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Preface to ”Coastal Waters Monitoring Using Remote

Sensing Technology”

At present, about 10% of the global population lives in the world’s coastal zones, mostly

concentrated in the world’s largest megacities. In many regions, the population is exposed to a

variety of natural hazards (e.g., extreme weather, such as damaging cyclones and storm surges),

to consequences of global climate change (e.g., sea level rise), and to the direct impacts of human

activities. In low-lying coastal areas, some factors combine negatively, thus increasing risks for coastal

dwellers. For example, climate-related sea level rise increases the risk of flooding and coastal erosion

during extreme events and can also cause salt water intrusion into rivers and coastal aquifers on

which people depend. Land subsidence, caused by groundwater, oil, and gas extraction in coastal

megacities, is another example of an amplifier of the impacts of climate-related sea level rise. In

addition, because of strong anthropogenic pressures, coastal zones are already suffering ecological

and biological stresses, for example, poor water quality, pollution, and destruction of marine

ecosystems. Space-based observations, complemented by in situ networks, have demonstrated their

capability to provide precise and systematic information about processes acting in the coastal zones

worldwide, among them extreme events and phenomena related to climate change and variability, as

well as evolving anthropogenic conditions. This volume is a collection of papers that originated as a

Special Issue, focused on some recent advances related to the usage of remote sensing observations

alone or in synergy with in situ measurements and modeling tools in order to monitor ocean processes

or exploit them in applications in the coastal zone. Examples include coastal sea level changes;

land–sea interaction (river flow and river plumes); water quality (phytoplankton and sediment load);

small-scale shelf currents; ocean tides; upwelling and sea surface temperature variability; wave

climate; bathymetry estimation. Applications refer to renewable energy; aquaculture; extreme events

(storm surges and hurricanes). The editors of this book are grateful to all the contributing authors,

reviewers, journal editors, and the production team.

Stefano Vignudelli, Jérôme Benveniste

Editors

xi





remote sensing 

Article

The Spatial-Temporal Distribution of GOCI-Derived
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Abstract: This paper discusses the use of a Geostationary Ocean Color Imager (GOCI) to monitor
the spatial–temporal distribution of suspended sediment (SS) along the coastal waters of northern
Taiwan which was affected by Typhoon Soudelor from 8 to 10 August 2015. High temporal resolution
satellite images derived from GOCI were processed to generate four-day average images of SS for
pre- and post-typhoon periods. By using these four-day average images, characteristics of SS along
the north of Taiwan coastal water can be tracked. The results show that SS concentration increased in
the four-day average image immediately after the typhoon (11–14 August), and then decreased in
the four-day average image 9 to 12 days after the typhoon (19–22 August). The mouths of the Dajia
River and Tamsui River were hotspots of SS, ranging from 9 to 15 g/m3 during the two post-typhoon
periods. Moreover, the maximum suspended sediment (SSmax) and its corresponding time (tmax) can
be computed using GOCI hourly images for the post-typhoon period from 08:30 on 11 August to
08:30 on 22 August. The results show that SSmax occurred in the west coastal water within 4 days
post-typhoon, and SSmax occurred in the east coastal water 9 to 12 days post-typhoon. Furthermore,
an exponential decay model was used to compute the time when 90% of typhoon-induced SS was
dissipated after Typhoon Soudelor (t90). It was found that t90 in the mouths of the Tamsui River and
Heping River was the longest among all coastal waters of our study area, with a range of 360–480 h.
River discharge and ocean currents with suspended sediment concentration are discussed.

Keywords: GOCI; suspended sediment; Typhoon Soudelor; spatial–temporal distribution

1. Introduction

Suspended sediment (SS) is a key part of studying shallow waters, such as coastal
regions, because of its influence on the marine environment and ecosystems [1]. Therefore,
monitoring the characteristics of SS can aid in better understanding the bio-geomorphological
processes and validate spatially distributed hydrodynamic and transport models in coastal
water regions [2]. There are many monitoring methods, such as in situ measurements
with a cruise, station observations, numerical models, remote sensing, etc. In situ mea-
surements with a cruise, numerical models, and station observations are costly and time-
consuming [3,4]. Remote sensing provides a viable solution for monitoring SS in coastal
waters because it can cover large areas at the same time. Moreover, compared with other
methods, satellite images also offer richer spatial information and can overcome opera-
tional cost issues due to state-of-the-art technologies. For example, the first geostationary
ocean color observation satellite has been used for coastal water turbidity and Sentinel-3
missions for scientific observations of the ocean [5,6].

Many regions around the world are affected by tropical storms, including Taiwan.
Typhoon-induced suspended sediment (SS) in the coastal water region has an impact on

Remote Sens. 2021, 13, 194. https://doi.org/10.3390/rs13020194 https://www.mdpi.com/journal/remotesensing
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the marine environment. For instance, Typhoon Morakot had an influence on the marine
environment in the East China Sea inner shelf and Okinawa Trough [7,8]. The heavy rains
and episodic cyclones associated with typhoons increase the total suspended sediment, sea
surface temperature, and phytoplankton. In addition, the high waves and strong wind
speeds of typhoons, inducing re-suspension of bottom sediments, have been discussed [9].
The ocean surface current related to Hurricane Sandy, Typhoon Morakot, and Typhoon
Saola caused the spreading of suspended sediments from the coast to the open sea [10–12].
No previous studies have used remote sensing to investigate the spatiotemporal distri-
bution of suspended sediment in Taiwan coastal waters, induced by a typhoon. We used
satellite images to do this in the north of Taiwan.

Several international studies have used satellite images to assess sediment in coastal
water regions. For example, remote sensing has been used to assess typhoon-induced
SS concentrations. In Apalachicola Bay, Florida, USA, observations of typhoon-induced
SS were conducted by using 250 m Terra MODIS (Moderate Resolution Imaging Spectro-
radiometer) images during Hurricane Frances [13]. The impact of Typhoon Saomai on
SS concentration in the East China Sea was calculated using Aqua and Terra MODIS im-
ages [14]. Combinations of multi-satellite images (including MODIS, MERIS (the Medium
Resolution Imaging Spectrometer), and GOCI) were used to show the dynamics of sus-
pended sediment associated with Typhoon Tembin in the East China Sea [15]. The sediment
transport in the Taiwan Strait induced by Typhoons Soulik and Morakot has been moni-
tored by using Aqua MODIS images [16,17]. The spatial–temporal distribution of SS has
not yet been considered because of the limitation of quality data under typhoons. Therefore,
this paper tries to bridge the gap between the spatial–temporal distribution of SS induced
by a typhoon and data limitations.

The Geostationary Ocean Color Imager (GOCI), a satellite sensor, can overcome
the limitation of quality data under typhoon weather conditions due to its temporal
resolution [18]. The GOCI is operated by the Korea Ocean Satellite Center (KOSC) at the
Korea Institute of Ocean Science and Technology (KIOST). It is the first ocean color satellite
placed in geostationary orbit to provide eight hourly images during the daytime (from 08:30
to 15:30 local time at one-hour intervals) with a spatial resolution of 500 m. GOCI covers
about 2500 km × 2500 km centering on the Korean Peninsula (at the center of 130◦ E, 36◦ N),
including the north of Taiwan. It has six visible bands from 412 to 680 nm and two near-
infrared bands at 745 and 865 nm. The bands at wavelengths of 555 and 660 nm are used for
suspended sediment extraction [19–22]. All of the existing studies related to GOCI-derived
suspended sediment focused on monitoring the temporal variation of water turbidity
and the diurnal dynamics of suspended sediment in coastal water. For instance, GOCI
hourly images have been used to monitor the diurnal and seasonal variability of suspended
sediment concentration in a macro-tidal estuary [23]. GOCI images have been used to
monitor the suspended sediment in Taihu Lake [24] and the coastal waters of Zhejiang,
China [25], as well as Gyeonggi Bay on the west coast of Korea [26]. Moreover, GOCI
also monitors long-term suspended sediment concentration and estimates ocean surface
currents hourly [27]. However, using GOCI to monitor the spatiotemporal distribution of
typhoon-induced SS in coastal waters has not been considered in previous case studies.

This study used GOCI to monitor the spatial and temporal distribution of SS pre- and
post-Typhoon Soudelor, which made landfall in Taiwan in August 2015. Furthermore, by
taking advantage of GOCI with time-series hourly images of SS after the typhoon, the
temporal decay of the SS pattern can be computed by an exponential regression, and the
time SS recovered to its pre-typhoon value can be estimated. This approach, which is the
core of the study, quantifies the typhoon-induced spatial and temporal distribution of SS
along Taiwan coastal water. Finally, factors such as river discharge and ocean currents
could have affected the discussed spatiotemporal distribution of SS.
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2. Materials and Methods

2.1. Study Area

The study area is located on the northern coast of Taiwan (Figure 1). There are 9 rivers
administered by the Taiwan central government (ATCG) [28]. Seven of the rivers are on
the west side of Taiwan Island, and two are on the east side.

Figure 1. (a) Visualization of Geostationary Ocean Color Imager (GOCI) coverage area; (b) study area.

The statistics of the annual discharge of the 9 rivers were provided by the Taiwan River
Restoration Network [28]. Tamsui River has the largest annual discharge of 7443 m3/s,
followed by Lanyang and Dajia with 2773 m3/s and 2569 m3/s, respectively. Other rivers
have a lower discharge of less than 2000 m3/s, and the Fengshan River has the lowest
discharge of 376 m3/s.

2.2. Typhoon Soudelor

Typhoon Soudelor formed in the middle of the Pacific Ocean on 20 July 2015, and
became a super typhoon (category 5 on the Saffir–Simpson hurricane wind scale) on
29 July [29]. Typhoon Soudelor made landfall in the east of Taiwan at 04:40 local time on
8 August 2015 and brought torrential rain. The typhoon then moved north-westwards
through eastern China and degraded to a tropical depression on 9 August 2015 [30–33].

2.3. GOCI Satellite Images

In this study, GOCI level-2 images were downloaded from the NASA Ocean Color
website (https://oceancolor.gsfc.nasa.gov/). Then, SS was extracted from GOCI hourly
images with a spatial resolution of 500 m. These hourly images were binned using the
arithmetic mean algorithm, implemented in SeaDAS [34,35], to create daily SS images with
a spatial resolution of 500 m (Figure 2).

During the period of Typhon Soudelor, cloud cover caused data voids in many of the
hourly GOCI images. The problem was more severe on 8–10 and 15–18 August, when
GOCI images were not available for our study area (Figure 2). To better visualize the spatial
distribution of typhoon-induced SS, i.e., minimize the data voids, 4 daily GOCI images
were further binned to generate a 4-day average image with a spatial resolution of 500 m.

A 4-day average image immediately before the typhoon (SS4−7), binned from the daily
SS images of 4–7 August 2015, was generated. Similarly, a 4-day average image immediately
after the typhoon (SS11−14), binned from 11–14 August, was generated. Moreover, to
monitor the decrease in suspended sediment, a 4-day average image 9 to 12 days after
the typhoon (SS19−22), binned from the daily SS images of 19–22 August, was generated.
Figure 2 shows the data processing of GOCI images in this study.

3
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Figure 2. GOCI data processing for generating SS4−7, SS11−14, and SS19−22. SS: suspended sediment.

2.4. Quantitative Retrieval Algorithm of SS

In this paper, SS images were derived from level-2 GOCI images by using the algorithm
developed by Moon et al. (2010) based on in-situ SS samples (Equation (1)) [20]:

SS = 945.07 × (Rrs(555))1.137 (1)

where Rrs (555) is remote sensing reflectance at a wavelength of 555 nm, and SS is reported
in g/m3. The algorithm was implemented in the GOCI Data Processing System (GDPS) by
KOSC [36].

2.5. Temporal Decay of SS after Typhoon

When showing the temporal history of hourly SS of a GOCI pixel (Figure 3), the
maximum SS value (SSmax) was reached in a few days, varying with pixel locations, after
Typhoon Soudelor made landfall on Taiwan. In this research, SSmax of each pixel was
determined as the largest hourly SS value of that pixel from 11–22 August. The time when
the pixel reaches SSmax is denoted as tmax.

An interesting feature in the temporal history of SS (Figure 3) is its decaying pattern,
where the SS value decreases after tmax. We proposed using a decaying model to quantify
the pattern by fitting an exponential curve to hourly SS data for each GOCI pixel via
regression. It was found (with internal trials) that a robust result of the regression was
obtained for GOCI pixels that had more than 5 hourly SS values available after their tmax.
Figure 3 shows an example of the regression result depicting the decaying exponential
model after tmax, despite the GOCI pixel not having data from 15 to 18 August due to
cloud cover.
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Figure 3. Example of temporal decay of suspended sediment (SS). Corresponding SS90 with t90 are denoted.

Ideally, taking advantage of this decaying model, the time for the pixel to return to
its pre-typhoon state could be estimated using the regression result. However, it was
found that the decaying exponential model of many GOCI pixels only approaches the pre-
typhoon state asymptotically, i.e., the regression line shown in Figure 3 does not intersect
with SS4−7. Instead, we demonstrate the use of this model by computing dissipation of
90% increased SS. This would fit for the application of coastal ecology management, as the
ecosystem is resilient to a certain increase in SS for a short period of time.

The amount of increased SS, denoted as SSa, for each GOCI pixel, can be computed as

SSa = SSmax − SS4−7 (2)

and SS90, which represents 90% of SSa, is dissipated from its maximum value (Figure 3).

SS90 = SSmax − 0.9 × SSa (3)

Furthermore, the time corresponding to SS90 can be identified via the regressed
exponential decay and is denoted as t90 (Figure 3).

3. Results

3.1. Spatial–Temporal Analysis of SS Pre- and Post-Typhoon Soudelor

During the pre-typhoon period (SS4−7 in Figure 4a), SS with a concentration of
3–6 g/m3 was mainly distributed along the west coastal water. The mouths of both the
Dajia River and Tamsui River had an SS greater than 6 g/m3. The SS concentration in the
east coastal water was less than 3 g/m3.

During the post-typhoon period of 11–14 August (SS11−14 in Figure 4b), the SS of the
Taiwan coastal water generally increased. The SS along the west and east coastal waters
increased to values greater than 6 and 3 g/m3, respectively. Meanwhile, the mouths of the
Dajia River and Tamsui River (west coastal water) had SS values greater than 9 g/m3 and
the Lanyang River mouth (east coastal water) had an SS value greater than 6 g/m3.

During the post-typhoon period of 19–22 August (SS19−22 in Figure 4c), the general
distribution of SS along the west coastal water was similar to that of the pre-typhoon period
(Figure 5a), except for the mouths of the Dajia River and Tamsui River having an SS value
greater than 9 g/m3. A belt with relatively high SS values (greater than 3 g/m3) was found
along the east coastal water with a width of approximately 3 km. In addition, the mouths
of both the Lanyang River and Heping River had SS values greater than 6 g/m3.
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Figure 4. Spatial distribution of SS pre- and post-typhoon: (a) SS4−7; (b) SS11−14; (c) SS19−22.

Figure 5. Temporal difference of SS: (a) SS11−14 − SS4−7; (b) SS19−22 − SS11−14.

Comparing the SS between the post-typhoon period of 11–14 August (SS11−14) and pre-
typhoon (SS4−7), it was found that all pixels increased more than 1 g/m3 (Figure 5a), except
for a tongue-shaped area (denoted by arrows in Figure 5a) located 10–20 km off the west
coastal water of Taiwan. In addition, the distribution of increased SS showed prominent
heterogeneity along the coastal water of Taiwan. A high increase in SS (i.e., greater than
6.0 g/m3) was found at the mouths of the Dajia, Daan, Tamsui, and Lanyang Rivers. Three
regions with a low SS increase (less than 2 g/m3) along the coast, from the Daan River
mouth to Zhonggan River mouth, the Fengshan River mouth to Tamsui River mouth, and
the Tamsui River to Lanyang River mouth, were also identified (Figure 5a).

Comparing the SS between two post-typhoon periods of 19–12 August (SS19−22) and
11–14 August (SS11−14), it was found that most of the pixels decreased while some remained
with increased SS values (Figure 5b). Most of the pixels decreased to less than 3 g/m3.
The Lanyang River mouth showed the most significant decrease of 6 g/m3, followed by
the Zhonggang and Tauqian River mouths, with a reduction of 3 g/m3. In contrast, the
Dajia River mouth showed an increased SS value greater than 3 g/m3 and the Heping
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River mouth showed an increased SS value of 6 g/m3. It is also interesting to note that
neighboring regions with increased SS (greater than 3 g/m3) were found northeast of the
Tamsui River mouth and north of the Lanyang River mouth. The regions with increased SS
are indicated by arrows in Figure 5b.

With the GOCI average SS data, it was observed that SS in the west coastal water
was consistently greater than that on the east coastal water regardless of the effect of
Typhoon Soudelor. In addition, hotspots of high SS value (greater than 9 g/m3) were
found at the Dajia and Tamsui River mouth in the two post-typhoon periods (SS11−14 and
SS19−22). With the GOCI data for pre-typhoon (SS4−7) and post-typhoon (SS11−14), it was
observed that the Taiwan coastal water showed a prominent increase in SS induced by
Typhoon Soudelor.

3.2. SSmax and tmax

Figure 6a shows a visualization of the maximum suspended sediment (SSmax) for
each GOCI pixel of Taiwan coastal water during the post-typhoon period (from 08:30 on
11 August to 15:30 on 22 August). Figure 6b shows its corresponding time (tmax) derived
from GOCI hourly data.

Figure 6. (a) Maximum suspended sediment (SSmax); (b) its corresponding time (tmax).

Generally, the west coastal water from the Dajia River mouth to the Tamsui River
mouth showed SSmax in the range of 9–15 g/m3 with a corresponding tmax of 0–80 h
(Figure 6b). This indicates that most of the west coastal water reached SSmax during the
post-typhoon period of 11–14 August (within four days after Typhoon Soudelor). The
exceptions were two strips with tmax greater than 264 h located 5 and 15 km away from
the Dajia River mouth (denoted by blue arrows in Figure 6b), and three regions with
tmax greater than 216 h located near the Tamsui River mouth (denoted by red arrows in
Figure 6b). Further small regions with tmax greater than 264 h sporadically occurred in the
coastal water from the Houlong River mouth to Zhonggang River mouth and the Feshang
River mouth to Tamsui River mouth.

It is interesting to note that the general appearance of the SSmax of the northeast coastal
water (indicated by the dotted white rectangle) was lower than the west and east coastal
waters, with a range of less than 6 g/m3, while its tmax value showed a large variation of
0–272 h. Most of the coastal water of the northern coast had SSmax values in the range of
3–6 g/m3 with tmax of 24–80 h (within four days after Typhoon Soudelor). At the west and
east ends (indicated by black and white arrows, respectively, in Figure 6) of the northeast
coast, SSmax was in the range of 6–9 g/m3 with a corresponding tmax greater than 264 h. It
also indicates that both SSmax and tmax of the northern coastal waters are continuous data

7



Remote Sens. 2021, 13, 194

from the west and east coastal water. Even though there are no ATCG rivers in this region,
SSmax and tmax have been linked to river-derived suspended sediment.

The east coastal water generally took a long time to reach SSmax, with a range of
9–15 g/m3 compared to the west and northeast coastal waters, with tmax of 192–272 h
(9–12 days after Typhoon Soudelor). The exception is the coastal water near the Lanyang
River mouth, which reached an SSmax with tmax of 24–80 h (within 4 days after the typhoon).
The coastal water near Heping River mouth showed SSmax with a range of 6–15 g/m3

corresponding to tmax greater than 240 h (11–12 days after the typhoon). Interestingly,
a region north of the Lanyang River mouth (indicated by yellow arrows) also showed
a local high SSmax of 9–15 g/m3 with a corresponding tmax value similar to the Heping
River mouth.

3.3. SS90 and t90

Figure 7a shows a visualization of SS90, which means 90% of increasing SS dissipated
from its maximum value for each GOCI pixel of Taiwan coastal water. Figure 7b shows the
corresponding time (t90) via regressed exponential decay.

Figure 7. (a) SS concentration of each pixel reduced to 90% after typhoon-induced impact; (b) its corresponding time t90.
White contour lines indicate SS4−7; red contour lines indicate SS90.

The comparison between SS90 (Figure 7a) and SS4−7 (Figure 4a) indicates that SS90
was similar to the pre-typhoon state (SS4−7), except for the SS of the Tamsui River mouth
(within 3–6 g/m3; indicated by arrows in Figure 7a). Particularly, SS within 3–6 g/m3 was
observed mainly in the west coastal water, while it was less than 3 g/m3 in the east coastal
waters; SS greater than 6 g/m3 also only appeared at the Tamsui and Dajia River mouths
(Figures 7a and 4a). There was a slight difference in SS located 40 km off the Tamsui River
mouth. SS90 showed that the SS of 3 g/m3 extended farther into the sea than in SS4−7.

The west coastal waters from the Dajia River mouth to the Tamsui River mouth
showed a t90 of more than 240 h, except for a tongue-shaped area with a range of 10–40 km
off the west coastal water (indicated by arrows in Figure 7b), showing a t90 of less than
240 h. The Tamsui River mouth extending within 20 km of the coastline indicated a t90
with a range of 240–480 h.

The northeast coastal water to the Lanyang River mouth (Figure 7a) showed an SS90
associated with a t90 of less than 240 h, except for small scattered regions that appeared
closest to the coastline with a t90 of around 480 h (Figure 7b). Lastly, the east coastal waters
from the Lanyang to Heping River mouth showed a t90 of 360–480 h (Figure 7b).

It should be noted that some pixels available in the SS90 are not visualized by the
t90. There are two cases in which the decaying model works without advantages, leading
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to the pixel in t90 not being visualized. When GOCI pixels (indicated by a red rectangle
in Figure 7) have a gap between SSmax and SS4−7, which is close (Figure 3), t90 is not
visualized due to no decay. When the number of GOCI pixels after tmax has fewer than
five values, it is also not visualized because of the lack of data (indicated by the black
rectangle in Figure 7). Otherwise, the proposed methodology, which uses an exponential
temporal decaying model, shows a distinct advantage when GOCI pixels have more than
five hourly SS values available after their tmax. It is possible to compute the t90 with robust
results post-typhoon.

4. Discussion

According to previous studies in Taiwan, one possible reason for the SS derived from
a typhoon is that it is strongly affected by river discharge. For example, using a case
study in Choshui River, Taiwan, and Typhoon Mindulle, the authors of [37] indicated that
in a floodplain, more than half of the suspended sediment originating from mountain
rivers running into Taiwan coastal waters was generated by river discharge. The authors
of [38] observed the Jhoushui River and an adjacent coastal zone in the Taiwan Strait
and summarized that the river discharges most of the sediment during the relatively
short periods of torrential rain often associated with typhoons. Moreover, the authors
of [39,40] indicated that suspended sediment discharge during typhoon events was linked
to landslides and rainfall in Taiwan. The authors of [41] considered the impact of typhoons
on sediment discharge in Taiwan. River discharge also impacted the change in sediment
concentration in the Tamsui River, as discussed in [42]. Even though we have the same
opinion, there are no recorded data to support the Typhoon Soudelor case. Therefore,
examining the mechanical factors, such as river discharge, related to typhoons is beyond
the scope of this study. We only discuss this based on the mean annual discharge data,
which were provided by the Taiwan River Restoration Network [28,43].

In terms of the mean annual discharge related to the nine central rivers administered
by ATCG, the Tamsui River supplies the largest amount with 7443 m3/s, followed by the
Lanyang and Dajia Rivers with 2773 and 2596 m3/s, respectively. This is the reason why
the Tamsui, Dajia, and Lanyang River mouths act as hotspots with high SS values (SSmax
above 9 g/m3) during the two post-typhoon periods (SS11−14 and SS19−22). Meanwhile,
other rivers show a mean annual discharge lower than 2000 m3/s, and they influence the
coastal regions with SSmax values in the range of 6–9 g/m3. The central rivers are mainly
located in the western part of Taiwan, which may be why many GOCI pixels of the west
coastal waters are more influenced than those of the east coastal waters, regardless of the
effect of Typhoon Soudelor.

Other factors such as tide level, waves, wind speed, and surface currents that impact
the spatiotemporal distribution of SS should also be discussed. All of these factors have
been considered by many scientists. According to the authors of [44], by using shipboard
observations for estimation, transport and tidal currents in the Taiwan Strait were north-
ward (into the East China Sea). This is similar to the ocean surface current from GOCI
satellite imagery in summer around the north of Taiwan coastal water being northward [45].
Therefore, we also believe that after Typhoon Soudelor, the ocean surface was a major
factor in increasing the outbreak of suspended sediment north of Taiwan. However, due to
the limitation of recorded data on Typhoon Soudelor, the transport mechanism responsible
for the sediment warrants further investigation.

5. Conclusions

This paper proposes a new approach using the GOCI to monitor the spatial and
temporal distribution of suspended sediment in coastal areas affected by typhoons. Remote
sensing technology was used instead of other methods such as in situ measurements,
numerical models, and station observations to track post-typhoon sediment concentration
in Taiwan coastal waters.
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The spatial distribution of SS has been highlighted by using the GOCI four-day
average image of SS pre- and post-Typhoon Soudelor. As a result, several pixels with an
SS above 6 g/m3 in the west coastal waters were consistently more significant than in
the east coastal waters regardless of the typhoon. The Dajia and Tamsui River mouths
were hotspots of increased SS and SSmax (above 9 g/m3) during two post-typhoon periods
(11–14 and 29–22 August).

According to the GOCI hourly data after the typhoon, SSmax was in the range of
6–15 g/m3, corresponding to tmax within four days in the west coastal water, while the east
coastal water was 9–12 days. Furthermore, using exponential regression decay to visualize
SS90 for each GOCI pixel in Taiwan coastal water indicates that SS90 was in an asymptotic
pre-typhoon state. The corresponding time t90 shows that GOCI pixels in both the Tamsui
and Heping River mouths generally took the longest time, in a range of 360–480 h.

River discharge could have a significant impact on the post-typhoon sediment charac-
teristics of Taiwan coastal waters. Other factors such as tide level, waves, wind speed, and
surface currents could also affect the spatiotemporal distribution of suspended sediment.
We suggest that this should be investigated in the future by using a successfully recorded
dataset with a new typhoon.
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Abstract: The paper presents the results of a comparison of water turbidity and suspended particulate
matter concentration (SPM) obtained from quasi-synchronous in situ and satellite remote-sensing
data. Field measurements from a small boat were performed in April and May 2019, in the northeast-
ern part of the Black Sea, in the mouth area of the Mzymta River. The measuring instruments and
methods included a turbidity sensor mounted on a CTD (Conductivity, Temperature, Depth), probe,
a portable turbidimeter, water sampling for further laboratory analysis and collecting meteorological
information from boat and ground-based weather stations. Remote-sensing methods included turbid-
ity and SPM estimation using the C2RCC (Case 2 Regional Coast Color) and Atmospheric correction
for OLI ‘lite’ (ACOLITE) ACOLITE processors that were run on Landsat-8 Operational Land Imager
(OLI) and Sentinel-2A/2B Multispectral Instrument (MSI) satellite data. The highest correlation
between the satellite SPM and the water sampling SPM for the study area in conditions of spring
flooding was achieved using C2RCC, but only for measurements undertaken almost synchronously
with satellite imaging because of the high mobility of the Mzymta plume. Within the few hours when
all the stations were completed, its boundary could shift considerably. The ACOLITE algorithms
overestimated by 1.5 times the water sampling SPM in the low value range up to 15 g/m3. For
SPM over 20–25 g/m3, a high correlation was observed both with the in situ measurements and
the C2RCC results. It was demonstrated that quantitative turbidity and SPM values retrieved from
Landsat-8 OLI and Sentinel-2A/2B MSI data can adequately reflect the real situation even using
standard retrieval algorithms, not regional ones, provided the best suited algorithm is selected for
the study region.

Keywords: river plume; turbidity; suspended particulate matter; ocean color data; satellite remote
sensing; in situ measurements; C2RCC; ACOLITE; Landsat-8 OLI; Sentinel-2 MSI; Mzymta River;
Black Sea

1. Introduction

River discharge into sea plays an important role in the physical, chemical and biologi-
cal processes in the ocean, especially in the shelf areas, being the main source of suspended
and dissolved terrigenous and biogenic substances in the sea, as well as anthropogenic
pollution. These substances have significant and in many cases negative effects on coastal
ecosystem, including phytoplankton productivity, transport of pollutants in the shelf areas,
erosion of coasts, artificial beach formation, nutrient dynamics, etc. [1–3]. Therefore, moni-
toring the estuarine areas and understanding the dynamics of river water distribution over
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the sea shelves are important scientific and practical tasks. The influence of a huge num-
ber of geographic factors, hydrometeorological conditions and hydrophysical processes,
with great complexity and cost of field measurements, create a certain fragmentation of
information on the processes of river water spreading in the sea. This problem can be
solved only using satellite remote-sensing methods, which provide a unique opportunity
to observe almost simultaneously the entire region of interest repeatedly, day after day, for
many years.

Reaching a sea, river waters form plumes—mesoscale structures adjacent to the river
mouth. Plume water can be distinguished from seawater by its low salinity, tempera-
ture and usually by high turbidity and high content of suspended matter and dissolved
organics [4,5].

For a river plume area, the main difficulty is obtaining quantitative suspended par-
ticulate matter concentration (SPM) estimates, while qualitative information is abundant.
In satellite true color images (TCI), plumes can be clearly identified by contrasting differ-
ences between muddy river water and relatively clean surrounding seawater [6]. Multiple
investigations confirm that river plume boundaries and other turbidity inhomogeneities
obtained from contact measurements correlate quite well with satellite observations. For
example, a joint analysis of in situ and Aqua Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data allowed tracking propagation of a Vistula plume in coastal waters of the
Gulf of Gdansk during intense flooding in May 2010, but only on a qualitative level [7].

There are numerous studies on validation of satellite data using concurrent field
measurements [8–18]. This by far incomplete list shows that such works are under way in
various regions worldwide, which evidences their importance. Although various methods
and techniques of contact measurements and different remote-sensing data are employed,
the problem of adequate interpreting satellite data and obtaining products suitable for use
instead of expensive in situ data is still far from being solved.

Quantitative estimates of turbidity and SPM can be obtained from satellite remote
sensing data using various algorithms that, strictly speaking, should take into account
numerous factors, including varying chemical composition of ocean water, coastal shelf
waters, water of estuaries and fresh water bodies, geometrical parameters of satellite
sounding at a given moment, intrinsic properties of orbital equipment, and current climatic
conditions in the study area and much more [14,19–27]. A classic example of a study
of river runoff influence on coastal hydrological structure is presented in [28]. Using a
set of field measuring instruments, the authors performed a detailed investigation of the
properties of vertical hydrological structure of seawater affected by intrusion of fresh river
water, as well as sedimentation of suspended matter in the shelf zone. However, satellite
data were used only for qualitative consideration as an auxiliary tool.

After numerous comparisons and simultaneous measurements, it was found impossi-
ble to develop a universal algorithm for evaluating the standard characteristics of seawater
color based only on available data from satellite optical sensors because of extremely di-
verse set of characteristics and ambiguity in their interpretation under certain observation
conditions. As noted in [29], there are three main types of algorithms commonly used to
derive SPM from water reflectance: (1) empirical, (2) semi-analytical and (3) analytical
algorithms. Empirical single-band and band-ratio models have been commonly used in
coastal and estuarine areas [9,15,30]. These types of model are dependent on SPM and
water reflectance ranges, and require calibration with regional measurements [29]. Semi-
analytical or analytical models are based on the inherent optical properties and provide a
more global application [12,31,32].

To date, scientists from different countries have developed a number of specialized al-
gorithms to evaluate characteristics of coastal marine and lake waters [30,33–36]. Originally,
some of the standard algorithms were developed for the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) instrument, then for MODIS and MEdium Resolution Imaging Spectrom-
eter (MERIS) on the Envisat satellite [37,38], which operated for 10 years until 2012. An
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example of a successful application of the coastal algorithm on MERIS data is described
in [39].

The Ocean and Land Colour Instrument (OLCI) instrument on Sentinel-3 (launched in
2016) was developed in part to provide continuity with measurements made previously by
MERIS. The algorithms developed for MERIS were adapted for OLCI [40]. Some of them
were automated and made available in the specialized BEAM-VISAT software used by a
great number of researchers.

Examples of such algorithms are: Case 2 Regional (C2R) [37], FUB/WeW [38], Eu-
trophic Lake (EUL) and Boreal Lake (BL) [37], as well as the Maximum Chlorophyll Index
(MCI) and Fluorescence Line Height (FLH) [41,42]. It was expected that some of these
algorithms could be compatible with currently used Sentinel and Landsat sensors.

In this paper, for atmospheric correction, turbidity and SPM estimation the following
standard algorithms were used: C2RCC (Case 2 Regional Coast Colour, https://www.
brockmann-consult.de/portfolio/water-quality-from-space/) and algorithms provided by
the ACOLITE (http://odnature.naturalsciences.be/remsem/software-and-data/acolite)
software.

The C2RCC processor was originally developed by Doerffer and Schiller [37] and
now is implemented in the European Space Agency (ESA) Sentinel Toolbox SNAP soft-
ware (https://step.esa.int/main/toolboxes/snap/). The latest development of C2RCC
neural networks and the algorithm for optically complex waters are described in [43].
The software calculates marine environment characteristics based on multispectral sensor
data from satellites of the latest generation (SeaWiFS, MERIS, MODIS, Visible Infrared
Imaging Radiometer Suite (VIIRS), OLCI, Operational Land Imager (OLI), and Multispec-
tral Instrument (MSI)). It is also applicable to historical data from sensors that finished
their operation long ago. Thus, it allows “recalculating”, for certain purposes, previously
calculated parameters to meet current requirements.

Another group of algorithms that we used in our study are implemented in the
ACOLITE processor and intended for calculating the main optical parameters. ACOLITE,
developed at the Royal Belgian Institute of Natural Sciences (RBINS), is based on the work
of a team of researchers led by Dr. Bouchra Nechad and described in detail in [31,44,45].
ACOLITE is specifically developed for marine, coastal, and inland waters and supports
free processing of Landsat-8 and Sentinel-2 data [46–48].

Recently, ACOLITE has been frequently used for atmospheric correction of OLI and
MSI data [49]. Two atmospheric correction methods are implemented [50]: the Short Wave
Infrared (SWIR)-based exponential extrapolation method [51–53] (EXP) and a multi-band
dark spectrum fitting technique [50,54] (DSF). The DSF was developed for meter scale
resolution sensors and subsequently adapted for the decameter resolution sensors on
Landsat and Sentinel [50]. The software is successfully applied both for coastal zones and
inner water bodies [46–49,55,56].

Monitoring seawater quality in the northeastern part of the Black Sea is of prime
importance since this region is Russia’s largest marine recreational area. The motivation
of this study was to examine how well the different algorithms can assess turbidity and
SPM, key water quality parameters, in such a complex environment as the Black Sea Cau-
casian coastal zone with multiple mountainous rivers flowing into the sea. The plume
area of the Mzymta River, the most affluent river in the region, was chosen as the test
site. The main objective was to determine the relationships between water turbidity and
SPM obtained by contact and remote sensing methods and compare the performances
of the above algorithms. Strong spatial and temporal variability of sub-mesoscale hy-
drodynamics in the study area required careful selection and comparison of different
instruments and techniques for in situ measurements. Coupled with a detailed examina-
tion of surface and vertical plume structure, this ensured correct and accurate validation of
the satellite algorithms.

Contact measurements were conducted from a small boat using a turbidity sensor
mounted on a CTD (Conductivity, Temperature, Depth) probe, a portable turbidimeter
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and water sampling for further laboratory analysis. Quasi-synchronous satellite data were
processed using C2RCC and ACOLITE algorithms proposed by Nechad et al. [31,44,45]
and Dogliotti et al. [32].

Quite a number of works, for example [57–59], are devoted to the plume of Mzymta,
however, comparison of water quality parameters retrieved from concurrent contact and
satellite measurements was performed for the first time.

2. Study Area, Data and Methods

2.1. Study Area

The Mzymta River is the largest river of the Russia’s part of the Black Sea coast. It
originates on the slopes of the Main Caucasus Range and has a mountainous character
for most of its length. The total length of the river is 89 km and the catchment area is
885 km2 [60]. The river recharge is mixed, including precipitation, melting snow and
glaciers and groundwater in the lower part. Mzymta has a high discharge in the warm
season, frequent autumn floods, and a stable low water in winter.

Mzymta flow rate varies from 0.4 to 2–3 m/s. The yield of suspended sediment is
directly dependent on water runoff: the greater the water discharge, the greater is the yield.
The average annual amount of suspended sediment is 488,200 tons and that of bottom
sediments is 141,000 tons [60]. The average annual discharge of the river is 45.6 m3/s [61].

Mzymta plume forms near the city of Adler where the river enters the Black Sea.
Plume water is fresher and colder than seawater. Having a highly dynamic character,
Mzymta plume is subject to a strong influence of wind and coastal system of currents [2,62],
the Coriolis force, the local landscape, and stratification of the ambient sea [58]. Due to
a narrow shelf zone in the southeastern Black Sea, the main element of the Black Sea
circulation, the Rim Current, is often strongly pressed against the coast, at a distance of
~6 km. Therefore, being involved in the cyclonic structure of the Rim Current, Mzymta
plume can spread for many kilometers along the coastline from the river mouth [63].
Interacting with sub-mesoscale and mesoscale vortex structures, the river water acts as
a tracer, which aids in the studies of water exchange between the coastal zone and deep
sea [64].

The infrastructure developed along the shores of Mzymta can bring a potentially
significant anthropogenic impact on its waters. In the upper part of the river, there is
the famous Krasnaya Polyana ski resort with a vast complex of hotels. At the mouth of
the river, popular tourist attractions include extreme rafting, bungee and BASE (building,
antenna, span, and earth) jumping. There are several trout farms in river bends, some of
them invite tourists. The hydropower plant in Krasnaya Polyana is also located on the river
and supplies electricity to the city of Sochi. The most developed is the lowland part of the
river in close proximity to the coast. The cities of Sochi and Adler stretch along the seashore
with numerous hotel complexes and swimming beaches. By the 2014 Winter Olympics, the
eastern part of the floodplain was densely developed to build the Olympic Village, a yacht
port and new artificial sandy beaches. Now, Sochi is the largest resort city in Russia, very
popular throughout the year (Figure 1). Such development can dramatically contribute to
pollution of the river water and, as a result, the coastal zone [65].
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Figure 1. Study area in the northeastern part of the Black Sea. 1 Imereti port; 2 Olympic Park; 3 wastewater outfall;
4 beaches.

A possible attempt to regulate Mzymta flow into the sea and to direct it away from
the yacht port in order to decrease its impact on the port protective walls can lead to
destruction of the beaches just east of the port (Figure 1). Without new terrigenous material,
the beaches will erode and their maintenance will be too expensive. Study, monitoring and
control of this area are urgently needed to understand the changes in the coastal ecosystem
due to active recreational activity and properly maintain such activity.

2.2. Data and Methods
2.2.1. Boat Measurements

Shipboard measurements were conducted from 23 April to 4 May 2019, in the estuary
zone of Mzymta from a small boat called Arabella with Imereti port as point of departure.
The route of Arabella within Mzymta plume consisted of 4 legs parallel to the coast, from
the river mouth to a visible edge of the plume. Each sailing was organized concurrently
with a satellite (Sentinel-2A/-2B MSI, Landsat-7 ETM + and Landsat-8 OLI) passage over
the study area. In total, seven boat trips were completed on 23–26, 28 April and 1–2 May
2019. The summary grid of stations included more than 150 points (see Figure 2). At
each station, CTD probing was performed from the surface to the bottom using a high-
precision instrument RBR-Concerto of the Canadian company Richard Bransker Research
Ltd. The main characteristics of the instrument are presented in Table 1. The CTD probe
was equipped with a turbidity meter (TM) from Seapoint Ltd. with measurement frequency
up to 6 kHz. Additionally, turbidity of the upper layer of water was measured at best
possible accuracy using a portable turbidimeter (PT) TN400 from Apera Instruments. At
CTD stations and in points of turbidity measurement, water sampling was performed for
further evaluation of SPM.
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Figure 2. Map of 2019 hydrological stations.

Table 1. The main characteristics of RBR-Concerto CTD instrument.

Parameter Range
Initial

Accuracy
Resolution

Time
Constant

Typical
Stability/
Per Year

Max.
Depth

(m)

Sampling
Speed
(Hz)

Conductivity 0–85 mS */cm ±0.003 mS/cm 0.001 mS/cm ~1 s 0.010 mS/cm 200 2–6

Temperature −5 ◦C to 35 ◦C ±0.002◦ 0.00005 ◦C ~1 s 0.002 ◦C 200 2–6

Depth 0–200 m ±0.05% FS ** 0.001% FS <0.01 s 0.1% FS 200 2–6

*—millisiemens. **—full scale.

TM is an analog sensor that detects scattered light from suspended particles in a
specific volume of water placed in front of the optical window of the sensor, at a distance
<5 cm. A distinctive feature of the sensor is its ability to detect light scattered from particles
smaller in size than the wavelength emitted, which is 880 nm. For suspended particles
whose diameters are greater than the wavelength of the light source, light scattering
actually occurs through optical processes such as reflection, refraction, and diffraction [66].
A light-scattering pattern after a collision with a particle depends on the relationship
between wavelength and particle size. When the particle is larger than the wavelength,
light tends to scatter more intensely in the forward direction [67]. TM reports turbidity
in nephelometric turbidity units (NTU). TM measuring range is from 0.05 to 15,000 NTU
(±2% deviation), operating temperature 0–65 ◦C (temperature coefficient <0.05%/◦C),
depth capability 6000 m.

At the CTD stations, TM took measurements from depths of 0.35–0.50 m at best. To
improve turbidity data from the upper layer of water (0.10–0.15 m), we also used PT. The
instrument is equipped with an infrared light source and uses the nephelometric method
that complies with ISO7207 (90◦ dispersion). PT measurement range is from 0 to 1000 NTU
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(the instrument is shipped with 4 ready-made calibration standard solutions of high-
molecular polymer turbidity: 0.02 NTU, 20.0 NTU, 100 NTU, and 800 NTU), measurement
accuracy varies from 0.01 to 1 NTU depending on the selected range. For each sample, two
instant measurements were taken; their mean was used as a resulting value. At the same
time and at the same stations, samples of water were taken from the upper surface layer
for laboratory analysis.

Each optical sensor, in principle, has its own specifics. A detailed discussion can
be found, for example, in [68], a work devoted to laboratory experiments on turbidity
evaluation by different optical sensors.

During the boat measurements, air temperature, wind speed and wind direction were
continuously recorded by the Airmar WeatherStation 150WX weather station along the
course of the boat. Table 2 presents its characteristics. The display of weather station
parameters was configured and realized by the factory software WeatherCaster ™ Software
3.005. Also, data on air temperature, atmospheric pressure above sea level, wind speed,
wind direction and precipitation were obtained from a weather station at the airport of
Sochi (https://rp5.ru/). The movement between boat stations was controlled using a
chartplotter with a built-in Garmin GPSmap 541s echo sounder.

Table 2. The main characteristics of Airmar WeatherStation 150WX.

Parameter Range Accuracy Resolution

wind speed 0–40 m/s 5%/10 m/s 0.1 m/s

wind direction 0◦ to 359.9◦ ±3◦/10 m/s 0.1◦

air temperature −40 ◦C to 80 ◦C ±1.1 ◦C/20 ◦C 0.1 ◦C

barometric pressure 300 to 1100 hPa ±0.5 hPa 0.1 hPa

pinch and roll 50◦ ±1◦ in range of ±30◦ 0.1◦

2.2.2. Laboratory Study

During the field work, 140 water samples were taken from the near-surface layer to
evaluate amount and mineral composition of the suspended matter. As mentioned earlier,
this was necessary in order to carry out more accurate measurements of Mzymta plume
water for subsequent comparison with results derived from remote-sensing data. The
volume of each sample was approximately 1.5 L. All samples were weighed in laboratory
conditions with an accuracy of 0.01 g. SPM was determined gravimetrically [69,70]. Water
was filtered using a vacuum unit Lafil 400-LF30 and fiberglass WHATMAN GF/F filters
manufactured from hydrophobic borosilicate glass. These filters are capable to catch fine
particles down to 0.7 microns. The filters were preweighed with an accuracy of 0.1 mg, and
stored in a desiccator for use within 2 weeks. Water samples were filtered immediately
after collection.

To remove sea salt from the suspension, filters were washed with 250 mL of distilled
water after filtration. Such an amount of fresh water provided complete dissolution of the
salt and its removal from the samples. The samples were stored at −20 ◦C until further
analysis, usually within one month after sampling. Subsequently, all filtered samples were
subjected to weight analysis of SPM on high-precision scales in the petrology laboratory
of the Moscow State University. Suspension filters were dried for 24 h at 50 ◦C and
reweighed. The accuracy of determining the weight of the suspended particles in the
samples was ±0.0001 g. Note that suspended particulate matter includes all organic and
mineral material with dimensions over approximately 0.7 mm.

The median and the interquartile range (IQR) were computed for each sample by the
protocol detailed in [70]. Observations where the IQR exceeded 45% of the median SPM
value were rejected.

To identify the mineral composition of the sediment, 20 samples were chosen for X-ray
analysis. The samples were obtained on 26 April, 1 May and 2 May at stations located at
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different distances from the Mzymta mouth and covering a wide range of turbidities from
minimum to maximum NTU.

X-ray scanning and analysis were performed at the Department of Oil and Gas Sed-
imentology and Marine Geology, College of Geology of Moscow State University. The
survey was carried out on a DRON UM 1 powder diffractometer (Co Kα, λ = 1.79021 Å) in
the range of angles 2 Θ from 4 to 80◦ in continuous mode at a speed of 2◦ per minute. The
phases were diagnosed using the MINCRYST crystallographic base for minerals and their
structural analogs. The amount of the mineral phase was estimated by comparison of the
intensities of the corresponding peaks.

2.2.3. Satellite Observations

All field measurements from the boat were synchronized with satellite data acquisition
at best possible accuracy. The source of remote-sensing data was the instruments on board
Landsat-8 and Sentinel-2 (A and B), namely, the Operational Land Imager (OLI) and
Multispectral Instrument (MSI) multispectral sensors. Also, Sentinel-3 OLCI data were
used to compose SPM maps. Because of their 300 m spatial resolution, no comparison with
measurements at the boat stations was possible. They were used to highlight the general
picture of Mzymta water distribution.

The Landsat-8 satellite, of the National Aeronautics and Space Administration (NASA)
and The United States Geological Survey (USGS), is equipped with OLI and Thermal In-
fraRed Sensor (TIRS) multispectral scanners of medium spatial resolution in the visible
and infrared ranges covering a strip about 185 km wide in a continuous mode with a
flight frequency once in 7–8 days. The maximum spatial resolution of these sensors is
15, 30 and 60 m, depending on the corresponding spectral range of sensing. The paired
satellites Sentinel-2A and Sentinel-2B of ESA are equipped with MSI with a spatial resolu-
tion down to 10 m. It continuously covers a strip of the surface about 290 km wide at a
frequency of once every 3–10 days for the same region.

Standard algorithms for reconstructing optical parameters based on satellite data, first
of all SPM and chlorophyll concentration, were initially designed for open ocean waters
with a predominance of phytoplankton and its decay products, so called Case 1 type waters,
whereas in our work the study region refers to Case 2 type coastal waters characterized by
high turbidity and considerable influence of the coastal zone [71,72].

In the work, we used different software to process satellite data for comparison with
the results of in situ measurements. First, we applied the C2RCC (Case 2 Regional Coast
Colour) version of a processor originally developed by Doerffer and Schiller [37] and now
implemented in the ESA Sentinel Toolbox SNAP software (https://step.esa.int/main/
toolboxes/snap/). The latest development of C2RCC neural networks and the algorithm
for optically complex waters are described in [43]. Although the current processor version
integrates almost all the essential characteristics of the environment and the equipment ap-
plied, the algorithm developers leave open a possibility for its users to change certain input
parameters and coefficients including those experimentally obtained which need perma-
nent regional correction. They include atmosphere transmittance, reflectance parameters
of a specific underlying surface, cloud risk coefficients, air pressure and other.

The recent development of more reliable technologies for the evaluation of key pa-
rameters of the marine environment has become possible due to the introduction into
widespread use and accessibility of the source code of the algorithm based on the use of
neural networks. The most important property of neural networks is the possibility of their
training by regular updating the database of correlated input parameters and obtained
characteristics of the studied medium by introducing into the model a wide range of results
of real contact measurements synchronous with satellite observations in different regions
and sequential refinement of the connections between neurons, that is, actually realizing
multiple non-linear regression [43].

SNAP processing results that we used in our study can be presented both in a tabular
form for easy comparison with in situ measurements and in the form of TCI mapping the
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retrieved optical characteristic with resolution close to original resolution of the satellite
data. TCI do not show numerical values of the optical characteristic, but display its
gradients in a way familiar to the human eye, and also carry supplementary information,
such as locations of the stations, trajectory of the boat, properties of wind and currents,
diurnal displacement of the plume boundary and other. For all processed satellite data,
TCI were constructed at the maximum resolution (10 m).

Second, for all Landsat-8 OLI and Sentinel-2 MSI data we performed atmospheric
correction with the ACOLITE DSF method. To retrieve turbidity and SPM we used two
algorithms developed by a team of researchers led by Dr. Bouchra Nechad and described
in detail in [31,44,45]; below they are referred to as Nechad 2009 and Nechad 2015. There
were some differences in the Nechad 2009 and Nechad 2015 results, but nothing critical. In
contrast, the algorithm proposed by Dogliotti et al. [32] (below referred to as Dogliotti) and
intended for highly turbid waters showed rather inconsistent results.

3. Results

3.1. Meteorological Conditions

Knowledge of meteorological conditions is crucial for analyzing the influence of wind
on the dynamics of a river plume and the influence of precipitation on the discharge
and turbidity of the river. Cloud cover and air temperature affect permeability of the
atmosphere, which is important for processing visible remote-sensing data.

Weather information on the days of our field work and adjacent days, from 20 April to
4 May 2019, was available from the weather station at Sochi International Airport (rp5.ru).
The prevailing wind directions were: ENE—19 cases, NE—10 cases and E—11 cases in
the morning; and W—22 cases in the afternoon. During NE upsurge wind, the area of
the river plume reached its maximum. With E/ENE winds, the plume spread strictly
westward, being pressed against the coast. In general, wind speeds were moderate and did
not exceed 7 m/s. With E/ENE winds, wind speed was in the range of 2–4 m/s. Under
NE winds, from 28 April to 1 May, a stronger wind was observed, from 2 to 7 m/s. With
predominantly evening W winds (except on 26 April), minimum wind speed was 3 m/s
and less. On 2 May and 4 May, wind directions varied. With NE winds, from 28 April
to 2 May, the sky was overcast over the study area. Just before our work, on 21–23 April,
slight short-term precipitation took place and on 3 May precipitation was up to 30 mm.
On 26 April, the weather was cloudless over the area of observation with W winds. Air
temperature ranged 8–24 ◦C. Its gradual increase was observed till 1–2 May. After rain on
3 May, there was a sharp decrease in air temperature to a daily average of 12–13 ◦C. Air
temperature and wind field characteristics are presented in Figure 3.

 

Figure 3. Meteorological conditions during 2019 in situ measurements (rp5.ru).
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3.2. Results of In Situ Measurements

During the field studies in April–May 2019, Mzymta plume spread strictly westward,
with a sharp eastern boundary, unlike our previous observations in April 2018, when the
direction of plume propagation changed depending on coastal currents [73,74].

The spreading of the plume in the western direction was caused by two factors:
(1) during our work, the Rim Current jet, which is directed westward at this location, was
pressed to the coast and had a high velocity of more than 0.6 m/s [63]; (2) in the eastern
part the river mouth, blocks of concrete were laid to limit the spread of water in the eastern
direction and to reduce the load on the structures enclosing the port facility.

Due to the relatively small size of the plume, it was possible to cover its entire area
with a dense grid of measuring stations (Figure 2). At each station, measurements were
taken from the surface to the bottom. For comparison with satellite observations, a special
focus was on the near-surface layer.

3.2.1. Variation of Temperature, Salinity and Turbidity in the Near-Surface Layer

Temperature. During the field work, a gradual increase in water temperature in the
surface layer occurred, which correlated well with a gradual increase in daily average air
temperature in the region. Lowest water temperatures were typically observed close to the
river mouth. At a distance of not more than 200–300 m from the mouth, the temperature in
the surface layer of water, at a depth of 50–80 cm, varied in the range from 10.8 to 12.7 ◦C
(Table 3). It gradually increased in the direction to the plume boundary with increasing
mixing with seawater. The surface temperature of “proper” seawater outside the plume,
varied from 12.4 to 17.3 ◦C. Its highest values were reached by 2 May when air warmed up
to 24 ◦C.

Salinity. Water salinity in the surface layer at the stations closest to the mouth, varied
from 6.2 to 11.4 PSU (Table 3). At the plume boundary, salinity was close to seawater, which
in the Black Sea is about 18 PSU.

Turbidity. During nine expedition days, turbidity in the surface layer, according to PT
measurements, soared more than eight times (Table 3), from 13 NTU in the beginning to
135 NTU in the end. The maximum turbidity was reached on 3 May, when no boat trips
were conducted, after a sharp warming in the Mzymta watershed due to melting glaciers
and snow in the mountains and precipitation.

Table 3. Maximum and minimum values of temperature, salinity, turbidity and suspended particulate
matter concentration (SPM) in the surface water layer on days of boat measurements.

Date

Min
Temperature,

◦C

Max
Temperature,

◦C

Min
Salinity,

PSU

Max Turbidity,
NTU

Max SPM,
g/m3

PT * TM **
Water

Sample

23 April 2019 11.04 12.37 11.36 22 31 18.7

24 April 2019 11.61 13.65 10.95 13 16 18.1

25 April 2019 11.17 13.24 10.38 15 20 16.1

26 April 2019 10.77 13.53 6.23 28 31 22.8

28 April 2019 11.09 14.46 6.55 54 78 46.3

1 May 2019 12.69 15.50 9.24 68 75 64.5

2 May 2019 12.28 17.25 9.80 125 129 106.6
* measured with TN400 portable turbidimeter, Apera Instruments. ** measured with Turbidity Meter,
Seapoint Ltd.

3.2.2. Spatial Distribution of Temperature, Salinity and Turbidity in the Plume

As Mzymta water spreads in the sea, changes in the basic parameters of water (tem-
perature, salinity, turbidity) occur unevenly. This depends on speed and discharge of the
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river flow and on coastal currents, which are highly heterogeneous in this area [58]. As a
result, local areas of increasing/decreasing turbidity and salinity are formed in the estuary
zone of Mzymta. In addition, in the area of the plume there is a sewage outfall of the city
of Adler that evidently influences water parameters. Figure 4 shows maps of the spatial
distribution of temperature (Figure 4a), salinity (Figure 4b) and turbidity (Figure 4c) based
on boat measurements using CTD and TM in the near-surface layer on 2 May 2019. In
Figure 4c, pink dashed line schematically shows the boundary of the plume. Some stations
on that day are also shown. They are Stations 119, 129 and 134. Station 129 is located at the
outfall of the sewage pipeline. The impact of the sewage outfall is associated with a small
region with almost zero turbidity and increased salinity in comparison to surrounding
plume waters. This region is easily recognized in the visible satellite imagery.

3.2.3. Depth Distribution of Temperature, Salinity and Turbidity

To solve the problem of satellite data verification with the results of field measure-
ments, it is necessary to know the depth distribution of river water parameters. The
distribution of temperature and salinity over depth determines plume water stratification,
which impacts the hydrodynamic processes. The thickness of the turbid water layer and
turbidity depth distribution determine the depth of the water column contributing to water
leaving radiance captured by the satellite sensor. Accordingly, this determines the choice
of the techniques and instruments for the field measurements.

In our previous studies [73,74], we found that depth penetration of river water is small
and rapidly decreases with distance from the river mouth. This was confirmed again by
the observations in April and May 2019. As an example, Figure 5 shows the change in the
hydrological characteristics with depth on 2 May 2019. Station 119 was located in close
proximity to Mzymta mouth and Station 134 was located at the plume boundary (Figure 4c).
By the conventional definition, a plume boundary is a minimum water turbidity location
that is the closest to a sharp turbidity gradient. In this example (2 May), water turbidity
was about 20 NTU, and outside the plume we observed values close to 0. Changes in
turbidity, temperature and salinity with depth at these stations are shown in Figure 5a
(Station 119) and 5b (Station 134). At Station 119, the closest to the mouth, the depth of
the plume is about 2.5 m, water turbidity in the near-surface layer reaches 125 NTU, and
temperature and salinity are much lower than in the underlying layer. This turbidity is the
greatest for a given day. At Station 134, which is 250 m more seaward and near the border
of the plume, the hydrological section looks different (Figure 5b). The thickness of river
water intrusion is not more than 1 m, the turbidity of sea water is about 20 NTU, and the
temperature and salinity are almost unchanged with depth.

Thus, it was determined that the depth penetration of river water sharply decreases
with distance from Mzymta mouth, from 2.5 to 1 m at the plume boundary; therefore, for
comparison with satellite data, all field measurements should be made in the near-surface
layer. The thickness of the seasonal thermocline is about 11–12 m.

3.2.4. Results of Portable Turbidimeter (PT) Measurements in the Near-Surface Layer

After comparison of turbidity data obtained with TM and PT in the surface layer of
water (see Section 4.1), it was decided to use PT measurements for further comparison with
the weight method and remote sensing data, because PT is capable of taking measurements
in a thinner surface layer (the first tens of centimeters) than TM.

A change in maximum water turbidity that was found with PT (most pronounced at
stations located closest to the river mouth) in a thin surface layer (from 0 to 15 cm) is shown
in Figure 6. During the field work, an exponential increase in this parameter was observed.
The lowest value was 15.44 NTU and the highest value of 288 NTU was recorded on 4 May:
a rise of 18 times in the mouth zone. Most likely, this was due to the cumulative effect of
air temperature increase by the end of the field work, triggering active melting of snow
and ice in the mountains, and intense (about 30 mm) precipitation on 3 May.

23



Remote Sens. 2021, 13, 143

 

 

 

Figure 4. Maps of spatial distribution on 2 May 2019: (a) water temperature; (b) salinity; (c) turbidity
from CTD and TM measurements. Pink dashed line indicates the boundary of the river plume.
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Figure 5. Typical CTD + TM casts: (a) Station 119—the closest to the mouth; (b) Station 134—near plume boundary (see
Figure 4). Red line—temperature, green line—salinity, black line—turbidity.

 

Figure 6. Changes in PT maximum turbidity (black line), daily average air temperature (dashed line)
and precipitation (blue columns).
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3.2.5. Correlation Analysis of Turbidity and Suspended Particulate Matter Concentration
(SPM) from In Situ Measurements

During boat stations, turbidity in the plume was measured with two instruments:
Apera Instruments TN400 portable turbidimeter (PT) and Seapoint turbidity meter (TM).
At the same stations, water samples were collected at the same depths as PT measurements.
After filtering and weighing water samples in accordance with the protocol described
in [69], we obtained values of SPM hereinafter referred to as SPM in situ. Note, the water
turbidity unit is NTU, while the SPM unit is g/m3, and no algorithm exists to convert
one into another because the two parameters are very different in physical nature and
measurement methods. Turbidity strongly depends on particle size and composition of
suspended matter. One of the tasks was to define the correlation between turbidity and
SPM for the study region in the period of the spring flood. The analysis shows that the
SPM in situ is directly proportional to the turbidity determined with PT in the upper
surface water layer (Turb in situ, NTU). As shown in Figure 7, the obtained values are
well approximated by a straight line: SPM in situ = 0.84 × Turb in situ. The determination
coefficient is very high: R2 = 0.982. This is typical of all water samples without exception
and does not change with days of measurements or weather conditions. A similar strong
relationship was determined between the SPM in situ and turbidity determined with TM,
the existing differences will be addressed below in the Discussion (Section 4.1).

With such a high correlation between the PT data and the SPM in situ in this region,
it seems reliable to make conversions between the turbidity and SPM units (NTU and
g/m3) using the established empirical equation. The main advantage is the ability to
acquire numerous data using only optical turbidity sensors without time-consuming
work to determine weight turbidity. Naturally, it is necessary to conduct multiple similar
experiments in different seasons and under different meteorological conditions to obtain
statistically valid results.

 

Figure 7. Comparison of SPM in the water samples (SPM in situ) and turbidity determined with PT (Turb in situ) for all
measurement days in April–May 2020.
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3.2.6. Sampled SPM and Mineral Composition of Suspended Matter

The SPM in water samples collected during the field work ranged from 2 to 106 g/m3.
From 23 April to 2 May, maximum SPM gradually increased from 23 g/m3 on 23–26 April;
to 46 g/m3 on 28 April; 65 g/m3 on 1 May; and 106 g/m3 on 2 May. The minimum SPM
values within the plume for the entire period of the study were approximately 2–3 g/m3.

X-ray phase analysis of mineral composition of the suspended matter showed that in
the selected samples: (1) quartz amounted to 16–45% of the suspension mass; (2) feldspars
12–27%; (3) various clay minerals (kaolinite, montmorillonite, chlorite, hydromica, mixed
layer minerals) 27–58%; (4) carbonate minerals (calcite, dolomite and aragonite) 0–22%
(Table 4).

Table 4. Turbidity in the upper near-surface layer, sampled SPM and mineral composition of suspension.

Date Station
PT Water
Turbidity,

NTU

Sampled
SPM, g/m3

Quartz,
mas.% *

Feldspars
mas.% *

Clay
Minerals,
mas.% *

Carbonate
Minerals,
mas.% *

K **

26 April 60_1 28 22.8 28 21 42 9 0.67

26 April 64 16 13.8 30 24 46 0 0.65

26 April 65 7 7.3 19 23 45 10 0.43

26 April 69 20 16.6 23 21 45 10 0.51

26 April 70 15 14.0 22 24 45 9 0.49

26 April 71 11 9.3 16 23 38 22 0.42

26 April 79 7 8.6 17 24 45 9 0.38

01 May 98 68 64.5 45 20 27 8 1.67

01 May 99 47 43.1 38 24 32 6 1.19

01 May 101 21 20.0 31 19 44 6 0.70

01 May 106 17 14.4 27 19 46 6 0.59

01 May 109 7 7.8 22 12 58 8 0.38

02 May 120 97 83.0 35 16 45 4 0.78

02 May 125 48 33.8 30 15 51 4 0.60

02 May 128 26 19.4 24 27 42 6 0.58

02 May 133 41 34.3 30 14 51 4 0.58

02 May 137 33 27.8 28 19 47 6 0.60

* percentage of total weight of the suspended matter. ** K—ratio of the mass of quartz to the mass of clay minerals in suspension.

3.3. Results of Satellite Observations
3.3.1. Satellite Data Processing and Products

Field measurements were carried out concurrently with satellite remote sensing
(Table 5). To efficiently compare remote sensing SPM (SPM satellite) with the in situ
turbidity and sampled SPM (SPM in situ), it was necessary to use satellite optical data of
a sufficiently high spatial resolution. Such data were available from Sentinel-2 MSI, with
pixel resolution of 10 m in the visible range, and Landsat-8 OLI, with pixel resolution of
30 m. MSI data were obtained on 23, 26, and 28 April and on 1 May 2019; and OLI on
25 April and 2 May. On 1 and 2 May, there was haze which compromised SPM satellite
data, but the plume edge was clearly visible (Figure 8). In total, during the period of field
measurements, five images were acquired from Sentinel-2A/-2B MSI; one image from
Landsat-7 ETM+; two images from Landsat-8 OLI/TIRS; and four images from Sentinel-
3A/-3B OLCI. Based on the satellite data, TCI were composed to highlight the plume
boundaries, as well as SPM satellite maps. MODIS data (Aqua/Terra) and NPP VIIRS were
used as a source of auxiliary information. All satellite data were swiftly integrated into the
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See the Sea (STS) information system [75,76] and analyzed online to supply information
for planning the next day of work (define more accurately the coordinates of hydrological
stations). The satellite data and products available in the period of the field measurements
are listed in Table 5.

 

Figure 8. Fragments of satellite images obtained during the measurement period: 23 April 2019, Sentinel-2B Multispectral
Instrument (MSI) (a); 25 April 2019, Landsat-8 Operational Land Imager (OLI) (b); 26 April 2019, Sentinel-2B MSI (c);
28 April 2019, Sentinel-2A MSI (d); 1 May 2019, Sentinel-2A MSI (e); 2 May 2019, Landsat-8 OLI (f).

3.3.2. Plume Boundary Detection

One of the main tasks of this work was to compare SPM in situ with SPM satellite.
Therefore, it was very important to carry out in situ measurements at the same time and
for the same points, specifically in the region of maximum turbidity inside the plume
and outside it. During boat trips, each station position was clearly defined with respect
to the plume: either it was at the plume boundary, inside the plume or outside it. Each
measurement cycle took about three–four hours every day to complete all hydrological
stations (see Table 5). Because daily boat measurements started approximately at the time
of a satellite overflight, they ended 3–4 h after it. When the measurements were completed,
on its way back to port the boat followed the plume boundary visible from board, and
its path was recorded using a Global Positioning System (GPS) tracker. Subsequently, the
plume boundary obtained this way was plotted on the satellite image. The intermediate
positions of the eastern boundary of the plume, determined from the corresponding station
position records, were also plotted on the satellite image. It was found that the plume
boundary changes its position at a rather high velocity, which should be taken into account
when comparing the data of contact and remote measurements.
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Table 5. Satellite information available during field measurements.

Date Time UTC Sensor Satellite
Pixel

Resolution, m
Product

Boat
Measurements,

Time UTC

23 April 08:17 MSI Sentinel-2B 10 TCI, SPM 7:42–10:38

24 April 07:59 ETM+ Landsat-7 30 TCI 7:33–11:41

25 April
08:01 OLI/TIRS Landsat-8 30/60 TCI, SST, SPM, CHL

7:37–11:08
07:56 OLCI Sentinel-3B 300 SPM

26 April

07:30 OLCI Sentinel-3B 300 SPM

7:27–10:3208:27 MSI Sentinel-2B 10 TCI, SPM

10:12 VIIRS NPP 1000 SST, WLR, CHL

28 April 08:17 MSI Sentinel-2A 10 TCI (cloud) 7:37–9:17

30 April 07:26 OLCI Sentinel-3B 300 SPM No measurements
at stations

01 May 08:27 MSI Sentinel-2A 10 TCI (cloud) 7:35–10:56

02 May 08:07 OLI/TIRS Landsat-8 30 TCI (cloud) 7:30–11:07

04 May 08:02 OLCI Sentinel-3A 300 SPM No measurements
at stations

As an example, Figure 9 shows the positions of the eastern boundary of the plume
on 26 April 2019, at 07:30–08:00 UTC (yellow line); 09:11–09:29 UTC (pink line) and 10:30–
11:00 UTC when the boat returns to port (green line). Sentinel-2 MSI surveyed the area at
08:27 UTC. From the plume positions determined by the station locations and the plume
boundary derived from the satellite image, the velocity of displacement of the plume
eastern boundary was estimated to increase from 5 to 13 cm/s.

 

Figure 9. Plume boundary positions on 26 April 2019, at 07:30–08:00 UTC (yellow line); 09:11–09:29 UTC (pink line) and
10:30–11:00 UTC (green line) superimposed on a Sentinel-2B MSI image taken at 08:27 UTC on the same day.
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3.3.3. Correlation Analysis of SPM from Contact and Remote-Sensing Data Using Case 2
Regional Coast Color (C2RCC) Algorithm

It is difficult to expect a high correlation between SPM in situ measurements and
remote sensing estimations obtained using standard algorithms. As a rule, researchers
prefer to develop individual regional algorithms [21]. Nevertheless their performance
depends on many factors: season, river discharge, precipitation, etc. Our aim was to
compare SPM obtained from in situ measurements and SPM retrieved from satellite data
using standard rather than regional algorithms. This section presents C2RCC results.

For a joint analysis of in situ and satellite data, 26 April was selected as the only
cloudless day. Figure 10a presents SPM map from the Sentinel-2B MSI data. Here, the
C2RCC output is total suspended matter (TSM), a term with the same meaning as SPM and
similar wide use in literature. As shown in Section 3.3.2, the plume boundary was rapidly
shifting towards open sea (Figure 9). Therefore, some boat stations are inside the plume
identified in the satellite image, the others outside it. The MSI data were taken at 08:16
UTC. All stations can be divided into three main groups. The first group includes stations
where measurements were taken at a time close to the satellite overflight. These stations
were inside the plume, according to visual observations from the boat as well as satellite
observations. They are Stations 61, 62, 63, 68, 69, 70, 71, 72 marked blue in Figure 10b
depicting the correlation between sampled SPM in situ and SPM satellite. Station 63
failed IQR data control and was excluded from further consideration. The blue marks are
approximated by a straight line SPM satellite = 1.353 × SPM in situ with reliability R2 = 0.99.
Higher satellite values can be explained by the fact that each of them characterizes a certain
volume of water rather than a point in the upper layer.

The second group, marked red in Figure 10b, includes Stations 65 and 66. At the time
of in situ measurements they were located at the plume boundary that was quite well
visible from the boat, and at the time of satellite imaging inside the plume. Therefore,
SPM satellite values are much higher than SPM in situ. Special interest presents Station
60. This station was located at the mouth of the river with an SPM satellite of 51.8 g/m3.
In situ measurements however gave an SPM in situ of only 10.5 g/m3. This discrepancy
is most likely explained by complex conditions in close vicinity of the mouth. The river
discharges water at a high speed and it vigorously interacts with seawater causing wave
breaking and intense mixing. This can negatively affect both water sampling results and
remote-sensing data, for instance, when the sensor captures reflection from the sea bottom
in shallow waters. Also, the sample taken at this station could contain less suspended
matter due to technical difficulties.

The third group of stations (73, 74, and 77) was inside the plume during water
sampling (green marks). However, in situ measurements at these stations were carried
out 1–1.5 h after the satellite overflight and, over this time, the plume boundary shifted
by almost 250 m relative to its boundary identified in the satellite image. Therefore, in the
satellite image, these stations are already outside the plume. Accordingly, at these stations
the SPM satellite is lower than the SPM in situ.

Finally, as depicted in Figure 10b, Station 64 (Group 4) was located on the inner
border of the plume, which was also displaced, though not as fast as the outer one. Being
inside the plume during in situ measurements, Station 64 got practically outside it during
satellite imagery. This explains higher values of SPM in situ than SPM satellite attributed
to the station.

Thus, even using the standard C2RCC algorithm for determining SPM satellite, we
achieve a good agreement with SPM in situ obtained by water sampling, but only for those
stations where measurements were taken almost synchronously with satellite imaging.
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Figure 10. Case 2 Regional Coast Color (C2RCC) performance on Sentinel-2B MSI data of 26 April
2019: (a) SPM map with positions of the measurement stations; (b) quantitative comparison of SPM
satellite and water sampling SPM in situ. In Panel (b), Group 1 stations (blue) retained their positions
relative to the plume boundary during the time between satellite overflight and water sampling;
Group 2 (red) stations were located directly at the plume boundary at the time of water sampling. In
the satellite image, they are inside the plume; Group 3 (green) stations were inside the plume at the
time of water sampling. In the satellite image, they are outside the plume; Group 4 station (magenta)
is located opposite the pier. The station numbers are indicated beside the marks. The trend line is
drawn only for Group 1.

3.3.4. Correlation Analysis of SPM and Turbidity from Contact and Remote-Sensing Data
Using Different Algorithms

Among the main goals of our work was choosing the best standard algorithm for
SPM and turbidity retrieval from remote sensing data, in terms of correlation with in situ
measurements. To determine quantitative SPM, in addition to C2RCC we used Nechad
2009 [31] and Nechad 2015 [45]. SPM distribution maps built for 26 April 2019 using the
three algorithms are shown in Figure 11a. Qualitatively analyzing these maps, the following
conclusions can be drawn. C2RCC results look rather noisy: at low SPM, neighboring
values vary significantly. The features of the plume boundary are not pronounced. The
results of Nechad 2009 and Nechad 2015 are smoother and all inhomogeneities of the
plume boundary can be distinguished. At the same time, the three algorithms give different
distributions of the maximum SPM values in the immediate vicinity of Mzymta mouth.
On the C2RCC map, the area of maximum SPM values is much larger. For processing by
Nechad 2009, Nechad 2015 and comparison with C2RCC, we used only data from those
stations that were performed almost synchronously with the imaging (Group 1, Figure 10b)
by Sentinel-2B MSI on 26 April 2019. Figure 12a presents comparisons of SPM in situ and
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SPM satellite obtained by C2RCC, Nechad 2009 and Nechad 2015. No doubt, the C2RCC
results best agree with the in situ data. The straight approximation line for C2RCC goes
through the origin of coordinates, the determination coefficient is R2 = 0.989 (Figure 12a).
For the two other algorithms, Nechad 2009 and Nechad 2015, the determination coefficients
are only 0.943 and 0.941, respectively.

The main advantage of the ACOLITE algorithms is that it is possible to compare their
results with in situ turbidity data, for example, measured with PT, without converting
the latter to SPM in situ using the obtained dependence (Figure 7) and, more importantly,
without water sampling. To quantify turbidity, we used Nechad 2009, Nechad 2015 and
Dogliotti algorithms. The turbidity distribution maps compiled using these algorithms
for 26 April 2019, are shown in Figure 11b. Since Nechad 2009 and Dogliotti algorithms
coincide for low turbidity range, the corresponding patterns of turbidity are the same.
Near Mzymta mouth, Dogliotti definitely overestimates turbidity. Interestingly, Dogliotti
draws a pronounced high turbidity jet westward from the mouth zone. The existence of
such a jet is confirmed, for example, by the in situ measurements at Stations 61 and 62
(Figure 10a). Although Station 62 is located somewhat farther from the mouth, but, unlike
Station 61, it sits on the jet and, therefore, reports higher SPM and turbidity. A comparison
of turbidities obtained by Nechad 2009, Nechad 2015 and Dogliotti (Turb satellite) with
turbidity measured in situ (Turb in situ) is presented in Figure 12b. At low turbidity, less
than 16 NTU (FNU), Dogliotti yields the same results as Nechad 2009. For turbidities of
20–25 NTU and higher, Dogliotti switches to another method of calculation [32] suitable
for extremely turbid waters, but not for our study area (Figure 12b).

 

(a) 

 

(b) 

Figure 11. Performance of different satellite algorithms to map: (a) SPM; (b) turbidity, retrieved from Sentinel-2B MSI data
of 26 April 2019.
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Figure 12. Performance of different satellite retrieval algorithms compared with in situ measurements: (a) SPM satellite vs.
SPM in situ; (b) satellite turbidity (Turb satellite) vs. in situ turbidity obtained with PT (Turb in situ). The station numbers
are indicated beside the marks.

The values produced by Nechad 2009 and Nechad 2015 are well approximated by
straight lines (Figure 12b). The determination coefficient is R2 = 0.96 in both cases and the
lines are almost parallel. It is a puzzling fact that the lines do not go through the origin
of coordinates. Obviously, further testing on a much wider array of in situ measurements
is required.

4. Discussion

The data obtained by various methods during our work in April–May 2019, in the
Mzymta mouth zone can be divided into two groups:

1. Data from two turbidity sensors–an optical turbidity sensor as part of the RBR-
concerto CTD probe (TM) and a TN400 portable turbidimeter (PT). Both sensors
provide data in NTU units and work roughly on the same principle. A significant
difference is that turbidity measurements were taken at different depths, since it is
impossible to obtain data in the first centimeters from the surface with the CTD probe.

2. Data on SPM at different points of the plume obtained using different methods. The
first method is direct: SPM in situ was measured by weighing water samples. The
second method is indirect: SPM satellite was retrieved using the standard algorithms
from satellite remote sensing data.

In our work, we aimed to estimate the correlation of the data obtained from different
turbidity sensors, find out if there exists a robust dependence between turbidity and SPM
measured in situ, and, most importantly, reveal the correlation between satellite and contact
measurements.

4.1. Performance of Contact Turbidity Sensors

As expected, turbidities obtained at the same stations with PT and TM in the near-
surface horizon of 0.35–0.5 m agreed quite well. The determination coefficient of linear
approximation was R2 = 0.93 and, in general, TM turbidities were slightly higher than PM
ones, by a factor of 1.042. At high turbidity, a large scatter of the values is observed on
both sides of the linear trend. It possibly can be explained by highly unsteady interaction
of river and sea waters at the river mouth in shallow water which makes turbidity vary
significantly even at close points. Moreover, clapotis and wave breaking often take place.
In such conditions, it is not easy to use PT. Several measurements should be done in close
points for more reliable results. Sometimes it is technically troublesome, for example,
because of the risk to run aground. Meanwhile measuring with TM is much easier in such
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conditions, besides, each time we get at least 2 turbidity values, when TM is lowered and
then raised. This was specifically observed during a sharp increase of the river discharge
on May 2 when the velocity of the water flow increased from 2 m/s in the previous days to
6–8 m/s.

For turbidity values from 15 to 40 NTU, the results of measurements with different
instruments almost completely coincided, with slightly higher TM values. At turbidities
less than 15 NTU, an underestimation by TM can be noted. In fact, as the river waters
spread into the sea, both turbidity and plume thickness sharply decrease (Figure 5a). So,
the TM may eventually get below the depth of the plume penetration zone.

Considering the relationship of contact turbidity and SPM in situ, naturally, the best
correlation was achieved with PT. This is easy to explain. Water samples for determining
the SPM were taken at the same depth as measurements with PT, while TM measurements,
as mentioned above, took place at lower points. Nevertheless, we also got a linear correla-
tion between TM turbidity and SPM in situ, although with a slightly smaller determination
coefficient as compared to PM measurements, 0.924 and 0.982, respectively. The linear rela-
tionship obtained makes it possible to convert turbidity values measured in NTU to SPM
calculated in g/m3. Similar linear correlation was determined for the macrotidal estuary
of the Gironde [1]. The authors of the work noted that the relationship was specific to the
turbidity sensor used, but similar to those established using other instruments in other
periods of time. This could be an indication that suspended matter grain size distribution
and composition in the estuary did not change significantly in optical terms over the years.
Such a hypothesis should be tested for Mzymta plume as well. For this purpose, one need
to determine its mineral composition and establish the relationship between, for example,
quartz, as the largest suspended matter constituent, and plume turbidity.

Performance of the two turbidity sensors, PT and TM, showed that, in general, it
is sufficient to take measurements with only one instrument. A question arises which
one suits better, in view of comparison with satellite data. To draw sound conclusions,
knowledge of turbidity depth distribution is required. We believe that if river water
turbidity is high and its penetration depth is small, it is more reasonable to use PT, since
in this case water leaving radiance captured by the satellite sensor is formed in the near-
surface horizon. If turbidity is low, water leaving radiance can be formed in a layer down
to a few meters deep, so TM appears to be a more suitable instrument. In this case it is
obviously necessary to obtain some integral characteristics from TM readings at various
depths. This is an interesting and complex problem. As a rule, however, for comparison
with satellite data, either data from various PT analogs are used [77], or data from floating
spectroradiometers that are widely employed today for validating satellite data obtained
during field experiments. They measure absolute spectral irradiance at the sea surface and
water leaving radiance immediately under the sea surface [78]. TM data are usually used
for estimating river water penetration depth and turbidity profiling.

4.2. Small-Scale River Plume Boundary Dynamics

Our work has demonstrated prime importance of tight synchronization of in situ
measurements and satellite survey in the study region of Mzymta River plume. In a
thematically close study [23] discussing turbidity characteristics of the Danube plume, it
was noted that the maximum time gap considered between in situ SPM and high spatial
resolution images acquisition was of 120 h for periods with no substantial river fluctuation
and 48 h otherwise. In the case of Mzymta, the maximum time gap should not exceed
30–40 min since, as shown below, the plume boundary can move really fast. Certainly,
the plume of the Danube spreads for a much greater distance from the coast, compared
to Mzymta, so at considerable distances from its boundary, the plume can be regarded
unchanging during a day or two. In studies conducted in the mouth regions of small rivers,
such as Mzymta, one has to take into account plume spreading dynamics that is strongly
influenced by wind direction [58].
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After a series of experiments on 23, 25 and 26 April, small-scale displacement veloci-
ties of the plume boundary of Mzymta and their relationship with wind direction were
estimated (Figure 13). The essence of the experiment was to follow the plume boundary
using a GPS tracker on the way back to port after finishing the in situ measurements. It
was found that with weak S/SE winds, the displacement of the plume boundary was
very slow. In three hours, it shifted by 250–350 m at a velocity of 0.08–0.12 km/h under
the “pressing” winds towards or along the coastal zone (23 and 25 April). The maximum
displacement of the plume boundary was noted during W winds on April 26. In three
hours, the boundary shifted 900 m seaward. The displacement speed was 0.3 km/h. The
results of the experiments confirm the hypothesis of high mobility of the river plume as a
whole and its boundary in particular. This rather complicates the comparison of quanti-
tative remote sensing and contact data for specific stations, because during several hours
of boat measurements, the internal fine structure of the plume can change significantly.
Similar results are presented in [58]. Considering the impact of wind on hydrodynamic
characteristics of the plume, it is possible to tentatively forecast its spreading velocity
and plan more accurately the measurements at those stations whose positions relative
to the plume (inside, outside, at the boundary) are not expected to change during the
satellite overflight.

 

Figure 13. River plume boundary at the time of satellite overflight in the images of 23, 25 and 26 April 2019 (true color
images (TCI)). In the images, yellow line is a GPS track along the boundary of the plume 3 h after the satellite overflight.
Yellow arrow indicates prevailing wind direction.

4.3. Performance of Satellite SPM and Turbidity Algorithms

Satellite SPM and turbidity were calculated using C2RCC, Nechad 2009, Nechad 2015
and Dogliotti algorithms. Despite its failure for turbidities greater 20 NTU in the Mzymta
region, Dogliotti can be nevertheless used to reveal small scale turbidity inhomogeneities
that the other two algorithms can hardly detect. The best correlation with the in situ
data was achieved with C2RCC. The authors of [77] used C2RCC on Sentinel-3A OLCI
L1 data using SNAP and validated the results against dedicated in situ data obtained
in the Northwestern Baltic proper. Their validation campaigns took place between 2016
and 2018 in Swedish coastal waters and covered different times of year. On the basis of
a large dataset, authors of [77] recommend using C2RCC, but point out the problems of
atmospheric correction for pixels close to coast. The problems of adjacency effects or land
contamination of satellite sea data are also discussed in [1]. Both works employ low- and
medium-resolution ocean color data (MODIS and OLCI), however we do not anticipate
any serious complications when using high resolution data, such as MSI and OLI, as we
did in this study.

Among the atmospheric correction algorithms employed, ACOLITE DSF appears the
most practical and best performing in our study region. Nechad 2009 and Nechad 2015
overestimated SPM by 1.5 times for in situ measurement range up to 15 g/m3. For the
range over 20–25 g/m3, Nechad 2015 agreed well with in situ data and C2RCC results
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(Figure 12a). Data of 1 and 2 May, when Mzymta discharge and turbidity increased
significantly, could have been of particular interest, but haze on these days did not allow
obtaining meaningful satellite SPM.

4.4. Changes in the Mineral Composition of Suspended Matter Depending on Plume Water

The mineral composition of suspended matter (Table 4) shows significant variations
in the content of minerals in different water samples. The quantitative ratio of mineral
phases in the suspension composition depends on multiple factors.

Samples with high turbidity values, mainly from the near-mouth zones, contain a
large amount of quartz. For example, samples taken on 1 May in the Mzymta estuary zone
have high turbidity (up to 68 NTU) and predominance of quartz over clay minerals (see
Figure 14). With the distance from the mouth, the amount of suspended matter in the water
decreases and its mineral composition changes with a relative increase in clay minerals
and a decrease in quartz. Samples with low turbidity values taken at the plume boundary
have a significant predominance of clay minerals in the suspension.

  

Figure 14. Left: fragment of a Sentinel-2A MSI satellite image of May 1. Marks indicate locations where samples were taken
for X-ray phase analysis. Right: graph shows the ratio of the percentage of quartz in the dry matter of the suspension to the
percentage of clay minerals (K) depending on turbidity (Turb in situ, NTU). The station numbers are indicated beside the
marks. Positions of the stations on 26 April (blue marks) are shown in Figure 10a.

This result is in good agreement with the well-known theory of gravitational dif-
ferentiation of material, according to which a decrease in the particle size occurs with
distance from the coastal zone. Clay has low hardness, is highly susceptible to mechanical
weathering, and forms a fine-grained material that can be transported over long distances.
Quartz is characterized by a higher hardness and has more coarse particles, which are
deposited in the immediate vicinity of the river mouth.

As shown in Figure 14 right, the compositional differentiation of the suspension was
most pronounced on 1 May. High turbidity values correspond to the substantially quartz
composition of the suspension; at low turbidity, the suspension mainly consists of clay
minerals. On 26 April, the turbidity of the plume was generally low, not more than 28 NTU.
The trend of changes in the suspension composition is weakly expressed. At the moment,
no unambiguous relationship has been revealed between the value of water turbidity and
the mineral composition of the suspension. It is not yet possible to estimate the amount of
quartz and other mineral phases in the suspension by remote sensing methods.
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5. Conclusions

The paper presents the results of field studies in the northeastern part of the Black Sea
in the mouth area of the Mzymta River in April and May 2019. The main objective of the
study was to determine the relationships between water turbidity and SPM obtained by
contact and remote sensing methods and compare performances of the C2RCC processor
and the ACOLITE algorithms Nechad 2009, Nechad 2015 and Dogliotti.

It was shown that the highest correlation between the satellite and the water sampling
SPM for the study area in conditions of spring flooding was achieved with C2RCC, but only
for those stations where measurements were taken almost synchronously with satellite
imaging. For such stations, the comparison of satellite and water sampling SPM showed
a linear relationship with a reliability of 0.99. Nechad 2009, Nechad 2015 and Dogliotti
overestimated SPM by 1.5 times for in situ measurement range up to 15 g/m3. For the
range over 20–25 g/m3, Nechad 2015 agreed well with in situ data and C2RCC results,
while Dogliotti failed.

In a highly variable environment of the Black Sea northeastern coastal zone, rapidly
changing conditions often require a specific choice of both methods and instruments for
collecting in situ data suitable for validating the remote-sensing algorithms. Knowledge
of depth distribution of the main hydrological parameters is a key prerequisite for the
right choice.

When selecting in situ measurements for comparison with satellite data, one should
be particularly vigilant with respect to the high mobility of the Mzymta plume: within the
3–4 h when, as a rule, all the stations were completed, its boundary could shift considerably,
either being pressed to the coast or driven away from it. The velocity of displacement of
the plume boundary was estimated to increase from 5 to 13 cm/s.

A comparison of data on turbidity obtained by a portable turbidity meter and water
sampling SPM shows a linear relationship with the reliability of 0.982. This relationship
remained stable in time and weather conditions, which makes a portable turbidity meter
a valuable tool for fast and multiple measurements. Data obtained by this method can
be easily converted to SPM. This new and important result is very promising for in situ
SPM evaluation in the sense that expensive and time-consuming water sampling may
eventually become redundant. Moreover, without water sampling, the validation of
satellite algorithms for SPM retrieval based only on portable turbidity meter data becomes
a lot easier and faster: much more shorter stations can be undertaken over the same period
of time and no money must be spent on processing of water samples.

Based on X-ray phase analysis of the suspended matter, changes in the total amount
of quartz and clay particles were found to be a function of optical turbidity of the water
samples. With a decrease in turbidity the mineral composition of the suspension changed
with a relative increase in clay minerals and a decrease in quartz.

The authors hope to continue the studies to improve and validate the results presented
in this paper.
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Abstract: Ocean tidal backwater reshapes the stage–discharge relation in the fluvial-to-marine
transition zone at estuaries, rendering the cautious use of these data for hydrological studies.
While a qualitative explanation is traditionally provided by examining a scatter plot of water discharge
against water level, a quantitative assessment of long-period ocean tidal effect on the stage–discharge
relation has been rarely investigated. This study analyzes the relationship among water level, water
discharge, and ocean tidal height via their standardized forms in the Mekong Delta. We found
that semiannual and annual components of ocean tides contribute significantly to the discrepancy
between standardized water level and standardized water discharge time series. This reveals that
the long-period ocean tides are the significant factors influencing the stage–discharge relation in
the river delta, implying a potential of improving the relation as long as proper long-period ocean
tidal components are taken into consideration. By isolating the short-period signals (i.e., less than
15 days) from land surface hydrology and ocean tides, better consistent stage–discharge relations
are obtained, in terms of improving the Pearson correlation coefficient (PCC) from ~0.4 to ~0.8 and
from ~0.6 to ~0.9 for the stations closest to the estuary and at the Mekong Delta entrance, respectively.
By incorporating the long-period ocean tidal height time series generated from a remotely sensed
global ocean tide model into the stage–discharge relation, further refined stage–discharge relations
are obtained with the PCC higher than 0.9 for all employed stations, suggesting the improvement of
daily averaged water level and water discharge while ignoring the short-period intratidal variability.
The remotely sensed global ocean tide model, OSU12, which contains annual and semiannual ocean
tide components, is capable of generating accurate tidal height time series necessary for the partial
recovery of the stage–discharge relation.

Keywords: ocean tidal backwater; stage–discharge relation; ocean tide model; Mekong Delta

1. Introduction

Accurate water level (WL) and water discharge (WD) measurements are fundamental to various
hydrological applications, including flood forecasting, design and operation of conservancy facilities,
as well as water and sediment budget analyses [1,2]. However, due to economy, politics, and topography
along a river [3], the spatial distribution of hydrological stations is both sparse and uneven, along with
inconsistent and missing datasets [4]. In order to complement the above deficiency of observed datasets,
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it is a common practice to extend the datasets both in space and time by converting one type of data
into another, for instance, estimating WD from WL.

The conversion between WL and WD is referred to as the stage–discharge relation. Under a
pure hydrological situation, this relation is represented by a power function, also called rating curve.
There are two available methods to obtain the stage–discharge relation. The first method is based on
numerical solutions of dynamic models [5–7] that simulates the stage–discharge relation when accurate
hydraulic geometry and boundary conditions are available. The second method is based on data-driven
models that can be based on the power function fitting, non-linear regression techniques [8–10], or an
artificial neural network (ANN) [11–14].

In essence, WD is not only related to WL alone, but also disturbed by water surface slope, channel
geometry, bed roughness, flow unsteadiness, lateral flow, and the backwater effect caused by an ocean
tidal wave propagating up to estuaries [15,16]. Therefore, the stage–discharge relation becomes more
complicated, manifesting as multiple loops [17]. In the river delta, the influence of the ocean tidal
wave is a significant factor that distorts the well-established stage–discharge relation [8]. Consequently,
the WL and WD data near the estuary mouth at river deltas are used cautiously for research
studies, as those data are contaminated by the aforementioned factors. For instance, Sassi et al. [18]
quantitatively analyses the contribution of different ocean tidal components (i.e., quarter-diurnal,
semidiurnal, diurnal, and fortnightly) to surface water variation. The fluvial-to-marine transition
zone of Mekong Delta have been further subdivided into four sections (i.e., fluvial-dominated
tide-affected, fluvial-dominated tide-influenced, tide-dominated fluvial-influenced, and tide-dominated
fluvial-affected zones), according to salinity, channel morphology, fades/grain size, and the extent of
ocean tidal influence by Gugliotta et al. [19]. However, the stage–discharge relation at the river delta
corrected by ocean tidal components remains unexplored.

The Mekong Delta (MD) (Figure 1), being home to 19 million people, is an important agricultural
and fishing district in Southeast Asia [17,20]. Further anthropogenic stressors are massive river
training and construction of a multitude of large hydropower dams and severe sand extraction for
concrete production [21–23]. This is characterized by a relatively flat surface with low altitudes and
gradients [24,25]. Being a transition zone, WD and WL variability are dynamically affected by both
fluvial and marine processes seasonally [26,27]. As a result, reverse flow caused by ocean tidal wave
and storm surge can easily propagate along river channels [8]. As a result, salinity intrusion and
catastrophic flooding along with rising sea level [28–30] severely threaten the grain production in the
MD [31,32]. This also affects hydrological gauge stations within a distance of 200 kilometers away from
the estuary mouth. In addition, the Tonle Sap Lake in Cambodia also provides a regulation effect [33–35],
before the river runoff delivers to the MD and discharges eventually to the South China Sea through
the Bassac River and the Mekong river within the MD [36]. As a consequence, the stage–discharge
relation in this region exhibits multiple looping curves along with noisy patterns [33,37].

Despite qualitative explanations, the ocean tidal backwater effect has not been quantified
and corrected for. After all, the complex interaction between oceanic and fluvial processes is a
cross-disciplinary science among land surface hydrology, estuary, and ocean science. As long as an
appropriate method can be introduced to partially recover the stage–discharge relation with good
accuracy, the corrected data would be of great usage. For such a purpose, the analysis of the disturbance
of the stage–discharge relation by different components of ocean tides, based on a tidal data analysis or
a remotely-sensed global ocean tide model, is a prerequisite.

This study aims to demonstrate the potential of incorporating the ocean tidal components into
the stage–discharge relation for a partial relation recovery in the MD. The relation among WD, WL,
and ocean tidal height data time series are analyzed via their standardized forms. The ocean tidal
components generated from remotely sensed OSU12 global ocean tide model are substituted into the
resulting model relation generated from the analysis. The fitted model relation is subsequently applied
for estimating WD from ocean tidal height and WL. A quantitative evaluation of the estimated WD
against the observed hydrological data is also presented.
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Figure 1. Map of Mekong Delta (MD), with two pairs of hydrological gauge stations (i.e., Can Tho and
Chau Doc, and My Thuan and Tan Chau) situated near the estuaries. (The topography dataset, called
earth_relief_30s, is a derived product of SRTM15+ [38], which is obtainable from http://mirrors.ustc.
edu.cn/gmt/data/).

2. Datasets and Assessment Metrics

In this study, in-situ data from hydrological stations, tidal gauge data, and OSU12 global ocean
tide model were analyzed. Table 1 summarizes the essential information about these datasets.

Table 1. The datasets used in this study.

Products Location Time Span Temporal Resolution

In Situ Stations’
Water Level Data

Can Tho 2003–2006
2009–2014

Daily average
My Thuan 2003–2006

2009–2014
Chau Doc 2003–2006
Tan Chau 2003–2006

In Situ Stations’
Discharge Data

Can Tho 2003–2006
2009–2014 Daily (before 2006)

Monthly (after 2009)My Thuan 2003–2006
2009–2014

Chau Doc 2003–2006
Tan Chau 2003–2006

Tidal Gauge Data Vung Tau 2003–2014 Hourly
OSU12 Global Ocean

Tide Model Data
9.375N, 106.375E Tidal constituents

(Sa, Ssa, Mm)10.125N, 107.125E

2.1. In-Situ Hydrological Data

Station data time series within the MD were obtained from the Mekong River Commission (MRC)
(http://www.mrcmekong.org). Acoustic Doppler Current Profiler (ADCP) was applied to gauge flow
velocity for deriving precise discharge, according to MRC [39]. To compare between the two main
subdivided branches within the MD, Tan Chau and My Thuan stations along the Mekong River,
and Chau Doc and Can Tho stations along the Bassac River were used. Situated at the entrance of the
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MD [27], the Tan Chau and Chau Doc stations are, respectively, ~220 and ~240 km away from the
estuary mouth. Both stations are in the middle between the Tonle Sap Lake and the estuary mouth,
where the regulation effect of the lake and the ocean tidal backwater effect are minimized. Being the
closest hydrological stations to the estuary mouth, My Thuan and Can Tho stations are subject to the
backwater effect caused by landward ocean tidal propagation, which is clearly shown in the data time
series [27]. Hence, the comparison between upper and lower station pairs allows us to further quantify
the extent of the ocean tidal backwater effect.

Note that WD data of Tan Chau station were missing in 2001, 2002, and 2007. To be consistent
with the time span of other WD data, the station time series spanning from January 2003 to December
2006 were selected for investigation, while those from January 2009 to December 2014 were employed
for validation. Given the different temporal resolutions among WL, WD, and in-situ ocean tidal data
time series and in order to isolate signals unrelated to hydrology, a Butterworth filter was applied to
these time series for suppressing periodic fluctuations shorter than 15 days (e.g., diurnal, semidiurnal,
etc.). The mean, maximum, and minimum values of those time series are summarized in Table 2.

Table 2. Maximum, minimum, mean values, and standard deviations of original and processed
time series.

Variable Station Maximum Minimum Mean Standard Deviation

Original Water Discharge
(1 × 104 m3/s)

My Thuan 1.6500 0.0029 0.7263 0.4036
Can Tho 1.8400 0.0025 0.7206 0.4416
Tan Chau 2.2597 0.1190 0.9359 0.6490
Chau Doc 0.7120 0.0045 0.2625 0.2059

Processed Water Discharge
(1 × 104 m3/s)

My Thuan 1.5345 0.2423 0.7262 0.3109
Can Tho 1.4666 0.1704 0.7209 0.3236
Tan Chau 2.1400 0.1600 0.9360 0.6470
Chau Doc 0.7121 0.0266 0.2626 0.2043

Original Water Level (m)

My Thuan 1.4225 −0.3355 0.4619 0.3522
Can Tho 1.4591 −0.2707 0.4168 0.3231
Tan Chau 4.3831 0.0222 1.6820 1.2544
Chau Doc 4.0036 −0.1486 1.5017 1.1443

Processed Water Level (m)

My Thuan 1.2165 −0.1304 0.4620 0.3267
Can Tho 1.0358 −0.0685 0.4171 0.2976
Tan Chau 4.3361 0.2326 1.6825 1.2498
Chau Doc 3.9558 0.1863 1.5019 1.1396

Original Tide height (m) Vung Tau 4.3300 −0.4400 2.6433 0.8566
Processed Tide height (m) Vung Tau 2.9984 2.3413 2.6436 0.1648

Filtered and original time series of the four stations are displayed, showing common characteristics
of the WL and WD time series along with their differences (Figure 2a–d). Can Tho and My Thuan
station time series show a larger ocean tide backwater effect than those of Chau Doc and Tan Chau
stations. By comparing WL with WD time series, WD lags behind WL by approximately a month.
This fact is more pronounced for stations closer to the estuary mouth (i.e., Can Tho and My Thuan) than
their upper counterparts (i.e., Chau Doc and Tan Chau). Obviously, the annual signal is apparent for
all station time series, in which the temporal patterns are highly related to not only seasonal variation
of watershed runoff, but also the long-period (e.g., semiannual and annual) ocean tidal components,
as shown in Figure 2e. As a consequence, external information obtained from the tide gauge or ocean
tide model data near estuaries can be potentially used for removing the effect of long-period ocean
tidal components, which is the objective of this study.

46



Remote Sens. 2020, 12, 3648

Figure 2. Low-pass filtered (blue) and original (blue dash) time series of water discharge and water
level (red) over (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau stations, respectively,
and (e) time series of ocean tidal height (sea level) at Vung Tau station spanning from January 2003 to
December 2006.

2.2. Sea Level Data from Tide Gauge Station

A tide gauge measures sea level time series at selected locations along the coasts [40]. Vung Tau
is the closest tide gauge station to Mekong estuary chosen for relating the long-period ocean tidal
variation to WL within the MD. Spanning from 2003 to 2014, the sea level time series at Vung Tau station
were recorded on an hourly interval. This dataset is provided by the Hydrological and Environmental
station network center in Vietnam and can be obtained from http://www.ioc-sealevelmonitoring.org/
station.php?code=vung.

47



Remote Sens. 2020, 12, 3648

Figure 2e shows filtered and original hourly time series of the tidal gauge data. Fast Fourier
transform (FFT) was applied to identify different periodic components of the time series. The highest
power spectra are located at both diurnal and semidiurnal ocean tidal components (Figure 3a), which are
unrelated to hydrological signals. In order to be consistent with WD and WL time series’ daily sampling
rate, the hourly tidal height time series are averaged daily after filtering high-frequency components
via the Butterworth filter. This process, to a large extent, suppresses or removes the short-period ocean
tidal components via the low-pass filtering process, and hence, reducing the effect on long-term ocean
tidal components [41–43] (Figure 3b). Compared with the unfiltered time series, only semiannual and
annual tide components are apparent in the processed time series.

Figure 3. Spectra of the (a) hourly and (b) daily averaged ocean tidal height time series in Vung Tau
tide gauge station.

2.3. Global Ocean Tide Model Data

A global ocean tide model contains gridded in-phase and quadrature amplitudes (or equivalently
amplitude and phase) for major tidal constituents, allowing us to generate ocean tidal height in the
absence of tide gauge stations along the coasts [44,45]. Although many remotely sensed ocean tide
models (e.g., FES2014, GOT4.8, NAO99.b, TPXO8, EOT11a, DTU10, HAMTIDE, OSU12, etc.) are
available for the purpose of our study, the OSU12 model, with a 0.25◦ × 0.25◦ spatial resolution [46,47],
was employed to generate long-period tidal height time series at grid points near Mekong and Bassac
river estuaries (Table 3), because it contained long-period tides and was derived purely from remotely
sensed satellite altimetry data. Notwithstanding smaller amplitude when compared with semidiurnal
and diurnal tides, long-period ocean tidal components are influential to daily and monthly average
WL time series. As shown in Figures 2 and 3b, long-period ocean tidal components are likely related to
the discrepancies between the pattern of WL and WD time series. It is appropriate to calculate the
ocean tidal height time series, TH(t), at time t from the in-phase, H1, and quadrature amplitudes, H2,
of Sa, Ssa, and Mm tides, which can be formulated as:

TH(t) =
∑3

i=1
(H1)i cos

(
2πt
Ti

)
+ (H2)i sin(

2πt
Ti

), (1)
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where Ti is the period of each long-period ocean tidal component i. Note that both the in-phase
and quadrature amplitudes are with respect to Greenwich Meridian with the starting time, 0:00 AM,
1 January 2002 (UTC +0).

Table 3. Long-period ocean tidal components at two gridded locations close to Mekong and Bassac
river estuaries solved at the initial time epoch of 0:00 AM, 1 January 2002 (UTC +0).

Tide Components Point1 (9.35◦N,106.375◦E) (in cm) Point2 (10.125◦N, 107.125◦E) (in cm)

Sa (365.25 days) H1 24.41570 19.06151
H2 −1.56798 −3.91959

Ssa (182.62 days) H1 1.36968 −6.76170
H2 3.52620 2.07534

Mm (27.55 days) H1 1.30950 0.32715
H2 −1.63984 1.72923

2.4. Assessment Metrics

To evaluate the estimated WD against in-situ WD time series in Section 4, three assessment metrics,
R-Square, the Pearson correlation coefficient (PCC), and the Nash–Sutcliffe efficiency (NSE) coefficient,
are employed.

R-Square, ranging between 0 and 1, describes how much the variation of in-situ WD, WDg,
is explained by the estimated WD, WDe, generated from the model. The closer the value to 1, the better
the model fitting to the WDg. R-Square is equal to the quotient of sum of squares regression (SSR)
divided by sum of squares total (SST), and can be defined as:

R− Square =
SSR
SST

=

∑n
i=1

(
WDi

e −WDg
)2

∑n
i=1

(
WDi

g −WDg
)2 (2)

PCC, ranging between −1 and 1, describe how strong the linear relationship between WDe and
WDg, which is defined as:

PCC =

∑N
i=1

(
WDi

e −WDe
)(

WDi
g −WDg

)
√∑N

i=1

(
WDi

e −WDe
)2√∑N

i=1

(
WDi

g −WDg
)2 (3)

where WDe and WDg are the mean of WDe and WDg, respectively. Notably, for the power function
relating WL to WD, logarithmic transform is applied to obtain the log-linear relation between the two
variables in order to assess their correlation. To highlight the difference, PCC was used to represent the
linear relationship between WDe and WDg, while “correlation coefficient” appeared in each figure of
this study referred to the log-linear relation between WD and WL, as shown in Equation (6) below.

NSE coefficient, ranging from −∞ to 1, describes the gain in the performance of WDe against WDg.
The closer the NSE coefficient to 1, the better the performance of the estimation [48]. It is defined as:

NSE = 1−
∑N

i=1

(
WDi

e −WDi
g

)2
∑N

i=1

(
WDi

g −WDg
)2 (4)

3. Data Analysis and Methodology

This section explores the relations among ocean tidal height, WL, and WD time series over our
study region, so as to illustrate the interaction between fluvial and oceanic factors along with their
combined effects on WL and WD data. For an ideal hydrological station location where WL and
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WD are purely influenced by the fluvial process, WL and WD are related by a power function [49]
expressed as:

WD = a∗[WL− b]c (5)

where a, b, c are the scaling coefficient, the offset of WL and the exponent of power function, respectively.
However, in reality, the stage–discharge phase diagram between WL and WD appears as random

data points with trends (i.e., Can Tho and My Thuan stations) and elliptical curves (i.e., Chau Doc and
Tan Chau stations) in the MD (Figure 4).

Figure 4. (a–d) Relationship between water level (WL) and water discharge (WD) (original daily
sampled time series) for the four selected hydrological stations in Mekong Delta.

The logarithmic transform of Equation (5) allows the conversion into log-linear relation,
expressed as:

ln(WD) = c ∗ ln(WL− b) + ln(a). (6)

such that Equation (6) measures a linear relationship between ln(WD) and ln(WL− b). All “correlation
coefficients” displayed in all stage–discharge phase diagrams were calculated based on ln(WD) and
ln(WL− b), as mentioned in Section 2.4.

Compared to those of the other two stations, the rating curves between WL and WD of Can Tho
and My Thuan stations yield lower correlation coefficients because they are more significantly affected
by the ocean tidal backwater.

3.1. Data Analysis of Backwater Influence on Water Discharge (WD) and Water Level (WL)

Although the phase diagram between WL and WD in the tide-dominated area appears elliptical,
the patterns of the deviation from the rating curves are presumed to be analyzable by different
ocean tidal components. Through FFT, the most pronounced periods are 365 days, 182.5 days,
and 14.7475 days in both WD and WL time series.

The relative power (to the signal with the largest power) and initial phase of each signal are
displayed in Table 4. For an ideal stage–discharge relation (i.e., power function relation), WL and WD
are positively correlated. The signals of WD and WL with the same period should have the same initial
phase and similar relative power. However, we found that the initial phase of WD and WL time series
of the four stations are different from each other.
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Table 4. Relative power and initial phases of the three periodic signals in WD and WL time series at
the four selected stations with initial phase domain defined between 0◦ and 360◦.

Station

Period: 365 Days Period: 182.5 Days Period: 14.7475 Days

Relative
Power

Initial
Phase

Relative
Power

Initial
Phase

Relative
Power

Initial
Phase

Can Tho
WD 1 95.2311◦ 0.3060 173.5607◦ 0.4727 25.1628◦
WL 1 58.5725◦ 0.2535 168.3582◦ 0.2997 244.1391◦

My Thuan WD 1 87.1219◦ 0.3093 170.8565◦ 0.5671 25.8326◦
WL 1 55.0654◦ 0.2664 175.4839◦ 0.3152 244.2108◦

Chau Doc
WD 1 93.8689◦ 0.3392 196.6511◦ 0.0324 111.2065◦
WL 1 84.7393◦ 0.3963 193.8528◦ 0.0414 274.7407◦

Tan Chau
WD 1 97.4019◦ 0.2385 222.2999◦ 0.0046 99.6860◦
WL 1 90.3988◦ 0.3705 202.5387◦ 0.0336 260.8400◦

Firstly, annual signals (i.e., 365-day period) of Can Tho and My Thuan present different initial
phases between WD and WL, in particular WL, with its initial phases ~30◦ lower than that of upper
counterparts. This indicates that annual tides can cause around a one-month time lag between the
lower and upper stations. A similar situation applies to that of the semiannual signal, but to a lesser
extent. Secondly, the initial phase of the half-monthly signal (i.e., 14.7475-day period) of WD and
that of WL present the phase difference between 160◦ and 220◦. This shows that the WD is inversely
proportional to WL with an additional time lag. In other words, the WD increase (decrease) when
the WL decrease (increase), implying that the half-monthly signal of WL and WD interacts with
each other seasonally and alternately. This fact further indicates the half-monthly signal is of two
origins: land and ocean, which is supported by physical explanations from Guo et al. (2020) [50] and
Jay (1991) [51]. Half-monthly signals of the Can Tho and My Thuan stations yields a much larger
relative power than their upper counterparts, indicating the damping effect on the amplitude and
changing phase when propagating inland via the estuary mouth. Since these half-monthly signals have
different changing ratios for inland propagation direction with annual tide components, a band-pass
filter (e.g., Butterworth filter) was applied to remove this signal from tidal-influenced time series
for consistency.

To further analyze the interaction between oceanic and fluvial effects, the variation of WD, WL,
and TH time series are compared via their standardized forms, xs, expressed as:

xs =
x− x√∑
(x−x)2

N

(7)

where x is the average value of xx time series, and NN is the number of data in the time series.
The standardized WD, WL and TH (i.e., WDs, WLs, and THs respectively) are compared for the four
stations, respectively, in Figure 5.

As shown in Figure 5b,d, it is clear that the standardized WL time series are highly correlated with
standardized WD time series, they reach the maximum values in early September and minimum in
March and April simultaneously. Influences from ocean tide are minor, and the ocean tidal height series
reaches its maximum and minimum values in different months. However, in Figure 5a,c, there exists
large deviation between WD and WL time series. In the lower stations, the WL reaches its minimum
and maximum value about a month later than WD, consistent with the initial phase difference of
around 30◦ stated above (Table 4). For most cases, WL (red line) is set between WD (blue line) and
TH (yellow line), emphasizing the influence of the ocean on WL. Previous studies attribute this phase
difference to floods up and down or a time lag caused by tidal propagation [52]. Since this phenomenon
is more apparent in stations closer to the estuaries, we speculate it is mainly caused by the mixing of
fluvial-dominated and marine-dominated fluctuations at the annual and semiannual scale.
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Figure 5. Comparison of standardized WD, WL, and tidal height time series in (a) Can Tho, (b) Chau
Doc, (c) My Thuan, and (d) Tan Chau station, respectively.

Theoretically, when two signals with the same period (T) are combined, the new signal will have
the same period (T) but a different initial phase (φ3), is expressed as:

A1 cos
(2πt

T
+ φ1

)
+ A2 cos

(2πt
T

+ φ2

)
= A3 cos

(2πt
T

+ φ3

)
, (8)

where A1, A2, and A3 are three different amplitudes, φ1, φ2, and φ3 are three initial phases, and t refers
to time epoch. The proof of Equation (8) is listed in Appendix A.

Since annual and semiannual signals are major components in the WL, WD, TH time series,
the fluvial-dominated annual (semiannual) signal and marine-dominated annual (semiannual) signal
form a mixed annual (semiannual) WL time series in the MD. For both WL and TH fluctuating in
the vertical direction, the WL will be potentially corrected by annual and semiannual ocean tidal
components if the TH time series are involved in the power function fitting process. This will be further
explored in the next subsection. However, Equation (8) does not work for ocean tidal components
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shorter than half-monthly one, because of possible non-linear interaction among fluvial factors, bottom
topography of an estuarine channel and ocean tidal backwater. This leads to the non-linear change of
amplitude and phase during the inland propagation process.

3.2. Incorporating Long-Period Ocean Tidal Components into Rating Curve

Before incorporating long-period ocean tidal components into the rating curve, short-period
fluctuations in both WD and WL time series, including short-period diurnal and semidiurnal ocean
tides, have to be removed. As mentioned in Section 2.1, this can be achieved by a Butterworth filter
that suppresses all high-frequency signals with a period shorter than 15 days. Consistent with the
filtered time series (Figure 2), the rating curve with filtered time series of WD and WL at the four
stations are plotted in terms of phase diagrams (Figure 6).

Figure 6. (a–d) Relationship between WL and WD (low pass filtered time series) for the selected four
hydrological stations in the Mekong Delta.

Compared with those in Figure 4, it is clear that the correlation coefficients have been improved
significantly (Figure 6). However, the elliptical loops are still apparent, indicating a time lag between
WL and WD time series, as mentioned in Section 3.1.

Given that the relationship between THs, WDs, WLs has been analyzed in Section 3.1, it is likely
that the elliptical looping phenomenon is largely due to semiannual and annual ocean tidal components.
For both WL and TH fluctuating in the vertical direction, the THs time series were applied to separate
the tide-induced fluctuation from the WL time series through a fitting process. The WL free from tide
influence, WLfree, is defined as:

WLfree = WL−α× THs. (9)

where, α is a coefficient that rescales the THs. Consequently, the relationship among WD, WL, THs can
be represented by:

WD = a×[WL−α× THs − b]c. (10)

where a, b, c, and α are to be determined from the observed WD, WL, and TH time series. Through a
non-linear fitting [53,54], a, b, c, and α can be determined, and WLfree is obtainable.

4. Results and Discussion

The rating curves of WLfree and WD are shown (Figure 7), yielding much higher correlation
coefficients when compared to the rating curves of original WD and WL time series. Although rating
curves of the Can Tho and My Thuan stations still display lower correlation coefficients than their
upper counterparts, significant improvement has been observed. Additionally, the elliptical looping
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phenomenon related to ‘time-lag’ between WL and WD is also diminished for all four selected stations.
As a countercheck, the time series of WD and WLfree for the two stations close to the estuary are shown
in Figure 8, revealing no apparent time lag.

Figure 7. (a–d) Relationship between WLfree and WD (low pass filtered time series) for the selected
four hydrological stations in the Mekong Delta.

Figure 8. WD and tide-free WL time series from 2003 to 2006 in (a) Can Tho and (b) My Thuan stations.

In the absence of tide gauge data, the TH time series generated from a global ocean tide model
would be a viable alternative, because it can provide ocean tidal height components for the global
ocean. The method for obtaining model-derived TH time series has been stated in Section 2.3.
The model-derived TH series and in-situ gauged tidal height time series are displayed, manifesting
high similarity with each other (Figure 9). Employing the above methodology, the rating curves of the
four stations have been recovered using model-derived TH time series (Figure 10).
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Figure 9. The comparison between OSU12 model-derived WL and in-situ WL at (a) Can Tho and
(b) My Thuan during 2003–2006.

Figure 10. Recovered rating curves at (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau
stations using model-derived ocean tidal height as input.

Although the correlation coefficients of the rating curve fitting generated by model-derived
TH time series (Figure 10) are slightly lower than by in-situ tide gauge TH time series (Figure 7),
the improvement is considerable when compared to the original unmodified rating curves. This is
because most global ocean tide models are derived from satellite altimetry, with the model accuracies
lower than that of gauge-derived TH, in particular coastal regions [39]. Given the above results, it is
appropriate to use an ocean tidal model to partially recover rating curves over tide-dominated regions.

To evaluate the accuracy of the recovered rating curves, the estimated WD time series via
Equation (10) generated from both model-derived and in-situ TH time series are compared with the
in-situ WD during 2003–2006. Table 5 lists all determined coefficients of Equation (10) along with
the assessment metrics (i.e., R-Square, PCC, NSE) that assess the estimated WD against in-situ WD.
For both WD estimated based on in-situ and model-derived TH data, all the assessment metrics yield
high-correlation values at all the four stations, suggesting our method can partially recover the tide-free
WL for estimating WD. Overall, the recovered stage–discharge relation is capable of predicting a
relatively reliable WD. These results also validate the data analysis in Section 3.
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Table 5. Assessment of the estimated WD and stage–discharge relation coefficients.

Tidal
Height Data

Station a b c α R-Square PCC NSE

In-situ
measured

Can Tho 11683 −0.2230 1.3661 0.1619 0.9291 0.9626 0.9266
My Thuan 3436.5 −0.8665 2.4063 0.1480 0.8974 0.9468 0.8964
Chau Doc 2239.8 0.2756 0.8592 0.1577 0.9790 0.9922 0.9843
Tan Chau 9134.3 0.4052 0.6229 0.1819 0.9809 0.9946 0.9891

OSU12

Can Tho 5948.3 −0.5949 2.3417 0.1722 0.8871 0.9383 0.8804
My Thuan 9761.2 −0.3079 1.2619 0.1520 0.8631 0.9285 0.8621
Chau Doc 2201.2 0.2762 0.8911 0.1582 0.9828 0.9934 0.9868
Tan Chau 8950.3 0.3809 0.6335 0.1314 0.9750 0.9910 0.9820

To highlight the importance of tidal separation by the term −α× THs in Equation (10), the PCC
values with different combinations of coefficient b, c, and α were calculated with their best fitted a
fixed. Taking Can Tho station as an example (Figure 11), b and c impact the PCC values (i.e., > 0.9)
significantly, only if α is ~0.16. The same holds for My Thuan station. Therefore, adding the term
−α× THs to the conventional power function (i.e., Equation (5)) is necessary for the improvement of
the stage–discharge relation in the MD, which is in the fluvial-to-marine transition zone. In summary,
we found that an appropriate α is a prerequisite for the PCC larger than 0.9.

Figure 11. (a) Different PCC (presented in color bar) for different b, c and α using time series from Can
Tho station, and (b) slices of (a) for nine chosen α, with maximum PCC for each α shown from the
above subplots.
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To assess the applicability of the determined coefficients of Equation (10) for Can Tho and My
Thuan station time series during 2003–2006, these coefficients were directly employed for the analysis
of the WL and TH data time series during 2009–2014. The predicted WD were then compared with the
monthly in-situ WD (Figure 12), since only monthly WD are available for Can Tho and My Thuan
stations. Hence, WL and WLf were monthly averaged before the comparison. For both Can Tho and
My Thuan stations, tide-free WL, WLf, leads to higher correlation coefficients and diminishes the
looping curve problem to a large degree. This indicates that coefficient α appears to be stable during
our study period.

Figure 12. (a,b) Stage discharge relation from original WL, and (c,d) tide-free WL for Can Tho and My
Thuan stations.

Despite a substantial improvement made in this study, small deviations from the ideal power
function still exist, particularly for the two stations closest to the estuary mouth. After all, the interaction
between fluvial and marine processes are complicated near estuary mouths [55]. Remaining effects
cannot be neglected. For instance, WD should pose a non-negligible effect on the tidal propagation
along the river channel during the wet season. Overland flows inward or outward from the Tonle Sap
Lake would likely be another important factor affecting the stage–discharge relations, because this
lake operates as a natural reservoir that regulates Mekong river discharge from the river delta to the
coastal ocean [34,56,57]. Erosion and deposition alter hydraulic geometry and increase channel bottom
friction and, hence, contribute to the potential instability of the stage–discharge relation. Furthermore,
numerous clusters of dams were built along the main stream of Mekong river, which may also alter the
stage–discharge relation [21,22]. Sea level rise, which closely connected to salt intrusion and coastal
erosion problems may alter the estuarine topography condition, resulting in a secular shift of ocean
tidal components [23,26]. Agricultural practices and deforestation also provide additional impact on
the evapotranspiration balance of the catchment area. Furthermore, since short-term signals were
filtered out or failed to be captured by daily sampling, the short-term variations in WD and WL
have not been quantitatively investigated. These considerations represent the current limitations of
this study.

5. Conclusions

Instead of seeking a qualitative explanation of the stage–discharge relation influenced by the
ocean tidal backwater effect, this study quantitatively analyzes the relations among water discharge
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(WD), water level (WL), and ocean tidal components via their standardized forms. We found that
annual and semiannual ocean tidal components are significant contributors to the deviation between
WL and WD time series. In particular, the annual and semiannual periods of ocean tidal backwater
result in the elliptic loop associated with the presence of time lag between WL and WD.

Based on these findings, we adapt the stage–discharge relation to accommodate the effects of
annual and semiannual ocean tidal components. It was found that the WD estimated from the de-tided
WL yields PCC and NSE values of ~0.9. Although the de-tided WL time series generated based on
the TH time series from the OSU12 global ocean tide model are slightly less accurate than that of tide
gauge data, the ocean tide model is a viable alternative to partially recover the stage–discharge relation
for estuaries in the absence of tide gauge stations.

Further improvement lies in identifying remaining effects contributing to the potential instability
of the stage–discharge relation, which include the non-negligible effect of seasonal WD on ocean tidal
propagation, the Tonle Sap lake regulation effect on the Mekong river discharge, erosion and deposition
effects on the hydraulic geometry, and channel bottom friction. The impact of human activities and
artificial structure in the Mekong River area, as well as its interaction with climate change, should also
be highlighted. Those factors may introduce a long-term change trend into the WL–WD relationship.

The recent remotely-sensed water balance variables with improved temporal resolutions, such as
8-day MODIS evapotranspiration [58], daily TRMM precipitation [59], and daily GRACE terrestrial
water storage data products [60], should enable us to compute tide-free WD, which is independent
of in-situ measurements based on the water balance equation [36]. This can serve as a countercheck
against the in-situ WD for assessing the first two remaining effects.
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Appendix A

The mathematic proof of Equation (8) is shown below:
For the convenience of expression, set 2πt

T = x.

A1 cos(x + φ1) + A2 cos(x + φ2) = (A1 cosφ1) cos x− (A1 sinφ1) sin x
+(A2 cosφ2) cos x− (A2 sinφ2) sin x
= (A1 cosφ1 + A2 cosφ2) cos x
−(A1 sinφ1 + A2 sinφ2) sin x

(11)

Since A1,A2,φ1,φ2 are constant, (A1 cosφ1 + A2 cosφ2) and (A1 sinφ1 + A2 sinφ2) are also
constant. Therefore, we set C1 = (A1 cosφ1 + A2 cosφ2) and C2 = (A1 sinφ1 + A2 sinφ2). Obviously,

C1 cos x−C2 sin x =
√

C2
1 + C2

2(
C1√

C2
1 + C2

2

cosx− C2√
C2

1 + C2
2

sinx) (12)

Notice that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ C1√
C2

1 + C2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ C2√
C2

1 + C2
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

= 1 (13)

58



Remote Sens. 2020, 12, 3648

Set C1√
C2

1+C2
2

= cosφ3, and C2√
C2

1+C2
2

= sinφ3. Obviously,

C1 cos x−C2 sin x =
√

C2
1 + C2

2 cos(x + φ3) (14)

where tanφ3 = C2
C1

. If we set
√

C2
1 + C2

2 = A3,

A1 cos(x + φ1) + A2 cos(x + φ2) =

A3 cos(x + φ3)A1 cos(x + φ1) + A2 cos(x + φ2)A3 cos(x + φ3)
(15)
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Abstract: Absorption of colored dissolved organic matter or detrital gelbstoff (aCDOM/ADG) and
light attenuation coefficient (Kd490) parameters were studied at La Parguera Natural Reserve
in southwestern Puerto Rico, before and following Hurricanes Irma (6–7 September) and María
(20–21 September) in 2017. Water quality assessments involving Sentinel 3A ocean color products
and field sample data was performed. The estimated mean of ADG in surface waters was calculated
at >0.1 m−1 with a median of 0.05 m−1 and aCDOM443 ranged from 0.0023 to 0.1121 m−1 in field
samples (n=21) in 2017. Mean ADG443 values increased from July to August at 0.167 to 0.353 m−1 in
September–October over Turrumote reef (LP6) with a maximum value of 0.683 m−1. Values above
0.13 m−1 persisted at offshore waters off Guánica Bay and over coral reef areas at La Parguera for
over four months. The ADG443 product presented values above the median and the second standard
deviation of 0.0428 m−1 from September to October 2017 and from water sample measurement on
19 October 2017. Mean Kd490 values increased from 0.16 m−1 before hurricanes to 0.28 right after
Hurricane Irma. The value remained high, at 0.34 m−1, until October 2017, a month after Hurricane
María. Analysis of the Sentinel (S3) OLCI products showed a significant positive correlation (rs = 0.71,
p = 0.0005) between Kd490_M07 and ADG_443, indicating the influence of ADG on light attenuation.
These significant short-term changes could have ecological impacts on benthic habitats highly
dependent on light penetration, such as coral reefs, in southwestern Puerto Rico.

Keywords: hurricanes; ADG/CDOM colored dissolved organic matter; Sentinel 3; water quality;
southwestern Puerto Rico; ocean color; remote sensing; coastal waters

1. Introduction

Hurricane María was recorded as the third costliest hurricane in USA history [1]. It is considered the
most damaging atmospheric event to have impacted the island in the past 90 years. Hydrological data
availability during the study period was limited; nevertheless, estimates suggest that the 24 h-rainfall
intensity exceeded 100–250 year values [2]. Severe flooding affected most of the island, and river
discharges were at record levels. Hurricane Irma brought maximum inundation levels of 30.48 to
60.96 cm above ground level along Puerto Rico (PR) coastal areas with an estimated storm surge at
Magueyes Island, La Parguera (LP), of 0.17 cm and an estimated inundation of 21.33 cm. The total
rainfall in the interior mountains was around 254–381 mm between September 5 and 7, 2017 [3].
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For this study, we took advantage of the availability of remote sensing imagery such as Sentinel
3 (S3), which provided us with the capacity to monitor water quality parameters remotely and
efficiently. Many studies have derived water quality parameters from ocean color radiometry during
past decades [4–6]. The most critical water quality parameters that can be derived from satellite ocean
color sensors are colored dissolved organic matter (CDOM), chlorophyll-a (Chl-a), the attenuation
coefficient at 490 nm (Kd490), and total suspended matter (TSM). These factors have been historically
monitored for water quality assessment and referenced as indicators of coastal and marine ecosystem
health [4,7,8]. Chlorophyll (a proxy for phytoplankton abundance) [9] and turbidity (as well as CDOM)
contribute to reducing light penetration in the water column [4,5], which has been associated with
ecosystem changes, phytoplankton dynamics [9], and growth and distribution of seagrasses [4] and
coral reef species [10]. These effects on light penetration and quality can be considered environmental
stressors and a water pollutant [11]. Several studies have been conducted on coastal water quality
following hurricane events using remote sensing techniques [4,5,12]. These have focused primarily on
the continental estuarine and coastal habitats as well lacustrine [5,13–17], with a few studies available
for the Caribbean Sea [18–20], where our study area, La Parguera Natural Reserve (LPNR), is located.

LPNR, in southwestern Puerto Rico, was designated to protect fragile tropical marine ecosystems,
particularly coral reefs, which are experiencing accelerated degradation and mortality in this and
many parts of the world [21]. We have witnessed unprecedented disappearance of coral cover due
to coral diseases, bleaching and thermal stress, runoff, anthropogenic uses, and hurricanes [10,22,23].
La Parguera has one of the largest coral reef systems in Puerto Rico, with 10–14 coral species in 100 m2

located at a diverse bottom type; presenting one of the most diverse benthic habitats on the island,
combining coral reefs, seagrasses, mangroves, sandy bottoms, among others [23]. LPNR supports a
blue economy around the region with local fisheries, tourism, and recreation. Coral reefs reach their
maximum development under oligotrophic conditions but can exist over a wide range of water types
under variable coastal influences [10,24]. In coastal waters, light penetration can be subject to sudden
changes when specific weather conditions occur. Corals can adapt to light changes compensating
energetically and adjusting photosynthetic pigment composition, but this may come at the cost of
reduced calcification rates and symbiont tissue habitat [25]. Sporadically, the stress related to water
quality can be compounded with coral bleaching [25]. Chronic stress due to changes in water quality
can lead to changes in the biodiversity of marine ecosystems [26,27].

CDOMis an opticalparameter positivelyrelatedto light absorption in surfacewaters [28–31]. Theprimary
source of CDOM is terrestrial runoff, highly influenced by photodegradation [32–34]. CDOM absorption
provides a biogeochemical proxy to estimate DOC from optical measurements [6,35,36] and can be
used as a tracer of oceanic water masses [31]. CDOM absorption at 412 and 443 nm, while variable,
formed a significant component of these wavebands of the total absorption field [37]. It is essential
to consider that the absorption of CDOM in the blue-green region increases the uncertainty of Chl-a
algorithms leading to over-estimate values [31]. In Puerto Rico, light absorption has been mainly
associated with chlorophyll concentrations [10], but CDOM values have not been recorded or related to
light availability. Kd490 is another important parameter for water quality since it provides a measure
of turbidity related to the total organic and inorganic matter held in solution and suspension in the
water column. It can be used to quantify light availability and sediment loading for benthic organisms
(i.e., coral reefs and seagrasses) [20,38].

We used remote sensing to monitor water quality trends in the attenuation coefficient at 490 nm
(Kd490) and the absorption of colored detrital, and dissolved material (ADG/aCDOM) parameters
in waters off southwestern Puerto Rico. We analyzed the changes in Sentinel 3A (S3) products and
complemented our records with surface water sample optical analysis to assess water quality in a
natural reserve in southwestern Puerto Rico before and following Hurricanes Irma (6–7 September)
and María (20–21 September) in 2017.
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2. Materials and Methods

2.1. Study Site

The study area includes the region from Guánica Bay (GB) to La Parguera Natural Reserve (LPNR)
in southwestern Puerto Rico. LPNR is located about 8 km west of GB and is known for its highly
developed coral reefs and extensive seagrass habitats. The average annual water temperature in LPNR
is 26.5–30 ◦C, and the salinity fluctuates from 31 to 36 PS [7].

Coral reefs habitats are shown within the contour lines representing the study area as a region
of interest (ROI) (Figure 1). These are delineated using live coral cover classification [39], while the
perpendicular lines represent the limits of La Parguera Natural Reserve. The ROI was considered for
statistical data analysis. Seven out of the thirteen stations are presented here. Stations GUA4, GUA5,
LP12, and LP13 were located offshore and along the insular platform. While sites LP6, LP8, and LP10
were closer to the coast (Figure 1).

 

Figure 1. Study area at southwestern Puerto Rico with Hurricanes Irma and María paths. Sampling
sites and delimited areas represent submerged coral reef areas that support fisheries and economies
around the region. Base map was from ESRI®.

2.2. Satellite Data

The Sentinel 3A (S3A) Ocean and Land Colour Instrument (OLCI) is a push-broom imaging
spectrometer with 21 spectral bands in the range of 400–1020 nm [40]. It was launched in February 2016,
followed by S3B, launched in March 2017. Their products have a full-spatial resolution of 300 meters
and include water-leaving reflectance in 16 bands, algal pigment concentrations [41] and neural
network algorithms [42], total suspended matter concentration (TSM), diffuse attenuation coefficient
(Kd490_M07) Morel method [41], and absorption of colored detrital and dissolved organic matter
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(ADG_443_NN) GSM method [43,44]. The temporal resolution for OLCI is daily with an optimum
orbit above the study area every two days.

We obtained the data from the EUMETSAT Copernicus data system. S3A/OLCI data were
extracted from the pixel coinciding with our field water monitoring stations and pixels over the ROI
(Figure 1). The Sentinel Application Platform (SNAP) tools, developed by the European Space Agency
(ESA) for satellite product analysis, were used for obtaining OLCI Level 2 data products. Only Sentinel
3-A data were used in the study.

Water quality products (ADG and Kd490) were extracted from Sentinel 3 OLCI imagery dating
from July to December 2017. A subset of three images (out of 20) was evaluated considering the
region of interest (ROI). It included the following dates: 22 July, 11 September, and 8 October 2017.
This subset was selected to reduce uncertainty due to the following factors: negative reflectance values
from bands one to six, sunglint effect, cloud, or land adjacency effect, or products fail/flags. Imagery
is visualized with a median (7 × 7) pixel value. The complete set of images was divided into five
time-frames, summarizing four images in each period. The time frames included one period previous
to the hurricane events, one period immediately after the event and three additional periods after the
event to identify the long-term effect on light attenuation. Only the LP6 site data were used in the time
frame to avoid negative values and other sensor issues previously mentioned.

2.3. Water Quality Measurements—Field and Laboratory Analysis

Water samples and optical data were collected in 2017. The number of sampling stations varied
based on the sea state, environmental parameters, and imagery availability. Sampling was conducted
monthly at three to 13 stations in southwestern Puerto Rico (Figure 1). The locations were selected
based on depth, bottom type, and habitat in relation to coral reefs. Water samples were obtained from
the first meter depth and analyzed in the laboratory for CDOM absorption (aCDOM).

2.3.1. aCDOM

Duplicate samples were collected at each station using gloves, avoiding any contamination with
organic matter. They were stored in previously cleaned 250 mL amber glass bottles and transferred
to 140 mL bottles after filtration. Sterile membrane filters (0.2 μm pore) were employed (Pall©).
The filtration system was rinsed beforehand and between each filtration with a 50 mL portion of
sample water and was then discarded [45]. Spectrophotometric analysis was carried out using a
Shimadzu 1800-UV diode array instrument. Samples were analyzed in 10 cm path length quartz cells
at 0.5 nm intervals over a wavelength range from 250 nm to 800 nm. Milli-Q water absorbance was
subtracted from the sample data, and subsequently, the value at 700 nm was subtracted from the
entire spectrum [46]. The absorbance values were converted to absorption coefficients, a (λ, m−1),
and absorption coefficients at 443 nm (aCDOM443 m−1) were reported as quantitative aCDOM.
The absorption coefficients an (m−1) were calculated using the following equation:

a = 2.303A(L)/l (1)

where A(L) is the absorbance at a wavelength, and l is the optical path length of the cell in meters.

2.3.2. Satlantic HyperPro

The Satlantic profiling spectroradiometer measures in-water downwelling plane irradiance (Ed)
and upwelling radiance (Lu) with 256 spectral bands for a full spectral range of 305–1100 nm [47].
A surface Ed radiometer measures downwelling irradiance above the water surface and is used
to normalize the in-water data for fluctuations in the incident light field from passing clouds.
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The instrument derives spectral water column attenuation coefficients, including the Kd490 following
Aurin and Petzold (1981) in the manufacturer manual [48]:

K(490) = 0.0833 (Lu(443)/Lu (550))−1.491 + 0.022 (2)

2.4. Statistical Analysis

The SNAP© Sentinel toolbox, pixel extraction, and histogram tools were used to obtain satellite
data statistics. S3A data were divided into 5-time frames (July–September, September–October,
October–November, November–December, and December 2017) to evaluate the mean and median
differences over time. A Spearman correlation was applied to ADG443_NN satellite data, aCDOM
field data and Kd490 for field and satellite data to understand the influence of ADG/aCDOM on light
attenuation. The analysis was employed using Origin Pro 2016© software.

3. Results

3.1. Satellite Data (ADG443_NN) and In Situ Data (aCDOM443)

Results were based on in situ data for a year (2017) and the last six months (2017) data retrieved
from satellite sensor S3A. Before the hurricane events, oligotrophic stations located at the shelf edge
showed ADG443_NN values below 0.05 m−1; while values below 0.1 m−1 were associated with insular
shelf sites. The value of the ADG443_NN was above the median of 0.0435 m−1 (prior to the events,
over the ROI) for the entire sampling period. On September 11, four days after the first event, amounts
above 0.1 m−1 were detected at GUA5, LP6, and LP8 for one month (Figure 2). The highest ADG values
at offshore waters were detected on Sep 11, after the first hurricane (H. Irma) which was considered
less severe because its eye did not make landfall. On the other hand, the effects of H. María on the
values were evident on Oct 8th satellite data in most of our study area. It had a similar or lower effect
on ADG (GUA5, LP12, and LP13) values at outer shelf waters but the sensor detected higher values at
inner shelf waters.

 

Figure 2. ADG443_NN product from Sentinel 3A for 22 July, 11 September, and 8 October 2017; the figure
includes the aCDOM at 443 nm field data on 19 October 2017, at LP6 sampling site. The dashed line
represents the second standard deviation (2SD) for aCDOM443 field data.

A view from in situ data showed the aCDOM443 ranging from 0.0023 to 0.1121 m−1 in field
samples (N = 21) with a 2SD of 0.0428 m−1 in 2017 (Figure 3). Before the events, field values were
below 0.043 m−1. An unusual value of 0.1121 m−1 was observed in the station LP9 on 15 September
2017 (Figure 3A). Another extreme value of 0.068 m−1 above the 2SD was present in the field data at
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the LP6 site (N = 5) during 19 October 2017 (Figure 3B). Station LP6 is located to the southwest of
Guánica Bay. The extreme values belong to the sample size and should not be treated as outliers even
though a Grubbs’ outlier test detect these as such. We can consider them as extreme values as a result
of the events.

Figure 3. Box plots for field data showing the median, mean and data including the extreme values
(A) Summary of the absorption coefficient of colored dissolved organic matter (aCDOM) at 443 nm field
data for the year 2017. (B) The absorption coefficient of colored dissolved organic matter (aCDOM) at
443 nm field data on station LP6, alias Turrumote II, for 2017.

S3A data were divided into five-time frames (July–September, September–October,
October–November, November–December, and December 2017) to evaluate the mean and median
differences (Table 1). The mean for ADG_443_NN was doubled in the second period from 0.1675
(pre hurricanes) to 0.3536 m−1 (September–October). The maximum value of 0.6834 m−1 was detected in
the same period. The values extracted from S3A started in July with values above the maximum of field
data for 2017. Values above 0.13 m−1 persisted until December, four months after the events. Moreover,
the median showed the same tendency (>0.1 m−1) over four months. River discharges and coastal
drainage persist several weeks after the events. No major events took place after September, which
may indicate we are seeing the long term effect of the hurricanes in coastal water biogeochemistry.

Table 1. Statistics for five time periods on ADG443_NN product from Sentinel 3A.

S3_ADG443 7/22–9/3 9/11–10/8 10/11–11/27 11/30–12/12 12/16–12/27

Mean 0.1675 0.3536 0.1540 0.1322 0.1716

SD 0.0750 0.2398 0.1108 0.0544 0.0901

SE of mean 0.0375 0.1199 0.0554 0.0272 0.0451

Variance 0.0056 0.0575 0.0123 0.0030 0.0081

Sum 0.6699 1.4143 0.6160 0.5288 0.6863

Minimum 0.0889 0.1277 0.0812 0.0849 0.0973

Median 0.1586 0.3016 0.1093 0.1168 0.1434

Maximum 0.2638 0.6834 0.3162 0.2103 0.3022
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Satellite imagery show the absorption of dissolved organic matter over time. Figure 4 shows the
S3A ADG443_NN product prior to (July 22), and following (September 11 and Oct. 8) the passage of
hurricanes Irma and María over Puerto Rico. Contour lines represent coral reefs as the region of interest
(ROI). The ROI was considered for graphs and statistics on Figure 4 and Table 2. The high values of
ADG443_NN in Figure 4 correspond to pixels that cover mainly shallow areas and emergent reefs.
However, the analysis only considered the extracted values in submerged areas. The histogram for July
22 shows around 46 pixels lower than 0.05 m−1 and more than 95 % of pixels with values < 0.1 m−1.
The maximum value was 1.0 m−1 (Table 2). After the first hurricane event (Irma), an increase in the
ADG443_NN values from Guánica Bay to La Parguera was observed (Figure 4) as expected after an
event of such magnitude. Approximately, 12% of pixels in the selected area were considered in Table 2.
The histogram shows an increment of pixels with values in the range of 0.1 to 0.5 m−1 (Figure 4) and
shows pixels with up to 4.5 m−1. Table 2 shows the increase in the median ADG443_NN value over
time from 0.04 to 0.08 m−1.

Figure 4. Sentinel 3A ADG_443_NN product (median visualization). Contour lines represent coral
reefs as the region of interest (ROI) while the perpendicular lines represent the limits of La Parguera
Natural Reserve. Black areas represent land-mask and cloud-mask applied to the imagery (A) before the
hurricanes on 22 Jul 2017 (B) 11 Sep 2017 after Hurricane Irma and (C) Oct 8, 2017 after two hurricane
events (H. Irma and H. María); (D) Histograms for regions of interest representing ADG443_NN pixel
values on 22 July 2017, (E) 11 September 2017 and (F) 8 October 2017.

69



Remote Sens. 2020, 12, 3596

Table 2. Sentinel 3A Ocean and Land Colour Instrument (OLCI) data statistics for ADG443_NN product
over (ROI) coral reef areas around Guánica to La Parguera Natural Reserve.

S3_ADG over Coral Reef Areas 22-Jul 11-Sep 8-Oct

Number of considered pixels 349 339 365

Ratio of considered pixels (%) 12.1138 11.7667 12.3020

Min. 0.0053 0.0343 0.0080

Max. 1.0752 4.5858 0.6834

Mean 0.1097 0.2353 0.1216

SD 0.1650 0.5991 0.1086

CV 1.5048 2.5458 0.8932

Median 0.0435 0.0628 0.0849

To visualize the effect on light attenuation, we chose sampling station (LP6), located between
Guánica Bay and LPNR. It is near the coastline but, far enough to be outside the influence of land pixels.
Taking a look on satellite data of this site, a spike value was observed on 7 October 2017, for both
parameters ADG443_NN and Kd490, with high values on 18 August, 23 October, and 16 December
2017 (Figure 5). These values were concurrent with two heavy rain periods during the last six months
of the year 2017. The image from October 8 showed the impact on water quality parameters three
weeks after the events. All ADG443_NN values were over 0.04 m−1 for the entire sampling period.

Figure 5. S3A OLCI products from July to December 2017 showing the changes over time for station
LP6 known as Turrumote II (located between Guánica Bay (GB) and La Parguera Natural Reserve
(LPNR)) for ADG443_NN and Kd490_M07 and monthly precipitation at Guayanilla, Puerto Rico (PR)
south station.

The S3A data for the last six months of 2017 shows an ADG mean value of 0.2 m−1 (sd = 0.14,
n = 20) with a minimum of 0.08 m−1 on 31 October 2017, and a maximum of 0.68 m−1 on 7 October 2017.
This maximum coincides with maximum Chl-a and Kd490 values while the minimum value was not
coincident with the minimum of Kd490. From July to December the ADG mean exceeds the 0.0436 m−1
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mean and 0.0437 median values found in field data for the year 2017. Considering LP6 field data,
it presented 0.0249 m−1 as the second standard deviation with a mean of 0.0435 m−1 (N = 5) while
satellite data showed a mean value of 0.2 m−1 (N = 20). The selected images (N = 3) in Figure 2 show
0.13 m−1 as a mean value which triplicates the field data mean of aCDOM443 (N = 21).

The highest ADG values among stations were found at station LP6 (mean = 0.1957 m−1) (Figure 6)
which may imply influence of the freshwater plume emanating from Guánica Bay reaching the area.
The second highest values were observed at LP8, also known as Laurel (mean = 0.1535 m−1) followed
by LP10, out of the bioluminescent bay (mean = 0.1023 m−1). These two correspond to shallow inner
coral reef areas. Stations GUA4 (mean = 0.0744 m−1) and GUA5 (mean = 0.0753 m−1) were located
at the edge of the shelf close to Guánica Bay showing lower values than the inner shelf sites. Sites
LP12 and LP13 were located above the border of the insular shelf and closer to La Parguera. These
presented the lowest values 0.07342 and 0.0395 m−1 (N = 21), respectively.

 
Figure 6. S3A OLCI Product ADG_443_NN from Sentinel 3A (EUMETSAT-Copernicus data) from July
to December 2017 at selected sampling sites in southwestern, PR. The graph shows the range per site,
median line, mean, data points, and extreme values.

3.2. Kd490 and Correlation with ADG443/aCDOM443

Values for diffuse attenuation coefficient (Kd490) share the ADG443_NN tendencies (Figure 5).
Values for Kd490 extracted from S3A for station LP6 show a mean value of 0.22 m−1 (sd = 0.1, n = 19)
from July to December. The minimum values were on 27 December 2017, and the maximum of 0.48 m−1

was detected on 7 October 2017, coincident with other parameters following the events. The stations
closer to the shoreline LP6 and LP10 showed values above 0.14 m−1 in September and October 2017
(Figure 7). Kd490 median values from S3A varied from 0.15 to 0.34 m−1 for six months while the mean
values ranged from 0.16 to 0.34 m−1 (Table 3). The highest mean value of 0.34 m−1 was observed in the
period of Sep 11 to Oct 8; during that period, a maximum of 0.48 m−1 was detected. The maximum
value of Kd490 derived from field data in 2017 was 0.33 m−1 on 19 October 2017, four weeks after the
last hurricane (Figure 8A,B).

The attenuation coefficient showed a slight variation in outer shelf waters with a greater impact in
inner shelf, specifically in LP6, alias Turrumote II (Figure 7). The cumulative effect of biogeochemical
processes in production and degradation of organic matter is shown by this increment on October
values. Kd490 values reach to the normal between October and November (Table 3).
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Figure 7. Kd490 product from Sentinel 3A for 22 July, 11 September, and 8 October 2017. The figure
includes the Kd490 nm field data on 19 October 2017 at LP6 sampling site. The dashed line represents
the second standard deviation (2SD) for Kd490 field data.

Figure 8. Box plot for light attenuation coefficient (Kd490) at 490 nm field data, showing the value
range, median line, mean, and the extreme values (A) for the year 2017 from GB to LPNR area and,
(B) field data on station LP6 known as Turrumote II for 2017.

Table 3. Statistics for five time periods on Kd490 product from Sentinel 3A.

S3_KD490 7/22–9/3 9/11–10/8 10/11–11/27 11/30–12/12 12/16–12/27

Mean 0.1673 0.3433 0.2158 0.1648 0.1783

SD 0.0356 0.1251 0.0811 0.0335 0.0468

SE of mean 0.0205 0.0626 0.0405 0.0167 0.0234

Variance 0.0013 0.0157 0.0066 0.0011 0.0022

Sum 0.5019 1.3734 0.8632 0.6593 0.7131

Minimum 0.1289 0.1992 0.1289 0.1361 0.1095

Median 0.1738 0.3493 0.2047 0.1564 0.1966

Maximum 0.1992 0.4755 0.3249 0.2103 0.2103

The field data for 2017 (N = 21) show a high correlation between Kd490 and aCDOM443 absorption
coefficients (rs = 0.79, p = 0.0003) and a lower but similar correlation between S3 OLCI products,
(rs = 0.71, p = 0.0005). It cannot be interpreted as a sensor validation.
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4. Discussion

Caribbean Sea water is mostly oligotrophic with a high light penetration in the water column,
although it is seasonally influenced by the Orinoco and Amazon rivers from South America,
seasonally [49–51]. Light penetration changes after hurricane events can affect seagrasses [11]
and other light-dependent organisms like corals. Previous research shows that coral photo-physiology
is altered by light availability [25,52]. García-Sais and collaborators (2017) studied Kd490 and Chl-a
trends over individual coral reefs in Puerto Rico using L2 and L3 imagery from SeaWiFS and MODIS
Aqua satellite data [10]. A recent publication based on VIIRS data described the tendencies of Kd490
and Chl-a parameters on water quality around PR using a value of 0.1 m−1 for Kd490 and 0.45 μg/L
for Chl-a as a threshold value for coastal waters [20]. Despite the detrimental effects documented by
several authors [26,53–55], an intermittent high turbidity over coral reefs can be photo-protective [10].
García-Sais and collaborators (2017) observed a negative correlation between Kd490 and the percent of
coral cover which can be interpreted as a positive light shadow effect during sea surface temperature
anomalies [10]. The severity of the damages can be highly influenced by the prevalence of adverse
conditions during and after the events.

In 2017, the duration of the abnormal values (above 0.05 m−1) lasted four months as can be seen in
Figure 5. Higher values are not necessarily coincident with the events but, rather these were detected
two to three weeks later in October. The high number of landslides (>40,000) combined with runoff
after hurricanes Irma and María over the Island were unprecedented [56] and washed sediments
reached nearshore waters [19]. Miller (2019) documented elevated turbidity values nearshore until
February 2018 related to inland hydrological disturbances caused by the hurricanes [19]. Gilbes and
collaborators (2001) documented changes in Chl-a due to hurricane Georges up to two and a half weeks
after the event [18]. Recently, Hernández and collaborators (2020) documented high Kd490 and Chl-a
values from July to December 2017 all around Puerto Rico using VIIRS data; reporting Chl-a values
above 0.45 μg/L in August and November 2017 [20]. These authors reported anomalous attenuation
coefficient values for July 2017 (0.06 m−1) being persistently high until December. Chlorophyll-a is
a parameter highly correlated with Kd490 on ocean color data [18,20]. It is important to highlight
the oligotrophic water conditions on this study area, being influenced by Guánica Bay dynamics.
The values considered in this area can be compared to coral reefs or benthic areas with low influence
of rivers.

The aCDOM443 values above 0.05 m−1 are not typical for coral reef waters in Puerto Rico.
CDOM values with means < 0.043 m−1 are the most common values over coral reefs and seagrass beds
in the studied area. Otherwise, the values closer to 0.02 m−1 are found in offshore waters. An absorption
coefficient higher than 0.1 m−1 is frequently found on coastal embayments like Guánica Bay or the
Bioluminescent Bay surrounded by mangroves [57]. Anomalies like the ones measured in this study
lasted for the entire study period.

In terms of attenuation coefficient (Kd490), values above 0.2 m−1 corresponded to coastal
embayments while values from 0.1 to 0.2 were observed at shallow coral reef or seagrasses areas close
to the coast (<1 mile) or closer to the coral cays [20]. The lower values (<0.1 m−1) were found at mid-
and outer-shelf coral reef stations. A mean Kd490 value of 0.056 m−1 was documented (for 10 y data) in
a coral reef site at Guánica by satellite data [10]. Their values are lower than the values reported here
from July to December 2017 using OLCI data. A variant of Kd490 parameter, KdPAR, was measured in
situ before and after hurricane events in St. John Island recording the lowest level of light in coral reef
in the Caribbean after a hurricane event [58,59]. Certainly, these events had an unprecedent effect on
light attenuation over sensitive benthic communities.

These data show the influence of ADG443_NN/aCDOM in light attenuation. However, in estuarine
areas, a significant correlation between Kd490 and Chl-a was documented after a hurricane event [13,20].
The high anomalous values of ADG and Kd490 can be related to the unprecedented runoff produced
by defoliation and landslides [19,56] followed by biogeochemical oceanographic processes over the
coastal waters.
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5. Conclusions

As expected from episodic events of this magnitude, significant water quality parameter changes
occurred in southwestern Puerto Rico. Sentinel 3A OLCI data was used to extract information on ADG
and Kd490 values. These data were compared with in situ data trends and correlated between them.
The amount of data acquired during the study period (before N = 5, N = 16 after hurricanes) duplicates
the quantity of data obtained from the field (N = 3 after the hurricane) in 2017. Although cloud cover
in tropical islands can be high, remote sensing is an accessible and useful tool for short and long-term
water quality studies.

Increasing values of satellite-derived water quality parameters were detected with S3 OLCI and
field data in southwestern Puerto Rico. The anomalies were observed during the 9/11–10/8 period
as expected and extended until December. The ADG values increased throughout all the coral reef
zones. The estimated ADG mean in this zone was > 0.1 m−1 with a median of 0.05 m−1. The mean
values of Kd490 increased from 0.16 m−1 before the hurricanes to 0.28 m−1 shortly after Hurricane Irma,
and 0.34 m−1 in October 2017, a month after Hurricane María.

Satellite data are useful for water quality assessment in PR coastal waters with a judicious
understanding of their uncertainties and limitations. On the other hand, we cannot conclude the
performance of the sensor measurement on ADG443_NN or Kd490 products since we do not have
enough in situ data from July to December 2017. Our results represent a pioneering effort in the
establishment of tendencies for water quality studies in Puerto Rico. Usually, government agencies’
data are a single snapshot influencing the mean values that can be misinterpreted for the establishment
of patterns on water quality. These gaps can be addressed with satellite data, as we showed throughout
the manuscript. Remote sensing tools can help understand coastal and benthic habitat changes and
biogeochemical processes in waters surrounding oceanic islands, especially after extreme weather
events. Previous studies have mainly documented the importance of chlorophyll on light attenuation,
but this study highlights the importance of detrital and gelbstoffmatter on light attenuation coefficient.
This is not only done as a historical perspective of the consequences of these events but as an analysis
that could be integrated into future efforts aimed at describing the consequences of such events in
benthic communities changes on the long run.
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Abstract: The knowledge of extreme total water levels (ETWLs) and the derived impact, coastal
flooding and erosion, is crucial to face the present and future challenges exacerbated in European
densely populated coastal areas. Based on 24 years (1993–2016) of multimission radar altimetry,
this paper investigates the contribution of each water level component: tide, surge and annual cycle of
monthly mean sea level (MMSL) to the ETWLs. It focuses on the contribution of the annual variation
of MMSL in the coastal flooding extreme events registered in a European database. In microtidal areas
(Black, Baltic and Mediterranean Sea), the MMSL contribution is mostly larger than tide, and it can be
at the same order of magnitude of the surge. In meso and macrotidal areas, the MMSL contribution
is <20% of the total water level, but larger (>30%) in the North Sea. No correlation was observed
between the average annual cycle of monthly mean sea level (AMMSL) and coastal flooding extreme
events (CFEEs) along the European coastal line. Positive correlations of the component variance of
MMSL with the relative frequency of CFEEs extend to the Central Mediterranean (r = 0.59), North Sea
(r = 0.60) and Baltic Sea (r = 0.75). In the case of positive MMSL anomalies, the correlation expands to
the Bay of Biscay and northern North Atlantic (at >90% of statistical significance). The understanding
of the spatial and temporal patterns of a combination of all the components of the ETWLs shall
improve the preparedness and coastal adaptation measures to reduce the impact of coastal flooding.

Keywords: storm surge; coastal flooding; marine storms; natural hazards; steric-effect;
satellite altimetry

1. Introduction

Coastal areas, prone to be flooded in the case of extreme water levels, are mainly low-elevation
territories. In addition, the increase in subsidence rates by anthropogenic actions such as sediment
supply reduction by rivers, soil compaction by changes in land use [1], as well as extraction of
groundwater [2] or natural gas [3] can exacerbate the vulnerability of coastal areas. Marine flooding
threatens coastal areas, causing human casualities and large socio-economic impacts [4]. This is more
critical in densely populated zones with a restricted or inadequate adaptive capacity [5].

The European coastline is a densely populated area. In 2011, almost 205 million people (>40% of
the European population) lived in coastal regions (<50 km from the sea), and on average, in each
country with a coastal border, 36% of the population lived within 5 km from the sea [6]. Moreover,
there is a large historical record of marine flooding along the European coast [7–9], either for the
North Sea [10]; Bay of Biscay [11]; North Atlantic, Mediterranean Sea or Adriatic sea among other
locations [12]. Protection measures have been taken in the last few decades, increasing preparedness
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for extreme water level impact along the European coast. These actions have reduced the impact and
consequences of coastal flooding generated by extreme events (hereafter, CFEEs) along the European
coast. Indeed, despite an increase in the exposure in coastal areas, there is a significant decreasing
trend in flood fatalities and economic losses for the period 1950–2016 [13]. An outstanding example
is the North Sea floods of 1953 and 2013 (storm Xavier), very similar in magnitude but with very
different impacts on infrastructures and population. A considerable decline of the damage was
observed in the latter [14]. However, the extreme water level is expected to increase in the next century,
by the contribution of the mean sea level rise [15,16], and changes in extreme storm surge and wave
characteristics [17]. On the other hand, remarkable growth in coastal risk is also expected, associated
with socio-economic coastal development [18]. Therefore, there is a continuous necessity for the
monitoring and improvement of the forecasting and knowledge of extreme sea-level events and the
driven impact on coastal areas to face the present and future challenges.

Traditionally, Extreme Total Water Level (ETWL, henceforth) has been analysed as the sum of
tidal level and non-tidal residual. The non-tidal residual includes the so-called surge or meteorological
contribution (inverse barometer effect and wind setup), and the non-linear interaction between surges
and tides [19,20]. The non-tidal residual can also contain the wave set-up contribution in coastal
areas [21], resonance in enclosed basin [22] or contribution of the river runoff in estuaries during
extreme discharges [23,24].

ETWLs are dominated by high-frequency signals (tides, surges, waves set-up and run-up),
but low-frequency contributions, such as the annual cycle of sea surface height variation and associated
anomalies need to be considered too. The annual cycles of the Monthly Mean Sea Level (MMSL,
hereinafter) can induce sea-level variations, ranging from few centimetres to up to 0.3 m in some regions
(i.e., the Gulf of Carpentaria between Australia and New Guinea) [25]. Several processes and their
seasonal variability drive the annual cycle of sea surface height. Thus, the water mass addition/removal
from the oceans is a major forcing of the global ocean mean sea level (MSL) variation [26], interannual
variability is critical over shelf seas [27], while seasonal variability can dominate in shallower regions [28].
Freshwater runoff contributes also to the annual cycle of MSL [29], and might become dominant near
the coast [30]. The effect of river discharge is limited to the areas influenced by the river mouth [31,32].
In the open ocean the annual cycle of MSL is controlled by changes in the density of the water column
through the so-called steric component, dominating the sea level variability at annual timescales
in the North Atlantic and in the Mediterranean Sea [33]. The steric contribution is mainly driven
by the thermal expansion/contraction of the water column (thermos-steric component) associated
with changes in temperature of the upper layer of the ocean; the haline expansion/contraction due
to salinity changes (halo-steric component) becomes less important [34]. Although the relevance of
density changes in sea surface height variability is proportional to the water column depth and can be
predominant in the open ocean, it can affect by remote contribution shallower areas [35].

Tide gauges have been used for years for extreme value analysis [36,37]. Some limitations
(spatial and temporal coverage) are inherent to in situ measurements [38]. Tide gauge data are
also influenced by isostatic adjustment and topographic effect in many locations, hampering the
interpretation of sea-level records [39].

Satellite altimetry provides homogeneous and accurate sea level measurements over the open
ocean. Apart from data assimilation in the forecast system (e.g., [40]), these measurements have been
used for many applications including the contribution of the MMSL seasonal cycle to the extreme water
levels [41]. Altimetry observations are available around the world ocean, but the accuracy decreases in
coastal zones by land and calm water contamination in the radar footprint and the bad characterisation
of some of the range/geophysical corrections [42]. The use of radar altimetry to capture peaks of
ETWLs during CFEEs can be limited by its low temporal resolution. Recent studies over Europe [43]
show that if two or more satellites (multimission gridded products) are available, more than 90% of the
ETWLs events might be captured.
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The combination of low-frequency signals (the annual cycle of the sea level variation) with
shorter timescale phenomena, such as surges or tides, can contribute to an increase in the ETWLs
during CFEEs [44]. Thus, a better characterisation of the high/low-frequency signals can improve our
knowledge of the flood risk in coastal areas [45,46]. The main aim of this work was to analyse the
contribution of the seasonal cycle of the MMSL (derived from multimission radar altimetry) to the
ETWLs during the period 1993–2016. We also analysed the high-frequency signals (surges and tides)
contribution to the ETWLs. The combined effect of these signals might result in large flooding with
associated impacts on coastal areas. This study focused on the comparison of ETWLs detected with
satellite altimetry with a coastal extreme storm impact database at a pan-European scale. The paper is
structured as follows; Section 2 describes the methodological approach and dataset used. Section 3
gives the obtained results in terms of ETWLs and its comparison with the storm impact database;
in Section 4, the results are discussed and compared with previous studies. Finally, the main conclusions
are summarised in Section 5.

2. Datasets and Methodology

2.1. Sea Level Datatasets

The altimeter dataset used was the GLOBAL OCEAN ALONG-TRACK L3 SEA SURFACE
HEIGHTS REPROCESSED from CMEMS (Copernicus Marine Environment Monitoring Service) [47].
This product was derived by the DUACS (Data Unification and Altimeter Combination System)
multimission altimeter data processing system [48] to provide a consistent, cross-calibrated and
homogeneous data for all the altimeter missions: Topex-Poseidon; Topex-Poseidon (interleaved orbit);
Jason-1; Jason-1 (interleaved orbit); Jason-1 (geodetic orbit); OSTM/Jason-2; OSTM/Jason-2 (interleaved);
Jason-3; Sentinel-3A; ERS-1; ERS-2; Envisat; Envisat (extended phase); Geosat Follow On; CryoSat-2;
SARAL; SARAL-DP; HY-2A; HY-2A (geodetic orbit).

The along-track product obtained from CMEMS was the reprocessed Sea Level Anomaly (SLA).
Instead of using the fully 1 Hz posting rate (~7 km spatial resolution), we used the filtered and
subsampled SLA included in the along-track products of CMEMS. It reduces the residual noise
and small scale signals with a posting rate of 0.5 Hz (about 14 km distance between successive
measurements), and temporal resolution ranging between 10 and 35 days depending on satellite
mission (see [49] for more details). Along-track SLA (referenced to a mean sea surface), includes a set of
corrections in order to reduce instrumental noise, range (ionospheric, dry and wet tropospheric effects,
and sea state bias correction), and geophysical corrections (tides, inverse barometer and high frequency
(<20 days) wind and pressure effects). The inverse barometer and high-frequency wind signal of the
atmospheric forcing were removed through the so-called Dynamic Atmospheric Correction (DAC)
produced by CLS (Collecte Localisation Satellites) using the Mog2D model [50]. The ocean tide was
removed using the FES2014 model (including S1 and S2 components) [51].

2.2. Storm Impact Database

The CFEEs were analysed using the historic and recent coastal flooding extreme events along the
European coastline. The database used integrates different systematic coastal flooding and coastal
impact databases available at pan-European scale:

• Pan-European HANZE database [8] from 1870 to 2016: 1564 flooding events were recorded
including river floods and flash floods. A total of 77 events classified as coastal and compound
events (river and coastal contributions to the floodings) were selected.

• Coastal floodings in the United Kingdom [7] from 1915 to 2016: 329 events.
• The RISC-KIT storm impact database for European coastlines [9] from 1806 to 2016: with 298 events.
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Information on the impact (if available), location and time of 532 events were recorded in the
analysed time period (1993–2016). The database contains records in specific locations and can include
more than one event separated by time.

The geographical location of the events was normalised and referred to the European Union
statistical regions NUTS3 (Nomenclature of Territorial Units for Statistics Level 3) version 2010.

2.3. Methods

We obtained the total water level (TWL) as the contribution of three components (Equation (1)):

TWL =MMSL + SSL + TIDE (1)

where MMSL is monthly mean sea level; SSL includes the sea surface variations induced by the
meteorological forcing. It includes the contribution of wind and pressure effect on the water level
(the so-called surge); and TIDE is the contribution of astronomical tide. The study area focused on
the pan-European area covering 32◦W–42◦E longitude, and 27–74◦N latitude (Figure 1). The area of
interest was divided in 1◦ × 1◦ tiles and time series were obtained by grouping the along-track SLA
data inside each tile.

Figure 1. Study area with the 10 oceanographic regions defined for the analysis. The colour scale
indicates the number of altimetry observations in each 1◦ × 1◦ latitude and longitude cell for the
period: 1993–2016.

The events where TWL exceeds the 95th percentile of the TWL have been considered as the
extreme total water levels (ETWLs).

2.3.1. MMSL, AMMSL and MSL Anomalies

As mentioned, the study area was divided into regular grids of 1◦ × 1◦. Then, monthly means
were constructed with the along-track filtered SLA data inside the grids for the time period analysed;
finally, the time series were linearly detrended to obtain the monthly Mean Sea Level (MMSL),
which includes the steric and mass components. The MMSL was computed as the monthly mean
for each year. The standard deviation (σ) of MMSL for each month representing the interannual
variability was also obtained. The average monthly mean sea level (AMMSL), the so-called climatology
or average annual cycle, was calculated as the interannual average of the monthly mean sea level for
the whole period. Finally, the MSL anomalies (deviation in MSL respect to the mean annual cycle)
were estimated subtracting the month value of the AMMSL time average (1993–2016) to the MMSL for
the corresponding month following (Equation (2)):

MSL anomalies =MMSL − AMMSL (2)
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2.3.2. SSL

The meteorological component was computed following (Equation (3)):

SSL = SLADAC −MMSL (3)

where SLADAC is the monthly mean of the SLA uncorrected by DAC; that is restoring the inverse
barometer and high frequency (<20 days) wind and pressure effects removed during the product
delivery. The DAC product is available at regular grids (0.5◦ × 0.5◦), and 6 hours of temporal resolution.
They were interpolated in time and space to match the altimeter dataset, and subtracted to the
along-track SLA. Then, the monthly means were computed and the time series were also detrended
(SLADAC).

2.3.3. TIDE

The ocean tide was calculated using the t_tide package [52] including nodal corrections, and using
the amplitudes and phases of 30 tidal components of the FES2014 model (see [51] for further details).
The amplitude and phase are provided in a regular grid of 0.0625◦ × 0.0625◦ and were interpolated in
space to match the altimeter dataset.

The amplitude of the TWL is highly dependent on the phase lag between the surges and the tides.
In addition to this, the co-occurrence of surges and spring tides might have a major impact on the
floods hitting the coastal area. We analysed the relevance of AMMSL with respect to the neap-spring
tidal range calculated from M2 and S2 tidal constituents ([M2-S2 M2+S2]). It is calculated according to
Equation (4)

Relevance = 100· AMMSL
[M2− S2 M2 + S2]

(4)

2.3.4. Correlation of Seasonal MSL with Storm Impact Database

The relationship between the spatio-temporal pattern of MMSL, SSL and TIDE, and the areas
affected by coastal flooding registered in the storm impact database was analysed along the European
coastline. According to the methodology outlined in the previous section, the MMSL, SSL and TIDE
contribution was calculated and assigned for each measurement in the altimetry dataset located in the
1◦ × 1◦ tiles closest to the coastline of each region avoiding measurements affected by land contamination.

Afterward, the linear correlation coefficient was calculated between the average monthly fraction
of each component variance in ETWLs in the oceanographic region and the relative monthly frequency
of the number of CFEEs registered in the storm impacts database at each oceanographic region.
The variance of each component is expressed as a fraction of the ETWLs.

Similarly, it was calculated the correlation coefficient between AMMSL and monthly frequency of
the storm impact registered on each region.

The relationship of MSL anomalies in the closest 1◦ × 1◦ and the storm event registered in
the database was assessed through a t-test (alpha = 0.05) to evaluate the hypothesis that positive
MSL anomalies are correlated with the storm event recorder. If the CFEEs and MSL anomalies are
independent, mean value of MSL anomalies corresponding to the CFEEs should be zero, whereas a
positive correlation will produce a mean value of MSL anomalies > 0.

3. Results

3.1. Characterization of the AMMSL and MMSL

The characterisation of AMMSL and MMSL was conducted using the full spatial coverage of the
dataset in order to analyse the study area including deep ocean and areas closest to the European coast.
The AMMSL is shown in Figure 2. The average annual cycle is not uniform in time and magnitude
in the study area. The Mediterranean Sea and the Atlantic areas show minimum in late winter/early
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spring (−0.12 in the Mediterranean Sea and −0.05 m in the Atlantic) with the maximum of the annual
cycle in late summer/early autumn (0.12 m in the Mediterranean and up to 0.07 m along the continental
shelf in the N-North Atlantic). Some exceptions are observed in the coastal zones of the United
Kingdom. The Bay of Biscay and the North Sea show a similar pattern with the minimum in spring and
maximum of AMMSL in late summer/early autumn. In the North Sea, the North-Eastern coast and the
German Bight present values > 0.10 m, where positive anomalies extend from September up to January.
In the case of the Black Sea, the minimum/maximum (±0.10 m) is given in autumn/spring. Finally,
the Baltic Sea shows the minimum/maximum (±0.12 m) in spring/autumn-early winter. Intensifications
of positive AMMSL (>0.12 m) are observed in the gulfs of Bothnia and Finland during December and
January. The Norwegian Sea is characterised by variations around ±0.06 m with minimum/maximum
in late autumn/late spring, and intensification of positive AMMSL (0.08 m) in coastal areas.

Figure 2. Seasonality of the annual cycle ((a–l) January–December) of the average monthly mean sea
level (AMMSL) in the study area from 1993 to 2016. Warm/cold colour indicates positive/negative values.

Figure 3 illustrates the standard deviation (σ) of the annual cycle for the analysed period as an
indicator of the interannual variability of the MMSL. The values are small (σ < 0.03 m) all around the
year and oceanographic regions. Some exceptions with bigger standard deviations are observed in the
Baltic, Black and North Seas, especially during autumn/winter seasons. In the North Sea, σ is >0.15 m
in the German Bight. The largest σ (up to >0.18 m in February) are in areas located in the head of the
Gulf of Bothnia, Finland and the Eastern coast of the Baltic Sea. The deeper ocean of South/North
Atlantic shows σ slightly larger (>0.04 m) with respect to the mean value.
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Figure 3. Seasonality of the standard deviation (σ) of monthly mean sea level (MMSL)
((a–l) January–December).

The contribution of the AMMSL to the annual cycle obtained with the monthly maximum SLA
uncorrected by meteorological forcing (SLADAC) was also analysed. We estimated the percentage of
this contribution (Figure 4). The steric and mass components account for almost 45% of the uncorrected
seasonal cycle in late autumn/spring in most of the oceanographic regions with the exception of the
Black Sea, North Sea, Bay of Biscay and the deeper ocean of South/North Atlantic. Contributions of
about 30–35% are observed in the Mediterranean Sea and Black Sea in late summer/autumn.

Regarding the relevance of the AMMSL with respect to the neap-spring tidal range calculated
([M2-S2 M2 + S2]), the results (not shown here) indicate that the AMMSL is more important than the
neap-spring range in microtidal areas (Mediterranean Sea (excepting Central Med.), Black Sea and
Baltic Sea). In mesotidal (S-North Atlantic and Norwegian Sea) and some macrotidal (Bay of Biscay,
N-North Atlantic and Eastern coast of the North Sea) areas the contribution is smaller than 10%.

Figure 5 gives the characterisation by oceanographic region of the monthly AMMSL, its magnitude
relative to SLADAC and to the range of neap-spring tide. The average range of the AMMSL during
the annual cycle and its standard deviation are shown in Figure 5a. The largest seasonal range and
variability was observed in the Baltic Sea (>±0.10 m), followed by the Mediterranean Sea, and the
Norwegian Sea. The weakest variation in the AMMSL was found in the Black Sea, S-North Atlantic,
Bay of Biscay and N-North Atlantic. The weight of the AMMSL with respect to the non-tidal residual
(SLADAC) (Figure 5b) is, on average, below 50% in all the oceanographic regions ranging from ~40%
(Mediterranean Sea) to ~20% in the Bay of Biscay, N-North Atlantic, North Sea and Norwegian Sea.
The average ratio of AMMSL and spring-neap range (Figure 5c) points out the major importance of
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AMMSL in microtidal areas: Black Sea, Mediterranean Sea and Baltic Sea. This ratio is still high in the
North Sea (>60%) and below 10% in the Bay of Biscay.

Figure 4. Seasonality of the annual contribution of the seasonal cycle of the MSL to the uncorrected
monthly maximum MSL (Sea Level Anomaly (SLA) + Dynamic Atmospheric Correction (DAC))
((a–l) January–December).

The ETWLs are analysed in detail in the coastal area using a subset of the initial data. This subset
covers only data contained in the closest 1◦ × 1◦ tile to the coast. Figure 6 shows the contribution in
terms of the variance of the three components (MMSL, SSL and TIDE) to these extremes. For a more
comprehensive visualization, the fraction of components’ variance was plotted as ternary plots: SSL is
100% in the bottom left vertex, MMSL is 100% in the upper vertex and TIDE is 100% in the bottom right;
the opposite edge of each vertex gives 0% of the corresponding components’ fraction. In the Black Sea
(Figure 6a), the main component in the ETWLs is the SSL, with the MMSL contribution ranging from 0
to 50%; the TIDE fraction is < 10%. The Mediterranean Sea (Figure 6b–d) shows the larger variability in
the contribution of the components, particularly in the West Med. In the East Med. (Figure 6b), ETWLs
are characterised by 10–40% of MMSL contribution, 60–90% for SSL, and a smaller relevance of TIDE
(<20%). In the Central Med. (Figure 6c), which includes the Adriatic Sea, TIDE is the main component
(70–90%), the MMSL contribution is limited to <15%, and SSL is below 30%. In West Med. (Figure 6d)
the TIDE contribution ranges from 40 to 60%, MMSL and SSL around 10–30% in the case of the higher
ETWLs (red dots), whereas intermediate ETWLs (orange dots) present a wider contribution of MMSL.
S-North Atlantic (Figure 6e) is characterised by 70–80% (TIDE), 20–30% (SSL), and about 10% (MMSL).
The Bay of Biscay (f) is the oceanographic region where MMSL shows the minor contribution (<5%), so
the extreme values are most of the time a combination of SSL (0–20%), and TIDE (80–100%). In N-North
Atlantic (Figure 6g) and North Sea (Figure 6h), the MMSL contribution to ETWLs is limited to <10%
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and <20% respectively. TIDE and SSL contribute to 20% and 80%, respectively in the N-North Atlantic.
The North Sea shows scattered values for TIDE (20–95%) and SSL (0–80%) components. The Baltic Sea
is the oceanographic region with the larger contribution of MMSL (20–50%), and minor contribution of
SSL 50–80%. ETWLs in the Norwegian Sea are characterised by 80–95% (TIDE), 10–20% (SSL) and
<10% (MMSL).

Figure 5. (a) Oceanographic region average of range of AMMSL (red/blue lines show the spatially
averaged standard deviation of the interannual MMSL positive/negative values, respectively).
(b) Oceanographic region average of the relative value (%) of AMMSL with respect to the SSL monthly
maxima (SLADAC). (c) Oceanographic region average of the relevance (%) of mean AMMSL with
respect to the neap-spring tidal range following Equation (3). (Exceedance of 100% were represented as
100% in order to facilitate the intercomparison with other regions).

Figure 6. Fraction of components’ variance in the extreme total water level (>95th percentile) along the
coastline (closest 1◦ × 1◦ tile) of each oceanographic region (a–j) considering TIDE, SSL and MMSL.
Warm/cold colour indicates bigger/smaller extreme total water levels (ETWLs).
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3.2. Correlation of AMMSL and MMSL with Storm Impact Database

The relationship between the spatial pattern of AMMSL and the areas affected by coastal floodings
registered in the storm impact database is illustrated in Figure 7. The East Med., S-North Atlantic
and Norwegian Sea do not have any records in the storm database. The only record in the Black
Sea is on the west coast, with the CFEEs mainly registered from December to March (Figure 7a–c,l).
The higher frequency of storms is recorded in February (AMMSL < 0.03 m). Central and West Med.
are characterised by a peak occurrence of CFEEs during November and December in the Adriatic,
Liguria and Catalonia coasts (Figure 7k,l) running into positive AMMSL ([0.03–0.09 m]). The S-North
Atlantic is represented only by the southern coast of Portugal, where CFEEs are mainly registered
on January-February (Figure 7a,b) during negative AMMSL ([−0.05–−0.03 m]). In the Bay of Biscay,
the higher percentage of CFEEs occur during February-March, when the seasonal cycle shows negative
AMMSL (−0.05 m). In the N-North Atlantic, most of the CFEEs take place from December to February
(Figure 7a,b,l, respectively), corresponding to AMMSL around 0.07 m, 0.05 m and −0.03 m respectively.
On the coast of the North Sea, the CFEEs occur mostly in January (Figure 7a) during positive AMMSL
(0.07 m), except on the south-eastern English coast. In German Bight, a higher frequency of the CFEEs
occur in December, when AMMSL peaks up to 0.11 m. In the Baltic Sea, most CFEEs are observed
during January and December in the western coast (Figure 7a,l) running into positive monthly AMMSL
(0.06 m). Likewise, the largest frequency in the Gulf of Finland occurs during January concurring with
maximum AMMSL (>0.15 m).

Figure 7. Spatial pattern of the relationship between the CFEEs and the AMMSL
((a–l) January–December). The dots indicate the position of the coastal storms and the colour
intensity refers to their relative monthly frequency in the affected NUTS3 region.
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The monthly average of the fraction of each component (SSL, TIDE and MMSL) variance in the
ETWLs and the monthly frequency of the extreme events are illustrated in Figure 8. The correlation
coefficient between each component and the relative monthly frequency of CFEEs is shown in Table 1.
In the Black Sea and Baltic Sea, the main contributors to the ETWLs are SSL and MMSL. The CFEEs
are observed from December to February coinciding with an important contribution of the MMSL
(Figure 8a–i). The correlations are not significant in the Black Sea and significant (SSL and MMSL)
in the Baltic Sea (Table 1). The contribution pattern of the three components is homogeneous in the
Mediterranean (Figure 8b–d). Extreme events are observed from October to January (Central and West
Med.). Correlations (Table 1) are significant for TIDE (Central and West Med) and MMSL (Central
Med.). The remaining oceanographic areas show a major contribution of TIDE to the extremes. In the
N-North Atlantic, North Sea and Norwegian Sea, the contribution of SSL is up to 30%. Significant
correlations are observed in N-North Atlantic (SSL and TIDE), and North Sea (SSL, TIDE, and MMSL)
(Table 1) where tidal contribution diminishes, increasing MMSL and SSL.

Figure 8. Average monthly fraction of each components’ variance in the ETWL along the coastline
(closest 1◦ × 1◦ tile) of each oceanographic region (a–j). The monthly relative frequency of storm
impacts at each area (blue polygon) is also shown.

Table 1. Rank correlation coefficient between the average monthly fraction of components’ variance of
SSL, TIDE and MMSL along the coastline (closest 1◦ × 1◦ tile) of each oceanographic region and the
relative monthly frequency of the storm events database. p-Value is given in brackets.

Region Black Sea Central Med. West Med.
S-North
Atlantic

Bay of Biscay
N-North
Atlantic

NorthSea BalticSea

SSL −0.06 (0.86) 0.03 (0.94) 0.18 (0.57) 0.52 (0.08) 0.37 (0.24) 0.97 (3 × 10−7) 0.90 (6 × 10−5) −0.79 (2 × 10−3)
TIDE 0.14 (0.66) −0.73 (7 × 10−3) −0.78 (3 × 10−3) −0.16 (0.63) −0.32 (0.32) −0.94 (4 × 10−6) −0.88 (2 × 10−4) −0.54 (0.07)
MMSL 0.05 (0.87) 0.73 (7 × 10−3) 0.29 (0.36) −0.21 (0.52) 0.12 (0.70) 0.45 (0.14) 0.67 (0.02) 0.77 (4 × 10−3)

Figure 9 provides the temporal variability of the monthly AMMSL averaged along the coastline
(closest 1◦ × 1◦ tile) over each oceanographic region; the relative monthly frequency of CFEEs registered
at each region is also shown. Table 2 gives the correlation coefficient between them. According to the
results, no significant correlations were found between the AMMSL in coastal areas and CFEEs.
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Figure 9. AMMSL along the coastline (closest 1◦ × 1◦ tile) averaged by oceanographic regions and
monthly frequency of storm impact registered on each region (larger dot size indicate higher frequency).

Table 2. Rank correlation coefficient between the annual cycle ofregionally averaged AMMSL and
relative monthly frequency of storm event in the database.

Region
Black
Sea

East
Med.

Central
Med.

West
Med.

S-North
Atlantic

Bay of
Biscay

N-North
Atlantic

North
Sea

Baltic
Sea

Norwegian
Sea

Corr. coefficient −0.1 - 0.28 0.32 −0.22 −0.14 0.30 0.02 0.10 -
p-value 0.75 - 0.38 0.31 0.49 0.67 0.35 0.95 0.76 -

3.3. Correlation of Monthly MSL Anomalies with Storm Impact Database

The potential impact on coastal flooding extreme events derived from changes in the MMSL with
respect to the AMMSL, that is the monthly MSL anomalies, was analysed. Figure 10 shows the annual
variation of MSL anomalies (ordinate axis) along the European coastline (abscissa axis). Each column
represents the data corresponding to the closest 1◦ × 1◦ tile to the coast and its location along the
coastline is indicated by the ISO country code to identify the coastal region. Each row represents a
monthly MSL anomaly for the analysed period. The CFEEs registered in the database are presented
as black dots according to the temporal and spatial location of the event. There is a clear correlation
between the dates of the CFEEs and positive anomalies of the MSL with the exception of West Med.
(Figure 10d) and N-North Atlantic (Figure 10g). This is confirmed by the fact that the frequency
curve of MSL anomalies spatially averaged (black curves in Figure 10) and anomalies during CFEEs
registered (red curves) are different in the upper tail, indicating a larger number of events during the
largest positive anomalies. In the Black Sea (Figure 10a) there were six events with four/two of them
during positive/negative MSL anomalies. Similarly, in the Central Med. (Figure 10c) the events that
occurred during positive anomalies (51) are almost twice those registered during negative anomalies
(32). MSL anomalies are especially large (>0.12 m) in the Adriatic (Central Med.) where there is a
most exhaustive record of CFEEs. S-North Atlantic (Figure 10e) and Bay of Biscay (Figure 10e) are
under-represented in the storm database, but the storms coincide in time with positive anomalies.
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Figure 10. Monthly MSL anomalies along the European coastline (warm/cold colours indicate
positive/negative MSL values) for each oceanographic region (a–j). The ratio of positive/negative
anomalies for the CFEEs is also indicated. The ordinate axis represents the time and the abscissa axis
represents the spatial variation along the coast indicated by ISO country code labels. Black dots indicate
the date and position of extreme events registered in the database. The red line represents the relative
frequency distribution of the monthly anomalies corresponding to the extreme events registered in the
database and black line represents the spatially average of monthly anomalies distribution in the region.

In N-North Atlantic (Figure 10g) larger anomalies than ±0.1 m are registered in the English
Channel and Irish Sea, but the same number of CFEEs are observed under positive/negative anomalies
(40). In the North Sea (Figure 10h) the CFEEs are registered on the west and southwestern coast (GBR
and BEL) with lower MSL anomalies than in the German Bight (>0.15 m). The Baltic Sea (Figure 10i)
shows strong anomalies (most of them >0.15 m) in the Gulfs of Bothnia and Finland, giving the clearest
correlation of positive anomalies and CFEEs recorded in the database.

Table 3 summarises the role of MSL anomalies in each oceanographic region through the results of
a t-test (alpha = 0.05). The mean value of MSL anomalies is >0 in Central Med., S-North Atlantic, North
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Sea and Baltic Sea, indicating a positive correlation (>95% of statistical significance). This positive
correlation extends to the Bay of Biscay and N-North Atlantic with >90% of statistical significance.

Table 3. Results of the t-test (p-value in bracket) to check the hypothesis that the MSL anomaly data
comes from a population with a mean greater than zero at the 0.05% significance level. A t-test = 1
indicates that the hypothesis is accepted.

Region
Black
Sea

Central
Med.

West
Med.

S-North
Atlantic

Bay of
Biscay

N-North
Atlantic

North Sea Baltic Sea

t-test (0.05) 0 (0.28) 1 (3 × 10−4) 0 (0. 86) 1 (3 × 10−3) 0 (0.08) 0 (0.07) 1 (4 × 10−2) 1 (3 × 10−7)
Mean MSL anomaly 0.03 0.02 −0.01 0.04 0.04 0.02 0.03 0.07

4. Discussion

Recently, some studies based on tide gauges have analysed the ETWL component during extreme
flooding events at the regional–local scale and its relative impact on coastal areas [53,54]. Our study,
based on 24 years of satellite altimetry observations, focused on the contribution of the annual variation
of MMSL to the ETWL, over the oceanographic regions around Europe. In some of these regions the
annual cycle of the MMSL is markedly important as a driving contributor to the ETWLs.

4.1. Time–Space Variations of Seasonal MSL and Interannual Variability

In general, the AMMSL is in agreement with previous studies based on tide gauges and satellite
altimeter data. The range of variation of the satellite-derived AMMSL is similar to the range observed
by [55] in the Black Sea using tide gauge data, by [56] in the Mediterranean Sea (altimeter observations),
and by [35] in the Gulf of Cadiz (tide gauges and altimeter data). We observe slightly larger values
with respect to the observations made by [57] in the South and West coast of the Iberian peninsula
(derived from tide gauges). The range and spatial pattern of amplification in the continental shelf
in the Bay of Biscay are in line with the values reported by [58]. Further north, our results show the
spatial pattern of the amplitude of the AMMSL annual cycle, increasing towards the northeastern coast
in the German Bight in line with [59] (from altimeter observations).

The amplitude intensification observed from the Danish Straits to the head of the Gulfs of Finland
and Bothnia was also noted by [60] using tidal gauge observations. This was also reported by [61] on
the Polish coast. Finally, we found a good level of agreement between our results and those obtained
by [62] in the Norwegian Sea.

The regional variations originate from different mechanisms. In the Black Sea, the AMMSL
seasonal variations are dominated by freshwater balance [63]. In the Mediterranean Sea, the seasonal
AMMSL is dominated by steric contribution being not negligible the mass induced by sea-level
variation ([64]). The thermosteric effect is also dominant in the S-North Atlantic and South and
West coast of the Iberian peninsula [35], Bay of Biscay and the N-North Atlantic. In the North Sea,
the seasonal changes are mainly driven by wind, and the contribution of precipitation is not negligible
during the autumn season [46]. The local steric contribution is smaller due to the shallow waters;
however, long-term AMMSL variability could reflect the steric changes remotely forced [65]. In the
Baltic Sea, the seasonal variation of AMMSL is primarily controlled by the direction of the prevailing
wind and its role in the water exchange with the North Sea [60,66]. Moreover, seasonal variability is
also influenced by river runoff and temperature [67,68].

The interannual variability of MMSL is stronger in the areas with larger amplitudes in the seasonal
cycle (German Bight and Baltic Sea) (Figure 3). The variability in the North Sea is larger from December
to March (Figure 3) as a result of the stronger atmospheric and meteorological forcing, as noted
previously by [46]. The spatial pattern of the intensity of the MSL anomalies in coastal areas of
N-North Atlantic and North Sea are in agreement with the results presented in [69]. In the Baltic Sea,
the large interannual variation expands to most of the months (excluding July and August). This could
be related to the domination of semi-annual variability during some periods [39]. In spite of the
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meteorological forcing, the sea ice cover (maximum in February and March) could contribute to the
increase in interannual variability [66], along with river run-off, with maximum average and deviation
values occurring from April to May [39].

4.2. Correlation of Monthly MSL Anomalies with Storm Impact Database

The assessment of the seasonal MMSL with respect to the monthly maximum SLADAC indicates a
relevant contribution of MSL during winter and autumn, especially in semi-enclosed basins (Black
Sea, Mediterranean Sea and Baltic Sea). Moreover, in those areas, the seasonal variation of AMMSL
exceeds the neap-spring tidal range. Beyond these microtidal areas, the seasonal variation of AMMSL
is also significant in the south and eastern coast of the North Sea. Those areas are characterised by
the large contribution of the MMSL to the ETWLs in winter and particularly in autumn, during the
seasonal peaks of MMSL. Indeed, the large correlation between the annual cycle of MMSL and the
CFEEs is observed in Central Med., Baltic region and North Sea. The smaller correlation observed in
the West Med. is linked to the earlier drops of MMSL after September. It is also relevant that the largest
correlations between the CFEEs registered in the database and seasonally MMSL variations occur in
areas with the largest interannual variability (Figures 7 and 10), with the exception of the Central Med.
In fact, the correlation of MSL anomalies and CFEEs extend to all regions with the exception of Black
Sea and West Med. (Figure 10, Table 3), revealing the potential impact on flood risk derived from
changes in the sea-level annual cycle as it was pointed out in previous works (e.g., [45,70]).

Some examples of the contribution of each component during extreme events recorded in the
database and captured in the altimetry dataset are plotted in Figure 11. In the analysis, we used the
closest satellite track in time and space to the location of the CFEEs. The stronger contribution of
the MMSL to the ETWLs (similar in magnitude to the SSL) is observed in the Baltic Sea (Figure 11e),
during the storm peak on 07-01-2005. This was also observed during storm Xaver in the North Sea and
Halloween storm in the Adriatic Sea (Figure 11a,d respectively) but with a weaker MMSL contribution
to the TWL peak. Similarly to the previous areas, the upper tail of the MMSL histogram indicates a
higher probability of large contribution, in opposition to the histogram of MMSL in West Med and
S-North Atlantic. In fact, the MMSL decreases up to 0.07 m in the West Med (Figure 11c,d) during the
storm occurred on 16 December 1997 and drops in the S-North Atlantic event (Figure 11c) where the
histogram reveals tidal component as the main contributor to the ETWLs.

 

Figure 11. Extreme events registered in the storm impact database and captured by altimetry dataset.
Curves represent the histogram of each sea level component (TIDE, SSL and MMSL) in the area and
vertical lines mark the magnitude of each component at the peak of the extreme event.
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4.3. Limitations and Future Research

According to the results, there is an important contribution of MMSL to the ETWLs.
The contribution of MMSL to the ETWLs were calculated and correlated with the storm event
impact database in terms of the annual cycle and MSL anomalies. The relative contribution of the
MMSL to the extremes is strongly dependent on the concomitance between the storm peak in sea level
and the availability of satellite altimeter data. During storms driven by atmospheric perturbations
characterised by shorter temporal–spatial scales, the probability of altimeter data availability is reduced.
Thus, the extreme events analysed in the Adriatic Sea West Med. (Figure 11a), and Baltic Sea (Figure 11e)
underestimated the peak of ETWLs (see Table 4) because the satellite pass was not at the right time.
This might be also observed in meso and macrotidal areas (i.e., North Sea) (Table 4) where ETWLs
are controlled by tide and surge phase lag. The above-mentioned limitations could bias the final
contribution of each component and overestimate the MMSL contribution which is well captured in
the altimetry observation.

In addition to this, the availability of accurate altimetry data near the coast might be affected by
land/calm water contamination, degraded range and geophysical corrections, producing inaccurate
estimations of the sea level in coastal areas [71]. The screening rejects the closest data to the shore,
but even though all the components analysed (SSL, TIDE and MMSL), are prone to suffer modifications
by several processes (i.e., tide–surge interaction, river discharge, resonance) in the nearshore area
changing the final absolute and relative contribution of each component to the TWLs in the coastal area.
This limitation could be partially overcome using dedicated coastal altimetry datasets (e.g., X-TRACK,
ALES) produced using specific processing techniques to get more accurate estimates of sea level in
coastal areas [72,73].

Additionally, as a result of the altimetry limitation in the coastal zone, the wave contribution to
the ETWLs is neglected in this study, even though it could be an important component (e.g., [74–76]).
This fact could explain part of the differences noted in Table 4, and leads to the overestimation of the
MMSL to the ETWLs.

Table 4. Comparison of total water levels (TWLs) peaks captured by altimetry and measured from tide
gauges. The data source providing the tide gauge information is indicated in brackets.

Central
Med. [77])

West
Med. [78]

S-North
Atlantic [78]

North Sea ([53]) Baltic Sea ([79])

TWLp. 0.72 m (1.16 m) 0.28 m (0.46 m) 1.74 m (1.6 m) 1.9 m (~4.67 m) 0.8 m (2.22 m)
SSLp. 0.55 m (0.81 m) 0.13 m 0.12 m 2.08 m (2.67 m) 0.4 m
TIDEp 0.08 m (0.23 m) 0.09 m 1.61 m −0.38 m (~1.5 m) 0.01 m

MMSLp 0.1 m (~0.12 m) 0.07 m 0.01 m 0.21 m (0.50 m) 0.39

DATEp
01.11.2012 00:00

(31-10-2012 23:30) 16.12.1997 10:52 04.01.2010
05:07

06.12.2013 04:47
(06.12.2013 02:00)

07.01.2019 13:33
(09.01.2009 06:00)

The knowledge of past and present contributions of each individual component to the ETWLs
could contribute by reducing the uncertainty of ETWLs forecast, improving the preparedness and
reducing damage in the case of coastal flooding. Indeed, very often, large-scale models—especially
those with a high resolution on the coast devoted to the ETWL prognosis (e.g., [80,81])—use a 2D
barotropic approach neglecting steric effect and mass component sea level variation. The integration
of MMSL anomalies from coastal altimetry data assimilation or prognosis through linear regression
models (i.e., [69]) could improve the model performance. In light of the achieved results, this could be
especially relevant in sensitive areas such as the Baltic Sea, North Sea, and Central Med.

Changes in the magnitude of ETWLs according to climate change scenarios were assessed
considering stationary sea level rise (i.e., [82]) omitting the seasonal cycle or monthly MSL anomalies.
However, changes in phase and amplitude of the annual cycle or monthly MSL anomalies driven by
changes in atmospheric and/or hydrological patterns could modify the extreme water-level projections.
Therefore, including seasonality variations of MMSL would contribute by reducing the uncertainty in
ETWLs projections improving the rationality of the coastal adaptation measures.
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5. Summary and Conclusions

This paper investigates the role of the main sea level components (TIDE, SSL and MMSL) in
regard to the ETWL observations along the European seas. Based on 24 years of satellite altimetry,
this study evaluates their relative contribution, as well as the correlation of the annual variation of
MMSL and MSL anomalies with the extreme events registered in a coastal flooding database along the
European coastline.

The largest seasonal range of the AMMSL is observed in the Baltic Sea (±0.11 m), West Med.
([−0.07, 0.09 m]), and the North Sea ([−0.07, 0.08 m]). The smaller MMSL variations are in the Atlantic
and Bay of Biscay ([−0.05, 0.06m]). The interannual variability of the MMSL is stronger in the Baltic
Sea, Black Sea, North Sea, and Norwegian Sea. The contribution of each component to the ETWLs is
subject to important seasonal variations. In microtidal areas (Black Sea, Baltic and Mediterranean Sea)
the MMSL contribution is larger than the TIDE most of the time, and its contribution can be at the
same order of magnitude of the SSL. In meso and macrotidal areas, the MMSL contribution is <20%,
but slightly larger (>30%) in the North Sea.

The comparative analysis of the altimetry data and the storm impact database indicates a
non-significant correlation between the AMMSL and the monthly frequency of the CFEEs, since the
maximum values of the average annual cycle mostly run on September-October along the European
coastline when the low-pressure systems driving SSL are less frequent and intense. However,
the average monthly fraction of component variance of MMSL presents significant values of positive
correlation with the relative frequency of CFEEs in the Central Med (r = 0.59), North Sea (r = 0.60)
and Baltic Sea (r = 0.75). The positive MSL anomalies are correlated with the CFEEs recorded in the
database at >90% of the statistical significance in the aforementioned areas, as well as in the Bay of
Biscay and N-North Atlantic.

The present contribution demonstrated that there is not a link between the AMMSL and CFEEs
along the European coastline. This is caused by the antiphase of the SSL and the AMMSL in most
of the oceanographic regions. However, the relationship of MSL anomalies and flooding extreme
events indicates a significant and positive correlation between them along the coastline of the Central
Med., S-North Atlantic, North Sea and Baltic Sea. In most of these regions, the positive correlation is
observed in most of the low-lying areas prone to be flooded. In general, these regions show the largest
interannual variability where MSL anomalies are mainly driven by atmospheric and meteorological
forcing (North Sea), prevailing wind and the water exchange with another catchment (Baltic Sea,
Adriatic Sea). Therefore, the role of MMSL should be considered either for the comprehensive analysis
of the past extreme event, or future projection of coastal flooding extreme event.

Satellite altimeter observations provide a valuable and consistent sea-level dataset to analyse the
contribution of TIDE, SSL and MMSL to the ETWLs. However, the accuracy of altimeter data close to
the coast might be limited. The wave contribution to the ETWLs and the use of accurate sea-level data
in the coastal fringe must be taken into consideration in future works. The understanding of every
single component of the ETWLs and its spatial and temporal patterns shall improve the preparedness
and coastal adaptation measures to reduce the impact of coastal flooding.
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Abstract: Measurements of ocean surface currents in coastal waters are crucial for improving our
understanding of tidal atlases, as well as for ecosystem and water pollution monitoring. This paper
proposes an improved method for estimating the baseline-to-platform speed ratio (BPSR) for improving
the current line-of-sight (LOS) velocity measurement accuracy in coastal waters with along-track
interferometric synthetic aperture radar (ATI-SAR) based on eigenvalue spectrum entropy (EVSE)
analysis. The estimation of BPSR utilizes the spaceborne along-track interferometry and considers
the effects of a satellite orbit and an inaccurate baseline responsible for azimuth ambiguity in coastal
waters. Unlike the existing methods, which often assume idealized rather than actual operating
environments, the proposed approach considers the accuracy of BPSR, which is its key advantage
applicable to many, even poorly designed, ATI-SAR systems. This is achieved through an alternate
algorithm for the suppression of azimuth ambiguity and BPSR estimation based on an improved
analysis of the eigenvalue spectrum entropy, which is an important parameter representing the
mixability of unambiguous and ambiguous signals. The improvements include the consideration
of a measurement of the heterogeneity of the scene, the corrections of coherence-inferred phase
fluctuation (CPF), and the interferogram-derived phase variability (IPV); the last two variables
are closely related to the determination of the EVSE threshold. Besides, the BPSR estimation also
represents an improvement that has not been achieved in previous work of EVSE analysis. When the
improved method is used on the simulated ocean-surface current LOS velocity data obtained from a
coastal area, the root-mean-square error is less than 0.05 m/s. The other strengths of the proposed
algorithm are adaptability, robustness, and a limited user input requirement. Most importantly,
the method can be adopted for practical applications.

Keywords: along-track interferometric synthetic aperture radar (ATI-SAR); current line-of-sight
(LOS) velocity; coastal waters; azimuth ambiguity; baseline-to-platform speed ratio estimation

1. Introduction

Ocean sea surface currents play a key role in air-sea interaction, biological production, and mixing
between the upper and lower water layers in coastal areas [1–4]. In addition, their measurement in
coastal areas provides important information to fishing and electricity generation industries [5,6].

In coastal waters, tidal currents are one of the most important factors of the sea surface
current. Generally, tidal currents are quite deterministic and can also be precisely inferred by
in situ measurements. In situ measurement devices, including the acoustic Doppler current profiler
(ADCP) and the current meter, however, have limited coverage and are expensive. On the other hand,
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the along-track interferometric synthetic aperture radar (ATI-SAR) does not have these limitations;
meanwhile, ATI performs well for measurements of the sea surface currents, including the tidal
currents [7]. Along-track interferometry (ATI) is a powerful tool for the measurement of ocean
currents [8–13]. Interferometry was originally proposed in [14], and is based on processing two
interferometric SAR images of the same scene obtained with two antennas within a short time [15,16].
Most of the existing studies on the retrieval of surface currents by interferometric SAR [17–19] assume
systems with an accurate baseline and constant platform velocity, i.e., a completely accurate baseline-
to-platform speed ratio (BPSR). However, in real-life applications, the baseline is often inaccurate;
for example, in the commonly used spaceborne SAR data acquisition mode, and the entire antenna is
active in pulse transmission but divided into several parts to receive returns. The effective phase center
of each receiving channel is assumed to be located in the middle between the physical transmission and
the respective receiving phase center, but this method is not accurate [20]. In addition, the accuracy of
BPSR is not considered.

While the airborne ATI [21–24] is usually limited by the achievable coverage and complex logistical
requirements, the spaceborne ATI [25–27] can illuminate any point of interest during a certain overpass,
and obtain wide-swath and high-resolution real-time current observations [28]. Despite the relatively
high degree of azimuth ambiguity, spaceborne InSAR systems perform better in ocean current inversion
in open sea. Nevertheless, in coastal waters, azimuth ambiguities may have a negative influence on
the accuracy of measurements of the velocity of sea surface currents as spaceborne ATI systems with
wide bandwidth are particularly prone to azimuth ambiguity, which can produce a “ghost signature”
in images. Azimuth ambiguity is mainly caused by under-sampling of a signal, i.e., the signal received
by the radar originates not only from the area of interest but also includes ghost signatures from the
surrounding areas. In locations, such as coastal waters, the ghost signals of scatterers with strong
backscattered powers on land will be shifted in azimuth and superimposed on a relatively weak signal
from the water, as shown in Figure 1. In Figure 1, the InSAR signals are modeled within the Doppler
baseband—PRF/2 ≤ fd ≤ PRF/2 (fd is the Doppler frequency, PRF is the pulse repetition frequency).
In addition, it has a negative impact on the estimation of the baseline-to-platform speed ratio (BPSR),
and consequently, on the accuracy of BPSR-based ocean currents measurements [29]. Also, azimuth
ambiguities have a strong influence on the accuracy of measured current line-of-sight (LOS) velocities.
In coastal waters [30], it is, therefore, necessary to eliminate azimuth ambiguity before estimating
BPSR, which necessitates the development of an improved algorithm that not only suppresses azimuth
ambiguity but estimates BPSR as well. The two tasks can conveniently be handled using the Doppler
interval (for details, see [31]). The Doppler interval specifically refers to the interval without an
azimuth-ambiguity Doppler spectrum, which is the Doppler frequency interval with a starting point
and ending point in the mathematical sense. Since the Doppler frequency is linearly dependent on
the baseline value, according to the definition of the BPSR, the Doppler frequency and BPSR are also
linearly dependent, so the former can be used to estimate the BPSR.

Romeiser et al. [7] proposed suppressing azimuth ambiguity through a pixel-value exclusion
operation, which eliminates pixels that have an intensity of less than 10 dB at a certain distance.
However, this method cannot work reliably in areas with contrast between the land and water.
An alternative approach is spectrum filtering and extrapolation [32], but it reduces the azimuthal
resolution. The method of analyzing the eigenvalue spectrum entropy (EVSE) proposed by Liu [31]
can automatically estimate a usable range of the Doppler domain and needs only limited user inputs,
but assumes an accurate baseline and constant velocity of the platform. However, in practical
applications, none of these assumptions is true, which motivated us to improve the method.
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Figure 1. Illustration of the Doppler amplitude patterns of the two azimuth ambiguities and the
unambiguous signal part. Modified from Liu [31].

This paper proposes an improved algorithm for both azimuth ambiguity suppression and BPSR
estimation, considering both the heterogeneity of the scene and BPSR estimation. Although the
azimuth ambiguity of spaceborne SAR is relatively high, it has little influence on the inversion of
azimuth ambiguity in open ocean regions with uniform scattering. However, azimuth-ambiguity has a
great influence on the performance of spaceborne InSAR current measurement in the non-uniform
offshore area. There are two main reasons for this. First, the backscattering coefficient of land radar
is usually much larger than that of sea radar. Therefore, the azimuth ambiguity component from
the land will be superimposed on the sea surface, resulting in a serious decline in the accuracy
of InSAR current measurements. Second, the velocity of land ghosting is different from that of
sea-surface ghosting, which will also change the measured value of the sea surface current field.
If scene heterogeneity is not taken into account, EVSE analysis will fail when applied to practical
situations. Furthermore, the improved method can be adopted for practical applications with only
limited user inputs. The remainder of this paper is organized as follows. Section 2 describes the
proposed method, including an overview of Liu’s method [31], an alternative algorithm, and our
innovation. Section 3 presents the results of applying the improved method to simulated and measured
data. Finally, a discussion is presented in Section 4, and in Section 5, conclusions are drawn.

2. Methodology

In this section, to improve the accuracy of current LOS velocity estimation, we develop an alternate
algorithm for ambiguity suppression and BPSR estimation based on the method of Liu [31]. The surface
velocity corresponds more precisely to a mean motion of scattering elements, and the element velocities
are weighted by their normalized radar cross section (NRCS) [33]. Considering that the strong NRCS
caused by convergence and divergence of the current can lead to large errors [34], we assumed that the
ocean surface was smooth so that we could focus more on the suppression of azimuth ambiguity and
BPSR estimation.

An overview of the process of ocean current velocity estimation is shown in the flowchart in
Figure 2. The process starts with two original SAR images and ends with the estimation of current
velocity. As shown in Figure 2, the flowchart mainly includes three parts: SAR image preprocessing
(green rectangle in Figure 2), alternating iteration algorithm (blue rectangle in Figure 2), and velocity
estimation (orange rectangle in Figure 2). SAR image preprocessing includes SAR image focusing,
the interested area extraction of the area of interest, and conversions from the time domain to the
frequency domain via the 2D Fourier transform. An alternating iteration algorithm is the focus of
our research, and this algorithm is mainly an alternating iterative algorithm that performs azimuth

103



Remote Sens. 2020, 12, 3288

ambiguity suppression and BPSR estimation. Finally, we obtain the surface current velocity, which is
the LOS velocity.

Figure 2. Flowchart of the proposed approach.

Selected key procedures underlying the alternate algorithm for ambiguity suppression and BPSR
estimation are introduced in this section. The central part of the process includes alternate iterations of
ambiguity suppression and BPSR estimation, which is detailed in Figure 3.

104



Remote Sens. 2020, 12, 3288

Figure 3. Flowchart of the alternate iterative algorithm.

2.1. Overview of EVSE Analysis

The method proposed in [31] aims to measure ocean surface currents in coastal waters when
the problem of azimuth ambiguity is severe. The velocity estimation is conducted for the sea-surface
current in coastal waters. The key component of the method is the analysis of EVSE, which is defined
as the entropy of the eigenvalue spectrum of the ATI covariance matrix computed in the Doppler
domain. It quantifies the degree of mixing among the Doppler components [31], and is a significant
parameter for determining the Doppler domain representation of an unambiguous signal.

The first step of the EVES analysis method is to model the SAR signal. Thus, a dual-channel ATI-
SAR signal in the 2-D frequency (the range frequency and the Doppler frequency) domain can be
modeled as follows [31]:

S1 = S0
una + SA

amb + SB
amb + SN1 (1)
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S2 = exp
{

j2π · Be
Vp
· fd
}

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S̃0

una · exp
{

j 4π
λ · Be

Vp
· v0

r

}
+S̃A

amb · exp
{

j 4π
λ · Be

Vp
· vA

r

}
× exp

{
+ j2π · Be

Vp
· PRF

}
+S̃B

amb · exp
{

j 4π
λ · Be

Vp
· vB

r

}
× exp

{
− j2π · Be

Vp
· PRF

}
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+ SN2

(2)

where S1 and S2 are the signals received from the two channels of the ATI-SAR system, and S0
una is

an unambiguous signal from the fore channel. The parameter PRF represents the pulse repetition
frequency. SA

amb and SB
amb are the ambiguous signals from the land and ocean areas, respectively.

The tilde-circumflexed signals in S̃0
una, S̃A

amb and S̃B
amb are not the same as their uncircumflexed

counterparts in Equation (1), because the random motion of the ocean surface affects the received
signals. SN1 and SN2 denote the thermal noise signals of the two channels. Be is the effective baseline
and Vp is the velocity of the radar platform. fd represents the Doppler frequency and λ denotes the
radar wavelength.v0

r ,vA
r , and vB

r are the mean line of sight (LOS) surface velocities of the area of interest,
the zone I, and the zone IV, respectively, as shown in Figure 1.

From Equations (1) and (2), the covariance matrix R, can be calculated as follows [31]:

R = E
{[

S1

S2

][
S∗1 S∗2

]}
=
(
P0

una + PA
amb + PB

amb

)[ 1 ρ
ρ∗ 1

]
+ Pn · I2×2

(3)

where E is the expectation operator, (·)∗ denotes the complex conjugate operator, Pn is the noise power,
and I2×2 is a two-by-two identity matrix. P0

una, PA
amb, and PB

amb are the powers of the unambiguous
signals, the ambiguity of the signal from the land, and the ambiguity of the signal from the ocean,
respectively, which can be computed as explained in [31]. Having evaluated the two eigenvalues of the
covariance matrix,R, denoted as λ1 and λ2, the EVSE, H, of the ATI covariance matrix can be defined as

H = −(p1 log2 p1 + p2 log2 p2) (4)

where p1 and p2 are as follows:

p1 =
λ1

λ1 + λ2
, p2 =

λ2

λ1 + λ2
(5)

The EVSE quantifies the degree of signal mixing, and is used as the criterion of Doppler domain
characterization: the larger the value of EVSE, the higher is the degree of signal component mixing [31].

In Liu’s azimuth ambiguity suppression algorithm [31], the EVSE analysis is an important step.
As shown in Figure 1, zone II denotes the unambiguous signal. As seen in Figure 4, the fluctuation
of the interferometric phase in Doppler frequency is small. Thus, to decide how many Doppler bins
should be discarded, a critical EVSE value for the Doppler bins dominated by the unambiguous signal
is required. From Liu [31], we can conclude that the determination of zone II depends on three parts:
an accurate BPSR, an EVSE curve, and a critical value of EVSE.
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Figure 4. Interferometric phase trend after Doppler bin removal based on the two maximum points of
the eigenvalue spectrum entropy (EVSE) curve from [31].

As shown in Figure 4, the Doppler bins falling outside the two maximum points of the EVSE
curve can be determined by investigating the EVSE curve to find the two maximum points, and the
Doppler bins containing an ambiguous signal are excluded. According to Liu [31], the critical value of
EVSE is determined such that this critical value identifies a maximum Doppler sub-band over which
the following two parameters are equal.

The first parameter, denoted φCPF, is the coherence-inferred phase fluctuation (CPF), defined
as the mean statistical fluctuation of interferometric phases over the Doppler sub-band; and the
other parameter, denoted φIPV, is the interferogram-derived phase variability (IPV), defined as the
root-mean-square (RMS) variation of interferogram-derived phase over a certain Doppler sub-band.
The expressions for the two parameters are as follows:

φCPF =
1√
2K

√
1− ρ̂2

M

ρ̂M
(6)

φIPV =

√√√√√
1
L

L∑
l=1

⎡⎢⎢⎢⎢⎢⎢⎣φ̃( f (l)d ) − 1
L

L∑
p=1

φ̃( f (p)d )

⎤⎥⎥⎥⎥⎥⎥⎦
2

(7)

where K is the number of averaged range frequency bins, ρ̂M is the magnitude of the mean coherence

in the 2-D frequency domain, φ̃( f (l)d ) is the range-frequency-averaged interferogram phase for the l th

Doppler bin ( f (l)d ) of the Doppler sub-band, and L is the size of the Doppler sub- band. Note that K is
based on the assumption that the samples are statistically completely independent and uniform in the
range frequency images.

However, when BPSR is not accurate, Liu’s method [31] is in effective, which limits the
practical applications of the algorithm. In addition, the assumption of K is not correct in practice.
The improvements aimed at these two problems in this paper, which will be discussed in the next section,
are intended to address this shortcoming to make the method better suited for real-life applications.

2.2. Alternate Iteration Algorithm for Azimuth Ambiguity Suppression and BPSR Estimation

The proposed alternate algorithm that can suppress azimuth ambiguity and estimate BPSR,
is described below.
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The interferometric phase,ϕ, and the effective baseline, Be, are related as follows [35]:

ϕ = −2π fd
Vp
· Be (8)

Based on the above linear relation, the value of the baseline can be obtained from the slope of the
phase–frequency curve. Then, BPSR can be shown as

BPSR =
Be

Vp
(9)

As expected, the knowledge of BPSR’s accuracy is not sufficient. From Equation (8), we observe
that the value of the baseline is related to the Doppler frequency-interference phase. Furthermore,
as mentioned in Section 2.1, azimuth ambiguity affects the calculation of the interference phase, and an
inaccurate BPSR will result in the failure of the ambiguity suppression algorithm. Therefore, the BPSR
and azimuth ambiguity influence each other.

The alternate algorithm for azimuth ambiguity suppression and BPSR estimation are shown in
Figure 2, and the detailed flowchart is shown in Figure 3. As the flowchart shows, two adaptive
algorithms are executed alternately; one is used to estimate the critical value of EVSE during the process
of azimuth ambiguity suppression, and the other is BPSR estimation. There are several key points
involved in determining the threshold value of EVSE: first, set ε as a variable (0 ≤ ε ≤ 1) with an initial
value of 1 in order to determine the characteristic spectral entropy that is less than all of its Doppler
units and then combine those Doppler units into a Doppler sub-band; second, calculate CPF (φCPF)
and IPV (φIPV), when IPV (φIPV) is larger than CPF (φCPF), reduce the value of ε by a certain step size
ε0. Until the condition φIPV(ε)<φCPF is established, then the value of ε is determined as the threshold
of EVSE. The Doppler sub-band without ambiguous signal is obtained by discarding all the Doppler
units whose EVSE is greater than the EVSE threshold. After removing ambiguity by the EVSE analysis,
we obtain the Doppler sub-band that contains the unambiguous signal, from which the baseline value
can be estimated using the linear relation between the interferometric phase and the baseline. Next,
the baseline value can be used to correct the phase of one of the SAR images, after which the BPSR
can be estimated. The process is repeated until the BPSR root-mean-square error is reduced below a
predefined small number. It can be seen from Figure 3 that this is also an adaptive algorithm.

2.3. Correction of IPV and CPF Based on EVSE Analysis

In the previous sections, an EVSE analysis and an alternate iterative algorithm for the azimuth
ambiguity suppression and baseline estimation were discussed. In the current section, we focus on
a correction introduced into the method proposed in this paper for non-ideal situations where K in
Equation (7) deviates from the original definition in [31].

The correction we added accounts for scene heterogeneity in an SAR image. The heterogeneity of
a scene is used to calculate the number of the samples in the range frequency. The so-called effective
sample number refers to the number of units of distribution of research objects in an SAR image. In our
context, ships and drilling platforms are invalid samples. The sharpness of an SAR image, shp, is used
to represent the non-uniformity of the scene, and is defined as follows:

shp =
〈I〉2〈
I2〉 =

(
1
L

N∑
i=1

Ii
2
)2

1
L

N∑
i=1

Ii4

(10)

where Ii is the amplitude of the ith pixel in a range compressed image I, < · > denotes the spatial
average, N is the number of all samples, and L is the number of effective samples.
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Therefore, we take shp into account is the interferometric phase induced by across baseline. In the
proposed algorithm, we take the effect of sharpness of an SAR image into consideration by modifying
the K in the formula of CPF as follows:

φ′CPF =

√
1− ρ2

0√
2K · shp · ρ0

(11)

where ρ0 is the magnitude of the mean coherence, calculated as follows:

ρ0 =

L∑
i=1

〈
S1i · S∗2i

〉
√

L∑
i=1

〈
S1i · S∗1i

〉
· L∑

i=1

〈
S2i · S∗2i

〉 (12)

where S1i and S2i are the complex values of a corresponding point in S1 and S2, respectively, after S2

has been resampled according to the estimated shift, and L is the number of pixels in the sampling
area. Note that the numerator is the interferogram while the denominator is the product of the image
amplitudes, not powers. The formula for IPV is altered to

φ′IPV = q ·

√√√√√
1
L

L∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣φ̃( f (i)d ) − 1
L

L∑
j=1

φ̃( f ( j)
d )

⎤⎥⎥⎥⎥⎥⎥⎦
2

(13)

where q is a constant used to relax the condition in the computation of IPV. Similarly, the critical value
of EVSE is determined such that this critical value identifies a maximum Doppler sub-band over which
the above two parameters are equal. Because the BPSR is not accurate in practice, the harsh condition
in [31] is also needed to be revised; after several computations, the BPSR tends to be accurate, and q
will be fixed at 1.

The interferometric phase is computed as

ϕi = tan−1(
N∑

i=1

〈
S1i · S∗2i

〉
) (14)

where ϕi is the ith interferometric phase of the corresponding two SAR images. Note that because
a difference of 2πmay be present between the computed and the true interferometric phase, phase
unwrapping may be necessary. If there is a 2π discontinuity in the phase curve, it will cause a large
error in the slope of the curve fitted in the Doppler frequency domain and the true interference phase,
which will also affect the estimation of BPSR. To alleviate the problem, ϕ′i , can be corrected as follows:

ϕ′i = ϕi ± 2π (15)

After the above series of corrections, or improvements, the algorithm becomes better suited to
practical applications.

In the calculation of surface current LOS velocity, the ocean surface is assumed to be composed of
scattering objects that constitute a uniform random surface. The ocean surface current LOS velocity
can be computed by

Vc =

N∑
i=1

〈
S1i · S∗2i

〉
4π · BPSR · sin(θ)

· λ (16)
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where θ denotes the incidence angle and N denotes the total number of sample points in the direction
of azimuth and range. Because the measured horizontal LOS Doppler velocities are not true current
velocities, these measured Doppler velocities for the theoretical contributions of ocean wave motions
should be corrected using a numerical model [17].

Liu’s method [31] assumes that the value of the effective baseline appearing in Equation (2) is
accurate, even though this is often not the case for practical ATI systems. On this basis, we make
improvements. Because the algorithm is adaptive, the user only needs to input the SAR data and
estimate the platform speed to obtain the BPSR to facilitate the subsequent estimation of the ocean
current velocity. In addition, the algorithm is robust and can be applied not only to coastal areas
but also land areas, because it estimates the degree of scene heterogeneity. In the following section,
the validation data and application results are discussed.

3. Results

To assess the feasibility of the improved method, we applied two different sets of data, simulated
coastal area data and measured land data. Because of lack of measured coastal data, we used coastal
simulation data, which proved to be reliable in [36]. Note that the measured coastal data exist but were
not available for this work. Although we do not have the real data from coastal areas, the real data in
land area that we have also validates the alternate algorithm. Besides, the real data is also important
for validating the scene. The two sets of data represent airborne and spaceborne data, indicating that
the proposed algorithm is applicable to both spaceborne and airborne systems. In addition, it also
shows that the algorithm is applicable to different scenes such as coastal and land scenes. Both sets of
different data are introduced in this section, and the results of azimuth ambiguity suppression and the
BPSR estimation processed by the improved algorithm are also shown.

3.1. Application to Simulated Data

3.1.1. Simulated Data

The simulated raw SAR data of coastal scenes are generated by an inverse omega-k algorithm,
whose details can be found in [36] and are not reported here to save space. In the numerical simulation,
modulation transfer functions (MTF), including tilt modulation, range modulation, and hydrodynamic
modulation, were considered [17]. The simulation parameters were set as in [31], and the key values
are listed in Table 1. The range of PRF is about 1000–3000 Hz, and the setting of 1725 Hz is relatively
small in this range. However, the selection of PRF is determined by several factors. First, the PRF
should satisfy the Nyquist sampling law; second, an excessively large PRF can reduce the unambiguous
width and bring range ambiguity; third, PRF selection needs to avoid the echo of sub-satellite point,
because this will cause interference in the sampled signal; and lastly, a large PRF comes at the large
duty-ratio, which will lead to a large average power and large energy cost. The parameter SNR is the
signal-to-noise ratio in ocean surface part and the parameter AASR is the azimuth-ambiguity-to-signal
ratio in homogeneous scenes. Note that the effective baseline is 2.4 m and the velocity of the radar
platform is 7600 m/s, both of which are closely related to the estimation of BPSR.

Table 1. Key simulation parameters for raw SAR (synthetic aperture radar) data of coastal area.

Parameter Value

PRF (pulse repetition frequency) 1725 Hz
Polarization VV

Radar carrier frequency 9.6 GHz
Effective baseline 2.4 m

Radar platform velocity 7600 m/s
SNR (signal-to-noise ratio) 6.5 dB

Mean water-to-land intensity ratio −12 dB
AASR (azimuth-ambiguity-to-signal ratio) −20 dB

110



Remote Sens. 2020, 12, 3288

The simulation processed SAR image of the coastal area is shown in Figure 5. Figure 5a highlights
the azimuth ambiguity, and Figure 5b shows the interferogram phase image. As seen in Figure 5a,
the bright objects in the land area produce three ghost signatures in the ocean area. The ghost signatures
are also observed in Figure 5b, indicated by the yellow spots. The ghost images observed in both figures
demonstrate the necessity to suppress azimuth ambiguity before estimating BPSR by the method
introduced in Section 2. The results obtained after removing the ghost images and estimating BPSR
are presented in the next section. The interferogram amplitude image of the region marked by the
rectangle is shown in Figure 6. This sampling area contains more than 200 pixels.

Figure 5. (a) Azimuth ambiguity of the SAR image in the coastal area (note the three bright objects in
the land area and their ghost signatures in the ocean area); (b) Interferogram phase image.

Figure 6. Interferogram amplitude image sampled of the region marked by the rectangle.

3.1.2. Results after Processing of the Simulated Data

After processing the data using the alternate iterative algorithm, the Doppler interval in the
Doppler spectrum for estimating BPSR is shown in Figure 7, where the red line indicates the starting
point of the Doppler range and the blue line indicates the terminal point. As seen in Figure 7, the starting
point line is parallel to the terminal point line after four iterations, meaning that the interval tends
to be stable between –580 Hz and 460 Hz. The Doppler interval selected by the EVSE analysis is not
only used to suppress ambiguity but can also be adopted for estimating the baseline, improving its
accuracy, and consequently, the accuracy of the BPSR estimation. From Equation (16), it can be seen
that the value of BPSR is inversely proportional to the LOS velocity of the current. That is, when the
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BPSR value decreases by 5 × 10−6 s, the line-of-sight velocity value will increase by about 0.01 m/s.
Therefore, it is necessary to consider the effect of the BPSR value on the LOS velocity. The convergence
of the BPSR estimate is shown in Figure 8, where the value of BPSR is found to stabilize at 3.15 × 10−4 s
after only several iterations. The value of BPSR decreased by 0.17 s compared with the first calculation,
so the value of the LOS velocity increased by 0.034 m/s.

Figure 7. Doppler interval endpoint curves after several iterations using the simulated data (the red
line indicates the terminal point of the Doppler range, and the blue line indicates the starting point of
the Doppler range).

Figure 8. BPSR estimation using simulated data and the proposed algorithm.

To obtain a visual impression of the suppression of ghost signatures, we applied the proposed
algorithm to the entire ocean surface. The SAR image and the interferogram phase image after the
application of the alternate iterative algorithm for azimuth ambiguity suppression and BPSR estimation
are presented in Figures 9a and 9b, respectively. Comparing Figure 5a with Figure 9a, and Figure 5b
with Figure 9b, it can clearly be seen that the ghost signatures have been removed.
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Figure 9. (a) SAR image after azimuth ambiguity suppression; (b) interferogram phase image after
azimuth ambiguity suppression.

The Doppler sub-band after azimuth ambiguity suppression is shown as a two phase-frequency
curve in Figure 10. Figure 10a corresponds to the first iteration used for selecting the Doppler sub- band,
and Figure 10b shows the final iteration. In both figures, the blue line is the original interferometric
phase trend, and the red line is that after the azimuth ambiguity suppression. Comparison of Figures 10a
and 10b shows that the length of the Doppler sub-band decreases in the iterative process.

Figure 10. (a) Phase-frequency curve comparison in the first iteration of ambiguity suppression using
simulated data (the blue line is original interferometric phase trend, and the red line is the phase trend
after azimuth ambiguity suppression); (b) the phase-frequency curve comparison at the final iteration
of ambiguity suppression using simulated data.

An estimation of the current velocity was carried out, and the results are shown in Table 2.
Assuming a 20% error in BPSR and the true horizontal LOS current velocity of 3.0 m/s, we obtain an
estimated mean LOS current velocity of 3.025 m/s, a mean bias of –0.025 m/s, and a standard deviation
(STD) of 0.025 m/s. On the other hand, using Liu’s method [31], the estimated mean LOS current
velocity is 2.543 m/s and the mean bias is 0.457 m/s. There is a larger error in the sea-surface current
velocity estimated by Liu’s method [31], as highlighted in Table 2. It can thus be concluded that when
the BPSR is not accurate, the proposed improved algorithm demonstrates its robustness for the current
velocity estimation. Additionally, the results in Table 2 show the improvement of the proposed method
compared with the method of Liu [31].
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Table 2. Current velocity estimates.

Method
True Horizontal LOS

(Line-of-Sight)
Current Velocity

Estimated Mean
LOS Current

Velocity
Mean Bias STD

Liu’s method [31] 3.0 m/s 2.543 m/s 0.457 m/s 0.457 m/s
Algorithm proposed in this paper 3.0 m/s 3.025 m/s −0.025 m/s 0.025 m/s

The current LOS Doppler velocity maps before and after the application of the improved method
are shown in Figure 11a,b, respectively. Both of them are based on the simulation data of true current
velocity of 3 m/s and a 20% margin of error in the baseline to calculate the LOS velocity. Figure 11a
shows the result without any algorithm, and Figure 11b shows the result obtained by applying the
method proposed in this paper. As shown in Figure 11a, affected by azimuth ambiguity, the LOS
velocity of the current between the three “ghost” images and shore is about 4 m/s. In the ambiguous
areas, the LOS velocity value of the current is further off to –6 m/s. In the open sea (the lower part
of the image), the LOS velocity is 5 m/s. Notes that this is not due to ambiguity but is rather due to
a 20% error in the baseline. As explained in the introduction, the azimuth ambiguity affects coastal
waters but not the open sea. However, in Figure 11b, to obtain a visual impression of the suppression
of ghost signatures, the proposed algorithm was applied to the entire ocean surface, and the baseline
error and the azimuth ambiguity were both solved based on the application of the improved method,
while the LOS velocity is almost the true value (3 m/s). Thus, Figure 11 shows the efficiency of the
improved method.

Figure 11. Retrieved horizontal LOS (line-of-sight) current Doppler velocity field based on the
simulation data with a true current velocity of 3 m/s. (a) is without the algorithm application.
(b) processed with the improved algorithm.

3.2. Application to Measured Data

3.2.1. Measured Data

The measured data are acquired over a land area but can nevertheless be processed using the
proposed approach. The parameters of the data are listed in Table 3. Again, the two parameters to
focus on—effective baseline and radar platform speed—have values of 0.2 m and 110 m/s, respectively.
The measured data are unfocused in azimuth, as seen in Figure 12. Figure 12 is a range- compressed
azimuth-unfocused SAR image, image-formed for a land area, and the vertical axis is the azimuth
direction, while the horizontal axis is the ground range direction. Figure 12 is a piece of the land
SAR image.
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Table 3. Key parameters for the measured data.

Parameter Value

Wavelength 0.03 m
PRF 830 Hz

Radar carrier frequency 10 GHz
Effective baseline 0.2 m

Radar platform velocity 110 m/s
SNR 18 dB

AASR −20 dB

Figure 12. Range-compressed azimuth-unfocused SAR image.

3.2.2. Results after Processing of Measured Data

The Doppler interval endpoint curves are presented in Figure 13, where the Doppler interval
converges quickly. From the estimated BPSR curve in Figure 14, the value of BPSR stabilizes at
1.565 × 10−3 s, implying a baseline value of 0.1742 m and a relative error of 1.149 × 10−3, respectively.

Figure 13. Doppler interval endpoint curve after several iterations using measured data (the red line is
the terminal point and the blue line is the starting point of the Doppler range).
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Figure 14. BPSR estimate using measured data and the proposed algorithm.

The above analysis demonstrates that although the measured data are from a land area and
there is no azimuth ambiguity, BPSR can be estimated using the proposed approach. When the BPSR
estimation is added into the method of Liu [31], the algorithm of Liu did not work due to the lack of a
specific baseline value. This also shows the improvement of the proposed method.

The result for the case where scene heterogeneity is not considered is shown in Figure 15;
the Doppler interval after ambiguity suppression is so narrow that the alternate iterative algorithm
cannot be applied, leading to inaccurate BPSR estimation. Besides, unambiguous signals are discarded.
However, when scene heterogeneity is taken into account, a Doppler sub-band can be calculated,
as shown in Figure 16a, which shows the frequency chosen at the first iteration of the ambiguity
suppression procedure. The oscillating parts at both ends of the curve are suppressed in the middle of
the Doppler frequency range, as indicated by the red line. Figure 16b illustrates the Doppler sub-band
in the last computation of ambiguity suppression. By comparing Figures 16a and 16b, we can conclude
that the algorithm performs well, and that it is self-adaptive.

Figure 15. Phase-frequency curve comparison without consideration of scene heterogeneity.
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Figure 16. Phase-frequency curve comparison in the first iteration of ambiguity suppression using
the measured data; (b) the phase-frequency curve comparison in the final iteration of ambiguity
suppression using the measure data.

4. Discussion

It should be noted that the SAR-ATI phase estimates are almost controlled by ocean surface
wave motions, which is called the Wind-wave-induced Artifact Surface Velocity (WASV). The wind
speed is 5.5 m/s and the current velocity is 0.7 m/s, the WASV reaches 1.6 m/s, which makes a big
contribution to the measured ocean surface motion. Mouche et al. [37] provided the first empirical
model of the WASV, and the magnitude of the WASV was quantified by Martin et al. [12]. The removal
of the contribution from wind-wave is achieved by simulating the SAR Doppler spectra from wind
fields proposed by Elyouncha et al. [38]. However, this article does not aim to provide a detailed
discussion of separating the current contribution from the wave-induced contribution to the Doppler
velocity. Rather, this article focuses on the SAR system and signals related to measurements of ocean
surface motion.

The results of azimuth ambiguity suppression and BPSR estimation using the improved alternate
iteration algorithm are shown in Section 3. The method of EVSE analysis proposed by Liu [31] is based
on an accurate BPSR, which aims at an ideal situation. For a 20% error in BPSR, the current velocity
error calculated by Liu’s method [31] is larger than that obtained by the improved algorithm in this
paper; thus, for the actual situation, the improved algorithm is more effective. This improved algorithm
is of great significance for the calculation of sea surface currents in coastal waters. The algorithm
is adaptive, as it can be applied not only to spaceborne platforms but also to airborne platforms.
Furthermore, the algorithm is also robust as it can be applied to different scenes with different
heterogeneity. As shown in Section 3, the simulated data and real data are in different scenes, namely
coastal water and land area, respectively. When the baseline is ambiguous or unknown, the improved
method can work. Moreover, the TerraSAR-X [7] satellite based on the divided-antenna InSAR mode
has strong azimuth ambiguities, and there is also obvious azimuth ambiguity in the ocean SAR image
from the GaoFen-3 [39] satellite with ultra-fine strip mode, which seriously affects the data processing
of subsequent marine applications. Therefore, the improved algorithm proposed in this paper can not
only provide solutions to these problems but also improve the accuracy of the calculation of coastal
current velocity. In the proposed algorithm, we did not consider the interference phase caused by the
across baseline, which will be investigated and solved in future studies.

5. Conclusions

This paper proposes improvements in the algorithm for coastal current velocity measurements
that consider real-life, non-ideal conditions and increase the precision of the velocity estimates.
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The improved algorithm for the alternate azimuth ambiguity suppression and BPSR estimation can
be applied to data from the ATI-SAR systems under relaxed conditions. The proposed approach
incorporates a measure of scene heterogeneity, and importantly, is applicable to non-ideal situations
with an inaccurate BPSR. The algorithm has successfully been tested on simulated and measured data.
Because the measured data from a coastal area were not available, we used simulated data instead and
measured data from a land area to test the practicability of the method. Note that data processing
has no effect on the separation of wave and sea-surface currents in the subsequent estimation of the
sea-surface currents. The processing results of the measured data from the land area also show the
importance of considering scene heterogeneity. In addition, the algorithm needs only limited user
inputs. After the application of an alternate iterative algorithm for ambiguity suppression and BPSR
estimation, the current velocity can be estimated with an error of less than 0.05 m/s. This study indicates
that the method can also help to increase the measurement accuracy of the current velocity using both
airborne and spaceborne systems, even for systems that have limitations.
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Abstract: Quadcopters can continuously observe ocean surface with high spatial resolution from
relatively low altitude, albeit with certain limitations of their usage. Remote sensing from quadcopters
provides unprecedented ability to study small river plumes formed in the coastal sea. The main
goal of the current work is to describe structure and temporal variability of small river plumes on
small spatial and temporal scales, which are limitedly covered by previous studies. We analyze
optical imagery and video records acquired by quadcopters and accompanied by synchronous in situ
measurements and satellite observations within the Kodor and Bzyp plumes, which are located in
the northeastern part of the Black Sea. We describe extremely rapid response of these river plume to
energetic rotating coastal eddies. We reveal several types of internal waves within these river plumes,
measure their spatial and dynamical characteristics, and identify mechanisms of their generation.
We suggest a new mechanism of formation of undulate fronts between small river plumes and ambient
sea, which induces energetic lateral mixing across these fronts. The results reported in this study
are addressed for the first time as previous related works were mainly limited by low spatial and/or
temporal resolution of in situ measurements and satellite imagery.

Keywords: small river plume; aerial drone; coastal processes; frontal zones; internal waves

1. Introduction

Airborne remote sensing of sea surface is constantly expanding during the last ten years due
to significant progress in development of aerial drones, especially low-cost quadcopters [1–6].
Many previous works used airborne data to study various marine processes including mapping
of coastal topography [7,8] and bathymetry [9–12], surveying of marine flora and fauna [13–22],
and monitoring of water quality and anthropogenic pollution [23–28]. Several works used airborne
data to study physical properties of sea surface layer including estimation of turbulence [29]
and reconstruction of surface currents [30,31]. However, applications of aerial remote sensing are still
rare in physical oceanography, especially in comparison with numerous studies based on satellite
remote sensing. Studies of river plumes provide a good example of this situation. Hundreds of related
works were based on high-resolution [32,33], medium-resolution [34–37], and low-resolution [38–40]
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optical satellite data, satellite-derived temperature [41–43], salinity [4–46], and roughness [47–49] of
sea surface. On the other hand, only several studies used airborne remote sensing to study river
plumes [25,26,50–53]. Moreover, we are not aware of any study, which specifically addressed structure,
variability, and dynamical features of small plumes using aerial remote sensing data. This point
provides the main motivation of the current work.

General aspects of the structure and dynamics of river plumes as well as their regional features
were addressed in many previous studies. Nevertheless, these works were mostly focused on large
river plumes, while small rivers plumes received relatively little attention. However, small rivers
play an important role in global land-ocean fluxes of fluvial water and suspended and dissolved
sediments [54–56]. Small rivers form buoyant plumes that have small spatial scales and, therefore,
small residence time of freshened water, which is equal to hours and days, due to relatively low
volume of river discharge and its intense mixing with ambient sea [57]. Dissipation of freshened
water as a result of mixing of a small plume with subjacent saline sea limitedly influences ambient
sea and does not result in accumulation of freshwater in adjacent sea area. As a result, small plumes
are characterized by sharp salinity and, therefore, density gradients at their boundaries with ambient
sea. This feature is not typical for large river plumes and results in significant differences in spreading
and mixing between small plumes and large plumes. Sharp vertical density gradient at the bottom
boundary of a small plume hinders vertical energy transfer between a small river plume and subjacent
sea [57]. This feature strongly affects spreading dynamics of a small plume due to the following reasons.
First, the majority of wind energy transferred to sea remains in a small plume, because the vertical
momentum flux diminishes at the density gradient between a plume and subjacent sea. Therefore,
wind stress is concentrated in a shallow freshened surface layer that causes higher motion velocity
and more quick response of dynamics of a small plume to variability of wind forcing, as compared to
ambient sea [58,59]. It results in wind-driven dynamics of small plumes, which is characterized by
very energetic short-temporal variability of their positions, shapes, and areas [60–64].

Study of structure and variability of small river plumes at small spatial and temporal scales is
essential for understanding the fate of freshwater discharge from small rivers to sea and the related
transport of suspended and dissolved river-borne constituents. However, high short-temporal
variability of small plumes and their small vertical sizes inhibit precise in situ measurements
of their thermohaline and dynamical characteristics [57]. Satellite remote sensing also does not
provide the necessary spatial resolution and temporal coverage for small river plumes. As a result,
many important aspects of structure, variability, and dynamics of small river plumes at small spatial
and temporal scales remain unstudied.

Quadcopters are especially efficient in observation of small river plumes because they can
continuously observe sea surface with high spatial resolution from relatively low altitude. Quadcopters
can be used during overcast sky when optical satellite instruments cannot observe sea surface.
The main drawback of their usage is relatively short duration of continuous operation (less than
several hours), limited weight of carried instruments, and inability of their operation during strong
wind, rain, snow, low temperature, and other inappropriate weather conditions. Despite these
limitations, usage of quadcopters provides unprecedented ability to study structure of small river
plumes, detect and measure their short-temporal variability, and register various dynamical features
of these plumes. Therefore, the main goal of the current work is to describe structure and temporal
variability of small river plumes on small spatial (from meters to hundreds of meters) and temporal
(from minutes to hours) scales, which are limitedly covered by in situ measurements and satellite
imagery and remain almost unaddressed by the previous studies.

122



Remote Sens. 2020, 12, 3079

In this work we use aerial remote sensing supported by synchronous in situ measurements
and satellite observations to study small river plumes formed in the northeastern part of the Black
Sea. We show that usage of aerial drones, first, strongly enhances in situ and satellite observations of
structure and variability of small plumes, second, provides ability to perform accurate, continuous,
and high-resolution measurements of their spatial characteristics and current velocity fields, and,
finally, significantly improves operational organization of field measurements. Owing to continuous
and high-resolution aerial remote sensing, we report several novel results about spatial structure,
short-temporal variability, and dynamical features of small river plumes. These results include
strongly inhomogeneous structures of small river plumes manifested by complex and dynamically
active internal frontal zones; undulate (lobe-cleft) form of a sharp front between a small river plume
and ambient sea; energetic lateral mixing across this front caused by its baroclinic instability; internal
waves generated by river discharge near a river estuary and propagating within the inner plume;
and internal waves generated by vortex circulation of river plume and propagating within the outer
plume. The obtained results reveal significant differences in structure, variability, and dynamics
between small plumes and large plumes.

The paper is organized as follows. Section 2 provides the detailed information about the aerial,
in situ, and satellite data, as well as the processing methods used in this study. The results derived from
aerial observations of small river plumes supported by in situ measurements and satellite observations
are described in Section 3. Section 4 focuses on discussion and interpretation of the revealed features
of spatial structure, short-temporal variability, and dynamics of small river plumes. The summary
and conclusions are given in Section 5.

2. Data and Methods

2.1. Study Area

In this work, we focused on the Kodor and Bzyp river plumes formed in the northeastern part
of the Black Sea (Figure 1). These rivers were chosen as the case sites due to the following reasons.
First, these rivers have high concentrations of suspended sediments (300-500 g/m3 in the Kodor River
and 100-300 g/m3 in the Bzyp River) [65], therefore, the turbid Kodor and Bzyp plumes can be effectively
detected by optical aerial and satellite imagery. Second, the Kodor and Bzyp rivers are relatively small,
their catchment areas are 2000 and 1500 km2, respectively, and their average annual discharges are
approximately 130 and 120 m3/s, respectively [65]. As a result, the Kodor and Bzyp plumes are small
enough to be observed by aerial remote sensing from relatively small altitude (< 200 m). However,
both rivers are mountainous with large mean basin altitudes (> 1500 m) and slopes (> 0.02‰), as well
as high drainage density (> 0.8 1/km). Therefore, during spring freshet and short-term rain-induced
floods the runoffs from the Kodor and Bzyp rivers dramatically increase by 1-2 orders of magnitude.
Third, despite their relatively small spatial extents, the Kodor and Bzyp plumes are the largest plumes
in the study area. As a result, structure and dynamics of these plumes are not influenced by interaction
with other river plumes. Fourth, the Kodor and Bzyp rivers have different mouth morphologies that
affect the structure of their plumes. The majority of the Bzyp River runoff inflows to sea from the main
river channel, however, a small side-channel is formed during high discharge periods. The Kodor
River inflows to sea from three large river channels, which form the Kodor Delta. The mouths of
these deltaic branches are located along the 2 km long segment of the coastline. Finally, wind, cloud,
and rain conditions in the study area are favorable for aerial and satellite observations of the river
plumes during the majority of the year.
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The continental shelf at the study area is very steep and narrow. The distance between the coastline
and the 500 m isobath is less than 10 km near the Kodor and Bzyp mouths (Figure 1). The main
coastline features at the study area are large capes, namely the Iskuria and Pitsunda capes, located
to the south from the Kodor and Bzyp deltas, respectively (Figure 1). The local sea circulation from
surface to the depth of 200–250 m is governed by alongshore currents due to the current system
cyclonically circulating along the continental slope, which is generally referred to as the Black Sea Rim
Current [66,67]. Sea surface circulation in the study region is also influenced by nearshore anticyclonic
eddies, which are regularly formed between the main flow of the Rim Current and the coast owing
to baroclinic instability caused by wind forcing and coastal topography [68–70]. Tidal circulation at
the study area is very low and tidal amplitudes are less than 6 cm [71,72]. Salinity in the coastal sea,
which is not influenced by river discharge, is 17–18 [67,73].

 

Figure 1. Bathymetry of the study region, locations of the Iskuria and Pitsunda capes, the Bzyp
and Kodor rivers, and other smaller rivers of the study region. Location of the study region at
the northeastern part of the Black Sea is shown in the inset. Red boxes indicate areas of aerial
observations and in situ measurements at the Bzyp and Kodor plumes. Green stars indicate locations
of meteorological stations.

2.2. Aerial, In Situ, and Satellite Data

Aerial observations of the Kodor and Bzyp plumes were performed by a quadcopter (DJI Phantom
4 Pro) equipped with a 12 MP/4K video camera. Aerial observations of the plumes were supported
by ship-borne in situ measurements of salinity, temperature, turbidity, and current velocity within
the plumes and the adjacent sea. The size of this quadcopter is small enough to be launched from
and landed on a small boat. It provides opportunity for a quadcopter operator to be onboard
the research vessel and to effectively coordinate synchronous in situ measurements and water sampling.
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Aerial observations and in situ measurements of the Kodor plume were conducted on 1–2 September
2018 and 1–3 April 2019, while aerial observations and in situ measurements of the Bzyp plume were
performed on 31 May–1 June 2019. Below we provide the protocols of these aerial surveys according
to the scheme suggested by Doukari et al. [74].

The quadcopter was flying over coastal sea areas adjacent to the Kodor and Bzyp river mouths.
The take-off and landing spot was located on a vessel/boat that provided opportunity to perform flights
at different areas of the plumes without any limitations on their distance to the seashore. The distance
between the quadcopter and the research vessel/boat did not exceed 1 km. Quadcopter shooting
altitude depended on the spatial scale of the sensing sea surface process and varied from 10–30 m for
the small-scale frontal circulation to 150–200 m for detection of plume position and area. Weather
conditions during the field surveys were favorable for usage of the quadcopter. Wind forcing during
the flights was moderate (< 8 m/s), air temperature varied between 15 and 30◦ C, and air humidity
varied between 60% and 90%. The flights were conducted during no-rain conditions from morning to
evening. In case of clear sky conditions, sun glint strongly affected the quality of the aerial data during
the daytime. Wave heights were < 0.5 m during the flights.

In situ measurements performed in the study areas were the following. Continuous salinity
and temperature measurements in the surface sea layer (0.5–1 m depth) were performed along the ship
tracks using a shipboard pump-through system equipped by a conductivity-temperature-depth (CTD)
instrument (Yellow Springs Instrument 6600 V2) [62,75]. Vertical measurements of salinity, temperature,
and turbidity were performed using a CTD-instrument (Sea-Bird Electronics SBE 911plus) at 0.2 m spatial
resolution. Vertical measurements of current velocity were performed using an acoustic Doppler
current profiler (ADCP) (Teledyne RDI Workhorse Sentinel) and a CTD-ADCP-instrument (Aanderaa
SeaGuard RCM). Vertical profiling was performed from sea surface to the depth of 10 m or to seafloor
in shallow areas. The positions of individual in situ measurements are given in Section 3. Wind forcing
during the field measurements was measured by a compact weather station (Gill GMX200) with
temporal resolution of 1 minute. The weather station was mounted at the height of 10 m at a pier on a
distance of 30 m from the coastline (Figure 1).

The Kodor and Bzyp plumes were also studied using Sentinel-2 Multispectral Instrument (MSI)
data collected in 2017–2019. The Sentinel-2 Level-1C products were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/) (Supplementary Materials). Atmospheric correction
was applied to these products using Sen2Cor module version 2.2.1 within the Sentinel-2 Toolbox
(S2TBX), Sentinel Application Platform (SNAP) version 5.0.7.

2.3. Processing of Aerial Data

In this study we used an optical flow algorithm to reconstruct velocity fields in the sea surface
layer from quadcopter video records [76,77]. The main principle of optical flow algorithms used for
calculation of motion from two consecutive pictures is the following. It was assumed that for each
point

→
x (i.e., pixel) on both frames a certain signal intensity property I (i.e., brightness) was conserved:

I
(→

x , t
)
= I
(→

x + Δ
→
x , t + Δt

)
(1)

By linearizing the intensity of the second frame with respect to the intensity of the first frame a
gradient constraint equation is obtained in the following way:
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where ∇I =
(
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)
is the spatial partial derivatives of intensity,

→
u = d

→
x /dt is the velocity, and It is

the temporal derivative of intensity. The derivatives ∇I and It can be directly calculated, while the 2D
velocity field

→
u is unknown. Therefore, Equation (1) requires an additional constraint and it is assumed
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that the displacement Δ
→
x is constant in any small neighborhood, i.e., we search for a displacement that

minimizes the constraint error:
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is a weight function. Thus, minimization of E
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with respect to
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u provides an additional

condition for Equation (2). The resulting vector field
→
ũ calculated from Equations (2) and (3) is

regarded as an optical flow estimate. In this work, we used the Farneback weight function [78] freely
available in the OpenCV computer vision library (https://opencv.org/). This algorithm approximates
a neighborhood of a pixel in each pair of frames by a quadratic polynomial function applying
the polynomial expansion transform. Therefore, a constraint equation is based on a polynomial
approximation of the given signal. On the assumption of small variability of a displacement field,
the algorithm minimizes quadratic error of the constraint and calculates the optical flow estimation.

The estimation of surface velocity fields in the study region was performed in two stages.
First, we applied the optical flow algorithm with large prescribed sizes of pixel neighborhoods for
the reconstruction of motion of distinct plume boundaries and fronts. Second, we reconstructed motion
within the river plume using the optical flow algorithm with a reduced neighborhood size. Spatial
scale of motion, which is intended to be reconstructed, positively correlates with optimal size of a pixel
neighborhood. An algorithm with a small pixel neighborhood more accurately reconstructs small-scale
motion, but shows lower quality for large motion patterns, as compared to an algorithm with a large
pixel neighborhood. The overall neighborhood size was prescribed according to spatial scales of ocean
surface features (e.g., river plume fronts), in which motion is expected to be detected by an optical flow
algorithm. Thus, the optimal neighborhood size intended to reconstruct the large-scale motion of river
plumes should be equal to the width of distinct plume boundaries and fronts. In this study, the large
size of a pixel neighborhood was prescribed equal to 30 m, while the small size of a pixel neighborhood
was set equal to 1 m. In case of application of this algorithm to other regions, we suggest prescribing
neighborhood sizes equal to relevant spatial scales of the considered ocean surface features.

Due to high resolution of the video camera used and continuous video recording, the optical flow
algorithm efficiently detected motion of the distinct frontal zones within the river plumes, as well as
motion of foam and floating litter accumulated at these fronts which is indicative of the circulation
patterns at the frontal zones. As a result, the reconstructed surface velocity fields showed good
accordance with visually inspected shifts of the frontal zones, foam, and floating litter at the video
records. Stable positioning of a quadcopter is important for precise motion detection at sea surface.
Moderate wind speed during the field surveys did not negatively affect the quality of the obtained
aerial data. However, strong wind forcing during camera shooting can hinder accurate reconstruction
of surface velocity fields. Sun glint is another important issue that can impede motion detection at
aerial video records. Intensity of the sun glint depends on solar elevation angle, camera shooting angle
and direction; therefore, it can be reduced by correct selection of quadcopter altitude and position.
Usage of polarizing filters for quadcopter camera can reduce glint from water surface, however, its
efficiency strongly depends on camera shooting angle.

3. Results

3.1. Spatial Structure and Short-temporal Variability of the Kodor and Bzyp Plumes

The field surveys were performed during spring freshet at the Bzyp River (260 m3/s) on
31 May–1 June 2019; during drought period at the Kodor River (40 m3/s) on 1–3 April 2019; and during
flash flooding period at the Kodor River (80–150 m3/s) on 31 August–2 September 2018. Wind forcing
was moderate during these field surveys. Average and maximal wind speed registered at weather
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station in the study regions were 3.1 and 7.6 m/s during 31 August–2 September 2018; 2.4 and 6.2 m/s
during 1–3 April 2019; and 2.9 and 5.6 m/s during 31 May–1 June 2019.

Vertical salinity measurements in the study areas revealed that these low-saline plumes are shallow
(< 5 m depth) and have distinct vertical salinity gradients with the ambient saline sea. Due to elevated
concentrations of terrigenous suspended sediments in the Kodor and Bzyp rivers [65], turbidity
within the Kodor and Bzyp plumes was significantly larger than in the ambient sea and showed good
correlation with reduced salinity (Figure 2). The Pearson correlation coefficients (r) between salinity
and turbidity are equal to −0.87 and −0.71 for the Kodor and Bzyp plumes respectively with p-values
equal to 0.0000. These high absolute values of the correlation coefficients at low p-values indicate that
the observed relations between salinity and turbidity within the Kodor and Bzyp plumes (low salinity
and high turbidity), on the one hand, and the ambient sea water (high salinity and low turbidity),
on the other hand, are statistically significant. As a result, surface turbidity structures of the Kodor
and Bzyp plumes observed by optical remote sensing are indicative of surface salinity structures of
these plumes.

Figure 2. Relations between salinity and turbidity (a) within the Kodor plume and the adjacent saline
sea on 2–3 April 2019 and (b) within the Bzyp plume and the adjacent saline sea on 31 May 2019.
Dashed red boxes indicate river plumes, transitional zones, and ambient saline sea. Red lines indicate
regression lines. The Pearson correlations coefficients (r) with p-values, which indicate statistical
significance of the observed relations, are given above the diagrams.

Aerial remote sensing and satellite imagery showed that the alongshore extents of turbid surface
water associated with the considered river plumes during low discharge conditions are 1−5 km.
The obtained estimates were consistent with salinity measurements at the study area. However,
flooding discharge results in abrupt expanding of these plumes, their extents and areas can exceed
20 km and 50 km2, respectively. Aerial and satellite images, surface salinity distribution, and vertical
salinity profiles obtained on 31 August 2018 in the coastal area adjacent to the Kodor Delta are
illustrative of spatial scales, as well as horizontal and vertical structure of the Kodor plume (Figure 3).

Aerial observations and in situ measurements revealed strongly inhomogeneous salinity
and turbidity structure of the Kodor plume manifested by complex and dynamically active frontal zones
within the plume (Figures 4–6). In particular, surface salinity showed no dependence on the distance
to the mouths of the deltaic branches that is regarded typical for river plumes [79–81], especially in
numerical modeling studies [82–85]. This inhomogeneous structure is formed due to impact of several
different processes including the formation of the Kodor plume by several spatially distributed sources,
the large inter-day river discharge variability in response to sporadic rain events, and the bathymetric
features that influence spreading of the plume.
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Figure 3. (a) surface salinity distribution, (b) vertical salinity profiles, (c) aerial image (acquisition time
13:29), and (d) Sentinel-2 ocean color composite of the Kodor plume from 31 August 2018. Color dots
indicate locations of vertical salinity measurements (1, blue—near the river mouth; 2, yellow—near
the plume border, and 3, brown—at the ambient saline sea). Red arrows indicate location of the central
deltaic branch of the Kodor River, green arrows indicate location of the Iskuria Cape. The red swirl at
panel (a) indicates location of the eddy detected on 1 September, 2018 (see Figures 7–9). The red wave
line at panel (a) indicates location of the undulate (lobe-cleft) plume border detected on 1 September
2018 (see Figures 12–15).

The Kodor River inflows to sea from three deltaic branches with different discharge rates.
As a result, all three branches form individual river plumes that merge and coalesce into the common
Kodor plume. These three river plumes have different structure, spatial characteristics, and dynamics,
therefore, they interact as individual water masses and form stable frontal zones observed by aerial
imagery (Figure 4a) [86–88]. In situ measurements performed on 2 September, 2018 revealed sharp
salinity gradient at the frontal zone between the river plumes formed by the northern and the central
deltaic branches of the Kodor River. Surface salinity along the transect that crossed this frontal zone
abruptly decreased from 14 to 8–10 on a distance of 5 m (Figure 4b).
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Figure 4. (a) aerial image, (b) vertical salinity, and (c) velocity profiles at the frontal zone between river
plumes formed by the northern and central deltaic branches of the Kodor River on 1 September, 2018.
Colored dots indicate locations of vertical salinity (P1, blue—the northern plume; P2, yellow—the central
plume) and velocity (P3, brown—the northern plume; P4, green—the central plume) measurements.
The red arrow in panel (a) indicates location of the central deltaic branch of the Kodor River.

The discharge of the Kodor River shows quick response to precipitation events that is common for
small mountainous rivers with small and steep watershed basins. Frequent rains at the mountainous
northeastern coast of the Black Sea cause high inter-day variability of the discharge rate of the Kodor
River [65,89]. As a result, the area of the Kodor plume can significantly change during less than
one day that was observed on 31 August–2 September 2018 during the field survey. Heavy rain
that occurred during 6 hours at night on 31 August–1 September (according to the local weather
station measurements) caused increase of the river discharge from 80 to 150 m3/s during several hours.
The area of the Kodor plume doubled from 31 August to 1 September in response to the flash flood.
Wind direction during 31 August–1 September was stable (southwestern), while wind speed slightly
increased from 2–3 m/s to 4–5 m/s. Then river discharge steadily decreased to pre-flooding conditions,
which were registered on 2 September, while wind direction changed to eastern and wind velocity
decreased to 3–4 m/s. In situ measurements and aerial remote sensing performed on 2 September, i.e.,
shortly after the flood, observed, first, the large residual plume that was formed on 1 September during
the flooding event and did not dissipate yet and, second, the emergent plume that was formed on
2 September after the decrease of river discharge rate (Figure 5). These plumes had different spatial
scales, structures, thermohaline, and dynamical characteristics. As a result, similarly to the river
plumes formed by different deltaic branches, the residual and the emergent plumes interacted as
individual water masses and formed complex frontal zones within the common Kodor plume.
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Figure 5. (a,b) aerial images, (c) vertical salinity, and (d) velocity profiles at the frontal zone between
the emergent and the residual parts of the Kodor plume on 2 September 2018. Colored dots
indicate locations of vertical salinity and velocity measurements (P1, blue—the emergent plume;
P2, yellow—the residual plume). Arrows in panels (a) and (b) indicate distinct frontal zones between
the emergent and the residual parts of the Kodor plume. Red arrows in panels (a) and (b) point at
the same segment of the frontal zone where in situ measurements were performed.

Interaction between the Kodor plume and the seafloor at the shallow zones is the third process
that induces inhomogeneous structure of this plume. Aerial imagery detected the area of reduced
turbidity formed behind the shoal, which is located in front of the northern deltaic branch (Figure 6).
This low-turbid zone contrasted especially with the surrounding turbid river plume during the flooding
discharge on 1 September 2018. In situ measurements showed that surface salinity at this low-turbid
zone (15) was significantly greater than at the adjacent turbid part of the plume (12.5–13) (Figure 6c).
Surface circulation also differed in these two parts of the plume. The northward flow (10 cm/s) was
observed in the low-turbid zone, while the southeastward flow (20 cm/s) dominated in the adjacent
turbid part (Figure 6d). The formation of this zone is caused by the interaction of the inflowing river
jet with seafloor at the shoal that induces deceleration of the jet and its increased mixing with saline
and low-turbid sea water. The stable front bounding this low-turbid and high-saline zone inside
the plume was observed on a distance of up to 1 km from the shoal.
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Figure 6. (a,b) aerial images, (c) vertical salinity, and (d) velocity profiles at the frontal zone of the Kodor
plume formed behind the shoal on 1 September 2018. Colored dots indicate locations of vertical salinity
and velocity measurements (P1, blue—the low-turbid zone of the plume; P2, yellow—the frontal zone;
and P3, brown—the turbid part of the plume). The white arrow in panel (b) indicates location of
the shoal, red arrows indicate location of the central deltaic branch of the Kodor River, and the green
arrow indicates location of the Iskuria Cape.

3.2. Dynamical Features of the Kodor and Bzyp Plumes

Using aerial remote sensing we detected several dynamical features of the Kodor and Bzyp
plumes and measured their spatial characteristics. Based on the surface velocity data reconstructed
from the aerial video records, we studied dynamical characteristics of these features and analyzed
their physical background. Aerial remote sensing detected a swirling eddy within the Kodor plume on
1 September 2018 (Figure 7). This eddy was formed at the southern part of the emergent plume at
its border with the residual plume near the Iskuria Cape. The aerial image of this part of the plume
acquired at 12:52 (Figure 7a) showed inhomogeneous structure of the emergent plume without any
eddy. The distinct border between the emergent and the residual plumes was stretched from the Iskuria
Cape in the northwestern direction. The beginning of formation of the eddy was registered at 14:42
(Figure 7b), then at 15:34 the well-developed eddy was observed (Figure 7c,d). The diameter of the eddy
was approximately 500 m, it was rotating in an anticyclonic direction, while its center was moving
at an angle of approximately 30◦ across the border of the emergent plume. Processing of the video
record of this eddy provided estimations of velocity of its movement (0.9 m/s) and rotation (0.4 m/s).
The aerial observations performed at 16:16 did not show any surface manifestations of the eddy at
the study area; therefore, we presume that it shifted off the observation area during less than an hour.
Wind conditions were stable during the considered period, wind speed did not exceed 3.5 m/s.
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Figure 7. Aerial images of the southern part of the Kodor plume (a,b) before and (c) during interaction
between the plume and the eddy acquired at (a) 12:52, (b) 14:42, (c) 15:34, and (d) 15:41 on 1 September,
2018. (e) surface salinity, (f) zonal (blue) and meridional (red) velocities measured during 15:57—16:01
and (g) vertical salinity and (h) velocity profiles measured at 16:02 within the eddy. Yellow dots in
panels (c) and (d) indicate location of salinity and velocity measurements. The white arrow in panel (c)
indicates location of the eddy, red arrows indicate location of the central deltaic branch of the Kodor
River, and green arrows indicate location of the Iskuria Cape.
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In situ thermohaline and velocity measurements were performed within the eddy at 15:57–16:01
(Figure 7e,f). They included continuous measurements at a depth of 0.7–0.8 m for 4.5 minutes
followed by vertical profiling from surface to the depth of 13 m. Note that the measurements were
performed at the stable point, while the eddy was moving. As a result, the performed measurements
registered salinity and velocity in different parts of the eddy while it was passing the point of
measurements. The intense northward flow (55 cm/s) registered in the surface layer at the beginning
of the measurements steadily dissipated to <10 cm/s during the first stage of the measurements
(Figure 7f). The eastward velocity component was slightly positive during the first two minutes of
the measurements (6 cm/s on average with the peak value of 16 cm/s) and then changed to slightly
negative (−5 cm/s on average with the peak value of −11 cm/s). It was accompanied by significant
variability of salinity that increased from 13.5 to 15.5 during the first 1.5 min of the measurements
and then decreased to 13.5 (Figure 7e). The observed variability of velocity and salinity in the surface
layer confirms northward propagation and anticyclonic rotation of this eddy observed at aerial video
(Supplementary Materials). However, the movement and rotation velocities registered by in situ
measurements were twice less than those reconstructed from the aerial video. This difference is caused
by the fact that in situ measurements were performed not at the central part of the eddy, but at its
periphery. The observed variability of salinity in the surface layer was caused by intrusion of saline
water from the ambient sea to the plume induced by the rotation of the eddy (Figure 7d). Vertical
profiles of salinity and velocity measured at 16:02, i.e., after the measurements in the surface layer,
registered strong northwestward flow in the subjacent saline sea (Figure 7g,h). Its maximal velocity
(15–25 cm/s) was observed immediately beneath the plume at depths of 3–5 m, then velocity decreased
to 10–15 cm/s at depths of 8–9 m and to <5 cm/s at depths of 10–13 m. This northwestward flow
(20–30 cm/s) was also registered along the Iskuria Cape at the previous day that confirms the presence
of the northwestward jet behind the Iskuria Cape which is presumed to generate the observed eddy.

Interaction between sub-mesoscale eddies and the Kodor plume was also observed by satellite
imagery. The chains of small anticyclonic eddies (300–500 m in diameter) formed behind the Iskuria Cape
and interacting with the Kodor plume were registered on 17 July 2018, 21 August 2019, and 26 August
2019 (Figure 8a). Positions, sizes, and shapes of four to five subsequent eddies within these chains
indicate that these chains were periodically generated near the Iskuria Cape and propagated in
the northwestward direction shortly before the periods of satellite observations. While tracks of
the eddies were crossing the Kodor plume, the turbid plume water was twisted into the eddies, which
made them visible at satellite imagery. After these eddies propagated off the plume the trapped turbid
water remained connected with the plume that illustrated difference in trajectories and velocities of
the eddies and the wind-driven far-field part of the plume (Figure 8a).

Satellite images acquired during the periods of field measurements at the Kodor plume did not
register interactions between the eddies and the plume due to episodic character of these features,
i.e., eddies do not constantly form and propagate at the study area. Therefore, the satellite images
presented in Figure 8 are not synchronous with the field surveys. However, sizes and anticyclonic
rotation in the northwestward direction were similar for eddies detected at the Kodor plume by
aerial and satellite remote sensing. As a result, we presume that we observe the same process and,
therefore, can jointly analyze its spatial and temporal characteristics obtained from aerial and satellite
measurements. Satellite imagery also observed eddies formed behind the Pitsunda Cape and interacting
with the Bzyp plume on 30 July 2017 and 10 October 2019 (Figure 8b). However, in contrast to the eddies
registered within the Kodor plume, these eddies were individual, i.e., did not form chains. Moreover,
these eddies were much larger (2-4 km in diameter) and were rotating in cyclonic direction. Satellite
images acquired during the periods of field measurement at the Bzyp plume also did not register
interactions between eddies with the Bzyp plume.
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Figure 8. Sentinel-2 ocean color composites (a) from 17 July 2018, 21 August 2019, and 26 August 2019
illustrating interactions between eddies and the Kodor plume and (b) from 30 July 2017 and 10 October
2019 illustrating interactions between eddies and the Bzyp plume. Green arrows indicate location of
the Iskuria Cape and red arrows indicate location of the Pitsunda Cape. Note that images at panels (a)
and (b) are inconsistent, i.e., they show river plumes at different dates.

Satellite image acquired on 10 October 2019 detected packets of internal waves emerging from
the rotating eddy and propagating within the Bzyp plume (Figure 9b). Aerial observations on
1 September 2018 also detected a packet of internal waves that emerged from the eddy and was
propagating within the outer part of the plume towards the open sea (Figure 10a). Note that the aerial
imagery of the Kodor plume (Figure 9a) and the satellite imagery of the Bzyp plume (Figure 9b) are not
synchronized and show different river plumes at different dates. Aerial and satellite images acquired
during the period of field measurements at the Bzyp plume did not register internal waves within
the Bzyp plume. Therefore, in Figure 9 we show airborne images of internal waves at the Kodor plume
and satellite images of internal waves at the Bzyp plume.
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Figure 9. Surface manifestations of high-frequency internal waves generated by the eddies within
the (a) Kodor and (b) Bzyp plumes at (a) aerial images acquired on 1 September 2018 and (b) satellite
images acquired on 10 October, 2019. The central picture at panel (a) is the zoomed fragment of the left
picture at panel (a) indicated by the white dashed rectangle 1. The central and right pictures at panel
(b) are the zoomed fragments of the left picture at panel (b) indicated by white dashed rectangles 2
and 3, respectively. Black arrows indicate surface manifestations of internal waves.

 

Figure 10. Aerial images of surface manifestations of low-frequency internal waves within the Kodor
plume near the mouths of (a) the northern and (b) the central deltaic branches on 2 September 2018.
The green arrow indicates location of the northern deltaic branch of the Kodor River and the red
arrow indicates location of the central deltaic branch of the Kodor River. Black arrows indicate surface
manifestations of internal waves.

Despite a large difference in coverage and spatial resolution of the aerial and satellite imagery
presented in Figure 9, they both distinctly demonstrate propagation of internal waves within the river
plumes. Satellite remote sensing has wide spatial coverage and provides information about spatial
characteristics of wave packets at different parts of the plumes (Figure 9b). Distances between the wave
packets observed at Sentinel-2 satellite images varied from 30 to 150–200 m, while lengths of the wave
packets were up to 5-6 km. Satellite images demonstrated that dozens of internal waves were generated
within the plume around the rotating eddy. On the other hand, airborne remote sensing provided
opportunity to detect individual internal waves with high spatial resolution and to register their
velocities (Figure 9a). High-resolution aerial imagery detected that the distances between the individual
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waves within the wave packet in the Kodor plume were 2–4 m. The length of the wave packet front
was approximately 200 m. The number of waves within the wave packet varied from 12 at its northern
part to 3 at its southern periphery. Processing of high-resolution video records revealed that velocity of
the wave packet was equal to 0.21 m/s.

Aerial remote sensing also detected multiple packets of low-frequency internal waves that
propagated within the Kodor plume towards the coast on 2 September 2018 (Figure 10). These packets
consisted of 5–15 waves that were stretched along the coast, albeit had complex shapes not related to
the shapes of the plume front or the coastline. Distances between individual waves varied from 5 to
70 m in the observed wave packets. Frontal length of these packets varied from ~100 m (Figure 10a) to
2–3 km (Figure 10b), while their speeds were 10–15 cm/s. Wind speed during this period was 2–3 m/s.

Osadchiev [33] described a mechanism of generation of internal waves in small river plumes as
a result of rapid deceleration of an inflowing river jet and formation of a hydraulic jump in vicinity
of a river mouth. These internal waves propagate offshore and are regularly observed by satellite
imagery in many coastal regions in the World [33,90,91]. Using aerial remote sensing we recorded
generation and propagation of these internal waves from the mouth of the side-channel of the Bzyp
River on 1 July 2019 (Figure 11a). The internal waves were generated at a distance of 40–50 m from
the river mouth every 19 seconds on average, i.e., 29 individual waves were generated during a 9-min
long video recording of this area. The distances between the waves decreased from 8–10 m near
the river mouth to 1–2 m at the distance of 500 m from the river mouth. Wave velocities were equal to
0.27–0.31 m/s. Moderate (2–3 m/s) northern wind was registered during the considered period.

Aerial observations of internal waves in the Bzyp plume described above were supported by
in situ salinity and turbidity measurements performed from a flat-bottomed boat with shallow draft
to minimize the boat-induced mixing of sea surface layer (Figure 11). Measurements included 15
surface-to-bottom profiles continuously performed from a free-drifting boat starting at the generation
area of the internal waves at the distance of 10 m from the river mouth and finishing 90 m far
from the starting point (Figure 11a). The obtained data revealed large difference in vertical salinity
structure of the Bzyp plume inside and outside this generation area of internal waves. The first half
of the hydrological transect was located at the area of formation of the hydraulic jump as a result of
abrupt deceleration of the inflowing river jet (Figure 11b). Similarly to the hydraulic jump observed
and described by Osadchiev [33] at the inflowing jet of the Mzymta River, we registered anomalously
deep penetration of low-saline water at the generation area of the internal waves in the Bzyp plume.
Low-saline water (10–14) was observed from surface to the depth of 3–4 m along 0–5 m and 25–35 m
of the transect. Vertical salinity structure within this part of the plume was unstable with multiple
overturns (reverse salinity difference was up to 1 at vertical distance of 0.1 m) and large salinity
gradients. Vertical salinity structure of the Bzyp plume between the areas of the hydraulic jumps, i.e.,
along the 5–25 m of the transect, showed relatively homogenous salinity (14.5–16) from surface to
bottom, albeit it was much higher than within the areas of hydraulic jumps.

Outside the generation area of the internal waves, i.e., along the 35–90 m of the transect, surface
salinity was relatively homogenous (14.5–15.5) and vertical salinity structure was stable. Vertical
salinity gradient outside the generation area of internal waves was two orders of magnitude less than
the largest values registered in the hydraulic jumps. However, salinity measurements did not cover
top 0.5 m of the surface layer, where presumably was located the salinity gradient. Vertical turbidity
structure, however, did not show large difference inside and outside the generation area of the internal
waves (Figure 11c). The turbid layer was observed from surface to the depth of 1–1.5 m along the first
part of the transect and then its depth steadily decreased to 0.5 m. This feature shows that salinity
and turbidity structure of a river plume can be significantly different in areas of very intense advection
and turbulent mixing.
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Figure 11. (a) aerial image of surface manifestations of internal waves propagating within the Bzyp
plume off the river mouth and location of the hydrological transect (black line) on 1 July 2019 (a).
Vertical (b) salinity and (c) turbidity profiles along the hydrological transect.
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3.3. Undulate Borders of the Kodor and Bzyp plumes

Aerial remote sensing of the Kodor and Bzyp plumes showed undulate structure of long segments of
their outer borders manifested by alternation of specific convex and concave segments. These segments
are 2–10 m long and up to 2 m wide and hereafter are referred as “lobes” and “clefts” [52,53]. Aerial images
of the undulate fronts observed at the Kodor plume border on 1 September, 2018 and at the Bzyp plume
border on 1 June 2019 are shown in Figure 12. This lobe-cleft structure was registered only at sharp
and narrow frontal zones formed between the emerging plume, on the one hand, and the residual
plume or the ambient sea, on the other hand. Lobes and clefts were absent at diffuse fronts, i.e.,
wide and low-gradient fronts that contour the outer parts of the plumes, which experience intense
mixing with the ambient sea. In particular, these undulate fronts commonly extended from the river
mouths and bounded the inflowing river jets, i.e., near-field parts of the plumes. These fronts were not
observed in the far-field parts of the plumes and in the coastal surf zone during periods of active wave
breaking due to intense mixing (Figure 12).

 

Figure 12. Aerial images (a) of undulate fronts at the border of the Kodor plume on 1 September,
2018 and (b) at the border of the Bzyp plume on 1 June, 2019. Central and right pictures at panel
(a) are the zoomed fragments of the left and central pictures at panel (a), respectively, indicated by
the white dashed rectangles 1 and 2, respectively. Central and right pictures at panel (b) are the zoomed
fragments of the left and central pictures at panel (b), respectively, indicated by the white dashed
rectangles 3 and 4, respectively. Black arrows indicate absence of undulate fronts at the surf zone.

We observed significant short-temporal variability of the undulate fronts induced by the following
recurrent process (Figure 13). Once a lobe is formed, it starts to increase seaward. Ballooning
of neighboring lobes results in their coalescence and the subsequent merging. At the same time
the cleft between these lobes is steadily decreasing and transforms into a spot of saline sea (with
area of 0.1–0.5 m2) isolated from the ambient sea, i.e., trapped by the merged lobes within the plume
(Figure 13). The merged lobes and the trapped saline sea area finally dissipate, and then the process
of formation of new lobes at this part of the plume front restarts. The continuous recurrent process
of formation of lobes, their merging, and subsequent dissipationwas observed along the undulate
fronts of the Kodor and Bzyp plumes. Residual time of an individual lobe, i.e., from its formation to
dissipation, was 1–2 min.
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Figure 13. (a) aerial images and (b) reconstructed shapes of the border of the Kodor plume on
1 September 2018 illustrating merging of lobes and trapping of spots of saline sea. Numbers indicate
time intervals in seconds from the beginning of observations.
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Due to convergence of surface currents at sharp plume fronts [92], foam and floating litter
commonly accumulate at the undulate fronts of the plumes (Figures 13a and 14a). Using optical flow
processing of aerial video records, we detected motion of foam and floating litter and reconstructed
surface circulation along the undulate fronts of the Kodor and Bzyp plumes (Figure 14). The circulation
structure within the lobes consists of pairs of cyclonic and anticyclonic vortices that form, balloon,
merge, and dissipate with the lobes (black lines in Figure 14b). The trajectories of foam and floating
litter revealed that cyclonic vortices are significantly more prominent and intense, as compared to
anticyclonic vortices. Foam and floating litter are mainly accumulated within cyclonic eddies, i.e.,
in the right parts of the lobes if we look from the sea towards the plume (Figure 14a). Foam and floating
litter are rotated by cyclonic eddies within the right parts of the lobes during the majority of time of
aerial observations. Once a parcel of foam or floating litter is advected off a cyclonic eddy and enters
an anticyclonic eddy in the left part of the lobe, it is transported to the outer part of the lobe and then is
trapped by the cyclonic eddy in the neighboring (leftward) lobe (red lines in Figure 14b). As a result,
these parcels are skipping leftward between the right parts of lobes. Therefore, foam and floating litter
are steadily transported to the left along the plume border. The observed large intensity of cyclonic
circulation within the lobes, as compared to anticyclonic circulation, is presumed to have the same
background as the dominance of cyclonic spirals at satellite images of sea surface caused by differences
between the rotary characteristics of cyclonic and anticyclonic eddies in the sea [93].

 

Figure 14. (a) aerial image of the undulate border of the Kodor plume on 1 September 2018
and (b) the scheme of the reconstructed circulation within the lobes (black lines) and the transport of
foam and floating litter along the plume border (red lines) (b). Black arrows in panel (a) indicate foam
accumulated within cyclonic vortexes in the right parts of the lobes.
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We presume that the undulate structure of the sharp plume borders is formed due to baroclinic
instability between the plumes and the ambient sea. The pressure gradient force across the front is
equal to

g
ρ

ρsea

∂h
∂x

(4)

where g is the gravity acceleration, Δρ is the density difference between the plume and the ambient
sea, ρsea is the density of the sea, h is the depth of the plume, and x is the cross-front direction. In situ
measurements performed at the undulate fronts showed that surface salinity abruptly increased across
these fronts (2–3 m wide) from 10–12 inside the Kodor plume to 17 outside the Kodor plume (Figure 15b)
and from 8–10 inside the Bzyp plume to 16–17 outside the Bzyp plume. The depth of the Kodor plume
at the narrow frontal zone was 2 m (Figure 15b), the depth of the Bzyp plume was 4 m. As a result,
the values of pressure gradient across these frontal zones calculated from Equation (4) are equal to 0.05
and 0.1 m/s2 for the Kodor and Bzyp plumes, respectively.

 

Figure 15. (a) aerial image and (b) vertical salinity profiles at the undulate border of the Kodor
plume on 1 September 2018. Colored dots indicate locations of vertical salinity measurements (P1,
blue—the plume; P2, yellow—the ambient saline sea). Black arrows in panel (a) indicate a stripe of
low-turbid water within the Kodor plume stretched along its border.

This large pressure gradient observed across the plume fronts is the source of potential energy
that induces formation of lobes and clefts as follows. Small perturbation of a sharp frontal zone
and the subsequent formation of a local convex segment cause increase of local length of the front and,
therefore, increase of the cross-front advection induced by the pressure gradient. It results in ballooning
of the lobe till it coalesces and merges with the neighboring lobe. Merging of two lobes accompanied
by trapping of a spot of saline sea water and its subsequent mixing with the plume water cause a
reduction of local salinity anomaly and, therefore, a decrease of local pressure gradient. It hinders
formation of a lobe at this segment of the plume, while new lobes are formed at the adjacent segments
of the plume front. Therefore, baroclinic instability causes formation, merging, and dissipation of
the observed lobe-cleft structures and influences mixing between the river plumes and the ambient sea.

Aerial imagery detected the 3–4 m wide stripe of low-turbid water within the Kodor plume located
at the distance of 10–20 m from the undulate border and stretched along this border (Figure 15a).
We presume that this low-turbid stripe is formed as a result of continuous trapping of spots of saline
sea water by merging lobes. Horner–Devine et al. [53] assumed that the lobe-cleft structure is formed
by subsurface vortexes that are propagating from the inner part of the plume towards its border with
the ambient sea. However, aerial video records showed stable position and shape of this stripe that
evidences absence of any subsurface vortexes described by Horner–Devine et al. [53].
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4. Discussion

In this study, we obtained several important results about structure, short-temporal variability,
and dynamics of small river plumes. First, we revealed strongly inhomogeneous structure of small
plumes manifested by multiple frontal zones between different parts of the plumes. These parts
have different structures and dynamical characteristics and interact as individual water masses.
Second, we reported fast motion of small plumes caused by interaction with coastal eddies. Third,
we observed generation and propagation of different types of internal waves within small plumes.
Forth, we described formation of lobe-cleft structures at sharp borders of small plumes and reported
intense lateral mixing across these fronts caused by their baroclinic instability. The results listed above
are important for understanding spreading and mixing of small plumes, however, they are addressed
for the first time as previous related works were mainly limited by low spatial and/or temporal
resolution of in situ measurements and satellite imagery. Below we provide physical interpretation of
these features observed at the Kodor and Bzyp plumes and discuss importance of their study at other
small plumes in the World Ocean.

In general, river plumes are regarded as “smooth” water masses without internal fronts and sharp
gradients. This approach is widely used in analytical and numerical modeling studies focused on
river plumes, including the fundamental and highly cited papers [82–85,94–96]. Many relevant studies
based on in situ and satellite data confirmed that this approach provides realistic results for buoyant
plumes formed by large rivers plumes which internal structures indeed are characterized by steady
changes of salinity and other characteristics. In this work, we present the results of aerial remote
sensing of the Kodor and Bzyp plumes supported by in situ measurements that provide an evidence of
strongly inhomogeneous internal structure of small plumes. This structure is manifested by complex
internal frontal zones and sharp salinity and turbidity gradients within small plumes. These gradients
and frontal zones strongly modify circulation within the plumes, in particular, they hinder cross-frontal
advection within the plumes and separate them into semi-isolated, but interacting structures. Therefore,
identification and study of the processes that govern formation of frontal zones within small plumes is
important for understanding of spreading and mixing of freshwater discharge in the sea and the related
transport of river-borne suspended and dissolved material.

The Kodor River inflows to the Black Sea from multiple deltaic branches and forms several river
plumes. These plumes are closely located; they interact as individual water masses and coalesce into
the common Kodor plume. Interaction, collision, and coalescence of buoyant plumes formed by rivers,
which estuaries are located in close proximity, were addressed in several previous studies [86–88,97–99].
Similar processes occur within plumes formed by freshwater discharge from multiple deltaic branches,
as was observed for the Kodor plume. Moreover, generally distances between deltaic branches within
one deltaic system are smaller than distances between estuaries of neighboring rivers. As a result,
interactions between neighboring plumes formed by different rivers generally occur only during high
discharge periods [86], while similar interactions between plumes formed by different deltaic branches
is a permanent or almost permanent process at many World regions. However, despite a large number
of deltaic rivers inflowing to the World Ocean, we are aware of only one related study that was focused
on the interaction between the buoyant plumes formed by different deltaic branches of the Pearl River
Delta [100].

The Kodor River has very large intra-day and synoptic variability of discharge rate due to
morphology and weather conditions at its drainage basin. This variability of discharge rate induces
variability of spatial extents of the Kodor plume and residence time of freshened water within the plume.
As a result, the Kodor plume formed during high discharge can have different spatial and thermohaline
characteristics from those formed during low discharge. In case of abrupt decrease of river discharge
rate, the relatively large and mixed residual plume (formed during high discharge period) interacts
with the small and freshened emergent plume (formed during the subsequent low discharge period).
We report distinct frontal zones and differences in dynamics between the residual and the emergent
parts of the Kodor plume. Several previous studies addressed response of river plumes to variable
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discharge rates [101–107], but limited attention was paid to interaction between parts of an individual
river plume formed during different discharge conditions [108]. This feature can strongly affect
spreading and mixing of freshwater discharge from small rivers in many World regions and should be
considered in the related studies.

Several studies addressed interaction between coastal bathymetry and bottom-advected river
plumes, which occupy the whole water column from surface to seafloor and, therefore, experience
intense bottom friction [109–111]. In these numerical studies, river plumes were spreading over sea
areas with idealized bathymetry, which was steadily sloping in the cross-shore direction and was
homogenous in the alongshore direction. Influence of realistic bottom topography on surface-advected
river plumes was described by Korotenko et al. [112]. Bottom-generated turbulent mixing induced
by coastal circulation penetrates upward and reaches surface layer over shallow zones, therefore,
increased local mixing of river plumes occurs at these zones. We presume that a similar mechanism
induced intensified mixing of the Kodor plume over the shoal revealed by aerial imagery and in situ
measurements. Moreover, we observed that the intense flow of the Kodor plume over this small
shoal results in formation of large area within the plume with elevated salinity, which is bounded by
the distinct frontal zone. We are not aware of any work describing this effect at river plumes, however,
it can be typical for many small plumes with small vertical scales flowing over bathymetric features.

In this study, we address several important dynamical features of small river plumes. Aerial remote
sensing revealed a quick motion of the Kodor plume border (~0.5–1 m/s) entrained by the rotating
coastal eddy. Such extremely rapid response of a river plume to coastal sea circulation has not been
reported before, to the extent of our knowledge. The previous studies showed that general spreading
patterns of small plumes are governed by wind forcing, while the impact of ambient circulation
was regarded as negligible [113–115]. We demonstrate that energetic features of coastal circulation,
e.g., eddies, can induce high velocity motion of plume fronts and, therefore, influence dynamics of a
small plume, albeit locally and during short-term periods.

The rotating eddy generated high-frequency internal waves that were propagating within
the Kodor plume and dissipated at its border with the ambient sea. Aerial remote sensing also observed
multiple long internal waves propagating within the Kodor plume towards the coast, as well as
generation of high-frequency internal waves near the mouth of the Bzyp River and their propagation
within the Bzyp plume towards the open sea. Internal waves are common features of river plumes in
non-tidal seas and their surface manifestations observed by satellite imagery were reported in several
previous studies [116,117]. These internal waves can significantly affect mixing of small plumes with
subjacent saline sea [33]. In this study, we demonstrate the efficiency of aerial remote sensing in
observations of surface manifestations of internal waves, and the ability of aerial remote sensing (in
contrast to satellite observations) to measure their spatial and dynamical characteristics and to identify
mechanisms of their generation.

Finally, in this study, we address the undulate structure of the sharp borders of the Kodor
and Bzyp plumes that were previously observed and reported at other small plumes [52,53,118,119].
Horner–Devine and Chickadel [53] associated formation of the lobe-cleft structures observed at
the Merrimack plume with subsurface vortexes that were propagating from the inner part of the plume
towards its border with saline sea. Based on processing of aerial video records, we reconstruct surface
circulation at the undulate fronts of the Kodor and Bzyp plume and detected similar vortexes within
the lobes. However, we observed absence of vortexes outside the frontal zones, i.e., no vortexes were
propagating from the inner parts of the plume towards their borders. On the opposite, we observed
the recurrent process of formation, merging, and dissipation of lobes, that was not described before.
Based on these results, we suggest an alternative mechanism of formation of the undulate fronts
caused by baroclinic instability between the plume and the ambient sea and ballooning of local convex
segments of the frontal zone in response to its small perturbations. This mechanism is in a good
agreement with the reconstructed vortex circulation within the lobes and explains absence of vortexes
in the inner parts of the plumes. We reveal intense transport of saline sea water across the undulate
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plume border as a result of merging of lobes and mechanical trapping of spots of saline sea inside
the plume. It can be an important mechanism of mixing between the plume and the saline sea
and should be considered together with shear-induced mixing of the plume and the subjacent sea.
Satellite imagery reveals that undulate frontal zones are, therefore, the related mixing mechanism
are typical for many small plumes in the World. Therefore, study of this mechanism is important in
context of transformation and dissipation of freshwater discharge in the sea.

5. Conclusions

In this work, we focused on small buoyant plumes formed by the Kodor and Bzyp rivers located
at the northeastern part of the Black Sea. We used quadcopters equipped with video camera to
perform aerial remote sensing of these river plumes, which was accompanied by synchronous in situ
measurements in the sea. Using an optical flow approach, we reconstructed surface velocity fields
within these plumes from the obtained aerial video records. Based on aerial imagery and video records,
the reconstructed surface currents, as well as in situ salinity, turbidity, and velocity measurements,
we obtained new insights into spatial structure, short-temporal variability, and dynamical features of
small river plumes, which are not typical for plumes formed by large rivers.

Based on the obtained aerial and in situ data, we address several different issues, including
the methodology and value of the aerial observations of small river plumes, the differences between
small and large plumes, the influence of multiple freshwater sources on the structure of a small plume,
the influence of bathymetry features on the structure of a small plume, the interaction between small
plumes and coastal circulation, the presence of internal waves in river plumes, and the presence of
small-scale instabilities along the plume front boundary. The main results obtained in this study are
the following. We describe strongly inhomogeneous structure of small plumes, as compared to large
plumes. We suggest a new mechanism of mixing of a small plume with ambient sea as a result of
baroclinic instability at its outer boundary. We describe internal waves formed within near- and far-filed
parts of small plumes, which can strongly influence its mixing with ambient sea. These results are
important for understanding the fate of freshwater discharge from small rivers and the related transport
of suspended and dissolved river-borne constituents in many coastal sea areas in the World Ocean.

Usage of quadcopters provides ability to perform low-cost aerial remote sensing of coastal sea
areas and continuously observe surface manifestations of many coastal processes. In this study,
we demonstrate its efficiency in observations of small river plumes characterized by high color contrast
with ambient sea, energetic motion, and high short-temporal variability. Aerial imagery can be used
for visual detection and tracking of many other processes at small spatial (from meters to kilometers)
and temporal (from seconds to hours) scales, which are visible neither from shipboard nor satellite
imagery. Spatial scales and motion speeds of the observed processes can be reconstructed from
aerial imagery and video records (Supplementary Materials). Therefore, aerial drones can provide
quantitative measurements of distances and velocities at sea surface. Finally, aerial remote sensing can
be very useful for operational organization of in situ measurements during field surveys, in particular,
for selection of places for water sampling and hydrological measurements according to real-time
position of the observed sea surface processes. As a result, future studies based on imagery and video
records of ocean surface acquired from aerial drones (considering certain important limitations of their
usage) and supported by in situ measurements hold promise to significantly improve understanding
of various upper ocean features and dynamics.

Supplementary Materials: The aerial images and video records are publicly available at https://doi.org/10.5281/
zenodo.3901896. The Sentinel-2 Level-1C products were downloaded from the Copernicus Open Access Hub
https://scihub.copernicus.eu/.
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Abstract: Numerical models and remote sensing observation systems such as radars are useful
for providing information on surface flows for coastal areas. Evaluation of their performance
and extracting synoptic characteristics are challenging and important tasks. This research aims to
investigate synoptic characteristics of surface flow fields through undertaking a detailed analysis of
model results and high frequency radar (HFR) data using self-organizing map (SOM) and empirical
orthogonal function (EOF) analysis. A dataset of surface flow fields over thirteen days from these
two sources was used. A SOM topology map of size 4 × 3 was developed to explore spatial patterns
of surface flows. Additionally, comparisons of surface flow patterns between SOM and EOF analysis
were carried out. Results illustrate that both SOM and EOF analysis methods are valuable tools for
extracting characteristic surface current patterns. Comparisons indicated that the SOM technique
displays synoptic characteristics of surface flow fields in a more detailed way than EOF analysis.
Extracted synoptic surface current patterns are useful in a variety of applications, such as oil spill
treatment and search and rescue. This research provides an approach to using powerful tools to
diagnose ocean processes from different aspects. Moreover, it is of great significance to assess SOM as
a potential forecasting tool for coastal surface currents.

Keywords: ocean surface circulation; high frequency radar; self-organizing map; empirical orthogonal
function; neural networks; synoptic characteristics

1. Introduction

Surface currents primarily driven by winds can flow for thousands of kilometers and can reach
depths of hundreds of meters. Their movements carry heat and mass from place-to-place about the
Earth system. Understanding of surface current patterns in coastal regions is of great importance for a
variety of aspects, such as the development of marine economics and environmental protection [1].
As remote sensing technologies advance, surface currents can be measured not only at a single
or few locations by instruments such as an Acoustic Doppler Current Profiler (ADCP), but can be
recorded by tools such as radars over large coastal domains with high spatial and temporal resolutions.
Understanding, mining, and application of these surface flow field data are a new challenge for
researchers [2]. Several researchers have recently undertaken investigations on measured surface flow
fields. They have used surface radar data to validate model results, to improve modeling performance
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through data assimilation, to establish statistical forecasting models, and to characterize the physical
process of surface water bodies [3–6].

With the increasing availability of surface current data, investigations into patterns of surface
currents have been undertaken using various analysis techniques such as empirical orthogonal function
(EOF) (or principal component analysis (PCA)), k-means, and self-organizing map (SOM) to extract
patterns of variability in meteorological and oceanographic data. In essence, EOF and PCA are the
same, but their focus is different. PCA is the eigenvalue and eigenvector obtained from the covariance
matrix, and EOF is computed using the cross matrix of anomaly values, so the calculated eigenvectors
are the same, while the latter is n times the former (n is the sample size). PCA, multidimensional scaling
(MDS), and SOM are representative unsupervised machine learning techniques. The PCA technique
summarizes the dispersion of datasets as a data cloud through converting the original dataset into a
set of principal components; the MDS technique takes a set of dissimilarities and returns a set of points
such that the distances between points are approximately equal to the dissimilarities [7]. The classical
MDS technique is the same as the PCA technique if the input dataset distances are Euclidean [8].
Liu, et al. [9] used EOF and SOM to extract synoptic characteristic patterns of ocean currents at the West
Florida Shelf area, and found that flow field patterns extracted by SOM are more accurate and intuitive
than those obtained from the leading mode patterns with EOF analysis. This is probably because
EOF is a linear extraction tool, whereas SOM is a nonlinear extraction tool; properties of nonlinearity
extraction in SOM can better describe nonlinear dynamic oceanic processes. Soto-Navarro, et al. [10]
applied EOF decomposition to compare the main flow pattern from model and radar, and found that
both systems show satisfactory agreement for the first two EOF modes, while the agreement is less for
the third EOF mode. Moreover, because wind data collected in a single station close to the coast were
used in the model, correlation of the third principal component (PC) between model and radar was
very low (<0.1). They demonstrated that results from that principal components are representative
of the entire study domain. Reusch, et al. [11] compared the SOM method with the PCA method for
extracting patterns of variability for North Atlantic sea level pressure fields and found that SOM was
more robust than PCA. In addition, comparisons between the SOM method and the k-means method
were performed by Lobo [12], Lin and Chen [13], and Solidoro, et al. [14]. Their results indicated
that SOM generates more accurate patterns than k-means, and SOM in general is more flexible than
k-means. Moreover, the SOM method has been broadly applied among disparate range of disciplines
such as meteorology (sea level pressure, air temperature, humidity, evaporation, precipitation, cloud,
and wind data) and oceanography (satellite ocean color and chlorophyll, biological and geochemical
data, sea surface temperature (SST), sea surface height (SSH), and ocean currents) as a data mining
and visualization method for complex datasets [15–21]. These studies demonstrate that SOM is a
robust, efficient, and concise method to project high dimensional data onto a low dimensional (usually
two-dimensional) map for characterizing synoptic patterns. Thus, in this research, SOM was applied to
extract synoptic characteristic patterns of coastal ocean flow fields based on hourly HFR measurements
and model results at a site off the west coast of Ireland.

Several researchers have previously applied SOM techniques to extract characteristic patterns in
physical oceanography from in situ observations and model results. Liu and Weisberg [22] examined
patterns of ocean current variability using time series of moored ADCP velocity data based on EOF
and SOM. Three characteristic spatial patterns were extracted: (i) spatially coherent southeastward,
(ii) northwestward flow patterns with strong currents, and (iii) a transition pattern of weak currents.
Based on comparisons between results from EOF and SOM, they found that the SOM had advantages
over the EOF in both pattern recognition and description. Subsequently, Liu, et al. [23] applied SOM
to extract patterns from a linear progressive sine wave signal, and analyzed the effects of the SOM
tunable parameters on the extracted patterns. Effects of varying SOM map size, map lattice structure,
and neighborhood function were examined as well. Liu, et al. [23] found that (a) a larger SOM map
size led to slightly more accurate mapping, (b) a rectangular lattice was preferable for a small-size
SOM and a hexagonal lattice may be useful for larger map sizes, (c) linear initialization provided

152



Remote Sens. 2020, 12, 2841

better SOM results than random initialization, (d) the “ep” (or Epanechikov, see details in Appendix A)
type is the best neighborhood function and gave the best results. Liu, et al. [24] also investigated
the spatial structure and temporal evolution of distinct physical processes on the West Florida Shelf
(WFS) based on patterns of ocean current variability from a joint HFR and ADCP dataset using SOM.
Semidiurnal, diurnal, and subtidal frequency bands were separately examined with SOM analysis.
Results indicated that SOM is an effective analysis tool for identifying modulated, heterogeneous,
anisotropic, three-dimensional coastal ocean current variations observed by HFR and ADCPs [24].

Mihanović, et al. [25] extracted subtidal frequency patterns from HFR surface flow fields in the
northern Adriatic using SOM. Since surface current patterns were strongly influenced by local wind
forcing, a joint dataset including contemporaneous surface wind data obtained from the operational
hydrostatic mesoscale meteorological model ALADIN/HR was used. Their analysis found that the
strongest currents observed during energetic bora episodes were represented by several current
patterns and another characteristic wind, the sirocco, which was represented by three SOM current
patterns. Mihanović, et al. [25] suggested that SOM was a most valuable tool for extracting characteristic
patterns of surface flows and forcing functions. Vilibic, et al. [26] applied the SOM method to predict
surface currents based on HFR measurements and numerical weather prediction (NWP) data for the
northern Adriatic in comparison with operational ROMS-produced surface currents. They found
that the SOM-based forecasting system had a slightly better forecasting skill than the ROMS model,
especially during strong wind conditions. Liu, et al. [9] applied the SOM method to extract patterns of
the loop current system and to identify altimetry sea surface height variability in the eastern Gulf of
Mexico. Jin, et al. [27] studied the variability of current patterns near the Karama Gap using outputs
from the ocean general circulation model (OGCM) for the earth simulator on the basis of the SOM.
Jin, et al. [27] found that the evolution of the four coherent patterns showed a robust cycle characterized
as a counterclockwise trajectory in the SOM space. Tsui and Wu [17] applied SOM to study the
Kuroshio intrusion into the South China Sea (SCS) through the Luzon Strait using 18 years of archiving,
validation, and interpretation of satellite oceanographic (AVISO) mean geostrophic velocity (GSV)
data. Results indicate that the Kuroshio intrusion may occur year-round; intrusion is not a major
characteristic in the study area and winter intrusion events are more frequent than summer ones,
based on seasonal variability.

The SOM technique is in a sense a combination of both PCA and MDS techniques. SOM is a type
of cluster analysis, which organizes a dataset of patterns into clusters based on similarity. Grouping a
given dataset of unlabeled patterns into meaningful clusters is the main problem that is solved in
SOM. Moreover, SOM was used to develop a drought forecast model through a nonlinear mapping
of the input domain onto a two-dimensional grid by Barros and Bowden [28]; results indicated that
SOM-based data models can be tools of discovery to identify nonlinear diagnostic and prognostic
relationships among datasets. Obach, et al. [29] used radial basis function networks combined with
a SOM to predict annual abundance of aquatic insects, and found that it is possible to predict the
abundance of aquatic insects based on relevant environmental factors. SOM can be employed not only
to reduce the size of the dataset by clustering, but also to construct a nonlinear projection of the dataset
onto a low dimensional display that are usually of one or two dimensions [30].

Previous studies indicated that SOM is a useful and effective tool for dealing with large datasets.
Since there were few records of surface current measurements, in either space or time, available in
the Galway Bay area before the deployment of HFR system, previous studies of the bay generally
provide little information on spatial patterns of surface currents [31–33]. Herein, both SOM and EOF
techniques were applied to investigate synoptic characteristics of surface currents from both numerical
models and a HFR system. Additionally, some previous research considered longer term analysis.
During this research, because datasets were incomplete, gap filling was used to develop a “synthetic”
dataset. The research presented herein considers a small dataset, one of the reasons for this is so that
we use only actual data during the analysis and do not introduce extraneous uncertainties; this type of
analysis has not previously been carried out. In subsequent research, we will consider longer datasets
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that have been synthetically enhanced to provide continuous signals and then compare results with
those from this current research.

The structure of this paper is as follows. Section 2 presents methodologies, including the research
domain, observational data, numerical model, and SOM and EOF methods. Results and discussion are
presented in Section 3, followed by research conclusions in Section 4.

2. Methodologies

2.1. Research Domain

Galway Bay is located on the west coast of Ireland; it is a semiclosed bay, as shown in Figure 1.
Its length from west to east is approximately 62 km and the mouth of the bay from north to south is
approximately 33 km. Regional climate in Galway Bay area is mainly affected by the Atlantic Climate
and prevailing southwesterly winds. Tides in this area are semidiurnal, ranging from 5 m during
spring tides to 2.5 m during neap tides [34]. The average water depth is approximately 30 m for the
area covered by the HFR system.

 
Figure 1. Deployment of the high frequency radar (HFR) system (C1 and C2 indicate deployment
location of HFR station).

2.2. Observational Data

Land-based coastal radar systems are capable of monitoring information of surface waters based
on the application of high frequency radio wave backscatter [35]. Radars operating in the HF band can
measure the Doppler shift of radio waves scattered from ocean surface gravity waves [36–39]. A single
radar station determines radial components of surface currents relative to that station, providing current
magnitudes and directions toward or away from the station. Surface flow fields are determined by
synthesizing radial surface velocity components from two or more radars. The extent of alongshore
surface current mapping is limited only by the number of radar stations with overlapping coverage [40].
Spatial coverage of surface currents measured by radars can reach approximately 200 km depending on
the radar transmitting frequency. Information obtained from radar has a large number of applications,
such as analysis of marine renewable energy resources, oil-spill monitoring [41,42], data assimilation
into numerical models [43–46], trajectory forecasts [47], and search and rescue [48].

HFR ocean data quality is affected by several factors such as geometric dilution of precision
(GDOP) and signal-to-noise ratio (SNR) [49]. In order to quantitatively assess radar data quality for
this case, a commonly used evaluation index, GDOP, describes the quality of a velocity measurement
based on the geometrical arrangement between the radar stations and the location being monitored
that had been used to assess velocity components. A low value of GDOP indicates ideal geometry and

154



Remote Sens. 2020, 12, 2841

higher values indicate poor geometry where the two velocity components are not highly resolved [50].
O’Donncha, et al. [51] found that the meridional component of surface current flow along the baseline
is distorted most by GDOP in Galway Bay, while the zonal component is more accurately resolved,
apart from a very small domain along the shoreline due to a slight rotation of the baseline from
east–west. Additionally, Ren, et al. [43] compared radial currents between the radar data and ADCP
data in the study domain, and found that modest correlation existed between the two datasets.

Two SeaSonde Coastal Ocean Dynamics Applications Radar (CODAR) radars were deployed
intermittently at Galway Bay to monitor surface currents and waves since the summer of 2011 [52].
Radar stations are located at Mutton Island (C1 in Figure 1) and Spiddal Pier (C2 in Figure 1);
the operating frequency is 25 MHz at both stations. Radial current vector fields from each station
are recorded every hour [53]. Data from both radars are routinely transmitted to a combination
center that is located in the campus of National University of Ireland, Galway, Ireland. The radar
postprocessing software system interpolates surface current data onto a standard orthogonal grid
300 × 300 m. Measurements of surface currents obtained with the HFR system in Galway Bay have
been validated with ADCP data in detail by O’Donncha, et al. [51] and Ren, et al. [54]. The land-based
HFR system has provided a powerful method of obtaining synoptic monitoring of surface currents
with high temporal and spatial resolutions. Identification of synoptic characteristics of surface flows is
a meaningful approach for obtaining good insights into both internal dynamic processes and variations
of ocean surface movement.

Coverage of surface currents captured by the HFR system varies in space and time due to
variability of the ocean surface roughness. An EOF analysis is consistent and reliable when there are no
spatial gaps in the datasets; thus, HFR data with high coverage density in space and time were selected
and used in the research. The HFR data at 1117 spatial points between Julian day 220 and Julian day
232, 2013, were used in the following analysis. Because it is the first time that surface currents were
obtained at high temporal and spatial resolution using a model and radar system in the study domain,
analysis of these short-term (thirteen day) dataset using SOM and EOF can be viewed as a test.

2.3. Numerical Model

The coastal model Environmental Fluid Dynamics Code (EFDC) was applied to simulate the
hydrodynamics of Galway Bay. EFDC was developed at the Virginia Institute of Marine Science by
the U.S. Environmental Protection Agency (EPA) [55,56]. As a free open source numerical model,
EFDC reduces the access threshold for users. EFDC consists of four linked modules: hydrodynamic,
water quality and eutrophication, sediment transport, and toxic chemical transport and fate. Only the
hydrodynamic module was used to simulate surface flows in this research. This module solves
the three-dimensional, vertically hydrostatic, free surface, turbulent averaged equations of motions
for a variable density fluid. The hydrodynamic component of EFDC implements a semi-implicit,
conservative finite volume solution scheme for the hydrostatic primitive equations with either two-
or three-level time stepping [55–57]. The model uses orthogonal curvilinear coordinate or Cartesian
rectangular coordinate system and structured grid horizontally, which is suitable for long and straight
shoreline with shorter calculation time. The sigma coordinate system is used vertically to avoid the
precision difference between deep water area and shallow water area. Additionally, EFDC can simulate
one-dimensional, two-dimensional, and three-dimensional hydrodynamic force and water quality of
water body. The internal and external mode splitting method is used in the calculation process, and
the calculation accuracy of space and time is second order. The model has been successfully applied to
a number of modeling studies of rivers, lakes, estuaries, and coastal regions [58–60]. Boas, et al. [61]
compared EFDC with WASP (water quality analysis simulation program) and the commercially
available software MIKE, and found that because the horizontal scale of most surface water is much
larger than the vertical scale, in order to simplify the calculation, the vertical pressure gradient is
regarded as the balance with buoyancy, and the vertical acceleration is ignored in EFDC, so EFDC is
mostly used in shallow water areas. EFDC has a robust flooding and drying routine which is required
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in coastal regions. The structured grid also leads to the low adaptation of EFDC to the curved coastline.
For these reasons, EFDC was applied to Galway Bay.

A 3D hydrodynamic model of Galway Bay (see Figure 1) was developed using a regular grid
coordinate system; a spatial resolution by 150 m in both horizontal directions was employed generating
380 × 241 grid cells in this research. A bathymetric model of Galway Bay was developed from the
recent, high resolution Integrated Mapping for the Sustainable Development of Ireland’s Marine
Resource (INFOMAR) seabed data program. Variable vertical layer thicknesses were used in the
model with a thinner layer at the top and bottom of the water column and thicker layers in the
middle, thereby ensuring that wind forcing was not overly damped by tidal forcing. A detailed
description on setting up vertical layer structure for the Galway Bay was reported by Ren, et al. [54].
The meteorological forcing parameters including wind, pressure, rainfall, solar radiation, and relative
humidity were obtained at a one-minute interval from the Informatics Research Unit for Sustainable
Engineering (IRUSE) weather station approximately 5 km from station C2 (see Figure 1). Records of
the River Corrib inflows entering Galway Bay close to the north of point C2 were obtained from the
Irish Office of Public Works (OPW). Tidal water elevation time series generated from Oregon State
University Tidal Inversion Software (OTIS) were used to define the tidal forcing at the western and
southern open boundaries in the model [62,63].

2.4. Self-Organizing Map

Kohonen self-organizing maps or self-organizing maps are a type of neural network algorithm
proposed by Tuevo Kohonen [64]. The SOM is a kind of unsupervised learning algorithm, which
captures patterns in the input data through competitive learning, hence the name “self-organizing”.
SOM retains a principal “features map” of the input data; this makes SOM very useful. SOM is
also considered a “map” projection method. Another intrinsic characteristic of SOM is that vector
quantization, which reduces multidimensional data into lower dimensional spaces (usually one or two
dimensions), is easier to understand. Additionally, SOM builds relationships that retain information so
that any topological relationships developed within the training set are maintained.

Figure 2 presents an example of a 4 × 3 SOM structure. X1, X2, . . . , Xn are input data, i.e.,
the two-dimensional surface flow fields in this research, which are projected to each node in the output
layer. Xi contains surface velocity components having I data points and J data points in the x and y
directions, respectively, over the analysis domain. This indicates that each node of an output layer
is linked to each input dataset. Each node of an output layer, as shown in Figure 2, has a specific
topological position and contains a vector of weights of the same dimension as the input vectors. If the
training data consists of vector X of n dimensions, each node contains a corresponding weight vector
of n dimensions. The dotted lines connecting the nodes at the output layer only represent adjacency
and do not signify connectivity. There are no lateral connections among nodes on the output layer.
The weight vectors adopt an alternative initialization scheme. As the input dataset is processed through
the SOM neural network, the summed distance between weights and input dataset are computed
at each node. In each successive step the weight vector of the unit having the smallest Euclidian
distance is selected as the “winner,” the best match unit (BMU) or codebook vectors [30]. The SOM
is a neighborhood-preserving vector-quantitative analysis tool working on the winner-take-all rule
in a mathematical sense, where the BMU is determined as the most similar node to the input at an
instant of time. The key of the SOM algorithm is to update the BMU and its neighborhood nodes
concurrently. Input topology of dataset is preserved on the output nodes through performance of such
a mapping [65]. Details of the implementation procedure of SOM are described in the Appendix A.

Advantages of the SOM method can be listed as follows: (a) an intuitive approach to building
customer segmentation profiles, (b) simple and easy to explain results, and (c) new data points can be
mapped to the trained model for predictive purposes. To quantitatively assess the mapping quality,
two measures are used. The first is the quantization error (QE, see details in Appendix A), which is used
as a metric of the average distance between each data vector and the BMU, whose weight vector has
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the minimum distance. The second measure is the topographic error (TE, see details in Appendix A),
which represents the proportion of all data vectors for which the first and second BMUs are not adjacent
to each other [66]. Lower values of QE and TE indicate better reproduction of the patterns of the SOM
model. A batch algorithm, a rectangular-lattice structure with a sheet map and the “ep” neighboring
function for SOM analysis, as recommended by Liu, et al. [23] and Vilibić, et al. [67], were used in
this research.

 
Figure 2. Architecture of a 4× 3 self-organizing map (SOM) network.

2.5. Empirical Orthogonal Function

An empirical orthogonal function analysis is a data decomposition tool and it can be used to explain
original data in the form of a series of orthogonal base functions with associated coefficients. EOF modes
preserve the majority of the variations as much as possible through reducing the dimensionality of
an original dataset. One unique attribute of an EOF analysis is that EOF base functions are derived
from the original dataset through decomposition. This produces EOF modes that preserve the inherent
characteristics of the original dataset and converge rapidly [68]. A detailed description about the
EOF analysis method can be found in Hannachi, et al. [69] and Monahan, et al. [70]. In this research,
for given vector fields of surface currents in Galway Bay, an investigation of spatial–temporal variations
of surface flows was implemented by EOF decomposition. Details of EOF analysis are presented in
the Appendix A.

3. Results

Since coverage of HFR surface currents varied in space and time and to ensure reliable analysis in
this research, surface currents only at points always covered by the HFR system during the analysis
period were selected and used in the following analysis. Here, 312-h surface vector fields with 1117
observation points in total for Galway Bay were used for both SOM and EOF analyses. Surface vector
fields extracted from model results at the same points were used. Both observed and simulated surface
vector field datasets contained 2234 (1117 for both u and v components) columns and 312 rows.
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3.1. SOM Analysis

The goal of the SOM technique is to partition an incoming dataset of arbitrary dimension into a
two-dimensional discrete feature map and to display this transformation adaptively in a topologically
ordered fashion. Extracted SOM patterns are arranged in a two-dimensional array such that similar
patterns are located nearby and dissimilar patterns are distant [71]. To completely represent the
characteristic surface flow features and make it small enough for visualization and interpretation,
after several test runs, a commonly used SOM size of 4 × 3 was selected and used in this research.

3.1.1. Spatial Variability

The batch of surface flow fields for both model results and HFR data were characterized into 12
typical SOM patterns with corresponding frequencies of occurrence. The 4 × 3 SOM array results of
model results and HFR data are shown in Figures 3 and 4, respectively. To quantify the representation
of each SOM pattern, the frequency of occurrence of each SOM pattern was computed by summing the
number of the BMU by the total record lengths (the number of input vectors, 312 here), see details in
Appendix B. The relative occurrence frequency for corresponding SOM patterns is shown in the upper
left corner in Figures 3 and 4.

(a) (b) (c)  

(d) (e) (f)  

(g) (h) (i)  

Figure 3. Cont.
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(j) (k) (l)  

Figure 3. Characteristic spatial patterns of surface currents from model results extracted by a 4 × 3 SOM
analysis (subfigures (a–l) indicates twelve spatial SOM patterns, respectively; the occurrence frequency
is given as a percentage number for each pattern at the topleft).

(a) (b) (c)  

(d) (e) (f)  

(g) (h) (i)  

Figure 4. Cont.
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(j) (k) (l)  

Figure 4. Characteristic spatial patterns of surface currents from radar extracted by a 4 × 3 SOM
analysis (subfigures (a–l) indicates twelve spatial SOM patterns, respectively; the occurrence frequency
is given as a percentage number for each pattern at the topleft).

For SOM surface flow patterns as shown in Figure 3, twelve SOM patterns can be categorized
visually into four groups, as presented in Table 1.

Table 1. Categories of SOM patterns for model results.

Group SOM
Pattern

Representative Characteristics Total Occurrence Frequency (%)

1 1/5/6/9/10 southeastward and eastward flows 41.1
2 3/4/7/8, western flows 40.4
3 11/12 northwestward flows 11.9
4 2 southwestward and alongshore flows 6.7

Table 1 shows that the occurrence frequency of group 1 consisting of four SOM patterns (1/5/6/9/10)
was the highest at 41.1% with southeastward and eastern flows. Surface flow fields categorized as
group 2 had the second highest occurrence frequency with westward flows. The total occurrence
frequency of groups 1 and 2 was greater than 81%. This indicates that the main patterns of surface
flows were southeastern and alongshore flows during the analysis period. Group 3 with an occurrence
frequency greater than 11% had a northwestward trend for surface flows. At 6.7%, the occurrence
frequency of group 4 was much smaller than groups 1–3. This indicates that SOM pattern 2 occurred
with relatively low probability. Additionally, magnitudes of surface flows in SOM pattern 2 were
smaller than that of other SOM patterns.

For surface flows of HFR data, twelve SOM patterns can be categorized visually into six groups,
as presented in Table 2. Table 2 shows that four SOM modes (3/4/7/8) of surface flows were categorized
as group 1 with the highest occurrence frequency at 37.2%. Occurrence frequencies for groups 2, 3, 4,
and 6 were greater than 10%, whereas the total occurrence frequency of group 5 was quite low, at 2.2%.

Table 2. Categories of SOM patterns for high frequency radar (HFR) data.

Group SOM
Pattern

Representative Characteristics of Surface Vector
Fields

Occurrence Frequency (%)

1 3/4/7/8 western flows 37.2
2 1/5 southeastward and alongshore flows 17.6
3 9/10 northeastward and alongshore flows 18.3
4 2 southern and southwestward flows 10.3
5 6 southwestward and northeastward flows 2.2
6 11/12 northwestward flows 14.4

Coastal currents in Galway Bay are mainly driven by tides and winds. Tides typically propagate in
western and eastern directions corresponding to tidal flooding and ebbing, respectively. Figure 3 shows
that western currents existed in group 2 by total occurrence frequency 40.4%; eastern currents (patterns
9 and 10) existed in group 1 by total occurrence frequency 27.9%. Surface currents of model results
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during tidal flooding were stronger than during tidal ebbing. However, SOM patterns having eastern
and western current patterns in the radar data were different. Figure 4 shows that eastern currents
existed in SOM patterns 5 and 9 by total occurrence frequency 19.5% for radar data; western currents
existed in group 1 by total occurrence frequency 37.2%. Surface currents of radar data during tidal
ebbing were stronger than during tidal flooding. Since spatially constant winds were used in the
modeling, the difference in eastern and western SOM current patterns between model results and radar
data may be due to influences of wind variation in space. Thus, wind roses and mean wind vectors
based on European Centre for Medium-Range Weather Forecasts (ECMWF) data with 0.15◦ × 0.15◦
spatial resolution and 6-h temporal resolution are presented in Figures 5 and 6 to further investigate
effects of winds on SOM current patterns.

Figure 5 show that wind speeds and directions varied over the analysis domain. Moreover,
occurrence frequencies of winds in the same direction were also different. In general, dominant winds
blew from the ocean toward land during the analysis period. Figure 6 shows that the directions of
mean wind vectors over higher latitude points had a clockwise trend, while the directions were more
uniform (southwest) over lower latitude points. Considering SOM patterns of model results and
radar data, group 3, as shown in Figure 3, with total occurrence frequency 11.9% had a northwestern
current pattern from the model results; group 6 (SOM patterns 11 and 12) and SOM pattern 10 with
total occurrence frequency 19.9% had a landward (northwestern, northern, and northeastern) current
pattern in the radar data. The occurrence frequency of landward current patterns extracted by SOM
analysis was stronger in the radar data than in the model results. This indicates that surface currents
driven by winds were better captured by the radar observation system than the numerical model.
As stated before, this is probably due to the fact that spatially constant winds were used in the model,
and demonstrates the importance of wind forcing on surface hydrodynamics.

(a) (b) (c)  

(d) (e) (f)  

Figure 5. Wind roses during analysis period. (Locations of W1–W6 are shown in subfigures (a–f),
respectively; direction indicates wind blowing from).

Additionally, infrequent winds blowing from land to ocean (W1, W4, and W5 in Figure 5) occurred
during the analysis period. Corresponding vector patterns were also extracted by SOM for both
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model results and radar data. Southeastern currents, including SOM patterns 1, 5, and 6, had a 13.2%
occurrence frequency for model results; offshore SOM current patterns 1 and 5 had a 17.6% occurrence
frequency for radar data. In summary, SOM patterns accounting for the effects of tides and winds had
occurrence frequencies of 97.8% and 93.3% for radar data and model results, respectively. This indicates
that the SOM technique can extract representative synoptic characteristic patterns of surface flows.
Additionally, the effects of the main driving forces (tide and wind) on surface flows can be well linked
to SOM patterns, especially for the radar data.

 
Figure 6. Mean ECMWF (European Centre for Medium-Range Weather Forecasts) wind vectors during
analysis period.

3.1.2. Temporal Evolution

To analyze the evolution process of the SOM patterns in time, BMUs were computed and are
shown in Figure 7. A BMU can be found for each input data vector by comparing the 12 SOM patterns
with the input data map.

Figure 7a shows that the evolution of BMU for model results generally had two patterns: (I) 12→
4→ 2→ 1→ 9→ 11 and (II) 11→ 8→ 4→ 3→ 2→ 1→ 9→ 10. Evolution processes of both type I and
II show that the general variation trend of surface flow fields was anticlockwise, i.e., westward→
southwest→ southeast→ westward, as shown in Figure 3. The corresponding group category pattern
is 2→3→1→2, as presented in Table 1.

Figure 7b shows that evolution of BMU for HFR data was not as uniform as the model results.
The evolution trend was 12→ 8→ 4→ 3→ 2→ 1. The trend of surface flow fields was generally
anticlockwise, i.e., northwestward→ westward→ southward→ southeastward, as shown in Figure 4.
The corresponding group category pattern was 6→ 1→ 4→ 2, as presented in Table 2.

In general, a similar anticlockwise evolution trend changing from westward to southeastward
existed for surface flow fields in both the model results and HFR data. However, the evolution trend
of BMU was more regular in the model results than in the HFR data. This is again probably due to
the fact that a spatially constant wind was applied to force the surface boundary of the models. Thus,
tide and wind were the same over simulated domain. However, surface currents monitored by the
HFR system appear to have captured more information of surface currents driven from winds.
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(a) 

(b) 

Figure 7. Time series of best match unit (BMU) corresponding to 12 SOM patterns ((a) model results
and (b) radar data).

3.2. Empirical Orthogonal Function

In order to further compare the HFR data and numerical results, an EOF analysis was performed.
EOF analysis reduces data dimensionality and represents characteristics of each dataset in a few concise
and typical patterns in both space and time. The same dataset as used in the above SOM analysis was
used in the following EOF analysis.

3.2.1. Spatial Modes

To investigate synoptic characteristics of coastal flow patterns extracted by EOF, the first six EOF
eigenvector modes for both EFDC model results and HFR data, as shown in Figures 8 and 9, respectively,
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account for more than 95% of the explained variances. Variances explained by the corresponding EOF
mode are presented in the left-hand corner in each panel.

(a) (b) (c)  

(d) (e) (f)  

Figure 8. Spatial empirical orthogonal function (EOF) modes of model results (subfigures (a–f) indicates
the first to the sixth EOF eigenvector modes, respectively).

(a) (b) (c)  

(d) (e) (f)  

Figure 9. Spatial EOF modes of radar data (subfigures (a–f) indicates the first to the sixth EOF
eigenvector modes, respectively).

The first EOF mode (EOF1) of the model results and the HFR data, as shown in Figures 8 and 9,
accounts for 73.8% and 55.2% of the variances separately. This indicates that the possibility of surface
flow in EOF1 mode patterns for model results was larger than for HFR data. The general pattern of
surface flows in EOF1 mode is southeast; while there are also alongshore surface flows in EOF1 mode
of the HFR data. This may result from variation of winds in space, which was not captured by model.

The patterns of surface flows in EOF2 mode were more similar between model results and HFR
data. The possibility of flow in EOF2 mode for the HFR data was greater than twice that of the model
results. This indicates that patterns of surface currents in EOF2 mode were more likely to occur in
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the HFR data than in the model results, the trend of surface flows in this mode was in the northern
direction. However, surface flow magnitudes of model results were larger than these of HFR data.

The differences of spatial patterns between model results and HFR data in EOF3 mode were
more significant than in EOF1 and EOF2 modes. Spatial patterns in HFR data consisted of weak
southeastward and strong southwestward flows, which converged around the −45° line. The general
spatial pattern of surface currents for model results was southward; a northward trend of surface flows
existed in the middle of area covered by the radar. Moreover, magnitudes of surface currents in EOF3
mode for the HFR data were larger than the model results.

Magnitudes of surface currents in EOF4 mode were small and similar between model results
and HFR data. Disorder of spatial patterns exists in model results, while a southward trend exists
across the right parts of displayed area. Surface flows bifurcate across the left parts with one in the
southeastward direction and the other in the eastward direction in HFR data.

There was a clockwise and weak surface flow gyre in EOF5 mode in HFR data while the spatial
pattern of EOF5 mode in the model results was generally disordered. Magnitudes of surface currents
in this mode were small and comparable between the two datasets.

The spatial patterns of EOF6 mode in HFR data were generally offshore currents and along shore
currents, but no such significant type of surface flow trend exists in model results. Additionally,
magnitudes of surface currents near coasts were larger than other areas for model results, but magnitudes
were generally uniform except for few large surface currents at the right corners for the HFR data.

The first two EOF modes accounting for the majority of the variance (>85%) were relatively similar
for model results and HFR data. The differences in the remaining four EOF modes between model
results and HFR data were significant, but these modes accounted for a relatively small proportion of
the variations.

3.2.2. Variance of Surface Flows Explained by EOF Modes

To further compare EOF analysis of model results and radar data, accumulative explained
variances of the first 20 EOF modes and variance values of the first six EOF modes are presented in
Figure 10 and Table 3, respectively. The value of variance represents the characteristic strength of the
corresponding spatial EOF modes, as shown in Figures 8 and 9; this was computed relative to the
entire set of EOF modes. A large value of variance indicates that the corresponding spatial EOF mode
was significant; a small value of variance means that the corresponding spatial EOF mode was weak.

 
Figure 10. Variance of EOF modes.
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Table 3. Summary of variance for the first six EOF modes.

EOF Mode
Variance (%) Accumulative Variance (%)

EFDC HFR EFDC HFR

1 73.8 55.2 73.8 55.2
2 13.5 29.9 87.2 85.1
3 2.6 8.1 89.9 93.2
4 2.3 1.8 92.1 95.0
5 1.7 1.1 93.7 96.1
6 1.3 0.7 95.0 96.8

Note: EFDC and HFR indicate model results and high frequency radar dataset, respectively.

Figure 10 shows that the first two EOF modes explain the majority of variance for both model
results and HFR data; accumulative variance of model results at 87.2% was greater than that of HFR
data at 85.1%. However, the accumulative variance of HFR data was greater than that of the model
results from the third EOF mode. The accumulative variance explained by the first four EOF modes
was greater than 90% for both model results and HFR data. This indicates that dominant patterns of
surface flow fields can be well represented by only a few EOF modes. Variations of accumulative
variances were not significant from the tenth EOF mode onward.

Although the difference of the variances in EOF1 mode between model results and HFR data
was significant, the variance of the first two EOF modes (greater than 85%), as presented in Table 3,
was comparable. The explained variance from the third EOF mode was much smaller than that of the
first and second EOF modes. Additionally, the first six EOF modes accounted for greater than 95% of
the total variance for both datasets. This indicated that the first six spatial EOF patterns represented
synoptic characteristics of surface currents.

Figure 11 shows the first three EOF PCs over time for both model results and HFR data. A PC
represents the time-varying characteristics (i.e., amplitudes) of the corresponding EOF eigenvector
spatial distribution modes. The sign of the PC values determines the direction of EOF modes.
Positive PC values indicate the same direction as the mode, while negative values indicate the opposite
direction. The larger the absolute value of a particular PC, the stronger that PC EOF mode is at that
moment. Time series of PC1 and PC2 for both model results and radar data exhibited cyclical trends
with periods similar to a tidal period. The correlations between model results and HFR data of the
first (PC1) and second PC patterns (PC2) are 0.80 and 0.58, respectively. This indicates that model
results and HFR data had high and moderate correlation, respectively, based on categories proposed by
Taylor [72]. PC3 represents high frequency wind generated flows. However, correlation between the
third principal components (PC3) was quite weak at 0.02. This discrepancy is again due to limitations
of the model to generate wind effects at short scales on the surface velocity fields, which would be
a consequence of the wind field configuration which forces the model, similar to those obtained by
Soto-Navarro, et al. [10].

To provide better insight into the temporal variation characteristics of the EOF PCs between model
results and radar data, a spectral analysis was carried out on each EOF PC time series, see Figure 12.
The EOF PC1 spectral density peaks were similar for model results and radar data (see Figure 12a),
the corresponding frequency is 0.08 cph (cycles per hour). This indicates that the semidiurnal signal
(12.5 h) was strongest in both datasets, corresponding to the tidal frequency. However, for EOF PC2
and PC2, the spectral density trends were not as strong between the two datasets. The spectral density
peaks of the radar data were weaker in PC2 and PC3 than that in PC1, while the spectral density peaks
of the model results were much weaker in PC3 than PC1 and that in PC2. The differences may again
result from the radar-derived surface current dataset containing spatially varying wind effects.

166



Remote Sens. 2020, 12, 2841

 

(a) 

 

(b) 

Figure 11. The first three EOF principal components (PCs): (a) model results and (b) HFR data.
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(a) 

(b) 

(c) 

Figure 12. Spectral analysis of EOF PCs between model results and radar data ((a–c) indicate spectral
analysis for EOF PC1, PC2, and PC3, respectively).
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4. Discussion

Characteristic patterns of coastal flows were extracted by SOM (Figures 3 and 4) and EOF (Figures 8
and 9) for both model results and radar data. As stated in the introduction, the SOM technique has more
advantages than other conventional data analysis techniques. Based on the SOM analysis, synoptic
characteristic patterns of coastal flows were visualized. Additionally, time series of BMU can offer
evolution trends of characteristic patterns over space; this can better explain spatiotemporal variation
of coastal flows. EOF technique can decompose coastal flow fields that change with time into two
parts: the spatial modes which are constant in time and the time components (PCs), depending only
on time. Although the EOF technique can extract synoptic characteristic patterns of coastal flows
for both model results and radar data, it does not offer temporal variation trends corresponding to
synoptic characteristic patterns over space. Since EOF is a linear decomposition technique, synoptic
characteristics of coastal flow fields in space were less uniform than synoptic patterns extracted by the
nonlinear SOM technique. In short, both SOM and EOF techniques offer synoptic characteristic patterns
of coastal flow fields for both model results and radar data. However, more detailed information
of variation properties for analysis dataset can be provided by an SOM analysis than that of an
EOF analysis.

5. Conclusions

This paper presented SOM and EOF analyses of characteristics of surface flow fields in Galway
Bay based on data provided by a HFR radar system and output from a numerical model. The main
conclusions from this research follow.

Surface flows were categorized into four and six representative synoptic characteristic groups
for model results and HFR data using SOM, respectively. The BMU time series indicate that the
evolution of SOM patterns between model results and HFR data had similar trends varying from west
to southeast in the anticlockwise direction.

The total variance explained by the first two EOF modes was comparable, with 87.3% and 85.1%
for model results and HFR data, respectively, which underlines the agreement of both datasets in
describing the general hydrodynamic characteristics of surface vectors in the region. The difference in
the rest of the EOF modes, with relatively low variance, probably results from application of spatially
constant wind in model.

Representative synoptic patterns of coastal surface flows were extracted using both EOF and SOM
techniques. More detailed spatiotemporal information about coastal flow variation properties can
provided by patterns obtained from SOM than from an EOF analysis.

The accuracy of model outputs was also assessed in detail by SOM and EOF type analysis;
these analyses illustrate which processes models are good at reproducing and which processes are
not well-represented by a model. In this case, the analysis shows that the model does not reproduce
wind induced currents well, and so the model must be improved in this regard by forcing the
surface with spatially varying wind stresses or through assimilation of the HF radar-derived surface
currents [73]. Additionally, flow is dominated by tidal processes and, therefore, 13 days of observations
is significantly relevant to those processes. In order to capture multiple (meteorological) synoptic scale
events, which would better illuminate the effect of wind forcing, analysis of a longer period using
modest spatial filtering could be advantageous and will be included in future research. The use of
spectral analysis is very informative when comparing time-varying data that has dominant frequency
components in EOF analysis.

This research analyzed a relatively short temporal dataset as this dataset was complete and
did not include synthetic data that would introduce further uncertainty into the already difficult
intercomparisons. Future research will consider longer-term datasets complemented by gap-filling to
give a synthetic continuous dataset; results will be compared with the research presented herein.

In summary, the results above reflect the capability of the EFDC model and HFR system to
describe characteristics of surface vector fields of the Galway Bay area. Typical patterns of surface
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vector fields associating with BMU time series can better describe the evolution of the process of
surface vector fields. SOM analysis provides more detailed information than that provided by EOF
analysis. Such SOM patterns may be useful in a variety of forecasting applications, such as oil spill
treatment and search and rescue. Although these results are interesting and useful, and SOM and EOF
analysis methods provide a powerful tool to diagnose ocean processes from different aspects, it is also
of great significance to further investigate the underlying physical mechanisms such as wind influence
in future studies.

SOM has significant potential for surface current forecasting since it is simpler than other
techniques, such as data assimilation, and computational costs are much lower. Forecasting of coastal
flows based on the SOM technique will be undertaken by the authors in future research.
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Appendix A. Self-Organizing Map

In general, implementation process of SOM algorithm can be summarized as follows:

1. Determine the size and type of the map.
2. Initialize each node’s weights Wij at random.
3. Select a vector at random from the training dataset and present to the network. The following

Euclidean distance formula is calculated to assess the “best matching unit (BMU)” between each
node and all input dataset.

DIj =

n∑
i=0

(
Xi −Wij

)2
(A1)

where
DIj is the jth distance from all input vector;
Xi is the ith input vector having I data points and J data points in x and y directions, respectively;
Wij is the jth node’s weight;
n in the number of weights.
The BMU of each node is found based on calculating which nodes’ weights are most like the

input vector X. The neighborhood function is taken by assuming to maximum when distance is zero.
There are four types of neighborhood function available: “bubble”, “gaussian”, “cutgauss” and “ep”:

Θ(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(σ(t) − dci) bubble

exp

⎛⎜⎜⎜⎜⎝ −d2
ci

2σ(t)2

⎞⎟⎟⎟⎟⎠ gaussian

exp

⎛⎜⎜⎜⎜⎝ −d2
ci

2σ(t)2

⎞⎟⎟⎟⎟⎠F(σ(t) − dci) cutgauss

max{0, 1,−(σ(t) − dci)
2} ep

(A2)
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where
σ(t) is the neighborhood radius at time t;
dci is the distance between map units c and i on the map grid;
F is a step function:

F(x) =
{

0 (i f x < 0)
1 (i f x ≥ 0)

(A3)

Determine the radius of the neighborhood of the BMU (the size of the neighborhood decreases
with each iteration).

Tune weights of nodes within the radius of the BMU to make them more like the input vector.
The closer a node is to the BMU, the more its weights are altered.

Wi(t + 1) = Wi(t) + Θ(t) × L(t) × (I(t) −Wi(t)) (A4)

L(t) = L0e(
−t
λ ) (A5)

where
L(t) is the learning rate.
Repeat steps (A2)–(A5) for N iterations.
Three parameters—number of iterations, learning rate, and neighborhood radius—need to be

determined. The quantization error (QE), i.e., average distance between each input data vector Xi and
its BMU (uBMU) can be expressed as:

QE =

N∑
i=1

||Xi − uBMU || (A6)

The topographic error (TE) being used to measure the topology preservation can be calculated by
the following formula:

TE =
1
N

N∑
i=1

uBMU(Xi) (A7)

where uBMU(Xi) is 1 if the first and the second BMUs are not adjacent to each other, otherwise it is
uBMU(Xi) = 0.

Appendix B. Empirical Orthogonal Function

In particular, the characteristic patterns of surface flows H(x, t) can be decomposed into a series
of linear combinations of temporal and spatial orthonormal function:

H(x, t) =
M∑

m=1

Zm(x)Lm(t) (A8)

where
Zm (also known as EOFs) are the spatial eigenfunctions representing the dominant spatial patterns

of surface flow range variability;
Lm (also known as PCAs) are the temporal eigenfunctions indicating the long-term changes of

surface vector fields;
m = 1 to M, with M being the number of temporal and spatial samples.
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Here, both the EOFs and PCAs should be orthonormal and normalized as follows:

T∑
t=1

Li(t)Lj(t) =
{

0 i � j
1 i = j

(A9)

X∑
x=1

Zi(x)Zj(x) =
{

0 i � j
γi i = j

(A10)

where
X and T are the maximum values of x and t, respectively;
γi is the eigenvalue, which represents the contribution made by the ith EOF mode to the total

variance, where the first few largest eigenvalues typically contain the most signals and represent the
dominant temporal–spatial patterns of the observed tidal series. The relative contribution of the mth
eigenfunction pm can be computed by the following expression:

pm =

⎛⎜⎜⎜⎜⎜⎝λm/
M∑

m=1

λm

⎞⎟⎟⎟⎟⎟⎠× 100 (A11)

Subsequently, it is possible to reconstruct a matrix H′(x, t) using a subset of the dominant
eigenvectors, which explained the maximum variance with the first k EOFs modes:

H′(x, t) =
k∑

m=1

Zm(x)Lm(t) (A12)
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67. Vilibić, I.; Mihanović, H.; Kušpilić, G.; Ivčević, A.; Milun, V. Mapping of oceanographic properties along a
middle Adriatic transect using Self-Organising Maps. Estuar. Coast. Shelf Sci. 2015, 163, 84–92. [CrossRef]

68. Li, Q.; Chen, P.; Sun, L.; Ma, X. A global weighted mean temperature model based on empirical orthogonal
function analysis. Adv. Space Res. 2018, 61, 1398–1411. [CrossRef]

69. Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in
atmospheric science: A review. Int. J. Clim. 2007, 27, 1119–1152. [CrossRef]

70. Monahan, A.H.; Fyfe, J.C.; Ambaum, M.H.; Stephenson, D.B.; North, G.R. Empirical Orthogonal Functions:
The Medium is the Message. J. Clim. 2009, 22, 6501–6514. [CrossRef]

71. Mau, J.-C.; Wang, D.-P.; Ullman, D.S.; Codiga, D.L. Characterizing Long Island Sound outflows from HF
radar using self-organizing maps. Estuar. Coast. Shelf Sci. 2007, 74, 155–165. [CrossRef]

72. Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39.
[CrossRef]

73. Paduan, J.D.; Shulman, I. HF radar data assimilation in the Monterey Bay area. J. Geophys. Res. Space Phys.
2004, 109, 434–446. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

175





remote sensing 

Article

An Approach to Minimize Atmospheric Correction
Error and Improve Physics-Based Satellite-Derived
Bathymetry in a Coastal Environment

Christopher O. Ilori 1,* and Anders Knudby 2

1 Department of Geography, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 4S1, Canada
2 Environment and Geomatics, Department of Geography, University of Ottawa, 60 University,

Ottawa, ON K1N 6N5, Canada; aknudby@uottawa.ca
* Correspondence: cilori@sfu.ca; Tel.: +1-77-8929-5350

Received: 22 June 2020; Accepted: 21 August 2020; Published: 25 August 2020

Abstract: Physics-based radiative transfer model (RTM) inversion methods have been developed
and implemented for satellite-derived bathymetry (SDB); however, precise atmospheric correction
(AC) is required for robust bathymetry retrieval. In a previous study, we revealed that biases from
AC may be related to imaging and environmental factors that are not considered sufficiently in
all AC algorithms. Thus, the main aim of this study is to demonstrate how AC biases related to
environmental factors can be minimized to improve SDB results. To achieve this, we first tested a
physics-based inversion method to estimate bathymetry for a nearshore area in the Florida Keys,
USA. Using a freely available water-based AC algorithm (ACOLITE), we used Landsat 8 (L8) images
to derive per-pixel remote sensing reflectances, from which bathymetry was subsequently estimated.
Then, we quantified known biases in the AC using a linear regression that estimated bias as a function
of imaging and environmental factors and applied a correction to produce a new set of remote sensing
reflectances. This correction improved bathymetry estimates for eight of the nine scenes we tested,
with the resulting changes in bathymetry RMSE ranging from +0.09 m (worse) to −0.48 m (better)
for a 1 to 25 m depth range, and from +0.07 m (worse) to −0.46 m (better) for an approximately 1 to
16 m depth range. In addition, we showed that an ensemble approach based on multiple images,
with acquisitions ranging from optimal to sub-optimal conditions, can be used to estimate bathymetry
with a result that is similar to what can be obtained from the best individual scene. This approach can
reduce time spent on the pre-screening and filtering of scenes. The correction method implemented
in this study is not a complete solution to the challenge of AC for satellite-derived bathymetry,
but it can eliminate the effects of biases inherent to individual AC algorithms and thus improve
bathymetry retrieval. It may also be beneficial for use with other AC algorithms and for the estimation
of seafloor habitat and water quality products, although further validation in different nearshore
waters is required.

Keywords: satellite-derived bathymetry; physics-based inversion method; atmospheric correction

1. Introduction

Bathymetric information from satellite data is of fundamental importance in optically shallow
waters, where the seafloor is visible from space and the water-leaving radiance (Lw) is influenced by
reflection off the seafloor. Such information, in the form of maps of water depth, is essential for a
wide variety of purposes including offshore activities (e.g., pipeline laying), resource management
(e.g., fishery), and defense operations (e.g., navigation). Traditional bathymetric charts are based on
soundings obtained during hydrographic surveys. However, as ship-borne surveys are costly and
time-consuming, and many shallow-water environments are highly dynamic, it is impossible to survey
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all areas of interest, and the difficulty in accessing shallow and remote areas means that in practice,
up-to-date data are typically only available for limited areas (harbors and main navigation corridors).
Airborne light detection and ranging (LiDAR) Bathymetry (ALB) systems, such as CZMIL (Coastal
Zone Mapping and Imaging LiDAR) [1], LADS MK 3 (Laser Airborne Depth Sounder MK 3) [2],
and EAARL-B (Experimental Advanced Airborne Research LiDAR B) [3] can also be used to map water
depth. With these techniques, a vertical accuracy of about ± 15 cm in shallow water is possible [4],
although accuracy is affected by turbidity and the LiDAR system. While precise bathymetric mapping
of water depth to about 20–70 m depth can be achieved with airborne LiDAR [5,6], costs associated
with these systems are relatively high, thus limiting their application over large, or remote, areas.

Passive optical satellite remote sensing can also be used to map bathymetry, typically known as
satellite-derived bathymetry (SDB), based on the relationship between the color of a shallow-water
area and the depth of the water. SDB can be implemented using empirical or physics-based methods.
The empirical methods are based on the simple premise that a statistical relationship can be established
between water depth and the remotely sensed radiance of a water body, using regression or similar
analysis [2,7–10]. Thus, all empirical approaches require coincident in-situ data on water depth for
calibration; ideally, these data should be up to date and have good geographic and depth distribution.
Empirical approaches assume that the inherent optical properties (IOPs) of the water, as well as seafloor
spectral reflectance, do not vary across the image, and therefore, the results may contain large errors
and require manual editing when this is not the case. A key advantage of empirical approaches is
the ability to retrieve water depth relatively easily, but their reliance on calibration from coincident
field observations means that they cannot be used for systematic regional and global mapping and
monitoring. Physics-based methods instead estimate bathymetry on per-pixel basis through the
inversion of a radiative transfer model (RTM). As such, they do not assume uniform IOPs and seafloor
reflectance, nor do they rely on coincident depth data for calibration. In addition to bathymetry, seafloor
reflectance and water IOPs, which can be used to infer substrate and water quality respectively, can be
simultaneously retrieved, and per-pixel uncertainties of all these parameters, including water depth,
can also be determined. While originally developed for and tested on airborne hyperspectral imagery,
physics-based methods for SDB have also been demonstrated for multispectral satellite sensors [11–14].
Physics-based methods can be implemented using either look-up tables (LUTs) [15,16] or semi-analytical
optimization methods [17,18]. In the first case, a database of remote sensing reflectance (Rrs) spectra is
built from an RTM provided with a range of values for water depth, spectral seafloor reflectance, water
column optical properties (absorption and backscattering coefficients), and known environmental
conditions such as sun angle and wind speed. For the retrieval of parameters (water depth, water IOPs,
and seafloor reflectance) in each image pixel, a search is then performed to find the Rrs in the LUT that
best matches the one observed in the pixel. With semi-analytical optimization methods, the radiative
transfer equation is used to estimate water depth by iterative optimization of the same parameters.
In both methods, the best match between modeled and observed reflectance is determined using a
least squares or similar matching technique.

Despite the advantages of physics-based methods, a substantial challenge is that they rely on
precise estimates of absolute radiometry, typically in the form of Rrs or Lw. Unlike other optical remote
sensing applications, including the empirical approaches to satellite-derived bathymetry, physics-based
retrieval algorithms may perform very poorly if Rrs is incorrectly estimated, and high-quality Rrs

data from a robust atmospheric correction (AC) is essential for accurate physics-based water depth
estimation. Accordingly, a variety of AC algorithms have been developed for ocean color (OC) products
retrieval such as bathymetry, and several studies have validated their performance against in situ
data. For example, Pahlevan et al. [19] validated Rrs produced from different AC schemes in the
Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS) with in situ data
from the AERONET-OC network. Likewise, Doxani et al. [20] assessed the performance of different
AC methods and validated their Rrs with match-up datasets over both land and water surfaces in
an AC inter-comparison exercise. Warren et al. [21] evaluated the accuracy of a wide range of freely
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available AC processors by comparing them to reference Rrs data from different coastal and inland
waters. Similarly, in a more recent AC exercise, Zhang and Hu [22] also analyzed an AC algorithm,
comparing its Rrs images with those measured over a few sites from the AERONET-OC stations.
Collectively, these studies demonstrated that accurate AC remains a challenge for OC remote sensing
where precise Rrs data are needed. Therefore, it is important to explore ways by which errors in AC
outputs, and their effect on the products derived from them, can be minimized. One way to address
some of the problems posed by imprecise AC is to assess and quantify the impacts of environmental
variables on AC accuracy and then account for this in the atmospherically corrected image. In an earlier
study [23], four publicly available AC processors (2 land-based and 2 water-based) for deriving the Rrs

in coastal waters were compared and validated with 54 Rrs match-up datasets from AERONET-OC
stations. The study revealed that biases from ACOLITE and SeaDAS, two of the state-of-the-art AC
algorithms, are influenced by environmental variables. In this study, we demonstrated the potential of
Landsat 8 (L8) data for SDB in US coastal waters and assessed the performance of a commonly used
and publicly available water-based AC algorithm (ACOLITE [24]) for physics-based SDB. To minimize
the effect of imperfect AC on the bathymetry retrieval, we further used a correction factor to improve
the original atmospherically corrected image from ACOLITE. Using a set of 9 images, SDB estimates
from these two AC procedures were then compared with LiDAR-derived bathymetry of the area.
Lastly, we used an ensemble approach to produce SDB of the study area using all the corrected images.

2. Study Sites and Imagery

2.1. Study Sites

The Florida Keys is a series of islands that extend from the southern end of Florida, USA, to the
south–southwest. Their nearshore shallow waters include coral reef tracts, patch reefs, bank reefs,
seagrass meadows, and unvegetated hard and soft bottom. This site was chosen because of its relatively
clear waters, the good knowledge of seabed features, and availability of LiDAR-derived depth data
for validating SDB estimates of water depth. The benthic environment of the section of the Florida
Keys used in this study is dominated by extensive seagrass beds, with some patches of reef and
unconsolidated sediments. Figure 1 shows this area with the distribution of bathymetric LiDAR data
used for validating the SDB estimates in this study.

Figure 1. Landsat 8 image showing the upper Florida Keys. Bathymetric LiDAR data used for validation
are shown in yellow.
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2.2. Satellite Data

Nine L8 images (Figure 2) from the Florida Keys, acquired during both optimal and near-optimal
conditions for SDB, were downloaded from the archive of the United States Geological Survey after
visually inspecting all available images from May 2013 to May 2019. L8 OLI (Operational Land Imager)
collects visible, Near Infrared (NIR) and Short-wave infrared (SWIR) spectral band imagery at 30 m
spatial resolution. In addition to the improved positional accuracy of 14 m, compared to 50 m for its
predecessors in the Landsat series, L8 includes coastal and aerosol (433–453 nm) and blue (450–515 nm)
bands for coastal and bathymetric mapping [25,26].

Figure 2. (a–i) A section of Florida Keys image showing the RGB composite of each image used in
this study.

2.3. LiDAR Data

To validate the SDB estimates, a bathymetry topographic digital elevation model (DEM) was
acquired from the National Oceanic and Atmospheric Administration (NOAA) National Centres for
Environment Information (NCEI) coastal LiDAR archive. The LiDAR data collection was conducted in
December 2014 over South Florida and the Florida Keys as part of efforts by NOAA to study sea level
rise and coastal flooding impacts on US coasts. Several LiDAR sources including topographic and
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bathymetric LiDAR sensors were used to develop and create a suite of tiled bathymetric–topographic
DEMs for South Florida and the Florida Keys [27]. A portion of the DEM tiles covering the study site
(Figure 1) was retrieved from the Office of Coastal Managements Data Access Viewer [28] where all
DEM data are archived. The DEMs, with a vertical accuracy of approximately 0.5 m, are referenced
vertically to the North American Vertical Datum of 1988. Horizontal positions were provided in
geographic coordinates and referenced to the North American Datum of 1983 [29,30]. A portion of the
collection covering the Florida Keys coastal area was referenced to mean sea level and resampled from
0.3 m to 30 m to match the spatial resolution of L8.

3. Methodology

3.1. Data Preprocessing

3.1.1. Atmospheric Correction

We implemented two types of AC methods for water depth retrieval: (1) we used ACOLITE
to process L8 images into Rrs values (henceforth Rrsraw) and (2) then applied a correction factor
to reduce errors in the original ACOLITE output and create new corrected Rrs values (henceforth
Rrscorrected). ACOLITE [24], specifically designed for AC over water surfaces, is an AC method
that estimates Lw by simulating contributions from molecular (Rayleigh) and particulate (aerosol)
scattering using a 6SV-based LUT [31]. Based on Ruddick et al. [32], aerosol reflectance is estimated by
determining a per-tile aerosol type (or epsilon) from the ratio of reflectances in two bands over water
pixels where Lw can be assumed to be zero. Then, the epsilon is used to extrapolate the observed
aerosol reflectance to the visible bands to remove atmospheric contributions. ACOLITE was originally
designed for processing L8 images, but it has been modified and updated to also process Sentinel-2
data [33]. Furthermore, the most recent version, which can be adapted to commercial sensors such
as Pleiades, contains an additional AC scheme (now the default setting) called the dark spectrum
fitting (DSF) algorithm, as well as a sun glint correction scheme [34]. In this study, ACOLITE (version
20170113.0) was used to produce all Rrs images, which are the direct input into the bathymetry
algorithm. The default SWIR option (1609 and 2201 nm band combination) was implemented for all
images. This band combination takes advantage of the longest-wavelength SWIR band, where water
absorption is the highest. In a previous study [23], in which a range of AC algorithms were compared
and validated against in situ Lw from 14 AERONET-OC stations, statistically significant relationships
were demonstrated between errors in ACOLITE’s Rrs estimates for L8′s 443 nm and 482 nm bands
and three environmental variables: Solar Zenith Angle (SZA), Aerosol Optical Thickness (AOT) at
865 nm (AOT865), and wind speed (u10); probable but statistically non-significant relationships were
also demonstrated for the 561 nm and 655 nm bands. Using multiple linear regression, we therefore
derived a set of coefficients that were used to estimate the error of ACOLITE’s Rrs estimates for each of
those four bands in each image, as a function of SZA, AOT865, and wind speed. Then, each of the four
bands used for depth retrieval in this study was corrected using Equation (1):

Rrscorrected = Rrsraw − (a + b*SZA + c*AOT865 + d*u10) (1)

where Rrscorrected and Rrsraw are the Rrs images with and without correction, respectively; and a,
b, c, and d are coefficients obtained through fitting a linear model to the data from Ilori et al. [23].
SZA was obtained from the metadata of each L8 scene. AOT865 was processed and obtained using the
l2gen processor in the SeaDAS software, and an average value used for each image was calculated by
randomly sampling multiple pixels over the area of the study site. Wind speed data were obtained
from the National Centers for Environmental Prediction Reanalysis project [35], where 6 h global wind
speed estimates are archived. Table 1 presents the value of each environmental parameter for each
image used in this study.
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Table 1. Environmental parameter variables for each image. AOT865: Aerosol Optical Thickness (AOT)
at 865 nm, SZA: Solar Zenith Angle.

Scene Date (dd/mm/yyyy) SZA (Degrees) AOT865 u10 (m/s)

01/12/2013 50.36 0.081 5.29
05/01/2015 52.79 0.088 1.07
26/01/2017 50.13 0.083 2.49
28/12/2017 52.98 0.076 6.45
13/01/2018 52.14 0.142 3.11
14/02/2018 45.63 0.12 4.84
02/03/2018 40.66 0.11 3.21
01/02/2019 49.02 0.122 3.74
05/03/2019 39.74 0.143 4.67

3.1.2. Sun Glint Correction

As sun glint correction is not inherently part of the ACOLITE version used in this study,
we implemented the NIR method [36] to remove specular reflection off the sea surface for images
where glint was visually obvious. This method assumes that for optically deep areas (where radiation
reflected from the seafloor has a negligible influence on Lw), any remaining NIR signal after AC must
be due to sea surface reflection. Thus, glint intensity and removal is performed by establishing a linear
relationship between the NIR and visible bands over an optically deep area in the image, and that
relationship is then used across all water pixels to reduce Rrs for the visible bands to its assumed
glint-free value.

3.1.3. Estimation of Noise Equivalent Reflectance

Bathymetry model inversion based on least squares optimization techniques is generally sensitive
to environmental noise [37,38]; thus, high environmental noise may make images unsuitable for
bathymetry extraction. The noise-equivalent difference in reflectance, NEΔRrs (sr−1), is a measure of
image noise, with contributions from the sensor (e.g., instrument degradation) and the environment
(e.g., variability in atmosphere and water surface state) [37,38]. The NEΔRrs can be used to assess
the suitability of a satellite imagery for aquatic remote sensing applications. For example, it has
been used to determine the suitability of the Compact Airborne Spectrographic Imager (CASI) for
benthic mapping [11]. Therefore, following AC, we estimated the NEΔRrs (sr−1) [39] by calculating
the band-wise standard deviation of Rrs from a 33 × 33-pixel window over a homogeneous optically
deep area using Equation (2) [40]. This approach assumes that any observed spectral variations in
the selected area is due to noise; thus, selected pixels must be as homogenous as possible for a robust
standard deviation estimate. Ideally, the NEΔRrs should be lower than 0.00025 sr−1 in each of the
visible bands [41], which was the case for all nine images used in this study. Table 2 shows the per-band
value obtained for each of the 9 images used in this study.

NEΔRrs = σRrs (2)

where σRrs is the standard deviation in each band over an as homogeneous as possible area of optically
deep water within the image.

3.1.4. Parameterization of Environmental Properties

To implement the physics-based approach to SDB, values of optical properties and substratum
spectral reflectance that are representative of the environment in question are needed. Water inherent
optical properties (IOP) (P440, G440, and X550) parameterization for forward modeling for each site
was based on assessment from Level 3 OC products from the Visible Infrared Imaging Radiometer
Suite Visible Infrared Imaging Radiometer Suite (VIIRS) Generalized Inherent Optical Property (GIOP)
algorithms [42]. P440 is the phytoplankton absorption coefficient at 440 nm, G440 is the absorption
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of gelbstoff and detrital materials coefficient at 440 nm, and X550 is the particulate backscattering of
suspended particles coefficient at 550 nm. Using parameter values obtained from these OC products,
ranges of values for each parameter were determined by observing the lowest and highest parameter
values for all dates from GIOVANNI, which is an online visualization tool for OC products [43].
Then, values slightly lower and higher than the observed lowest and highest values, respectively,
were chosen (Table 3). As part of the inversion model, seafloor reflectance spectra are also needed.
We used two seafloor spectra (Figure 3), based on the area’s benthic description [44]. Depth (Z),
which was also needed for forward modeling, was set to 0.1 and 25 m with the understanding that
depth penetration greater than 25 m would be difficult.

Table 2. The noise equivalent difference in reflectance (NEΔRrs), computed from a kernel of 33 × 33
pixels from an optically deep and homogeneous area, for each image used in this study.

Scene Dates (dd/mm/yyyy) Band 1 Band 2 Band 3 Band 4

01/12/2013 0.000200 0.000154 0.000096 0.000061
05/01/2015 0.000136 0.000108 0.000084 0.000063
26/01/2017 0.000092 0.000072 0.000057 0.000042
28/12/2017 0.000151 0.000105 0.000081 0.000053
13/01/2018 0.000111 0.000103 0.000069 0.000047
14/02/2018 0.000157 0.000129 0.000108 0.000063
02/03/2018 0.000126 0.000110 0.000069 0.000043
01/02/2019 0.000148 0.000127 0.000100 0.000063
05/03/2019 0.000086 0.000081 0.000059 0.000042

Table 3. Parameter ranges used for forward modeling.

P G X Z

0.006–0.04 0.004–0.04 0.0005–0.006 0.1–25

Figure 3. Spectral reflectance of the seafloor used in this study.

3.1.5. Forward Modeling of Remote Sensing Reflectance

To derive water depth, we applied a modified version of the semi-analytical inversion model of Lee
et al. [17,18] to the atmospherically corrected images. In this inversion scheme, the sub-surface remote
sensing reflectance, rrs, (the ratio of upwelling radiance to downwelling irradiance just below the
surface) is related to absorption (a) and backscattering properties (bb) of the water column, the seafloor
reflectance (ρ), and water depth (H). For nadir-viewing satellites, the model can be expressed as:

Rrs ≈ 0.5rrs

1− 1.5rrs
(3)
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where rrs, the subsurface remote-sensing reflectance, is expressed as:

rrs
(
a, bb, H, ρ

)
≈ (0.084 + 0.170u)u

(
1− exp

{
−
[

1
cos(θw)

+ 1.03
√

1+2.4u
cos(θv)

]
kH
})

+
ρ
π exp

{
−
[

1
cos(θw)

+ 1.04
√

1+5.4u
cos(θv)

]
kH
} (4)

u =
bb

a + bb
(5)

k = a + bb (6)

where θw and θv are the sub-surface solar zenith and sub-surface sensor viewing angles, respectively.
Absorption (a) and backscattering coefficients (bb) are functions of (1) the absorption coefficient of
phytoplankton at 440 nm, P; (2) the absorption coefficient of colored dissolved materials at 440 nm, G;
and (3) the backscattering coefficient of suspended particles at 550 nm, X. These are expressed as:

a = aw + Pa∗ phy + Ge−0.015(λ−440) (7)

bb = bbw + X
[550
λ

]Y
(8)

where aw and bbw are the absorption and backscattering coefficients of pure water, respectively [45],
a∗ phy is the specific absorption of coefficient of phytoplankton (normalized to a value of 1.0 at 440 nm),
λ is the center wavelength, and Y is the spectral shape that depends on the particulate shape and size.

While Lee’s inversion model uses the albedo of only one key benthic substrate (sand), our model
includes a parameterization to set the seafloor reflectance as a linear mix of the two bottom types
(i.e., sand and algae; [46]). To forward model the Rrs as a function of water depth, water quality
parameters, and the seafloor reflectance, the adaptive look-up table (ALUT) method [11,16] was
implemented, which ensures efficient construction and search through the table. In this approach,
an LUT consisting of the modeled Rrs values of L8 bands 1–4, seafloor reflectance (Figure 3), water optical
properties (absorption and scattering characteristics of water), and water depths of the optically
shallow zone of the area in question (Table 3) is constructed. With realistic minimum and maximum
values of all environmental parameters in the table, the LUT construction is optimized by using
a hierarchical structure to efficiently cover the range of expected Rrs values while minimizing the
under- or over-sampling of spectrally similar regions of environmental space, which is common with
discretization by regular intervals in conventional forward models. For example, a small change in
depth in shallow water areas will cause a significant/large change in Rrs, and will typically result in
under-sampling if the depth parameter is discretized by regular intervals. Likewise, oversampling
may occur in deep water areas where a small change in Rrs is expected [11,16]. To identify the best
parameter values to be included in the hierarchy in the ALUT technique, discretization is based on
an evenly sampled spectral space and not on an evenly sampled parameter space (e.g., water depth).
This approach requires bounded ranges for all the modeled parameters, for which we used the value
ranges in Table 3.

3.1.6. Inversion of Remote Sensing Reflectance

Model inversion was subsequently performed using the binary space partitioning (BSP)
approach [11,16], as described in Knudby et al. [12]. Briefly, this technique subdivides the LUT
created during forward modeling into different nodes. First, the BSP splits the whole LUT into two
(left and right child nodes) and subsequently subdivides the nodes into a partitioning tree, which
facilitates the optimization of the per-pixel LUT search. After model inversion and depth retrieval,
water depths were corrected for tidal height at the time of each image acquisition using tidal height
estimates obtained from Oregon State University’s tide prediction service [47].
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Depth cannot be accurately estimated for optically deep pixels (i.e., where reflection off the
seafloor is a negligible component of the radiance measured by the sensor); thus, we estimated a
depth threshold value for each scene to distinguish between optically deep and optically shallow areas.
These threshold values were obtained by calculating the mean minus 2 standard deviations of depth
predictions within a 33 × 33 window of homogeneous optically deep water. Results are reported for
each scene both a) for the full depth range, and b) for depths from the surface and down to these
scene-specific thresholds.

3.2. Validation of Depth Estimates

Validation of depth estimates from the two AC procedures was performed by comparing the
estimated depths to the LiDAR data. The number of depth estimates used for validation (Table 4) varied
between the nine images due to differences in the number of pixels for which depth was successfully
estimated, as pixels that did not pass the AC’s internal quality checks (e.g., due to clouds), pixels with
negative depths, and pixels that were visually impacted by boats, wake, or cloud shadows were
eliminated prior to validation. Based on the remaining pixels, we used the coefficient of determination
(R2), RMSE (root-mean-squared-error) (Equation (9)) and bias (Equation (10)) to compare the accuracy
of the uncorrected and corrected SDB estimates with the LiDAR datasets. The RMSE is used to measure
the accuracy of the estimated depth values; and bias is used to indicate overestimation (positive value)
or underestimation (negative value):

RMSE =

√
1
n

∑n

i=1
(xest − xobs)

2 (9)

bias =

∑n
i=1

(
xest − xobs

)
n

(10)

where n is the number of observations, and xest and xobs are the estimated and measured depths,
respectively. Values closer to zero for both error metrics indicate a better result. SDB obtained with
Rrsraw and Rrscorrected are hereafter referred to as SDBraw and SDBcorrected, respectively. These summary
statistics (R2, RMSE, and bias) were calculated both for the full depth range and for depths ranging
from the surface down to the per-scene depth threshold (Table 4).

Table 4. Summary validation statistics for satellite-derived bathymetry (SDB) estimates (SDBraw and
SDBcorrected) for the two depth limits in this study. Bold letters in the root-mean-squared-error (RMSE)
column indicate where an observed difference between SDBraw and SDBcorrected estimates is more than
0.1 m.

Scene Date
dd/mm/yyyy

Max Depth
(m)

RMSE (m)
(SBDraw/SBDcorrected)

Bias
(SBDraw/SBDcorrected)

R2

(SBDraw/SBDcorrected)
Number of

Validation Points

01/12/2013 25 1.96/1.66 0.83/0.84 0.66/0.79 3102
13.80 1.80/1.50 0.85/0.73 0.58/0.71 2988

05/01/2015 25 2.02/2.03 −0.17/−0.46 0.71/0.71 3317
11.23 1.84/1.88 −0.46/−0.71 0.53/0.53 3050

26/01/2017 25 1.34/1.25 0.49/0.09 0.85/0.85 3311
12.03 1.21/0.95 0.57/0.23 0.81/0.85 3142

28/12/2017 25 1.87/1.39 1.16/0.41 0.74/0.81 3148
17.54 1.85/1.39 1.18/0.42 0.79/0.81 3086

13/01/2018 25 2.21/2.04 1.45/1.40 0.66/0.76 2804
15.21 2.19/1.89 1.48/1.35 0.56/0.74 2721

14/02/2018 25 1.86/1.72 −1.15/−1.04 0.77/0.79 3316
14.81 1.80/1.69 −1.12/−1.01 0.71/0.74 3247

02/03/2018 25 2.03/1.65 0.71/0.68 0.61/0.74 3268
16.84 1.98/1.62 0.69/0.67 0.53/0.71 3226

01/02/2019 25 1.35/1.05 0.55/0.62 0.83/0.92 3255
14.61 1.33/1.02 0.54/0.64 0.76/0.90 3187

05/03/2019 25 1.36/1.27 0.76/0.53 0.89/0.89 3312
16.39 1.32/1.25 0.79/0.55 0.85/0.83 3263
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4. Result and Discussion

Scatterplots showing water depth estimates produced from both Rrsraw and Rrscorrected images
and the LiDAR depth measurements are shown in Figure 4, and summary statistics (R2, RMSE, and bias)
are listed in Table 4.

The RMSE values for SDBraw/SDBcorrected estimates range from 1.35/1.05 m to 2.21/2.04 m for the
full depth range, and from 1.21/0.95 m to 2.19/1.89 m when applying the per-scene depth threshold.
These values are broadly comparable with other SDB studies (e.g., [10,13,14,41,48]). For example,
Dekker et al. [48], who compared one empirical and five physics-based approaches to bathymetry
mapping using hyperspectral imagery, reported RMSE values between 0.86 (best) and 4.71 m (worst)
for depths less than 13 m for two clear tropical waters in the Bahamas and eastern Australia, suggesting
that our results are typical of what should be expected from a physics-based bathymetry method. It is
worth mentioning here that impacts from recent hurricanes over parts of the Florida Keys, notably
in 2016 and 2017, have resulted in an average increase of approximately +0.3 m in seafloor elevation
over different habitat types [49,50]. Such changes were not accounted for in this study and may have
had a small effect on the results, although it is worth noting that the best SDB estimate is from 2019
[Figure 4h], after the hurricanes.

Figure 4 shows that accuracy decreases with depth for both SDBraw and SDBcorrected, particularly
beyond approximately 15 m where the proportion of the measured signal originating from reflection at
the seafloor becomes very small. In general, for depths shallower than 15 m, SDBcorrected points cluster
more tightly around the 1:1 line that do the SDBraw points.

4.1. Effects of Image Conditions on Depth Accuracy

4.1.1. Turbidity

Out of the nine Rrs images we applied the correction factor to, eight corrections resulted in negative
RMSE changes when considering the two depth limits used in this study, with reductions ranging from
0.09 to 0.48 m (for the full depth range) and 0.07 to 0.46 m (for the per-scene depth threshold). For both
depth limits, only one correction resulted in increased RMSE (i.e., the image from 01/05/2015, see Table 4)
(RMSE values for SDBraw and SDBcorrected will hereafter be referred to as RMSEraw and RMSEcorrected,
respectively). For this image, accurate depth estimates were not possible beyond approximately 14 m
(Figure 4b), regardless of correction, and RMSEcorrected increased marginally by 0.01 m for the full
depth range and by 0.04 m for the per-scene depth threshold (i.e., 0–11.23 m). A visual inspection
of this image shows sediment plumes in the study area (Figure 5b), which suggests that turbidity
contributed to an underestimation of water depth for both SDBraw and SDBcorrected [14], and the image
is of marginal use for SDB, regardless of correction. Similarly, one of the two corrected images with the
lowest RMSE reduction for the full depth range also has what looks to be a silt plume emerging from
nearshore channels in the southwestern portion of the area for which depth was calculated (Figure 5a).
For this image, RMSE value marginally decreased by 0.09 m for the full depth range and by 0.26 m for
the per-scene depth threshold (i.e., 1 to 12.03 m).
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Figure 4. (a–i) Scatterplots of satellite-derived bathymetry estimates versus LiDAR measurements.
Red points show water depth estimates obtained from original ACOLITE outputs; blue points show
estimates obtained after applying the correction factor. The 1:1 line is shown in black. The dotted
horizontal lines and values above them denote threshold values beyond which the water column is
deemed optically deep. Threshold value was calculated using Mean − 2 Standard deviation of a 33 ×
33 window pixel selected over an optically deep homogeneous area in an image.
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Figure 5. Cont.
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Figure 5. (a–d) Maps showing different confounding factors that might have affected SDB estimates
from some images. 1: Boat-generated wake. 2: Plume emerging from a near river discharge. 3: Moving
boats. Sun glint can be observed in Figure 5c,d as visible texture around the southeastern part of
the images.
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4.1.2. Glint

With RMSEraw values of 2.21 m and 2.19 m for the full depth range and the per-scene depth
threshold, respectively, the image from 13/01/2018 produces the poorest SDBraw and SDBcorrected

estimates out of the nine images. As shown in Table 4, this image has the highest RMSE and positive
bias values. A visual inspection of this image (Figure 5c) indicates the presence of a moderate glint.
Glint correction was not performed, as the image did not show any noticeable improvement after the
initial testing. Likewise, for the image from 14/02/2018 (Figure 5d), the high negative bias values for
both depth ranges, regardless of correction (Table 4), may be attributed to residual sun glint in addition
to light turbidity. While an attempt was made to de-glint this image as described in Section 3.1.2,
given that the NIR-based de-glinting method [36] implemented (1) relies on manual selection of
deep-water pixels to estimate glint contribution, (2) assumes that there are glint-free pixels among
those selected [51], and (3) assumes a homogenously low Rrs(NIR) across all water pixels, failure to
meet these conditions may have resulted in the observed residual glint. For example, Rrs(NIR) may be
non-negligible in glint-free but very shallow or turbid waters, or where reflective vegetation such as
seagrass is close to the upper water column [52]. For these two images, the correction produces slightly
reduced RMSE values (Figure 4e,f), substantially so for their respective depth thresholds (Table 4).

4.2. Effect of Wind Speed and SZA on SDB Performance

Out of the eight scenes whose SDB performance improved with the correction for the Rrs images,
greater corrections were done for five scenes (i.e., Figure 4a,c–f) acquired with SZA > 49◦ (Table 1),
and one scene (i.e., Figure 4g) acquired during high wind speed (3.21 m/s) (Table 1), when considering
the per-scene depth thresholds. Likewise, when considering the full depth range, greater corrections
were also done for the same number of scenes under similar environmental conditions, with the
exception of the image from 26 January 2017, whose change in RMSE is −0.09 m (Table 4). It should be
noted that the most noticeable RMSE reduction for SDBcorrected images for both depth limits considered
in this study (i.e., Figure 4d) was observed for the scene with the highest SZA and highest wind speed.
This is supporting evidence for the existence of a relationship between ACOLITE’s overestimation
of Rrs in the first two bands of L8 and these two environmental variables [23], and it gives an idea
of the magnitude of its impact on SDB performance. A recent study [53] also found a dependency
between AC retrieval accuracy and wind speed in coastal waters. While there is strong evidence to
conclude that the correction factor used in this study lowers RMSE values for images with high wind
speed, it should be noted that wind speed data used in this study come from 6-h estimates in reanalysis
model, and thus, they have their own uncertainty. For this reason, more testing may be needed for a
firmer conclusion about the relationship between ACOLITE’s error and wind speed.

4.3. Bathymetry Estimates at Different Depth Ranges

Figure 6 shows the performance of SDBraw and SDBcorrected for each image, binned to 5 m depth
increments for the 1–25 m depth range. The accuracy of SDB estimates decreases with increasing depth
for both SDBraw and SDBcorrected. While higher RMSE values should be expected at deeper depths
due to the diminishing signal from seafloor reflectance, it should be noted that the number of LiDAR
points for validation is also smaller at deeper depths, leading to increased uncertainty around the
RMSE values reported at these depths.
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Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. (a–i) RMSE values obtained for SDBraw and SDBcorrected estimates at different water depths.
Results at higher depth (>15 m) should be interpreted with caution, as the number of depth observations
for those depth ranges was comparably lower than those available for shallower depth ranges. Depth
observation for each depth range is as follows: 1–5 m: approximately 900 points, 5–10 m: approximately
1800 points, 10–15 m: approximately 300 points, 15–20 m: approximately 40 points, and 20–25 m:
approximately 20 points. Note that the y-axes have different ranges for each date to facilitate comparison
between RMSEraw and RMSEcorrected for each single scene.
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4.4. SDB Estimates Using an Ensemble Approach

Most SDB studies are based on a single image for each study area, with researchers typically
selecting the best available image using visual inspection [14]. Our results indicate that this may not be
a robust approach. To illustrate the problem, we invite readers to visually inspect the nine images
used in this study (Figure 2) and identify the one that looks most suitable for SDB. Then, proceed to
Table 4 to see if it was indeed the one that produced the best results, as measured by RMSE, bias, or R2.
An informal test among our colleagues, all of whom work on OC remote sensing, suggests that it is not
easy to identify the best scene. However, a unique advantage of optical remote sensing is the repetitive
acquisition of images over the same area. This is especially important for SDB, where the suitability of
a given image is determined by transient environmental factors, such as cloud and aerosols, sea surface
state, and turbidity [54]. We explored one way of taking advantage of the multiple images available for
the study area by testing an ensemble approach in which we calculated the per-pixel median depth
value of all nine corrected images (i.e., SDBcorrected) used in this study. Then, we compared the resulting
depth estimates with those obtained using the best individual image from the analysis in Section 4.1
(i.e., the image from 01/02/2019, see Table 4). Figure 7 shows that the results produced by the ensemble
are very similar to those obtained with the best individual image. SDB estimates up to approximately
15 m are similar to the SDBcorrected estimates from the 01/02/2019 image, as are the RMSE values for the
1–5, 5–10, and 10–15 m depth ranges (Figure 8). Outliers are noticeably reduced in the ensemble result
when compared to any of the sub-optimal images that were also included in its calculation, suggesting
that the use of median depth is effective in eliminating noise in the ensemble. Thus, the ensemble
approach eliminates the need for the selection of a single best image, while producing SDB results
of similar accuracy. In this context, it is noteworthy that one of the two best images (i.e., image from
05/03/2019) is also the one with the lowest NEΔRrs in bands 1, 2, and 4, as well as the second-lowest
NEΔRrs in band 3 (Table 2). This suggests that one effective way to pre-screen images, either for a
single best image approach or to determine which images should be included in an ensemble, could be
to estimate NEΔRrs and select those images with the lowest values across the visible bands.

Figure 7. Scatterplots of ensemble-based satellite-derived bathymetry estimates vs. LiDAR
measurements. Blue dots show estimates obtained after applying a correction to the Rrs images.
The solid line represents the 1:1 relationship. The dotted line shows the per-scene depth threshold
value and its statistical metrics.
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Figure 8. RMSE values obtained for the ensemble-based SDB estimates at different water depths.

5. Conclusions

In this study, we demonstrated the use of Landsat 8 data for physics-based SDB in US coastal
waters. A state-of-the-art AC method (ACOLITE) was used to convert per-pixel radiometric units to Rrs,
and an RTM was inverted to estimate water depth, which was compared to airborne LiDAR validation
data. The results showed that ACOLITE can be used to produce SDB from imagery that is free of
conditions such as clouds, glint, sediments plumes, boats and wakes, with an accuracy (RMSE 1.34 m
for 1–25 m depth range and 1.21 m for approximately 1–15 m depth range) comparable to that reported
from empirical and physics-based SDB elsewhere. To account for ACOLITE’s known overestimation
of Rrs for Landsat 8′s coastal and blue bands, we applied a correction factor, which was calculated as a
function of solar zenith angle, aerosol optical thickness, and wind speed, to obtain a corrected set of Rrs

images. This correction further improved bathymetry estimates for eight of the nine scenes we tested,
with the resulting changes in bathymetry RMSE ranging from +0.01 m (worse) to −0.48 m (better) for a
1 to 25 m depth range, and from + 0.04 m (worse) to −0.46 m (better) for an approximately 1–16 m
depth range. Using a total of nine Landsat 8 images, we showed that the correction factor improved
SDB results, both on average (ΔRMSE = −0.22 m) and for the best single image (ΔRMSE = −0.30 m) for
the 1–25 m depth range. SDB improvements from application of the correction factor were the greatest
for images acquired at a high solar zenith angle and at high wind speeds, where ACOLITE is known
to have the greatest bias. The correction method demonstrated in this study can be implemented
with any appropriate AC algorithm. Finally, we demonstrated that an ensemble approach based
on multiple images, with acquisitions ranging from optimal to sub-optimal conditions, can be used
to derive bathymetry with a result that is similar to what can be obtained from the best individual
image. This is important because it is rarely visually obvious which of several images is best for SDB,
and the ensemble approach can be automated to reduce time spent on pre-screening and filtering
scenes, and it can potentially also reduce the amount of missing pixels caused by clouds and cloud
shadows encountered in any single image. Automating SDB will ultimately facilitate the efficient and
operational use of the globally available L8 (and other multispectral) datasets.
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Abstract: The rise in sea level is expected to considerably aggravate the impact of coastal hazards in
the coming years. Low-lying coastal urban centers, populated deltas, and coastal protected areas are
key societal hotspots of coastal vulnerability in terms of relative sea level change. Land deformation
on a local scale can significantly affect estimations, so it is necessary to understand the rhythm and
spatial distribution of potential land subsidence/uplift in coastal areas. The present study deals with
the determination of the relative vertical rates of the land deformation and the sea-surface height by
using multi-source Earth observation—synthetic aperture radar (SAR), global navigation satellite
system (GNSS), tide gauge, and altimetry data. To this end, the multi-temporal SAR interferometry
(MT-InSAR) technique was used in order to exploit the most recent Copernicus Sentinel-1 data.
The products were set to a reference frame by using GNSS measurements and were combined
with a re-analysis model assimilating satellite altimetry data, obtained by the Copernicus Marine
Service. Additional GNSS and tide gauge observations have been used for validation purposes.
The proposed methodological approach has been implemented in three pilot cases: the city of
Alexandroupolis in the Evros Delta region, the coastal zone of Thermaic Gulf, and the coastal area of
Killini, Araxos (Patras Gulf) in the northwestern Peloponnese, which are Greek coastal areas with
special characteristics. The present research provides localized relative sea-level estimations for the
three case studies. Their variation is high, ranging from values close to zero, i.e., from 5–10 cm
and 30 cm in 50 years for urban areas to values of 50–60 cm in 50 years for rural areas, close to the
coast. The results of this research work can contribute to the effective management of coastal areas in
the framework of adaptation and mitigation strategies attributed to climate change. Scaling up the
proposed methodology to a continental level is required in order to overcome the existing lack of
proper assessment of the relevant hazard in Europe.

Keywords: land subsidence; multi-temporal SAR interferometry; sea-surface height; relative sea
level change; satellite altimetry data; GNSS; coastal urban centers; natural protected areas; climate
change impact

1. Introduction

Sea-level rise (SLR) is one of the most significant effects of climate change that has been the focus of
international attention due to its high future projected rates that would impact coastal areas around the
world [1]. Particularly, coastal low-lying regions will be affected, and their land will be decreased due
to coastal erosion and inundation [1,2]. In the early 1990s, 33.5% of the global population lived within
100 vertical meters of sea level [3], and after a few years, it was estimated that about 23% of the world’s
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population lived within 100 km of coast and up to 100 m above sea-level rise [4]. In a recent study,
Vousdoukas et al. [5] indicated that extreme sea levels (ESLs) in the European region could probably
rise up to 1 m or more by the end of this century, aggravating the impact of coastal hazards. Potential
impacts such as the increase of the frequency of floods, acceleration of coastal erosion, salinization of
surface and ground waters, and degradation of coastal habitats such as wetlands are expected to be
significant in the future [6]. The impact depends not only on the intensity and extent of coastal changes
but also on human response and adaptive capacity to various hazards. Recent research works confirm
that the human factor has played a significant role, over the last century, in increasing vulnerability
and exposure all around the world, indicating that, in the absence of adaptations, this trend will
continue [7].

Coastal areas with very low altitudes, located in inhabited places or in places of highly social
and economic activity, are particularly vulnerable to any relative sea level change [8]. In particular,
for coastal urban centers, the risk is increased due to high exposure. Coastal protected areas and deltas
are also of great interest due to the high conservation and protection of the special characteristics
of the natural environment. As stated in the Intergovernmental panel on climate change (IPCC)
Special Report [7] SLR will also affect natural protected areas and agriculture mainly through land
submergence, soil and fresh groundwater resources, salinization, and land loss due to coastal erosion,
with important consequences on production and food security.

Sea-level changes can be driven by either fluctuation in the masses or volume of the oceans or by
changes in the land relative to the sea surface [9]. Any sea-level change that is observed with respect
to a land reference frame is defined as a relative sea-level (RSL) change [10]. Thus, it is necessary
to understand the rhythm and spatial distribution of potential surface deformation. Changes in
sea level occur over a wide range of temporal and spatial scales that are not uniform [11], with its
contributing factors strongly linked to climate change [12,13]. In many coastal low-lying and delta
areas, land subsidence exceeds absolute sea-level rise up to a factor of 10. Without adopting any
mitigation measures, parts of many coastal regions will sink below sea level [14]. Land subsidence that
can be triggered by groundwater extraction due to population growth and urbanization [15,16] causes
a total annual loss of billions of dollars.

Satellite altimetry and tide gauges provide different kinds of sea-level information [17]. As stated
in Poitevin et al. [18] altimetry measures sea-surface height (SSH) attached to a well-defined geocentric
reference frame, whereas tide gauges record sea-level heights with respect to the land upon which they
are grounded [19]. Over the last two centuries, sea-level monitoring was performed mainly by tide
gauges [19]. Since the beginning of the 1990s, relative observations are acquired by high-precision
satellite altimetry [20]. More specifically, high resolution satellite altimetry was initiated with the
launch of the TOPEX/Poseidon and Jason series of spacecraft in the early nineties [7,21]. Satellite
altimetry has revolutionized sea-level measurements with its global coverage and a typical repeat cycle
of a few days [17]. During the last 30 years, 11 satellite altimeters have been launched providing nearly
global sea level measurements (up to ± 82◦ latitude) [7]. Both satellite radar altimetry and tide gauge
techniques require supplemental information on vertical land motion [18] that can be achieved using
vertical rate estimates from a permanent global GNSS receiver [22,23].

During recent times, SAR satellite constellations have been used for several coastal zone studies,
demonstrating it as a powerful monitoring tool, in terms of spatial and temporal capabilities [24–28].
Apart from mapping the coastlines, SAR data can be exploited to map the land deformation rates,
using the methodology of SAR interferometry (InSAR) that has been used in the present study.
This methodology provides high spatial and temporal resolution ground displacement measurements
due to geophysical processes or even man-made activities. Advanced techniques such MT-InSAR,
enable the simultaneous processing of multiple SAR acquisitions in time, increasing the accuracy and
the spatial coverage of reliable scatterers on ground. Currently, there are two broad categories of
algorithms for processing multiple acquisitions in time, the persistent scatterers interferometry (PSI) and
small baseline subsets (SBAS) methods, which are optimized for different models of scattering [29–31].

200



Remote Sens. 2020, 12, 2296

In this framework, MT-InSAR approaches were extensively and successfully exploited to
investigate coastal ground deformation [32–34]. These techniques, such as permanent scatterers
(PSs) [35], SBAS [36], and interferometric point target analysis (IPTA) [37] use a medium-to-large
dataset of SAR images acquired at different times over the observed area to follow the temporal
evolution of a deformation phenomenon, retrieving the mean deformation rate and the time series for
each point target. Moreover, these techniques can benefit from the availability of free and open access
SAR data archives provided by European and international space agencies.

Although several studies have been conducted for studying land deformation using MT-InSAR [38–40],
PSI TERRAFIRMA products [41], and GNSS [42–45] in Greece, only a few have been targeting the
coastal hazard [46–48]. Moreover, none of them have used both the aforementioned space geodesy
methods in combination with altimetry measurements to define the relative sea-level rise. In this respect,
the aim of this study is to improve the understanding of and quantify the coastal relative sea level rise in
three coastal regions of Greece by using a combination of multi-source Earth observation—SAR, GNSS,
tide gauge, and altimetry data. To that end, MT-InSAR technique will be used by taking advantage of
the most recent Copernicus Sentinel-1 data, calibrated by GNSS data and combined with a reanalysis
model assimilating satellite altimetry data. Additional GNSS and tide gauge observations have been
used for validation purposes. The proposed methodological approach has been implemented in
three pilot areas with special characteristics, contributing to a better understanding of the coastal
hazards, constraining ground deformation phenomena occurring along urban and natural protected
coastal areas.

2. Study Areas

This paper deals with the spatio-temporal assessment of land deformation, as a factor contributing
to relative sea level rise, in three pilot cases with different combinations of characteristics (Figure 1).
The first pilot case is the city of Alexandroupolis extending up to the Evros Delta region (A), which is a
combination of coastal urban area (in the West side) and the unique characteristics of the trans-boundary
Evros Delta (on the east side) in terms of the importance of the wetlands. The second pilot case is the
coastal zone of the Thermaic Gulf (B) which is a combination of a big urban center (Thessaloniki city
on the east side) with its port and airport infrastructures and the unique formation of Delta Axios
(in the west side) and the Axios-Loudias-Aliakmonas National Park. The third one is the coastal area
of Killini (west side)—Araxos (northeast side) (C) in which there are two important infrastructures
(port and airport) and the special Lagoon of Kalogria area (northeast side).

2.1. Coastal Area of Alexandroupolis City—Evros Delta Region

The coastal area from the Alexandroupolis city extending up to the Evros Delta (Gulf of
Alexandroupolis) covers an area of about 350 km2 [49]. Alexandroupolis, the capital of the prefecture of
Evros, is the largest city of Thrace and the region of Eastern Macedonia in terms of size and population.
This very fast-growing city has an important port and it is a summer resort centre in SE Balkans due to
the great location at the center of sea and land routes connecting Greece with Turkey [50]. The coastal
zone area under investigation extends to more than 50 km and can be distinguished in the western
unity and the eastern unity in terms of geomorphology. The western unity from the Mesimvria coast
up to Alexandroupolis is characterized as hilly to mountainous, whereas the eastern one covering the
coastal zone from Alexandroupolis to the Evros river mouth is a plain area relief [50].

The Evros Delta region, shared by Greece and Turkey, has been characterized as one of the most
important wetlands on a national and European level [51]. A major part of the delta on the Greek
side has been characterized as a wetland in special protection area (SPA), as a site of community
importance (SCI) in the Natura 2000 Network, and as internationally important under the Ramsar
Convention (1971), due to its significant and rare species of plants, fauna and birds [52]. The Turkish
part of the delta is also included in the list of wetlands of international importance, while Lake Gala,
in close proximity to the delta, has been declared a National Park area [51]. The delta is formed by
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the Transboundary Evros River alluvial deposits, filled rapidly over millennia and affected by the
interaction with the sea [53].

 

Figure 1. Location map of the three study areas. (A) Coastal urban area of the Alexandroupolis
city—unique wetland area of the Evros Delta. (B) Coastal Zone of Thermaic Gulf; urban center
of Thessaloniki city—Axios Delta. (C) Coastal Area of Killini—Araxos (Patras Gulf), northwestern
Peloponnese.

2.2. Coastal Zone of Thermaic Gulf, City of Thessaloniki—Axios Delta

The City of Thessaloniki, located in Central Macedonia and situated in the inner part of the
Thermaic Gulf, is established as the second most important urban center of Greece. It has an extended
industrial zone in its suburbs and an international port that constitutes the major center of merchant
shipping for the surrounding Balkan countries [54]. The catchment area of the Thermaic Gulf, located in
the southern Balkan Peninsula, is approximately 40,000 km2, and the main rivers are Axios, Aliakmon,
Loudias, and Gallikos [55,56]. The Plain of Thessaloniki is formed by the sub-aerial deltaic plains of
these rivers, together with River Loudias and the artificially drained lake of Giannitsa [55]. The wetlands
of the Axios Delta at the Thessaloniki plain provide a typical example of wetland destruction in Greece.
In 1917, 36% of the plain was wetland, but this area now amounts only to 5.5% [56]. This is also
confirmed by Psimoulis et al. [57], who stated that the areas of Kalochori and Sindos used to be a
delta some thousand years ago. The main environmental pressures such as water discharge decrease,
drainage works, urbanization, and pollution negatively affected the ecological character of the deltaic
area, leading to the destruction of 70% of the original wetlands during the 20th century [56]. Moreover,
the decrease in rainfall in combination with the overuse of water for irrigation, has resulted in severe
salinization of the delta area, which has impacted on the flora and fauna of the wetlands [58]. Currently,
some of these activities have ceased, and their impacts have already been mitigated [56].

2.3. Coastal Area of Killini—Araxos (Patras Gulf), NW Pelloponese

The coastal area from the port of Killini to the Araxos airport is part of the Gulf of Patras and is
located in the northwestern Peloponnese. The Peninsula of Killini, located at the westernmost end
of Peloponnese, contains an isolated hilly area of about 130 km2. It is formed by a morphological
rise (Kastron at a highest point of 244 m) connected to mainland Peloponnese in the east by the plain
of the Pineios River (Elis plain) [59]. Araxos is a village in the northwestern part of Achaea that is
located in the coastal plains near Cape Araxos, which separates the Gulf of Patras from the Ionian
Sea. From Araxos to Killini, there are three lagoons—Prokopos, Kalogria, and Kotychi. Part of the202
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area was recognized as a Wetland of International Importance in 1975, when it was included in the
10 wetlands of Greece protected under the Ramsar Convention. A few decades later, parts of the area
were recognized as SPA for bird species, in the framework of Directive 2009/147/EE, as well as SCI in
line with Directive 92/43/EEC, which led to the formation of the European NATURA 2000 Network of
protected areas [60]. Most of the coastal area lies on sand dune formations, while small areas near
Kounoupeli, in the eastern area of the Kalogria lagoon and the Mavra Vouna hill, are all composed
of hard limestone. The eastern part of the area behind the dunes is covered with clay deposits with
depths of a few centimeters to more than 2 m. The seashore consists of unconnected single-grained
medium and fine-sized sand with a very small amount of silt [61].

3. Materials and Methods

In this section, the data and methods that were used for this study are presented. More specifically,
data specifications are given for all the satellite SAR, altimetry, GNSS, and tide gauge measurements.
The mature technology of the MT-InSAR was used for this research work to provide land deformation
rates which were set to a reference frame with the use of a GNSS data. The deformation rates were
combined with the altimetric SSH rate to calculate the relative sea level change. Additional GNSS
and tide gauge observations were used for validation purposes. The workflow of the proposed
methodological approach is illustrated in the flowchart of Figure 2.

Figure 2. Workflow of the methodological approach. The boxes in the middle represent the intermediate
and final products while the peripheral boxes indicate the data used. GNSS stands for global navigation
satellite system; DInSAR for differential synthetic aperture radar interferometry; ENU for east-north-up;
PSMSL for permanent service for mean sea level; PS for permanent scatterers; SBAS for small baselines
subsets; LOS for line of sight; DEM for digital elevation model; INGV for Istituto Nazionale di Geofisica
e Vulcanologia.
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3.1. Data

This study, apart from coastal urban centers, focuses on natural protected areas. For this reason,
the appropriate selection of sensors is important in order to achieve high spatial coverage of surface
deformation information. In this case, high temporal resolution is a crucial parameter. Copernicus
satellites Sentinel-1 A and B show high spatial and temporal resolution operating at C band. Today,
the latest and most advanced SAR mission is the Sentinel-1 constellation. The Sentinel-1A, the first of
the twin satellites, was launched in April 2014 by ESA. The Interferometric Wide (IW) swath acquisition
mode, has a swath of 250 km and spatial resolution of 5 m in range (dimension perpendicular to the
satellite track) and 20 m in azimuth (dimension along the satellite track), with no multilook and a repeat
cycle of 12 days. In April 2016, the Sentinel-1B was also successfully placed into orbit, decreasing the
temporal resolution for the constellation to six days [62].

In the TOPSAR operation mode (the most common of Sentinel-1), in addition to steering the
beam in range as in ScanSAR (the most common mode of ESA’s ASAR/ENVISAT and ERS missions),
the beam is also electronically steered from backward to forward in the azimuth direction for each
burst, resulting in an homogeneous image quality throughout the swath [62]. With this mode, the
same coverage and resolution as in ScanSAR is achieved, but with an improved signal-to-noise ratio
(SNR). Sentinel acquisitions are available systematically and free of charge through the Copernicus
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).

For the case of Alexandroupolis, Evros Delta, a set of 91 ascending Sentinel-1B, IW, Level-1,
single look complex (SLC) acquisitions between 27 September 2016 and 30 October 2019 (Table 1)
was used. For the case of the wide area of the Thermaic Gulf, Thessaloniki, Axios Delta, a set of
130 ascending Sentinel-1 A and B, IW, Level-1 SLC acquisitions was collected. The set of Sentinel-1
images was acquired along ascending passes covering the period 12 October 2014 until 24 June 2019
with 70 Sentinel-1A images and 60 Sentinel-1B images (Table 1). Finally, for the case of the coastal area
of Killini, Araxos in the northwestern Peloponnese, a set of 98 ascending Sentinel-1A and 60 Sentinel-1
B, Level-1, SLC, IW acquisitions was used. The set of 158 images spans the period from 11 November
2015 to 23 July 2019 (Table 1).

Table 1. Characteristics of the Sentinel-1 synthetic aperture radar acquisitions used in the present study.

Study Area
No Sentinel

Images
S1A S1B

Relative
Orbit

First Image Last Image

Alexandroupolis, Evros
Delta 91 91 131 27 September

2016
30 October

2019

Thermaic Gulf;
Thessaloniki, Axios Delta 130 70 60 102 12 October 2014 24 June 2019

Kyllini-Araxos,
northwestern Pelloponese 158 98 60 175 11 November

2015 23 July 2019

For this research work, the monthly mean “sea-surface height above sea level” of
“MEDSEA_REANALYSIS_PHYS_006_004” product at 0.042 degree spatial resolution from Copernicus
Marine Environment Monitoring Services (http://marine.copernicus.eu/) was used. This product
is the result of a physical re-analysis component from the Nucleus for European Modelling of the
Ocean (NEMO) assimilating satellite data. The assimilated dataset includes mono altimeter satellite
along-track SSH computed with respect to a seven-year mean [63].

Additionally, 30-sec GNSS data was used to anchor the MT-InSAR vertical rate with the
GNSS station one. Three GNSS stations (one for each case), i.e., ALEX (URANUS network) for
Alexandroupolis, Evros Delta; AUT1 (AUTH) for Thermaic Gulf; and RLSO (National Observatory
of Athens—NOA network, http://www.gein.noa.gr/services/GPS/NOA_GPS/noa_gps_files/rlso.html)
for Killini, Araxos were used. The data for the last two GNSS stations was downloaded from
the NOA GNSS Network website (http://www.gein.noa.gr/gps.html). Additionally, for validation
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purposes, three more GNSS solutions were used for the GNSS station THS1 (http://geodesy.
unr.edu/NGLStationPages/stations/THS1.sta), located at the Aristotle University of Thessaloniki;
AUT1 (http://geodesy.unr.edu/NGLStationPages/stations/AUT1.sta) located south-east of Thessaloniki;
and ALE3 (http://geodesy.unr.edu/NGLStationPages/stations/ALE3.sta) located near Alexandroupolis.
The network of these three stations was calculated by the Nevada Geodetic Laboratory [64].

Finally, two tide gauges from the Permanent Service for Mean Sea Level (PSMSL) [65], with
measurements since 1969, were used also for validation purposes. One is located in Alexandroupolis
(https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=290-065), and the other is
located in Thessaloniki (https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=290-051).
The tide gauge of NOA network named NOA-12 that is also located in Thessaloniki (https:
//webcritech.jrc.ec.europa.eu/TAD_server/Device/175) was not used in this research as its time series is
limited to two years (since September 2018).

3.2. Methodology

The aim of the persistent scatterers technique is to overcome interferometric coherence degradation
over time using a set of phase-stable pixels (the persistent scatterers). This technique is performing
better in urban areas, where temporal decorrelation is minimized due to the high density of stable
structures acting as scatterers (buildings, bridges, etc.). The flowchart of the methodology is illustrated
in Figure 2.

MT-InSAR deformation rates from Sentinel-1 data alone suffer from lack of anchor or reference
point. A reference PS could be selected in an area located on limestone bedrock with high coherence,
being away from deltaic and fluvial deposits or recent seabed outcropped deposits and generally from
brittle material. All three GNSS solutions were calculated from NOA GNSS processing station (NGProS)
(http://aips.space.noa.gr) using version 6.3 of GIPSY/OASIS II software (http://gipsy-oasis.jpl.nasa.gov),
developed by the Jet Propulsion Laboratory of the National Aeronautics and Space Administration
(NASA), Pasadena, California, CA, USA [66]. The orbits of the GNSS satellites used were the
precise ones in the reference frame system of ITRF2014. The ocean load model that was used is the
Goddard/Grenoble Ocean Tide (GOT 4.3) empirical model maintained by NASA-Goddard Space
Flight Center. The ocean load values for the three GNSS was calculated from the “free ocean tide
loading provider” (http://holt.oso.chalmers.se/loading/). The vertical rate for each GNSS station was
calculated using the least squares method (Table 2). The daily time series of the three GNSS stations
were calculated and the vertical linear rate values were estimated as shown in Table 2 and Figure S1.

Table 2. Global navigation satellite system stations used, the date ranges, and the estimated vertical
linear rates.

Name Network ϕ (WGS84◦) λ (WGS84◦) Vertical Linear
Rate (mm year−1) Time Period

Number
of Epochs

RLSO NOA 38.05583 21.46474 −2.1 March 2009–February 2017 2819

AUT1 AUTH
(EUREF) 40.56681 23.00371 −1.1 November 2007–July 2018 2245

ALEX URANUS 40.84916 25.85344 0.8 October 2017–April 2020 783

In the case of both Alexandroupolis—Evros Delta and Kyllini–Araxos, the Parallel SBAS
(P-SBAS) [67,68] service under the Geohazards Exploitation Platform (GEP) of ESA was exploited.
GEP is a cloud platform that provides a rich set of ready to use EO Data processing services for
geohazards analysis and monitoring (https://geohazards-tep.eu/). A threshold of temporal coherence
of 0.8 was used. As reference points, the GNSS stations ALEX and RLSO were used accordingly. The
P-SBAS service is a parallel version of SBAS algorithm. It was selected for these two cases due to its
higher effectiveness in rural areas in comparison with PSI which is more powerful in urban areas such
as the Thermaic Gulf surrounded by urban centers.
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In the case of the Thermaic Gulf, SAR PROcessing tool by periZ software (SARPROZ, Razer
Limited, Hongkong, China) [69] was used as the MT-InSAR processor, extending the standard linear
PS technique to estimate non-linear motion having no prior information. Shuttle Radar Topography
Mission (SRTM) 1 arc-sec DEM [70] was used for the PSI processing. A master date was chosen for this
period based on the minimization of the perpendicular baseline, the temporal baseline and the weather
data. After selecting a master image (acquired on 24 March 2017), the proposed algorithm was applied
only on pixels showing an inverse amplitude stability (i.e., the ratio between the mean calibrated
image amplitudes and its standard deviation) higher than 0.7. The GNSS station AUT1 was chosen as
a reference point (Table 2). Once the data was unwrapped, the low pass component was estimated
using a three-sample temporal base-line weighted moving average and assumed this residual phase
term is an estimation of the non-linear motion contribution. These steps were performed considering
only neighboring pixels. The same processing steps were then applied, considering only differences
between the reference point and all persistent scatterers including the estimated atmospheric phase
screens (APS). Finally, for each PS the linear rate was calculated by using least squares approximation.

All three MT-InSAR datasets are originally in slant range geometry, i.e., along the LOS direction.
We assumed that the deformation is totally vertical, a hypothesis that is not valid if an earthquake
or slow aseismic slip of tectonic origin or landslide occurs. For the study period and the three
study areas according to global Centroid Moment Catalog (https://www.globalcmt.org/) there were no
earthquakes greater than Mw = 5.0 and shallower than 15 km within a distance of 40 km. Nevertheless,
the earthquake is a sudden event and this kind of deformation has little impact or is filtered out by
the MT-InSAR process. The aseismic processes take place in large fault zones (e.g., North Anatolian
fault as well as its continuation in the Aegean Sea) or smaller ones (e.g., Gulf of Corinth) and the vast
majority of the deformation is concentrated within a narrow zone along the feature. The landslides
affect the deformation field only very locally. For the Alexandroupolis city—Evros Delta region the east
branch of the north Anatolian fault (a right lateral structure) sits almost 15 km south of the southern
coast of Evros Delta. Potentially, spatially horizontal (east–west oriented) deformation due to the
continuous deformation of this fault zone is considered negligible due to the long distance involved
and the limited spatial coverage of each case. Currently, the distribution of the available GNSS stations,
with adequate temporal baselines in the three areas, is not dense enough to differentiate for horizontal
deformation velocities. Accordingly, considering the vertical component of the Line of Sight vector
for each PS, the MT-InSAR rates were transformed to the vertical ones. In order to anchor them with
the GNSS ones the following procedure was used. An average value was calculated, at each of the
three GNSS locations, for the PSs (of the corresponding MT-InSAR dataset) closer than 300 m from
each location (except for AUT1 that is located in a semi-urban area, where the distance is 600 m). The
offset of this value to the GNSS one was subtracted from each one of the three MT-InSAR datasets.
Thus finally, all the MT-InSAR products were transformed to vertical direction and anchored to a
single reference frame. These products are labelled as “calibrated” in Figure 2. From the SSH, using
least squares, we calculated the linear SSH rates as in, e.g., Figure 4. Further, the relative sea-level rise
rate was calculated simply by subtracting the vertical deformation rate from the sea-surface height
rate. Finally, the additional units of cm per 50 years were used to facilitate the discussion on a basis
of longer time periods. For validation purposes, we used the vertical component of GNSS solutions
from a Nevada institute as well as tide gauges from PSMSL where they were available. Results of
localized deformation rates and thus relative sea-level rise are following in the next section. The GNSS
uncertainties are used along with the standard deviation values of the spatially distributed MT-InSAR
deformation rates in order to provide a level of uncertainty of each detected localized deformation.

4. Results

In this section, we present the localized deformations detected by MT-InSAR processing and
sea-surface height, following the methodological approach detailed in the previous section (Figure 2)
in the three Greek coastal areas under investigation effectively covered by Sentinel-1 SAR acquisitions.
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The absolute sea level trend across Greece for the period 1993–2019 ranges between 1 mm/year and
3 mm/year and, in some specific areas such as in the southern part of the Peloponnese and in the
northeastern part of Crete, to more than 3 mm/year.

4.1. Alexandroupolis, Evros Delta

In the case of the Alexandroupolis, Evros Delta region, the velocity of deformation has been
derived using 91 Sentinel-1 acquisitions (Table 1) and the persistent scatterers technique over an
area of 212 km2. The urban areas are adequately covered with natural scatterers, while the lack of
them in the vegetated and wetland areas present low coherence (Figure 3). For the period 2016–2019,
the characteristic vertical deformation ranges between −1.5 mm/year and 5 mm/year. The city of
Alexandroupolis shows relatively stable patterns with a mean rate of 0.4 mm/year, while the Turkish
part of the Evros Delta seems to uplift with high rates. In order to investigate this further, the MT-InSAR
time series of 199 PSs vertical deformation rate lying in the coast of the Delta (bounded by red dashed
polygon in Figure 3), along with its mean values and the linear trend, are plotted in Figure 4. We noted
that the seasonal trend is highly visible and that the loading periods of the acquirer (before summer)
have a higher gradient than the unloading. Moreover, during the maximum acquirer unloading,
the vertical deformation is not reverted to its previous situation but is higher. The mean deformation
rate of the 199 PS points is 4.5 mm/year. It is obvious that, for the study period, the rate of the
loading/drainage is positive; thus, the superficial land over the acquirer is uplifting. In order to have
more concrete results, a wider time range covering drought periods is necessary.

 

Figure 3. Vertical land deformation rate and sea-surface height rate map of Alexandroupolis, Evros Delta,
both represented with the same color scale. Coastal permanent scatterers (PSs) are bounded with a red
dashed line. The Global Navigation Satellite System station ALE3 and tide gauge, respectively, used in
validation are depicted with reversed red triangles and red circles.
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Figure 4. Permanent scatterers’ time series of the coastal area (bounded by a red dashed polygon in
Figure 3), mean vertical deformation values and the linear trend.

The SSH rate for the coastal area of Alexandroupolis, Evros Delta is ~2.1 mm/year (Figure 3).
For this case, we considered six sub-areas—two are bounded by polygons, and four are labelled by
their place names. For each one, in Table 3, the statistics of the PSs (i.e., number, mean, minimum,
maximum, standard deviation, with confidence level of 85%) were calculated. Additionally, the ALEX
GNSS station (set as reference) uncertainty of 1.0 mm/year was added to the standard deviation values.
The highest sea level rise rates are located at the airport with a value of 18.5 ± 18 cm in 50 years and at
WaterLand Park (green dashed polygon in Figure 3) with 16.5 ± 21 cm in 50 years. Alexandroupolis
presents a uniform behavior, with 8.5 ± 11 cm in 50 years. Finally, the areas south of the Delta (i.e., Yayla
Sahili and Erickli Plaji) present low values of sea level rise (1.5 ± 10 cm in 50 years).

According to the Nevada Geodetic Laboratory, the vertical deformation rate of the GNSS station,
located at the west end of the city center ALE3 (Figure 3), near the ring road, has a value of 1.02 ± 8.74
mm/year. Uncertainty is very high due to the missing data of almost four years, between 2016 and
2020. The mean vertical deformation value of the PSs with a distance less than 200 m from the ALE3
location is 0.4 mm/year, a value close to the GNSS one.

The PSMSL tide gauge (Table 3) located in the harbor (red circle in Figure 3) measures a relative
sea level trend of 1.84 ± 0.67 mm/year (with 95% confidence) based on the monthly mean sea level data
between 1969 and 2017. The mean vertical deformation rate of selected PSs located in the same deck as
the tide gauge is −0.1 mm/year, which corresponds to a relative sea level rate of 2.2 mm/year (or 11 cm
in 50 years), a value close to the tide gauge measurement (9 cm in 50 years).
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4.2. Thermaic Gulf; Thessaloniki City, Axios Delta

In the case of the Thermaic Gulf, the velocity of deformation was derived using 130 Sentinel-1
images (Table 1) and MT-InSAR technique over an area of 142 km2. The land deformation map
(Figure 5) shows a very high-density concentration of PSs in the area of Thessaloniki and in the
surrounding urban centers. Outside, as in the agricultural fields and the mountains, there is a low
density of PSs. A factor indicating the limits of this technique [71]. According to the Nevada Geodetic
Laboratory, the vertical deformation rate of the GNSS THS1 station, located in the Aristotle University
of Thessaloniki (Figure 5), has a value of 0.2 ± 0.58 mm/year. The mean vertical deformation value of
the PSs with a distance less than 200 m from the THS1 location is −0.4 mm/year, a value close to the
GNSS value.

 

Figure 5. Vertical land deformation rate and sea-surface height rate map of Thermaic Gulf coastal
zone; City of Thessaloniki, Axios Delta. The studied sub-areas are bounded with black dashed lines.
The Global Navigation Satellite System THS1 station and tide gauge, respectively, used in validation
are depicted with a reversed red triangle and a red circle. PS stands for permanent scatterers.

The PSMSL tide gauge located in the harbor (red circle in Figure 5) measures a relative sea level
trend of 3.83 ± 0.66 mm/year (with a 95% confidence) based on a monthly mean sea level data from
1969 to 2017. The mean vertical deformation rate of selected PSs located in the same deck as the tide
gauge is −2.4 mm/year which corresponds to a relative sea level rate of 4.3 mm/year (or 21 cm in
50 years), a value very close to the tide gauge measurement.

Raucoules et al. [54] using permanent scatterers and stacking interferometry and exploiting 47 ERS
acquisitions for the period 1992–2000 produced a deformation map in the slant range (LOS) direction,
including a large part of the map of this study. There is an overall consistency with this study except
that the areas of maximum subsidence of 1992–2000, i.e., the airport and Kalochori areas. currently
present smaller subsidence. For the former area (in the period of 1992–2000), the subsidence was
10–20mm/year in LOS, and currently, it is 4 mm/year in the vertical direction. The latter area (between
1992 and 2000) was characterized by a subsidence of 50 mm/year, and currently, the maximum values
reach 10 mm/year in the vertical direction.
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Constantini et al. [72], using combined PSI and SBAS approaches and exploiting a number of
20 ASAR/ENVISAT acquisitions for the period of 2004–2010, produced a deformation map in the
slant range (LOS) direction, including a large part of the map of this study. There is also an overall
consistency with this study. The area of Kalochori (for the period of 2004–2010) presented a subsidence
rate of 15 mm/year in the LOS that is also larger than the current rate, estimated at 4 mm/year in
vertical direction.

The main reason for the subsidence in the area of Kalochori to Kimina is the over-exploitation of the
underground water. It is obvious that the subsiding of these areas has been progressively slowed down
since 1992. The most likely explanation is that regulations for water drilling were successfully applied.
For the detailed study, the whole area was divided into 11 sub-areas, as shown in Figure 5. These
sub-areas were selected as separate locations with a similar deformation rate near the coast or in low
altitudes (in case of PSs absence in the coastal zone). For each sub-area, in Table 4, the statistics of the
PSs (i.e., number, mean, minimum, maximum, and standard deviation) were calculated. Additionally,
the GNSS uncertainty of 0.5 mm/year was added to the standard deviation values. Finally, considering
the sea-surface height rate, the relative sea level rise was calculated, together with their uncertainty
values. We observe that the maximum values are located at the villages of Chalastra and Kimina
(both at an altitude of ~5 m) with a relative sea level rate of 67 ± 23 and 39 ± 14 cm in 50 years. Kalochori.
Airport and Perea sub-areas present a rate of 31 ± 17 cm in 50 years. All the others have a rate less than
30 ± 9 cm in 50 years. The lowest values are located in Kalamaria. being 17 ± 7 cm in 50 years.

4.3. Killini, Araxos

For the case of Killini, Araxos, in the northwestern Peloponnese, the velocity of deformation
(Figure 6) was derived using 158 Sentinel-1 images (Table 1) and the SBAS technique over an area of
129 km2. For the time period of 2015–2019, the mean vertical deformation rate for the coastal areas
ranges between −3.6 mm/year and 3.8 mm/year. The areas between P. Kalamakiou and Brinia are
subsiding, and the rest are uplifting.

The area was divided into five sub-areas. For each one, in Table 5, the statistics of the PSs
(i.e., number, mean, minimum, maximum, standard deviation, with a confidence level of 85%) were
calculated. Additionally, the GNSS uncertainty of 1.1 mm/year was added to the standard deviation
values. Finally, considering the sea-surface height rate, the relative sea level rise was calculated,
with their uncertainty values. Specifically, in sub-areas from K. Achaea to P. Kalamakiou and Ioniko,
there is a small relative sea level rise. The sub-areas presenting the highest sea level rise rates are P.
Kalamakiou to L. Kalogria and Strofilia Forest to Briana, with values of 20 ± 14 cm and 28 ± 21 cm in
50 years. Finally, at Killin, the relative sea level rise is 6 ± 14 cm in 50 years.
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Figure 6. Vertical land deformation rate and sea-surface height rate map of the Killini, Araxos coastal
area in the northwestern Peloponnese. PS stands for permanent scatterers.

5. Discussion

In the present work, the relative sea level rise rate was estimated for several coastal areas within
the three selected case studies. The MT-InSAR vertical deformation rate data (exploiting Copernicus
Sentinel-1 acquisitions) is referenced to the vertical component of GNSS measurements (calculated
in ITRF2014 reference frame system) in order for their rate to be “calibrated”. Additionally, GNSS
measurements not calculated by this study were used for validation purposes. A reanalysis model
(Copernicus Marine Environment Monitoring Services) assimilating satellite altimetry dataset that
provided sea-surface height time series was used for extracting the respective rate. The “calibrated”
MT-InSAR vertical ground displacement rates were combined with the SSH rates to estimate the
relative rates. Combined maps of land deformation and SSH rates show the spatial distribution of
these measurements. The coastal areas are segmented into sub-areas of similar behavior and their
statistics, characteristic velocities, and finally the relative sea level rise rate (expressed in cm over a
period of 50 years) are estimated, along with uncertainty values. Tide gauge measurements, which
were available from PSMSL network, are in accordance with our findings.

In the three case studies the sea-surface height rate is varied between 1.9 mm/year off-shore
the Thermaic Gulf and 2.1 mm/year off-shore the Evros Delta. The characteristic relative sea-level
rise rates vary between 1.5 ± 9 and 67 ± 23 cm in 50 years (Figure 7). The case study presenting the
smallest characteristic rates is Alexandroupolis and Evros Delta with its values varying between 1 ± 10
and 18.5 ± 18 cm in 50 years (Figure 7). The coastal area of Evros Delta in the southwest seems to be
currently in a phase of positive aquifer loading due to high precipitation, presenting high uplifting
rates and a relative sea level fall of 16 ± 14 cm in 50 years. Longer temporal study periods are needed
to ensure more accurate results in the Delta (on-shore). The highest sea level rise rates are located at
the airport and at the Waterland Park northwest of the Delta. In Alexandroupolis, the rate is lower at
9 ± 11 cm in 50 years. In the southeast, the two areas of Evros Delta reach the lowest values. In Killini,
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Araxos, the relative sea rise rate varies between 6 ± 14 and 28 ± 21 cm in 50 years (Figure 7) in the
sub-areas of Killini and Strofilia Forest-Briania, respectively. Sea level fall is observed in two sub-areas.
Finally, in the Thermaic Gulf, the highest rates observed reach 67 ± 23 and 39 ± 14 cm in 50 years in the
villages of Chalastra and Kimina, respectively. The Kalochori. Airport and Perea sub-areas have a rate
of ~30 ± 14 cm in 50 years. The city center presents a rate between 14 ± 7 (Kalamaria) and 22 ± 5 cm in
50 years (P. Paralia)

 

Figure 7. Indicative diagram of relative sea level rise (with uncertainties) of the sub-areas within the
three case studies mapped in Figures 3, 5 and 6.

Some of the land deformations in this study are due to the changes in aquifer, i.e., loading and
unloading procedures as we have seen in the areas of Evros Delta (uplift) and Kalochori to Kimina
(subsidence), respectively, resulting from the equilibrium between rainfall and underground water
exploitation. Additionally, since the deltaic areas are prone to subsidence due to their alluvial sediments’
compaction, we expect a component similar to what has been observed in many deltaic areas [46,48],
which increases toward the shore with a rate of ~2 mm/year per 1 km [73]. Shallow faulting may be
another deformation source especially when the delta is located in the hanging-wall of the fault. In this
case, the subsidence is the accumulated effect of both deformation sources [46]. Macroscopically, this
type of faulting has not been observed, but a more focused analysis, not being within the scope of the
current study, may reveal such concurrent effects.

Future efforts will focus on coupling the land deformation rates with a series of rainfall timelines;
more accurate relative sea level rise data; a very high-resolution DEM; land use/land cover maps; and
wind, storm surges, and tidal levels through modeling in order to identify the most vulnerable areas
and thus to contribute to response and mitigation actions. Moreover, instead of the hypothesis of only
vertical deformation that we have assumed in this study, a combination of ascending and descending
pass acquisitions can be exploited in order to estimate the horizontal deformation rates [46] and
accordingly extract the true vertical component. Therefore, a scenario of future relative sea-level and
spatio-temporal assessment of vulnerability of coastal areas could be performed. In a very recent study,
Vousdoukas et al. [5] presented economically efficient protection scenarios from rising extreme sea
levels in coastal areas of the European continent. This very interesting study in Nature Communications
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highlighted the fact that there is a lack of proper assessment of this hazard on a continental scale, which
reinforces the need for such research work to be implemented on a larger scale.

6. Conclusions

The combination of measurements. Sensors, platforms, and processing techniques is fundamental
for improving the understanding of the ongoing processes along coastal urban and natural protected
areas, such as land subsidence and sea-level rise. Satellite data availability and processing
methodologies are mature enough to be exploited for relative sea level rise studies. The spatio-temporal
assessment of such phenomena could be measured accurately with the available free and openly
accessible Copernicus satellite data and the available tools implemented in InSAR processing platforms
such as GEP and SARPROZ. The combination of interferometric data with relative sea-level-rise data can
be exploited to identify the potential coastal areas at risk and contribute to the decision-making process.

The present research has shown that the variation in the relative sea level in the three case studies
is high. ranging from close to zero values i.e. from 5–10 and 30 cm in 50 years for urban areas to
characteristic values of 30 and even very locally to 60 cm in 50 years for rural areas close to the coast
(Figure 7). This demonstrates the corresponding high variability in the eastern Mediterranean region,
implying the need of inclusion of its coastal mapping amongst other hazard properties (like coastal
erosion) as an additional feature in risk analysis processes. The new knowledge generated can
contribute to the effective management of coastal areas in the framework of adaptation and mitigation
strategies attributed to climate change.

The potential upscaling through the extensive exploitation of MT-InSAR (such as Copernicus
European Ground Motion Service, https://land.copernicus.eu/user-corner/technical-library/european-
ground-motion-service) and GNSS data will assist the study of more coastal areas in Greece, in the
Mediterranean Sea, and also in lower latitude areas where the sea level rise is expected to be higher, as in
the case of west Africa. The proposed methodological approach is scalable and can be implemented at
local, regional, and international scales.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/14/2296/s1,
Figure S1. Deformation GNSS time series of ALEX (URANUS), AUT1 (AUTH), RLSO (NOA), processed in this
study and their vertical deformation linear rate estimations.
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Abstract: We evaluated six empirical and semianalytical models of the diffuse attenuation coefficient at
490 nm (Kd(490)) using an in situ dataset collected in the Pearl River estuary (PRE). A combined model
with the most accurate performance (correlation coefficient, R2 = 0.92) was selected and applied for
long-term estimation from 2003 to 2017. Physical and biological processes in the PRE over the 14-year
period were investigated by applying satellite observations (MODIS/Aqua data) and season-reliant
empirical orthogonal function analysis (S-EOF). In winter, the average Kd(490) was significantly
higher than in the other three seasons. A slight increasing trend was observed in spring and summer,
whereas a decreasing trend was observed in winter. In summer, a tongue with a relatively high Kd(490)
was found in southeastern Lingdingyang Bay. In Eastern Guangdong province (GDP), the relatively
higher Kd(490) value was found in autumn and winter. Based on the second mode of S-EOF, we found
that the higher values in the eastern GDP extended westward and formed a distinguishable tongue
in winter. The grey relational analysis revealed that chlorophyll-a concentration (Cchla) and total
suspended sediment concentration (Ctsm) were two dominant contributors determining the magnitude
of Kd(490) values. The Ctsm-dominated waters were generally located in coastal and estuarine
turbid waters; the Cchla-dominated waters were observed in open clear ocean. The distribution of
constituents-dominated area was different in the four seasons, which was affected by physical forces,
including wind field, river runoff, and sea surface temperature.

Keywords: Pearl River estuary; diffuse attenuation coefficient; MODIS; S-EOF

1. Introduction

The light diffuse attenuation coefficient (Kd(λ)) in aquatic systems is defined by the exponential
decrease in the irradiance with depth [1,2]. Kd(λ) is an ecologically important water property that
provides an estimate of the availability of light to underwater communities, which influences ecological
processes and biogeochemical cycles in natural waters [3,4]. The estimation of Kd(λ) is also critical for
understanding physical processes such as sediment resuspension and heat transfer in the upper layer
of the ocean [5–7].

The in situ Kd(λ) is traditionally measured by the ocean color scientific community at 490 nm,
Kd(490), following the primary studies in the 1970s [8]. Traditional field measurement of Kd(λ) is costly
and time consuming, but recent advances in satellite sensors have provided synoptic and frequent
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measurements of various bio-optical products on large scales, considerably improving spatial and
temporal resolution compared to in situ data [9]. Today, several empirical and semianalytical
models of Kd(490) are commonly used to derive the Kd(490) maps from satellite sensors such
as the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) [10,11], Moderate Resolution Imaging
Spectroradiometer (MODIS) [4,12], and the Medium Resolution Imaging Spectrometer (MERIS) [6,13].

However, no Kd model can be applied globally. For example, no model developed for Case 1 open
ocean waters can be used in turbid coastal environment [2,11,13].

The Pearl River is well known for its complex river networks, low lying terrain, and intense rainfall
events. The water composition varies widely both spatially and temporally in the Pearl River estuary
(PRE). Given the need to understand the light environment in the PRE waters, we aimed to evaluate
the accuracy of six total empirical or semianalytical models for Kd(490) retrieval. Brief descriptions of
the models are given in Section 2.2.4. The model that performed best was selected to construct Kd(490)
maps in PRE based on long-term MODIS/Aqua imagery. Seasonal variability and spatial distribution
of Kd(490) were analyzed by applying season-reliant empirical orthogonal function (S-EOF) analysis.
The dominant water constituents in different regions were determined using grey relational analysis
(GRA). The influences of physical factors on the Kd(490) were also discussed.

2. Materials and Methods

2.1. Study Area

The PRE is located in the northern South China Sea (NSCS), known as a subtropical and high
biological productivity estuary. The PRE is characterized by a complicated hydrodynamic system
regulated by many physical factors, including bottom topography, river discharge, wind field, and a
coastal current [14]. The PRE is influenced by the East Asia monsoon system, characterized by
prevailing northeasterly and southwesterly winds in winter and summer, respectively [15,16]. In this
study, season refers to those for the northern hemisphere, for example, summer refers to June, July,
and August. As China’s third largest river, the Pearl River flows into the PRE through eight main
outlets [17], carrying a large amount of organic and inorganic suspended matter, with an annual
average discharge of 105 m3·s−1 [18]. With increasing human activity, the PRE is contaminated by
industrial pollution, agricultural runoff, and domestic sewage [19,20].

2.2. Data Sources and Processing

2.2.1. In Situ Measurements

A cruise was conducted on 5 June 2012 to collect water samples and the water spectrum.
Positions for all sampling stations are plotted in Figure 1. The field spectral measurements were
composed of two parts: the above-water remote sensing reflectance (Rrs) and the downwelling
irradiance within the water column. To obtain the background water column conditions, water samples
from the 15 sampling stations were used for measurement of chlorophyll-a (Cchla), total suspended
sediment (Ctsm), absorption coefficient for phytoplankton (ap(λ)), and colored dissolved organic matter
(CDOM, ag(λ)) (Table 1).

The above-water Rrs was measured using a spectroradiometer (USB4000, Ocean Optics, Inc.,
Dunedin, FL, USA) following the National Aeronautics and Space Administration (NASA) ocean-optics
standard protocol [21]. The upward radiance (Lu), downward sky radiance (Lsky), and radiance from
standard spectra on a reference plaque (Lpla) were measured, and Rrs was calculated using the following
equation:

Rrs(λ) = ρpla(λ)
⌊
Lu(λ) − ρ f (λ)Lsky(λ)

⌋
/
⌊
πLpla(λ)

⌋
(1)

where λ is the wavelength, ρpla is the reflectance of the plaque provided by the manufacturer (Ocean
Optics, Inc., Dunedin, FL, USA), ρf is the water surface Fresnel reflectance, where a value of 0.028 was
taken for wind speeds of less than 5 m·s−1.
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To evaluate the MODIS-based Kd(490) retrieval models, in situ Rrs was aggregated to simulate
MODIS/Aqua Rrs according to the following equation [22–24]:

Rrs(Bi) =

∫ λn

λm
RSR(λ) ∗Rrs_meas(λ)dλ∫ λn

λm
RSR(λ)dλ

(2)

where Rrs(Bi) denotes the simulated Rrs for the ith band of MODIS/Aqua, with integration from λm

to λn; Rrs_meas(λ) denotes the field-measured Rrs(λ); and RSR(λ) denotes the MODIS/Aqua spectral
response function.

Figure 1. Study area and the location of sampling stations during the survey on 5 June 2012.

Table 1. Background Pearl River estuary (PRE) water column conditions from field measurements.
The level of absorption coefficients in the PRE are represented by ap(443) and ag(443).

Period n ap(443) (m−1) ag(443) (m−1) Ctsm (g·m−3) Cchla (mg·m−3)

5 June 2012 15 0.31–1.61 0.12–0.58 4.16–25.70 1.52–9.67

Downwelling irradiance within the water column was measured with a TriOS-RAMES
hyperspectral spectroradiometer (TriOS GmbH, Oldenburg, Germany). The spectroradiometer
recorded irradiance signal in the range of 320 to 950 nm with a wavelength resolution of 3.3 nm.
The TriOS-RAMES instrument was slowly hand-lowered at a stable speed from the surface to a water
depth of about 5 m and set to a sampling rate of one sample every five seconds. Meanwhile, a pressure
sensor recorded the corresponding depth of water. By releasing the TriOS-RAMES instrument (TriOS
GmbH, Oldenburg, Germany) into water twice, two profiles of the downwelling irradiance were
collected. The two profiles were averaged to minimize the effect of near-surface wave focusing.
The natural logarithm of the measured irradiance was plotted against depth, and an estimate of Kd(λ)
was acquired from the resulting slope [25]:

Kd(λ, z) = ln[Ed(λ, z)/Ed(λ, z + Δz)]/Δz (3)
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where λ is the wavelength, Ed(z) is the downwelling irradiance at depth z, and Δz is the infinitesimal
thickness at depth z.

2.2.2. MODIS/Aqua Imagery

The Level-1B MODIS/Aqua ocean color dataset and the geolocation dataset from 2003 to 2017 were
obtained from the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed
Active Archive Center (DAAC). Imagery was preprocessed using the SeaWiFS data analysis system
(SeaDAS, version 7.5.1). The Management Unit of the North Seas Mathematical Models (MUMM)-based
atmospheric correction [26] and an iterative f /Q Bidirectional Reflectance Distribution Function (BRDF)
correction [27–30] were used to acquire accurate Rrs values. Flags were used to mask contamination
from land, clouds, sun glint, and other potential disturbances to the radiance signal.

2.2.3. Ancillary Data

The wind field dataset was obtained from the National Centers for Environmental Prediction
(NCEP) Climate Forecast System Version 2 (CFSv2). The model is fully coupled, representing the Earth’s
atmosphere, oceans, land, and sea ice [31]. The mixed layer depth (MLD), defined as the depth where the
density is equal to the sea surface density plus an increase in density equivalent to 0.8 ◦C, was acquired
from the global ocean Argo gridded dataset (BOA_Argo, provided by the China Argo Real-time Data
Center, ftp://data.argo.org.cn/pub/ARGO/BOA_Argo/) [32]. The monthly river runoffwas acquired
from the Chinese River Sediment Bulletin. The Level-3 MODIS/Aqua sea surface temperature (SST)
dataset was obtained from the Ocean Color Website (https://oceancolor.gsfc.nasa.gov/l3/), a website that
provides the derived geophysical variables that have been aggregated/projected onto a well-defined
spatial grid during a well-defined time period.

2.2.4. Models for Kd(490) Retrieval

At present, the standard methods for Kd(490) estimation are roughly classified into three
types: (1) empirical relationship between Kd(490) and apparent optical properties (AOP), including
water-leaving radiance or reflectance [11,33,34]; (2) empirical relationship between Kd(490) and
chlorophyll-a based on regression analyses [35]; and (3) semianalytical approaches based on radiative
transfer models [1,36]. These three types of models, six models in total (Table 2), were evaluated in the
PRE waters using the in situ dataset.

Table 2. Description of different algorithms for Kd(490) retrieval, where nLw denotes normalized
water-leaving radiance, θa denotes above surface solar zenith angle, a denotes absorption coefficient,
bb denotes backscattering coefficient, Kd

clear(490) denotes the model for open clear water, and Kd
turbid(490)

denotes the model for coastal turbid water (AOP refers to apparent optical properties).

Type Form of Algorithm Reference

Empirical model with AOP Kd(490) = 0.016 + 0.15645[nLw(490)/nLw(555)]−1.5401 Mueller, 2000

Empirical model with Cchla Kd(490) = 0.01666 + 0.0773Cchla
0.6715 Morel et al., 2001

Semianalytical model Kd(490) = (1 + 0.005θa)a(490) + 4.18
(
1− 0.52e−10.8a(490)

)
bb(490) Lee et al., 2005

Empirical model with AOP
IFRrs(490)/Rrs(555) ≥ 0.85Kd(490) = 10(−0.843−1.459X−0.101X2−0.811X3)

with X = log10[Rrs(490)/Rrs(555)]
ELSEIF Rrs(490)/Rrs(555) < 0.85 Kd(490) = 10(0.094−1.302X+0.247X2−0.021X3)

with X = log10 [Rrs(490)/Rrs(665)]

Zhang and Fell, 2007

Semianalytical model Kd(490) = (1−W)Kd
Clear(490) + WKd

Turbid(490)
with W = −1.175 + 4.512Rrs(670)/Rrs(490)

Wang et al., 2009

Empirical model with AOP Kd(490) = 0.011405 + 0.92[Rrs(670)/Rrs(490)] Tiwari et al., 2014

2.2.5. S-EOF and Grey Relational Analyses

The S-EOF analysis, proposed by Wang and An (2005) [37], was applied here to detect the spatial
patterns and temporal variability of Kd(490) in different seasons. The processing steps of S-EOF
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analysis are as follows: Firstly, the time series of seasonal Kd(490) anomaly was calculated. Secondly,
the EOF was analyzed based on the matrix composed of the four seasons. Finally, each S-EOF mode
containing four spatial modes, which represented the spatial patterns of Kd(490) in the four seasons,
and a corresponding principal component time series were obtained.

GRA is an important part of grey system theory, which is used to determine the relational degree
among factors according to the similarities in their geometry [38]. The GRA was applied here to
identify the dominant water constituents (total suspended matter, phytoplankton, and dissolved
matter) affecting the spatial distribution and temporal variation of Kd(490). In GRA, the reference series
of Kd(490) and comparison sequences (water constituents, including Ctsm, Cchla, and adg(443)) were
constructed in advance to calculate the grey relational grade (GRG), which is a measure of similarity
between the reference sequence and comparison sequences. Details about the calculation of GRG were
described by Liu and Lin (2005) [39] and Wan et al. (2019) [40].

2.2.6. Performance Assessment

To compare the performance of different Kd(490) retrieval models, several statistical parameters
were used: the determination coefficient (R2), root mean square error (RMSE), mean absolute difference
(MAD), and mean absolute percentage difference (MAPD), which are calculated as:

R2 = 1−
∑N

t=1

(
xmt − xpt

)2∑N
t=1(xmt − xm)

2 , (4)

RMSE =

√√√
1
N

N∑
t=1

(
xmt − xpt

)2
, (5)

MAD =

∑N
t=1

∣∣∣xmt − xpt
∣∣∣

N
, (6)

MAPD(%) =
100
N

∑N

t=1

∣∣∣∣∣xmt − xpt

xmt

∣∣∣∣∣, (7)

where xm and xp denote the measured and predicted samples, respectively; xm denotes the mean value
of the measured samples; and N is the number of samples.

3. Results

3.1. Model Performance

We evaluated the six different models with MODIS/Aqua spectral bands or Cchla. The evaluation
was based on the comparison of the model-derived Kd(490) with in situ measured Kd(490) collected
from the PRE on 5 June 2012. Figure 2 shows scatterplots between the in situ measured and different
models’ Kd(490) retrievals, and Table 3 lists the statistical parameters. The results provided by both
Mueller’s and Morel’s models constantly underestimated the Kd(490) compared with the in situ dataset
for the PRE, with RMSEs higher than 1.1 m−1, MADs close to 1.0 m−1, and MAPDs up to 70%. The Morel
(empirical model with Cchla) and Mueller (empirical model with water-leaving radiance) models not
only underestimated the in situ values of the PRE, they had little to no sensitivity along a broad
gradient of in situ values.

By comparison, the other four models appeared to be more effective when applied in the PRE
waters. These four models performed well with R2 values higher than 0.9, RMSEs ranging from 0.31
to 0.70 m−1, MADs ranging from 0.27 to 0.54 m−1, and MAPDs ranging between 25.51% and 37.10%.
We found that Wang’s model, combining Lee’s algorithm for turbid waters and Mueller’s algorithm
for clear waters, was a better choice for Kd(490) retrieval in the PRE waters. Comparison of Wang’s
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model to the other models showed that Wang’s model had considerably lower RMSE and MAD values
and outperformed the other models, especially at relatively higher Kd(490) levels.

Figure 2. Scatterplots of in situ and model retrieval Kd(490) values.

Table 3. Statistical parameters between the in situ measured and different model-retrieved Kd(490);
models with best performing values are in bold.

Algorithm Slope Intercept R2 RMSE MAD MAPD (%)

Mueller 0.01 0.26 0.56 1.15 0.96 70.32
Morel 0.01 0.23 0.38 1.18 0.99 73.90
Zhang 0.47 0.33 0.92 0.49 0.37 26.52

Lee 0.60 0.39 0.91 0.31 0.27 25.51
Wang 0.60 0.39 0.91 0.31 0.27 25.51
Tiwari 0.28 0.36 0.92 0.70 0.54 37.10

3.2. Spatial Distribution and Temporal Variation

Given its superior performance of the six considered models, the long-term MODIS Kd(490)
products were derived based on Wang’s model. Significant seasonal variation was identified over
the entire study area from 2003 to 2017 (Figure 3). The mean values for the entire study area were
0.13 m−1 in spring, 0.12 m−1 in summer, 0.14 m−1 in autumn, and 0.21 m−1 in winter. In the coastal
area, the relatively high Kd(490) was observed in Lingdingyang Bay (LB) and western Guangdong
Province (GDP), where the highest value exceeded 4.0 m−1. In summer, the river plume extends
from LB southeastward into the coastal region, resulting in a wider distribution of high-value Kd(490).
The plume waters formed a tongue along the eastern GDP (located 113–115◦E, 22–22.5◦N) in some
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specific years, though this feature was not so remarkable in the seasonal climatological imagery due
to long-term average smoothing. The influence of the terrestrial input of nutrients from the Pearl
River is highest in summer. In addition, a southeast wind prevails and rainfall mainly occurs in
summer. The winds blow from PRE to the middle shelf. The winds control the spatial pattern of Kd(490)
distribution in the PRE. In the eastern GDP, relatively higher Kd(490) values were found in autumn
and winter, whereas lower values were observed in spring and summer. This phenomenon is closely
correlated with the coastal upwelling along the eastern GDP coast [41,42]. Chen et al. (1982) [43]
reported that a radiating current could generate an upwelling in winter near the Jieshi Bay in the
eastern GDP. In open ocean areas, the average Kd(490) values in winter and spring were higher than
that in summer and autumn. The prevailing northeasterly monsoon is stronger in the northern South
China Sea in winter, so the MLD was deeper. The mixing effects are relatively stronger in winter.
Figure 3 shows that the distribution of Kd(490) reveals the significant seasonal variation over the entire
study area during 2003 to 2017.

Figure 3. Seasonal distribution of Kd(490) (m−1) from 2003 to 2017.

Due to the different physical factors affecting the variability of Kd(490) in nearshore and offshore
regions, we separated the two regions and analyzed the separate regions’ trends rather than averaging
the entire region for time series analysis (Figure 4). Two subregions, representing the turbid coastal
waters and the clear open ocean waters, were chosen (marked in Figure 1 by green boxes). During the
period from 2003 to 2017, the trend lines of the annual average in coastal and oceanic areas were around
0.3 and 0.1 m−1, respectively. No significant increasing or decreasing trend was observed. However,
in terms of seasonal variability, the average nearshore and offshore Kd(490) showed some differences.
The average Kd(490) in the coastal area was constantly high in the four seasons, with values ranging
between 0.2 and 0.4 m−1. An increasing trend was observed in spring, with a slope of approximately
0.006 m−1 per year. Compared to the coastal region, significant seasonal variability was observed in
the open ocean region. Average Kd(490) values during spring and winter were found to be higher than
during summer and autumn. Trend lines of spring and winter ranged from 0.1 to 0.2 m−1, whereas
those in summer and autumn ranged from 0.04 to 0.08 m−1. In winter, the average showed a significant
decreasing trend, with a slope of approximately −0.005 m−1 per year.

227



Remote Sens. 2020, 12, 2269

Figure 4. Annual and seasonal average Kd(490) of the PRE waters between 2003 and 2017.
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3.3. GRG of Water Constituents

The optical properties were determined using the absorption or backscattering of different water
constituents. Here, three types of water constituents were considered; the monthly average Ctsm, Cchla,
and adg(443) were obtained based on the same atmospheric-corrected MODIS/Aqua Rrs dataset that
was used for Kd(490) retrieval. A band ratio algorithm was adopted for Ctsm retrieval [17]. The OC3M
algorithm was used for Cchla retrieval [44]. The generalized inherent optical property (GIOP) model
was applied for adg(443) retrieval [45,46]. The GRGs, which can be used to measure the relationships
between the Kd(490) and the three water constituents, were calculated pixel by pixel for the four seasons
(Figure 5).

Figure 5. Grey relational grades (GRGs) between Kd(490) and water constituents in four seasons.

Spatially, GRGs between Kd(490) and Cchla or adg(443) were higher in the clear open ocean region
than in the coastal region, but the values contrasted between Kd(490) and Ctsm. The GRGs gradually
decreased from nearshore to offshore, similar to the distribution of Ctsm. Seasonally, the GRG was
higher in summer and autumn than in spring and winter between Kd(490) and Cchla, with most of the
pixels’ values being above 0.8. Similar phenomena were observed in the GRGs between Kd(490) and
adg(443), although the average value was lower than between Kd(490) and Cchla.

229



Remote Sens. 2020, 12, 2269

3.4. S-EOF Analysis

An S-EOF analysis was performed after subtracting the long-term monthly climatological average
Kd(490). The first two modes and the corresponding principal components (PC) were separated,
which accounted for approximately 81.16% of the total variance (Table 4).

Table 4. Variance of the first three season-reliant empirical orthogonal function (S-EOF).

S-EOF Mode Single Contribution Rate Cumulative Contribution Rate

1 56.67 56.67
2 24.49 81.16

Figure 6 shows the PC time series of the first two S-EOF modes. All the values of PC1 were
positive, indicating that the seasonal fluctuation was stable. The strength of fluctuation was related
to the magnitude of the positive values. We observed a significant increasing trend during 2003 to
2006, whereas a slight decline was observed during 2007 to 2009. From the beginning of 2010 to 2014,
PC1 reached its highest value. After that, the values began to decline again. PC2 was characterized by
negative values during 2010 to 2014 and positive values in other years.

Figure 6. Principal components (PCs) of the first three S-EOF modes of Kd(490) in the PRE waters.

Figure 7 shows the spatial distribution of the first mode of S-EOF, which explained approximately
56.7% of the total variance. Relatively high values were observed in LB and the western coast of
GDP in the four seasons, and the average values for spring were significantly lower than in the other
seasons. In summer, the high value area tended to expand to the southeastern LB. From autumn to
winter, we observed a high value area along the east coast of the GDP, whereas this high value area
disappeared in spring and summer.

The second mode of S-EOF explained 24.5% of the total variance. A relatively higher value area
was observed in LB during the four seasons (Figure 8). In summer, the high value area extended
eastward and formed a distinguishable tongue. Compared with spring and summer, higher values
were observed along the whole coastal zone of the PRE. Based on the second mode of S-EOF, we found
that the higher values in the eastern GDP extended westward and formed a distinguishable tongue
in winter.
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Figure 7. Spatial pattern of the first S-EOF mode.

Figure 8. Spatial pattern of the second S-EOF mode.
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4. Discussion

4.1. Evaluation of Kd(490) Models

Both Mueller and Morel’s models were unsuitable for the PRE waters because these two models
were established for clear waters and only use the spectral information from the blue and green
bands. For clear waters where the downwelling attenuation is mainly determined by phytoplankton,
the blue–green band ratio is sensitive to the variability of the Cchla, resulting in a high accuracy
for Kd(490) retrieval. However, for turbid waters where the optical properties are more complex,
the blue–green band ratio demonstrates a lower sensitivity to the variability in Kd(490). The strong
absorption of phytoplankton and CDOM could lead to relatively smaller Rrs in the blue and green
bands [47,48]. In the PRE, the water constituents are from river inputs and coastal erosion. The Cchla,
CDOM, and Ctsm are very high, which may result in both Mueller and Morel’s models being inapplicable
in the PRE.

Tiwari’s model uses the reflectance ratio at 490 and 670 nm, Rrs(490)/Rrs(670), to derive Kd(490).
Zhang’s model is composed of two independent algorithms: one based on the ratio Rrs(490)/Rrs(555) for
clear waters and another based on the ratio Rrs(490)/Rrs(665) for turbid waters. When tested with the
independent PRE dataset, the predictions of these two models were statistically better compared to both
Mueller’s and Morel’s models. However, the two models also showed a pronounced underestimation
for higher Kd(490) values (>1.0 m−1), which might be due to the strong backscattering of suspended
sediments in the more turbid waters in the PRE. Lee’s model produced a suitable estimation, which uses
a relationship relating the backscattering coefficient at 490 nm to the irradiance reflectance just beneath
the surface within the red band. The performance of Wang’s model was the same as Lee’s, which was
attributed to the same approach used in both models for highly turbid waters. In Wang’s model,
the retrieval method switched to Mueller’s in clear waters, and the bridging of the two types of models
is based on a certain weighting function (W). The spectral information within the red band cannot be
ignored when retrieving Kd(490) for turbid waters. However the values of Rrs(670)/Rrs(490) tended to
be very low and, therefore, values of Kd(490) for clear waters were inaccurate. Therefore, Wang’s model,
which uses a combination of different algorithms for clear and turbid waters, is a better choice for
Kd(490) retrieval in the PRE waters.

4.2. Dominant Contributor to Kd(490) of Water Constituents

Attenuation of light in water depends on concentrations of particulate matter and dissolved matter,
which can be expressed by Ctsm, Cchla, and the absorption coefficient of CDOM [7,49]. The contribution
of these constituents varies for different types of water and within the same water body in different
seasons [50–52]. Since the calculated GRGs between Kd(490) and adg(443) were significantly lower than
the other two water constituents, only the GRGs of Ctsm and Cchla were considered. Figure 9 depicts the
subtraction of both GRGs. Positive values indicate the GRGs of Ctsm were higher than those of Cchla,
which means that Ctsm played a dominant role in Kd(490) variability. In contrast, negative values indicate
that the Cchla had a greater influence. The Ctsm-dominated were waters generally located in coastal
and estuarine turbid areas, whereas the Cchla-dominated waters were observed in open clear ocean.
Notably, waters dominated by adg(443) were rare. The strong absorption of CDOM in the blue bands
influenced the variability of Kd(490), particularly in waters with high CDOM concentrations. The major
sources of CDOM in the PRE were the river water and the human and industrial sewage [53,54].
However, in coastal or estuarine areas with highly turbid waters, Ctsm can reach over 100 g·m−3.
During the survey conducted on 5 June 2012, the range of measured ag(443) was 0.12 to 0.58 and the
range of measured ap(443) was 0.31 to 1.61. The latter was approximately three orders higher than the
former, indicating that the influence of total suspended sediments on Kd(490) was far greater than that
of CDOM.
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Figure 9. Distribution of dominant water constituents in the four seasons.

The distribution of dominant constituents showed some seasonality. In spring and summer,
the Ctsm-dominated waters were mainly distributed in LB and the western GDP. The Ctsm-dominated
area was confined close to the nearshore areas in the eastern GDP, indicating the impact of Cchla can
extend from offshore to nearshore regions. Compared with other seasons, the most significant feature
in summer was the southward extension of Ctsm from LB to the open ocean, which can probably be
attributed to the increase in river runoff. In autumn and winter, the Ctsm-dominated area was wider
in the eastern GDP than in spring and summer. The underlying reason for the change in area still
requires future research. Currently, the change in area in the eastern GDP during autumn and winter
might be indirectly caused by the decrease in Cchla rather than the variability of Ctsm. In autumn
and winter, the entire eastern GDP is influenced by monsoons. The northeasterly wind-induced
downwelling appears to decrease the amount of resuspension, resulting in the slight decrease in surface
Ctsm, which seems to contradict the expansion of the Ctsm-dominated area. However, the downwelling
also inhibits the growth of phytoplankton. The decrease in surface Cchla may prevent it from becoming
the primary factor affecting the variability of Kd(490).

4.3. Influence of Physical Factors on Kd(490) Variability

Figure 3 shows that the Kd(490) values in the PRE waters were markedly different in different
regions and in different seasons, and Figure 9 shows that the spatial variations can be attributed to the
changes in Cchla and Ctsm.

To understand the mechanism through which the seasonal Kd(490) varies, correlation analysis
was performed between several types of physical factors, including wind field, river runoff, MLD,
SST, and seasonal average Kd(490). The results showed that the average Kd(490) was highly correlated
with the wind speed (u-component) in summer, with an R2 of about 0.69. During winter, we found a
significant negative correlation between Kd(490) and SST, with an R2 of –0.66 (Figure 10). Seasonal
anomalies were also obtained by subtracting the seasonal climatological average. In 2007 and 2015,
when the wind speed anomaly (u-component) reached its peak, a distinguishing tongue of Kd(490)
anomaly was observed near the southeastern LB (Figure 11). Inside this tongue region, the Kd(490)
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anomaly in the west was higher than in the east, indicating that the variability can be attributed to the
high turbid river plume waters in the surface layer, which are driven by the intense eastward wind.

Figure 10. (a) Scatterplots of average Kd(490) and wind speed (u-component) in summer, (b) scatterplots
of average Kd(490) and sea surface temperature (SST) in winter.

Figure 11. Kd(490) and wind field anomalies during summer in (a) 2007 and (b) 2015.

The winter SST cooling in 2004 was the most significant during the whole study period, and was
located in the southeastern PRE, which was about 0.4 ◦C cooler than the winter climatological
average. Within these cooling regions, Kd(490) values higher than the average values were observed,
with anomalies ranging approximately from 0.1 to 0.35 m−1. The observed winter variations in Kd(490)
in the southeastern PRE were strongly consistent with the changes in SST anomalies, and higher values
coincided with lower SST (Figure 12).

Figure 12. (a) Kd(490) anomaly during winter 2004, (b) SST anomaly during summer 2004.

The variability of Kd(490) in the southeastern PRE was mainly determined by Cchla. The average
values of Kd(490) were higher in winter than in summer. This seasonal variability might be attributed
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to the deepening of MLD in winter. In marine systems, MLD is generally deeper in winter than
in summer [55]. Nutrients are brought from the bottom of the ocean to the surface or subsurface,
which may enhance phytoplankton growth. The strong mixing in winter was demonstrated by the
deepening of MLD, and a significant relationship between SST and MLD provided evidence that
nutrients were supplied from the bottom waters (Figure 13).

Figure 13. Time-series of average SST and MLD in the PRE from 2004 to 2017.

5. Conclusions

Accurate estimation of Kd(490) using ocean color remote sensing imagery is challenging in turbid
coastal waters due to the optical complexity of the water. Several approaches, including empirical
and semianalytical models, were applied to retrieve the Kd(490) in PRE water. The results showed
that Wang’s model was more accurate and is most suitable for PRE water, which uses a combination
of different algorithms for clear and turbid waters. Hence, Wang’s model was selected for deriving
Kd(490) products from long-term MODIS/Aqua imagery.

Derived from long-term MODIS/Aqua imagery, the temporal variability and spatial distribution
of Kd(490) were tracked using S-EOF analysis. The results of GRA showed that both phytoplankton
and suspended sediments were the two dominant contributors to the variability in Kd(490).
The Ctsm-dominated waters were generally located in coastal and estuarine turbid area, whereas the
Cchla-dominated waters were observed in clear open ocean. The influence of wind field on the
variability of Kd(490) was significant near the coastal and estuarine regions in summer. With the
strengthening of the eastward wind, a water tongue of relatively higher Kd(490) values formed in the
southeastern PRE. In winter, the location of the negative SST anomaly and positive Kd(490) anomaly
was strongly consistent, indicating that the sea surface cooling was related to the positive Kd(490)
anomaly. The winter variability might be attributed to the strong mixing, which brought nutrients
from the bottom layer to the surface to enhance phytoplankton growth.

Estuarine and coastal regions are complex ecosystems. To better examine the biogeochemical
responses to physical events, a combination of remote sensing and coupled hydrodynamic–biological
models should be applied in future research.
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Abstract: Multispectral imagery contains abundant spectral information on terrestrial and oceanic
targets, and retrieval of the geophysical variables of the targets is possible when the radiometric
integrity of the data is secured. Multispectral cameras typically require the registration of individual
band images because their lens locations for individual bands are often displaced from each other,
thereby generating images of different viewing angles. Although this type of displacement can be
corrected through a geometric transformation of the image coordinates, a mismatch or misregistration
between the bands still remains, owing to the image acquisition timing that differs by bands. Even a
short time difference is critical for the image quality of fast-moving targets, such as water surfaces,
and this type of deformation cannot be compensated for with a geometric transformation between
the bands. This study proposes a novel morphological band registration technique, based on the
quantile matching method, for which the correspondence between the pixels of different bands is
not sought by their geometric relationship, but by the radiometric distribution constructed in the
vicinity of the pixel. In this study, a Micasense Rededge-M camera was operated on an unmanned
aerial vehicle and multispectral images of coastal areas were acquired at various altitudes to examine
the performance of the proposed method for different spatial scales. To assess the impact of the
correction on a geophysical variable, the performance of the proposed method was evaluated for the
chlorophyll-a concentration estimation. The results showed that the proposed method successfully
removed the noisy spatial pattern caused by misregistration while maintaining the original spatial
resolution for both homogeneous scenes and an episodic scene with a red tide outbreak.

Keywords: band registration; morphological registration; multispectral camera; water quality;
Micasense Rededge-M

1. Introduction

In multispectral images, precise registration of multispectral bands is critical for subsequent
quantitative data analysis, which relies on the “spectrum” of the signal (e.g., radiance or reflectance)
from the target. If the bands are not perfectly aligned with each other, due to the reasons such as
lens distortion, displacement in lens location, and inaccurate geometry transformation between the
locations, spectral radiometric values in a fixed pixel location may originate from different targets.
Algorithms that depend on the band ratios, or the band difference, are particularly sensitive to the
quality of the band registration and may produce significant errors for an inhomogeneous target area if
misregistration exists.
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There are various sources for misregistration: a difference in the lens locations for each
band, a difference in the image acquisition timing accompanied by fast-moving targets, etc.
Commercial multispectral cameras typically include individual lenses for the multi-bands and have
different exposure times to maximize the effective radiometric range for various targets. The differences
in the lens locations for the multi-bands can be modeled via a projective transformation if the image
is assumed to be free of nonlinear image distortions, such as radial distortion; the differences in the
viewing geometry can be corrected to a reference band using band-to-band projective transformations
that specifies eight parameters for rotation (1), translation (2), isotropic scaling (1), anisotropic scaling (1),
skew (1), and perspective shortening (2) (figures in the parenthesis denotes the number of free variables
for the quantity) [1,2]. The methods based on Fourier transform does not require the time-consuming
process of finding matching points between two images, and effectively register multiple bands solely
based on its spatial frequency pattern [3].

However, such transformation approaches that rely on geometric characteristics of the scene
cannot effectively address the cases having non-rigid body target deformation, where the forms of
targets may vary between the bands. This issue is prominent when analyzing the color of water where
the targets (i.e., water surface) move or deform quickly during a short time interval (<1 s) between the
acquisition of different bands. As shown in Figure 1, multispectral band images for ocean surface in
the normal coastal area in Korea reveal that the differences in water reflectance, and its spatial pattern,
clearly do not correspond to rigid-body transformation; thus, the differences cannot be resolved by
a projective transformation. Note that the band images shown in Figure 1 have already undergone
band-to-band registration through a projective transformation.

Figure 1. A subset of a multispectral image acquired in a coastal area of Korea targeted on the ocean
surface with normal states (low chlorophyll and suspended particle concentration), showing the
differences in the spatial pattern for the five spectral bands.

This type of image registration, which involves a non-rigid body transformation, has been
investigated for morphological image registration [4–7]. It is applicable when the images of two
different targets, or of one target object that experienced a non-rigid body deformation, are expected to
have a similar internal structure and most of the image contents have common features. The basic
mathematical tools for morphological image transformation include calculus of variations, optimization
with regularization or constraints, and the derivation of invariant features. The methods are typically
used in medical image processing, such as computed tomography and magnetic resonance imaging,
for diagnostic purposes; however, applications to remote sensing are rare, particularly for the band
registration, because typical observation targets in optical remote sensing are stationary objects, such as
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land surfaces and man-made structures. However, because water surfaces move fast, owing to ocean
currents and wave motion, multispectral images from ships and low-altitude platforms, such as
unmanned aerial vehicles (UAVs), clearly exhibit locational errors.

In this study, we develop a novel morphological band registration technique, designed for
high-resolution water quality analysis, which preserves the true spectrum of fast-moving targets.
The proposed method exploits the quantile plots between the bands to accurately determine the
radiometric correspondence of the pixels in different bands. For multispectral images, a Micasense
Rededge-M camera was operated onboard a UAV, DJI Inspire-2, and ocean surface images were
acquired from coastal areas of Korea, of various altitudes and biological conditions. The specification
and radiometric properties of the multispectral camera and the image data are described in Section 2
(Materials). The radiometric/geometric preprocessing, derivation of the “remote sensing reflectance”
for water quality analysis are presented in Section 3 (Methodology and Analysis), along with the
analysis on the adverse impact of the residual misregistration on the water quality variable estimation.
In Section 4 (Algorithm Development and Assessment), the proposed morphological registration
scheme is described in detail and the development of the entire correction procedure is presented.
The algorithm results are demonstrated for multiple test images, taken at various altitudes. In Section 5
(Discussion and Conclusion), the correction results and remaining tasks are discussed.

2. Materials

2.1. Micasense Rededge-M and Data

The Rededge-M camera has five spectral bands, the center wavelengths of which are located
at 475, 550, 668, 717, and 840 nm (Figure 2). The red (668 nm) and near-infrared (NIR) (717 nm)
bands are designed to capture the red edge feature, which is salient in vegetation, and to quantify
the photosynthetic pigments via indices, such as the normalized differenced vegetation index [8]
and soil-adjusted vegetation index [9]. The blue band (475 nm) is useful when quantifying pigment
absorption in water when it is referenced with respect to the green band (550 nm) [10]. In water color
analysis, the last NIR band (840 nm) is particularly useful for quantifying atmospheric scattering
between the target and the sensor because clear water theoretically has zero water-leaving radiance in
the 840 nm band [11]. For turbid waters, the radiance at 840 nm is often large and can thus be used
to detect the existence of suspended sediments in water [12]; however, as a result, the estimation of
atmospheric effects becomes more complicated [13,14]. The radiometric sensitivity of the Rededge-M
was tested for water color analysis in Kim et al. (2019) [15] in a brief experiment in which the radiometric
data from a Rededge-M camera was compared with that from a hyperspectral radiometer, TriOS
RAMSES. The study showed that the Rededge-M was able to retrieve a comparable spectral shape for
a water body (which typically has a low radiance level compared to terrestrial targets) when calculated
using remote sensing reflectance (Rrs).

In this study, four Rededge-M image sets from multiple field campaigns were used for the
development of a morphological registration algorithm. Table 1 shows the dates, locations, and altitudes
of the camera images that were used for the analysis, and the study site is presented in Figure 3a.
All images were captured by a drone, DJI Inspire-2. The camera body and the downwelling irradiance
sensor were installed on the drone using a simple bracket and a damper (Figure 3b). The Rededge-M
camera was installed with a fixed viewing zenith angle of 40◦ and the camera attitude was controlled
to head north to constrain the relative azimuth angle within 90–135◦ with respect to the sun direction,
to minimize the surface reflectance [16,17]. The Zenmuse-X5s camera was installed in front of the
Rededge-M to capture a wider-angle overview of the target scene with higher spatial resolution.
RGB images of water reflectance are presented in Figure 4 for all four scenes.
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(a) (b) 

Figure 2. (a) Lens configuration of Rededge-M camera and (b) the spectral response function of the
bands overlaid with a typical vegetation spectrum (source: Rededge-M User Manual).

 
(a) (b) 

Figure 3. (a) The map of study site near Yeosu, a southern coast of Korea, and the bounding box
(orange) for the area that the unmanned aerial vehicle (UAV) was operated for, and (b) photographs of
the multispectral-UAV system configured with the downwelling light sensor (DLS), the RGB camera,
and the multispectral camera.

Table 1. Data list used in this study.

Scene ID Time Location Altitude (m) Scene Description

A 26–07–2019
15:23 Sumoon 85.4 Coastal Area

B 31–08–2019
12:54 Yeosu 8.1 From Ship

C 31–08–2019
13:29 Yeosu 196 Coastal Area

D 31–08–2019
13:17 Yeosu 390 Red Tide
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(a) (b) 

 

(c) (d) 

Figure 4. Water reflectance image (RGB: Band 3, Band 2, Band 1) acquired by the Rededge-M for
(a) Scene-A (85.4 m), (b) Scene-B (8.1 m), (c) Scene-C (196.2 m), and (d) Scene-D (390.5 m, red tide), with
the UAV altitudes in the parenthesis.

2.2. Acquisition Time Difference in Rededge-M Band Images

The Rededge-M employs a proprietary Auto Gain Control (AGC) algorithm that works to minimize
the number of overexposed pixels, but the number of overexposed pixels will never be zero because
the AGC also wants there to be a maximal number of properly exposed pixels. The AGC optimizes the
gain (ISO) and exposure of each capture for each of the five imagers such that the resulting picture
is properly exposed. The Rededge-M has five imagers that trigger the top of each frame together,
and one “capture” is created during each triggering, which is represented by five different frames,
one for each wavelength band. Each imager has a different filter as to only capture data from the
wavelength band of interest. Because of the AGC, the ISO Speed and exposure time (which can be
inspected in the metadata of each frame) may vary by band on an individual capture, and different
captures taken during the same flight will also vary. The small differences between the exposure times
among frames of a capture usually don’t make a difference. However, motion blur may occur when
there is a large difference (i.e., 1 ms vs. 5 ms) in exposure time between multiple frames in a single
capture. If the camera is mounted on an aircraft and is in motion, the frames with longer exposures will
have motion blur, and will have a slightly different geometric offset compared to the shorter exposure
time. The geometric offset between frames with different exposure times on a single capture will be a
function of the angular rate of the camera and the respective exposure times of the frames. This will
manifest as motion blur, and will result in a difference in average pointing angle of θ2- θ1, where θ2 is
the pointing angle from a frame with a longer exposure time and θ1 is the pointing angle from a frame
with a shorter exposure time. With all this information in mind, while each frame will have had the
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top of the frame triggered at the same instant, the exposure time metadata may be different, resulting
in slightly different exposure times among a single capture. For example, the exposure time of the
5 band images of Scene-A are 1/741, 1/585, 1/780, 1/367, and 1/356 s, respectively, for 475, 550, 668, 717,
and 840 nm, causing the targets to be captured in different status.

3. Methodology and Analysis

3.1. Radiometric and Geometric Calibration

Basic radiometric preprocessing was performed using the processing modules provided on the
Micasense Github page [18]. A Vignette correction was first performed for each band image and
these Vignette-corrected band images were input to the radiometric calibration process to produce the
radiance data. The radial and tangential distortion were corrected according to following formula,

uradial−corrected = u
(
1 + k1r2 + k2r4 + k3r6

)
(1)

vradial−corrected = v
(
1 + k1r2 + k2r4 + k3r6

)
(2)

utangential−corrected = u +
(
2p1uv + p2(r2 + u2

)
(3)

vtangential−corrected = v +
(
2p2uv + p1(r2 + 2u2

)
(4)

where u and v are image coordinates, r =
√

u2 + v2, k1, k2, k3 are coefficients for radial distortion,
and p1, p2 are for tangential distortion. As shown in Figure 1, the Rededge-M acquires radiance at
five wavelengths, through five individual lenses, inevitably leading to misalignment in the band
images. The misalignment can be corrected using a projective transformation, constructed by matching
numerous matching points between two band images. The projective transformation between the
bands is

x′ = Mx, (5)

where x and x′ are 3 × 1 homogeneous vectors of image coordinates in two band images and M is a
3 × 3 non-singular matrix for the projective transformation.

3.2. Water Color Analysis

To conduct water color analysis for the estimation of in-water constituents (e.g., chlorophyll-a
concentration), remote sensing reflectance must first be derived from the radiance measurements.
Remote sensing reflectance (Rrs) can be calculated as

Rrs =
LwT − ρLsky

Ed
, (6)

where LwT is the total radiance from water, Lsky is the downward radiance from the sky, Ed is the
downward irradiance, and ρ is the Fresnel reflectance factor [19,20]. Setting aside ρ, to derive Rrs in
the field, three radiometric measurements are required for each scene: LwT, Lsky, and Ed. The first
two radiance variables—LwT and Lsky—are acquired by capturing the water surface and sky using the
Rededge-M, following the measurement protocol suggested in the ocean color analysis [16]. For both
observations, the recommended azimuth angle is 135◦, with respect to the sun azimuth, and the
recommended zenith angles are 45◦ and −45◦ for the water and sky, respectively.

The measurement protocol is intended to minimize the variation in ρ, which varies from 0.02 to
0.07, depending on wind speed and sun–sensor–target geometry [17], where the factor is confined to
an approximate range of 0.02 to 0.025 when the aforementioned measurement protocol is observed.
However, high-altitude drone images with a wide viewing angle lead to a wide range of viewing zenith
and azimuth angles, in which case, ρ varies significantly outside the 0.02 to 0.025 range, requiring a
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pixel-based adaptive ρ estimation. A simple method to determine ρ adaptively for different locations is
by exploiting the fact that the total water radiance at 840 nm is solely attributed to the surface-reflected
radiance (not to the water-leaving radiance from the water body). This assumption holds when the
water is clear; thus, the water-leaving radiance at 840 nm is nearly zero,

LwT = Lw + Lsrc (7)

Ls f c = ρLsky, (8)

where Lw and Ls f c denote the water-leaving radiance and the surface-reflectance radiance, respectively.
If Lw(840) = 0, then LwT(840) = Ls f c, leading to ρ = LwT(840)/Lsky(840).

There are two options to determine the downwelling irradiance: (1) using the DLS and (2) the
reference panel. The irradiance from the panel reflectance can be calculated as

Ed =
Lre f

π rpanel
, (9)

where Lre f is the radiance from the reference panel and rpanel is the reflectance of the panel. If the two
instruments are located and perfectly calibrated, the results of the two calculations should theoretically
match. In this experiment, the DLS was attached to the UAV and the reference panel measurements
were made on the ship, causing a difference in the altitude. In this experiment, the irradiance
difference caused by the atmospheric conditions (water vapor, aerosol, etc.) was approximately 15–20%.
Because our focus is on the water surface, we opted to use the irradiance measured at the ship level,
via the reference panel.

After Rrs is obtained, it can be used to derive bio-geochemical variables, such as chlorophyll-a(Chla).
To examine the effect of misregistration between the bands and the performance of the proposed
morphological registration method, retrieval results are computed for chlorophyll concentrations,
which is one of the most central biological quantities in the water quality analysis. For Chla
concentrations in a non-turbid ocean condition, the OC2 algorithm, which utilizes one blue and
one green band, was used [10,21].

log10 Chla = a0 +
4∑

i=1

ai

⎛⎜⎜⎜⎜⎜⎜⎝log10
Rrs(λblue)

Rrs
(
λgreen

) ⎞⎟⎟⎟⎟⎟⎟⎠ (10)

where Rrs(λ) is the remote sensing reflectance for the wavelengthλ and ai’s are the algorithm coefficients.
The OC2 coefficients for the Landsat-8 operational land imager were used (482 nm for blue and 561

nm for green) for the Rededge-M, whose blue band is centered at 475 nm and the green at 550 nm [21].
For the tested scenes with a red tide outbreak, the red-to-blue ratio (RBR) algorithm [22], developed for
the geostationary ocean color imager (490 nm for blue and 680 nm for green), was used to retrieve the
chlorophyll contents in the bloom. It is important to note that the algorithm coefficients for OC2 and
RBR were not specifically tuned to the Rededge-M in this study because the focus of the study is not on
the precise retrieval of Chla concentrations but the analysis of the impact of misregistration (particularly
spatial pattern). The band centers in the original OC2 and RBR algorithms do not significantly differ
from those of the Rededge-M, from which we can reasonably assume that the spatial anomaly pattern
would be similar, even after the fine calibration of the algorithms to Rededge-M.

3.3. The Impact of Pixel Misregistration on Water Quality Analysis

Figure 5a,b shows the RGB images of Rrs for Scene-A, for the fixed Fresnel factor (ρ =0.025) and
adaptive Fresnel factor cases, respectively. Rrs with a fixed ρ demonstrates that slant viewing angles
cause a high surface reflectance in the upper right corner of the image. It can be observed that wave
facets of different surface normals also led to varying viewing geometry, resulting in a variation of the

245



Remote Sens. 2020, 12, 2024

Rrs estimation, which exhibits residual sky reflectance on the surface. On the contrary, the adaptive
approach demonstrates that the variation caused by the viewing geometry is significantly reduced
with less across-image Rrs variation and smaller residual surface reflectances by the wave facets.

  
(a) (b) 

 
(c) (d) 

Figure 5. Images of remote sensing reflectance (a,b) and the Chla estimates from the respective Rrs

images (c,d) for Scene-A. A fixed Fresnel reflectance factor was applied to panel (a) and the adaptive
approach was used for panel (b).

Figure 5c,d are the OC2 Chla estimates, derived from the Rrs data, with a fixed ρ and adaptive ρ,
respectively. The large residual surface reflectance caused by the slant viewing angles in the upper right
corner led to significant underestimates of Chla and inflation in the bottom left corner. The anomalies
are less significant in the adaptive ρ case; however, they have not been completely removed, even
with the adaptive scheme. This implies that the surface-reflectance mechanism is more complex than
what is described by the adaptive scheme model (e.g., the existence of a nonlinear band-by-band
behavior). The phenomenon to focus on here is the large and noise-like Chla variation in a small-scale
window. For a more detailed analysis, the subset areas marked by the red rectangles in Figure 5c,d were
displayed in Figure 6. The Chla subset images show that the pixel-to-pixel variation is significantly
large for both the fixed and adaptive approaches and such a high-frequency pattern is not caused
by the real Chla spatial variation in the field. The adaptive approach exhibited a similar degree of
variation to the fixed approach, which reveals that the noise-like pattern is not from the variation of
wave facets. The images of Band 4 and Band 5 support this interpretation because the spatial pattern of
the reflectance in the two bands are consistent with each other and it reflects the wave facet distribution
(note that the two NIR bands have Rrs values of almost zero; therefore, the residual surface reflectance
mostly contributes to the reflectance of the bands). The spatial variation of Chla and NIR Rrs appears
to have no clear spatial correlation, implying that the high Chla variation in the images is not caused
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by the residual surface reflectance (equivalently, the viewing geometry) but from a factor related to the
image quality or pixel registration.

  
(a) (b) 

 
(c) (d) 

Figure 6. Chla images for the subset area marked in Figure 5, with (a) the fixed ρ and (b) the adaptive
ρ, and water reflectance images for Band 4 (c) and Band 5 (d).

A regression analysis was performed on a further subset area (40 × 40 pixels) of the scene. Figure 7
shows the scatter plots of the pixel-to-pixel water reflectance of four bands (Bands 1 and 3–5), with
respect to the reference band, Band 2. In all bands, a general linear relationship was identified;
however, it showed a low correlation (R2 < 0.75). To assess the spatial pattern of the misregistration,
the Band 2 image was regressed to Band 1, using the slope and offset estimated in the regression
analysis. The difference between the original Band 1 reflectance and the regressed Band 1 image
(Figure 7b) clearly shows a pixel-wise mismatch and the spatial patterns differ from that of the wave
facets. It can be observed that the Chla estimation from the mismatch data (Figure 7b) shows a similar
spatial variation to that of the difference image.
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(a) (b) 

Figure 7. (a) Regression results between the water reflectance for multispectral bands, with respect to
Band 2, and (b) water reflectance for a 40 × 40 pixel subset area of Band 1, Band 1 estimates regressed
from Band 2, the difference, and Chla estimates from the two bands.

3.4. Proposed Approach for the Morphological Registration

Because the surface of the water is not a rigid body, no geometric transformation can find its
appropriate pixel-to-pixel correspondence. For a solution, the overall reflectance distribution must be
conserved in a sufficiently small area (referred to as “window” hereafter), even if we do not know
which pixel in a window corresponds to a pixel in the other band. The images of all five bands contain
five instances of the scene at slightly different timings. Consequently, it can be assumed that the
distribution of physical quantity, such as the radiance, does not significantly vary in the short period.
By setting the image acquisition time of one band as a reference time frame, the radiometric values of
the other bands can be matched to the reference band, according to the radiometric distribution, not the
pixel location. Figure 8 shows the quantile-to-quantile plot (QQ plot) of the four bands, with respect to
Band 2, exhibiting that the radiometric relationship can be established with a nearly perfect correlation
when the reflectance of the two bands are compared based on the quantile in reflectance, not on the
pixel location. A comparison of the QQ plot with the previous pixel-to-pixel scattered plots (Figure 7)
reveals how the pixel-to-pixel misregistration, based on the location, degraded the correlation between
the bands. In all four cases of the QQ plots, R2 is nearly one, producing band-dependent slopes and
offsets for the linear relationship. Using this new linear model, the Band 2 image was regressed to
Band 1 and compared with the previous results from the regression analysis. Figure 9 shows that
Band 1, regressed from the QQ plot, exhibits reflectance levels that are more similar to the original
Band 1 image than the location-based regression case. The application of the linear models, derived
by the QQ plots, to all four bands, serves as the morphological registration between bands and the
subsequent Chla estimation produces a significant improvement in the image quality (Figure 10).
Figure 10 shows that the noise pattern for Chla in the original data was significantly reduced and the
corrected Chla image contains only the spatial variation caused by wave facets, without being affected
by the pixel-to-pixel misregistration. The mean and median values are comparable between the two
results; however, the standard deviation and the coefficient of variation reduce from 1.03 to 0.28 and
from 29% to 8%, respectively.
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Figure 8. The QQ plots of water reflectance for the four spectral bands, with respect to Band 2 and the
corresponding regression results.

(a) (b) (c) 

Figure 9. Water reflectance of Band 1 for the subset area in Scene-A: (a) original data, (b) scaled from
Band 2 through the location-based regression, and (c) scaled from Band 2 with the QQ-based regression.

(a) (b) 

Figure 10. Chla estimation from Rrs for the subset area in Scene-A: (a) original Rrs and (b) Rrs composited
through the QQ-based regression.

Because the determination of the window size can be critical for this approach, the sensitivity of the
window size has been investigated. Six different window sizes—15, 25, 51, 101, 251, and 501 pixels—were
tested for the QQ plots between Bands 1 and 2 (Figure 11). The window areas for the various sizes were
displayed in the corrected Band 1 reflectance image. The plots showed that a high correlation between

249



Remote Sens. 2020, 12, 2024

Bands 1 and 2 was maintained throughout all window sizes; however, the derived linear relationships
were different for different window sizes. As the window size increased, the slopes increased and the
y-intercepts decreased. This reveals that the reflectance distribution may change depending on the
areas used for the QQ calculation and the local characteristics (in a small window) may be lost when
the QQ is derived for a large area. To achieve the goal of the proposed morphological registration,
the window size must be kept as small as the local distribution because fetching the reflectance value
from a distant location may not guarantee that the two values are from the continuum of targets.

 

Figure 11. Regression results for varying sizes of the QQ plot calculation window. The extent of each
window is marked in the corrected Band 1 image.

4. Algorithm Application and Results

4.1. Algorithm Development for the Entire Image

The QQ plot approach is iterated over the image dimension to process the entire image. However,
the calculation of quantiles, which is essentially an order statistics, for all pixels requires exhaustive
computation with the complexity of O(n·log n). A Rededge-M image consists of 1280 × 960 pixels,
which totals to ~1.2 × 106 pixels. Thus, we employ an alternate fast approach, where the QQ calculation
is performed for subsampled pixels (e.g. every n-th pixel), and the resultant linear model coefficients
(i.e., slope and y-intercept) are propagated to the vicinity of the subsampled pixels with distanced
weights assigned by a 2-dimensional Gaussian filter. Figure 12a,b displays the slope and the y-intercept
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images that were calculated at every pixel, which were then compared with the images obtained with
the subsampling scheme, involving the Gaussian filers (Figure 12c,d) (the window size of the Gaussian
filter (wgauss) was 25, and the step size (dstep) was 12). While the spatial patterns do not significantly
deviate from each other, the computation time scales down from 12 min to 1 min per band, saving more
than 90% of the computation time (computation done with Intel®CoreTM i-5-8265U CPU@1.60GHz,
and 8GB RAM). The overall flow chart of the algorithm is presented in Figure 13.

(a) (b) 

 
(c) (d) 

Figure 12. Images of regression slopes (a) and y-intercepts (b) that are calculated at every pixel, and the
slope images (c) and the y-intercept images (d) computed in every 12 pixels and convolved with a
Gaussian filter.

Figure 13. The flow chart of the proposed algorithm.

4.2. Results

The proposed algorithm was applied to the four data sets listed in Table 1. Figure 14 shows
the comparison between the Chla estimates, before and after the application of the algorithm for
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Scene-A, taken at an altitude of 85.4 m. The high-frequency Chla variation before the correction was
significantly and consistently reduced after the correction, over all areas of the image, enhancing the
sharpness of the wave features on the surface. Note that the extremely high Chla values under the ship
is caused by the ship shadows that made the blue-to-green ratio significantly altered compared to the
sun shed areas, thus the anomalously high Chla values are not artifacts of the proposed morphological
registration method.

Figure 14. Comparison of resultant Chla estimates for Scene-A (altitude 85.4 m), before and after
the application of the proposed morphological band registration method. Three subsections were
magnified for improved visual evaluation.

The evaluation of images captured at various altitudes is important because the effect of
misregistration may vary with the spatial frequency of surface reflectance features. Data sets from
8.1 m (Scene-B) and 196 m (Scene-C) were tested and the results are displayed in Figures 15 and 16,
respectively. The figures display four types of Chla estimates, each of which is derived from (1) Rrs

data before the correction, (2) Rrs data after low pass filtering with a 2 × 2 average window, (3) Rrs

data after low pass filtering with a 32 × 32 average window, and (4) Rrs data after correction using
the proposed morphological registration. Figure 15a shows the results for Scene-B (altitude 8.1 m),
where the Chla estimates before the correction exhibits a very noisy spatial pattern, which remains
even after the 2 × 2 mean filter. The noisy pattern was not minimized until the size of the mean filter
increased to 32 × 32, as shown in the figure. The Chla estimates, with the morphological registration,
exhibited a noise-free retrieval while maintaining the sharpness of the image. Note that the 32 × 32
mean filter removed the noise at the expense of losing spatial details, or sharpness. For a more detailed
evaluation, a boxed area, marked in the figure, is displayed in Figure 15b. The figure demonstrates
that the misregistered pixels caused many spikes with Chla estimates exceeding 3.0 mg/m3 in the
original resolution. In the 2 × 2 mean filter case, the Chla values of the corrected estimates are in the
level of approximately 2.0 mg/m3, with the lowest value at approximately 1.0 mg/m3. It is neither
realistic that Chla varies with a factor of three in such a small area (< 1 m2) nor true that the viewing or
reflecting geometry changes with such a high frequency. The scatter statics such as standard deviation
and coefficient of variation decreased significantly after the morphological registration compared to
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the 2 × 2 mean filter (s.d.: 601 to 0.2, c.v.: 14224% to 15%), while the median value stays similar (1.745
to 1.768), implying that the outliers caused by misregistration significantly deteriorated the image
quality. It is shown that the mean values were also significantly affected by the noise (4.228 to 1.745).

(a) 

 
(b) 

Figure 15. Scene-B, acquired on 2019.08.31 at an altitude of 8.1 m. (a) Chla estimates from four different
processings of Rrs data; (upper left) before morphological registration, (upper right) after 2 × 2 mean
filter on water reflectance, (bottom left) after 32× 32 mean filter on water reflectance, and (bottom right)
after morphological registration. (b) Magnified figures for the subset area marked in a red box in
panel (a).
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(a) 

(b) 

Figure 16. Scene-C acquired on 2019.08.31 at an altitude of 196 m. (a) Chla estimates from four different
processings of Rrs data; (upper left) before morphological registration, (upper right) after 2 × 2 mean
filter on water reflectance, (bottom left) after 32× 32 mean filter on water reflectance, and (bottom right)
after morphological registration. (b) Magnified figures for the subset area marked in a red box in
panel (a).

The results for the scene of much higher altitude (Scene-C (196 m)) are presented in Figure 16.
It shows that the scene is in general more homogeneous than the previous low-altitude image (Scene-B
(8.1 m)), and it exhibits a gradual radiance change across the scene with the boxed area occupied with
fairly homogeneous radiance values. However, even if the surface features have a significantly smaller
scale than the low-altitude images, the noisy pattern is still strong in all areas of the image as well as in
the boxed area, which was effectively removed by the morphological band registration. In the boxed
area, while the mean and the median values stay similar (mean: 2.248 to 2.229, media: 2.225 to 2.224),
the scatter statics greatly improved (s.d.: 0.243 to 0.0066, c.v.: 11% to 3%) (Figure 16b). The proposed
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algorithm was also tested on a scene with an event in a part of the image (Figure 17). Scene-D was
acquired for a strong red tide outbreak of Cochlodinium polykrikoides (the species was confirmed from
microscopic analysis during the field campaign) and the Chla contents were estimated with the RBR
algorithm. The morphological registration reduced the number of pixels that had extremely high Chla
estimates (> 50 mg/m3), which are considered to be generated misregistration pixels. While the overall
extent and concentration level in the morphological registration is comparable to that of the 32 × 32
filter results, a spatial pattern of a higher frequency is still observable in the improved result.

(a) 

(b) 

Figure 17. Scene-D acquired on 2019.08.31 at an altitude of 390 m. (a) Chla estimates from four
different processings of Rrs data; (upper left) before morphological registration, (upper right) after
2 × 2 mean filter on water reflectance, (bottom left) after 32 × 32 mean filter on water reflectance,
and (bottom right) after morphological registration. (b) Close-up figures for the subset area marked in
a red box in panel (a).
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5. Discussion and Conclusions

This study analyzed the impact of residual misregistration between the bands of a multispectral
camera, which is particularly problematic for fast-moving targets such as the water surface.
The analysis suggested that the residual misregistration is difficult to correct using geometric coordinate
transformation (e.g., projective transformation). It produces abnormal band ratios and band differences,
resulting in significant anomalies in the water quality variables, such as the Chla concentration.
The proposed registration algorithm succeeded in effectively removing noisy spatial patterns caused by
the misregistration while maintaining the original spatial resolution of the image, unlike the smoothing
approach which significantly degrades the sharpness of the images. Contrary to the intuition that
high-altitude images will be less affected by pixel-level misregistration (because a scene appears more
homogeneous when observed from far), the test results for various altitudes showed that the residual
misregistration exist at all tested altitudes (8–390 m). This suggests that there exist various frequencies
of the surface reflectance feature on the water surface. The proposed algorithm was robust to local
events that occurred in a partial section of the image, which may have distinct spectral characteristics
of the remaining image area (usually normal water surface), as shown in the red tide image.

The proposed method is expected to improve estimation of other water quality variables such as
colored dissolved organic matter (CDOM) and total suspended sediments (TSM) as many of the CDOM
and TSM retrieval algorithms rely on the band ratio of reflectance.

Future work includes analysis on the effects on other water quality variables, and also the further
correction of residual sky reflectance that is often caused by the spatially varying normals of the
wave facets. The residual sky reflectance still existed even after the morphological band registration.
The research requires a comprehensive understanding of the reflecting mechanism and more detailed
modeling of the surface reflectance, associated with the analysis on the downward sky radiance
incident on the water surface.
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Abstract: We investigated the spatio-temporal variability of chlorophyll-a (Chl-a) and total suspended
matter (TSM) associated with spring–neap tidal cycles in the Ariake Sea, Japan. Our study relied
on significantly improved, regionally-tuned datasets derived from the ocean color sensor Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua over a 16-year period (2002–2017). The results
revealed that spring–neap tidal variations in Chl-a and TSM within this macrotidal embayment
(the Ariake Sea) are clearly different regionally and seasonally. Generally, the spring–neap tidal
variability of Chl-a in the inner part of the Ariake Sea was controlled by TSM for seasons other than
summer, whereas it was controlled by river discharge for summer. On the other hand, the contribution
of TSM to the variability of Chl-a was not large for two areas in the middle of Ariake Sea where TSM
was not abundant. This study demonstrates that ocean color satellite observations of Chl-a and TSM
in the macrotidal embayment offer strong advantages for understanding the variations during the
spring–neap tidal cycle.

Keywords: chlorophyll-a variability; spring–neap tides; Ariake Sea; MODIS-Aqua; total suspended
sediment; river discharge

1. Introduction

The spring–neap tidal cycle is an important factor for the variability of chlorophyll-a (Chl-a) in
macrotidal ecosystems [1–4]. During a spring–neap tidal cycle, which is about 15 days long, sea level
increases (decreases) and tidal mixing is enhanced (weakened) during spring (neap) tide. In some
macrotidal embayments, it has been suggested that the concentration of total suspended sediment
(TSM) increases (decreases) in spring (neap) tide, which consequently influences the variability of
Chl-a during a spring–neap tidal cycle. This may be explained by the phenomenon whereby strong
tidal mixing during spring tide induces the resuspension of sediments in shallow water, causing
high turbidity, which reduces light availability for the growth of phytoplankton. On the other hand,
the stratification that occurs during neap tide reduces the resuspension of sediments, which increases
light availability and thus promotes phytoplankton growth [3,5,6]. However, most previous studies
were primarily based on in situ data from only a few observation stations and on short-term time scales,
which makes it difficult to understand the mechanisms of spring–neap tidal variability of Chl-a for a
whole embayment and for longer time scales. Satellite ocean color products are now routinely used
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to investigate variations in phytoplankton biomass and productivity, both in coastal and open ocean
systems. One significant advantage of satellite remote sensing over traditional shipboard measurements
is their broad synoptic coverage and frequency of observations. Thus, satellite ocean color products
have been used extensively for the detection and monitoring of phytoplankton biomass indicated by
Chl-a as well as water turbidity and TSM concentrations in coastal waters [7–10]. However, at present,
only a few studies have focused on the variation in satellite ocean color during the spring–neap tidal
cycle. One example is the study by Shi et al. [11], which investigated the spring–neap tidal effects on
Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua-derived normalized water leaving
radiance spectra (nLw(λ)), water diffuse attenuation coefficient at 490 nm (Kd(490)), and TSM in
Bohai Sea, Yellow Sea, and East China Sea between 2002 and 2009. Another example is the study by
Su et al. [12], which investigated the relationship between variation in net phytoplankton growth and
tidal resuspended events using the daily Medium Resolution Imaging Spectrometer (MERIS) data
from 2003 to 2004 in the German Bight. The authors proposed that spring–neap tidal resuspension
supplied nutrients and thus enhanced phytoplankton growth, which was different from the findings
in the above-mentioned studies [3,5,6], indicating that the effect of spring–neap tidal cycle on the
variability of Chl-a varies in regions with different characteristics.

The Ariake Sea is a macrotidal embayment (~20 km wide and 10 km long) located in the Kyushu
Island of Japan (Figure 1). It is a shallow bay with an average depth of ~ 15 m and a depth of ~5 m in
the onshore area. The range of spring–neap tides in the Ariake Sea is the largest among the Japanese
coastal waters, and it can reach to ~6 m during the spring tide in the inner part of the bay [13]. The large
tidal range produces strong tidal currents and large tidal flat areas. As a result, strong tidal currents
lead to high turbidity zones around the tidal flat areas. Some rivers also discharge into Ariake Sea and
supply large amounts of nutrients and suspended sediments to the Sea [14]. The largest river (143 km
long and 2860 km2 in area) that empties into the Ariake Sea is the Chikugo River which connects to the
northern part of the bay (Figure 1). The spring–neap tidal range and tidal mixing varies in different
regions, and they are largest off Saga, located in the northern part of Ariake Sea. Isahaya Bay, which is
the small bay at the western side of the Ariake Sea, used to be known as one of the largest tidal flats in
Japan, but its topography was changed following the Isahaya Reclamation Project (Figure 1) [15,16].
For the off-Kumamoto area, which is in the middle and eastern part of Ariake Sea, is surrouded by the
two main rivers discharge (Figure 1), and the tidal flat is mostly sandy [13].
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Figure 1. Location of Ariake Sea, Japan (a). The water depth of the bay is shown in light to dark blue (b).
The seven main rivers, Rokkaku, Kase, Chikugo, Yabe, Kikuchi, Shira, Midori, and Kuma, are indicated
by the arrows. The three regional areas—i.e., off Saga, Isahaya Bay, and off Kumamoto—are highlighted
by the red boxes. The dike and the reclamation area within Isahaya Bay are represented by the brown
line and meshed lines, respectively. The observation station for tidal level data of Ariake Sea, named
Oura, is represented by the magenta filled circle.

There have been previous attempts to study the influence of the spring–neap tidal cycle on Chl-a
variability in Ariake Sea. For instance, in the study by Tanaka et al. [17], the variation forced by the
spring–neap tidal cycle in phytoplankton biomass was measured by Chl-a fluorescence and turbidity
data at four stations in the northern part of inner Ariake Sea. The authors reported that phytoplankton
biomass increased during the neap tide and decreased during the spring tide. They also suggested
that the increase and decrease was the result of changes in available light by tidally resuspended TSM.
However, it is not known whether the impact of spring–neap tides is significant over the larger area of
Ariake Sea and over the whole year.

Additionally, river discharge was reported to be an important factor for the seasonal variability
of Chl-a for the whole Ariake Sea based on the standard Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) Chl-a data from May 1998 to December 2001 [10]. However, the standard in-water algorithms
of satellite ocean color sensors, such as SeaWiFS and MODIS-Aqua, for this region are prone to errors,
and the remote sensing blue band reflectance (Rrs) values are inaccurate. In a previous study [18],
we showed that the accuracy of MODIS-Aqua Rrs and Chl-a for the Ariake Sea could be significantly
improved by a Rrs recalculation method and a local Chl-a switching algorithm. The Rrs recalculation
method first estimated the value of MODIS Rrs(412), from which the standard MODIS Rrs(412) was
subtracted to obtain the error in MODIS Rrs(412). Then, the errors in MODIS Rrs(λ) (λ = 443, 488 nm)
were calculated based on the assumption that they were linear to the error in MODIS Rrs(412) between
412 and λ nm. Finally, the error in MODIS Rrs(λ) was added to the standard MODIS Rrs(λ) to obtain the
recalculated MODIS Rrs(λ). This Rrs recalculation method is simple and effective to reduce the errors in
the standard MODIS Rrs(λ) (λ = 412, 443, 488) and therefore Chl-a. In addition, a local Chl-a switching
algorithm was developed, which was based on the in situ Chl-a and the maximum blue-to-green
band ratio with Rrs(443), Rrs(488), and Rrs(547), for the turbid (Rrs(667) > 0.005 sr−1) and non-turbid
(Rrs(667) <= 0.005 sr−1) waters of the Ariake Sea. The local Chl-a switching algorithm significantly
improved the Chl-a estimates over that possible by the standard MODIS-Aqua in-water algorithm

261



Remote Sens. 2020, 12, 1859

(OC3M). Moreover, it was superior to the near-infrared to red band ratio [19] and the red-to-green
band ratio [20] algorithms in terms of the accuracy of the estimated Chl-a.

In this study, we hypothesized that there were regional and seasonal differences in the
spring–neap tidal variability of Chl-a associated with TSM and river discharge for Ariake Sea.
Therefore, we investigated the spring–neap tidal variability of MODIS-Aqua Chl-a for the three
regional areas—i.e., off Saga, Isahaya Bay, and off Kumamoto—as well as the whole Ariake Sea, from
2002 to 2017. The impact of TSM and river discharge on the spring–neap tidal variability of Chl-a was
quantitatively evaluated using locally tuned MODIS data.

2. Materials and Methods

2.1. Satellite Data and Preprocessing

For our study, reprocessed (2018.1) MODIS-Aqua level 2 products (July 2002–December 2017)
were downloaded from the NASA Ocean Biology Processing Group data portal at https://oceancolor.
gsfc.nasa.gov/. The spatial and temporal resolution was 1 km and daily, respectively. Before data
processing, data quality control was carried out to exclude some of the questionable data. The data
flagged by LAND, HIGLINT, HILT, HISATZEN, CLDICE, HISOLZEN, LOWLW, MAXAERITER,
and NAVFAIL, (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/), were discarded. We also eliminated
the data at the edge of satellite view because it is known that they are influenced by a long atmospheric
path and that they form a larger pixel size. Besides, we did not use the coverage of less than 20% of
the study area because of the possible noise from the cloud edge. With this data quality control and
filtering approach, all available daily MODIS-Aqua images (1582) were reduced to 899 images, which
were then processed by the Rrs recalculated method and the local Chl-a switching algorithm [18].
Following the reprocessing, pixel values of Chl-a which were spotty and more than three times higher
than the adjacent pixel values were defined as outliers and were masked. Then, pixel values of Chl-a
more than 100 mg m−3 were set to be 100 mg m−3 because the maximum in situ Chl-a for the algorithm
development was around this value.

Finally, the data frequency and number of observations in each pixel based on all the daily data
from 2002 to 2017 were calculated to evaluate the spatial distribution of all the data. The data number
was lower inshore and increased to the middle of the bay (Figure S1). This different distribution of
data numbers may cause bias for the later data analysis, and thus the areas where the data number
was less than 450 were masked.

Regarding the estimation of TSM, an empirical TSM algorithm was developed based on the
relationship between in situ TSM and Rrs(667)/Rrs(547) [21] (Figure 2a). The in situ data were the
same as those used in [18]. MODIS-derived TSM was obtained by applying the TSM algorithm to the
recalculated MODIS-Aqua Rrs, and then validated by comparing it with matching in situ TSM data
which were different from the data set used for the development of the TSM algorithm. The matches
were derived with the same matching criteria as that used in [18]. The formulas of RMSE and bias
were the same as those for Chl-a in [18]. Besides, we also calculated the mean absolute percentage
error (MAPE) for the estimated TSM, and the formula was expressed as follows:

MAPE =
1
N

N∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (1)

where N is the data number and At and Ft represent the in situ and estimated TSM concentrations (in
log-scale), respectively.
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Figure 2. (a) Regression of the total suspended matter (TSM) algorithm based on the in situ TSM
and Rrs667:Rrs547, and (b) the comparison between the in situ and Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived TSM data. The red lines are the regressions of the data in each plot,
and the red dashed line represents the regression of the TSM algorithm. Equations of each regression
and error statistics are also shown.

2.2. Tidal Level Data

The hourly tidal level data (cm) over the same time period as the whole satellite data set was
downloaded from the Japan Oceanographic Data Center (2002–2010; https://www.jodc.go.jp/jodcweb/
JDOSS/index_j.html) and the Japan Meteorological Agency (2011–2017; https://www.data.jma.go.jp/
gmd/kaiyou/db/tide/suisan/index.php). We used the data from observation station Oura (Figure 1).
Based on the tidal level data, the time periods of each tidal cycle from 2002 to 2017 were identified,
and each spring–neap tidal cycle was divided into four tidal stages—namely spring to neap (SN), neap
(N), neap to spring (NS), and spring (S) tide—by the tidal range. The tidal level decreased during SN
tide, decreased further during N tide, then increased during NS tide, and further increased during S
tide. Therefore, N and S tides were the trough and peak of the tidal range, respectively, and SN and NS
tides were the transitional tides during each spring–neap tidal cycle.

2.3. Satellite Composite Data

The Chl-a and TSM composites were initially made for the four tidal stages (SN, N, NS, and S
tides) for all the individual events of spring–neap tidal cycles (2002-2017). Subsequently, composites
of the four tidal stages were made for the annual and seasonal climatology data. The procedure of
producing the satellite composite data is described in a schematic flow (Figure 3) following steps 1 to
4 below.

(1) From the daily data, composites were made for each tidal stage of each individual spring–neap
tidal cycle to derive all the individual spring–neap tidal cycle data (four tidal stages (per tidal
cycle) × two tidal cycles (per month) × 12 months × 16 years).

(2) The individual spring–neap tidal cycle data was averaged for each month of each year, and then
the data in the same month were averaged for all the years to obtain the monthly climatology
data of each tidal stage (four tidal stages × 12 months).

(3) Meanwhile, the individual spring–neap tidal cycle data were averaged for each year first, and then
the data were averaged for all the years to derive the annual climatology data of each tidal stage
(four tidal stages).

(4) An average of the annual climatology of each tidal stage’s data was made to obtain the annual
climatology data (one data point).
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Figure 3. Schematic flow of satellite composite data processing. The individual spring–neap tidal
cycle, monthly and annual climatology of chlorophyll-a (Chl-a) and TSM were obtained from the
MODIS-Aqua data set (2002–2017). Data of interannual and monthly, and interannual tidal cycle were
the intermediate data. SN: spring to neap; N: neap; NS: neap to spring; S: spring.

Furthermore, the spatially-averaged Chl-a and TSM were calculated and compared over the
spring–neap tidal cycle for the whole sea (Figure 4), and the three regional areas; i.e., off Saga, Isahaya
Bay, and off Kumamoto (Figure 1). The accuracies of the MODIS-Aqua Chl-a were discussed in [18].
To understand the resuspension mechanism of Chl-a and TSM over the spring–neap tidal cycle for the
Ariake Sea, the ratio of Chl-a to TSM (Chl-a:TSM) was analyzed [8,22]. In [22], the authors proposed that
TSM was phytoplankton-dominated when the ratio was between 1:600 and 1:275 and was suspended
sediment-dominated when the ratio was lower than 1:600 for Tokyo Bay, which was once applied to
the East China Sea (ECS) to study the seasonal and interannual dynamics of Chl-a and TSM [8].

Figure 4. Satellite imagery of annual climatology of chlorophyll-a (Chl-a) (a) and total suspended sediment
(TSM) (b). The whole sea, where spatially-averaged Chl-a and TSM were calculated, is marked in red.
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2.4. River Discharge Data

Daily river discharge data was downloaded from the website of Water Information System
of the Japanese Ministry of Land, Infrastructure, Transport and Tourism (http://www1.river.go.jp/).
Twelve rivers were selected for the seven main river systems, namely Chikugo, Yabe, Rokkaku, Kase,
Kikuchi, Shirakawa, Midori and Kuma Rivers (Figure 1). In addition, total daily and monthly river
discharge data were calculated. The total daily river discharge data were derived as the sum of the daily
data from all the rivers, and then they were averaged for each month of all years from 2002 to 2017 to
obtain the total monthly river discharge data. Missing daily data for a certain river were estimated
based on the correlation between the daily river discharge from that river and that from the other
rivers (0.891 < R2 < 0.998). However, for several years (2005, 2007, 2013, 2014 and 2016), large amounts
of missing data diminished the usefulness of this data, and these years were therefore excluded from
further analysis. Interannual variations of the monthly river discharge were quantified by the variation
bars (Figure S2), and they were small in terms of the standard deviation of the interannual monthly
river discharge except for June and July.

3. Results

3.1. Annual Climatology of Chl-a and TSM

The annual climatology data showed higher Chl-a in the three regional areas—i.e., off Saga,
Isahaya Bay, and off Kumamoto—than that in the middle part of the Ariake Sea (Figure 4a).
However, the difference in the magnitude of the spatially-averaged Chl-a for the areas off Saga
(7.66 mg m−3), Isahaya Bay (7.55 mg m−3), and off Kumamoto (7.59 mg m−3) was small. In contrast,
the averaged TSM was much higher (4.93 g m−3) in the area off Saga than that in Isahaya Bay (2.61 g
m−3) and off Kumamoto (3.06 g m−3) (Figure 4b). In addition, spatially-averaged Chl-a (6.77 mg m−3)
and TSM (3.20 mg m−3) values were calculated for the whole sea by excluding the southern part of the
sea where the validation of the satellite Chl-a and TSM was missing.

Differences in Chl-a and TSM over the spring–neap tidal cycle were observed (Figures 5 and 6a).
For Chl-a, the variability was larger in the three regional areas—i.e., off Saga, Isahaya Bay, and off
Kumamoto—than that in the middle-western areas, and they were slightly higher during NS and
S tide than in SN and N tide. The TSM was also higher during NS and S tide than that during SN
and N tide, and the variability of TSM was larger especially off Saga than in other areas. Note that
the standard deviations of the spatial averages of all the interannual data were calculated to assess
the significance of the difference of the spatial average of the annual data during each tidal stage
(Figure 6a). All the standard deviations were smaller than the difference of the spatial averages of the
annual data, indicating that the differences of the spatial averages were significant.

Furthermore, the relation between annual Chl-a and TSM over the spring–neap tidal cycle was
investigated (Figure 6). For the whole sea, and especially for off Saga (Figure 6a), TSM was low in
SN and N, and then dramatically increased in NS and S tide. In contrast, for Isahaya Bay and off
Kumamoto (Figure 6a), the variability of TSM was not consistent with the spring–neap tidal cycle.
Besides, the ratios of Chl-a:TSM were lower compared over the spring–neap tidal cycle (Figure 6b).
For the whole sea and off Saga, the ratio increased from SN to N, then decreased to NS, and then further
to S tide. Moreover, the ratios were lower than 1:600 except for N tide for off Saga due to the high
concentration of TSM (>4 g m−3) during the spring tide in this area. For the whole sea, the ratios were
all between 1:600 and 1:275. For Isahaya and off Kumamoto, the variability of the ratios was between
1:600 and 1:275 and much smaller than off Saga, and TSM almost linearly increased with Chl-a.
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Figure 5. Satellite images of annual climatology of Chl-a (a) and TSM (b) over the spring–neap
tidal cycle.

Figure 6. Change of spatially-averaged annual climatology of Chl-a and TSM over the spring–neap
tidal cycle (a) and the scattering plot (b) for the whole sea, off Saga, Isahaya Bay and off Kumamoto.
The vertical lines in (a) represent the standard deviations of the spatial averages, and the dashed and
dotted lines in (b) represent the Chl-a:TSM ratios of 1:600 and 1:275, respectively.

3.2. Monthly Climatology of Chl-a and TSM

The magnitude of Chl-a showed seasonal variations: it was generally lowest in winter (December,
January, February), increased in spring (March, April, May), reached its height in summer (June, July,
August), and then decreased in autumn (September, October, November) (Figure S3). For each season,
the spring–neap tidal variability of monthly Chl-a showed similar patterns. Therefore, the middle
months of each season were chosen as representative months (Figure 7). In winter and spring, Chl-a
was much higher (>7 mg m−3) for the areas off Saga, Isahaya Bay and off Kumamoto, whereas in
summer, high Chl-a expanded to the whole sea, and then began to be restricted to the areas off Saga,
Isahaya Bay and off Kumamoto in October and November. The seasonal variability of TSM was much
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less than that of Chl-a. In addition, TSM was generally much higher (>6 g m−3) off Saga than that in
other areas of the sea (<4 g m−3).

Figure 7. Satellite images of monthly climatology of Chl-a (a) and TSM (b) over the spring–neap
tidal cycle. The four months—i.e., Jan., Apr., Jul., and Oct.—represent winter, spring, summer,
and autumn, respectively.

The relationship between the monthly Chl-a averaged over the spring–neap tidal cycle and the
monthly river discharge were also examined (Figure 8) because river discharge was suggested to be
one of the important factors for seasonal variation [10]. The monthly Chl-a was strongly and positively
correlated with the monthly river discharge from all the rivers for the whole sea, off Saga, Isahaya and
off Kumamoto (R2 = 0.88, 0.89, 0.78 and 0.87; p < 0.05). The magnitude of Chl-a was much higher in
summer and highest in July when the river discharge was highest. This suggests that river discharge
could be one of the important factors for the large seasonal variability of Chl-a in all of the regions.

The relationship between monthly Chl-a and TSM over the spring–neap tidal cycle was separately
investigated for the four areas (Figure 9; Figure 10; Table 1). All the standard deviations were smaller
than the difference of the spatial averages of the monthly data, suggesting that the differences of the
spatial averages were significant. The variability of monthly Chl-a showed clear seasonal differences
for all the four areas. The magnitude of Chl-a over the spring–neap tidal cycle was much higher
(Figure 9) in July, which represented summer, than in other months, which corresponded to a higher
river discharge in summer, especially in June (Figure 8). The Chl-a peaks within each tidal cycle
occurred at SN or NS tides for summer, whereas the Chl-a peaks generally occurred at N or NS tides
for other seasons, for all areas (Table 1). In contrast, the Chl-a peaks all occurred at N or NS tides for the
annual climatology data. For the variability of monthly TSM over the tidal cycle, seasonal differences
were relatively small compared with the regional difference as well as the monthly variation in Chl-a
(Figure 9), and the TSM peaks all occurred at NS or S tide (Table 1).
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Figure 8. Monthly climatology of Chl-a averaged over the spring–neap tidal cycle against the monthly
climatology of river discharge. The data in winter, spring, summer, and autumn are represented by red,
green, blue, and yellow markers, respectively. The lines are regression lines.

Figure 9. The time-series of monthly climatology of spatially-averaged Chl-a over the spring–neap
tidal cycle for (a) the whole Araike Sea, (b) off Saga, (c) Isahaya Bay, and (d) off Kumamoto. The vertical
lines in each plot are standard deviations of spatial averages of all the interannual data.
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Figure 10. Scatter plots of monthly climatology of Chl-a and TSM over the spring–neap tidal cycle
for the whole Sea (a), off Saga (b), Isahaya Bay (c) and off Kumamoto (d). The data for the four tidal
stages—SN, N, NS and S tides—are represented by yellow, purple, magenta and light blue markers,
respectively. The dashed and dotted line represents the Chl-a:TSM ratios of 1:600 and 1:275, respectively.

Table 1. Statistics of the peaks within the spring–neap tidal cycles made for the monthly climatology of
Chl-a and TSM for the whole sea, off Saga, Isahaya Bay, and off Kumamoto. A value of “1” indicates
the occurrence of peaks.

Chl-a Peaks Whole Bay Off Saga Isahaya Bay Off Kumamoto

Month SN N NS S SN N NS S SN N NS S SN N NS S

Dec. 1 1 1 1
Jan. 1 1 1 1
Feb. 1 1 1 1
Mar. 1 1 1 1
Apr. 1 1 1 1
May 1 1 1 1
Jun. 1 1 1 1
Jul. 1 1 1 1

Aug. 1 1 1 1
Sep. 1 1 1 1
Oct. 1 1 1 1
Nov. 1 1 1 1

TSM Peaks Whole Bay Off Saga Isahaya Bay Off Kumamoto
Month SN N NS S SN N NS S SN N NS S SN N NS S

Dec. 1 1 1 1
Jan. 1 1 1 1
Feb. 1 1 1 1
Mar. 1 1 1 1
Apr. 1 1 1 1
May 1 1 1 1
Jun. 1 1 1 1
Jul. 1 1 1 1

Aug. 1 1 1 1
Sep. 1 1 1 1
Oct. 1 1 1 1
Nov. 1 1 1 1
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The variability of the Chl-a:TSM ratios also showed seasonal and regional differences (Figure 10).
For summer, the ratios were much higher and were almost above 1:600 for all areas, which was due
to the high Chl-a (7.74~41.08 mg m−3). For other seasons, the ratios were generally highest at N tide
and lowest at S tide and were almost below 1:600 for the whole sea and off Saga (Figure 10a,b), which
was due to the high TSM (2.02~9.51 g m−3); in contrast for Isahaya and off Kumamoto (Figure 10c,d),
the variability of the ratios over the tidal cycle was small, and the ratios were mostly between 1:600 and
1:275 due to the lower TSM.

3.3. Individual Events of Spring–Neap Tidal Cycle Variability of Chl-a

The annual and monthly composite analysis indicated that there were strong spring–neap tidal
cycles in Chl-a variation, which further varied regionally and seasonally. Therefore, the individual
events of spring–neap tidal cycles from 2002 to 2017 were investigated. Because much of the Chl-a
data were missing over the spring–neap tidal cycles, only 10 individual events had data available for
all spring–neap tidal stages (Table 2). The data were missing in some of the three target regional areas
(Figure 11); thus, spatially-averaged Chl-a and TSM values were only calculated for the whole sea
(Table 2).

Figure 11. Composite Chl-a (a) and TSM (b) images of the spring–neap tidal stages for the ten selected
individual tidal cycles, i.e., TC-1 to TC-10. TC-1 to TC-3 were from winter, TC-4 to TC-5 were from
spring, TC-6 to TC-7 were from summer, and TC-8 to TC-10 were from autumn.
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The individual events of the spring–neap tidal cycles also suggested the seasonal variability
of Chl-a over the spring–neap tidal cycle (Figure 11). In other words, the magnitude of Chl-a was
generally low in winter (TC-1 to TC-3), spring (TC-4 to TC-5), and autumn (TC-8 to TC-10) and high in
summer (TC-6 to TC-7); higher Chl-a (>7 mg m−3) generally occurred in the area off Saga, Isahaya Bay
and off Kumamoto in winter and spring, expanded to the whole sea in summer, and was reduced to
the area off Saga, Isahaya and off Kumamoto in autumn. This seasonal variability of Chl-a over the
spring–neap tidal cycle was similar to that of the monthly climatology data.

The spring–neap tidal cycle variability of Chl-a and TSM was observed for the whole area
(Figure 12; Table 2). In general, the spring–neap tidal variation was much smaller in winter, spring,
and autumn than that in summer for Chl-a in terms of standard deviation. Daily river discharge data
from two weeks before the first tidal stage (SN tide) was also used to investigate its influence on Chl-a
(Figure 12). To quantify the variation of the river discharge, the ratio of the maximum:average of
river discharge was calculated for each tidal cycle (Table 2). For TC-1 to TC-3, and TC-8 to TC-10,
the river discharge peaks were low (ratio < 1.67), and Chl-a generally increased from SN to N or NS
tide, and decreased during S tide; TSM was generally low during SN and N tide, and increased during
NS or S tide. This variability of Chl-a and TSM was similar to that of the spatially-averaged monthly
climatology data for the region off Saga and for the whole sea except for summer.

For the other tidal cycles, i.e., TC-4 and TC-7, the river discharge peaks were high (ratio > 1.67),
and the river discharge peaks occurred before SN tide for TC-4, TC-6, and TC-7, while a peak occurred
between NS and S tides for TC-5. For TC-5, the temporal variability of Chl-a and TSM was similar to
that for TC-1 to TC-3, and TC-8 to TC-10, and the high river discharge had no influence on the Chl-a
variation during the tidal stages before S tide. On the other hand, for TC-4, TC-6, and TC-7, after the
high river discharge peak, Chl-a decreased continuously from SN to S tide except for TC-7. This may
be due to the increase of Chl-a associated with high river discharges before the SN tide. TSM increased
slightly from SN to N tide, then peaked at NS or S tide, which was similar to that exhibited for other
tidal cycles. Furthermore, for TC-6 and TC-7, the Chl-a:TSM ratios (Table 2) were much higher than
for other tidal cycles, indicating the dominance of phytoplankton in TSM for these two tidal cycles.
These results indicate that high river discharge (ratio > 1.67) influenced the variation of Chl-a and TSM
after during summer (TC-6 to TC-7), and that the occurrence of high river discharges can also influence
the individual tidal cycles of Chl-a for other seasons (TC-4).

Figure 12. Time series of whole area-averaged Chl-a and TSM, and the daily river discharge for the ten
representative individual events of tidal cycles: TC-1 to TC-3 (winter), TC-4 to TC-5 (spring), TC-6 to
TC-7 (summer), and TC-8 to TC-10 (autumn). Chl-a and TSM in the four tidal cycles were represented
by red and green markers, respectively. The river discharge, from two weeks before the tidal cycle to
the end of the tidal cycle, is represented by the blue marked line. The average data was the average of
all the daily data in each tidal stage. For each tidal cycle, the four Chl-a and TSM data from left to right
were for SN, N, NS and S tides, respectively.
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4. Discussion

4.1. Use of Satellite Data to Investigate the Spring–Neap Tidal Variations in Chl-a and TSM

Previous studies of the variability of Chl-a and TSM over spring–neap tidal cycles have primarily
relied on in situ observations [3,4,17,23], and there are few studies based on satellite data [11,12,24].
In addition, previous studies of the Ariake Sea were only focused on the area off Saga, where the tidal
range is larger than in other regions of the sea. Because of the observation method, those studies were
limited to a few stations and a few spring–neap tidal cycles. Our study is different in that it relies on
ocean color satellite data (MODIS-Aqua) to investigate the variability of Chl-a over the spring–neap
tidal cycle, and we examine the tidal impacts on Chl-a for the whole Ariake Sea and specifically
focus on three regional areas; i.e., off Saga, Isahaya Bay, and off Kumamoto. We used ocean color
data from 2002 to 2017 to understand the annual and seasonal climatology as well as some events
corresponding to spring–neap tidal cycles. This approach reveals that there are significant regional
and seasonal differences in the Chl-a variability influenced by spring–neap tidal cycles. One of the
known difficulties in using the standard MODIS Chl-a product for shallow coastal waters, such as the
Ariake Sea, is the inadequacy of atmospheric correction schemes for obtaining accurate satellite-based
Rrs that can be used to calculate Chl-a. It is also known that the present standard in-water algorithms
for Chl-a estimates are biased in turbid waters. Here, we applied the Rrs recalculation method used
in [18,25] and a local switching in-water algorithm for MODIS data to improve Chl-a retrievals in the
Ariake Sea [18]. We also developed a TSM algorithm suitable for this area in this study. We have
shown previously [18] that this recalculation method for Rrs and the improved empirical in-water
algorithm significantly enhance the accuracy of the Chl-a retrievals from MODIS-Aqua. Our results
showed the independent behavior of Chl-a and TSM over the spring–neap tidal cycle, which was
consistent with previous studies for off Saga [13,14,17], suggesting that the influence of TSM on the
satellite estimation of Chl-a was minimal, and the accuracy of our algorithms was adequate for our
objective although imperfect.

To understand the influence of the spring–neap tidal cycle on Chl-a and TSM variability, we divided
the spring–neap tidal cycle into four tidal stages (SN, N, NS and S tides). For each tidal stage,
we produced annual and monthly climatology data and individual events of spring–neap tidal cycles
of MODIS-Aqua Chl-a and TSM (2002–2017). This analysis made it possible for us to understand the
seasonal and regional variations of tidal cycles of Chl-a and TSM, although there were much missing
data in the spatial and temporal scales for many individual events of spring–neap tidal cycles over the
16 years.

4.2. Spatial and Seasonal Variability of the Spring–Neap Tidal Cycle

Tidal currents have been reported to be an important factor for the resuspension and transport of
Chl-a and TSM into macrotidal environments, such as embayments, estuaries and tidal flats [4,23,26–28].
Using in situ data collected at several stations in the inshore area off Saga (October 2002–April 2003),
in [17], the authors reported that Chl-a increased from N to NS and decreased during S tide, whereas TSM
increased during S and decreased during N tide in the northern part of the Ariake Sea. The variability
of TSM was explained by the resuspension of the sediment caused by the strongest tidal current during
the S tide and re-sedimentation due to the weakest tidal current during N tide. The increase of Chl-a
was explained by the increased light availability due to the reduction of TSM for the phytoplankton
growth during N tide and the reduced light availability due to the increase of TSM during S tide [4,17].

Our results showed that the SN tidal resuspension in the Ariake Sea varied in space and time.
Chl-a increased from SN to NS and decreased in S when TSM was high off Saga during fall, winter
and spring when river discharge was low (Figure 7; Figure 8). This tidal cycle of Chl-a and TSM
is consistent with a previous study [17]. The high TSM in this area reduces light availability and
therefore limits phytoplankton growth, specifically during the spring tide when the resuspension of
the sediment increased. This relation between the light availability and TSM is supported in a study by
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Ooshima et al. [29], in which it was reported that the attenuation coefficient in the surface water of
the Ariake Sea was strongly and positively correlated with suspended sediment in winter, suggesting
that light availability declines when the suspended sediment is higher. Moreover, the low Chl-a:TSM
ratio (Figure 10b) during the spring tide indicates that the non-phytoplankton particles in particular
suspended sediments are the dominant TSM during the S tide. In contrast, in [12], the authors reported
that phytoplankton growth was enhanced due to the increased nutrients supplied by the spring tidal
resuspension in German Bight. This suggests that the spring–neap tidal variability of Chl-a varied
by regions. In Isahaya Bay and off Kumamoto also, Chl-a increased from SN to NS and decreased
in S during fall, winter and spring, and the variation was still similar to that in the area off Saga
(Figure 9c,d). However, the variations in TSM in terms of magnitude over the spring–neap tidal cycle
were smaller than off Saga, suggesting that there may not be a large-scale resuspension of the sediment.
This is consistent with the spatial variation of TSM (Figure 4; Figure 5; Figure 7), which shows a high
TSM off Saga, with relatively low values in Isahaya Bay and off Kumamoto. The lower TSM in Isahaya
Bay and off Kumamoto may be related to the reduction of the tidal flat of this area by the construction
of a dike and sandy tidal flat caused by the lower tidal current, respectively [17]. The Chl-a:TSM ratio
was higher than that off Saga, and Chl-a and TSM were highly correlated during the spring–neap
tidal cycles (Figure 10). This indicates that the small variations in TSM were mostly composed of
phytoplankton and that resuspended TSM was not the controlling factor for phytoplankton variation.
Therefore, there might be different mechanisms, such as the advection of phytoplankton, which explain
the spring–neap tidal variation in Chl-a and TSM for those regional areas. For example, in [27], it was
reported that diatom blooms during winter were advected from the estuaries connected to off Saga to
the middle parts of the Ariake Sea. In order to understand the mechanism for the spring–neap tidal
variations in Chl-a for those two areas, further investigations may be required.

For the whole sea, the spring–neap tidal variability of Chl-a and TSM was similar to that off Saga
(Figures 9 and 10). This is probably due to the fact that both Chl-a and TSM values were higher off
Saga than that in Isahaya Bay and off Kumamoto as well as in the middle-western areas. The similar
spring–neap tidal variability of Chl-a and TSM between the whole sea and off Saga indicates that the
influence of the tidal cycle-induced TSM was mostly important off Saga, whereas tidal cycle-driven
variations in Chl-a were important over the whole sea. Even in the enclosed bay, it is clear that the
tidal influence of the variability of Chl-a was different in each region.

4.3. Seasonal Influence of River Discharge to the Spring–Neap Tidal Variations in Chl-a

In estuaries and coastal systems, river discharge containing nutrients and suspended sediments
can either positively or negatively influence Chl-a. The positive and negative relationship between river
discharge and Chl-a is largely dependent on the dominant influence of either nutrients or irradiance
on phytoplankton growth [30–35].

Our results showed that the monthly climatology data of river discharge were strongly and
positively correlated with the spatially-averaged monthly climatology data of Chl-a over the
spring–neap tidal cycle for the whole sea and regional areas (Figure 7). River discharge was also an
important factor for the variability of Chl-a over the individual events of spring–neap tidal cycles,
as our results showed that river discharge was probably the major driver of the variability of Chl-a in
TC-4 and TC-6 (Figure 11). This suggests that river discharge promotes high phytoplankton growth in
the Ariake Sea, which is consistent with previous studies [10,13].

The effects of spring–neap tidal cycle on the variability of Chl-a and TSM was not very clear
during summer when the river discharge was high. The variation caused by the high river discharge
during summer can mask the tidal cycle variation of Chl-a and TSM. The high correlation between
Chl-a and river discharge indicates that the increase in Chl-a was caused by the possible nutrient input
from the events of river discharge. We also observed that the Chl-a:TSM ratio was extremely high
after the river discharge, and the values were often higher than 1:275–1:600, which is the range of
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phytoplankton-dominated water in Tokyo Bay [22]. The high ratio also reflects possible differences in
the physiological conditions of phytoplankton after the river discharge.

5. Conclusions

As the spring–neap tidal variability of satellite Chl-a associated with TSM has not been investigated
for a broad area and with a long-term data set, we investigated the spring–neap tidal variability of
Chl-a on the basis of annual and monthly climatology data and individual events of spring–neap tidal
cycles using an improved MODIS-Aqua data set (2002-2017). Spatially-averaged Chl-a and TSM and
daily and monthly river discharge values were calculated to quantify the influence of TSM and river
discharge on Chl-a for the whole sea and three regional areas (off Saga, Isahaya Bay and offKumamoto).

The errors in MODIS-Aqua-derived Rrs and Chl-a for the Ariake Sea were effectively reduced by
applying the methods in [11]. Therefore, we recalculated the 16-year MODIS-Aqua Rrs and Chl-a data
with the same methods developed for this area used in [11]. Moreover, a local TSM algorithm was
developed in this study, and then it was applied to the improved MODIS-derived Rrs to obtain the
MODIS-derived TSM. The variability of Chl-a and TSM over the spring–neap tidal cycle off Saga was
reasonable and was consistent with the field-based observations in previous studies, suggesting that
the recalculated Chl-a and MODIS-derived TSM were separable.

The results of this study suggested seasonal and regional differences in the factors controlling
the variability of Chl-a over the spring–neap tidal cycle. In general, the variability of Chl-a over the
tidal cycle was controlled by river discharge during summer. In other seasons, it was controlled by
the tidally resuspended TSM for off Saga and possibly by direct tidal transportation and tidal mixing
in Isahaya Bay and off Kumamoto, respectively. In summary, this study suggests that satellite ocean
color data offers an effective means for understanding the mechanisms of seasonal and regional Chl-a
variability in coastal ecosystems that come under the influence of tides and river discharge.

This study also reveals that satellite ocean color data can discern the effects of spring–neap
tidal cycles on Chl-a and TSM. However, we found different correlations between Chl-a and TSM
in the Ariake Sea, confirming that the feature of spring–neap tidal cycles can vary in different areas.
In addition, this is the first study to investigate the spring–neap tidal variability of Chl-a and TSM
using satellite ocean color data in the Ariake Sea. Given the broad coverage and frequent sampling by
satellites, our results reveal that satellite ocean color data can contribute significantly to our knowledge
and understanding of the environmental dynamics caused by spring–neap tidal cycles in the Ariake
Sea. The availability of these datasets offers the potential for the better management of the water
quality of enclosed embayments such as the Ariake Sea.
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Abstract: The raphidophyte Chattonella spp. and diatom Skeletonema spp. are the dominant harmful
algal species of summer blooms in Ariake Sea, Japan. A new bio-optical algorithm based on
backscattering features has been developed to differentiate harmful raphidophyte blooms from
diatom blooms using MODIS imagery. Bloom waters were first discriminated from other water types
based on the distinct spectral shape of the remote sensing reflectance Rrs(λ) data derived from MODIS.
Specifically, bloom waters were discriminated by the positive value of Spectral Shape, SS (645),
which arises from the Rrs(λ) shoulder at 645 nm in bloom waters. Next, the higher cellular-specific
backscattering coefficient, estimated from MODIS data and quasi-analytical algorithm (QAA) of
raphidophyte, Chattonella spp., was utilized to discriminate it from blooms of the diatom, Skeletonema
spp. A new index bbp−index (555) was calculated based on a semi-analytical bio-optical model to
discriminate the two algal groups. This index, combined with a supplemental Red Band Ratio (RBR)
index, effectively differentiated the two bloom types. Validation of the method was undertaken
using MODIS satellite data coincident with confirmed bloom observations from local field surveys,
which showed that the newly developed method, based on backscattering features, could successfully
discriminate the raphidophyte Chattonella spp. from the diatom Skeletonema spp. and thus provide
reliable information on the spatial distribution of harmful blooms in Ariake Sea.

Keywords: harmful algal blooms; Chattonella spp.; Skeletonema spp.; backscattering; MODIS;
Ariake Sea

1. Introduction

Harmful Algal Blooms (HABs) are becoming more frequent in the coastal environment causing
significant harm to fisheries, the environment and economies. Some HABs produce toxins, some of
them consume nutrients used in seaweed aquaculture and, they often discolor the water.

Remote sensing is an effective method for bloom detection, because algal groups can show a
distinct remote sensing reflectance Rrs(λ) signature which can be then related to large algal accumulation
at the surface [1]. Algal blooms are associated with anomalously high chlorophyll-a concentrations,
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which influence the signal of Rrs(λ) in green and red bands, prominently. Methods like Fluorescence Line
Height (FLH), Maximum Chlorophyll Index (MCI) and Floating Algae Index (FAI) have successfully
mapped bloom distribution in global open oceans by taking advantage of the distinct characteristic
in Rrs(λ) [2–4]. Other studies have been conducted to detect specific bloom species in coastal waters.
Trichodesmium spp. blooms have been detected based on multispectral patterns of Rrs(λ) in the North
Atlantic [5] while Karenia brevis blooms have been captured using the Karenia brevis bloom index (KBBI)
in the Gulf of Mexico [6]. Cochlodinium polykrikoides blooms have been quantified by a novel red tide
quantification algorithm in the coastal waters of the East China Sea [7], while Microcystis aeruginosa
blooms in the Laurentian Great Lakes have been distinguished from other phytoplankton by an index
denoted as Spectral Shape (SS) [8]. The harmful species Karenia mikimotoi has been discriminated from
other types of blooms in the Seto-Inland Sea of Japan using the spectral slope difference [9].

Other algorithms use Inherent Optical Properties (IOPs) to identify harmful algal blooms. Methods
like those of Shang et al. [10] for the East China Sea (ECS) differentiate dinoflagellates from diatom
blooms by a combination of total absorption coefficient at 443 nm and a Bloom Index (BI). Tao et al. [11]
developed a Green–Red Index (GRI), indicating absorption at 510 nm of bloom waters, to distinguish
Prorocentrum donghaiense from diatom blooms. Backscattering properties of bloom waters have also
been used in red tide detection. Cannizzaro et al. [12] detected the toxic Karenia brevis from diatom
blooms in the Gulf of Mexico by its featured lower backscattering. A Coccolithophorid bloom in
the Barents Sea was captured by the unusual sharp increase in backscattering [13]. Lei et al. [14]
differentiated dinoflagellate blooms from diatom blooms in the East China Sea by the difference in
backscattering coefficient ratios. However, more work still needs to be done, because of the large
variations in the IOPs of different harmful algal species, especially in coastal waters.

Recently, there have been frequent reports of HABs outbreaks in the Ariake Sea, an enclosed small
bay in the southwest of Japan, which result in great damage to aquaculture farms and fisheries [15–17].
HABs in summer are especially serious in this area due to the strong solar radiation and elevation
of the water temperature after the rainy season. The raphidophyte Chattonella spp. and the diatom
Skeletonema spp. are the dominant harmful species of summer blooms.

Raphidophytes like Chattonella antiqua can secrete toxic compounds causing a large reduction
in shellfish, while the less harmful diatom species like Skeletonema spp. may produce arsenite and
dimethylarsenic which block important biochemical pathways in other algae [18–20]. It is empirically
known that raphidophyte blooms alternate with diatom blooms when the surface water lacks nitrogen
and silicate [17,21]. Thus, it becomes important to distinguish harmful algal species from the non-bloom
conditions to evaluate the possible damage and to provide related information for protection of the
marine ecosystem and the economies that they support.

The objective of this study is to develop techniques to distinguish between raphidophyte and
diatom dominated blooms in optically complex, coastal waters of Ariake Sea using MODIS data.
If successful, the method can provide effective bloom information for the coastal monitoring by local
fisheries institutions.

2. Materials and Methods

2.1. Study Area

Ariake Sea is located along the west coast of Kyushu in western Japan. It is approximately
1700 km2 in area, 20 m in average depth, and 34 billion m3 in volume. Inland rivers take about
8 × 109 m3 freshwater into the sea every year. Among the rivers, the Chikugo River is the largest one
discharging 50% of the freshwater inflow. Tidal flats of this semi-enclosed shallow sea are the largest
in Japan covering 40% of the total tidal flat area in Japan [22]. Seaweed and shellfish, once plentiful
in this area, have dramatically decreased in recent decades, while the number of red tide events has
increased to more than 20 times per year since 1985. Blooms events generally occur during summer
when conditions are ideal for phytoplankton growth. Field observations have been conducted in
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every summer to study these blooms and their associated hydrography for fishery management of the
Ariake Sea.

2.2. Field Data

Field data during the summer season (June to September) were collected from Saga Fisheries
Promotion Center and Kumamoto Fisheries Research Center (from 2011–2014). Figure 1 shows the
sampling site where data on chlorophyll-a concentration (Chl a), phytoplankton species and their
cellular abundance were collected. As no in situ Rrs(λ) data was collected, remotely sensed MODIS
Rrs(λ) were used for algorithm development, which is further explained in Section 2.3.

Figure 1. Map of Ariake Sea, Japan. Solid points show the field sampling locations in 2011–2014. The
gray circle and square indicate the position of data taken by Saga Fisheries Promotion Center and
Kumamoto Fisheries Research Center, respectively.

For data analysis, field data from 2011 to 2014 were divided into three data groups according to
the bloom conditions (Table 1). Specifically, a diatom bloom was confirmed when the cell numbers
of Skeletonema spp. were >10,000 cells mL−1 (N = 126 for 41 days), and a raphidophyte bloom was
confirmed when the cell numbers of Chattonella spp. were > 1000 cells mL−1 (N = 12 for 3 days).
Non-bloom data was collected (N = 280 for 70 days). The cellular abundance threshold of bloom
conditions was defined according to previous red tide reports from local fisheries institutions. Diatom
blooms were dominated by Skeletonema spp. both at the Saga (N = 113) and Kumamoto sampling
sites (N = 13), while raphidophyte blooms of Chattonella spp. were only found at Saga sampling sites
(N = 12). The environmental conditions for the three groups are shown in Table 1.
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Table 1. Environmental conditions of diatom and raphidophyte blooms and non-bloom waters. All
parameters were averaged within each group and standard deviations are provided.

Group Chl a (mg m−3) Salinity Temperature (◦C) Abundance (cells mL−1)

Diatom Bloom 30.03 ± 43.35 20.04 ± 7.06 27.42 ± 2.10 25,964 ± 33,209
Raphidophyte Bloom 210.47 ± 178.48 26.27 ± 1.81 29.68 ± 0.81 2217 ± 1965

Non-bloom 8.95 ± 11.64 25.77 ± 5.19 25.93 ± 2.61 –

In addition to the field data, a number of bloom reports were also obtained from the Japan Red
Tide Online site (http://akashiwo.jp/) for the period 2015–2018 for algorithm validation. Sampling site,
occurrence times, phytoplankton species and cellular abundance were recorded.

2.3. Satellite Data

As no situ optical measurements were made, MODIS-Aqua level 2, Rrs(λ) values (downloaded
from https://oceancolor.gsfc.nasa.gov/) were extracted from locations where field data was collected in
2011–2014 using Windows Image Manager (WIM) software. The routine wam_match within WIM
was used to find matches between in situ measurements and satellite image data. The point sample
was within a rectangular window of 3 × 3 pixels, centered at the nearest matching pixel. Mean
value of the valid pixels within the 3 × 3 windows were used as the final remote sensing reflectance
Rrs(λ). Flags, HIGLINT, CLDICE, HISOLZEN, CHLFAIL, ATMFAIL (flags information can be found
at https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/), were used to control the quality of the MODIS
Rrs(λ) data. As there were limited cloud-free satellite images coincident with the field sampling,
the time difference between satellite data and in-situ data was extended by 1.5 days during bloom
events. Finally, there were four matched data points for raphidophyte bloom (from one image), eight
for diatom bloom (from four images) and 23 for non-bloom water (from five images) in 2011–2014.
Additionally, in 2015–2018, six images during the bloom period (three images from raphidophyte
bloom and three images from diatom bloom) were also used to validate the algorithm based on bloom
locations obtained from the Japan Red Tide Online. One image in 2018 was also selected when no
bloom occurred (Table 2 shows the summary of match up results).

Table 2. Summary of MODIS matches with field data (2011–2014) and with bloom reports from Japan
Red Tide Online (2015–2018).

Name of Bloom Training Data Validation Data

Diatom bloom

29 August 2011
26 July 2012

2 August 2012
29 August 2013

12 July 2018
13 July 2018

3 September 2018

Raphidophyte bloom 9 August 2013
07 September 2015

18 August 2016
29 July 2018

Non-bloom

11 August 2011
11 June 2012

20 August 2012
17 June 2013

28 August 2013

29 August 2018

Since there was some underestimation in the short bands of the MODIS data, from an error
in atmosphere correction that resulted from the difficulties in estimating aerosol type and optical
thickness [23–25], Rrs(λ) showing negative value in the short bands was discarded. We also decided not
to use the short bands to develop our algorithm as the complex pigment composition of algal species
makes it hard to distinguish phytoplankton groups in that range [26,27], while Rrs(λ) at green and red
bands has shown good agreement with in-situ Rrs(λ) in Ariake Sea as confirmed by Yang et al. [25].
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Again due to the lack of field observations, inherent optical properties (IOPs) like total absorption,
at(λ), and particle backscattering, bbp(λ), were derived using MODIS Rrs(λ) as input into the
Quasi-Analytical Algorithm (QAA Version 6) (details are in Lee et al. [28]). Although the short
bands of MODIS are not reliable for our work, it has been shown that at(λ) can be derived by QAA
with high accuracy since it is not sensitive to errors in Rrs(λ) in the short bands [10,29]. Because of
particle size variations in the field samples, a 20% additional error could be introduced in the retrieval
of bbp(λ) [30,31]. In spite of these uncertainties and considering the optically complex Ariake Sea, it is
still meaningful to use QAA-derived IOPs to derive the spectral shape for bloom discrimination.

3. Results

3.1. Detection of Bloom Waters

The first step was to correctly identify blooms from other optically dominant water types.
MODIS Rrs(λ) coincident with in-situ data showed considerable variability in both spectral shape and
magnitude, indicating different water types in the observations (Figure 2). By comparing the spectral
shape of Rrs(λ) and Chl a concentrations for the three data groups (Table 1), the coastal area of Ariake
Sea could be roughly separated into four bio-optical water types: (1) clear waters in the northeastern
coast of Ariake Sea with low Chl a (<6.32 mg m−3), and relatively high blue reflectance compared
to the longer wavelength green band where no peak was observed; (2) turbid waters within estuary
area, which exhibited extremely high reflectance at longer wavelength because of the high suspended
sediments; (3) bloom waters, typically located in the northwestern part of Ariake Sea with moderate to
high Chl a, and a spectral shape of reflectance typical of phytoplankton blooms with minimal values in
the blue region and high values near 550 nm and 678 nm; and (4) mixed water defined as water with a
middle range of Chl a concentration and a peak in green bands.

Figure 2. MODIS Rrs(λ) spectra (N = 35) using the match-up method (See Section 2.3). Blue dashed
line (clear water); green solid line (mixed waters); gray dotted line (turbid water), red solid and dashed
line indicates raphidophyte and diatom bloom water, respectively. The gray lines indicate location of
MODIS bands.

Based on the differences observed, we could separate clear water if the Rrs(λ) peak was at
wavelengths shorter than 555 nm, and turbid water if the Rrs(λ) peak was > 0.008 sr−1. However,
mixed waters with moderate Chl a concentration could not be separated from bloom waters based on this
simple method since the former/latter also has a spectral peak at 555 nm (<0.008 sr−1). So more detailed
characteristics of the spectral shape were considered. Bloom waters showed prominent shoulders near
645 nm compared to mixed water (see Figure 2), which might be caused by strong backscattering of
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phytoplankton particles and weak absorption at this wavelength. To better characterize this feature,
changes in the curvature of Rrs(645) were compared to determine whether bloom waters could be
distinguished from mixed water using this approach. The spectral shape algorithm (SS) of Wynne et
al. [8], equivalent to the 2nd derivative when the bands are evenly distributed, provides an SS index
which can describe the spectral variations useful in bloom detection [32,33]. In this study, normalized
water leaving radiance (nLw) is replaced with Rrs(λ). The defined SS is as:

SS(λ) = Rrs(λ) −Rrs(λ
−) −

(
Rrs
(
λ+
)
−Rrs(λ

−)
)
∗ (λ− λ−)
(λ+ − λ−) , (1)

where λ is the central band of the shape (645 nm), λ− is the next lower band (555 nm) and λ+ is the next
higher band (667 nm). SS (645) of bloom waters showed positive values while mixed waters exhibited
negative values (Figure 3). Turbid water also showed positive SS (645), and was distinguishable by the
threshold at Rrs(555) (>0.008 sr−1).

Figure 3. Scatter plot of MODIS Rrs(555) and SS (645) generated based on the MODIS match-up pairs.

Together, algal bloom waters were differentiated from clear, turbid, and mixed waters by a
combination of Rrs(555) and SS (645). In the relationship between Rrs(555) and SS (645) (Figure 3),
clear and mixed waters were distinguished by negative SS (645) while bloom waters were identified by
a positive SS (645) and low Rrs(555) (<0.008 sr−1). Even though turbid water also showed a positive SS
(645), Rrs(555) was higher than in bloom waters. The scatter plot shown in Figure 3 indicates that all
observations with positive SS (645) and Rrs(555) less than 0.008 sr−1 could be characterized as algal
bloom waters.

In order to verify the utility of satellite-derived SS (645) and Rrs(555) for detecting blooms, three
independent MODIS images were selected to coincide with summer bloom reports by the Japan Red
Tide Online from 2015–2018: (a raphidophyte bloom on 29 July 2018; a diatom bloom on 13 July 2018;
one non-bloom day on 29 August 2018). Scatter plot of satellite derived SS (645) versus Rrs(555) is
shown in Figure 4. The MODIS Chl a image in late summer on 29 August 2018, when no bloom event
was reported in Ariake Sea, showed no sign of high Chl a in most of the area (Figure 4a). High values
were seen only near Kumamoto coasts and Isahaya Bay. The corresponding scatter plot (Figure 4g)
showed that the surface waters was roughly divided into clear, turbid and mixed waters. Conversely,
relatively high Chl a was observed in the MODIS images (Figure 4b,c) in association with blooms of
the raphidophyte (Chattonella spp.) and the diatom (Skeletonema spp.), which had been confirmed by
field observations (Figure 4h,i).
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Figure 4. (a–c) Standard Chl a images from MODIS level-2 for Ariake Sea. Non-bloom (a), raphidophyte
bloom (b) and diatom bloom (c) as confirmed by bloom reports from Japan Red Tide Online. (d–f) Water
types derived using MODIS Rrs(λ) and our newly developed method. (g–i) Scatter plot of Rrs(555)
and SS (645) derived from the MODIS Rrs(λ) extracted from scenes shown in (a–c). Only areas with
positive Rrs(λ) are shown.

It is to be noted that negative values of standard MODIS Rrs(λ) at 412 nm and 645 nm were
observed for pixels associated with high Chl a, and such high Chl a retrievals are inaccurate. Thus, for
the bloom distinguishing method these pixels were excluded. Other than this limitation, the bloom
distinguishing method can be applied to MODIS data and the combination of Rrs(555) and SS (645)
can serve as the first step to classify blooms from space.
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3.2. Discrimination of Harmful Algal Groups

To differentiate dominant algal blooms, inherent optical properties should be first compared.
The spectral shape of Rrs(λ) for bloom water is influenced by absorption and backscattering coefficients
(at(λ), bb(λ)) [34,35]. They can be expressed as:

at(λ) = aw(λ) + adg(λ) + aph(λ), (2)

bb(λ) = bbw(λ) + bbp(λ), (3)

where aw(λ) and bbw(λ) are the absorption and backscattering coefficients of pure water which are
constants [36,37]. adg(λ) and aph(λ) represent non-algal and algal absorption, respectively. Non-algal
absorption includes absorption by non-algal particles (NAP) and dissolved chromophoric dissolved
organic matter (CDOM). bbp(λ) is the suspended particle backscattering coefficient, and includes
backscattering by phytoplankton and inorganic particles.

Ideally, if we could derive aph(λ) accurately by QAA, then we would be able to discriminate
harmful algal species accurately. However, it has been shown that there is much uncertainty in
partitioning at(λ) into aph(λ) and adg(λ) for high absorption waters [29,38]. During the bloom, except
for absorption by water, both algal particles and non-algal particles influenced variations in Rrs(λ)

because of the optical complexity of coastal waters. So, here we assume that the variations in absorption
by bloom waters can be represented as the difference between at(λ) and aw(λ). To prevent confusion,
we use:

abloom(λ) = at(λ) − aw(λ), (4)

where abloom(λ) represent the absorption by bloom waters.
In addition, the contribution of bbw(λ) was much smaller than suspended particle backscattering

by bloom waters, and extremely high bbp(λ) in turbid water was confirmed by the threshold of Rrs(555)
(>0.008 sr−1). Additionally, previous studies have shown that the summer bloom occurs when the
water column stratifies with higher nutrients and lower turbidity in the Ariake Sea [39–41]. Thus bbp(λ)
of bloom water was mainly contributed by organic matters rather than inorganic particles.

Figure 5 shows the Chl a-specific abloom(λ) and cell-specific bbp(λ), as normalized to Chl a
concentrations and cellular abundances, respectively. Both abloom(λ) and bbp(λ) were derived from
MODIS Rrs(λ) by QAA V6. Figure 5a shows that the Chl a-specific absorption abloom(λ) for the
raphidophyte bloom was lower than the diatom bloom, which might be caused by the higher
intracellular pigment concentration of raphidophyte (Chattonella spp.) than that of the diatom
(Skeletonema spp.). Chl a cell−1 was 0.0811 for raphidophytes and 0.001 for diatoms. Additionally,
when compared with longer wavelengths, there was large difference in the short bands, possibly due
to variations in CDOM and NAP.

In contrast to abloom(λ), bbp(λ) showed less spectral dependence (within 8%). The cell-specific bbp(λ)

of raphidophyte bloom water was about 10 times than that of the diatom bloom water. The difference
in cell-specific bbp(λ) can be attributed to cell size, cell shape, cell structure and particulate organic
carbon content [42]. Specifically, the cell diameter of Chattonella spp. (raphidophyte) (30–100 μm) is
5 times that of Skeletonema spp. (diatom) (2–12 μm) and raphidophytes carbon content is much higher
than that of diatoms [43–45]. Besides, Skeletonema spp. is a chain forming diatom while Chattonella spp.
is present as single cells during a bloom, which may also be responsible for the backscattering feature.

To better understand the significance of the difference in Chl a-specific abloom(λ) and cellular-specific
bbp(λ) of Chattonella spp. and Skeletonema spp., we plotted the relationship between in situ Chl a and
abloom(443) because absorption from multiple components overlap at this band. Very little variation was
found for the diatom bloom (R2 = 0.004), whereas a trend (R2 = 0.68) was observed for raphidophyte
bloom waters (Figure 6). The former could have arisen because of lower Chl a concentration per unit
cell and the package effect. Additionally, the invariant relationship between in situ Chl a and abloom(443)
in diatoms (Figure 6a) could have been due to absorbance in this band by CDOM and NAP. A similar
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pattern was also found in the relationship between cellular abundance and bbp(555). The bbp(555) of
the raphidophyte bloom increased with cellular abundance (R2 = 0.86) while that of the diatom bloom
did not. This indicates lower backscattering per unit cell in the diatom bloom (Figure 6b). Based
on the above, bbp(λ) appears to be a better indicator to discriminate the two algal groups, especially
considering the uncertainties associated with CDOM and NAP absorption in these coastal waters.

Figure 5. Inherent optical properties of diatom and raphidophyte bloom waters: (a) Chl a-specific
absorption of bloom water abloom(λ) where abloom(λ) is normalized to in situ Chl a concentration;
(b) Cell-specific backscattering of suspended particles bbp(λ). The spectra are normalized to cellular
abundance. The abloom(λ) and bbp(λ) were derived by the MODIS Rrs(λ) match up results using QAA
V6. N = 4 for raphidophyte bloom and N = 8 for diatom bloom. The solid and plot line represent
raphidophyte and diatom bloom, respectively.

Figure 6. (a) Scatterplot of in situ Chl a and abloom(443) of the raphidophyte and diatom blooms;
(b) scatterplot of cellular abundance and bbp(555). The triangles and squares depict raphidophyte
(N = 4) and diatom bloom (N = 8), respectively. Linear regression line was drawn on log transformed
data. The data was from the match-up pairs of MODIS in 2011–2014. The abloom(443) and bbp(555) were
derived from MODIS Rrs(λ) by QAA V6.

Therefore, based on Tao et al. [11], an index bbp−index(555) was developed using Rrs(λ) from green
to red bands to replace the QAA derived bbp(555), and thus avoiding the uncertainties associated with
using the short waveband in QAA. The 555 nm waveband was chosen because both of NAP and water
absorption is relatively low at this band [36].

It is known that Rrs(λ) can be expressed in terms of absorption and backscattering [35,46]:

Rrs(λ) =
f (λ)

Q(λ)

bb(λ)

a(λ) + bb(λ)
, (5)
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The f (λ) refers to the irradiance reflectance within water while Q(λ) describes the angular distribution
of upwelling radiance, and their ratio is relatively stable [47]. Here we assume the f (λ)/ Q(λ) is
spectrally invariant between 500 to 670 nm. From Equations (2) and (4), we can then derive the
following relationship:

Rrs(λ) ∝ f (λ)
Q(λ)

bbp(λ)

aw(λ) + abloom(λ) + bbp(λ)
, (6)

Figure 5a shows that the difference in abloom(λ) between 555 and 667 nm was very small. Thus, the
following assumption can be made for each species:

abloom(555) = abloom(667), (7)

Additionally, the spectral dependence of bbp(λ) was small, and it showed only a small variation, within
8% (Figure 5b). So bbp(λ) was assumed to be equal at bands 555 and 667 nm:

bbp(555) = bbp(667), (8)

Finally, bbp(555) was derived from Equation (5) using the reciprocal of Rrs(λ) at 555 and 667 nm, as:

1
Rrs(667)

− 1
Rrs(555)

∝ aw(667) − aw(555)
bbp(555)

, (9)

where aw(667)− aw(555) = 0.37 m−1. The variations in bbp(555) can thus be expressed by the variations
in Rrs(λ) at 555 and 667 nm:

bbp(555) ∝ 0.37× Rrs(555)Rrs(667)
Rrs(555) −Rrs(667)

= bbp−index(555), (10)

To differentiate from bbp(555), henceforth we use bbp−index(555) described in the equation above.
Although bloom vs. non-bloom conditions could be detected by the positive SS (645) (Section 3.1),

it was not possible to differentiate between raphidophyte and diatom blooms based on the combination
of SS (645) and bbp−index(555). Considering the difference in magnitude of Chl a concentrations during
the two blooms, a supplementary index, the Red Band Ratio (RBR) that accounts for Chl a concentrations
was used to identify algal types. RBR utilizes the ratio of Rrs(678) and Rrs(667) to describe the high
fluorescence emission around red bands caused by Chl a [48]. The ratio is characterized as:

RBR =
Rrs(678)
Rrs(667)

, (11)

The two algal species were thus classified by the distribution of bbp−index(555) and the RBR for MODIS
data collocated with field data (Figure 7a). For a given RBR value, the raphidophyte blooms showed
higher bbp−index(555) than diatom blooms. Figure 7b presents a more distinct relationship between
bbp−index(555) and RBR using the independent MODIS Rrs(λ) data shown in Figure 4b,c for bloom
waters. Although some raphidophyte points overlapped with diatoms, the plot shows two distinct
relationships for raphidophytes and diatoms. An exponential curve was fit to the data (Figure 7b),
which can be expressed as:

bbp−index(555) = 0.0019RBR−2.261 (12)

Accordingly, a bloom can be classified as a raphidophyte (Chattonella spp.) bloom if the bbp−index(555)
is higher than the value calculated from the RBR value using Equation (12), and conversely as a diatom
(Skeletonema spp.) bloom if it bbp−index(555) is lower than that calculated from the RBR value.
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Figure 7. (a) Scatter plot of RBR and bbp−index(555) using MODIS Rrs(λ) coincident with field data
for 2011–2014. (b) Scatter plot of RBR and bbp−index(555) derived from the points flagged as bloom in
Figure 4b,c. The solid line in Figure 7b represents the function expressed by Equation (12) separating
raphidophyte blooms from diatom blooms.

MODIS images from 2015 to 2018 were examined to verify the discrimination between
raphidophyte and diatom blooms, using the independent data of bloom reports from Japan Red
Tide Online. It included the raphidophyte (Chattonella spp.) blooms on 7 September 2015 and
18 August 2016 (Figure 8a,b), and the diatom (Skeletonema spp.) blooms occurred on 12 July 2018 and
3 September 2018 (Figure 8c,d). The corresponding scatter plot of bbp−index(555) and RBR is shown in
Figure 8e. It confirmed that the combination of bbp−index(555) and RBR could successfully distinguish
raphidophyte blooms from diatom blooms in MODIS images.

Figure 8. (a–d) MODIS Chl a images from standard level_2 products showing bloom distribution
confirmed by reports from Japan Red Tide Online. Only pixels positively flagged as bloom waters are
shown in color. The red circles and squares indicate the location of raphidophyte and diatom blooms,
respectively. (e) Scatterplot of bbp−index (555) and RBR derived from the bloom pixels in (a–d), indicating
distinct algal groups. Red triangle and squares indicate raphidophyte and diatom blooms, respectively.
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4. Discussion

The outline of the new method proposed in this study, which can distinguish raphidophyte
blooms, diatom blooms, and non-bloom waters in the Ariake Sea, is illustrated in Figure 9. The method
is simple, but effective, in discriminating harmful algal blooms, and it does offer several novel findings
over previous studies.

  

Rrs( ) 

Rrs( ) 

 
Figure 9. Multispectral method for the identification of raphidophyte and diatom, and non-bloom waters.

It is widely known that phytoplankton blooms are associated with high Chl a concentration and a
peak in Rrs(λ) in the green band [2,16,49], but our method shows that high Chl a using the standard
MODIS algorithm is not always related to blooms (Figures 4a–f and 8a–d). Many previous methods
detect harmful blooms based on the peak at 555 nm of satellite derived Rrs(λ) [7,50,51]. However,
both sediments and CDOM might influence the accuracy of Rrs(λ) at the green peak observed by
satellite, as well as inaccurate atmospheric correction in coastal waters [23–25] which may make the
peak in the green bands and satellite retrieved Chl a concentrations unreliable for bloom detection.
A suitable local-based atmosphere correction is needed to overcome the uncertainty in short bands.
Our novel method captured the unique Rrs(λ) shoulder at 645 nm in bloom waters, which successfully
distinguished raphidophyte and diatom blooms in the Ariake Sea. Although this method used Rrs(555)
in the SS (645) calculation, it was used only as a baseline to describe the spectral shape of Rrs(λ) at
645 nm rather than as the dominant component, thus the uncertainty in SS (645) can be much smaller
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than the green band based algorithm. Compared with previous studies, our method detects harmful
blooms effectively using the spectral features at longer wavelengths and without the uncertainty of
short bands.

The 645 nm shoulder of Rrs(λ) might be influenced by low Chl a and backscattering of algal
particles [52], which means pigment absorption is weak around 645 nm, and algal particle backscatter
dominated the Rrs(λ). Mixed water was influenced strongly by water absorption at 645 nm, which
results in negative values of SS (645) even though there is a peak in the green band. Although turbid
waters also show a spectral shoulder at 645 nm, which is caused by the strong scattering by non-algal
particles, we can exclude it by placing a threshold for Rrs(555). This newly developed method can detect
the bloom precisely and provide accurate information related to areas where blooms are occurring.

Many studies have been developed to use applied inherent optical properties to distinguish
harmful algal species [10–12,53]. Even though these studies showed excellent results for their study
regions, it has not been applicable to other regions such as the Ariake Sea (results were not show
here). One reason might be differences in water conditions. FLH or Chl a concentration is needed as a
precondition in methods like those of Cannizzaro et al. [12,53] and Shang et al. [28] to constrain the use
of the developed bloom index (bbp(λ) ratio and bloom index (BI), respectively), which may vary for
different regions. The Green–Red Index of Tao et al. [11] did not work for the Ariake Sea probably
because of the different pigment composition of algal species. Although both the East China Sea (ECS)
and the Ariake Sea are dominated by phytoplankton groups like diatoms and flagellates [15,54,55], the
species can be very different. Consequently, one method which works well in one place may not work
in other locations.

Existing methods have not been successful in discriminating raphidophytes, the more common,
non-diatom, bloom forming organism in the Ariake Sea, from diatoms, while the newly developed
method in the present study showed potential for algal species distinction. Considering the frequent
and alternately occurring diatom and raphidophytes HABs in the Ariake Sea, our method is highly
advantageous as it is able to discriminate Chattonella spp. and Skeletonema spp. blooms. As can be seen
in Figure 8a–b, the newly developed method captured the blooms on 7 September 2015 and 18 August
2016, and this was in accord with the field observations on the day, which showed cells count of >1000
cells mL−1 of Chattonella spp. The MODIS pixels indicated as algal blooms were classified as Chattonella
spp. blooms in the scatter plot of Figure 8e. In Figure 8c–d, the blooms captured in the MODIS image
of 12 July 2018 and 3 September 2018 were confirmed to contain high concentrations of Skeletonema
spp. cells as per local bloom reports. Accordingly, pixels from the bloom areas were classified as
diatom blooms as shown in Figure 8e. In spite of the lack of in situ measurements of inherent optical
properties, the exciting results in Figure 8e encourage us to pay more attention to backscattering
features in harmful algae discrimination in the future. This demonstrates how backscattering can be
used in combination with Chl a for bloom detection and harmful algal discrimination.

In summary, our method has several advantages over previous methods. This method can
be used directly on MODIS Rrs(λ) products. Additionally, satellite short waveband data was
excluded to avoid possible errors arising from incorrect atmospheric corrections and the influence of
non-phytoplankton particles.

5. Conclusions

A novel multispectral approach using MODIS-derived Rrs(λ) and based on an algal backscattering
feature was developed to detect raphidophyte and diatom blooms in the Ariake Sea. As a first step,
this method uses the Rrs(λ) spectral shape signature in the red band to detect HABs. The bloom waters
are successfully differentiated by a positive SS (645) and the water can be divided into clear, turbid,
mixed and bloom waters. For the next step, indices of bbp−index(555) were developed and used with
RBR for discriminating raphidophyte and diatom blooms, based on the distinct optical properties
of backscattering between the two algal species. Comparison with the red tide report in 2015–2018
showed that this new method could provide reliable spatial distribution of the raphidophyte and
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diatom blooms, which may provide a better understanding of harmful algal bloom distributions in the
Ariake Sea.

Since the coastal environment is optically complex and varies temporally, more field measurements
are needed to better understand the unique backscattering feature that allowed us to distinguish
Chattonella spp. from Skeletonema spp. blooms. Moreover, additional efforts are required to apply this
method to other coastal areas with similar algal constituents. Besides, satellites like GOCI and GCOM-C
will be utilized in the future to check its applicability for investigation high temporal variability of
these blooms over larger areas.
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Abstract: Coastal, benthic communities, such as coral reefs, are at particular risk due to poor water
quality caused by hurricanes. In addition to the physical impacts from wave action and storm surge,
hurricanes bring significant rainfall resulting in increased runoff from land. Hurricanes Irma and
Maria caused record or near-record floods at many locations across Puerto Rico and resulted in major
impacts on coastal and benthic ecosystems from heavy rainfall and river discharge. In this study, we
use imagery from the moderate resolution Visible Infrared Imaging Radiometer Suite (VIIRS) satellite
to quantify the impacts of hurricanes Irma and Maria, which struck Puerto Rico during September
2017, on the water quality of the coastal waters of Puerto Rico using the chlorophyll-a (Chl-a) and the
diffuse attenuation coefficient at 490 nm (Kd490) products. The objectives include: (1) quantify the
water quality and light attenuation after the hurricanes; (2) compare this event to the climatology of
these parameters, and 3) evaluate long-term exposure and exceedances of various coastal areas to
low levels of turbidity. The Chl-a inner shelf values increased in 2017 during the months of June (8%
above baseline), July (17%), August (5%), September (8%), October (19%), and November (28%) when
compared to 2012–2016 baseline data. The values for Chl-a concentration reached and exceeded 0.45
μg/L by August 2017 and persisted above that value until December 2017. The Kd490 inner shelf
values for 2017 increased (in percent) for the months of June (4% above baseline), July (9%), August
(10%), September (5%), October (12%), and November (7%) when compared to 2012–2016 baseline
data. The values of Kd490 in August, September, and December 2017 were the highest seen during
2012–2017. Even with the limitations of spatial resolution and loss of data to cloud cover, the 6-year
imagery time-series analysis can provide a useful evaluation of the effects of these two hurricanes
on the coastal water quality in Puerto Rico, and quantify the exposure of benthic habitats to higher
nutrient and turbidity levels.

Keywords: ocean color; hurricanes; remote sensing; water quality; Puerto Rico
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1. Introduction

Hurricanes can produce sudden and massive disturbances in estuaries, coastal aquatic, and
terrestrial ecosystems around the world [1,2]. The most noticeable impacts to benthic organisms
are physical damage. Seagrass can be scoured and uprooted by strong currents, causing them to be
transported offshore [3]. For corals, hurricanes can cause breakage, particularly for branching corals,
abrasion of the living surface of the corals through the movement of coarse sand and rolling of rubble,
and burial of corals through sediment redistribution.

In addition to the physical impacts from wave action, hurricanes bring significant rainfall that
leads to increased runoff from land. As development has increased in Puerto Rico, reduced vegetation
increases the likelihood of sediments, nutrients, and hazardous substances that can be eroded into
coastal waters [4], especially after extreme rain events like hurricanes. Excess sediment, nutrients, and
other pollutants can negatively affect seagrass and reef environments principally by decreasing light
availability and thereby reducing the photosynthetic capacity for growth [4,5]. Benthic organisms,
especially sessile animals, are at particular risk due to poor water quality caused by hurricanes [6].
Coral cover showed a strong correlation with light attenuation, suggesting that deterioration in water
quality due to anthropogenic activity could result in reef degradation [7].

Two powerful hurricanes, Irma and Maria, struck Puerto Rico in 2017. At its closest point,
Hurricane Irma tracked about 92.6 km (50 nautical miles) to the north of the northern shore of Puerto
Rico, delivering rainfall totals between 25.4 cm and 38.1 cm over high elevations in the central portion
of the island between September 5–7, 2017 [8] (Figure 1). Hurricane Maria struck Puerto Rico on
September 20, 2017 as a Category 4 hurricane (250 kmh (155 mph)) and crossed the island from the
southeast to the northwest [9] (Figure 1). Heavy rainfall included one location with nearly 96.5 cm (38
in) of rain. River discharges caused record or near-record floods at many locations across all regions of
the island. In addition, major power, transportation, and communication infrastructure were lost.

 

Figure 1. Visible Infrared Imaging Radiometer Suite (VIIRS) satellite images of hurricanes Irma (left)
and Maria (right) using I-band 5 (11 um). Images courtesy of NOAA National Environmental Satellite,
Data, and Information Service (NESDIS).

Satellite ocean color data can provide critical information on coastal water quality conditions after
these episodic events. Remote sensing is a cost-effective tool for monitoring large-scale effects [10–13]
of hurricanes in the water quality conditions before and after the events. In the case of hurricanes
Irma and Maria in Puerto Rico, satellite ocean color data provided the only source of information on
water quality and light availability due to lost or damaged in situ sensors and lack of field observations
after the storm. These satellite-derived water quality products include the chlorophyll-a concentration
(Chl-a) [14–16] and the water diffuse attenuation coefficient at the wavelength 490 nm (Kd490) [17–19].
The Chl-a concentration provides a measurement of phytoplankton biomass, which is related to nutrient
status (i.e., productivity), and can be used as an index of water quality. Chl-a can also be described
as organic material in the water column contributing to light attenuation. Kd490 is an important
parameter for water quality since it provides a measure of turbidity (related to the total organic and
inorganic matter held in solution and suspension) in the water column and can be used to quantify
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light availability and sediment loading for benthic organisms (i.e., coral reefs and seagrasses) [20]. The
Chl-a algorithm used is based on the ocean color index (OCI) [14] which provides data retrievals for
both coastal and oceanic waters. The Kd490 algorithm used (Wang et al., 2009) is particularly useful for
turbid coastal and inland waters, when compared with in situ measurements.

In this study, we use moderate-resolution Visible Infrared Imaging Radiometer Suite (VIIRS)
satellite images to quantify the impacts of hurricanes Irma and Maria on the quality of coastal waters
of Puerto Rico from Kd490 and chlorophyll-a products. The objectives include: (1) quantify the water
quality and light attenuation after the hurricanes; (2) compare this event to the climatology of these
parameters, and (3) evaluate long-term exposure and exceedances of various coastal areas to low levels
of turbidity.

2. Data and Methods

2.1. Satellite Data Analysis

This study was focused on the waters surrounding Puerto Rico and used the satellite-derived
ocean color products Chl-a concentration and Kd490 from VIIRS. This sensor provides daily images
at a spatial resolution of 750 m (Figure 2). The study area was divided into four cardinal coastal
geographical regions (e.g., North, South, East, and West) to quantify the effects of the hurricanes
on water quality in these regions (Figure 3). This segmentation of the study area allowed a refined
characterization of the major watersheds, precipitation rates, and important coastal habitats located
in those regions. Time-series analysis provided a baseline of these water quality parameters for the
regions from 2012–2016 and 2017, to compare directly with the effects of hurricanes.

Figure 2. VIIRS satellite map of monthly mean chlorophyll-a (Chl-a) concentration during
September 2017.
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Figure 3. Map of Puerto Rico showing the inner and outer shelf locations, coral reef, and colonized
hardbottom [21], regional area divisions, and weather station locations.

Point (pixel) locations were established to characterize the inner shelf and outer shelf contribution
to the regional and overall values of Chl-a and Kd490, and to quantify these values over coral reef and
hard-bottom areas. These points were expanded using a 5 × 5 pixel box to maximize coverage of the
areas within the regions and obtain values from the inner and outer shelf (Figure 3).

The VIIRS images were obtained through the NOAA Coast Watch website (https://coastwatch.
noaa.gov/) at Level 2 Science Quality accessed in March 2018. These images include a land-mask and
a cloud-mask and were gridded and cropped to include only the Puerto Rico regions and further
co-registered to ensure pixel overlaps for the time-series. A total of 1825 daily images from January
2012 to December 2017 were analyzed and the images were organized into 72 monthly composites.
Chl-a concentration and Kd490 values were extracted from the images using a gridded point selection
within the regions (Figure 3). The images were processed and stored in NetCDF (.nc) format and
exported in GeoTiff (.tif) format for use in other GIS mapping platforms.

The 2012–2016 monthly means for the Chl-a concentrations and Kd490 were used as the baseline
values for these parameters and then compared with the monthly averages from 2017 to evaluate
potential anomalous water quality areas around Puerto Rico.

In addition to the changes to water quality produced by extreme events, the values were analyzed
based on the coastal water quality standards that have been adopted by both national and international
jurisdictions. No coastal water quality standards have been adopted by Puerto Rico for the chlorophyll
concentration or light attenuation so the State of Hawai’i [22] and the Great Barrier Reef Marine Park
(GBRMP) [23] standards were used for reference. The threshold values of chlorophyll concentration
for open coastal waters were established at 0.15 to 0.30 μg/L for Hawai’i coastal waters and 0.45 μg/L
for the GBRMP. For the Kd490 values, only State of Hawai’i provides values for light attenuation (Kd)
at 0.1 m−1 for open coastal waters. The values of Chl-a 0.45 μg/L and Kd490 0.1 m−1 were used as
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threshold values for this study and values above these thresholds are recognized globally as adverse
for coral reefs [23].

2.2. Precipitation Analysis

Precipitation data were obtained from the NOAA National Center for Environmental Information
(NCEI) Global Summary of the Month product that provided a global summary of the precipitation
and temperature data. Four stations were chosen to represent the regions selected. For the North
(San Juan, Station ID: RQW00011641), for the East (Culebra Hill, Station ID: RQC00666343), for the
South (Guayama, Station ID: RQC00664193), and for the West (Ensenada, Station ID: RQC00665693).
The selection was based on the locations of the hurricane-impacted habitats including corals, seagrass
beds, mangroves, and other benthic ecosystems, and data availability for the stations from 2012–2017
(Figure 3). Some precipitation values for 2013 were absent for Culebra. For any absent data, the
monthly average for 2012 to 2016 was calculated excluding the missing data points. Precipitation data
were then correlated to Chl-a and Kd490 concentration values across Puerto Rico.

3. Results

3.1. Precipitation Vvalues

During September and October 2017 there was significantly higher precipitation than the monthly
average in all four regions over 2012–2016 (Figure 4). This higher rainfall was mainly due to the impact
of hurricanes Irma and Maria during September 5, 2017 and September 20, 2017, respectively. Increased
rainfall throughout the month of October also contributed to the peaks observed, particularly for the
South region.

Figure 4. Monthly averaged precipitation for the North, South, West, and East during 2012–16 baseline
period and for 2017.
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The South region showed the highest amount of precipitation, followed by North, East, and West.
The North and West regions experienced a significant increase in precipitation starting in August that
began to decrease in October 2017. The East and South regions also experienced a major increase in
rainfall in August but did not decrease until November. The West region showed lower precipitation
values from February 2017 to early August 2017 compared to 2012–2016 (Figure 4).

3.2. Regional and Monthly Pre- and Post-Hurricane Water Quality

3.2.1. Chl-a Concentrations

An increase in Chl-a concentration was observed from August–November 2017 for all regions
(Figure 5). Chl-a concentration spikes may not have been observed in the East and North because
baseline values were relatively high. When all regions are considered, an increase in Chl-a concentration
for 2017 positively correlates with an increase in precipitation (rs = 0.52; p = 0.080). The East region
showed the highest contribution to the overall chlorophyll-a value for the island, followed by the
North, West, and South regions (Figure 5) for both 2012–16 and 2017. The West region showed lower
precipitation values from February 2017 to the beginning of August 2017 as compared to 2012–2016;
during this time, Chl-a concentrations were lower than the average for 2012–2016 as well. The East
region had higher rainfall values in 2017 overall as compared to 2012–2016; this may have contributed
to increased Chl-a concentration for 2017. Precipitation influences the Chl-a concentration for the
north region (2017 rs = 0.73; p = 0.006, 2012–16 rs = 0.60; p = 0.038) and the south region (2017 = 0.40;
p = 0.191, 2012–16 rs = 0.60; p = 0.036).

Figure 5. Monthly averaged precipitation and Chl-a concentration with standard deviation by regions
for 2012–16 baseline period and 2017.

300



Remote Sens. 2020, 12, 964

Chl-a concentrations were analyzed monthly for each year to identify the differences between years
and the seasonal trends (Figure 6). The higher Chl-a values were observed from July to December 2017
when considering the average of all regions. Chl-a concentration exceeded 0.45 μg/L by August 2017
and persisted until December 2017. Chl-a concentration values above 0.45 μg/L were also present in
previous years but never exceeded this threshold for more than 5 months. Average Chl-a concentration
for Puerto Rico showed an increase in 2017 when compared with previous values from 2012–2016
especially in the peak of the rainy season (August–November) (Figure 6). The months that showed an
increase over the previous baseline values are July (17% higher than baseline), August (36%), September
(20%), October (9%), November (14%), and December (13%).

Figure 6. Monthly comparison of the Chl-a concentration for all regions (μg/L) showing the yearly
distribution from 2012–2017 with associated precipitation data (top). The year 2017 is filled in black.
The dashed line for 0.45 μg/L represents the chlorophyll threshold for open coastal and mid-shelf
waters [23]. (Bottom) Box plot showing yearly statistics of the Chl-a concentration for all regions.

3.2.2. Kd490

The Kd490 values were analyzed by month per year to compare the differences between years and
seasonal trends. The East region showed the highest contribution to the overall Kd490 value for the
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island, followed by the North, West, and South regions (Figure 7). Precipitation contributes to a greater
degree to the Kd490 values in the South (2012–16, rs = 0.79; p = 0.001) and North (2017 rs = 0.68; p =
0.014) regions. The East region had higher rainfall values in 2017 overall as compared to 2012–2016;
this correlated with increased Kd490 values for 2017 (rs = 0.44; p = 0.459). Overall, an increase in Kd490
correlated with an increase in precipitation (2017, rs = 0.46; p = 0.124), 2012–16, rs = 0.53; p = 0.075)
Additionally, there is a strong correlation between the Chl-a and Kd490 (rs = 0.99; p = 0) products for
the complete time series.

Figure 7. Monthly averaged precipitation and Kd490 with standard deviation by regions for 2012–16
baseline period and 2017.

Higher values were present from July to December 2017 when considering all regions (Figure 7).
The values for Kd490 reached and exceeded 0.06 m−1 by July 2017 and persisted by December 2017.
Kd490 values above the 0.06 m−1 were also present in previous years, but the 2017 values for the
months of August, September, and December are the highest for all the time series from 2012–2017.
The values of Kd490 for Puerto Rico show an increase for 2017 when compared with values from
2012–2016, especially in the peak of the rainy season (August–November) (Figure 8). The months
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that show an increase from the previous baseline values are July (10% higher than baseline), August
(28%), September (15%), October (5%), November (7%), and December (12%). The values for Kd490
concentration from August to December 2017 were all above 0.06 m−1.

Figure 8. Monthly comparison of Kd490 values showing the yearly distribution from 2012–2017 with
associated precipitation data (top). The year 2017 is filled in black. The dashed line for 0.1 m−1

represents the Kd490 value threshold for open coastal waters [22]. (Bottom) Box plot showing yearly
statistics of Kd490 for all regions.
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3.3. Inner Shelf vs Outer Shelf Pixels

Pixel point locations were evaluated to quantify the difference from coastal to oceanic waters
around Puerto Rico. The pixel locations are broken out into inner shelf and outer shelf regions (Figures 9
and 10). Approximately 74% of the average value of Chl-a for Puerto Rico (0.55 μg/L) was driven by
the inner shelf pixel locations, where 26% was attributed to the outer shelf locations. A small variation
(± 3%) was found in the contribution of the inner vs. outer shelf to the average value of Chl-a for all
Puerto Rico, even when considering regional and yearly distributions. These pixel locations were also
analyzed by month and compared between 2012–2016 and 2017 data (Figure 9). Chl-a values for outer
shelf locations remained below 0.45 μg/L except for the months of July and August of 2017. The values
for the inner shelf pixels remained below the 0.8 μg/L value from January to June for both 2017 and
2012–2016 data. The inner shelf values for 2017 displayed an increase (in percent) for the months of
June (8% from baseline), July (17%), August (5%), September (8%), October (19%), and November
(28%) when compared to 2012–2016 data.

Figure 9. Chlorophyll-a concentration for inner shelf and outer shelf of Puerto Rico waters.
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Figure 10. Kd490 for inner shelf and outer shelf of Puerto Rico waters.

For the Kd490 values, approximately 70% of the average value for Puerto Rico (0.07 m−1) were
driven by the inner shelf pixel locations, while the remaining 30% was from outer shelf pixel locations.
There was little variation (± 3%) in the contribution of the inner vs. outer shelf to the average value
of Kd490 for all Puerto Rico, even when considering regional and yearly distributions. These pixel
locations were also analyzed by month and compared from 2012–2016 to 2017 data (Figure 10). The
values for outer shelf locations remained below 0.06 m−1 except for the months of July and August of
2017. The inner shelf values remained below the 0.10 m−1 value from February to July for both 2017
and 2012–2016 data. The inner shelf values for 2017 increased (in percent) during the months of June
(4% from baseline), July (9%), August (10%), September (5%), October (12%), and November (7%)
when compared to 2012–2016 data.

4. Discussion

Hurricanes Irma and Maria Effects on Water Quality

Hurricane Maria’s 24-hr rainfall intensity was undoubtedly the highest for any tropical cyclone
in Puerto Rico since 1898 [24]. This event represented a 13% increase in the island-wide 24-hour
rainfall rates, which is within the range of predicted increases associated to climate change both locally
and worldwide [24]. The precipitation data for our selected stations also shows an increase in 2017,
especially during the months of August to October. Such extreme precipitation events from tropical
cyclones can alter the coastal water quality regimes [25]. Higher mean, median, and maximum values
were observed for both Chl-a and Kd490 when compared to previous years (Figures 6 and 8).

The highest values of both Chl-a and Kd490 were present in August 2017, just before the hurricane
impact, which corresponds with an increase in precipitation during that same month when compared
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with 2012–2016 values. Regional values also show a dramatic increase by the month of August 2017
when compared to 2012–2016. According to National Weather Service (NWS) San Juan weather report
for 2017, July and August showed an increase in monthly precipitation of 53.3 mm and 61.5 mm
respectively from the normal (1981–2010) [26] which explain the higher values for both Chl-a and
Kd490.

In addition to increased light attenuation, sediment reaching the coast from runoff can smother
corals and has been shown to have a detrimental effect on coral recruitment, decrease calcification,
decrease net productivity of corals, and reduce rates of reef accretion [27]. In addition, introducing
nutrients and high turbidity to what is generally an oligotrophic system, combined with decreased
grazing due to overfishing, can promote the growth of macroalgae which may then outcompete
corals for space on reefs [28]. To put these values into context, impairment thresholds for Chl-a and
water clarity from the GBRMP and State of Hawai’i water quality standards were shown in previous
figures (Figures 5 and 7–9). Thresholds of 0.45 μg/L were used for Chl-a, and 0.1 m−1 for Kd490
coefficients for open coastal waters. For both indicators, inner shelf points showed values above these
thresholds before and after the hurricanes and these values exceeded thresholds globally recognized
as adverse for coral reefs [23]. One alarming factor is that the mean Chl-a value for Puerto Rico for
the complete time-series (2012–2017) was 0.55 μg/L, higher than the established threshold even when
considering inner/outer shelf pixels, suggesting chronically impaired water quality. These data can
provide key information for management to establish water quality thresholds for coastal waters, as
well as prioritize restoration efforts of watershed and coral reef areas.

When comparing the inner and outer shelf pixel values of Chl-a and Kd490, this follows the
distinct neritic to oceanic gradients of water turbidity observed for the oceanic waters surrounding
Puerto Rico [5]. This suggests that areas closer to shore experienced higher levels of degraded water.
9 of the 25 inner shelf pixels were over coral reef and colonized hardbottom areas (Figure 3), where
higher values of both Chl-a, and Kd490 were present and persisted for various months. Miller [10]
used total suspended matter (TSM) from the Sentinel 3 Ocean Color Land Instrument (OLCI) to find
that island-wide mean TSM increased 2.2 times (5.57 mg/L to 12.39 mg/L) between before and two
weeks after Hurricane Maria’s strike, rapidly dropping by November (5–6 mg/L), and reaching normal
levels by February 2018 (2.14 mg/L). Degraded water quality conditions persisted for months after the
hurricanes as shown by our Chl-a and Kd490 values. No TSM products are available from VIIRS to
compare these results. Additionally, the North and East regions contributed to the high values of both
Chl-a and Kd490 since those regions contain Puerto Rico’s major rivers, while the smallest rivers are
mainly found along the south coast [29].

Our results for Chl-a and Kd490 did not find strong overall positive correlations with precipitation
values. This may be due to a non-linear relationship between precipitation and surface runoff as a
result of reduced foliage interception due to hurricane defoliation, which did not exceed 1.0 kg/m2

in the month preceding Maria, but reached 3 times this value before comparatively drier conditions
arrived in December [10]. Warne [29] estimated that 57 % of the mean annual precipitation (911 mm/yr)
in Puerto Rico is discharged to the coast as runoff due to steep gradients, relatively shorter river lengths,
and low water holding capacity. These surface hydrology characteristics and the fact that both the
precipitation and satellite data were summarized into monthly values, reduce the potential lag between
precipitation and satellite ocean color measurements. In addition, there were few stations with reliable
historical records of precipitation data per region that could be correlated with the 2012–2017 time
series. This may have contributed to the low correlation values for some regions, due to an incomplete
representation of the total precipitation values for the regions.

In addition, the peak values for both Chl-a and Kd490 for September-October 2017 may have been
underestimates due to limited numbers of retrievals resulting from high cloud cover. According to
Mikelsons and Wang [30], the most significant limiting factors in satellite ocean color data retrievals
is cloud cover, and large cyclone systems can prevent ocean color data retrievals over vast areas for
several days. In fact, a prolonged period of cloudy conditions followed these storms. This reduction
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in cloud-free imagery is magnified by the afternoon timing of overpass of satellites flying the VIIRS
instrument. During that season, cloud formation is generally high due to local trade winds and
orographic effects. “Blended” Chl-a and Kd490 products from a combination of moderate resolution
sensors (i.e., SeaWiFS, MODIS, JPSS, OLCI) at full resolution (≤ 1 km), with different satellite observation
times may improve the amount of cloud-free observations in near-shore environments, as would the
presence of ocean color instruments on geostationary satellites.

5. Conclusions

Moderate-resolution satellite imagery, such as VIIRS can provide a reliable method to evaluate
potential habitat exposure to degraded water quality without conducting extensive in-situ water
quality monitoring. Even with the limitations of spatial resolution and loss of data due to cloud cover,
moderate-resolution imagery time-series analysis has provided a useful evaluation of the effects of the
hurricanes on the coastal water quality in Puerto Rico, and the potential exposure of benthic habitats to
higher turbidity waters. The regions around Puerto Rico experienced extreme and prolonged levels of
pollution exceeding established thresholds for coastal and open ocean areas that contain coral and
seagrass habitats. This pollution came from multiple sources including sediment from the extensive
landslides and untreated sewage from the persistent losses of power across the island and use of
combined sewer systems that collect rainwater runoff, domestic sewage, and industrial wastewater
into a single system. Depending on the magnitude and duration of the pollution, and the condition
of the habitat prior to the hurricane, these exposures likely led to a range of habitat-scale impacts
including, but not limited to inhibition of light penetration needed to support photosynthesis, physical
smothering of the habitat by sediment, and excessive algal growth, which will outcompete coral reefs
and seagrass. Those habitats that were previously impaired due to chronic pollution are particularly
susceptible to this threat.

Water quality exceedances and corresponding habitat exposures varied across the inner shelf and
outer shelf locations (i.e., coastal, oceanic) and regions (i.e., North, South, East, West). For inner shelf
locations, many of the observed baseline and post-hurricane values for Chl-a and Kd490 are above
thresholds for impairment recognized by coral jurisdictions around the globe. Outer shelf locations
generally show lower values. Degraded coastal water quality has the highest potential of impact and
these were present close to shore, where coral reef and other critical habitats are located. In addition,
some regions suffered more severe hurricane impact than others. In the east region, for instance,
turbidity was higher than in other regions prior to the hurricanes, therefore post-hurricane differences
in degraded water quality were masked in our change analysis. The results from this project can be
used as a guideline to establish local thresholds for water quality of these parameters in the coastal
areas of Puerto Rico taking into consideration suggested long-term increases in precipitation from
altered extreme weather scenarios.
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Abstract: The Lena, Kolyma, and Indigirka rivers are among the largest rivers that inflow to the
Arctic Ocean. Their discharges form a freshened surface water mass over a wide area in the Laptev
and East-Siberian seas and govern many local physical, geochemical, and biological processes. In
this study we report coastal upwelling events that are regularly manifested on satellite imagery
by increased sea surface turbidity and decreased sea surface temperature at certain areas adjacent
to the Lena Delta in the Laptev Sea and the Kolyma and Indigirka deltas in the East-Siberian Sea.
These events are formed under strong easterly and southeasterly wind forcing and are estimated
to occur during up to 10%–30% of ice-free periods at the study region. Coastal upwelling events
induce intense mixing of the Lena, Kolyma, and Indigirka plumes with subjacent saline sea. These
plumes are significantly transformed and diluted while spreading over the upwelling areas; therefore,
their salinity and depths abruptly increase, while stratification abruptly decreases in the vicinity of
their sources. This feature strongly affects the structure of the freshened surface layer during ice-free
periods and, therefore, influences circulation, ice formation, and many other processes at the Laptev
and East-Siberian seas.

Keywords: coastal upwelling; wind forcing; river plume; MODIS; Arctic Ocean

1. Introduction

The Arctic Ocean covers an area of about 3% of the World Ocean area and holds only 1% of its
volume, but receives approximately 11% of world continental discharge [1,2]. This enormously large
freshwater runoff forms large freshened water masses at the Arctic shelf and induces strong vertical
stratification that plays a crucial role in the variability of ice cover and regional albedo [3–5]. As a
result, the spreading and mixing of freshwater runoff in the Arctic Ocean influences global climate
processes. Freshened water masses also significantly affect many local processes in the Arctic Ocean,
especially in coastal and shelf areas where the impact of freshwater discharge is the strongest [6–14].

The Lena, Kolyma, and Indigirka rivers are among the largest rivers that inflow to the Arctic
Ocean. Annual discharges of the Lena, Kolyma, and Indigirka rivers are estimated as 530, 130, and
60 km3 and they provide approximately 70% and 75% of the total freshwater discharge to the Laptev
and East-Siberian seas, respectively [15,16]. The majority of this discharge inflows to the sea during the
ice-free period in June–September and forms the Lena, Kolyma, and Indigirka river plumes [17]. These
buoyant plumes occupy hundreds of thousands square kilometers in the Laptev and East-Siberian
seas and are among the largest freshwater reservoirs in the Arctic Ocean [17–20]. Spreading and
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transformation of these river plumes determine vertical stratification and, therefore, strongly affect
circulation and ice formation in the Laptev and East-Siberian seas, as well as many other physical,
geochemical, and biological processes [21–32].

In this study we focus on upwelling events which regularly occur at coastal areas adjacent to the
deltas of the Lena, Kolyma, and Indigirka rivers. Surface manifestations of these upwelling events
are visible on ocean color satellite imagery due to elevated turbidity and on sea surface temperature
(SST) satellite imagery due to reduced temperature. However, correct identification of the origin of
SST and turbidity features observed on satellite imagery is not a straightforward task. SST features in
the study region are formed as a result of interaction between water masses with different temperature,
namely, warm river plumes and cold saline sea water, and are associated with spreading of river
plumes, mixing of surface layer with subjacent sea, and ice melting. Areas of elevated sea surface
turbidity in coastal and shelf regions are commonly associated with four different processes: spreading
of turbid river plumes, coastal erosion, resuspension of bottom sediments penetrated to sea surface,
and algal blooms [33]. The first three processes are common features of the Laptev and East-Siberian
seas [25,27,34,35], while algal blooms do not occur in these seas [32,36–38]. Turbid regions associated
with river plumes are adjacent to river estuaries and deltas. Spatial and temporal variability of these
regions is defined mainly by river discharge rate, turbidity of river water, and local wind forcing [39–47].
Coastal erosion in the Laptev and East-Siberian seas is extremely intense due to active thermal abrasion.
It provides large land-ocean fluxes of terrigenous sediments whereby total eroded sediment volume
exceeds river sediment discharge [31,33,48]. Turbid regions associated with coastal erosion are adjacent
to long segments of sea coast, but it does not cause elevated turbidity in offshore areas. Finally,
resuspension of bottom sediments occurs in shallow areas and can be caused by upwelling events,
tides, and wind waves [24,49–53]. In the latter case, turbulence induced by breaking surface waves
penetrates from the surface layer to the sea bottom, causing resuspension of bottom sediments and their
subsequent upward convection to surface layer. Tidal circulation and coastal upwelling, conversely,
initially induce turbulence in the bottom layer, which penetrates upward and can reach the surface
layer carrying resuspended sediments.

Interaction between river plumes and coastal upwelling were addressed in many previous works.
Stratification in the coastal area affects the depth of the mixed layer and alters wind-driven cross-shore
circulation [54–57]. Upwelling-favorable winds induce offshore transport of river plumes and their
detachment from the sea shore [58–62]. As a result, a sharp salinity gradient is formed between the
saline and low-stratified near-shore area and offshore located river plume [36]. Upwelling winds also
cause intense mixing of a river plume with subjacent saline sea due to increased velocity shear and an
Ekman straining mechanism [58,63]. Therefore, upwelling events along coastal areas influenced by
freshwater discharge significantly affect spreading and mixing of river plumes, as well as the local
nutrient cycle, biological consumption, food webs, and biological productivity [56,64–68].

Many previous works addressed wind-driven coastal upwelling events in the Arctic
Ocean [19,69–74]. However, interaction between river plumes and coastal upwelling in the Arctic
Ocean remain mainly unstudied. We are aware of only a few studies focused on coastal upwelling
influenced by large freshwater discharge, namely, the Mackenzie River [75–78]. In this study we
report coastal upwelling events that occur over wide areas adjacent to deltas of the Lena, Indigirka,
and Kolyma rivers. Using satellite imagery and atmospheric reanalysis fields, we reveal that these
upwelling events are regularly induced by wind forcing. We show that they strongly affect the
thermohaline and turbidity properties of the sea surface layer and influence spreading and mixing of
the large Lena, Kolyma, and Indigirka plumes.

The paper is organized as follows. Section 2 provides detailed information about the study area,
the satellite and wind reanalysis data, and the methods of detection of upwelling events used in this
study. Section 3 describes spatial and temporal characteristics of wind-driven coastal upwelling events
that occur near the Lena, Kolyma, and Indigirka deltas. Frequency and duration of these coastal
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upwelling events are assessed and their influence on the spreading and mixing of the Lena, Kolyma,
and Indigirka plumes is analyzed in Section 4, followed by the conclusions in Section 5.

2. Study Area, Data, and Methods

2.1. Study Area

The Laptev and East-Siberian seas are located at the east of the Eurasian part of the Arctic Ocean.
These seas are semi-enclosed by the Siberian coast and large archipelagos and islands (Severnaya
Zemlya, New Siberian Islands, and Wrangel Island) in the south, east, and west, and only in the north
they are open to the central part of the Arctic Ocean (Figure 1). Half of the Laptev Sea and almost
the whole area of the East-Siberian Sea rest on the continental shelf. The distance between the sea
shore and the continental slope increases from 100 to 200 km at the western part of the Laptev Sea
and to 1000 km at the eastern part of the East-Siberian Sea. Average sea depths of the Laptev and
East-Siberian seas are 580 and 45 m, respectively.

General circulation in the Laptev and East-Siberian seas is governed by river runoff and zonal
water exchange with the Kara Sea [79], the Chukchi Sea [80], and the deep basin of the Arctic Ocean [12].
The Laptev and East-Siberian seas receive a large volume of continental discharge, approximately 800
km3 to the Laptev Sea and 250 km3 to the East-Siberian Sea annually, which accounts for approximately
a quarter of the total freshwater runoff to the Arctic Ocean [1,15,81]. Spatial and temporal variability
of river plumes formed in these seas are mainly governed by river discharge rates and wind forcing
conditions [21,23,25,27,80–83]. Tidal circulation in the Laptev and East-Siberian seas is dominated by
a lunar semidiurnal tidal wave that propagates from the North Atlantic to the Arctic Ocean. Tidal
amplitudes in these seas are generally low, as compared to the World Ocean, and do not exceed 0.5 m
in the majority of their area [84–86].

The Laptev and East-Siberian seas are frozen during the majority of a year. The southern parts of
the seas adjacent to the Lena, Indigirka, and Kolyma deltas are covered by landfast ice (1.5–2 m thick)
from the end of October to June–July. The ice regime in the study areas is significantly influenced by
continental runoff [17,25,27] and the Great Siberian Polynya [87]. Summer and autumn ice coverage of
these seas shows large inter-annual variability. The northernmost position of the edge of the sea ice
was located at a distance of 200–300 km from the Siberian shore during certain years (e.g., 2013, 2014,
2018), so the central and northern parts of these seas were covered by ice during the whole year. On
the other hand, these seas can be totally free of ice at the end of August–beginning of October during
the years of reduced ice coverage (e.g., 2012, 2017, 2019).
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Figure 1. (a) Bathymetry and topography of the study region locations of the Lena, Indigirka, and
Kolyma deltas in the Laptev and East-Siberian seas; (b) bathymetry of the areas adjacent to the Lena,
Indigirka, and Kolyma deltas. The graphic scales correspond to the latitude of 72◦. Red boxes indicated
in panel (b) show locations of reference areas in the upwelling regions (dashed contours) and the
ambient sea (solid contours) used to identify upwelling events.
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2.2. Data and Methods

Satellite data used in this study include Terra/Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite imagery for the period 2000–2019 provided by the National
Aeronautics and Space Administration (NASA). MODIS L1b calibrated radiances including MODIS
bands 1 (red), 3 (blue), 4 (green), and daytime 31 (thermal) were downloaded from the NASA web
repository (https://ladsweb.modaps.eosdis.nasa.gov/). We used ESA BEAM software for retrieving
maps of sea surface distributions of corrected reflectance and brightness temperature at the study areas
with spatial resolutions of 100 m and 1 km, respectively. Wind forcing conditions were examined using
NCEP/CFSR/CFSv2 atmospheric reanalysis with a ~0.3◦ (1979–2010) and ~0.2◦ (2011–2019) spatial and
hourly temporal resolution [88,89]. The reanalysis data were downloaded from the National Climatic
Data Center of the National Oceanic and Atmospheric Administration (NCDC NOAA) web repository
(https://www.ncdc.noaa.gov/). Visual inspection of all satellite images of three study areas (Figure 1b)
acquired during ice-free seasons (July–October) of 2000–2019 was performed to detect cloud-free and
ice-free satellite images. The resulting 252 images were used to detect upwelling events near the
Lena, Indigirka, and Kolyma deltas in the following way. For every considered region we identified
a pair of reference areas, namely, the upwelling area adjacent to the delta and the ambient sea area
not affected by upwelling events. The pairs of these reference areas are shown in Figure 1b by red
boxes, while their coordinates are given in Table 1. Then for every cloud-free and ice-free satellite
image we calculated differences in average brightness temperature within the pairs of reference areas.
If the temperature of an upwelling area was smaller than the temperature of an ambient sea area by
>2 ◦C, we regarded this case as a “cold event” bounded by a “distinct” frontal zone which is a surface
manifestation of upwelling.

Table 1. Coordinates of reference areas used to identify upwelling events near the Lena, Indigirka, and
Kolyma deltas.

Lena Delta Indigirka Delta Kolyma Delta
Upwelling

Area
Ambient

Sea
Upwelling

Area
Ambient

Sea
Upwelling

Area
Ambient

Sea

Longitude, ◦E 126–129 126–129 150.5–151.5 152–153 161–163 160–162
Latitude, ◦N 73.75–74 74.75–75 71.75–72 71.75–72 69.75–70 70.5–70.75

Due to the complexity of coastal processes that govern the temperature of the sea surface and the
absence of specific regional algorithms for retrieving SST in the study areas with very limited in situ
measurements, we did not used the standard SST product of MODIS. Instead, we used a brightness
temperature product that does not provide an accurate temperature of the sea surface, but shows
relative temperature differences, which can be used to detect upwelling events. The qualitative routine
for detection of upwelling events was based on the brightness temperature values, which was followed
by assessment of surface turbidity during upwelling and non-upwelling events. Due to the absence
of specific regional algorithms for retrieving total suspended matter in the study area influenced by
multiple processes (resuspension of bottom sediments, river discharge, coastal erosion), we did not
apply quantitative assessment of surface turbidity, but performed qualitative visual inspection that
identified elevated turbidity at the upwelling area in all cases during and shortly after upwelling
events and mainly normal turbidity during non-upwelling periods. As a result, hereafter in the text,
we regard “cold events” as “cold and turbid events”.

3. Results

3.1. Coastal Upwelling near the Lena Delta in the Laptev Sea

Optical satellite imagery regularly reveals events of increased sea surface turbidity and reduced
sea surface temperature at the area located to the north from the Lena Delta (Figure 2). To study this
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feature, we analyzed all MODIS Terra and MODIS Aqua satellite images of the study region taken
in 2000–2019 during July–October when the southern part of the Laptev Sea was free of ice. Due
to common cloudy weather conditions, we detected only 25 periods (1–6 days long) when the area
adjacent to the Lena Delta was clearly seen in optical satellite images and the structure of surface
turbidity and temperature could be identified. Cold and turbid sea to the north from the Lena Delta
was observed in 12 cases of the 25 considered periods. The other 13 cases were characterized by
relatively homogenous turbidity and temperature at the study area, without any distinct frontal zones.

Figure 2. Corrected reflectance (left) and brightness temperature (right) from MODIS (Moderate
Resolution Imaging Spectroradiometer) Terra and MODIS Aqua satellite images of the Laptev Sea
acquired on (a) 25 August 2000, (b) 22 July 2009, (c) 10 August 2011, (d) 25 August 2015, (e) 9 August
2018, and (f) 3 August 2019 indicating the location of upwelling events to the north of the Lena Delta
induced by wind forcing (arrows) and manifested by elevated sea surface turbidity and reduced sea
surface temperature. Surface manifestations of upwelling events and river plumes are indicated in
panel (a).

Typical examples of the cold and turbid events observed during six different days in 2000–2019
are shown in Figure 2. Sharp sea surface temperature gradients are formed between the cold area
located to the north from the Lena Delta and the surrounding warm sea. This cold area is bounded
by the distinct frontal zone whose location and shape is stable on satellite images taken on different
days. The location and shape of this thermal frontal zone show good agreement with local bathymetry
(Figure 3, right panels). The southern and eastern parts of the thermal frontal zone are located over the
isobaths of 5–10 m stretched along the northern coast of the Lena Delta and the large shoal located to
the northeast from the Lena Delta. The northern part of the thermal frontal zone is generally located
over the isobath of 30 m, but its position was less stable. The cold area typically occupies a large part
of the coastal sea (15,000–17,000 km2), apart from two days, 11 September 2005 and 2–4 August 2019,
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when this area was relatively small and the northern part of the thermal frontal zone had shifted in a
southeasterly direction (Figure 3a,b, right panels).

Figure 3. Corrected reflectance (left) and brightness temperature (right) from MODIS Terra and MODIS
Aqua satellite images of the area adjacent to the Lena Delta acquired on (a) 11 September 2005, (b) 3
August 2019, and (c) 25 August 2000 illustrating initial (a), middle (b), and well-developed (c) stages of
formation of upwelling events in response to wind forcing (arrows).
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The surface turbidity structure of the study region during the cold and turbid events was more
complex than the surface temperature structure. Surface turbidity was elevated to the north from the
Lena Delta at the area occupied by cold surface water (Figure 2). Elevated turbidity was also registered
along the eastern part of the Lena Delta. We associate elevated turbidity to the north of the delta with
upwelling events and elevated turbidity along the eastern part of the delta with the Lena plume, due to
the following reasons. Around 80–90% of freshwater and sediment discharge of the Lena River inflows
to the Laptev Sea from the eastern part of the Lena Delta, while its northern part accounts only for
5–8% [90]. As a result, a large turbid and warm river plume is formed only along the eastern part of
the Lena Delta. Therefore, areas of elevated turbidity located to the north from the Lena Delta are not
likely to be formed by turbid river discharge.

As was described in Section 1, discharge-induced, erosion-induced, and resuspension-induced
turbidity events can have similar sea surface manifestations on optical satellite imagery that hinders
detection of their origin. However, these processes can be distinguished using other characteristics of
sea water. River plumes generally have different salinity, temperature, concentrations of chlorophyll a
and dissolved organic matter, as compared to adjacent sea water [91–94]. In particular, river plumes
formed in the Laptev and East-Siberian seas during summer and early autumn are significantly warmer
than surrounding sea due to the large temperature difference between river and sea water [17,25,27].
The surface temperature in sea areas influenced by coastal erosion is also greater than in surrounding
sea due to the absorption of heat from sunlight by suspended particles in the absence of vertical
convection. Sea areas influenced by bottom resuspension, on the other hand, are colder than the
surrounding sea during the warm season due to mixing of the warmer surface layer with colder
bottom water. As a result, the cold and turbid zones observed to the north of the Lena Delta are caused
by bottom resuspension, while warm and turbid zones along the coast of Lena Delta are caused by
spreading of turbid river plumes.

As was discussed in Section 1, upwelling events, tides, and wind waves are the three possible
processes that induce bottom resuspension and form the considered cold and turbid zone. Tidal
circulation is very low in the central part of the Laptev Sea and limitedly affects mixing at the study
area [62,65]. Coastal upwelling events are commonly manifested by cold and turbid zones in satellite
imagery in many world regions [95–98]. Distributions of sea surface temperature observed during
coastal upwelling events show significant dependence on local bathymetry. Shapes of cold surface
areas formed by upwelling are consistent with isobaths and cores of cold areas are commonly detached
from the sea shore [99]. This is the case of the cold and turbid area observed to the north of the Lena
Delta which is stably located between isobaths of 5–10 and 30 m. Therefore, this area is not formed as a
result of mixing by wind waves, because this process does not depend on bathymetry and can cause
surface mixing over both shallow and deep sea areas.

Wind forcing in the study area obtained from the NCEP/CFSR/CFSv2 wind reanalysis confirms
that the cold and turbid zone to the north of the Lena Delta is formed by wind-driven upwelling
events. Figure 4 shows wind direction (measured in a clockwise direction from north) and wind
speed at the area of formation of cold and turbid events. Daily averaged wind forcing conditions are
shown in Figure 4 for the days of satellite observations (filled symbols) and for the preceding days
(empty symbols). All cold and turbid events detected on satellite imagery (red squares) occurred either
during strong southeast winds or shortly after their secession, i.e., average wind speed exceeded 8
m/s and average wind direction was between 120◦ and 170◦ on the day of satellite observation or on
the preceding day. In particular, if a filled red square is located outside the black dashed rectangle
(indicating the upwelling-favorable conditions) in Figure 4, its corresponding empty red square is
located inside the dashed rectangle. Therefore, we consider these events as residual upwelling events,
i.e., upward penetration of cold and turbid water that did not dissipate shortly after secession of an
upwelling wind. On the other hand, there were no cases when an absence of a cold and turbid zone
occurred during (filled blue triangles) or shortly after (empty blue triangles) strong upwelling winds
were detected, i.e., all triangles in Figure 4 are located outside the black dashed rectangle. Figure 4
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shows an asymmetry in wind conditions with almost absent wind forcing between 135◦ and 225◦.
This feature is presumably caused by the dependence of cloud coverage of the considered coastal
areas on wind direction. Offshore areas of the Laptev Sea are mostly constantly covered by clouds due
to intense evaporation, while the land is often cloud-free. As a result, wind that blows from sea to
land induces the transport of clouds from the open sea to coastal areas, which hinders optical satellite
observations of the sea surface. As a result, there are almost no wind forcing conditions between 135◦
and 225◦ among the relatively small sets of cloud-free satellite images of the considered deltaic area.

Figure 4. Wind forcing conditions at the Lena Delta region during periods of presence (red squares) and
absence (blue triangles) of cold and turbid events detected on satellite imagery. For each satellite image,
averaged wind forcing conditions are shown during the day of satellite observation (filled symbols) and
during the preceding day (empty symbols). The black dashed rectangle indicates upwelling-favorable
wind forcing conditions.

Joint analysis of satellite imagery and wind forcing conditions revealed different stages of formation
and dissipation of upwelling events in response to changes of wind forcing regimes (Figures 3 and 5).
Early stage of formation of upwelling events characterized by a small area of the cold and turbid
zone was detected twice, namely, on 9–11 September 2005 and 2–4 August 2019. South wind forcing
was prevailing in the study region on 8–10 September 2005 and changed its direction to southeast
(12 m/s) on 11 September 2005. No upwelling manifestations were observed on satellite images
acquired on 9 and 10 September 2005. On the next day, 11 September 2011, a relatively small cold
area was detected at the isobaths of 5–10 m between the northeastern coast of the Lena Delta and
the large shoal, indicating the beginning of formation of the upwelling event (Figure 3a, right panel).
Large cold area located northwestward from the Lena Delta on 11 September 2005 was formed by ice
melting and does not relate to vertical mixing processes. Satellite imagery acquired on 2–4 August
2019 shows the development of the upwelling event in response to strong southeast wind (7–8 m/s),
which started dominating in the study region on 1 August 2019. As on 11 September 2011, the cold and
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turbid upwelling zone initially was formed at the northwestward coast of the Lena Delta and steadily
propagated westward along the isobaths of 5–10 m and then northward towards the isobath of 30 m.
The upwelling area steadily increased from 2000 km2 on 2 August to 4500 km2 on 4 August (Figure 3b).

Figure 5. Corrected reflectance from MODIS Terra and MODIS Aqua satellite images of the area
adjacent to the Lena Delta acquired on (a) 8–11 August 2018, and (b) 28–29 August 2018 and wind
forcing (arrows) during upwelling (a) and non-upwelling (b) events.

Well-developed upwelling events that resulted in formation of a cold and turbid zone up to
the isobath of 30 m were registered after 4–5 days of upwelling winds. In particular, this case was
observed on 25 August 2000 after 4 days of strong southeasterly wind (7–11 m/s) (Figure 3c). After
the development of an upwelling event, the cold and turbid zone remained stable and did not spread
offshore. Satellite images acquired on 5, 6, 8, 9, 10, and 11 August 2018 during upwelling wind forcing
showed that the area of the fully developed upwelling zone did not change (Figure 5a). However, after
secession of upwelling wind, this cold and turbid area dissipated and was not observed on satellite
imagery acquired on 28–29 August 2018 (Figure 5b). Steady dissipation of the cold and turbid area
was also registered at the end of August 2015. A week of strong easterly winds on 15–23 August 2015
caused formation of an upwelling event, whereby surface manifestation bounded by a distinct frontal
zone was observed on satellite imagery acquired on 24 August 2015. After secession of upwelling
winds on 24 August 2015, sharp temperature and turbidity gradients between the upwelling zone
and the adjacent sea steadily dissipated. A satellite image of the study area acquired on 28 August
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2015 after 4 days of non-upwelling winds revealed that surface turbidity at the upwelling area had
significantly decreased, however, remained relatively high, as compared to the adjacent sea.

3.2. Coastal Upwelling near the Indigirka and Kolyma Deltas in the East-Siberian Sea

Cold and turbid events similar to those observed to the north from the Lena Delta in the Laptev
Sea were regularly registered near the large Indigirka and Kolyma deltas in the East-Siberian Sea
(Figure 6). We analyzed all MODIS Terra and MODIS Aqua satellite images of the study region taken
in 2000–2019 during July–October when the southern part of the East-Siberian Sea was free of ice. We
detected 40 and 62 periods when the areas adjacent to the Indigirka and Kolyma deltas, respectively,
were free of clouds and the structure of surface turbidity and temperature could be identified.

Figure 6. Corrected reflectance (left) and brightness temperature (right) from MODIS Terra and MODIS
Aqua satellite images of the East-Siberian Sea acquired on (a) 24 August 2000, (b) 9 August 2002, (c) 12
August 2008, (d) 14 August 2014 and (e) 17 August 2019, indicating location of upwelling events to the
north of the Indigirka and Kolyma deltas induced by wind forcing (arrows) and manifested by elevated
sea surface turbidity and reduced sea surface temperature. Surface manifestations of upwelling events
and river plumes are indicated at panel (b).

Similarly to upwelling events near the Lena Delta, the periods of formation of the cold and
turbid area near the Indigirka and Kolyma deltas show very good agreement with the periods of
upwelling-favorable wind forcing (Figures 7 and 8). The reanalysis wind data reveals that a strong
(>6 m/s) easterly and southeasterly wind (100◦–160◦) for the Indigirka Delta (Figure 7) and strong
(>7 m/s) easterly wind (60◦–120◦) for the Kolyma Delta (Figure 8) were dominating local atmospheric
circulation several days before and/or during all periods when the cold and turbid zones were observed
on satellite imagery. Black dashed rectangles in Figures 7 and 8 indicate the related upwelling-favorable
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conditions near the Indigirka and Kolyma deltas. For all cold and turbid cases, the day of observation
(filled red square) and/or the preceding day (empty red square) is located inside these dashed rectangles.
On the other hand, the direction of the prevailing wind was different or its velocity was low during all
periods when no cold and turbid areas were detected, i.e., all triangles in Figures 7 and 8 are located
outside the dashed rectangles. Therefore, we presume that the cold and turbid areas observed to the
north of the Indigirka and Kolyma deltas are surface manifestations of wind-driven upwelling events.
Similarly to the Lena Delta region, we observe asymmetry in wind forcing conditions with almost
absent wind forcing between 135◦ and 225◦.

Figure 7. Wind forcing conditions at the Indigirka Delta region during periods of presence (red
squares) and absence (blue triangles) of cold and turbid events detected on satellite imagery. For each
satellite image, averaged wind forcing conditions are shown during the day of satellite observation
(filled symbols) and during the preceding day (empty symbols). The black dashed rectangle indicates
upwelling-favorable wind forcing conditions.

322



Remote Sens. 2020, 12, 844

Figure 8. Wind forcing conditions at the Kolyma Delta region during periods of presence (red squares)
and absence (blue triangles) of cold and turbid events detected on satellite imagery. For each satellite
image, averaged wind forcing conditions are shown during the day of satellite observation (filled
symbols) and during the preceding day (empty symbols). The black dashed rectangle indicates
upwelling-favorable wind forcing conditions.

Upwelling areas in the East-Siberian Sea occupied a large part of the coastal sea adjacent to the
Indigirka (3000–6000 km2) and Kolyma (5000–9000 km2) deltas (Figures 6, 9 and 10). Their southern
borders are stretched along the northern coasts of the Indigirka and Kolyma deltas. Upwelling events
were observed in 21 cases of the 40 considered periods near the Indigirka Delta and in 24 cases
of the 62 considered periods near the Kolyma Delta. Similarly to upwelling events near the Lena
Delta, we detected the process of development of upwelling events near the Indigirka and Kolyma
deltas in response to changes of wind forcing regimes in August 2002 (Figures 9a and 10a), August
2010 (Figure 9b), and August 2014 (Figure 10b). Moderate (2–5 m/s) southeasterly wind forcing was
prevailing in the study region on 3–5 August 2002 and its velocity increased to 7–8 m/s on 6 August
2002. No upwelling manifestations were observed on satellite images acquired on 4–5 August 2002
in the study area (Figures 9a and 10a). Then the areas of reduced surface temperature and increased
surface turbidity were formed at the isobaths of 5–10 m near the Indigirka and Kolyma deltas on 6
August 2002. These areas increased on 7–10 August 2002, whereby their northern borders steadily
propagated offshore, indicating the development of coastal upwelling events in response to strong
southeasterly wind (9–10 m/s), which dominated in the study region till 11 August 2002. The upwelling
area steadily increased to 6000 km2 near the Indigirka Delta (Figure 9a) and to 9000 km2 near the
Kolyma Delta (Figure 10a).
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Figure 9. Corrected reflectance (left) and brightness temperature (right) from MODIS Terra and MODIS
Aqua satellite images of the area adjacent to the Indigirka Delta acquired on (a) 5, 7–10 August 2002
and (b) 20–22 August 2010 illustrating formation of the upwelling event in response to wind forcing
(arrows).
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Figure 10. Corrected reflectance (left) and brightness temperature (right) from MODIS Terra and
MODIS Aqua satellite images of the area adjacent to the Kolyma Delta acquired on (a) 5, 6, 8, 9 August
2002 and (b) 5, 7, 9, 10, 14, 21 August 2014 illustrating formation and dissipation of upwelling events in
response to wind forcing (arrows).

Development of an upwelling event was also registered on 20–22 August 2010 (Figure 9b). No
upwelling was observed on 20 August 2010 during moderate (4 m/s) southeasterly wind forcing. Then
on 21 August 2010 upwelling wind increased to 8 m/s and formation of a cold and turbid zone started,
which is visible on satellite image. The next day, 22 August 2010, a well-developed upwelling event
was observed. Formation and dissipation of upwelling near the Kolyma Delta was observed on 5–24
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August 2014 (Figure 10b). Satellite imagery show that warm river plume occupied the area adjacent to
the Kolyma Delta on 5–8 August 2014 under moderate (4–6 m/s) wind forcing conditions. Coastal
upwelling induced by easterly wind (9–13 m/s) on 9–14 August 2014 resulted in mixing of the Kolyma
plume manifested by abrupt decrease of surface temperature at the upwelling area. The warm plume
remained only in vicinity of the Kolyma Delta, and its area dramatically decreased from 13,000 to 1500
km2. Relaxation of upwelling favorable wind (1–5 m/s) on 15–24 August 2014 was accompanied by
steady increase of area of the Kolyma plume registered by satellite imagery on 21 and 24 August 2014.

4. Discussion

Upwelling winds near the Lena, Indigirka, and Kolyma deltas cause mixing and intense offshore
transport of river plumes over sloping seafloor and upward penetration of cold subjacent sea water
(Figure 11). The upwelling sea water induces resuspension of bottom sediments and transports them
upward to the surface layer. This process strongly depends on local bathymetry, therefore it occurs
only over certain zones of the coastal sea. As a result of detachment of river plumes from river delta
and upwelling of subjacent sea water, large saline, cold, and turbid “holes” are formed within the Lena,
Indigirka, and Kolyma plumes, which are detected on satellite imagery.

Figure 11. Schematic of formation of a saline, cold, and turbid “hole” within a plume as a result of
advection and mixing of a river plume during wind-induced upwelling event.

Based on theory described by [39], we quantified the spatial and dynamical characteristics of the
response of the Lena, Indigirka, and Kolyma plumes to upwelling-favorable winds. Given the speed
of the upwelling wind, we can calculate three key parameters of this process, namely, the depth of the
surface layer entrained by offshore displacement hs, the time to separate the plume from the coast tsep,
and the time to halve the initial salinity anomaly of the plume ts. The first parameter is determined by
the equation

hs =

√
2Riρsea

ghpΔρp
U, (1)
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where Ri =
gΔρphp

3

ρseaU2 is the Richardson number, ρsea is the ambient sea density, g is the gravity acceleration,
hp is the plume depth, Δρp is the plume salinity anomaly, U = τ

ρsea f is the Ekman transport, f is the
Coriolis frequency, and τ is the wind stress. We obtain that if upwelling wind speed exceeds 9 m/s, i.e.,
U exceeds 1.46 m2, for the Lena plume (ρsea = 1016 kg/m3, hp = 5 m, Δρp = 4 kg/m3, f = 1.4 × 10−4 1/s,
Ri ~ 1 according to [17,27]), then hs is greater than the plume depth hp, i.e., the whole depth of the Lena
plumes is entrained into offshore displacement during an upwelling event. This theoretical estimation
of the threshold value for wind speed (9 m/s) is in a good accordance with the threshold value (8 m/s)
obtained from analysis of satellite imagery and wind reanalysis described in Section 3.1. Similar
assessment of the upwelling wind threshold value for the Indigirka and Kolyma plumes (hp = 3 m,
Δρp = 4 kg/m3 according to [17,25]) is equal to 7 m/s, which is also consistent with the threshold values
(6 m/s for the Indigirka plume and 7 m/s for the Kolyma plume) reconstructed from satellite imagery
and wind reanalysis.

If wind speed exceeds the threshold value, a plume separates from the coast during several hours
(tsep ~ 1/f = 1.4 × 104 s ~ 4 h) and halves its initial salinity anomaly during the time period quantified
by the following equation:

ts =
2AP√
RiU

, (2)

where Ap =Wp × hp/2 is the initial cross-sectional area of the plume and Wp is the initial cross-shore
extent of the plume. For the considered plumes, we set Wp ~ 5 × 104–105 m and obtain ts = 1.7 × 105–3.4
× 105 s ~ 2–4 days for the Lena plume and ts = 1.5 × 105–3 × 105 s ~ 1.5–3.5 days for the Indigirka and
Kolyma plumes. As a result, several days of strong upwelling wind are estimated to induce northward
offshore displacement of these plumes and halve their salinity anomalies due to intense mixing with
subjacent sea. Several days of strong upwelling wind cause formation of Wp/2 = 25–50 km wide areas
of saline ambient sea water between the plumes and the related deltas that is consistent with satellite
observations of the study area (Figures 2 and 6). On the other hand, if wind speeds are smaller than the
threshold values, separation of the plumes from the coast occurs after several days or more from the
onset of upwelling wind. In this case, mixing of the plumes with ambient sea has low intensity; salinity
anomalies of the plumes decrease slowly and halve only after several weeks of upwelling winds [39].

In Section 3 we described ranges of wind speed and wind direction that induce coastal upwelling
events at the study regions visible on satellite imagery. We applied these ranges to wind reanalysis and
identified periods of wind forcing favorable for formation of upwelling events near the Lena, Indigirka,
and Kolyma deltas during the ice-free seasons of 1979–2019 (Figure 12). The average annual duration
of upwelling events near the Lena, Indigirka, and Kolyma deltas during this period was equal to 5, 10,
and 14 days per year, respectively. The frequencies of upwelling events detected on satellite imagery
in the study areas are overestimated by several times, as compared to the obtained average frequencies
reconstructed from wind reanalysis. This large bias is caused by, first, detection of residual upwelling
events on satellite images that remain during several days after secession of upwelling wind and,
second, by almost complete absence of cloud-free satellite imagery during non-upwelling northernly
winds described in Section 3.
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Figure 12. (a) The total annual duration and (b) duration in July of upwelling events near the Lena
(red), Indigirka (green), and Kolyma (blue) deltas in 1979–2019. (c) Distributions of upwelling periods
in July–October in 2011 near the Lena Delta (left), in 1981 near the Indigirka Delta (center), and in 1990
near the Kolyma Delta (right).

The Kolyma River discharge exhibits the longest upwelling-induced mixing, while influence of
upwelling events on the Lena River discharge is the smallest among the considered rivers. However,
the annual duration of upwelling events near the Kolyma Delta showed a strong negative trend
decreasing by 25% from 1979 to 2019 (Figure 12a). The same characteristic for the Lena and Indigirka
regions, in contrast, was increasing, albeit less dramatically than at the Kolyma region. The observed
trends could be caused by the influence of the ongoing climate change on atmospheric circulation in
the Arctic [100–102] and, therefore, on duration of upwelling winds in the study regions.

The annual duration of upwelling events showed substantial inter-annual variability caused by
variability of local atmospheric circulation (Figure 12a). It varied from 2–3 days at all study regions to
11 days near the Lena Delta in 2011, 18 days near the Indigirka Delta in 1981 and 1982, and 26 days
near the Kolyma Delta in 1990. Therefore, during certain years the wind-induced upwelling events
and the related periods of intense mixing of the Lena, Indigirka, and Kolyma plumes account for up to
12%, 19%, and 28% of ice-free periods, respectively. As a result, the total duration of the upwelling
periods, which is negligible on an annual scale, is much more significant during certain weeks and
months. In particular, the longest registered durations of upwelling events during individual months
are equal to 8, 10, and 14 days for the Lena, Indigirka, and Kolyma regions, respectively, i.e., upwelling
events occurred during quarter to half of these months.

The diversity of duration of upwelling events in different years and months is illustrated by
their durations in July in 1979–2019 (Figure 12b) and by uneven distributions of upwelling periods
during the years with their maximal total duration, namely, 2011 for the Lena Delta region, 1981 for the
Indigirka Delta region, and 1990 for the Kolyma Delta region (Figure 12c). In order to quantify the
inter-annual variability of influence of upwelling events on mixing of freshwater discharge with sea
water we analyzed the inter-annual variability of their durations in July (Figure 12b). Freshwater runoff
from the Lena, Indigirka, and Kolyma rivers during the end of June and July provides approximately
60% of their total annual discharge and induces melting of sea ice at the areas adjacent to the river
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deltas [17]. As a result, long-term upwelling events in July can significantly increase mixing of the
river plumes with the subjacent saline sea and strongly affect the structure and dynamics of the related
river plumes. Indeed, in certain years upwelling events occurred over 5–6 days in July near the Lena
Delta, 7–10 days near the Indigirka Delta, and 10–13 days near the Kolyma Delta. On the contrary,
upwelling events and, therefore, upwelling-induced mixing, were completely absent in July during
certain years for all three regions. In particular, upwelling events occurred during 0 or 1 day in July
near the Lena Delta in 18 out of 41 considered years. As a result, the Lena discharge exhibited negligible
upwelling-induced mixing near the delta in July in approximately half of the years during 1979–2019.
The reconstructed durations of upwelling events in July showed similar slight negative trends in
1979–2019 at all three considered regions.

5. Conclusions

Satellite observations reveal upwelling events that regularly occur during ice-free seasons in
the areas adjacent to the Lena, Indigirka, and Kolyma deltas in the Laptev and East-Siberian seas.
These areas are manifested by decreased temperature and increased turbidity, as compared to the
surrounding sea. Based on meteorological and satellite data, we estimated temporal characteristics
of formation and dissipation of these upwelling events in response to variability of wind forcing.
Surface manifestations of upwelling events occur after less than 1 day of strong upwelling winds
at all three considered regions. Upwelling near the Lena Delta is fully developed and occupied an
area of 15,000–17,000 km2 after 4–5 days of strong upwelling-favorable southeasterly winds. Fully
developed upwelling events near the Indigirka and Kolyma deltas are formed after 3–4 days of strong
upwelling-favorable easterly and southeasterly winds; their areas are 5000–6000 and 8000–9000 km2,
respectively. Upwelling areas remain stable until secession of upwelling wind forcing and then steadily
dissipate after several days of non-upwelling winds.

The importance of these upwelling events consists in their location near the large river deltas
which provide the majority of freshwater discharge to the Laptev (70%) and East-Siberian (75%) seas.
Upwelling events induce very intense advection and vertical mixing of freshened surface layer with
subjacent saline sea near freshwater sources, as compared to mixing caused by wind-induced shear
stress. As a result, the Lena, Indigirka, and Kolyma river plumes are significantly transformed and
diluted near their sources during upwelling-favorable wind forcing periods. Frequency and duration
of upwelling events govern the structure and dynamical characteristics of the large river plumes, which
spread from the river deltas over the upwelling areas to the open sea. Therefore, despite their relatively
small areas, upwellings can strongly influence transport and transformation of freshwater discharge
over wide areas in the Laptev and East-Siberian seas.

Using NCEP/CFSR/CFSv2 wind reanalysis we reconstructed periods of upwelling events during
ice-free seasons at the study areas in 1979–2019. Total annual duration of upwelling events shows
large inter-annual variability from negligible (2–3 days) to significant, namely, 12% duration of ice-free
periods near the Lena Delta, 19% for the Indigirka Delta, and 28% for the Kolyma Delta. Moreover,
upwelling events are unevenly distributed within individual years. In particular, they can last for
a quarter to a half of certain months followed by long periods of non-upwelling wind forcing. The
most frequent upwelling events among the considered areas are observed near the Kolyma Delta,
followed by the Indigirka Delta, and the Lena Delta. As a result, the Kolyma River discharge exhibits
the strongest upwelling-induced mixing, however, with strong negative trend registered in 1979–2019.
Durations of upwelling events near the Lena and Indigirka deltas, on the other hand, have slight
positive trends that decrease their difference with duration of upwelling events near the Kolyma Delta.
The revealed trends are presumably caused by long-term changes in atmospheric circulation in the
study region induced by the ongoing climate change in the Arctic. Climate change also causes increase
of river discharge and temperature of river water, as well as decrease of duration of ice coverage in the
coastal areas. Influence of these complex processes on frequency and duration of upwelling events and
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intensity of upwelling-induced mixing near the Lena, Indigirka, and Kolyma deltas requires specific
research and is a subject of future work.

Coastal upwelling events reported in this study can strongly affect salinity and stratification of
the surface layer during ice-free periods and, therefore, influence variability of ice coverage in the
Laptev and East-Siberian seas. In particular, enhanced duration and intensity of upwelling-induced
mixing activity near the Lena, Indigirka, and Kolyma deltas can increase salinity of the related river
plumes and, therefore, decelerate ice formation in the Laptev and East-Siberian seas, as was revealed
for the other Arctic seas [103–105]. The considered upwelling events can also strongly influence
primary productivity and local food webs. Upwelling causes upward penetration of nutrient-rich
sea water [35,43–47,106], which is especially important for nutrient-poor areas at the shelf of the
Laptev and East-Siberian seas where vertical convection is inhibited by strong stratification formed
by large continental runoff. In particular, elevated concentrations of nitrates and increased biological
productivity were reported in the vicinity of the upwelling area located near the Lena Delta shortly
after an upwelling event [32]. Therefore, the results obtained in this study hold promise to provide
improved assessments of the fate of freshwater discharge in the Laptev and East-Siberian seas, as well
as its impact on local physical, biological, and geochemical processes. However, a detailed study of the
influence of wind-driven coastal upwelling events on the structure and dynamics of the freshened
surface layers in these seas requires specific in situ measurements during upwelling and non-upwelling
events, as well as numerical modelling, and is within the scope of future work.
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Abstract: Satellite-Derived Bathymetry (SDB) has significant potential to enhance our knowledge of
Earth’s coastal regions. However, SDB still has limitations when applied to the turbid, but optically
shallow, nearshore regions that encompass large areas of the world’s coastal zone. Turbid water
produces false shoaling in the imagery, constraining SDB for its routine application. This paper
provides a framework that enables us to derive valid SDB over moderately turbid environments by
using the high revisit time (5-day) of the Sentinel-2A/B twin mission from the Copernicus programme.
The proposed methodology incorporates a robust atmospheric correction, a multi-scene compositing
method to reduce the impact of turbidity, and a switching model to improve mapping in shallow water.
Two study sites in United States are explored due to their varying water transparency conditions. Our
results show that the approach yields accurate SDB, with median errors of under 0.5 m for depths
0–13 m when validated with lidar surveys, errors that favorably compare to uses of SDB in clear water.
The approach allows for the semi-automated creation of bathymetric maps at 10 m spatial resolution,
with manual intervention potentially limited only to the calibration to the absolute SDB. It also returns
turbidity data to indicate areas that may still have residual shoaling bias. Because minimal in-situ
information is required, this computationally-efficient technique has the potential for automated
implementation, allowing rapid and repeated application in more environments than most existing
methods, thereby helping with a range of issues in coastal research, management, and navigation.

Keywords: satellite-derived bathymetry; Copernicus programme; multi-temporal approach;
atmospheric correction; lidar; turbidity

1. Introduction

Seafloor mapping plays a pivotal role in using and managing the world’s oceans in a way that is
in accordance with the United Nations Sustainable Development Goal 14 (“Life below water - conserve
and sustainably use the oceans, seas and marine resources”) that aims to achieve a better and more
sustainable future by 2030 [1]. While bathymetric information is key to the world’s management
of coastal environments, we still have sparse, outdated, and spatially limited coverage. According
to the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic
Commission (IOC), the global bathymetry baseline available to date is surprisingly incomplete: an
estimated 70% of the world’s coastal seafloor remains unmapped, unobserved or inadequately surveyed
to modern standards, and is, therefore, poorly understood [2–5]. The coastal shallow water zone
can be a challenging environment in which to acquire water depth information using conventional
methods, such as the vessel-based multi-beam sonar or the active non-imaging airborne lidar. These
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surveys are constrained by access, logistics and extremely high deployment cost. It is estimated that
multibeam echo sounding (at best resolution) would take more than 200 ship-years and billions of
dollars to complete a swath survey of the seafloor [6]. The problem is substantial; consider that some
50% of the USA territories—as an example—were surveyed by using old hydrographic methods that
do not meet today’s requirement [7]. In the opinion of the IHO, sea bottom information derived from
satellite imagery, widely known as Satellite-Derived-Bathymetry (SDB), should be considered as a
potential technology to improve the collection, timeliness, quality, and availability of bathymetric data
worldwide. In this regard, IHO has started to evaluate SDB strategies and the IHO S-44 standards
are currently under revision. Furthermore, SDB offers a low-cost and non-intrusive suitable solution
because no mobilization is required, removing health and safety risk, and any environmental impact.

Approaches to SDB mapping vary on aim and rationale, spatial scale, and source of satellite
system information. The concept is based on detection of sunlight reflected from the seafloor, and
algorithms that use spectral information from this light to calculate water column depth. Several
reviews of the methodologies are available in the literature [8,9]. Although the acquisition of imagery is
not a problem today, image processing is more complex than data collected from conventional surveys,
as it requires special treatment for a correction of the atmosphere, the air-water interface, and especially
the local water characteristics [10]. Whereas SDB has been typically applied over environments with
clear water (particularly coral reefs), its broader application has been constrained by water clarity, the
most challenging constraint to routine satellite seabed mapping [8]. Even in optically shallow areas,
where bottom features are visually detectable in imagery, a plume of suspended matter in the water has
a significant and varying impact on the precision of SDB. There have been previous studies inspecting
water quality issues on SDB [11–15]. Recent studies have already indicated the potential of multi-scene
approaches in order to eliminate noise over clear waters [16–20]. The impact of turbidity on SDB is
not random and often appears as a false shoal [21,22]. One solution created a global data set at 1 km
for coral reef detection by statistical analysis of the entire Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) ocean color data set [23,24]. However, reliable methodologies for evaluating or correcting
the impact of turbidity on SDB are rare [21,22].

Likewise, given the large spatial extent and inaccessibility of many coastal regions, there is a
pressing need for an Earth Observation program at appropriate spatial, spectral and temporal scales to
fulfil the objective of operational cost-effective coastal monitoring [25,26]. The European Commission
(EC) and the European Space Agency (ESA) have recently identified the need for improved Digital
Elevation Models (DEMs) and bathymetry in order to develop the Copernicus-mission based coastal
monitoring programme [27]. The provision of these services is based on the processing of environmental
data collected from satellites called the Sentinels. As such, the potential to generate continuous
bathymetry from the Sentinel Constellation has become a topic of increased interest worldwide, with
an urgent demand of addressing both challenges and opportunities for implementing SDB within an
operational production process [3–5]. During the first International Hydrographic Remote Sensing
Workshop organized by the Canadian Hydrographic Service and the IHO in collaboration with the
Service Hydrographique et Océanographique de la Marine (SHOM) and the National Oceanic and
Atmospheric Administration (NOAA) in Ottawa, Canada, in September 2018 [28], the acceleration of
SDB was identified as a core action in hydrography. Considering the advantages of SDB technology
for aiding the blue economy, the scientific community, as well as the market and industry sectors,
further research must be undertaken to implement strategies, especially in the challenging turbid
environments, for adopting SDB as a future global product.

In the present study, we develop a framework for using satellite data to retrieve valid bathymetry
in shallow water with moderate and varying turbidity. This approach uses the capabilities of the
Sentinel-2 Multi Spectral Imagers (MSI) of the Copernicus programme, which include 10 m spatial
resolution in the visible bands, five-day routine revisit, and freely available data. In this context,
researchers have hypothesized that a higher temporal resolution would allow the development of
guidelines for repeatable shallow water mapping approaches at regional to global scales [9,10,22].
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This paper proposes the first multiple-image technique with Sentinel-2A and Sentinel-2B that allows
semi-automated SDB estimation in areas of variable turbidity. Although some recent works have
already obtained accurate results with Sentinel-2 and similar satellites, they were implemented in
regions with transparent waters [18–20,29,30]. We focus on application of the log ratio model [31]
because it was designed to support routine mapping in areas with extremely limited calibration data.
Two different environments with varying water transparency conditions are examined and the main
advantages and challenges of this new method are discussed.

2. Materials and Methods

2.1. Study Areas

The study areas were Saint Joseph Bay, Florida (29.75◦ N, 85.35◦ W, Figure 1a) and Cape Lookout,
North Carolina (34.62◦ N, 76.54◦ W) (Figure 1b). Cape Lookout National Seashore preserves a
90-km-long section of the Southern Outer Banks of North Carolina with three undeveloped barrier
islands. St. Joseph Bay is located in Gulf County between Apalachicola and Panama City. The north
end of the bay is a relatively narrow opening to the Gulf of Mexico, and is approximately 24 km-long
north to south and 10 km-wide at its widest point. The waters of St. Joseph Bay contain the St. Joseph
Bay State Buffer Preserve and the St. Joseph Bay Aquatic Preserve.

Figure 1. Location of the study regions in the east coast of United States. (a) RGB composite of Saint
Joseph Bay in Florida from Sentinel-2A tile T16RFT (February 24, 2017), and (b) RGB composite of Cape
Lookout in North Carolina from Sentinel-2B tile T18SUD (September 28, 2017). The rectangles indicate
the Region of Interest (ROI) for bathymetric mapping.

These areas were selected because they have variable turbidity [32–35] and the availability of recent
airborne lidar bathymetry (ALB) data for final validation and error analysis. In addition, the National
Oceanic and Atmospheric Administration (NOAA) was interested in evaluating hurricane induced
depth changes: after Hurricane Matthew (October 2016) in Cape Lookout and before Hurricane Irma
(September 2017) in Joseph Bay. These study sites also represent complex microtidal environments
with variable bottom types.

2.2. Lidar Data for Validation

NOAA’s National Geodetic Survey (NGS) collected Airborne Lidar Bathymetry (hereinafter ALB)
for Cape Lookout in December 2016 and for Joseph Bay in November 2016. These point cloud data sets
were both collected using the Riegl VQ-880-G sensor, which provided high-resolution bathymetric data
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in nearshore waters. The Riegl VQ-880-G used a green laser that operates in a circular scan pattern,
which could penetrate shallow clear water to the seafloor. The high-density point samples were
combined with GPS and other positional data to create precise 3D topobathy elevation models. NGS
used coastal elevation data to map the mean high-water shoreline, which is considered the nation’s
official shoreline. These high-resolution observations at 1 m were selected as reference data set in
the two study sites and compared to SDB products. The Mean Lower Low Water (MLLW), standard
chart datum was used as the reference. The range of depths within this data set is 0-13 m. ALB data
referenced to the MLLW was gridded at the Sentinel-2 resolution (10 m) via arithmetic averaging.

2.3. Sentinel-2A/B Imagery

Sentinel-2A and 2B twin polar-orbiting satellites, developed by the ESA to meet the operational
needs of the Copernicus programme, were used. Both Multispectral Instruments (MSI) on-board are
now operational: Sentinel-2A was launched on 23 June 2015 and Sentinel-2B followed on 7 March
2017. The radiometric, spectral and spatial characteristics of the bands used in this study are specified
in the User Handbook [36]. Sentinel-2 Level-1C products were downloaded from the Sentinel’s
Scientific Data Hub [37] and images of zone 18 in Cape Lookout (sub-tile SUD) and of zone 16 in
Joseph Bay (sub-tile RFT) were used. A temporal examination provided Level-1C Sentinel-2 images
were typically geo-located within two pixels of each other (20 m) which is within the stated quality
requirements for absolute geo-location [38]. The study period was selected based on lidar collection
and the passage of hurricanes given that intense resuspension and currents may have modified shallow
seabed morphology, confounding comparison with the lidar survey. For Cape Lookout, a one-year
data series was evaluated from January to December 2017. A total number of 59 Sentinel-2A and 2B
scenes were available, but only 15 optimal final images (25%) were further processed due to intense
cloud coverage and sunglint effects (Table 1). In St. Joseph Bay, only seven usable Sentinel-2A scenes
were available owing to cloud cover and surface reflectance (glint) for a study period of December
2016–March 2017. St. Joseph Bay is on the east side of the swath, as a result, surface glint was severe
during spring and summer. Furthermore, no images were considered after Hurricane Irma (September
2017). During that period, only the Sentinel-2A satellite was operational, with a less than 10-day revisit
over the Florida zone. Matlab R.2016a software and QGIS (version 3.6.0) were used for visualization
and processing of satellite data.

Table 1. List of Sentinel-2A and 2B images used in this study for the multi-temporal approach in Cape
Lookout (15 scenes) and in Saint Joseph Bay (7 scenes). The percentage of pixels from each scene
included in the final pSDBred and pSDBgreen (Equations (1) and (2), Section 2.5) after the multi-scene
approach is indicated. The pixels evaluated (N) were only pixels with corresponding lidar data for
final validation: N = 271635 in Cape Lookout and N = 678517 in Joseph Bay.

Number Date Sensor pSDBred (%) pSDBgreen (%)

1 01/23/2017 A 3.1 16.5
2 02/12/2017 A 9.46 0.5
3 02/25/2017 A 8.5 37.33
4 03/04/2017 A 5.28 25
5 03/17/2017 A 14.7 16.21
6 05/03/2017 A 2.9 0.045
7 07/22/2017 A 0.34 0.006
8 09/13/2017 A 5.35 0.005
9 09/20/2017 A 20.17 0.009

10 09/28/2017 B 5.1 0
11 10/18/2017 B 0.21 0.006
12 10/30/2017 A 0.08 0.029
13 11/17/2017 B 2.04 0.12
14 11/27/2017 B 22.7 4
15 12/14/2017 B 0.07 0.24
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Table 1. Cont.

Number Date Sensor pSDBred (%) pSDBgreen (%)

1 12/13/2016 A 4.9 42.5
2 12/16/2016 A 21.8 0.17
3 12/23/2016 A 32.5 22.9
4 01/05/2017 A 17.58 1.9
5 02/14/2017 A 2.25 0.5
6 02/24/2017 A 0.87 2.03
7 03/16/2017 A 20.1 30

2.4. Atmospheric Correction

Sentinel-2 images were processed to Level-2A (L2A) with the ACOLITE processor developed by
the Royal Belgian Institute of Natural Sciences (RBINS), which supports free processing, specifically
for aquatic applications, of both Landsat-8 and Sentinel-2 [39–42]. ACOLITE products corresponded to
Remote Sensing Reflectance (Rrs, 1/sr) in all visible and Near-Infrared (NIR) bands and chlorophyll
concentration by the OC3 algorithm (Chl, mg/m3) resampled to 10 m pixel size. We selected a
combination of the NIR (865 nm) and Short Wave Infrared (SWIR) (1600 nm) bands in ACOLITE for
the aerosol correction with a user defined epsilon value (maritime aerosol=1). This strategy has been
shown to significantly improve the quality of the products by minimizing the influence of NIR/SWIR
instrument noise [43]. A spatial filter (median filter 3x3) was conducted on the bands in order to
remove some noise and inter-pixel variability. Recent experience with Sentinel-2 imagery indicated
spatial filtering enhanced bathymetric products [10,22,44]. In this investigation, the spectral red-edge
band at 704 nm (Rrs704) was used as a proxy for turbidity over optically shallow waters [22]. Several
researchers have already indicated red-edge bands were appropriate for turbidity or suspended solids
monitoring in optically shallow regions [43,45].

2.5. Satellite-Derived Bathymetry Model

In this study, the ratio model of log-transformed bands having different water absorption was
applied (Equations (1) and (2)). The model was designed to support routine mapping in clear waters
with extremely limited calibration data [31]. The model uses the Remote Sensing Reflectance (Rrs, units
of sr−1) of the blue (490 nm), green (560 nm) and red (664 nm) bands for each satellite image corrected for
atmospheric effects (Equations (1) and (2)), and the log-transform addresses the exponential decrease
in light with depth [31]. In this case, we used the ratio of blue (λi) to either green or red (λ j) bands to
produce the SDB (hereinafter called SDBgreen and SDBred, respectively). SDBgreen performs better in
deep areas, and SDBred performs better in shallow water [22–24,44]:

SDB = m1pSDB−m0 (1)

where,

pSDB =
ln(n πRrs(λi))

ln
(
n πRrs

(
λ j
)) (2)

pSDB is the relative or “pseudo” depth from satellite (dimensionless), SDB is the satellite-derived
depth (meters), Rrs is the Remote Sensing Reflectance, m1 and m0 are tunable constants to linearly
transform the model results to actual depth, π has units of sr, and n=1000 is a fixed constant to assure
that both logarithms will be positive under any condition and that a residual non-linearity in the ratio
is removed from depths that are retrievable from satellite [31].

2.6. Multi-Scene Approach

Thanks to the 5-day revisit of the Sentinel-2 twin satellites, the mission can offer imagery that
would identify transient turbidity features that produce false shoals. Accordingly, in this study, we used
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a multi-scene approach (see Figure 2). The pSDBgreen and pSDBred were determined, per Equation
(2), for all available scenes (Table 1). It was reasonable to assume that the contribution from the
temporal variability in water-column turbidity to SDB models was greater than the temporal variability
of the seafloor [46]. As turbidity produces a false shoaling of depth, all scenes were compared to
identify the maximum pSDB at each pixel from all the scenes, and two resultant composite images
were created: one of the maximum pSDBred, and one of the maximum pSDBgreen, with assumption
being maximum pSDB values would most likely be without any shoal effect. Composite images of
Rrs704 and chlorophyll from the OC3 algorithm were also returned, where the turbidity value at each
pixel came from the same scene as the depth for that pixel. Both Rrs704 and chl were surrogates for
addressing the false shallowing, not intended to describe actual turbidity or chl concentration.

Figure 2. A schematic workflow of processing steps implemented for mapping Satellite-Derived
Bathymetry with temporal imagery of Sentinel-2A and 2B satellites in Cape Lookout and Saint Joseph
Bay: (1) Pre-processing, (2) Multi-scene SDB approach, (3) Switching model, and Submerged aquatic
vegetation (SAV) and floating aquatic vegetation (FAV) masking (only in Joseph Bay).
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2.7. Vertical Referencing with Chart Soundings

After generating the final pSDBred and pSDBgreen maps, the parameters m1 and m0 (Equation (1))
were tuned by linear regression with about ten control points from charts in each of the study regions
and for pSDBred and pSDBgreen separately. Depth measurements (also known, as soundings) from
NOAA charts [47] were used to select the control points over Cape Lookout (11545) and Joseph Bay
(11389). Using chart points keeps the calibration independent of the lidar used for validation, and
corresponds to methods that would be utilized in typical application [31]. The points were chosen as
areas of uniform depth that were less likely to have changed over time (regions away from inlets and
sand waves). The selected calibration points (pixels) for each of the four composite images were found
to originate in different input scenes (3 and 4 different scenes respectively for SDBred and SDBgreen
for St- Joseph Bay, and 5 for both Cape Lookout composites). The vertical calibration inherently
corrects for the reference data by shifting the depths to the tidal datum, which in the case of USA is the
MLLW, through the tuning of the coefficient m0. Sea level depends on satellite observation time; in
this case, both regions are microtidal environments. For this approach, our hypothesis was that the
influence of the tide for a pSDB relative to each scene is small compared to the influence of the false
shallowing generated by turbidity from multiple satellite images. The validation of this hypothesis
and the improvement of accuracy by compensating for tide effects in meso and macrotidal regimes are
subjects for future study.

In addition, to test the robustness of the multi-scene approach and the final SDB result in terms of
a common calibration for remote unsurveyed locations, we interchanged the coefficients for pSDBred
and pSDBgreen between the two regions, thus using the coefficients of Cape Lookout in St. Joseph Bay,
and vice versa.

2.8. Switching Model

The final step for a corrected bathymetry mapping (SDB) corresponded to a switching model
implementation between SDBred and SDBgreen due to the sensitivity of each model: while SDBred
performs better over shallow regions [48], SDBgreen performs better over deeper regions [21,31,44,49].
Moreover, SDBgreen frequently yields severe overestimation in shallow regions [22,44,50], especially
with dense seagrass, highly undesirable for navigational purposes. The switch between models used
the conditions detailed below:

SDBred < 2 m, SDB=SDBred
SDBred > 2 m and SDBgreen > 3.5 m, SDB=SDBgreen
SDBred >= 2 m and SDBgreen <= 3.5 m, SDB=SDBweighted

SDBweighted was determined by a simple linear weighting calculation to account for a smooth
transition (Equation (3)):

SDB = α ∗ SDBred + β ∗ SDBgreen (3)

where the depth weighting (for 3.5 m and 2 m) is determined by:

α =
3.5− SDBred

3.5− 2
and β = 1− α

The final SDB map was generated in each region then compared to the lidar surveys for validation.
Assessment of the discrepancy between SDB and lidar used the mean difference as the bias metric, the
Median Absolute Error (MedAE) providing the typical total error, and the interquartile range (IQR) as
a measure of statistical dispersion. These are robust metrics that do not require an assumption of a
Gaussian error distribution.
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2.9. Submerged and Floating Aquatic Vegetation Masking

An additional step was carried out in St. Joseph Bay due to the existence of floating aquatic
vegetation (FAV) and shallowed submerged aquatic vegetation (SAV). The complex coastal waters
of Saint Joseph Bay are characterized by several benthic types, including high density submerged
and floating aquatic vegetation at depths shallower than 2 m [51]. In order to correct this issue, we
established a masking strategy for the FAV and SAV area. The MCI (Maximum Chlorophyll Index)
first designed for the MEdium Resolution Imaging Spectrometer (MERIS), measuring the radiance
peak at the red-edge band (709 nm) in water leaving radiance, indicates the presence of a high surface
concentration of chlorophyll against a scattering background [52]. This index was formed with three
MERIS narrow channels centered near 681, 709 and 754 nm used to define a linear baseline. The MCI
has been used to map floating vegetation or benthic [53,54]. In this study, given that Sentinel-2 has
three bands (665, 704, and 740 nm) similar to the MERIS bands used for MCI, we utilized Equation (4).

MCI = Rrs704−Rrs665 + (Rrs665−Rrs740) ∗ (Rrs704−Rrs665)
(Rrs740−Rrs665)

(4)

FAV and SAV areas were established for the pixels with positive values of MCI (MCI>0). This
MCI mask was applied to the final SDB map after the multi-scene approach and switching model in
St. Joseph Bay in order to remove possible overestimation for shallow depths where vegetation was
present. Therefore, the MCI was not used to map seagrass, but to locate and remove an error source
with SDB.

3. Results

3.1. Cape Lookout in North Carolina

Prior to implementing the multi-temporal approach with Sentinel-2A/B images in Cape Lookout
(Figure 1b), we estimated bathymetry for several single scenes in order to evaluate the impact of
varying turbidity. Figure 3 illustrates two different examples of SDBgreen model for Sentinel-2A on
23 January and 30 October 2017. The heterogeneous impact of water quality on satellite bathymetry is
evident in the comparison between Airborne Lidar Bathymetry (hereinafter ALB) and satellite data
(Figure 3a,b) and the residual errors (Figure 3c,d). The scatterplots reveal large spread and errors,
particularly on 30 October, where an acute underestimation or false shoaling (Figure 3g) and large
Median Absolute Error (MedAE = 2.95 m) resulted from the higher turbidity levels that are shown in
the Remote Sensing Reflectance at 704 nm (Rrs704), a proxy for turbidity (Figure 3h). These outcomes
demonstrated the impact of variable water quality conditions on the accuracy of the predicted SDB.
Although the 23 January scene had lower turbidity overall—and might be selected as the optimal scene
for analysis—there are still areas of elevated turbidity evident offshore (see the lower right of 3e and
3f). Over complex turbid environments such as Cape Lookout [32,34], using only a single scene for
SDB has definite limitations.
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Figure 3. Comparison between lidar (ALB) and Sentinel-2 bathymetry (SDBgreen) for two individual
scenes from the Cape Lookout, NC study area. (a) scatter frequency plots for 23 January and (b)
30 October 2017, the color bars indicate pixel frequency at the point; residual errors (SDBgreen—ALB)
for (c) 23 January (standard deviation = 2.07 m, percentile 5%/95% = −4.06 m/2.93 m), and (d) 30 October
(standard deviation = 3.17 m, percentile 5%/95% = −6.88 m/3.16 m), the bins of the histograms
correspond to the number of pixels; maps of SDBgreen for (e) 23 January and (g) 30 October; and
maps of the turbidity proxy used in this study, Remote Sensing Reflectance at 704 nm (Rrs704), for
(f) 23 January and (h) 30 October. Gray color represents land mask and white color at the left is the
limit of Sentinel-2 tile for each date.

The compositing selected the pixels of the multiple scenes that were slightly affected by turbidity.
Compositing multiple scenes to identify the pixels in order to correct for water turbidity substantially
improved the accuracy, as can be observed in Figures 4 and 5. The assumption of the approach is based
on the submarine terrain remaining slightly unchanged during the study period (1 year) to accumulate a
time series of scenes to use in the compositing, while turbidity (and noise: waves, cloud shadows, ships,
and bubbles) affect the accuracy of bathymetric inversion. Using the multi-scene pixel compositing
approach with the sixteen images (Table 1), and then applying the switching model between SDBred
and SDBgreen, gave better performance from shallow to deeper regions. The composite solution
scheme efficiently described the nearshore depth with minimum scatter and MedAE = 0.41 m over the
range of ALB data (up to 12.5 m) compared to the individual scenes (Figure 4a,b for composite, and
Figure 4c,d for best single scene).
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Figure 4. Comparison between lidar (ALB) and final SDB in Cape Lookout. (a) Scatter frequency
of the final SDB after the multi-scene approach and switching model, the color bars indicate pixel
frequency, (b) Associated histogram of residual errors with standard deviation=1.1m and percentile
5%/95%=-2.36m/0.93m, where the total number of pixels is N = 271635, divided in SDBred for depths
<2 m with N = 148710 (54.7%), SDBweighted for depths 2-3.5 m with N = 30115 (11.1%), and SDBgreen
for depths >3.5 m with N = 92810 (34.2%); (c), scatter frequency of the SDBgreen compared to ALB
for the clearest scene acquired on 27 November 2017 (N = 227438), and (f) Associated histogram of
residual errors and (d) with standard deviation=1.29m and percentile 5%/95%=-2.3m/1.89m, the bins of
the histograms correspond to the number of pixels.

Figure 5. Satellite maps in Cape Lookout region. (a) Sentinel-2 RGB image composite, (b) Final SDB
after the multi-scene approach and the switching model, (c) Lidar (ALB) data collected by NOAA, (d)
Remote sensing reflectance at 704 nm (Rrs704) associated with the final SDB, segmentation of the final
SDB with the switching model: (e) SDBred for depths <2 m and SDBweighted for depths 2–3.5 m, and
(f) SDBgreen for depths >3.5 m. Data in the depth maps is presented as color-coded depths ranging
from 0 to 18 m. Gray color represents land mask.
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In addition, the switching strategy reduced error over using only SDBred (Figure 6a,c) or SDBgreen
(Figure 6b,d). Recently, the switching algorithm has been suggested to be an opportune method for
mapping regions from very shallow to deeper waters [22,44]. The quality of the combined models
is shown in the histogram of the residual errors, which has a symmetric and narrow distribution
(Figure 4b). The vertical calibration results are presented in Figure 7. Compared to the current standard
approaches focused on the selection of the optimal scenes; in this case, the clearest image was acquired
on 27 November 2017, compositing reduced the mean error by 50% and the IQR from 1.6 m to 0.9 m
(Figure 4a,b vs. Figure 4c,d).

Figure 6. Validation of lidar (ALB) against final (a) SDBred (N = 269455) and (b) SDBgreen (N = 253220)
after the multi-scene approach in Cape Lookout, North Carolina (NC); Validation of lidar against final
(c) SDBred (N = 544793) and (d) final SDBgreen (N = 674659) after the multi-scene approach in Saint
Joseph Bay, Florida (FL). Blue dotted lines indicate 1:1 line, the color bars indicate pixel frequency. The
overestimation of SDBgreen over shallow areas (<2 m) is observed in both sites.
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Figure 7. Vertical calibration for SDB models. (a) SDBred in Cape Lookout (orange, N = 11) and St.
Joseph Bay (black, N = 10), (b) SDBgreen in Cape Lookout (orange, N = 9) and St. Joseph Bay (black,
N = 12), where x is the pSDBred or pSDBgreen, y is the depth of soundings (chart), and R2 corresponds
to the coefficient of determination as a measurement of precision.

The method was evaluated by taking into account the selection of images, confirming that pixels
from multiple scenes with high turbidity conditions (Rrs704) and chlorophyll (chl) were minimally
incorporated into the model (<1%). Table 1 detailed the percentage of each scene incorporated into
the final model. Turbidity (defined as either Rrs704 or chl) produces a false shoaling because the
relative or “pseudo” depth pSDB (before the vertical calibration) decreases as turbidity increases (see
an example for Cape Lookout in Figure 8). There is a relationship between the increase in the two water
quality parameters and the decrease in relative depths for both models, pSDBred and pSDBgreen,
thus confirming that intense false shoaling patterns were associated with highly turbid water. Similar
results have been found in other sites along the Florida coastal waters using imagery from Sentinel-2A
and Sentinel-3A [22]. Figure 5d represents the turbidity proxy (Rrs704) associated with the final SDB
map, providing an indication of areas where residual turbidity may exhibit potential residual biases.
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Figure 8. Temporal evaluation of the turbidity proxy Remote sensing reflectance at 704 nm (Rrs704) and
chlorophyll (CHL OC3) against pSDBred and pSDBgreen, respectively. (a) pSDBred for lidar depths of
3.5 m (N = 14), (b) 2.5 m (N = 12), and (c) 2 m (N = 14), pSDBgreen for lidar depths of (d) 12 m (N = 13),
(e) 8 m (N = 14), (f) 6 m (N = 15). The data corresponds to Cape Lookout and the study period from
January to December 2017 (Table 1). The red and green circles indicate examples of the maximum
pSDBred and pSDBgreen, respectively, selected for the multi-scene approach.

The method also exhibited some advantages over the in-situ data. The lidar survey was limited
by water clarity as well, and some water areas nearshore were not retrieved (Figure 5c). In contrast, by
using multiple dates of imagery, features could be identified by the composited satellite data, along the
entire coastal fringe and within the inner banks (SDB on Figure 5b compared to ALB on Figure 5c). We
also examined the switching model used in this study, so the final SDB map (Figure 5b) was split into
the SDBred and SDBweighted (0-3.5 m, Figure 5e), and the SDBgreen (>3.5 m, Figure 5f). SDBred and
SDBweighted mapped the shallow regions within the banks and barrier islands, while the SDBgreen
mapped the offshore and the deep channels in the banks. In offshore areas where the bottom was not
visible, the attributed depth was removed with a cut-off depth of 17 m. These results were support
by visual comparison with the RGB composite (Figure 5a) and standard chart soundings collected by
the National Oceanic and Atmospheric Administration [47], given that there was not high-resolution
information available for validation of those deeper water areas.

3.2. Saint Joseph Bay in Florida

Previous studies have characterized the Saint Joseph Bay and the adjacent area as a moderately
turbid region under influence of the Apalachicola Bay turbid waters [33,35]. The region also has areas
of dense shallow aquatic vegetation [51], so a single scene was used to evaluate model performance
over these areas. A preliminary inspection of a clear image acquired on 14 February 2017 for SDBred
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(Figure 9e) and SDBgreen (Figure 9b) demonstrated the impact of FAV and SAV, showing overestimation
at depths <1 m over the dense marine vegetation areas for both models. The overestimate was about
1 m for SDB red and severe at up to 6 m for SDBgreen. Inspection of other individual scenes also
presented overall positive bias for depths <1 m, owing to an apparent higher absorption of the green
band (560 nm) for SDBgreen, whereas lower relative absorption occurred over vegetation in the red
band (664 nm) for SDBred. This was apparently due to the dark signatures of the floating aquatic
vegetation (FAV) and submerged aquatic vegetation (SAV) that may cause the overestimation of depth
by this model or other SDB approaches.

Figure 9. Saint Joseph Bay region. (a) Mapped distributions of red algae, submerged aquatic vegetation
(SAV), and floating aquatic vegetation (FAV) [51], comparison of lidar (ALB) and SDBgreen (b) without
MCI masking (N = 604736) and (c) with MCI masking (N = 323802), (d) MCI map used for the masking
procedure (MCI>0), comparison of lidar (ALB) and SDBred (e) without MCI masking (N = 571199) and
(f) with MCI masking (N = 140947), the color bars indicate pixel frequency. The Sentinel-2A scene was
acquired on 14 February 2017.

In order to correct the overestimation issue, a masking procedure to locate and remove an
error source based on a common algae index—the Maximum Chlorophyll Index MCI [53,54]—was
developed. In [54], it is shown that slightly submerged vegetation will cause an MCI (false positive
against phytoplankton). This approach allowed us to use the satellite without requiring any additional
in-situ information. Pixels with positive MCI values (MCI>0) were identified as vegetation (Figure 5d)
and then masked out. The scatterplots of ALB against SDBred and SDBgreen after masking vegetation
(Figure 9c,f, respectively) show that the overestimation was eliminated, thus MCI can be applied to
remove the overestimation. Very shallow SDBred pixels with good accuracy (lying on the 1:1 line) were
also eliminated, because MCI does register on bright sand in very shallow water (owing to the signal
from Rrs704 in <1 m). As a conservative solution, the FAV and SAV masking procedure would be
appropriate owing to the severe consequences of overestimating very shallow bathymetry, as identified
by the Chart Standards Groups (CSG) at NOAA’s Office of Coast Survey/Marine Chart Division.

The same multi-scene approach and switching model as used for Cape Lookout was carried out
in this region, although only seven cloud-free images were available during the study period (Table 1).

350



Remote Sens. 2020, 12, 451

In this case, we tested the additional MCI masking to remove issues associated with FAV and SAV.
The validation against lidar data confirmed the high accuracy obtained for the entire strategy with
(Figure 10a) or without (Figure 10c) MCI masking. There was low scatter (MedAE=0.3 m) for depths up
to 11 m (limit of ALB data set). The vertical calibration results are presented in Figure 7. Even without
MCI correction, the switching model alone substantially reduced intense overestimation of SDBgreen
for depths <1 m (Figure 10c). The importance of the switching strategy is evident in the validation of
the final multi-scene SDBred and SDBgreen, where an acute overestimation occurred at depths <1 m
for SDBgreen, similar to Cape Lookout (Figure 6a–d). In terms of error assessment, the distribution
of the residuals indicated minimum discrepancies were achieved (Figure 10b,d). Furthermore, the
compositing algorithm produced accurate SDB results compared to the single “optimal scene” approach
(picking the scene with the lowest overall turbidity) combined with the most widely used model in the
literature, SDBgreen (Figure 10e,f). The composite map of the proxy for turbidity (Rrs704) associated
to the final SDB model shows minimum turbid conditions throughout (Figure 11d).

Figure 10. Comparison between lidar (ALB) and final SDB map in Saint Joseph Bay. (a) Scatter of
ALB against SDB after the multi-scene approach, the switching model and the FAV and SAV masking
procedures with MCI index, the color bars indicate pixel frequency, (b) Associated histogram of residual
errors with standard deviation = 0.68m and percentile 5%/95% = −1.15 m/0.92 m, (c) The same as
(a) without applying the MCI masking, (d) The same as (b) without applying the MCI masking with
standard deviation = 0.69 m and percentile 5%/95% = −0.87 m/1.1 m, (e) scatter of the SDBgreen
compared to ALB for the clearest scene acquired on 23 December 2016, and (f) Associated histogram of
residual errors with standard deviation = 2.4m and percentile 5%/95% = −0.96 m/6.1 m (note different
x-axis compared with b and d), the bins of the histograms correspond to the number of pixels. The blue
dotted line indicates 1:1 line.
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Figure 11. Satellite maps in Saint Joseph Bay region. (a) Sentinel-2 RGB image composite, (b) Final
SDB after the multi-scene approach and the switching model, (c) Lidar (ALB) data collected by NOAA,
(d) Remote sensing reflectance at 704 nm (Rrs704) associated with the final SDB, segmentation of the
final SDB with the switching model: (e) SDBred for depths <2 m and SDBweighted for depths 2–3.5 m,
and (f) SDBgreen for depths >3.5 m. Data in the depth maps is presented as color-coded depths ranging
from 0 to 18 m. Gray color represents land mask.

The geographic distribution of features in the SDB (Figure 11b) corresponded to those identifiable
in the lidar survey (Figure 11c), although much more spatial information is available in the SDB
product. Similar to Cape Lookout region, the method offered a complete map of the St. Joseph coastal
area compared to the restricted map provided by lidar surveys. In this case, we did not apply the MCI
masking to add data over the vegetated area (depths <1 m), thereby allowing maximum coverage of
the final SDB product. Shallow areas and shoals < 3.5 m were accurately described with SDBred and
SDBweighted (Figure 11e) whereas depths >3.5 m were mapped with SDBgreen (Figure 11f).

4. Discussion

In the present investigation, we successfully applied both Sentinel-2A and 2B satellites to estimate
water depth in two areas with complex bathymetry and water clarity, Cape Lookout, North Carolina,
and Saint Joseph Bay, Florida. The multi-scene compositing approach addressed limitations inherent in
conventional methods and reduced the impact of turbidity, performing better than the standard “pick
the best scene” method that relies on a single image (Figures 3 and 4c vs. Figure 4a in Cape Lookout;
and Figure 10e vs. Figure 10a,c in Saint Joseph Bay). The final corrected SDB produced robust depths
up to the limit of the lidar surveys, with typical errors ≤0.4 m. These excellent results from Sentinel-2
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compared favorably with those produced in relatively low turbidity water in south Florida [22,44],
and in regions with transparent waters [10,18,20,30]. Whereas some researchers suggested there is
still work to be performed regarding the identification of the optimal period throughout the year
where bathymetric errors are minimized [18,29], others asked for novel strategies to allow seabed
mapping without the laborious analysis per image and the visual inspection of the “clearest scene” [19].
Recent studies have already indicated the potential of multi-scene approaches in order to select the
optimal scene or eliminate noise over clear waters [16,17,19,20]. However, our temporal compositing
strategy successfully reduced the turbidity impact without requirement of visual inspection, thereby
enhancing SDB performance in an easy way. The high temporal resolution and interchangeability of
the Sentinel-2 twin mission may rapidly overcome SDB anomalies introduced by highly heterogeneous
water transparency regimes [22].

The multi-scene strategy applied here did not require any screening or manual adjustment of
the imagery prior to compositing. It automatically picked the pixels least impacted by turbidity (e.g.,
Figure 8) from the set of scenes provided (Table 1), substantially simplifying the effort compared with
other studies where the selection of optimal images with variation in the water quality conditions were
essential in the extraction of SDB [20,22,29,55]. Manual selection of the optimal scene is not only highly
subjective, but requires considerable time and effort, and may still include regions having patches of
turbidity. The consistency in the pSDB products, which were not yet calibrated to true depth, indicated
that ACOLITE produced an effective and robust atmospheric correction across scenes (Figure 8), as
previously demonstrated [22,44]. Inconsistencies or errors in ACOLITE (or any other atmospheric
correction) would force manual intervention and make compositing impractical [10].

We chose chart values for the calibration to depth in order to demonstrate the benefit of the
method for remote areas under likely applied conditions, rather than under the optimal (and extremely
unlikely) condition of a contemporaneous lidar survey. Using limited chart soundings would have
only introduced some of the error, most likely as bias in the depth. Some depth errors may also be
due to the differences in resolution, i.e., 10 m from the satellite, and the 1 m spot size for lidar—a
consideration in areas with steep gradients, such as channel edges. Using a median filter on the SDB
reduced other artifacts that typically lead to random noise [49]. One potential error factor that needs to
be considered in the future is tide range. The tide range in these areas is relatively small (<1 m). The
influence of tide on the accuracy of this approach for areas with tidal ranges greater than 1 m requires
further investigation. For meso-tidal areas, one option would be to constrain the input images to a
common range of water level, such as 1 m maximum difference in water level. Macro-tidal areas are
likely to be too turbid for optical SDB.

An interesting consideration is that the calibration to depth for this method may be dependent
on water clarity rather than on geography. Applying the coefficients for composited pSDBred and
pSDBgreen of Cape Lookout to St. Joseph Bay (Figure 7), and vice versa, generated precise SDB for
both areas with errors ≤0.65 m (see results in Figure 12). This comparison suggests that an existing
calibration after the multi-scene approach may be applicable to other remote and unsurveyed areas,
assuming the compositing can retrieve the same turbidity. These results suggest the potential suitability
of SDB estimates for charting applications using the IHO S-57 standard [56], which defines CATZOC
levels containing depth accuracy specifications for depth ranges up to 30 m in order to allow for their
incorporation into nautical products.
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Figure 12. Validation of the final SDB. (a) Validation of lidar (ALB) against final SDB in Cape Lookout
using the calibration coefficients of St. Joseph Bay (N = 271985), the color bars indicate pixel frequency
and (b) residual errors (SDB - ALB), (c) Validation of lidar (ALB) against final SDB in St. Joseph Bay
using the calibration coefficients of Cape Lookout (N = 674707) and (d) residual errors (SDB - ALB),
the bins of the histograms correspond to the number of pixels. Blue dotted lines indicate 1:1 line. The
vertical calibration for each study site is indicated in Figure 8.

The use of the SDBred for shallow water retrieval addressed the worst of the overestimation
issues with the SDBgreen in both study regions. The use of different bands to treat overestimation in
shallow water (or underestimation by SDBred in deep water) has been pointed out recently by some
researchers [19,30,57]. Switching to SDBred has been previously used to provide better discrimination
of depths in very shallow water over bright targets like carbonate sand [48], and other studies have
applied each model over different depth ranges [22,44]. Here, we established an automated switching
method between SDBred and SDBgreen that performed accurately over the two study sites. In addition,
SDBgreen overestimated on dense seagrass in extremely shallow water using either the single scene
(Figure 9b, Figure 10e) or the multi-scene approach (dense seagrass has a very low albedo, so in deeper
water there is often no detectable signal to be retrieved from satellite). By switching to the SDBred, the
combined product reduced most of the impact of shallow seagrass on SDBgreen (as seen in Figure 9b
against Figure 9e or Figure 10e against Figure 10c). If more rigorous masking is required, the MCI
can identify the presence of dense seagrass in extremely shallow water (<1–2 m, Figure 10a), without
the need for external data sets on bottom type. Combined with calibration using only a few points
(Figure 7), the approach detailed here offers an effective means of assessing bathymetry in regions
lacking any data.

While the accuracy of SDB cannot match ALB, the spatial coverage of satellite imagery shown
here surpasses ALB (Figures 5c and 11c vs. Figures 5b and 11b). This capability represents one of the
great benefits of satellite monitoring; whereas in-situ surveys (lidar, sonar) are expensive and extremely
limited due to technical and deployment cost, SDB can give us a broad picture of the entire study site
with wide swaths, low-cost repeated coverage, and easy access to remote locations [8]. Lidar data is
also constrained by availability and water quality, so information can be lost. We characterized post
Hurricane Matthew bathymetry in Cape Lookout, extending the limited amount of lidar data to a
much larger and more complete area.

Sentinel-2 may provide a way to use other satellites more effectively. Accordingly, Sentinel-2
might offer a low turbidity reference data set that can be used to inform mapping conducted with the
various commercial very high-resolution sensors such as the World-View fleet [14,26,58] or the novel
CubeSats from Planet [19,29]. On the other scale, Landsat has a four-decade history using Thematic
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Mapper, and has been shown to be useful for some SDB in clear water [10,21,59,60], even with 30 m
pixels. Comparisons of Sentinel-2 with Landsat-8 may ultimately lead to results that could expand the
utility of the entire Landsat data record for change detection.

In this study, interpretation of error assessment and uncertainty can be achieved by means of the
water quality composites of turbidity (Rrs704) associated with the final SDB maps (Figures 5d and 11d).
These products may indicate areas that still have residual bias. They can also provide areas where the
water is chronically optically deep due to turbidity, which can lead to better allocation of resources.
Previous research has detailed the impact of water quality parameters on SDB results using the ratio
model over several regions in Florida [22]. Recent studies using the ratio model showed that bottom
reflectance has little influence on the accuracy of SDB estimates, while chlorophyll concentration has a
strong influence [22,61]. This problem would also be resolved with the compositing method.

In accordance with our findings, the portability and reliability application of the proposed
approach using minimum in-situ measurements is a distinct advantage in effectiveness and may
especially benefit developing countries. In addition, using the semi-automated solution and a computer
cloud-based system may allow exploitation of the Sentinel-2 data for regional to global scale coastal
SDB [16]. The average time required for processing a Sentinel-2 image for bathymetry estimation is
~ 1 hour. For further avenues of research with Sentinel-2, we intend to upscale the study results to
more environments with different water and atmospheric conditions in order to evaluate repeatability
as well as implement the multi-temporal approach in cloud-based computing platforms such as the
ESA Coastal Thematic Exploitation Platform—Coastal-TEP [62]. The promising transferability of
this temporal technique exploiting the open and free archive of the Sentinel-2 mission will allow
advancement of SDB applications and optimized scientific coastal mapping worldwide, especially in
data-poor regions [63].

5. Concluding Remarks

This paper presents a framework to obtain SDB while potentially automated the image processing.
Precise SDB was derived over moderately turbid environments by using the high revisit time (5-day)
of the Sentinel-2A/B twin mission from the Copernicus programme. The proposed methodology
incorporates a robust atmospheric correction with ACOLITE, a multi-scene compositing method to
reduce the impact of turbidity, and a switching model to improve mapping in shallow water. Two
study sites in United States were explored due to their varying water transparency conditions. The
method establishes a plausible high-quality strategy for SDB with sufficient sensitivity to support
interannual and pre-post hazards (e.g., hurricanes or tropical storms), which may benefit change
detection analysis from multiple images to discriminate variability. The open data policy and long-term
mission commitment of Sentinel-2 opens future promising time series evaluation over years and
even decades that can be an important tool to provide crucial missing information on the bathymetry
distribution, especially in data-poor or remote areas with large gaps in a retrospective, rapid and
non-intrusive manner. It would enable immediate commencement of coastal mapping using archived
and/or forthcoming imagery from the Copernicus programme at regional to global spatial scales, and
any other source from which repeated scenes may be collected over the world’s coastal systems. There
is a requirement to promote the development of technology that provides low-cost solutions with
enhanced data quality to address the needs of a wide range of user groups. The semi-automated
framework demonstrated here may address that need, and help mitigate the long-standing gap of
depth information for the majority of coastal regions on Earth. Such a capability can aid scientists,
managers, and policymakers around the globe in assessing vulnerabilities to ecosystems, infrastructure,
navigation and many other coastal concerns.
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Abstract: The Geostationary Ocean Color Imager (GOCI) sensor, with high temporal and spatial
resolution (eight images per day at an interval of 1 hour, 500 m), is the world’s first geostationary
ocean color satellite sensor. GOCI provides good data for ocean color remote sensing in the Western
Pacific, among the most turbid waters in the world. However, GOCI has no shortwave infrared (SWIR)
bands making atmospheric correction (AC) challenging in highly turbid coastal regions. In this paper,
we have developed a new AC algorithm for GOCI in turbid coastal waters by using quasi-synchronous
Visible Infrared Imaging Radiometer Suite (VIIRS) data. This new algorithm estimates and removes
the aerosol scattering reflectance according to the contributing aerosol models and the aerosol optical
thickness estimated by VIIRS’s near-infrared (NIR) and SWIR bands. Comparisons with other AC
algorithms showed that the new algorithm provides a simple, effective, AC approach for GOCI to
obtain reasonable results in highly turbid coastal waters.

Keywords: ocean color; GOCI; VIIRS; atmospheric correction; turbid waters

1. Introduction

The total radiance measured by an ocean color sensor is primarily composed of the water-leaving
radiance, sea surface radiance, Rayleigh scattering radiance caused by air molecules, and aerosol
scattering radiance (which includes aerosol single-scattering radiance and interactive scattering
radiance between molecules and aerosols). In open waters, the atmospheric radiance can account
for significant portions of the total satellite-measured radiance [1]. Therefore, to determine the
properties of the upper ocean, such as colored dissolved organic matter, suspended particulate matter,
and chlorophyll-a, accurate atmospheric correction (AC) is required. The Rayleigh scattering radiance
can be theoretically computed accurately, owing to the stable distribution of the necessary atmospheric
components [2,3]. Therefore, it is key to accurately estimate the aerosol scattering by aerosols and
Rayleigh–aerosol interactions in order to determine the water-leaving radiance. For clear waters,
the AC algorithm developed by Gordon and Wang [4] (herein named the GW94 algorithm) works
quite well. It estimates the aerosol optical properties based on the black pixel assumption, according
to which the water-leaving radiance at near-infrared (NIR) bands is assumed to be zero because the
water can strongly absorb the light in these bands. However, in turbid coastal waters, the AC is
more complicated because this assumption is rarely valid due to the significant suspended sediments
backscattering in the NIR bands [5].

GOCI is the world’s first geostationary ocean color satellite sensor with high spatial and very high
temporal resolution (500 m and 1 h, respectively). It acquires eight images per day from 00:15 GMT to
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07:15 GMT in hourly intervals [6]. GOCI exhibits considerable advantages when monitoring regional
marine environment changes, and provides various useful products [7–9]. Proper AC of GOCI has
been a challenge because it covers a 2500 km × 2500 km square, with the Korean Peninsula at the
center, which is one of the most turbid areas in the world [10]. Various AC algorithms for turbid waters
have been investigated to separate the water-leaving radiance and the aerosol scattering radiance
at NIR bands, most of which are based on regional empirical models. The empirical AC algorithms
are strongly dependent on the optical properties of water, which limits the applicability of these
algorithms to other waters [11]. For several years, AC algorithms using shortwave infrared (SWIR)
bands have been demonstrated, which neglects the water-leaving radiance in the SWIR bands as the
water absorption in SWIR bands is much stronger than that in the NIR bands [12–14]. The SWIR-based
algorithms are able to derive aerosol products in extremely turbid waters with higher accuracy [15]
because they directly derive the aerosol scattering radiance at NIR bands, without any assumption of
the marine radiance. However, there is a spectral limitation for GOCI, with only eight visible/NIR
bands centered at 412, 443, 490, 555, 660, 680, 745, and 865 nm.

Including SWIR bands on a sensor is expensive but the SWIR bands of other sensors can be used
to estimate the aerosol optical properties of the observing area, and then the aerosol radiance at GOCI
observing geometries can be evaluated. The Visible Infrared Imaging Radiometer Suite (VIIRS) has two
NIR bands with band centers 745 nm and 862 nm, and three SWIR bands with band centers 1238 nm,
1601 nm, and 2257 nm. It is on board the Suomi National Polar-Orbiting Partnership satellite, which
was launched on 28 October, 2011, and is a new generation of polar-orbiting satellite [16]. VIIRS was
intended to combine and improve the best characteristics of the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and other previous
ocean color sensors. The spatial resolution of the moderate resolution imagery bands of VIIRS is 750 m
at the viewing nadir. Previous research shows that the VIIRS can produce high-quality data for various
applications [17–19].

Thus, the main objective of this study is to demonstrate and validate a new practical AC algorithm
that estimates and removes the aerosol scattering radiance, according to the aerosol optical properties
estimated by quasi-synchronous VIIRS’s (QSV) NIR and SWIR bands for GOCI data.

2. Study Sites

The Bohai Sea, Yellow Sea, and East China Sea are parts of the Western Pacific marginal sea.
Three highly turbid coastal regions are outlined in the boxes in this region in Figure 1a: (I) Bohai Sea,
(II) the southwest coast of Korea, and (III) Changjiang Estuary.

The Bohai Sea is a shallow semi-enclosed sea with an average water depth of 18 m and a maximum
depth of ~70 m. It deepens gradually from the coastal bays to the Central Bohai Sea and is characterized
by a basin shape [20]. The dominant sediment source in this region is the sediment delivered by the
Huanghe [21,22]. The high suspended sediment concentration is mainly distributed in the south of
Bohai Sea, especially in the area around the Huanghe Delta [21].

The water depth of the area along the Southwestern Korean coast is less than 50 m.
Numerous islands and vast tidal flats are located here and the coastlines in this area are complicated.
The suspended sediment concentration of this area is relatively high (>20 g/m3). The highest values
(>100 g/m3) occur in the winter owing to the stronger northwestern monsoon and shallow water depth,
which can induce a resuspension of bottom sediments [23].

The Changjiang Estuary is located along the central-eastern coast of China, with the Hangzhou Bay
to the south and the Subei Shallow to the north. The highly suspended sediment concentrations were
observed here year-round [24]. The Changjiang River discharges about 390 × 106 tons of sediment into
the East China Sea annually [25]. The sediment transportation inside the Hangzhou Bay is considerably
affected by the secondary Changjiang plume [26]. Another major sediment source for the East China
Sea is the resuspension of sediment at the Subei Shallow [27]. Wind-induced vertical mixing and
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bottom stress tend to resuspend a large amount of sediment, leading to high suspended sediment
concentrations, especially in the winter [28,29].

One cloud-free example is chosen from each of these regions. The RGB pictures of the three
examples are composed of the total radiance at 490 nm (B), 555 nm (G), and 680 nm (R) bands of GOCI
and are shown in Figure 1b–d. More details of the three examples are listed in Table 1.

Figure 1. (a) Bathymetry for the Bohai Sea, Yellow Sea, and East China Sea. Three highly turbid water
areas are outlined in three boxes (I, II, and III). Panels (b–d) are the composed RGB pictures of the three
examples used for comparison (B: 490 nm, G: 555 nm, and R: 680 nm).

Table 1. Detail information on the processed images.

Area Location Date (MM-DD-YY) Time Lag (min)

I Bohai Sea 08-26-2016 9
II Southwest coast of Korea 03-14-2017 21
III Changjiang Estuary 03-01-2016 27
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3. Method

Reflectance ρ is defined as:

ρ(λ) =
πL(λ)

F0 cosθs
(1)

where λ denotes the wavelength, F0 is the extraterrestrial solar irradiance [30], θs is the solar zenith
angle, and L is the radiance. It is more convenient to work with ρ because it is dimensionless. The total
reflectance ρt(λ) measured by a sensor can be written as:

ρt(λ) = ρr(λ) + ρa(λ) + tv(λ)ρw(λ) (2)

where ρr denotes Rayleigh scattering reflectance, ρa denotes aerosol multiple scattering reflectance, ρw

denotes water-leaving reflectance, and tv denotes the Rayleigh–aerosol diffuse transmittance from the
sea surface to the satellite. It should be noted that the reflectance contributions from the sun glint and
whitecaps are ignored [31,32].

Determining the remote sensing reflectance (Rrs, unit: sr−1) and normalized water-leaving
reflectance (ρwn) is the ultimate goal of AC because they are fundamental parameters that are widely
used for deriving the water constituent concentrations and water quality parameters. These can be
calculated by:

ρwn(λ) =
ρw(λ)

ts(λ)
(3)

Rrs(λ) =
Lw(λ)

F0(λ)ts(λ) cosθs
(4)

where ts is the diffuse transmittance from the sun to the sea surface.
In this section, we briefly review the previous AC algorithms that were adopted in the main GOCI

processing software: SeaDAS (SeaWiFS Data Analysis System) and GDPS (GOCI data process system).
Then, the development of the new algorithm is described.

3.1. Previous AC Algorithms

The key problem of AC over turbid waters is the removal of the water-leaving reflectance at
NIR bands. Numerous red/NIR modeling approaches have been investigated to deal with non-zero
ρw(red/NIR) values within the AC process. Three kinds of AC approaches are briefly reviewed
herein—the B2010 AC algorithm proposed by Bailey et al. [33] is currently adopted in SeaDAS, while
the A2012 algorithm proposed by Ahn et al. [34] and the L2013 algorithm proposed by Lee et al. [35]
are implemented in GDPS.

The B2010 algorithm uses an iterative solution to separate ρw(NIR) and ρa(NIR). The ρw(NIR)
is first assumed to be zero to complete the GW94 AC process. This gives an initial estimate of
Rrs(λ). Next, the concentration of chlorophyll-a is preliminarily estimated by the initial value of
Rrs(λ). Then, the absorption coefficient in the red band is obtained via a chlorophyll-a–based empirical
relationship. The absorption coefficient and Rrs in the red band are used to solve the backscattering
coefficient, which is used to extrapolate the ρw at the NIR band. Finally, the new values of ρw(NIR) are
used to correct the non-zero water contribution, and the GW94 AC step is repeated for a new iteration.

The A2012 algorithm is the GOCI standard AC algorithm. It is theoretically based on the
GW94 algorithm with partial modifications. The initial ρw(NIR) values are also assumed to be zero to
execute the GW94 algorithm. The newly estimated ρwn in the red band is used to correct the ρwn(NIR)
by an empirical polynomial relationship model [36]:

ρwn(745nm) =
5∑

n=0

jn[ρwn(660nm)]n (5)
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ρwn(865nm) =
2∑

n=1

kn[ρwn(745nm)]n (6)

where jn and kn are known polynomial coefficients.
The L2013 algorithm is from the Management Unit of the North Sea Mathematical Models

(MUMM) [37] algorithm, with some modified steps for extremely turbid water. In the original MUMM,
the parameter α, representing the ratio of ρw at the NIR wavelengths, is assumed to have spatial
homogeneity; however, the value of α changes with the concentration of suspended particles in
extremely turbid waters, which would cause an underestimation of the water-leaving radiances [38].
The L2013 algorithm calculates the α value adaptively using an NIR water-leaving reflectance model:

α =
3∑

n=0

cn[ρw(745nm)]

n

(7)

where the cn values are known polynomial coefficients.
The algorithms mentioned above can improve the data quality in turbid waters, but the empirical

relationships are highly reliant on in situ datasets; even the empirical relationship used in L2013 is
derived from the nearest non-turbid AC algorithm [39]. These algorithms are, therefore, only regionally
applicable [40]. For example, the B2010 method only works properly in low to moderately turbid
waters [41,42], as the chlorophyll-a–based relationship used in the bio-optical model might not be
appropriate to extrapolate the ρw(NIR) in waters whose optical properties are dominated by non-algal
particles [41,42]. The A2012 method is suitable for sediment-dominated waters but also fails for
extremely turbid waters because the ρwn(660 nm) can become optically saturated [43].

3.2. The Development of the New AC Algorithm

In order to distinguish the two sensors, the superscripts V and G represent VIIRS and GOCI,
respectively. The procedure for the new algorithm can be divided into four parts:

• Extracting the ρa(NIRV) of VIIRS;
• Estimating the aerosol properties by ρa(NIRV);
• Calculating the ρa(λG) at GOCI observing geometries according to the aerosol properties; and
• Removing the ρa(λG) and completing the GOCI AC process.

The removal of the ρw(NIRV) of VIIRS follows the Shortwave Infrared Exponential (SWIRE)
algorithm [12], in which the Rayleigh-corrected reflectance values ρrc (ρrc = ρt − ρr) of clear waters
were assumed to be an exponential function of wavelength at the NIR/SWIR bands:

ρe f (λ) = aebλ (8)

where ρef is the extrapolated Rayleigh-corrected reflectance, and a and b are the fitting coefficients.
The ρrc values at the three VIIRS SWIR bands (1238, 1601, and 2257 nm) are used to calculate the

coefficients a and b because the ρrc at the NIR bands is strongly influenced by suspended sediments
scattering in turbid waters. The newly estimated ρef(NIR) can be considered to be the ρrc of the optical
equivalent clear water, influenced only by aerosol scattering, and can be used for the GW94 AC of
the visible bands. The SWIR-based methods improve the ocean color products in the turbid coastal
waters, but they require higher signal-to-noise ratios (SNR) for SWIR bands because of the longer
extrapolated distances and lower signals [44]. Wang and Shi [14] used two SWIR bands to derive
the aerosol scattering radiance, but their method did not achieve better results than the NIR-based
methods in non-turbid waters because significant noise occurred in the derived products [45,46].
Generally, the more SWIR bands used, the more accurately can the aerosol scattering reflectance be
estimated, and the requirements of SNR can probably be reduced. As a result, the SWIRE method
represented an improvement over the SWIR-based methods [47].
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The newly estimated ρef(NIRV) can be considered as the ρa(NIRV) and can be applied to evaluate
the aerosol properties of the observing area, including the contributing aerosol models and aerosol
optical thickness τa. The contributing aerosol models are selected by the look-up-tables (LUTs)
for 80 aerosol tables constructed by Ahmad et al. [48]. The parameters used to derive the aerosol
single-scattering albedo (ωa), aerosol scattering phase function (Pa), and extinction coefficient (βa)
are stored in the LUTs for each aerosol model and various geometries. The LUTs also contain the
coefficients relating single to multiple scattering and the coefficients (A and B) used to calculate the
Rayleigh–aerosol, diffuse transmittance in the following form [49]:

t = A exp(−Bτa) (9)

The aerosol optical thickness is the normalized extinction coefficient due to absorption and
scattering from the direct beam and is a key parameter used to define the optical state of the
atmosphere [50,51].

The estimation of the aerosol properties follows the GW94 method [4], which is one of the AC
algorithms widely used for clear waters. In this algorithm, ρa(NIRV) is first converted into ρas(NIRV) [52]
by solving the quadratic equation:

ln(ρa) =
2∑

n=0

ln[pn(ρas)
n] (10)

where the pn values are the quadratic coefficients stored in the LUTs. The AC parameter is defined as:

ε(NIRS, NIRL) =
ρas(NIRS)

ρas(NIRL)
(11)

where NIRS is the short-wavelength NIR band, and NIRL is the long-wavelength NIR band. For the
VIIRS sensor, the NIRS and NIRL are 745 nm and 862 nm, respectively. Theoretically, each candidate
aerosol model has its own ε value (εM) for a specific geometry:

εM(NIRS, NIRL) =
ωa(NIRS)βa(NIRS)Pa(θv,θs, NIRS)

ωa(NIRL)βa(NIRL)Pa(θv,θs, NIRL)
(12)

Two aerosol models with different weighting factors whose ε(NIRS, NIRL) values are the closest to
the εM(NIRS, NIRL) averaged over all candidate models, are chosen to represent the aerosol type over
the pixel. The selection of the closest aerosol models can dominate the estimation of the water-leaving
reflectance, especially over turbid coastal waters [53]. The τa(745 nm) values of the two contributing
models can be retrieved by [4]:

τa(λ) =
4 cosθv cosθsρas(λ)

ωa(λ)Pa(θv,θs,λ)
(13)

The VIIRS sensor is located in a sun-synchronous orbit and provides one image per day, whereas
the GOCI sensor is located in a geostationary orbit and provides eight images per day. With the
hourly observations from the GOCI, the VIIRS image has a corresponding GOCI image with a time
difference of less than half an hour, which means the atmospheric conditions are nearly invariant.
Therefore, the aerosol scattering reflectance of the GOCI observing geometries can be derived according
to the known contributing aerosol models, weighting factor, and the τa(745 nm). First, calculate the
τa(λG) of each contributing aerosol model by:

τa(λ)

τa(745nm)
=

βa(λ)

βa(745nm)
(14)
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Second, calculate the ρas(λG) by Equation (13). Next, convert ρas(λG) to ρam(λG) via Equation (10).
Finally, the effects of the two contributing aerosol models are superimposed by weighting factors
to estimate the total aerosol scattering reflectance of GOCI. In order to maintain the higher spatial
resolution of GOCI, the aerosol parameters estimated from VIIRS are resampled to the GOCI data grid
by the nearest neighbor method.

4. Results and Discussion

In the absence of in situ data, the results of the new algorithm (represented by QSV) are
compared with those processed by the B2010 [33], A2012 [34], and L2013 [35] algorithms. VIIRS and
GOCI Level-1 data were obtained online (https://oceancolor.gsfc.nasa.gov). For the QSV algorithm,
the Rayleigh-corrected reflectance values were obtained by using the SeaDAS 7.4 l2gen processor,
and these values were used as the inputs of the aerosol scattering correction procedure, which was
performed by using Interactive Data Language (IDL). With default settings, the B2010 algorithm was
realized by the SeaDAS 7.4 software, while the A2012 and L2013 algorithms were realized by the GDPS
v1.4.1 software. The three examples listed in Table 1 are processed.

Figures 2–4 represent the Rrs values retrieved by four different algorithms centered at the Bohai
Sea, the southwest coast of Korea, and the Changjiang Estuary, respectively. Panels (a–d), (e–h),
and (i–l) are results at wavelengths of 490, 555, and 680 nm, respectively. The regions in which the
algorithms fail to make an AC because of highly turbid waters or due to the presence of clouds and
land, are shown with RGB pictures. It can be observed that the Rrs distributions are similar for all four
algorithms, but the B2010, A2012, and L2013 algorithms result in varying degrees of failures, while the
QSV algorithm can successfully execute the AC in the highly turbid coastal waters. The unmasked
abnormal low estimations from L2013 also can be observed at 35◦N, 126◦E in Figure 3b,f,j, highlighted
by the red circles.
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Figure 2. Comparisons of the Rrs distributions (unit: sr−1) at (a–d) 490, (e–h) 555, and (i–l) 680 nm
bands centered on the Bohai Sea on 26 August 2016 and processed by the B2010, L2013, A2012, and QSV
algorithms. The regions in which the algorithms fail to make an AC because of highly turbid waters,
or the presence of clouds and land are shown by the composed RGB pictures (B: 490 nm, G: 555 nm, R:
680 nm).
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Figure 3. Comparisons of the Rrs distributions (unit: sr−1) at the (a–d) 490, (e–h) 555, and (i–l) 680 nm
bands centered on the southwest coast of Korea on 14 March 2017 and processed by the B2010, L2013,
A2012, and QSV algorithms. The regions in which the algorithms fail to make an AC because of highly
turbid waters, or the presence of clouds and land are shown by the composed RGB pictures (B: 490 nm,
G: 555 nm, and R: 680 nm). The unmasked abnormal low estimations from L2013 are highlighted by
the red circles in panels (b,f,j).

To further demonstrate the differences, we also extracted the Rrs(λ) values for pixels along the red
arrow in Figure 4a and plotted their profiles in Figure 5. A distance of 0 along the x-axis indicates the
location closest to the coast. In general, the Rrs data are low in the open ocean and high near the coast.
The mean absolute difference in the Rrs values between the A2012 and QSV algorithms is the smallest,
with values of 0.00334, 0.00138, 0.00100, 0.00091, 0.00110, and 0.00182 sr−1 at wavelengths of 412, 443,
490, 555, 660, and 680 nm, respectively. At around 0 to 110 pixels along the transect, the B2010 algorithm
is invalid. The results of the L2013 are relatively higher than those of the A2012 and QSV algorithms,
at distances larger than 50 pixels along the transect. Abnormal fluctuations of the L2013 curves can
be observed at around 25–50 pixels. The A2012 and L2013 methods both fail at around 0–25 pixels.
The QSV is the only algorithm that can retrieve continuous and reasonable values of Rrs along the
total transect.
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Figure 4. Comparisons of the Rrs distributions (unit: sr−1) at (a–d) 490, (e–h) 555, and (i–l) 680 nm
bands centered on the Changjiang Estuary on 1 March 2016 and processed by the B2010, L2013, A2012,
and QSV algorithms. The red arrow in panel (a) refers to the location and direction of the transect used
in Figure 5. The regions in which the algorithms fail to make an AC because of highly turbid waters,
or the presence of clouds and land are shown by the composed RGB pictures (B: 490 nm, G: 555 nm,
and R: 680 nm).
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Figure 5. Comparison of the Rrs values extracted from the pixels along the red arrow in Figure 4a at
wavelengths of (a) 412, (b) 443, (c) 490, (d) 555, (e) 660, and (f) 680 nm. A distance of 0 in the x-axis
indicates the location closest to the coast.

Three sets of Rrs spectra derived from four different AC algorithms in highly turbid waters at
station (a), moderately turbid water at station (b), and clear water at station (c) are compared and shown
in Figure 6. At station (c), the curves of the B2010, A2012, and QSV algorithms tend to be coincident,
while the Rrs values retrieved by L2013 are relatively high. At station (b), the B2010 algorithm shows
slightly lower estimations. At station (a), the B2010 algorithm has no valid results, and the difference
between L2013 and A2012/QSV is more pronounced.

 

Figure 6. Comparisons of the Rrs spectra derived from four different algorithms in highly turbid waters
at station (a), moderately turbid waters at station (b), and clear waters at station (c). The RGB image
shows the locations of the three stations.

Since these four algorithms are developed for turbid waters, they can all improve the data quality
in turbid waters. The B2010, A2012, and L2013 algorithms are based on empirical models and are
highly regionally dependent. Significant errors or failures can be induced when these methods are
applied to the ocean regions they are not suitable for. Even though the QSV algorithm can be applied
to only one scene of the GOCI data, it can obtain reasonable results in extremely turbid coastal waters.
The use of three SWIR bands can improve the data quality of the AC retrievals in clear waters without
obvious noise. In general, the QSV algorithm provides a simple, effective, new AC approach for GOCI
to obtain reasonable results in highly turbid waters and provides an alternative method to validating
other AC methods.
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5. Conclusions

An alternative AC algorithm using quasi-synchronous VIIRS data for GOCI in highly turbid
waters is presented in this paper. GOCI covers highly turbid waters in the Western Pacific region;
AC has been a challenge in these turbid ocean regions because of the lack of SWIR bands. The new
algorithm shows its superiority in highly turbid coastal waters, and the results could be at least be
used for the validation of other AC methods. However, there are still some limitations that should
be noted. The major disadvantage of this algorithm is that only one VIIRS image per day is not
sufficient for GOCI, and more in situ data are needed for the validation. In the future, GOCI-2 will
have full-disk coverage with higher resolution and five more bands than GOCI does, but it will still not
have any SWIR bands [54]. Including SWIR bands on a sensor is expensive, therefore, further research
is necessary on how to best take advantage of SWIR bands from other ocean color sensors.
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Abstract: Sediment dynamics is the primary driver of the evolution of the coastal geomorphology
and of the underwater shelf clinoforms. In this paper, we focus on mesoscale and sub-mesoscale
processes, such as coastal currents and river plumes, and how they shape the sediment dynamics at
regional or basin spatial scales. A new methodology is developed that combines observational data
with numerical modelling: the aim is to pair satellite measurements of suspended sediment with
velocity fields from numerical oceanographic models, to obtain an estimation of the sediment flux.
A numerical divergence of this flux is then computed. The divergence field thus obtained shows how
the aforementioned mesoscale processes distribute the sediments. The approach was applied and
discussed on the Adriatic Sea, for the winter of 2012, using data provided by the ESA Coastcolour
project and the output of a run of the MIT General Circulation Model.

Keywords: remote sensing; satellite; sediment transport; coastal geomorphology

1. Introduction

The morphological evolution of shoreline, coastal features, lagoons, deltas and clinoforms on
continental shelves, in absence of relative sea level changes, due to either eustacy or local tectonism,
is primarily driven by the sediment dynamics and the sediment transport [1–5]. Seminal studies,
indeed, highlight the role of coastal plumes or river runoff, and their sediment loads, in contributing
to sediment availability for coastal and continental shelf morphodynamics [5,6].

In particular, in the Adriatic sub-basin (Mediterranean Sea; Figure 1), Bignami et al. [7]
investigated the variability of the Western Adriatic Coastal Current (WACC), and its turbid, Case 2
waters, in relation to circulation patterns and to wind regimes. Brando et al. [8] investigated river
plumes at mesoscale and submesoscale in the North Adriatic Sea (NAS), by means of coupled satellite
data and numerical modelling. On the other hand, Cattaneo et al. [9] and Sherwood et al. [10] focused
on the sediment erosion, transport and deposition in the Adriatic Sea. The Adriatic Sea, especially
its western side, the Italian east coast, is a case study for this kind of phenomena, because of its
characteristic coastal flow dynamics and the significant role of river sediment inputs on the northwest
side of the basin [7,9–11].

Indeed, the circulatory regime of this basin, as described in [12], is dominated by:

• a cyclonic gyre with a component that flows parallel to the western shoreline (Figure 1), mainly
generated by the wind patterns;
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• the North Adriatic Dense Water (NAdDW; Figure 1) that forms in the northern Adriatic through
winter cooling and then, once a density threshold is reached, flows southward until cascading
toward the deep southern Adriatic Basin; and

• the Levantine Intermediate Water (LIW), a salty water that forms in the Eastern Mediterranean
Sea and intrudes in the Adriatic basin flowing at depths of 200–600 m.

An intensified western boundary current, the Western Adriatic Coastal Current (WACC), flows
southward with long-term average speeds that reach 0.20 m s−1 at some locations [13]. The overall
thermohaline circulation runs along the Italian coast, constraining the main sediment flux to deposit
in a prism parallel to the coast. The investigation of sediment dynamics along the coastal Adriatic
currents, besides the use of in-situ measurements and numerical modelling, is largely improved by
remote sensing observations and analyses [4,14,15].

Figure 1. True Colour (bands 9,6,4) image of the Adriatic Sea, 28 February 2019, by the OLCI sensors
on board of the Sentinel-3A and Sentinel-3B spacecrafts. The Western Adriatic Coastal Current
(yellow arrows) is clearly visible, due to its suspended sediment load, transported along the coast [13].
The North Adriatic Gyre and the subsequent path of the North Adriatic Dense Water are highlighted in
orange [13]. The black arrows indicate the geographic locations mentioned in the text.

Figure 1 shows a combination of the views acquired on 28 February 2019 by the OLCI sensors
on board of the Sentinel-3A and Sentinel-3B spacecrafts. In this true colour picture the Western
Adriatic Coastal Current (WACC) is clearly visible, by means of its suspended sediment load, which is
transported along the coast. The sediment laden plume originates from river inputs at the northwest
sector of the sub-basin [8] and receives the contribution of other small rivers in the central part.
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Sediment dynamics does not reduce to the settling of the sediment suspended in the coastal plume [16].
Longshore sediment transport in the littoral and coastal plume systems are the main cause of the
sediment load distribution along the coast, without, or with a limited, net sediment offshore export.
The redistribution of the sediment load over the entire inner shelf is instead caused by the action of
meteorological events, varying currents and wind waves, which resuspend and transport sediments in
deeper water.

The link between the sediment dynamics and the most general model for morphodynamics is
provided by the Exner equation. Exner [17,18] proposed that the change in time of the local elevation
η(x, t) of the bed of a river or channel is proportional to the spatial rate of change of the average flow
velocity:

∂η

∂t
= −A

∂v
∂x

(1)

In the text describing the equation, Exner explained that he intended the flow velocity v as a proxy
for the sediment flux [19].

Thus, the Exner equation, in its general formulation, is now written as a classical conservation law:

∂η

∂t
= − 1

ε0
∇ ·�qs (2)

that relates the seabed elevation (η), relative to a fixed datum, with the sediment that is transported by
water (�qs is the sediment flux). The bed elevation increases ( ∂η

∂t > 0) proportionally to the sediment
that is dropping out of the transport (negative sediment flux divergence, ∇ ·�qs < 0). Conversely, the
bed elevation decreases proportionally to the sediment that becomes entrained by the flow (positive
sediment flux divergence, ∇ ·�qs > 0). The proportionality factor is the inverse of the grain packing
density, ε0.

Paola and Voller [19] provided a complete generalisation of the Exner equation to address several
different processes over a wide array of temporal scales.

Equation (2) can be related to coastal geomorphology and, in particular, to sediment availability
along the inner shelf, since a positive divergence of sediment flux suggests sediment erosion, while
a negative divergence suggests sediment deposition. Figure 2 sketches a simplified geometry that
can be adopted to represent the seabed near the shoreline. The x-axis is usually taken parallel to the
shoreline itself, and it is possibly a curvilinear coordinate, while the y-axis is usually taken seaward,
orthogonal to the shoreline. The z-axis is usually the vertical, with the positive direction pointing
up and the zero value at the sea surface. The seabed height η is clearly indicated. ρ represents the
sediment concentration in the water.

The practical application of the Exener equation (Equation (2)) relies on a proper estimation
of the sediment flux �qs. At local scale, sediment dynamics is primarily dominated by waves
and wave-induced currents, especially during strong meteorological events. Several empirical or
semi-empirical relations have been proposed to correlate the sediment flux to the wave field parameters
and to the sediment grain size [20–23]. All these approaches, however, when considering time scales
longer than the single meteorological event, lead to considering only a prevalent wave field, or a small
set of prevalent wave fields that could happen in the time frame under investigation. While they are
able to produce good estimations of erosion vs. deposition in local spatial and temporal scales, or to
stable vs. unstable shoreline profiles, they are usually not applied to wider scales.

The scope of our work, instead, is to investigate the sediment dynamics at larger spatial
and temporal scales, by analysing coastal sediment plumes and coastal currents with a synergic
approach, combining observational data with numerical modelling. Marine coastal currents are
strongly influenced by the input of fresh waters, tides, topographic features and winds. Moreover,
hydrodynamics typically observed in coastal areas involves processes interacting on a wide range
of spatial and temporal scales. In our work, we make use of a suitable numerical run that is able to
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capture the coastal processes, such as buoyant plume formation and propagation, as well as associated
coastal upwelling and downwelling [24] .

Figure 2. Schematic representation of the seabed geometry: ρ represents the sediment concentration
in water; D represents the “closure depth”, i.e., the maximum depth at which the waves are able
to generate sediment resuspension from the seabed; and η represents the seabed height, relative to
a fixed datum.

We envisage the need to move from an empirical to an observational approach, and thus we look
for alternative estimations of the sediment flux. As a general statement, the flux of sediment in the
water, can be expressed in terms of the suspended sediment concentration in the water ρ and the water
velocity �u:

�q3D = ρ�u (3)

As better explained in Section 2, optical observations are able to estimate physical, chemical
and biological properties of the water. IOPs (Inherent Optical Properties), AOPs (Apparent Optical
Properties) and water constituents can be retrieved by means of proven algorithms from remote
sensing observations in the visible and in the near-infrared spectrum. The concentration of suspended
matter is one the water constituent that can be retrieved from such observations [25–27]. Spaceborne
sensors are one of the most important sources of optical observations, due to their great temporal and
spatial coverage.

It is then natural to plug the remotely-sensed TSM (Total Suspended Matter) as the sediment
concentration ρ in Equation (3). In the same way, a water velocity field derived from an oceanographic
model can be plugged as the velocity �u in Equation (3).

2. Materials and Methods

To show the feasibility of our approach, we need to combine a remotely sensed sediment
concentration field with a velocity field from an oceanographic model to obtain a sediment flux
to feed in the Exner equation (Equation (2)) and thus estimate the sediment erosion and deposition
processes (i.e., the temporal evolution of the seabed height η). The data sources we chose for our first
experiments are:

• for the TSM fields, the ESA Coastcolour project [28]; and
• for the velocity field, a MITgcm (Massachusetts Institute of Technology General Circulation

Model [29])-based model for the Adriatic Sea, run by ENEA-ISMAR
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The reasons for such a choice were the quality and the ready availability of these two datasets.
As better explained in the following paragraphs, these two datasets overlap for a small time window.
Actually the model availability time frame (just four months) almost entirely lies within the ESA
Coastcolour project time frame (nine years).

2.1. Remote Sensing Data

The Coastcolour project [28], launched by ESA to fully exploit the potential of the MERIS
instrument, provides us a complete (from 4 January 2003 to 7 April 2012, when the mission ended)
series of ocean optics observation of a set of basins where the presence of Case 2, optically complex
waters is important. The whole Mediterranean, and thus the Adriatic Sea, is among these basins.
The Coastcolour project provides three levels of products:

• The Level 1P product (L1P) provides top of atmosphere radiance, with geolocation, equalisation
to reduce coherent noise, smile correction, pixel characterisation information (cloud, snow, etc.)
and a precise coastline.

• The Level 2R (L2R) product is the result of a neural network based atmospheric correction, which
is applicable for a large range of water type, from clear to extreme scattering waters; it contains
water leaving reflectance, normalised water leaving reflectance and different information about
atmospheric properties.

• The Level 2W (L2W) product provides information about water properties such as IOPs (Inherent
Optical Properties) and water constituent concentrations.

Among the water constituent concentrations provided by L2W product, there is the concentration
of the Total Suspended Matter variable (conc_tsm) that we use as an estimation of the sediment
concentration in water, ρ. As per the “Validation Report” from the “Publication” section of the
Coastcolour website [28], the correlation coefficient and the coefficient of determination (R2) of the
(conc_tsm) versus the in-situ validation dataset ([30]) are, respectively, 0.831 and 0.691. Refer to the
“Publication” section of the Coastcolour website [28] for the complete documentation on the algorithms
and on the validation processes that have been used to create and validate all the Coastcolour products.

2.2. Numerical Model Outputs

In this work we make use of a MITgcm run that has been setup to investigate coastal upwelling and
downwelling processes in the Adriatic Sea during a strong dense water event that occurred in winter
2012 [24]. The model domain, which covers the entire Adriatic Sea, is discretised by a non-uniform
curvilinear orthogonal grid of 432 × 1296 points, with 100 vertical levels. This grid has a variable
resolution, ranging from less than 500 m in the nearshore area up to 1000–2000 m offshore. Furthermore,
it is orthogonal, or almost orthogonal, to most of the coastline. Regarding the vertical resolution,
the grid has 100 vertical z levels with a thickness of 1 m in the upper 23 m gradually increasing to
a maximum of 17 m for the remaining 64 levels.

The model simulations started at the beginning of December 2011 and finished at the end of April
2012. Simulated fields and diagnostic were produced every three simulated hours. The bathymetry
used by MITgcm is provided by the National Group of Operational Oceanography (GNOO; http:
//gnoo.bo.ingv.it/bathymetry/). As in [31,32], an implicit linear formulation of the free surface is
used. The river runoff was considered explicitly and modelled as a lateral open-boundary condition.
Rivers were included by introducing small channels in the bathymetry that simulate the river bed close
to the coast. Velocity was imposed at the upstream end of each channel, with the prescribed discharge
rate being obtained by multiplying the velocity by the cross sectional area of the channel. No flux
conditions for either momentum or tracers and no slip conditions for momentum were imposed at the
solid boundaries. Bottom drag was expressed as a quadratic function of the mean flow in the bottom
layer. The net transport through the southern open boundary was corrected during run-time at each
time step to balance the effects of river discharge and of the evaporation minus precipitation budget on

379



Remote Sens. 2019, 11, 2636

the surface level. This solution prevented any unrealistic drift in the sea surface elevation. Tides were
imposed as a barotropic velocity at the southern boundary. At the surface, the wind drag coefficient
was computed following the default MITgcm formulation:

Cd =
0.0027

U10
+ 0.000142 + 0.0000764 · U10 (4)

where U10 is the wind speed at 10 m. The wind speed and direction, together with the other surface
forcings (air temperature, relative humidity, and cloud cover), were provided by means of hourly
meteorological forecasts from the MOLOCH (MOdello LOCale in H coordinates) model, developed
and run at the ISAC (Institute of Atmospheric Sciences and Climate—National Research Council) CNR,
Bologna, Italy [33–35]. The numerical run was finally validated by using time series of surface and
bottom temperature as well as surface salinity from the VIDA buoy [24]. Refer to McKiver et al. [24]
for the full description of the model set-up, the experiments and their validation. The model has been
geared to investigate coastal processes, and the MITgcm capabilities in capturing them. This feature
and its horizontal resolution that, near the shore, is comparable with the Coastcolour TSM field, are the
key advantage of this model in our study. Other models and other velocity fields (e.g., from reanalysis
products) we tested did not provide meaningful divergence fields. Hereafter, we call Winter2012 this
model run as well as its grid.

2.3. Combining Marine Currents and TSM Upstream Data

As aforesaid, these two datasets (i.e., Coastcolour TSM satellite product and the Winter2012
MITgcm run for marine currents) overlap for only a four-month time window; however we considered
this sufficient to test our approach. The TSM concentration field ρ from the satellite data is inherently
bidimensional, while the velocity field �u from the model is tridimensional. We have to consider this
aspect when formulating our sediment flux: �qs = ρ�u. Furthermore, the two datasets are referred to
two different spatial grids as well as to two different temporal grids.

Time-wise, the model data are available every 3 h while the satellite data are available with
a variable period, roughly close to 24 h, depending on the satellite overflying times. We chose to pick
one single model result per day, i.e., the closest to the satellite observation. In this way, we used the
coarsest temporal resolution between the two datasets, thus we could avoid temporal interpolations of
any sort. We therefore remapped the model time-grid to the satellite time-grid.

Space-wise, on the other hand, we remapped the satellite data on the model grid.
In both cases, the remapping of the data from one grid to another was performed with

a “nearest-point” algorithm. “Nearest-point” algorithms are computationally efficient and correctly
handle the quantities that need to be conserved. To remap the data from one spatial grid to another we
used the pyresample package, which is part of the PyTroll suite [36].

Dimension-wise, we wanted to converge to a 2D approach: the formulation of our problem is
indeed bi-dimensional. We therefore assumed that the sediment concentration is constant along the
water column, and identical to the value provided by the Coastcolour product, i.e.,

ρ(x, y, z) = ρ(x, y) = conc_tsm(x, y) (5)

This is justified by the fact that the north- and central-west Adriatic shelf is very shallow
(i.e., 5–20 m depth) and the water column depth is comparable with optical penetration depth. Thus,
we define the 3D sediment flux vector as:

�q3D = ρ(x, y, z)�u (6)

with �u:
�u = (u, v, w)
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A 2D sediment flux can, therefore, be defined as:

�qs =
∫ 0

b(x,y)
�q3D dz (7)

where b(x, y) is the bathymetry of point (x, y). The bathymetry used in this study is the EMODnet
Digital Bathymetry (DTM) [37], which provides the water depth (referring to the Lowest Astronomical
Tide Datum, LAT) in gridded form on a DTM grid of 1/8 × 1/8 arc minute of longitude and latitude
(ca. 230 × 230 m).

From now on, our�qs is a bi-dimensional sediment flux and all the considerations and computations
we produced are on the bi-dimensional space of the sea (earth) surface. The horizontal divergence of
the sediment flux is simply defined as:

∇H ·�qs =

(
∂

∂x
,

∂

∂y

)
· (qsx, qsy

)
=

∂qsx

∂x
+

∂qsy

∂y
(8)

Its vertical component is zero:

qsz =
∫ 0

b(x,y)
ρw dz = ρ

∫ 0

b(x,y)
w dz ≈ 0 (9)

or negligible with respect to the other components because, for the timescale we dealt with (3 or 24 h
time-steps), we can safely assume that the sea surface displacement (

∫ 0
b w dz) averages to zero in the

time step. Of course, we also neglected the vertical currents and the vertical transport of the sediment.
Our horizontal divergence term ∇H ·�qs actually takes into account the settling and re-suspension
of the sediment besides its transport by the water velocity. The approximation in Equation (9) we
made on vertical transport refers only to sediment transport by water velocity, not to sediment motion
due to gravity and waves. As we have density measurements only from the satellite, thus inherently
bidimensional, and we applied the approximation in Equation (9), the divergence ∇H ·�qs we estimated
is actually the sum of the seventh and the eighth terms of Equation 17b of Paola and Voller [19]:

∇H ·�qs =
∂

∂t

∫ η+h f

η
α f dz +∇H�Φ f (10)

where η is the seabed height, h f is the sea bathymetry, α f is the density of the sediment laden seawater,
and Φ f is the line flux, i.e., the bi-dimensional, vertically integrated, flux.

The model data are available in an Arakawa-C grid, with vector quantities, i.e., meridional and
zonal components of the velocity, located on the edges of the cell, while the scalar quantities and the
vertical component of the velocity are located inside the cell (Figure 3).

On the other hand, the Level-2 MERIS data are available on a swath-based grid. To harmonise
all the quantities, we projected the ρ concentration field on all three different grids: the grid of the
u-points, on the “west” and “east” edges of the cells; the grid of the v-points, on the “north” and “south”
edges of the cells; and the grid of the w-points, in the centres of the cells. The vertical component of
the velocity (w) is considered by the model as one of the scalar quantities, such as temperature, salinity
and elevation.

The computation of the x and y components of the 2D sediment flux, i.e., the vertical integrals

qsx =
∫ 0

b(x,y)
ρu dz

qsy =
∫ 0

b(x,y)
ρv dz
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were performed on the cells’ edges, by means of a simple trapezoidal rule, on every point (x, y) of the
horizontal grid:

qsx =
∫ 0

b(x,y)
ρu dz = ρ

∫ 0

b(x,y)
u dz ≈ −ρ

N−1

∑
k=0

u(zk+1) + u(zk)

2
(zk+1 − zk)

qsy =
∫ 0

b(x,y)
ρv dz = ρ

∫ 0

b(x,y)
v dz ≈ −ρ

N−1

∑
k=0

v(zk+1) + v(zk)

2
(zk+1 − zk)

(11)

where N = 100 is the number of vertical levels of the grid. The minus sign is because k = 0 means the
surface, thus we integrated from surface downwards.

We now have a 2D sediment flux, whose components were computed on the cells’ edges: the
zonal component on the u-points and the meridional component on the v-points.

Figure 3. Grid detail: cell and edge points.

According to Hyman et al. [38], to approximate the divergence of the sediment flux, we used
a local version of the divergence theorem, applied at every single cell of the grid:
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(
∇H ·�qs

)
ij
=

1
Aij

∫
Ωij

∇H ·�qs dΩ =
1

Aij

∫
∂Ωij

�qs ·�n dl (12)

where Ωij is the ij 2D cell, Aij is its area, ∂Ωij is its frontier, and�qs is the 2D sediment flux.
According to Figure 4, we call Pij = (ξij, ψij) the southern-most vertex of the ij cell, and ξij and

ψij its longitude and its latitude.
Let us call also

Δξij =
∥∥Pi+1,j − Pij

∥∥
Δψij =

∥∥Pi,j+1 − Pij
∥∥ (13)

the length of the edges of cell ij, again as depicted in Figure 4.

Figure 4. Geometry of ij cell.

Let us call αij the angle between the edge PijPi+1,j and the parallel passing by Pij and βij the angle
between the edge PijPi,j+1 and the meridian passing by Pij

The area of the cell Aij can be calculated by:

Aij = ΔξijΔψij sin
(
P̂ij

)
= ΔξijΔψij cos(αij − βij) (14)

where P̂ij is the angle in Pij between the segments PijPi+1,j and PijPi,j+1 . The Winter2012 grid is
non-uniform and curvilinear but locally orthogonal, thus αij = βij, but in general this may not be
the case.

The flux across the border of the ij cell can be decomposed in the four fluxes across the four
different edges of the cell. As the edges of the cells are not parallel to meridians and parallels, we
have to take into account both components of the velocity field on any edge. Thus, to compute the
divergence we rewrite Equation (12) as:
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Aij ·
(
∇H ·�qs

)
ij
= ΔξijΔψij cos(αij − βij)

(
∇H ·�qs

)
ij
=

=
∫

∂Ωij

�qs ·�n dl =

=+ (−uij cos βij − vij sin βij)ρ
(u)
ij Δψij+

+ (−vij cos αij + uij sin αij)ρ
(v)
ij Δξij+

+ (ui+1,j cos βi+1,j + vi+1,j sin βi+1,j)ρ
(u)
i+1,jΔψi+1,j+

+ (vi,j+1 cos αi,j+1 − ui,j+1 sin αi,j+1)ρ
(v)
i,j+1Δξi+1,j

(15)

where ρ
(u)
ij and ρ

(v)
ij are the projection of the tsm_conc field on the u-point and on the v-point,

respectively, of cell ij; and and uij and vij are the bi-dimensional velocities, i.e., the vertically integrated
velocities computed in Equation (11), again for cell ij:

uij = −
N−1

∑
k=0

ui,j,k+1 + uijk

2
(zk+1 − zk)

vij = −
N−1

∑
k=0

vi,j,k+1 + vijk

2
(zk+1 − zk)

(16)

The whole computation is than arranged as per the following flow:

• Vompute ξij and ψij, coordinates of the vertexes Pij of the cells.
• Compute angles αij and βij.
• Start a DAILY cycle: at each day compute uij and vij according to Equation (16) and then compute

the flux divergence
(
∇H ·�qs

)
ij

according to Equation (15).

• Compute temporal average of the flux divergence
(
∇H ·�qs

)
ij

.

3. Results and Discussion

By using a sediment mass balance approach (i.e. the Exner equation, Equation (2)), and thus, by
mapping the divergence of the sediment flux, we intend to recognise those zones that are characterised
by sediment deposition or erosion. All this does not depend on the specific grain-size (i.e., settling
velocity) of the suspended sediment. That is, if a sediment laden pixel does not conserve its sediment
concentration along its motion (regardless its grain-size), this necessarily means that some sediment has
been lost or gained. In Figure 5, we show the average, over the whole time frame under investigation
(four months, from 6 December 2011 to 7 April 2012), of our input fields: the satellite TSM (Total
Suspended Matter) concentration field and the surface velocity field. The Western Adriatic Coastal
Current (WACC) is clearly visible along the Italian shoreline, from both the TSM and the velocity
patterns.

We notice that the TSM satellite product, for the study period, highlights the riverine input along
the northern Adriatic coast (see Figure 5a), which significantly contributes in driving a southeastward
current along the Italian coast. In particular, Figure 5a shows that the Po, along with all the other
North Adriatic river inputs, produces an almost single river plume, contributing 84% of the total
freshwater discharge delivered to the basin [39,40]. We recognise the presence of mid-to-high TSM
concentration waters, in the entire northern basin and, partly, in the middle part of the Adriatic Sea.
For the cold period we analysed, high TSM values are also recorded at the exit to the Ionian Sea,
through the Otranto Strait [7]. Finally, we remark that the spatial distribution of optically complex
waters, marked by high turbidity parameters such as TSM or a diffusion attenuation coefficient, closely
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matches slow-settling particle deposition patterns of the Adriatic Sea [7], and thus highlights zones
that are affected by sedimentary processes.

(a) Four-month TSM average (b) Four-month surface velocity average

Figure 5. Source data: Four-month averages (from 6 December 2011 to 7 April 2012) of surface TSM
concentration (a) and surface velocity field (b).

Accordingly, the highly resolved marine currents, provided by the MITgcm numerical outputs,
show the correct alongshore momentum (Figure 5b), where the inclusion of lateral freshwater inputs
affects the capability to reproduce buoyant processes in the coastal area. The model output confirms,
for the winter season, a basin-wide cyclonic circulation with a strong southward currents along the
Italian Peninsula on the western side (i.e., the WACC). Such a geostrophic pattern is known to be due
to the estuarine circulation [41], forced by river inputs, mainly the Po River, and by strong air–sea
fluxes. In particular, the Po River input results in a wide extension of surface freshwater, particularly
evident along the northern littoral of the basin [24]. Between the Po River mouth and the Conero
Promontory (Figure 5b), the WACC width is about 40 km and its maximum speed reaches 0.25 m s−1.
This well-recognisable, southeastward current along the Italian coast (i.e., the WACC), overlays the
TSM pattern, providing a comforting agreement between the satellite and the numerical upstream
data. Moreover, for the study period, the effect of surface wind stress (i.e., the Bora event recorded
from 25 January to 14 February 2012) led to a more confined strip of freshwater [24].

On the western Adriatic coast, Bora is a downwelling favourable wind and can generate large
waves with significant wave heights of 1 m, and period of 5 s [42]. Wave-driven sediment resuspension
is an important resuspension mechanism in the shallow coastal areas of the NAS [43], and contributes
significantly to the complexity of the sediment distribution and flux features in the region. Therefore,
waves should not be neglected in the study of dynamics of sediment transport and resuspension in the
shallow coastal seas. However, the fact that the hydrologic model we used does not include waves
did not affect our ability to estimate suspended sediment concentration, which is directly retrieved
from satellite, regardless of the mechanism that keep the sediment in suspension. Moreover, sediment
transport is known to be insensitive to the angle between directions of wave propagation and current
in the NAS, where large waves were generated by the Bora storm for strong wave conditions [44,45].
This suggests that wave-induced currents, not included in the MITgcm runs, have no significant effect
on the southward sediment flux along the western Adriatic coast. Finally, it is worth mentioning
that the effect of mixing due to wave breaking on sediment distribution and fluxes in the NAS is not
significant since the water column is well mixed due to strong current shear driven by the Bora winds
and shallow water depth [45].
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In Figure 6, from Figure 6a to Figure 6d, on the other hand, we show the sediment flux divergence
fields obtained with the methodology introduced in Section 2.3. For an easier readability of the
computed maps, monthly averages are shown, i.e., one map for each of the months under investigation:
December 2011, January 2012, February 2012 and March 2012. From Equation (2), a pixel (a cell) with
positive divergence (a yellow or a red pixel) means a sediment erosion point, or, more correctly, a point
where we have sediment from the bottom layer entrained into the water flow. Conversely a pixel (a
cell) with negative divergence (a blue or light blue pixel) means a sediment deposition point, or a point
where suspended sediment is precipitating on the bottom layer.

(a) December 2011 (b) January 2012

(c) February 2012 (d) March 2012

Figure 6. Monthly averages of sediment flux divergence: (a) December 2011; (b) January 2012;
(c) February 2012; and (d) March 2012.

A long-time scale persistence of erosive or depositional pattern along the coastal plume can be
related to sediment starvation or sediment availability over the inner shelf (Figure 6). Indeed, for
the time frame under observation, we found a persistent sediment erosion condition along the coast
traits between the Po river delta and the Conero promontory and between the Conero and Gargano
rocky promontories (Figure 6). This, in general, is in agreement with the overall shoreline retrograding
shape reported by ISPRA [46] and ISPRA [47], found in [48]. On the other hand, there are depositional
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patterns in the Gulf of Manfredonia, likely due to recirculation of the southern Adriatic currents
around the Gargano promontory, as depicted in [49,50]. The Po river delta shows depositional and
erosive behaviours, depending on the season. In this area, the availability of long time series of both
observation and model data would help identify the predominant long-term behaviour.

A further confirmation of our results can be obtained from the knowledge of the subaqueous
clinoform anatomy [51]. In particular, we can use our computed divergence patterns as a proxy for
the thickness of subaqueous clinoform: clinoform thicknesses are expected to decrease within our
computed erosional zones and to increase where we estimate sediment deposition. According to
Correggiari et al. [51] (see Figure 2 in [51], reported also in [12,45]), we infer that our depositional
areas, e.g., south of the Po River delta and south of the Gargano promontory, correspond to those areas
where the highest clinoform thickness is observed to be attached to the shoreline.

Finally, we remark that, in the Adriatic Sea, the majority of horizontal structures that are
observed in the coastal zone are characterised by Rossby and Richardson numbers of around 1
(sub-mesoscale), representing areas where vertical fluxes and buoyancy are enhanced [52]. In such
a complex environment, sudden changes in the wind forcing can trigger strong hydrodynamic events,
such as the formation of dense water (DW) and wind driven upwelling. In the model we used,
the direct effect of wind forcing is assimilated in order to reproduce DW formation events [24] as
well as a number of small scale features that show high horizontal variability of vertical processes.
This proves that the high resolution of MITgcm allows for the reproduction of more small scale vortical
structures, identifying a wider spatial range of processes. Therefore, pairing high resolution TSM fields
from remote sensing with the MITgcm outputs, which well represent submesoscale processes, made
us confident in capturing coastal sediment transport dynamics.

As already pointed out, waves play a major role in sediment suspension and resuspension (see [45]
for a study on the Adriatic sea). While MITgcm based simulations do not include waves, their effect in
sediment suspension is taken into account in the observation dataset, i.e., in the satellite provided TSM
maps. The availability of such dataset, furthermore, allows us to avoid the execution of a sediment
dynamics model. The goal of our work is to investigate the feasibility of an operative product that,
with a low computational effort, can represent the sediment dynamics at basin or regional spatial
scales, and at decadal time scales. The observational-numerical approach we propose, at these spatial
and temporal scales, with these spatial and temporal resolutions, appears quite adequate to fulfil
this objective.

4. Conclusions

This work proposes a new approach to investigate the sediment erosive and depositional patterns
that occur at regional or basin scale, and that are driven by mesoscale and sub-mesoscale processes,
such as coastal currents and fluvial plumes. Our approach is based on a synergy between satellite
observations and numerical simulations. The computed maps of the sediment flux divergence show
patterns of sediment erosion and deposition that are in agreement with the general knowledge of the
sediment dynamics and coastal geomorphology in the Adriatic Sea.

The main agents in the sediment distribution on the shore, and the subsequent morphodynamics,
are waves and wave-induced currents. However, the daily Total Suspended Matter as retrieved
from Ocean Colour remote sensing is able to capture the material resuspended by a large variety of
phenomena (including wave-induced resuspension). We therefore believe that the divergence of the
sediment flux, estimated from the synergy of remote sensing and high resolution horizontal marine
currents, is able to highlight both depositional and erosive areas resulting from mass conservation, i.e.,
those pixel where we can expect sediment deposition/erosion over the continental shelf, regardless of
what caused its deposition or entrainment.

Our investigation was limited by the short intersection of the two time domains: the Coastcolour
project time domain (from 4 January 2003 to 7 April 2012) and the Winter2012 model run time domain
(from 6 December 2011 to 30 April 2012). The short duration of this intersection (i.e., four months) did
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not allow us to provide statistical analyses and further validation of our results. However, the use of
the two upstream datasets, as well as the remapping and interpolation schemes, resulted to be suitable
tools for the detection of realistic depositional or erosive spatial patterns, which were confirmed by the
authors of [12,49,50]. We finally remark that the goal of our work is to provide a potential operative
product that might be suitable for long-term analyses and monitoring programmes.

A longer, multi-year duration would allow one to extract trend analysis that could be matched
with the long time series of in-situ information on the Adriatic shoreline. This time series of in-situ
information is the “ground truth” that can validate and tell the accuracy of the methodology that has
been introduced.

In envisioning a longer time frame, a suitable observational part (i.e., spaceborne remotely
sensed data) can be represented by the 2002–2012 and 2016-onward TSM time series from either
Coastcolour [28] or OLCI [53], with daily time resolution and 300-m spatial resolution. A further
application of our approach could also be the design and use of ad hoc models, which could assimilate
the sediment concentration from the satellite measurements, as done by Stroud et al. [15] for Lake
Michigan, and that directly output the divergence field.

Finally, it would be promising to consider the assimilation of two other kinds of spaceborne
sensors: geostationary satellite and hyperspectral missions. Geostationary sensors such as
SEVIRI–Meteosat [54] and their successors show a very high temporal resolution (15 min–1 h), at the
expenses of a very coarse spatial resolution, e.g., 4 km × 6 km at our latitudes). On the contrary,
hyper-spectral missions (PRISMA [55] and EnMAP [56]) show coarser temporal resolution, but much
finer spatial and spectral resolutions. The high temporal resolution of geostationary satellites can
enhance the near daily temporal resolution of Low Earth Orbit satellites and mitigate the presence
of cloud coverage, while the high spectral resolution of hyperspectral sensors can give insight on the
chemical composition of the sediment as well as on its size distribution.
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Abbreviations

η sea-bed, river-bed or channel-bed elevation (m)
ε0 grain packing density of the sediment
D depth of closure (m)
�qs Sediment flux, be-dimensional (g m−1 s−1)
�q3D Sediment flux, three-dimensional (g m−2 s−1)
∇H bi-dimensional version of the Nabla operator, ( ∂

∂x , ∂
∂y )

�u velocity field (m s−1)
u zonal velocity component (m s−1)
v meridional velocity component (m s−1)
w vertical velocity component (m s−1)
x alongshore coordinate, or longitude (m)
y cross-shore coordinate, or latitude (m)
z vertical coordinate (m)
ρ sediment concentration in water ( g m−3)
b bathymetry, negative under sea surface (m)

ξij longitude of gridpoint ij (m)
ψij latitude of gridpoint ij (m)
αij angle between south edge of cell ij and parallel
βij angle between west edge of cell ij and meridian

Δξij length of the south edge of cell ij (m)
Δψij length of the west edge of cell ij (m)
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Abstract: Satellite estimation of oceanic chlorophyll-a content has enabled characterization
of global phytoplankton stocks, but the quality of retrieval for many ocean color products
(including chlorophyll-a) degrades with increasing phytoplankton biomass in eutrophic waters.
Quality control of ocean color products is achieved primarily through the application of masks based
on standard thresholds designed to identify suspect or low-quality retrievals. This study compares
the masked and unmasked fractions of ocean color datasets from two Eastern Boundary Current
upwelling ecosystems (the California and Benguela Current Systems) using satellite proxies for
phytoplankton biomass that are applicable to satellite imagery without correction for atmospheric
aerosols. Evaluation of the differences between the masked and unmasked fractions indicates
that high biomass observations are preferentially masked in National Aeronautics and Space
Administration (NASA) ocean color datasets as a result of decreased retrieval quality for waters with
high concentrations of phytoplankton. This study tests whether dataset modification persists into
the default composite data tier commonly disseminated to science end users. Further, this study
suggests that statistics describing a dataset’s masked fraction can be helpful in assessing the quality
of a composite dataset and in determining the extent to which retrieval quality is linked to biological
processes in a given study region.

Keywords: phytoplankton remote sensing; coastal ocean; red tides; black pixel assumption;
atmospheric correction

1. Introduction

Ocean color remote sensing has greatly improved our ability to monitor global scale biological
processes of ocean systems [1,2] but the potential for conventional satellite ocean color tools to
characterize coastal ecosystems is limited by the assumptions used in various algorithms, for example
that diverse phytoplankton communities match global bio-optical relationships [3] or that backscattered
light from particles does not interfere with atmospheric correction [4]. Although these assumptions are
often not valid for coastal waters [5], satellite assessment of coastal marine ecosystems is an area of
intense focus in part because of reported increases in the frequency of coastal phytoplankton blooms
considered harmful to humans and wildlife [6–10]. Fundamental challenges for ocean color remote
sensing of coastal marine ecosystems arise from the increased complexity of water constituents, as
well as the entanglement of atmospheric and oceanic signals. Overcoming these difficulties motivates
next-generation ocean color satellite missions, with the aim to characterize oceanic ecosystems
spanning oligotrophic to eutrophic waters, for example through increasing spectral resolution to
resolve variability in phytoplankton pigmentation [11] and through increasing spectral range to
discern the effects of absorbing aerosols and colored dissolved organic matter and to improve aerosol
characterization [12]. Nonetheless, data from existing satellite platforms is presently required to
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assess coastal marine ecosystems. When next-generation sensing platforms become operational,
interpreting legacy measurements of coastal waters will still be necessary in order to construct and
interpret climate-quality data records and will require methods to detect regional bias of legacy
retrievals [13–15]. For coastal targets, constructing climate-quality datasets will require an approach to
maintain atmospheric correction efficacy across variable phytoplankton concentrations.

Conventional approaches for atmospheric correction of ocean color satellite imagery take advantage
of the strong light absorption by water at longer wavelengths, for example, in the near-infrared
(NIR), to estimate that the water-leaving radiance (LW) in the NIR (LW(NIR)) is negligible [16].
Thus, after removal of glint and white capping effects, the derived top-of-atmosphere (TOA) radiance
in the NIR (LTOA(NIR)) is attributed to the atmospheric contributions by Rayleigh scattering, aerosol
scattering and multiple interactions between Rayleigh and aerosol scattering [17], allowing a solution
to discern aerosol thickness.

The approximation that LW(NIR) is zero, termed the “Black Pixel Assumption” [4], is often
incorrect, frequently so in coastal waters where high near-surface particle loads (organic or inorganic)
can strongly backscatter light, such that the LW(NIR) domain is appreciably non-zero. Because
LTOA(NIR) is attributed to atmospheric constituents, LW(NIR) contributions cause overestimation of
backscattering by atmospheric aerosols and thus result in incorrect (often negative) derivation of LW in
the visible domain (LW(VIS)), particularly in the blue bands used for, among others, chlorophyll-a
derivation [18]. As a result, atmospheric correction is more problematic for water masses with high
particle loads, including of phytoplankton cells and high biomass pixels are frequently removed during
quality control processing of satellite datasets (Figure 1).

Figure 1. MODIS Aqua imagery of phytoplankton blooms obtained on October 26th, 2016 in Monterey
Bay, California (upper) and September 27th, 2011 near Cape Columbine, Western Cape (lower).
(a) Pseudo-true color images with clouds masked in grey; (b) Red band difference (RBD) algorithm
(a proxy for phytoplankton biomass) with clouds masked in grey; (c) RBD algorithm with clouds and
suspect atmospheric correction (defined as maximum aerosol iterations reached and low water-leaving
radiances) masked in grey.
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Alternate atmospheric correction methods have been developed with the goal of improving LW(VIS)
retrieval in coastal waters, for example by estimating aerosol contributions from longer (short-wave
infrared) bands [19], by assuming stable NIR reflectance ratios within a scene [20] or by neural network
determination of atmospheric contribution [21]. Alternate methods for atmospheric correction of
coastal imagery have generally improved performance of nearshore ocean color retrievals compared
with the conventional (NIR-based) methodology [22], although users still must decide when use of
these methods is preferable given tradeoffs of noisy wavebands, non-analytical solutions and increased
difficulty in obtaining alternate processing for National Aeronautics and Space Administration (NASA)
imagery. Another potential reason for usage of default NIR aerosol corrected imagery, evaluated in
detail within this work, is that the alteration of satellite dataset distributions by atmospheric correction
errors may be obscured by the default quality control masks applied to composited imagery.

Quality control of NASA ocean color imagery is achieved in part through flag assignments that
trigger masking or removal of individual pixels which do not satisfy pre-defined thresholds. Increasingly
rigorous flag criteria are applied to mask observations from sequential data tiers, based on the quality
requirements of the tier’s expected end-users. Pixels within atmospherically-corrected imagery (level 2
data tier, L2) are masked by default when the derivation of meaningful products is severely inhibited,
for example when the sensor is viewing land or clouds or when the sensor saturates. L2 datasets
contain shifting pixel coordinates, frequent data gaps (i.e., from clouds) and large file sizes inconvenient
for users requiring continuous or less computationally expensive products [23]. To satisfy these user
needs, statistical composites of geophysical variables binned in space and time (level 3 data tier, L3) are
provided by the NASA Ocean Biology Processing Group (OBPG) and are valuable to users beyond the
ocean color community, for example as inputs into biogeochemical models. In order to provide higher
quality composites for a larger end-user community, the default masks applied during L3 processing
are more rigorous than during L2 processing, for example removing observations flagged for likely or
known errors in atmospheric correction. Spatial distortions may also arise during compositing and
although not evaluated here, are likewise relevant to L3 end-users [24].

In this study, we compare estimates of phytoplankton biomass obtained without aerosol correction
for observations that satisfy (versus fail) standard quality control thresholds for two Eastern Boundary
Current (EBC) ecosystems. Characterization of the changes that occur from removing portions
of satellite datasets enables assessment of whether quality control methodology alters satellite
perspectives of biology in coastal ecosystems. We assess whether observations that satisfy quality
control methods—hereafter the masked fraction—provide an unbiased perspective of phytoplankton
biomass in coastal ecosystems and we provide examples for L3 end-users to consider when determining
whether use of standard composite products may be reasonable for a specific study region.

2. Materials and Methods

2.1. Site Selection:

The mid-latitude eastern margins (or EBCs) of the world’s oceans are regions of heightened
biological primary production due to coastal upwelling or the wind-driven transport of nutrient-rich
subsurface waters to the illuminated surface layer. Heightened nutrient availability, coupled with the
persistence of seed stocks from the shelf and from retention in the lee of headlands, support high
phytoplankton concentrations that periodically form blooms, some of which may be harmful to humans
and wildlife [7,25].

Here we consider EBC ecosystems of Monterey Bay (MB), California, USA and St. Helena Bay
(SHB), Western Cape, South Africa. MB is within a marine sanctuary and is partially sheltered from
the predominant alongshore winds of the central California Current System (CCS) by coastline
geometry. Phytoplankton in the region follow a distinct climatology, with spring onset of
upwelling-favorable winds supporting diatom-rich phytoplankton blooms, followed by a mid-summer
reduction in phytoplankton associated with rapid advection to offshore waters [26]. Fall relaxation
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of upwelling-favorable winds and the resulting increased vertical stratification of the surface layer
facilitates a community shift towards dinoflagellates, which periodically form dense red tides with
concentrations that may reach or exceed those of spring diatom blooms [25].

SHB is an upwelling ecosystem in the lee of Cape Columbine within the southern Benguela Current
System (BCS). The region’s proximity to the Cape Peninsula upwelling cell, coupled with shelter from the
lee and a widened shelf, provides high nutrient loads in a relatively stable environment, which support
persistently high phytoplankton production [27]. In addition, sea surface temperature is relatively
high within SHB compared with other EBCs, allowing elevated phytoplankton populations to persist
throughout all seasons [28]. As with MB, phytoplankton succession in the southern BCS, including
within SHB, is dictated by the intensification and relaxation of alongshore winds, with characteristic
diatom and dinoflagellate regimes dominating in the spring and fall, respectively [29].

2.2. Atmospheric Dataset:

Climatological datasets for Ångstrom exponent and aerosol optical depth (500 nm) were obtained
from the Aerosol Robotic Network (AERONET; aeronet.gsfc.nasa.gov) for Monterey, California,
USA (36.59◦N, 121.85◦W) and Simonstown, Western Cape, South Africa (34.18◦S, 18.43◦E; Figure 2).
The Monterey AERONET site is located to the southeast of MB and separated from a nearby agricultural
region by a coastal mountain range, although diurnal sea breeze north of this range may increase mixing
between terrestrial and marine airmasses. The Simonstown AERONET site is located on the eastern
slope of the Cape Peninsula, roughly 150 km south of Cape Columbine. Predominant windstress is
equatorward (towards SHB) with summertime intensification [30].

Figure 2. Location of biological and atmospheric measurements used in this study for (a) Monterey
Bay, California and (b) St. Helena Bay, Western Cape. Chlorophyll-a and fluorometer measurement
sites denoted with red circles, atmospheric measurement sites denoted with orange triangles. Regions
of satellite L2 datasets used for analysis and matchups indicated by dashed black lines.

2.3. Biological Field Data

Weekly fluorometric Chlorophyll-a (Chla) measurements (in vitro) were obtained from the
Southern California Coastal Ocean Observing System portal (sccoos.org/data/habs/) for the Santa
Cruz Wharf (SCW; 36.958◦N, 122.017◦W; Figure 2) in northern MB. Daily mean in situ surface (1 m)
fluorescence measurements were obtained from a HydroScat-2 fluorometer (HOBI Labs) mounted on
an oceanographic mooring in central MB (M1; 36.750◦N, −122.000◦E), maintained by the Monterey Bay
Aquarium Research Institute (MBARI; mbari.org). Measurements of Chla within SHB were obtained
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from the European Space Agency (ESA) Ocean Color Climate Change Initiative (OC-CCI) dataset,
available on the Pangaea portal (doi.pangaea.de). Only fluorometric measurements (in vitro) were used
for match-ups with satellite products for SHB since the majority of Chla estimates in the database were
based on that methodology.

2.4. Satellite Data

MODIS Aqua (MODISA) calibrated, non-atmospherically corrected imagery (L1A) was obtained
from the NASA Ocean Color website (oceancolor.gsfc.nasa.gov) for dates spanning July 2002 to
September 2018 within MB (36.50–37.00◦N; 121.75–122.25◦W) and SHB (31.80–32.80◦S; 17.90–18.35◦E;
Figure 2) for matchup validation and for analysis of L2 datasets. Surface reflectances (ρS) were obtained
for both regions from geo-referenced and atmospherically corrected imagery produced using NASA
OBPG software SeaDAS (version 7.5) with observations removed if viewing land or clouds or for
non-physical retrievals (i.e., ρS outside of the range 0–1). Spatial subsets used for comparison with
AERONET results were selected from the MB and SHB domains based on the AERONET site location
and the local topography (MB latitude < 36.65◦N; longitude < 121.92◦W; SHB latitude > 32.10◦S;
longitude > 18.10◦E). Data for L3 analysis was obtained for the same timeframe and for similar
regions in MB (36.50–37.00◦N; 121.75–122.25◦W) and SHB (32.20–32.80◦S; 17.90–18.35◦E), as well as for
two nearby transects placed in regions with relatively north-south coastline of the CCS (37.10–37.50◦N,
122.40–123.40◦W) and BCS (31.80–32.20◦S, 17.30–18.35◦E). Processing for the L3 products applied
additional SeaDAS software l2bin and l2mapgen to form daily, 4km standard map grid composites.

Quality control flags were assigned to all pixels during the L2 processing chain according to
standard OBPG L2 flag thresholds. Masks were applied to one identical set of the L2 data if flag
assignments indicated likely errors in atmospheric correction. Flags chosen included warnings for
low water-leaving radiance (LOWLW), maximum iterations exceeded during atmospheric correction
processing (MAXAERITER) and out-of-range spectral slope of derived aerosol radiances (ATMWARN).
This combination of flags will be hereafter referred to as AC flags. More detailed information on
thresholds and applications of default flags can be found in SeaWiFS postlaunch documentation [31].

Neural network Chla estimates were included for evaluating satellite products using processing
tools provided by the Coast Color project (coastcolour.org). In short, MODISA imagery was
georeferenced and calibrated using SeaDAS. Atmospheric correction and derivation of Chla was then
performed using the Sentinel Application Platform (SNAP; step.esa.int) with the Case-2 Regional Coast
Color (C2RCC; brockmann-consult.de) plugin.

2.5. Remote Estimation of Phytoplankton Biomass:

Remote measurements of the spectral radiance anomaly generated by sun-induced fluorescence of
the Chla molecule have been applied as a proxy for phytoplankton biomass for over four decades [32,33].
The fluorescence line height approach (FLH), which subtracts a red to NIR baseline from the Chla
fluorescence peak to correct for brightness effects, is the most widely used of these satellite tools.
FLH has been proposed to complement traditional Chla satellite algorithms in high–biomass coastal
waters [34,35] and is disseminated in standard L2 and L3 OBPG data derived from normalized LW

(nFLH). Another FLH-type method, the red band difference algorithm (RBD) [36], subtracts the signal
derived at the nearest shorter wavelength from the signal measured at the Chla fluorescence peak.
RBD was chosen for this work because of its relative robustness to sediment effects [36].

Fluorescence line height products, including RBD, may be derived at TOA, thus bypassing the
potential errors arising during the atmospheric correction procedure. Here we use a partial atmospheric
correction product that accounts for Rayleigh but not aerosol effects, termed the surface reflectance
(ρS(λ)), which may be defined as

ρS(λ) =

(
π

F0μ0

)(
LTOA

tsolartsensor
− Lr

)(
t′solart′sensort′O2 t′H2O

)−1
(1)
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where F0 is the solar downward irradiance, μ0 is the cosine of the solar zenith angle, t and t′ are the
direct and diffuse atmospheric transmittances, respectively, for the sun-surface and surface-sensor
path lengths and for the atmospheric effects of oxygen and water vapor. RBD is thus derived as the
difference between MODISA surface reflectances:

RBD = ρS(678nm) − ρS(667nm) (2)

where ρS(678nm) corresponds to the height of the Chla fluorescence maximum (approximately 683nm)
and ρS(667nm) provides an adjacent baseline to account for overall spectral brightness.

2.6. Match-up Procedure, Derivation of Climatological Averages and Error Statistics

Validation statistics for all satellite products were derived using only same-day, 3×3 pixel median
match-ups centered on the in-water samples due to high spatial and temporal variability at the match-up
sites. OC3M and C2RCC, as well as fluorescence and Chla measured in situ were log10-transformed
prior to derivation of matchups. RBD and flag climatologies were derived as the mean monthly values
for each region. Composite datasets were compared using standardized bias (SB), derived as the
absolute bias due to masking of the composite data normalized by the standard deviation:

SB(i) =
(

Xi −Yi
σY

)
(3)

where Xi and Yi correspond to the mean composite RBD values for datasets with AC flagged pixels
omitted and retained, respectively, normalized by the standard deviation of the dataset with AC
flagged pixels retained (σY). SB was partitioned (i) by longitude or by the fraction of underlying pixels
(L2) which were assigned AC flags before spatial binning.

3. Results

3.1. Association Between Red Band Difference and Phytoplankton Biomarkers

Satellite match-ups at both MB and SHB indicate that the RBD algorithm associated more
strongly (based on a Pearson test) with in situ proxies for phytoplankton concentrations than either
a standard NASA blue-green Chla algorithm (OC3M) or a neural-network-based Chla algorithm
(Coast Color), although the comparison presented here is not intended as a rigorous inter-comparison
of Chla algorithms. An attempt to model surface Chla from satellite measurements (using a linear,
least squares approach) resulted in generally higher (never lower) accuracy of the RBD method versus
the other remote products, suggesting that RBD is a useful proxy for Chla within our study regions.
Greater frequency of valid match-ups were possible at the M1 buoy (MB) location because of increased
distance from land and because of the greater number of in situ records. More valid match-ups were
also possible for RBD versus OC3M because the ρS derivation (which does not account for aerosols)
avoided retrieval failures. Visual inspection of Coast Colour match-up scenes suggested that common
culprits for reduction of valid match-ups were both the out-of-range inputs to the atmospheric neural
network as well as incorrect cloud mask assignment (Table 1).

The lowest Pearson coefficients for all remote products occur at the Santa Cruz Wharf (MB),
where matchups are more difficult because of the increased spatial and temporal heterogeneity of the
near-shore environment and where fewer adjacent pixels are available due to blockage by the shoreline.
The Pearson coefficient for the RBD product is highest relative to the other products at this site,
suggesting that the nearshore match-ups also were strongly affected by resuspended sediment, riverine
discharge or terrestrial aerosols given the relative robustness of RBD to signal brightening effects and
to absorption by riverine constituents, such as colored dissolved organic material. Error between
modeled and in situ Chla for the OC3M algorithm was lowest at the M1 buoy (MB), the site with the
greatest prevalence of optically simple (case-1) water types among our validation sets. The highest
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Pearson coefficient for each product was derived from SHB matchups, with RBD showing the strongest
association with in situ Chla among the evaluated remote products. The SHB matchups were unique
from the two MB sites in that the in situ measurements were obtained by ship at various distances
from shore, allowing the SHB matchup dataset to include a wider diversity of water types than either
the wharf or mooring datasets in MB.

Table 1. Match-up statistics for 3 MODIS Aqua phytoplankton biomass proxies in Monterey Bay (MB),
California, USA and St. Helena Bay (SHB), Western Cape, South Africa where n is the number of valid
match-ups, P(r) is the Pearson coefficient and nRMSE is the root mean square error of the linear fit of
the satellite data to the in situ data, normalized by the in situ data range.

Location Product n P(r) nRMSE

Monterey Bay,
California
M1 Buoy

Red Band Difference
Blue-Green Chla Algorithm1

Neural Network Chla Algorithm2

1012
773
840

0.4190
0.3344
0.2179

14.4%
14.8%
17.0%

Monterey Bay,
California

Santa Cruz Wharf

Red Band Difference
Blue-Green Chla Algorithm1

Neural Network Chla Algorithm2

361
8

132

0.2055
0.0359
0.0488

14.1%
28.8%
17.3%

St. Helena Bay,
South Africa

Various Locations

Red Band Difference
Blue-Green Chla Algorithm1

Neural Network Chla Algorithm2

90
74
75

0.5493
0.4283
0.3973

19.2%
20.8%
19.9%

1 NASA OBPG standard Chla product (OC3M algorithm). 2 Coast Color standard Chla product.

3.2. Climatology of Atmospheric Correction Flags

Comparison of AERONET and satellite (MODISA) climatologies did not reveal similarities
between atmospheric constituents and satellite flags. In particular, results from a Pearson’s correlation
test were not significant between AC flags and either aerosol optical depth (p = 0.25, p = 0.29) or
Ångstrom exponent (p = 0.67, p = 0.84) for the Monterey or Simonstown sites, respectively. AC flag
assignments correlated positively with RBD at both sites, with correlation significant for MB (p < 0.01)
but not for SHB (p = 0.43). Both AERONET sites revealed local maxima of both aerosol optical depth
and Ångstrom exponent during summer that did not correspond to a spike in AC flag assignments
during the same month. For the Monterey site, the summertime peak in atmospheric complexity
coincided in local minima in AC flag assignments suggesting that pollution or aerosol loading during
summer months are not dominant mechanisms for low atmospheric correction efficacy in this sample.
The seasonality of AC flags in the Simonstown region was more uniform than the Monterey region but
was similarly incongruous with the AERONET results (Figure 3).

Although not elucidated by this analysis, the relatively higher Ångstrom exponent and aerosol
optical depth measured from spring through fall at the Monterey AERONET station may in part be
responsible for the decreased performance in the OC3M match-ups within MB compared with SHB.
Other differences between the Monterey and Simonstown results may be due to the AERONET locations,
with the Monterey site nearer the sheltered retentive zone in southern MB and the Simonstown site
located near a headland with more exposure to wind and currents and further from the SHB subset.

3.3. Impact of Atmospheric Correction Masks on Level 2 RBD datasets

Satellite retrievals with higher RBD values were more frequently assigned AC flags, with 33.8%
and 33.1% of observations assigned AC flags within the upper quartile of RBD data and only 5.3%
and 8.2% within the lower quartile at MB and SHB, respectively. As a result, masking of AC flagged
retrievals decreased the right-hand tails of the RBD dataset distributions at both sites (Figure 4).
The resultant masked fraction describes lower average RBD values (mean: −18.1% and −11.0%; median:
−14.7% and −8.0%) with less variance (standard deviation: −13.3% and −13.0%) compared with the
initial (AC flagged pixels not masked) datasets for MB and SHB, respectively.
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Figure 3. Climatology of atmospheric and satellite products near Monterey Bay (MB) and SHB, shifted
for the phase timing of northern and southern hemispheres (Monterey: solid black line, March–February;
Simonstown: dashed black line, September–August): (a) Aerosol optical depth, (b) assignment frequency
of AC flags (c) Ångstrom exponent and (d) Red Band Difference (RBD).

Figure 4. Fraction of pixels assigned atmospheric correction (AC) flags as a function of RBD, with MB
and SHB shown with solid and dashed black lines, respectively. The range shown encompasses greater
than 98% of the data for both regions.
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3.4. Impact of Atmospheric Correction Masks on Level 3 RBD Datasets

L3 spatial composites (4 km, 1 day) were compared between the masked and unmasked RBD
datasets. Maximum negative SB occurred in the lee of retentive features that outline MB and SHB,
regions prone to frequent phytoplankton blooms due to recirculation of water-masses and protection
from offshore advection during upwelling pulses (Figure 5). SB was more negative in near-shore
composite grids within the BCS compared with the CCS, with near-shore SB approximately a fifth
of a standard deviation lower in the masked versus relaxed dataset. Amplitudes in SHB and MB
were comparable, with SB of near-shore composite grids negative by approximately one quarter of
a standard deviation.

Figure 5. Standardized bias in MODISA RBD composites (L3) due to the removal of underlying (L2)
pixels, shown for standard map grids within the central California Current System (CCS) (a) and
southern Benguela Current System (BCS) (b) and within MB (c) and SHB (d).

Composites within the CCS and BCS transects (Figure 5a,b) were partitioned by longitude to
derive SB as a function of distance from shore. Transect regions were adjacent to relatively north-south
coastlines and were each greater than 50 km equatorward of the largest nearby coastline points
(e.g., Point Reyes and Cape Columbine). The BCS transect showed more rapid improvement of data
quality as a function of distance from shore, with SB less than a tenth of one standard deviation negative
beyond approximately 30 km and 15 km within the CCS and BCS respectively (Figure 6). The greater
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offshore persistence of the negative SB for the CCS transect may be due in part to regional circulation
differences such as proximity to upwelling hotspots and retentions zones. For example, high RBD
amplitudes persist at all latitudes within the nearby SHB domain (Figure 5d), indicating that the BCS
transect is in close proximity to a phytoplankton-rich, retentive zone. In comparison, the CCS transect
lies poleward of MB and intersects a relatively unprotected stretch of coastline, favoring upwelling
dynamics that generate offshore flow. Beyond approximately 50 km from shore, where phytoplankton
concentrations are lower, both transects indicate convergence to a small SB, although the signs remain
negative across our dataset.

Figure 6. Standardized bias in RBD composites (L3) across longitudinal transects due to the removal of
underlying (L2) pixels assigned AC flags within the CCS (solid line) and BCS (dashed line).

From all four masked and unmasked L3 datasets, composites were partitioned by the fraction of
AC flag assignments within each composite’s underlying (L2) pixels, which was recorded during L3
processing. The data products show near zero SB for composites with few AC flag assignments but
the degradation in data quality increases for composites with greater fractions of L2 pixels masked
by AC flags (Figure 7). The change in SB is strongly negative as the composites contain increasing
pixels masked by AC flags, with the reduction approaching approximately four tenths of one standard
deviation for heavily masked composites.

Despite the atmospheric, ecological and topographic differences between the BCS and CCS regions,
the slope of the composite reduction is similar, implying consistency in the sites’ sensitivity to bias
from the association between biology and retrieval quality. The slopes for all sites also imply a linear
relationship due to the mixing of two distributions (masked and unmasked) within the composites.
L3 transects used for this comparison include a broader range in water masses (onshore and offshore)
and 4% of the composites in both the CCS and BCS contained a quarter or more L2 pixels assigned
AC flags. Within the more productive regions of MB and SHB, 8% and 10% of the composites generated,
respectively, contained a quarter or more L2 pixels assigned AC flags.
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Figure 7. Standardized bias in RBD composites (L3) due to the removal of the underlying (L2) pixels
assigned AC flags, as a function of L2 AC flag assignment, for L3 transects within the CCS (solid line) and
BCS (dashed line) transects and within the MB (dashed-dotted) and SHB (dotted) composited regions.

4. Discussion

4.1. Performance of Satellite Products at Match-up Sites

Based on the match-up results, RBD is a reasonable proxy to describe relative changes in
Chla within the study regions, although this comparison is not intended as a validation activity
to assess OC3M, C2RCC or other alternate processing methods. Indeed, for the OC3M products,
atmospheric correction quality was a fundamental problem for the match-up regions but rigorous
quality screening of the match-ups would have been counter to the goals targeted by this study, namely,
to characterize the observations that fail such screenings. C2RCC performed marginally worse than
RBD in the comparisons but it should be noted that although the C2RCC network is compatible
with MODISA, development was not primarily targeted towards NASA products. Moreover, neural
network algorithms require training sets representative of the regions assessed and our results are in
no way intended to suggest that C2RCC would not outperform RBD under a different match-up set,
or after addition of a larger training set. Indeed, in a recent intercomparison of atmospheric correction
methods for coastal waters, strong improvements were shown for a C2RCC model after the inclusion
of an expanded training set [22].

FLH algorithms such as RBD are useful for scene comparisons and as general Chla proxies but
are not a satisfactory full solution to remote sensing challenges in coastal waters. Although Chla
fluorescence and concentration generally covary, their relationship is inconsistent. Factors that may
alter the relationship between Chla fluorescence and concentration include phytoplankton species
composition, pigment packaging effects, physiology, limitation of nutrients or light or solar-induced
fluorescence quenching [37]. The ability to measure fluorescence is also strongly affected by attenuation
from water and its constituents, particularly by non-algal particles [38] and from sensor-specific
response functions, for example, if the fluorescence peak shifts between response bands [39,40].

Despite the inherent difficulties in quantifying phytoplankton concentrations with Chla
fluorescence products, such proxies are reasonable for the analysis shown here because of their
relative robustness to atmospheric correction errors and because the RBD biomass comparison is not
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used across large spatial domains. Comparisons here are assumed to be relative within the region and
as a result, this work did not focus on modeling RBD onto in situ Chla.

Products that use inputs from blue wavelengths (such as OC3M) were considered the most
sensitive to the decrease in atmospheric correction efficacy addressed by the AC flag assignments and
were not reasonable options for the comparison described here. Similarly, products such as OC3M
often cannot be derived for AC flagged pixels, for example, when overestimation of aerosol thickness
causes derivation of negative radiances at blue wavelengths. Finally, while RBD was preferred here
over the OBPG default nFLH product because of its reported robustness to sediment effects, nFLH is
expected to be a reasonable alternative for users who intend to perform a similar analysis of their study
region but who require direct downloads of default L2 products.

4.2. Variability of Atmospheric Constituents and Efficacy of Ocean Color AC Flags

Atmospheric correction errors arising from elevated LW(NIR) have been a focus for improving
satellite retrievals over sediment- or phytoplankton-loaded waters. The associations shown here
between AC flags and phytoplankton concentrations within MB and SHB are intended to demonstrate
the frequency in which retrieval quality is linked to biology and to assess whether the set of observations
which satisfy quality control thresholds are able to accurately characterize coastal marine ecosystems.
In our study areas, the dataset fractions that satisfy default retrieval criteria (i.e., are not assigned AC
flags) describe ecosystems which are generally reduced in biomass and have lower variability than
described by the parent dataset. The results of this study, however, do not suggest that users relax AC flag
criteria, because the flag assignments are in most cases reasonable indicators of degraded data quality,
particularly in the portion of the spectrum relevant to blue-green band ratio algorithms (i.e., OC3M).

The removal of high biomass observations from the satellite record additionally screens out
important biological processes, such as the formation of phytoplankton dense fronts and removes
regions that may be disproportionately important to the ecosystem dynamics and species succession.
For example, a northern MB retentive zone, which maintains dinoflagellate stocks that play an important
role in species succession by seeding the surrounding waters [41], was frequently masked from the MB
satellite record. We also note anecdotally that during red tide events within MB, ocean color retrievals
on clear-sky days are often fully masked, with the satellite record resuming upon bloom termination.

4.3. Potential for User Evaluation of L2 and L3 Datasets

Defining the transition zone between regions where default NIR-based atmospheric correction
methods can and cannot be used is challenging, as evidenced by the different transect results for the
masked and unmasked composites for the two EBC ecosystems. The severity of the elevated LW(NIR)
effects may extend farther offshore than anticipated given the physics of the region (e.g., advection
offshore by mesoscale eddies or jets). For regions where the removal of ephemeral high biomass events
may be more infrequent, research targeting ecosystem processes may suffer from the loss of rare but
high-impact events.

How can L2 and L3 end-users test whether satellite datasets contain a bias from the removal
of high phytoplankton observations? L2 users with a priori knowledge of a region can compare
flag assignments with expected phytoplankton dynamics to determine whether flags covary with
target environmental parameters. For some flags, seasonality due to the Earth-sun geometry or cloud
dynamics may resemble biological parameters without tracking phytoplankton biomass within an
individual image. Interpretation of the flag assignment frequency should be considered cautiously,
because infrequent flag assignments can have outsized effects in regions with high environmental
variability. In the absence of a priori knowledge of a region, nFLH is anticipated to provide useful
comparisons of the masked and unmasked data fractions, as shown herein. L3 end-users could
make use of compositing statistics in order to assess the representativeness of spatial or temporal,
quality-controlled averages. The similarity between sites in the relationship between composite SB and
L2 flag assignments (Figure 7) suggests that L2 flag assignments are useful parameters for interpreting
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L3 composites. As such, metadata that includes flag assignment statistics may be a beneficial addition
for disseminated L3 products, particularly for users requiring inputs for coastal ocean models.

5. Conclusions

Wide recognition of decreased performance of ocean color products in coastal waters has
encouraged development of a variety of alternative methods aimed to overcome difficulties such as
high organic and inorganic particle concentrations. However, no direct comparison of the masked
versus unmasked fraction of satellite datasets or suggestions for determining a dataset’s sensitivity to
the loss of high biomass retrievals, has been presented. This work compares non-aerosol-corrected
biomass proxies to test whether high quality satellite retrievals are representative of initial datasets in
coastal regions. Key findings shown are that, for productive ecosystems like MB and SHB, the changes
to dataset distributions reflect a bias towards decreased biomass due to difficulty in removing the
satellite signal’s atmospheric component over phytoplankton-rich waters. The changes in the biomass
of L2 datasets are apparent in L3 composites and the distance that the changes extend offshore is
variable even among broadly similar systems (i.e., EBCs). Finally, users may assess the sensitivity
of their study site using a similar approach by comparing FLH products between the masked and
unmasked fractions of their dataset or by deriving compositing statistics when generating L3 products.
In cases where the masked fraction is dissimilar to the unmasked fraction, users may prefer to use
alternative atmospheric correction methods regardless of the strength of validation results obtained
from the masked fraction only. Research directed towards coastal ocean ecosystems should evaluate
whether quality-controlled satellite estimates of phytoplankton concentrations are representative
compared to the statistics of the parent dataset. When possible, TOA proxies are useful tools for
such comparisons.
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Abstract: Climatological changes occur globally but have local impacts. Increased storminess,
sea level rise and more powerful waves are expected to batter the coastal zone more often and
more intense. To understand climate change impacts, regional bathymetry information is paramount.
A major issue is that the bathymetries are often non-existent or if they do exist, outdated. This sparsity
can be overcome by space-borne satellite techniques to derive bathymetry. Sentinel-2 optical imagery
is collected continuously and has a revisit-time around a few days depending on the orbital-position
around the world. In this work, Sentinel-2 imagery derived wave patterns are extracted using a
localized radon transform. A discrete fast-Fourier (DFT) procedure per direction in Radon space
(sinogram) is then applied to derive wave spectra. Sentinel-2 time-lag between detector bands
is employed to compute the spectral wave-phase shift and depth using the gravity wave linear
dispersion. With this novel technique, regional bathymetries are derived at the test-site of Capbreton,
France with an root mean squared (RMS)-error of 2.58 m and a correlation coefficient of 0.82 when
compared to the survey for depths until 30 m. With the proposed method, the 10 m Sentinel-2
resolution is sufficient to adequately estimate bathymetries for a wave period of 6.5 s or greater.
For shorter periods, the pixel resolution does not allow to detect a stable celerity. In addition to
the wave-signature enhancement, the capability of the Radon Transform to augment Sentinel-2
20 m resolution imagery to 10 m is demonstrated, increasing the number of suitable bands for the
depth inversion.

Keywords: Sentinel-2; radon transform; remote sensing; bathymetry inversion; multi-scale
monitoring; image augmentation

1. Introduction

Climatological extremes are occurring more frequently and with greater intensity, in particular,
coastal flooding and higher intensity storms [1,2]. These environmental changes and associated risks
are often described in terms of sea level at the coast. Sea level at the coast can be broken down into
several contributors such as regional sea level and wave contribution. The latter is dictated by the
underlying bathymetry. To effectively mitigate environmental changes, in other words, to manage
coastal environments, one requires to know bathymetry and its evolution. Coastal bathymetries are far
from static and change continuously depending on incident waves, currents and sea level. As a matter
of concept, powerful conditions such as storms can be considered large sediment transport drivers
in the near-shore. These events often lead to abrupt and large erosion (e.g., net offshore sediment
transport) while recovery during calm conditions (after initial immediate storm-recovery) is a slower
process (net onshore sediment transport). Considering the dynamic coastal bathymetry to better
predict its action on waves is thus paramount.
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Major current issues to enhance this knowledge are spatial data-concentration and temporal
data-sparsity. Field campaigns often sample locally, with an insufficient temporal resolution to observe
climatic modes, storm impact and recovery/resilience. For example, on the one hand, specific sites
are well sampled with real-time kinematic GPS (RTK-GPS) survey-campaigns (relatively often in time
(every month) and dense in space) but on a local domain (O(km2)). This also holds for remote-sensing
techniques such as shore-based video cameras that have a high temporal frequency but a local domain.
On the other hand, traditional large echo-sounding campaigns for bathymetries cover km2’s but
are often sporadic. An alternative is the use of space-borne observations [3] such as optical image
products and radar that now sample the entire globe regularly (at best every few days—ESA’s Sentinel
constellation [4]).

In overview, two approaches to obtain nearshore depths are most widely applied: (1) depth
through color absorption depending on the height of the water column (rule-of-thumb: the darker,
the deeper) [5] and (2) depth through the physical relation between wave celerity and depth
(rule-of-thumb: the faster, the deeper) [6–8]. The first method is uniquely applicable to optical
imagery and it is capable of estimating reasonable depth until 10 s of meters but the method is sensitive
to turbid or aerated waters. The wave-based method is applicable to both radar and optical imagery.
Its limitation is mainly the observability of waves: as long as waves are visible, depth can theoretically
be found from shore to intermediate water depth (0 to depths: hint = λ

2 , further details in the
methodology section). The relation between wave celerity has been applied to numerous observational
techniques from shore-based systems [6,7,9–12], airborne [13] to space-borne [14,15]. To find depth
related to a certain wave celerity through the linear dispersion relation, one needs to obtain any pair
from celerity c, wavenumber k, wave frequency ω, wavelength λ (1/k) or wave period T (1/ω), either
in the spectral domain (ω, k) or temporal/spatial (T, λ) domain. Compared to space-borne imagery
(often one snapshot), shore-based or airborne camera systems have significantly more temporal
resolution. The lack of temporal information limits depth estimations from space-borne imagery to the
determination of spatial wave characteristics (k or L). Most commonly applied 2D-discrete fast-Fourier
transform (DFT) or wavelet analyses require sub-domains with the size of a few wavelengths to
overcome wave-stochasticity issues [15–18], which on its own leads to significant spatial smoothing.
To a certain degree, these mathematical applications depend on image resolution and visibility of
the wave pattern. In this work, we extract the wave pattern using a Radon transform and obtain
physical wave characteristics using a 1D-DFT for the most energetic incident wave direction in Radon
space (sinogram).

The article has the following structure: the next section describes the proposed methodology
mathematically and which applicability is thereafter demonstrated using a synthetic deep-water case
in the subsequent section. Wave pattern extraction and depth estimation from or to a Sentinel-2 image
are shown in Section 4. The discussion section focusses on the sensitivity to image resolution for
wave-number, celerity and depth-sensing using the proposed method. The final part of the discussion
elaborates on Sentinel-2 image augmentation for wave patterns allowing for the use of additional
low-resolution bands to estimate wave characteristics.

2. Methodology

Underlying bathymetry dictates wave-celerity in case the wave is propagating through
intermediate to shallow water. Intermediate and shallow water limits are wavelength dependent and
typically hint =

L
2 for intermediate water depth and hsh = L

20 for shallow. Hence, from intermediate
water until shore the linear dispersion relation (1) can be used to estimate a local depth.

c2 =
g
k

tanh (kh) ⇔ h =
tanh−1

(
c2k
g

)
k

(1)

in which c is wave celerity, g represents the gravitational acceleration, k is the wavenumber. It requires
knowledge about two of the celerity c, wavenumber k, wave frequency ω, wavelength λ (1/k) or wave
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period T (1/ω) set to solve (1). Between the temporal and spatial domain, it is common practice to use
the highest resolution of both to find the other. For example, in the case of video products or X-band
radar, in which the temporal resolution is often the highest, one isolates wave frequencies ω to find the
wavenumber (k) [15,16]. Sentinel-2 imagery does not allow for such an approach due to the lack of
temporal information.

Although the Sentinel-2 products seem just a snapshot, there is underlying temporal information.
The sensors collect imagery one wavelength specific-band at the time and hence, a time-lag between
the different image bands exists. Such time-lag is common in optical spatial imagery and can also
be found in, for example, the SPOT (max 2.04 s) and Pleiades (0.165 s between the detector bands:
max 0.66 s) constellations. If we consider the bands with 10-meter resolution (red, green, blue and
near-infrared), a maximum time lag of 1.005 s can be found between the blue and red band, illustrated
in Figure 1. This time-lag information of Sentinel-2 has been used to determine the direction of ocean
waves (a 2D-DFT has duplicate quadrants) in [19] and earlier with the SPOT constellation to estimate
wave propagation through cross-correlation [16].

Figure 1. Illustration of the time-lag between detector bands B02 (blue), B03 (green) and B04 (red) by
the different colors of the flying airplane at Capbreton, France. The time-lag between each band is
0.527 s.

2.1. Radon Transform-Derived Wave Signal and Spectra

Waves can be observed from space with satellite imagery due to sunlight reflected from the
sea surface (sun glitter). Satellite Sun Glitter Imagery is shown to contain valuable information to
obtain wave statistics such as wave height, period and direction and even a reconstruction of the 3D
surface [19]. Wave-visibility depends on several factors such as cloud coverage, satellite incident angles
and wave conditions (height, period and direction). The quality/visibility of the wave pattern, and thus
the ability to invert depth, differs per satellite image even for similar wave conditions. A common
technique to enhance linear patterns in imagery is the Radon transform [20] (RT). Even if wave patterns
are not obviously apparent and/or contain a great amount of noise, the RT distils linear features.
This particular feature makes the RT a powerful tool to process imagery. RT are extensively used for
tomography (for example in CT-scans) in order to reconstruct finite projections. In addition, [21,22]
have shown the RT’s power in separating incident from outgoing reflected waves in the nearshore
coastal zone. Here, we use the RT to extract wave signal after which we apply a 1D-DFT to find the
spectral phase of the wave (per band).

In principle, the RT accentuates linear features in an image by integrating image intensity (I(x, y))
along lines defined by angle θ and offset ρ following (2):

RI(θ, ρ) =

‹
D

I(x, y) δ(ρ − x cos(θ)− y sin(θ)) dy dx (2)
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wherein δ represents the Dirac delta function. RI represents a sinogram: the signal per direction (θ)
over the associated beam with length (ρ). The angular limits of (2) are commonly set to 0◦ > θ > 180◦.
Likewise to, for example, an inverse DFT, the original input signal can be reconstructed applying
an inverse RT. RT filtering means that only a limited number of angles are used for the inverse
reconstruction. To isolate wave patterns, only the most energetic wave-related θ-ρ-pair can be used for
the inverse RT.

Wave-like patterns are observed in the RT-sinogram with wave patterns in the original image.
This allows for the calculation of the wave amplitude and phase per direction θ through a DFT (here in
a discrete form). This results in a wave-number spectrum.

2.2. Waves Phase-Shift, Celerity and Depth

Imagery collected by the Sentinel-2 constellation consists of multiple bands with their specific
sensing wavelength and resolution. Bands are collected one at the time with a fractional time-lag in
between them. The time-lag combined with the RT-based wave number spectrum and its phase shift
between bands results in the wave celerity. For each point in space, a sinogram (2) is calculated over
the sub-domain. The maximum variance for all angles θ over ρ is considered the propagative direction
of incident waves. Over the beam ρ with maximum variance, a DFT (GRI = DFT(RTθmv)) is used to
obtain the phase per band following:

Φ (x, y, θ, ρ) = tan−1

(
� (

GRI

)
� (

GRI

)
)

(3)

wherein GRI represents the DFT over the sinogram RI(θ, ρ) in polar space over the sub-domain around
point x, y. � and � respectively denote the imaginary and real part of complex numbers. For each
x, y location we can then calculate the spectral phase-shift (ΔΦ in rad) between two (or more) detector
bands at different times (t). Since the wave number (k) is kept fixed, a shift in spectral phase-shift
represents ω(t) and the celerity can be calculated:

c =
ΔΦ

2πkΔt
=

ΔΦλ

2πΔt
. (4)

With the derived wave celerity c and wave number k (or wavelength λ) depth is found solving
(1). The method as presented here selects a single, most energetic, peak in the Radon-DFT (a single
wave number k) to compute the phase-shift and hence the water depth.

3. A Synthetic Deep-Water Case

The process from a satellite image to bathymetry can be split into two main components;
(1) sensing wave parameters and (2) depth-inversion. The two parts have their own associated
error [12] and limits. In this section, the method steps are illustrated and the sensing capabilities of the
method are scrutinized with synthetic data. Since the wave sensing principally does not depend on the
relative water depth (deep, intermediate or shallow waters), it makes sense to test the sensing-method
in deep water and consider pure sinusoidal waveforms. In an attempt to introduce some reality to
the synthetic dataset, input-parameters are set to represent Sentinel-2 settings such as 10 m resolution
and 1.005 s time-lag between two snapshots. The chosen sinusoidal has 1 m amplitude and a 9-second
period which roughly correspond to the annual mean at Capbreton, France (see Section 4), resulting
in two-wave patterns as shown in Figure 2. Given the wave period and considering the deep water
assumption, a wavelength (λ) of 126.36 m (kx = 0.008 1/m) and wave celerity (c) of 14.04 m/s can be
found. This wave propagates purely in x-direction (ky = 0). In addition, a second case is considered in
which the wave is oblique incident 45◦ (kx = ky) and results in a wavenumber k of 0.006 1/m and a
celerity of 19.85 m/s. Here we attempt to find the appropriate wavenumber k and celerity c.
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Figure 2. Radon transform sinograms for the synthetic datasets containing (1) a shore normal wave
(0 degrees) and (2) an oblique example where kx = ky. The red lines indicate the sinograms limits along
the beam length.

For this synthetic case, the sub-sample domain was set to 2L by 4L (252 m width × 505 m
length). This is further elaborated in the discussion. Conceivably, the subsample domain size limits
the appearance of the number of full wavelengths and hence the performance of the DFT (not the RT).
The application of (2) to the subsample results in a sinogram, as presented in Figure 2. The upper and
lower limits (red lines in Figure 2) of the beam length are computed from the center of the subsample
domain. These limits were determined exclusively by the object the RT is analyzing, in this case,
a rectangular sub-domain. Note that at zero degrees the limits were −252.5 m to 252.5 m (total length
of 505 m) and at −90 or 90 degrees the beam stretches between −126 m and 126 m, representing the
total width of 252 m. In between −90, 0 and 90 degrees the sinogram limits are determined by the
furthest perpendicular line of sight along the beam that senses the object (here the sub-domain).
Hence, the slight increase in total beam length from zero degrees (both ways) before decreasing to the
smallest beam length on the shortest side of the subdomain.

The sinograms in Figure 2 have a radial increment (Δθ) of half a degree, resulting in 361 beams.
A DFT is applied to every beam individually. For each rotational angle θ, the resolution Δρ along the
RT-beam (ρ—crossing data-points) changes and follows in case of Δx = Δy:

Δρ(θ) = 2
(√

2Δx2 − Δx
)
| sin(θ) cos(θ)|+ Δx (5)

Whilst the sinogram’ resolution changes per beam, the number of sample points remains constant.
Resulting RT-spectra as shown in Figure 3 have a typical cone shape: higher resolution at θ = −90, 0 or
90 degrees, results in the ability to resolve higher frequencies to a greater extent and vice versa for the
diagonal. Figure 3 shows the wave-number spectra derived from the sinograms in Figure 2.

A first inspection of the energy peak in Figure 3 reveals that the incident directions correspond
to the synthetic input: 0 degrees for the left plot and −45 degrees in the right plot. The energy peaks
also correspond to the appropriate wave number, respectively 0.008 [1/m] for 0 degrees case and
0.006 [1/m] for the oblique case. In both spectra, but in particular for the left plot, energy spreading
is visible (in the shape of Λ). Along the wave track, the Radon integration solves the wave signal.
As the beam rotates and the relative angle between the propagative wave and the beam direction is
small, a wave signal with a longer wavelength is found (smaller wavenumber k). As this relative angle
increases the energy fades out, hence the Λ shaped energy distribution. In the case of oblique waves,
the integrated energy over the wave crest perpendicular to the RT-beam (with angle θ) is higher closer
to the center of the sub-domain and lower towards the edges, compared to a constant crest length for
0 degrees. This effect is visible in the sinogram in Figure 2. In the lower plot (θ = −45 degrees) most
of the energy is concentrated (around ρ = 0 m, between −100 m > ρ > 100 m) while in the top plot
(θ = 0 degrees) the energy is more spread, between −250 m > ρ > 250 m.

413



Remote Sens. 2019, 11, 1918

Figure 3. Normalized Radon-discrete fast-Fourier transform (DFT) wave number spectra for a wave
in shore normal direction at the top and oblique (−45 deg) incident wave in the bottom. The wave
number range is between 0 and 0.04 [1/m] with 0.001 [1/m] resolution, the circular bands indicate
0.005 [1/m] intervals. The direction ranges from −90 to 90 with a Δθ of 0.5 degree, the spokes represent
a 10-degree interval.

The RT-DFT allows for the calculation of a spectral-phase per position on the beam, per direction.
Let us impose a time lag of 1.005 s between two snapshots to the sinusoidal above and compare
the phase-shift at the energy peak. For the zero degrees incident wave with a period of 9 s,
the theoretical phase shift, (2πΔT/Tp) is 0.701 rad. The RT-DFT for the peak gives 0.701 rad shift in
phase, a 0.016% offset. Given the phase shift and time-lag (ΔT), a celerity of 14.04 m/s is obtained.
For the oblique waves, the estimated phase shift is 0.701 rad compared to 0.701 rad for the theoretical
phase shift (0.039% offset). From the synthetic case, we can say that it is possible to estimate wave
celerity accurately, in an ideal-case setting.

4. Regional Wave-Pattern and Bathymetry

To scrutinize the method’s performance in a realistic case, it is applied to a real-world
configuration. The area surrounding Capbreton in France (Figure 4) was selected considering the
availability of an in-situ dataset. A field campaign was conducted from 5–18 November 2017 which was
initially designed to accommodate in-situ validation of spaceborne-derived bathymetries and Digital
Elevation Models (topography) using CNES’ Pleiades constellation [23,24]. The coastal zone around
Capbreton is particularly suited to method-validation considering that within several kilometers one
finds a variety of coastal features such as a deep-water canyon, a port entrance, hard (walls) and soft
(dunes) coastal-defense structures.

During the field campaign, hydrodynamics, topography and bathymetry were measured in
various ways. The hydrodynamics are captured by an acoustic doppler current profiler (ADCP)
likewise waves and currents are modeled, all executed by BRGM (Pessac). The topography was
measured using real-time-kinematic GPS, structure for motion (SfM) from a drone and airborne
LiDAR (BRGM). The bathymetry was measured with an echo-sounder mounted on a boat and the
shore-based video camera systems that deploy cBathy and the temporal method [12]. For this work,
the echo-sounding measured bathymetry was considered the ground-truth. Wave conditions were of
special interest as incident waves might influence the space-borne bathymetry inversion quality [12].
Here, the two closest nearshore wave buoys in the Bay of Biscay were used to obtain wave data
(Wave buoy number 62066 – Anglet and number 62064 – Arcachon). During the field campaign, the
dominant wave conditions were quite energetic. Wave height conditions ranged between 0.7 and
4.4 m with a mean significant wave height of 2.22 m. The maximum wave height had an associated
period of 15.4 s. The maximum wave period went up to 18.4 s with an associated wave height of 1.2 m.
The wave direction was relatively constant considering a mean direction 307.2 degrees ± 7.56 degrees.
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Figure 4. Location of Capbreton in South–West France. The top-left overview shows part of Western
Europe in which France is highlighted as the darker grey area (coordinate system WGS84). The red
dot represents Capbreton and the box around the dot represents Sentinel-2 tile 30TXP projected on
the UTM-zone 30T (Universal Transverse Mercator) . The tiled Sentinel-2 image is presented at the
top-right (image taken on 20 November 2017). The red box in the top-right figure highlights the
zoomed-in area of the bottom plot. The small dots (mainly on cross shore arrays) represent the
echo-sounder measured depths. The thicker predominantly alongshore lines represent the depth
isocontours. The deep-water canyon (dark blue dots) is evident close to shore, West–Northwest of the
harbour entrance. The echo-sounder was realistically capable of measuring from the shallowest as the
boat would go until 60–70 m water depth.

In this paper we test RT-based wave pattern extraction on 10 × 10 m resolution Sentinel-2
imagery [25] covering the region surrounding Capbreton—Sentinel-2 relative orbit 94, tile 30TXP—on
two dates: (1) 2 days after the end field campaign on 20 November 2017 and (2) preferable wave
conditions (30 March 2018). The bathymetry is only derived for the latter to demonstrate the
methods’ performance.

4.1. Parameter Settings for the rt Method

Few parameter settings were required to apply the RT for wave pattern extraction and
wave-number spectra, and these were only limited to the spatial domain. An RT-filter was applied
every 50 m in x and y direction, (Δx and Δy = 50 m), in other words, the depth estimation results have
a horizontal resolution of 50 m. The windowing sub-domain for this real-world case is currently set to
30 × 20 pixels which practically relates to 300 × 200 m and an amplification factor (κ) is applied as a
function of the distance (D in km) from the coastline κ = 1 + 0.3D. The size of the sub-sample domain
is in a similar order compared to [15,17,18], and relates mostly to the stochasticity of the sub-sampled
wave pattern. In other words, to apply typical methods such a wavelet or DFT analysis, more than a
single wavelength should be sub-sampled, the same holds here.

For the RT-based phase-shift derived celerity, limits are imposed. The estimated celerity should
be greater than zero and cannot exceed the deep water limit related to a user-defined maximum wave
period. Here the cut-off wave period is 18 s, which relates to 28.1 m/s. This should be considered quite
a generous upper limit, as these waves are not expected to travel with these celerities in the coastal
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zone. In addition to the minimum wave celerity threshold, sensed depth can only be positive (before it
is referenced to a vertical datum).

4.2. Wave Extraction: Illustration

To show the power of RT-filtering we apply it on Sentinel-2 imagery collected at Capbreton on
20 November 2017. A wave pattern is not apparent in the raw level-2 Sentinel-2 imagery. The two
closest wave buoys in the Bay of Biscay (buoy-ID 62066 and 62064—Global GlobWave database)
measured an average significant wave height of 0.58 to 0.66 m, an average peak period of 11.72 to
11.76 s and a peak-associated wave direction of 274 to 326 degrees. These relative calm wave conditions
result in an imperceptible wave pattern in the satellite imagery. Often these images are discarded for
further analysis but let’s consider this image as a nice example-case for RT filtering. The RT filtering
as in phase I of the methodology is applied per sub-domain and normalized over the full domain.
Figure 5 shows the filtered result over approximately 30 km2.

Figure 5. Radon-filtered wave pattern (normalized) from Sentinel-2 imagery collected on 20 November 2017.

The filtered image clearly shows the incident wave pattern in the appropriate direction.
In addition, secondary wave-like patterns are apparent such as the satellite sensor direction (lines with
290 degrees angle). This seems to be linked to the signal to noise ratio, as the wave signal is
imperceptible and the sensing leaves a trace of a similar order of magnitude the RT also amplifies this
artifact. At the coast, particularly South of the harbor entrance, larger, non-physical, intensities are
observed (wide yellow band). This is due to the fact that the RT sees the coast as the most energetic
linear feature in that sub-domain and the results are maxed-out.

In case incident waves are steeper, greater wave height and similar period, wave patterns are
easier to observe from the satellite imagery. Figure 6 shows RT results for the wave pattern extraction
on 30 March 2018 under wave conditions of 3.26 to 3.3 m average significant wave height, an average
peak wave period between 12.69 and 12.79 s and an incident wave-angle between 280 to 309 degrees.
Also, the incident swell was cleaner and had less directional spread (10–20 degrees) on 30 March
2018 in comparison to 20 November 2017 (13–30 degrees). The wave pattern was significantly more
distinctive in comparison to Figure 5. For example, refraction patterns around the harbor entrance
were visible.

For the wave pattern in Figure 6, unfiltered (all directions), a RT-based spectrum can be derived
for every location (xp, yp). Figure 7 shows an example of such spectrum for point x = 621,000 m
and y = 4,834,000 m, roughly in the middle of the domain as indicated by the red circle in Figure 6.
The spectral coloring in Figure 7 relates to the normalized amplitude. This RT wavenumber spectrum
confirms shows similar wave direction and spreading as the offshore wave buoy. Figure 7 also indicates
the RT-related energy spreading, likewise to the synthetic spectra.
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Figure 6. Radon-filtered wave pattern (normalized) from Sentinel-2 imagery collected on
30 March 2018. The red circle indicates the position related to the Radon-derived wave spectrum.

Figure 7. Full Radon spectrum derived from Sentinel-2 imagery that was sensed on 30 March 2018.
The circular bands follow the same increment (0.005 [1/m]) as Figure 3 but the range is limited
to 0.03 [1/m]. The off-shore wave-period range in this spectrum was 5 s (0.0256 [1/m]) to 18 s
(0.002 [1/m]).

4.3. Wave Number and Depth Estimation

Several distinct energy concentrations are apparent in the wave-number spectrum around the
300 degrees spoke for wave numbers around 0.005 m−1. The derived spectrum confirms what the
wave buoy data told us in the sections above. Which energy peak to use for the depth inversion for
each spectrum is not trivial. Here, the current set-up takes the direction from the variance peak in
the sinogram. For the wave number the 99% interval is calculated, so the 1% most energetic points,
from the normalized amplitude spectrum. For the most energetic 1% wavenumber k is computed
and used to calculate the phase-shift. Figure 8 shows the measured depth and depth derived from
Sentinel-2 imagery acquired on 30 March 2018. Bear in mind, these are tide-corrected depths (tidal
elevation = −0.81 m). Here, depths are estimated over the same domain as the field-campaign covered.

The measured and estimated depth shows comparable morphological features. The deep-water
canyon (300 m depth close to shore) in front of the harbor is recognizable. Features like these are often
lacking in state-of-the-art applications because they are relatively hard to resolve. Between the survey
and estimation, a correlation coefficient of 0.82 and RMS difference of 2.58 m is found for measured
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depths up to 30 m. The correlation coefficient shows that the estimated morphological features have a
physical meaning and represent reality. Figure 9 presents sectioned profiles: North, central (with the
deep-water canyon) and the South section. In the North, one can see that the depth is well estimated
until the sub-tiles hit the white water due to wave breaking. In the canyon section, we do estimate the
canyon outline but we underestimate the canyon’ slope nearshore. This offset in the vicinity of the
canyon can be explained by complex wave attenuation on the canyon banks as the waves make a quick
transition between deep-water to shallow water: multiple spectral peaks disperse the computed phase
shift. This could be solved by introducing depth estimation over multiple wave numbers (not included
in the current version). In the Southern section, the waves were less affected by the deepwater canyon
and the wave breaking zone is less wide, the depth estimation technique does quite well. These results,
the presence of the canyon and adequate estimation of the shallowest depths, show the potential of
this novel estimation of the wave-phase shift, and celerity in polar (RT) space.

Figure 8. Measured (left) and Sentinel-2 estimated (right) water depths in the vicinity of the Capbreton
harbour. The measured bathymetry is interpolated on the depth estimation locations. This highly
complex bathymetry, in particular the contours of the deep-water channel and nearshore zone South of
the harbour entrance show similarities.

Figure 9. Sectioned profiles considering North of the canyon (red), a central part including the deep
water canyon (blue) and South of the canyon (green). The black line illustrates the measured profile
while the colors are the estimated profiles using the RT-based depth estimation.
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5. Discussion

The results show that wave patterns can be extracted by a local application of the RT for two
different wave conditions and depth can be estimated. Wave-enhancement is an intrinsic characteristic
of the RT while depth inversion from the RT spectra depends on the physical and sensing conditions.
What are the limitations, in particular at other different coastal wave environments? To a certain
degree, all coastal zones host waves passing through. Depth inversion depends, in the first instance,
on the wave period/length and image resolution while the wave observability greatly depends on the
relative angles between incident waves, satellite view angle and position of the sun [26] but also wave
characteristics such as wave steepness (H/λ). Here, we focus on the methodological aspect imposed
limits by the image resolution.

5.1. Required Sensing Resolution

The image resolution predominantly determines whether one can see waves or not; this holds
for all imagery from shore-based video, airborne systems to space-borne optical and radar imagery.
One could argue that at the very least 2 points over a full wavelength (Nyquist criterion) are required
to start recognizing a waveform. At the same time, waveforms are asymptotically better visible
than the more points per wavelength. In order to isolate and scrutinize the methodology’s limits,
synthetic data is used. Let’s consider a synthetic dataset representing an image-resolution range
between 0.5 m (Pleiades) and 100 m (THIR bands of NASA’ Landsat-8) in combination with a set of
wavelengths related to their offshore period (from 4 to 20 s with half a second interval). This results in
33 different wave periods and 29 resolutions, hence a total of 957 configurations. Perhaps it is stating
the obvious, but the most coarse resolution will not be sufficient to resolve the shortest waves and
are then neglected (resolution > 0.5λ). For each wave and resolution pair, the phase-shift difference
between the theoretical and estimated shift is determined. Figure 10 shows the percent error as a
function of the resolution/λ.

Figure 10. Percent error per image resolution (Δx) over wavelength (λ). The solid red line represents
the mean per bin 0.025 [-] (Res/λ) and the dotted red lines represent the associated standard deviation
(+/−). The color and size of the scatter relates to the wave period: the larger the period, the bigger
and lighter the dots.

Figure 10 shows that independently of the wave period/length the percent error starts to increase
and vary significantly after an image resolution over the wavelength-ratio of 0.15. A careful look at
the data reveals that for ratios near zero to 0.13 the percent error is smaller than 1% and the standard
deviation is smaller than 1.5%. Beyond the 0.17 ratio, the mean percent error varies between 4.25%
and −14% with standard deviations up to 23.3%. The 0.13 and 0.15 ratios mean that 6.67 (0.15) to
7.69 (0.13) points are required on the full wavelength to resolve the wave phase shift appropriately.
For Sentinel-2’s best resolution (10 m) this means 7–8 pixels, and thus, wavelengths smaller than
70–80 m are not sufficiently resolved to estimate the phase shift. From this analysis, a required sensing
resolution can be determined per wave period or wavelength, as shown in Figure 11.

419



Remote Sens. 2019, 11, 1918

The blue solid line in Figure 11 indicates the 0.15 ratio between resolution and wavelength.
The right of this line means that the resolution is sufficient to resolve the wave phase shift with
the current method (green area), and the vice versa for the left-hand side of the blue line (red
area). With the Sentinel-2 constellation, one should typically be able to resolve waves with a period
equal to or greater than 7 s. This represents the offshore period here, in the coastal zone, nearshore
hydrodynamic processes, such as shoaling, shift this boundary upwards. In addition to the Sentinel-2
constellation, the Pleiades (0.5 m) and SPOT 6/7 (1.5 m) are represented by a horizontal line in Figure 11.
Both constellations do not have limitation to observe the smallest wind-wavelengths and periods.
For example, for the lower wind-wave period, let’s say 3 s, the Pleiades constellation has already
14 points over a full offshore wavelength. However, the limitation for the Pleiades constellation is the
interval between images, either 0.146 s between image-bands (as used here) or 8 s between individual
snapshots. Hence waves with a period smaller than 8 s cannot be resolved [26].

Figure 11. Sensing resolution as a function of wave period/length. The solid blue line represents the
resolution’s limit to resolve an associated deep-water wave period/length. The green area indicates
sufficient resolution while the opposite is true for the red area. The purple lines (Sentinel-2 constellation)
are plotted for bands 1 to 9 with 10, 20 and 60 m resolution.

5.2. Sentinel-2 Bands Resolution Augmentation

Besides Sentinel-2’ highest 10 m resolution bands (RGB+NIR), lower resolution (20 m and 60 m)
visible bands are acquired [27]. Presuming that all these bands observe a similar wave pattern (which
depends on the detector-wavelength). The time-lag between the detector-bands and the first band
(Blue–band-2) increases from 0.264 to 2.586 s for the last band (band-9 with 60 m resolution) as shown
in Table 1. To observe wave propagation one could argue that the resolution of the imagery should
be smaller than the distance covered by the wave over Δt. The larger the Δt, the better observable
wave propagation should be. For example, considering the 60 m Sentinel-2 resolution, waves have
to travel 60 m in 2.586 s requiring a celerity of 23.2 m/s, which is quite fast for free surface waves in
the nearshore. For the 10 m (1.005 s) and 20 m (2.055 s) resolution bands, the optimum is respectively
9.95 m/s and 9.73 m/s. Furthermore, according to Figure 11, lower resolution images with 60 m would
only be sufficient to resolve celerity for waves with a period of 16 s or longer. Stepping up to the
higher-resolution 20 m Sentinel-2 bands waves with a 9.25 s period can be resolved.

A multi-band/multi-resolution combination to compute the celerity is a possibility. [16] uses two
bands with different resolution from SPOT-5 for a sub-pixel cross-correlation. However, this approach
requires significant computational power. As mentioned before, the RT is used in image processing
to augment image resolution. The RT sinogram is interpolated and subsequently used in the inverse
RT, and so, augmenting the image resolution. Let us focus on Sentinel-2 band 8a which has 20 m
resolution and the largest time-lag with respect to band 2 (Table 1). The time-lag between Band-2
(the first band—Figure 6) and the 20 m resolution bands range between 1.269 s to 2.055 s making them
very useful in the phase-shift analysis if augmented to 10 m resolution.
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Table 1. Detector bands Sentinel-2: visible and near-infrared [27].

Band Δt [Sec]
Av. Wavelength
(S2A/S2B) [nm]

Resolution [m]

2 0 492.3 10
8 0.264 832.9 10
3 0.527 559.4 10
4 1.005 664.8 10
5 1.269 704.0 20
6 1.525 739.8 20
7 1.790 781.3 20
8a 2.055 864.4 20
1 2.314 442.5 60
9 2.586 944.1 60

From Figure 12 one can see that the 20 m resolution resembles the incident wave pattern at large,
for the longer wavelengths. Smaller wave features, present in Figure 6 are not visible and particularly
at the coast the wave pattern is not well resolved. The RT-augmented wave pattern in Figure 12b
contains smaller wave patterns, like the original 10 m resolution wave pattern in Figure 6. At the
coast, the refraction pattern around the harbor is clearly visible now. Focussing on the sub-sampled
wave patterns in Figure 12b–d, the effect of the augmentation is even more apparent. The ocean wave
pattern in Figure 12c is incomparable to that in Figure 12b. Using correlation methods to find the
celerity would be a challenge here. However, as in Figure 12d in case the Radon-based augmentation is
applied, similar (shifted) wave patterns become visible. Figure 12f highlights this in even greater detail.
For example, between 150–300, hardly any wave signal is visible in the blue line (B05-original) while
the red line (B05-augmented), represents a similar wave pattern as found with the 10 m resolution
band B02.

Figure 12. Augmentation of Sentinel-2’ mid-resolution bands (20 m) to the high-resolution (10 m).
(a) shows the sensed 20 m resolution wave pattern (normalized) derived from detector-band 5
and (e) shows the augmented wave pattern (normalized) using a localized Radon transform and
interpolation of the local Radon-sinogram. (b–d,f) show the effect on the obtained wave signal. (b) is
a subsample of the B02 band (10 m resolution), (c) represents the sensed subsample of band B05
(20 m resolution) and (d) is the radon-augmented version (10 m resolution). (f) presents the spatial
wave-signal along wave-track following the color-coding as in (b–d).
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The RT-augmented wave pattern augmentation allows the 20 m resolution bands to be used
alongside the 10 m bands, so that wave phase can be computed over bands 2 to 8a. Discarding
band 3 and 8 (time-lag < 0.55 s), a wave phase-shift can then be computed between detector band-2
and the five other bands (B4, B5, B6, B7, B8a). Conceivably, more usable frames will improve the
method’ robustness. Noteworthy, this technique can also be applied to augment 10 m imagery to
higher resolutions. If so, to a certain degree this augmentation diminishes the minimally required wave
period to sense the wave celerity. This first application shows promising but the limits of Radon-based
augmentation must be explored as well as the use of multiple bands to determine celerity, and a large
variety of wave conditions (likewise for the depth estimation).

6. Conclusions

In this work, an RT-based wave-pattern extraction, augmentation and depth inversion method
are presented. Wave patterns are extracted by applying an RT and subsequent angle filtering to
Sentinel-2 imagery so that the wave signal contains the most-dominant wave directions. Depth is
derived exploiting the time-lag between detector-bands. The wave-phase per band, and after the phase
shift, is obtained by applying a DFT to the RT sinogram over a local sub-domain. Depths are derived
with a good correlation of 0.82 and 2.58 m RMS error over the surveyed domain. These results are
beyond the expectations considering the challenging environment including a deep-water canyon
and its effect on surrounding wave patterns. In terms of international admiralty standard [28] the
measurements could be qualified as level C (up to 30 m). Besides physical limits of the linear dispersion
relation, image resolution limits adequate observation of the wave celerity. This method is shown
to work stably for waves with a period larger than 6.5 s. In addition to the wave pattern extraction
and depth derivation, the RT can be used to augment image resolution. 20 m resolution image bands,
from Sentinel-2, are augmented to match the 10 m resolution bands allowing those four extra bands to
be used in the depth estimation method, with time-lags ranging between 1.005 s to 2.055 s.
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Abstract: Shellfish aquaculture has a major socioeconomic impact on coastal areas, thus it is necessary
to develop support tools for its management. In this sense, phytoplankton monitoring is crucial, as it
is the main source of food for shellfish farming. The aim of this study was to assess the applicability of
Sentinel 2 multispectral imagery (MSI) to monitor the phytoplankton biomass at Ebro Delta bays and
to assess its potential as a tool for shellfish management. In situ chlorophyll-a data from Ebro Delta
bays (NE Spain) were coupled with several band combination and band ratio spectral indices derived
from Sentinel 2A levels 1C and 2A for time-series mapping. The best results (AIC = 72.17, APD < 10%,
and MAE < 0.7 mg/m3) were obtained with a simple blue-to-green ratio applied over Rayleigh
corrected images. Sentinel 2–derived maps provided coverage of the farm sites at both bays allowing
relating the spatiotemporal distribution of phytoplankton with the environmental forcing under
different states of the bays. The applied methodology will be further improved but the results show
the potential of using Sentinel 2 MSI imagery as a tool for assessing phytoplankton spatiotemporal
dynamics and to encourage better future practices in the management of the aquaculture in Ebro
Delta bays.

Keywords: ACOLITE; coastal waters; atmospheric correction; time-series; management

1. Introduction

Shellfish are filter-feeding organisms that feed on different types of suspended particles in the
water column, thus their production is mainly related to phytoplankton availability [1]. Spain is the
leading producer and consumer of bivalves in Europe, Catalonia being the most important producer
area in the Spanish Mediterranean, with most of the production concentrated in the Ebro Delta (Figure 1).
The most important species for aquaculture are the Mediterranean mussel (Mytilus galloprovincialis)
and the Pacific oyster (Crassostrea gigas), but other bivalves such as clams (e.g., Ruditapes philippinarum)
and cockles (e.g., Venus verrucosa) are also harvested. Bivalve culture is mainly developed inside its
two bays, Alfacs and Fangar, representing 1.8% and 6.5% of their respective surfaces [2]. Since 1990,
an official monitoring program carried out by the Regional Government of Catalonia establishes a
weekly analysis of the phytoplankton community and water physicochemical parameters at different
locations of both bays (12 samples per week). However, the sampling procedure is temporally and
spatially limited, so global extrapolations are subject to large uncertainties.
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Temporal phytoplankton dynamics are highly influenced by the nutrient input from rice fields
trough the irrigation network [3]. Furthermore, freshwater inputs have a great physicochemical impact
in both bays, increasing water column stratification and dominating over wind on a seasonal scale [4].
Therefore, freshwater input imposes a double layer circulation system like typical estuarine circulation
patterns. However, when channels are closed (from October to April), the water renewal time of the
bays increases, forming retention areas that can become accumulation zones. Both scenarios may favor
phytoplankton growth. On shorter time scales (days to weeks), the wind is the main controlling factor
of water mixing [5] by breaking the vertical stratification. Therefore, water circulation patterns, and
hence phytoplankton temporal and spatial variability, depend on freshwater inputs, meteorology, and
coastal geomorphology [6]. Remote sensing allows obtaining information of marine and continental
processes at different spatiotemporal scales [7]. Chlorophyll-a (chl-a) is the main photosynthetic
pigment present in algae and an optically active seawater constituent; thus, it is commonly used
as indicator of phytoplankton biomass and has significant implications on remote sensing [8–11].
The estimation of chl-a concentration from remotely sensed data requires the development of algorithms
with a maximal sensitivity to chl-a and minimal to the rest of constituents present in the water [12].
Different authors have proposed several methodologies to estimate chl-a from satellite remote sensing
imagery (see a review in [13–15]); for instance, a classical approach is developing relationships
between band-ratios (namely color indices) or their combinations [14]. Several ratio-based and 3-band
combination algorithms have been proposed, including the common Blue to Green ratios, the Ocean
Color-based algorithms [16,17], and those including the Red edge [18–21], which take advantage of
pigment’s absorption maxima (i.e., at 665 nm) [22,23]. Other approximations are based on spectral
band difference by using band triplets from the Red and Near Infrared (NIR), such as the Fluorescence
Line Height (FLH) [24], the Maximum Chlorophyll Index (MCI) [24], and the Maximum Peak Height
(MPH) [25]. The properties of coastal waters, however, are controlled by complex interactions and
fluxes of material between land, ocean, and atmosphere, which makes challenging to achieve reasonable
estimates of water-leaving radiance (removing atmospheric contributions from a signal received at the
TOA), and to obtain a robust relationship between water quality and satellite-based parameters [26]
(integrating the remote sensing and in situ measurements). Although a large amount of satellite
data is available for remote sensing of chl-a (e.g., SeaWiFS, MODIS, MERIS), the fast dynamics of
phytoplankton in coastal areas, both temporally and spatially, cannot be fully resolved because of either
their coarse spectral, spatial and/or temporal resolution. Currently, the increased frequency (up to
five days under ideal conditions) and higher spatial resolution (10 to 60 m2) of Sentinel 2 together
with its spectral band configuration has opened a new potential to remote sensing of chl-a in coastal
zones of small geographical extension, and hence as an alternative for phytoplankton monitoring in
coastal areas.

The overall purpose of this study was to analyze the potential of Sentinel 2 multispectral imagery
(MSI) data as a support tool for the future management of shellfish cultures through the monitoring of
phytoplankton biomass in the Ebro Delta bays. Thus, this paper is a first attempt to assess chl-a in a
shallow coastal environment with Sentinel 2 imagery data, a free public resource. The objectives of this
study were to

1. Generate 20 m2 resolution chl-a maps from Sentinel-2 MSI imagery covering the whole system;
2. Understand the spatiotemporal phytoplankton biomass dynamics by using the derived chl-a

maps and to relate them to environmental variables and the rice farming year;
3. Assess the applicability of the results to shellfish aquaculture management in the area.

2. Materials and Methods

2.1. Study Sites

The Ebro Delta is one of the largest (320 km2) deltas in the northwestern Mediterranean Basin.
The climate is Mediterranean temperate with warm dry summers and cool wet winters, annual
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mean temperature ranges between 5 and 33 ◦C, and annual precipitation from 500 to 600 mm, being
maximum in autumn and minimum in summer. The study area was located in the two bays of the
Ebro Delta (Figure 1). Fangar Bay, with an area of 12 km2, is connected to the sea by a narrow mouth
(ca. 1 km wide) that is currently closing. Maximum depth is ca. 4 m, which makes it very sensitive to
environmental variations. Water temperature ranges between 6.5 and 32 ◦C, salinity varies from 9
to 37 PSU (Practical Salinity Unit) and renewal time is about four days when channels are open [6].
Alfacs Bay, covering an area of 56 km2 and connected to the sea by a channel of 2.5 km wide, has an
average depth of 3.13 m (maximum depth is 7 m). Water temperature ranges between 8 and 32 ◦C,
the salinity varies from 26 to 37 PSU, and the renewal time is about 15 days with open channels [6].
The hydrology of both bays is highly influenced by freshwater inputs from the irrigation network
(Figure 1). Freshwater and nutrient inputs from the river allowed the development of prosperous
fishery and farming activities. The production of bivalves in Ebro Delta bays constitutes a major
economic activity in the area (Figure 1), together with agriculture, since 210 km2 of the delta plain are
devoted to rice production (Figure 1).

Figure 1. Location of the study bays, meteorological station, mussel rafts, coastal lagoons, irrigation
fields, and the discharging channels in Ebro Delta.

2.2. In situ Data: chl-a

Eight water samplings campaigns were carried out from April 2016 to August 2017 coinciding with
the Sentinel 2A satellite pass (Table 1). Different sampling grids were used (see Table 1) for different
days, and not both of the bays were sampled every day. Integrated water samples were collected
using the Lindahl methodology [27] (N = 106). In addition, on 25 July 2017 and 4 August 2017, surface
water samples were collected (N = 40) with polypropylene bottles. Seawater samples were kept in a
portable cool box until arrival to the laboratory. In the laboratory, three different methods were used to
measure chl-a concentration, in vivo fluorimetry [28] (hereafter in vivo), and after acetone extraction
both in a fluorometer (corrected chl-a; hereafter FL) [29], and in a spectrophotometer (chl-a; hereafter
SP) [30]. For all samples (N = 106), chl-a was estimated in vivo, and in 58 of them, chl-a was measured
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after acetone extraction. Briefly, water samples (550–1000 mL) were filtered using fiberglass filters
(GF/F), and filters were submerged in 10 mL of acetone inside 15 mL labelled conical centrifuge tubes.
After 24 h in the fridge (4 ◦C), they were sonicated for 5 min (ultrasonic processor) and centrifuged for
10 min at 4000 rpm at 4 ◦C. The chl-a concentration was then measured in a SHIMADZU UV-1800
spectrophotometer (Shimadzu Corporation, Kyoto, Japan) and/or in a TURNER Trilogy ® fluorometer
(Turner Designs, San Jose, CA, USA) (Table 1). The datasets generated during the current study are
available from margarita.fernandez@irta.cat on reasonable request.

Table 1. Summary of chl-a samples coinciding with Sentinel 2A pass. Grid 1: routine sampling for the
official water-quality monitoring program (see orange dots in Figure 2a,b). Grid 2: specific sampling
grid designed for ground truth of Sentinel images (green dots in Figure 2a,b). Grid 3: sampling grid of
the project “Model of water circulation in Fangar Bay from the European Maritime and Fisheries Fund
(EMFF)” (white dots in Figure 2b).

Date Sampling Grid Bay
Number of Samples per Method

in vivo Fluorimeter Spectrophotometer

11 April 2016 1 Fangar 5 1 0

20 June 2016 1
Alfacs 7 1 0
Fangar 5 1 0

16 January 2017 1 Alfacs 7 1 1

17 March 2017 1
Alfacs 7 7 7
Fangar 5 5 5

6 April 2017 1
Alfacs 7 7 7
Fangar 5 5 5

26 May 2017 2
Alfacs 6 6 6
Fangar 6 6 6

15 June 2017 2 Alfacs 6 6 6

25 July 2017 3 Fangar 40 a 6 0

4 August 2017 3 Fangar 40 a 6 0

a: 20 integrated water column samples, and 20 surface water samples at same locations.

2.3. Sentinel 2 Data

A set of 47 Sentinel 2A L1C images (i.e., not cloud covered) were downloaded from Copernicus
Open Acces Hub (https://scihub.copernicus.eu/). Thirteen of them (six from Alfacs and seven from
Fangar) within the period April 2016–August 2017 were selected for calibration and validation purposes
(Figure 3). The remaining images between January 2017 and January 2018 (Table 1), 18 from Alfacs and
16 from Fangar, were used for time-series estimation (Figure 3). Although the calibration/validation
(CalVal) image sets covered mainly spring and summer, the time-series was estimated for a full year
in order to include the full rice growing season. Additional meteorological data, including daily air
temperature (◦C), wind direction (◦), wind speed (m/s), and precipitation (mm), were obtained from
the Illa de Buda meteorological station (Station Id. 11043, located at 1 m above sea level) of the Catalan
Meteorological Service, http://www.meteo.cat (Figure 1).
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Figure 2. Official water-quality monitoring program sampling grid (Grid 1), specific sampling grid
(Grid 2), and European Maritime and Fisheries Fund (EMFF) project sampling grid (Grid 3) at Fangar
(a) and Alfacs (b) bays.
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Figure 3. Temporal distribution of Sentinel 2 images used in this study for calibration and validation
and time-series development (TSD) at Alfacs and Fangar bays.

2.4. Atmospheric Correction: ACOLITE

Sentinel 2A L1C imagery were atmospherically corrected with ACOLITE processor. It bundles the
atmospheric correction algorithms and processing software developed by the Royal Belgian Institute
of Natural Sciences (RBINS) for aquatic applications of Landsat (5/7/8) and Sentinel 2 (A/B) satellite
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data. The Dark Spectrum Fitting (DSF) [31], used here, computes the atmospheric path radiance
based on multiple targets in the scene or sub-scene, with no a priori dark band, allowing an aerosol
correction. ACOLITE includes a sun glint correction, which uses the short-wave infra-red (SWIR)
bands to estimate a glint signal [32] and to establish the threshold to determine which pixels need
to be corrected (0.05 by default). Sentinel 2A B11 and B12 bands (SWIR at 1604 nm and 2202 nm)
were used for sun glint correction. The thresholds were set manually image-by-image after a SWIR
analysis that was carried out considering the response of Sentinel 2A B11 over water pixels compared
to non-water pixels. For each day and bay land/water mask and sun-glint correction thresholds were
defined, ranging between 0.0215 and 0.1. Therefore, the atmospheric correction procedure output
included, for each image, uncorrected (a), partially corrected (b), and fully corrected atmosphere (c and
d) reflectance data.

(a) Rhot: top of atmosphere reflectance (TOA) derived from the original input file.
(b) Rhorc: Rayleigh corrected reflectance. This is the Rhot with removed and corrected reflectance

for two-way Rayleigh transmittance. An additional pre-processing step was made to avoid high
reflectance pixels by fixing a maximum threshold (Rhorc reflectance at 492 nm or 560 nm ≥ 0.11)
above which pixels were assigned as invalids.

(c) Rrs: remote sensing reflectance (sr−1) for water pixels (Rrs = Rhow/π).
(d) Rhow: surface reflectance for water pixels.

2.5. Chlorophyll-a Estimation Algorithms

Seven different spectral algorithms band-ratio and band-combination based, were applied to each
product resulting of ACOLITE processing (Rhot, Rhorc, Rrs and Rhow). Briefly,

I. BG: The Ratio between Blue and Green spectra uses the reflectance at 490 nm (blue) and
560 nm (green). At 490 nm carotenoids absorb light strongly, while at 560 nm the absorption
of all photosynthetic pigments is minimal (i.e., green reflection). This algorithm was initially
proposed by [33]. R stands for Rhot, Rhorc, Rrs, or Rhow reflectance.

[chl–a] ∝ R(490)
R(560)

(1)

II. BR: The Blue–Red ratio is based on the two chl-a maximal absorption peaks.

[chl–a] ∝ R(490)
R(665)

(2)

III. RG: The Green–Red ratio is based on the minimal and maximal absorption peaks of chl-a, thus
avoiding the use of the blue bands [23,34].

[chl–a] ∝ R(665)
R(560)

(3)

IV. NR: The ratio between Red and NIR assumes that the absorption by non-algal particles, yellow
substances and the backscattering are insignificant when compared to chl-a absorption at red
wavelengths (665 nm) [35]. Between 700 and 720 nm, the absorption due to water constituents
is minimal.

[chl–a] ∝ R(705)
R(665)

(4)

V. NDCI: The Normal Difference Chlorophyll Index developed by Mishra et al. [36] for turbid
productive waters uses the information of the reflectance peak centered at 700 nm, which is
maximally sensitive to variations in chl-a concentration in water. Furthermore, a wide spectral
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absorption peak between 665 nm and 675 nm is generally associated to the absorption by chl-a
pigments. The normalization through the NDCI eliminates uncertainties in the estimation of the
remote sensing reflectance, seasonal solar azimuth differences, and atmospheric contributions.

[chl–a] ∝ [R(705) −R(665)]
[R(705) + R(665)]

(5)

VI. DO5: Dall’Olmo and Gitelson [37] presented a three-band model using Red and NIR bands.
It assumes that (i) the absorption by coloured dissolved organic matter (CDOM) and total
suspended matter (TSM) beyond 700 nm is approximately equal to that at 665–675 nm
and the difference between them can be neglected; (ii) total chlorophyll, CDOM, and TSM
absorption beyond 730 nm is almost 0; and (iii) backscattering coefficient of chl-a is spectrally
invariant [36,37].

[chl–a] ∝
[

1
R(665)

− 1
R(705)

]
×R(740) (6)

VII. MCI: The Maximum Chlorophyll Index allows the detection of red tides and aquatic
vegetation [24]. For Sentinel 2, it uses the band 5 (705 nm), perfectly located to detect
high biomass water bodies against the baselines of the bands 4 and 6 (665 and 740 nm).
In Equation (7), k is the thin cloud correction factor fixed at 1.005 for thin clouds.

[chl–a] ∝ R(705) − k ×
(
R(665) + (R(740) − R(665)) × 705− 665

740− 665

)
(7)

2.6. Model Calibration and Validation

Sentinel 2A (Level 1C and 2) images and all in situ chl-a of coinciding days were used for model
calibration and validation. In order to reduce the effect of noise from the sensor and the time-difference
between the image (20 m2 resolution) and water samples acquisition, reflectance was averaged over a
3 × 3 pixel-box centered at the in situ measurements. However, not all of the nine pixels per in situ
sampling location could be used as there might be outliers coming from different sources such as
bottom contamination, different affection of sun glint and adjacency or infrastructures as rafts or harbor
jetties interfering in some pixels. For this reason, a pre-processing step was carried out on each spectral
band used and for all atmospheric correction levels. For each day and bay, considering together all in
situ sampling locations, outliers were detected and removed by Tukey’s fences method (Boxplot). The
criteria flagged as invalid a pixel if in one of the five spectral bands (see Equations (1)–(7)) the reflectance
value was classified as outlier. A second step to clean the remaining outliers was carried out applying
the same methodology to each 3 × 3 pixel-box centered at in situ sampling sites, individually. To ensure
the possibility of using the averaged reflectance of 2–9 pixels, without corrupting the methodology,
standard deviation (SD) of the average at each sampling location was computed against the number of
pixels used for the average.

After outlier deletion, the seven algorithms were computed using the averaged reflectance at
each chl-a sampling location. Model calibration was done with 70% of the data (with ordinary least of
squares fitting, OLS) and the remaining 30% was used for model validation. Models were calibrated
and validated in two different ways: (i) using only those samples where in situ chl-a was measured by
the three methodologies (i.e., in vivo, FL, SP) and (ii) for each methodology including all the available
data. In both cases, model development was carried out considering all possible combinations of
ACOLITE-derived imagery together with two different scenarios (individually or both bays together).

Model performance was assessed graphically by plotting observed and predicted values,
and efficiency was measured with the Akaike Information Criterion (AIC), the Averaged Percentage
Difference (APD), and the Mean Absolut Error (MAE). AIC combines fit and parsimony (number of
parameters) of models, with the best fitting model having the lowest AIC. MAE and APD were applied
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following the criteria of [38], who suggested that these metrics account better for accuracy of the
models over non-Gaussian distributions by not amplifying outliers and precisely reflecting the error
magnitude. Models with lowest AIC, MAE, and APD, in this order, were considered better. Although
the coefficient of determination (i.e., R2) and Normalized Root Mean Squared Error (RMSE) are widely
used goodness-of-fit measures, they are not recommended for non-Gaussian distributions [38]. Thus,
both measures were only included to allow the comparison with previous works.

2.7. Time-Series Estimation

The best model was selected to construct chl-a time-series maps with the available Sentinel 2A
images in 2017. Pixel-stability was assessed by using an unsupervised classification cluster analysis
(2 classes) based on the inter-pixel slope of the averaged time-series chl-a and the coefficient of variation
(CV; Equation (8)) of chl-a of the same set of images.

CV =
σ

X
(8)

where σ stands for standard deviation (SD) and X for the average.

2.8. Workflow

The proposed workflow (Figure 4) started with the selection and download of Sentinel 2A L1C
images. The images were processed with ACOLITE after the SWIR analysis, including a resampling of
all bands to 20 m2, image cropping to the region of interest (Ebro Delta bays), and the atmospheric
correction to derive Rhorc, Rrs, and Rhow reflectance (see Section 2.4). After ACOLITE processing,
for the spectral bands of interest, outliers were detected and removed. Then, for each image of the
calibration set, the spectral algorithms were computed, and the resulting values were extracted at
each chl-a sampling location. Models were calibrated and validated with Rhot, Rhorc, Rrs, and Rhow
imagery together with ground truth data. The best algorithm and methodology were selected, applied
to all the available images in 2017, and the pixel-stability analysis was carried out. Finally, the resulting
time series was then used to analyze spatiotemporal patterns of chl-a (as indicator of phytoplankton
biomass dynamics), thus covering different seasons and the full rice farming cycle.

 

Figure 4. Workflow to derive chl-a time-series from Sentinel 2A multispectral imagery (MSI) data at
Ebro Delta bays for aquaculture management purposes.
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All statistical analyses were performed with R version 3.5.2; the packages foreign 0.8.71, xlsx
0.6.1, xlsxjars 0.6.1, ncdf 1.16.1, and raster 2.8.19 were used to load external data with different formats.
Packages rgdal 1.4.3, spatstat 1.59.0, and maptools 0.9.5 were used to work with geospatial data (create
masks, band math calculator, and pixel extraction). Packages FSA 0.8.24, NCStats 0.4.7, nlstools 1.0.2,
and minipack.lm 1.2.1 were used to evaluate the model performance (ROC curves and associated
statistical parameters).

3. Results

3.1. In situ Data: chl-a

Overall, chlorophyll-a concentration varied among seasons and sites, with different spatial
distribution patterns in both bays. In Alfacs Bay, chl-a showed a spatial gradient trend defined
generally by higher concentrations from the central zone with higher concentration values, to the inner
area, with minimum chl-a concentrations in the shellfish rafts (Figure 1). In Fangar Bay, maximum
chl-a concentrations were found in the mouth and minimum concentrations in the inner part of the bay,
which showed similar values to those in the shellfish rafts. Table 2 summarize chl-a results per bay.
In general, Alfacs Bay showed higher chl-a concentrations.

Among the different laboratory methodologies used to measure chl-a concentration, in vivo results
showed moderate correlation values with both FL (Pearson’s r = 0.60, N = 55, P < 0.001) and SP
(r = 0.62, N = 43, P < 0.001), while these two methods (FL and SP) were highly correlated (r = 0.93,
N = 43, P < 0.001). The average percentage difference (APD) between methodologies was 98% between
in vivo and FL, 56% between in vivo and SP and 20% between FL and SP. Surface and integrated water
column (sampled in Fangar Bay on both 25 July and 17 August) in vivo chl-a concentrations were
strongly correlated (r = 0.80, N = 40, P < 0.001), with an APD of 7.6%.

Table 2. Descriptive statistics of chl-a concentration (mg/m3) per bay and measuring method, during
the study period. FL = Fluorometer; SP = Spectrophotometer. N is the number of samples, SD is the
Standard Deviation, and CV is the Coefficient of Variation.

Bay Method N Minimum Maximum Median Mean SD CV

Fangar
In vivo 66 0.512 6.553 2.719 2.716 1.497 0.551

FL 30 0.170 4.992 1.365 1.836 1.278 0.696

SP 16 0.222 2.597 1.604 1.501 0.732 0.487

Alfacs
In vivo 40 0.774 8.880 2.807 3.197 1.867 0.584

FL 28 1.010 4.750 1.705 2.206 1.131 0.513

SP 27 1.373 5.596 2.613 2.988 1.291 0.432

3.2. Atmospheric Correction and Outlier Removal

The averaged reflectance at the sampling locations for the different atmospheric correction
products (i.e., Rhot, Rhorc, Rhow, and Rrs) for each CalVal date and bay (Figure 5), and at each Sentinel
2A band, showed less reflectance from uncorrected to full corrected levels, this being more pronounced
for shorter wavelengths. Fangar Bay showed higher averaged reflectance than Alfacs, when comparing
the same day, and for all different Level products.

Averaged reflectance of a 3 × 3–pixel box centered at the in situ sampling points was used as the
reflectance at each location; however, outlier pixels were removed. After outlier detection, 18 sampling
points were completely removed and were not used in the CalVal process. Sixteen of the 18 removed
points corresponded to Fangar Bay and were mostly located within the shellfish rafts, the mouth of the
bay, and the inner area. Two points were removed from Alfacs Bay, both located in the harbor on 20
June 2016. Final available chl-a data are summarized in Table 3. In order to evaluate the impact of
outlier pixels on the reflectance estimation, it was assessed the reflectance SD relative to the number of
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valid pixels (2 to 9), at each sampling site, for all type of Sentinel 2A products and all the bands used in
algorithm calculation. Pearson’s correlation coefficient, in absolute value, ranged between 6.11 × 10−3

and 0.23, thus, reflectance values were similar, independent of the size of the pixel-box around the
sampling point (from 2 to 9), and outliers can be removed without introducing significant errors.

Table 3. Summary of in situ chl-a data set used in the calibration and validation process of the Sentinel
2 derived data.

Date Sampling Grid Bay
Number of Samples per Method

In Vivo FL SP

11 April 2016 1 Fangar 5 1 0

20 June 2016 1
Alfacs 5 1 0
Fangar 4 1 0

16 January 2017 1 Alfacs 7 1 1

17 March 2017 1
Alfacs 7 7 7
Fangar 4 4 4

6 April 2017 1
Alfacs 7 7 7
Fangar 3 3 3

26 May 2017 2
Alfacs 6 6 6
Fangar 6 6 6

15 June 2017 2 Alfacs 6 6 6

25 July 2017 3 Fangar 12 5 0

4 August 2017 3 Fangar 16 5 0
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Figure 5. Daily averaged reflectance spectra per bay for each band of Sentinel 1C and 2A products on
Calibration and Validation dates. Alfacs Bay: solid line. Fangar Bay: dashed line.

3.3. Model Calibration and Validation

All variable combinations resulted in 252 models (see Table S1); chl-a methodology (in vivo,
FL and SP) × bay (Alfacs, Fangar, and both bays together) × Sentinel 2A images (Rhot, Rhorc, Rrs and
Rhow) × spectral algorithm (BG, BR, RG, NR, NDCI, DO5, MCI) (see Table S1). Overall, considering
all the possible models, the algorithms performed better when applied to Rhorc images, although
Red-to-Green (RG) and, especially MCI, showed less sensibility to the atmospheric correction and
similar results were achieved with Rhot, Rhorc, Rrs, or Rhow reflectance. The best results were
obtained combining Rhorc images with spectrophotometer chl-a measures (SP). Within the “Rhorc_SP”
models, the best performing algorithms were BG (Blue-to-Green ratio) for Alfacs Bay and for both bays
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together, and the NDCI (Normal Difference Chlorophyll Index) algorithm returned the best results
for Fangar Bay (Table 4). Close results to BG were achieved in Alfacs Bay and both bays together
with RG (Red-to-Green) band ratio, while worse results in both cases were obtained with Maximum
Chlorophyll Index (MCI). In Fangar Bay, despite differences among the performance of the different
algorithms were smaller than in Alfacs Bay (Table S1), NIR-to-Red (NR) band ratio and MCI performed
similar to NDCI, while BG performed worse.

Chlorophyll-a was not measured by the three methodologies (in vivo, FL, and SP) in all the samples;
thus, models had different sample size. In order to avoid the influence of sample size on results, the
models were also fitted using only those chl-a samples measured by the three methodologies (Table S2).
There were not significant changes associated to N, but changes on model performance were more related
to the range of chl-a covered by the samples (e.g., the lower variability of chl-a in Fangar Bay).

Different algorithms performed better in Alfacs and Fangar Bay. The low number of available SP
data and the good results obtained calibrating and validating the model including both bays together
suggest the use of “Rhorc_SP” configuration (Figure 6) until more data are available. Despite BG
performance in Fangar Bay was worse than the achieved with other algorithms (i.e., NDCI, NR, and
MCI), probably it was due to the lack of variability towards higher concentrations and the weight of
few extreme values over a small dataset. In fact, the linear distribution of chl-a SP in Fangar fit with
the trend of Alfacs (Figure 7). Also, the trend line using data of both bays or using data only from
Alfacs Bay was almost equal, denoting that Fangar samples were in agreement with the global trend
described (Figure 7). These results support the idea of using both bays together and reinforce the
assumptions for applying the same model to both bays.

Table 4. Summary of the best performing models per bay for the calibration dataset. “Algorithm” refers
to the spectral algorithm applied to Rhorc images and calibrated with chl-a spectrophotometer (SP).

Bay Algorithm Min chl-a Max chl-a Intercept Slope N MAE APD R2 AIC

Fangar NDCI 0.46 2.39 0.56 –12.80 9 0.41 0.27 0.43 17.12

Alfacs BG 1.83 5.12 13.88 –12.24 18 0.71 3.30 0.61 49.54

Both BG 1.37 5.60 13.93 –12.50 27 0.63 5.58 0.58 72.17
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Figure 6. Calibration (a) and Validation (b) results of the Blue-to-Green ratio (BG) algorithm, chl-a SP,
and both bays together over the set of Rhorc images. The 95% prediction (dashed line) and the 95%
confidence interval (dotted line) are also shown.
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line) and the 95% confidence interval (dotted line) are also shown.3.4 Chlorophyll-a Time-Series.

According to previous results, chl-a time-series was generated from the Blue-to-Green ratio
(BG) model using partially corrected images (Rhorc) for both bays together, and chl-a measured by
spectrophotometer (SP). Two pre-processing steps were applied to reduce the sources of error on the
bottom of Rayleigh corrected reflectance. First, although images were selected according to cloud
absence, in two of them, small areas at the extremes of Alfacs Bay were contaminated by clouds. There,
the threshold applied to the Rhorc images removed pixels associated with thick clouds (Figure 8),
but the thinnest clouds were not successfully detected, and the ground information was not restored in
either case. The second pre-processing step consisted in the generation of a mask to avoid areas where
BG did not responded only to chl-a, but to other sources such as bottom reflectance or macrophytes
(Figure 9). The clustering used to make the mask highlighted the boundaries where maximum changes
occurred, namely, shallow waters with bottom or seagrass contribution, hard structures such as rafts,
and semi-static objects like the ships in the Alfacs Bay harbor. Finally, before chl-a time-series estimation,
a 20 m buffer (i.e., 1 pixel) was applied, around each raft, created in order to delete mixed border pixels.

 
Figure 8. Masking Rhorc high reflectance over blue and green bands (threshold = 0.11). Exempla of
cloud presence in Alfacs Bay on 22 November.

Both for Fangar and Alfacs bays, one-year chl-a time-series were processed (Figure S1). Overall,
during winter and early spring, higher concentrations of chl-a were observed in Alfacs Bay. From
April to October, chl-a concentrations were comparable between bays; after, in Fangar Bay, chl-a
concentrations decreased more sharply. Despite the differences in chl-a concentration, the general trend
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was similar in both bays almost all the year, but chl-a peaks differed. In Alfacs Bay, chl-a peaked during
February–April and October–November, achieving maximum concentrations in March. In Fangar Bay,
chl-a peaked on May and September–October, being the most productive along the year in this last
period. Minimum chl-a concentrations were found in winter in both bays, January and November
for Alfacs and Fangar Bay, respectively. The coefficient of variation (CV) of chl-a (Figure 10a,b) along
the year showed, in general, higher CV in Fangar than Alfacs Bay. In Fangar, higher variability was
observed in the mouth of the bay, associated to higher chl-a concentrations, while lower CV values
were found at the inner area and within the shellfish rafts, where lowest values of chl-a were found.
Conversely, in Alfacs Bay, higher CV was observed in the eastern half of the bay, especially in the inner
area and the eastern half of the rafts polygon, with lower averaged chl-a concentration. The harbor
area and its surroundings, including the western half of rafts and the mouth of the bay, showed lower
values of CV, related to higher concentrations of chl-a.

 

(a) (b) 

Figure 9. Time-series pixel-stability mask. (a) Fangar Bay; (b) Alfacs Bay.

 
 
 
 
 
 
 
 
 CV Chl-a

0 80

(a) (b) 

Figure 10. Time-series coefficient of variation (CV) of chl-a. (a) Fangar (b) Alfacs.

The time-series (Figure S1) was revised according to the four different rice-paddies irrigation
network scenarios (i.e., Closed channels in winter, semi-closed channels in spring, opened channels
in summer and semi-opened channels in autumn)and aquaculture production. The closure of the
discharging channels (closed, semi-closed, and semi-opened) propitiated a more eutrophic environment,
reaching higher chl-a concentrations than during the opened channels stage, this phenomenon being
more evident in Alfacs Bay. During the closed and semi-closed stage (from January to April), chl-a
tended to increase in both bays, but the increment was much more pronounced and long-lasting in
Alfacs. During these months rice paddies are dry and so, the supply of water from the channels
is minimum. Regarding the chl-a within the shellfish rafts, while Fangar Bay showed similar chl-a
concentrations inside and outside the rafts (more homogeneous bay), in Alfacs Bay, lower concentrations
of chl-a were observed inside the rafts’ polygon. During the opened channels stage (from April to
September), chl-a concentration decreased in Alfacs and remained the same in Fangar Bay, compared
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with the prior period. However, from late July, both bays showed an increase of chl-a concentration
that lasted until the end of September, when chl-a dropped sharply, achieving values close to 0 mg/m3

in both bays. The opened channels stage is characterized by high freshwater inputs with the maximum
occurring in September–October. Despite shellfish filter more actively during the warm months, no
significant differences in chl-a were observed between the rafts and their surroundings in neither of the
two bays. Finally, the semi-opened channels stage (from October to December) started with a strong
increase of chl-a at both bays in October, which lasted until late November, when chl-a concentrations
dropped close to 0 at both bays. During December, Alfacs Bay recovered chl-a concentrations similar to
those of the opened channels stage, but Fangar Bay kept low chl-a values. The semi-opened channels
stage implies that water is still being discharged in the bay, but contributions decrease with time.
Most of the shellfish are harvested during summer, so the bivalve grazing pressure is reduced the last
months of the year. Although similar chl-a concentrations were found between the rafts and the rest
of the bays, lower values of chl-a tended to aggregate in the middle area of the Alfacs rafts’ polygon,
and the Northern rafts of Fangar Bay.

4. Discussion

4.1. In situ chl-a Data

Three different laboratory methods for chl-a quantification from water samples were compared.
Chlorophyll-a concentration measured by spectrophotometer (SP) after acetone extraction was better
correlated with satellite data. The in vivo method is only used as a fast qualitative proxy of chl-a due
to its sensibility to errors with unknown uncertainty (i.e., overestimation due to non-phytoplanktonic
contribution), while extracting the pigment with a solvent (i.e., alcohol-based or acetone) and
measuring it with the fluorometer or spectrophotometer is the common procedure in remote sensing
of chl-a [21,39,40]. Regarding the use of surface or integrated water samples for ground truth chl-a
quantification, the vertical distribution of the phytoplankton biomass might have a significant impact
on the remote sensing signal. In Fangar Bay, significant differences were not found between surface
and integrated water column chl-a concentrations. This finding is in agreement with Ramón et al. [41],
who found homogeneous chl-a concentration by depth in a 10 month study (1 sample per month) in
Fangar. These results suggest the use of an integrated water column chl-a for remote sensing model
calibration and validation in coastal shallow waters, but further research should include data of both
bays under different scenarios to prove the validity of this assumption during the year.

4.2. Atmospheric Correction and chl-a Estimation Algorithms

ACOLITE was used for atmospheric correction of Sentinel 2A L1C images using the Dark Spectrum
Fitting (DSF) based on the SWIR bands. The results showed that TOA contributed over 50% for all
MSI over surface reflectance of water pixels (Rhow). This might be related with non-negligible water
reflectance in the SWIR band. According to [42], the invalidity of the SWIR black pixel assumption
could lead to an overcorrection of the reflectance (SWIR reflectance for water pixels was up to 10 times
larger when solar zenith < 42◦; i.e., spring and summer). In this study, it was not possible to validate
the atmospheric correction with field radiometric measurements, but the drop of reflectance of Rhow
images compared to Rhot in the blue bands was noticeable. However, a strong reflectance peak was
observed in the green part, independent of the level of atmospheric correction applied. Similar results
were obtained by [43] using ACOLITE without sun glint correction in an estuarine area, and they
also found higher water reflectance in all bands in areas with higher concentration of total suspended
matter. In the Ebro Delta, Fangar Bay always showed larger reflectance at all spectrum compared to
Alfacs Bay. Fangar is shallower and thus is more susceptible to wind-driven mixing and sediment
resuspension. However, the increased reflectance of Fangar Bay might be also related to bottom
reflectance or contamination due to adjacency effects. As suggested by other authors [44,45], adjacency
effects have significant impact in coastal waters due to typical lower reflectance in relation with their
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neighbourhood surfaces (i.e., sand beaches and rice paddies), increasing the apparent brightness.
This effect might be more pronounced in Fangar Bay due to its geomorphological characteristics
(smaller, shallower, and more closed).

The simplified atmospheric correction procedure, which normalizes the TOA signal for Rayleigh
effects, was preferred in favor of a full aerosol atmospheric correction given the large uncertainties
associated with water leaving reflectance over turbid waters. Ref. [31] found a similar performance
between the median spectra derived for full atmospheric correction and only Rayleigh correction. Our
models showed better performance using Rhorc images instead of Rhow. For both bays together, the
best performing algorithm was the BG ratio. Common ocean color algorithms based on the ratio of
blue and green bands do not perform well in optically complex coastal waters (less sensivity to chl-a
concentration changes) [20,23,36,46]. However, Ref. [46] suggested that, in case 2 oligotrophic waters
([chl-a] < 4 mg/m3), the use of blue and green wavelengths is more appropriate. In the present study,
averaged chl-a concentrations (measured in situ) were 1.50 and 2.99 mg/m3, with maximums of 2.60
and 5.60 mg/m3, for Fangar and Alfacs Bays, respectively, and the results achieved were in agreement
with [47,48]. The chl-a estimates were reasonably well derived (MAE = 0.63 and APD < 10%) using the
BG ratio.

4.3. Model Calibration and Validation

In order to reduce noise and minimize temporal-gap effects, ground truth chl-a data were averaged
over a 3 × 3–pixel box, centered on the sampling point. Despite the averaged reflectance is commonly
used, it might be a poor measure of central tendency if the set of pixels used for its calculation contains
outliers. Here, outliers were removed before averaging the 3 × 3–pixel box. Although the number of
valid pixels differed among locations and dates, the number of valid pixels (between 2 and 9) was not
correlated with the mean standard deviation, thus demonstrating the suitability of the results. After
model selection, the BG applied over Rhorc images was preferred and used to make a “pixel-stability
mask” to identify and reject those areas where the values obtained with the integration of the remote
sensing and the model were not responding to the changes of chl-a. Based on k-means clustering, the
applied methodology allowed us to distinguish the boundaries where maximum changes occurred,
thus defining the edges for the delimitation of the mask. In Alfacs Bay, better results were achieved
that were able to differentiate each raft individually (rafts more separated than in Fangar) and masking
the shallow waters (confined only to the margins of the bay).

The applied model was based on algorithms specifically tuned for Alfacs and Fangar bays. Despite
the good results achieved for the CalVal dates, the suitability of the model depends on the ratio between
the range of remote sensing and the range of the available ground data and its representativeness
along different seasons or scenarios. In our study, not many samples were available, but their spatial
distribution covered a wide range of in-day scenarios at each bay. However, most of the samples for
CalVal purposes included only the seasons of summer and spring so the application of the models over
winter and autumn was subjected to higher uncertainty. Indeed, the range of chl-a measured in situ
included low number of samples with concentrations under 1 mg/m3, which are highly representative
in the winter season. This fact coupled with the linearity of the developed models, increase the error
related to low chl-a concentrations, tending more rapidly to negative numbers (e.g., Figure S1b).

4.4. Spatiotemporal chl-a Dynamics

The time-series of chl-a covered all year 2017, including the different channel stages at both Fangar
and Alfacs bays. Overall, the temperature increased from winter (Tmean ~ 14.4 ◦C) to summer (Tmean ~
27.7 ◦C), and in autumn, the temperature (Tmean ~ 22.5 ◦C) was similar, even higher, than in spring
(Tmean ~ 20.1 ◦C). The most frequent winds during the year came from the NW sector, predominantly in
the morning, with strong influence of southern winds (spring and summer), switching to SSE (winter
and summer) and to SSW (spring and autumn) from noon onward. Within the dates included in this
study, highest intensities were registered in March and December, both related to direction of 300–360◦
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(NW and NNW). The rainiest month along year was January (72.4 mm in seven days), followed by
March (36.5 mm in 14 days), and within the days included in the time-series, it rained on 4 August
between 4:30 and 5:00 am (accumulated precipitation of 0.1 mm) and on 23 September from 4:30–6:30
am (accumulated precipitation of 0.3 mm).

Regarding the variability of chl-a inside each bay (in terms of CV), Fangar Bay showed higher
heterogeneity along time, but more homogeneity along space than Alfacs Bay. Fangar Bay is smaller and
shallower, which makes it more susceptible to environmental variations, making the changes faster and
affecting more of the bay’s area. In this study, it has been observed that in Fangar maximum variations
were associated to more energetic areas with more chl-a (mouth), while in Alfacs, higher variabilities
were associated to less energetic areas where chl-a dynamics depend largely on the wind-driven mixing
(inner NE area). These findings are related with the renewal time of the bays (higher in Alfacs) and
linked to the capacity for developing larger phytoplankton populations (higher chl-a concentrations).
In this sense, Alfacs Bay characteristics (larger and deeper bay more perpendicular to NW and N winds
with higher water residence times) allow nutrients to sink and get stored in the sediment of the bay
and, at the same time, allow them to be released and suspended during more time (increased nutrient
availability for phytoplankton). Conversely, quicker changes in Fangar Bay make chl-a to be diluted
faster by the Mediterranean water inputs (less productive waters).

In relation to chl-a concentrations, besides the seasonal temperature-driven dynamics, wind
was the environmental parameter more related to the maximum variations of chl-a inside the bays.
In terms of temporal dynamics, overall, chl-a increased more with prolonged NW and N strong
winds episodes occurred in 17 March both bays (Figure S1e,f), 25 July both bays (Figure S1u,v),
13 September Fangar Bay (Figure S1ab), 23 October both bays (Figure S1ag,ah), and 12 November
Alfacs Bay (Figure S1ai). The highest accumulations of chl-a at both bays occurred on March (Figure
S1e,f), October (Figure S1ae–ah) and early November (Figure S1ai), when channels were closed or
semi-closed. Conversely, weaker winds from southern components were related to decreases in chl-a
concentrations as happened in 15 July both bays (Figure S1s,t), 23 September both bays (Figure S1ac,ad)
and 22 November both bays (Figure S1aj,ak). Reduction of chl-a concentration in both bays was
enhanced after rainy events as in 23 September (Figure S1ac,ad) and 22 November (Figure S1aj,ak).
These results suggest that wind plays a major role in the nutrient load of the water column. On one
hand, mixing the water re-suspending the sediment, thus making the nutrients available (wind-induced
turbulence). On the other, enhancing water renewal which increases flushing cells ratio and does
not allow time enough for development of large phytoplankton populations [49] (wind-enhanced
circulation). Therefore, higher chl-a concentrations are expected to occur when the estuarine circulation
is weakened and the turbulence increases. This effect might be enhanced at the end or after drainage
of the irrigation channels stage (August–November) which increase the nutrients stored in the bays.
In the time-series presented in this study, this occurred in August at both bays (Figure S1w–aa) and 23
October both bays (Figure S1ag, ah), especially when winds blow from land (NW and N). In general,
the observed trend was in agreement with previous studies [49], which found high chl-a concentrations
of chl-a in October in Alfacs Bay and high concentrations from July to November in Fangar Bay.

In terms of spatial dynamics (in-day scenarios), high chl-a concentrations were related more
frequently to the mouth area of both bays. There, the exchange with the Mediterranean Sea leads to a
more instable scenario in which, despite water renewal might be higher, increased turbulence favors
phytoplankton growth prevailing over the wind’s regime. High concentrations in the mouth of Fangar
Bay were related with more chl-a within the central channel of the bay (northern face of rafts), while in
Alfacs Bay there was not so clear relation. In this bay, highest chl-a concentrations were also found in
the inner area (NE), which is more retentive and concentrate more nutrients [5].

Because of all the aforementioned, shellfish aquaculture in the bays benefits from increased
chl-a concentrations compared to the open sea. However, the retentiveness that characterizes the
bays become a double-edged sword due to the high temperatures that water reaches during summer
(>30 ◦C), which negatively affects the feeding rate of shellfish, becoming lethal when temperatures

440



Remote Sens. 2019, 11, 1756

above 28 ◦C are maintained for days [41]. In order to develop a feasible method for aquaculture
management by means of remote sensing monitoring, temperature must be included as one of the
main factors, together with chl-a, controlling shellfish growth and conditioning the sustainability of
the cultures.

In this article, the first results have been presented, and measures to enhance aquaculture can
be proposed. However, the feasibility of implementing them is subjected to the availability of
bio-geophysical models considering longer time-series, which would allow to make a more integrated
and robust approach. Including more data (parameters considered, increased number of data, wider
dynamic range) and integrating them into the models would lead to carry out studies in line with [27,30],
which coupled remote sensed chl-a with other environmental parameters to establish shellfish farming
suitability index, to determinate the load capacity of the bays, and to rezoning the rafts’ locations.

5. Conclusions

Moderate spatial resolution (10–60 m2) Sentinel 2 imagery offers a new opportunity for remote
sensing of water quality at small coastal geographic areas. In the Ebro Delta bays, the main Spanish
Mediterranean shellfish production site, Sentinel 2 imagery has demonstrated the potential to become a
suitable tool for resolving the fast dynamics of phytoplankton in the area (in terms of chl-a concentration),
within short space and time-frames. The monitoring using satellite remote sensing improves the
standard in situ sampling-based methodology, allowing moving from punctual to full coverage, thus
enabling holistic analyses (time-series) to enhace coastal management (e.g., aquaculture).

After testing different levels of atmospheric correction, it is not feasable to use uncorrected
atmosphere images (TOA), but the full correction of the atmosphere is still highly uncertain. The results
obtained suggest the use of Rayleight corrected Sentinel 2 imagery together with a simple Blue-to-Green
ratio for chl-a estimation, until full correction is completely solved/validated. With this configuration,
APD < 10% and MAE < 0.7 mg/m3 were achieved, being able to derive credible chl-a maps of the bays,
including the preservation of some information within the rafts polygons.

Despite the aforementioned success, remote sensing of small complex coastal geographic areas
still faces several challenges. The main limitations found in this study were (i) full atmospheric
correction accounting for aerosol, Rayleigh, sun glint, and adjacency effects and (ii) uncertainties
associated to shallower areas contaminated by bottom reflectance, contributions of seagrasses to the
total chl-a concentration, and validity of the results out the range of derivation of the model (location
of ground truth data, wider range of chl-a concentrations, and seasonality). Further research should
be directed to solve these shortcommings by improving the atmospheric correction and gathering
more field data covering higher number of scenarios. With these, a sensivity test should be conducted
for algorithm bounding, and, ideally, specific tunned models should be developed for each scenario
(bay/season/water optical properties).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/15/1756/s1,
Table S1: Model performance (in situ chl-a range and N, spectral algorithms‘ range, intercept, slope, RMSE, APD,
Pearson’s r, R2, AIC and BIC) with all variable combinations (chl-a method, bay, atmospheric correction level
and spectral algorithm) using all available in situ chl-a data. Table S2: Model performance (in situ chl-a range
and N, spectral algorithms’ range, intercept, slope, RMSE, APD, Pearson’s r, R2, AIC and BIC) with all variable
combinations (chl-a method, bay, atmospheric correction level and spectral algorithm) using only the samples
for which chl-a was measured by the three methodologies (in vivo, FL and SP). Figure S1: One year (2017) chl-a
time-series at Fangar and Alfacs bay generated with the model with which better performance was achieved
(Blue-to-Green ratio on Rayleigh corrected S2A images calibrated with chl-a measured with spectrophotometer
after acetone extraction).
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Abstract: As climate change is of global concern, the electric generation through fossil fuel is
progressively shifted to renewable energies. Among the renewables, the most common solar and
wind, the wave energy stands for its high-power density. Studies about wave energy resource have
been increasing over the years, especially in coastal countries. Several research investigations have
assessed the global wave power, with higher values at high latitudes. However, to have a precise
assessment of this resource, the measurement systems need to provide a high temporal and spatial
resolution, and due to the lack of in-situ measurements, the way to estimate this value is numerical.
Here, we use a high-frequency radar to estimate the wave energy resource in a nearshore central
Chile at a high resolution. The study focuses near Concepción city (36.5◦ S), using a WERA (WavE
RAdar) high frequency (HF) radar. The amount of annual energy collected is calculated. Analysis
of coefficient of variation (COV), seasonal variability (SV), and monthly variability (MV) shows the
area’s suitability for installing a wave energy converter device due to a relatively low variability and
the high concentration of wave power obtained. The utility of HF radars in energy terms relies on its
high resolution, both temporal and spatial. It can then compare the location of interest within small
areas and use them as a complement to satellite measurements or numerical models, demonstrating
its versatility.

Keywords: remote sensing; HF marine radars; wave energy

1. Introduction

Worldwide marine energies have been widely studied. Recent work [1–5] establishes a
more significant wave potential at higher latitudes. The most favored coasts being, to name
only a few, Australia, New Zealand, South Africa, Chile, the western U.K., and Canada.
Wave devices are currently lagging tidal in terms of technological development. As many
as 170 types of wave energy converter have been designed, fewer than 20% are at the
full-scale prototype stage [6]. By 2017, the world’s installed capacity for marine energy was
536 MW, compared to 267 MW in 2007 [7]. However, Ocean Energy Europe has projected
at a low grown scenario that 1300 MW of tidal energy and 170 MW of wave energy could
be installed by 2030 [8].

Chile is one of the countries with the most extensive maritime territory, with a coastline
that extends from 19◦ S to 56◦ S, positioning it as one of the best countries to develop wave
energy. Marine gravity waves are considered one of the coastal ocean’s essential features
due to their impact on security issues such as harbor activities, traffic planning, beach
management, and energy potential. It is vital to have constant monitoring of the ocean,
especially when a strong presence of coastal industrial and residential activity is present.

Remote Sens. 2021, 13, 203. https://doi.org/10.3390/rs13020203 https://www.mdpi.com/journal/remotesensing
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Several methodologies, numerical or instrumental, provide relevant information
of waves, either in-situ (buoys), remotely (radars, satellites), or through computational
models—the set of methodologies and instruments constituting an integrated observation
system [9]. Remote instruments deliver information from the study area on a large scale
through data acquired by a device that is not in contact with what is being investigated [10].
It is of great importance for ocean data since the environment can be quite hostile and
ample to be covered with in-situ instruments. The most used are satellites that cover a
large part of the Earth, and for which information is available since the early 90s [11].

Other instruments of remote sensing are the high-frequency marine radars. They
are located on the coastline and study oceanographic variables providing high spatial
and temporal coverage. These systems’ applicability includes port security, tsunami
detection, renewable energy, storm surges, and flooding, among others [12–17]. The
advantage of using HF radars instead of instruments such as buoys or satellites is their
high spatial coverage. It is also possible to complement satellites’ information with the
radar information (which does not provide quality measurements near the coastal area [18]).
The HF radar range can be up to 100 km from the coast.

The best option to measure wave by HF radars is through a dual system. Two radars
sweep a shared area, illuminating each surface water parcel from two directions, thus
avoiding ambiguities when measuring the wave height [19]. The same work compares
data from single and dual HF radar systems: It shows that the dual radar algorithm is
significantly more accurate and reliable. One consideration to have in mind is that single or
dual radar measurements tend to be less accurate in high sea states because of limitations in
the backscatter model in these conditions [19]. More precisely, Ref. [20] shows that the HF
radar wave height’s accuracy is around 12.6%. However, one radar does obtain significant
wave height with a range of approximately 30 km from the coast [12,13,21]. A single radar
can be used in particular applications to look directly into the operationally-important
wave propagation [20] and always as a complement to other instruments.

The use of HF marine radars is not uncommon in first-world countries (United States,
Europe, Australia, and Japan [22]. In other countries, however, their use is somewhat
limited. For example, Mexico and Chile use these systems in the rest of the American
continent [23] (see Section 2.1).

Considering the wave energy opportunities in Chile, this work aims to present a
preliminary study of an HF marine radar application. Our goal is to assess the wave energy
potential and prove the usefulness of this instrument to establish the wave energy resource
of a specific location. This way, we can provide a high-resolution grid to determine specific
hotspots that could optimize the available energy harness.

2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area

The study site is located in south-central Chile’s coastal area facing the Pacific Ocean
(Figure 1). The continental shelf is approximately 100 m deep and extends about 60 km
west to 73.5◦ W. The red dot in Figure 1 shows the location of the radar used in the present
study. Information from a global climatology [24], as specific data from the zone [25],
indicates that the wave height has a uniform spatial pattern with average values close to
3 m and lowest variability [26] and typical periods between 9 and 12 s [25]. The winds in
this area come predominantly from the southwest [25], impacting the wave’s direction.
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Figure 1. Area of interest; bathymetry and HF marine radar location.

2.1.2. HF Marine Radar

Wave measurements in front of the Bío-Bío region were made by a WERA HF
radar [12], working at a frequency of 16.15 MHz. It is located in the “Faro Hualpén”
Bío-Bío region (36.74◦ S–73.19◦ W). The system has four (4) transmitting and eight (8)
receiving antennas. It has a sampling frequency of 33 s. The maximum range is 100 km,
with an aperture of +/−50◦ spatial resolution of 2 km and an azimuthal resolution of 4◦.

The waves were measured in a regular grid of 2 km resolution and a temporal interval
of 1 h. For this study, we used approximately one year of measurements between December
2017 and January 2019.

This radar is part of the ocean observation system CHIOOS (www.chioos.cl) in charge
of the Department of Geophysics (DGEO) of the University of Concepción (UDEC). It is
the only HF radar in the entire southeast Pacific coast [23] and, together with those located
in Australia [22], to the best of our knowledge, the only ones in the South Pacific.

2.2. Methodology
2.2.1. Data Processing

The radar sweep area is not constant throughout the study period. There were times
when no measurement took place, having more of fewer grid cell to be studied. Although
the same area is always covered, the amount of spatial data is not the same. Moreover, the
further away from the radar, the lower the spatial coverage and the quality of the data.
Although the radar area varies at each measurement time, the measured points are grouped
in the same area and not scattered throughout the sweep. It generates both spatial and
temporal discontinuity in the data. Figure 2 display a flow chart that resumes the data
treatment process. It is divided into 3 main parts. The 1st represents the initial dataset state.
The 2nd division is the data processing performed; this involves 3 stages (A, B, and C). The
first part was the suppression of extreme elements (A), two interpolation parts (B: 2D and
C: 1D), and the 3rd the dataset obtained.
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Figure 2. Flow chart with the stages to obtain the wave fields.

Radar measurements showed noise and outliers, with extreme values exceeding 3
or even 5 standard deviations (see Figure 5), exceptionally with hourly waves as high as
10–13 m, even close to the coast. The region’s wave height for those dates was verified by
checking with the only buoy in the area and analyzing the Chilean navy’s information for
those times. In the end, for those epochs, the radar reported erroneous peaks. Therefore, to
eliminate outliers, the gridded time series were first filtered by a 3-day moving median [27].
All the data above or below the 1.5 MAD were discarded. It generated a cleaner data field
and time series without those extreme values (2A stage in Figure 2). Then, in order to
have a coherent space-time data field, we performed a spatial-temporal interpolation (see
stages 2B and 2C in flow diagram, Figure 2). When the grid point met the natural neighbor
2D interpolation specific applicability conditions (employing a natural neighbor method
through a Delaunay triangulation [28]), spatial interpolation was executed. It allowed
filling empty grid points with surrounding radar measurements (stage 2B in Figure 2).
However, despite the spatial interpolation, there were still grid points with temporal gaps.
On average, only 15% of the data was filled because of these restrictions. Then, in those
places where there were still missing data, we performed a temporal interpolation applying
a Nonuniform Extended Discrete Fourier Transform [29,30]. It is applied only if the grid
complies with the condition that there were more than 60% of the data (see stage 2C in
Figure 2).

Note that, interpolating solely by 1D (time), crude discontinuities may appear in both
time and space. Thus, if each grid cell time series is treated as an independent time series, it

448



Remote Sens. 2021, 13, 203

creates many spatial discontinuities, which may well not represent the reality of the spatial
variability within the area interpolated. Inversely, spatial interpolation followed by 1D
(time) interpolation ensures the field variability’s spatial continuity is preserved.

The interpolation method, as the methodology of temporal interpolation through
different ways, was verified. For example, comparing the interpolation made in the buoy
or the radar series that had a greater number of original points. The interpolation technique
for missing data that most preserves the data’s reality is the Nonuniform Extended Discrete
Fourier Transform [29,30] method. Thus, the grid points that did not have data before and
after the spatial interpolation were subtracted. Then, the correlation between the original
buoy series and the temporal interpolated buoy series was calculated. On the buoy, the
correlation was 0.81 and 0.86, respectively. Next, the same test was performed with the
radar series that was initially the most complete; 88% of the data and 15 kilometers off the
coast (location 73.1665◦ W, 36.6441◦ S). In this case, the correlation was 0.864 and 0.858. In
summary, this shows that the method of temporal interpolation used is sufficiently robust.

Figure 3 shows the radar’s sweep coverage area, between 36.2◦ S–36.7◦ S and 73.0◦ W–
73.6◦ W. The percentage of the radar’s original coverage is also shown as a data field. The
final percentage after spatial interpolation is shown in contour lines. Blue/red color shows
the places with less/more than average data. From the coast (oblique) to 30 km offshore
(i.e., the equivalent of 0.27 degrees), it has 60 to 80% spatial coverage (red to orange colors)
of the data for one year of study. Further away from this area, it has the worst coverage,
between 40 and 10% of data (blueish colors). So we will only focus on the first 30 km.

Figure 3. HF radar coverage field for the duration of the study. The contour lines show the coverage percentage after
spatial interpolation of the data. The star represents the buoy’s location. The white dot represents an analyzed time series
location (P1).

The treatment previously mentioned allowed the construction of a regular spatial-
temporal grid data set. That is, 20 latitude × 28 longitude points (corresponding to 560 grid
points), with a spatial resolution of 2 km and 9444 hourly time points from December 2017
to January 2019). Statistics in Figure 2 are derived from the interpolated fields.

449



Remote Sens. 2021, 13, 203

2.2.2. Wave Potential

Once the data set is complete, the wave potential, energy period, coefficient of varia-
tion, and seasonal and monthly variability coefficients are calculated [1]. These parameters
are essential to establish the locations where the extraction of energy is favorable either by
having a high potential or a low variability, or a combination of both [31].

For the calculation of the potential, the following equation in W/m was used, which
is valid for deep waters, h > λ

2 [32,33]

P = ρg
H2

s Te

64π
(1)

where ρ is the density of seawater (1027 kg/m3), g is the acceleration due to gravity
(9.81 m/s2), Hs is the significant wave height in meters, and Te being the energy period
in seconds. It is the period of a monochromatic wave that contains the same mean en-
ergy as the rough sea [34]. The HF radar gives the wave height. However, the radar’s
measurements do not provide all the information required to obtain the energy period.

The wave energy period can be calculated from the wave spectra (S( f )) as [34]

Te =
m−1

mo
(2)

where the nth spectral moment is defined as

mn =
∫ ∞

0
f nS( f ) d f (3)

Ref. [1] specifies that Te should be estimated from other variables when the spectral
form is unknown. Therefore, we will use the peak period (Tp) estimated in previous
works [24,25,35], as

Te = 0.9 Tp (4)

The use of a bibliographic value lies in the lack of correlation between the HF radar
and in-situ information (see below Section 3). This way, the wave power calculation would
be more representative and robust (this topic is discussed in more detail in Section 4). For
this area, the peak period is around 10 s (e.g., Chilean wave atlas [35]). Although the value
of Te is constant and does not vary throughout the year of study, it is expected that the
errors associated with the period are not significant compared to the wave height because
P ∝ TeH2

s [1,36]
The coefficient of variation (COV) [1,37] allows investigating the temporal energy

variability. It is obtained from the quotient between the standard deviation of the power
and the average power

COV =
σ(P(t))

P
(5)

This index gives a guideline on how reliable the study site is. Having a low COV
means that the waves’ energy density remains constant over time, so the energy extraction
will not significantly alter the system [37]. Conversely, high values indicate that the energy
is very variable, having sudden changes in a few periods, putting at risk the supply’s
reliability [1].

To determine how the potential changes during the year, the indices of monthly (MV)
and seasonal (SV) variability used [1,26] are defined as

MV =
PM1 − PM2

Pannual
(6)
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where PM1 and PM2 are the average power for the most and least energetic month, respec-
tively, Pannual being the annual power average. For the seasonal variability [1], we have

SV =
PS1 − PS2

Pannual
(7)

where PS1 is the average power for the more energetic season while PS2 for the less energetic
season.

As it compares the most energetic months or seasons with the less energetic ones, these
indicators also provide information about the energy stability (as performed in [1,26,38]).
The monthly and seasonal scales are also essential to study the viability of an energy project
(installation, right weather windows for maintenance, etc.). The lower these indexes are,
the more stable the studied area is [31].

2.3. Layout

From a data field comprising a total area of 800 km2 with a very high spatial resolution
of 2 km, and temporal resolution of 1 h, we estimate the wave potential in front of the
Biobío region. Simultaneously, we perform the following studies to understand wave
power performance: Mean, median, NRMSE, NBIAS, COV, SV, MV.

For example, the most energetic location off the coast (73.25◦ W 36.65◦ S) is collected
and analyzed (see Figure 3). The monthly boxplots (Figure 3) show the average, extreme
values, and outliers per month from this time series. Next, the climatology field allows
determining maximum and minimum wave height values, seasons, and months with the
most significant resource. In that way, it will allow detecting regions close to the coast,
where this type of energy is more favorable and viable to harness. Monthly average spatial
fields are presented and their respective variability indexes, which relate the maximum
and minimum values for each grid point (Figures 4 and 5, respectively).

Figure 4. Time series (panel a), whisker boxplot (panel b) of monthly wave height and wave period (panel c) for a reference
hotspot location, white dot (P1) in Figure 1. (b) The red line in each box is the 50th percentile (median). The blue box
represents the interquartile range (IQR) (25th percentile-bottom blue line and 75th percentile-top blue line).
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Figure 5. Comparison of HF radar (blue) and buoy (red) time series, (a) represents wave height and (b) wave period.

3. Results

Figure 4a shows the time series of the wave height for the point P1 of Figure 3, located
at 73.25◦ W and 36.65◦ S (see Section 2.3). This series’ hourly annual mean is 2.5 m, with a
standard deviation of 0.5 m (energy of 27.6 kW/m and 1.0 kW/m, respectively). While the
annual median is 2.45 m (26.47 kW/m), and 75 and 25% are in the values 2.18 m (21 kW/m)
and 2.79 (34 kW/m), respectively. The maximum height for the whole period was 4.96 m
(11 August 2018), which corresponds to an energy of 108 kW/m.

The boxplot (Figure 4b) shows that the median varies with the seasons, having its
maximum and minimum values in winter and summer, respectively. Summer presents less
variability and with more stable values, with minima and maxima of 1.33 m (7.5 kW/m)
and 3.54 m (55 kW/m), respectively. Simultaneously for this season, the percentiles
show that 75% of summertime wave reaches heights greater than 2.1 m, corresponding to
20 kW/m. During winter, extreme values frequency increases to wave heights higher than
4 m (70 kW/m). The maxima and minima being 4.96 m (108 kW/m) and 1.04 m (5 kW/m),
respectively. One can also note that, 75% of the time, it reaches values greater than 2.31 m
(23 kW/m) during this season. The wave peak period (Figure 4c) has a mean of 7.8 s and
presents its maximum and minimum values in winter and summer.

The amount of energy collected throughout the year for the most energetic sweep
point (presented in Figure 1) is 270 MWh/m/year. The lowest as perceived by the radar is
160 MWh/m/year. Finally, a periodogram (not shown) showed amplitudes of the annual
and semi-annual cycles being 0.2 and 0.1 m, respectively.

The HF radar raw data (before the outliers’ detection method was applied) is compared
with the buoy (36.56◦ S–73.33◦ W) in Figure 5.

The buoy is quite far from the coast and is not precisely in a radar grid point. It is
noticeable that, in that location (see Figure 3), the HF radar presents initially 50% fewer
data than the buoy. In Figure 5, gaps are shown in both time series to demonstrate how
damaging data loss can be. Thus, finally, our study only investigated grid cells where raw
gaps do not exceed 40%. However, even if that place is out of the correct radar cover zone,
although some extreme variation in the buoy data not captured in the HF radar, the main
frequencies (semi-annual, seasonal) amplitudes agree remarkably. Figure 5b shows the
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time series of the period measured by radar and buoy. While the values show a similar
trend, the magnitude of both does not match. Despite the previous mention, the buoy’s
statistics are still equivalent to that of the chosen grid analyzed in the field. The annual
mean is 2.26 m for radar and 2.12 m for buoy, with a standard deviation of 0.71 and 0.66 m,
respectively. The index results for this grid cell are COV 0.9 for HF radar and 0.76 for buoy;
SV is 0.1 for HF radar and 0.05 for buoy; MV is 0.16 for HF radar and 0.12 for the buoy. The
mean wave power was also estimated, resulting from 23.8 kW/m for the radar data and
31.6 kW/ for the buoy. The normalized RMS is 0.27, and the normalized BIAS is 1.3.

The spatial analysis shows that the monthly averages shown in Figure 6 present
a wave power variation between 10 and 40 kW per meter of the coast for the less and
more energetic months. The maximum and minimum values, as expected, are obtained
for the winter and summer months, respectively. In summer (December–February), the
field values vary between 15 and 25 kW/m. The least energetic month is January, with a
constant 20 kW/m. In winter (June–August), the values are between 20 and 40 KW/m,
approximately twice as much as summer. August and September are the months in which
more energy can be obtained, having values over 28 kW/m for approximately all the
radar sweep.

 

Figure 6. Wave potential monthly mean fields.

Figure 7 shows both the annual accumulation and the coefficient of variation (COV,
see Equation (5)) for the study area. The COV presents values between 0.3 and 0.5, with
the highest values along the latitude 36.7◦S, which coincides with one of the radar sweeps’
edges. In turn, the indices of seasonal and monthly variability were also calculated (see
Equations (6) and (7)), which presented values between 0.06–0.4 and 0.1–0.6. The COV
values are relatively small compared to the other indices (SV and MV), which indicates the
wave field has a small variability, and the values are close to the average.
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Figure 7. (a) Annual accumulated energy field, (b) coefficient of variation (COV), (c) Seasonal Variability index, and
(d) Monthly Variability index.

From the MV index analysis, it is clear that the values are higher than SV since the
months compared (August and January) present significant differences, especially in the
radar sweep’s central sector, where the energy presents its highest values.

In the location exemplified in Figure 4, the coefficients mentioned above obtained
from the HF radar have the following values COV = 0.42, SV = 0.3, MV = 0.47. The site
shows the highest wave power compared to the surrounding area and presents the highest
variability indexes. Although wave power value assesses the location’s suitability, sites
with constant energy flows are more attractive than those with high variability [31]. They
are more reliable and allow constant energy injection into the power grid. The site selection
must combine both characteristics, high power with low variability.

4. Discussion and Conclusions

Chile’s energy goals are clear; by 2050, 70% of the national energy matrix must be
covered by renewable energy [39]. According to reports [40] on energy projects under
construction, most of them are wind and solar energy since northern Chile has one of the
highest solar radiation levels. On the other hand, wind energy has sectors south of the
country where the potential is quite favorable. However, due to the long Chilean coastline,
wave energy is also considered a potential source to supply the energy demand [41,42].
Notably, the work of [26,43–46] has already estimated the potential using numerical models
compared to buoys and satellites. However, when it comes to obtaining information in
high spatial resolution, there is no comparable method. It is the main reason for our study.

As mentioned throughout this paper, the advantage of HF radars is that they can
provide high spatial and temporal resolution with scales from 0.3 to 50 km and a minimum
of 30 min, respectively [12,23,47,48]. Additionally, they allow for sweeping a large area of
the ocean. Being remote instruments, they are not affected by the hostile state that it can
present. Therefore, despite some inaccuracies that HF radars can present [19], this study is
valuable to understand their usefulness. In addition, the measurement they provide is also
a resource to validate and complement information from other sources.

We worked with an HF radar to obtain the wave power fields of approximately
800 km2 in front of Concepción. The treated data’s spatial resolution is 2 km, and temporal
resolution is 1 h, from December 2017 to January 2019. It is necessary to highlight that
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a one-year period is not long enough to understand the wavefield, limiting the work
thoroughly. However, it can be significant if used as a complement for other observations,
either remote or in situ, to understand the area’s wave climate.

As the first interest of the installation of HF radars by CHIOOS was the detection of a
tsunami, for the moment, this work only uses data from a single radar. While single radar
estimates of significant wave height do not provide as accurate a measurement as dual
radars, let us note that under homogeneous wave conditions, individual radars have a
slight advantage over a conventional buoy [19]. Similarly, the local values collected from
the radar were close to those found in other works [24,25,35].

The HF radar data were contrasted with in-situ data (buoy). However, given the
buoy location at 36.56◦S 73.33◦W, where the HF radar’s temporal coverage is less than
50%, it provides very low representativeness. Nevertheless, the buoy’s statistics are still
equivalent to that of the chosen grid analyzed in the field. The annual mean is 2.26 m for
radar and 2.12 m for buoy, with a standard deviation of 0.71 m and 0.66 m. The annual and
semi-annual cycles were compared with data from a wave-atlas produced by Universidad
de Valparaiso [35] through numerical models (WW3). Thus, although the wave-atlas epoch
(1980–2015) does not coincide with ours, the results show similar annual and semi-annual
cycle characteristics; 0.25 m and 0.11 m for the radar, the atlas showing 0.3 m and 0.1 m,
respectively.

The potential annual mean average power is 23 kW/m. However, this value depends
on the used peak period. For the peak period, as mentioned in Section 2.2.2, we used
one obtained from the official bibliography; the Chilean marine atlas [35,49]. However,
while we could have used the buoy peak period instead, the variations of these appear
relatively discretized (see Figure 5b), showing a considerable variability around 12.4 s. The
majority of works investigated, including the atlas, showed values around 10 s without
presenting many variations throughout the year. In addition, the comparison between the
radar and buoy period data series also shown in Figure 5b reveals, due to the absence of
data of the radar sweep around this location, the lack of correlation between what the buoy
measures and what the radar provides there. It is also interesting to know how much the
final energy would have varied if we had taken one period value or the other; HF radar’s
or the buoy’s. The average mean peak period for the entire radar sweep (not shown) is
7.48 s with a standard deviation of 0.19 but varies between 7.1 and 7.9 s over the entire
zone, which is less than 1 s, decreasing while approaching the coast. The radar mean
peak period closest to the buoy is 7.6 s, with a standard deviation of 0.7 s (Figure 5b). The
buoy mean peak period, calculated only for the overlapping radar times, is 12.4 s with
a standard deviation of 2.6 s (Figure 5b). Using the buoy data as reality, assuming that
the radar nearest grid is correct, we computed a calibrated period gridded field. Thus,
using the calibrated mean peak period the wave mean power in that location would have
increased by 20%, 4.6 kW/m. On the contrary, having used the radar’s mean peak period,
24% less, that is 4.4 kW/m.

Nevertheless, the potential annual average powers fluctuate between 15 and 30 kW/m,
depending on the sector within the sweep. As stated in [50], approximately 20 kW/m
will make wave energy economically viable. As wave energy is not as mature as other
renewable energies (like solar or wind), the economic viability not only depends on the
amount of power a location can provide. The cost of the WECs is an essential part of the
cost of a wave farm. The cost of operation and maintenance is also high, as corresponds to
a facility in the sea [51]. The maximum power occurs during the winter season at 73.25 W
and 36.65 S, approximately 15 km from the coast. The seasonal average is 37 kW/m,
corresponding to a wave height of approximately 2.9 m, with a standard deviation of
1.6 kW/m. The maximum height at this point was 4.96 m (108 kW/m). In summer
(December-February), the values vary between 15 and 25 kW/m. The least energetic month
is January, presenting a constant 20 kW/m, half the one obtained in winter. One can note
that throughout the year, 75% of the time, the wave height is above 2.2 m, which means
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that 75% of the time, the power will be a minimum of 22 kW/m. If this is carried out in
terms of energy, it corresponds to a minimum of 193 MWh/m/year.

The SV and MV indices calculated presented values between 0.06–0.4 and 0.1–0.6,
similar to those presented by [26]. These indices are relatively low compared to other stud-
ies that present similar potential magnitudes, such as [31,52]. Additionally, as mentioned
before, the site selection must consider the wave power and variability of the area; here, the
COV presents a lower variability than the considerable wave potential found. As a whole,
the different indices make the area a more than convenient place for energy extraction.

We investigated the energy consumption of the areas close by. On average, a household
consumes approximately 200 kWh per month, presenting a maximum peak in winter with
values close to 230 kWh/month and a minimum in summer of 150 kWh/month [53].
Our work shows that this value is less than what can be extracted from a single grid
cell, which is 2 × 2 km, since 75% of the time, the energy extracted would be larger than
16.6 MWh/month. Annually the maximum that could be collected is 270 MWh/m/year,
and the lowest as perceived by the radar is 160 MWh/m/year. Considering a simple
device, for example, an OWC with an efficiency of 40% [54,55], a single wave energy
collector could have an approximate annual savings of USD 13,500, which would supply
the average annual energy demand of approximately 33 houses, equivalent to avoiding
32.31 tonCO2eq/year [56]. The most significant advantage of wave energy is its high-power
density, meaning that it can harness more energy than other renewable energies. Due to
the novelty and newness of wave energy converters, it is impossible to provide a specific
number of devices that can attain powers as big as wind or solar energy. For example,
Ref. [51] shows several devices’ performance, and the installed power varies between 6 kW
and 15 MW. Thus, to reach 1 GW of installed power, the quantity of WEC can vary between
160,000 and 66. Likewise, the amount of area used to display the WECs also will change.
Noteworthy, there are so many WECs types and locations where this can be installed that
each case has to be evaluated case by case. Let us note something interesting to consider;
hybrid systems, coupling waves and wind energy in the same facility [57]. It will provide
an even more stable supply using the same area.

This work made it possible to estimate the wave power in front of the Biobío region,
determining the area’s suitability for its low variability and high energy concentration.
With the high-resolution information provided by the HF radar, the best location for energy
extraction can be identified. The utility of HF radars in energy terms relies on its high
resolution, both temporal and spatial, given the ability to compare locations of interest
within the same area. The possibility to implement a transportable radar to measure the
high frequencies waves rank this instrument as an excellent asset to establish the wave
power of a location.

As established throughout this work, even when a single radar can provide wave
information, it can present ambiguities. This cannot be solved using only the radar’s
information. Of course, eventually, two radar systems would be ideal. However, not being
cheap systems, we must enhance what we already have. Thus, one of our research’s next
stages could be to move the transportable HF radar close to the buoy to calibrate it correctly.
Instead, we can use coastal video imagery for doing so [58,59]. We should also investigate
an up-and-coming smartphone-based camera system recently assessed for coastal image
classification [60].

Another great applicability of an HF marine radar system is its complementary use
to satellite measurements or numerical models. In turn, radar data can be a valuable tool
for the calibration of satellite data such as CFOSAT [61] and SWOT [62]. For example,
SWOT’s main objective is to measure ocean topography with centimeter-scale accuracy
over kilometer-scale spatial resolution [63]. Therefore, HF radar measurements that also
have a high resolution can be an accurate validation system. It shows the usefulness of HF
marine radar as an instrument of remote sensing to study wave patterns and wave energy
potential of vast areas at a high resolution.
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Abstract: Surface oceanic fronts are regions characterized by high biological activity. Here, Sea
Surface Temperature (SST) fronts are analyzed for the period 2003–2019 using the Multi-scale Ultra-
high Resolution (MUR) SST product in northern Patagonia, a coastal region with high environmental
variability through river discharges and coastal upwelling events. SST gradient magnitudes were
maximum off Chiloé Island in summer and fall, coherent with the highest frontal probability in the
coastal oceanic area, which would correspond to the formation of a coastal upwelling front in the
meridional direction. Increased gradient magnitudes in the Inner Sea of Chiloé (ISC) were found
primarily in spring and summer. The frontal probability analysis revealed the highest occurrences
were confined to the northern area (north of Desertores Islands) and around the southern border of
Boca del Guafo. An Empirical Orthogonal Function analysis was performed to clarify the dominant
modes of variability in SST gradient magnitudes. The meridional coastal fronts explained the
dominant mode (78% of the variance) off Chiloé Island, which dominates in summer, whereas the
SST fronts inside the ISC (second mode; 15.8%) were found to dominate in spring and early summer
(October–January). Future efforts are suggested focusing on high frontal probability areas to study
the vertical structure and variability of the coastal fronts in the ISC and its adjacent coastal ocean.

Keywords: MUR SST; SST fronts; Inner Sea of Chiloé; northern Patagonia

1. Introduction

Oceanic fronts are relatively narrow regions with high gradients of physical, chemical,
biological, and optical properties. They are generally associated with convergence at the
surface [1] and high aggregation of organisms and biological activity e.g., [2,3]. Lately,
enhanced submesoscale activity has been identified around fronts [4,5], which involves
ageostrophic vertical circulation with increased vertical fluxes of tracers and momentum.
In general, frontal features and currents such as jets and meanders e.g., [6,7], filaments
e.g., [8,9], and river discharges e.g., [10,11] present distinct patterns of variation in strength
and duration over multiple temporal scales and are identified from satellite sea surface
temperature (SST) fields.
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Remotely sensed data have been crucial in the study of the evolution of ocean fronts
at multiple spatio-temporal scales [9,12–16]. The improved accuracy and spatial resolution
of SST sensors over time have allowed the quantification and spatial distribution of sharp
fronts in coastal regions [11,15,17–20]. Here, high-resolution (1 km) SST images are used to
analyze the variability of SST fronts in the Inner Sea of Chiloé (ISC) and adjacent coastal
ocean (northern Chilean Patagonia). The ISC is a long inner sea (about 260 km) with high
heterogeneity of hydrographic conditions due to the influence of freshwater from several
rivers and the marine influence by the active water exchange through Boca del Guafo
and Chacao channel [21,22]. Several islands (Desertores Islands) promote contrasting
hydrographic and SST characteristics between the northern and southern areas. In general,
northern Patagonia is characterized by elevated surface chlorophyll-a concentration and
primary productivity during spring-summer-fall [23]. Recently, harmful algal blooms
events were described in the region in association with anomalous oceanographic condi-
tions during summer 2016 [24]. Although the development of chlorophyll patches and
blooms have been suggested to develop around frontal regions [25], there are no major
insights into the evolution and distribution of surface fronts along the ISC.

This study aims to characterize the seasonal and interannual variability of surface
thermal fronts along the Inner Sea of Chiloé and its adjacent coastal ocean. For the first
time, high-resolution satellite images were used to achieve a frontal analysis of this region.
Section 2 describes the data and methods. Section 3 resumes the principal results and
discusses the seasonal and interannual evolution of SST fronts. Finally, a summary is
presented in Section 4.

2. Satellite Data and Methods

We used daily SST data from the Multi-scale Ultra-high Resolution (MUR) product [18]
obtained from the Physical Oceanography Distributed Active Archive Center (PODAAC;
see Data Availability Statement below). MUR data were chosen over other SST products
due to the increased data cover and improved performance detecting SST gradients in the
coastal region [18]. The data have a spatial resolution of 0.01 × 0.01 degrees. A comparison
with a near-surface temperature time series from a buoy located in Seno Reloncaví (see
Figure 1) validates the performance of MUR SST in the ISC (Figure 1b,c). The buoy has been
maintained by the research center i-mar since 2017 (see Data Availability Statement below).

The gradient magnitude (GM) and the Canny edge-detection algorithm [26] were
used to detect and quantify the frontal regions and their evolution. The GM was computed
following other studies e.g., [11,18]:

∇xTSMi = (TSMi−1 − TSMi+1)/(Xi−1 − Xi+1) (1)

∇yTSMj = (TSMj−1 − TSMj+1)/(Yj−1 − Yj+1) (2)

| ∇TSM |= {(∇xTSMi)
2 + (∇yTSMj)

2}1/2 (3)

where 	xSSTi and 	ySSTj are the zonal and meridional components of the SST gradi-
ent, respectively, and | 	 SST| is the gradient magnitude. The Canny edge-detection
algorithm [26] was applied on daily SST fields to identify coherent frontal segments and
compare them with the regions of increased gradient magnitudes. The Canny method
tracks the direction of SST gradients using a threshold value. The gradients are calculated
using the derivative of a Gaussian filter. After studying the range of gradient magnitudes
for all images (Figure 1d), we used a high threshold value of 0.1 ◦C/km, which separates
most values in the low range of the PDF from the higher values associated with the forma-
tion of SST fronts. The probability of finding a front was calculated as the number of times
a pixel is classified as a front divided by the total images considered in a time window (i.e.,
seasonal aggregates). Further details of the application of the Canny method can be found
elsewhere [15,19].
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Figure 1. (a) Map of the Inner Sea of Chiloé and its adjacent coastal ocean in northern Patagonia. The bathymetry is shown
in a blue-white color scale. The position of the oceanographic buoy located in Seno Reloncaví is denoted by a red dot. The
comparison between satellite SST and near-surface (1 m) temperature at the buoy is presented in (b,c). In situ temperature
has been daily averaged to match satellite SST data. (d) Probability Density Function (in %) of the distribution of all SST
gradient magnitudes for the period 2003–2019.

Satellite chlorophyll fluorescence (Fluorescence Line Height, nFLH) data from the
Moderate Resolution Imaging Spectroradiometer (MODIS, on-board Aqua) and for the
period 2003–2019 were obtained from the ocean color website (see Data Availability State-
ment below). These data were used to compute the seasonal climatology. We chose to
use the chlorophyll fluorescence over the chlorophyll product because of the characteris-
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tic estuarine turbid conditions of the ISC and the relatively poor performance of default
chlorophyll algorithms [27].

An Empirical Orthogonal Function (EOF) analysis was performed on the gradient
magnitudes to separate the main modes of variability. The EOF was computed following
the Singular Value Decomposition (SVD) approach to avoid a large covariance matrix
associated with the high resolution of the images [28]. Please note that each time series is
demeaned and detrended in the process.

3. Results and Discussion

The temporal pattern of SST variability is well-captured by MUR SST compared to
the buoy measurements at Seno Reloncaví for the period 2017–2020, as shown in Figure 1b.
However, some events with peaks in in situ temperature were not well recorded by the
satellite data, especially during spring-summer (Figure 1b). There is a slight underesti-
mation by MUR SST (Figure 1c). In general, MUR data reproduced the temporal SST
variability with high correlation (r = 0.96), which gave us confidence that the MUR product
is reasonably accurate in these coastal waters. Given the recent deployment of this buoy
in Seno Reloncaví (starting in 2017), this is the first comparison of satellite SST and in situ
temperature in the ISC.

The seasonal climatology of SST fields revealed a typical pattern for temperate ecosys-
tems, i.e., marked spatial and seasonal variability. During austral spring and summer, the
higher SST is observed in the northern area (north of Desertores Islands) and adjacent
coastal ocean (Figure 2a,d). In fall, The adjacent coastal ocean showed the highest values
compared to the ISC (Figure 2b), whereas the entire coastal ocean shows the lowest tem-
peratures (<11 ◦C) in winter (Figure 2c). The persistence of these mean fields is variable
depending on the location and season (Figure 2e–h). The mean warm pattern observed
in summer in the northern ISC (Seno Reloncaví) is also highly variable (Figure 2e). This
strong variability is also presented in the fall and spring (Figure 2f,h). In general, the ICS
presents the largest SST variability (greater than 1.2 ◦C) in spring (Figure 2h). Notice that
low variability south of Desertores Islands is associated with the lowest averaged SST fields
in connection with the coastal ocean through Boca del Guafo (Figure 2b,d), characterized
by intrusions of Sub-Antarctic waters (SAAW) [29,30]. Finally, winter represents the coldest
season with the annual cycle’s greatest spatial homogeneity (Figure 2c,g). The annual cycle
of SST is coherent with previous studies in northern Patagonia [22,31,32].

The quantification of the climatological SST gradient magnitudes for the entire 17 years
of study is shown in Figure 3. During spring and summer, the SST gradient magnitude
fields suggest a high frontal activity in the northern area of the ISC (Figure 3a,d). Summer
also represents a period with increased SST fronts in the coastal ocean with an extended
meridional band of high gradients (Figure 3a). This would be linked with the development
of a coastal upwelling front off Chiloé Island in summer due to predominant northward
winds [30,33]. The extended band with medium values of gradient magnitude in fall
would represent the weakening of upwelling-favorable winds, and consequently, a weaker
upwelling front (Figure 3b). Medium values in the standard deviation corresponding to
the upwelling front would explain a synoptic variability with pulses of upwelling events
through summer and fall (Figure 3e,f). High values in SST gradient (>0.05 ◦C/km) and
variability (>0.03 ◦C/km) on the southern area of the ISC in summer could be associated
with the generation of SST fronts from the intrusions of oceanic waters through Boca del
Guafo (~44◦S) (Figure 3a,e). In spring, the highest gradients are presented in the northern
ISC with a band of increased variability near Desertores Islands (Figure 3d,h). Finally, SST’s
gradient magnitudes are less pronounced in winter (Figure 3c,g) which is coherent with a
more homogeneous and cold temperature field (Figure 2c,g). Water column stratitication in
Seno Reloncaví (not shown) presents a coherent annual cycle with maximum (minimum)
stratification in spring-summer (fall-winter).
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Figure 2. Seasonal climatology (2003–2019) of SST in the Inner Sea of Chiloé and its adjacent coastal ocean. (upper panels)
averages and (lower panels) standard deviations for (a,e) summer (January, February, March), (b,f) fall (April, May, June),
(c,g) winter (July, August, September), and (d,h) spring (October, November, December). For reference of locations see
Figure 1a.

To further understand the generation and evolution of fronts along the ISC and
its adjacent coastal ocean, the seasonal variability of frontal probability (FP) is shown in
Figure 4. The use of an edge-detection algorithm is crucial for calculating the FP since fronts
tend to be narrow and coherent bands of increased gradients of ocean properties [14], which
can be overlooked and or not correctly identified through the gradient magnitude. The FP
maps reveal that the formation of SST fronts off Chiloé Island in summer-fall (Figure 4a,b),
potentially associated with the coastal upwelling, is consistent with the increased gradient
magnitudes shown in Figure 3. The FP reaches its largest values (>9%) in the northern ISC
in spring-summer (Figure 4a,d). Also, the lowest SST frontal activity in spring-summer is
shown on the western section of the southern ISC (Figure 4a,d), which might be associated
with a greater oceanic influence on the eastern side. The eastern side also has several river
outflows, which could influence the temperature field, creating increased gradients. It is
interesting to note that the FP in fall is <3% along most of the ISC, representing the season
with the lowest SST frontal activity (Figure 4b). In contrast, the frontal probability values
during winter indicate higher PF as compared to fall (Figure 4c vs. Figure 4b), especially
at Boca del Guafo (values up to 7%), which was not demonstrated through the gradient
magnitude (Figure 3).
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Figure 3. Seasonal climatology (2003–2019) of gradient magnitude of SST in the Inner Sea of Chiloé and its adjacent coastal
ocean. (upper panels) averages and (lower panels) standard deviations for (a,e) summer (January, February, March), (b,f) fall
(April, May, June), (c,g) winter (July, August, September), and (d,h) spring (October, November, December). For reference of
locations see Figure 1a.

We performed an EOF analysis to separate the main modes of variability of the SST
gradient magnitude and evidence the periods when the development of SST fronts in
the coastal ocean and the ISC is more likely to occur. The EOFs show that most of the
variance is explained in the meridional band of high SST gradients off Chiloé (Figure 5a).
These features, highly associated with the upwelling front [22,32], occurred most of the
years during December-April (Figure 5c,d). The second EOF isolates the enhanced SST
frontal activity in the ISC (Figure 5b), predominantly in spring and early summer (October–
February; Figure 5c,d). The temporal oscillations of the EOFs reveal a persistent annual
cycle, especially after the end of 2005 (Figure 5d). A maximum SST gradient magnitude in
the coastal ocean occurred in early 2008 as seen through the peak of mode 1 (Figure 5d). In
northern Patagonia, large-scale climatic influence has been suggested to produce changes
in the coastal oceanography, and concomitantly, in ecological patterns around the Inner
Sea of Chiloé [21,34]. Future studies focused on the interannual variability of SST fronts
should consider the potential impact of climate variability e.g., [21] on the generation or
blocking of SST fronts in the ISC.
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Figure 4. Seasonal climatology (2003–2019) of SST frontal probability (FP; %), based on the Canny edge-detection algorithm,
in the Inner Sea of Chiloé and its adjacent coastal ocean for (a) summer (January, February, March), (b) fall (April, May,
June), (c) winter (July, August, September), and (d) spring (October, November, December). For reference of locations see
Figure 1a.
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Figure 5. EOF analysis of SST gradient magnitudes. (a) First and (b) second EOF modes. (c) Mean annual cycle of EOF time
series shown in (d). The error bars in (c) correspond to the monthly standard deviations.

The use of satellite platforms to monitor oceanographic properties provides important
insights into oceanographic fronts’ spatial and temporal variability. An important feature
of the northern Patagonian shelf is its significant freshwater inputs [35,36] which could also
generate thermal variability and fronts. The river discharges in the northern ISC have been
associated with phytoplankton blooms [37]. Freshwater discharge from large rivers and or
glacial melting into the Inner Sea of Chiloé (41–45◦S) creates a freshwater plume with high
levels of biological activity which extends into the coastal ocean [32,38]. While the local
impacts of those freshwater discharges remain unknown, it is expected that they would
favor the formation of oceanographic fronts and the aggregation of large organisms, such as
whales, in the region [39]. Ocean fronts are hotspots of high biological activity [19,40–42]
by which increased primary productivity is expected during spring-summer-fall and
linked to the areas of high frontal activity (i.e., northern ISC, coastal band off Chiloé
Island, southern border of Boca del Guafo). The seasonal climatology of chlorophyll
fluorescence (Figure 6) suggests there is enhanced phytoplankton activity around the SST
fronts in northern ISC and a maximum fluorescence in a meridional band off Chiloé in fall
(Figure 6b), which would agree with the presence of a coastal upwelling frontal band in
the coastal ocean (Figure 3b). Thus, northern Patagonia is a highly dynamic region where
biophysical interactions over coastal waters remain largely unstudied. The use of satellite
products across multiple spatial and temporal scales provides fundamental insights into the
oceanographic processes around coastal fronts [43]. Future studies assessing the variability
of coastal chlorophyll and productivity in northern Patagonia should focus on regions with
enhanced frontal activity to further understand the biophysical coupling at ocean fronts.
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Figure 6. Seasonal climatology (2003–2019) of chlorophyll fluorescence (nFLH; W m−2 μm−1 sr−1) in the Inner Sea of Chiloé and its
adjacent coastal ocean for (a) summer (January, February, March), (b) fall (April, May, June), (c) winter (July, August, September), and
(d) spring (October, November, December). For reference of locations see Figure 1a.

Potential mechanisms leading to the generation of these fronts could also be related
to the bathymetry along the ISC. The northern basin (north of Desertores Islands) has
average depths around 300–400 m, whereas the southern ISC is considerably shallower
(Figure 1a) [44]. The presence of Desertores Islands limits the water exchange and the
circulation between these two sub-regions with distinct regimes of environmental vari-
ability [21], which would explain the sharp contrast in SST and frontal activity between
these areas (e.g., Figures 2 and 3). The dynamics at Boca del Guafo is likely a major factor
influencing the intrusion of oceanic waters and generation of fronts in the southern ISC.
Future studies, including field measurements, should focus on sampling the locations with
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high FP (Figure 4) to understand better the vertical structure and variability of fronts in
northern Patagonia.

4. Summary

This study presents the first analyses of SST frontal variability in the Inner Sea of
Chiloé and its adjacent coastal ocean. A high correlation with an in situ time series in Seno
Reloncaví, a region with enhanced frontal variability and high seasonal fluctuations, vali-
dates the use of MUR SST fields. The annual cycle of SST gradient magnitudes suggested
enhanced frontal activity in northern ISC (north of Desertores Islands) in spring-summer,
whereas the coastal ocean off Chiloé presented the highest average gradients in summer
and fall. These seasonal patterns are, in general, confirmed by the quantification of the
SST frontal probability. Maximum probabilities reached about 10% in northern ISC and
off Chiloé. Overall, the southern ISC presented low SST gradient magnitudes and frontal
probability yearlong, except for the southern side of Boca del Guafo. An EOF analysis
clarified the dominant modes of variability of SST gradient magnitude, highlighting (i) a
coastal band of enhanced SST gradients off Chiloé in summer-fall which is coherent with
coastal upwelling events and fronts, and (ii) maximum SST fronts in northern ISC and
around the southern side of Boca del Guafo in spring-summer. A preliminary inspection
of the annual cycle of chlorophyll fluorescence suggests an increased physical-biological
coupling around ocean fronts since the highest fluorescence is found in northern ISC and
off Chiloé Island, where SST gradient magnitudes and frontal probabilities are maximum.
Future studies are suggested to occur in the regions with high frontal activity and consider-
ing high-frequency field observations in the surface mixed layer to understand further the
dynamics of ocean fronts and their biological implications in northern Patagonia.
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Abstract: Two different ground-based remote sensing instruments can be used for the near-real-time
monitoring of surface waves and currents, namely the high frequency HF radar and the microwave
X-band radar. The HF system reaches larger offshore distances at lower spatial resolutions and
provides a poorer measurement of the wave-induced currents in very shallow waters. On the other
hand, the X-band system achieves significantly higher spatial resolutions with a smaller offshore
coverage. This study provides a preliminary comparison of the measured surface currents, obtained
by the two different tools where they overlap. The comparison showed a good agreement between
the measures with some discrepancies ascribable to the difference in the characteristics of the two
radar technologies.

Keywords: wave radar; sea waves; model data; Mediterranean sea

1. Introduction

The observation and monitoring of marine coastal currents is an important task for coastal
protection, erosion control, and flood mitigation as well as near-shore fishing management and marine
operations such as installations of offshore wind farms or oil and gas plants [1].

In recent years, the monitoring of surface currents with remote sensing techniques has greatly
improved, making it possible to even perform real-time observations over sea surface areas of different
extension. Among these techniques, two different ground-based remote sensing instruments can be
deployed for the near-real-time monitoring of surface waves and currents, namely the high frequency
HF radar and the microwave X-band radar. They directly measure the directional wave spectra at
a spatial resolution from 250 m to 15 km, which depends on the specific allocated bandwidth and
antenna design.

The overall spatial coverage of these tools significantly differs, as well does their spatial resolution.
The HF system reaches larger offshore distances at lower spatial resolutions and provides a poorer
measurement of the wave-induced currents in very shallow waters. On the other hand, the X-band
system achieves significantly higher spatial resolutions with a smaller offshore coverage. The inherent
differences of HF and X-band radars open new routes toward an integrated monitoring technique,
which exploits the complementary nature of the output provided separately by the two systems [2,3].

High frequency (HF) coastal radars are very powerful instruments, providing information on
surface velocity in terms of hourly maps over extended regions (range up to 100 km) and with high
spatial resolution (order of 1–3 km). This information can be used to address several societal needs
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such as navigation safety, search and rescue, oil spill or other pollutant tracking, marine protected
areas and fishery management [4,5].

The X-band radar represents a practical remote sensing system for sea waves and current
monitoring in coastal and shallow waters. It is used for the acquisition and the analysis of consecutive
sea surface images [6,7]. The surface current is retrieved from a sequence of these radar images by an
inversion procedure, that accounts for the modulation effects that depend on both the sea state and the
radar parameters as well as on the acquisition geometry [7–11].

This work is devoted to explore whether an integrated monitoring system can be successfully
employed to measure surface currents in near real time across a variety of spatial scales. By blending
HF and X-band radar data such an integrated system aims at reaching a high near-shore spatial
resolution still covering a large off-shore area. This study provides a preliminary comparison of the
measured surface currents, obtained by the two different tools where they overlap. Measurements
taken at a selected study site located in the Ligurian Sea were analyzed.

As the present work focused on comparing two different measuring tools, rather than to study
the local marine dynamics, an analysis of the surface circulation of the Ligurian Sea was beyond our
aim and is already quite a well-covered topic in literature [12].

2. Materials and Methods

2.1. Study Site and Analyzed Sea Conditions

The study site is located within the Eastern Ligurian Sea, in the North West Mediterranean Sea
as depicted in Figure 1, along a 15 km-long coastline in an area situated in front of which bounds an
important Marine Protected Area (Cinque Terre).

Figure 1. Study area in the Ligurian Sea: red circles indicate the High Frequency (HF) radar stations.
The yellow circle indicate the X-band radar location.

A CNR-ISMAR HF Radar Network has been installed along the coast of Eastern Liguria, near La Spezia
and Cinque Terre, in year 2016 and is composed by two CODAR SeaSonde HF radar stations operating in
the frequency band of 25 MHz. A CONSILIUM/SELESMAR X-band radar was installed at Corniglia (SP)
about 60 meters above sea level. The radar locations are shown in Figure 1.
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At the installation site, the HF radar and the X-band radar both worked from 12 September 2017
to 1 April 2018.

The analysis was carried out as follows:
- As a first preliminary step, a qualitative snapshot comparison of the spatially-varying

time-averaged surface velocity fields (horizontal components) derived by HF and X-Band is shown as
a time average over a reduced time range. Despite this part has no quantitative aims, it allows us to
show the overlapping points of the two instruments. Due to the different spatial resolutions involved,
a linear interpolation in space was carried out to have measurements on matching grids. HF outputs
were evaluated on the X-Band grid before qualitative comparison of the surface velocity time averaged
field. However, due to the small overlap among them, only a few HF grid points resided within the
X-Band grid. This likely makes the interpolated HF field oversmoothed, and a significant quantitative
comparison at these scales is therefore not significant.

- A quantitative comparison at overlapping points was carried out for the measured time-series
sampled from 12 September 2017 to 1 April 2018. The overlapping points between the HF and X-band
grids, without any spatial interpolation, were identified and selected as comparison sites, namely
A and B. The time-varying zonal (U) and meridional (V) surface velocity components, independently
derived by the HF and X-band, were analyzed and compared at these locations. A comparison between
the HF and X-Band time signatures, means, and standard deviations is given. Root mean square errors
between X-band velocities and HF velocities at A and B were also computed.

2.2. HF Radar Data Collection and Analysis

The HF radar network was designed, implemented, and managed through the efforts of Institute of
Marine Sciences - National Research Council (ISMAR-CNR La Spezia) [13]. HF radar data were collected
and processed by ISMAR-CNR within the Ritmare and Jerico–Next projects [14]. The datasets hereinafter
considered were downloaded from the website http://ritmare.artov.isac.cnr.it/thredds/catalog.html.
Depending on the sea state, estimated errors ranged from 3 to 10 cm·s−1 and explained only part of the
rms difference of 10–20 cm·s−1 found between HF and the in situ current measurements. The rest was
assumed to be due the differences of the quantities measured (e.g., the spatial averaging [15]).

The acquisition settings are listed in Table 1.

Table 1. HF Radar system parameters.

Frequency Band Radial Coverage Radial Range Cutoff Radial Resolution Angular Resolution

(MHz) (km) (km) (km) (deg)

26 35–45 45 1 5

HF radar is appropriate to detect surface ocean currents due to the diffraction grating effects
of the rough sea surface [16,17]. Just when the radar signal scatters off a wave that is exactly half
the transmitted signal wavelength, and that wave is traveling in a radial path either directly away
from or toward the radar, the radar signal will return directly to its source. The scattered radar
electromagnetic waves coherently add up, resulting in a strong energy return at a certain specific
wavelength. The returning signal exhibits a Doppler-frequency shift that would always turn up
at a known position in the frequency spectrum in the absence of ocean currents. Nevertheless,
the observed Doppler-frequency shift does not match up exactly with the theoretical wave speed.
The Doppler-frequency shift includes the information of the principal ocean current on the wave
velocity in a radial pathway, jointly with the theoretical wave speed. Total velocities are derived
using least square fit, which maps radial velocities measured from individual sites on a Cartesian grid.
The final result is a map of the horizontal components of the ocean currents, on a regular grid, in the
area covered by two or more radar stations [14].
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2.3. X-Band Radar Data Collection and Analysis

A CONSILIUM SELESMAR marine X-band radar was installed on the roof of the sewage treatment
plant at Corniglia (SP) about 60 meters above sea level. The radar antenna was located at the coordinates
44◦07′10” N, 9◦42′20” E.

The radar system radiates a maximum power of 25 KW, operates in the short pulse mode
(i.e., pulse duration of about 90 ns), and is equipped with an 9-ft (2.7 m) long antenna with horizontal
polarization (HH). These features enable reaching a spatial resolution of about 9m and an angular
resolution of approximately 0.9◦. The signal received by the antenna was converted through an
analog–digital converter and interpolated on a Cartesian grid with a regular spacing of about 10 m to
obtain two-dimensional (2D) sea surface images. The image sequence acquired by the X-band radar
was stored and processed, and each raw data sequence consisted of 64 individual images stored every
2.4 s. The accuracy of the X-band radar in terms of measured velocities was of the order 10 cm s−1 [18].

The acquisition settings are listed in Table 2.

Table 2. X-band radar system parameters.

Frequency Band Radial Coverage Time Range Spatial Resolution Angular Resolution

(MHz) (km) (s) (m) (deg)

9200 5.55 2.4 9 0.9

The image processing to extract the inhomogeneous surface current fields from the X-band radar
data were based on the so called “Local Method”, proposed in [19,20] and can be applied to data
acquired in coastal areas, where the presence of coastlines and varying bathymetry cause a spatial
inhomogeneity of the wave motion [3,21–23].

A block diagram of the inversion procedure is presented in Figure 2.

Figure 2. Block diagram of the current field reconstruction procedure, where 3D FFT is the fast Fourier
transformto obtain the 3D radar sub-spectra and NSP is the normalized scalar product technique.

The partitioning procedure is needed to extract Ns spatially overlapping sub-areas, so it is possible
to assume the waves’ homogeneity and uniformity from the analyzed radar data temporal sequence.
After that, the fast Fourier transform (FFT) is applied to the Ns temporal sub-sequences to obtain the
3D radar sub-spectra.
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Each spectrum is expressed as
{
Fj
(
ḱ,ω
)}

j=1,...,Ns
, where ḱ =

(
kx, ky

)
is the wave-number vectorand

ω the angular frequency; spectra are then analyzedby applying the normalized scalar product (NSP)
technique [7], in order to retrieve the local surface current vector through the following estimator:

Vj
(
Ú
)
= argmax

h

〈∣∣∣∣Fj
(
ḱ,ω
)∣∣∣∣, G
(
ḱ,ω, Ú

)〉
√

PFPG
(1)

where G
(
ḱ,ω, Ú

)
= δ
(
ω− √gk− ḱ·Ú

)
is the characteristic function based on the dispersion relation;

δ(·) is the Dirac delta distribution; 〈|F|, G〉 represents the scalar product between the functions |F| and G;
and PF and PG are the powers associated with |F| and G, respectively.

Once the local (sub-areas) current vectors have been estimated, it is possible to define the ‘global’
(applied to the whole radar spectrum) band-pass (BP) filter [3,20,21].

3. Results and Discussion

Figure 3 shows a qualitative snapshot of the HF and X-band surface velocity fields, time averaged
over a sample period on the original spatial grids, with the purpose to qualitatively show the coverage
overlaps and the overlapping points. More in detail, red (blue) arrows are located at the HF (X-band)
grid points, whereas colored dots indicate the instruments overlaps.

Figure 3. Qualitative snapshot of surface currents from X-band (blue arrows) and HF (red arrows),
time averaged from 12 September 2017 to 18 September 2017 on original grids. Overlapping points A
and B are indicated by the black and greed dots respectively.

Due to the very different spatial resolutions, some differences in the spatial velocity patterns may
arise between the HF and X-band, which capture different spatial scales. Strong spatial variability at
the HF sub-grid level may not be completely captured by the low resolution radar, resulting in an
over-smoothed surface circulation, especially in the coastal zone. In order to cover coastal waters with
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HF measurements at a higher spatial resolution, a rather trivial option is to linearly interpolate the
HF-derived currents on a finer grid to compensate for the missing locations. However, it of course
does not improve the quality of data, as the sub-grid processes still remain unresolved. Although the
main large-scale current direction is consistently measured by the two instruments, the HF-derived
circulation pattern does not capture the details of the near-shore spatial variability, especially in the
west–northwest portion of the domain. Here, the X-band measurements revealed the existence of
a cyclonic branch at the western edge of the grid, which was instead missed by the HF-derived data at
the same location.

As clearly visible in Figure 3, at intermediate off-shore distances, an overlapping zone exists
between the HF and X-band grids, where the time-series of surface velocities can be directly compared
without any additional interpolation in space. In such an intermediate zone, X-band and HF derived
data without spatial interpolation are expected to give similar results over time if the X-band surface
currents are correctly derived. Seaward of these overlapping locations, the HF radar has the advantage
of a long distance coverage suitable to capture larger scale circulation structures, whereas the X-band
becomes advantageous shoreward of the overlapping areas, where smaller scale dynamics needs to
be resolved.

Time series of the northward and eastward surface velocity components, derived by HF and X-band
radar at overlapping points A and B, are reported in Figures 4 and 5, respectively, from 12 September 2017
to 1 April 2018. In each panel of Figures 4 and 5, the green line refers to the HF measurements, whereas
the black line shows the X-band ones. Missing data in the time series corresponds to periods where
the X-band radar system did not work or the surface dynamics in the near shore area, covered by the
X-band radar, cannot be measured with enough accuracy due to low sea state or rain that affect the
current field estimation.

Figure 4. Time series of the northward surface velocity components, derived by HF and X-band radar
at overlapping points A and B. The values on top (Pij) denote the Pearson’s correlation coefficient.
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Figure 5. Time series of the eastward surface velocity components, derived by HF and X-band radar at
overlapping points A and B. The values on top (Pij) denote the Pearson’s correlation coefficient.

HF derived currents are provided as hourly means, whereas X-band measurements are obtained
as instantaneous values at irregular time steps (multiple time steps per hour). In order to get a clearer
comparison, the X-band data were therefore averaged over time to get hourly means. The HF values
were then linearly interpolated in time in order to match the X-band hourly mean time spacing.

X-band derived velocity components display a good agreement with the HF counterpart
throughout the sampling. A significant (p value << 0.01) positive correlation among the data
was also indicated by the Pearson’s linear correlation coefficients Pij, here computed. Pij was 0.675
and 0.54 for the U components in A and B, respectively, whereas it had a value of 0.67 and 0.8 for V
in A and B, respectively. The root mean square errors of U at point A and B were 0.14 m/s 0.17 m/s,
respectively, while for the northward components, it assumed the values of 0.14 m/s and 0.13 m/s in A
and B, respectively. Figure 6 shows the resulting time signature of the velocity intensity at overlapping
points A and B as derived by the two instruments; a close up of a shorter timeslot is shown in Figure 7
only for clearer visualization purposes. Figure 8 finally reports a scatter plot of the HF and X-band
surface velocity components in A and B, separately.

As a final step, we show in Figures 9 and 10 a close up on the measured components over a reduced
time range (12 September 2017 to 18 September 2017) characterized by the time-average condition
reported in Figure 3 for that time range. The reported time-series are shown at regular hourly time
spacing. The corresponding root mean square errors, for the shorter set, were 0.1 m/s and 0.12 m/s for U
in A and B, respectively, and 0.07 m/s and 0.05 m/s for V in A and B, respectively. It is interesting to note
the substantial disagreement in northward components at location A, occurring at 15 September and
neighboring times (upper panel of Figure 9). Here, the X-band measurements showed a positive peak
as opposed to the local decrease captured by the HF measurements. The computed spatial standard
deviation of the northward component, at this time (and neighboring times), exceeded the 90% of its
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maximum values, revealing the existence of a high spatial variability that might be not completely
captured by the low resolution grid of the HF radar.

Figure 6. Velocity intensities derived by HF and X-band radar at overlapping points A and B.

Figure 7. Velocity intensities derived by HF and X-band radar at overlapping points A and B. Close up
of Figure 6 over a reduced time slot (10 December 2017 at 00:24 to 14 December 2017 at 23:23).
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Figure 8. Scatter plot of the HF and X-band surface velocity components in A (left) and B (right).

Figure 9. Time-series of the northward surface velocity components, derived by HF and X-band radar
at overlapping points A and B for a reduced time period (12–18 September 2017).
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Figure 10. Time series of the eastward surface velocity components, derived by HF and X-band radar
at overlapping points A and B for a reduced time period (12–18 September 2017).

Similarly, the eastward components at the same time locations were also characterized by a local
overestimation of the velocity intensity by the HF radar compared to the X-band one, at location A
(upper panel of Figure 10). Additionally, in this case, a field spatial standard deviation above 85% of
the maximum level was found. At early times (i.e., between 12–13 September (Figure 9 and upper
panel of Figure 10), discrepancies between HF and X-band data were associated with values of the
spatial standard deviations ranging between 50% and 70% of the maximum value for the northward
component, and around 50% of the maximum value for the eastward component, revealing a quite
significant spatial variability that may affect the HF derived values in the analyzed sea condition.

4. Conclusions

In this work, the surface current fields measured by an X-band radar were compared with those
provided by a HF-band radar. The comparison showed good agreement between the measures,
although some discrepancies were also detected. At this stage, we cannot rigorously explain the
nature of such differences among the data. A possible explanation resides in the different spatial scales
that can be captured by the two tools. The HF radar is likely to over-smooth the small-scale features
typically occurring in coastal waters or complex nearshore bathymetries. The high spatial variability
of such features might not be completely captured by the HF coarse resolution, largely remaining a
not-resolved sub grid process. On the other hand, the higher spatial resolution of the X-band radar
allows for the capture of finer processes that are likely to carry higher sources of field local variance.
The second possible source of differences between the HF and X-band derived currents is the inherent
limitation of the latter, which loses accuracy when estimating surface currents in under-developed sea
conditions. An important aspect that emerges from this work is the possible integrated usage of the two
instruments, which exploits the advantages provided by the individual parts (wider spatial coverage for
the HF band and higher spatial resolution for the X-band). Consequently, more accurate measurements
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of surface currents can be carried out by the combined system on large spatial domains still capturing
smaller scale effects in the nearshore area. The analysis carried out in this study represents a preliminary
assessment for the system performance. Its effective usage aimed at unveiling the physical processes of
oceanographic relevance still remains beyond the target of this work. A physically-oriented application
aiming at enlarging the background of physical oceanography is clearly needed to fully exploit the
system potential, and will be explored in a future study.
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