. Sampling
Parameter Range Initial Resolution Time Stability/ Depth Speed
Accuracy Constant
Per Year (m) (Hz)
Conductivity ~ 0-85mS*/cm +0.003 mS/cm 0.001 mS/cm ~1s 0.010 mS/cm 200 2-6
Temperature —5°Cto35°C +0.002° 0.00005 °C ~1s 0.002 °C 200 2-6
Depth 0-200 m +0.05% FS ** 0.001% FS <0.01s 0.1% FS 200 2-6

*—millisiemens. **—full scale.

TM is an analog sensor that detects scattered light from suspended particles in a
specific volume of water placed in front of the optical window of the sensor, at a distance
<5 cm. A distinctive feature of the sensor is its ability to detect light scattered from particles
smaller in size than the wavelength emitted, which is 880 nm. For suspended particles
whose diameters are greater than the wavelength of the light source, light scattering
actually occurs through optical processes such as reflection, refraction, and diffraction [66].
A light-scattering pattern after a collision with a particle depends on the relationship
between wavelength and particle size. When the particle is larger than the wavelength,
light tends to scatter more intensely in the forward direction [67]. TM reports turbidity
in nephelometric turbidity units (NTU). TM measuring range is from 0.05 to 15,000 NTU
(2% deviation), operating temperature 0-65 °C (temperature coefficient <0.05%/°C),
depth capability 6000 m.

At the CTD stations, TM took measurements from depths of 0.35-0.50 m at best. To
improve turbidity data from the upper layer of water (0.10-0.15 m), we also used PT. The
instrument is equipped with an infrared light source and uses the nephelometric method
that complies with ISO7207 (90° dispersion). PT measurement range is from 0 to 1000 NTU

18



Remote Sens. 2021, 13, 143

(the instrument is shipped with 4 ready-made calibration standard solutions of high-
molecular polymer turbidity: 0.02 NTU, 20.0 NTU, 100 NTU, and 800 NTU), measurement
accuracy varies from 0.01 to 1 NTU depending on the selected range. For each sample, two
instant measurements were taken; their mean was used as a resulting value. At the same
time and at the same stations, samples of water were taken from the upper surface layer
for laboratory analysis.

Each optical sensor, in principle, has its own specifics. A detailed discussion can
be found, for example, in [68], a work devoted to laboratory experiments on turbidity
evaluation by different optical sensors.

During the boat measurements, air temperature, wind speed and wind direction were
continuously recorded by the Airmar WeatherStation 150WX weather station along the
course of the boat. Table 2 presents its characteristics. The display of weather station
parameters was configured and realized by the factory software WeatherCaster ™ Software
3.005. Also, data on air temperature, atmospheric pressure above sea level, wind speed,
wind direction and precipitation were obtained from a weather station at the airport of
Sochi (https://rp5.ru/). The movement between boat stations was controlled using a
chartplotter with a built-in Garmin GPSmap 541s echo sounder.

Table 2. The main characteristics of Airmar WeatherStation 150WX.

Parameter Range Accuracy Resolution
wind speed 0-40m/s 5%/10m/s 0.1m/s
wind direction 0° to 359.9° +3°/10m/s 0.1°
air temperature —40°Cto80°C +1.1°C/20°C 0.1°C
barometric pressure 300 to 1100 hPa +0.5 hPa 0.1 hPa
pinch and roll 50° £1° in range of £30° 0.1°

2.2.2. Laboratory Study

During the field work, 140 water samples were taken from the near-surface layer to
evaluate amount and mineral composition of the suspended matter. As mentioned earlier,
this was necessary in order to carry out more accurate measurements of Mzymta plume
water for subsequent comparison with results derived from remote-sensing data. The
volume of each sample was approximately 1.5 L. All samples were weighed in laboratory
conditions with an accuracy of 0.01 g. SPM was determined gravimetrically [69,70]. Water
was filtered using a vacuum unit Lafil 400-LF30 and fiberglass WHATMAN GEF/F filters
manufactured from hydrophobic borosilicate glass. These filters are capable to catch fine
particles down to 0.7 microns. The filters were preweighed with an accuracy of 0.1 mg, and
stored in a desiccator for use within 2 weeks. Water samples were filtered immediately
after collection.

To remove sea salt from the suspension, filters were washed with 250 mL of distilled
water after filtration. Such an amount of fresh water provided complete dissolution of the
salt and its removal from the samples. The samples were stored at —20 °C until further
analysis, usually within one month after sampling. Subsequently, all filtered samples were
subjected to weight analysis of SPM on high-precision scales in the petrology laboratory
of the Moscow State University. Suspension filters were dried for 24 h at 50 °C and
reweighed. The accuracy of determining the weight of the suspended particles in the
samples was £0.0001 g. Note that suspended particulate matter includes all organic and
mineral material with dimensions over approximately 0.7 mm.

The median and the interquartile range (IQR) were computed for each sample by the
protocol detailed in [70]. Observations where the IQR exceeded 45% of the median SPM
value were rejected.

To identify the mineral composition of the sediment, 20 samples were chosen for X-ray
analysis. The samples were obtained on 26 April, 1 May and 2 May at stations located at
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different distances from the Mzymta mouth and covering a wide range of turbidities from
minimum to maximum NTU.

X-ray scanning and analysis were performed at the Department of Oil and Gas Sed-
imentology and Marine Geology, College of Geology of Moscow State University. The
survey was carried out on a DRON UM 1 powder diffractometer (Co Ka, A = 1.79021 A)in
the range of angles 2 ® from 4 to 80° in continuous mode at a speed of 2° per minute. The
phases were diagnosed using the MINCRYST crystallographic base for minerals and their
structural analogs. The amount of the mineral phase was estimated by comparison of the
intensities of the corresponding peaks.

2.2.3. Satellite Observations

All field measurements from the boat were synchronized with satellite data acquisition
at best possible accuracy. The source of remote-sensing data was the instruments on board
Landsat-8 and Sentinel-2 (A and B), namely, the Operational Land Imager (OLI) and
Multispectral Instrument (MSI) multispectral sensors. Also, Sentinel-3 OLCI data were
used to compose SPM maps. Because of their 300 m spatial resolution, no comparison with
measurements at the boat stations was possible. They were used to highlight the general
picture of Mzymta water distribution.

The Landsat-8 satellite, of the National Aeronautics and Space Administration (NASA)
and The United States Geological Survey (USGS), is equipped with OLI and Thermal In-
fraRed Sensor (TIRS) multispectral scanners of medium spatial resolution in the visible
and infrared ranges covering a strip about 185 km wide in a continuous mode with a
flight frequency once in 7-8 days. The maximum spatial resolution of these sensors is
15,30 and 60 m, depending on the corresponding spectral range of sensing. The paired
satellites Sentinel-2A and Sentinel-2B of ESA are equipped with MSI with a spatial resolu-
tion down to 10 m. It continuously covers a strip of the surface about 290 km wide at a
frequency of once every 3-10 days for the same region.

Standard algorithms for reconstructing optical parameters based on satellite data, first
of all SPM and chlorophyll concentration, were initially designed for open ocean waters
with a predominance of phytoplankton and its decay products, so called Case 1 type waters,
whereas in our work the study region refers to Case 2 type coastal waters characterized by
high turbidity and considerable influence of the coastal zone [71,72].

In the work, we used different software to process satellite data for comparison with
the results of in situ measurements. First, we applied the C2RCC (Case 2 Regional Coast
Colour) version of a processor originally developed by Doerffer and Schiller [37] and now
implemented in the ESA Sentinel Toolbox SNAP software (https://step.esa.int/main/
toolboxes/snap/). The latest development of C2RCC neural networks and the algorithm
for optically complex waters are described in [43]. Although the current processor version
integrates almost all the essential characteristics of the environment and the equipment ap-
plied, the algorithm developers leave open a possibility for its users to change certain input
parameters and coefficients including those experimentally obtained which need perma-
nent regional correction. They include atmosphere transmittance, reflectance parameters
of a specific underlying surface, cloud risk coefficients, air pressure and other.

The recent development of more reliable technologies for the evaluation of key pa-
rameters of the marine environment has become possible due to the introduction into
widespread use and accessibility of the source code of the algorithm based on the use of
neural networks. The most important property of neural networks is the possibility of their
training by regular updating the database of correlated input parameters and obtained
characteristics of the studied medium by introducing into the model a wide range of results
of real contact measurements synchronous with satellite observations in different regions
and sequential refinement of the connections between neurons, that is, actually realizing
multiple non-linear regression [43].

SNAP processing results that we used in our study can be presented both in a tabular
form for easy comparison with in situ measurements and in the form of TCI mapping the
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retrieved optical characteristic with resolution close to original resolution of the satellite
data. TCI do not show numerical values of the optical characteristic, but display its
gradients in a way familiar to the human eye, and also carry supplementary information,
such as locations of the stations, trajectory of the boat, properties of wind and currents,
diurnal displacement of the plume boundary and other. For all processed satellite data,
TCI were constructed at the maximum resolution (10 m).

Second, for all Landsat-8 OLI and Sentinel-2 MSI data we performed atmospheric
correction with the ACOLITE DSF method. To retrieve turbidity and SPM we used two
algorithms developed by a team of researchers led by Dr. Bouchra Nechad and described
in detail in [31,44,45]; below they are referred to as Nechad 2009 and Nechad 2015. There
were some differences in the Nechad 2009 and Nechad 2015 results, but nothing critical. In
contrast, the algorithm proposed by Dogliotti et al. [32] (below referred to as Dogliotti) and
intended for highly turbid waters showed rather inconsistent results.

3. Results
3.1. Meteorological Conditions

Knowledge of meteorological conditions is crucial for analyzing the influence of wind
on the dynamics of a river plume and the influence of precipitation on the discharge
and turbidity of the river. Cloud cover and air temperature affect permeability of the
atmosphere, which is important for processing visible remote-sensing data.

Weather information on the days of our field work and adjacent days, from 20 April to
4 May 2019, was available from the weather station at Sochi International Airport (rp5.ru).
The prevailing wind directions were: ENE—19 cases, NE—10 cases and E—11 cases in
the morning; and W—22 cases in the afternoon. During NE upsurge wind, the area of
the river plume reached its maximum. With E/ENE winds, the plume spread strictly
westward, being pressed against the coast. In general, wind speeds were moderate and did
not exceed 7 m/s. With E/ENE winds, wind speed was in the range of 2-4 m/s. Under
NE winds, from 28 April to 1 May, a stronger wind was observed, from 2 to 7 m/s. With
predominantly evening W winds (except on 26 April), minimum wind speed was 3 m/s
and less. On 2 May and 4 May, wind directions varied. With NE winds, from 28 April
to 2 May, the sky was overcast over the study area. Just before our work, on 21-23 April,
slight short-term precipitation took place and on 3 May precipitation was up to 30 mm.
On 26 April, the weather was cloudless over the area of observation with W winds. Air
temperature ranged 8-24 °C. Its gradual increase was observed till 1-2 May. After rain on
3 May, there was a sharp decrease in air temperature to a daily average of 12-13 °C. Air
temperature and wind field characteristics are presented in Figure 3.

Air temperalurs, 0C

——> Wing direction

Wind speed ™ O
AIFtemperature / 1 | \ [\
N |

Figure 3. Meteorological conditions during 2019 in situ measurements (rp5.ru).
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3.2. Results of In Situ Measurements

During the field studies in April-May 2019, Mzymta plume spread strictly westward,
with a sharp eastern boundary, unlike our previous observations in April 2018, when the
direction of plume propagation changed depending on coastal currents [73,74].

The spreading of the plume in the western direction was caused by two factors:
(1) during our work, the Rim Current jet, which is directed westward at this location, was
pressed to the coast and had a high velocity of more than 0.6 m/s [63]; (2) in the eastern
part the river mouth, blocks of concrete were laid to limit the spread of water in the eastern
direction and to reduce the load on the structures enclosing the port facility.

Due to the relatively small size of the plume, it was possible to cover its entire area
with a dense grid of measuring stations (Figure 2). At each station, measurements were
taken from the surface to the bottom. For comparison with satellite observations, a special
focus was on the near-surface layer.

3.2.1. Variation of Temperature, Salinity and Turbidity in the Near-Surface Layer

Temperature. During the field work, a gradual increase in water temperature in the
surface layer occurred, which correlated well with a gradual increase in daily average air
temperature in the region. Lowest water temperatures were typically observed close to the
river mouth. At a distance of not more than 200-300 m from the mouth, the temperature in
the surface layer of water, at a depth of 50-80 cm, varied in the range from 10.8 to 12.7 °C
(Table 3). It gradually increased in the direction to the plume boundary with increasing
mixing with seawater. The surface temperature of “proper” seawater outside the plume,
varied from 12.4 to 17.3 °C. Its highest values were reached by 2 May when air warmed up
to 24 °C.

Salinity. Water salinity in the surface layer at the stations closest to the mouth, varied
from 6.2 to 11.4 PSU (Table 3). At the plume boundary, salinity was close to seawater, which
in the Black Sea is about 18 PSU.

Turbidity. During nine expedition days, turbidity in the surface layer, according to PT
measurements, soared more than eight times (Table 3), from 13 NTU in the beginning to
135 NTU in the end. The maximum turbidity was reached on 3 May, when no boat trips
were conducted, after a sharp warming in the Mzymta watershed due to melting glaciers
and snow in the mountains and precipitation.

Table 3. Maximum and minimum values of temperature, salinity, turbidity and suspended particulate
matter concentration (SPM) in the surface water layer on days of boat measurements.

Max Turbidity, Max SPM,

Min Max Min NTU g/mS
Date Temperature, Temperature, Salinity,
°C °C PSU PT * TM ** Water
Sample

23 April 2019 11.04 12.37 11.36 22 31 18.7
24 April 2019 11.61 13.65 10.95 13 16 18.1
25 April 2019 11.17 13.24 10.38 15 20 16.1
26 April 2019 10.77 13.53 6.23 28 31 22.8
28 April 2019 11.09 14.46 6.55 54 78 46.3
1 May 2019 12.69 15.50 9.24 68 75 64.5
2 May 2019 12.28 17.25 9.80 125 129 106.6

* measured with TN400 portable turbidimeter, Apera Instruments. ** measured with Turbidity Meter,

Seapoint Ltd.

3.2.2. Spatial Distribution of Temperature, Salinity and Turbidity in the Plume

As Mzymta water spreads in the sea, changes in the basic parameters of water (tem-
perature, salinity, turbidity) occur unevenly. This depends on speed and discharge of the
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river flow and on coastal currents, which are highly heterogeneous in this area [58]. As a
result, local areas of increasing/decreasing turbidity and salinity are formed in the estuary
zone of Mzymta. In addition, in the area of the plume there is a sewage outfall of the city
of Adler that evidently influences water parameters. Figure 4 shows maps of the spatial
distribution of temperature (Figure 4a), salinity (Figure 4b) and turbidity (Figure 4c) based
on boat measurements using CTD and TM in the near-surface layer on 2 May 2019. In
Figure 4c, pink dashed line schematically shows the boundary of the plume. Some stations
on that day are also shown. They are Stations 119, 129 and 134. Station 129 is located at the
outfall of the sewage pipeline. The impact of the sewage outfall is associated with a small
region with almost zero turbidity and increased salinity in comparison to surrounding
plume waters. This region is easily recognized in the visible satellite imagery.

3.2.3. Depth Distribution of Temperature, Salinity and Turbidity

To solve the problem of satellite data verification with the results of field measure-
ments, it is necessary to know the depth distribution of river water parameters. The
distribution of temperature and salinity over depth determines plume water stratification,
which impacts the hydrodynamic processes. The thickness of the turbid water layer and
turbidity depth distribution determine the depth of the water column contributing to water
leaving radiance captured by the satellite sensor. Accordingly, this determines the choice
of the techniques and instruments for the field measurements.

In our previous studies [73,74], we found that depth penetration of river water is small
and rapidly decreases with distance from the river mouth. This was confirmed again by
the observations in April and May 2019. As an example, Figure 5 shows the change in the
hydrological characteristics with depth on 2 May 2019. Station 119 was located in close
proximity to Mzymta mouth and Station 134 was located at the plume boundary (Figure 4c).
By the conventional definition, a plume boundary is a minimum water turbidity location
that is the closest to a sharp turbidity gradient. In this example (2 May), water turbidity
was about 20 NTU, and outside the plume we observed values close to 0. Changes in
turbidity, temperature and salinity with depth at these stations are shown in Figure 5a
(Station 119) and 5b (Station 134). At Station 119, the closest to the mouth, the depth of
the plume is about 2.5 m, water turbidity in the near-surface layer reaches 125 NTU, and
temperature and salinity are much lower than in the underlying layer. This turbidity is the
greatest for a given day. At Station 134, which is 250 m more seaward and near the border
of the plume, the hydrological section looks different (Figure 5b). The thickness of river
water intrusion is not more than 1 m, the turbidity of sea water is about 20 NTU, and the
temperature and salinity are almost unchanged with depth.

Thus, it was determined that the depth penetration of river water sharply decreases
with distance from Mzymta mouth, from 2.5 to 1 m at the plume boundary; therefore, for
comparison with satellite data, all field measurements should be made in the near-surface
layer. The thickness of the seasonal thermocline is about 11-12 m.

3.2.4. Results of Portable Turbidimeter (PT) Measurements in the Near-Surface Layer

After comparison of turbidity data obtained with TM and PT in the surface layer of
water (see Section 4.1), it was decided to use PT measurements for further comparison with
the weight method and remote sensing data, because PT is capable of taking measurements
in a thinner surface layer (the first tens of centimeters) than TM.

A change in maximum water turbidity that was found with PT (most pronounced at
stations located closest to the river mouth) in a thin surface layer (from 0 to 15 cm) is shown
in Figure 6. During the field work, an exponential increase in this parameter was observed.
The lowest value was 15.44 NTU and the highest value of 288 NTU was recorded on 4 May:
a rise of 18 times in the mouth zone. Most likely, this was due to the cumulative effect of
air temperature increase by the end of the field work, triggering active melting of snow
and ice in the mountains, and intense (about 30 mm) precipitation on 3 May.
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Figure 4. Maps of spatial distribution on 2 May 2019: (a) water temperature; (b) salinity; (c) turbidity
from CTD and TM measurements. Pink dashed line indicates the boundary of the river plume.
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3.2.5. Correlation Analysis of Turbidity and Suspended Particulate Matter Concentration
(SPM) from In Situ Measurements

During boat stations, turbidity in the plume was measured with two instruments:
Apera Instruments TN400 portable turbidimeter (PT) and Seapoint turbidity meter (TM).
At the same stations, water samples were collected at the same depths as PT measurements.
After filtering and weighing water samples in accordance with the protocol described
in [69], we obtained values of SPM hereinafter referred to as SPM in situ. Note, the water
turbidity unit is NTU, while the SPM unit is g/m?, and no algorithm exists to convert
one into another because the two parameters are very different in physical nature and
measurement methods. Turbidity strongly depends on particle size and composition of
suspended matter. One of the tasks was to define the correlation between turbidity and
SPM for the study region in the period of the spring flood. The analysis shows that the
SPM in situ is directly proportional to the turbidity determined with PT in the upper
surface water layer (Turb in situ, NTU). As shown in Figure 7, the obtained values are
well approximated by a straight line: SPM in situ = 0.84 x Turb in situ. The determination
coefficient is very high: R? = 0.982. This is typical of all water samples without exception
and does not change with days of measurements or weather conditions. A similar strong
relationship was determined between the SPM in situ and turbidity determined with TM,
the existing differences will be addressed below in the Discussion (Section 4.1).

With such a high correlation between the PT data and the SPM in situ in this region,
it seems reliable to make conversions between the turbidity and SPM units (NTU and
g/m?) using the established empirical equation. The main advantage is the ability to
acquire numerous data using only optical turbidity sensors without time-consuming
work to determine weight turbidity. Naturally, it is necessary to conduct multiple similar
experiments in different seasons and under different meteorological conditions to obtain
statistically valid results.
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Figure 7. Comparison of SPM in the water samples (SPM in situ) and turbidity determined with PT (Turb in situ) for all
measurement days in April-May 2020.
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3.2.6. Sampled SPM and Mineral Composition of Suspended Matter

The SPM in water samples collected during the field work ranged from 2 to 106 g/m?3.
From 23 April to 2 May, maximum SPM gradually increased from 23 g/m3 on 23-26 April;
to46g/ mS on 28 April; 65 g/ m3on1l May; and 106 g/ m3 on 2 May. The minimum SPM
values within the plume for the entire period of the study were approximately 2-3 g/m3.

X-ray phase analysis of mineral composition of the suspended matter showed that in
the selected samples: (1) quartz amounted to 16-45% of the suspension mass; (2) feldspars
12-27%; (3) various clay minerals (kaolinite, montmorillonite, chlorite, hydromica, mixed
layer minerals) 27-58%; (4) carbonate minerals (calcite, dolomite and aragonite) 0-22%
(Table 4).

Table 4. Turbidity in the upper near-surface layer, sampled SPM and mineral composition of suspension.

. PT W“?er Sampled Quartz, Feldspars C lay Ca{'bonate .
Date Station Turbidity, SPM, g/m® mas.% * mas.% * Mmell;al*s, Mmell;al*s, K
NTU mas.% mas.%

26 April 60_1 28 22.8 28 21 42 9 0.67
26 April 64 16 13.8 30 24 46 0 0.65
26 April 65 7 7.3 19 23 45 10 0.43
26 April 69 20 16.6 23 21 45 10 0.51
26 April 70 15 14.0 22 24 45 9 0.49
26 April 71 11 9.3 16 23 38 22 0.42
26 April 79 7 8.6 17 24 45 9 0.38
01 May 98 68 64.5 45 20 27 8 1.67
01 May 99 47 43.1 38 24 32 6 1.19
01 May 101 21 20.0 31 19 44 6 0.70
01 May 106 17 14.4 27 19 46 6 0.59
01 May 109 7 7.8 22 12 58 8 0.38
02 May 120 97 83.0 35 16 45 4 0.78
02 May 125 48 33.8 30 15 51 4 0.60
02 May 128 26 19.4 24 27 42 6 0.58
02 May 133 41 343 30 14 51 4 0.58
02 May 137 33 27.8 28 19 47 6 0.60

* percentage of total weight of the suspended matter. ** K—ratio of the mass of quartz to the mass of clay minerals in suspension.

3.3. Results of Satellite Observations
3.3.1. Satellite Data Processing and Products

Field measurements were carried out concurrently with satellite remote sensing
(Table 5). To efficiently compare remote sensing SPM (SPM satellite) with the in situ
turbidity and sampled SPM (SPM in situ), it was necessary to use satellite optical data of
a sufficiently high spatial resolution. Such data were available from Sentinel-2 MSI, with
pixel resolution of 10 m in the visible range, and Landsat-8 OLI, with pixel resolution of
30 m. MSI data were obtained on 23, 26, and 28 April and on 1 May 2019; and OLI on
25 April and 2 May. On 1 and 2 May, there was haze which compromised SPM satellite
data, but the plume edge was clearly visible (Figure 8). In total, during the period of field
measurements, five images were acquired from Sentinel-2A /-2B MSI; one image from
Landsat-7 ETM+; two images from Landsat-8 OLI/TIRS; and four images from Sentinel-
3A/-3B OLCI. Based on the satellite data, TCI were composed to highlight the plume
boundaries, as well as SPM satellite maps. MODIS data (Aqua/Terra) and NPP VIIRS were
used as a source of auxiliary information. All satellite data were swiftly integrated into the
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See the Sea (STS) information system [75,76] and analyzed online to supply information
for planning the next day of work (define more accurately the coordinates of hydrological
stations). The satellite data and products available in the period of the field measurements
are listed in Table 5.

e i f

Figure 8. Fragments of satellite images obtained during the measurement period: 23 April 2019, Sentinel-2B Multispectral
Instrument (MSI) (a); 25 April 2019, Landsat-8 Operational Land Imager (OLI) (b); 26 April 2019, Sentinel-2B MSI (c);
28 April 2019, Sentinel-2A MSI (d); 1 May 2019, Sentinel-2A MSI (e); 2 May 2019, Landsat-8 OLI (f).

3.3.2. Plume Boundary Detection

One of the main tasks of this work was to compare SPM in situ with SPM satellite.
Therefore, it was very important to carry out in situ measurements at the same time and
for the same points, specifically in the region of maximum turbidity inside the plume
and outside it. During boat trips, each station position was clearly defined with respect
to the plume: either it was at the plume boundary, inside the plume or outside it. Each
measurement cycle took about three-four hours every day to complete all hydrological
stations (see Table 5). Because daily boat measurements started approximately at the time
of a satellite overflight, they ended 34 h after it. When the measurements were completed,
on its way back to port the boat followed the plume boundary visible from board, and
its path was recorded using a Global Positioning System (GPS) tracker. Subsequently, the
plume boundary obtained this way was plotted on the satellite image. The intermediate
positions of the eastern boundary of the plume, determined from the corresponding station
position records, were also plotted on the satellite image. It was found that the plume
boundary changes its position at a rather high velocity, which should be taken into account
when comparing the data of contact and remote measurements.
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Table 5. Satellite information available during field measurements.

Pixel Boat
Date Time UTC Sensor Satellite .e Product Measurements,
Resolution, m "
Time UTC
23 April 08:17 MSI Sentinel-2B 10 TCI, SPM 7:42-10:38
24 April 07:59 ETM+ Landsat-7 30 TCI 7:33-11:41
08:01 OLI/TIRS Landsat-8 30/60 TCI, SST, SPM, CHL
25 April - 7:37-11:08
07:56 OLCI Sentinel-3B 300 SPM
07:30 OLCI Sentinel-3B 300 SPM
26 April 08:27 MSI Sentinel-2B 10 TCI, SPM 7:27-10:32
10:12 VIIRS NPP 1000 SST, WLR, CHL
28 April 08:17 MSI Sentinel-2A 10 TCI (cloud) 7:37-9:17
30 April 07:26 OLCI Sentinel-3B 300 SPM No measurements
at stations
01 May 08:27 MSI Sentinel-2A 10 TCI (cloud) 7:35-10:56
02 May 08:07 OLI/TIRS Landsat-8 30 TCI (cloud) 7:30-11:07
04 May 08:02 OLCI Sentinel-3A 300 SPM No measurements

at stations

As an example, Figure 9 shows the positions of the eastern boundary of the plume
on 26 April 2019, at 07:30-08:00 UTC (yellow line); 09:11-09:29 UTC (pink line) and 10:30—
11:00 UTC when the boat returns to port (green line). Sentinel-2 MSI surveyed the area at
08:27 UTC. From the plume positions determined by the station locations and the plume
boundary derived from the satellite image, the velocity of displacement of the plume
eastern boundary was estimated to increase from 5 to 13 cm/s.

Figure 9. Plume boundary positions on 26 April 2019, at 07:30-08:00 UTC (yellow line); 09:11-09:29 UTC (pink line) and
10:30-11:00 UTC (green line) superimposed on a Sentinel-2B MSI image taken at 08:27 UTC on the same day.
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3.3.3. Correlation Analysis of SPM from Contact and Remote-Sensing Data Using Case 2
Regional Coast Color (C2RCC) Algorithm

It is difficult to expect a high correlation between SPM in situ measurements and
remote sensing estimations obtained using standard algorithms. As a rule, researchers
prefer to develop individual regional algorithms [21]. Nevertheless their performance
depends on many factors: season, river discharge, precipitation, etc. Our aim was to
compare SPM obtained from in situ measurements and SPM retrieved from satellite data
using standard rather than regional algorithms. This section presents C2RCC results.

For a joint analysis of in situ and satellite data, 26 April was selected as the only
cloudless day. Figure 10a presents SPM map from the Sentinel-2B MSI data. Here, the
C2RCC output is total suspended matter (TSM), a term with the same meaning as SPM and
similar wide use in literature. As shown in Section 3.3.2, the plume boundary was rapidly
shifting towards open sea (Figure 9). Therefore, some boat stations are inside the plume
identified in the satellite image, the others outside it. The MSI data were taken at 08:16
UTC. All stations can be divided into three main groups. The first group includes stations
where measurements were taken at a time close to the satellite overflight. These stations
were inside the plume, according to visual observations from the boat as well as satellite
observations. They are Stations 61, 62, 63, 68, 69, 70, 71, 72 marked blue in Figure 10b
depicting the correlation between sampled SPM in situ and SPM satellite. Station 63
failed IQR data control and was excluded from further consideration. The blue marks are
approximated by a straight line SPM satellite = 1.353 x SPM in situ with reliability R? = 0.99.
Higher satellite values can be explained by the fact that each of them characterizes a certain
volume of water rather than a point in the upper layer.

The second group, marked red in Figure 10b, includes Stations 65 and 66. At the time
of in situ measurements they were located at the plume boundary that was quite well
visible from the boat, and at the time of satellite imaging inside the plume. Therefore,
SPM satellite values are much higher than SPM in situ. Special interest presents Station
60. This station was located at the mouth of the river with an SPM satellite of 51.8 g/ m3.
In situ measurements however gave an SPM in situ of only 10.5 g/m?>. This discrepancy
is most likely explained by complex conditions in close vicinity of the mouth. The river
discharges water at a high speed and it vigorously interacts with seawater causing wave
breaking and intense mixing. This can negatively affect both water sampling results and
remote-sensing data, for instance, when the sensor captures reflection from the sea bottom
in shallow waters. Also, the sample taken at this station could contain less suspended
matter due to technical difficulties.

The third group of stations (73, 74, and 77) was inside the plume during water
sampling (green marks). However, in situ measurements at these stations were carried
out 1-1.5 h after the satellite overflight and, over this time, the plume boundary shifted
by almost 250 m relative to its boundary identified in the satellite image. Therefore, in the
satellite image, these stations are already outside the plume. Accordingly, at these stations
the SPM satellite is lower than the SPM in situ.

Finally, as depicted in Figure 10b, Station 64 (Group 4) was located on the inner
border of the plume, which was also displaced, though not as fast as the outer one. Being
inside the plume during in situ measurements, Station 64 got practically outside it during
satellite imagery. This explains higher values of SPM in situ than SPM satellite attributed
to the station.

Thus, even using the standard C2RCC algorithm for determining SPM satellite, we
achieve a good agreement with SPM in situ obtained by water sampling, but only for those
stations where measurements were taken almost synchronously with satellite imaging.
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Figure 10. Case 2 Regional Coast Color (C2RCC) performance on Sentinel-2B MSI data of 26 April
2019: (a) SPM map with positions of the measurement stations; (b) quantitative comparison of SPM
satellite and water sampling SPM in situ. In Panel (b), Group 1 stations (blue) retained their positions
relative to the plume boundary during the time between satellite overflight and water sampling;
Group 2 (red) stations were located directly at the plume boundary at the time of water sampling. In
the satellite image, they are inside the plume; Group 3 (green) stations were inside the plume at the
time of water sampling. In the satellite image, they are outside the plume; Group 4 station (magenta)
is located opposite the pier. The station numbers are indicated beside the marks. The trend line is
drawn only for Group 1.

3.3.4. Correlation Analysis of SPM and Turbidity from Contact and Remote-Sensing Data
Using Different Algorithms

Among the main goals of our work was choosing the best standard algorithm for
SPM and turbidity retrieval from remote sensing data, in terms of correlation with in situ
measurements. To determine quantitative SPM, in addition to C2RCC we used Nechad
2009 [31] and Nechad 2015 [45]. SPM distribution maps built for 26 April 2019 using the
three algorithms are shown in Figure 11a. Qualitatively analyzing these maps, the following
conclusions can be drawn. C2RCC results look rather noisy: at low SPM, neighboring
values vary significantly. The features of the plume boundary are not pronounced. The
results of Nechad 2009 and Nechad 2015 are smoother and all inhomogeneities of the
plume boundary can be distinguished. At the same time, the three algorithms give different
distributions of the maximum SPM values in the immediate vicinity of Mzymta mouth.
On the C2RCC map, the area of maximum SPM values is much larger. For processing by
Nechad 2009, Nechad 2015 and comparison with C2RCC, we used only data from those
stations that were performed almost synchronously with the imaging (Group 1, Figure 10b)
by Sentinel-2B MSI on 26 April 2019. Figure 12a presents comparisons of SPM in situ and
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SPM satellite obtained by C2RCC, Nechad 2009 and Nechad 2015. No doubt, the C2RCC
results best agree with the in situ data. The straight approximation line for C2RCC goes
through the origin of coordinates, the determination coefficient is R? = 0.989 (Figure 12a).
For the two other algorithms, Nechad 2009 and Nechad 2015, the determination coefficients
are only 0.943 and 0.941, respectively.

The main advantage of the ACOLITE algorithms is that it is possible to compare their
results with in situ turbidity data, for example, measured with PT, without converting
the latter to SPM in situ using the obtained dependence (Figure 7) and, more importantly,
without water sampling. To quantify turbidity, we used Nechad 2009, Nechad 2015 and
Dogliotti algorithms. The turbidity distribution maps compiled using these algorithms
for 26 April 2019, are shown in Figure 11b. Since Nechad 2009 and Dogliotti algorithms
coincide for low turbidity range, the corresponding patterns of turbidity are the same.
Near Mzymta mouth, Dogliotti definitely overestimates turbidity. Interestingly, Dogliotti
draws a pronounced high turbidity jet westward from the mouth zone. The existence of
such a jet is confirmed, for example, by the in situ measurements at Stations 61 and 62
(Figure 10a). Although Station 62 is located somewhat farther from the mouth, but, unlike
Station 61, it sits on the jet and, therefore, reports higher SPM and turbidity. A comparison
of turbidities obtained by Nechad 2009, Nechad 2015 and Dogliotti (Turb satellite) with
turbidity measured in situ (Turb in situ) is presented in Figure 12b. At low turbidity, less
than 16 NTU (ENU), Dogliotti yields the same results as Nechad 2009. For turbidities of
20-25 NTU and higher, Dogliotti switches to another method of calculation [32] suitable
for extremely turbid waters, but not for our study area (Figure 12b).
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Figure 11. Performance of different satellite algorithms to map: (a) SPM; (b) turbidity, retrieved from Sentinel-2B MSI data

of 26 April 2019.
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Figure 12. Performance of different satellite retrieval algorithms compared with in situ measurements: (a) SPM satellite vs.
SPM in situ; (b) satellite turbidity (Turb satellite) vs. in situ turbidity obtained with PT (Turb in situ). The station numbers
are indicated beside the marks.

The values produced by Nechad 2009 and Nechad 2015 are well approximated by
straight lines (Figure 12b). The determination coefficient is R? = 0.96 in both cases and the
lines are almost parallel. It is a puzzling fact that the lines do not go through the origin
of coordinates. Obviously, further testing on a much wider array of in situ measurements
is required.

4. Discussion

The data obtained by various methods during our work in April-May 2019, in the
Mzymta mouth zone can be divided into two groups:

1.  Data from two turbidity sensors-an optical turbidity sensor as part of the RBR-
concerto CTD probe (TM) and a TN400 portable turbidimeter (PT). Both sensors
provide data in NTU units and work roughly on the same principle. A significant
difference is that turbidity measurements were taken at different depths, since it is
impossible to obtain data in the first centimeters from the surface with the CTD probe.

2. Data on SPM at different points of the plume obtained using different methods. The
first method is direct: SPM in situ was measured by weighing water samples. The
second method is indirect: SPM satellite was retrieved using the standard algorithms
from satellite remote sensing data.

In our work, we aimed to estimate the correlation of the data obtained from different
turbidity sensors, find out if there exists a robust dependence between turbidity and SPM
measured in situ, and, most importantly, reveal the correlation between satellite and contact
measurements.

4.1. Performance of Contact Turbidity Sensors

As expected, turbidities obtained at the same stations with PT and TM in the near-
surface horizon of 0.35-0.5 m agreed quite well. The determination coefficient of linear
approximation was R? = 0.93 and, in general, TM turbidities were slightly higher than PM
ones, by a factor of 1.042. At high turbidity, a large scatter of the values is observed on
both sides of the linear trend. It possibly can be explained by highly unsteady interaction
of river and sea waters at the river mouth in shallow water which makes turbidity vary
significantly even at close points. Moreover, clapotis and wave breaking often take place.
In such conditions, it is not easy to use PT. Several measurements should be done in close
points for more reliable results. Sometimes it is technically troublesome, for example,
because of the risk to run aground. Meanwhile measuring with TM is much easier in such
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conditions, besides, each time we get at least 2 turbidity values, when TM is lowered and
then raised. This was specifically observed during a sharp increase of the river discharge
on May 2 when the velocity of the water flow increased from 2 m/s in the previous days to
6-8m/s.

For turbidity values from 15 to 40 NTU, the results of measurements with different
instruments almost completely coincided, with slightly higher TM values. At turbidities
less than 15 NTU, an underestimation by TM can be noted. In fact, as the river waters
spread into the sea, both turbidity and plume thickness sharply decrease (Figure 5a). So,
the TM may eventually get below the depth of the plume penetration zone.

Considering the relationship of contact turbidity and SPM in situ, naturally, the best
correlation was achieved with PT. This is easy to explain. Water samples for determining
the SPM were taken at the same depth as measurements with PT, while TM measurements,
as mentioned above, took place at lower points. Nevertheless, we also got a linear correla-
tion between TM turbidity and SPM in situ, although with a slightly smaller determination
coefficient as compared to PM measurements, 0.924 and 0.982, respectively. The linear rela-
tionship obtained makes it possible to convert turbidity values measured in NTU to SPM
calculated in g/m?. Similar linear correlation was determined for the macrotidal estuary
of the Gironde [1]. The authors of the work noted that the relationship was specific to the
turbidity sensor used, but similar to those established using other instruments in other
periods of time. This could be an indication that suspended matter grain size distribution
and composition in the estuary did not change significantly in optical terms over the years.
Such a hypothesis should be tested for Mzymta plume as well. For this purpose, one need
to determine its mineral composition and establish the relationship between, for example,
quartz, as the largest suspended matter constituent, and plume turbidity.

Performance of the two turbidity sensors, PT and TM, showed that, in general, it
is sufficient to take measurements with only one instrument. A question arises which
one suits better, in view of comparison with satellite data. To draw sound conclusions,
knowledge of turbidity depth distribution is required. We believe that if river water
turbidity is high and its penetration depth is small, it is more reasonable to use PT, since
in this case water leaving radiance captured by the satellite sensor is formed in the near-
surface horizon. If turbidity is low, water leaving radiance can be formed in a layer down
to a few meters deep, so TM appears to be a more suitable instrument. In this case it is
obviously necessary to obtain some integral characteristics from TM readings at various
depths. This is an interesting and complex problem. As a rule, however, for comparison
with satellite data, either data from various PT analogs are used [77], or data from floating
spectroradiometers that are widely employed today for validating satellite data obtained
during field experiments. They measure absolute spectral irradiance at the sea surface and
water leaving radiance immediately under the sea surface [78]. TM data are usually used
for estimating river water penetration depth and turbidity profiling.

4.2. Small-Scale River Plume Boundary Dynamics

Our work has demonstrated prime importance of tight synchronization of in situ
measurements and satellite survey in the study region of Mzymta River plume. In a
thematically close study [23] discussing turbidity characteristics of the Danube plume, it
was noted that the maximum time gap considered between in situ SPM and high spatial
resolution images acquisition was of 120 h for periods with no substantial river fluctuation
and 48 h otherwise. In the case of Mzymta, the maximum time gap should not exceed
30—40 min since, as shown below, the plume boundary can move really fast. Certainly,
the plume of the Danube spreads for a much greater distance from the coast, compared
to Mzymta, so at considerable distances from its boundary, the plume can be regarded
unchanging during a day or two. In studies conducted in the mouth regions of small rivers,
such as Mzymta, one has to take into account plume spreading dynamics that is strongly
influenced by wind direction [58].
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After a series of experiments on 23, 25 and 26 April, small-scale displacement veloci-
ties of the plume boundary of Mzymta and their relationship with wind direction were
estimated (Figure 13). The essence of the experiment was to follow the plume boundary
using a GPS tracker on the way back to port after finishing the in situ measurements. It
was found that with weak S/SE winds, the displacement of the plume boundary was
very slow. In three hours, it shifted by 250-350 m at a velocity of 0.08-0.12 km/h under
the “pressing” winds towards or along the coastal zone (23 and 25 April). The maximum
displacement of the plume boundary was noted during W winds on April 26. In three
hours, the boundary shifted 900 m seaward. The displacement speed was 0.3 km/h. The
results of the experiments confirm the hypothesis of high mobility of the river plume as a
whole and its boundary in particular. This rather complicates the comparison of quanti-
tative remote sensing and contact data for specific stations, because during several hours
of boat measurements, the internal fine structure of the plume can change significantly.
Similar results are presented in [58]. Considering the impact of wind on hydrodynamic
characteristics of the plume, it is possible to tentatively forecast its spreading velocity
and plan more accurately the measurements at those stations whose positions relative
to the plume (inside, outside, at the boundary) are not expected to change during the
satellite overflight.

Figure 13. River plume boundary at the time of satellite overflight in the images of 23, 25 and 26 April 2019 (true color
images (TCI)). In the images, yellow line is a GPS track along the boundary of the plume 3 h after the satellite overflight.
Yellow arrow indicates prevailing wind direction.

4.3. Performance of Satellite SPM and Turbidity Algorithms

Satellite SPM and turbidity were calculated using C2RCC, Nechad 2009, Nechad 2015
and Dogliotti algorithms. Despite its failure for turbidities greater 20 NTU in the Mzymta
region, Dogliotti can be nevertheless used to reveal small scale turbidity inhomogeneities
that the other two algorithms can hardly detect. The best correlation with the in situ
data was achieved with C2RCC. The authors of [77] used C2RCC on Sentinel-3A OLCI
L1 data using SNAP and validated the results against dedicated in situ data obtained
in the Northwestern Baltic proper. Their validation campaigns took place between 2016
and 2018 in Swedish coastal waters and covered different times of year. On the basis of
a large dataset, authors of [77] recommend using C2RCC, but point out the problems of
atmospheric correction for pixels close to coast. The problems of adjacency effects or land
contamination of satellite sea data are also discussed in [1]. Both works employ low- and
medium-resolution ocean color data (MODIS and OLCI), however we do not anticipate
any serious complications when using high resolution data, such as MSI and OLI, as we
did in this study.

Among the atmospheric correction algorithms employed, ACOLITE DSF appears the
most practical and best performing in our study region. Nechad 2009 and Nechad 2015
overestimated SPM by 1.5 times for in situ measurement range up to 15 g/ m3. For the
range over 20-25 g/m?, Nechad 2015 agreed well with in situ data and C2RCC results
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(Figure 12a). Data of 1 and 2 May, when Mzymta discharge and turbidity increased
significantly, could have been of particular interest, but haze on these days did not allow
obtaining meaningful satellite SPM.

4.4. Changes in the Mineral Composition of Suspended Matter Depending on Plume Water

The mineral composition of suspended matter (Table 4) shows significant variations
in the content of minerals in different water samples. The quantitative ratio of mineral
phases in the suspension composition depends on multiple factors.

Samples with high turbidity values, mainly from the near-mouth zones, contain a
large amount of quartz. For example, samples taken on 1 May in the Mzymta estuary zone
have high turbidity (up to 68 NTU) and predominance of quartz over clay minerals (see
Figure 14). With the distance from the mouth, the amount of suspended matter in the water
decreases and its mineral composition changes with a relative increase in clay minerals
and a decrease in quartz. Samples with low turbidity values taken at the plume boundary
have a significant predominance of clay minerals in the suspension.

9260019
010519

Figure 14. Left: fragment of a Sentinel-2A MSI satellite image of May 1. Marks indicate locations where samples were taken
for X-ray phase analysis. Right: graph shows the ratio of the percentage of quartz in the dry matter of the suspension to the
percentage of clay minerals (K) depending on turbidity (Turb in situ, NTU). The station numbers are indicated beside the
marks. Positions of the stations on 26 April (blue marks) are shown in Figure 10a.

This result is in good agreement with the well-known theory of gravitational dif-
ferentiation of material, according to which a decrease in the particle size occurs with
distance from the coastal zone. Clay has low hardness, is highly susceptible to mechanical
weathering, and forms a fine-grained material that can be transported over long distances.
Quartz is characterized by a higher hardness and has more coarse particles, which are
deposited in the immediate vicinity of the river mouth.

As shown in Figure 14 right, the compositional differentiation of the suspension was
most pronounced on 1 May. High turbidity values correspond to the substantially quartz
composition of the suspension; at low turbidity, the suspension mainly consists of clay
minerals. On 26 April, the turbidity of the plume was generally low, not more than 28 NTU.
The trend of changes in the suspension composition is weakly expressed. At the moment,
no unambiguous relationship has been revealed between the value of water turbidity and
the mineral composition of the suspension. It is not yet possible to estimate the amount of
quartz and other mineral phases in the suspension by remote sensing methods.
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5. Conclusions

The paper presents the results of field studies in the northeastern part of the Black Sea
in the mouth area of the Mzymta River in April and May 2019. The main objective of the
study was to determine the relationships between water turbidity and SPM obtained by
contact and remote sensing methods and compare performances of the C2RCC processor
and the ACOLITE algorithms Nechad 2009, Nechad 2015 and Dogliotti.

It was shown that the highest correlation between the satellite and the water sampling
SPM for the study area in conditions of spring flooding was achieved with C2RCC, but only
for those stations where measurements were taken almost synchronously with satellite
imaging. For such stations, the comparison of satellite and water sampling SPM showed
a linear relationship with a reliability of 0.99. Nechad 2009, Nechad 2015 and Dogliotti
overestimated SPM by 1.5 times for in situ measurement range up to 15 g/m?. For the
range over 20-25 g/ m3, Nechad 2015 agreed well with in situ data and C2RCC results,
while Dogliotti failed.

In a highly variable environment of the Black Sea northeastern coastal zone, rapidly
changing conditions often require a specific choice of both methods and instruments for
collecting in situ data suitable for validating the remote-sensing algorithms. Knowledge
of depth distribution of the main hydrological parameters is a key prerequisite for the
right choice.

When selecting in situ measurements for comparison with satellite data, one should
be particularly vigilant with respect to the high mobility of the Mzymta plume: within the
3-4h when, as a rule, all the stations were completed, its boundary could shift considerably,
either being pressed to the coast or driven away from it. The velocity of displacement of
the plume boundary was estimated to increase from 5 to 13 cm/s.

A comparison of data on turbidity obtained by a portable turbidity meter and water
sampling SPM shows a linear relationship with the reliability of 0.982. This relationship
remained stable in time and weather conditions, which makes a portable turbidity meter
a valuable tool for fast and multiple measurements. Data obtained by this method can
be easily converted to SPM. This new and important result is very promising for in situ
SPM evaluation in the sense that expensive and time-consuming water sampling may
eventually become redundant. Moreover, without water sampling, the validation of
satellite algorithms for SPM retrieval based only on portable turbidity meter data becomes
a lot easier and faster: much more shorter stations can be undertaken over the same period
of time and no money must be spent on processing of water samples.

Based on X-ray phase analysis of the suspended matter, changes in the total amount
of quartz and clay particles were found to be a function of optical turbidity of the water
samples. With a decrease in turbidity the mineral composition of the suspension changed
with a relative increase in clay minerals and a decrease in quartz.

The authors hope to continue the studies to improve and validate the results presented
in this paper.
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Abstract: Ocean tidal backwater reshapes the stage-discharge relation in the fluvial-to-marine
transition zone at estuaries, rendering the cautious use of these data for hydrological studies.
While a qualitative explanation is traditionally provided by examining a scatter plot of water discharge
against water level, a quantitative assessment of long-period ocean tidal effect on the stage—discharge
relation has been rarely investigated. This study analyzes the relationship among water level, water
discharge, and ocean tidal height via their standardized forms in the Mekong Delta. We found
that semiannual and annual components of ocean tides contribute significantly to the discrepancy
between standardized water level and standardized water discharge time series. This reveals that
the long-period ocean tides are the significant factors influencing the stage-discharge relation in
the river delta, implying a potential of improving the relation as long as proper long-period ocean
tidal components are taken into consideration. By isolating the short-period signals (i.e., less than
15 days) from land surface hydrology and ocean tides, better consistent stage—discharge relations
are obtained, in terms of improving the Pearson correlation coefficient (PCC) from ~0.4 to ~0.8 and
from ~0.6 to ~0.9 for the stations closest to the estuary and at the Mekong Delta entrance, respectively.
By incorporating the long-period ocean tidal height time series generated from a remotely sensed
global ocean tide model into the stage—discharge relation, further refined stage-discharge relations
are obtained with the PCC higher than 0.9 for all employed stations, suggesting the improvement of
daily averaged water level and water discharge while ignoring the short-period intratidal variability.
The remotely sensed global ocean tide model, OSU12, which contains annual and semiannual ocean
tide components, is capable of generating accurate tidal height time series necessary for the partial
recovery of the stage—discharge relation.

Keywords: ocean tidal backwater; stage—discharge relation; ocean tide model; Mekong Delta

1. Introduction

Accurate water level (WL) and water discharge (WD) measurements are fundamental to various
hydrological applications, including flood forecasting, design and operation of conservancy facilities,
as well as water and sediment budget analyses [1,2]. However, due to economy, politics, and topography
along a river [3], the spatial distribution of hydrological stations is both sparse and uneven, along with
inconsistent and missing datasets [4]. In order to complement the above deficiency of observed datasets,
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it is a common practice to extend the datasets both in space and time by converting one type of data
into another, for instance, estimating WD from WL.

The conversion between WL and WD is referred to as the stage—discharge relation. Under a
pure hydrological situation, this relation is represented by a power function, also called rating curve.
There are two available methods to obtain the stage—-discharge relation. The first method is based on
numerical solutions of dynamic models [5-7] that simulates the stage-discharge relation when accurate
hydraulic geometry and boundary conditions are available. The second method is based on data-driven
models that can be based on the power function fitting, non-linear regression techniques [8-10], or an
artificial neural network (ANN) [11-14].

In essence, WD is not only related to WL alone, but also disturbed by water surface slope, channel
geometry, bed roughness, flow unsteadiness, lateral flow, and the backwater effect caused by an ocean
tidal wave propagating up to estuaries [15,16]. Therefore, the stage—discharge relation becomes more
complicated, manifesting as multiple loops [17]. In the river delta, the influence of the ocean tidal
wave is a significant factor that distorts the well-established stage—discharge relation [8]. Consequently,
the WL and WD data near the estuary mouth at river deltas are used cautiously for research
studies, as those data are contaminated by the aforementioned factors. For instance, Sassi et al. [18]
quantitatively analyses the contribution of different ocean tidal components (i.e., quarter-diurnal,
semidiurnal, diurnal, and fortnightly) to surface water variation. The fluvial-to-marine transition
zone of Mekong Delta have been further subdivided into four sections (i.e., fluvial-dominated
tide-affected, fluvial-dominated tide-influenced, tide-dominated fluvial-influenced, and tide-dominated
fluvial-affected zones), according to salinity, channel morphology, fades/grain size, and the extent of
ocean tidal influence by Gugliotta et al. [19]. However, the stage-discharge relation at the river delta
corrected by ocean tidal components remains unexplored.

The Mekong Delta (MD) (Figure 1), being home to 19 million people, is an important agricultural
and fishing district in Southeast Asia [17,20]. Further anthropogenic stressors are massive river
training and construction of a multitude of large hydropower dams and severe sand extraction for
concrete production [21-23]. This is characterized by a relatively flat surface with low altitudes and
gradients [24,25]. Being a transition zone, WD and WL variability are dynamically affected by both
fluvial and marine processes seasonally [26,27]. As a result, reverse flow caused by ocean tidal wave
and storm surge can easily propagate along river channels [8]. As a result, salinity intrusion and
catastrophic flooding along with rising sea level [28-30] severely threaten the grain production in the
MD [31,32]. This also affects hydrological gauge stations within a distance of 200 kilometers away from
the estuary mouth. In addition, the Tonle Sap Lake in Cambodia also provides a regulation effect [33-35],
before the river runoff delivers to the MD and discharges eventually to the South China Sea through
the Bassac River and the Mekong river within the MD [36]. As a consequence, the stage-discharge
relation in this region exhibits multiple looping curves along with noisy patterns [33,37].

Despite qualitative explanations, the ocean tidal backwater effect has not been quantified
and corrected for. After all, the complex interaction between oceanic and fluvial processes is a
cross-disciplinary science among land surface hydrology, estuary, and ocean science. As long as an
appropriate method can be introduced to partially recover the stage—discharge relation with good
accuracy, the corrected data would be of great usage. For such a purpose, the analysis of the disturbance
of the stage—discharge relation by different components of ocean tides, based on a tidal data analysis or
a remotely-sensed global ocean tide model, is a prerequisite.

This study aims to demonstrate the potential of incorporating the ocean tidal components into
the stage-discharge relation for a partial relation recovery in the MD. The relation among WD, WL,
and ocean tidal height data time series are analyzed via their standardized forms. The ocean tidal
components generated from remotely sensed OSU12 global ocean tide model are substituted into the
resulting model relation generated from the analysis. The fitted model relation is subsequently applied
for estimating WD from ocean tidal height and WL. A quantitative evaluation of the estimated WD
against the observed hydrological data is also presented.
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Figure 1. Map of Mekong Delta (MD), with two pairs of hydrological gauge stations (i.e., Can Tho and
Chau Doc, and My Thuan and Tan Chau) situated near the estuaries. (The topography dataset, called
earth_relief_30s, is a derived product of SRTM15+ [38], which is obtainable from http://mirrors.ustc.
edu.cn/gmt/data/).

2. Datasets and Assessment Metrics

In this study, in-situ data from hydrological stations, tidal gauge data, and OSU12 global ocean
tide model were analyzed. Table 1 summarizes the essential information about these datasets.

Table 1. The datasets used in this study.

Products Location Time Span Temporal Resolution
2003-2006
I Situ Stations’ CanTho 2009-2014
n Situ Stations :
2003-2006 Daily average
Water Level Data My Thuan 2009-2014
Chau Doc 2003-2006
Tan Chau 2003-2006
CanTho g oong
In Situ Stations’ 20 03:200 " Daily (before 2006)
Discharge Data My Thuan 2009-2014 Monthly (after 2009)
Chau Doc 2003-2006
Tan Chau 2003-2006
Tidal Gauge Data Vung Tau 2003-2014 Hourly
OSU12 Global Ocean 9.375N, 106.375E Tidal constituents
Tide Model Data 10.125N, 107.125E (Sa, Ssa, Mm)

2.1. In-Situ Hydrological Data

Station data time series within the MD were obtained from the Mekong River Commission (MRC)
(http://www.mrcmekong.org). Acoustic Doppler Current Profiler (ADCP) was applied to gauge flow
velocity for deriving precise discharge, according to MRC [39]. To compare between the two main
subdivided branches within the MD, Tan Chau and My Thuan stations along the Mekong River,
and Chau Doc and Can Tho stations along the Bassac River were used. Situated at the entrance of the
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MD [27], the Tan Chau and Chau Doc stations are, respectively, ~220 and ~240 km away from the
estuary mouth. Both stations are in the middle between the Tonle Sap Lake and the estuary mouth,
where the regulation effect of the lake and the ocean tidal backwater effect are minimized. Being the
closest hydrological stations to the estuary mouth, My Thuan and Can Tho stations are subject to the
backwater effect caused by landward ocean tidal propagation, which is clearly shown in the data time
series [27]. Hence, the comparison between upper and lower station pairs allows us to further quantify
the extent of the ocean tidal backwater effect.

Note that WD data of Tan Chau station were missing in 2001, 2002, and 2007. To be consistent
with the time span of other WD data, the station time series spanning from January 2003 to December
2006 were selected for investigation, while those from January 2009 to December 2014 were employed
for validation. Given the different temporal resolutions among WL, WD, and in-situ ocean tidal data
time series and in order to isolate signals unrelated to hydrology, a Butterworth filter was applied to
these time series for suppressing periodic fluctuations shorter than 15 days (e.g., diurnal, semidiurnal,
etc.). The mean, maximum, and minimum values of those time series are summarized in Table 2.

Table 2. Maximum, minimum, mean values, and standard deviations of original and processed
time series.

Variable Station Maximum Minimum Mean Standard Deviation
My Thuan 1.6500 0.0029 0.7263 0.4036
Original Water Discharge Can Tho 1.8400 0.0025 0.7206 0.4416
(1 % 10* m3/s) Tan Chau 2.2597 0.1190 0.9359 0.6490
Chau Doc 0.7120 0.0045 0.2625 0.2059
My Thuan 1.5345 0.2423 0.7262 0.3109
Processed Water Discharge Can Tho 1.4666 0.1704 0.7209 0.3236
(1% 10* m3/s) Tan Chau 2.1400 0.1600 0.9360 0.6470
Chau Doc 0.7121 0.0266 0.2626 0.2043
My Thuan 1.4225 -0.3355 0.4619 0.3522
- Can Tho 1.4591 -0.2707 0.4168 0.3231
Original Water Level (m) ey, 43831 0.0222 1.6820 1.2544
Chau Doc 4.0036 -0.1486 1.5017 1.1443
My Thuan 1.2165 -0.1304 0.4620 0.3267
Can Tho 1.0358 -0.0685 0.4171 0.2976
Processed Water Level (m) ) pay 43361 0.2326 1.6825 1.2498
Chau Doc 3.9558 0.1863 1.5019 1.1396
Original Tide height (m) Vung Tau 4.3300 —0.4400 2.6433 0.8566
Processed Tide height (m) Vung Tau 2.9984 2.3413 2.6436 0.1648

Filtered and original time series of the four stations are displayed, showing common characteristics
of the WL and WD time series along with their differences (Figure 2a-d). Can Tho and My Thuan
station time series show a larger ocean tide backwater effect than those of Chau Doc and Tan Chau
stations. By comparing WL with WD time series, WD lags behind WL by approximately a month.
This fact is more pronounced for stations closer to the estuary mouth (i.e., Can Tho and My Thuan) than
their upper counterparts (i.e., Chau Doc and Tan Chau). Obviously, the annual signal is apparent for
all station time series, in which the temporal patterns are highly related to not only seasonal variation
of watershed runoff, but also the long-period (e.g., semiannual and annual) ocean tidal components,
as shown in Figure 2e. As a consequence, external information obtained from the tide gauge or ocean
tide model data near estuaries can be potentially used for removing the effect of long-period ocean
tidal components, which is the objective of this study.
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Figure 2. Low-pass filtered (blue) and original (blue dash) time series of water discharge and water
level (red) over (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau stations, respectively,
and (e) time series of ocean tidal height (sea level) at Vung Tau station spanning from January 2003 to
December 2006.

2.2. Sea Level Data from Tide Gauge Station

A tide gauge measures sea level time series at selected locations along the coasts [40]. Vung Tau
is the closest tide gauge station to Mekong estuary chosen for relating the long-period ocean tidal
variation to WL within the MD. Spanning from 2003 to 2014, the sea level time series at Vung Tau station
were recorded on an hourly interval. This dataset is provided by the Hydrological and Environmental
station network center in Vietnam and can be obtained from http://www.ioc-sealevelmonitoring.org/
station.php?code=vung.
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Figure 2e shows filtered and original hourly time series of the tidal gauge data. Fast Fourier
transform (FFT) was applied to identify different periodic components of the time series. The highest
power spectra are located at both diurnal and semidiurnal ocean tidal components (Figure 3a), which are
unrelated to hydrological signals. In order to be consistent with WD and WL time series’ daily sampling
rate, the hourly tidal height time series are averaged daily after filtering high-frequency components
via the Butterworth filter. This process, to a large extent, suppresses or removes the short-period ocean
tidal components via the low-pass filtering process, and hence, reducing the effect on long-term ocean
tidal components [41-43] (Figure 3b). Compared with the unfiltered time series, only semiannual and
annual tide components are apparent in the processed time series.
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Figure 3. Spectra of the (a) hourly and (b) daily averaged ocean tidal height time series in Vung Tau
tide gauge station.

2.3. Global Ocean Tide Model Data

A global ocean tide model contains gridded in-phase and quadrature amplitudes (or equivalently
amplitude and phase) for major tidal constituents, allowing us to generate ocean tidal height in the
absence of tide gauge stations along the coasts [44,45]. Although many remotely sensed ocean tide
models (e.g., FES2014, GOT4.8, NAO99.b, TPXO8, EOT11a, DTU10, HAMTIDE, OSU12, etc.) are
available for the purpose of our study, the OSU12 model, with a 0.25° x 0.25° spatial resolution [46,47],
was employed to generate long-period tidal height time series at grid points near Mekong and Bassac
river estuaries (Table 3), because it contained long-period tides and was derived purely from remotely
sensed satellite altimetry data. Notwithstanding smaller amplitude when compared with semidiurnal
and diurnal tides, long-period ocean tidal components are influential to daily and monthly average
WL time series. As shown in Figures 2 and 3b, long-period ocean tidal components are likely related to
the discrepancies between the pattern of WL and WD time series. It is appropriate to calculate the
ocean tidal height time series, TH(t), at time t from the in-phase, Hy, and quadrature amplitudes, H,,
of Sa, Ssa, and My, tides, which can be formulated as:

1H() = Y1 (o 52 )+ (1) sin 5, 0
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where T; is the period of each long-period ocean tidal component i. Note that both the in-phase
and quadrature amplitudes are with respect to Greenwich Meridian with the starting time, 0:00 AM,
1 January 2002 (UTC +0).

Table 3. Long-period ocean tidal components at two gridded locations close to Mekong and Bassac
river estuaries solved at the initial time epoch of 0:00 AM, 1 January 2002 (UTC +0).

Tide Components Pointl (9.35°N,106.375°E) (in cm) Point2 (10.125°N, 107.125°E) (in cm)
N i o
womem Lo o
M Q755 days) ) raooss V2o

2.4. Assessment Metrics

To evaluate the estimated WD against in-situ WD time series in Section 4, three assessment metrics,
R-Square, the Pearson correlation coefficient (PCC), and the Nash-Sutcliffe efficiency (NSE) coefficient,
are employed.

R-Square, ranging between 0 and 1, describes how much the variation of in-situ WD, WDy,
is explained by the estimated WD, WD,, generated from the model. The closer the value to 1, the better
the model fitting to the WDg. R-Square is equal to the quotient of sum of squares regression (SSR)
divided by sum of squares total (SST), and can be defined as:

s —_—\2
SSR X, (WD.-WDy)
R —Square = I A — (2)
" (WD - WD)

PCC, ranging between —1 and 1, describe how strong the linear relationship between WD, and

WDy, which is defined as:

e T (W}~ WD)(WD}, - D) o

VEN, (WD - WD) EN, (WD}, - WD)

where WD, and W_Dg are the mean of WD, and WDy, respectively. Notably, for the power function
relating WL to WD, logarithmic transform is applied to obtain the log-linear relation between the two
variables in order to assess their correlation. To highlight the difference, PCC was used to represent the
linear relationship between WD, and WDy, while “correlation coefficient” appeared in each figure of
this study referred to the log-linear relation between WD and WL, as shown in Equation (6) below.
NSE coefficient, ranging from —oo to 1, describes the gain in the performance of WD, against WDy.
The closer the NSE coefficient to 1, the better the performance of the estimation [48]. It is defined as:
LY, (wDi - wpj)’

NSE =1- 4)

S —\2
YN, (WD}, - WD)
3. Data Analysis and Methodology

This section explores the relations among ocean tidal height, WL, and WD time series over our
study region, so as to illustrate the interaction between fluvial and oceanic factors along with their
combined effects on WL and WD data. For an ideal hydrological station location where WL and
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WD are purely influenced by the fluvial process, WL and WD are related by a power function [49]

expressed as:
WD = a+[WL - b|* )

where a, b, c are the scaling coefficient, the offset of WL and the exponent of power function, respectively.

However, in reality, the stage-discharge phase diagram between WL and WD appears as random
data points with trends (i.e., Can Tho and My Thuan stations) and elliptical curves (i.e., Chau Doc and
Tan Chau stations) in the MD (Figure 4).

(a)CanTho (b)MyThuan
15000 | 15000 5 3
@ @
o B
£ 10000 £ 10000
o o
j=d j=d
© ©
E= F=
@ 5000 @ 5000
[a} : () ,
tron coefficient=0.4192 o coefficient=0.38438
0 WX ST e 0 -2 .
0.5 0 05 1 15 0.5 0 05 1 15
WL(m) WL(m)
4
8000 (c)S:hauDoc i i 255 10 (d)]'anChau i
9 6000 @ 2
E E
5 15
©4000 2
© ©
< £ 1
2 2
A 2000 E Dos :
* Correlation coefficient=0.64557 o Correlation coefficient=0.60354
0= - 0
0 1 2 3 4 0 1 2 3 4
WL(m) WL(m)

Figure 4. (a—d) Relationship between water level (WL) and water discharge (WD) (original daily
sampled time series) for the four selected hydrological stations in Mekong Delta.

The logarithmic transform of Equation (5) allows the conversion into log-linear relation,

expressed as:
In(WD) = ¢+ In(WL - b) + In(a). (6)

such that Equation (6) measures a linear relationship between In(WD) and In(WL - b). All “correlation
coefficients” displayed in all stage—discharge phase diagrams were calculated based on In(WD) and
In(WL —b), as mentioned in Section 2.4.

Compared to those of the other two stations, the rating curves between WL and WD of Can Tho
and My Thuan stations yield lower correlation coefficients because they are more significantly affected
by the ocean tidal backwater.

3.1. Data Analysis of Backwater Influence on Water Discharge (WD) and Water Level (WL)

Although the phase diagram between WL and WD in the tide-dominated area appears elliptical,
the patterns of the deviation from the rating curves are presumed to be analyzable by different
ocean tidal components. Through FFT, the most pronounced periods are 365 days, 182.5 days,
and 14.7475 days in both WD and WL time series.

The relative power (to the signal with the largest power) and initial phase of each signal are
displayed in Table 4. For an ideal stage-discharge relation (i.e., power function relation), WL and WD
are positively correlated. The signals of WD and WL with the same period should have the same initial
phase and similar relative power. However, we found that the initial phase of WD and WL time series
of the four stations are different from each other.
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Table 4. Relative power and initial phases of the three periodic signals in WD and WL time series at
the four selected stations with initial phase domain defined between 0° and 360°.

Period: 365 Days Period: 182.5 Days Period: 14.7475 Days
Station Relative Initial Relative Initial Relative Initial
Power Phase Power Phase Power Phase
WD 1 95.2311° 0.3060 173.5607° 0.4727 25.1628°
CanTho  yyp 1 58.5725° 0.2535 168.3582° 0.2997 244.1391°
My Thuan WD 1 87.1219° 0.3093 170.8565° 0.5671 25.8326°
WL 1 55.0654° 0.2664 175.4839° 0.3152 244.2108°
WD 1 93.8689° 0.3392 196.6511° 0.0324 111.2065°
ChauDoc  yyp 1 847393° 03963  193.8528°  0.0414  274.7407°
Tan Chau WD 1 97.4019° 0.2385 222.2999° 0.0046 99.6860°
WL 1 90.3988° 0.3705 202.5387° 0.0336 260.8400°

Firstly, annual signals (i.e., 365-day period) of Can Tho and My Thuan present different initial
phases between WD and WL, in particular WL, with its initial phases ~30° lower than that of upper
counterparts. This indicates that annual tides can cause around a one-month time lag between the
lower and upper stations. A similar situation applies to that of the semiannual signal, but to a lesser
extent. Secondly, the initial phase of the half-monthly signal (i.e., 14.7475-day period) of WD and
that of WL present the phase difference between 160° and 220°. This shows that the WD is inversely
proportional to WL with an additional time lag. In other words, the WD increase (decrease) when
the WL decrease (increase), implying that the half-monthly signal of WL and WD interacts with
each other seasonally and alternately. This fact further indicates the half-monthly signal is of two
origins: land and ocean, which is supported by physical explanations from Guo et al. (2020) [50] and
Jay (1991) [51]. Half-monthly signals of the Can Tho and My Thuan stations yields a much larger
relative power than their upper counterparts, indicating the damping effect on the amplitude and
changing phase when propagating inland via the estuary mouth. Since these half-monthly signals have
different changing ratios for inland propagation direction with annual tide components, a band-pass
filter (e.g., Butterworth filter) was applied to remove this signal from tidal-influenced time series
for consistency.

To further analyze the interaction between oceanic and fluvial effects, the variation of WD, WL,
and TH time series are compared via their standardized forms, xs, expressed as:

X = X %

[205)?
N
where X is the average value of xx time series, and NN is the number of data in the time series.
The standardized WD, WL and TH (i.e., WDs, WLs, and TH; respectively) are compared for the four
stations, respectively, in Figure 5.

As shown in Figure 5b,d, it is clear that the standardized WL time series are highly correlated with
standardized WD time series, they reach the maximum values in early September and minimum in

March and April simultaneously. Influences from ocean tide are minor, and the ocean tidal height series
reaches its maximum and minimum values in different months. However, in Figure 5a,c, there exists
large deviation between WD and WL time series. In the lower stations, the WL reaches its minimum
and maximum value about a month later than WD, consistent with the initial phase difference of
around 30° stated above (Table 4). For most cases, WL (red line) is set between WD (blue line) and
TH (yellow line), emphasizing the influence of the ocean on WL. Previous studies attribute this phase
difference to floods up and down or a time lag caused by tidal propagation [52]. Since this phenomenon
is more apparent in stations closer to the estuaries, we speculate it is mainly caused by the mixing of
fluvial-dominated and marine-dominated fluctuations at the annual and semiannual scale.
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Figure 5. Comparison of standardized WD, WL, and tidal height time series in (a) Can Tho, (b) Chau
Doc, (¢) My Thuan, and (d) Tan Chau station, respectively.

Theoretically, when two signals with the same period (T) are combined, the new signal will have
the same period (T) but a different initial phase (¢3), is expressed as:

Aq cos(? + (;[)1) + Ap cos(% + ¢2) = Az COS(% + (1)3), (8)

where Ay, Ay, and Aj are three different amplitudes, ¢1, ¢2, and ¢3 are three initial phases, and t refers
to time epoch. The proof of Equation (8) is listed in Appendix A.

Since annual and semiannual signals are major components in the WL, WD, TH time series,
the fluvial-dominated annual (semiannual) signal and marine-dominated annual (semiannual) signal
form a mixed annual (semiannual) WL time series in the MD. For both WL and TH fluctuating in
the vertical direction, the WL will be potentially corrected by annual and semiannual ocean tidal
components if the TH time series are involved in the power function fitting process. This will be further
explored in the next subsection. However, Equation (8) does not work for ocean tidal components
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shorter than half-monthly one, because of possible non-linear interaction among fluvial factors, bottom
topography of an estuarine channel and ocean tidal backwater. This leads to the non-linear change of
amplitude and phase during the inland propagation process.

3.2. Incorporating Long-Period Ocean Tidal Components into Rating Curve

Before incorporating long-period ocean tidal components into the rating curve, short-period
fluctuations in both WD and WL time series, including short-period diurnal and semidiurnal ocean
tides, have to be removed. As mentioned in Section 2.1, this can be achieved by a Butterworth filter
that suppresses all high-frequency signals with a period shorter than 15 days. Consistent with the
filtered time series (Figure 2), the rating curve with filtered time series of WD and WL at the four
stations are plotted in terms of phase diagrams (Figure 6).

g_a')CanTho (b)MxThuan
15000 - 15000
@ @
B &
E 10000 £ 10000
5 T
o =
© ©
2 2
@ 5000 @ 5000 ,,
o fa) s
Correlation coefficient=0.75115 Correlation coefficient=0.80001
0 0
02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
WL(m) WL(m)
4
8000 c)ChauDoc 250 10 d)TanChau
< 6000 z 2
% e
T 315
4000 2
£ 21
2 2
& 2000 Bos
Correlation coefficient=0.90893 Correlation coefficient=0.93803
0 0
0 1 2 3 4 0 1 2 3 4
WL(m) WL(m)

Figure 6. (a—d) Relationship between WL and WD (low pass filtered time series) for the selected four
hydrological stations in the Mekong Delta.

Compared with those in Figure 4, it is clear that the correlation coefficients have been improved
significantly (Figure 6). However, the elliptical loops are still apparent, indicating a time lag between
WL and WD time series, as mentioned in Section 3.1.

Given that the relationship between THs, WDs, WL has been analyzed in Section 3.1, it is likely
that the elliptical looping phenomenon is largely due to semiannual and annual ocean tidal components.
For both WL and TH fluctuating in the vertical direction, the TH, time series were applied to separate
the tide-induced fluctuation from the WL time series through a fitting process. The WL free from tide
influence, WL, is defined as:

WLgree = WL — a0 x THs. )

where, « is a coefficient that rescales the TH;. Consequently, the relationship among WD, WL, TH; can
be represented by:
WD = ax[WL - o x TH; — b]°. (10)

where a, b, ¢, and « are to be determined from the observed WD, WL, and TH time series. Through a
non-linear fitting [53,54], a, b, ¢, and « can be determined, and WL, is obtainable.

4. Results and Discussion

The rating curves of WLgee and WD are shown (Figure 7), yielding much higher correlation
coefficients when compared to the rating curves of original WD and WL time series. Although rating
curves of the Can Tho and My Thuan stations still display lower correlation coefficients than their
upper counterparts, significant improvement has been observed. Additionally, the elliptical looping
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phenomenon related to ‘time-lag’ between WL and WD is also diminished for all four selected stations.
As a countercheck, the time series of WD and WL, for the two stations close to the estuary are shown
in Figure 8, revealing no apparent time lag.
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Figure 7. (a—d) Relationship between WL and WD (low pass filtered time series) for the selected
four hydrological stations in the Mekong Delta.
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Figure 8. WD and tide-free WL time series from 2003 to 2006 in (a) Can Tho and (b) My Thuan stations.

In the absence of tide gauge data, the TH time series generated from a global ocean tide model
would be a viable alternative, because it can provide ocean tidal height components for the global
ocean. The method for obtaining model-derived TH time series has been stated in Section 2.3.
The model-derived TH series and in-situ gauged tidal height time series are displayed, manifesting
high similarity with each other (Figure 9). Employing the above methodology, the rating curves of the
four stations have been recovered using model-derived TH time series (Figure 10).
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Figure 10. Recovered rating curves at (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau
stations using model-derived ocean tidal height as input.

Although the correlation coefficients of the rating curve fitting generated by model-derived
TH time series (Figure 10) are slightly lower than by in-situ tide gauge TH time series (Figure 7),
the improvement is considerable when compared to the original unmodified rating curves. This is
because most global ocean tide models are derived from satellite altimetry, with the model accuracies
lower than that of gauge-derived TH, in particular coastal regions [39]. Given the above results, it is
appropriate to use an ocean tidal model to partially recover rating curves over tide-dominated regions.

To evaluate the accuracy of the recovered rating curves, the estimated WD time series via
Equation (10) generated from both model-derived and in-situ TH time series are compared with the
in-situ WD during 2003-2006. Table 5 lists all determined coefficients of Equation (10) along with
the assessment metrics (i.e., R-Square, PCC, NSE) that assess the estimated WD against in-situ WD.
For both WD estimated based on in-situ and model-derived TH data, all the assessment metrics yield
high-correlation values at all the four stations, suggesting our method can partially recover the tide-free
WL for estimating WD. Overall, the recovered stage—discharge relation is capable of predicting a
relatively reliable WD. These results also validate the data analysis in Section 3.
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Table 5. Assessment of the estimated WD and stage-discharge relation coefficients.

Tidal

Height Data Station a b c o R-Square PCC NSE

Can Tho 11683  -0.2230  1.3661 0.1619 0.9291 0.9626 0.9266

In-situ My Thuan 3436.5 -0.8665  2.4063 0.1480 0.8974 0.9468 0.8964
measured Chau Doc 2239.8 0.2756 0.8592 0.1577 0.9790 0.9922 0.9843
Tan Chau 9134.3 0.4052 0.6229 0.1819 0.9809 0.9946 0.9891

Can Tho 59483  -0.5949  2.3417 0.1722 0.8871 0.9383 0.8804
My Thuan 97612  -0.3079  1.2619 0.1520 0.8631 0.9285 0.8621
Chau Doc 2201.2 0.2762 0.8911 0.1582 0.9828 0.9934 0.9868
Tan Chau 8950.3 0.3809 0.6335 0.1314 0.9750 0.9910 0.9820

OSsuU12

To highlight the importance of tidal separation by the term —a X TH; in Equation (10), the PCC
values with different combinations of coefficient b, ¢, and « were calculated with their best fitted a
fixed. Taking Can Tho station as an example (Figure 11), b and ¢ impact the PCC values (i.e., > 0.9)
significantly, only if « is ~0.16. The same holds for My Thuan station. Therefore, adding the term
—oe X TH to the conventional power function (i.e., Equation (5)) is necessary for the improvement of
the stage—discharge relation in the MD, which is in the fluvial-to-marine transition zone. In summary,
we found that an appropriate « is a prerequisite for the PCC larger than 0.9.

(a)PCC for different b, ¢, « in Can Tho

(b)Slices for different « at Can Tho
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4=0.25,PCC=0.8128

2 0 u“
b a

4=0.40,PCC=0.43679

Figure 11. (a) Different PCC (presented in color bar) for different b, c and a using time series from Can
Tho station, and (b) slices of (a) for nine chosen «, with maximum PCC for each « shown from the
above subplots.
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To assess the applicability of the determined coefficients of Equation (10) for Can Tho and My
Thuan station time series during 2003-2006, these coefficients were directly employed for the analysis
of the WL and TH data time series during 2009-2014. The predicted WD were then compared with the
monthly in-situ WD (Figure 12), since only monthly WD are available for Can Tho and My Thuan
stations. Hence, WL and WL were monthly averaged before the comparison. For both Can Tho and
My Thuan stations, tide-free WL, WL, leads to higher correlation coefficients and diminishes the
looping curve problem to a large degree. This indicates that coefficient « appears to be stable during

our study period.
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Figure 12. (a,b) Stage discharge relation from original WL, and (c,d) tide-free WL for Can Tho and My
Thuan stations.

Despite a substantial improvement made in this study, small deviations from the ideal power
function still exist, particularly for the two stations closest to the estuary mouth. After all, the interaction
between fluvial and marine processes are complicated near estuary mouths [55]. Remaining effects
cannot be neglected. For instance, WD should pose a non-negligible effect on the tidal propagation
along the river channel during the wet season. Overland flows inward or outward from the Tonle Sap
Lake would likely be another important factor affecting the stage-discharge relations, because this
lake operates as a natural reservoir that regulates Mekong river discharge from the river delta to the
coastal ocean [34,56,57]. Erosion and deposition alter hydraulic geometry and increase channel bottom
friction and, hence, contribute to the potential instability of the stage-discharge relation. Furthermore,
numerous clusters of dams were built along the main stream of Mekong river, which may also alter the
stage—discharge relation [21,22]. Sea level rise, which closely connected to salt intrusion and coastal
erosion problems may alter the estuarine topography condition, resulting in a secular shift of ocean
tidal components [23,26]. Agricultural practices and deforestation also provide additional impact on
the evapotranspiration balance of the catchment area. Furthermore, since short-term signals were
filtered out or failed to be captured by daily sampling, the short-term variations in WD and WL
have not been quantitatively investigated. These considerations represent the current limitations of
this study.

5. Conclusions

Instead of seeking a qualitative explanation of the stage—-discharge relation influenced by the
ocean tidal backwater effect, this study quantitatively analyzes the relations among water discharge
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(WD), water level (WL), and ocean tidal components via their standardized forms. We found that
annual and semiannual ocean tidal components are significant contributors to the deviation between
WL and WD time series. In particular, the annual and semiannual periods of ocean tidal backwater
result in the elliptic loop associated with the presence of time lag between WL and WD.

Based on these findings, we adapt the stage—discharge relation to accommodate the effects of
annual and semiannual ocean tidal components. It was found that the WD estimated from the de-tided
WL yields PCC and NSE values of ~0.9. Although the de-tided WL time series generated based on
the TH time series from the OSU12 global ocean tide model are slightly less accurate than that of tide
gauge data, the ocean tide model is a viable alternative to partially recover the stage—discharge relation
for estuaries in the absence of tide gauge stations.

Further improvement lies in identifying remaining effects contributing to the potential instability
of the stage—discharge relation, which include the non-negligible effect of seasonal WD on ocean tidal
propagation, the Tonle Sap lake regulation effect on the Mekong river discharge, erosion and deposition
effects on the hydraulic geometry, and channel bottom friction. The impact of human activities and
artificial structure in the Mekong River area, as well as its interaction with climate change, should also
be highlighted. Those factors may introduce a long-term change trend into the WL-WD relationship.

The recent remotely-sensed water balance variables with improved temporal resolutions, such as
8-day MODIS evapotranspiration [58], daily TRMM precipitation [59], and daily GRACE terrestrial
water storage data products [60], should enable us to compute tide-free WD, which is independent
of in-situ measurements based on the water balance equation [36]. This can serve as a countercheck
against the in-situ WD for assessing the first two remaining effects.
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Appendix A

The mathematic proof of Equation (8) is shown below:
For the convenience of expression, set % =X

Aj cos(x + ¢1) + Az cos(x + ¢2) = (A1 cosPy) cosx — (Ag sin¢) sinx
+(Az cos ) cosx — (A sin ) sinx

= (A1 cos 1 + Ay cos ) cos x

—(Aysingy + Az singy) sinx

1n

Since A1,Az,p1,02 are constant, (Ajcospi + Azcosdr) and (Ajsing; + Axsingy) are also
constant. Therefore, we set C; = (A1 cos ¢1 + Ap cos ¢2) and Cp = (A sin¢y + A sin ¢z ). Obviously,

C C
C1cosx —Cysinx = |CF + C5( L cosx— 2 sinx) (12)
2., 2 2, 2
J&+3 VG +G3
Notice that
2 2
G I RS 13)

2 2 2 2
Jae+a] | ya+a
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Set —<— = cos ¢3, and

\C+C3

= sin ¢»3. Obviously,

€]
2. 2
Jea

Cpcosx —Cysinx = 1lC%+C§cos(x+<j>3) (14)

where tan ¢3 = % If we set /C% + C% = A3,

Ajcos(x+ ¢1) + Az cos(x + o) =

Az cos(x + ¢3)Aq cos(x + ¢1) + A cos(x + ¢p) Az cos(x + ¢3) (15)
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Abstract: Absorption of colored dissolved organic matter or detrital gelbstoff (aCDOM/ADG) and
light attenuation coefficient (K3490) parameters were studied at La Parguera Natural Reserve
in southwestern Puerto Rico, before and following Hurricanes Irma (6-7 September) and Maria
(2021 September) in 2017. Water quality assessments involving Sentinel 3A ocean color products
and field sample data was performed. The estimated mean of ADG in surface waters was calculated
at >0.1 m~! with a median of 0.05 m~! and aCDOM443 ranged from 0.0023 to 0.1121 m~! in field
samples (n=21) in 2017. Mean ADG443 values increased from July to August at 0.167 to 0.353 m~tin
September—October over Turrumote reef (LP6) with a maximum value of 0.683 m~'. Values above
0.13 m™! persisted at offshore waters off Guanica Bay and over coral reef areas at La Parguera for
over four months. The ADG443 product presented values above the median and the second standard
deviation of 0.0428 m~! from September to October 2017 and from water sample measurement on
19 October 2017. Mean K4490 values increased from 0.16 m~! before hurricanes to 0.28 right after
Hurricane Irma. The value remained high, at 0.34 m~1, until October 2017, a month after Hurricane
Maria. Analysis of the Sentinel (S3) OLCI products showed a significant positive correlation (rs = 0.71,
p = 0.0005) between K3490_MO07 and ADG_443, indicating the influence of ADG on light attenuation.
These significant short-term changes could have ecological impacts on benthic habitats highly
dependent on light penetration, such as coral reefs, in southwestern Puerto Rico.

Keywords: hurricanes; ADG/CDOM colored dissolved organic matter; Sentinel 3; water quality;
southwestern Puerto Rico; ocean color; remote sensing; coastal waters

1. Introduction

Hurricane Maria was recorded as the third costliest hurricane in USA history [1]. Itis considered the
most damaging atmospheric event to have impacted the island in the past 90 years. Hydrological data
availability during the study period was limited; nevertheless, estimates suggest that the 24 h-rainfall
intensity exceeded 100-250 year values [2]. Severe flooding affected most of the island, and river
discharges were at record levels. Hurricane Irma brought maximum inundation levels of 30.48 to
60.96 cm above ground level along Puerto Rico (PR) coastal areas with an estimated storm surge at
Magueyes Island, La Parguera (LP), of 0.17 cm and an estimated inundation of 21.33 cm. The total
rainfall in the interior mountains was around 254-381 mm between September 5 and 7, 2017 [3].
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For this study, we took advantage of the availability of remote sensing imagery such as Sentinel
3 (S3), which provided us with the capacity to monitor water quality parameters remotely and
efficiently. Many studies have derived water quality parameters from ocean color radiometry during
past decades [4-6]. The most critical water quality parameters that can be derived from satellite ocean
color sensors are colored dissolved organic matter (CDOM), chlorophyll-a (Chl-a), the attenuation
coefficient at 490 nm (K3490), and total suspended matter (TSM). These factors have been historically
monitored for water quality assessment and referenced as indicators of coastal and marine ecosystem
health [4,7,8]. Chlorophyll (a proxy for phytoplankton abundance) [9] and turbidity (as well as CDOM)
contribute to reducing light penetration in the water column [4,5], which has been associated with
ecosystem changes, phytoplankton dynamics [9], and growth and distribution of seagrasses [4] and
coral reef species [10]. These effects on light penetration and quality can be considered environmental
stressors and a water pollutant [11]. Several studies have been conducted on coastal water quality
following hurricane events using remote sensing techniques [4,5,12]. These have focused primarily on
the continental estuarine and coastal habitats as well lacustrine [5,13-17], with a few studies available
for the Caribbean Sea [18-20], where our study area, La Parguera Natural Reserve (LPNR), is located.

LPNR, in southwestern Puerto Rico, was designated to protect fragile tropical marine ecosystems,
particularly coral reefs, which are experiencing accelerated degradation and mortality in this and
many parts of the world [21]. We have witnessed unprecedented disappearance of coral cover due
to coral diseases, bleaching and thermal stress, runoff, anthropogenic uses, and hurricanes [10,22,23].
La Parguera has one of the largest coral reef systems in Puerto Rico, with 1014 coral species in 100 m?
located at a diverse bottom type; presenting one of the most diverse benthic habitats on the island,
combining coral reefs, seagrasses, mangroves, sandy bottoms, among others [23]. LPNR supports a
blue economy around the region with local fisheries, tourism, and recreation. Coral reefs reach their
maximum development under oligotrophic conditions but can exist over a wide range of water types
under variable coastal influences [10,24]. In coastal waters, light penetration can be subject to sudden
changes when specific weather conditions occur. Corals can adapt to light changes compensating
energetically and adjusting photosynthetic pigment composition, but this may come at the cost of
reduced calcification rates and symbiont tissue habitat [25]. Sporadically, the stress related to water
quality can be compounded with coral bleaching [25]. Chronic stress due to changes in water quality
can lead to changes in the biodiversity of marine ecosystems [26,27].

CDOM s an optical parameter positively related to light absorption in surface waters [28-31]. The primary
source of CDOM is terrestrial runoff, highly influenced by photodegradation [32-34]. CDOM absorption
provides a biogeochemical proxy to estimate DOC from optical measurements [6,35,36] and can be
used as a tracer of oceanic water masses [31]. CDOM absorption at 412 and 443 nm, while variable,
formed a significant component of these wavebands of the total absorption field [37]. It is essential
to consider that the absorption of CDOM in the blue-green region increases the uncertainty of Chl-a
algorithms leading to over-estimate values [31]. In Puerto Rico, light absorption has been mainly
associated with chlorophyll concentrations [10], but CDOM values have not been recorded or related to
light availability. K4490 is another important parameter for water quality since it provides a measure
of turbidity related to the total organic and inorganic matter held in solution and suspension in the
water column. It can be used to quantify light availability and sediment loading for benthic organisms
(i-e., coral reefs and seagrasses) [20,38].

We used remote sensing to monitor water quality trends in the attenuation coefficient at 490 nm
(K4490) and the absorption of colored detrital, and dissolved material (ADG/aCDOM) parameters
in waters off southwestern Puerto Rico. We analyzed the changes in Sentinel 3A (S3) products and
complemented our records with surface water sample optical analysis to assess water quality in a
natural reserve in southwestern Puerto Rico before and following Hurricanes Irma (67 September)
and Maria (20-21 September) in 2017.
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2. Materials and Methods

2.1. Study Site

The study area includes the region from Guanica Bay (GB) to La Parguera Natural Reserve (LPNR)
in southwestern Puerto Rico. LPNR is located about 8 km west of GB and is known for its highly
developed coral reefs and extensive seagrass habitats. The average annual water temperature in LPNR
is 26.5-30 °C, and the salinity fluctuates from 31 to 36 PS [7].

Coral reefs habitats are shown within the contour lines representing the study area as a region
of interest (ROI) (Figure 1). These are delineated using live coral cover classification [39], while the
perpendicular lines represent the limits of La Parguera Natural Reserve. The ROI was considered for
statistical data analysis. Seven out of the thirteen stations are presented here. Stations GUA4, GUAS5,
LP12, and LP13 were located offshore and along the insular platform. While sites LP6, LP8, and LP10
were closer to the coast (Figure 1).

\@\\‘ Atlantic Ocean
B 6

S
~__

Puerto Ric\B‘\@
\\\

= N

Caribbean Sea

i Guanica
Cabololo La Parguera

' .},.,“.in_ R ® H.Ima
SR ® H.Maria

® Selected Sites

§ 0 . Coral Reefs

Figure 1. Study area at southwestern Puerto Rico with Hurricanes Irma and Maria paths. Sampling
sites and delimited areas represent submerged coral reef areas that support fisheries and economies
around the region. Base map was from ESRI®.

2.2. Satellite Data

The Sentinel 3A (S3A) Ocean and Land Colour Instrument (OLCI) is a push-broom imaging
spectrometer with 21 spectral bands in the range of 400-1020 nm [40]. It was launched in February 2016,
followed by S3B, launched in March 2017. Their products have a full-spatial resolution of 300 meters
and include water-leaving reflectance in 16 bands, algal pigment concentrations [41] and neural
network algorithms [42], total suspended matter concentration (TSM), diffuse attenuation coefficient
(K4490_MO07) Morel method [41], and absorption of colored detrital and dissolved organic matter
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(ADG_443_NN) GSM method [43,44]. The temporal resolution for OLCI is daily with an optimum
orbit above the study area every two days.

We obtained the data from the EUMETSAT Copernicus data system. S3A/OLCI data were
extracted from the pixel coinciding with our field water monitoring stations and pixels over the ROI
(Figure 1). The Sentinel Application Platform (SNAP) tools, developed by the European Space Agency
(ESA) for satellite product analysis, were used for obtaining OLCI Level 2 data products. Only Sentinel
3-A data were used in the study.

Water quality products (ADG and K4490) were extracted from Sentinel 3 OLCI imagery dating
from July to December 2017. A subset of three images (out of 20) was evaluated considering the
region of interest (ROI). It included the following dates: 22 July, 11 September, and 8 October 2017.
This subset was selected to reduce uncertainty due to the following factors: negative reflectance values
from bands one to six, sunglint effect, cloud, or land adjacency effect, or products fail/flags. Imagery
is visualized with a median (7 X 7) pixel value. The complete set of images was divided into five
time-frames, summarizing four images in each period. The time frames included one period previous
to the hurricane events, one period immediately after the event and three additional periods after the
event to identify the long-term effect on light attenuation. Only the LP6 site data were used in the time
frame to avoid negative values and other sensor issues previously mentioned.

2.3. Water Quality Measurements—Field and Laboratory Analysis

Water samples and optical data were collected in 2017. The number of sampling stations varied
based on the sea state, environmental parameters, and imagery availability. Sampling was conducted
monthly at three to 13 stations in southwestern Puerto Rico (Figure 1). The locations were selected
based on depth, bottom type, and habitat in relation to coral reefs. Water samples were obtained from
the first meter depth and analyzed in the laboratory for CDOM absorption (aCDOM).

2.3.1. aCDOM

Duplicate samples were collected at each station using gloves, avoiding any contamination with
organic matter. They were stored in previously cleaned 250 mL amber glass bottles and transferred
to 140 mL bottles after filtration. Sterile membrane filters (0.2 um pore) were employed (Pall©).
The filtration system was rinsed beforehand and between each filtration with a 50 mL portion of
sample water and was then discarded [45]. Spectrophotometric analysis was carried out using a
Shimadzu 1800-UV diode array instrument. Samples were analyzed in 10 cm path length quartz cells
at 0.5 nm intervals over a wavelength range from 250 nm to 800 nm. Milli-Q water absorbance was
subtracted from the sample data, and subsequently, the value at 700 nm was subtracted from the
entire spectrum [46]. The absorbance values were converted to absorption coefficients, a (A, m),
and absorption coefficients at 443 nm (aCDOM4y3 m™) were reported as quantitative aCDOM.
The absorption coefficients an (m~') were calculated using the following equation:

a =2.303Ag/1 @
where A ) is the absorbance at a wavelength, and 1is the optical path length of the cell in meters.

2.3.2. Satlantic HyperPro

The Satlantic profiling spectroradiometer measures in-water downwelling plane irradiance (Ed)
and upwelling radiance (Lu) with 256 spectral bands for a full spectral range of 305-1100 nm [47].
A surface Ed radiometer measures downwelling irradiance above the water surface and is used
to normalize the in-water data for fluctuations in the incident light field from passing clouds.
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The instrument derives spectral water column attenuation coefficients, including the K4490 following
Aurin and Petzold (1981) in the manufacturer manual [48]:

K(490) = 0.0833 (Lu(a3)/Lu (550)*" +0.022 @)

2.4. Statistical Analysis

The SNAPQ© Sentinel toolbox, pixel extraction, and histogram tools were used to obtain satellite
data statistics. S3A data were divided into 5-time frames (July-September, September-October,
October-November, November—December, and December 2017) to evaluate the mean and median
differences over time. A Spearman correlation was applied to ADG443_NN satellite data, aCDOM
field data and K4490 for field and satellite data to understand the influence of ADG/aCDOM on light
attenuation. The analysis was employed using Origin Pro 2016© software.

3. Results

3.1. Satellite Data (ADG443_NN) and In Situ Data (aCDOM443)

Results were based on in situ data for a year (2017) and the last six months (2017) data retrieved
from satellite sensor S3A. Before the hurricane events, oligotrophic stations located at the shelf edge
showed ADG443_NN values below 0.05 m~1; while values below 0.1 m~! were associated with insular
shelf sites. The value of the ADG443_NN was above the median of 0.0435 m™! (prior to the events,
over the ROI) for the entire sampling period. On September 11, four days after the first event, amounts
above 0.1 m~! were detected at GUA5, LP6, and LP8 for one month (Figure 2). The highest ADG values
at offshore waters were detected on Sep 11, after the first hurricane (H. Irma) which was considered
less severe because its eye did not make landfall. On the other hand, the effects of H. Maria on the
values were evident on Oct 8th satellite data in most of our study area. It had a similar or lower effect
on ADG (GUAS5, LP12, and LP13) values at outer shelf waters but the sensor detected higher values at
inner shelf waters.
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Figure 2. ADG443_NN product from Sentinel 3A for 22 July, 11 September, and 8 October 2017; the figure
includes the aCDOM at 443 nm field data on 19 October 2017, at LP6 sampling site. The dashed line
represents the second standard deviation (25D) for aCDOM443 field data.

A view from in situ data showed the aCDOM443 ranging from 0.0023 to 0.1121 m™~! in field
samples (N = 21) with a 2SD of 0.0428 m~! in 2017 (Figure 3). Before the events, field values were
below 0.043 m~!. An unusual value of 0.1121 m~! was observed in the station LP9 on 15 September
2017 (Figure 3A). Another extreme value of 0.068 m~! above the 2SD was present in the field data at
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the LP6 site (N = 5) during 19 October 2017 (Figure 3B). Station LP6 is located to the southwest of
Guanica Bay. The extreme values belong to the sample size and should not be treated as outliers even
though a Grubbs’ outlier test detect these as such. We can consider them as extreme values as a result
of the events.
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Figure 3. Box plots for field data showing the median, mean and data including the extreme values
(A) Summary of the absorption coefficient of colored dissolved organic matter (aCDOM) at 443 nm field
data for the year 2017. (B) The absorption coefficient of colored dissolved organic matter (aCDOM) at
443 nm field data on station LP6, alias Turrumote II, for 2017.

S3A data were divided into five-time frames (July-September, September—October,
October-November, November—December, and December 2017) to evaluate the mean and median
differences (Table 1). The mean for ADG_443_NN was doubled in the second period from 0.1675
(pre hurricanes) to 0.3536 m! (September—-October). The maximum value of 0.6834 m~! was detected in
the same period. The values extracted from S3A started in July with values above the maximum of field
data for 2017. Values above 0.13 m™? persisted until December, four months after the events. Moreover,
the median showed the same tendency (>0.1 m~!) over four months. River discharges and coastal
drainage persist several weeks after the events. No major events took place after September, which
may indicate we are seeing the long term effect of the hurricanes in coastal water biogeochemistry.

Table 1. Statistics for five time periods on ADG443_NN product from Sentinel 3A.

S3_ADG443  7/22-9/3 9/11-10/8  10/11-11/27  11/30-12/12  12/16-12/27
Mean 0.1675 0.3536 0.1540 0.1322 0.1716
SD 0.0750 0.2398 0.1108 0.0544 0.0901
SE of mean 0.0375 0.1199 0.0554 0.0272 0.0451
Variance 0.0056 0.0575 0.0123 0.0030 0.0081
Sum 0.6699 1.4143 0.6160 0.5288 0.6863
Minimum 0.0889 0.1277 0.0812 0.0849 0.0973
Median 0.1586 0.3016 0.1093 0.1168 0.1434
Maximum 0.2638 0.6834 0.3162 0.2103 0.3022
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Satellite imagery show the absorption of dissolved organic matter over time. Figure 4 shows the
S3A ADG443_NN product prior to (July 22), and following (September 11 and Oct. 8) the passage of
hurricanes Irma and Maria over Puerto Rico. Contour lines represent coral reefs as the region of interest
(ROI). The ROI was considered for graphs and statistics on Figure 4 and Table 2. The high values of
ADG443_NN in Figure 4 correspond to pixels that cover mainly shallow areas and emergent reefs.
However, the analysis only considered the extracted values in submerged areas. The histogram for July
22 shows around 46 pixels lower than 0.05 m~! and more than 95 % of pixels with values < 0.1 m™.
The maximum value was 1.0 m™~! (Table 2). After the first hurricane event (Irma), an increase in the
ADG443_NN values from Guanica Bay to La Parguera was observed (Figure 4) as expected after an
event of such magnitude. Approximately, 12% of pixels in the selected area were considered in Table 2.
The histogram shows an increment of pixels with values in the range of 0.1 to 0.5 m~! (Figure 4) and
shows pixels with up to 4.5 m~!. Table 2 shows the increase in the median ADG443_NN value over
time from 0.04 to 0.08 m™~!.
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Figure 4. Sentinel 3A ADG_443_NN product (median visualization). Contour lines represent coral
reefs as the region of interest (ROI) while the perpendicular lines represent the limits of La Parguera
Natural Reserve. Black areas represent land-mask and cloud-mask applied to the imagery (A) before the
hurricanes on 22 Jul 2017 (B) 11 Sep 2017 after Hurricane Irma and (C) Oct 8, 2017 after two hurricane
events (H. Irma and H. Maria); (D) Histograms for regions of interest representing ADG443_NN pixel
values on 22 July 2017, (E) 11 September 2017 and (F) 8 October 2017.
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Table 2. Sentinel 3A Ocean and Land Colour Instrument (OLCI) data statistics for ADG443_NN product
over (ROI) coral reef areas around Guanica to La Parguera Natural Reserve.

S3_ADG over Coral Reef Areas  22-Jul  11-Sep 8-Oct

Number of considered pixels 349 339 365
Ratio of considered pixels (%) 121138  11.7667  12.3020
Min. 0.0053 0.0343 0.0080
Max. 1.0752 4.5858 0.6834
Mean 0.1097 0.2353 0.1216
SD 0.1650  0.5991  0.1086
cv 1.5048 25458  0.8932
Median 0.0435  0.0628  0.0849

To visualize the effect on light attenuation, we chose sampling station (LP6), located between
Guanica Bay and LPNR. It is near the coastline but, far enough to be outside the influence of land pixels.
Taking a look on satellite data of this site, a spike value was observed on 7 October 2017, for both
parameters ADG443_NN and K4490, with high values on 18 August, 23 October, and 16 December
2017 (Figure 5). These values were concurrent with two heavy rain periods during the last six months
of the year 2017. The image from October 8 showed the impact on water quality parameters three
weeks after the events. All ADG443_NN values were over 0.04 m~! for the entire sampling period.
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Figure 5. S3A OLCI products from July to December 2017 showing the changes over time for station
LP6 known as Turrumote II (located between Guanica Bay (GB) and La Parguera Natural Reserve
(LPNR)) for ADG443_NN and K43490_MO07 and monthly precipitation at Guayanilla, Puerto Rico (PR)
south station.

The S3A data for the last six months of 2017 shows an ADG mean value of 0.2 m~! (sd = 0.14,
n = 20) with a minimum of 0.08 m~! on 31 October 2017, and a maximum of 0.68 m~! on 7 October 2017.
This maximum coincides with maximum Chl-a and K3490 values while the minimum value was not
coincident with the minimum of K3490. From July to December the ADG mean exceeds the 0.0436 m!
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mean and 0.0437 median values found in field data for the year 2017. Considering LP6 field data,
it presented 0.0249 m~! as the second standard deviation with a mean of 0.0435 m~! (N = 5) while
satellite data showed a mean value of 0.2 m™ (N = 20). The selected images (N = 3) in Figure 2 show
0.13 m~! as a mean value which triplicates the field data mean of aCDOM443 (N = 21).

The highest ADG values among stations were found at station LP6 (mean = 0.1957 m1) (Figure 6)
which may imply influence of the freshwater plume emanating from Guanica Bay reaching the area.
The second highest values were observed at LP8, also known as Laurel (mean = 0.1535 m™1) followed
by LP10, out of the bioluminescent bay (mean = 0.1023 m™). These two correspond to shallow inner
coral reef areas. Stations GUA4 (mean = 0.0744 m~!) and GUAS5 (mean = 0.0753 m™!) were located
at the edge of the shelf close to Gudnica Bay showing lower values than the inner shelf sites. Sites
LP12 and LP13 were located above the border of the insular shelf and closer to La Parguera. These
presented the lowest values 0.07342 and 0.0395 m~! (N = 21), respectively.
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Figure 6. S3A OLCI Product ADG_443_NN from Sentinel 3A (EUMETSAT-Copernicus data) from July
to December 2017 at selected sampling sites in southwestern, PR. The graph shows the range per site,
median line, mean, data points, and extreme values.

3.2. K490 and Correlation with ADG443/aCDOM443

Values for diffuse attenuation coefficient (K3490) share the ADG443_NN tendencies (Figure 5).
Values for K4490 extracted from S3A for station LP6 show a mean value of 0.22 m~! (sd = 0.1, n = 19)
from July to December. The minimum values were on 27 December 2017, and the maximum of 0.48 m™!
was detected on 7 October 2017, coincident with other parameters following the events. The stations
closer to the shoreline LP6 and LP10 showed values above 0.14 m™! in September and October 2017
(Figure 7). K4490 median values from S3A varied from 0.15 to 0.34 m~! for six months while the mean
values ranged from 0.16 to 0.34 m~! (Table 3). The highest mean value of 0.34 m~! was observed in the
period of Sep 11 to Oct 8; during that period, a maximum of 0.48 m~! was detected. The maximum
value of K4490 derived from field data in 2017 was 0.33 m~1 on 19 October 2017, four weeks after the
last hurricane (Figure 8A,B).

The attenuation coefficient showed a slight variation in outer shelf waters with a greater impact in
inner shelf, specifically in LP6, alias Turrumote II (Figure 7). The cumulative effect of biogeochemical
processes in production and degradation of organic matter is shown by this increment on October
values. K4490 values reach to the normal between October and November (Table 3).
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Figure 7. K4490 product from Sentinel 3A for 22 July, 11 September, and 8 October 2017. The figure
includes the K4490 nm field data on 19 October 2017 at LP6 sampling site. The dashed line represents
the second standard deviation (2SD) for K4490 field data.
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Figure 8. Box plot for light attenuation coefficient (K4490) at 490 nm field data, showing the value
range, median line, mean, and the extreme values (A) for the year 2017 from GB to LPNR area and,
(B) field data on station LP6 known as Turrumote II for 2017.

Table 3. Statistics for five time periods on K4490 product from Sentinel 3A.

$3_KD490 7/22-9/3 9/11-10/8  10/11-11/27  11/30-12/12  12/16-12/27
Mean 0.1673 0.3433 0.2158 0.1648 0.1783
SD 0.0356 0.1251 0.0811 0.0335 0.0468
SE of mean 0.0205 0.0626 0.0405 0.0167 0.0234
Variance 0.0013 0.0157 0.0066 0.0011 0.0022
Sum 0.5019 1.3734 0.8632 0.6593 0.7131
Minimum 0.1289 0.1992 0.1289 0.1361 0.1095
Median 0.1738 0.3493 0.2047 0.1564 0.1966
Maximum 0.1992 0.4755 0.3249 0.2103 0.2103

The field data for 2017 (N = 21) show a high correlation between K3490 and aCDOM443 absorption
coefficients (rs = 0.79, p = 0.0003) and a lower but similar correlation between S3 OLCI products,
(rs = 0.71, p = 0.0005). It cannot be interpreted as a sensor validation.
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4. Discussion

Caribbean Sea water is mostly oligotrophic with a high light penetration in the water column,
although it is seasonally influenced by the Orinoco and Amazon rivers from South America,
seasonally [49-51]. Light penetration changes after hurricane events can affect seagrasses [11]
and other light-dependent organisms like corals. Previous research shows that coral photo-physiology
is altered by light availability [25,52]. Garcia-Sais and collaborators (2017) studied K3490 and Chl-a
trends over individual coral reefs in Puerto Rico using L2 and L3 imagery from SeaWiFS and MODIS
Aqua satellite data [10]. A recent publication based on VIIRS data described the tendencies of K3490
and Chl-a parameters on water quality around PR using a value of 0.1 m~! for K4490 and 0.45 pg/L
for Chl-a as a threshold value for coastal waters [20]. Despite the detrimental effects documented by
several authors [26,53-55], an intermittent high turbidity over coral reefs can be photo-protective [10].
Garcia-Sais and collaborators (2017) observed a negative correlation between K3490 and the percent of
coral cover which can be interpreted as a positive light shadow effect during sea surface temperature
anomalies [10]. The severity of the damages can be highly influenced by the prevalence of adverse
conditions during and after the events.

In 2017, the duration of the abnormal values (above 0.05 m™1) lasted four months as can be seen in
Figure 5. Higher values are not necessarily coincident with the events but, rather these were detected
two to three weeks later in October. The high number of landslides (>40,000) combined with runoff
after hurricanes Irma and Maria over the Island were unprecedented [56] and washed sediments
reached nearshore waters [19]. Miller (2019) documented elevated turbidity values nearshore until
February 2018 related to inland hydrological disturbances caused by the hurricanes [19]. Gilbes and
collaborators (2001) documented changes in Chl-a due to hurricane Georges up to two and a half weeks
after the event [18]. Recently, Hernandez and collaborators (2020) documented high K4490 and Chl-a
values from July to December 2017 all around Puerto Rico using VIIRS data; reporting Chl-a values
above 0.45 ug/L in August and November 2017 [20]. These authors reported anomalous attenuation
coefficient values for July 2017 (0.06 m~!) being persistently high until December. Chlorophyll-a is
a parameter highly correlated with K4490 on ocean color data [18,20]. It is important to highlight
the oligotrophic water conditions on this study area, being influenced by Guanica Bay dynamics.
The values considered in this area can be compared to coral reefs or benthic areas with low influence
of rivers.

The aCDOM443 values above 0.05 m~! are not typical for coral reef waters in Puerto Rico.
CDOM values with means < 0.043 m~! are the most common values over coral reefs and seagrass beds
in the studied area. Otherwise, the values closer to 0.02 m™! are found in offshore waters. An absorption
coefficient higher than 0.1 m~! is frequently found on coastal embayments like Guénica Bay or the
Bioluminescent Bay surrounded by mangroves [57]. Anomalies like the ones measured in this study
lasted for the entire study period.

In terms of attenuation coefficient (Kg4490), values above 0.2 m™! corresponded to coastal
embayments while values from 0.1 to 0.2 were observed at shallow coral reef or seagrasses areas close
to the coast (<1 mile) or closer to the coral cays [20]. The lower values (<0.1 m™1) were found at mid-
and outer-shelf coral reef stations. A mean K3490 value of 0.056 m~! was documented (for 10 y data) in
a coral reef site at Gudnica by satellite data [10]. Their values are lower than the values reported here
from July to December 2017 using OLCI data. A variant of K3490 parameter, K4PAR, was measured in
situ before and after hurricane events in St. John Island recording the lowest level of light in coral reef
in the Caribbean after a hurricane event [58,59]. Certainly, these events had an unprecedent effect on
light attenuation over sensitive benthic communities.

These data show the influence of ADG443_NN/aCDOM in light attenuation. However, in estuarine
areas, a significant correlation between K4490 and Chl-a was documented after a hurricane event [13,20].
The high anomalous values of ADG and K4490 can be related to the unprecedented runoff produced
by defoliation and landslides [19,56] followed by biogeochemical oceanographic processes over the
coastal waters.
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5. Conclusions

As expected from episodic events of this magnitude, significant water quality parameter changes
occurred in southwestern Puerto Rico. Sentinel 3A OLCI data was used to extract information on ADG
and K490 values. These data were compared with in situ data trends and correlated between them.
The amount of data acquired during the study period (before N =5, N = 16 after hurricanes) duplicates
the quantity of data obtained from the field (N = 3 after the hurricane) in 2017. Although cloud cover
in tropical islands can be high, remote sensing is an accessible and useful tool for short and long-term
water quality studies.

Increasing values of satellite-derived water quality parameters were detected with S3 OLCI and
field data in southwestern Puerto Rico. The anomalies were observed during the 9/11-10/8 period
as expected and extended until December. The ADG values increased throughout all the coral reef
zones. The estimated ADG mean in this zone was > 0.1 m~! with a median of 0.05 m~'. The mean
values of K4490 increased from 0.16 m~! before the hurricanes to 0.28 m~! shortly after Hurricane Irma,
and 0.34 m~! in October 2017, a month after Hurricane Maria.

Satellite data are useful for water quality assessment in PR coastal waters with a judicious
understanding of their uncertainties and limitations. On the other hand, we cannot conclude the
performance of the sensor measurement on ADG443_NN or K4490 products since we do not have
enough in situ data from July to December 2017. Our results represent a pioneering effort in the
establishment of tendencies for water quality studies in Puerto Rico. Usually, government agencies’
data are a single snapshot influencing the mean values that can be misinterpreted for the establishment
of patterns on water quality. These gaps can be addressed with satellite data, as we showed throughout
the manuscript. Remote sensing tools can help understand coastal and benthic habitat changes and
biogeochemical processes in waters surrounding oceanic islands, especially after extreme weather
events. Previous studies have mainly documented the importance of chlorophyll on light attenuation,
but this study highlights the importance of detrital and gelbstoff matter on light attenuation coefficient.
This is not only done as a historical perspective of the consequences of these events but as an analysis
that could be integrated into future efforts aimed at describing the consequences of such events in
benthic communities changes on the long run.
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Abstract: The knowledge of extreme total water levels (ETWLs) and the derived impact, coastal
flooding and erosion, is crucial to face the present and future challenges exacerbated in European
densely populated coastal areas. Based on 24 years (1993-2016) of multimission radar altimetry,
this paper investigates the contribution of each water level component: tide, surge and annual cycle of
monthly mean sea level (MMSL) to the ETWLs. It focuses on the contribution of the annual variation
of MMSL in the coastal flooding extreme events registered in a European database. In microtidal areas
(Black, Baltic and Mediterranean Sea), the MMSL contribution is mostly larger than tide, and it can be
at the same order of magnitude of the surge. In meso and macrotidal areas, the MMSL contribution
is <20% of the total water level, but larger (>30%) in the North Sea. No correlation was observed
between the average annual cycle of monthly mean sea level (AMMSL) and coastal flooding extreme
events (CFEEs) along the European coastal line. Positive correlations of the component variance of
MMSL with the relative frequency of CFEEs extend to the Central Mediterranean (r = 0.59), North Sea
(r =0.60) and Baltic Sea (r = 0.75). In the case of positive MMSL anomalies, the correlation expands to
the Bay of Biscay and northern North Atlantic (at >90% of statistical significance). The understanding
of the spatial and temporal patterns of a combination of all the components of the ETWLs shall
improve the preparedness and coastal adaptation measures to reduce the impact of coastal flooding.

Keywords: storm surge; coastal flooding; marine storms; natural hazards; steric-effect;
satellite altimetry

1. Introduction

Coastal areas, prone to be flooded in the case of extreme water levels, are mainly low-elevation
territories. In addition, the increase in subsidence rates by anthropogenic actions such as sediment
supply reduction by rivers, soil compaction by changes in land use [1], as well as extraction of
groundwater [2] or natural gas [3] can exacerbate the vulnerability of coastal areas. Marine flooding
threatens coastal areas, causing human casualities and large socio-economic impacts [4]. This is more
critical in densely populated zones with a restricted or inadequate adaptive capacity [5].

The European coastline is a densely populated area. In 2011, almost 205 million people (>40% of
the European population) lived in coastal regions (<50 km from the sea), and on average, in each
country with a coastal border, 36% of the population lived within 5 km from the sea [6]. Moreover,
there is a large historical record of marine flooding along the European coast [7-9], either for the
North Sea [10]; Bay of Biscay [11]; North Atlantic, Mediterranean Sea or Adriatic sea among other
locations [12]. Protection measures have been taken in the last few decades, increasing preparedness
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for extreme water level impact along the European coast. These actions have reduced the impact and
consequences of coastal flooding generated by extreme events (hereafter, CFEEs) along the European
coast. Indeed, despite an increase in the exposure in coastal areas, there is a significant decreasing
trend in flood fatalities and economic losses for the period 1950-2016 [13]. An outstanding example
is the North Sea floods of 1953 and 2013 (storm Xavier), very similar in magnitude but with very
different impacts on infrastructures and population. A considerable decline of the damage was
observed in the latter [14]. However, the extreme water level is expected to increase in the next century,
by the contribution of the mean sea level rise [15,16], and changes in extreme storm surge and wave
characteristics [17]. On the other hand, remarkable growth in coastal risk is also expected, associated
with socio-economic coastal development [18]. Therefore, there is a continuous necessity for the
monitoring and improvement of the forecasting and knowledge of extreme sea-level events and the
driven impact on coastal areas to face the present and future challenges.

Traditionally, Extreme Total Water Level (ETWL, henceforth) has been analysed as the sum of
tidal level and non-tidal residual. The non-tidal residual includes the so-called surge or meteorological
contribution (inverse barometer effect and wind setup), and the non-linear interaction between surges
and tides [19,20]. The non-tidal residual can also contain the wave set-up contribution in coastal
areas [21], resonance in enclosed basin [22] or contribution of the river runoff in estuaries during
extreme discharges [23,24].

ETWLs are dominated by high-frequency signals (tides, surges, waves set-up and run-up),
but low-frequency contributions, such as the annual cycle of sea surface height variation and associated
anomalies need to be considered too. The annual cycles of the Monthly Mean Sea Level (MMSL,
hereinafter) can induce sea-level variations, ranging from few centimetres to up to 0.3 m in some regions
(i.e., the Gulf of Carpentaria between Australia and New Guinea) [25]. Several processes and their
seasonal variability drive the annual cycle of sea surface height. Thus, the water mass addition/removal
from the oceans is a major forcing of the global ocean mean sea level (MSL) variation [26], interannual
variability is critical over shelf seas [27], while seasonal variability can dominate in shallower regions [28].
Freshwater runoff contributes also to the annual cycle of MSL [29], and might become dominant near
the coast [30]. The effect of river discharge is limited to the areas influenced by the river mouth [31,32].
In the open ocean the annual cycle of MSL is controlled by changes in the density of the water column
through the so-called steric component, dominating the sea level variability at annual timescales
in the North Atlantic and in the Mediterranean Sea [33]. The steric contribution is mainly driven
by the thermal expansion/contraction of the water column (thermos-steric component) associated
with changes in temperature of the upper layer of the ocean; the haline expansion/contraction due
to salinity changes (halo-steric component) becomes less important [34]. Although the relevance of
density changes in sea surface height variability is proportional to the water column depth and can be
predominant in the open ocean, it can affect by remote contribution shallower areas [35].

Tide gauges have been used for years for extreme value analysis [36,37]. Some limitations
(spatial and temporal coverage) are inherent to in situ measurements [38]. Tide gauge data are
also influenced by isostatic adjustment and topographic effect in many locations, hampering the
interpretation of sea-level records [39].

Satellite altimetry provides homogeneous and accurate sea level measurements over the open
ocean. Apart from data assimilation in the forecast system (e.g., [40]), these measurements have been
used for many applications including the contribution of the MMSL seasonal cycle to the extreme water
levels [41]. Altimetry observations are available around the world ocean, but the accuracy decreases in
coastal zones by land and calm water contamination in the radar footprint and the bad characterisation
of some of the range/geophysical corrections [42]. The use of radar altimetry to capture peaks of
ETWLs during CFEEs can be limited by its low temporal resolution. Recent studies over Europe [43]
show that if two or more satellites (multimission gridded products) are available, more than 90% of the
ETWLs events might be captured.
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The combination of low-frequency signals (the annual cycle of the sea level variation) with
shorter timescale phenomena, such as surges or tides, can contribute to an increase in the ETWLs
during CFEEs [44]. Thus, a better characterisation of the high/low-frequency signals can improve our
knowledge of the flood risk in coastal areas [45,46]. The main aim of this work was to analyse the
contribution of the seasonal cycle of the MMSL (derived from multimission radar altimetry) to the
ETWLs during the period 1993-2016. We also analysed the high-frequency signals (surges and tides)
contribution to the ETWLs. The combined effect of these signals might result in large flooding with
associated impacts on coastal areas. This study focused on the comparison of ETWLs detected with
satellite altimetry with a coastal extreme storm impact database at a pan-European scale. The paper is
structured as follows; Section 2 describes the methodological approach and dataset used. Section 3
gives the obtained results in terms of ETWLs and its comparison with the storm impact database;
in Section 4, the results are discussed and compared with previous studies. Finally, the main conclusions
are summarised in Section 5.

2. Datasets and Methodology

2.1. Sea Level Datatasets

The altimeter dataset used was the GLOBAL OCEAN ALONG-TRACK L3 SEA SURFACE
HEIGHTS REPROCESSED from CMEMS (Copernicus Marine Environment Monitoring Service) [47].
This product was derived by the DUACS (Data Unification and Altimeter Combination System)
multimission altimeter data processing system [48] to provide a consistent, cross-calibrated and
homogeneous data for all the altimeter missions: Topex-Poseidon; Topex-Poseidon (interleaved orbit);
Jason-1; Jason-1 (interleaved orbit); Jason-1 (geodetic orbit); OSTM/Jason-2; OSTM/Jason-2 (interleaved);
Jason-3; Sentinel-3A; ERS-1; ERS-2; Envisat; Envisat (extended phase); Geosat Follow On; CryoSat-2;
SARAL; SARAL-DP; HY-2A; HY-2A (geodetic orbit).

The along-track product obtained from CMEMS was the reprocessed Sea Level Anomaly (SLA).
Instead of using the fully 1 Hz posting rate (~7 km spatial resolution), we used the filtered and
subsampled SLA included in the along-track products of CMEMS. It reduces the residual noise
and small scale signals with a posting rate of 0.5 Hz (about 14 km distance between successive
measurements), and temporal resolution ranging between 10 and 35 days depending on satellite
mission (see [49] for more details). Along-track SLA (referenced to a mean sea surface), includes a set of
corrections in order to reduce instrumental noise, range (ionospheric, dry and wet tropospheric effects,
and sea state bias correction), and geophysical corrections (tides, inverse barometer and high frequency
(<20 days) wind and pressure effects). The inverse barometer and high-frequency wind signal of the
atmospheric forcing were removed through the so-called Dynamic Atmospheric Correction (DAC)
produced by CLS (Collecte Localisation Satellites) using the Mog2D model [50]. The ocean tide was
removed using the FES2014 model (including S1 and S2 components) [51].

2.2. Storm Impact Database

The CFEEs were analysed using the historic and recent coastal flooding extreme events along the
European coastline. The database used integrates different systematic coastal flooding and coastal
impact databases available at pan-European scale:

e Pan-European HANZE database [8] from 1870 to 2016: 1564 flooding events were recorded
including river floods and flash floods. A total of 77 events classified as coastal and compound
events (river and coastal contributions to the floodings) were selected.

e  Coastal floodings in the United Kingdom [7] from 1915 to 2016: 329 events.

e The RISC-KIT storm impact database for European coastlines [9] from 1806 to 2016: with 298 events.

81



Remote Sens. 2020, 12, 3419

Information on the impact (if available), location and time of 532 events were recorded in the
analysed time period (1993-2016). The database contains records in specific locations and can include
more than one event separated by time.

The geographical location of the events was normalised and referred to the European Union
statistical regions NUTS3 (Nomenclature of Territorial Units for Statistics Level 3) version 2010.

2.3. Methods

We obtained the total water level (TWL) as the contribution of three components (Equation (1)):
TWL = MMSL + SSL + TIDE )

where MMSL is monthly mean sea level; SSL includes the sea surface variations induced by the
meteorological forcing. It includes the contribution of wind and pressure effect on the water level
(the so-called surge); and TIDE is the contribution of astronomical tide. The study area focused on
the pan-European area covering 32°W-42°E longitude, and 27-74°N latitude (Figure 1). The area of
interest was divided in 1° x 1° tiles and time series were obtained by grouping the along-track SLA
data inside each tile.
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Figure 1. Study area with the 10 oceanographic regions defined for the analysis. The colour scale
indicates the number of altimetry observations in each 1° x 1° latitude and longitude cell for the
period: 1993-2016.

The events where TWL exceeds the 95th percentile of the TWL have been considered as the
extreme total water levels (ETWLs).

2.3.1. MMSL, AMMSL and MSL Anomalies

As mentioned, the study area was divided into regular grids of 1° X 1°. Then, monthly means
were constructed with the along-track filtered SLA data inside the grids for the time period analysed;
finally, the time series were linearly detrended to obtain the monthly Mean Sea Level (MMSL),
which includes the steric and mass components. The MMSL was computed as the monthly mean
for each year. The standard deviation (c) of MMSL for each month representing the interannual
variability was also obtained. The average monthly mean sea level (AMMSL), the so-called climatology
or average annual cycle, was calculated as the interannual average of the monthly mean sea level for
the whole period. Finally, the MSL anomalies (deviation in MSL respect to the mean annual cycle)
were estimated subtracting the month value of the AMMSL time average (1993-2016) to the MMSL for
the corresponding month following (Equation (2)):

MSL anomalies = MMSL — AMMSL 2)
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2.3.2. SSL

The meteorological component was computed following (Equation (3)):
SSL = SLApac — MMSL (©))

where SLApac is the monthly mean of the SLA uncorrected by DAC; that is restoring the inverse
barometer and high frequency (<20 days) wind and pressure effects removed during the product
delivery. The DAC product is available at regular grids (0.5° X 0.5°), and 6 hours of temporal resolution.
They were interpolated in time and space to match the altimeter dataset, and subtracted to the
along-track SLA. Then, the monthly means were computed and the time series were also detrended
(SLApac)-

2.3.3. TIDE

The ocean tide was calculated using the t_tide package [52] including nodal corrections, and using
the amplitudes and phases of 30 tidal components of the FES2014 model (see [51] for further details).
The amplitude and phase are provided in a regular grid of 0.0625° x 0.0625° and were interpolated in
space to match the altimeter dataset.

The amplitude of the TWL is highly dependent on the phase lag between the surges and the tides.
In addition to this, the co-occurrence of surges and spring tides might have a major impact on the
floods hitting the coastal area. We analysed the relevance of AMMSL with respect to the neap-spring
tidal range calculated from M2 and S2 tidal constituents ([M2-52 M2+52]). It is calculated according to
Equation (4)

AMMSL

Rel — 100 2VVOL 4
clevance M2-S2M2 + S2] @)

2.3.4. Correlation of Seasonal MSL with Storm Impact Database

The relationship between the spatio-temporal pattern of MMSL, SSL and TIDE, and the areas
affected by coastal flooding registered in the storm impact database was analysed along the European
coastline. According to the methodology outlined in the previous section, the MMSL, SSL and TIDE
contribution was calculated and assigned for each measurement in the altimetry dataset located in the
1° x 1° tiles closest to the coastline of each region avoiding measurements affected by land contamination.

Afterward, the linear correlation coefficient was calculated between the average monthly fraction
of each component variance in ETWLs in the oceanographic region and the relative monthly frequency
of the number of CFEEs registered in the storm impacts database at each oceanographic region.
The variance of each component is expressed as a fraction of the ETWLs.

Similarly, it was calculated the correlation coefficient between AMMSL and monthly frequency of
the storm impact registered on each region.

The relationship of MSL anomalies in the closest 1° X 1° and the storm event registered in
the database was assessed through a t-test (alpha = 0.05) to evaluate the hypothesis that positive
MSL anomalies are correlated with the storm event recorder. If the CFEEs and MSL anomalies are
independent, mean value of MSL anomalies corresponding to the CFEEs should be zero, whereas a
positive correlation will produce a mean value of MSL anomalies > 0.

3. Results

3.1. Characterization of the AMMSL and MMSL

The characterisation of AMMSL and MMSL was conducted using the full spatial coverage of the
dataset in order to analyse the study area including deep ocean and areas closest to the European coast.
The AMMSL is shown in Figure 2. The average annual cycle is not uniform in time and magnitude
in the study area. The Mediterranean Sea and the Atlantic areas show minimum in late winter/early
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spring (—0.12 in the Mediterranean Sea and —0.05 m in the Atlantic) with the maximum of the annual
cycle in late summer/early autumn (0.12 m in the Mediterranean and up to 0.07 m along the continental
shelf in the N-North Atlantic). Some exceptions are observed in the coastal zones of the United
Kingdom. The Bay of Biscay and the North Sea show a similar pattern with the minimum in spring and
maximum of AMMSL in late summer/early autumn. In the North Sea, the North-Eastern coast and the
German Bight present values > 0.10 m, where positive anomalies extend from September up to January.
In the case of the Black Sea, the minimum/maximum (+0.10 m) is given in autumn/spring. Finally,
the Baltic Sea shows the minimum/maximum (+0.12 m) in spring/autumn-early winter. Intensifications
of positive AMMSL (>0.12 m) are observed in the gulfs of Bothnia and Finland during December and
January. The Norwegian Sea is characterised by variations around +0.06 m with minimum/maximum
in late autumn/late spring, and intensification of positive AMMSL (0.08 m) in coastal areas.
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Figure 2. Seasonality of the annual cycle ((a-1) January-December) of the average monthly mean sea
level (AMMSL) in the study area from 1993 to 2016. Warm/cold colour indicates positive/negative values.

Figure 3 illustrates the standard deviation (o) of the annual cycle for the analysed period as an
indicator of the interannual variability of the MMSL. The values are small (o < 0.03 m) all around the
year and oceanographic regions. Some exceptions with bigger standard deviations are observed in the
Baltic, Black and North Seas, especially during autumn/winter seasons. In the North Sea, 0 is >0.15 m
in the German Bight. The largest o (up to >0.18 m in February) are in areas located in the head of the
Gulf of Bothnia, Finland and the Eastern coast of the Baltic Sea. The deeper ocean of South/North
Atlantic shows o slightly larger (>0.04 m) with respect to the mean value.
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Figure 3. Seasonality of the standard deviation (o) of monthly mean sea level (MMSL)
((a-1) January-December).

The contribution of the AMMSL to the annual cycle obtained with the monthly maximum SLA
uncorrected by meteorological forcing (SLApac) was also analysed. We estimated the percentage of
this contribution (Figure 4). The steric and mass components account for almost 45% of the uncorrected
seasonal cycle in late autumn/spring in most of the oceanographic regions with the exception of the
Black Sea, North Sea, Bay of Biscay and the deeper ocean of South/North Atlantic. Contributions of
about 30-35% are observed in the Mediterranean Sea and Black Sea in late summer/autumn.

Regarding the relevance of the AMMSL with respect to the neap-spring tidal range calculated
([M2-52 M2 + S2]), the results (not shown here) indicate that the AMMSL is more important than the
neap-spring range in microtidal areas (Mediterranean Sea (excepting Central Med.), Black Sea and
Baltic Sea). In mesotidal (S-North Atlantic and Norwegian Sea) and some macrotidal (Bay of Biscay,
N-North Atlantic and Eastern coast of the North Sea) areas the contribution is smaller than 10%.

Figure 5 gives the characterisation by oceanographic region of the monthly AMMSL, its magnitude
relative to SLApac and to the range of neap-spring tide. The average range of the AMMSL during
the annual cycle and its standard deviation are shown in Figure 5a. The largest seasonal range and
variability was observed in the Baltic Sea (>+0.10 m), followed by the Mediterranean Sea, and the
Norwegian Sea. The weakest variation in the AMMSL was found in the Black Sea, S-North Atlantic,
Bay of Biscay and N-North Atlantic. The weight of the AMMSL with respect to the non-tidal residual
(SLApac) (Figure 5b) is, on average, below 50% in all the oceanographic regions ranging from ~40%
(Mediterranean Sea) to ~20% in the Bay of Biscay, N-North Atlantic, North Sea and Norwegian Sea.
The average ratio of AMMSL and spring-neap range (Figure 5c) points out the major importance of
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AMMSL in microtidal areas: Black Sea, Mediterranean Sea and Baltic Sea. This ratio is still high in the
North Sea (>60%) and below 10% in the Bay of Biscay.
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Figure 4. Seasonality of the annual contribution of the seasonal cycle of the MSL to the uncorrected
monthly maximum MSL (Sea Level Anomaly (SLA) + Dynamic Atmospheric Correction (DAC))
((a-1) January-December).

The ETWLs are analysed in detail in the coastal area using a subset of the initial data. This subset
covers only data contained in the closest 1° X 1° tile to the coast. Figure 6 shows the contribution in
terms of the variance of the three components (MMSL, SSL and TIDE) to these extremes. For a more
comprehensive visualization, the fraction of components’” variance was plotted as ternary plots: SSL is
100% in the bottom left vertex, MMSL is 100% in the upper vertex and TIDE is 100% in the bottom right;
the opposite edge of each vertex gives 0% of the corresponding components’ fraction. In the Black Sea
(Figure 6a), the main component in the ETWLs is the SSL, with the MMSL contribution ranging from 0
to 50%; the TIDE fraction is < 10%. The Mediterranean Sea (Figure 6b—d) shows the larger variability in
the contribution of the components, particularly in the West Med. In the East Med. (Figure 6b), ETWLs
are characterised by 10-40% of MMSL contribution, 60-90% for SSL, and a smaller relevance of TIDE
(<20%). In the Central Med. (Figure 6¢), which includes the Adriatic Sea, TIDE is the main component
(70-90%), the MMSL contribution is limited to <15%, and SSL is below 30%. In West Med. (Figure 6d)
the TIDE contribution ranges from 40 to 60%, MMSL and SSL around 10-30% in the case of the higher
ETWLs (red dots), whereas intermediate ETWLs (orange dots) present a wider contribution of MMSL.
S-North Atlantic (Figure 6e) is characterised by 70-80% (TIDE), 20-30% (SSL), and about 10% (MMSL).
The Bay of Biscay (f) is the oceanographic region where MMSL shows the minor contribution (<5%), so
the extreme values are most of the time a combination of SSL (0-20%), and TIDE (80-100%). In N-North
Atlantic (Figure 6g) and North Sea (Figure 6h), the MMSL contribution to ETWLs is limited to <10%
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and <20% respectively. TIDE and SSL contribute to 20% and 80%, respectively in the N-North Atlantic.
The North Sea shows scattered values for TIDE (20-95%) and SSL (0-80%) components. The Baltic Sea
is the oceanographic region with the larger contribution of MMSL (20-50%), and minor contribution of
SSL 50-80%. ETWLs in the Norwegian Sea are characterised by 80-95% (TIDE), 10-20% (SSL) and
<10% (MMSL).
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Figure 5. (a) Oceanographic region average of range of AMMSL (red/blue lines show the spatially
averaged standard deviation of the interannual MMSL positive/negative values, respectively).
(b) Oceanographic region average of the relative value (%) of AMMSL with respect to the SSL monthly
maxima (SLApac). (¢) Oceanographic region average of the relevance (%) of mean AMMSL with
respect to the neap-spring tidal range following Equation (3). (Exceedance of 100% were represented as
100% in order to facilitate the intercomparison with other regions).

Norwegian
Sea

Figure 6. Fraction of components’ variance in the extreme total water level (>95th percentile) along the
coastline (closest 1° x 1° tile) of each oceanographic region (a—j) considering TIDE, SSL and MMSL.
Warm/cold colour indicates bigger/smaller extreme total water levels (ETWLs).
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3.2. Correlation of AMMSL and MMSL with Storm Impact Database

The relationship between the spatial pattern of AMMSL and the areas affected by coastal floodings
registered in the storm impact database is illustrated in Figure 7. The East Med., S-North Atlantic
and Norwegian Sea do not have any records in the storm database. The only record in the Black
Sea is on the west coast, with the CFEEs mainly registered from December to March (Figure 7a—c,1).
The higher frequency of storms is recorded in February (AMMSL < 0.03 m). Central and West Med.
are characterised by a peak occurrence of CFEEs during November and December in the Adriatic,
Liguria and Catalonia coasts (Figure 7k,l) running into positive AMMSL ([0.03-0.09 m]). The S-North
Atlantic is represented only by the southern coast of Portugal, where CFEEs are mainly registered
on January-February (Figure 7a,b) during negative AMMSL ([-0.05-—0.03 m]). In the Bay of Biscay,
the higher percentage of CFEEs occur during February-March, when the seasonal cycle shows negative
AMMSL (-0.05 m). In the N-North Atlantic, most of the CFEEs take place from December to February
(Figure 7a,b 1, respectively), corresponding to AMMSL around 0.07 m, 0.05 m and —0.03 m respectively.
On the coast of the North Sea, the CFEEs occur mostly in January (Figure 7a) during positive AMMSL
(0.07 m), except on the south-eastern English coast. In German Bight, a higher frequency of the CFEEs
occur in December, when AMMSL peaks up to 0.11 m. In the Baltic Sea, most CFEEs are observed
during January and December in the western coast (Figure 7a,]) running into positive monthly AMMSL
(0.06 m). Likewise, the largest frequency in the Gulf of Finland occurs during January concurring with
maximum AMMSL (>0.15 m).
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Figure 7. Spatial pattern of the relationship between the CFEEs and the AMMSL
((a-1) January—December). The dots indicate the position of the coastal storms and the colour
intensity refers to their relative monthly frequency in the affected NUTS3 region.
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The monthly average of the fraction of each component (SSL, TIDE and MMSL) variance in the
ETWLs and the monthly frequency of the extreme events are illustrated in Figure 8. The correlation
coefficient between each component and the relative monthly frequency of CFEEs is shown in Table 1.
In the Black Sea and Baltic Sea, the main contributors to the ETWLs are SSL and MMSL. The CFEEs
are observed from December to February coinciding with an important contribution of the MMSL
(Figure 8a-i). The correlations are not significant in the Black Sea and significant (SSL and MMSL)
in the Baltic Sea (Table 1). The contribution pattern of the three components is homogeneous in the
Mediterranean (Figure 8b—d). Extreme events are observed from October to January (Central and West
Med.). Correlations (Table 1) are significant for TIDE (Central and West Med) and MMSL (Central
Med.). The remaining oceanographic areas show a major contribution of TIDE to the extremes. In the
N-North Atlantic, North Sea and Norwegian Sea, the contribution of SSL is up to 30%. Significant
correlations are observed in N-North Atlantic (SSL and TIDE), and North Sea (SSL, TIDE, and MMSL)
(Table 1) where tidal contribution diminishes, increasing MMSL and SSL.
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Figure 8. Average monthly fraction of each components’ variance in the ETWL along the coastline
(closest 1° x 1° tile) of each oceanographic region (a—j). The monthly relative frequency of storm
impacts at each area (blue polygon) is also shown.

Table 1. Rank correlation coefficient between the average monthly fraction of components’ variance of
SSL, TIDE and MMSL along the coastline (closest 1° x 1° tile) of each oceanographic region and the
relative monthly frequency of the storm events database. p-Value is given in brackets.

S-North N-North

Region Black Sea Central Med. West Med. Atlantic Bay of Biscay Atlantic NorthSea BalticSea
SSL  —0.06 (0.86) 0.03 (0.94) 0.18 (0.57) 0.52 (0.08) 0.37 (0.24) 097(3%x107)  090(6x1075)  -0.79(2x107)

TIDE 0.14 (0.66) -0.73(7x107%)  -0.78(3x107%) —0.16 (0.63) —0.32(0.32) —0.94 (4x107°%)  -0.88(2x107%) —0.54 (0.07)

MMSL  0.05 (0.87) 0.73 (7 x 10-3) 0.29 (0.36) —0.21 (0.52) 0.12 (0.70) 0.45 (0.14) 0.67 (0.02) 0.77 (4 x 1073)

Figure 9 provides the temporal variability of the monthly AMMSL averaged along the coastline
(closest 1° x 1° tile) over each oceanographic region; the relative monthly frequency of CFEEs registered
at each region is also shown. Table 2 gives the correlation coefficient between them. According to the
results, no significant correlations were found between the AMMSL in coastal areas and CFEEs.
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Figure 9. AMMSL along the coastline (closest 1° X 1° tile) averaged by oceanographic regions and
monthly frequency of storm impact registered on each region (larger dot size indicate higher frequency).

Table 2. Rank correlation coefficient between the annual cycle ofregionally averaged AMMSL and
relative monthly frequency of storm event in the database.

Region Black East Central West  S-North Bayof N-North North Baltic  Norwegian

Sea Med. Med. Med. Atlantic Biscay Atlantic Sea Sea Sea
Corr. coefficient -0.1 - 0.28 0.32 -0.22 -0.14 0.30 0.02 0.10 -
p-value 0.75 - 0.38 0.31 0.49 0.67 0.35 0.95 0.76 -

3.3. Correlation of Monthly MSL Anomalies with Storm Impact Database

The potential impact on coastal flooding extreme events derived from changes in the MMSL with
respect to the AMMSL, that is the monthly MSL anomalies, was analysed. Figure 10 shows the annual
variation of MSL anomalies (ordinate axis) along the European coastline (abscissa axis). Each column
represents the data corresponding to the closest 1° X 1° tile to the coast and its location along the
coastline is indicated by the ISO country code to identify the coastal region. Each row represents a
monthly MSL anomaly for the analysed period. The CFEEs registered in the database are presented
as black dots according to the temporal and spatial location of the event. There is a clear correlation
between the dates of the CFEEs and positive anomalies of the MSL with the exception of West Med.
(Figure 10d) and N-North Atlantic (Figure 10g). This is confirmed by the fact that the frequency
curve of MSL anomalies spatially averaged (black curves in Figure 10) and anomalies during CFEEs
registered (red curves) are different in the upper tail, indicating a larger number of events during the
largest positive anomalies. In the Black Sea (Figure 10a) there were six events with four/two of them
during positive/negative MSL anomalies. Similarly, in the Central Med. (Figure 10c) the events that
occurred during positive anomalies (51) are almost twice those registered during negative anomalies
(32). MSL anomalies are especially large (>0.12 m) in the Adriatic (Central Med.) where there is a
most exhaustive record of CFEEs. S-North Atlantic (Figure 10e) and Bay of Biscay (Figure 10e) are
under-represented in the storm database, but the storms coincide in time with positive anomalies.
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Figure 10. Monthly MSL anomalies along the European coastline (warm/cold colours indicate
positive/negative MSL values) for each oceanographic region (a—j). The ratio of positive/negative
anomalies for the CFEEs is also indicated. The ordinate axis represents the time and the abscissa axis
represents the spatial variation along the coast indicated by ISO country code labels. Black dots indicate
the date and position of extreme events registered in the database. The red line represents the relative
frequency distribution of the monthly anomalies corresponding to the extreme events registered in the
database and black line represents the spatially average of monthly anomalies distribution in the region.

In N-North Atlantic (Figure 10g) larger anomalies than +0.1 m are registered in the English
Channel and Irish Sea, but the same number of CFEEs are observed under positive/negative anomalies
(40). In the North Sea (Figure 10h) the CFEEs are registered on the west and southwestern coast (GBR
and BEL) with lower MSL anomalies than in the German Bight (>0.15 m). The Baltic Sea (Figure 10i)
shows strong anomalies (most of them >0.15 m) in the Gulfs of Bothnia and Finland, giving the clearest
correlation of positive anomalies and CFEEs recorded in the database.

Table 3 summarises the role of MSL anomalies in each oceanographic region through the results of
a t-test (alpha = 0.05). The mean value of MSL anomalies is >0 in Central Med., S-North Atlantic, North
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Sea and Baltic Sea, indicating a positive correlation (>95% of statistical significance). This positive
correlation extends to the Bay of Biscay and N-North Atlantic with >90% of statistical significance.

Table 3. Results of the t-test (p-value in bracket) to check the hypothesis that the MSL anomaly data
comes from a population with a mean greater than zero at the 0.05% significance level. A f-test =1
indicates that the hypothesis is accepted.

. Black Central West S-North Bay of N-North .
Region Sea Med. Med. Atlantic Biscay Atlantic North Sea Baltic Sea
t-test (0.05) 0(028) 1(3Bx107%) 0(0.8) 1(3x1073)  0(0.08) 0(007) 1(4x1072) 1(3x107)
Mean MSL anomaly 0.03 0.02 -0.01 0.04 0.04 0.02 0.03 0.07

4. Discussion

Recently, some studies based on tide gauges have analysed the ETWL component during extreme
flooding events at the regional-local scale and its relative impact on coastal areas [53,54]. Our study,
based on 24 years of satellite altimetry observations, focused on the contribution of the annual variation
of MMSL to the ETWL, over the oceanographic regions around Europe. In some of these regions the
annual cycle of the MMSL is markedly important as a driving contributor to the ETWLs.

4.1. Time=Space Variations of Seasonal MSL and Interannual Variability

In general, the AMMSL is in agreement with previous studies based on tide gauges and satellite
altimeter data. The range of variation of the satellite-derived AMMSL is similar to the range observed
by [55] in the Black Sea using tide gauge data, by [56] in the Mediterranean Sea (altimeter observations),
and by [35] in the Gulf of Cadiz (tide gauges and altimeter data). We observe slightly larger values
with respect to the observations made by [57] in the South and West coast of the Iberian peninsula
(derived from tide gauges). The range and spatial pattern of amplification in the continental shelf
in the Bay of Biscay are in line with the values reported by [58]. Further north, our results show the
spatial pattern of the amplitude of the AMMSL annual cycle, increasing towards the northeastern coast
in the German Bight in line with [59] (from altimeter observations).

The amplitude intensification observed from the Danish Straits to the head of the Gulfs of Finland
and Bothnia was also noted by [60] using tidal gauge observations. This was also reported by [61] on
the Polish coast. Finally, we found a good level of agreement between our results and those obtained
by [62] in the Norwegian Sea.

The regional variations originate from different mechanisms. In the Black Sea, the AMMSL
seasonal variations are dominated by freshwater balance [63]. In the Mediterranean Sea, the seasonal
AMMSL is dominated by steric contribution being not negligible the mass induced by sea-level
variation ([64]). The thermosteric effect is also dominant in the S-North Atlantic and South and
West coast of the Iberian peninsula [35], Bay of Biscay and the N-North Atlantic. In the North Sea,
the seasonal changes are mainly driven by wind, and the contribution of precipitation is not negligible
during the autumn season [46]. The local steric contribution is smaller due to the shallow waters;
however, long-term AMMSL variability could reflect the steric changes remotely forced [65]. In the
Baltic Sea, the seasonal variation of AMMSL is primarily controlled by the direction of the prevailing
wind and its role in the water exchange with the North Sea [60,66]. Moreover, seasonal variability is
also influenced by river runoff and temperature [67,68].

The interannual variability of MMSL is stronger in the areas with larger amplitudes in the seasonal
cycle (German Bight and Baltic Sea) (Figure 3). The variability in the North Sea is larger from December
to March (Figure 3) as a result of the stronger atmospheric and meteorological forcing, as noted
previously by [46]. The spatial pattern of the intensity of the MSL anomalies in coastal areas of
N-North Atlantic and North Sea are in agreement with the results presented in [69]. In the Baltic Sea,
the large interannual variation expands to most of the months (excluding July and August). This could
be related to the domination of semi-annual variability during some periods [39]. In spite of the

92



Remote Sens. 2020, 12, 3419

meteorological forcing, the sea ice cover (maximum in February and March) could contribute to the
increase in interannual variability [66], along with river run-off, with maximum average and deviation
values occurring from April to May [39].

4.2. Correlation of Monthly MSL Anomalies with Storm Impact Database

The assessment of the seasonal MMSL with respect to the monthly maximum SLApac indicates a
relevant contribution of MSL during winter and autumn, especially in semi-enclosed basins (Black
Sea, Mediterranean Sea and Baltic Sea). Moreover, in those areas, the seasonal variation of AMMSL
exceeds the neap-spring tidal range. Beyond these microtidal areas, the seasonal variation of AMMSL
is also significant in the south and eastern coast of the North Sea. Those areas are characterised by
the large contribution of the MMSL to the ETWLs in winter and particularly in autumn, during the
seasonal peaks of MMSL. Indeed, the large correlation between the annual cycle of MMSL and the
CFEEs is observed in Central Med., Baltic region and North Sea. The smaller correlation observed in
the West Med. is linked to the earlier drops of MMSL after September. It is also relevant that the largest
correlations between the CFEEs registered in the database and seasonally MMSL variations occur in
areas with the largest interannual variability (Figures 7 and 10), with the exception of the Central Med.
In fact, the correlation of MSL anomalies and CFEEs extend to all regions with the exception of Black
Sea and West Med. (Figure 10, Table 3), revealing the potential impact on flood risk derived from
changes in the sea-level annual cycle as it was pointed out in previous works (e.g., [45,70]).

Some examples of the contribution of each component during extreme events recorded in the
database and captured in the altimetry dataset are plotted in Figure 11. In the analysis, we used the
closest satellite track in time and space to the location of the CFEEs. The stronger contribution of
the MMSL to the ETWLs (similar in magnitude to the SSL) is observed in the Baltic Sea (Figure 11e),
during the storm peak on 07-01-2005. This was also observed during storm Xaver in the North Sea and
Halloween storm in the Adriatic Sea (Figure 11a,d respectively) but with a weaker MMSL contribution
to the TWL peak. Similarly to the previous areas, the upper tail of the MMSL histogram indicates a
higher probability of large contribution, in opposition to the histogram of MMSL in West Med and
S-North Atlantic. In fact, the MMSL decreases up to 0.07 m in the West Med (Figure 11c,d) during the
storm occurred on 16 December 1997 and drops in the S-North Atlantic event (Figure 11c) where the
histogram reveals tidal component as the main contributor to the ETWLs.
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Figure 11. Extreme events registered in the storm impact database and captured by altimetry dataset.
Curves represent the histogram of each sea level component (TIDE, SSL and MMSL) in the area and
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vertical lines mark the magnitude of each component at the peak of the extreme event.
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4.3. Limitations and Future Research

According to the results, there is an important contribution of MMSL to the ETWLs.
The contribution of MMSL to the ETWLs were calculated and correlated with the storm event
impact database in terms of the annual cycle and MSL anomalies. The relative contribution of the
MMSL to the extremes is strongly dependent on the concomitance between the storm peak in sea level
and the availability of satellite altimeter data. During storms driven by atmospheric perturbations
characterised by shorter temporal-spatial scales, the probability of altimeter data availability is reduced.
Thus, the extreme events analysed in the Adriatic Sea West Med. (Figure 11a), and Baltic Sea (Figure 11e)
underestimated the peak of ETWLs (see Table 4) because the satellite pass was not at the right time.
This might be also observed in meso and macrotidal areas (i.e., North Sea) (Table 4) where ETWLs
are controlled by tide and surge phase lag. The above-mentioned limitations could bias the final
contribution of each component and overestimate the MMSL contribution which is well captured in
the altimetry observation.

In addition to this, the availability of accurate altimetry data near the coast might be affected by
land/calm water contamination, degraded range and geophysical corrections, producing inaccurate
estimations of the sea level in coastal areas [71]. The screening rejects the closest data to the shore,
but even though all the components analysed (SSL, TIDE and MMSL), are prone to suffer modifications
by several processes (i.e., tide—surge interaction, river discharge, resonance) in the nearshore area
changing the final absolute and relative contribution of each component to the TWLs in the coastal area.
This limitation could be partially overcome using dedicated coastal altimetry datasets (e.g., X-TRACK,
ALES) produced using specific processing techniques to get more accurate estimates of sea level in
coastal areas [72,73].

Additionally, as a result of the altimetry limitation in the coastal zone, the wave contribution to
the ETWLs is neglected in this study, even though it could be an important component (e.g., [74-76]).
This fact could explain part of the differences noted in Table 4, and leads to the overestimation of the
MMSL to the ETWLs.

Table 4. Comparison of total water levels (TWLs) peaks captured by altimetry and measured from tide
gauges. The data source providing the tide gauge information is indicated in brackets.

Central West S-North

Med. [77]) Med. [78] Atlantic [78] North Sea ([33) Baltic Sea ([79)
TWLp. 072m(L16m)  028m(046m) 174m (L6m) 1.9 m (~4.67 m) 0.8m (222 m)
SSLp. 0.55 m (0.81 m) 0.13m 0.12m 2.08 m (2.67 m) 04m
TIDEp 0.08 m (0.23 m) 0.09m 161 m ~038m (~1.5m) 0.01m
MMSLp 0.1m (~0.12 m) 0.07 m 0.0l m 021 m (0.50 m) 039
01.11.2012 00:00 04.01.2010 06.12.2013 04:47 07.01.2019 13:33
DATEp (31-1020122330)  1012199710:52 05:07 (06.12.2013 02:00) (09.01.2009 06:00)

The knowledge of past and present contributions of each individual component to the ETWLs
could contribute by reducing the uncertainty of ETWLs forecast, improving the preparedness and
reducing damage in the case of coastal flooding. Indeed, very often, large-scale models—especially
those with a high resolution on the coast devoted to the ETWL prognosis (e.g., [80,81])—use a 2D
barotropic approach neglecting steric effect and mass component sea level variation. The integration
of MMSL anomalies from coastal altimetry data assimilation or prognosis through linear regression
models (i.e., [69]) could improve the model performance. In light of the achieved results, this could be
especially relevant in sensitive areas such as the Baltic Sea, North Sea, and Central Med.

Changes in the magnitude of ETWLs according to climate change scenarios were assessed
considering stationary sea level rise (i.e., [82]) omitting the seasonal cycle or monthly MSL anomalies.
However, changes in phase and amplitude of the annual cycle or monthly MSL anomalies driven by
changes in atmospheric and/or hydrological patterns could modify the extreme water-level projections.
Therefore, including seasonality variations of MMSL would contribute by reducing the uncertainty in
ETWLs projections improving the rationality of the coastal adaptation measures.
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5. Summary and Conclusions

This paper investigates the role of the main sea level components (TIDE, SSL and MMSL) in
regard to the ETWL observations along the European seas. Based on 24 years of satellite altimetry,
this study evaluates their relative contribution, as well as the correlation of the annual variation of
MMSL and MSL anomalies with the extreme events registered in a coastal flooding database along the
European coastline.

The largest seasonal range of the AMMSL is observed in the Baltic Sea (+0.11 m), West Med.
([-0.07, 0.09 m]), and the North Sea ([—0.07, 0.08 m]). The smaller MMSL variations are in the Atlantic
and Bay of Biscay ([-0.05, 0.06m]). The interannual variability of the MMSL is stronger in the Baltic
Sea, Black Sea, North Sea, and Norwegian Sea. The contribution of each component to the ETWLs is
subject to important seasonal variations. In microtidal areas (Black Sea, Baltic and Mediterranean Sea)
the MMSL contribution is larger than the TIDE most of the time, and its contribution can be at the
same order of magnitude of the SSL. In meso and macrotidal areas, the MMSL contribution is <20%,
but slightly larger (>30%) in the North Sea.

The comparative analysis of the altimetry data and the storm impact database indicates a
non-significant correlation between the AMMSL and the monthly frequency of the CFEEs, since the
maximum values of the average annual cycle mostly run on September-October along the European
coastline when the low-pressure systems driving SSL are less frequent and intense. However,
the average monthly fraction of component variance of MMSL presents significant values of positive
correlation with the relative frequency of CFEEs in the Central Med (r = 0.59), North Sea (r = 0.60)
and Baltic Sea (r = 0.75). The positive MSL anomalies are correlated with the CFEEs recorded in the
database at >90% of the statistical significance in the aforementioned areas, as well as in the Bay of
Biscay and N-North Atlantic.

The present contribution demonstrated that there is not a link between the AMMSL and CFEEs
along the European coastline. This is caused by the antiphase of the SSL and the AMMSL in most
of the oceanographic regions. However, the relationship of MSL anomalies and flooding extreme
events indicates a significant and positive correlation between them along the coastline of the Central
Med., S-North Atlantic, North Sea and Baltic Sea. In most of these regions, the positive correlation is
observed in most of the low-lying areas prone to be flooded. In general, these regions show the largest
interannual variability where MSL anomalies are mainly driven by atmospheric and meteorological
forcing (North Sea), prevailing wind and the water exchange with another catchment (Baltic Sea,
Adriatic Sea). Therefore, the role of MMSL should be considered either for the comprehensive analysis
of the past extreme event, or future projection of coastal flooding extreme event.

Satellite altimeter observations provide a valuable and consistent sea-level dataset to analyse the
contribution of TIDE, SSL and MMSL to the ETWLs. However, the accuracy of altimeter data close to
the coast might be limited. The wave contribution to the ETWLs and the use of accurate sea-level data
in the coastal fringe must be taken into consideration in future works. The understanding of every
single component of the ETWLs and its spatial and temporal patterns shall improve the preparedness
and coastal adaptation measures to reduce the impact of coastal flooding.
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Abstract: Measurements of ocean surface currents in coastal waters are crucial for improving our
understanding of tidal atlases, as well as for ecosystem and water pollution monitoring. This paper
proposes animproved method for estimating the baseline-to-platform speed ratio (BPSR) for improving
the current line-of-sight (LOS) velocity measurement accuracy in coastal waters with along-track
interferometric synthetic aperture radar (ATI-SAR) based on eigenvalue spectrum entropy (EVSE)
analysis. The estimation of BPSR utilizes the spaceborne along-track interferometry and considers
the effects of a satellite orbit and an inaccurate baseline responsible for azimuth ambiguity in coastal
waters. Unlike the existing methods, which often assume idealized rather than actual operating
environments, the proposed approach considers the accuracy of BPSR, which is its key advantage
applicable to many, even poorly designed, ATI-SAR systems. This is achieved through an alternate
algorithm for the suppression of azimuth ambiguity and BPSR estimation based on an improved
analysis of the eigenvalue spectrum entropy, which is an important parameter representing the
mixability of unambiguous and ambiguous signals. The improvements include the consideration
of a measurement of the heterogeneity of the scene, the corrections of coherence-inferred phase
fluctuation (CPF), and the interferogram-derived phase variability (IPV); the last two variables
are closely related to the determination of the EVSE threshold. Besides, the BPSR estimation also
represents an improvement that has not been achieved in previous work of EVSE analysis. When the
improved method is used on the simulated ocean-surface current LOS velocity data obtained from a
coastal area, the root-mean-square error is less than 0.05 m/s. The other strengths of the proposed
algorithm are adaptability, robustness, and a limited user input requirement. Most importantly,
the method can be adopted for practical applications.

Keywords: along-track interferometric synthetic aperture radar (ATI-SAR); current line-of-sight
(LOS) velocity; coastal waters; azimuth ambiguity; baseline-to-platform speed ratio estimation

1. Introduction

Ocean sea surface currents play a key role in air-sea interaction, biological production, and mixing
between the upper and lower water layers in coastal areas [1-4]. In addition, their measurement in
coastal areas provides important information to fishing and electricity generation industries [5,6].

In coastal waters, tidal currents are one of the most important factors of the sea surface
current. Generally, tidal currents are quite deterministic and can also be precisely inferred by
in situ measurements. In situ measurement devices, including the acoustic Doppler current profiler
(ADCP) and the current meter, however, have limited coverage and are expensive. On the other hand,
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the along-track interferometric synthetic aperture radar (ATI-SAR) does not have these limitations;
meanwhile, ATI performs well for measurements of the sea surface currents, including the tidal
currents [7]. Along-track interferometry (ATI) is a powerful tool for the measurement of ocean
currents [8-13]. Interferometry was originally proposed in [14], and is based on processing two
interferometric SAR images of the same scene obtained with two antennas within a short time [15,16].
Most of the existing studies on the retrieval of surface currents by interferometric SAR [17-19] assume
systems with an accurate baseline and constant platform velocity, i.e., a completely accurate baseline-
to-platform speed ratio (BPSR). However, in real-life applications, the baseline is often inaccurate;
for example, in the commonly used spaceborne SAR data acquisition mode, and the entire antenna is
active in pulse transmission but divided into several parts to receive returns. The effective phase center
of each receiving channel is assumed to be located in the middle between the physical transmission and
the respective receiving phase center, but this method is not accurate [20]. In addition, the accuracy of
BPSR is not considered.

While the airborne ATI [21-24] is usually limited by the achievable coverage and complex logistical
requirements, the spaceborne ATI [25-27] can illuminate any point of interest during a certain overpass,
and obtain wide-swath and high-resolution real-time current observations [28]. Despite the relatively
high degree of azimuth ambiguity, spaceborne InNSAR systems perform better in ocean current inversion
in open sea. Nevertheless, in coastal waters, azimuth ambiguities may have a negative influence on
the accuracy of measurements of the velocity of sea surface currents as spaceborne ATI systems with
wide bandwidth are particularly prone to azimuth ambiguity, which can produce a “ghost signature”
in images. Azimuth ambiguity is mainly caused by under-sampling of a signal, i.e., the signal received
by the radar originates not only from the area of interest but also includes ghost signatures from the
surrounding areas. In locations, such as coastal waters, the ghost signals of scatterers with strong
backscattered powers on land will be shifted in azimuth and superimposed on a relatively weak signal
from the water, as shown in Figure 1. In Figure 1, the InNSAR signals are modeled within the Doppler
baseband—PRF/2 < fg < PRF/2 (fy4 is the Doppler frequency, PRF is the pulse repetition frequency).
In addition, it has a negative impact on the estimation of the baseline-to-platform speed ratio (BPSR),
and consequently, on the accuracy of BPSR-based ocean currents measurements [29]. Also, azimuth
ambiguities have a strong influence on the accuracy of measured current line-of-sight (LOS) velocities.
In coastal waters [30], it is, therefore, necessary to eliminate azimuth ambiguity before estimating
BPSR, which necessitates the development of an improved algorithm that not only suppresses azimuth
ambiguity but estimates BPSR as well. The two tasks can conveniently be handled using the Doppler
interval (for details, see [31]). The Doppler interval specifically refers to the interval without an
azimuth-ambiguity Doppler spectrum, which is the Doppler frequency interval with a starting point
and ending point in the mathematical sense. Since the Doppler frequency is linearly dependent on
the baseline value, according to the definition of the BPSR, the Doppler frequency and BPSR are also
linearly dependent, so the former can be used to estimate the BPSR.

Romeiser et al. [7] proposed suppressing azimuth ambiguity through a pixel-value exclusion
operation, which eliminates pixels that have an intensity of less than 10 dB at a certain distance.
However, this method cannot work reliably in areas with contrast between the land and water.
An alternative approach is spectrum filtering and extrapolation [32], but it reduces the azimuthal
resolution. The method of analyzing the eigenvalue spectrum entropy (EVSE) proposed by Liu [31]
can automatically estimate a usable range of the Doppler domain and needs only limited user inputs,
but assumes an accurate baseline and constant velocity of the platform. However, in practical
applications, none of these assumptions is true, which motivated us to improve the method.
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Figure 1. Illustration of the Doppler amplitude patterns of the two azimuth ambiguities and the
unambiguous signal part. Modified from Liu [31].

This paper proposes an improved algorithm for both azimuth ambiguity suppression and BPSR
estimation, considering both the heterogeneity of the scene and BPSR estimation. Although the
azimuth ambiguity of spaceborne SAR is relatively high, it has little influence on the inversion of
azimuth ambiguity in open ocean regions with uniform scattering. However, azimuth-ambiguity has a
great influence on the performance of spaceborne InNSAR current measurement in the non-uniform
offshore area. There are two main reasons for this. First, the backscattering coefficient of land radar
is usually much larger than that of sea radar. Therefore, the azimuth ambiguity component from
the land will be superimposed on the sea surface, resulting in a serious decline in the accuracy
of InSAR current measurements. Second, the velocity of land ghosting is different from that of
sea-surface ghosting, which will also change the measured value of the sea surface current field.
If scene heterogeneity is not taken into account, EVSE analysis will fail when applied to practical
situations. Furthermore, the improved method can be adopted for practical applications with only
limited user inputs. The remainder of this paper is organized as follows. Section 2 describes the
proposed method, including an overview of Liu’s method [31], an alternative algorithm, and our
innovation. Section 3 presents the results of applying the improved method to simulated and measured
data. Finally, a discussion is presented in Section 4, and in Section 5, conclusions are drawn.

2. Methodology

In this section, to improve the accuracy of current LOS velocity estimation, we develop an alternate
algorithm for ambiguity suppression and BPSR estimation based on the method of Liu [31]. The surface
velocity corresponds more precisely to a mean motion of scattering elements, and the element velocities
are weighted by their normalized radar cross section (NRCS) [33]. Considering that the strong NRCS
caused by convergence and divergence of the current can lead to large errors [34], we assumed that the
ocean surface was smooth so that we could focus more on the suppression of azimuth ambiguity and
BPSR estimation.

An overview of the process of ocean current velocity estimation is shown in the flowchart in
Figure 2. The process starts with two original SAR images and ends with the estimation of current
velocity. As shown in Figure 2, the flowchart mainly includes three parts: SAR image preprocessing
(green rectangle in Figure 2), alternating iteration algorithm (blue rectangle in Figure 2), and velocity
estimation (orange rectangle in Figure 2). SAR image preprocessing includes SAR image focusing,
the interested area extraction of the area of interest, and conversions from the time domain to the
frequency domain via the 2D Fourier transform. An alternating iteration algorithm is the focus of
our research, and this algorithm is mainly an alternating iterative algorithm that performs azimuth
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ambiguity suppression and BPSR estimation. Finally, we obtain the surface current velocity, which is
the LOS velocity.
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Figure 2. Flowchart of the proposed approach.

Selected key procedures underlying the alternate algorithm for ambiguity suppression and BPSR
estimation are introduced in this section. The central part of the process includes alternate iterations of
ambiguity suppression and BPSR estimation, which is detailed in Figure 3.
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Figure 3. Flowchart of the alternate iterative algorithm.

2.1. Overview of EVSE Analysis

The method proposed in [31] aims to measure ocean surface currents in coastal waters when
the problem of azimuth ambiguity is severe. The velocity estimation is conducted for the sea-surface
current in coastal waters. The key component of the method is the analysis of EVSE, which is defined
as the entropy of the eigenvalue spectrum of the ATI covariance matrix computed in the Doppler
domain. It quantifies the degree of mixing among the Doppler components [31], and is a significant
parameter for determining the Doppler domain representation of an unambiguous signal.

The first step of the EVES analysis method is to model the SAR signal. Thus, a dual-channel ATI-
SAR signal in the 2-D frequency (the range frequency and the Doppler frequency) domain can be

modeled as follows [31]:

B
amb
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amb
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where S; and S; are the signals received from the two channels of the ATI-SAR system, and S9,,, is
an unambiguous signal from the fore channel. The parameter PRF represents the pulse repetition
frequency. SaAmh and S”me are the ainbiggous signﬂavls from the land and ocean areas, respectively.
The tilde-circumflexed signals in SJ,,, S;\mb and Sfmb are not the same as their uncircumflexed
counterparts in Equation (1), because the random motion of the ocean surface affects the received
signals. Sy and Sy denote the thermal noise signals of the two channels. B, is the effective baseline
and V), is the velocity of the radar platform. f; represents the Doppler frequency and A denotes the
radar wavelength.v,v, and v¥ are the mean line of sight (LOS) surface velocities of the area of interest,
the zone I, and the zone IV, respectively, as shown in Figure 1.
From Equations (1) and (2), the covariance matrix R, can be calculated as follows [31]:

R:E{[ ; ][ s S ]}

1
— (po A B P
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®)

where E is the expectation operator, (-)* denotes the complex conjugate operator, Py, is the noise power,
and Iy is a two-by-two identity matrix. Pﬁm, meh’ and meb are the powers of the unambiguous
signals, the ambiguity of the signal from the land, and the ambiguity of the signal from the ocean,
respectively, which can be computed as explained in [31]. Having evaluated the two eigenvalues of the

covariance matrix,R, denoted as A1 and A, the EVSE, H, of the ATI covariance matrix can be defined as

H = —(p11og, p1 + p2log, p2) )

where p; and p; are as follows:
A A
Pr= M +/\2,p2 N A+ A
The EVSE quantifies the degree of signal mixing, and is used as the criterion of Doppler domain
characterization: the larger the value of EVSE, the higher is the degree of signal component mixing [31].
In Liu’s azimuth ambiguity suppression algorithm [31], the EVSE analysis is an important step.
As shown in Figure 1, zone II denotes the unambiguous signal. As seen in Figure 4, the fluctuation
of the interferometric phase in Doppler frequency is small. Thus, to decide how many Doppler bins
should be discarded, a critical EVSE value for the Doppler bins dominated by the unambiguous signal
is required. From Liu [31], we can conclude that the determination of zone II depends on three parts:
an accurate BPSR, an EVSE curve, and a critical value of EVSE.

®)
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Figure 4. Interferometric phase trend after Doppler bin removal based on the two maximum points of
the eigenvalue spectrum entropy (EVSE) curve from [31].

As shown in Figure 4, the Doppler bins falling outside the two maximum points of the EVSE
curve can be determined by investigating the EVSE curve to find the two maximum points, and the
Doppler bins containing an ambiguous signal are excluded. According to Liu [31], the critical value of
EVSE is determined such that this critical value identifies a maximum Doppler sub-band over which
the following two parameters are equal.

The first parameter, denoted ¢, is the coherence-inferred phase fluctuation (CPF), defined
as the mean statistical fluctuation of interferometric phases over the Doppler sub-band; and the
other parameter, denoted ¢,,,,,, is the interferogram-derived phase variability (IPV), defined as the
root-mean-square (RMS) variation of interferogram-derived phase over a certain Doppler sub-band.
The expressions for the two parameters are as follows:

(6)

2
L L
1 ~ 1 ~
Pipy = ZZ[‘P(J(; )) - EZ ¢(f,;p>)l (7)

=1

where K is the number of averaged range frequency bins, p,, is the magnitude of the mean coherence
in the 2-D frequency domain, 5( f;l)) is the range-frequency-averaged interferogram phase for the / th
Doppler bin ( fd(l)) of the Doppler sub-band, and L is the size of the Doppler sub- band. Note that K is
based on the assumption that the samples are statistically completely independent and uniform in the
range frequency images.

However, when BPSR is not accurate, Liu’s method [31] is in effective, which limits the
practical applications of the algorithm. In addition, the assumption of K is not correct in practice.
The improvements aimed at these two problems in this paper, which will be discussed in the next section,
are intended to address this shortcoming to make the method better suited for real-life applications.

2.2. Alternate Iteration Algorithm for Azimuth Ambiguity Suppression and BPSR Estimation

The proposed alternate algorithm that can suppress azimuth ambiguity and estimate BPSR,
is described below.
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The interferometric phase,p, and the effective baseline, B,, are related as follows [35]:
¢ =-——"Be (8)

Based on the above linear relation, the value of the baseline can be obtained from the slope of the
phase—frequency curve. Then, BPSR can be shown as
B,
BPSR = V_p )

As expected, the knowledge of BPSR’s accuracy is not sufficient. From Equation (8), we observe
that the value of the baseline is related to the Doppler frequency-interference phase. Furthermore,
as mentioned in Section 2.1, azimuth ambiguity affects the calculation of the interference phase, and an
inaccurate BPSR will result in the failure of the ambiguity suppression algorithm. Therefore, the BPSR
and azimuth ambiguity influence each other.

The alternate algorithm for azimuth ambiguity suppression and BPSR estimation are shown in
Figure 2, and the detailed flowchart is shown in Figure 3. As the flowchart shows, two adaptive
algorithms are executed alternately; one is used to estimate the critical value of EVSE during the process
of azimuth ambiguity suppression, and the other is BPSR estimation. There are several key points
involved in determining the threshold value of EVSE: first, set ¢ as a variable (0 < ¢ < 1) with an initial
value of 1in order to determine the characteristic spectral entropy that is less than all of its Doppler
units and then combine those Doppler units into a Doppler sub-band; second, calculate CPF (¢ )
and IPV (¢,,), when IPV () is larger than CPF (¢ ), reduce the value of ¢ by a certain step size
€. Until the condition ¢, (¢)<¢-pp is established, then the value of ¢ is determined as the threshold
of EVSE. The Doppler sub-band without ambiguous signal is obtained by discarding all the Doppler
units whose EVSE is greater than the EVSE threshold. After removing ambiguity by the EVSE analysis,
we obtain the Doppler sub-band that contains the unambiguous signal, from which the baseline value
can be estimated using the linear relation between the interferometric phase and the baseline. Next,
the baseline value can be used to correct the phase of one of the SAR images, after which the BPSR
can be estimated. The process is repeated until the BPSR root-mean-square error is reduced below a
predefined small number. It can be seen from Figure 3 that this is also an adaptive algorithm.

2.3. Correction of IPV and CPF Based on EVSE Analysis

In the previous sections, an EVSE analysis and an alternate iterative algorithm for the azimuth
ambiguity suppression and baseline estimation were discussed. In the current section, we focus on
a correction introduced into the method proposed in this paper for non-ideal situations where K in
Equation (7) deviates from the original definition in [31].

The correction we added accounts for scene heterogeneity in an SAR image. The heterogeneity of
a scene is used to calculate the number of the samples in the range frequency. The so-called effective
sample number refers to the number of units of distribution of research objects in an SAR image. In our
context, ships and drilling platforms are invalid samples. The sharpness of an SAR image, shp, is used
to represent the non-uniformity of the scene, and is defined as follows:

()
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(10)

where I; is the amplitude of the i pixel in a range compressed image I, < - > denotes the spatial
average, N is the number of all samples, and L is the number of effective samples.
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Therefore, we take shp into account is the interferometric phase induced by across baseline. In the
proposed algorithm, we take the effect of sharpness of an SAR image into consideration by modifying
the K in the formula of CPF as follows:

11— p%

oy = ———— (11)
Perr 2K - shp - po
where pj is the magnitude of the mean coherence, calculated as follows:
£ (5153)
po = — 12)
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where Sy; and S, are the complex values of a corresponding point in Sy and Sy, respectively, after S,
has been resampled according to the estimated shift, and L is the number of pixels in the sampling
area. Note that the numerator is the interferogram while the denominator is the product of the image
amplitudes, not powers. The formula for IPV is altered to
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where g is a constant used to relax the condition in the computation of IPV. Similarly, the critical value
of EVSE is determined such that this critical value identifies a maximum Doppler sub-band over which
the above two parameters are equal. Because the BPSR is not accurate in practice, the harsh condition
in [31] is also needed to be revised; after several computations, the BPSR tends to be accurate, and gq
will be fixed at 1.

The interferometric phase is computed as

N
@i = tan™ Z S1i-Sy;) 14)

where @; is the i" interferometric phase of the corresponding two SAR images. Note that because
a difference of 27t may be present between the computed and the true interferometric phase, phase
unwrapping may be necessary. If there is a 21t discontinuity in the phase curve, it will cause a large
error in the slope of the curve fitted in the Doppler frequency domain and the true interference phase,
which will also affect the estimation of BPSR. To alleviate the problem, cp; , can be corrected as follows:

©;, = @it2n (15)

After the above series of corrections, or improvements, the algorithm becomes better suited to
practical applications.

In the calculation of surface current LOS velocity, the ocean surface is assumed to be composed of
scattering objects that constitute a uniform random surface. The ocean surface current LOS velocity
can be computed by

5 (sl, S5:)
=1

47- BPSR - sin(0) A (16)
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where 0 denotes the incidence angle and N denotes the total number of sample points in the direction
of azimuth and range. Because the measured horizontal LOS Doppler velocities are not true current
velocities, these measured Doppler velocities for the theoretical contributions of ocean wave motions
should be corrected using a numerical model [17].

Liu’s method [31] assumes that the value of the effective baseline appearing in Equation (2) is
accurate, even though this is often not the case for practical ATI systems. On this basis, we make
improvements. Because the algorithm is adaptive, the user only needs to input the SAR data and
estimate the platform speed to obtain the BPSR to facilitate the subsequent estimation of the ocean
current velocity. In addition, the algorithm is robust and can be applied not only to coastal areas
but also land areas, because it estimates the degree of scene heterogeneity. In the following section,
the validation data and application results are discussed.

3. Results

To assess the feasibility of the improved method, we applied two different sets of data, simulated
coastal area data and measured land data. Because of lack of measured coastal data, we used coastal
simulation data, which proved to be reliable in [36]. Note that the measured coastal data exist but were
not available for this work. Although we do not have the real data from coastal areas, the real data in
land area that we have also validates the alternate algorithm. Besides, the real data is also important
for validating the scene. The two sets of data represent airborne and spaceborne data, indicating that
the proposed algorithm is applicable to both spaceborne and airborne systems. In addition, it also
shows that the algorithm is applicable to different scenes such as coastal and land scenes. Both sets of
different data are introduced in this section, and the results of azimuth ambiguity suppression and the
BPSR estimation processed by the improved algorithm are also shown.

3.1. Application to Simulated Data

3.1.1. Simulated Data

The simulated raw SAR data of coastal scenes are generated by an inverse omega-k algorithm,
whose details can be found in [36] and are not reported here to save space. In the numerical simulation,
modulation transfer functions (MTF), including tilt modulation, range modulation, and hydrodynamic
modulation, were considered [17]. The simulation parameters were set as in [31], and the key values
are listed in Table 1. The range of PRF is about 1000-3000 Hz, and the setting of 1725 Hz is relatively
small in this range. However, the selection of PRF is determined by several factors. First, the PRF
should satisfy the Nyquist sampling law; second, an excessively large PRF can reduce the unambiguous
width and bring range ambiguity; third, PRF selection needs to avoid the echo of sub-satellite point,
because this will cause interference in the sampled signal; and lastly, a large PRF comes at the large
duty-ratio, which will lead to a large average power and large energy cost. The parameter SNR is the
signal-to-noise ratio in ocean surface part and the parameter AASR is the azimuth-ambiguity-to-signal
ratio in homogeneous scenes. Note that the effective baseline is 2.4 m and the velocity of the radar
platform is 7600 m/s, both of which are closely related to the estimation of BPSR.

Table 1. Key simulation parameters for raw SAR (synthetic aperture radar) data of coastal area.

Parameter Value

PREF (pulse repetition frequency) 1725 Hz

Polarization \4%

Radar carrier frequency 9.6 GHz
Effective baseline 24m

Radar platform velocity 7600 m/s
SNR (signal-to-noise ratio) 6.5dB
Mean water-to-land intensity ratio -12dB

AASR (azimuth-ambiguity-to-signal ratio) ~ —20 dB
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The simulation processed SAR image of the coastal area is shown in Figure 5. Figure 5a highlights
the azimuth ambiguity, and Figure 5b shows the interferogram phase image. As seen in Figure 5a,
the bright objects in the land area produce three ghost signatures in the ocean area. The ghost signatures
are also observed in Figure 5b, indicated by the yellow spots. The ghost images observed in both figures
demonstrate the necessity to suppress azimuth ambiguity before estimating BPSR by the method
introduced in Section 2. The results obtained after removing the ghost images and estimating BPSR
are presented in the next section. The interferogram amplitude image of the region marked by the
rectangle is shown in Figure 6. This sampling area contains more than 200 pixels.
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Figure 5. (a) Azimuth ambiguity of the SAR image in the coastal area (note the three bright objects in
the land area and their ghost signatures in the ocean area); (b) Interferogram phase image.
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Figure 6. Interferogram amplitude image sampled of the region marked by the rectangle.
3.1.2. Results after Processing of the Simulated Data

After processing the data using the alternate iterative algorithm, the Doppler interval in the
Doppler spectrum for estimating BPSR is shown in Figure 7, where the red line indicates the starting
point of the Doppler range and the blue line indicates the terminal point. As seen in Figure 7, the starting
point line is parallel to the terminal point line after four iterations, meaning that the interval tends
to be stable between -580 Hz and 460 Hz. The Doppler interval selected by the EVSE analysis is not
only used to suppress ambiguity but can also be adopted for estimating the baseline, improving its
accuracy, and consequently, the accuracy of the BPSR estimation. From Equation (16), it can be seen
that the value of BPSR is inversely proportional to the LOS velocity of the current. That is, when the
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BPSR value decreases by 5 x 107° s, the line-of-sight velocity value will increase by about 0.01 m/s.
Therefore, it is necessary to consider the effect of the BPSR value on the LOS velocity. The convergence
of the BPSR estimate is shown in Figure 8, where the value of BPSR is found to stabilize at 3.15 x 10745
after only several iterations. The value of BPSR decreased by 0.17 s compared with the first calculation,
so the value of the LOS velocity increased by 0.034 m/s.
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Figure 7. Doppler interval endpoint curves after several iterations using the simulated data (the red
line indicates the terminal point of the Doppler range, and the blue line indicates the starting point of
the Doppler range).
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Figure 8. BPSR estimation using simulated data and the proposed algorithm.

To obtain a visual impression of the suppression of ghost signatures, we applied the proposed
algorithm to the entire ocean surface. The SAR image and the interferogram phase image after the
application of the alternate iterative algorithm for azimuth ambiguity suppression and BPSR estimation
are presented in Figures 9a and 9b, respectively. Comparing Figure 5a with Figure 9a, and Figure 5b
with Figure 9b, it can clearly be seen that the ghost signatures have been removed.
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Figure 9. (a) SAR image after azimuth ambiguity suppression; (b) interferogram phase image after
azimuth ambiguity suppression.

The Doppler sub-band after azimuth ambiguity suppression is shown as a two phase-frequency
curve in Figure 10. Figure 10a corresponds to the first iteration used for selecting the Doppler sub- band,
and Figure 10b shows the final iteration. In both figures, the blue line is the original interferometric
phase trend, and the red line is that after the azimuth ambiguity suppression. Comparison of Figures 10a
and 10b shows that the length of the Doppler sub-band decreases in the iterative process.
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Figure 10. (a) Phase-frequency curve comparison in the first iteration of ambiguity suppression using
simulated data (the blue line is original interferometric phase trend, and the red line is the phase trend
after azimuth ambiguity suppression); (b) the phase-frequency curve comparison at the final iteration
of ambiguity suppression using simulated data.

An estimation of the current velocity was carried out, and the results are shown in Table 2.
Assuming a 20% error in BPSR and the true horizontal LOS current velocity of 3.0 m/s, we obtain an
estimated mean LOS current velocity of 3.025 m/s, a mean bias of -0.025 m/s, and a standard deviation
(STD) of 0.025 m/s. On the other hand, using Liu’s method [31], the estimated mean LOS current
velocity is 2.543 m/s and the mean bias is 0.457 m/s. There is a larger error in the sea-surface current
velocity estimated by Liu’s method [31], as highlighted in Table 2. It can thus be concluded that when
the BPSR is not accurate, the proposed improved algorithm demonstrates its robustness for the current
velocity estimation. Additionally, the results in Table 2 show the improvement of the proposed method
compared with the method of Liu [31].
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Table 2. Current velocity estimates.

True Horizontal LOS Estimated Mean

Method (Line-of-Sight) LOS Current Mean Bias STD
Current Velocity Velocity
Liu’s method [31] 3.0m/s 2.543 m/s 0.457 m/s 0.457 m/s
Algorithm proposed in this paper 3.0m/s 3.025 m/s -0.025m/s  0.025m/s

The current LOS Doppler velocity maps before and after the application of the improved method
are shown in Figure 11a,b, respectively. Both of them are based on the simulation data of true current
velocity of 3 m/s and a 20% margin of error in the baseline to calculate the LOS velocity. Figure 11a
shows the result without any algorithm, and Figure 11b shows the result obtained by applying the
method proposed in this paper. As shown in Figure 11a, affected by azimuth ambiguity, the LOS
velocity of the current between the three “ghost” images and shore is about 4 m/s. In the ambiguous
areas, the LOS velocity value of the current is further off to -6 m/s. In the open sea (the lower part
of the image), the LOS velocity is 5 m/s. Notes that this is not due to ambiguity but is rather due to
a 20% error in the baseline. As explained in the introduction, the azimuth ambiguity affects coastal
waters but not the open sea. However, in Figure 11b, to obtain a visual impression of the suppression
of ghost signatures, the proposed algorithm was applied to the entire ocean surface, and the baseline
error and the azimuth ambiguity were both solved based on the application of the improved method,
while the LOS velocity is almost the true value (3 m/s). Thus, Figure 11 shows the efficiency of the
improved method.

Horizontal LOS Doppler Velocity Horizontal LOS Doppler Velocity
Bmis 8mis
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£ E .
g 30
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(a) (b)

Figure 11. Retrieved horizontal LOS (line-of-sight) current Doppler velocity field based on the
simulation data with a true current velocity of 3 m/s. (a) is without the algorithm application.
(b) processed with the improved algorithm.

3.2. Application to Measured Data

3.2.1. Measured Data

The measured data are acquired over a land area but can nevertheless be processed using the
proposed approach. The parameters of the data are listed in Table 3. Again, the two parameters to
focus on—effective baseline and radar platform speed—have values of 0.2 m and 110 m/s, respectively.
The measured data are unfocused in azimuth, as seen in Figure 12. Figure 12 is a range- compressed
azimuth-unfocused SAR image, image-formed for a land area, and the vertical axis is the azimuth
direction, while the horizontal axis is the ground range direction. Figure 12 is a piece of the land
SAR image.
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Table 3. Key parameters for the measured data.

Parameter Value
Wavelength 0.03 m
PRF 830 Hz
Radar carrier frequency 10 GHz
Effective baseline 0.2m
Radar platform velocity 110 m/s
SNR 18 dB
AASR -20dB

Azimuth samples

50 100 150 200 250 300 350 400 450 500
Ground range samples

Figure 12. Range-compressed azimuth-unfocused SAR image.
3.2.2. Results after Processing of Measured Data

The Doppler interval endpoint curves are presented in Figure 13, where the Doppler interval
converges quickly. From the estimated BPSR curve in Figure 14, the value of BPSR stabilizes at
1.565 x 1073 5, implying a baseline value of 0.1742 m and a relative error of 1.149 x 1073, respectively.

400 v | | ‘
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w
=
=
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=300 -
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iterations

Figure 13. Doppler interval endpoint curve after several iterations using measured data (the red line is
the terminal point and the blue line is the starting point of the Doppler range).
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Figure 14. BPSR estimate using measured data and the proposed algorithm.

The above analysis demonstrates that although the measured data are from a land area and
there is no azimuth ambiguity, BPSR can be estimated using the proposed approach. When the BPSR
estimation is added into the method of Liu [31], the algorithm of Liu did not work due to the lack of a
specific baseline value. This also shows the improvement of the proposed method.

The result for the case where scene heterogeneity is not considered is shown in Figure 15;
the Doppler interval after ambiguity suppression is so narrow that the alternate iterative algorithm
cannot be applied, leading to inaccurate BPSR estimation. Besides, unambiguous signals are discarded.
However, when scene heterogeneity is taken into account, a Doppler sub-band can be calculated,
as shown in Figure 16a, which shows the frequency chosen at the first iteration of the ambiguity
suppression procedure. The oscillating parts at both ends of the curve are suppressed in the middle of
the Doppler frequency range, as indicated by the red line. Figure 16b illustrates the Doppler sub-band
in the last computation of ambiguity suppression. By comparing Figures 16a and 16b, we can conclude
that the algorithm performs well, and that it is self-adaptive.

Original interferometric phase trend
3 Phase trend after i P i

- \

Interferometric Phase [rad)

-400 -300 -200 -100 0 100 200 300 400
Doppler [Hz]

Figure 15. Phase-frequency curve comparison without consideration of scene heterogeneity.
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Figure 16. Phase-frequency curve comparison in the first iteration of ambiguity suppression using
the measured data; (b) the phase-frequency curve comparison in the final iteration of ambiguity
suppression using the measure data.

4. Discussion

It should be noted that the SAR-ATI phase estimates are almost controlled by ocean surface
wave motions, which is called the Wind-wave-induced Artifact Surface Velocity (WASV). The wind
speed is 5.5 m/s and the current velocity is 0.7 m/s, the WASV reaches 1.6 m/s, which makes a big
contribution to the measured ocean surface motion. Mouche et al. [37] provided the first empirical
model of the WASV, and the magnitude of the WASV was quantified by Martin et al. [12]. The removal
of the contribution from wind-wave is achieved by simulating the SAR Doppler spectra from wind
fields proposed by Elyouncha et al. [38]. However, this article does not aim to provide a detailed
discussion of separating the current contribution from the wave-induced contribution to the Doppler
velocity. Rather, this article focuses on the SAR system and signals related to measurements of ocean
surface motion.

The results of azimuth ambiguity suppression and BPSR estimation using the improved alternate
iteration algorithm are shown in Section 3. The method of EVSE analysis proposed by Liu [31] is based
on an accurate BPSR, which aims at an ideal situation. For a 20% error in BPSR, the current velocity
error calculated by Liu’s method [31] is larger than that obtained by the improved algorithm in this
paper; thus, for the actual situation, the improved algorithm is more effective. This improved algorithm
is of great significance for the calculation of sea surface currents in coastal waters. The algorithm
is adaptive, as it can be applied not only to spaceborne platforms but also to airborne platforms.
Furthermore, the algorithm is also robust as it can be applied to different scenes with different
heterogeneity. As shown in Section 3, the simulated data and real data are in different scenes, namely
coastal water and land area, respectively. When the baseline is ambiguous or unknown, the improved
method can work. Moreover, the TerraSAR-X [7] satellite based on the divided-antenna InNSAR mode
has strong azimuth ambiguities, and there is also obvious azimuth ambiguity in the ocean SAR image
from the GaoFen-3 [39] satellite with ultra-fine strip mode, which seriously affects the data processing
of subsequent marine applications. Therefore, the improved algorithm proposed in this paper can not
only provide solutions to these problems but also improve the accuracy of the calculation of coastal
current velocity. In the proposed algorithm, we did not consider the interference phase caused by the
across baseline, which will be investigated and solved in future studies.

5. Conclusions

This paper proposes improvements in the algorithm for coastal current velocity measurements
that consider real-life, non-ideal conditions and increase the precision of the velocity estimates.
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The improved algorithm for the alternate azimuth ambiguity suppression and BPSR estimation can
be applied to data from the ATI-SAR systems under relaxed conditions. The proposed approach
incorporates a measure of scene heterogeneity, and importantly, is applicable to non-ideal situations
with an inaccurate BPSR. The algorithm has successfully been tested on simulated and measured data.
Because the measured data from a coastal area were not available, we used simulated data instead and
measured data from a land area to test the practicability of the method. Note that data processing
has no effect on the separation of wave and sea-surface currents in the subsequent estimation of the
sea-surface currents. The processing results of the measured data from the land area also show the
importance of considering scene heterogeneity. In addition, the algorithm needs only limited user
inputs. After the application of an alternate iterative algorithm for ambiguity suppression and BPSR
estimation, the current velocity can be estimated with an error of less than 0.05 m/s. This study indicates
that the method can also help to increase the measurement accuracy of the current velocity using both
airborne and spaceborne systems, even for systems that have limitations.
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Abstract: Quadcopters can continuously observe ocean surface with high spatial resolution from
relatively low altitude, albeit with certain limitations of their usage. Remote sensing from quadcopters
provides unprecedented ability to study small river plumes formed in the coastal sea. The main
goal of the current work is to describe structure and temporal variability of small river plumes on
small spatial and temporal scales, which are limitedly covered by previous studies. We analyze
optical imagery and video records acquired by quadcopters and accompanied by synchronous in situ
measurements and satellite observations within the Kodor and Bzyp plumes, which are located in
the northeastern part of the Black Sea. We describe extremely rapid response of these river plume to
energetic rotating coastal eddies. We reveal several types of internal waves within these river plumes,
measure their spatial and dynamical characteristics, and identify mechanisms of their generation.
We suggest a new mechanism of formation of undulate fronts between small river plumes and ambient
sea, which induces energetic lateral mixing across these fronts. The results reported in this study
are addressed for the first time as previous related works were mainly limited by low spatial and/or
temporal resolution of in situ measurements and satellite imagery.

Keywords: small river plume; aerial drone; coastal processes; frontal zones; internal waves

1. Introduction

Airborne remote sensing of sea surface is constantly expanding during the last ten years due
to significant progress in development of aerial drones, especially low-cost quadcopters [1-6].
Many previous works used airborne data to study various marine processes including mapping
of coastal topography [7,8] and bathymetry [9-12], surveying of marine flora and fauna [13-22],
and monitoring of water quality and anthropogenic pollution [23-28]. Several works used airborne
data to study physical properties of sea surface layer including estimation of turbulence [29]
and reconstruction of surface currents [30,31]. However, applications of aerial remote sensing are still
rare in physical oceanography, especially in comparison with numerous studies based on satellite
remote sensing. Studies of river plumes provide a good example of this situation. Hundreds of related
works were based on high-resolution [32,33], medium-resolution [34-37], and low-resolution [38—40]

Remote Sens. 2020, 12, 3079; doi:10.3390/rs12183079 121 www.mdpi.com/journal/remotesensing



Remote Sens. 2020, 12, 3079

optical satellite data, satellite-derived temperature [41-43], salinity [4-46], and roughness [47-49] of
sea surface. On the other hand, only several studies used airborne remote sensing to study river
plumes [25,26,50-53]. Moreover, we are not aware of any study, which specifically addressed structure,
variability, and dynamical features of small plumes using aerial remote sensing data. This point
provides the main motivation of the current work.

General aspects of the structure and dynamics of river plumes as well as their regional features
were addressed in many previous studies. Nevertheless, these works were mostly focused on large
river plumes, while small rivers plumes received relatively little attention. However, small rivers
play an important role in global land-ocean fluxes of fluvial water and suspended and dissolved
sediments [54-56]. Small rivers form buoyant plumes that have small spatial scales and, therefore,
small residence time of freshened water, which is equal to hours and days, due to relatively low
volume of river discharge and its intense mixing with ambient sea [57]. Dissipation of freshened
water as a result of mixing of a small plume with subjacent saline sea limitedly influences ambient
sea and does not result in accumulation of freshwater in adjacent sea area. As a result, small plumes
are characterized by sharp salinity and, therefore, density gradients at their boundaries with ambient
sea. This feature is not typical for large river plumes and results in significant differences in spreading
and mixing between small plumes and large plumes. Sharp vertical density gradient at the bottom
boundary of a small plume hinders vertical energy transfer between a small river plume and subjacent
sea [57]. This feature strongly affects spreading dynamics of a small plume due to the following reasons.
First, the majority of wind energy transferred to sea remains in a small plume, because the vertical
momentum flux diminishes at the density gradient between a plume and subjacent sea. Therefore,
wind stress is concentrated in a shallow freshened surface layer that causes higher motion velocity
and more quick response of dynamics of a small plume to variability of wind forcing, as compared to
ambient sea [58,59]. It results in wind-driven dynamics of small plumes, which is characterized by
very energetic short-temporal variability of their positions, shapes, and areas [60-64].

Study of structure and variability of small river plumes at small spatial and temporal scales is
essential for understanding the fate of freshwater discharge from small rivers to sea and the related
transport of suspended and dissolved river-borne constituents. However, high short-temporal
variability of small plumes and their small vertical sizes inhibit precise in situ measurements
of their thermohaline and dynamical characteristics [57]. Satellite remote sensing also does not
provide the necessary spatial resolution and temporal coverage for small river plumes. As a result,
many important aspects of structure, variability, and dynamics of small river plumes at small spatial
and temporal scales remain unstudied.

Quadcopters are especially efficient in observation of small river plumes because they can
continuously observe sea surface with high spatial resolution from relatively low altitude. Quadcopters
can be used during overcast sky when optical satellite instruments cannot observe sea surface.
The main drawback of their usage is relatively short duration of continuous operation (less than
several hours), limited weight of carried instruments, and inability of their operation during strong
wind, rain, snow, low temperature, and other inappropriate weather conditions. Despite these
limitations, usage of quadcopters provides unprecedented ability to study structure of small river
plumes, detect and measure their short-temporal variability, and register various dynamical features
of these plumes. Therefore, the main goal of the current work is to describe structure and temporal
variability of small river plumes on small spatial (from meters to hundreds of meters) and temporal
(from minutes to hours) scales, which are limitedly covered by in situ measurements and satellite
imagery and remain almost unaddressed by the previous studies.
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In this work we use aerial remote sensing supported by synchronous in situ measurements
and satellite observations to study small river plumes formed in the northeastern part of the Black
Sea. We show that usage of aerial drones, first, strongly enhances in situ and satellite observations of
structure and variability of small plumes, second, provides ability to perform accurate, continuous,
and high-resolution measurements of their spatial characteristics and current velocity fields, and,
finally, significantly improves operational organization of field measurements. Owing to continuous
and high-resolution aerial remote sensing, we report several novel results about spatial structure,
short-temporal variability, and dynamical features of small river plumes. These results include
strongly inhomogeneous structures of small river plumes manifested by complex and dynamically
active internal frontal zones; undulate (lobe-cleft) form of a sharp front between a small river plume
and ambient sea; energetic lateral mixing across this front caused by its baroclinic instability; internal
waves generated by river discharge near a river estuary and propagating within the inner plume;
and internal waves generated by vortex circulation of river plume and propagating within the outer
plume. The obtained results reveal significant differences in structure, variability, and dynamics
between small plumes and large plumes.

The paper is organized as follows. Section 2 provides the detailed information about the aerial,
in situ, and satellite data, as well as the processing methods used in this study. The results derived from
aerial observations of small river plumes supported by in situ measurements and satellite observations
are described in Section 3. Section 4 focuses on discussion and interpretation of the revealed features
of spatial structure, short-temporal variability, and dynamics of small river plumes. The summary
and conclusions are given in Section 5.

2. Data and Methods

2.1. Study Area

In this work, we focused on the Kodor and Bzyp river plumes formed in the northeastern part
of the Black Sea (Figure 1). These rivers were chosen as the case sites due to the following reasons.
First, these rivers have high concentrations of suspended sediments (300-500 g/m? in the Kodor River
and 100-300 g/m? in the Bzyp River) [65], therefore, the turbid Kodor and Bzyp plumes can be effectively
detected by optical aerial and satellite imagery. Second, the Kodor and Bzyp rivers are relatively small,
their catchment areas are 2000 and 1500 km?, respectively, and their average annual discharges are
approximately 130 and 120 m?/s, respectively [65]. As a result, the Kodor and Bzyp plumes are small
enough to be observed by aerial remote sensing from relatively small altitude (< 200 m). However,
both rivers are mountainous with large mean basin altitudes (> 1500 m) and slopes (> 0.02%o), as well
as high drainage density (> 0.8 1/km). Therefore, during spring freshet and short-term rain-induced
floods the runoffs from the Kodor and Bzyp rivers dramatically increase by 1-2 orders of magnitude.
Third, despite their relatively small spatial extents, the Kodor and Bzyp plumes are the largest plumes
in the study area. As a result, structure and dynamics of these plumes are not influenced by interaction
with other river plumes. Fourth, the Kodor and Bzyp rivers have different mouth morphologies that
affect the structure of their plumes. The majority of the Bzyp River runoff inflows to sea from the main
river channel, however, a small side-channel is formed during high discharge periods. The Kodor
River inflows to sea from three large river channels, which form the Kodor Delta. The mouths of
these deltaic branches are located along the 2 km long segment of the coastline. Finally, wind, cloud,
and rain conditions in the study area are favorable for aerial and satellite observations of the river
plumes during the majority of the year.
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The continental shelf at the study area is very steep and narrow. The distance between the coastline
and the 500 m isobath is less than 10 km near the Kodor and Bzyp mouths (Figure 1). The main
coastline features at the study area are large capes, namely the Iskuria and Pitsunda capes, located
to the south from the Kodor and Bzyp deltas, respectively (Figure 1). The local sea circulation from
surface to the depth of 200250 m is governed by alongshore currents due to the current system
cyclonically circulating along the continental slope, which is generally referred to as the Black Sea Rim
Current [66,67]. Sea surface circulation in the study region is also influenced by nearshore anticyclonic
eddies, which are regularly formed between the main flow of the Rim Current and the coast owing
to baroclinic instability caused by wind forcing and coastal topography [68-70]. Tidal circulation at
the study area is very low and tidal amplitudes are less than 6 cm [71,72]. Salinity in the coastal sea,
which is not influenced by river discharge, is 17-18 [67,73].
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Figure 1. Bathymetry of the study region, locations of the Iskuria and Pitsunda capes, the Bzyp
and Kodor rivers, and other smaller rivers of the study region. Location of the study region at
the northeastern part of the Black Sea is shown in the inset. Red boxes indicate areas of aerial
observations and in situ measurements at the Bzyp and Kodor plumes. Green stars indicate locations
of meteorological stations.

2.2. Aerial, In Situ, and Satellite Data

Aerial observations of the Kodor and Bzyp plumes were performed by a quadcopter (DJI Phantom
4 Pro) equipped with a 12 MP/4K video camera. Aerial observations of the plumes were supported
by ship-borne in situ measurements of salinity, temperature, turbidity, and current velocity within
the plumes and the adjacent sea. The size of this quadcopter is small enough to be launched from
and landed on a small boat. It provides opportunity for a quadcopter operator to be onboard
the research vessel and to effectively coordinate synchronous in situ measurements and water sampling.
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Aerial observations and in situ measurements of the Kodor plume were conducted on 1-2 September
2018 and 1-3 April 2019, while aerial observations and in situ measurements of the Bzyp plume were
performed on 31 May-1 June 2019. Below we provide the protocols of these aerial surveys according
to the scheme suggested by Doukari et al. [74].

The quadcopter was flying over coastal sea areas adjacent to the Kodor and Bzyp river mouths.
The take-off and landing spot was located on a vessel/boat that provided opportunity to perform flights
at different areas of the plumes without any limitations on their distance to the seashore. The distance
between the quadcopter and the research vessel/boat did not exceed 1 km. Quadcopter shooting
altitude depended on the spatial scale of the sensing sea surface process and varied from 10-30 m for
the small-scale frontal circulation to 150-200 m for detection of plume position and area. Weather
conditions during the field surveys were favorable for usage of the quadcopter. Wind forcing during
the flights was moderate (< 8 m/s), air temperature varied between 15 and 30° C, and air humidity
varied between 60% and 90%. The flights were conducted during no-rain conditions from morning to
evening. In case of clear sky conditions, sun glint strongly affected the quality of the aerial data during
the daytime. Wave heights were < 0.5 m during the flights.

In situ measurements performed in the study areas were the following. Continuous salinity
and temperature measurements in the surface sea layer (0.5-1 m depth) were performed along the ship
tracks using a shipboard pump-through system equipped by a conductivity-temperature-depth (CTD)
instrument (Yellow Springs Instrument 6600 V2) [62,75]. Vertical measurements of salinity, temperature,
and turbidity were performed using a CTD-instrument (Sea-Bird Electronics SBE 911plus) at 0.2 m spatial
resolution. Vertical measurements of current velocity were performed using an acoustic Doppler
current profiler (ADCP) (Teledyne RDI Workhorse Sentinel) and a CTD-ADCP-instrument (Aanderaa
SeaGuard RCM). Vertical profiling was performed from sea surface to the depth of 10 m or to seafloor
in shallow areas. The positions of individual in situ measurements are given in Section 3. Wind forcing
during the field measurements was measured by a compact weather station (Gill GMX200) with
temporal resolution of 1 minute. The weather station was mounted at the height of 10 m at a pier on a
distance of 30 m from the coastline (Figure 1).

The Kodor and Bzyp plumes were also studied using Sentinel-2 Multispectral Instrument (MSI)
data collected in 2017-2019. The Sentinel-2 Level-1C products were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/) (Supplementary Materials). Atmospheric correction
was applied to these products using Sen2Cor module version 2.2.1 within the Sentinel-2 Toolbox
(S2TBX), Sentinel Application Platform (SNAP) version 5.0.7.

2.3. Processing of Aerial Data

In this study we used an optical flow algorithm to reconstruct velocity fields in the sea surface
layer from quadcopter video records [76,77]. The main principle of optical flow algorithms used for
calculation of motion from two consecutive pictures is the following. It was assumed that for each
point X (ie., pixel) on both frames a certain signal intensity property I (i.e., brightness) was conserved:

I(X,t) = I(X + AX, t+At) )

By linearizing the intensity of the second frame with respect to the intensity of the first frame a
gradient constraint equation is obtained in the following way:

VI(X, t)u +1(X,t) = 0 @)
where VI = (IX, Iy) is the spatial partial derivatives of intensity, d = dx/dtis the velocity, and I is

the temporal derivative of intensity. The derivatives VI and I; can be directly calculated, while the 2D
velocity field 4 is unknown. Therefore, Equation (1) requires an additional constraint and it is assumed
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that the displacement AX is constant in any small neighborhood, i.e., we search for a displacement that
minimizes the constraint error:

E(x) = Y g(X)(VI(X,t)u +1(%, 1)) )

=
X

where g(?) is a weight function. Thus, minimization of E(?) with respect to u provides an additional
—

condition for Equation (2). The resulting vector field u calculated from Equations (2) and (3) is
regarded as an optical flow estimate. In this work, we used the Farneback weight function [78] freely
available in the OpenCV computer vision library (https://opencv.org/). This algorithm approximates
a neighborhood of a pixel in each pair of frames by a quadratic polynomial function applying
the polynomial expansion transform. Therefore, a constraint equation is based on a polynomial
approximation of the given signal. On the assumption of small variability of a displacement field,
the algorithm minimizes quadratic error of the constraint and calculates the optical flow estimation.

The estimation of surface velocity fields in the study region was performed in two stages.
First, we applied the optical flow algorithm with large prescribed sizes of pixel neighborhoods for
the reconstruction of motion of distinct plume boundaries and fronts. Second, we reconstructed motion
within the river plume using the optical flow algorithm with a reduced neighborhood size. Spatial
scale of motion, which is intended to be reconstructed, positively correlates with optimal size of a pixel
neighborhood. An algorithm with a small pixel neighborhood more accurately reconstructs small-scale
motion, but shows lower quality for large motion patterns, as compared to an algorithm with a large
pixel neighborhood. The overall neighborhood size was prescribed according to spatial scales of ocean
surface features (e.g., river plume fronts), in which motion is expected to be detected by an optical flow
algorithm. Thus, the optimal neighborhood size intended to reconstruct the large-scale motion of river
plumes should be equal to the width of distinct plume boundaries and fronts. In this study, the large
size of a pixel neighborhood was prescribed equal to 30 m, while the small size of a pixel neighborhood
was set equal to 1 m. In case of application of this algorithm to other regions, we suggest prescribing
neighborhood sizes equal to relevant spatial scales of the considered ocean surface features.

Due to high resolution of the video camera used and continuous video recording, the optical flow
algorithm efficiently detected motion of the distinct frontal zones within the river plumes, as well as
motion of foam and floating litter accumulated at these fronts which is indicative of the circulation
patterns at the frontal zones. As a result, the reconstructed surface velocity fields showed good
accordance with visually inspected shifts of the frontal zones, foam, and floating litter at the video
records. Stable positioning of a quadcopter is important for precise motion detection at sea surface.
Moderate wind speed during the field surveys did not negatively affect the quality of the obtained
aerial data. However, strong wind forcing during camera shooting can hinder accurate reconstruction
of surface velocity fields. Sun glint is another important issue that can impede motion detection at
aerial video records. Intensity of the sun glint depends on solar elevation angle, camera shooting angle
and direction; therefore, it can be reduced by correct selection of quadcopter altitude and position.
Usage of polarizing filters for quadcopter camera can reduce glint from water surface, however, its
efficiency strongly depends on camera shooting angle.

3. Results

3.1. Spatial Structure and Short-temporal Variability of the Kodor and Bzyp Plumes

The field surveys were performed during spring freshet at the Bzyp River (260 m%/s) on
31 May-1 June 2019; during drought period at the Kodor River (40 m3/s) on 1-3 April 2019; and during
flash flooding period at the Kodor River (80-150 m3/s) on 31 August-2 September 2018. Wind forcing
was moderate during these field surveys. Average and maximal wind speed registered at weather
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station in the study regions were 3.1 and 7.6 m/s during 31 August-2 September 2018; 2.4 and 6.2 m/s
during 1-3 April 2019; and 2.9 and 5.6 m/s during 31 May-1 June 2019.

Vertical salinity measurements in the study areas revealed that these low-saline plumes are shallow
(< 5 m depth) and have distinct vertical salinity gradients with the ambient saline sea. Due to elevated
concentrations of terrigenous suspended sediments in the Kodor and Bzyp rivers [65], turbidity
within the Kodor and Bzyp plumes was significantly larger than in the ambient sea and showed good
correlation with reduced salinity (Figure 2). The Pearson correlation coefficients (1) between salinity
and turbidity are equal to —0.87 and —0.71 for the Kodor and Bzyp plumes respectively with p-values
equal to 0.0000. These high absolute values of the correlation coefficients at low p-values indicate that
the observed relations between salinity and turbidity within the Kodor and Bzyp plumes (low salinity
and high turbidity), on the one hand, and the ambient sea water (high salinity and low turbidity),
on the other hand, are statistically significant. As a result, surface turbidity structures of the Kodor

and Bzyp plumes observed by optical remote sensing are indicative of surface salinity structures of
these plumes.
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Figure 2. Relations between salinity and turbidity (a) within the Kodor plume and the adjacent saline
sea on 2-3 April 2019 and (b) within the Bzyp plume and the adjacent saline sea on 31 May 2019.
Dashed red boxes indicate river plumes, transitional zones, and ambient saline sea. Red lines indicate
regression lines. The Pearson correlations coefficients (r) with p-values, which indicate statistical
significance of the observed relations, are given above the diagrams.

Aerial remote sensing and satellite imagery showed that the alongshore extents of turbid surface
water associated with the considered river plumes during low discharge conditions are 1-5 km.
The obtained estimates were consistent with salinity measurements at the study area. However,
flooding discharge results in abrupt expanding of these plumes, their extents and areas can exceed
20 km and 50 km?, respectively. Aerial and satellite images, surface salinity distribution, and vertical
salinity profiles obtained on 31 August 2018 in the coastal area adjacent to the Kodor Delta are
illustrative of spatial scales, as well as horizontal and vertical structure of the Kodor plume (Figure 3).

Aerial observations and in situ measurements revealed strongly inhomogeneous salinity
and turbidity structure of the Kodor plume manifested by complex and dynamically active frontal zones
within the plume (Figures 4-6). In particular, surface salinity showed no dependence on the distance
to the mouths of the deltaic branches that is regarded typical for river plumes [79-81], especially in
numerical modeling studies [82-85]. This inhomogeneous structure is formed due to impact of several
different processes including the formation of the Kodor plume by several spatially distributed sources,
the large inter-day river discharge variability in response to sporadic rain events, and the bathymetric
features that influence spreading of the plume.
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Figure 3. (a) surface salinity distribution, (b) vertical salinity profiles, (c) aerial image (acquisition time
13:29), and (d) Sentinel-2 ocean color composite of the Kodor plume from 31 August 2018. Color dots
indicate locations of vertical salinity measurements (1, blue—near the river mouth; 2, yellow—near
the plume border, and 3, brown—at the ambient saline sea). Red arrows indicate location of the central
deltaic branch of the Kodor River, green arrows indicate location of the Iskuria Cape. The red swirl at
panel (a) indicates location of the eddy detected on 1 September, 2018 (see Figures 7-9). The red wave
line at panel (a) indicates location of the undulate (lobe-cleft) plume border detected on 1 September
2018 (see Figures 12-15).

The Kodor River inflows to sea from three deltaic branches with different discharge rates.
As a result, all three branches form individual river plumes that merge and coalesce into the common
Kodor plume. These three river plumes have different structure, spatial characteristics, and dynamics,
therefore, they interact as individual water masses and form stable frontal zones observed by aerial
imagery (Figure 4a) [86-88]. In situ measurements performed on 2 September, 2018 revealed sharp
salinity gradient at the frontal zone between the river plumes formed by the northern and the central
deltaic branches of the Kodor River. Surface salinity along the transect that crossed this frontal zone
abruptly decreased from 14 to 8-10 on a distance of 5 m (Figure 4b).
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Figure 4. (a) aerial image, (b) vertical salinity, and (c) velocity profiles at the frontal zone between river
plumes formed by the northern and central deltaic branches of the Kodor River on 1 September, 2018.
Colored dots indicate locations of vertical salinity (P1, blue—the northern plume; P2, yellow—the central
plume) and velocity (P3, brown—the northern plume; P4, green—the central plume) measurements.
The red arrow in panel (a) indicates location of the central deltaic branch of the Kodor River.

The discharge of the Kodor River shows quick response to precipitation events that is common for
small mountainous rivers with small and steep watershed basins. Frequent rains at the mountainous
northeastern coast of the Black Sea cause high inter-day variability of the discharge rate of the Kodor
River [65,89]. As a result, the area of the Kodor plume can significantly change during less than
one day that was observed on 31 August—2 September 2018 during the field survey. Heavy rain
that occurred during 6 hours at night on 31 August-1 September (according to the local weather
station measurements) caused increase of the river discharge from 80 to 150 m3/s during several hours.
The area of the Kodor plume doubled from 31 August to 1 September in response to the flash flood.
Wind direction during 31 August-1 September was stable (southwestern), while wind speed slightly
increased from 2-3 m/s to 4-5 m/s. Then river discharge steadily decreased to pre-flooding conditions,
which were registered on 2 September, while wind direction changed to eastern and wind velocity
decreased to 3—4 m/s. In situ measurements and aerial remote sensing performed on 2 September, i.e.,
shortly after the flood, observed, first, the large residual plume that was formed on 1 September during
the flooding event and did not dissipate yet and, second, the emergent plume that was formed on
2 September after the decrease of river discharge rate (Figure 5). These plumes had different spatial
scales, structures, thermohaline, and dynamical characteristics. As a result, similarly to the river
plumes formed by different deltaic branches, the residual and the emergent plumes interacted as
individual water masses and formed complex frontal zones within the common Kodor plume.
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Figure 5. (a,b) aerial images, (c) vertical salinity, and (d) velocity profiles at the frontal zone between
the emergent and the residual parts of the Kodor plume on 2 September 2018. Colored dots
indicate locations of vertical salinity and velocity measurements (P1, blue—the emergent plume;
P2, yellow—the residual plume). Arrows in panels (a) and (b) indicate distinct frontal zones between
the emergent and the residual parts of the Kodor plume. Red arrows in panels (a) and (b) point at
the same segment of the frontal zone where in situ measurements were performed.

Interaction between the Kodor plume and the seafloor at the shallow zones is the third process
that induces inhomogeneous structure of this plume. Aerial imagery detected the area of reduced
turbidity formed behind the shoal, which is located in front of the northern deltaic branch (Figure 6).
This low-turbid zone contrasted especially with the surrounding turbid river plume during the flooding
discharge on 1 September 2018. In situ measurements showed that surface salinity at this low-turbid
zone (15) was significantly greater than at the adjacent turbid part of the plume (12.5-13) (Figure 6c).
Surface circulation also differed in these two parts of the plume. The northward flow (10 cm/s) was
observed in the low-turbid zone, while the southeastward flow (20 cm/s) dominated in the adjacent
turbid part (Figure 6d). The formation of this zone is caused by the interaction of the inflowing river
jet with seafloor at the shoal that induces deceleration of the jet and its increased mixing with saline
and low-turbid sea water. The stable front bounding this low-turbid and high-saline zone inside
the plume was observed on a distance of up to 1 km from the shoal.
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Figure 6. (a,b) aerial images, (c) vertical salinity, and (d) velocity profiles at the frontal zone of the Kodor
plume formed behind the shoal on 1 September 2018. Colored dots indicate locations of vertical salinity
and velocity measurements (P1, blue—the low-turbid zone of the plume; P2, yellow—the frontal zone;
and P3, brown—the turbid part of the plume). The white arrow in panel (b) indicates location of
the shoal, red arrows indicate location of the central deltaic branch of the Kodor River, and the green
arrow indicates location of the Iskuria Cape.

3.2. Dynamical Features of the Kodor and Bzyp Plumes

Using aerial remote sensing we detected several dynamical features of the Kodor and Bzyp
plumes and measured their spatial characteristics. Based on the surface velocity data reconstructed
from the aerial video records, we studied dynamical characteristics of these features and analyzed
their physical background. Aerial remote sensing detected a swirling eddy within the Kodor plume on
1 September 2018 (Figure 7). This eddy was formed at the southern part of the emergent plume at
its border with the residual plume near the Iskuria Cape. The aerial image of this part of the plume
acquired at 12:52 (Figure 7a) showed inhomogeneous structure of the emergent plume without any
eddy. The distinct border between the emergent and the residual plumes was stretched from the Iskuria
Cape in the northwestern direction. The beginning of formation of the eddy was registered at 14:42
(Figure 7b), then at 15:34 the well-developed eddy was observed (Figure 7c,d). The diameter of the eddy
was approximately 500 m, it was rotating in an anticyclonic direction, while its center was moving
at an angle of approximately 30° across the border of the emergent plume. Processing of the video
record of this eddy provided estimations of velocity of its movement (0.9 m/s) and rotation (0.4 m/s).
The aerial observations performed at 16:16 did not show any surface manifestations of the eddy at
the study area; therefore, we presume that it shifted off the observation area during less than an hour.
Wind conditions were stable during the considered period, wind speed did not exceed 3.5 m/s.
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Figure 7. Aerial images of the southern part of the Kodor plume (a,b) before and (c¢) during interaction
between the plume and the eddy acquired at (a) 12:52, (b) 14:42, (c) 15:34, and (d) 15:41 on 1 September,
2018. (e) surface salinity, (f) zonal (blue) and meridional (red) velocities measured during 15:57—16:01
and (g) vertical salinity and (h) velocity profiles measured at 16:02 within the eddy. Yellow dots in
panels (c) and (d) indicate location of salinity and velocity measurements. The white arrow in panel (c)
indicates location of the eddy, red arrows indicate location of the central deltaic branch of the Kodor
River, and green arrows indicate location of the Iskuria Cape.
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In situ thermohaline and velocity measurements were performed within the eddy at 15:57-16:01
(Figure 7e,f). They included continuous measurements at a depth of 0.7-0.8 m for 4.5 minutes
followed by vertical profiling from surface to the depth of 13 m. Note that the measurements were
performed at the stable point, while the eddy was moving. As a result, the performed measurements
registered salinity and velocity in different parts of the eddy while it was passing the point of
measurements. The intense northward flow (55 cm/s) registered in the surface layer at the beginning
of the measurements steadily dissipated to <10 cm/s during the first stage of the measurements
(Figure 7f). The eastward velocity component was slightly positive during the first two minutes of
the measurements (6 cm/s on average with the peak value of 16 cm/s) and then changed to slightly
negative (=5 cm/s on average with the peak value of —11 cm/s). It was accompanied by significant
variability of salinity that increased from 13.5 to 15.5 during the first 1.5 min of the measurements
and then decreased to 13.5 (Figure 7e). The observed variability of velocity and salinity in the surface
layer confirms northward propagation and anticyclonic rotation of this eddy observed at aerial video
(Supplementary Materials). However, the movement and rotation velocities registered by in situ
measurements were twice less than those reconstructed from the aerial video. This difference is caused
by the fact that in situ measurements were performed not at the central part of the eddy, but at its
periphery. The observed variability of salinity in the surface layer was caused by intrusion of saline
water from the ambient sea to the plume induced by the rotation of the eddy (Figure 7d). Vertical
profiles of salinity and velocity measured at 16:02, i.e., after the measurements in the surface layer,
registered strong northwestward flow in the subjacent saline sea (Figure 7g,h). Its maximal velocity
(15-25 cm/s) was observed immediately beneath the plume at depths of 3-5 m, then velocity decreased
to 10-15 cm/s at depths of 8-9 m and to <5 cm/s at depths of 10-13 m. This northwestward flow
(20-30 cm/s) was also registered along the Iskuria Cape at the previous day that confirms the presence
of the northwestward jet behind the Iskuria Cape which is presumed to generate the observed eddy.

Interaction between sub-mesoscale eddies and the Kodor plume was also observed by satellite
imagery. The chains of small anticyclonic eddies (300-500 m in diameter) formed behind the Iskuria Cape
and interacting with the Kodor plume were registered on 17 July 2018, 21 August 2019, and 26 August
2019 (Figure 8a). Positions, sizes, and shapes of four to five subsequent eddies within these chains
indicate that these chains were periodically generated near the Iskuria Cape and propagated in
the northwestward direction shortly before the periods of satellite observations. While tracks of
the eddies were crossing the Kodor plume, the turbid plume water was twisted into the eddies, which
made them visible at satellite imagery. After these eddies propagated off the plume the trapped turbid
water remained connected with the plume that illustrated difference in trajectories and velocities of
the eddies and the wind-driven far-field part of the plume (Figure 8a).

Satellite images acquired during the periods of field measurements at the Kodor plume did not
register interactions between the eddies and the plume due to episodic character of these features,
i.e., eddies do not constantly form and propagate at the study area. Therefore, the satellite images
presented in Figure 8 are not synchronous with the field surveys. However, sizes and anticyclonic
rotation in the northwestward direction were similar for eddies detected at the Kodor plume by
aerial and satellite remote sensing. As a result, we presume that we observe the same process and,
therefore, can jointly analyze its spatial and temporal characteristics obtained from aerial and satellite
measurements. Satellite imagery also observed eddies formed behind the Pitsunda Cape and interacting
with the Bzyp plume on 30 July 2017 and 10 October 2019 (Figure 8b). However, in contrast to the eddies
registered within the Kodor plume, these eddies were individual, i.e., did not form chains. Moreover,
these eddies were much larger (2-4 km in diameter) and were rotating in cyclonic direction. Satellite
images acquired during the periods of field measurement at the Bzyp plume also did not register
interactions between eddies with the Bzyp plume.
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Figure 8. Sentinel-2 ocean color composites (a) from 17 July 2018, 21 August 2019, and 26 August 2019
illustrating interactions between eddies and the Kodor plume and (b) from 30 July 2017 and 10 October
2019 illustrating interactions between eddies and the Bzyp plume. Green arrows indicate location of
the Iskuria Cape and red arrows indicate location of the Pitsunda Cape. Note that images at panels (a)
and (b) are inconsistent, i.e., they show river plumes at different dates.

Satellite image acquired on 10 October 2019 detected packets of internal waves emerging from
the rotating eddy and propagating within the Bzyp plume (Figure 9b). Aerial observations on
1 September 2018 also detected a packet of internal waves that emerged from the eddy and was
propagating within the outer part of the plume towards the open sea (Figure 10a). Note that the aerial
imagery of the Kodor plume (Figure 9a) and the satellite imagery of the Bzyp plume (Figure 9b) are not
synchronized and show different river plumes at different dates. Aerial and satellite images acquired
during the period of field measurements at the Bzyp plume did not register internal waves within
the Bzyp plume. Therefore, in Figure 9 we show airborne images of internal waves at the Kodor plume
and satellite images of internal waves at the Bzyp plume.
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Figure 9. Surface manifestations of high-frequency internal waves generated by the eddies within
the (a) Kodor and (b) Bzyp plumes at (a) aerial images acquired on 1 September 2018 and (b) satellite
images acquired on 10 October, 2019. The central picture at panel (a) is the zoomed fragment of the left
picture at panel (a) indicated by the white dashed rectangle 1. The central and right pictures at panel
(b) are the zoomed fragments of the left picture at panel (b) indicated by white dashed rectangles 2
and 3, respectively. Black arrows indicate surface manifestations of internal waves.

Figure 10. Aerial images of surface manifestations of low-frequency internal waves within the Kodor
plume near the mouths of (a) the northern and (b) the central deltaic branches on 2 September 2018.
The green arrow indicates location of the northern deltaic branch of the Kodor River and the red
arrow indicates location of the central deltaic branch of the Kodor River. Black arrows indicate surface

manifestations of internal waves.

Despite a large difference in coverage and spatial resolution of the aerial and satellite imagery
presented in Figure 9, they both distinctly demonstrate propagation of internal waves within the river
plumes. Satellite remote sensing has wide spatial coverage and provides information about spatial
characteristics of wave packets at different parts of the plumes (Figure 9b). Distances between the wave
packets observed at Sentinel-2 satellite images varied from 30 to 150-200 m, while lengths of the wave
packets were up to 5-6 km. Satellite images demonstrated that dozens of internal waves were generated
within the plume around the rotating eddy. On the other hand, airborne remote sensing provided
opportunity to detect individual internal waves with high spatial resolution and to register their
velocities (Figure 9a). High-resolution aerial imagery detected that the distances between the individual

135



Remote Sens. 2020, 12, 3079

waves within the wave packet in the Kodor plume were 2—4 m. The length of the wave packet front
was approximately 200 m. The number of waves within the wave packet varied from 12 at its northern
part to 3 at its southern periphery. Processing of high-resolution video records revealed that velocity of
the wave packet was equal to 0.21 m/s.

Aerial remote sensing also detected multiple packets of low-frequency internal waves that
propagated within the Kodor plume towards the coast on 2 September 2018 (Figure 10). These packets
consisted of 5-15 waves that were stretched along the coast, albeit had complex shapes not related to
the shapes of the plume front or the coastline. Distances between individual waves varied from 5 to
70 m in the observed wave packets. Frontal length of these packets varied from ~100 m (Figure 10a) to
2-3 km (Figure 10b), while their speeds were 10-15 cm/s. Wind speed during this period was 2-3 m/s.

Osadchiev [33] described a mechanism of generation of internal waves in small river plumes as
a result of rapid deceleration of an inflowing river jet and formation of a hydraulic jump in vicinity
of a river mouth. These internal waves propagate offshore and are regularly observed by satellite
imagery in many coastal regions in the World [33,90,91]. Using aerial remote sensing we recorded
generation and propagation of these internal waves from the mouth of the side-channel of the Bzyp
River on 1 July 2019 (Figure 11a). The internal waves were generated at a distance of 40-50 m from
the river mouth every 19 seconds on average, i.e., 29 individual waves were generated during a 9-min
long video recording of this area. The distances between the waves decreased from 8-10 m near
the river mouth to 1-2 m at the distance of 500 m from the river mouth. Wave velocities were equal to
0.27-0.31 m/s. Moderate (2-3 m/s) northern wind was registered during the considered period.

Aerial observations of internal waves in the Bzyp plume described above were supported by
in situ salinity and turbidity measurements performed from a flat-bottomed boat with shallow draft
to minimize the boat-induced mixing of sea surface layer (Figure 11). Measurements included 15
surface-to-bottom profiles continuously performed from a free-drifting boat starting at the generation
area of the internal waves at the distance of 10 m from the river mouth and finishing 90 m far
from the starting point (Figure 11a). The obtained data revealed large difference in vertical salinity
structure of the Bzyp plume inside and outside this generation area of internal waves. The first half
of the hydrological transect was located at the area of formation of the hydraulic jump as a result of
abrupt deceleration of the inflowing river jet (Figure 11b). Similarly to the hydraulic jump observed
and described by Osadchiev [33] at the inflowing jet of the Mzymta River, we registered anomalously
deep penetration of low-saline water at the generation area of the internal waves in the Bzyp plume.
Low-saline water (10-14) was observed from surface to the depth of 34 m along 0-5 m and 25-35 m
of the transect. Vertical salinity structure within this part of the plume was unstable with multiple
overturns (reverse salinity difference was up to 1 at vertical distance of 0.1 m) and large salinity
gradients. Vertical salinity structure of the Bzyp plume between the areas of the hydraulic jumps, i.e.,
along the 5-25 m of the transect, showed relatively homogenous salinity (14.5-16) from surface to
bottom, albeit it was much higher than within the areas of hydraulic jumps.

Outside the generation area of the internal waves, i.e., along the 35-90 m of the transect, surface
salinity was relatively homogenous (14.5-15.5) and vertical salinity structure was stable. Vertical
salinity gradient outside the generation area of internal waves was two orders of magnitude less than
the largest values registered in the hydraulic jumps. However, salinity measurements did not cover
top 0.5 m of the surface layer, where presumably was located the salinity gradient. Vertical turbidity
structure, however, did not show large difference inside and outside the generation area of the internal
waves (Figure 11c). The turbid layer was observed from surface to the depth of 1-1.5 m along the first
part of the transect and then its depth steadily decreased to 0.5 m. This feature shows that salinity
and turbidity structure of a river plume can be significantly different in areas of very intense advection
and turbulent mixing.
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Figure 11. (a) aerial image of surface manifestations of internal waves propagating within the Bzyp
plume off the river mouth and location of the hydrological transect (black line) on 1 July 2019 (a).
Vertical (b) salinity and (c) turbidity profiles along the hydrological transect.
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3.3. Undulate Borders of the Kodor and Bzyp plumes

Aerial remote sensing of the Kodor and Bzyp plumes showed undulate structure of long segments of
their outer borders manifested by alternation of specific convex and concave segments. These segments
are2-10mlong and up to 2 m wide and hereafter are referred as “lobes” and “clefts” [52,53]. Aerial images
of the undulate fronts observed at the Kodor plume border on 1 September, 2018 and at the Bzyp plume
border on 1 June 2019 are shown in Figure 12. This lobe-cleft structure was registered only at sharp
and narrow frontal zones formed between the emerging plume, on the one hand, and the residual
plume or the ambient sea, on the other hand. Lobes and clefts were absent at diffuse fronts, i.e.,
wide and low-gradient fronts that contour the outer parts of the plumes, which experience intense
mixing with the ambient sea. In particular, these undulate fronts commonly extended from the river
mouths and bounded the inflowing river jets, i.e., near-field parts of the plumes. These fronts were not
observed in the far-field parts of the plumes and in the coastal surf zone during periods of active wave
breaking due to intense mixing (Figure 12).

Figure 12. Aerial images (a) of undulate fronts at the border of the Kodor plume on 1 September,
2018 and (b) at the border of the Bzyp plume on 1 June, 2019. Central and right pictures at panel
(a) are the zoomed fragments of the left and central pictures at panel (a), respectively, indicated by

the white dashed rectangles 1 and 2, respectively. Central and right pictures at panel (b) are the zoomed
fragments of the left and central pictures at panel (b), respectively, indicated by the white dashed
rectangles 3 and 4, respectively. Black arrows indicate absence of undulate fronts at the surf zone.

We observed significant short-temporal variability of the undulate fronts induced by the following
recurrent process (Figure 13). Once a lobe is formed, it starts to increase seaward. Ballooning
of neighboring lobes results in their coalescence and the subsequent merging. At the same time
the cleft between these lobes is steadily decreasing and transforms into a spot of saline sea (with
area of 0.1-0.5 m?) isolated from the ambient sea, i.e., trapped by the merged lobes within the plume
(Figure 13). The merged lobes and the trapped saline sea area finally dissipate, and then the process
of formation of new lobes at this part of the plume front restarts. The continuous recurrent process
of formation of lobes, their merging, and subsequent dissipationwas observed along the undulate
fronts of the Kodor and Bzyp plumes. Residual time of an individual lobe, i.e., from its formation to
dissipation, was 1-2 min.
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Figure 13. (a) aerial images and (b) reconstructed shapes of the border of the Kodor plume on

1 September 2018 illustrating merging of lobes and trapping of spots of saline sea. Numbers indicate
time intervals in seconds from the beginning of observations.
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Due to convergence of surface currents at sharp plume fronts [92], foam and floating litter
commonly accumulate at the undulate fronts of the plumes (Figures 13a and 14a). Using optical flow
processing of aerial video records, we detected motion of foam and floating litter and reconstructed
surface circulation along the undulate fronts of the Kodor and Bzyp plumes (Figure 14). The circulation
structure within the lobes consists of pairs of cyclonic and anticyclonic vortices that form, balloon,
merge, and dissipate with the lobes (black lines in Figure 14b). The trajectories of foam and floating
litter revealed that cyclonic vortices are significantly more prominent and intense, as compared to
anticyclonic vortices. Foam and floating litter are mainly accumulated within cyclonic eddies, i.e.,
in the right parts of the lobes if we look from the sea towards the plume (Figure 14a). Foam and floating
litter are rotated by cyclonic eddies within the right parts of the lobes during the majority of time of
aerial observations. Once a parcel of foam or floating litter is advected off a cyclonic eddy and enters
an anticyclonic eddy in the left part of the lobe, it is transported to the outer part of the lobe and then is
trapped by the cyclonic eddy in the neighboring (leftward) lobe (red lines in Figure 14b). As a result,
these parcels are skipping leftward between the right parts of lobes. Therefore, foam and floating litter
are steadily transported to the left along the plume border. The observed large intensity of cyclonic
circulation within the lobes, as compared to anticyclonic circulation, is presumed to have the same
background as the dominance of cyclonic spirals at satellite images of sea surface caused by differences
between the rotary characteristics of cyclonic and anticyclonic eddies in the sea [93].

Figure 14. (a) aerial image of the undulate border of the Kodor plume on 1 September 2018
and (b) the scheme of the reconstructed circulation within the lobes (black lines) and the transport of
foam and floating litter along the plume border (red lines) (b). Black arrows in panel (a) indicate foam
accumulated within cyclonic vortexes in the right parts of the lobes.
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We presume that the undulate structure of the sharp plume borders is formed due to baroclinic
instability between the plumes and the ambient sea. The pressure gradient force across the front is

equal to
p oh

Psea 5

g *)

where g is the gravity acceleration, Ap is the density difference between the plume and the ambient
sea, Pseq is the density of the sea, h is the depth of the plume, and x is the cross-front direction. In situ
measurements performed at the undulate fronts showed that surface salinity abruptly increased across
these fronts (2-3 m wide) from 10-12 inside the Kodor plume to 17 outside the Kodor plume (Figure 15b)
and from 8-10 inside the Bzyp plume to 16-17 outside the Bzyp plume. The depth of the Kodor plume
at the narrow frontal zone was 2 m (Figure 15b), the depth of the Bzyp plume was 4 m. As a result,
the values of pressure gradient across these frontal zones calculated from Equation (4) are equal to 0.05
and 0.1 m/s? for the Kodor and Bzyp plumes, respectively.
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Figure 15. (a) aerial image and (b) vertical salinity profiles at the undulate border of the Kodor
plume on 1 September 2018. Colored dots indicate locations of vertical salinity measurements (P1,
blue—the plume; P2, yellow—the ambient saline sea). Black arrows in panel (a) indicate a stripe of
low-turbid water within the Kodor plume stretched along its border.

This large pressure gradient observed across the plume fronts is the source of potential energy
that induces formation of lobes and clefts as follows. Small perturbation of a sharp frontal zone
and the subsequent formation of a local convex segment cause increase of local length of the front and,
therefore, increase of the cross-front advection induced by the pressure gradient. It results in ballooning
of the lobe till it coalesces and merges with the neighboring lobe. Merging of two lobes accompanied
by trapping of a spot of saline sea water and its subsequent mixing with the plume water cause a
reduction of local salinity anomaly and, therefore, a decrease of local pressure gradient. It hinders
formation of a lobe at this segment of the plume, while new lobes are formed at the adjacent segments
of the plume front. Therefore, baroclinic instability causes formation, merging, and dissipation of
the observed lobe-cleft structures and influences mixing between the river plumes and the ambient sea.

Aerial imagery detected the 3-4 m wide stripe of low-turbid water within the Kodor plume located
at the distance of 10-20 m from the undulate border and stretched along this border (Figure 15a).
We presume that this low-turbid stripe is formed as a result of continuous trapping of spots of saline
sea water by merging lobes. Horner-Devine et al. [53] assumed that the lobe-cleft structure is formed
by subsurface vortexes that are propagating from the inner part of the plume towards its border with
the ambient sea. However, aerial video records showed stable position and shape of this stripe that
evidences absence of any subsurface vortexes described by Horner-Devine et al. [53].
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4. Discussion

In this study, we obtained several important results about structure, short-temporal variability,
and dynamics of small river plumes. First, we revealed strongly inhomogeneous structure of small
plumes manifested by multiple frontal zones between different parts of the plumes. These parts
have different structures and dynamical characteristics and interact as individual water masses.
Second, we reported fast motion of small plumes caused by interaction with coastal eddies. Third,
we observed generation and propagation of different types of internal waves within small plumes.
Forth, we described formation of lobe-cleft structures at sharp borders of small plumes and reported
intense lateral mixing across these fronts caused by their baroclinic instability. The results listed above
are important for understanding spreading and mixing of small plumes, however, they are addressed
for the first time as previous related works were mainly limited by low spatial and/or temporal
resolution of in situ measurements and satellite imagery. Below we provide physical interpretation of
these features observed at the Kodor and Bzyp plumes and discuss importance of their study at other
small plumes in the World Ocean.

In general, river plumes are regarded as “smooth” water masses without internal fronts and sharp
gradients. This approach is widely used in analytical and numerical modeling studies focused on
river plumes, including the fundamental and highly cited papers [82-85,94-96]. Many relevant studies
based on in situ and satellite data confirmed that this approach provides realistic results for buoyant
plumes formed by large rivers plumes which internal structures indeed are characterized by steady
changes of salinity and other characteristics. In this work, we present the results of aerial remote
sensing of the Kodor and Bzyp plumes supported by in situ measurements that provide an evidence of
strongly inhomogeneous internal structure of small plumes. This structure is manifested by complex
internal frontal zones and sharp salinity and turbidity gradients within small plumes. These gradients
and frontal zones strongly modify circulation within the plumes, in particular, they hinder cross-frontal
advection within the plumes and separate them into semi-isolated, but interacting structures. Therefore,
identification and study of the processes that govern formation of frontal zones within small plumes is
important for understanding of spreading and mixing of freshwater discharge in the sea and the related
transport of river-borne suspended and dissolved material.

The Kodor River inflows to the Black Sea from multiple deltaic branches and forms several river
plumes. These plumes are closely located; they interact as individual water masses and coalesce into
the common Kodor plume. Interaction, collision, and coalescence of buoyant plumes formed by rivers,
which estuaries are located in close proximity, were addressed in several previous studies [86-88,97-99].
Similar processes occur within plumes formed by freshwater discharge from multiple deltaic branches,
as was observed for the Kodor plume. Moreover, generally distances between deltaic branches within
one deltaic system are smaller than distances between estuaries of neighboring rivers. As a result,
interactions between neighboring plumes formed by different rivers generally occur only during high
discharge periods [86], while similar interactions between plumes formed by different deltaic branches
is a permanent or almost permanent process at many World regions. However, despite a large number
of deltaic rivers inflowing to the World Ocean, we are aware of only one related study that was focused
on the interaction between the buoyant plumes formed by different deltaic branches of the Pearl River
Delta [100].

The Kodor River has very large intra-day and synoptic variability of discharge rate due to
morphology and weather conditions at its drainage basin. This variability of discharge rate induces
variability of spatial extents of the Kodor plume and residence time of freshened water within the plume.
As aresult, the Kodor plume formed during high discharge can have different spatial and thermohaline
characteristics from those formed during low discharge. In case of abrupt decrease of river discharge
rate, the relatively large and mixed residual plume (formed during high discharge period) interacts
with the small and freshened emergent plume (formed during the subsequent low discharge period).
We report distinct frontal zones and differences in dynamics between the residual and the emergent
parts of the Kodor plume. Several previous studies addressed response of river plumes to variable
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discharge rates [101-107], but limited attention was paid to interaction between parts of an individual
river plume formed during different discharge conditions [108]. This feature can strongly affect
spreading and mixing of freshwater discharge from small rivers in many World regions and should be
considered in the related studies.

Several studies addressed interaction between coastal bathymetry and bottom-advected river
plumes, which occupy the whole water column from surface to seafloor and, therefore, experience
intense bottom friction [109-111]. In these numerical studies, river plumes were spreading over sea
areas with idealized bathymetry, which was steadily sloping in the cross-shore direction and was
homogenous in the alongshore direction. Influence of realistic bottom topography on surface-advected
river plumes was described by Korotenko et al. [112]. Bottom-generated turbulent mixing induced
by coastal circulation penetrates upward and reaches surface layer over shallow zones, therefore,
increased local mixing of river plumes occurs at these zones. We presume that a similar mechanism
induced intensified mixing of the Kodor plume over the shoal revealed by aerial imagery and in situ
measurements. Moreover, we observed that the intense flow of the Kodor plume over this small
shoal results in formation of large area within the plume with elevated salinity, which is bounded by
the distinct frontal zone. We are not aware of any work describing this effect at river plumes, however,
it can be typical for many small plumes with small vertical scales flowing over bathymetric features.

In this study, we address several important dynamical features of small river plumes. Aerial remote
sensing revealed a quick motion of the Kodor plume border (~0.5-1 m/s) entrained by the rotating
coastal eddy. Such extremely rapid response of a river plume to coastal sea circulation has not been
reported before, to the extent of our knowledge. The previous studies showed that general spreading
patterns of small plumes are governed by wind forcing, while the impact of ambient circulation
was regarded as negligible [113-115]. We demonstrate that energetic features of coastal circulation,
e.g., eddies, can induce high velocity motion of plume fronts and, therefore, influence dynamics of a
small plume, albeit locally and during short-term periods.

The rotating eddy generated high-frequency internal waves that were propagating within
the Kodor plume and dissipated at its border with the ambient sea. Aerial remote sensing also observed
multiple long internal waves propagating within the Kodor plume towards the coast, as well as
generation of high-frequency internal waves near the mouth of the Bzyp River and their propagation
within the Bzyp plume towards the open sea. Internal waves are common features of river plumes in
non-tidal seas and their surface manifestations observed by satellite imagery were reported in several
previous studies [116,117]. These internal waves can significantly affect mixing of small plumes with
subjacent saline sea [33]. In this study, we demonstrate the efficiency of aerial remote sensing in
observations of surface manifestations of internal waves, and the ability of aerial remote sensing (in
contrast to satellite observations) to measure their spatial and dynamical characteristics and to identify
mechanisms of their generation.

Finally, in this study, we address the undulate structure of the sharp borders of the Kodor
and Bzyp plumes that were previously observed and reported at other small plumes [52,53,118,119].
Horner-Devine and Chickadel [53] associated formation of the lobe-cleft structures observed at
the Merrimack plume with subsurface vortexes that were propagating from the inner part of the plume
towards its border with saline sea. Based on processing of aerial video records, we reconstruct surface
circulation at the undulate fronts of the Kodor and Bzyp plume and detected similar vortexes within
the lobes. However, we observed absence of vortexes outside the frontal zones, i.e., no vortexes were
propagating from the inner parts of the plume towards their borders. On the opposite, we observed
the recurrent process of formation, merging, and dissipation of lobes, that was not described before.
Based on these results, we suggest an alternative mechanism of formation of the undulate fronts
caused by baroclinic instability between the plume and the ambient sea and ballooning of local convex
segments of the frontal zone in response to its small perturbations. This mechanism is in a good
agreement with the reconstructed vortex circulation within the lobes and explains absence of vortexes
in the inner parts of the plumes. We reveal intense transport of saline sea water across the undulate
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plume border as a result of merging of lobes and mechanical trapping of spots of saline sea inside
the plume. It can be an important mechanism of mixing between the plume and the saline sea
and should be considered together with shear-induced mixing of the plume and the subjacent sea.
Satellite imagery reveals that undulate frontal zones are, therefore, the related mixing mechanism
are typical for many small plumes in the World. Therefore, study of this mechanism is important in
context of transformation and dissipation of freshwater discharge in the sea.

5. Conclusions

In this work, we focused on small buoyant plumes formed by the Kodor and Bzyp rivers located
at the northeastern part of the Black Sea. We used quadcopters equipped with video camera to
perform aerial remote sensing of these river plumes, which was accompanied by synchronous in situ
measurements in the sea. Using an optical flow approach, we reconstructed surface velocity fields
within these plumes from the obtained aerial video records. Based on aerial imagery and video records,
the reconstructed surface currents, as well as in situ salinity, turbidity, and velocity measurements,
we obtained new insights into spatial structure, short-temporal variability, and dynamical features of
small river plumes, which are not typical for plumes formed by large rivers.

Based on the obtained aerial and in situ data, we address several different issues, including
the methodology and value of the aerial observations of small river plumes, the differences between
small and large plumes, the influence of multiple freshwater sources on the structure of a small plume,
the influence of bathymetry features on the structure of a small plume, the interaction between small
plumes and coastal circulation, the presence of internal waves in river plumes, and the presence of
small-scale instabilities along the plume front boundary. The main results obtained in this study are
the following. We describe strongly inhomogeneous structure of small plumes, as compared to large
plumes. We suggest a new mechanism of mixing of a small plume with ambient sea as a result of
baroclinic instability at its outer boundary. We describe internal waves formed within near- and far-filed
parts of small plumes, which can strongly influence its mixing with ambient sea. These results are
important for understanding the fate of freshwater discharge from small rivers and the related transport
of suspended and dissolved river-borne constituents in many coastal sea areas in the World Ocean.

Usage of quadcopters provides ability to perform low-cost aerial remote sensing of coastal sea
areas and continuously observe surface manifestations of many coastal processes. In this study,
we demonstrate its efficiency in observations of small river plumes characterized by high color contrast
with ambient sea, energetic motion, and high short-temporal variability. Aerial imagery can be used
for visual detection and tracking of many other processes at small spatial (from meters to kilometers)
and temporal (from seconds to hours) scales, which are visible neither from shipboard nor satellite
imagery. Spatial scales and motion speeds of the observed processes can be reconstructed from
aerial imagery and video records (Supplementary Materials). Therefore, aerial drones can provide
quantitative measurements of distances and velocities at sea surface. Finally, aerial remote sensing can
be very useful for operational organization of in situ measurements during field surveys, in particular,
for selection of places for water sampling and hydrological measurements according to real-time
position of the observed sea surface processes. As a result, future studies based on imagery and video
records of ocean surface acquired from aerial drones (considering certain important limitations of their
usage) and supported by in situ measurements hold promise to significantly improve understanding
of various upper ocean features and dynamics.

Supplementary Materials: The aerial images and video records are publicly available at https://doi.org/10.5281/
zen0do.3901896. The Sentinel-2 Level-1C products were downloaded from the Copernicus Open Access Hub
https://scihub.copernicus.eu/.
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Abstract: Numerical models and remote sensing observation systems such as radars are useful
for providing information on surface flows for coastal areas. Evaluation of their performance
and extracting synoptic characteristics are challenging and important tasks. This research aims to
investigate synoptic characteristics of surface flow fields through undertaking a detailed analysis of
model results and high frequency radar (HFR) data using self-organizing map (SOM) and empirical
orthogonal function (EOF) analysis. A dataset of surface flow fields over thirteen days from these
two sources was used. A SOM topology map of size 4 X 3 was developed to explore spatial patterns
of surface flows. Additionally, comparisons of surface flow patterns between SOM and EOF analysis
were carried out. Results illustrate that both SOM and EOF analysis methods are valuable tools for
extracting characteristic surface current patterns. Comparisons indicated that the SOM technique
displays synoptic characteristics of surface flow fields in a more detailed way than EOF analysis.
Extracted synoptic surface current patterns are useful in a variety of applications, such as oil spill
treatment and search and rescue. This research provides an approach to using powerful tools to
diagnose ocean processes from different aspects. Moreover, it is of great significance to assess SOM as
a potential forecasting tool for coastal surface currents.

Keywords: ocean surface circulation; high frequency radar; self-organizing map; empirical orthogonal
function; neural networks; synoptic characteristics

1. Introduction

Surface currents primarily driven by winds can flow for thousands of kilometers and can reach
depths of hundreds of meters. Their movements carry heat and mass from place-to-place about the
Earth system. Understanding of surface current patterns in coastal regions is of great importance for a
variety of aspects, such as the development of marine economics and environmental protection [1].
As remote sensing technologies advance, surface currents can be measured not only at a single
or few locations by instruments such as an Acoustic Doppler Current Profiler (ADCP), but can be
recorded by tools such as radars over large coastal domains with high spatial and temporal resolutions.
Understanding, mining, and application of these surface flow field data are a new challenge for
researchers [2]. Several researchers have recently undertaken investigations on measured surface flow
fields. They have used surface radar data to validate model results, to improve modeling performance
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through data assimilation, to establish statistical forecasting models, and to characterize the physical
process of surface water bodies [3-6].

With the increasing availability of surface current data, investigations into patterns of surface
currents have been undertaken using various analysis techniques such as empirical orthogonal function
(EOF) (or principal component analysis (PCA)), k-means, and self-organizing map (SOM) to extract
patterns of variability in meteorological and oceanographic data. In essence, EOF and PCA are the
same, but their focus is different. PCA is the eigenvalue and eigenvector obtained from the covariance
matrix, and EOF is computed using the cross matrix of anomaly values, so the calculated eigenvectors
are the same, while the latter is n times the former (n is the sample size). PCA, multidimensional scaling
(MDS), and SOM are representative unsupervised machine learning techniques. The PCA technique
summarizes the dispersion of datasets as a data cloud through converting the original dataset into a
set of principal components; the MDS technique takes a set of dissimilarities and returns a set of points
such that the distances between points are approximately equal to the dissimilarities [7]. The classical
MDS technique is the same as the PCA technique if the input dataset distances are Euclidean [8].
Liu, et al. [9] used EOF and SOM to extract synoptic characteristic patterns of ocean currents at the West
Florida Shelf area, and found that flow field patterns extracted by SOM are more accurate and intuitive
than those obtained from the leading mode patterns with EOF analysis. This is probably because
EOF is a linear extraction tool, whereas SOM is a nonlinear extraction tool; properties of nonlinearity
extraction in SOM can better describe nonlinear dynamic oceanic processes. Soto-Navarro, et al. [10]
applied EOF decomposition to compare the main flow pattern from model and radar, and found that
both systems show satisfactory agreement for the first two EOF modes, while the agreement is less for
the third EOF mode. Moreover, because wind data collected in a single station close to the coast were
used in the model, correlation of the third principal component (PC) between model and radar was
very low (<0.1). They demonstrated that results from that principal components are representative
of the entire study domain. Reusch, et al. [11] compared the SOM method with the PCA method for
extracting patterns of variability for North Atlantic sea level pressure fields and found that SOM was
more robust than PCA. In addition, comparisons between the SOM method and the k-means method
were performed by Lobo [12], Lin and Chen [13], and Solidoro, et al. [14]. Their results indicated
that SOM generates more accurate patterns than k-means, and SOM in general is more flexible than
k-means. Moreover, the SOM method has been broadly applied among disparate range of disciplines
such as meteorology (sea level pressure, air temperature, humidity, evaporation, precipitation, cloud,
and wind data) and oceanography (satellite ocean color and chlorophyll, biological and geochemical
data, sea surface temperature (SST), sea surface height (SSH), and ocean currents) as a data mining
and visualization method for complex datasets [15-21]. These studies demonstrate that SOM is a
robust, efficient, and concise method to project high dimensional data onto a low dimensional (usually
two-dimensional) map for characterizing synoptic patterns. Thus, in this research, SOM was applied to
extract synoptic characteristic patterns of coastal ocean flow fields based on hourly HFR measurements
and model results at a site off the west coast of Ireland.

Several researchers have previously applied SOM techniques to extract characteristic patterns in
physical oceanography from in situ observations and model results. Liu and Weisberg [22] examined
patterns of ocean current variability using time series of moored ADCP velocity data based on EOF
and SOM. Three characteristic spatial patterns were extracted: (i) spatially coherent southeastward,
(ii) northwestward flow patterns with strong currents, and (iii) a transition pattern of weak currents.
Based on comparisons between results from EOF and SOM, they found that the SOM had advantages
over the EOF in both pattern recognition and description. Subsequently, Liu, et al. [23] applied SOM
to extract patterns from a linear progressive sine wave signal, and analyzed the effects of the SOM
tunable parameters on the extracted patterns. Effects of varying SOM map size, map lattice structure,
and neighborhood function were examined as well. Liu, et al. [23] found that (a) a larger SOM map
size led to slightly more accurate mapping, (b) a rectangular lattice was preferable for a small-size
SOM and a hexagonal lattice may be useful for larger map sizes, (c) linear initialization provided
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better SOM results than random initialization, (d) the “ep” (or Epanechikov, see details in Appendix A)
type is the best neighborhood function and gave the best results. Liu, et al. [24] also investigated
the spatial structure and temporal evolution of distinct physical processes on the West Florida Shelf
(WFS) based on patterns of ocean current variability from a joint HFR and ADCP dataset using SOM.
Semidiurnal, diurnal, and subtidal frequency bands were separately examined with SOM analysis.
Results indicated that SOM is an effective analysis tool for identifying modulated, heterogeneous,
anisotropic, three-dimensional coastal ocean current variations observed by HFR and ADCPs [24].

Mihanovi¢, et al. [25] extracted subtidal frequency patterns from HFR surface flow fields in the
northern Adriatic using SOM. Since surface current patterns were strongly influenced by local wind
forcing, a joint dataset including contemporaneous surface wind data obtained from the operational
hydrostatic mesoscale meteorological model ALADIN/HR was used. Their analysis found that the
strongest currents observed during energetic bora episodes were represented by several current
patterns and another characteristic wind, the sirocco, which was represented by three SOM current
patterns. Mihanovi, et al. [25] suggested that SOM was a most valuable tool for extracting characteristic
patterns of surface flows and forcing functions. Vilibic, et al. [26] applied the SOM method to predict
surface currents based on HFR measurements and numerical weather prediction (NWP) data for the
northern Adriatic in comparison with operational ROMS-produced surface currents. They found
that the SOM-based forecasting system had a slightly better forecasting skill than the ROMS model,
especially during strong wind conditions. Liu, et al. [9] applied the SOM method to extract patterns of
the loop current system and to identify altimetry sea surface height variability in the eastern Gulf of
Mexico. Jin, et al. [27] studied the variability of current patterns near the Karama Gap using outputs
from the ocean general circulation model (OGCM) for the earth simulator on the basis of the SOM.
Jin, et al. [27] found that the evolution of the four coherent patterns showed a robust cycle characterized
as a counterclockwise trajectory in the SOM space. Tsui and Wu [17] applied SOM to study the
Kuroshio intrusion into the South China Sea (SCS) through the Luzon Strait using 18 years of archiving,
validation, and interpretation of satellite oceanographic (AVISO) mean geostrophic velocity (GSV)
data. Results indicate that the Kuroshio intrusion may occur year-round; intrusion is not a major
characteristic in the study area and winter intrusion events are more frequent than summer ones,
based on seasonal variability.

The SOM technique is in a sense a combination of both PCA and MDS techniques. SOM is a type
of cluster analysis, which organizes a dataset of patterns into clusters based on similarity. Grouping a
given dataset of unlabeled patterns into meaningful clusters is the main problem that is solved in
SOM. Moreover, SOM was used to develop a drought forecast model through a nonlinear mapping
of the input domain onto a two-dimensional grid by Barros and Bowden [28]; results indicated that
SOM-based data models can be tools of discovery to identify nonlinear diagnostic and prognostic
relationships among datasets. Obach, et al. [29] used radial basis function networks combined with
a SOM to predict annual abundance of aquatic insects, and found that it is possible to predict the
abundance of aquatic insects based on relevant environmental factors. SOM can be employed not only
to reduce the size of the dataset by clustering, but also to construct a nonlinear projection of the dataset
onto a low dimensional display that are usually of one or two dimensions [30].

Previous studies indicated that SOM is a useful and effective tool for dealing with large datasets.
Since there were few records of surface current measurements, in either space or time, available in
the Galway Bay area before the deployment of HFR system, previous studies of the bay generally
provide little information on spatial patterns of surface currents [31-33]. Herein, both SOM and EOF
techniques were applied to investigate synoptic characteristics of surface currents from both numerical
models and a HFR system. Additionally, some previous research considered longer term analysis.
During this research, because datasets were incomplete, gap filling was used to develop a “synthetic
dataset. The research presented herein considers a small dataset, one of the reasons for this is so that

”

we use only actual data during the analysis and do not introduce extraneous uncertainties; this type of
analysis has not previously been carried out. In subsequent research, we will consider longer datasets
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that have been synthetically enhanced to provide continuous signals and then compare results with
those from this current research.

The structure of this paper is as follows. Section 2 presents methodologies, including the research
domain, observational data, numerical model, and SOM and EOF methods. Results and discussion are
presented in Section 3, followed by research conclusions in Section 4.

2. Methodologies

2.1. Research Domain

Galway Bay is located on the west coast of Ireland; it is a semiclosed bay, as shown in Figure 1.
Its length from west to east is approximately 62 km and the mouth of the bay from north to south is
approximately 33 km. Regional climate in Galway Bay area is mainly affected by the Atlantic Climate
and prevailing southwesterly winds. Tides in this area are semidiurnal, ranging from 5 m during
spring tides to 2.5 m during neap tides [34]. The average water depth is approximately 30 m for the
area covered by the HFR system.
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Figure 1. Deployment of the high frequency radar (HFR) system (C1 and C2 indicate deployment
location of HFR station).

2.2. Observational Data

Land-based coastal radar systems are capable of monitoring information of surface waters based
on the application of high frequency radio wave backscatter [35]. Radars operating in the HF band can
measure the Doppler shift of radio waves scattered from ocean surface gravity waves [36-39]. A single
radar station determines radial components of surface currents relative to that station, providing current
magnitudes and directions toward or away from the station. Surface flow fields are determined by
synthesizing radial surface velocity components from two or more radars. The extent of alongshore
surface current mapping is limited only by the number of radar stations with overlapping coverage [40].
Spatial coverage of surface currents measured by radars can reach approximately 200 km depending on
the radar transmitting frequency. Information obtained from radar has a large number of applications,
such as analysis of marine renewable energy resources, oil-spill monitoring [41,42], data assimilation
into numerical models [43—46], trajectory forecasts [47], and search and rescue [48].

HEFR ocean data quality is affected by several factors such as geometric dilution of precision
(GDOP) and signal-to-noise ratio (SNR) [49]. In order to quantitatively assess radar data quality for
this case, a commonly used evaluation index, GDOP, describes the quality of a velocity measurement
based on the geometrical arrangement between the radar stations and the location being monitored
that had been used to assess velocity components. A low value of GDOP indicates ideal geometry and
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higher values indicate poor geometry where the two velocity components are not highly resolved [50].
O’Donncha, et al. [51] found that the meridional component of surface current flow along the baseline
is distorted most by GDOP in Galway Bay, while the zonal component is more accurately resolved,
apart from a very small domain along the shoreline due to a slight rotation of the baseline from
east-west. Additionally, Ren, et al. [43] compared radial currents between the radar data and ADCP
data in the study domain, and found that modest correlation existed between the two datasets.

Two SeaSonde Coastal Ocean Dynamics Applications Radar (CODAR) radars were deployed
intermittently at Galway Bay to monitor surface currents and waves since the summer of 2011 [52].
Radar stations are located at Mutton Island (C1 in Figure 1) and Spiddal Pier (C2 in Figure 1);
the operating frequency is 25 MHz at both stations. Radial current vector fields from each station
are recorded every hour [53]. Data from both radars are routinely transmitted to a combination
center that is located in the campus of National University of Ireland, Galway, Ireland. The radar
postprocessing software system interpolates surface current data onto a standard orthogonal grid
300 x 300 m. Measurements of surface currents obtained with the HFR system in Galway Bay have
been validated with ADCP data in detail by O’Donncha, et al. [51] and Ren, et al. [54]. The land-based
HFR system has provided a powerful method of obtaining synoptic monitoring of surface currents
with high temporal and spatial resolutions. Identification of synoptic characteristics of surface flows is
a meaningful approach for obtaining good insights into both internal dynamic processes and variations
of ocean surface movement.

Coverage of surface currents captured by the HFR system varies in space and time due to
variability of the ocean surface roughness. An EOF analysis is consistent and reliable when there are no
spatial gaps in the datasets; thus, HFR data with high coverage density in space and time were selected
and used in the research. The HFR data at 1117 spatial points between Julian day 220 and Julian day
232, 2013, were used in the following analysis. Because it is the first time that surface currents were
obtained at high temporal and spatial resolution using a model and radar system in the study domain,
analysis of these short-term (thirteen day) dataset using SOM and EOF can be viewed as a test.

2.3. Numerical Model

The coastal model Environmental Fluid Dynamics Code (EFDC) was applied to simulate the
hydrodynamics of Galway Bay. EFDC was developed at the Virginia Institute of Marine Science by
the U.S. Environmental Protection Agency (EPA) [55,56]. As a free open source numerical model,
EFDC reduces the access threshold for users. EFDC consists of four linked modules: hydrodynamic,
water quality and eutrophication, sediment transport, and toxic chemical transport and fate. Only the
hydrodynamic module was used to simulate surface flows in this research. This module solves
the three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motions
for a variable density fluid. The hydrodynamic component of EFDC implements a semi-implicit,
conservative finite volume solution scheme for the hydrostatic primitive equations with either two-
or three-level time stepping [55-57]. The model uses orthogonal curvilinear coordinate or Cartesian
rectangular coordinate system and structured grid horizontally, which is suitable for long and straight
shoreline with shorter calculation time. The sigma coordinate system is used vertically to avoid the
precision difference between deep water area and shallow water area. Additionally, EFDC can simulate
one-dimensional, two-dimensional, and three-dimensional hydrodynamic force and water quality of
water body. The internal and external mode splitting method is used in the calculation process, and
the calculation accuracy of space and time is second order. The model has been successfully applied to
a number of modeling studies of rivers, lakes, estuaries, and coastal regions [58-60]. Boas, et al. [61]
compared EFDC with WASP (water quality analysis simulation program) and the commercially
available software MIKE, and found that because the horizontal scale of most surface water is much
larger than the vertical scale, in order to simplify the calculation, the vertical pressure gradient is
regarded as the balance with buoyancy, and the vertical acceleration is ignored in EFDC, so EFDC is
mostly used in shallow water areas. EFDC has a robust flooding and drying routine which is required
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in coastal regions. The structured grid also leads to the low adaptation of EFDC to the curved coastline.
For these reasons, EFDC was applied to Galway Bay.

A 3D hydrodynamic model of Galway Bay (see Figure 1) was developed using a regular grid
coordinate system; a spatial resolution by 150 m in both horizontal directions was employed generating
380 x 241 grid cells in this research. A bathymetric model of Galway Bay was developed from the
recent, high resolution Integrated Mapping for the Sustainable Development of Ireland’s Marine
Resource (INFOMAR) seabed data program. Variable vertical layer thicknesses were used in the
model with a thinner layer at the top and bottom of the water column and thicker layers in the
middle, thereby ensuring that wind forcing was not overly damped by tidal forcing. A detailed
description on setting up vertical layer structure for the Galway Bay was reported by Ren, et al. [54].
The meteorological forcing parameters including wind, pressure, rainfall, solar radiation, and relative
humidity were obtained at a one-minute interval from the Informatics Research Unit for Sustainable
Engineering (IRUSE) weather station approximately 5 km from station C2 (see Figure 1). Records of
the River Corrib inflows entering Galway Bay close to the north of point C2 were obtained from the
Irish Office of Public Works (OPW). Tidal water elevation time series generated from Oregon State
University Tidal Inversion Software (OTIS) were used to define the tidal forcing at the western and
southern open boundaries in the model [62,63].

2.4. Self-Organizing Map

Kohonen self-organizing maps or self-organizing maps are a type of neural network algorithm
proposed by Tuevo Kohonen [64]. The SOM is a kind of unsupervised learning algorithm, which
captures patterns in the input data through competitive learning, hence the name “self-organizing”.
SOM retains a principal “features map” of the input data; this makes SOM very useful. SOM is
also considered a “map” projection method. Another intrinsic characteristic of SOM is that vector
quantization, which reduces multidimensional data into lower dimensional spaces (usually one or two
dimensions), is easier to understand. Additionally, SOM builds relationships that retain information so
that any topological relationships developed within the training set are maintained.

Figure 2 presents an example of a 4 X 3 SOM structure. Xy,X»,..., X, are input data, i.e.,
the two-dimensional surface flow fields in this research, which are projected to each node in the output
layer. X; contains surface velocity components having I data points and | data points in the x and y
directions, respectively, over the analysis domain. This indicates that each node of an output layer
is linked to each input dataset. Each node of an output layer, as shown in Figure 2, has a specific
topological position and contains a vector of weights of the same dimension as the input vectors. If the
training data consists of vector X of n dimensions, each node contains a corresponding weight vector
of n dimensions. The dotted lines connecting the nodes at the output layer only represent adjacency
and do not signify connectivity. There are no lateral connections among nodes on the output layer.
The weight vectors adopt an alternative initialization scheme. As the input dataset is processed through
the SOM neural network, the summed distance between weights and input dataset are computed
at each node. In each successive step the weight vector of the unit having the smallest Euclidian
distance is selected as the “winner,” the best match unit (BMU) or codebook vectors [30]. The SOM
is a neighborhood-preserving vector-quantitative analysis tool working on the winner-take-all rule
in a mathematical sense, where the BMU is determined as the most similar node to the input at an
instant of time. The key of the SOM algorithm is to update the BMU and its neighborhood nodes
concurrently. Input topology of dataset is preserved on the output nodes through performance of such
a mapping [65]. Details of the implementation procedure of SOM are described in the Appendix A.

Advantages of the SOM method can be listed as follows: (a) an intuitive approach to building
customer segmentation profiles, (b) simple and easy to explain results, and (c) new data points can be
mapped to the trained model for predictive purposes. To quantitatively assess the mapping quality,
two measures are used. The first is the quantization error (QE, see details in Appendix A), which is used
as a metric of the average distance between each data vector and the BMU, whose weight vector has
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the minimum distance. The second measure is the topographic error (TE, see details in Appendix A),
which represents the proportion of all data vectors for which the first and second BMUs are not adjacent
to each other [66]. Lower values of QF and TE indicate better reproduction of the patterns of the SOM
model. A batch algorithm, a rectangular-lattice structure with a sheet map and the “ep” neighboring
function for SOM analysis, as recommended by Liu, et al. [23] and Vilibi¢, et al. [67], were used in
this research.

Figure 2. Architecture of a 4 x 3 self-organizing map (SOM) network.

2.5. Empirical Orthogonal Function

An empirical orthogonal function analysis is a data decomposition tool and it can be used to explain
original data in the form of a series of orthogonal base functions with associated coefficients. EOF modes
preserve the majority of the variations as much as possible through reducing the dimensionality of
an original dataset. One unique attribute of an EOF analysis is that EOF base functions are derived
from the original dataset through decomposition. This produces EOF modes that preserve the inherent
characteristics of the original dataset and converge rapidly [68]. A detailed description about the
EOF analysis method can be found in Hannachi, et al. [69] and Monahan, et al. [70]. In this research,
for given vector fields of surface currents in Galway Bay, an investigation of spatial-temporal variations
of surface flows was implemented by EOF decomposition. Details of EOF analysis are presented in
the Appendix A.

3. Results

Since coverage of HFR surface currents varied in space and time and to ensure reliable analysis in
this research, surface currents only at points always covered by the HER system during the analysis
period were selected and used in the following analysis. Here, 312-h surface vector fields with 1117
observation points in total for Galway Bay were used for both SOM and EOF analyses. Surface vector
fields extracted from model results at the same points were used. Both observed and simulated surface
vector field datasets contained 2234 (1117 for both u and v components) columns and 312 rows.
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3.1. SOM Analysis

The goal of the SOM technique is to partition an incoming dataset of arbitrary dimension into a
two-dimensional discrete feature map and to display this transformation adaptively in a topologically
ordered fashion. Extracted SOM patterns are arranged in a two-dimensional array such that similar
patterns are located nearby and dissimilar patterns are distant [71]. To completely represent the
characteristic surface flow features and make it small enough for visualization and interpretation,
after several test runs, a commonly used SOM size of 4 X 3 was selected and used in this research.

3.1.1. Spatial Variability

The batch of surface flow fields for both model results and HFR data were characterized into 12
typical SOM patterns with corresponding frequencies of occurrence. The 4 x 3 SOM array results of
model results and HFR data are shown in Figures 3 and 4, respectively. To quantify the representation
of each SOM pattern, the frequency of occurrence of each SOM pattern was computed by summing the
number of the BMU by the total record lengths (the number of input vectors, 312 here), see details in
Appendix B. The relative occurrence frequency for corresponding SOM patterns is shown in the upper
left corner in Figures 3 and 4.
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Figure 3. Characteristic spatial patterns of surface currents from model results extracted by a 4 x 3 SOM
analysis (subfigures (a-1) indicates twelve spatial SOM patterns, respectively; the occurrence frequency

is given as a percentage number for each pattern at the topleft).

Latitude (degrees)

(@

(d)

Latitude (degrees)

8

Lattude (degroos)

N

Latitude (degroos)
B

8

Lattude (cegrees)

Lattude (dogreos)
8

Latitude (degrees)
g

Ww;

/

s

Latude (dogreos)
8

Latitude (degrees)

(8)

P moom (h)

Figure 4. Cont.

159



Remote Sens. 2020, 12, 2841

)
64%

)

Wy

(k) (O]

Figure 4. Characteristic spatial patterns of surface currents from radar extracted by a 4 x 3 SOM
analysis (subfigures (a-1) indicates twelve spatial SOM patterns, respectively; the occurrence frequency
is given as a percentage number for each pattern at the topleft).

For SOM surface flow patterns as shown in Figure 3, twelve SOM patterns can be categorized
visually into four groups, as presented in Table 1.

Table 1. Categories of SOM patterns for model results.

SOM

Group Representative Characteristics Total Occurrence Frequency (%)
Pattern
1 1/5/6/9/10 southeastward and eastward flows 41.1
2 3/4/7/8, western flows 40.4
3 11/12 northwestward flows 119
4 2 southwestward and alongshore flows 6.7

Table 1 shows that the occurrence frequency of group 1 consisting of four SOM patterns (1/5/6/9/10)
was the highest at 41.1% with southeastward and eastern flows. Surface flow fields categorized as
group 2 had the second highest occurrence frequency with westward flows. The total occurrence
frequency of groups 1 and 2 was greater than 81%. This indicates that the main patterns of surface
flows were southeastern and alongshore flows during the analysis period. Group 3 with an occurrence
frequency greater than 11% had a northwestward trend for surface flows. At 6.7%, the occurrence
frequency of group 4 was much smaller than groups 1-3. This indicates that SOM pattern 2 occurred
with relatively low probability. Additionally, magnitudes of surface flows in SOM pattern 2 were
smaller than that of other SOM patterns.

For surface flows of HFR data, twelve SOM patterns can be categorized visually into six groups,
as presented in Table 2. Table 2 shows that four SOM modes (3/4/7/8) of surface flows were categorized
as group 1 with the highest occurrence frequency at 37.2%. Occurrence frequencies for groups 2, 3, 4,
and 6 were greater than 10%, whereas the total occurrence frequency of group 5 was quite low, at 2.2%.

Table 2. Categories of SOM patterns for high frequency radar (HFR) data.

Group SOM Representative Characteristics of Surface Vector Occurrence Frequency (%)
Pattern Fields
1 3/4/7/8 western flows 37.2
2 1/5 southeastward and alongshore flows 17.6
3 9/10 northeastward and alongshore flows 18.3
4 2 southern and southwestward flows 10.3
5 6 southwestward and northeastward flows 22
6 11/12 northwestward flows 14.4

Coastal currents in Galway Bay are mainly driven by tides and winds. Tides typically propagate in
western and eastern directions corresponding to tidal flooding and ebbing, respectively. Figure 3 shows
that western currents existed in group 2 by total occurrence frequency 40.4%; eastern currents (patterns
9 and 10) existed in group 1 by total occurrence frequency 27.9%. Surface currents of model results
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during tidal flooding were stronger than during tidal ebbing. However, SOM patterns having eastern
and western current patterns in the radar data were different. Figure 4 shows that eastern currents
existed in SOM patterns 5 and 9 by total occurrence frequency 19.5% for radar data; western currents
existed in group 1 by total occurrence frequency 37.2%. Surface currents of radar data during tidal
ebbing were stronger than during tidal flooding. Since spatially constant winds were used in the
modeling, the difference in eastern and western SOM current patterns between model results and radar
data may be due to influences of wind variation in space. Thus, wind roses and mean wind vectors
based on European Centre for Medium-Range Weather Forecasts (ECMWF) data with 0.15° x 0.15°
spatial resolution and 6-h temporal resolution are presented in Figures 5 and 6 to further investigate
effects of winds on SOM current patterns.

Figure 5 show that wind speeds and directions varied over the analysis domain. Moreover,
occurrence frequencies of winds in the same direction were also different. In general, dominant winds
blew from the ocean toward land during the analysis period. Figure 6 shows that the directions of
mean wind vectors over higher latitude points had a clockwise trend, while the directions were more
uniform (southwest) over lower latitude points. Considering SOM patterns of model results and
radar data, group 3, as shown in Figure 3, with total occurrence frequency 11.9% had a northwestern
current pattern from the model results; group 6 (SOM patterns 11 and 12) and SOM pattern 10 with
total occurrence frequency 19.9% had a landward (northwestern, northern, and northeastern) current
pattern in the radar data. The occurrence frequency of landward current patterns extracted by SOM
analysis was stronger in the radar data than in the model results. This indicates that surface currents
driven by winds were better captured by the radar observation system than the numerical model.
As stated before, this is probably due to the fact that spatially constant winds were used in the model,
and demonstrates the importance of wind forcing on surface hydrodynamics.
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Figure 5. Wind roses during analysis period. (Locations of W1-W6 are shown in subfigures (a—f),
respectively; direction indicates wind blowing from).

Additionally, infrequent winds blowing from land to ocean (W1, W4, and W5 in Figure 5) occurred
during the analysis period. Corresponding vector patterns were also extracted by SOM for both
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model results and radar data. Southeastern currents, including SOM patterns 1, 5, and 6, had a 13.2%
occurrence frequency for model results; offshore SOM current patterns 1 and 5 had a 17.6% occurrence
frequency for radar data. In summary, SOM patterns accounting for the effects of tides and winds had
occurrence frequencies of 97.8% and 93.3% for radar data and model results, respectively. This indicates
that the SOM technique can extract representative synoptic characteristic patterns of surface flows.
Additionally, the effects of the main driving forces (tide and wind) on surface flows can be well linked
to SOM patterns, especially for the radar data.
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Figure 6. Mean ECMWF (European Centre for Medium-Range Weather Forecasts) wind vectors during
analysis period.

3.1.2. Temporal Evolution

To analyze the evolution process of the SOM patterns in time, BMUs were computed and are
shown in Figure 7. A BMU can be found for each input data vector by comparing the 12 SOM patterns
with the input data map.

Figure 7a shows that the evolution of BMU for model results generally had two patterns: (I) 12—
4—2—1-9— 11 and (II) 11— 8— 4— 3— 2— 1— 9— 10. Evolution processes of both type I and
II show that the general variation trend of surface flow fields was anticlockwise, i.e., westward —
southwest — southeast — westward, as shown in Figure 3. The corresponding group category pattern
is 2—»3—1-2, as presented in Table 1.

Figure 7b shows that evolution of BMU for HFR data was not as uniform as the model results.
The evolution trend was 12— 8— 4— 3— 2— 1. The trend of surface flow fields was generally
anticlockwise, i.e., northwestward — westward — southward — southeastward, as shown in Figure 4.
The corresponding group category pattern was 6— 1— 4— 2, as presented in Table 2.

In general, a similar anticlockwise evolution trend changing from westward to southeastward
existed for surface flow fields in both the model results and HFR data. However, the evolution trend
of BMU was more regular in the model results than in the HFR data. This is again probably due to
the fact that a spatially constant wind was applied to force the surface boundary of the models. Thus,
tide and wind were the same over simulated domain. However, surface currents monitored by the
HEFR system appear to have captured more information of surface currents driven from winds.
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Figure 7. Time series of best match unit (BMU) corresponding to 12 SOM patterns ((a) model results
and (b) radar data).

3.2. Empirical Orthogonal Function

In order to further compare the HFR data and numerical results, an EOF analysis was performed.
EOF analysis reduces data dimensionality and represents characteristics of each dataset in a few concise

and typical patterns in both space and time. The same dataset as used in the above SOM analysis was
used in the following EOF analysis.

3.2.1. Spatial Modes

To investigate synoptic characteristics of coastal flow patterns extracted by EOF, the first six EOF
eigenvector modes for both EFDC model results and HFR data, as shown in Figures 8 and 9, respectively,
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account for more than 95% of the explained variances. Variances explained by the corresponding EOF
mode are presented in the left-hand corner in each panel.
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Figure 8. Spatial empirical orthogonal function (EOF) modes of model results (subfigures (a—f) indicates
the first to the sixth EOF eigenvector modes, respectively).

Latitude (degrees)
g

Latitude (degrees)

Latitude (degrees)

i
i

~~
oY)
N

Latitude (degrees)
g

Latitude (degrees)
4

Latitude (degrees)
g

” gk (@ogres) (f)  Longiuc (dogroos)

Figure 9. Spatial EOF modes of radar data (subfigures (a—f) indicates the first to the sixth EOF
eigenvector modes, respectively).

The first EOF mode (EOF1) of the model results and the HFR data, as shown in Figures 8 and 9,
accounts for 73.8% and 55.2% of the variances separately. This indicates that the possibility of surface
flow in EOF1 mode patterns for model results was larger than for HFR data. The general pattern of
surface flows in EOF1 mode is southeast; while there are also alongshore surface flows in EOF1 mode
of the HFR data. This may result from variation of winds in space, which was not captured by model.

The patterns of surface flows in EOF2 mode were more similar between model results and HFR
data. The possibility of flow in EOF2 mode for the HFR data was greater than twice that of the model
results. This indicates that patterns of surface currents in EOF2 mode were more likely to occur in
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the HFR data than in the model results, the trend of surface flows in this mode was in the northern
direction. However, surface flow magnitudes of model results were larger than these of HER data.

The differences of spatial patterns between model results and HFR data in EOF3 mode were
more significant than in EOF1 and EOF2 modes. Spatial patterns in HFR data consisted of weak
southeastward and strong southwestward flows, which converged around the —45° line. The general
spatial pattern of surface currents for model results was southward; a northward trend of surface flows
existed in the middle of area covered by the radar. Moreover, magnitudes of surface currents in EOF3
mode for the HFR data were larger than the model results.

Magnitudes of surface currents in EOF4 mode were small and similar between model results
and HFR data. Disorder of spatial patterns exists in model results, while a southward trend exists
across the right parts of displayed area. Surface flows bifurcate across the left parts with one in the
southeastward direction and the other in the eastward direction in HFR data.

There was a clockwise and weak surface flow gyre in EOF5 mode in HFR data while the spatial
pattern of EOF5 mode in the model results was generally disordered. Magnitudes of surface currents
in this mode were small and comparable between the two datasets.

The spatial patterns of EOF6 mode in HFR data were generally offshore currents and along shore
currents, but no such significant type of surface flow trend exists in model results. Additionally,
magnitudes of surface currents near coasts were larger than other areas for model results, but magnitudes
were generally uniform except for few large surface currents at the right corners for the HFR data.

The first two EOF modes accounting for the majority of the variance (>85%) were relatively similar
for model results and HFR data. The differences in the remaining four EOF modes between model
results and HFR data were significant, but these modes accounted for a relatively small proportion of
the variations.

3.2.2. Variance of Surface Flows Explained by EOF Modes

To further compare EOF analysis of model results and radar data, accumulative explained
variances of the first 20 EOF modes and variance values of the first six EOF modes are presented in
Figure 10 and Table 3, respectively. The value of variance represents the characteristic strength of the
corresponding spatial EOF modes, as shown in Figures 8 and 9; this was computed relative to the
entire set of EOF modes. A large value of variance indicates that the corresponding spatial EOF mode
was significant; a small value of variance means that the corresponding spatial EOF mode was weak.
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Figure 10. Variance of EOF modes.
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Table 3. Summary of variance for the first six EOF modes.

EOF Mode Variance (%) Accumulative Variance (%)

EFDC HFR EFDC HFR
1 73.8 55.2 73.8 55.2
2 13.5 29.9 87.2 85.1
3 2.6 8.1 89.9 93.2
4 23 1.8 92.1 95.0
5 1.7 1.1 93.7 96.1
6 1.3 0.7 95.0 96.8

Note: EFDC and HFR indicate model results and high frequency radar dataset, respectively.

Figure 10 shows that the first two EOF modes explain the majority of variance for both model
results and HFR data; accumulative variance of model results at 87.2% was greater than that of HFR
data at 85.1%. However, the accumulative variance of HFR data was greater than that of the model
results from the third EOF mode. The accumulative variance explained by the first four EOF modes
was greater than 90% for both model results and HFR data. This indicates that dominant patterns of
surface flow fields can be well represented by only a few EOF modes. Variations of accumulative
variances were not significant from the tenth EOF mode onward.

Although the difference of the variances in EOF1 mode between model results and HFR data
was significant, the variance of the first two EOF modes (greater than 85%), as presented in Table 3,
was comparable. The explained variance from the third EOF mode was much smaller than that of the
first and second EOF modes. Additionally, the first six EOF modes accounted for greater than 95% of
the total variance for both datasets. This indicated that the first six spatial EOF patterns represented
synoptic characteristics of surface currents.

Figure 11 shows the first three EOF PCs over time for both model results and HFR data. A PC
represents the time-varying characteristics (i.e., amplitudes) of the corresponding EOF eigenvector
spatial distribution modes. The sign of the PC values determines the direction of EOF modes.
Positive PC values indicate the same direction as the mode, while negative values indicate the opposite
direction. The larger the absolute value of a particular PC, the stronger that PC EOF mode is at that
moment. Time series of PC1 and PC2 for both model results and radar data exhibited cyclical trends
with periods similar to a tidal period. The correlations between model results and HFR data of the
first (PC1) and second PC patterns (PC2) are 0.80 and 0.58, respectively. This indicates that model
results and HFR data had high and moderate correlation, respectively, based on categories proposed by
Taylor [72]. PC3 represents high frequency wind generated flows. However, correlation between the
third principal components (PC3) was quite weak at 0.02. This discrepancy is again due to limitations
of the model to generate wind effects at short scales on the surface velocity fields, which would be
a consequence of the wind field configuration which forces the model, similar to those obtained by
Soto-Navarro, et al. [10].

To provide better insight into the temporal variation characteristics of the EOF PCs between model
results and radar data, a spectral analysis was carried out on each EOF PC time series, see Figure 12.
The EOF PC1 spectral density peaks were similar for model results and radar data (see Figure 12a),
the corresponding frequency is 0.08 cph (cycles per hour). This indicates that the semidiurnal signal
(12.5 h) was strongest in both datasets, corresponding to the tidal frequency. However, for EOF PC2
and PC2, the spectral density trends were not as strong between the two datasets. The spectral density
peaks of the radar data were weaker in PC2 and PC3 than that in PC1, while the spectral density peaks
of the model results were much weaker in PC3 than PC1 and that in PC2. The differences may again
result from the radar-derived surface current dataset containing spatially varying wind effects.
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Figure 11. The first three EOF principal components (PCs): (a) model results and (b) HFR data.
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Figure 12. Spectral analysis of EOF PCs between model results and radar data ((a—c) indicate spectral
analysis for EOF PC1, PC2, and PC3, respectively).
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4. Discussion

Characteristic patterns of coastal flows were extracted by SOM (Figures 3 and 4) and EOF (Figures 8
and 9) for both model results and radar data. As stated in the introduction, the SOM technique has more
advantages than other conventional data analysis techniques. Based on the SOM analysis, synoptic
characteristic patterns of coastal flows were visualized. Additionally, time series of BMU can offer
evolution trends of characteristic patterns over space; this can better explain spatiotemporal variation
of coastal flows. EOF technique can decompose coastal flow fields that change with time into two
parts: the spatial modes which are constant in time and the time components (PCs), depending only
on time. Although the EOF technique can extract synoptic characteristic patterns of coastal flows
for both model results and radar data, it does not offer temporal variation trends corresponding to
synoptic characteristic patterns over space. Since EOF is a linear decomposition technique, synoptic
characteristics of coastal flow fields in space were less uniform than synoptic patterns extracted by the
nonlinear SOM technique. In short, both SOM and EOF techniques offer synoptic characteristic patterns
of coastal flow fields for both model results and radar data. However, more detailed information
of variation properties for analysis dataset can be provided by an SOM analysis than that of an
EOF analysis.

5. Conclusions

This paper presented SOM and EOF analyses of characteristics of surface flow fields in Galway
Bay based on data provided by a HFR radar system and output from a numerical model. The main
conclusions from this research follow.

Surface flows were categorized into four and six representative synoptic characteristic groups
for model results and HFR data using SOM, respectively. The BMU time series indicate that the
evolution of SOM patterns between model results and HFR data had similar trends varying from west
to southeast in the anticlockwise direction.

The total variance explained by the first two EOF modes was comparable, with 87.3% and 85.1%
for model results and HFR data, respectively, which underlines the agreement of both datasets in
describing the general hydrodynamic characteristics of surface vectors in the region. The difference in
the rest of the EOF modes, with relatively low variance, probably results from application of spatially
constant wind in model.

Representative synoptic patterns of coastal surface flows were extracted using both EOF and SOM
techniques. More detailed spatiotemporal information about coastal flow variation properties can
provided by patterns obtained from SOM than from an EOF analysis.

The accuracy of model outputs was also assessed in detail by SOM and EOF type analysis;
these analyses illustrate which processes models are good at reproducing and which processes are
not well-represented by a model. In this case, the analysis shows that the model does not reproduce
wind induced currents well, and so the model must be improved in this regard by forcing the
surface with spatially varying wind stresses or through assimilation of the HF radar-derived surface
currents [73]. Additionally, flow is dominated by tidal processes and, therefore, 13 days of observations
is significantly relevant to those processes. In order to capture multiple (meteorological) synoptic scale
events, which would better illuminate the effect of wind forcing, analysis of a longer period using
modest spatial filtering could be advantageous and will be included in future research. The use of
spectral analysis is very informative when comparing time-varying data that has dominant frequency
components in EOF analysis.

This research analyzed a relatively short temporal dataset as this dataset was complete and
did not include synthetic data that would introduce further uncertainty into the already difficult
intercomparisons. Future research will consider longer-term datasets complemented by gap-filling to
give a synthetic continuous dataset; results will be compared with the research presented herein.

In summary, the results above reflect the capability of the EFDC model and HFR system to
describe characteristics of surface vector fields of the Galway Bay area. Typical patterns of surface
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vector fields associating with BMU time series can better describe the evolution of the process of
surface vector fields. SOM analysis provides more detailed information than that provided by EOF
analysis. Such SOM patterns may be useful in a variety of forecasting applications, such as oil spill
treatment and search and rescue. Although these results are interesting and useful, and SOM and EOF
analysis methods provide a powerful tool to diagnose ocean processes from different aspects, it is also
of great significance to further investigate the underlying physical mechanisms such as wind influence
in future studies.

SOM has significant potential for surface current forecasting since it is simpler than other
techniques, such as data assimilation, and computational costs are much lower. Forecasting of coastal
flows based on the SOM technique will be undertaken by the authors in future research.
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Appendix A. Self-Organizing Map
In general, implementation process of SOM algorithm can be summarized as follows:

1. Determine the size and type of the map.

2. Initialize each node’s weights W;; at random.

3. Select a vector at random from the training dataset and present to the network. The following
Euclidean distance formula is calculated to assess the “best matching unit (BMU)” between each
node and all input dataset.

- 2
DI; = Z(X,- - W) (A1)
i=0

where

DI; is the jth distance from all input vector;

X; is the ith input vector having I data points and | data points in x and y directions, respectively;

Wijj is the jth node’s weight;

n in the number of weights.

The BMU of each node is found based on calculating which nodes’” weights are most like the
input vector X. The neighborhood function is taken by assuming to maximum when distance is zero.

s

There are four types of neighborhood function available: “bubble”, “gaussian”, “cutgauss” and “ep”:

Flo(t) - dg) bubble
( —d2
exp < 2) gaussian
20(t
o) P o) (A2)
eXp[zg(Sz)F(G(t) —dg) cutgauss
max{0,1, —(o(t) = dg)?) ep
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where

o(t) is the neighborhood radius at time #;

d.; is the distance between map units c and i on the map grid;

F is a step function:

0 (ifx<0)
F(x) = A
(x) {1 (if x> 0) (43)

Determine the radius of the neighborhood of the BMU (the size of the neighborhood decreases
with each iteration).

Tune weights of nodes within the radius of the BMU to make them more like the input vector.
The closer a node is to the BMU, the more its weights are altered.

Wi(t+1) = Wi(t) + O(t) X L(t) x (I(t) = W;(t)) (A4)

L(t) = LoeT) (A5)

where

L(t) is the learning rate.

Repeat steps (A2)—(A5) for N iterations.

Three parameters—number of iterations, learning rate, and neighborhood radius—need to be
determined. The quantization error (QE), i.e., average distance between each input data vector X; and
its BMU (uppy) can be expressed as:

N
QE =Y IXi ~ upuaul (46)
i=1

The topographic error (TE) being used to measure the topology preservation can be calculated by
the following formula:

N
1
TE =5 E upmu (X;) (A7)
i

where uppr(X;) is 1 if the first and the second BMUs are not adjacent to each other, otherwise it is
uppu(X;) = 0.

Appendix B. Empirical Orthogonal Function

In particular, the characteristic patterns of surface flows H(x, t) can be decomposed into a series
of linear combinations of temporal and spatial orthonormal function:

M

H(x, ) = Y Zon()Lu(t) (A8)

m=1

where

Zy; (also known as EOFs) are the spatial eigenfunctions representing the dominant spatial patterns
of surface flow range variability;

Ly, (also known as PCAs) are the temporal eigenfunctions indicating the long-term changes of
surface vector fields;

m =1to M, with M being the number of temporal and spatial samples.
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Here, both the EOFs and PCAs should be orthonormal and normalized as follows:

T . .

Y Lo :{ f i (A9)
t=1 ]

X
Y zi)z,(x) :{ 0 ’lf] (A10)
x=1 vit=]

where

X and T are the maximum values of x and t, respectively;

7i is the eigenvalue, which represents the contribution made by the ith EOF mode to the total
variance, where the first few largest eigenvalues typically contain the most signals and represent the
dominant temporal-spatial patterns of the observed tidal series. The relative contribution of the mth
eigenfunction pm can be computed by the following expression:

M
P = [/\m /Z /\m] x 100 (A11)

m=1

Subsequently, it is possible to reconstruct a matrix H’(x,t) using a subset of the dominant
eigenvectors, which explained the maximum variance with the first k EOFs modes:

k
H(x,6) = ) Zn(0)Ln (1) (A12)
m=1
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Abstract: Physics-based radiative transfer model (RTM) inversion methods have been developed
and implemented for satellite-derived bathymetry (SDB); however, precise atmospheric correction
(AC) is required for robust bathymetry retrieval. In a previous study, we revealed that biases from
AC may be related to imaging and environmental factors that are not considered sufficiently in
all AC algorithms. Thus, the main aim of this study is to demonstrate how AC biases related to
environmental factors can be minimized to improve SDB results. To achieve this, we first tested a
physics-based inversion method to estimate bathymetry for a nearshore area in the Florida Keys,
USA. Using a freely available water-based AC algorithm (ACOLITE), we used Landsat 8 (L8) images
to derive per-pixel remote sensing reflectances, from which bathymetry was subsequently estimated.
Then, we quantified known biases in the AC using a linear regression that estimated bias as a function
of imaging and environmental factors and applied a correction to produce a new set of remote sensing
reflectances. This correction improved bathymetry estimates for eight of the nine scenes we tested,
with the resulting changes in bathymetry RMSE ranging from +0.09 m (worse) to —0.48 m (better)
for a 1 to 25 m depth range, and from +0.07 m (worse) to —0.46 m (better) for an approximately 1 to
16 m depth range. In addition, we showed that an ensemble approach based on multiple images,
with acquisitions ranging from optimal to sub-optimal conditions, can be used to estimate bathymetry
with a result that is similar to what can be obtained from the best individual scene. This approach can
reduce time spent on the pre-screening and filtering of scenes. The correction method implemented
in this study is not a complete solution to the challenge of AC for satellite-derived bathymetry,
but it can eliminate the effects of biases inherent to individual AC algorithms and thus improve
bathymetry retrieval. It may also be beneficial for use with other AC algorithms and for the estimation
of seafloor habitat and water quality products, although further validation in different nearshore
waters is required.

Keywords: satellite-derived bathymetry; physics-based inversion method; atmospheric correction

1. Introduction

Bathymetric information from satellite data is of fundamental importance in optically shallow
waters, where the seafloor is visible from space and the water-leaving radiance (Ly ) is influenced by
reflection off the seafloor. Such information, in the form of maps of water depth, is essential for a
wide variety of purposes including offshore activities (e.g., pipeline laying), resource management
(e.g., fishery), and defense operations (e.g., navigation). Traditional bathymetric charts are based on
soundings obtained during hydrographic surveys. However, as ship-borne surveys are costly and
time-consuming, and many shallow-water environments are highly dynamic, it is impossible to survey
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all areas of interest, and the difficulty in accessing shallow and remote areas means that in practice,
up-to-date data are typically only available for limited areas (harbors and main navigation corridors).
Airborne light detection and ranging (LiDAR) Bathymetry (ALB) systems, such as CZMIL (Coastal
Zone Mapping and Imaging LiDAR) [1], LADS MK 3 (Laser Airborne Depth Sounder MK 3) [2],
and EAARL-B (Experimental Advanced Airborne Research LiDAR B) [3] can also be used to map water
depth. With these techniques, a vertical accuracy of about + 15 cm in shallow water is possible [4],
although accuracy is affected by turbidity and the LIDAR system. While precise bathymetric mapping
of water depth to about 20-70 m depth can be achieved with airborne LiDAR [5,6], costs associated
with these systems are relatively high, thus limiting their application over large, or remote, areas.

Passive optical satellite remote sensing can also be used to map bathymetry, typically known as
satellite-derived bathymetry (SDB), based on the relationship between the color of a shallow-water
area and the depth of the water. SDB can be implemented using empirical or physics-based methods.
The empirical methods are based on the simple premise that a statistical relationship can be established
between water depth and the remotely sensed radiance of a water body, using regression or similar
analysis [2,7-10]. Thus, all empirical approaches require coincident in-situ data on water depth for
calibration; ideally, these data should be up to date and have good geographic and depth distribution.
Empirical approaches assume that the inherent optical properties (IOPs) of the water, as well as seafloor
spectral reflectance, do not vary across the image, and therefore, the results may contain large errors
and require manual editing when this is not the case. A key advantage of empirical approaches is
the ability to retrieve water depth relatively easily, but their reliance on calibration from coincident
field observations means that they cannot be used for systematic regional and global mapping and
monitoring. Physics-based methods instead estimate bathymetry on per-pixel basis through the
inversion of a radiative transfer model (RTM). As such, they do not assume uniform IOPs and seafloor
reflectance, nor do they rely on coincident depth data for calibration. In addition to bathymetry, seafloor
reflectance and water IOPs, which can be used to infer substrate and water quality respectively, can be
simultaneously retrieved, and per-pixel uncertainties of all these parameters, including water depth,
can also be determined. While originally developed for and tested on airborne hyperspectral imagery,
physics-based methods for SDB have also been demonstrated for multispectral satellite sensors [11-14].
Physics-based methods can be implemented using either look-up tables (LUTs) [15,16] or semi-analytical
optimization methods [17,18]. In the first case, a database of remote sensing reflectance (Rys) spectra is
built from an RTM provided with a range of values for water depth, spectral seafloor reflectance, water
column optical properties (absorption and backscattering coefficients), and known environmental
conditions such as sun angle and wind speed. For the retrieval of parameters (water depth, water IOPs,
and seafloor reflectance) in each image pixel, a search is then performed to find the R in the LUT that
best matches the one observed in the pixel. With semi-analytical optimization methods, the radiative
transfer equation is used to estimate water depth by iterative optimization of the same parameters.
In both methods, the best match between modeled and observed reflectance is determined using a
least squares or similar matching technique.

Despite the advantages of physics-based methods, a substantial challenge is that they rely on
precise estimates of absolute radiometry, typically in the form of Rs or L. Unlike other optical remote
sensing applications, including the empirical approaches to satellite-derived bathymetry, physics-based
retrieval algorithms may perform very poorly if Ry is incorrectly estimated, and high-quality R
data from a robust atmospheric correction (AC) is essential for accurate physics-based water depth
estimation. Accordingly, a variety of AC algorithms have been developed for ocean color (OC) products
retrieval such as bathymetry, and several studies have validated their performance against in situ
data. For example, Pahlevan et al. [19] validated R.s produced from different AC schemes in the
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS) with in situ data
from the AERONET-OC network. Likewise, Doxani et al. [20] assessed the performance of different
AC methods and validated their R;s with match-up datasets over both land and water surfaces in
an AC inter-comparison exercise. Warren et al. [21] evaluated the accuracy of a wide range of freely
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available AC processors by comparing them to reference Ry data from different coastal and inland
waters. Similarly, in a more recent AC exercise, Zhang and Hu [22] also analyzed an AC algorithm,
comparing its Rys images with those measured over a few sites from the AERONET-OC stations.
Collectively, these studies demonstrated that accurate AC remains a challenge for OC remote sensing
where precise R, data are needed. Therefore, it is important to explore ways by which errors in AC
outputs, and their effect on the products derived from them, can be minimized. One way to address
some of the problems posed by imprecise AC is to assess and quantify the impacts of environmental
variables on AC accuracy and then account for this in the atmospherically corrected image. In an earlier
study [23], four publicly available AC processors (2 land-based and 2 water-based) for deriving the Ry
in coastal waters were compared and validated with 54 R;s match-up datasets from AERONET-OC
stations. The study revealed that biases from ACOLITE and SeaDAS, two of the state-of-the-art AC
algorithms, are influenced by environmental variables. In this study, we demonstrated the potential of
Landsat 8 (L8) data for SDB in US coastal waters and assessed the performance of a commonly used
and publicly available water-based AC algorithm (ACOLITE [24]) for physics-based SDB. To minimize
the effect of imperfect AC on the bathymetry retrieval, we further used a correction factor to improve
the original atmospherically corrected image from ACOLITE. Using a set of 9 images, SDB estimates
from these two AC procedures were then compared with LiDAR-derived bathymetry of the area.
Lastly, we used an ensemble approach to produce SDB of the study area using all the corrected images.

2. Study Sites and Imagery

2.1. Study Sites

The Florida Keys is a series of islands that extend from the southern end of Florida, USA, to the
south-southwest. Their nearshore shallow waters include coral reef tracts, patch reefs, bank reefs,
seagrass meadows, and unvegetated hard and soft bottom. This site was chosen because of its relatively
clear waters, the good knowledge of seabed features, and availability of LIDAR-derived depth data
for validating SDB estimates of water depth. The benthic environment of the section of the Florida
Keys used in this study is dominated by extensive seagrass beds, with some patches of reef and
unconsolidated sediments. Figure 1 shows this area with the distribution of bathymetric LiDAR data
used for validating the SDB estimates in this study.

25°10N

25°0N

80°30'W 80°20'W 80°10'W

Figure 1. Landsat 8 image showing the upper Florida Keys. Bathymetric LIDAR data used for validation
are shown in yellow.
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2.2. Satellite Data

Nine L8 images (Figure 2) from the Florida Keys, acquired during both optimal and near-optimal
conditions for SDB, were downloaded from the archive of the United States Geological Survey after
visually inspecting all available images from May 2013 to May 2019. L8 OLI (Operational Land Imager)
collects visible, Near Infrared (NIR) and Short-wave infrared (SWIR) spectral band imagery at 30 m
spatial resolution. In addition to the improved positional accuracy of 14 m, compared to 50 m for its
predecessors in the Landsat series, L8 includes coastal and aerosol (433-453 nm) and blue (450-515 nm)
bands for coastal and bathymetric mapping [25,26].

=

d.12/28/2017

Figure 2. (a-i) A section of Florida Keys image showing the RGB composite of each image used in
this study.

2.3. LiDAR Data

To validate the SDB estimates, a bathymetry topographic digital elevation model (DEM) was
acquired from the National Oceanic and Atmospheric Administration (NOAA) National Centres for
Environment Information (NCEI) coastal LiDAR archive. The LiDAR data collection was conducted in
December 2014 over South Florida and the Florida Keys as part of efforts by NOAA to study sea level
rise and coastal flooding impacts on US coasts. Several LiDAR sources including topographic and
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bathymetric LIDAR sensors were used to develop and create a suite of tiled bathymetric-topographic
DEMs for South Florida and the Florida Keys [27]. A portion of the DEM tiles covering the study site
(Figure 1) was retrieved from the Office of Coastal Managements Data Access Viewer [28] where all
DEM data are archived. The DEMs, with a vertical accuracy of approximately 0.5 m, are referenced
vertically to the North American Vertical Datum of 1988. Horizontal positions were provided in
geographic coordinates and referenced to the North American Datum of 1983 [29,30]. A portion of the
collection covering the Florida Keys coastal area was referenced to mean sea level and resampled from
0.3 m to 30 m to match the spatial resolution of L8.

3. Methodology
3.1. Data Preprocessing

3.1.1. Atmospheric Correction

We implemented two types of AC methods for water depth retrieval: (1) we used ACOLITE
to process L8 images into R;s values (henceforth Rrs;ay) and (2) then applied a correction factor
to reduce errors in the original ACOLITE output and create new corrected Ry values (henceforth
Rrscorrected).- ACOLITE [24], specifically designed for AC over water surfaces, is an AC method
that estimates L,y by simulating contributions from molecular (Rayleigh) and particulate (aerosol)
scattering using a 6S5V-based LUT [31]. Based on Ruddick et al. [32], aerosol reflectance is estimated by
determining a per-tile aerosol type (or epsilon) from the ratio of reflectances in two bands over water
pixels where L, can be assumed to be zero. Then, the epsilon is used to extrapolate the observed
aerosol reflectance to the visible bands to remove atmospheric contributions. ACOLITE was originally
designed for processing L8 images, but it has been modified and updated to also process Sentinel-2
data [33]. Furthermore, the most recent version, which can be adapted to commercial sensors such
as Pleiades, contains an additional AC scheme (now the default setting) called the dark spectrum
fitting (DSF) algorithm, as well as a sun glint correction scheme [34]. In this study, ACOLITE (version
20170113.0) was used to produce all R;s images, which are the direct input into the bathymetry
algorithm. The default SWIR option (1609 and 2201 nm band combination) was implemented for all
images. This band combination takes advantage of the longest-wavelength SWIR band, where water
absorption is the highest. In a previous study [23], in which a range of AC algorithms were compared
and validated against in situ L., from 14 AERONET-OC stations, statistically significant relationships
were demonstrated between errors in ACOLITE’s R, estimates for L8’s 443 nm and 482 nm bands
and three environmental variables: Solar Zenith Angle (SZA), Aerosol Optical Thickness (AOT) at
865 nm (AOTggs5), and wind speed (uyg); probable but statistically non-significant relationships were
also demonstrated for the 561 nm and 655 nm bands. Using multiple linear regression, we therefore
derived a set of coefficients that were used to estimate the error of ACOLITE’s R, estimates for each of
those four bands in each image, as a function of SZA, AOTgss, and wind speed. Then, each of the four
bands used for depth retrieval in this study was corrected using Equation (1):

Rrscorrected = RrSraw — (@ + b*SZA + ¢*AOTge5 + d*ul0) @

where Rrscoprected and Rrsrayw are the Ry images with and without correction, respectively; and a,
b, ¢, and d are coefficients obtained through fitting a linear model to the data from Ilori et al. [23].
SZA was obtained from the metadata of each L8 scene. AOTgg5 was processed and obtained using the
12gen processor in the SeaDAS software, and an average value used for each image was calculated by
randomly sampling multiple pixels over the area of the study site. Wind speed data were obtained
from the National Centers for Environmental Prediction Reanalysis project [35], where 6 h global wind
speed estimates are archived. Table 1 presents the value of each environmental parameter for each
image used in this study.
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Table 1. Environmental parameter variables for each image. AOTggs: Aerosol Optical Thickness (AOT)
at 865 nm, SZA: Solar Zenith Angle.

Scene Date (dd/mm/yyyy) SZA (Degrees) AOTge;  ugp (m/s)

01/12/2013 50.36 0.081 5.29
05/01/2015 52.79 0.088 1.07
26/01/2017 50.13 0.083 2.49
28/12/2017 52.98 0.076 6.45
13/01/2018 52.14 0.142 3.11
14/02/2018 45.63 0.12 4.84
02/03/2018 40.66 0.11 3.21
01/02/2019 49.02 0.122 3.74
05/03/2019 39.74 0.143 4.67

3.1.2. Sun Glint Correction

As sun glint correction is not inherently part of the ACOLITE version used in this study,
we implemented the NIR method [36] to remove specular reflection off the sea surface for images
where glint was visually obvious. This method assumes that for optically deep areas (where radiation
reflected from the seafloor has a negligible influence on Ly,;), any remaining NIR signal after AC must
be due to sea surface reflection. Thus, glint intensity and removal is performed by establishing a linear
relationship between the NIR and visible bands over an optically deep area in the image, and that
relationship is then used across all water pixels to reduce Rys for the visible bands to its assumed
glint-free value.

3.1.3. Estimation of Noise Equivalent Reflectance

Bathymetry model inversion based on least squares optimization techniques is generally sensitive
to environmental noise [37,38]; thus, high environmental noise may make images unsuitable for
bathymetry extraction. The noise-equivalent difference in reflectance, NEARys (st™1), is a measure of
image noise, with contributions from the sensor (e.g., instrument degradation) and the environment
(e.g., variability in atmosphere and water surface state) [37,38]. The NEARs can be used to assess
the suitability of a satellite imagery for aquatic remote sensing applications. For example, it has
been used to determine the suitability of the Compact Airborne Spectrographic Imager (CASI) for
benthic mapping [11]. Therefore, following AC, we estimated the NEAR¢ (sr™ 1) [39] by calculating
the band-wise standard deviation of R;s from a 33 x 33-pixel window over a homogeneous optically
deep area using Equation (2) [40]. This approach assumes that any observed spectral variations in
the selected area is due to noise; thus, selected pixels must be as homogenous as possible for a robust
standard deviation estimate. Ideally, the NEAR,s should be lower than 0.00025 sr™! in each of the
visible bands [41], which was the case for all nine images used in this study. Table 2 shows the per-band
value obtained for each of the 9 images used in this study.

NEARrs = oRys 2

where o0Rys is the standard deviation in each band over an as homogeneous as possible area of optically
deep water within the image.

3.1.4. Parameterization of Environmental Properties

To implement the physics-based approach to SDB, values of optical properties and substratum
spectral reflectance that are representative of the environment in question are needed. Water inherent
optical properties (IOP) (P40, Gaap, and Xss0) parameterization for forward modeling for each site
was based on assessment from Level 3 OC products from the Visible Infrared Imaging Radiometer
Suite Visible Infrared Imaging Radiometer Suite (VIIRS) Generalized Inherent Optical Property (GIOP)
algorithms [42]. Py is the phytoplankton absorption coefficient at 440 nm, Gy is the absorption
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of gelbstoff and detrital materials coefficient at 440 nm, and Xss is the particulate backscattering of
suspended particles coefficient at 550 nm. Using parameter values obtained from these OC products,
ranges of values for each parameter were determined by observing the lowest and highest parameter
values for all dates from GIOVANNI, which is an online visualization tool for OC products [43].
Then, values slightly lower and higher than the observed lowest and highest values, respectively,
were chosen (Table 3). As part of the inversion model, seafloor reflectance spectra are also needed.
We used two seafloor spectra (Figure 3), based on the area’s benthic description [44]. Depth (Z),
which was also needed for forward modeling, was set to 0.1 and 25 m with the understanding that
depth penetration greater than 25 m would be difficult.

Table 2. The noise equivalent difference in reflectance (NEARys), computed from a kernel of 33 x 33
pixels from an optically deep and homogeneous area, for each image used in this study.

Scene Dates (dd/mm/yyyy) Band1 Band2 Band3 Band4

01/12/2013 0.000200  0.000154  0.000096  0.000061
05/01/2015 0.000136  0.000108  0.000084  0.000063
26/01/2017 0.000092  0.000072  0.000057  0.000042
28/12/2017 0.000151  0.000105  0.000081  0.000053
13/01/2018 0.000111  0.000103  0.000069  0.000047
14/02/2018 0.000157  0.000129  0.000108  0.000063
02/03/2018 0.000126  0.000110  0.000069  0.000043
01/02/2019 0.000148  0.000127  0.000100  0.000063
05/03/2019 0.000086  0.000081  0.000059  0.000042

Table 3. Parameter ranges used for forward modeling.
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Figure 3. Spectral reflectance of the seafloor used in this study.

3.1.5. Forward Modeling of Remote Sensing Reflectance

To derive water depth, we applied a modified version of the semi-analytical inversion model of Lee
et al. [17,18] to the atmospherically corrected images. In this inversion scheme, the sub-surface remote
sensing reflectance, 75, (the ratio of upwelling radiance to downwelling irradiance just below the
surface) is related to absorption (7) and backscattering properties (by,) of the water column, the seafloor
reflectance (p), and water depth (H). For nadir-viewing satellites, the model can be expressed as:

0.57,

Rys ~ T— 15, 3)
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where 15, the subsurface remote-sensing reflectance, is expressed as:

m@ﬁﬂi@%@%%ﬂﬂ%ﬁb%w*[l +ﬂﬂ%ﬁhﬂ)

cos(0y) cos(0y) @)
P 1 1.04 V1+5.4
+Hexp{_[cos(9w) + cos(6y) u]kH}
by
"= a+ by ®)
k=a+ by ©)

where 0y and 0, are the sub-surface solar zenith and sub-surface sensor viewing angles, respectively.
Absorption (1) and backscattering coefficients (by,) are functions of (1) the absorption coefficient of
phytoplankton at 440 nm, P; (2) the absorption coefficient of colored dissolved materials at 440 nm, G;
and (3) the backscattering coefficient of suspended particles at 550 nm, X. These are expressed as:

a= ap+ Pa* oy + Ge~0-015(1-440) @)
55071
bb = bbw + X[T (8)

where a,, and by, are the absorption and backscattering coefficients of pure water, respectively [45],
a* ppy is the specific absorption of coefficient of phytoplankton (normalized to a value of 1.0 at 440 nm),
A is the center wavelength, and Y is the spectral shape that depends on the particulate shape and size.

While Lee’s inversion model uses the albedo of only one key benthic substrate (sand), our model
includes a parameterization to set the seafloor reflectance as a linear mix of the two bottom types
(i.e., sand and algae; [46]). To forward model the R;s as a function of water depth, water quality
parameters, and the seafloor reflectance, the adaptive look-up table (ALUT) method [11,16] was
implemented, which ensures efficient construction and search through the table. In this approach,
an LUT consisting of the modeled R values of L8 bands 1-4, seafloor reflectance (Figure 3), water optical
properties (absorption and scattering characteristics of water), and water depths of the optically
shallow zone of the area in question (Table 3) is constructed. With realistic minimum and maximum
values of all environmental parameters in the table, the LUT construction is optimized by using
a hierarchical structure to efficiently cover the range of expected Ry values while minimizing the
under- or over-sampling of spectrally similar regions of environmental space, which is common with
discretization by regular intervals in conventional forward models. For example, a small change in
depth in shallow water areas will cause a significant/large change in Rys and will typically result in
under-sampling if the depth parameter is discretized by regular intervals. Likewise, oversampling
may occur in deep water areas where a small change in Ry is expected [11,16]. To identify the best
parameter values to be included in the hierarchy in the ALUT technique, discretization is based on
an evenly sampled spectral space and not on an evenly sampled parameter space (e.g., water depth).
This approach requires bounded ranges for all the modeled parameters, for which we used the value
ranges in Table 3.

3.1.6. Inversion of Remote Sensing Reflectance

Model inversion was subsequently performed using the binary space partitioning (BSP)
approach [11,16], as described in Knudby et al. [12]. Briefly, this technique subdivides the LUT
created during forward modeling into different nodes. First, the BSP splits the whole LUT into two
(left and right child nodes) and subsequently subdivides the nodes into a partitioning tree, which
facilitates the optimization of the per-pixel LUT search. After model inversion and depth retrieval,
water depths were corrected for tidal height at the time of each image acquisition using tidal height
estimates obtained from Oregon State University’s tide prediction service [47].
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Depth cannot be accurately estimated for optically deep pixels (i.e., where reflection off the
seafloor is a negligible component of the radiance measured by the sensor); thus, we estimated a
depth threshold value for each scene to distinguish between optically deep and optically shallow areas.
These threshold values were obtained by calculating the mean minus 2 standard deviations of depth
predictions within a 33 x 33 window of homogeneous optically deep water. Results are reported for
each scene both a) for the full depth range, and b) for depths from the surface and down to these
scene-specific thresholds.

3.2. Validation of Depth Estimates

Validation of depth estimates from the two AC procedures was performed by comparing the
estimated depths to the LIDAR data. The number of depth estimates used for validation (Table 4) varied
between the nine images due to differences in the number of pixels for which depth was successfully
estimated, as pixels that did not pass the AC’s internal quality checks (e.g., due to clouds), pixels with
negative depths, and pixels that were visually impacted by boats, wake, or cloud shadows were
eliminated prior to validation. Based on the remaining pixels, we used the coefficient of determination
(R?), RMSE (root-mean-squared-error) (Equation (9)) and bias (Equation (10)) to compare the accuracy
of the uncorrected and corrected SDB estimates with the LIDAR datasets. The RMSE is used to measure
the accuracy of the estimated depth values; and bias is used to indicate overestimation (positive value)
or underestimation (negative value):

RMSE = \/ % Y Gt = xte)? )
21_1: xest _ yobs
bias = M (10)
n
est obs

where 7 is the number of observations, and x*' and x°” are the estimated and measured depths,
respectively. Values closer to zero for both error metrics indicate a better result. SDB obtained with
Rrspaw and Rrseorrected are hereafter referred to as SDByaw and SDBoyrected, respectively. These summary
statistics (Rz, RMSE, and bias) were calculated both for the full depth range and for depths ranging
from the surface down to the per-scene depth threshold (Table 4).

Table 4. Summary validation statistics for satellite-derived bathymetry (SDB) estimates (SDBaw and
SDBorrected) for the two depth limits in this study. Bold letters in the root-mean-squared-error (RMSE)
column indicate where an observed difference between SDByay and SDBqrrected €stimates is more than

0.1 m.
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4. Result and Discussion

Scatterplots showing water depth estimates produced from both Rrsyaw and RrsScorrected images
and the LiDAR depth measurements are shown in Figure 4, and summary statistics (R, RMSE, and bias)
are listed in Table 4.

The RMSE values for SDB;aw/SDBcorrected €stimates range from 1.35/1.05 m to 2.21/2.04 m for the
full depth range, and from 1.21/0.95 m to 2.19/1.89 m when applying the per-scene depth threshold.
These values are broadly comparable with other SDB studies (e.g., [10,13,14,41,48]). For example,
Dekker et al. [48], who compared one empirical and five physics-based approaches to bathymetry
mapping using hyperspectral imagery, reported RMSE values between 0.86 (best) and 4.71 m (worst)
for depths less than 13 m for two clear tropical waters in the Bahamas and eastern Australia, suggesting
that our results are typical of what should be expected from a physics-based bathymetry method. It is
worth mentioning here that impacts from recent hurricanes over parts of the Florida Keys, notably
in 2016 and 2017, have resulted in an average increase of approximately +0.3 m in seafloor elevation
over different habitat types [49,50]. Such changes were not accounted for in this study and may have
had a small effect on the results, although it is worth noting that the best SDB estimate is from 2019
[Figure 4h], after the hurricanes.

Figure 4 shows that accuracy decreases with depth for both SDB;4w and SDBgrrected, particularly
beyond approximately 15 m where the proportion of the measured signal originating from reflection at
the seafloor becomes very small. In general, for depths shallower than 15 m, SDB.grected points cluster
more tightly around the 1:1 line that do the SDB;ay points.

4.1. Effects of Image Conditions on Depth Accuracy

4.1.1. Turbidity

Out of the nine Rrs images we applied the correction factor to, eight corrections resulted in negative
RMSE changes when considering the two depth limits used in this study, with reductions ranging from
0.09 to 0.48 m (for the full depth range) and 0.07 to 0.46 m (for the per-scene depth threshold). For both
depth limits, only one correction resulted in increased RMSE (i.e., the image from 01/05/2015, see Table 4)
(RMSE values for SDByay and SDB g rected Will hereafter be referred to as RMSE;ayw and RMSE o rected,
respectively). For this image, accurate depth estimates were not possible beyond approximately 14 m
(Figure 4b), regardless of correction, and RMSE o rected increased marginally by 0.01 m for the full
depth range and by 0.04 m for the per-scene depth threshold (i.e., 0-11.23 m). A visual inspection
of this image shows sediment plumes in the study area (Figure 5b), which suggests that turbidity
contributed to an underestimation of water depth for both SDBaw and SDBorrected [14], and the image
is of marginal use for SDB, regardless of correction. Simil<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>