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Analysis of the Spatiotemporal Annual Rainfall Variability in the Wadi Cheliff Basin (Algeria)
over the Period 1970 to 2018
Reprinted from: Water 2021, 13, 1477, doi:10.3390/w13111477 . . . . . . . . . . . . . . . . . . . . . 53

Fangling Qin, Tianqi Ao and Ting Chen

Bivariate Frequency of Meteorological Drought in the Upper Minjiang River Based on Copula
Function
Reprinted from: Water 2021, 13, 2056, doi:10.3390/w13152056 . . . . . . . . . . . . . . . . . . . . . 63

Daniela C. Lopes, Antonio José Steidle Neto, Thieres G. F. Silva, Luciana S. B. Souza, Sérgio

Zolnier and Carlos A. A. Souza

Simulating Rainfall Interception by Caatinga Vegetation Using the Gash Model Parametrized
on Daily and Seasonal Bases
Reprinted from: Water 2021, 13, 2494, doi:10.3390/w13182494 . . . . . . . . . . . . . . . . . . . . . 87

Wenqi Shi, Ning Li and Xianqing Lv

Study of the Overflow Transport of the Nordic Sea
Reprinted from: Water 2021, 13, 2675, doi:10.3390/w13192675 . . . . . . . . . . . . . . . . . . . . . 109
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Preface to "Hydrology in Water Resources

Management"

Increasing human pressure, climate variability and change, and environmental issues are

affecting the demand and supply of fresh water. It is common knowledge that many regions around

the world are experiencing significant problems related to water scarcity, drought, and various types

of flooding. In general, there is still an urgent need to address issues surrounding water resources

and problems with water demands as a result of different human activities. For the appropriate

management of water resources, wider and credible knowledge about the spatiotemporal distribution

and quantity of water resources is needed. This knowledge is provided by hydrology. The

effective use of hydrology in the framework of integrated water resources management contributes

to sustainable development, assisting in risk reduction of water-related disasters, and supporting

effective environmental management at basin, regional, and international levels. The purpose of this

Special Issue is to exchange knowledge about the role of hydrology in the sustainable management

and planning of water resources. In this context, the most important issues in need of deep discussion

are the impact of the environment and human activity on water resources, especially with regard to

the quality of hydrological data, the use of modern in situ and remote data acquisition tools, the

accuracy of measurements, the link between hydrological processes and ecosystems, assessment

of the impact of human activity on water resources, flood and drought risks, water shortage

assessment, modeling of hydrological processes, and the description of methods that can be applied

to ecohydrology.

Andrzej Wałęga, Tamara Tokarczyk

Editors
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Abstract: Accurate monthly runoff estimation is crucial in water resources management, planning,
and development, preventing and reducing water-related problems, such as flooding and droughts.
This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model,
in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1)
and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application
in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern
region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected
as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the
Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected
and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration.
The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency
(NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff
stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE,
r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the
GR2M model was qualified and reliable to apply for determining monthly runoff variation in this
region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values
was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately
more than 0.90, gave the higher model’s performance.

Keywords: GR2M; inverse distance weighting; rainfall-runoff model; sensitivity analysis

1. Introduction

A tropical climate characterizes Thailand’s southern region since it is close to the
equator. Consequently, many areas have been experiencing flooding problems leading to a
vast majority of devastation to human beings’ lives and properties that hindered economic
growth and development. Each year, during a dry spell of approximately two months, this
region usually faces a drought situation due to increasing water demand from all activities
and insufficient water supply and storage. Accurate estimation of runoff quantity and time
variation benefits urban water management, e.g., planning for urban water supply and
distribution infrastructure. Besides, it helps water resources management-related issues

Water 2021, 13, 1226. https://doi.org/10.3390/w13091226 https://www.mdpi.com/journal/water

1



Water 2021, 13, 1226

personnel for effective disaster response planning, preventing and reducing the adverse
impact [1,2]. Hence, it is fundamentally imperative to obtain hydrological information
since the water supply is in demand from all activities, including domestic consumption,
agriculture, and various industries [3,4].

Although runoff is essential, most hydrologists cannot access it due to insufficient
runoff measuring stations than rainfall measuring stations equipped throughout the coun-
try’s regions [5]. Many research topics regarding the rainfall-runoff model have been
studied, developed, and applied by hydrologists and irrigation engineers to investigate dif-
ferent water management and planning issues. For example, Chen et al. [6], Kabiri et al. [7],
and Lin et al. [8] applied the rainfall-runoff model to assess runoff impacts due to climate
and land-use change. Kwak et al. [9] also used the rainfall-runoff model to reconstruct
the missing runoff time-series information. Similarly, Ballinas-González et al. [10] stud-
ied the sensitivity analysis of the rainfall-runoff modeling parameters in the data-scarce
urban catchment. Lerat et al. [11] proposed the alternative method for calibrating daily
rainfall-runoff models to monthly streamflow data when no daily streamflow data recorded.
Likewise, Abdessamed and Abderrazak [12] utilized a coupling HEC-RAS and HEC-HMS
modeling for evaluating floodplain inundation maps in arid environments. Zhang et al. [13]
tested the performance of the shuffled complex evolution (SCE-UA) as a global optimization
method to calibrate the Xinanjiang (XAJ) model. Lastly, Khazaei et al. [14] applied a simple
genetic algorithm to automatically calibrate the ARNO conceptual rainfall-runoff model.

The Rural Genius model (GR2M) model has recently been successfully applied as a
rainfall-runoff relationship model to comprehend the variation of watershed’s hydrological
characteristics and determine alleviation measures of unexpected hydrological situations
in many regions throughout the world. Dezetter et al. [15] applied the GR2M model for
study runoff in West Africa due to climate variability on hydrologic regimes for large-
scale water resources management and planning. Okkan and Fistikoglu [16] evaluated
the effects of climate change on runoff in the Izmir-Tahtali watershed, Turkey, using
statistical downscaling under the AR5 scheme GR2M model. They recommended that it
immediately took on the drought alleviating water supply and agriculture measures on
a national scale. Lyon et al. [17] utilized the GR2M model as the first step for screening
hydrologic data for evaluating the changes of hydrological response across the Lower
Mekong Basin. Zamoum and Souag-Gamane [18] developed regionalized parameters of
the GR2M model for predicting monthly runoff in the ungauged catchment of northern
Algeria. Boulariah, et al. [19] conducted a comparative study between two conceptual
non-linear models, i.e., the GR2M and the ABCD. The results showed that the GR2M
model outperformed the ABCD in the validation phase. Topalović et al. [20] compared
four monthly rainfall-runoff models based on the water balance concept, i.e., abcd, Budyko,
GR2M, and the Water and Snow Balance Modelling System (WASMOD), to simulate runoff
in the Wimmera catchment under changing climate conditions. Hadour et al. [21] applied
the GR2M model to study the effects of climate scenario on monthly river runoff in the
Cheliff, Tafna, and Macta in North-West Algeria. Rintis and Setyoasri [22] compared the
GR2M model’s performance to two well-known rainfall-runoff models in Indonesia: Mock
and NRECA. Using the Bah Bolon Basin in Indonesia as a studied area, they found the
GR2M model’s performance was comparable to Mock and NRECA methods requiring
fewer parameters. O’Connor, et al. [23] applied the GR2M hydrological model and an
Artificial Neural Network for reconstructing monthly river flow for Irish catchments.

The spatiotemporal characteristic with a hydrological analysis of Southern Basins
of Thailand constitutes a vital platform for understanding the hydrological behavior.
Furthermore, it gives particular interest to the valorization of the hydraulic potential
of the region. Hydrological modeling is essential for studying the development and
management of water resources in the watershed. The main reason for choosing GR2M
in this study is that it requires little hydrological information (i.e., rainfall data, potential
evapotranspiration, and flow rates). Only two model parameters need to be calibrated.
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This article mainly focused on investigating the monthly hydrological rainfall-runoff
variation using the GR2M model in Thailand’s southern basins, namely, Songkhla Lake
Basin, West basin, and the Eastern Basin. The study’s novelty is that it is the first attempt
to apply a two-parameters monthly rainfall-runoff model, namely the GR2M model, in
Thailand’s southern basins. It is also drastically useful for water resources planning and
management in this region. This article is organized as follows: Section 1 reviews the
study area’s dominant characteristic and data analysis for model input. In Section 2, the
GR2M theory is briefly explained. The model’s calibration and verification are delineated
in Section 3. The performance criteria for evaluating the applicability of the GR2M Model is
depicted in Section 4. Our result findings and discussion are portrayed in Section 5. Finally,
in Section 6, we concluded significant contributions from our research work.

2. Study Area and Data Analysis

This research was conducted in Thailand’s southern basin. It encompasses five major
river basins, including the Peninsula-East Coast. Peninsula-West Coast, Mae Nam Tapi,
Thale Sap Songkhla, and Mae Nam Pattani, as shown in Figure 1. When investigating
monthly rainfall, evapotranspiration, and runoff data, we found only three river basins, i.e.,
the Peninsula-East Coast, Peninsula-West Coast, Thale Sap Songkhla. Thus, we focused our
analysis on these three basins. These river basins have an area of approximately in the range
of 13 to 6713 km2. Geographically, this portion is the peninsula between the Andaman
Sea, which is on the western side, and the South China Sea, which is on the eastern side.
The long western mountain range in the northern and central regions also extends to this
portion. The Phuket ridge along the west coast and the Nakhon Si Thammarat ridge at the
center of the lower portion of the ridge’s southern part is divided into two regions: the
east and the west coasts. Climate variability on both sides of the river basins is mainly
dominated by the north-eastern monsoon and the south-western monsoon winds. The
southwest monsoon wind typically starts in mid-May and ends in mid-October. In contrast,
the northeast monsoon typically begins in mid-October and ends in mid-February.

Figure 1. Location of rainfall, runoff, and weather stations selected in the southern basin of Thailand.

3
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The Peninsula-East Coast watershed covers an area of 26,023.91 km2 and encompasses
11 provinces. It also consists of areas covering all parts of Chumphon, Trang, Nakhon
Si Thammarat, Narathiwat, Prachuap Khiri Khan, Pattani, Phatthalung, Yala, Ranong,
Songkhla, and Surat Thani. The flat coast has a small plain from Chumphon to Narathiwat.
Additionally, most rivers are short rivers with approximately 150 km flowing into the
Gulf of Thailand. There are nine runoff stations in the Peninsula-East Coast watershed.
The Peninsula-West Coast Watershed, 18,841.20 km2, consists of seven provinces: Ranong,
Phang Nga, Phuket, Krabi, Nakhon Si Thammarat, Trang, and Satun. It also includes
Chumphon, Surat Thani, Phatthalung, and Songkhla, with similar topography to the
Peninsula-East Coast Watershed. It is a coastal area next to the Andaman Sea. The Phuket
Mountains go from Ranong Province to Phang Nga Province, the origin of various rivers
and streams. They are generally not long, and they flow mainly to the Andaman Sea in the
west and southwest directions. The nineteen runoff stations were used for our analysis.
Thale Sap Songkhla watershed, an area of 8484.35 km2, primarily covers three provinces,
the province of Nakhon Si Thammarat (Some portions of the district of Cha-Uat and the
district of Hua Sai), the province of Phatthalung, both provinces, and the province of
Songkhla, except for the district of Nathawi, the district of Chana, the district of Thepha
and the district of Saba Yoi). Thus, 147 sub-districts and 26 districts, with nine runoff
stations, were our study setting. Figure 1 shows the rainfall location, runoff, and weather
stations selected in Thailand’s southern basin.

We collected the monthly meteorological and hydrological data from the Royal Irriga-
tion Department (RID) and the Thai Meteorological Department (TMD), including runoff
(37 stations), rain (38 stations), and air temperature (13 stations) as shown in the statistical
values in Figure 2. We also investigated and analyzed the time corresponding among those
three meteorological and hydrological data to select the suitable periods of model’s calibra-
tion and verification, as shown in Table 1. The Thiessen polygon was used to determine
the mean areal precipitation in the considered basin from rain gauge observations. The
monthly evapotranspiration, which is one of the input data for the GR2M model, was
calculated from the average monthly air temperature (Ti) data by Thornthwaite [24], as
shown below:

• Monthly values of the heat index

Ii =

(
Ti

5

)1.514
(1)

• Annual temperature efficiency index

J =
12

∑
i=1

(Ii) (2)

• Evapotranspiration

PETi(0) = 1.6
(

10Ti

J

)C
(3)

• The C value can be obtained from:

C = 0.000000675J3 − 0.0000771J2 + 0.01792J + 0.49239 (4)

• Potential Evapotranspiration

PETi(L) = K × PETi(0) (5)

where Ti = Monthly average temperature (◦C), K = PET constants at different latitudes.
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Figure 2. Statistical values of monthly (a) runoff, (b) rainfall, and (c) evapotranspiration data used in this analysis.
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3. GR2M Model

The GR2M, a conceptual model, was first introduced by Demagref in the late 1980s
and it has been widely applied for water resources management [25]. The model aims to
simulate the relationship between monthly rainfall and runoff and reproduce the hydrolog-
ical system’s response. It has been continuously being developed to improve its efficiency
by Kabouya [26], Makhlouf and Michel [27], Mouelhi [28] until Mouelhi et al. [29]. The
model selected in this study was the latest version, GR2M 2006. It is the most popular and
efficient compared to other models [13]. The GR2M model’s advantage requires only two
parameters: production store: X1 (mm) and groundwater exchange rate (X2). Additionally,
it needs only three monthly meteorological and hydrological data, i.e., rainfall, runoff, and
evapotranspiration [30,31]. The GR2M model results give runoff hydrograph and other
elements such as soil moisture content, surface runoff, the groundwater flow.

The structure of the GR2M model consisted of two reservoirs, as presented in Figure 3.
The first reservoir represents soil moisture (S) of the basin-controlled production store:
X1 (mm). Furthermore, the second reservoir is water flow through the river (R). Its capacity
is up to 60 mm and is regulated by the groundwater exchange rate (X2). This model starts
with the precipitation infiltrated into the soil, causes soil moisture at the level: S1 (mm).
When the soil reaches a saturation point, the remnants of infiltration rain become rainfall
excess: P1 (mm). The soil moisture loss from evapotranspiration: E until the remaining
moisture level: S2 (mm).

Figure 3. Structure of the GR2M model. (Source: Adapted from Bachir et al. [31]; Rwasoka et al. [32]).

Additionally, some moisture content is released as surface water: P2 (mm) and gradu-
ally released with rainfall excess. This water section is called surface runoff or net rainfall:
P3 (mm), which moved into the flow path combined with the remaining water from the ini-
tial or existing water in the river: R (mm). It causes the water content at level R1 (mm). The
water volume movement may change because some water may be lost, causing the residual
water volume at the level: R2 (mm). Ultimately, the total amount of water discharge into
the runoff streamflow gauging station conducted the assessment.

7
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4. Model’s Calibration and Verification

In achieving our aims in evaluating a Two-Parameters Monthly Rainfall-Runoff
Model’s performance, the GR2M model applied in Thailand’s southern basin was cal-
ibrated and verified. It included two steps, i.e., the warm-up period and calibrating and
verifying the GR2M Model.

4.1. Warm-Up Period

In this process, the appropriate initial parameters of X1 and X2 are determined. It
enables the model to mimic the basin’s existing hydrological behavior at the considered
runoff stations before conducting the model’s calibration and verification. The R-value,
the initial or existing water capacity in the river, is varied between 10 mm and 60 mm to
determine the suitable warm-up period. In our study, we found the warm-up periods of
approximately 4 to 7 months.

4.2. Calibrating and Verifying the GR2M Model

As widely known, the calibration and verification processes are imperative for apply-
ing the mathematical model to find the most suitable model’s parameters. The model can
simulate the behavior of our concerning water system. For the GR2M model, only two
parameters: the production store (X1) and the groundwater exchange rate (X2), must be
calibrated and validated. Microsoft Excel solvers help by giving an objective function and
practical constraints, which can automatically solve the fair values of X1 and X2 parameters
for each runoff station. The GR2M model was calibrated and verified for 37 different runoff
stations in the Southern Basins in this study. The details of the intervals for the calibration
and verification of the model are presented in Table 1. The lowest and the highest periods
used for running the GR2M model are 41 and 80 months. The used range of the calibration
and verification periods consists of 22 and 48, and 10 and 39 months, respectively.

5. Performance Criteria for Evaluating the Applicability of the GR2M Model

In this study, three performance criteria were used for evaluating the performance
and applicability of the GR2M Model. They included Nash–Sutcliffe Efficiency (NSE),
Correlation Coefficient (r), and Overall Index (OI). The details for each performance criteria
can be delineated as shown the following:

Nash-Sutcliffe Efficiency (NSE) [32] is a popular index used to tell model accuracy or
efficiency-effectiveness of the model (Model Performance) in estimating the desired value.
As the equation below:

NSE = 1 − ∑n
i=1(Qcal − Qobs)

2

∑n
i=1

(
Qobs − Q́obs

)2 (6)

NSE is between −∞ to 1. Suppose the Nash values are close to 1. In that case, the
model results and the measurement results are similar. They are considered the model of
efficiency or accuracy in forecasting [33].

Correlation Coefficient (r) is a simple linear regression equation. It is a simple linear
regression equation that can be used to estimate the Y as well. If X and Y are correlated well.
The correlation coefficient between X and Y can be calculated from the following equation.

r =
∑n

i=1
(
Qobs − Qobs

)(
Qcal − Qcal

)
√

∑n
i=1 (Qobs − Qobs)

2 ·
√

∑n
i=1 (Qcal − Qcal)

2
(7)

The r-value is between −1 and 1. The squares of r or R2 will always be between
0–1, and in this sense, if R2 is 0, then the two variables have no linear correlation. If R2
is equal to 1, then there is an entirely linear correlation. If the r-value approaches 1, the
model results and the measurement results are related. The plus sign (+) or minus sign can
also tell the direction of the data set’s relationship. The plus sign (+) means the dataset is
related. Suppose the data obtained from the model is precious. The data obtained from

8
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the measurement is also precious. The minus sign (−) means the dataset is in the opposite
relationship. If the information is valuable More information will be less [34–36].

Overall Index:

OI =
1
2

[
2 − RMSE

Qobs,max − Qobs,min
− ∑n

i=1(Qobs − Qcal)
2

∑n
i=1

(
Qobs − Qobs

)2

]
(8)

The OI value is a criterion that indicates model performance. It is between −∞ to 1. If
the higher OI is closer to 1, the model’s performance is favorable [37,38]. where; Qobs is the
amount of runoff obtained from the measurement, Qcal is the amount of runoff obtained
from the calculation, Qobs is the average runoff from the measure, Qcal is the average runoff
from the calculation, Qobs,max is the runoff from the highest measurement Qobs,min is the
runoff from the lowest measurements, and n is the amount of information.

6. Results and Discussion

6.1. The Results of Calibrating and Verifying the GR2M Model

Table 2 shows the results of the model’s calibration and verification. It explicitly
indicated that the GR2M model could be applied for modeling monthly rainfall-runoff in
the southern region of Thailand.

Table 2. Results of calibrating and verifying the GR2M model.

No. Code

Performance Criteria

No. Code

Performance Criteria

Calibration Validation Calibration Validation

NSE r OI NSE r OI NSE r OI NSE r OI

1 X.44 0.942 0.973 0.949 0.465 0.705 0.657 20 X.187 0.563 0.756 0.668 0.349 0.654 0.548
2 X.67A 0.978 0.99 0.974 0.719 0.852 0.795 21 X.191 0.177 0.492 0.505 0.664 0.831 0.749
3 X.71B 0.688 0.954 0.793 0.605 0.797 0.733 22 X.192 b 0.165 0.462 0.493 0.167 0.670 0.451
4 X.90 0.772 0.887 0.85 0.468 0.502 0.478 23 X.196 0.333 0.691 0.544 0.283 0.691 0.505
5 X.109 0.925 0.987 0.94 0.577 0.849 0.696 24 X.205 c 0.518 0.755 0.693 −0.119 0.663 0.289
6 X.113 0.736 0.91 0.821 0.479 0.796 0.648 25 X.207 0.758 0.878 0.798 0.836 0.920 0.856
7 X.170 0.805 0.903 0.867 0.038 0.451 0.392 26 X.208 0.796 0.906 0.838 0.751 0.894 0.808
8 X.174 0.725 0.975 0.821 0.385 0.731 0.61 27 X.209 a 0.880 0.943 0.896 0.870 0.935 0.883
9 X.240 0.975 0.993 0.973 0.511 0.735 0.687 28 X.245 0.476 0.715 0.636 0.199 0.503 0.457

10 X.53A 0.822 0.908 0.868 0.714 0.847 0.793 29 X.56 0.813 0.911 0.868 0.676 0.866 0.746
11 X.64 a 0.787 0.888 0.838 0.941 0.970 0.942 30 X.150 0.833 0.915 0.871 0.226 0.623 0.461
12 X.158 0.573 0.759 0.714 0.752 0.869 0.818 31 X.228 0.111 0.527 0.450 0.346 0.702 0.554
13 X.212 b 0.383 0.668 0.594 0.173 0.431 0.467 32 X.229 c 0.564 0.794 0.730 −0.437 0.407 0.120
14 X.55 0.654 0.903 0.761 0.987 0.996 0.980 33 X.234 0.854 0.934 0.890 0.713 0.882 0.773
15 X.70 a 0.780 0.943 0.845 0.923 0.976 0.916 34 X.235 0.430 0.758 0.648 0.404 0.679 0.596
16 X.149 0.557 0.912 0.702 0.957 0.986 0.950 35 X.236 0.801 0.896 0.857 0.513 0.719 0.647
17 X.167 0.892 0.973 0.912 0.278 0.803 0.534 36 X.237 c 0.734 0.277 0.411 −0.305 0.497 0.202
18 X.203 0.732 0.970 0.809 0.897 0.973 0.904 37 X.239 0.376 0.754 0.602 0.055 0.673 0.388
19 X.186 b 0.400 0.660 0.580 0.405 0.680 0.620

Maximum 0.978 0.993 0.974 0.987 0.996 0.980

Minimum 0.111 0.277 0.411 −0.437 0.407 0.120

Average 0.657 0.825 0.757 0.472 0.750 0.639

Standard Deviation 0.233 0.170 0.153 0.350 0.166 0.213

Remark: TSS = Thale Sap Songkhla; PWC = Peninsular-West Coast; PEC = Peninsular-East Coast. a the green text shows the best top-three
model performance stations, b the red text shows the worst top-three model performance stations, c the blue text shows stations having the
overfitting models.

The average performance criteria gave NSE, r, and OI values for the calibration stage
of 0.657, 0.825, and 0.757. Those values for the verification stage of 0.472, 0.750, and 0.639,
respectively. Lian, et al. [39] suggested that the model had a good prediction since NSE was
in the range of 0.36 to 0.75. By obtaining an r-value of more than 0.70, it indicated a strong
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positive linear relationship between simulated and observed runoff [36]. Moreover, the OI
value of more than 0.60 showed the model had relatively high forecasting accuracy. The
three performance criteria previously mentioned emphasized a strong consistency between
the runoff data obtained from the measurements and model-simulated for our study.

Considering the best top-three model performance stations obtaining from X.64, X.70,
and X.209, NSE, r, and OI values for both calibration and verification processes gave more
than 0.76, it showed the GR2M model performed quite satisfactorily for simulating monthly
runoff. Conversely, the worst top-three model performance stations were X.212, X.186, and
X.192. They gave NSE, r, and OI values for both calibration and verification processes less
than 0.690. However, some runoff stations, i.e., X.205, X.229, and X.237, had a negative NSE
value. It represented overfitting models for those three runoff stations and could not be
generally applied. Although many attempts were being made for the model’s calibration and
verification processes, the quality and accuracy of measured hydrological and meteorological
data are the most important things to concern and check the consistency. Figure 4 illustrates
the relationship between rainfall and runoff obtained from running the GR2M model. Herein
present six examples of runoff stations, i.e., X.64, X.70, X.209, X.212, X186, and X.192. The best
top-three and the worst top-three model performance stations are presented.

Likewise, the bar chart in blue represents rainfall time-series variation. The line graphs
in orange and green also show the observed and simulated runoff time-series variation, re-
spectively. For both runoff time-series variations, the solid and dot lines mean calibration and
validation periods, respectively. A slight difference runoff time-series value was observed for
the best top-three model performance stations. A significant difference was observed among
runoff time-series values for the worst top-three model performance stations. However, both
cases underestimated runoff value; that is, the simulated runoff was lower than the observed
runoff. It could realize when using the calibrated and verified GR2M model, especially for
water resources management and planning for rainy and dry seasons.

6.2. The Optimal Values of Production Store Capacity (X1) and Groundwater Exchange Rate (X2)

Figure 5 shows suitable X1 and X2 parameters of the GR2M model for each runoff
station obtained from the model’s calibration and verification.

The production store (X1) value results ranged from 2.00 mm to 10.00 mm. It showed
a spatial variation of X1 value, and its values ranged from the minimum (2.00 mm) and
maximum (10.00 mm) values. The average and standard deviation values of X1 were
5.71 mm, and 2.49 mm, respectively. Furthermore, the skewness and kurtosis values of
X1 were −0.52 and −1.03, respectively. It could physically explain river basin character-
istics in terms of production store (X1). It had left skew, platykurtic, and non-symmetric
distributions. The groundwater exchange rate (X2) value results ranged from 0.54 to 1.00.
Those X2 values mostly reached the maximum value (1.00). The average and standard
deviation values of X2 were 0.93 and 0.12, respectively. Moreover, the skewness and kurto-
sis values of X2 were −2.01 and 3.69, respectively. It could physically explain river basin
characteristics in terms of the groundwater exchange rate (X2). It had left skew, leptokurtic,
and non-symmetric distributions. The positive value of groundwater exchange rate (X2)
displayed no groundwater flows outside the basin.

6.3. The Spatial Distribution of X1 and X2 Values Using the Inverse Distance Weighting
(IDW) Method

Figure 6 shows the spatial distribution of X1 and X2 values using the IDW method.
As seen from Figure 5a, the low production store (X1) value (yellow and green color) was
generally located on the Peninsular-West Coast. The significant area roughly was covered
by the average production store (X1) value (5.71 mm). Most areas were a light blue color.
Only the northern part of Surat Thani province shows the high production store (X1) value,
which shows the dark blue zone. For the groundwater exchange rate (X2), as depicted in
Figure 5b, most areas were governed by the dark blue zone. It indicated that most areas in
the southern basin, Thailand, had a high groundwater exchange rate (X2).
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Figure 4. Cont.
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Figure 4. The relationship between rainfall and runoff of models (GR2M) stations.
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Figure 5. The suitable X1 and X2 parameters of the GR2M model: (a) Production Store: X1, and (b) Groundwater exchange
rate: X2.

Furthermore, it agreed to the average X2 value of 0.93. The northern part of Surat Thani
province and some Chumporn, Trang, and Satun provinces show the low groundwater
exchange rate (X2) value, as portrayed in the yellow and green zone. Suppose we do not
have a measured gauged or ungauged. In that case, we can use these figures to determine
the values of X1 and X2 roughly. If we know areal rainfall and evaporation, we can also
estimate the runoff via the GR2M model.
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Figure 6. The spatial distribution of X1 and X2 values using IDW method: (a) Production Store: X1, and (b) Groundwater
exchange rate: X2.

7. Sensitivity Analysis

The sensitivity analysis [10] was conducted in this study to understand the effects of
the two model parameters (i.e., X1 and X2). We randomly selected three runoff stations
(X.44, X.64, and X.240) as the representative for all 37 runoff stations due to the analysis
sensitivity. By fixing the optimal X2 value obtained from calibration and verification stages
and then varying the X1 value in it ranges from the minimum to maximum (2 mm to
10 mm) [31,36], we received the results of X1’s sensitivity analysis. Similarly, by fixing the
optimal X1 value obtained from calibration and verification stages and then varying the
X1 value in it ranges from the minimum to maximum (−1 to 1) [31,34], we got the results
of X2’s sensitivity analysis. It was rarely reported about the sensitivity analysis for the
GR2M model’s two parameters to our best knowledge. Thus, it was the early attempt
to conduct their sensitivity analysis. As evidentially presented in Figure 7, the X1 value
was sensitive. Apart from the optimal value obtained from the calibration and verification
stages, the other value gave a lower model’s performance. Considering the X2 value, we
found that the higher value (approximately more than 0.90) was trial, it gave the higher
model’s performance. It also confirmed and corresponded with the results, as found in
Figures 5 and 6.
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Figure 7. The sensitivity analysis of the GR2M model’s two parameters: X1 and X2.

Rainfall-runoff modeling is among the most challenging task for hydrologists, par-
ticularly in regions with scarce rainfall and runoff data records. The complexity of the
rainfall-runoff modeling also comes from the non-stationary features of its components,
such as seasonality, potential trend, and the non-linear behavior of the variables involved
in the modeling process [11,40]. Geomorphological features characterizing the watershed
influence significantly the runoff regime; namely, in urban areas, high imperviousness areas
cause increased runoff by originating floods while the same behavior is not observed in
fewer imperviousness areas [1,3]. Thus, it is crucial to know the sensitivity of parameters in
the rainfall-runoff modeling, especially in the urban areas, making the calibration process
more efficient by focusing only on the parameters for which the modeling results are more
sensitive [10]. The findings resulted from this study contribute to enhance the understand-
ing of the hydrological parameters and processes that govern a watershed system. Also, it
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offers new insights on the application of the GR2M model in regions characterized by a
similar climate and geomorphological conditions to support decision-makers and optimize
the planning and operation rules of water resources systems [21,40]. Last, for areas, espe-
cially large basins suffering from a lack of hydrometeorological data records it is important
to assess the areal inhomogeneity of the investigated gauging station network [41,42]. In
that regard, knowing the fractal dimension of the hydrometeorological network and its
limits of validity is the key to understanding the limits of reliability of an inhomogeneous
distribution of gauging stations [42].

8. Conclusions

With only two parameters, namely, the production store (X1) and the groundwater
exchange rate (X2), our research work explicitly indicated GR2M model could be applied
for modeling monthly rainfall-runoff in the southern region of Thailand. The model’s
calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825,
and 0.757. Those values for verification of 0.472, 0.750, and 0.639, respectively. The range
of X1 was between 2.00 and 10.00, and the range of X2 was between 0.54 and 1.00. It
was sensitive to the X1 value. The other value indicates lower model efficiency, apart
from the optimum value obtained from the calibration and verification phases. We also
found that the higher value of X2 (approximately more than 0.90) gave the higher model’s
performance. Personnel concerning water resources planning and management can apply
our work for a guideline for utilizing the GR2M model to determine monthly runoff in
other runoff stations located in the southern region, Thailand. It is because there are similar
hydrological, geological, and topological basin characteristics. However, to further enhance
the GR2M model’s reliability, a more extended period of recorded hydrological data is
required. Also, more runoff gauging station installation will cover the variety of existing
watershed characteristics.
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Abstract: The optimization of groundwater conditioning factors (GCFs), the evaluation of ground-
water potential (GWpot), the hydrogeological characterization of aquifer geoelectrical properties and
borehole lithological information are of great significance in the complex decision-making processes
of groundwater resource management (GRM). In this study, the regional GWpot of the Karak wa-
tershed in Northern Pakistan was first evaluated by means of the multi-influence factors (MIFs)
model of optimized GCFs through geoprocessing tools in geographical information system (GIS).
The distribution of petrophysical properties indicated by the measured resistivity fluctuations was
then generated to locally verify the GWpot, and to analyze the hydrogeological and geoelectrical
characteristics of aquifers. According to the weighted overlay analysis of MIFs, GWpot map was
zoned into low, medium, high and very high areas, covering 9.7% (72.3 km2), 52.4% (1307.7 km2),
31.3% (913.4 km2), and 6.6% (44.8 km2) of the study area. The GWpot accuracy sequentially depends
on the classification criteria, the mean rating score, and the weights assigned to GCFs. The most
influential factors are geology, lineament density, and land use/land cover followed by drainage
density, slope, soil type, rainfall, elevation, and groundwater level fluctuations. The receiver operat-
ing characteristic (ROC) curve, the confusion matrix, and Kappa (K) analysis show satisfactory and
consistent results and expected performances (the area under the curve value 68%, confusion matrix
68%, Kappa (K) analysis 65%). The electrical resistivity tomography (ERT) and vertical electrical
sounding (VES) data interpretations reveals five regional hydrological layers (i.e., coarse gravel and
sand, silty sand mixed lithology, clayey sand/fine sand, fine sand/gravel, and clayey basement). The
preliminary interpretation of ERT results highlights the complexity of the hydrogeological strata and
reveals that GWpot is structurally and proximately constrained in the clayey sand and silicate aquifers
(sandstone), which is of significance for the determination of drilling sites, expansion of drinking
water supply and irrigation in the future. Moreover, quantifying the spatial distribution of aquifer
hydrogeological characteristics (such as reflection coefficient, isopach, and resistivity mapping) based
on Olayinka’s basic standards, indirectly and locally verify the performance of the MIF model and
ultimately determine new locations for groundwater exploitation. The combined methods of regional
GWpot mapping and hydrogeological characterization, through the geospatial MIFs model and
aquifer geoelectrical interpretation, respectively, facilitate decision-makers for sustainable GRM not
only in the Karak watershed but also in other similar areas worldwide.

Keywords: multi-influencing factors (MIF); vertical electrical sounding (VES); electrical resistivity
tomography (ERT); groundwater resource management (GRM); hydro-stratigraphy; well logs
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1. Introduction

Increasing anthropogenic repression, climate change, and environmental problems
are affecting the supply and demand of domestic and irrigation water. The efficient and
innovative use of geospatial and geophysical datasets for understanding groundwater
management and hydrological processes in various climatic and vegetation regimes un-
der topographical, geological, hydrological, and land-covered influence has become an
important challenge, which offers a wide range of research opportunities [1–5]. There are
several conventional geological, geophysical, and hydrogeological methods, and the most
commonly used methods are geophysical, but they are time-consuming and mainly appli-
cable on a small scale [6,7]. However, remote sensing (RS) and geographical information
system (GIS) provide spatial, temporal, and spectral data availability that can cover large
and inaccessible areas within a short period and serve as a useful tool for assessing and
managing groundwater resources [8–12].

The groundwater potential (GWpot) is influenced by multiple geological, hydrolog-
ical, and land-covered processes [10,12,13]. Usually, the occurrence and movement of
surface water and groundwater could be assessed by optimized groundwater conditioning
factors (GCFs), i.e., rainfall, lineament density, slope, soil types, drainage density, land
use/land cover, lithology, elevation, and groundwater level fluctuation. [14,15]. GIS and
RS analysis are useful for large-scale estimates of surface water and groundwater. Several
methods have been employed to monitor GWpot, such as cumulative rainfall departure
(CRD), Monte Carlo (MC) simulation, frequency ratio (FR), certainty factor (CF), weights-
of-evidence (WoE), fuzzy logic index models, logistic regression (LR) model, analytical
hierarchy process (AHP), and multi-influence factors (MIFs) [8,16–23]. The CRD is a
water balance method which defines groundwater level fluctuations in shallow aquifers
as a function of rainfall. The statistical methods (e.g., FR, LR, WoE) estimates the coef-
ficient for each GCF by defining the relationship between the dependent variable and
independent variables, while the AHP assigns a score to each conditioning factor based
on expert’s opinion. The MC simulation is considered to be the main tool to quantify
the uncertainty in groundwater predictions. To reduce the mathematical complexity by
incorporating a decision-making reasoning process based on expert system judgment, the
MIF technique has become a useful GWpot modeling approach, that can quickly, accurately,
cost-effectively, and consequently monitor GWpot [23–25]. MIFs constitute a GIS-based
multi-criteria decision-making (MCDM) technique that enumerates the spatial relation-
ships between dependent and independent variables according to scores assigned based
on major and minor GCFs influencing GWpot [24,26]. This method is economical as it
relatively simple and useful for practical applications before starting an expensive field
survey [3,9,20]. It helps in narrowing down the potential areas for conducting detailed
hydrogeological and geophysical surveys and ultimately locating the drilling sites [7,27].

Hydro-stratigraphy and hydrogeology are essential for characterizing aquifer poten-
tiality and developing hydrological models to predict groundwater resources for future
availability [28,29]. For geoscientists, finding and locating the source and availability
of the groundwater in a complex area with multiple hydrogeological features is a vital
task. Although surface geophysical measurements can provide effective spatial coverage
services [30,31], these measurements depend on the area extent to be investigated, cost,
geological condition, and the acquired data readability. They contribute information on
groundwater levels, hydrogeological behaviors, and corresponding lithology, ensuring a
higher positioning accuracy for groundwater resources [32–34]. With the proper GWpot
and hydrogeological evaluation, geophysical techniques can be combined to improve
efficiency. Specifically, the electrical resistivity techniques are well established and com-
monly used to solve numerous geological and environmental problems [35,36], which are
considered as the most effective geophysical methods for the characterization of GWpot
and hydrologic stratigraphy. These methods are widely used to scrutinize high-resistance
and low-resistance layers, and are, therefore, valuable tools for studying aquifer vulnera-
bility [32,37]. The quantification of the aquifer potential analyzed by VES-based reflection
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coefficient, isopach, and resistivity mapping can directly verify the predicted result of the
MIF model and its performance. The combination of vertical electrical sounding (VES) and
electrical resistivity tomography (ERT) methods produces a high ratio of 90% compared
to 82% for the VES method and 85% for the ERT method [33,38]. The spatial distribution
of aquifer hydrologic characteristics, such as resistivity, reflection coefficient, overbur-
den thickness, hydraulic conductivity, and specific productivity, plays an essential role
in assessing and managing GWpot [39,40]. Apparent resistivity and reflection coefficients
are the most critical hydrogeological data needed to manage groundwater resources [41].
These parameters also outline variances in the hydrological strata that help to explain
aquifer models for GWpot modeling. In addition, geophysical well logging also generates
useful information about the geological structure and the formations’ lithology [22]. The
feasibility study of resistivity surveys through boreholes has been used worldwide and
is supported by general hydrogeological studies. Drilling (machinery type deployed sub-
surface soil/rock conditions) and electrical logs record the true location of the aquifer and
corresponding lithology.

The phenomenon of surface water resource depletion and irregular spatial-temporal
distribution of precipitation have made groundwater a vital natural resource for the reliable
and economic provision of potable water supply in low- and mid-income regions of the
Karak watershed, Northern Pakistan. In this context, this study addresses the applicabil-
ity of comprehensive MCDM-MIFs model with optimized GCFs for GWpot assessment
and hydro-geophysical investigation for hydrogeological characterization. As the GWpot
mapping depends on the suitable GCFs and the weights assigned to them, various GCFs,
such as geology, lineament density, land use/land cover, drainage density, slope, soil type,
rainfall, elevation, and groundwater level fluctuations, were processed and optimized
through geospatial analysis in GIS environment. The predicted GWpot results using the
MIF model were then analyzed by the receiver operating characteristic (ROC) curve and
the confusion matrix, and Kappa (K) analysis. However, groundwater is an invisible
resource that is difficult to measure or quantify directly. Therefore, the interpretation of
VES and ERT data was employed to predict hydrogeological properties, aquifer hydraulic
characteristics and GWpot zones for future exploitation and installing tube wells for its
utilization. Moreover, our methodology not only improves the reliability of the integrated
geospatial and geoelectrical modeling and bridges the gap of GWpot evaluation and hydro-
geological characterization in the Karak watershed, but also provides an optional solution
of groundwater assessment in other similar areas worldwide.

2. Study Area

2.1. Physical Geographical Background

The study area is located at geodetic coordinates between the latitudes of 32◦46′
and 33◦22′ N and between the longitudes of 70◦43′ and 71◦33′ E, covering an area of
approximately 2372 km2 (Figure 1b). A 123 km road from Peshawar on the Indus Highway
leads to Karachi and is easily accessible from various parts of the country via mettled
roads (Figure 1a). Geographically, the Karak watershed is located in the southern part
of the Kohat Plateau of the upper Indus basin Pakistan. The Kohat Plateau itself lies
between 70◦–74◦ E and 32◦–34◦ N, covering an area of approximately 10,000 km2. Most
of the region’s climate is semi-arid, with two major seasons, i.e., the rainy season and
the dry season. Precipitation is the primary source of groundwater replenishment where
the average precipitation is 450 mm/year, and the minimum and maximum average
temperatures in the Karak (at an altitude of 706 m) are 10.3 ◦C and 43.5 ◦C, respectively,
varying by altitude. The harvest depends on the amount of precipitation or pipeline well
supply. Annual precipitation in the northeast ranges from 500 to 750 mm. In the study area,
rainfall from June to November is 68% and is 32% from December to May. During the short
rainy season, rainfall is scarce, unstable, and concentrated, and it is relatively or absolutely
dry for the rest of the time. High temperature and rainfall intensity cause large amounts of
precipitation loss due to evaporation and runoff, respectively [42]. The highest elevation
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area of the Karak watershed is in the eastern Surghar Shinghar ranges (Figure 1b), where
elevations typically exceed 1415 m above sea level. The lowest elevation area is associated
with the Bannu boundary, where the river level is below 305 m.

 
Figure 1. (a) Generalized physical geographical features of the Potwar region; and (b) Location map of the Karak wa-
tershed with the surveyed boreholes and vertical electrical sounding (VES) and electrical resistivity tomography (ERT)
measurements.

2.2. Geological Background

A regional geological map of the study area was prepared to plot major geological
structures and lithological units (Figure 2). The Karak watershed is part of a large in-
termontane basin where sedimentation has taken place from weathering and erosion of
the surrounding Bannu mountain belts [43,44]. The Bannu basin is located in a depres-
sion behind the Trans-Indus current uplift boundary, which leads to the formation of the
Bhittani, Khisor/Marwat, and Shinghar mountains. The basin is formed by the uplift
boundary from the Kohat mountain range to the Bhittanni and Marwat/Khisor mountain
ranges [43], as shown in Figure 2. In the Potwar Plateau and the adjacent Kohat Plateau,
the exposed sedimentary formations are Eocene limestone, evaporite, and red beds [45].
Subsurface deposits of the area widely vary from very coarse sediments (such as gravel and
boulders) to very fine sediments (such as silt and clay). There are three types of sediments
in this region, including alluvial fans, floodplains, and basin-filled sediments [46,47]. An
alluvial fan is composed of various proportions of boulders, gravel, sand, silt, and clay. The
sediments in the floodplain are mainly clay and silt, with minor amount of sand. Sandy
sediments were primarily formed in the Marwat range, mainly due to erosion [48]. The
ages of the exposed strata in the study area range from the Precambrian to the Quaternary.
The lithological distributions of the Karak watershed are illustrated in Table 1.

Table 1. Lithological characteristics of the Karak watershed.

Product Formation Names Lithology Characteristics

(C Fm) Chinji formation Sandstones and shales (abundant quartz with subordinate feldspars)
(DS) Darzinda shale Dark-brown to gray claystone and subordinate fossiliferous marl beds

(K Fm) Kamlial formation Mainly composed of sandstone (subordinate feldspars, lithic grains, micas)
(J/T) Jurassic or Triassic rocks Sandstone, siltstone, shale and dolomite

DP Fm Dhok Pathan formation Equal amount of sandstone and clay
(K Fm) Kohat formation Mainly composed of limestone and divided into three members
(N Fm) Nagri formation Primary sandstone and minor number of clays

(Q) Quaternary alluvium Mainly composed of sand, gravel, silt and clay
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Figure 2. Regional geology map of the study area illustrates main structural and lithological units.

2.3. Hydrological Background

In the study area, the estimated thickness of semi-confined aquifers ranges from 10
to 30 m. The groundwater quality in the northeastern part of the northwest catchment is
inferior [42]. This situation occurs due to the salt rock in the northern mountainous region,
which is dissolved by runoff water and polluted groundwater due to deep infiltration.
Under diving conditions, groundwater flows through weathered layers and fault zones.
The alluvial filling is very uneven and contains high level of silt and clay. Locally, sand
and gravel beds were encountered in boreholes. The flow rate through the open wells is
calculated to be 0.035 mm3/year. The alluvial aquifer’s average annual recharge is approxi-
mately equal to the average annual discharge, which is 2.7 mm3/year. The groundwater
level is between 29.03 and 238.66 m. This indicates that a fuzzy groundwater boundary
exists corresponding to a surface water boundary [49]. A small dam (Chambia dam) was
constructed to maintain the groundwater level in the Karak watershed. The soil texture of
the study area is predominantly medium clay, pure sand, cultivable soil and crops.

3. GCF Analysis and Optimization

The evaluation of groundwater condition factors (GCFs) is essential to effectively
determine an accurate groundwater potential (GWpot) index [50]. GCFs should be con-
sidered in terms of regional topographical, geological, hydrological, and land use/land
cover characteristics influencing the GWpot [15]. Therefore, the identification of the GWpot
spatial distribution was performed by multi-criteria decision-making (MCDM) analysis
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of nine factors, i.e., drainage density, geology, lineament density, slope, soil type, rainfall,
elevation, land use/land cover, and groundwater level fluctuations. These GCFs were
extracted independently from appropriate remote sensing, geological, and conventional
map datasets (Table 2).

Table 2. GCFs used for mapping groundwater potential of the Karak watershed.

GCFs Data sources Format Product

Drainage density Digital elevation model (DEM) (ASTER 30 m) Digital (Dd)
Slope Digital elevation model (DEM) (30 m spatial resolution) Digital (SL)

Elevation Shuttle Radar Topography Mission (SRTM) data from
United States Geological Survey (USGS), resolution: 30 m Digital (EL)

Rainfall Annual rainfall data from Pakistan Meteorological
Department (PMD) numbers (RF)

Land use/cover Forest Management Center Peshawar (FCMP), KPK,
Pakistan Digital (LULC)

Geology Geological map from National Centre of Excellence in
Geology (NCEG), University of Peshawar Digital (GEO)

Lineament
density

Landsat 8 OLI imagery and Shuttle Radar Topography
Mission (SRTM) Digital (LD)

Soil type
GW fluctuation

Directorate General Soil and Water Conservation (DGSC),
Khyber Pakhtunkhwa (KPK), Pakistan

Pre-monsoon and post-monsoon groundwater table data
(onsite survey)

Digital
Points

(ST)
(GLF)

The drainage density (Dd) is a measure of the total length of all streams per unit area,
regardless of the stream networks [51]. The hydrology toolkit in ArcGIS 10.4 was used
to extract stream networks from a digital elevation model (DEM). Accordingly, Dd was
calculated as the stream’s total length divided by the total drainage using Equation (1) [14].
Subsequently, the drainage frequency was classified into five categories using a natural
break classification scheme [16]. High drainage frequency is associated with high permeable
lithology and accordingly high GWpot. The groundwater favorability is indirectly related
to Dd, which is related to surface runoff and permeability [52].

DD = ∑n
l=o

Dl(km)

A(km)2

(
km−1

)
(1)

where DD represents drainage density, Dl is the stream’s length, and A is the watershed
area (km2).

Lineaments are surface manifestations of linear or curvilinear features, such as joints,
straight streams, and regional vegetation placement, reflecting potential topographical or
geological structure [15]. The seven bands of the Landsat 8 image were stacked using ENVI
4.8 (Harris Geospatial, Broomfield, CO, USA), and principal component analysis (PCA)
was performed on the stacked image in QGIS (Open Source Geospatial Foundation, Bern
and Chur, Switzerland). The thematic layer for Ld can be defined as the total length of
all recorded lineaments divided by the catchment area under consideration, as shown in
Equation (2) [53]. The higher the Ld, the higher the favorability of GWpot.

LD =
n

∑
i=0

Li (km)

A (sq. km)

(
km−1

)
(2)

where LD represent the lineament density, Li is the lineament’s length in km, and A is the
grid area in square kilometer.

Data from 17 metrological stations were processed using simple arithmetic mean,
isometric, and Thiessen polygon interpolation methods to obtain sufficient uniform pre-
cipitation in the catchment area. After these three interpolation methods were used for
comparison, isometric interpolation (Equation (3)) was considered the best technical inter-
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polation method. The flat and gentle areas, with less runoff, are more favorable for GWpot
than steep slopes [54]. In addition to rainfall quantity, other precipitation characteristics
(such as duration and intensity) are also important. For example, a 20 mm rainfall in a long
period may have a more significant impact on groundwater recharge than a 50 mm rainfall
in a short period.

P =
∑n

l=1 pl

N
(3)

where P is the average precipitation depth, with p1, p2, p3 up to pn being the rainfall records
of measurement stations 1, 2, 3, up to n, respectively.

The slope is an important factor that directly controls the infiltration of surface water.
A 30-m resolution DEM was processed to generate a slope map in the ArcGIS 10.4 spatial
analyst toolkit. The slope gradient was reclassified into five classes using the quantile
classification scheme presented by [18]. A higher slope is more conducive to runoff
but has a smaller impact on groundwater recharge. Elevation or altitude can have an
indirectly inverse effect on GWpot, which relates primarily to the occurrence of rainfall
and the resulting recharging. However, high altitudes favor more recharge and ensure
groundwater availability in low land areas in a watershed. Mountainous regions are often
favorable for the recharge of deep-seated confined aquifers situated at low land areas [55].

Stratum lithology influences the porosity and permeability of aquifers and directly
affects the GWpot. The porosity of rocks, alluvial/sedimentary layers, sand, silt, and clay
beds determine water infiltration and percolation [56]. Therefore, the lithology factor was
also considered concerning groundwater characteristics. The lithology map was extracted,
digitized, and reclassified from the geological map of Northern Pakistan. Accordingly,
different weights were assigned to rock units depending on the infiltration capacity and
GWpot as per multiple influence factor criterion.

Vegetation cover areas, such as forests and agriculture traps, retain water by the roots
of plants. In contrast, the built-up and rocky land cover decreases groundwater recharge
by increasing the runoff during rainfall [24]. Therefore, to conduct GWpot studies, it is
necessary to investigate the land use land cover (LU/LC) characteristics of the study area.
Therefore, the LU/LC map from the Forest Management Center Peshawar (FCMP) was
reclassified with different score values assigned to several subclasses.

The water retention capacity of an area depends on the type of soil and its permeability.
Permeability is directly related to the soil effective porosity which is greatly influenced by
the particle shape, size, adsorbed water, porosity, saturation, and the presence of impurities
in the soil [57]. The soil type map was primarily derived from the Directorate General Soil
and Water Conservation (DGSC), KPK, and updated through onsite inspections. Soil mainly
influences infiltration and percolation processes that eventually affect the groundwater
recharge and then the GWpot of a given area.

4. Methods

In this study, the application of remote sensing (RS) and geographic information
system (GIS)-based spatial data and geoelectric data assisted hydrogeological assessment
to distinguish the sediments and rock units of groundwater significance. The flowchart
developed in this study is shown in Figure 3, which contains four steps:

1. Using RS and GIS toolkits, the database is ready to be input data for the MIF model,
after the GCF’ analysis and optimization described in Section 3.

2. Once the GCFs are to be optimized, the weights and ranks of each GCFs are assigned
for the multi-criteria decision-making (MCDM) MIF model, and the weighted/ranked
GCFs are integrated through the weighted overlay analysis (WOA), based on the
principle of superposition in a GIS environment to identify regional GWpot zones of
the Karak watershed.

3. The hydrogeological characteristics of the aquifers are evaluated by the interpretation
of electrical resistivity tomography (ERT) and vertical electrical sounding (VES) data.
Furthermore, the aquifer potential is further quantified through quantitative analysis
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of the resistivity mapping, overburden thickness mapping, and reflection coefficient
mapping.

4. To evaluate the accuracy of GWpot mapping, the performance of the MIF model is
assessed based on groundwater level (GWL) data through a confusion matrix, Kappa
(K) analysis, and a Receiver Operating Characteristics (ROC) curve. In addition, the
quantitative aquifer potential interpreted by VES data indirectly verifies the MIF
model’s predictive performance. Meanwhile, the hydrologic stratigraphic prediction
derived from ERT and VES numerical models is correlated with known boreholes
lithological information.

Figure 3. Framework to delineate groundwater potential and to identify hydrogeological characteristics.

4.1. Multi-Influence Factors (MIF) Model
4.1.1. Assigning of Weights and Ranks

The GWpot index is influenced by several hydrological, geological, topographical,
environmental, and climatic variables [2]. By means of GCFs analysis and optimization,
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geology (GEO), lineament density (LD), drainage density (DD), slope (SL), soil type (ST),
rainfall (RF), elevation (EL), land use/land cover (LULC), and groundwater level fluctua-
tions (GLF) were identified as the input data of the MIF model. The MIF model involves
drawing a graph with correlations between conditioning factors and assigning weights
based on the strength of the interrelationships (Figure 4) [2]. In Figure 4, a continuous
arrow shows a major influence, and a dashed arrow indicates a minor influence on the
other GCFs. The weights and ranks were assigned to each GCFs and different classes based
on their relative contribution to GWpot using the heuristic approaches/knowledge-driven
method [11,58,59]. Weights of 1.0 and 0.5 were allocated to each major and minor effective
variable, respectively. The combined weights of both major (CFh) and minor (CFl) were
considered for calculating the comparative ranks (Table 3). Since the estimated weight of
each GCF is equally distributed and applied to each GCF’ category, the final GWpot map is
a weighted average. The estimated weight for each conditioning factor was obtained as a
percentage using Equation (4).

Score =

[
(CFh + CFl)

∑ (CFh + CFl)
× 100

]
(4)

where, CFh is the major weight of the condition factor, and CFl is the minor weight.

Figure 4. Interrelationship between the GCFs concerning the GWpot index.

Table 3. Effect of GCFs, relative weight and score for each GCFs.

Groundwater Conditioning
Factors (GCFs)

Major Effect
(GCFh)

Minor Effect
(GCFl)

Relative Weights
(GCFe + GCFm)

Proposed Score
of GCFs

Rainfall 1 0.5 1.5 06
LU&LC 1 0.5 + 0.5 2 08
Geology 1 + 1 + 1 0.5 + 0.5 5 24

Lineament density 1 + 1 0.5 2.5 10
Drainage density 1 + 1 0.5 2.5 10

Slope 1 0.5 + 0.5 + 0.5 2.5 10
Soil type 1 0.5 + 0.5 2 08
Elevation 1 + 1 0 2 08

GWL fluctuation 1 + 1 0.5 + 0.5 3 16

Total Σ20.5 100
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4.1.2. Weighted Overlay Analysis (WOA)

The GWpot index quality is influenced by the quality and quantity of the input data
and the predictive models used [2]. Weighted overlay analysis [60,61] in ArcGIS 10.4
(Environmental System Research Institute, Redlands, California, United States) was used
to outline the spatial distribution of the groundwater potential index based on nine GCFs’
superimposition and their corresponding percentage effects on the groundwater poten-
tial. This work was done by multiplying each factor’s category cell value by the factor’s
weight and summing the resulting cell values to generate a GWpot map, as summarized in
Equation (5). A GWpot index is a calculated dimensionless number considering the weight
assigned for each GCF and its categories [3]. After the WOA analysis had been completed,
the natural break method was used to categorized GWpot into four levels of potentiality
(i.e., low, medium, high, and very high).

GWpotz = ∑n
l=0 Wi × Ri

= DDcDDw + LDcLDw + RFcRFw + SLcSLw + ELcELw + GEOcGEOw+

LULCcLULCw + STcSTw + GLFcGLFw

(5)

where GWpotz is the groundwater potential index, Wi is the weight of each condition factor,
Ri is the rank of each GCF’s category, DD is the drainage density, LD is the lineament
density, RF is the rainfall, SL is the slope variation, EL is the elevation, GEO is the lithology,
LULC is land-use/land-cover, ST is the slope type, and GLF is the groundwater level
fluctuation. The subscripts c and w indicate a category of a GCF’s thematic layer and its
corresponding percent influence on GWpot, respectively. This overlay analysis was done
by multiplying the rank of each GCF’s category (each individual category has a rank) with
the weight of each condition factor (each GCF has a unique weight) to obtain the GWpot
index at the corresponding position of GCFs.

4.2. Accuracy Assessment of the MIF Model

The pre-monsoon and post-monsoon groundwater table (GWT) data from 32 observed
boreholes with global positioning system (GPS) positions were collected for validation
purposes. The area under the curve (AUC) based receiver operating characteristic (ROC)
curve, the confusion matrix, and Kappa (K) analysis were used to test the performance of
the MIF model. The ROC is a mathematical technique developed to explain the efficiency
of probabilistic deterministic detection and prediction systems [62,63]. In this study, ROC
was used to assess the spatial consistency between real events and to predict the model
probability. In the validation phase, pre-monsoon and post-monsoon GWT data of 32
observed boreholes/tube wells were compared with the GWpot result obtained by the
MIF model. The ROC curve provides a quantitative evaluation that can determine the
uncertainty of modeling and evaluate the spatial model effectiveness. The confusion matrix
and Kappa (K) analysis [26] were also used for accuracy evaluation by correlating the
GWpot map with the observed GWT data. The overall accuracy was calculated using the
following formula [64].

OA =
∑ COWL

∑ OWL
(6)

where, OA is the overall accuracy, COWL represent the number of correct observation bore-
holes/well’s locations and OWL is the number of observation boreholes/well’s locations.

The Kappa (K) analysis is a multivariate approach for MIF accuracy evaluation. It was
calculated by the following formula [65].

K =

[
∑ CV % − CAOV%

∑ TC − CAOV%

]
(7)

where, CV % is the percentage of the correct values, CAOV% is the percentage of the correct
agreement to observed values, TC is the total number of class.
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4.3. Interpretation of Geoelectrical Data

The geophysical techniques have typically been used to assess hydrogeological struc-
tures, hydro-stratigraphic characteristics and the spatial distribution of aquifers [34]. Fun-
damentally, an electrical current is injected into the ground by two current electrodes
and measures the potential difference between the other two pairs of electrodes. In this
study, two-dimensional electrical resistivity tomography (ERT) based on dipole–dipole
configuration and vertical electrical sounding (VES) based on Schlumberger configura-
tion measurements were performed using essential field equipment (Terameter SAS 100
and SAS 1000 Lund imaging systems and their accessories, ABEM, Sundbyberg, Sweden)
(Figure 5).

 

Figure 5. Schematic diagram of (a) the Schlumberger array configuration for vertical electrical
sounding (VES), and (b) dipole–dipole array configuration for electrical resistivity tomography (ERT)
techniques.

4.3.1. Electrical Resistivity Tomography (ERT)

The ERT technique was effectively applied in the surveyed area to provide information
about subsurface hydrogeological characteristics to fully understand the GWpot and hydro-
stratigraphy through vertical and horizontal two-dimensional sections capable of reaching
lengths and depths up to 176 m and 30.2 m, respectively. A multi-electrode 2D device
(Terameter SAS 100) along a dipole–dipole configuration including electrodes connected to
a transmitter/receiver system via a multi-core cable was used to acquire data (Figure 5b).
The dipole–dipole configuration exhibits an excellent vertical and horizontal resolution
of subsurface geological features, which has great horizontal coverage and penetration
depth [66]. The apparent resistivity was calculated for every electrode quadrupole by
Equation (8) [34].

ρ = K
V
I

(8)

where V is the voltage, I is the current, and K is a geometric factor.
The dipole–dipole configuration data were concatenated to obtain combined apparent

resistivity pseudo-sections. The degree of consistency between resistivity and actual sub-
surface resistivity distribution depends on the combination of acquisition parameters and
inversion strategy. The smoothness constrained least-squares technique in the RES2DINV
(Landviser, League, Texas, United States) program was used to process the apparent resis-
tivity data [67,68]. This process automatically creates 2D models in a rectangular block by
selecting the optimal data inversion parameters (e.g., the damping coefficient, and the ver-
tical and horizontal flatness filter ratio, convergence limit, number of iterations). We used
the finite difference method to calculate the module’s apparent resistivity and compared
it to the measured data. Iteratively, we adjusted the resistivity of the model block until
the calculated apparent resistivity value of the model matched the actual measurement.
Finally, the program produces a pseudo section (a qualitative method for measuring or
calculating resistivity changes) and an inverse model section (slice depth and resistivity
tomography image) [68]. As a follow-up to the observation results of ERT lines L1, L2,
L3, L4, L5, and L6 were acquired in the E-W, S-W, N-E, E-W, E-W, and E-W directions,
respectively. In this study, the ERT technique estimated the spatial subsurface resistivity
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caused by the lateral and longitudinal inhomogeneities of petrophysical properties. The
distribution of petrophysical properties indicated by the measured resistivity fluctuations
were generated to guide GWpot and hydro-stratigraphy in the study area.

4.3.2. Vertical Electrical Sounding (VES)

The VES method was used in the surveyed area to evaluate the hydro-stratigraphic
structure of the sedimental layer (i.e., the structure of the subsurface sediments), aquifer
characteristics (e.g., thickness, resistivity (ρ), overburden thickness, and reflection coeffi-
cient), and GWpot. The VES technique is one of the most commonly used conventional
resistivity methods to determine the vertical variation of subsurface resistivity parame-
ters [34]. In the surveyed area, 26 VES measurement stations were operated at different
positions using the Schlumberger electrode configuration with half-current electrode spac-
ing (AB / 2) ranging from 1.5 to 1000 m in each successive electrode probe to determine the
depth to the sediments and apparent resistivity (ρa). Meanwhile, using the Schlumberger
array (Figure 5a), the adequate penetration depth is typically 20–40% of the external elec-
trode spacing (AB), depending on the subsurface resistivity structure [69]. In this study, we
first plotted all resistivity data collected to confirm qualitive and qualitative characteristics.
The statistical apparent resistivity (ρa) values of the Schlumberger array for each sounding
were calculated using Equation (9).

ρa = π

⎧⎪⎨
⎪⎩

(
AB
2

)2 −
(

MN
2

)2

MN

⎫⎪⎬
⎪⎭Ra (9)

where, AB represent the distance between two current electrodes, MN is the distance
between the potential electrode, and Ra is the apparent electrical resistance.

The preliminary interpretation was performed using Partial Curve Matching (PCM)
and auxiliary tools to summarize VES values, i.e., the relationship between the apparent re-
sistivity and corresponding half current electrode spacing (AB/2) on the double logarithmic
graph. The results obtained from the exercises were used as an input model for computer-
assisted iterations using the WinResist™ (Geotomo Software, Gelugor, Penang, Malaysia)
program. The preliminary interpretation of VES data was quantitative, determining the
thickness (h) and resistivity (ρ) of different layers, and qualitative inferring lithology was
based on the resistivity and reflection coefficient (RC) values of each sounding station. For
better depiction, six VES measurements were performed in the two boreholes’ immediate
vicinity (BH06/BH09) and correlated with known lithological information. The Schlum-
berger configuration was characterized by tracking and tracing each VES subsurface layer,
the vertical changes, and the geoelectric profile with a known borehole/well lithology to
horizontally correlate the measured VES to perceive a unified layer model applicable to
all field curves. Moreover, geological information of known borehole/wells can improve
interpretations that lead to lithological results from VES data, while software analysis can
only provide resistivity distinction by depth. The statistical apparent resistivity values of
each VES measurements were outlined to create an iso-resistivity map. The RC values for
the surveyed area were calculated using the following expression [70].

RC =

{
(ρn − ρ(n − 1)
(ρn + ρ(n − 1)

}
(10)

where RC represents the reflection coefficient, ρn is the resistivity of the n-th layer, and
ρ(n − 1) is the resistivity overlying the n-th layer.
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4.4. Geophysical Well Logging

Hydrogeological characterization of aquifers using geophysical well/borehole logs
has been emphasized in many studies [5,71]. Effective groundwater exploration and
well/borehole lithology evaluation require a complete understanding of aquifer hydro-
geological characteristics and well/borehole design. In the study area, the drilling sites
were selected based on the experience of the MIF model to determine prerequisites for the
successful construction of the tube well and evaluate the availability of groundwater supply
that can meet the demand for domestic and irrigation water. The GeoLog International
(GLI) groundwater and engineering services with reference to Ms. Manahil Engineering
& Cons conducted St. Rotary (SR) drilling and geophysical logging in Marwatan Banda,
Karak. The borehole’s logging survey was conducted using multi-parameter methods, i.e.,
normal resistivity logs (NRLs) (short and long configuration) and spontaneous potential
logs (SPLs). The Geo logger 3030/Mark-2 3433 (GLI, Peshawar, Pakistan) was used for
petrophysical property measurements. Through these significant hydrogeological proper-
ties, e.g., the formations’ lithology, depth, thickness, groundwater water table level, and
groundwater quality in total dissolved solids (TDS) were evaluated.

5. Results

5.1. Evaluation of GCFs

The MIF model is an MCDM technique widely used for environmental management
and has proven to effectively explain the GWpot influential factors. It can effectively
determine GCF weights. Table 4 illustrates the weights and qualitative ranks assigned to
each influencing factor described below.

Drainage density (Dd) is a measure of the total length of all streams per unit area,
regardless of the stream networks [51]. Subsequently, the drainage frequency was classified
into five categories, i.e., very low (1.08–1.61 km/km2), low (1.61–1.86 km/km2), mod-
erate (1.86–2.11 km/km2), high (2.11–2.38 km/km2), and very high (2.38–3.08 km/km2)
(Figure 6a), according to a natural break classification scheme. The groundwater favor-
ability is indirectly related to drainage density, as are surface runoff and permeability.
Therefore, the highest score was assigned to the 1.08–1.61 km/km2 category, indicating
high infiltration and low runoff, and the lowest score was assigned to the 2.38–3.08 km/km2

category (Table 4).
Lineament density (Ld) of the Karak watershed indirectly indicates the GWpot, as the

presence of lineaments usually means a porous zone. The lineaments are spatial distributed
in the study area aligned in the directions of E-SW, NNE-SSW, NW-SE, and E-W, and
their density was classified into five frequency categories (Figure 6b). The higher the
Ld, the higher the probability of GWpot. Therefore, the highest rank was assigned to the
1.46–1.78 km/km2 category and the lowest was assigned to the 0.17–0.45 km/km2 category.

Rainfall (RF) interpolated data were reclassified into five categories, i.e., very low
(13–281 mm), low (282–577 mm), moderate (578–604 mm), high (605–629 mm), and very
high (630–663 mm) (Figure 6c). In addition to the quantity of RF, other precipitation
characteristics, such as duration and intensity, are also important. For example, a long
period of 20 mm RF has a more significant impact on groundwater recharge than a short
period of 50 mm RF.

The slope (SL) map was reclassified into five categories, i.e., flat (0–5.78◦), gentle
(5.78◦–13.5◦), moderate (13.5◦–23.1◦), steep (23.1◦–35.0◦), and very steep (35.0◦–81.9◦)
using the quantile classification scheme presented in [18]. The flat and gentle areas are
more suitable for GWpot than steep slopes, as a gentle and flat slope allows for less runoff,
and a steep slope is more conducive to runoff [54]. The highest rank was assigned to flat
area (0–5◦.780◦), and the lowest was assigned to a very steep area (35.0◦–81.9◦), which has
a smaller impact on recharge in the study area (Figure 6d).
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Table 4. Classification of weight and ranks of GCFs.

Groundwater Conditioning
Factor (GCF)

Categories within the GCF Qualitative
Rank

Ranks Weight of
GCF

Rainfall

629–664 Very high 06

06
604–628 High 04
577–603 Moderate 03
281–576 Low 02
13–280 Very low 01

Land use/
land cover

Agriculture, Rivers/stream Very high 08

08

Barren land High 06
Dam/pond Moderate 05
Shrub land Low 04

Built-up Low–Very low 03
Forest Very low 02

Range land Very low 01

Geology

QA Very high 24

24
K Fm, N Fm High 18

DP Fm, K Fm Moderate 12
J/T rocks Low 08
C Fm, DS Very low 04

Lineament density
(km/km2)

1.47–1.78 Very high 10

10
1.15–1.46 High 08
0.82–1.14 Moderate 06
0.50–0.81 Low 04
0.07–0.49 Very low 02

Drainage density
(km/km2)

1.08–1.61 Very high 10

10
1.62–1.86 High 08
1.87–2.11 Moderate 06
2.12–2.38 Low 04
2.39–3.08 Very high 02

Slope
(degree)

0.0–5.78 Flat 10

10
5.79–13.5 Gentle 08
13.6–23.4 Moderate 06
23.5–35.3 Steep 04
35.4–81.7 Very steep 02

Soil type
Loamy High 06

08Loamy clay Moderate 04
Mainly loamy Low 02

Elevation
(meter)

1419 High 06
08706 Moderate 04

303 Low 02

Groundwater level
fluctuation (meter)

1.57–5.29 High 14

16
5.3–1.08 Moderate 10

1.09–14.6 Low 06
14.7–19.3 Very low 02

The elevation (EL) map in Figure 6e shows three elevation categories, i.e., high
(707–1419 m), moderate (304–706 m), and low (0–303 m).

Geology (GEO) characteristics govern the porosity and permeability of the hydrogeo-
logical layer, which in turn influences the formation and distribution of GWpot through
physio-mechanical properties that control the water transmitting ability of the hydrogeo-
logical layer materials and the rate of groundwater flows. Therefore, the GEO factor was
also considered concerning groundwater characteristics. The study area consisted of eight
lithological units of formation types and geological ages. The confirmed lithology outcrops
are the Quaternary alluvium (Q), Dhok Pathan formation (DP Fm), Chinji formation (C Fm),
Jurassic-Triassic rocks (J/T), Kohat formation (K Fm), Nagri formation (N Fm), Kamlial
formation (K Fm), and Drazinda shale (DS) (Figure 6f).

Land use/land cover (LULC) greatly influences groundwater occurrence and exploita-
tion. The major portion of the study area is agriculture (62%; 1345 km2), followed by forest
area (15%; 576 km2), barren land (12%; 292km2), rangeland (4%; 58.3 km2), shrubland (3%;
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40.7 km2), built-up (2%; 30 km2), river/stream (1%; 22 km2), and dam/pond (1%; 8 km2)
(Figure 6g).

Soil type (ST) and its permeability decides the water retention capacity of an area. The
soil types of the study area include loamy soil, loamy clay, and mainly loamy (Figure 6h).
The dominant soil type in the study area is loamy soil. The coverage of the other two soil
types (i.e., loam and mainly loam) are relatively low. According to composition and soil
water holding capacity, the loam is regarded as the highest grade, and mainly loam is
regarded as the lowest grade.

Groundwater level fluctuation (GLF) is of significance in the successful management
of GWpot. Pre-monsoon and post-monsoon groundwater levels (GWLs) indicate the degree
of saturation and the extent of recharge aquifers. In this study, hydrogeological data of
32 boreholes/wells over 10 years 2009–2019 (from Pakistan Water and Power Develop-
ment Authority (WAPDA)) was collected through onsite investigation. During the period
2009–2019, the pre-monsoon and post-monsoon water level varies from 5.9 to 15.4 mbgl
and from 7.3 to 32.6 mbgl, respectively (Figure 6i). The groundwater fluctuation levels were
calculated for the period of 2009–2019, with a minimum of 1.57 m and a maximum of 19.3 m.
In the study area, the aquifer is partially saturated due to the inadequate precipitation
and other influencing factors. In the northern region, slight fluctuations of groundwater
level (about 6 m) were observed, which may have been due to groundwater recharge by
surface irrigation. However, groundwater levels fluctuated significantly in the southern
and central regions, which may have been caused by topographical influence and the
excessive exploitation of groundwater.

5.2. Assessment of GWpot

Using the weighted overlay analysis in the GIS environment, the GWpot zones were
evaluated by integrating several conditioning factors (i.e., rainfall, slope, geology, soil
type, drainage density, lineament density, land use/cover, elevation and groundwater
fluctuation). Based on natural breaks in the histogram of the GWpot index, the GWpot
map was categorized into four levels of potentiality, i.e., low, medium, high, and very
high (Figure 7a), with the distribution ranges of 9.7% (72.3 km2), 52.4% (1307.7 km2),
31.3% (913.4 km2), and 6.6% (44.8 km2) of the total area, respectively (Figure 7b,c). The
spatial distribution of the various GWpot zones typically shows a mirror reflection of key
factors. High and very high GWpot zones confirm their excellent capacities as sedimentary
groundwater aquifers. The GWpot map demonstrates that the excellent groundwater is
concentrated due to the distribution of Quaternary alluvial and agricultural land with high
infiltration ability. Moreover, high drainage densities and low slope gradients can increase
groundwater infiltration capacity, which may be related to the evaluated high GWpot. The
northwestern, southeastern, and the central part limited regions typically have a low to
medium GWpot, accounting for approximately 12.7% of the study area.
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Figure 6. GCFs considered in this study: (a) drainage density; (b) lineament density; (c) rainfall; (d) slope; (e) soil type; (f)
land use land cover; (g) geology/lithology; (h) elevation; (i) groundwater level fluctuations.
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(a) 

Figure 7. (a) GWpot zones and groundwater level depths of boreholes/wells; (b) groundwater potentiality in square
kilometers and (c) in percentage of the Karak watershed.

5.3. MIF Model’s Performance

The ROC curve, the confusion matrix, and Kappa (K) analysis were used to evaluate
the accuracy of the assessment result and the performance of MIF the model.

ROC graphs are useful tools for visualizing a classifier’s performance and for deter-
mining the area under the curve (AUC) value to evaluate an algorithm [62]. The ROC
curves were implemented in the present study as a goodness of fit, and the success rate
can be distinctly visualized. In this study, the predicted GWpot map was examined and
compared with 32 pre-monsoon and post-monsoon groundwater level (GWL) fluctuations
to evaluate the spatial coincidence between the favorability values (from GWpot) and
the actual GWL fluctuation events (Figure 8a). The GWL fluctuations range from 1.57
to 19.3 m (Figure 8b). Since a larger area under the ROC curve indicates that the spatial
GWpot mapping is more effective, an AUC value of 1 shows a perfect prediction of the
model and indicates that the highest ranked probabilities coincide with the groundwater
fluctuation [63]. The result of the ROC chart analysis shows that the AUC value of the
presented MIF performance is 68% (Figure 8c) which is consistent with GWL fluctuation.
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Figure 8. (a) The pre-monsoon and post-monsoon groundwater level (mbgl) fluctuations; (b) average
groundwater level fluctuation (m) of the Karak watershed; (c) receiver operating characteristics
(ROC) curve of the MIF model.

The confusion matrix and Kappa (K) analysis were performed using the 32 actual
groundwater depths from boreholes/wells. The groundwater depth in the study area is
between 6.7 and 190 m. These 32 depths were divided into four categories, i.e., 6.7–36 m,
36–80.76 m, 80.76–130 m, and 130–190 m. The groundwater depth data were used to
calculate classification accuracy by the confusion matrix and Kappa (K) analysis. Overlay
analysis shows that most of the boreholes/wells with higher groundwater levels are located
in areas with demarcated higher groundwater potential. The performance evaluation of
the MIF model shows that the overall accuracy is 68%, and the Kappa coefficient is 0.65 or
65% (Table 5), which indicates that the estimated potential of groundwater is consistent
with the investigated groundwater depths in the study area.

Table 5. Error matrix of the GWpot zone-based confusion matrix and Kappa (K) analysis.

S. No
GWpot
zones

Very
High

High Moderate Low Total CS 1

1 very
high 0 0 0 01 1 1

2 high 12 04 06 02 24 16
3 moderate 04 0 01 01 6 4
4 low 1 0 0 0 1 1

Total 17 04 07 04 32 22
1 CS refer to the correct sample.

5.4. ERT Interpretation

In this study, the ERT approach with an optimal compromise between the electrode
distance and profile length produced a deep characterization of the hydro-stratigraphical
layers and groundwater potentiality. The smoothness constrained least-squares outputs by
the RES2DINV software show an apparent lateral homogeneity with a gradual increase in
resistivity, with depth caused by lateral and longitudinal inhomogeneities of rock physical
properties (Figure 9a). Each inversed resistivity section obtained a distribution of petro-
physical properties of resistivity variability and possible resistivity anomalies (which may
be water-bearing zones). The final depth of the inversed sections ranges from 5 to 30.2 m.
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Figure 9. (a) Inverse model resistivity section of ERT survey lines (i.e., L1, L2, L3, L4, L5, and L6) containing existing
borehole lithological information on L3; (b) correlation of acquired ERT hydrologic stratigraphy with (c) The existing
borehole lithological information; and (d) ERT measurements line alignment in the study area, in which the red dot
shows the location of the existing borehole, and the yellow dots indicate the proposed locations of wells for groundwater
exploitation.

Generally, the root means square (RMS) error at the end of eight iterations of almost
every ERT section is less than 8%. The interpretation of ERT sections is based on a standard
resistivity range of values. The recommended GWpot zones were based on an understand-
ing of the subsurface sediment/ rock lithology of the study area. Meanwhile, the subsurface
lithology related to the resistivity range was derived from the existing standard resistivity
chart, which considers other local factors that may cause the resistivity deviation.

In the study area, the L1, L2, L3, L4, L5, and L6 ERT inversed resistivity values area
12.8–189 Ωm, 12.8–189 Ωm, 3.62–792 Ωm, 12.8–189 Ωm, 3.62–792 Ωm, and 3.62–792 Ωm,
respectively (Figure 9a). The inverse resistivity models using dipole–dipole configurations
on L2, L4, and L6 ultimately revealed the vertical and lateral distribution of subsurface
resistivity. According to the predicated GWpot on diffusion and array configuration, the
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groundwater prospect resistivity values are 12.8–48.3 Ωm, 14–76.4 Ωm, and 3.62–16.3 Ωm
on L2, L4, and L6, respectively. Variation of resistivity characteristics within the primary
lithological unit ultimately indicates the GWpot prospect adjacent to clayey sand and
silicate aquifers (sandstone) (Figure 9a). This result is consistent with the Karak watershed
regional geology, which is mainly composed of interlayers of fine sand, sandstone, clay,
and gravel. Since the GWpot is structurally controlled, it also needs to locate potential
fracture zones, e.g., fractured sandstone, which are considered good aquifer sources. The
ERT techniques should be applied with a proper understanding of the hydrogeological
background. Therefore, five lithological sequences (i.e., topsoil with coarse gravel and sand,
silty sand mixed lithology, clayey sand/fine sand, fine sand/gravel, and clayey basement)
of the drilled borehole on L3 at final depths of 45 m were normalized with the ERT model
by mean of quantitative quota (Figure 9b). The ERT-predicted hydro-stratigraphy and
borehole lithological log signature (Figure 9c) performance analysis shows suitable matches.
The marked yellow points on the L3, L4, and L6 sections are considered future prospects
for groundwater exploitation (Figure 9d). These high groundwater potential zones will
play a vital role in the future expansion of drinking water and irrigation development in
the surveyed area.

5.5. VES Interpretation
5.5.1. Hydrogeological Characteristics

The VES technique has been proven efficient in evaluating hydrogeology, aquifer
properties, and aquifer potential. In this study, aquifer characteristics (such as thickness,
lithology, and resistivity, reflection coefficient, and isopach) were determined, which is an
essential factor in hydro-stratigraphic inheritance and GWpot assessment. The apparent
resistivity data obtained from the VES positions were plotted against half of the current
electrode spacing (AB/2), and a curve matching technique was used to interpret resistivity
sounding curves (Figure 10). This technique involves matching small segments of the
field curve against the trendline curve to determine the thickness of a particular layer
in half-space and the apparent resistivity. As far as the evaluation of the statistical ap-
parent resistivity is concerned, the qualitative interpretation results indicating that the
curves, stratification properties, and RMS errors are in complete agreement (Figure 11)
(Appendix A). Depending on the shape of the VES curve, the resistivity distributions
of various hydro-stratigraphy can be classified into H, K, A, and Q types, which can be
mutually combined to generate HA, HK, KH, and QH types [72]. In this study, the type of
curves observed include 3-layer H-type (26%), 4-layer HA-type (9%) and KH (52%), and
5-layer HKH-type (13%). Qualitative hydrological inferences can usually be based on the
type of curve.

The geoelectrical interpretation based on curve matching reveals hydrologic resistance
and depth variation (Figure 10). According to the corresponding resistivity values (ρ1, ρ2,
ρ3, ρ4, and ρ5) and thicknesses (h1, h2, h3, h4, and h5), the geoelectric units indicate four to
six sequences of lithologies, i.e., topsoil (coarse gravel and sand), alluvial layer, silty sand,
clayey sand, fine sand and gravels, and clayey sand with saline water. Table 6 summarizes
the VES interpretation, including the number of hydrologic layers and their corresponding
resistivity values and the inferred lithology information. Appendix A presents the detailed
explanation of geoelectrical stratification for all the VES surveys carried out in the Karak
watershed and the resistivity variation.
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Figure 10. VES data interpretation result-based partial curve matching (PCM) along 26 VES stations: (a) hydrologic layers
depth variation; (b) hydrologic layers resistivity variation.

Figure 11. Root mean square (RMS) error of 26 VES stations (left) and the reflection coefficient variation of VES stations
(right) in the study area.

Table 6. Average inferred hydro-stratigraphy corresponding to resistivity in the study area. The
detailed VES interpretation results are shown in Appendix A.

Inferred Hydro-Stratigraphic
Lithology

Inferred Resistivity (ρ)
Variation

Reflection Coefficient
Variation

Thickness
Variation (m)

Topsoil 954–1109 0.6723–0.7889 3.3–4.5
Coarse gravel and sand 748–923.1 0.7313–0.7626 1.3–4.7

Silty sand mixed lithology 323–673 0.7841–0.8663 4.6–8.2
Clayey sand 685–1098.3 0.8911–0.9523 6.8–28.4

Fine sand and gravels 34–98.8 0.9643–0.9752 12.6–22.8
Clayey sand with saline water 26–84.2 0.5885–0.7434 10.8–32.5

5.5.2. VES Correlation with Boreholes

For better delineation of the hydro-stratigraphy, six VES results adjacent to two
boreholes (BH06/BH09) were correlated with known lithological information. Performance
analysis shows that VES1 yields five lithological units (coarse gravel/sand, silty sand
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mixed lithology, clayey sand, and fine sand/gravel) (Figure 12). The zone of interest with
water saturation lies at a depth of 29.8 m. VES3 penetrates up to 48.1 m where water is
predominantly saline, with freshwater saturation having a lithology of coarse gravel/sand,
silty sand mixed lithology, silty sand/gravels, fine sand/gravel, and clayey sand/saline
water. VES2 yields three lithological units, where the zone of interest lies at a shallow
depth. Furthermore, VES9, VES17, and VES8 correlated with borehole BH09 show suitable
matches, where salinity and freshwater saturation are encountered at a shallow depth (25
to 35 m) due to capillary action. However, the VES8 upper portion is mainly composed of
unconsolidated alluvium, and the freshwater zone is at a shallow depth due to elevation.
The main lithological characteristics of the topsoil at each VES station are predominantly
alluvium. The VES and borehole log signature performance analysis show suitable matches
between them (Figure 12).

Figure 12. Correlation of VES data interpretation results with borehole lithological information.

5.5.3. GWpot Based on VES

Aiming at monitoring aquifer potential, a preliminary conceptualization of geoelectri-
cal properties governing the reflection coefficient, the aquifer’s overburden thickness, and
resistivity is needed during VES measurements. These basic and essential interpretative
criteria are described below.

The reflection coefficient (RC) is an essential geoelectric factor, as it helps to identify the
permeable hydrologic layers carrying the GWpot. The RC values of the VES positions in the
surveyed area were calculated using Loke’s method [72]. Figure 13a shows the changes in
RC values detected by each VES station. Differences in subsurface resistivity and lithology
cause the RC fluctuations. The calculated RC values were contoured in Surfer 15 software,
and an RC map shows a value range of 0.50–0.95 (Figure 14a). Olayinka [73] observed that
the subsurface topography usually shows a good aquifer when the overburden is relatively
thick and/or the reflection coefficient is low (<0.8). RC mapping has been found to be
useful in investigating the hydrogeological aquifer because it reveals whether a permeable
aquifer is filled with water. Therefore, an anisotropy coefficient for this parameter was
considered in this study.
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(a) RC Variation  (b) Overburden Thickness Variation 

Figure 13. (a) Reflection coefficient (RC); (b) overburden thickness along 26 VES stations in the surveyed area.

 

Figure 14. (a) Reflection coefficient map; (b) overburden thickness map; (c) apparent resistivity map based on the interpreta-
tion of VES data.

An overburden thickness/isopach map was plotted and contoured according to the
interpreted depths to the sedimentary rock (Figure 14b). The isopach map illustrates the
thickness variation in a hydro-stratigraphic layer, a tabular unit, or a stratum [29]. Isopach
mapping is essential in the hydrogeological investigation because it shows the number
of hydrogeologic layers above the aquifer, and where groundwater can be observed in
areas considering the overburden thickness. The overburden thickness variation of the
aquifer along VES can be seen in Figure 13b. The overburden thickness in the surveyed
area varies between 6.3 and 65.6 m. The isopach map shows that the overburden thick-
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ness in the northern, eastern, and southern parts of the surveyed area ranges from 20
to 50 m (Figure 14b). In contrast, the relatively thin overburden thickness of 5–15 m is
virtually around the central and western parts of the surveyed area. The overburden
thickness is shallow in most probing stations, indicating that the basement is close to the
surface. Therefore, groundwater in these areas is highly dependent on the occurrence of
fractures [29].

The apparent resistivity values of all VES stations were contoured to produce an
iso-resistivity map (Figure 14c), indicating that the apparent resistivity increases radially
outward from the center of the region and the resistivity values are 10–1150 Ωm. The
resistivity of the bedrock represents the resistivity of the deepest hydrological layer in the
surveyed area. It has been found that the resistivity of the bedrock is of significance in
many aspects of hydrogeological and hydro-geophysical measurements because it plays a
vital role in assessing the potential of groundwater. After all, the resistivity of the bedrock
has the potential to reveal fractured aquifers.

The lower RC and relatively high overburden thickness can increase a well’s ground-
water productivity [74]. In this study, the considered GWpot geoelectrical factors includes
reflection coefficient, overburden thickness, and iso-resistivity obtained from the interpre-
tation of VES data. This quantification of aquifer potential indirectly verified the accuracy
of the MIF model and its predictive performance. The VES stations in the surveyed area
were divided into high yield, medium yield, and low yield groundwater by employing
Olayinka’s basic criteria [73].

(1) High GWpot: the overburden thickness is greater than 13 m with an RC less than 0.8.
(2) Medium GWpot: the overburden thickness is 13-30 m with an RC greater than or

equal to 0.8.
(3) Low GWpot: the overburden thickness is less than 13 m with an RC greater than or

equal to 0.8.

Considering these criteria, the RC and overburden thickness were used to produce
the parameters for categorizing VES stations by the GWpot, i.e., VES1, VES5, VES6,
VES8, VES9, VES14, VES16, VES17, VES21, VES24, and VES26 have high yield GWpot
(Figure 15a), VES3, VES7, VES11, VES13, VES19, VES20, and VES25 have medium yield
GWpot (Figure 15b), and VES2, VES4, VES10, VES12, VES15, VES18, and VES22 have low
yield GWpot (Figure 15c). Based on these groundwater potentiality variations among the
VES stations, a final GWpot contour map of the surveyed area was generated, and it demon-
strates that the northern, northeastern and eastern parts have excellent GWpot for future
exploitation and development, while the low and medium GWpot regions are located in the
western and central parts of the surveyed area (Figure 16). The VES-based groundwater
potential map was compared with the groundwater potential map obtained by the RS and
GIS-based MIF method. This indicated that the MIF method is accurate and consistent in
predicting GWpot.

(a) High GWpot VES localities (b) Medium GWpot VES localities (c) Low GWpot VES localities 

Figure 15. Groundwater potential VES distribution corresponding overburden thickness and reflection coefficient (RC): (a)
high yield GWpot VES stations, (b) medium yield GWpot VES stations, and (c) low yield GWpot VES stations.
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Figure 16. Groundwater potential map of the vertical electrical sounding (VES) surveyed area.

5.6. Geophysical Well Logs Interpretation

Information obtained from technical reports of SPLs and NRLs (short and long) and
drilling protocols show that the slightly denser thick and deep sandstone is an effective
aquifer type for groundwater exploitation in the study area (Figure 17). The geophysical
well logs approach has great significance in determining the exact location (depth) of any
permeable aquifers and impermeable aquitards (Table 7). In this study, NRLs (short and
long) were appropriately calibrated and quantitatively interpreted. Moreover, log mea-
surements were converted to the apparent resistivity and adjusted for mud resistivity, bed
thickness, borehole diameter, mud cake, and invasion to arrive at true resistivity (Figure 17).
SPL interpretation can be complex, particularly in freshwater aquifers. This complexity
commences to the perversion of groundwater and misinterpretations of spontaneous po-
tential (SP) logging. SPLs record the potential or voltage caused by contact between a
shale/clay layer and an aquifer. The natural flow of current and the SP curve were offered
under the salinity conditions. The NRLs (short/long), SPLs, and drilling protocol at a
depth of 152.4 m showed that the major lithology’s units are clay, gravel-boulders, and
sandstone (Table 8). The quality of groundwater measured by TDS is fresh. The static water
level depth is about 88.3 m (Figure 17). The proposed slot opening, and the estimated dis-
charge volume, are 1/40–1/50 and 11.35–13.24 cubic meters per hour (m3/h), respectively
(Table 8).
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Figure 17. Spontaneous potential (SP), short normal resistivity (SNR), and long normal resistivity
(LNR) log curves obtained in Well -1 of the experimental site of the Marwatan Banda, Karak.

Table 7. The following screen schedule is proposed for conversion.

No Depth (m) Screen (m) Slot Size (m)

01 106.6–113.9 7.3 1/12.1–1/15.2
02 117.6–128.6 10.9 1/12.1–1/15.2
03 139.5–150.5 10.9 1/12.1–1/15.2

Table 8. Derived borehole lithology-based Normal resistivity logs (NRLs) (short/long) and sponta-
neous potential logs (SPLs).

No Depth (m) Classified Lithology Thickness (m)

01 0–134 Gravel-boulder 134
02 134–196 Gravel-boulder-sandstone 62
03 196–269 Gravel-boulder 73
04 269–238 Sandstone hard 59
05 238–344 Sandstone fine grained 16
06 344–377 Sandstone hard 33
07 377–383 Clay 06
08 383–429 Sandstone hard 46
09 429–442 Sandstone fine grained 13
10 442–488 Sandstone hard 46
11 488–503 Clay 15
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6. Discussion

The Karak watershed, located in Northern Pakistan, has experienced significant
economic development associated with hydrology and groundwater exploitation. The su-
perficial resource depletion, the irregular spatial-temporal distribution of precipitation, and
the deformation of the Indian and Eurasian tectonic plate environment, which affect the
occurrence and movement of groundwater, together with widespread salt in the northern
mountainous catchments, which is dissolved by runoff water and polluted groundwa-
ter due to deep infiltration, have made groundwater a key resource in the study area.
However, the collaboration of remote sensing observations, aquifer geoelectrical proper-
ties and accurate hydrogeological measurements, and the optimization of groundwater
influential factors are major challenges. Therefore, the GWpot mapping are essential for
planning artificial recharge programs to mitigate groundwater decline [6]. The multi-
criteria decision-making (MCDM)-based multi-influence factor (MIF) model approach
can be useful for groundwater resource management (GRM) and monitoring purposes,
which is an efficient bivariate statistical technique mainly used to calculate the degree to
which each dependent or independent conditioning factor influences the GWpot. The MIF
model has become a powerful tool for delineating regional GWpot and narrowing down
the target areas for conducting detailed hydrogeological and hydro-geophysical surveys
in the scattered areas. However, in the MIF method, weights and ranks are subjectively
assigned according to expert knowledge and literatures. In a comprehensive analysis, it is
important to determine the weight of each category because the output result depends on
the correct weight distribution. It is used to depict groundwater prediction zones taking
into account various surface and subsurface hydrological influential factors. However, sev-
eral studies report that the importance and predictive power of GCFs employed in GWpot
assessment is usually controlled by geological, morphological, hydrological, and climatic
environments [8–15,17]. According to Nampak [75], topographical features (e.g., elevation
and slope) have a negative impact on GWpot, while lineament density and drainage density
have positive impacts. Similar research reports that topographical, soil cover, structural
and hydrogeological characteristics affect precipitation runoff and permeability, thereby
affecting the occurrence of GWpot. Hou et al. [76] reported that lithology, altitude, and
drainage density have a greater impact on the occurrence of GWpot, while land use and soil
type have the least impacts. In this study, a GWpot map was generated based on the MIF
model to identify regional GWpot of the Karak watershed. Several GCFs were concluded to
have significant impacts on groundwater production. For example, the high GWpot zones
on the final map are closely correlated to lineament density and drainage density. Usually,
the lineaments indicate the areas of faults and fractures, leading to increased secondary
porosity and permeability. This factor is of great significance in hydrogeology because it
provides a pathway for groundwater infiltration. However, the lineament density is only
an indirect indicator of the GWpot in the Karak watershed, because the lineaments usually
show a permeable area. In the study area, a larger slope produces a smaller recharge,
because surface water will quickly flow over the steep slope during rainfall, so there is
not enough time for water seeping into the ground and recharge the unsaturated zone.
However, the distribution of LU/LC usually depends on the subsurface soil and geologi-
cal conditions, thereby increasing the groundwater recharge on the surfaces covered by
vegetation (such as agricultural plants and forests).

The hydrogeological interpretation of the 2D high-resolution resistivity tomography
dataset of six traverses revealed the prospect of groundwater at different depths with
variation in the resistivities in the aquifer zone. The high resistivity of the subsurface
geological sediments was well delineated, which shows a large resistivity contrast within
the complex geological background in the study area. This phenomenon is suggested to be
caused by different degrees of weathering, fracturing and saturated weathered/fractured
part of the sediments in the Karak region. In future, four to five boreholes/wells will be
drilled in potential areas identified by ERT and VES to check the availability of groundwater
and the performance of geoelectric surveys. The analyzed regional GWpot, hydrogeological
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and aquifer geoelectrical information provides a beneficial prospect for the development of
GRM in the study area. However, the geoelectrical exploration methods can only locally
verify the result of GWpot mapping, and they are too costly and time-consuming to cover
the whole study area. The acquired results are expected to help practitioners to drill
boreholes/wells in order to supply domestic water and irrigation in the Karak watershed
of Northern Pakistan. Moreover, combined geospatial and geoelectrical methods through
the MIFs model and Olayinka’s basic criteria will help to assess groundwater resources in
other similar areas worldwide.

7. Conclusions

This study addresses the applicability of the comprehensive MCDM-MIF model
and hydro-geophysical investigation in GRM in the Karak watershed. The GIS-based
MIF model facilitates the regional GWpot assessment using the topographical, geological,
hydrological, and land-cover GCFs, meanwhile, the geophysical exploration and data
interpretation reveals the hydrogeological structure and aquifer geoelectrical characteristics.
The main findings are as follows:

(1) According to MCDM-MIF model, approximately 9.7% (72.3 km2), 52.4% (1307.7
km2), 31.3% (913.4 km2), and 6.6% (44.8 km2) areas of the total Karak watershed
are classified into the low, medium, high, and very high GWpot, respectively. The
southern, southeastern, and the limited northeastern areas have high to medium
GWpot due to the distribution of Quaternary alluvial and agricultural land with
high infiltration capacity. The final GWpot map will help to manage sustainable
groundwater resources in the study area.

(2) The predictive performance of MCDM-MIF model is consistent with the groundwater
level (GWL) data (as AUC value is 68%, confusion matrix is 68%, and Kappa (K)
analysis is 65%).

(3) The ERT approach with an optimal compromise between electrode distance and profile
length highlights the complexity of hydrogeological layers and reveal that GWpot is
structurally controlled and adjacent to clayey sand and silicate aquifers (sandstone). The
identified drilling locations on ERT traverses are of great significance for the expansion
of drinking water supply and irrigation in the future. The performance analysis between
ERT-predicted lithology and well-log lithology indicates suitable matches.

(4) Hydro-stratigraphic information followed by apparent resistivity distribution at each
VES station shows that the study area is mainly composed of coarse gravel and sand,
followed by clayey sand with saline water. According to Olayinka’s basic standards,
the aquifer geoelectrical characteristics, e.g., reflection coefficient, aquifer overburden
thickness and apparent resistivity distribution, were conceptualized. The interpreted
potential zones based on VES show satisfactory matches with MIF-based groundwater
potential. The drilling protocol and well logs data interpretation of NRLs (short/long)
and SPLs reveal that deep sandstone is an effective aquifer type for the groundwater
exploitation in the study area.
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Appendix A

Table A1. Summary results of VES data interpretation demonstrate the inferred lithologies corresponding to resistivity
variation and hydrogeologic layers.

VES No.
RMS

Error (%)
No. of
Layers

Resistivity
(Ohm.m)

Thickness
(m)

Depth
(m)

Reflection
Coefficient

Inferred Hydro-Stratigraphic
Lithology

1 2.9

Layer 1 923.1 2.4 2.4

0.6723

Coarse gravel and sand
Layer 2 578 7.2 9.8 Silty sand mixed lithology
Layer 3 685.4 28.4 38.2 Clayey sand
Layer 4 54 12.6 50.8 Fine sand and gravels

2 3.2

Layer 1 748 1.9 1.9

0.9284

Coarse gravel and sand
Layer 2 598.8 8.6 10.5 Silty sand and gravels
Layer 3 57.8 16.4 26.9 Fine sands and gravels
Layer 4 34.2 Infinite Infinite Clayey sand and saline water

3 3.8

Layer 1 899.3 2.4 2.4

0.8671

Coarse gravel and sand
Layer 2 673 8.2 10.6 Silty sand mixed lithology
Layer 3 487.4 18.7 29.3 Silty sand and gravels
Layer 4 48.3 14.4 43.7 Fine sand and gravel
Layer 5 26 8.6 52.3 Clayey sand and saline water

4 4.5

Layer 1 954 1.3 1.3

0.9752

Topsoil
Layer 2 637.5 3.6 4.9 Silty sand and gravels
Layer 3 43 7.4 12.3 Fine sand and gravels
Layer 4 683.1 Infinite Infinite Clayey sands

5 2.8

Layer 1 854.7 4.5 4.5

0.7841

Coarse gravel and sand
Layer 2 532.1 12.8 17.3 Silty sand and gravels
Layer 3 678.2 26.2 43.5 Clayey sands
Layer 4 43.2 6.6 50.1 Clayey sand and saline water

6 1.7

Layer 1 701 3.2 3.2

0.8911

Coarse gravel and sand
Layer 2 693.4 4.6 7.8 Silty sand mixed lithology
Layer 3 964.5 5.1 12.9 Clayey sands
Layer 4 45.8 Infinite Infinite Clayey sand and saline water

7 2.6

Layer 1 1093.5 3.8 3.8

0.8497

Coarse gravel and sand
Layer 2 601.5 12.4 16.2 Silty sand mixed lithology
Layer 3 1065 18.4 34.6 Clayey sand
Layer 4 73 8.2 42.8 Fine sand and gravels

8 4.0

Layer 1 1108.5 4.5 4.6

0.7313

Topsoil
Layer 2 598.1 14.1 18.7 Silty sand and gravels
Layer 3 376.7 22.4 41.1 Fine sand and gravels
Layer 4 985.7 16.1 57.2 Clayey sands layer

9 4.7

Layer 1 735 2.2 2.2

0.6861

Alluvium
Layer 2 323 5.6 7.8 Silty sand fine lithology
Layer 3 675.8 12.4 20.2 Silty sand and gravels
Layer 4 24.7 16 36.2 Fine sands and gravels
Layer 5 74 6.4 42.6 Clayey sand and saline water

10 2.5

Layer 1 967.8 1.8 1.8

0.9248

Coarse gravel and sand
Layer 2 560 4.2 6 Silty sand mixed lithology
Layer 3 856.6 6.8 12.8 Clayey sand
Layer 4 42.1 Infinite Infinite Fine sand and gravels

11 3.7

Layer 1 787 5.1 5.1

0.8410

Coarse gravel and sand
Layer 2 445.8 12.2 17.3 Silty sand and gravels
Layer 3 943.2 18.1 35.4 Clayey sands
Layer 4 44 6.8 42.2 Clayey sand and saline water
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Table A1. Cont.

VES No.
RMS

Error (%)
No. of
Layers

Resistivity
(Ohm.m)

Thickness
(m)

Depth
(m)

Reflection
Coefficient

Inferred Hydro-Stratigraphic
Lithology

12 2.8

Layer 1 799.8 1.6 1.6

0.9523

Coarse gravel and sand
Layer 2 588 4.1 5.7 Silty sand mixed lithology
Layer 3 1098.3 4.6 10.3 Clayey sand
Layer 4 57 2.4 12.7 Fine sand and gravels

13 2.0

Layer 1 800.3 1.3 1.3

0.8557

Coarse gravel and sand
Layer 2 454 8.2 9.5 Silty sand and gravels
Layer 3 822.7 16.2 25.7 Clayey sands
Layer 4 38.6 10.6 36.3 Clayey sand and saline water

14 4.0

Layer 1 866 2.6 2.6

0.6719

Alluvium
Layer 2 554 10.1 12.7 Silty sand fine lithology
Layer 3 600.4 16.8 29.5 Silty sand and gravels
Layer 4 89.3 22.8 42.3 Fine sands and gravels
Layer 5 34.9 8.2 50.5 Clayey sand and saline water

15 2.8

Layer 1 766.1 2.4 2.4

0.9643

Coarse gravel and sand
Layer 2 543 6.1 8.5 Silty sand and gravels
Layer 3 985 4.1 12.6 Clayey sands
Layer 4 27 Infinite Infinite Clayey sand and saline water

16 3.0

Layer 1 812.9 4.2 4.2

0.6537

Coarse gravel and sand
Layer 2 553.4 8.2 12.4 Silty sand and gravels
Layer 3 985.6 20.8 33.2 Clayey sands
Layer 4 58 24.2 57.4 Clayey sand and saline water

17 4.5

Layer 1 1109 3.4 3.4

0.5855

Topsoil
Layer 2 643 8.7 12.1 Silty sand and gravels
Layer 3 76 15.9 28 Fine sand and gravels
Layer 4 832 22 50 Clayey sands

18 2.8

Layer 1 741 1.8 1.8

0.9778

Coarse gravel and sand
Layer 2 533 5.1 6.9 Silty sand and gravels
Layer 3 932 6.0 12.9 Clayey sands
Layer 4 65.4 Infinite Infinite Clayey sand and saline water

19 1.6

Layer 1 979.8 5.2 5.2

0.8923

Coarse gravel and sand
Layer 2 568 8.4 13.6 Silty sand and gravels
Layer 3 732.6 16.8 30.4 Clayey sands
Layer 4 64 10.8 41.2 Clayey sand and saline water

20 4.2

Layer 1 905 3.2 3.2

0.9211

Coarse gravel and sand
Layer 2 548 6.1 9.3 Silty sand mixed lithology
Layer 3 788 19.5 28.8 Clayey sand
Layer 4 34 15 43.8 Fine sand and gravels

21 2.4

Layer 1 745 4.2 4.2

0.7626

Alluvium
Layer 2 623 10.4 14.6 Silty sand fine lithology
Layer 3 522.3 18.6 33.2 Silty sand and gravels
Layer 4 37 6.2 39.4 Fine sands and gravels
Layer 5 84.2 8.2 47.6 Clayey sand and saline water

22 3.7

Layer 1 865.6 1.6 1.6

0.9429

Coarse gravel and sand
Layer 2 590 4.5 6.1 Silty sand and gravels
Layer 3 955.7 6.8 12.9 Clayey sands
Layer 4 67 Infinite Infinite Clayey sand and saline water

23 3.3

Layer 1 906.4 5.6 5.6

0.6930

Alluvium
Layer 2 578 10.2 15.8 Silty sand fine lithology
Layer 3 356 18.8 34.6 Silty sand and gravels
Layer 4 65 10.4 45 Fine sands and gravels
Layer 5 45.6 8.4 53.4 Clayey sand and saline water
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Table A1. Cont.

VES No.
RMS

Error (%)
No. of
Layers

Resistivity
(Ohm.m)

Thickness
(m)

Depth
(m)

Reflection
Coefficient

Inferred Hydro-Stratigraphic
Lithology

24 2.8

Layer 1 842 4.4 4.4

0.7889

Coarse gravel and sand
Layer 2 600.4 12.4 16.8 Silty sand and gravels
Layer 3 789 22.8 39.6 Clayey sands
Layer 4 37.2 14.7 54.3 Clayey sand and saline water

25 2.5

Layer 1 890 2.4 2.4

0.8663

Coarse gravel and sand
Layer 2 566.3 6.8 9.2 Silty sand and gravels
Layer 3 742 18.3 27.5 Clayey sands
Layer 4 98 16.2 43.7 Clayey sand and saline water

26 3.0

Layer 1 975.8 1.7 1.7

0.9184

Coarse gravel and sand
Layer 2 563 10.2 11.9 Silty sand and gravels
Layer 3 732.1 18 29.9 Clayey sands
Layer 4 63.9 6.6 36.5 Clayey sand and saline water
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Abstract: In the context of climate variability and hydrological extremes, especially in arid and
semi-arid zones, the issue of natural risks and more particularly the risks related to rainfall is a topical
subject in Algeria and worldwide. In this direction, the spatiotemporal variability of precipitation in
the Wadi Cheliff basin (Algeria) has been evaluated by means of annual time series of precipitation
observed on 150 rain gauges in the period 1970–2018. First, in order to identify the natural year-to-
year variability of precipitation, for each series, the coefficient of variation (CV) has been evaluated
and spatially distributed. Then, the precipitation trend at annual scale has been analyzed using two
nonparametric tests. Finally, the presence of possible change points in the data has been investigated.
The results showed an inverse spatial pattern between CV and the annual rainfall, with a spatial
gradient between the southern and the northern sides of the basin. Results of the trend analysis
evidenced a marked negative trend of the annual rainfall (22% of the rain gauges for a significant
level equal to 95%) involving mainly the northern and the western-central area of the basin. Finally,
possible change points have been identified between 1980 and 1985.

Keywords: precipitation; climate change; Sen’s estimator; Mann-Kendall; Wadi Cheliff basin

1. Introduction

The Mediterranean basin is climatically affected by the interaction between mid-
latitude and tropical processes, being located in a transition zone between the arid climate
of North Africa and the temperate and rainy climate of Europe. For this reason, it is
considered a major hotspot of climate change, subject to strong warming and drying, with
increasing consequences on spatial and temporal precipitation distribution [1]. Within
this context, spatial and temporal precipitation analyses with different methodologies
has been recently performed in the Mediterranean basin [2] and, especially, in Northern
Africa [3]. The majority of these studies were principally based on non-parametric tests,
which are better suited than parametric ones to deal with non-normally distributed data
in hydrometeorology [4]. In particular, different results have been obtained between the
eastern and western side of the region. In effect, the west-central part is characterized by a
negative rainfall trend [5], albeit irregular and high variable across the decades. By contrast,
the eastern side presents positive rainfall tendencies in some areas [6,7], and negative
trends in others such as Israel [8,9]. In the Middle East and North Africa (MENA) region,
which includes North Africa, Donat et al. [10] detected an opposite behavior in the period
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1980–2010: a marked positive trend in the western side, and some consistent tendency
toward dryer conditions in the eastern part. In the past years, several studies evidenced a
negative rainfall trend in Northwest Africa [11,12]. For example, in the Maghreb region,
Tramblay et al. [13] detected a strong negative trend in annual rainfall and number of wet
days for the period 1950–2009. This trend behavior was more marked for Morocco and
Western Algeria. In particular, in Algeria, average annual rainfall evidenced a decrease
beginning around the second half of the 1970s [14]. This tendency has been forecast to
continue over the 21st century [15,16] and to be particularly significant in semiarid areas.

Giorgi [17] demonstrated that this large decrease in average rainfall is coupled with an
increase in rainfall variability, especially during the warm season. For this reason, besides
rainfall trend, it is especially important to evaluate the inter-annual variability of rainfall,
which has received little attention so far [18]. In fact, the inter-annual rainfall variability
is a measure of the year-to-year variability in cumulative rainfall occurrences and allows
us to identify years with rainfall abundance and years with rainfall scarcity. In order to
evaluate the inter-annual rainfall variability, first the relative variability index has been
proposed [19], but recently, the coefficient of variation (CV) has found wide application.
Several authors evidenced an increase in inter-annual variability at global scale [16,20–22],
but fewer studies have been performed at regional scales. For example, Gajbhiye et al. [23]
analyzed CV in the Sindh river basin (India) for annual and seasonal (monsoon, post
monsoon, summer and winter) rainfall events evidencing that the inter-annual variability
of post monsoon rainfall is greater than that of the annual rainfall. Similar results have
been obtained again in India, in the Jharkhand State [24]. He and Gautam [25] detected an
increasing tendency of annual, winter and spring rainfall variabilities in California, which
suggests an increasing frequency of precipitation extremes. Młyński et al. [26] detected
that variability of annual extremes of precipitation in southern Poland is linked with types
of cyclonic circulations. Thus, many studies evidenced that inter-annual variability of
annual precipitation on many region of the World is visible and can be caused by climate
change. The variability of precipitation can strongly influence water resources and thus
the spatiotemporal occurrence of hydrological extremes like floods, droughts and water
scarcity, and associated socioeconomic problems [27,28].

The aim of this paper was to study the spatiotemporal variability of annual rainfall
in a semi-arid area by examining the annual precipitation across the Wadi Cheliff basin
in Algeria. In particular, the spatial distribution of CV has been analyzed and a trend
investigation on annual rainfall has been carried out using nonparametric tests. The study
was performed on data recorded at 150 stations during an observation period of 49 years.

2. Methodology

CV is a statistical measure of the difference between the data points and the mean
value of a series. Greater values of CV indicate larger variability and vice versa. The CV
value for each series can be computed as follows:

CV =
σ

μ
(1)

where σ is the annual precipitation standard deviation and μ is the mean annual precipitation.
In order to analyze possible trend in annual rainfall series two non-parametric tests for

trend detection have been used: the Theil-Sen (TS) estimator [29] for the evaluation of the
slopes of the trends and the Mann–Kendall (MK) test [30,31] for assessment of the statistical
significance. These estimators have been selected because they are not susceptible to the
influence of extreme values and thus are more powerful than linear regression methods in
trend slope evaluation in the presence of outliers in the series.

The first step in the calculation of the TS estimator is to evaluate the values of the
gradient Qi, given N pairs of data:

Qi =
xj − xk

j − k
f or i = 1, . . . , N (2)
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in which xj and xk are the data values at times j and k (with j > k), respectively.
If there is only one datum in each time period, then N = n(n − 1)/2, where n is the

number of time periods. If there are multiple observations in one or more time periods,
then N < n(n − 1)/2, where n is the total number of observations.

The TS estimator is then computed as the median Qmed of the N values of Qi, ranked
from the smallest to the largest:

Qmed =

{
Q[(N+1)/2] i f N is odd

Q[N/2]+Q[(N+2)/2]
2 i f N is even

(3)

The Qmed sign reveals the trend behaviour, while its value indicates the magnitude of
the trend.

In order to evaluate the significance of the trend according to Mann-Kendall test, the
statistic S must be first estimated as:

S =
d−1

∑
i=1

d

∑
j=i+1

sgn
(

xj − xi
)
; with sgn

(
xj − xi

)
=

⎧⎨
⎩

1 i f
(

xj − xi
)
> 0

0 i f
(

xj − xi
)
= 0

−1 i f
(

xj − xi
)
< 0

(4)

Here, xj and xi are the variable values in the years j and i (with j > i), respectively, and
d is the dimension of the series.

Given independent and randomly ordered values, for the d > 10, the statistic S is
distributed following a normal distribution with zero mean and variance:

VAR(S) =

[
d(d − 1)(2d + 5)−

m

∑
i=1

tii(i − 1)(2i + 5)

]
/18 (5)

with ti a number of i-fold ties.
Finally, the standardized statistic ZMK can be computed as:

ZMK =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
Var(S)

f orS > 0

0 f orS = 0
S+1√
Var(S)

f orS < 0
(6)

By applying a two-tailed test, for a specified significance level α, the statistical signifi-
cance of the trend can be evaluated. In particular, in this work, the rainfall series have been
examined for three different significance levels (SL) equal to 90%, 95% and 99%.

Finally, in order to detect possible change points in the annual rainfall series, a par-
ticular form of the nonparametric Mann–Whitney (MW) test, developed by Pettitt [32],
was applied.

3. Study Area and Data

The Wadi Cheliff is the longest river in the country and plays a vital role in the
socioeconomic development of the main regions in Algeria. The Wadi originates from
the Saharan Atlas, near Aflou in the mountains of the Jebel Amour, and is approximately
750 km long (Figure 1).

The Wadi Cheliff Basin (WCB) covers an area of 43,750 km2 and lies between 0◦7′44”
E to 3◦31′7” E and between 33◦53′13” N and 36◦26′34” N (Figure 1). The topography of the
basin is complex and rugged. The altitude varies from −4 m to 1969 m. The tributaries
distribute symmetrically from the south to the north along the main secondary wadis.
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Figure 1. Location of the selected 150 rain gauges on a DEM (left) and spatial distribution of the average annual precipita-
tion (right).

Climatically, the region is arid and semi-arid. The mean annual temperature decrease
gradually from the north to south with a minimum registered at Tissimsilt region (14.20 ◦C)
and a maximum at Cheliff region (18.7 ◦C) [14]. The extreme maximum and minimum
temperatures occur in July and January as 42 ◦C and −5 ◦C respectively. The mean
annual precipitation is from 161 mm to 662 mm (1970–2018), 80% of which falls between
November and March. For this study, datasets of 150 rainfall stations (Figure 1) with long-
term monthly precipitation records from 1970 to 2018 across the WCB were taken from the
National Agency of the Water Resources (ANRH). However, the period of the records for
these stations varies and some have missing records, and thus, to improve data quality,
only the observing stations with data series accounting for 70% or more of the overall
period were chosen for our study. After excluding the stations with too many missing
values, the double mass curve technique was used to analyze the remaining missing data.
The data was subjected to quality control and data gap filling using the linear regression
method. The period of study has been chosen to be 1970–2018, which is as long as possible
depending on the availability of recorded data for majority of stations in the region.

4. Results and Discussion

In this work, first the CV has been evaluated and spatially distributed. Then, the
precipitation trend at annual scale has been analyzed. Finally, the presence of possible
change points in the data has been investigated.

Figure 2 shows the results of the inter-annual rainfall variability analysis performed
through the CV. In particular, in the boxplot, the characterization of the average CV series
is represented. The CV ranges between about 16.0% (minimum CV value) and 56.5%
(maximum CV value), thus evidencing high variability that is typical of the Mediterranean
basin [33]. This CV range is similar to the ones obtained in past studies performed in
Eastern and Southern Africa, especially for the maximum values. In fact, a high inter-
annual variability has been detected in north-eastern Kenya, with CV values higher than
55% [34]. Conversely, a belt along western Uganda, Rwanda, Burundi, Tanzania and
northwest Zambia with moist climate conditions evinced CV values lower than 10%.
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Figure 2. Spatial distribution of the CV and characterization of the CV through boxplot (Bottom and top of the box: first
and third quartiles. Band inside the box: median. Ends of the whiskers: minimum and maximum values. Red color: values
below the median. Green color: values above the median).

In addition to providing the characterization of the average CV values, the analysis
of the spatial distribution of the CV values is paramount for understanding the risk of
extreme events (Figure 2). Areas with higher inter-annual variability in rainfall are more
susceptible to extreme events such as floods and droughts [35]. Results showed an inverse
CV spatial pattern with respect to those observed for the annual rainfall, with a spatial
gradient between the southern and the northern sides of the basin. Thus, the highest
variability (CV values up to 56%) has been detected in the mountainous areas of the south
side of the region, which also shows the lowest values of annual precipitation. Conversely,
the northern areas of the basin, which show the highest precipitation, evidenced the lowest
CV values. Both the CV and the annual rainfall spatial pattern maps were obtained with a
spline algorithm.

The trend analysis has been performed at annual scale for the period 1970–2018
for three different significance levels (SL): 90%, 95% and 99% (Figure 3a). As a result, a
prevalent negative rainfall trend has been evidenced. In fact, about 26.2% (SL = 90%), 16.8%
(SL = 95%) and 7.4% (SL = 99%) of the rainfall series of the study area showed a negative
trend. On the contrary, a positive rainfall trend has been detected in about 11.4%, 8.7% and
0.7% of the series, for a SL = 90%, 95% and 99%, respectively. This rainfall reduction at
annual scale confirms the results obtained in other Mediterranean areas. e.g., [36], including
in southern Italy [37–40] and in some regions of central Italy, such as Abruzzo [41] and
Marche [42].
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Figure 3. Percentages of annual rainfall series presenting positive or negative significant trends (a) and most probable
change point years (b).

Spatially, for a SL = 95%, the negative trend mainly involved the northern and the
western-central areas of the basin, with a maximum decrease in annual precipitation of
more than 20 mm/10 years (Figure 4). On the contrary, a positive trend has been evidenced
in the eastern side of the basin (>10 mm/10 years) and, particularly, in the southwestern
area, with a maximum increase of more than 20 mm/10 years.

Figure 4. Spatial results of the trend analysis.
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Finally, the identification of the shifts in annual precipitation observed in the Wadi
Cheliff identified that the years 1982 (22% of the rain gauges), 1981 (14%) and 1983 (7%)
can be considered the most probable change point years for the greatest number of stations
(Figure 3b). By comparison, several studies, e.g., [43] that included earlier time periods
identified change points in the decade 1960–1970.

As an example, in the Supplementary Material, Figure S1 shows the negative and the
positive trend behavior, and the change point, for two of the most characteristic stations.

In order to better understand the rainfall behavior detected in this paper, it could
be useful to refer to some climatic factors influencing rainfall. In fact, as evidenced by
several authors, the Mediterranean rainfall regime is strongly linked to general atmospheric
circulation patterns such as the El Niño Southern Oscillation (ENSO) [44], the Mediter-
ranean Oscillation (MO) [45] and the Western Mediterranean Oscillation (WeMO) [34,46].
As regards Algeria, Meddi et al. [47] showed that the temporal variability of the annual
precipitation in the west of the country is influenced by ENSO, while Tramblay et al. [13]
evidenced that rainfall in North African countries such as Morocco, Algeria and Tunisia
are mainly affected by the North Atlantic Oscillation (NAO). In particular, a predominant
negative phase of the NAO occurred between 1940 and 1980, corresponding to a period
when precipitation was above normal; it was followed by a predominant positive phase,
which significantly contributed to the rainfall reduction observed from the beginning of the
1980s in the Mediterranean basin and, also, in Algeria. Similar results have been obtained
by Singla et al. [48] who showed a decrease in rainfall in some regions of Morocco from the
1970s onwards and evidenced a strong relationship between rainfall and the NAO phases.
In fact, a rainfall decrease is connected to a positive phase of the NAO, which occurrences
increased in this century, and some studies forecasted a further increase in its occurrence in
the future [49,50].

Differently from past studies analyzing rainfall trend in northern Africa, this study
also focused on the identification of change points in the rainfall series, which in the past
years has been mainly performed in central Africa. In particular, this study evidenced
similar results with the ones obtained further south in West Africa, where studies have
tended to identify change points in the 1980s, around the peak of the well-known severe
Sahel drought [51–53].

5. Conclusions

With the aim to better understand the annual rainfall variability in a semi-arid area,
in this paper 150 rainfall series of the Wadi Cheliff basin (Algeria) were analyzed. First,
for each series, the year-to-year variability of precipitation has been studied through
the coefficient of variation. Then, a trend analysis has been performed using two non-
parametric tests. Finally, the presence of possible change points in the data has been
investigated. The following main results were obtained:

1. the CV range between about 16.0% and 56.5%, thus evidencing high variability typical
of the Mediterranean basin;

2. a spatial gradient in the CV values between the southern and the northern sides of the
basin has been identified, with the highest values detected in the mountainous areas
of the south side of the region and the northern areas showing the lowest CV values;

3. a general negative trend has been evidenced for the annual rainfall;
4. the negative trend mainly involved the northern and the western-central area of the

basin while a positive trend has been evidenced in the eastern side of the basin;
5. the years 1981, 1982, and 1983 can be considered the most probable change point

years for the largest number of stations in the basin.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13111477/s1: Figure S1. Example of negative and positive trends with change point (vertical
orange line) for two characteristic stations.
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Abstract: Based on the Standardized Precipitation Index (SPI) and copula function, this study
analyzed the meteorological drought in the upper Minjiang River basin. The Tyson polygon method
is used to divide the research area into four regions based on four meteorological stations. The
monthly precipitation data of four meteorological stations from 1966 to 2016 were used for the
calculation of SPI. The change trend of SPI1, SPI3 and SPI12 showed the historical dry-wet evolution
phenomenon of short-term humidification and long-term aridification in the study area. The major
drought events in each region are counted based on SPI3. The results show that the drought lasted
the longest in Maoxian region, the occurrence of minor drought events was more frequent than
the other regions. Nine distribution functions are used to fit the marginal distribution of drought
duration (D), severity (S) and peak (P) estimated based on SPI3, the best marginal distribution is
obtained by chi-square test. Five copula functions are used to create a bivariate joint probability
distribution, the best copula function is selected through AIC, the univariate and bivariate return
periods were calculated. The results of this paper will help the study area to assess the drought risk.

Keywords: upper Minjiang River; marginal distribution; copula; bivariate joint distribution; return period

1. Introduction

Drought is a frequent natural disaster, which affects ecology, social economy, and
agriculture to a large extent. The change of drought may be faster than the average climate
change with global warming [1,2]. What is more serious is that due to the expansion of the
scale of industry and agriculture, social and economic development, global warming and
the rapid growth of the world’s population, the demand for water has risen sharply. The
shortage of water resources has increased, and the global drought trend is obvious [3].

Drought is usually divided into hydrological, meteorological, agricultural, and socio-
economic drought. When the precipitation is lower than the normal level for a period of
time, meteorological drought will occur [4], which may affect all other types of drought,
so the evaluation of meteorological drought is important [5]. Over the past few decades,
different drought indexes have been developed to assess drought conditions [6,7], in-
cluding Standardized Precipitation Index (SPI) [8], Standardized Runoff Index (SRI) [9],
Standardized Precipitation Evaporation Index (SPEI) [10], Standardized Hydrological Index
(SHI) [11], Palmer Drought Severity Index (PDSI) [12] and so on, among which the SPI and
SPEI are the most widely used [5]. According to reports, if the inter-annual temperature
change in a region is not so obvious, then the results of using SPI or SPEI as research
indicators will not be much different [13]. Therefore, this study chooses the SPI value as
the meteorological drought assessment index.
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There are many advantages of using SPI, such as simple calculations and the ability
to measure drought conditions on different time scales [14]. Based on the SPI value, it
is easy to extract drought characteristics, such as drought severity (S), drought duration
(D) and drought peak (P) [15,16]. The analysis of drought characteristics can be uni-
variate or multivariate. Univariate method is a traditional drought frequency analysis
method [17]. However, due to the strong correlation between drought characteristics,
multivariate analysis can more comprehensively characterize the drought situation. The
Copula function is an excellent method for evaluating the joint probability distribution
of multiple variables. Its most important advantage is that it does not need to be used
on the premise that the marginal distribution of a univariate is independent [18]. At
present, the copula function has been used to modeling the multivariate joint distribution
of drought [19,20], flood [21,22], the joint change of precipitation and flood [23] and so on
in the hydrological field.

The study area is the upper Minjiang River basin (UMR). The UMR is located in
Sichuan Province, China. It is a critical water source for domestic, agricultural and indus-
trial production in the Sichuan Basin [24]. However, the UMR has a complex geographical
environment and a fragile ecological environment. Some areas have a non-zonal arid valley
climate. There are large areas of arid valleys in the study area, and the foehn effect is
significant [25], which makes drought become an important disaster in the area. Thus, it is
a urgent need to study the drought situation in UMR.

Based on the SPI and copula function, this study analyzed the meteorological drought
in UMR. The study area was partitioned into several regions based on the location of four
meteorological stations using the Tyson polygon method. The monthly precipitation data
of four meteorological stations from 1966 to 2016 were used to calculate the SPI values,
and major drought events in various regions were counted based on SPI3 values. Drought
duration, severity and peak were estimated by SPI3 value. Nine distribution functions were
used to fit the marginal distributions of the three drought characteristics, and the optimal
marginal distribution was obtained by chi-square test. Five common copula functions
were used to create a bivariate joint probability distribution based on SPI3, and the best
copula function was selected through AIC. Finally, the univariate and bivariate joint return
period were calculated. The results of this study are significant to the management and
distribution of water resources and the prevention of drought in UMR.

2. Data and Method

2.1. Data and Study Area

The study area in this paper is the upper Minjiang River basin (UMR). The UMR is
located in Sichuan Province, China. There are many tributaries and dense river networks
in the basin. It is the biggest tributary of the upper Yangtze River. The UMR is located on
the southeastern edge of the Qinghai-Tibet Plateau, with high mountains and deep rivers
in the area, its topography is low in the southeast and high in the northwest, which is a
typical alpine valley landform [26,27]. However, due to the alternate control of the south
tributary of the westerly wind, the warm Indian Ocean current, and the southeast Pacific
monsoon, and under the influence of the complex and diverse geographical environment,
the area has formed a unique arid valley climate feature: foehn winds in the area are strong,
the atmosphere is dry all year round, and the dry and wet seasons are obvious. About 70%
of annual precipitation is centralized in summer, with large annual evaporation, extreme
drought in winter, and serious floods and drought disasters [25]. In addition, the UMR is
located in the Longmenshan fault zone, the neotectonic movement is strong, which makes
the entire mountain ecosystem fragile and changeable. In general, the UMR has a complex
geographical environment and a fragile ecological environment [27]. Based on such a
severe situation, the UMR was selected as the study area of this article.

The UMR basin includes all areas of Songpan, Lixian and Heishui, and parts of
Wenchuan and Maoxian. There are a total of five meteorological stations. Due to the lack
of precipitation data in some years in Wenchuan, this paper selects the precipitation data
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of other four stations as the data used in this study. Figure 1 shows that the selected four
meteorological stations are evenly distributed in the UMR, which is reasonable.

Figure 1. The location of the study area and meteorological stations.

The four meteorological stations in UMR were used to calculate the monthly precipita-
tion data from the daily precipitation observation data from 1966 to 2016, and the monthly
precipitation data were used for the calculation of SPI.

2.2. Method
2.2.1. Meteorological Drought Index Spi and Drought Characteristics

The drought index is an important variable used to assess the degree of drought and
extract the drought characteristics (drought duration, drought severity, drought peak, etc.).
Among them, SPI is one of the most widely used drought index s, which is recommended
by the World Meteorological Organization for drought monitoring [28]. SPI was proposed
by Mckee [8], its calculation is based on a multi-year monthly precipitation data series.
The information of SPI response on different time scales is also different [29]. In this study,
the SPIProgram downloaded from the website http://drought.unl.edu/MonitoringTools/
DownloadableSPIProgram.aspx (accessed on 15 January 2021) is only used to calculate
the value of SPI on 1, 3 and 12 month time scales (SPI1, SPI3 and SPI12), the drought
situation in the study area was analyzed by SPI3. Table 1 lists the SPI climate classification
provided by the national standards for meteorological drought levels issued by China.
According to the classification in the table, this article sets the threshold for the beginning
and end of the drought time as −0.5. In addition, according to the run theory proposed
by Yevjevich [30], the drought characteristics based on SPI3 is extracted. This study uses
drought duration, severity, and peak to analyze drought events. The three characteristics
are defined as follows:

1. Drought duration (D): The duration of SPI ≤ −0.5;
2. Drought severity (S): The absolute value of the accumulated SPI value over the

duration of the drought;
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3. Drought peak (P): The absolute value of the minimum SPI value during the duration
of the drought.

Table 1. Wet and drought period classification according to the SPI index.

Index Value Class

SPI > −0.5 No drought
−0.5 ≥ SPI > −1.0 Mild drought
−1 ≥ SPI > −1.5 Moderately drought
−1.5 ≥ SPI > −2.0 Very drought

SPI ≤ −2.0 Extremely drought

Based on the preliminary identification of drought events, in order to avoid the
impact of small drought events on the analysis of statistical characteristics of drought event
samples, the following treatments are made for small drought events:

1. Small drought events with drought duration of only 1 month and severity less than 1
were not included in the drought event sample;

2. When the non-drought duration between two drought events is 1 unit period and the
drought severity is less than −0.2, the two adjacent drought events will be merged
into one drought event.

2.2.2. Mann-Kendall Test

The Mann-Kendall (MK) test is often used to test the changing trends of the meteoro-
logical and hydrological time series data. Its advantage is that the tested data series don’t
have to follow a certain distribution [31]. The MK test null hypothesis H0 is that the change
trend of the data sequence X = {X1, X2, . . . . . . , Xn} is not significant. When the statistical
parameter |Z| ≥ 1.96, the null hypothesis is rejected within the 95% confidence interval,
that is, the trend of the data series is significant. When Z is positive, it means the trend is
up, otherwise, it indicates a decline in the trend [32]. This paper uses the MK trend test
method to check the significance of the downward or upward trend of the SPI sequences
within the 95% confidence interval. The specific calculation process of the z value is as
follows [33]:

S =
n−1

∑
i=1

n

∑
j=i+1

sign(xj − xi) (1)

sign(xj − xi) =

⎧⎨
⎩

1 i f (xj − xi) > 0
0 i f (xj − xi) = 0
−1 i f (xj − xi) < 0

(2)

The formula for calculating the variance of S is:

var(S) =
n(n − 1)(2n + 5)− m

∑
k−1

tk(tk − 1)(2tk + 5)

18
(3)

In Equation (3), n is the number of data, k is the number of repetitions, m is the number
of unique numbers (the number of groups), and tk is the number of repetitions for each
repetition. When n > 10, the formula for calculating the statistical parameter Z is:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
var(S)

i f S > 0

0 i f S = 0
S−1√
var(S)

i f S > 0
(4)
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2.2.3. Marginal Distribution

In order to establish a binary probability distribution between drought duration,
severity and peak, we must first define the univariate distribution of these characteristics.
Several alternative probability distributions functions are taken into consideration in this
study, namely: Weibull (wbl), Normal, Log-normal (logn), Gamma (gam), Exponential
(exp), Logistic (log), Log-logistic, General Extreme Value (gev), and Generalized Pareto
(gpa) distribution. In this paper, the parameters of the marginal distribution are evaluated
using the maximum likelihood estimation (MLE) method. Spearman (ρ) and Kendall (τ)
are used to examine the correlation between different drought characteristics.

2.2.4. Chi-Square Test

In order to determine the best-fitting univariate marginal distribution of each charac-
teristics, this study uses the chi-square test to estimate the best-fitting marginal distribution.
The formula for calculating the chi-square value is as follows [5,34]:

x2 =
n

∑
k=1

(Ok − Ek)
2

Ek
(5)

Among them, n is the number of the disjoint group intervals; k is the serial number
of the disjoint group intervals, Ok is the number of observations in the k-th disjoint group
intervals; Ek is the expected number of observations in the k-th disjoint group intervals
(according to the distribution being tested). The probability distribution function with the
smallest Chi-Square value is chosen as the optimal distribution function.

2.2.5. Copula Function

The copula concept comes from Sklar’s theorem [35]. In the Copula function, the
multivariate probability distribution and the univariate marginal distribution are connected
by Sklar’s theorem. Then based on the joint cumulative probability distribution of the
marginal distribution F1(x1), F2(x2), . . . . . . , Fn(xn) (the x1, x2, ..., xn are random variables),
copula function can be defined [5]. Suppose that x and y are two random variables with
joint distributions FX,Y(x,y) and marginal distribution functions FX(x) and FY(y), according
to Sklar’s theorem [36], there is a Copula function C(x,y):

FX,Y(x, y) = C(FX(x), FY(y)) (6)

If FX(x) and FY(y) are consecutive, this Copula is unique. On the contrary, if FX(x),
FY(y) and Copula function C(x,y) are given, the above formula defines the joint distribution
function of FX(x) and FY(y) [37–39].

Commonly used Copula functions are generally divided into five types, including
Archimedean Copula, Metaelliptical Copula, Plackette Copula, mixed Copula, and empiri-
cal Copula. Since Archimedean Copula and Metaelliptical Copula functions are easy to
construct and can capture dependent structures with several characteristics, they have be-
come very attractive functions in bivariate hydrological frequency analysis [29,39]. In this
paper, three commonly used Archimedean Copula (Clayton, Frank and Gumbol-Hougaard)
and two commonly used Metaelliptical Copula (Gaussian and t Student Copula) were
selected, and the inference function for margin (IFM) method [40] was used to estimate the
parameters of copula functions, that is, first calculate the parameter values of the marginal
distribution through the MLE method, and then use the obtained marginal distribution
parameters to obtain the unknown parameters in the copula functions.
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2.2.6. Function Evaluation

The fitting efficiency of the candidate Copula function is evaluated based on the
Akaike Information Criterion (AIC). The smaller the value of AIC, the higher the fitting
efficiency. The calculation method of AIC is as follows [6,41]:

AIC = n · log(MSE) + 2k and MSE =

{
1

n−k

n
∑

i=1
(XC(i)− XE(i))

2
}

or AIC = −2 · log(MLE) + 2k
(7)

Among them, k represents the number of fitting parameters, MSE represents the mean
square error of the fitted copula function relative to the empirical copula, and XC and
XE are the joint distribution functions based on the parameters and the empirical copula,
respectively. MLE is the maximum likelihood of the copula function. Therefore, the copula
with the smallest AIC value is the optimal copula.

2.2.7. Return Period

Shiau and Shen [42] proposed the return period theory of drought events. When the
drought characteristic is greater than the preset value, the return period can be calculated
from the expected value of the drought interval and the cumulative probability distribution
corresponding to the characteristics. The calculation formula is:

TD =
E(L)

1 − FD(D)
(8)

TS =
E(L)

1 − FS(S)
(9)

TP =
E(L)

1 − FP(P)
(10)

In the formula, E(L) is the expected value of the drought interval. FD(D), FS(S), and
FP(P) are the cumulative probability distributions of drought duration, severity, and peak,
respectively. TD, TS, and TP are the D, S, and P recurrence period, respectively.

According to the nature of drought, univariate analysis may cause underestimation or
overestimation of drought risk [37]. Drought characteristics are related random variables,
so studying the joint regression period of these characteristic quantities is more helpful
to the assessment of local drought risks and the management of water resources. This
article will analyze the bivariate joint probability distribution. The bivariate joint return
period between drought duration, drought severity, and drought peak is divided into two
situations. Here, D and S are used as examples. The combination of other characteristics
is the same: (1) The return period of D ≥ d and S ≥ s is expressed by TDS; (2) The return
period of D ≥ d or S ≥ s is expressed by T’DS. The calculation method is as follows [6,42]:

TDS =
E(L)

P(D ≥ d and S ≥ s)
=

E(L)
1 − FD(d)− FS(S) + C(FD(d), FS(s))

(11)

T′
DS =

E(L)
P(D ≥ d or S ≥ s)

=
E(L)

1 − C(FD(d), FS(s))
(12)

3. Results and Discussion

3.1. Temporal and Spatial Trend of Drought Situation

Based on the locations of 4 meteorological stations, the ArcGIS geographic information
platform was used to generate Tyson polygons, and the study area was divided into four
regions. In order to explore the changes in drought trends in various regions, this paper
uses the MK trend test method to calculate the Kendall trend statistics of the SPI1, SPI3,
and SPI12 at each meteorological station. The results are shown in Table 2 and Figure 2.
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According to the statistical distribution shown in Figure 2, the UMR can be divided into
two categories, Songpan and Heishui are classified as Class I region, Maoxian and Lixian
are classified as Class II region. The change trend of drought index in all time scales of
Class I was significantly increasing except SPI12 in the Heishui region, which was not
significantly increasing. The rising trend of SPI on the 1-month and 3-month (not cross-
seasonal) timescales was more significant than the SPI on the 12-month timescales. The SPI
sequence of Class II region showed a general downward trend, indicating that drought
events were more likely to occur in Class II regions than before. Table 2 shows that on the
time scale of 1 month and 3 months, although the drought index sequence of Maoxian
region shows an upward trend, its trend rate is 0 (in fact, it is a positive number very close
to 0). It can be seen that the upward trend is extremely insignificant. On a 12-month (cross-
season) scale, the SPI series of Maoxian and Lixian have a significant downward trend. The
statistical results show the historical dry-wet evolution phenomenon of humidification in
short-term and drought in long-term in the UMR.

 

Figure 2. Spatial distribution of variation trends of SPI1, SPI3 and SPI12 (unit: month).
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Table 2. Test results of change trend of drought index at different time scales.

Region SPI Z-Score Slope Change Trend

Songpan
SPI1 2.3816 0.0005 Significant upward trend
SPI3 2.4775 0.0005 Significant upward trend
SPI12 0.6296 0.0001 Unsignificant upward trend

Heishui
SPI1 4.0134 0.0009 Significant upward trend
SPI3 4.2551 0.001 Significant upward trend
SPI12 2.0592 0.0005 Significant upward trend

Maoxian
SPI1 0.0895 0 Unsignificant upward trend
SPI3 0.2036 0 Unsignificant upward trend
SPI12 −4.6733 −0.0011 Significant downward trend

Lixian
SPI1 −0.5414 −0.0001 Unsignificant downward trend
SPI3 −1.3265 −0.0003 Unsignificant downward trend
SPI12 −2.1939 −0.0005 Significant downward trend

The distribution of the dry valleys in the UMR is showed in Figure 2. It can be seen
that the dry valleys are distributed in all the mainstreams of the UMR in Maoxian region,
and part of the mainstreams of the UMR in Heishui and Lixian regions. The length of
the dry valley in Maoxian region is the longest, followed by Lixian region. Combining
the calculation results of the SPI change trend, it can be seen that, relatively speaking, the
Maoxian and Lixian regions where the dry valleys are more widely distributed are more
likely to become drier, that is, there is a greater risk of drought.

3.2. Meteorological Drought Assessment

SPI of different time scales reflects the different cumulative effect of drought. Figure 3
shows the SPI1, SPI3, and SPI12 sequences of the four regions. Comparing the three
sequences of SPI1, SPI3, and SPI12, it can be seen that the SPI with a shorter time scale
(SPI1 and SPI3) is more discrete, drought events occur more frequently, which means that
the SPI with a short time scale is more capable of responding to small drought events.
The long-term SPI(SPI12) treats several consecutive minor drought events as one drought
event, so the long-term SPI can better reflect the long-term trend of drought, and relatively
speaking, drought events last longer.

It can be found from the SPI sequences (Figure 3): in the Songpan region, from 1966
to 1972, from 1978 to 1991, and from 1996 to 2008, the SPI values were mostly negative,
and the SPI values in other periods were mostly positive. This means that most of the
drought events occurred in the period from 1966 to 1972, from 1978 to 1991, and from
1996 to 2008. In Heishui region, SPI was mostly negative from 1966 to 1972, from 1986 to
1987, and from 1996 to 2008, and SPI was mostly positive in other periods; in the Maoxian
region, the frequency of positive and negative SPI was similar from 1966 to 1975, and the
SPI was mostly negative from 1985 to 1988 and from 1991 to 2010, it can be seen that the
drought lasted for a long time in the Maoxian region; in the Lixian region, SPI was mostly
negative from 1966 to 1969, 1978–1980, and 1997–2012, and mostly positive in other periods.
Meanwhile, Figure 3 shows that drought events occurred more frequently in Lixian during
1997–2012, and the drought was more serious.

It can be seen from the comparison of SPI sequences of different time scales, compared
with SPI1, SPI3 can integrate some small drought events, which is suitable for seasonal
drought and can better reflect agricultural drought scenarios. Therefore, this study is
mainly based on SPI3 for drought assessment.
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According to the calculated SPI value, the drought characters of D, S, and P can be ex-
tracted to evaluate the drought. Based on the SPI3, the drought duration in Songpan, Heishui,
Maoxian, and Lixian regions from 1965 to 2016 were 166, 160, 183, and 175 months, respec-
tively. The drought duration of each region on the interdecadal scale (1960s (1966~1969), 1970s
(1970~1979), 1980s (1980~1989), 1990s (1990~1999), 2000s (2000~2009), and 2010s (2010~2016))
was accounted and analyzed, the results were shown in Figure 4. Figure 4 shows that the
drought duration of Songpan and Heishui in the 1980s and 2000s was longer than that
of other decades. Maoxian region in the 1980s and 2000s had a longer drought duration,
while Lixian region in the 1960s and 2000s had a longer drought duration. The drought
duration of the four regions in 2010s was relatively short. Overall, the drought duration
was relatively long in the 1980s and 2000s and was the shortest in the 2010s.

These adverse effects of drought disasters in the UMR are recorded in the above-men-
tioned reports.

 

 

Figure 4. Variation trend of interdecadal average annual drought duration in different regions.
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All historical drought events in four regions from 1966 to 2016 were analyzed as
follows. According to monthly statistics, historical drought events in Songpan mostly
occurred in March; historical drought events in Heishui mostly started in January, June
and December; and historical drought events in Maoxian mostly started in March June and
October, historical drought events in Lixian mostly started in January, February, and April.
According to seasonal statistics, drought events mostly occurred in spring and winter in the
Songpan region, the proportion are 29.17% and 29.17%, respectively. In the Heishui region,
the proportion of drought events that occurred in winter was 36.17%. The proportion of
drought events in spring and summer was 27.66% and 29.79%, respectively, in the Maoxian
region. In the Lixian region, the proportion of drought events that occurred in spring and
winter was 24.49% and 32.65%, respectively.

Table 3 lists some of the more serious drought events. It shows that the drought
duration in Maoxian and Lixian is not only longer than that in the other two regions, but
the severity of major historical drought events is also stronger than that in other regions,
indicating that the drought risk in Maoxian and Lixian is relatively high.

Table 3. Statistics of severe drought events in various regions from 1966 to 2016.

Region The Beginning and End of the Drought Severity of Drought (S)

Songpan

February to July 1968 S = 12.64
December 1968 to April 1969 S = 11.46

June to December 1970 S = 12.07
September 1986 to April 1987 S = 12.92

Heishui

May 1970 to March 1971 S = 16.08
September 1986 to May 1987 S = 11.99

July to November 1997 S = 9.84
June to December 2002 S = 13.5

Maoxian

June 1985 to June 1986 S = 16.48
January 1997 to January 1998 S = 12.79

July 2006 to February 2007 S = 11.4
July 2008 to February 2009 S = 14.02

Lixian

July 1966 to June 1967 S = 19.13
May to December 2000 S = 12.22

January to September 2006 S = 14.65
April to October 2009 S = 11.52

According to news reports, most of the drought disasters in Sichuan in the past
20 years occurred in the 2000s, which confirms the reliability of our above analysis. On
10 April 2005, Sichuan Online-West China Metropolis Daily reported the phenomenon of
“Minjiang Dehydration”. The reporters found in Nanxin Town, Maoxian that the UMR
had dried up and the sand was cracked, like a Gobi (http://news.sina.com.cn/o/2005-0
4-10/07385606826s.shtml, the accessed date is 7 July 2021). On 20 August 2006, Sichuan
Online-Huaxi Metropolis Daily reported the phenomenon of “Minjiang River Drying”. The
snow cover of the five counties in the UMR in 2006 was lower than usual and showed a
trend of decreasing year by year. The riverbed in Mianchi Township of Wenchuan dried up
and cracked (http://news.sina.com.cn/c/2006-08-20/07389796123s.shtml, the accessed
date is 8 July 2021). On 4 April 2007, Sichuan Online-Huaxi Metropolis Daily reported
that Sichuan is facing a severe drought in spring and summer, and 5.9 million people
have difficulty drinking water (http://news.sohu.com/20070404/n249186525.shtml, the
accessed date is 8 July 2021). Sichuan News Net-Chengdu Business Daily reported on
27 February 2010 that since 2010, the western Sichuan Plateau has been experiencing high
temperatures and low precipitation, there has been a phenomenon of droughts in autumn
and winter, and the mountain snow cover was nearly 50 percent less than last year, or even
at the same time for many years in February 2010.

These drought disasters have brought severe impacts on the local area in many ways:
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1. Impact on humans: it has caused difficulties in drinking water for humans and
animals; the dry-flow area of the Minjiang River cuts off the sources of income
for residents in nearby areas who feed on and wash cars along the way; frequent
“dehydration” in several sections of the Minjiang River directly affects humans when
it comes to urban and rural life and industrial and agricultural production that rely
on the Minjiang River for water supply;

2. Impact on agriculture: the continuous drought has caused the crops grown by local
residents to turn yellow and reduce production, the supply of agricultural products is
insufficient, and the price rises;

3. Impact on wild and rare animals: The construction of water conservancy projects in
the UMR has changed the natural properties of the runoff and has caused a serious
impact on the aquatic animals and plants of the Minjiang River. The fish species in
the UMR have dropped from 40 species in the 1950s to 16 species today;

4. Impact on the environment: continuous drought has reduced the capacity of the water
environment, which has aggravated the water pollution of the Minjiang River and the
deterioration of the water environment. These adverse effects of drought disasters in
the UMR are recorded in the above-mentioned reports.

3.3. Marginal Distribution

To explore the joint distribution of bivariate, we must first determine the marginal
distribution of univariate. Calculate the value of SPI3 in each region, using Weibull
(wbl), Normal, Log-normal (logn), Gamma (gam), Exponential (exp), Logistic (log), Log-
logistic, General Extreme Value (gev), and Generalized Pareto (gpa) distribution functions
fit the marginal distribution of D, S, and P, respectively. The chi-square goodness of fit
test was used to select the optimal marginal distribution of drought duration, severity,
and peak in each region under the condition of significance level α = 0.05. The optimal
marginal distribution and the corresponding parameters estimated by maximum likelihood
were shown in Table 4. Table 4 illustrates that the Exponential, Log-normal, and Log-
logistic distribution were selected as the best marginal distribution of the drought duration
in the four regions. Log-normal and Log-logistic were chosen as the optimal marginal
distributions of the drought severity characteristics in the four regions, the best marginal
distributions of drought peak were Exponential, Log-normal, and Logistic. Therefore, for
the characteristic of drought duration and drought severity, it is a good choice to use Log-
Logistic distribution as their marginal distribution. Log-normal distribution also has good
applicability for drought peak. According to the parameter values of the best marginal
distribution provided in Table 4, the value of each characteristic quantity corresponding to
a specific cumulative distribution probability can be easily calculated according to needs.

Table 4. Marginal distribution of drought characteristics in each region.

Region Drought Duration Parameter Drought Severity Parameter Drought Peak Parameter

Songpan exp μ = 3.4583 logn μ = 1.2298 logn μ = 0.3538
σ = 0.7807 σ = 0.4053

Heishui logn μ = 1.0577 log-logistic μ = 1.2213 logn μ = 0.4216
σ = 0.5916 σ = 0.3970 σ = 0.3603

Maoxian log-logistic μ = 1.1237 log-logistic μ = 1.1868 log μ = 1.4769
σ = 0.3614 σ = 0.3955 σ = 0.3550

Lixian log-logistic μ = 1.1060 log-logistic μ = 1.1455 logn μ = 0.3749
σ = 0.3238 σ = 0.3813 σ = 0.3595
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In order to measure the correlation between the three characteristics of drought
duration, drought severity, and drought peak, the Spearman (ρ) and Kendall (τ) correlation
parameters between different drought characteristics were calculated. The closer the
correlation coefficient is to 1, the stronger the correlation. Table 5 shows the calculation
results. The calculation results indicate that the Spearman correlation coefficients of D
and S are all higher than 0.851, reaching the maximum in Heishui area (0.886), and the
Kendall correlation coefficients are all higher than 0.727, and reaching the maximum
value (0.757) in Songpan and Heishui regions; the Spearman correlation coefficient of S
and P are all higher than 0.721, reaching the maximum in Lixian region (0.864), Kendall
correlation coefficients are all higher than 0.530, and also reaching the maximum in Lixian
region (0.691), which shows that there is a significant correlation between the two pairs
of characteristics. Although the correlation coefficient value of D and P are smaller than
the other two pairs of characteristic combinations, the correlation coefficients of Songpan,
Heishui, and Lixian regions have passed the significance test of α = 0.01, and the correlation
coefficients of Maoxian have passed the significance test of α = 0.05, which shows that
there is a significant correlation between each characteristic. Since the positive correlation
between the drought characteristics and the good fitting effect of each characteristic through
different distribution functions, the copula function can be used to simulate the joint
probability distribution between the drought characteristics.

Table 5. Correlation coefficients among drought characteristics.

Region
D-S D-P S-P

Spearman (ρ) Kendall (τ) Spearman (ρ) Kendall (τ) Spearman (ρ) Kendall (τ)

Songpan 0.851 ** 0.757 ** 0.640 ** 0.458 ** 0.807 ** 0.614 **
Heishui 0.886 ** 0.757 ** 0.424 ** 0.318 ** 0.740 ** 0.556 **
Maoxian 0.857 ** 0.727 ** 0.342 * 0.247 * 0.721 ** 0.530 **

Lixian 0.851 ** 0.732 ** 0.590 ** 0.463 ** 0.864 ** 0.691 **

** indicates that the correlation coefficient has passed the significance test of α = 0.01. * indicates that the correlation coefficient has passed
the significance test of α = 0.05.

3.4. Joint Distribution of Drought Characteristics

This study used five common copula functions, Clayton, Frank, Gumbol-Hougaard,
Gaussian, and t Student copulas, to set up the joint distribution of the drought characteris-
tics based on SPI3, and the AIC method is used to evaluate the best copula function.

The AIC value in Table 6 indicates the appropriateness of t Student, Gaussian, Clayton,
and Frank to establish the joint distribution of D-S. Gumbol-Hougaard is not applicable to
establish the joint probability distribution of D-S at all regions. The five copula functions
of Clayton, Frank, Gumbol-Hougaard, Gaussian, and t Student copulas are all suitable
for describing the joint probability distribution of S-P, as well as D-P. The copula function
with the smallest AIC value is selected as the optimal copula function of the bivariate joint
probability distribution of each region. The best copula function and the corresponding
parameters are shown in Table 7. Table 7 indicates that Gaussian and Frank copula functions
are the best copula functions of D-S, as well as D-P. The best copula function of S-P is
Gaussian copula function. It can be found from the optimal copula functions that for
the entire UMR, the Gaussian Copula function is a good choice for simulating the joint
distribution of D-S, D-P, and S-P.
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Table 6. AIC evaluation value of each copula function.

Region
D-S D-P S-P

Copula AIC Value Copula AIC Value Copula AIC Value

Songpan

t Student −28.2717 t Student −10.7198 t Student −46.2465
Gaussian −27.6555 Gaussian −13.1397 Gaussian −48.1792
Clayton −15.7287 Clayton −3.3449 Clayton −32.6926
Frank −31.5535 Frank −15.8140 Frank −46.4643

Gumbol 98.6545 Gumbol −14.7983 Gumbol −46.8826

Heishui

t Student −69.6858 t Student −3.2975 t Student −30.5845
Gaussian −71.6859 Gaussian −5.2975 Gaussian −32.5845
Clayton −47.6935 Clayton −1.4329 Clayton −24.5563
Frank −63.0136 Frank −4.8052 Frank −30.1821

Gumbol 90.2540 Gumbol −4.9524 Gumbol −29.6669

Maoxian

t Student −70.0885 t Student −4.2993 t Student −32.0909
Gaussian −72.0882 Gaussian −6.2992 Gaussian −34.0903
Clayton −49.3726 Clayton −1.2425 Clayton −30.0014
Frank −61.1346 Frank −5.1332 Frank −33.1516

Gumbol 73.1808 Gumbol −5.4247 Gumbol −26.4213

Lixian

t Student −76.8539 t Student −15.7463 t Student −53.7382
Gaussian −78.3507 Gaussian −17.7463 Gaussian −55.7379
Clayton −56.7514 Clayton −4.4238 Clayton −27.8824
Frank −66.0320 Frank −16.5257 Frank −54.2777

Gumbol 82.8494 Gumbol −22.8013 Gumbol −57.3134

Table 7. The optimal copula function of the bivariate joint distribution of each region.

Region
D-S D-P S-P

Copula Parameter Copula Parameter Copula Parameter

Songpan Frank 6.9027 Frank 4.7848 Gaussian 0.8053
Heishui Gaussian 0.8898 Gaussian 0.3792 Gaussian 0.7219
Maoxian Gaussian 0.8907 Gaussian 0.4016 Gaussian 0.7320

Lixian Gaussian 0.8987 Gaussian 0.5760 Gaussian 0.8324

3.5. Frequency Analysis of Drought Characteristics in Univariate and Bivariate

According to the best marginal distribution of each characteristic selected in Section 3.3,
this paper gives the univariate cumulative probability distribution diagram of each char-
acteristic through calculation. As shown in Figure 5, the cumulative probability value
corresponding to the specific value of the characteristic can be read. For example, when
the cumulative probability P(X ≤ x) in Maoxian area is 0.8, the corresponding drought
duration (D) is 5.01 months, the drought severity (S) is 5.78, and the drought peak (P)
is 1.95.

According to the optimal copula function of the bivariate joint distribution of drought
characteristics selected in Chapter 3.4, the bivariate joint probability distribution based on
SPI3 (including P(D ≤ d, S ≤ s), P(D ≤ d, P ≤ p) and P(S ≤ s, P ≤ p)), the joint probability
distribution of the bivariate drought characteristics can be read from Figure 6. For example,
when the cumulative probability of D, S and P in Maoxian area is 0.8, the bivariate joint
probability P(D ≤ 5.01, S ≤ 5.78) is 0.7562, and P(D ≤ 5.01, P ≤ 1.95) is 0.6764, and
P(S ≤ 5.78, P ≤ 1.95) value is 0.7177. These results will help quantify the frequency of
drought events of different degrees.
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3.6. Return Period Analysis

Return period analysis is an important part of drought assessment. For the determi-
nation of the drought return period, the expected value of the drought interval must first
be determined. According to the analysis of drought characteristic variables, the expected
drought interval E(L) for the four regions of Songpan, Heishui, Maoxian, and Lixian are
12.71, 12.97, 12.98, and 12.27 months, namely 1.0590, 1.0807, 1.0816, and 1.0226 years, which
are similar to 1 year. The meteorological drought interval in southwest China is reported
to be mainly affected by the superposition of monsoon and drought disturbances. The
drought disturbances are mainly related to the ENSO circulation, which is closely related
to the interannual planetary westerly disturbance and the interannual SST disturbance at
the equator [43].

First the univariate return period (T) levels are taken to be 2, 5, 10, 20, and 50a; the
corresponding values of D, S, and P are calculated, respectively, and the corresponding
two-dimensional Copula function values are calculated by the optimal Copula functions of
different characteristic variables. According to Equations (11) and (12), the corresponding
bivariate joint return periods at a given univariate return period level are calculated. The
computed values are showed in Table 8.

Table 8. Return periods of joint distribution of drought characteristics.

Region T/(a) D/(m) S P
D-S D-P S-P

T/a T’/a T/a T’/a T/a T’/a

Songpan

2 2.2395 3.2300 1.3825 2.4418 1.6936 2.6271 1.6146 2.467 1.6804
5 4.4017 6.4254 1.9702 8.1839 3.5996 9.7694 3.3598 7.6023 3.7249
10 6.7901 9.0771 2.3645 23.3260 6.3642 29.1736 6.0342 17.4178 7.0132
20 8.7848 12.0887 2.7801 74.0559 11.5611 98.0556 11.1356 39.5149 13.3881
50 12.4807 15.7218 3.3386 −398.1203 26.2751 540.3061 26.2129 115.6114 31.8976

Heishui

2 2.7375 3.1812 1.4701 2.3226 1.7561 3.0589 1.4857 2.5768 1.6342
5 4.6431 5.6618 2.0244 7.0912 3.9849 14.4479 3.0983 9.0435 3.5538
10 5.9894 7.8725 2.3855 14.7355 7.5679 37.7339 5.7637 20.1849 6.6464
20 7.6368 10.7294 2.7262 32.0018 14.5451 108.3952 11.0163 47.6709 12.6546
50 9.7106 15.5482 3.1969 88.3791 34.8613 427.4921 26.5528 147.4754 30.1031

Maoxian

2 2.9060 3.0720 1.4188 2.3205 1.7573 3.0238 1.4941 2.5618 1.6403
5 4.9202 5.5221 1.9341 6.6997 3.9882 12.5709 3.1206 8.3238 3.5732
10 6.7365 7.5708 2.2566 14.6717 7.5849 35.9097 5.8088 19.8023 6.6889
20 8.6969 10.46945 2.4997 31.9433 14.5572 101.4634 11.0933 46.5004 12.7397
50 12.5496 14.9461 2.8703 88.1931 34.8903 391.3169 26.7062 142.9931 30.2969

Lixian

2 2.9797 3.0913 1.4401 2.3289 1.7525 2.8477 1.5412 2.4470 1.6911
5 4.7525 5.2891 1.9535 6.6645 4.0008 10.3043 3.3008 7.3706 3.7832
10 6.1348 7.3876 2.3063 14.5214 7.6257 26.5472 6.1602 16.6493 7.1461
20 7.8213 9.7371 2.6239 31.4066 14.6714 67.9017 11.7271 37.2396 13.6711
50 11.2152 14.3690 3.0104 86.6317 35.1409 232.1980 28.0164 106.4765 32.6709

Table 8 illustrates that the univariate return period is between the joint return period
T (‘and’ event) and T’ (‘or’ event). The bivariate joint return period T is always bigger than
T’, because the calculation of the return period of the ‘and’ event is more restrictive than
that of the ‘or’ event. Taking the Maoxian region as an example, the 50-year return periods
of univariate of D and S are both between the TDS = 88.1931a and the T’DS = 34.8903a.
In addition, under the same univariate return period level, the duration of drought in
Maoxian was greater than that of the other three regions, and the severity and peak of
drought in Songpan were greater than those of the other three regions, which indicates that
the drought duration of Maoxian lasted longer than other three regions, and the severity
and peak of the drought in the Songpan is more severe than other regions. Since the
optimal marginal distribution function and optimal copula function have been obtained
above, and the corresponding parameters have been calculated, in addition to the return
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periods corresponding to the drought events of different degrees that have been calculated
in Table 8, the return period corresponding to the value of a particular drought duration,
drought severity, or drought peak can also be determined according to need.

4. Conclusions and Suggestions

4.1. Conclusions

Drought assessment is critical to water resources planning and management. This
article aims to comprehensively analyze the meteorological drought in the UMR.

In this paper, the change trends of SPI in different time scales in four regions were
analyzed. The results show that the SPI sequence on a short time scale is more discrete and
more able to reflect small drought events. The long-term SPI can better reflect the long-term
trend of drought. The UMR showed the historical dry-wet evolution of humidification
in short-term and drought in long-term. By analyzing the trend of SPI at various time
scales, it is found that Maoxian and Lixian regions where the dry valleys are more widely
distributed are more likely to become more arid.

Based on SPI3, the duration, severity, and peak of meteorological drought were
estimated, and the drought events in each region were calculated. The results showed that
the drought lasted the longest in Maoxian from 1966 to 2016, which was 183 months, the
droughts in Songpan, Heishui, and Lixian lasted 166, 160, and 175 months, respectively.
According to the decadal statistics of the drought duration in each region, the results show
that the drought duration in the study area was relatively long in the 1980s and 2000s, and
the drought duration was the shortest in 2010s. Drought events in the study area mostly
started in winter and spring. Compared with the statistics of notable drought events in
different regions, Maoxian not only has a longer drought duration, but also has a higher
severity of historical drought events. Lixian has the highest severity of drought events
in history.

According to the results of the chi-square test, this study determines the optimal
marginal distribution of drought characteristics from Weibull (wbl), Normal, Log-normal
(logn), Gamma (gam), Exponential (exp), Logistic (log), Log-logistic, General Extreme
Value (gev), and Generalized Pareto (gpa) distribution functions. For drought duration, it
is a good choice to use Log-logistic distribution as its marginal distribution. Log-normal
distribution also has good applicability for drought peaks. The drought severity in different
regions has different optimal marginal distributions, including Exponential, Log-normal,
Logistic, and Log-logistic distributions.

Due to the dependence of the drought characteristics, this study uses Clayton, Frank,
Gumbol-Hougaard, Gaussian and t Student five copula functions to fit the bivariate joint
distribution to present a more realistic joint distribution result. According to the AIC
value, the joint distribution of drought characteristics that is most suitable to describe each
region is determined. The results show that due to differences in the correlation between
drought characteristics in different regions, the applicable copula functions may also be
different. For example, the optimal copula functions for D-S and D-P in different regions
include Gaussian and Frank copula functions. As far as the entire study area is concerned,
the Gaussian copula function is a good choice for the simulation of the joint probability
distribution of the D-S, D-P and S-P.

In addition, based on the optimal marginal distribution and the optimal copula
function, this paper calculates the univariate return period and the bivariate joint return
period of drought characteristics to reflect the frequency of drought events of different
degrees.

In general, Maoxian and Lixian have a higher risk of drought than Songpan and
Heishui. According to the drought indices at different scales, almost all the SPI sequences
at different scales in Songpan and Heishui showed an obvious increasing trend, while the
SPI12 in Maoxian and Lixian showed an obvious trend of becoming drier. Maoxian has the
longest drought duration among the four historical drought events. From the perspective
of drought severity, the historical drought events in Lixian were more serious than those in
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the other three regions. However, this does not mean that the drought disaster in Songpan
and Heishui is not serious, because except for Maoxian, the drought lasted for 183 months,
the historical drought duration in the other three regions is more than 160 months, and
serious drought events have occurred in all regions.

In short, the results of this paper can supply effective information for the study area
to assess drought risk, so as to optimize the allocation of water resources and reduce the
impact of drought on the UMR in the future.

4.2. Suggestions

Due to the frequent occurrence of drought disasters in the UMR, this article puts
forward some suggestions for drought disaster management.

First of all, a good ecological environment is a strong barrier against drought disasters.
Aiming at the fragile ecological environment in the UMR, new drought-resistant tree
species can be cultivated, and various types of plants such as arbor, shrubs, grass, and cane
can be planted to build a multi-level structure of the forest system to strengthen ecological
barriers. Secondly, local residents can choose to plant crops with strong drought resistance
to avoid the residents’ diet from being greatly affected when drought disasters occur. Based
on the concept of water conservation, relevant departments of the Sichuan government can
re-allocate the limited water resource input in terms of urban and rural life, industrial and
agricultural production, encourage and promote residents and factories in Sichuan to take
concrete water-saving measures, and improve people’s water-saving awareness.
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Abstract: Rainfall partitioning by trees is an important hydrological process in the contexts of water
resource management and climate change. It becomes even more complex where vegetation is sparse
and in vulnerable natural systems, such as the Caatinga domain. Rainfall interception modelling
allows extrapolating experimental results both in time and space, helping to better understand this
hydrological process and contributing as a prediction tool for forest managers. In this work, the
Gash model was applied in two ways of parameterization. One was the parameterization on a daily
basis and another on a seasonal basis. They were validated, improving the description of rainfall
partitioning by tree species of Caatinga dry tropical forest already reported in the scientific literature
and allowing a detailed evaluation of the influence of rainfall depth and event intensity on rainfall
partitioning associated with these species. Very small (0.0–5.0 mm) and low-intensity (0–2.5 mm h−1)
events were significantly more frequent during the dry season. Both model approaches resulted in
good predictions, with absence of constant and systematic errors during simulations. The sparse
Gash model parametrized on a daily basis performed slightly better, reaching maximum cumulative
mean error of 9.8%, while, for the seasonal parametrization, this value was 11.5%. Seasonal model
predictions were also the most sensitive to canopy and climatic parameters.

Keywords: rainfall partitioning; dry tropical forest; gash model; interception modelling

1. Introduction

Water availability is limited in arid and semiarid regions, with rainfall interception
playing an important role on site and catchment water balances, as well as in the context of
climate change [1]. Rainfall partitioning by trees is an intricate process, mainly affected
by canopy and weather factors, such as the characteristics of rainfall events, becoming
even more complex where vegetation is sparse [2]. Thus, rainfall interception modelling
appears as an important tool for extrapolating experimental results both in time and space,
helping to better understand this hydrological process, as well as to implement effective
water resource management and land use planning.

Many mathematical models have been developed, validated and successfully ap-
plied to simulate rainfall partitioning in different forest types, including coniferous and
hardwood stands [3–5], rainforests [6,7], deciduous and sparse canopies [8–10], mixed
stands [11] and crops [12]. However, there are few studies about simulating or evaluating
the rainfall interception in Caatinga vegetation [1,13–16]. This domain corresponds to an
area of tropical dry forest with deciduous tree-shrubs, which covers close to one million
km2 in the Northeast of Brazil, occupying around 50% of this region [17]. Caatinga is
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a fragile ecosystem due to the scarce water resources and the anthropogenic pressures,
mainly the intensive exploitation of the region by agriculture and livestock [18]. There
is a high temporal and spatial variability of the rainfall regime in this domain, both con-
sidering annual and individual events. Specifically, rainfall that occurs in the semi-arid
Northeast of Brazil is concentrated over a short period, with the dry season lasting from
five to nine months and resulting in uncertainties about the water regime [1]. Caatinga
ecosystem is highly dynamic and its vegetation responds quickly to climatic conditions due
to morphological and physiological adaptations to aridity by many species of plants. The
Caatinga species comprise a whole range of deciduousness, including plants that retain
their leaves throughout all the year and other that are leafless during seven months each
year [15,17]. The main factor that controls the structure and distribution of vegetation is
the precipitation, but photoperiod and nutrients also affect the Caatinga species [18].

More studies about rainfall interception in the Caatinga domain are important to
increase the spatial and temporal accuracy in rainfall partitioning simulations and to better
understand this process in dry tropical forests. Additionally, these studies may also benefit
watershed and forest managers of other similar arid and semiarid ecosystems, since dry
tropical forests are recognized as one of the world’s major biomes and are found in a wide
area extending from the Amazon basin in South America towards northern Mexico and
the Caribbean [19].

The analytical Gash models [9,20] are most often used when predicting rainfall in-
terception due to their ease of use, low parameter requirement and low programming
complexity [21]. These models are capable of estimating rainfall partitioning by using a
series of parameters based on canopy structure, evaporation rate and rainfall regime [22].
The original analytical Gash model [20] represents rainfall input as series of discrete storms,
each comprising a wetting up period, a saturation period and a drying out period [7].
The sparse version [9] encompasses the case of forest stands with significant open spaces
between tree canopies, also introducing some minor corrections [21]. The main difference
between these two versions is that the sparse model is based on evaporation and canopy
storage per unit area of canopy cover rather than per unit of ground area. This overcame a
limitation in the description of sparse forests by the original model, which can prevent the
simulated canopy from wetting up [9,11].

Both original and sparse Gash models [9,20] are typically applied using mean annual
or seasonal rainfall intensity and evaporation rates, which are considered as constant
parameters in all events during the simulated period [2,8,13]. The same occurs with the
canopy storage capacity, canopy cover fraction and threshold value required to saturate
the canopy [5,23,24]. The sparse Gash model was already parametrized on a daily basis,
considering a linear relationship between leaf area index and canopy storage capacity
during the plant cycle [12,22]. These model adaptations, based on estimates of parameters
for individual storm events, were also compared to other methodologies [3], reinforcing
that the daily changes, observed in canopy structures, especially for deciduous vegetation,
tend to reduce systemic simulation inaccuracies.

Although a number of works have been focused on applying and evaluating the Gash
model with different parametrizations and for distinct forest types, its parametrizations on
daily and seasonal bases were not studied for the Caatinga domain. These procedures tend
to better represent the effects of changes in canopy cover on the rainfall interception process,
mainly in this deciduous ecosystem, where canopy structure often changes gradually, but
relatively rapidly. Furthermore, the adjustments and modifications required to perform
such simulations allow a more detailed and accurate evaluation of the influence of rainfall
depth and event intensity on rainfall partitioning. Therefore, the objective of this study
was to parametrize the sparse Gash model on daily and seasonal bases, validating these
approaches for simulating rainfall interception from five Caatinga species (Spondias tuberosa,
Commiphora leptophloeos, Cnidoscolus quercifolius, Aspidosperma pyrifolium and Cenostigma
pyramidale), improving the description of this hydrological process already reported in the
scientific literature for dry tropical forests by enhancing the temporal and spatial accuracy
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of the estimates performed by the model. Additionally, the influence of rainfall depth and
event intensity on rainfall partitioning associated with these species was evaluated.

2. Materials and Methods

2.1. Meteorological and Rainfall Measurements

This study was conducted within a private property with Caatinga vegetation area
of 81,000 m2 and density of 930 trees ha−1, located in the Floresta municipality, Pernam-
buco State, Brazil (08◦18′31” S, 38◦31′37” W, 378 m a.s.l.). Vegetation in the experimental
plot is mainly composed by the native species Spondias tuberosa, Commiphora leptophloeos,
Cnidoscolus quercifolius, Aspidosperma pyrifolium and Cenostigma pyramidale (Figure 1), which
are randomly distributed over the study site and are representative of the Caatinga do-
main [17,25–27]. Table 1 presents the main characteristics of these tree species [19], which
are common to other species found in the Caatinga domain [14,16].

Figure 1. Study area, monitored trees and micrometeorological tower.
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Table 1. Main characteristics of the tree species used in the rainfall interception measurement:
number of individuals (N), average diameter at breast height (DBH), average number of stems (NB),
average tree height (H) and average tree crown projected area (CPA).

Scientific
Name

DBH
(m)

NS
(-)

H
(m)

CPA
(m2)

N
(-)

C. pyramidale 0.08 3 4.9 19.4 415
C. quercifolius 0.13 2 6.5 33.7 35
A. pyrifolium 0.07 3 4.1 12.5 280
C. leptophloeos 0.15 1 5.5 64.7 10

S. tuberosa 0.21 5 4.9 99.9 10

The climate of the region according to the Köppen classification is BSh, corresponding
to a tropical semiarid hot type [28], and the Thornthwaite Aridity Index is 0.48 [29],
confirming the region as semiarid. Average annual precipitation, wind speed and net solar
radiation are 489.3 mm, 2.3 m s−1 and 22.2 MJ m−2 day−1, respectively. Mean annual air
temperature is around 26.1 ◦C, with mean monthly temperatures ranging from 23.3 ◦C in
July to 28.3 ◦C in November. Mean annual relative humidity is 61.9%, with mean monthly
values between 50.3% in October and 70.4% in April.

Micrometeorological measurements were performed by electronic sensors installed on
a galvanized iron tower at 8 m above the ground (Figure 1). Data were registered and stored
in a datalogger (CR10X, Campbell Scientific, Logan, UT, USA) and measurements were
conducted continuously from 1 March 2016 to 30 September 2017. The wind speed and
direction were measured by an anemometer (03002 Wind Sentry, R. M. Young Company,
Traverse, MI, USA). A quantum sensor (SQ-321, Apogee Instruments, Logan, UT, USA)
measured the photosynthetically active radiation (PAR), while radiation balance was
measured by a net radiometer (NR-Lite, Kipp & Zonen, Delft, The Netherlands) and the
global solar radiation was obtained by a pyranometer (SP-230, Apogee Instruments, Logan,
UT, USA). An automatic rain gauge (CS700-L, Hydrological Services Pty, Sydney, Australia)
registered the gross rainfall.

The photosynthetically active radiation transmitted through the canopies was mea-
sured at two below-canopy positions, previously defined in representative trees of the
predominant Caatinga species in the study area, by hand-moving two linear quantum sen-
sors (SQ-321, Apogee Instruments, Logan, UT, USA) from one tree to another. Additionally,
three aspirated psychrometers, made of T-type thermocouples (copper-constantan), were
used for obtaining the dry and wet bulb temperatures at 0.5, 1.5 and 2.5 m above the mean
canopy level. Two soil heat flux plates (HFT3-REBS, Hukseflux, Delft, The Netherlands)
were also installed in the top soil layer at a depth of approximately 0.05 m.

A ceptometer (LP-80, Decagon Devices, Pullman, DC, USA) was used to measure
the fractional interception of photosynthetically active radiation. The incident radiation
measurements were performed in open areas without physical obstacles, not including
cloudy days or at dusk. The transmitted radiation measurements occurred under the
tree canopies. One incident and four transmitted radiation measurements in different
directions (north, east, south and west) were executed for each sample of predominant
Caatinga species, during 14 campaigns with 135 readings each. Based on the fractional
interceptions of photosynthetically active radiation, the integrated microprocessor of the
ceptometer estimated the leaf area index based on a simplified version of the Norman–
Jarvis radiation transmission and scattering model [30,31]. Polynomial equations were then
fitted to measure fractional interception of photosynthetically active radiations obtained by
the ceptometer and registered in the datalogger for estimating daily leaf area indices for
each studied species.

Throughfall was measured by 15 manual collection gauges, placed randomly under-
neath the vegetation canopy, comprising three gauges per predominant Caatinga species.
Measurements were performed after each rainfall event and the gauges were installed at
1.0 m above ground level, presenting orifices of 0.07 m2. Gauges were installed at a half-

90



Water 2021, 13, 2494

way distance between canopy edge projection and stem in order to minimize the effects of
spatial variability on the magnitude of average throughfall [13]. The area under each tree
was divided by three diagonals considering the crown projected limits, totaling six sam-
pling points equally spaced at angles of 60◦. The gauges were distributed in three sampling
points, being representative of a 120◦ circular sector bisected by the gauge longitudinal
axis and centered on the tree position. Each gauge was relocated after every three rainfall
events to a new position correspondent to the empty sampling point located beside it and
following the area clockwise. This procedure minimizes errors originating from spatial
variability and improves long-term sampling [32,33]. Furthermore, it allows to derive
reliable mean throughfall per tree, even with a limited number of gauges [2,10,23,34].

Stemflow was measured after each rainfall event by installing twelve zinc gutters of
0.15 m in height, attached to the tree stems at 1.3 m above ground level and connected to
individual plastic containers. A hose was fed into each plastic container and measurements
were performed with a graduated test tube, with the purpose of reducing evaporation.
Due to the tortuous trunks and rough bark of S. tuberosa and C. leptophloeos, the stemflow
monitoring was restricted to the other three species, which presented a projected crown
radius greater than 0.2 m and were sub-divided into two classes of diameter at breast
height [35], that were 0.05 m ≤ DBH < 0.10 m and 0.10 m ≤ DBH ≤ 0.20 m. This sampling
plan assured reliable stemflow measurements, since the two unmonitored trees have canopy
structures similar to other species with low stemflow [36]. Spondias tuberosa presents low
inclined branches with many flow path obstructions that create drip points, enhancing
throughfall production, while Commiphora leptophloeos has horizontal leaves and only one
stem.

The effective rainfall interception was obtained for each rain event by subtracting the
gross rainfall by the sum of measured throughfall and stemflow [34,37]. Each rainfall event
was defined as a period when cumulative gross rainfall exceeded 0.2 mm, provided that
there was a minimum of 6 h without rainfall between events [2,7,24,38]. A consistency
analysis was performed on the rainfall and micrometeorological data with electronic
spreadsheet functions to remove all inconsistent values and outliers. Visual analysis of
graphs relating the variables to time complemented the data evaluation.

2.2. Sparse Gash Model Parametrized on Daily and Seasonal Bases

A daily parametrization for the sparse Gash model was proposed in this study for
simulating the rainfall interception of Caatinga species [3,12,22] and was compared with
a seasonal parametrization (Table 2), which was based on mean constant parameters for
rainy and dry seasons.

In both approaches, the net rainfall interception was estimated as [9]

IN = IC + IW + IS + IA, (1)

where IN is the net rainfall interception (mm), IC is the interception insufficient to saturate
the canopy (mm), IW is the rainfall interception during canopy wetting (mm), IS is the
rainfall interception during saturated canopy conditions (mm) and IA is the evaporation
after rain ceased (mm).

The original and sparse Gash models also include a formulation for stemflow and evap-
oration of water stored on wetted trunks. However, the cumulative stemflow accounted
for only 0.7% of total rainfall for the five studied Caatinga species and was considered
negligible during simulations in this work. Thus, an equivalent interception was calculated,
corresponding to the difference between gross rainfall and throughfall [7,8,34].
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Table 2. Equations describing the components of rainfall interception in the seasonal and daily
parametrizations of the sparse Gash model proposed in this paper.

Interception Component Seasonal Basis Daily Basis

For m storms insufficient to saturate the canopy (PG ≤ PS)

Evaporation from the whole
canopy (IC)

m
∑

i=1
cy PGi

m
∑

i=1
ci PGi

For n storms sufficient to saturate the canopy (PG > PS)

Wetting up of canopy (IW) n cy (PSy − Scy)
n
∑

i=1
ci (PSi − Sci)

Wet canopy evaporation
during storms (IS)

cyEcy
Ry

n
∑

i=1
(PGi − PSy) ciEci

Ri

n
∑

i=1
(PGi − PSi)

Evaporation after storms
cease (IA) n cy Scy

n
∑

i=1
ci Sci

M, number of storms insufficient to saturate the canopy (dimensionless); i, mean value for a rainfall event
(dimensionless); c, canopy cover fraction (dimensionless); y, mean value for rainy or dry season (dimensionless);
PG, gross rainfall (mm); n, number of storms sufficient to saturate the canopy (dimensionless); PS, threshold value
required to saturate the canopy (mm); Sc, canopy storage capacity per unit area of cover (mm); Ec, evaporation
rate from wet canopy per unit area of cover (mm h−1); R, rainfall rate or rainfall intensity (mm h−1).

2.3. Estimation of Meteorological and Canopy Parameters

The threshold value required to saturate the canopy (PS, mm) was obtained on a
seasonal or daily basis, depending on the model approach, as [9,12,22]

PSy = −
(

RySCy

ECy

)
ln

(
1 − ECy

Ry

)
, (2)

PSi = −
(

RiSCi

ECi

)
ln

(
1 − ECi

Ri

)
, (3)

When using the parametrization on a daily basis, the rainfall rate (Ri, mm h−1) was the
average rainfall intensity during all hours in each storm event [22]. For the seasonal sparse
Gash model, mean rainfall rates (Ry, mm h−1) were calculated separately [24], for rainy
(December–May) and dry (June–November) seasons and then applied in a generalized
form to all individual rainfall events. Rainy and dry periods were determined according
to the rainfall pattern observed in the studied region, as well as the phenological and leaf
area index data of the five studied Caatinga species [1,16,19].

The evaporation rate from wet canopy (Em, mm h−1), which represents the evapo-
ration from the canopy during the storms, was also calculated for each storm event for
the parametrization on a daily basis, while mean values were obtained for rainy and dry
seasons when using the seasonal approach. This parameter was estimated hourly based on
the Penman–Monteith equation [39], excluding the non-storm periods, with the canopy
resistance set to zero [40] and using the momentum method for estimating the aerodynamic
resistance [5,39]. The estimated evaporation rates from wet canopy were then divided by
the canopy cover fractions before being applied in the models (Ec, mm h−1), adjusting the
original values for a complete canopy in proportion to the canopy cover [9].

The canopy cover fraction (c, dimensionless) described the vegetation density. Daily
canopy cover fractions were calculated according to the Beer–Lambert equation [41]:

c = 1 − PB/PA = 1 − e−k L, (4)

where PA is the incoming photosynthetically active radiation on canopy (μmol m−2 s−1),
PB is the transmitted photosynthetically active radiation through the canopy (μmol m−2

s−1), k is the extinction coefficient (dimensionless) and L is the leaf area index (m2 m−2).
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The Beer–Lambert model describes the radiation transmittance through crop canopies
as an exponential-type attenuation process, which can be also associated with the fractional
photosynthetically active radiation, as well as with the leaf area index [12]. Daily canopy
cover fractions were directly applied in the sparse Gash model parametrized on a daily
basis, while average values for rainy and dry seasons were obtained when performing
simulations with the seasonal parametrization.

The canopy storage capacity (S, mm) corresponded to the amount of water remaining
in the canopy after rainfall and throughfall cease, considering evaporation equals to
zero [42,43]. This parameter depends on the intensity and duration of the storm, as
well as the spatial and temporal variability of trees [44]. In this study, S was assumed to
have a linear relationship with the leaf area index [12]. Furthermore, the canopy storage
capacity was adjusted per unit area of cover (Sc, mm), by dividing the original S value by
the canopy cover fraction before applying it in the models [9].

The mean method was used for estimating a specific S value [3,45], representing the
depth of water retained by leaves of each studied species. For this, scatter plots of measured
rainfall interception versus gross rainfall were plotted for a number of rain events large
enough to saturate the canopy of each Caatinga species and the specific canopy storage
capacities were derived from the intercepts of the regression lines fitted to these data.
That is, two regression lines were created, relating rainfall interception to gross rainfall for
storms that are either insufficient or sufficient to saturate the canopy. The slope of each
regression line was determined by an iterative least square fitting procedure. The difference
between gross rainfall and throughfall at the intersection point of these two regression lines
provided the estimate of S. The use of rainfall interception when plotting the regression
lines yields the least stochastic errors, mainly when rainfall outside the canopy is measured
without observational scatter and rainfall inside the canopy is observed with scatter [13,45].
For the simulations with daily parametrization, specific S values were multiplied by the
daily leaf area index of each species, resulting in different daily S values. When applying
the seasonal parametrization, daily S values were averaged considering rainy and dry
periods.

2.4. Validation Analysis

The predictive capacity of the adjusted model was evaluated by the statistical parame-
ters cumulative mean relative error, mean bias error, index of agreement and Nash–Sutcliffe
efficiency [23,46,47]:

CMRE = 100
|CI − CS|

CS
, (5)

MBE =
∑

(
Pj − Oj

)
w

, (6)

d = 1 − ∑
(
Pj − Oj

)2

∑
(∣∣Pj − Om

∣∣+ ∣∣Oj − Om
∣∣)2,

(7)

E = 1 − ∑
(
Pj − Oj

)2

∑
(
Oj − Om

)2,
(8)

where CMRE is the cumulative mean relative error (%), CI is the real cumulative rainfall
interception (mm), CS is the simulated cumulative rainfall interception (mm), MBE is the
mean bias error (mm), Oj is the measured rainfall interception (mm), Pj is the predicted
rainfall interception (mm), w is the number of testing data (dimensionless), d is the index
of agreement (dimensionless), Om is the average experimental rainfall interception (mm)
and E is the Nash–Sutcliffe efficiency (dimensionless).

Values of MBE close to zero indicate that the model is useful for prediction, with nega-
tive and positive values suggesting underestimates and overestimates, respectively [46].
This indicator is related with the unit in which the evaluated property is expressed, as well
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as with the dataset range of values, which, in this study, represents the rainfall interception,
in mm.

The CMRE, d and E values are standardized measures in which cross-comparisons
for a variety of models, regardless of units, are possible. That is, these indicators are not
measures of correlation or association in the formal sense, but rather measures of the degree
to which the predictions obtained from a model are error-free [47,48]. E and d vary from
0 to 1, with the maximum value representing a perfect agreement between observed and
predicted data. CMRE ranges between 0 and 100%. Based on approximately 111 scientific
research studies about rainfall interception modelling [21], the cumulative mean error was
classified in five qualitative groups: bad (>30%), applicable (10–30%), good (5–10%), very
good (1–5%) and extremely good (<1%).

Additionally, validation graphs of the measured rainfall interceptions against the
predicted ones were plotted. Aiming at verifying the model accuracy, the t-test was applied
to the intercept (b) of each linear regression to check whether it was significantly different
from 0 and to the line angular coefficient (a) to confirm whether it was significantly different
from 1, at the level of 1% probability.

2.5. Statistical and Sensitivity Analyses

Sensitivity analyses were performed to identify the relative importance of canopy
and climatic parameters (S, c, Em and R) in both daily and seasonal parametrizations of
sparse Gash model. For this, the values of each parameter were increased and decreased
by up to 50% of their original values and the simulated results were compared to measured
data [5,11,24].

Measured rainfall interceptions and estimated model parameters were also submitted
to variance analysis and averages were compared by the F and Scott–Knott tests (p < 0.05)
through the SISVAR software (Federal University of Lavras-UFLA, Lavras, Minas Gerais,
Brazil) [49]. Statistical differences between Caatinga species, storm classes and simulation
periods were evaluated.

3. Results

3.1. Rainfall Partitioning

The total measured rainfall between 1 March 2016 and 30 September 2017 was
429.5 mm, generated by 66 discrete rainfall events. From these, 343.7 mm (80.0%) oc-
curred during the rainy season, while 85.8 mm (20.0%) occurred during the dry season. The
average, maximum and minimum event-based rainfall amounts were 6.5 (±9.3), 36.4 and
0.2 mm, respectively. Rainfall intensities varied from 1.2 to 19.2 mm h−1, with an average
of 3.2 (±2.9) mm h−1.

Statistical analyses indicated that the frequency distributions of the event size
(Table 3) and intensity (Figure 2) among annual analysis, rainy and dry seasons did not
differ significantly. The very small events (0.0–5.0 mm) were significantly more frequent
than the other four classes. However, as shown in Table 3, they contributed with the lowest
percentages to total gross rainfall during the rainy season and for the annual analysis.
When evaluating the dry season, events from 20.1 to 40.0 mm were not observed and small
events (5.1–10.0 mm) were responsible for the lowest percentages of total gross rainfall.
The highest percentages of total gross rainfall were verified for the very large events (30.1–
40.0 mm) during the rainy season and for middle events (10.1–20.0 mm) during dry and
annual periods.
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Table 3. Number of events (NE), cumulative gross rainfall (CGR) and percentage of gross rainfall
(PGR) in different rainfall classes during the study period.

Classes (mm)

0.0–5.0 5.1–10.0 10.1–20.0 20.1–30.0 30.1–40.0

Annual Analysis

NE (-) 43 (65.2%) 7 (10.6%) 10 (15.2%) 2 (3.0%) 4 (6.1%)
CGR (mm) 46.0 53.9 144.9 52.2 132.5

PGR (%) 10.7 12.6 33.7 12.1 30.9

Rainy Season

NE (-) 18 (50.0%) 6 (16.7%) 6 (16.7%) 2 (5.6%) 4 (11.1%)
CGR (mm) 27.3 45.0 86.8 52.2 132.5

PGR (%) 7.9 13.1 25.3 15.2 38.6

Dry Season

NE (-) 25 (83.3%) 1 (3.3%) 4 (13.3%) 0 (0.0%) 0 (0.0%)
CGR (mm) 18.7 9.0 58.1 0.0 0.0

PGR (%) 21.8 10.5 67.7 0.0 0.0

Figure 2. Frequency distributions (bars) and percentages of gross rainfall of the intensity of rainfall
events (lines) at the Caatinga domain in Brazil during the measurement period (annual, rainy and
dry seasons) from 1 March 2016 to 30 September 2017.

When evaluating rainfall intensity, events from 0 to 2.5 mm h−1 presented significantly
higher frequency of occurrence. Figure 2 shows that these low intensity rainfall events
contributed to a higher percentage of gross rainfall only during the dry season, while
middle and large intensity rainfall events (2.6–10 mm h−1) were responsible for the greatest
percentages of gross rainfall both for annual and rainy season conditions.

As shown in Figure 3, the annual cumulative interception values were between 90.5
and 169.7 mm, resulting in average proportions of gross rainfall into interception of 27.9%
(±6.5). When considering the rainy and dry seasons, the cumulative interceptions ranged
from 43.5 to 114.7 mm and from 35.6 to 55.0 mm, with proportions of gross rainfall to
interception of 17.2% (±5.7) and 10.7% (±1.8), respectively. Additionally, the annual
average proportions of gross rainfall to throughfall and stemflow were 71.6% (±7.5) and
0.7% (±0.2), respectively.
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Figure 3. Cumulative measured gross rainfall and interception values from March 2016 to September
2017 at the Caatinga domain in Brazil.

Observing the different storm size classes (Table 4), the proportions of gross rainfall
into interception of very small storms (<5 mm) were significantly higher for all studied
Caatinga species. Statistical analysis also showed that there was no significant difference
between large (20.1–30.0 mm) and very large (30.1–40.0 mm) storms, as well as between
small (5.1–10.0 mm) and middle (10.1–20.0 mm) storms. Filtering by significantly equal
rainfall classes (<5, 5.1–20.0, 20.1–40 mm), the proportions of gross rainfall to interception
tended to decrease as gross rainfall increased. For very large events (30.1–40 mm), C.
quercifolius presented a significantly lower percentage of rainfall interceptions (Figure 3
and Table 4) and, for the other storm classes, there was also a trend of smaller values when
compared with the other studied species.

3.2. Model Parameters

The leaf area indices, as well as the parameters for the adapted Gash model applied to
the five studied Caatinga species, are shown in Table 5. The values of each parameter and
leaf area index did not significantly differ among Caatinga species, but S. tuberosa presented
a larger leaf area index, Sc and c, which also helps to explain the significantly higher rainfall
interception observed during the experimental trial. Parameters and leaf area index were
statistically equal between seasons and annual analysis, but their numerical differences
contributed to improve the simulation results, as discussed below.
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Table 4. Proportions of gross rainfall portioned into interception (I:GR) considering five rainfall
classes.

Classes (mm)

0.0–5.0 5.1–10.0 10.1–20.0 20.1–30.0 30.1–40.0

Annual Analysis (I:GR—%)

C. pyramidale 82.1 34.4 25.0 8.6 17.3
C. quercifolius 78.1 11.3 32.7 12.0 1.1
A. pyrifolium 80.5 37.0 28.2 9.7 13.7
C. leptophloeos 80.2 35.7 17.0 1.3 6.9

S. tuberosa 87.0 46.2 42.3 24.7 23.1

Rainy Season (I:GR—%)

C. pyramidale 41.4 25.3 14.1 8.6 17.3
C. quercifolius 37.4 10.4 9.0 12.0 1.1
A. pyrifolium 39.8 27.7 13.2 9.7 13.7
C. leptophloeos 39.8 28.4 8.1 1.3 6.9

S. tuberosa 46.3 37.4 20.5 24.7 23.1

Dry Season (I:GR—%)

C. pyramidale 40.7 9.1 10.9 0.0 0.0
C. quercifolius 40.7 1.0 23.7 0.0 0.0
A. pyrifolium 40.7 9.3 15.1 0.0 0.0
C. leptophloeos 40.7 7.3 8.9 0.0 0.0

S. tuberosa 40.7 8.8 21.8 0.0 0.0

3.3. Sensitivity Analyses

The sensitivity analysis of the canopy and climatic parameters to rainfall interception
is presented in Figure 4. Variations observed for the five studied species were averaged for
each model, since they presented very similar patterns.

Figure 4. Sensitivity analysis of the Gash model parametrized on daily and seasonal bases applied to the Caatinga domain
in Brazil.
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Table 5. Measured leaf area indices (L) and estimated canopy storage capacity per unit area of cover (Sc), relative evaporation
rate per unit area of cover (Ec/R), evaporation rate from wet canopy (mm h−1), canopy cover fraction (c) and threshold
value required to saturate the canopy (PS) for the sparse Gash model parametrized on daily and seasonal bases applied to
each studied Caatinga species. Values in brackets represent standard deviations.

Vegetation
Sc

(mm)
L

(mm2 mm−2)
Ec/R
(-)

Em

(mm h−1)
c

(-)
PS

(mm)

Daily Basis

C. pyramidale 2.3–3.4 0.4–1.6 0.04–0.83 0.20–0.85 0.29–0.72 2.8–5.4
C. quercifolius 1.7–4.4 0.5–4.0 0.04–0.79 0.21–0.94 0.27–0.94 2.3–4.9
A. pyrifolium 2.8–4.0 0.9–2.0 0.03–0.79 0.19–0.80 0.52–0.80 3.3–4.6

C. leptophloeos 1.9–4.4 0.9–4.0 0.03–0.86 0.20–0.89 0.48–0.95 2.2–4.8
S. tuberosa 1.8–4.8 0.8–7.0 0.03–0.83 0.20–0.85 0.46–0.97 2.1–5.0

Seasonal Basis (Rainy Season)

C. pyramidale 2.30 (±0.2) 1.04 (±0.3) 0.16 (±0.2) 0.40 (±0.11) 0.67 (±0.1) 2.50
C. quercifolius 2.85 (±0.6) 1.82 (±0.7) 0.17 (±0.2) 0.44 (±0.12) 0.68 (±0.2) 3.13
A. pyrifolium 2.58 (±0.3) 1.44 (±0.2) 0.15 (±0.2) 0.38 (±0.10) 0.69 (±0.1) 2.79

C. leptophloeos 2.89 (±0.5) 2.02 (±0.6) 0.14 (±0.1) 0.42 (±0.12) 0.76 (±0.10) 3.12
S. tuberosa 2.97 (±0.6) 2.22 (±0.8) 0.14 (±0.2) 0.40 (±0.12) 0.77 (±0.12) 3.19

Seasonal Basis (Dry Season)

C. pyramidale 2.10 (±0.2) 0.85 (±0.3) 0.27 (±0.2) 0.38 (±0.16) 0.60 (±0.1) 2.45
C. quercifolius 2.49 (±0.4) 1.30 (±0.6) 0.31 (±0.2) 0.42 (±0.18) 0.56 (±0.2) 2.98
A. pyrifolium 2.45 (±0.3) 1.28 (±0.2) 0.24 (±0.2) 0.36 (±0.15) 0.64 (±0.1) 2.78

C. leptophloeos 2.55 (±0.4) 1.59 (±0.5) 0.25 (±0.1) 0.40 (±0.17) 0.68 (±0.1) 2.93
S. tuberosa 2.56 (±0.4) 1.69 (±0.6) 0.24 (±0.2) 0.38 (±0.15) 0.68 (±0.1) 2.92

Canopy storage capacity (S), canopy cover fraction (c) and evaporation rate from wet
canopy (Em) presented positive relationships with interception, whereas mean rainfall rate
(R) resulted in a negative relationship with interception. All parameters were sensitive
to interception, but S had larger effects on the Caatinga rainfall partitioning, followed by
Em, c and R, respectively. Seasonal model predictions were most sensitive to canopy and
climatic parameters, which were more pronounced for the S variable.

The sensitivity analysis showed that Em changes could lead from −13.8 (±1.5) to 13.4
(±1.3)% errors in rainfall interception when applying the sparse Gash model parametrized
on a daily basis, while, for the seasonal approach, errors could vary from −14.6 (±1.6)
to 14.5 (±1.6)%. Considering the R parameter, a −50% change in daily and seasonal
parametrizations caused an average 3.2 (±1.5)% difference in the simulated rainfall inter-
ception.

For the daily parametrization, a decrease of 50% in c resulted in an average decrease
of 14.1% (±0.8) in simulated interception, while an increase of 50% resulted in an average
rise of 7.3% (±0.5). When applying the seasonal parametrization, a decrease of 50% in
c could lead to an average decrease of 29.7% (±3.4) in simulated interception, while an
increase of 50% could lead to an average rise of 17.0% (±0.9).

If the value of S increased by 50%, simulated rainfall interception tended to rise by
25.7% (±1.2) and 59.6 (±3.2) on average by applying the daily and seasonal parametriza-
tions, respectively. On the other hand, the decrease of 50% resulted in average reductions
of 28.8% (±1.4) and 43.3% (±2.3) for daily and seasonal parametrizations, respectively.

3.4. Rainfall Interception Simulations

Figure 5 shows that the daily and seasonal parametrizations performed very similarly,
when simulating cumulative rainfall interception, with the daily parametrization perform-
ing slightly better, except for S. tuberosa. The average annual proportions of gross rainfall
into interception were simulated as 27.1% (±5.1), when applying the daily parametriza-
tion, and as 26.5% (±5.3), when using the seasonal parametrization. Compared with the
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measured data, the differences were 0.8 and 1.4%, respectively. When considering the tree
species, simulations for A. pyrifolium and C. pyramidale resulted in more accurate estimates.
These species reached cumulative relative mean errors from 1.23 to 3.69%, considered very
good [21]. The cumulative relative mean errors for the other species varied from 5.00 to
8.98% and were considered good [21].

Figure 5. Cumulative measured interception values compared with those estimated by the sparse Gash model parametrized
on daily and seasonal bases for each Caatinga species in Brazil.

On a per storm analysis (Figure 6), when estimates were evaluated for individ-
ual rainfall events, both simulation approaches also performed similarly, with the daily
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parametrization presenting slightly less scatter. Prediction errors were higher mainly for
small, middle and large storms (5.1–30 mm), with interceptions between 0.2 and 6 mm.
Among the tree species, best results were obtained with S. tuberosa.

Figure 6. Validation graphs of experimental interception values against those predicted by the sparse Gash model
parametrized on daily and seasonal bases applied to Caatinga species.

The reliability of the proposed models for Caatinga species was also proven by the
statistical indicators (Table 6). MBE varied from −0.20 to 0.15 mm for daily and seasonal
parametrizations, indicating predicted values close to measured ones and confirming
the model trends of slightly underestimating the S. tuberosa interception for both tested
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approaches, as well as for A. pyrifolium with seasonal parametrization and C. pyramidale
with daily parametrization. The other cases showed trends of slightly overestimating. The
d and E averages were 0.94 (±0.04) and 0.75 (±0.80), respectively, when applying seasonal
simulations. For the daily parametrization, these indices reached 0.94 (±0.03) and 0.76
(±0.12) on average, respectively. The d and E results proved the high accuracy and the very
good agreement between measured and predicted interceptions for all Caatinga species, as
well as the slightly better performance of the daily parametrization.

Table 6. Summary statistics of interception values predicted by the sparse Gash model parametrized
on daily and seasonal bases applied to Caatinga species on storm-based rainfall analysis.

Vegetation
a

(-)
b
(-)

R2

(-)
MBE
(mm)

d
(-)

E
(-)

Daily Basis

S. tuberosa 0.99 −0.19 0.96 −0.20 0.99 0.95
C. leptophloeos 0.93 0.26 0.72 0.13 0.92 0.66
A. pyrifolium 0.90 0.22 0.77 0.02 0.94 0.75
C. quercifolius 0.82 0.39 0.69 0.06 0.91 0.66
C. pyramidale 1.01 −0.10 0.83 −0.07 0.97 0.79

Seasonal Basis

S. tuberosa 1.02 −0.20 0.96 −0.13 0.99 0.96
C. leptophloeos 0.93 0.26 0.66 0.15 0.89 0.53
A. pyrifolium 0.98 0.01 0.90 −0.03 0.97 0.89
C. quercifolius 0.82 0.46 0.65 0.15 0.90 0.59
C. pyramidale 1.03 −0.02 0.82 0.04 0.95 0.77

4. Discussion

4.1. Rainfall Partitioning

The partitioning pattern observed in this study for the five Caatinga species agreed
with other studies of semiarid regions [1,2,16,24], where rainfall is concentrated over a short
period. Highly variable rainfall depths per event (0.2–40 mm) were also reported when
applying the Gash model to deciduous shrubs in the semiarid Qinghai–Tibet Plateau [22].
Furthermore, mean values of gross rainfall per event (7.2 and 5.1 mm) close to the average
value found in this work were verified for semiarid regions of Spain and Iran, respec-
tively [2,23]. On the other hand, average Caatinga rainfall intensities (3.2 mm h−1) were
higher than those observed in other semiarid regions. For example, a mean rainfall intensity
of 1.7 mm h−1 was found when modelling the interception in central–western Spain [2],
while rainfall intensities equal to 1.8 and 2.3 mm h−1 were reported for semiarid regions
of China and Kenya, respectively [24,50]. The frequency distributions of the event size
and intensity were in agreement with other studies about rainfall partitioning in semiarid
regions [16,23,24].

Average rainfall interception was significantly higher during the rainy season, which
is justified by the largest number of rainfall events and greatest rainfall amounts observed
during this period, but also by the reduction in leaf amounts, as well as canopy cover,
during the dry season. Rainfall interception of S. tuberosa was significantly higher than
those verified for the other studied Caatinga species. This difference can likely be related
with canopy characteristics, mainly the number of stems, diameter at breast height and
tree crown projected area (Table 1), on which further studies are required. Additionally,
the leafless periods of S. tuberosa corresponds to around 3 months [26], while the other
species are leafless from approximately 4 to 7 months [25,27,51] and the emergence of
leaves strongly affects the interception process, modifying the redistribution by the tree
and the profile of rainwater.

The trend of decreasing the proportions of gross rainfall to interception as gross
rainfall increases was also verified in other studies [23]. Additionally, the lower percent
rainfall interceptions of C. quercifolius can be explained since the peak of its leaf fall lasts
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around 5 months [25] and this tree produces small leaves during the dry season that only
attain their maximum size during the rainy season. For this, it presents a less dense canopy,
which tends to facilitate water flow in throughfall [15].

Results obtained in this study confirm the findings of other scientific research stud-
ies [1,8,16,23], which suggested that changes in the proportions of gross rainfall to intercep-
tion are mainly associated with the size of gross rainfall and can be explained since most of
the gross rainfall is stored in the canopy during the very small and small rainfall storms.
On the other hand, canopies tend to saturate during large and very large rainfall events,
increasing throughfall, while the remaining rainfall is stored in the canopies and lost as
evaporation during the storm event [9].

4.2. Model Parameters

Average leaf area indices observed in the Caatinga domain were similar to those
verified for species of other semiarid regions, such as those for R. pseudoacacia in the Shaanxi
province, China [52], as well as for Q. ilex and Q. pyrenaica in Sardon stands, Spain [2].
However, S. tuberosa stood out in this study, maintaining most of its leaves during the dry
season, as well as reaching higher individual leaf area indices, when compared with other
Caatinga species and native trees of different semiarid regions [22,23]. The average leaf
area indices for rainy and dry seasons (Table 5) reflected the seasonal variations of this
parameter, which increased linearly from the beginning to the end of the rainy season and
decreased linearly during the dry season for all studied species. Indeed, the peak of leaf
flush for the Caatinga species tends to coincide with the rainy season, but this process is
also affected by the photoperiod [25].

Despite rainfall interception is known to be closely related to the leaf area index [53],
other factors influence this process. The increase in canopy density causes leaves to touch,
hindering the fully saturation of the entire canopy [12]. Furthermore, wind may reduce
canopy storage capacity, as well as branch shape, and leaf inclination and canopy thickness
may turn the leaves less wettable.

As expected and as shown in Table 5, both c and Sc followed the pattern observed in
the leaf area index for all studied species, with average values of the rainy season larger
than those of the dry season. The same behavior was verified for the PS values, since all of
these parameters derived from the leaf area index in the parametrizations performed
in this study. The c values were similar to other simulations of rainfall interception
for deciduous forests in semiarid regions [8,14,22], but Sc and PS were larger. These
results are consistent with the larger leaf area indices verified mainly during the rainy
season and are probably also associated with the height of the studied Caatinga species
(Table 1). The Sc and PS values obtained in this study can be also justified by the distinct
forest structures among semiarid regions, since the canopy morphology and physiology
interfere in the parametrization, including the leaf amounts and canopy cover during
leafed and leafless periods [17]. Additionally, Sc and PS are closely related to Caatinga
weather conditions, mainly rainfall distribution and intensity [38]. The estimate of Sc
also depended on the specific canopy storage capacity, which was based on the mean
method, relating the observed gross rainfall, interception and throughfall that were either
insufficient or sufficient to saturate the canopy. On the other hand, the PS also depended
on the evaporation rate from wet canopy, which was estimated by the Penman–Monteith
equation, considering meteorological (air temperature, net radiation, vapor pressure deficit
and wind speed) and vegetation characteristics (crop height).

Canopy coverage is an important parameter in both daily and seasonal parametriza-
tions, since it is a structural parameter, directly related to the free throughfall coefficient and
the leaf area index [5]. The free throughfall coefficient, which is assumed to be one minus
canopy cover, affects soil water content and nutrient cycling, since it reflects the fraction of
rainfall passing through the canopy without contacting the tree surface or removing dry
leaves and twigs in the canopy [24]. Indeed, Table 5 shows a trend of species with smaller
leaf area indices and greater leafless periods (C. pyramidale and C. quercifolius) presenting
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lower canopy coverages, with consequent larger free throughfall coefficients. The obtained
c values can also explain the lower rainfall interceptions verified for C. quercifolius, as well
as the significantly high interceptions from S. tuberosa. These species presented respec-
tively the lowest (0.27) and the largest (0.97) canopy coverages when applying the daily
parametrization, with C. quercifolius resulting in the greatest range of c values during the
study and the smallest canopy coverage during the dry season (Table 5). Additionally, S.
tuberosa was the species with the largest c values both in dry and rainy seasons. Thus, there
is a trend of S.tuberosa species protect the Caatinga floor from raindrop splash erosion, also
delaying the peaks in storm runoffs, as was verified in semiarid Northeast of China [24] and
Brazil [54]. On the other hand, these trees could contribute to the enhancement of soil water
scarcity in the Caatinga domain, since the high c values lead to less throughfall reaching
the forest floor. However, detailed comprehension about these effects merit further studies.

Considering the daily parametrization, Em was highly changeable during the studied
events, varying between 0.19 and 0.94 mm h−1, with an average of 0.40 (±0.14) mm h−1.
The Em values observed during rainy and dry seasons reached 0.41 (±0.02) and 0.39 (±0.02)
mm h−1 on average, respectively. Scaled to canopy cover, Ec values ranged from 0.24 to
2.50 mm h−1, with an average of 0.67 (±0.36) mm h−1 for the daily parametrization, while
the seasonal approach resulted in Ec values of 0.62 (±0.08) and 0.57 (±0.05) mm h−1 on av-
erage during rainy and dry seasons, respectively (Table 5). Maximum in-storm evaporation
rates from 1.83 to 3.98 mm h−1 were also observed in tropical dry and semiarid regions of
Mexico [47], but the average evaporation rates found in this study were larger than those
of semiarid regions of Spain, Iran and China [2,23,24]. These results are related with the
semiarid climate type of Caatinga, which is mainly characterized by high temperatures
and solar radiation, tending to increase evaporation rates when compared with other
semiarid and dry tropical stands [1]. The higher evaporation rates and the distinct rainfall
intensities affected the Ec/R ratios, which were lower during the rainy season (0.15 ±0.01),
reaching average values of 0.26 (±0.03) during the dry season. When applying the daily
parametrization, Ec/R presented minimum values between 0.03 and 0.04, while maximum
values varied from 0.79 to 0.86 for the five studied species.

The differences observed between seasonal and daily parametrizations, regarding the
sensitivity analysis, are expected, since the seasonal model uses two sets of constant param-
eters, while the daily parametrization considers the daily changes of canopy structure and
weather conditions, tending to better represent the associated components and processes
of rainfall interception. The sensitivity analysis agreed with other studies [53,55], which
found that canopy storage capacity is among the most influential parameters on simulated
rainfall interception in deciduous vegetation. Other factors that affect the sensitivity of
model predictions are the rainfall and climate characteristics, such as raindrop size distri-
bution, rainfall intensity and wind speed, though those factors are not included in the Gash
model [24]. Additionally, canopy basal area and height interfere in the parametrization
process, as well as the woody light-blocking elements from the canopy with respect to
diameter growth, represented by the wood area index [56].

4.3. Rainfall Interception Simulations

The good results observed when simulating cumulative rainfall interception may be
consequence of using leaf area indices during estimates of c and S, as well as the simulations
based on daily or seasonal parameter variations, which allowed the proposed models to
describe the rainfall interception patterns better than other approaches [13,14].

When considering the per-storm simulations (Figure 6), very large rain events
(30.1–40 mm) were less frequent (Table 3), representing 6.1% of total gross rainfall, and were
not observed during the dry season. This probably led to less events with interceptions
greater than 6 mm and, consequently, less scatter was verified for these situations. There
were more outliers for smaller interceptions, with simulated values moving further from
the 1:1 line in both parametrizations and showing that model estimation was less accurate
in some individual events. For these cases, the daily parametrization was also subtly
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better than the seasonal one. These discrepancies certainly affected the statistical indicators
(Table 6). However, the scatter patterns agreed with other works [8,23] and, despite the
observed discrepancies when comparing measured and simulated individual interceptions,
both daily and seasonal parametrizations resulted in a good fit, with all intercept and angu-
lar coefficients not significantly differing from 0 and 1, respectively (Table 6). Additionally,
the determination coefficients between measured and predicted values varied from 65.0
to 96.0%. These results indicate the absence of constant and systematic errors, confirming
the good reproducibility of the estimates from the proposed models when applied to the
Caatinga vegetation.

Results of this study indicate that parametrization on daily and seasonal bases im-
proved estimates for rain events where interception is less dependent on Sc than on Ec/R,
that is, for larger and more intense events. During heavy storms the canopy tends to
rapidly saturate, decreasing the influence of canopy storage capacity and increasing the
control of Ec/R [8]. This behavior also explains the minor error propagation, observed
when cumulative interception was simulated (Figure 5). However, for other ecosystems,
this trend should be better investigated.

The sparse Gash model parametrized on a daily basis is indicated for vegetation
densities that change gradually, but relatively rapidly, as well as for vegetation that changes
more slowly, but is subject to infrequent rainfall [12]. It requires leaf area index monitoring
and a more complex implementation, but represents important conceptual improvements
in the rainfall interception simulations, giving accurate estimates from low to high intensity
storms, as well as for events with different amounts. However, when it is not possible to
use the more expensive instrumentation required for parametrizing this approach, or the
greater data processing during simulations, the seasonal sparse Gash model is capable of
considering the variability of Caatinga species regarding foliation and defoliation, which
is reflected by the canopy and climate parameters associated with rainy and dry periods.
It does not require leaf area monitoring and equations are simplified, resulting in a less
complex simulation with reliable approximations.

4.4. Limitations and Constraints

The methodological challenges in measurement and data processing when modelling
and validating rainfall interception are associated with the complex and expensive microm-
eteorological instrumentation, as well as the long data acquisition periods required in this
process. Additionally, throughfall is highly spatially heterogeneous at small scales, while
rainfall interception and stemflow are variable across species, requiring a measurement
scheme capable of sufficiently take into account these differences, but also coherent with
the financial and logistical constraints. For this, it is important to attempt to correctly
locate the gauges and divide the area under each tree, also systematically performing the
relocation of gauges by applying well defined methods and minimizing errors originating
from spatial variability. These precautions were followed in this study, agreeing with other
works [2,10,13,16,33] that had proved the possibility of monitoring throughfall, stemflow
and rainfall interception by considering fewer sample trees per studied species in a credible
way.

Among the Gash model parameters, canopy storage capacity and evaporation rate
from wet canopy are the most difficult to obtain individually [21,47]. The quantification
of canopy storage capacity can be determined experimentally for a particular species
using laboratory methods [12]. However, the indirect methods are relatively low-cost
and require no complex instrumentation, having been preferred in most of studies for
Gash model parametrization [3,7,8,23], despite the long measurement period required.
In this work, a regression-based method was applied, but future efforts for obtaining
reliable measurements of this parameter or decomposing it into easily measurable physical
components are encouraged [55]. The measurement of the evaporation rate from wet
canopy also involves high costs and technical difficulties and this parameter is frequently
estimated by means of the Penman–Monteith method [47,52]. This method was used in this
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study, performing very well, despite requiring data of many micrometeorological variables.
Other formulations and methods that overcome the high data input requirements of the
Penman–Monteith equation have been proposed [2,24,34], but the best method for this
purpose remains controversial and deserves further attention [47].

Finally, climate change is altering the water cycle and world ecosystems, with precipi-
tation and phenological responses of plants to habitat being directly affected. Considering
the Brazilian semi-arid region, the global climate change scenarios indicate that the aridity
of the region will tend to increase in the next century, evidencing its vulnerability [18].
Therefore, a good comprehension of the hydrological processes and the study of their
behaviors considering the climate change projections is essential for the evaluation of water
availability and the anthropogenic effects in Caatinga. Thus, rainfall interception modelling
based on these projections and the use of validated models for studies of land management
are required.

5. Conclusions

Observed cumulative rainfall interceptions varied from 10.1 to 26.7% of gross rainfall
during the rainy season and from 8.3 to 12.8% during the dry season for the five studied
Caatinga species, indicating that significantly lower throughfall and stemflow reached
the soil as available water input during the dry periods of 2016 and 2017. The frequency
distributions of the event size and intensity did not differ significantly between dry and
rainy seasons, with the very small (0.0–5.0 mm) and low-intensity (0–2.5 mm h−1) events
being significantly more frequent. However, the highest percentages of total gross rainfall
were verified for the very large events (30.1–40.0 mm) during the rainy season and for
middle events (10.1–20.0 mm) when considering the dry season. The low intensity storms
contributed to a higher percentage of gross rainfall only during the dry season, while
middle and large intensity rainfall events (2.6–10 mm h−1) were responsible for the greatest
percentages of gross rainfall during the rainy season. The sparse Gash model parametrized
on a daily basis performed slightly better than the seasonal one, but both approaches
resulted in very good or good agreement between the modelled and estimated interception,
with cumulative mean relative errors between 1.23 and 8.98%. Seasonal model predictions
were the most sensitive to canopy and climatic parameters, with canopy storage capacity
presenting larger effects on the Caatinga rainfall partitioning, followed by Em, c and
R, respectively, for both simulation approaches. Future works should focus on finding
reliable methods for measuring canopy storage capacity, as well as on formulations capable
of accurately estimating the evaporation rate from wet canopy requiring smaller input
variables. Furthermore, the Gash model should be parametrized for other Caatinga species,
with the validated approaches providing a basis for studies of land management, including
the evaluation of degraded areas and effects of climate changes.
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Abstract: Changes in the climate system over recent decades have had profound impacts on the
mean state and variability of ocean circulation, while the Nordic Sea overflow has remained stable
in volume transport during the last two decades. The changes of the overflow flux depend on the
pressure difference at the depth of the overflow outlet on both sides of the Greenland-Scotland Ridge
(GSR). Combining satellite altimeter data and the reanalysis hydrological data, the analysis found
that the barotropic pressure difference and baroclinic pressure difference on both sides of the GSR
had a good negative correlation from 1993 to 2015. Both are caused by changes in the properties
of the upper water, and the total pressure difference has no trend change. The weakening of deep
convection can only change the temperature and salt structure of the Nordic Sea, but cannot reduce
the mass of the water column. Therefore, the stable pressure difference drives a stable overflow. The
overflow water storage in the Nordic Sea is decreasing, which may be caused by the reduction of
local overflow water production and the constant overflow flux. When the upper interface of the
overflow water body in the Nordic Sea is close to or below the outlet depth, the overflow is likely to
greatly slow down or even experience a hiatus in the future, which deserves more attention.

Keywords: Nordic Sea; overflow flux; barotropic pressure; baroclinic pressure

1. Introduction

As an important driver of thermohaline circulation, the Nordic Sea overflow has a
profound impact on environmental changes in the Arctic and even the world. In the
Nordic Sea, high-density water bodies with a geopotential density (σө) greater than
27.8 kg/m3 and shallower than the Greenland-Scotland Ridge (GSR) depth can over-
flow. There are three overflow channels on the GSR. From west to east, they are the
Denmark Strait (DS), the Iceland-Faroe Ridge (IFR), and the Faroe-Shetland Channel (FSC)
(Figure 1a,b). The overflow of dense water between Greenland and Shetland consists of
the Faroe Bank Channel (FBC) overflow and Wyville Thomson Ridge (WTR) overflow, and
FBC is the main channel for FSC overflow. The high-density water overflowing from these
channels forms the North Atlantic Deep Water (NADW), which affects the nature of the
deep-water mass and the deep circulation in the North Atlantic [1–4].

Theoretical analysis and field measurement results show that the Nordic Sea overflow
is hydraulically controlled. In hydraulic control theory, changes of the overflow flux
through a strait depend only on the total pressure difference at the depth of the sill on both
sides of the GSR [1–4]. The total pressure difference is equal to the barotropic pressure
difference plus the baroclinic pressure difference, depending on the local and remote
physical processes, such as convection, mixing, and circulation, which further determine
the overflow flux of the Nordic Sea [4].
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(a) 

(b) 

Figure 1. (a) Topographic map of the Nordic Sea and (b) bottom depth map of the GSR. Note: The Nordic Sea is composed
of the Norwegian Sea, the Icelandic Sea, and the Greenland Sea. In the Norwegian Sea, LB stands for the Lofoten Basin and
NB stands for the Norwegian Basin; the DS, IFR, and FSC stand for the three main overflow channels in Greenland-Scotland
Ridge, namely Denmark Strait, Iceland-Faroe Ridge, and Faroe-Shetland Channel, respectively; the purple square represents
the selected point for calculating the pressure difference between the two sides of the GSR; the red line is the selected
section for the bottom depth map. Bottom depth of the oceanic part of the GSR and overflow flux are based on Hansen and
Østerhus [2].

Affected by climate change, the deep convection in the Nordic Sea has been weakened
significantly from the 1960s to the beginning of the 21st century; by about 2006, the depth
of deep convection in Greenland was less than 1000 m [5,6]. Recent studies showed that
although there is a decreasing trend in atmospheric forcing from 1993 to 2016, the depth of
convection in the Greenland Sea in winter has a deepening tendency. This is due to the
increase in the salinity of seawater in the upper 1500 m, which results in the weakening of
stratification inside the Greenland Sea circulation [7,8]. Modern climate models have found
that the overflow flux of the Nordic Sea has a good consistency with the Greenland Sea
convection, showing a weakening trend [9–12]. However, this weakening is not reflected
by the measured data. The field measurement found that the overflow flux of the Nordic
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Sea remained strong and stable from 1995 to 2015, and there was no significant trend
change [13,14].

For the phenomenon of stable overflow transport of the Nordic Sea during the last
two decades, there have been studies explaining it from different aspects. Based on the
model results, Olsen et al. [4] pointed out that the upper interface of the overflow water in
the Nordic Sea declined from 1948 to 2005, which would cause a decrease in the pressure
difference on both sides of the GSR. However, the rising sea level of the Nordic Sea offsets
this effect, resulting in no trend change in the total pressure difference on both sides,
making the overflow flux stable. Some other studies showed that the circulation of the
Atlantic waters in the Nordic Sea has a greater impact on overflow changes, and the
impact of weakened convection has been concealed [15]. Zhang and Thomas [16] believed
that the Arctic Ocean, rather than the Greenland Sea, is the northern end of the mean
Atlantic Meridional Overturning Circulation (AMOC). They further pointed out that the
deep convection of the Labrador Sea and the Greenland Sea contribute the least to the
mean AMOC, and AMOC may not be significantly weakened by the closure of the deep
convections. However, some other studies still believed that the Greenland Sea is the main
source area of the densest overflow water into the North Atlantic after 2005 and is the main
ventilation area of the deepest layer in the North Atlantic [7,17]. Other studies suggest that
the volume of the dense water above the GSR sill depth in the Nordic Seas is sufficient to
supply decades of overflow transport without dense water production [1–3]. The premise
in such estimations, however, is that all dense water above the sill depth is freely available
for overflow transport. However, basin-scale oceanic circulation is nearly geostrophic and
its streamlines are basically the same as the isobaths. The vast majority of the dense water
is stored inside the closed geostrophic contours in the deep basin and thus is not freely
available for overflow transport [18]. Therefore, an external force or a non-geostrophic
mechanism is required to help transport the interior water mass to the boundary current.
The numerical simulation results of Yang and Pratt [19] show that 80%–85% of the dense
water above the GSR sill depth in the Nordic Seas is not freely available for overflow
transport, and the amount of the dense water freely available to overflow accounts for
only 15%–20%. Therefore, the Nordic Seas has a relatively small capacity as a dense water
reservoir and thus the overflow transport is sensitive to climate changes.

In short, there is still controversy about the reasons for the stable overflow flux in the
past two decades. Based on the satellite altimeter data and the reanalysis hydrological
data, this paper will analyze the changes in the barotropic pressure and baroclinic pressure
on both sides of the GSR and then discuss the reasons for the long-term stable flux of the
Nordic Sea overflow by the hydraulic control theory.

The structure of this paper is as follows. Chapter 2 introduces the data and the method
for calculating the pressure. Chapter 3 evaluates the credibility of the EN4 data to calculate
the pressure by comparing the measured hydrological data and the overflow flux results.
Chapter 4 mainly analyzes the spatial distribution of the change trends of the positive
pressure, baroclinic pressure, and total pressure on both sides; the change characteristics of
the pressure difference on both sides of the GSR; the changes in depth of the overflow water
interface in the Nordic Sea; and then analyzes the reasons for stable overflow flux from
1993 to 2015. Chapter 5 mainly analyzes the correlation between the positive pressure and
baroclinic pressure on both sides of the GSR and the role of the changes in the properties of
the upper seawater. Chapter 6 is the conclusion.

2. Data and Methodology

2.1. Satellite Altimeter Data

The Sea Level Anomaly (SLA) data in this paper is monthly averaged data from 1993
to present of the DUACS 2014 database from the French Space Research Center (CNES),
which is merged with multi-satellite altimetry data (Available online: http://www.aviso.
oceanobs.com/duacs/ (accessed on 5 May 2016)). The data use Mercator projection with a
horizontal resolution of 1/4◦ × 1/4◦, and are corrected by atmospheric pressure correction,
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tide correction, and dry tropospheric correction. The SLA data of DUACS 2014 are based
on the Mean Sea Surface (MSS) from 1993 to 2012. Since the mean sea level is the height on
a fixed earth reference ellipsoid, the SLA contains sea level change signals caused by the
relative crustal movement during this period, mainly as the Glacial Isostatic Adjustment
(GIA). Tamisiea and Mitrovica [20] gave the distribution map of the GIA effect on the sea
level change measured by the altimeter (their Figure 3b), and their results showed that the
GIA has an effect of no more than 0.15 mm/yr on the sea level change trend in the Nordic
Sea, so it can be ignored here. Volkov and Pujol [21] verified through field measurement
that AVISO’s altimeter data can be used to study sea level changes and surface currents in
the Nordic Sea.

2.2. Hydrological Data

The hydrological data in this paper are the monthly averaged reanalysis data of the
EN4 hydrological data set of the Met Office [22]. The data are obtained from a large amount
of observational data, mainly including WOD data (World Ocean Database), GTSPP data
(Global Temperature and Salinity Profile Project), Argo data, and ASBO (Arctic Synoptic
Basin-wide Observations) data, which have high credibility. The horizontal resolution of
the data is 1◦ × 1◦, and the coverage area is 1◦ E–360◦ E and 83◦ S–89◦ N. The data has
42 vertical layers, and the thickness of the water layer ranges from 10 m in the upper layer
to 300 m in the deep ocean.

Since the grid of SLA is inconsistent with the hydrological data grid, the SLA data
needs to be interpolated to the same grid point as the hydrological data. The interpolation
method is used to obtain the mean value of the 16 SLA grid points in each hydrological
grid. If there are more than 8 missing values in a SLA data grid, the mean value at that
point is also assigned as missing.

The hydrological observation data of the “Mike” station (Ocean Weather Ship Station
Mike, here referred to as OWS-M station) comes from the European Ocean Observa-
tory Network (Euro SITES, Available online: http://www.eurosites.info/stationm.php
(accessed on 26 December 2016)). The station is located in the center of the Norwegian Sea
(66◦ N, 02◦ E) and provided long-term ocean and meteorological profile data almost daily
from October 1948 to November 2009.

2.3. Method for Calculating Pressure

Based on the hydrostatic assumption, the pressure at a certain depth without consid-
ering the atmospheric pressure is:

P = Ptrop+Pclin= ρ0gζ+ g
0∫

z

ρdz (1)

where Ptrop represents the barotropic pressure and Pclin is the baroclinic pressure;
ρ0 = 1028 kg/m3 is the surface seawater density; g = 9.8 m/s2 is the gravitational ac-
celeration; ζ is the sea level height, and here is taken as SLA; ρ is the seawater density,
which is derived from the temperature and salt data of EN4; z is the calculated pressure
depth, and unless otherwise specified, it is taken as 840 m, which is the maximum depth of
the GSR sill. Actually, the mean sea surface level is not horizontal, and the spatial difference
is huge. However, since this article focuses on the temporal change of pressure rather
than the absolute value, taking ζ as the Sea Level Anomaly (SLA) will not affect the final
analysis result.

3. Applicability Analysis of EN4 Data

3.1. Comparison with Observations at OWS-M Station

Analysis of the data from the OWS-M station shows that there are enough data for
Pclin calculations every month above 1000 m depth. The monthly and annual mean results
of Pclin calculated from the data are shown in Figure 2. Comparing the results of EN4
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data with the results of EN4 data, their annual mean change curves have a high degree of
overlap. The decline rate of annual mean Pclin at the OWS-M station during 1949–2009 was
−0.55 ± 0.26 × 102 Pa/dec, while the EN4 data was −0.3 ± 0.26 × 102 Pa/dec, consistently
showing a downward trend. Considering the annual mean Pclin at the OWS-M station had
some missing data, the difference in the decline rate between the two data sets may have
been caused by the missing data.

Figure 2. The Pclin anomaly from OWS-M data and EN4 data. Note: The OWS-M station data are
the daily profile observation results. Firstly, the monthly mean temperature and salinity values
at different depths are obtained by averaging, and then the monthly mean Pclin (at 840 m depth)
is calculated from temperature and salinity; when the cumulative observation level of a month is
less than 10 layers or the observation depth is less than 80 data 0 m, the month will be treated as a
missing measurement. The annual mean Pclin of the OWS-M station is obtained from the monthly
data average. A year is regarded as a missing year if there are more than 4 months in the year of
missing annual mean data and is not shown.

3.2. Compared with the Observed Overflow Transport

Based on mooring ADCP and temperature and salinity observations, Hansen and
Østerhus [3] found that there was no significant trend change in FBC overflow flux from
1995 to 2005, and the trend change did not exceed 0.2 Sv, which is only 10% of the mean
flow. Figure 3a–c shows that the SLAs on both sides of the GSR are both increased during
this period, while the Pclin at the depth of 840 m is decreased at the same time. The final
P obtained has no remarkable trend change in the Norwegian Sea or in the Icelandic Sea.
Therefore, the trend changes characteristics of the FBC overflow obtained from SLA and
EN4 data are more credible.

The measured data show that the trend of DS overflow flux in the 15-year period from
1996 to 2011 is −0.4 Sv. However, the trend is below the 70% confidence level of the t-Test,
so it is not significant [23]. Here the pressure at the depth of 640 m (approximately the
depth of DS) on the north and south sides of the DS increases by the same magnitude,
and the pressure difference between the two sides is basically unchanged. The spatial
distributions of Pclin and P at the depth of 640 m are basically the same as in Figure 2a–c,
which is not shown separately here. Thus, the calculation results here are consistent with
the observation.
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(a) (b) 

 
(c) 

Figure 3. The change trend of SLA (a), Pclin (b), and P (c) from 1995 to 2005. The gray area represents the sea area that has
not passed the 95% significance test; the white area represents the sea area where the period of missing data is longer than
7 years; the black lines are the 1000 and 3000 m isobaths. The pressure is calculated based on a reference depth of 840 m.

4. Change from 1993 to 2015

In the published literatures, the observation of GSR overflow flux is available until
2015 [14]. Since the Nordic Sea overflow is hydraulically controlled, the pressure difference
on both sides of the GSR can be used to analyze the long-term changes of the overflow flux.
The depth of the deepest GSR sill is about 840 m on the FBC, which can be used to calculate
the pressure difference [4]. As shown in Figure 4, from 1993 to 2015 the SLAs of the Nordic
Sea and the North Atlantic subpolar region near the GSR basically increased at the same
rate; Pclin mostly declined in the south of GSR, increased near DS in the north of GSR, and
had no significant change in the south of Norwegian Basin. The pressure difference in the
west of Iceland had a clear upward trend; the pressure difference to the east of Iceland
was basically unchanged. This means that DS overflow increased, while FBC overflow
and IFR overflow did not change much. Therefore, the total overflow in the Nordic Sea
slightly increased.
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(a) (b) 

  
(c) (d) 

Figure 4. SLA (a), Pclin_840 (b), P_840 (c), P_bottom (d) changes trends from 1993 to 2015. The gray area represents the sea
area that has not passed the 95% significance test; the white area represents the sea area where the period of missing data is
longer than 7 years. The black lines are the 1000 and 3000 m isobaths; the purple square represents the selected point for
calculating the pressure difference between the two sides of the GSR in panel (c).

In the Nordic Sea, the depth of σө = 27.8 kg/m3 (D27.8) (Figure 5a,b, the upper interface
of the overflow water) is more consistent with the spatial distribution of the change rate of
Pclin, indicating that changes in the properties of the upper seawater necessarily indicate
the adjustments of the upper interface of the overflow water. Especially in the Nordic Sea,
the sinking of D27.8 in the Lofoten Basin is about 100 m/dec, which may be directly caused
by the reduction of deep convection in the Greenland Sea [5,6] or the weakening of other
dense water production. When the total overflow transport flux remains unchanged, the
amount of overflow water flowing out of the Lofoten Basin almost remains unchanged.
Therefore, the reduction of dense water supply leads to the rapid sinking of the overflow
water interface in the Lofoten Basin. There, the rapid decline of Pclin and the rapid rise
of Ptrop occur at the same time, while P is basically unchanged, indicating that the above
changes are probably caused by the change of physical property of the upper water.
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(a) (b) 

Figure 5. The spatial distribution of the mean value (a) and change rate (b) of D27.8 from 1993 to 2015. The D27.8 is the depth
of σө= 27.8 kg/m3.

The Labrador Sea is a fast-sinking area of D27.8, with a sinking rate up to 160 m/dec
or more, which is consistent with the reported weakening of convection there [24,25]. In
the modern climate, the Nordic Sea overflow, entrainment process, and Labrador Sea
convection provides about 1/3 of the deep branch of the radial overturning circulation
in the Atlantic Ocean [4,26]. Under the condition that the overflow of the Nordic Sea
is relatively stable, the convection in the Labrador Sea is significantly weakened, which
may be the main reason for the significant weakening of the AMOC near 25◦ N [24,27].
However, some relatively new observational evidence has indicated that the deep convec-
tion of the Labrador Sea has the smallest total contribution to the subpolar overturning
circulation [28,29].

The convection of the Labrador Sea is significantly weakened, which causes the upper
interface of the dense water to sink quickly. Since the upper interface of the overflow water
in the Labrador Sea is deeper than 1500 m, its impact on the Pclin at 840 m is small, and
the decrease rate of Pclin at 840 m depth is only −2 × 102 Pa/dec. The deepening of the
overflow water in the Labrador Sea means that warming and freshening of the entire water
column causes a large increase in SLA, which is consistent with the calculated results.
The greater the bottom depth is, the greater the increase of SLA is. However, there is no
significant trend change in the mass of the entire water column from surface to the bottom
(Figure 4d).

Although the changes in properties of seawater can ensure the mass conservation
of the whole water column, the compression or expansion of the water column caused
by the change of properties of seawater will lead to the change of the mass ratio of the
upper and lower water column at a certain depth. Therefore, in hydrostatic balance, the
pressure change of seawater at a certain depth may be caused by the change of properties
of seawater below this depth, and the change of properties of seawater above this depth has
no effect on it. The different changing trends of the pressure at 840 m depth and the seabed
depth in the Labrador Sea and the Irminge Sea in the south of Greenland (Figure 4b,d)
show this effect.

Two points have been selected at the upstream and downstream ends of the FBC
to construct the temporal variations of pressure difference. Based on the overflow water
sources in different overflow channels and combining the location given by Olsen et al. [4],
we selected (64 N, 2 W) and (62 N, 15 W) to estimate the FBC overflow flux (the location
is shown in Figure 1). It can be seen from Figure 6 that the inter-annual variation char-
acteristics of ΔPtrop and ΔPclin obtained in this paper are very consistent with Figure 2 of
Olsen et al. [4]. Both results showed the minimum values of ΔPclin and ΔP in 1995, and
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the relative maximum values of ΔPtrop and ΔP in 2003; from 1993 to 2005, ΔPclin and ΔP
were rapidly rising and ΔPtrop had no significant change trend. At the same time, the
inter-annual variation of ΔP calculated here is about 2 × 102 Pa and about 10% of the
mean ΔP, which is basically consistent with the observed inter-annual variation of FBC
overflow [3]. In short, the pressure difference between the two points selected in this
paper can be used to estimate the FBC overflow flux change. From the spatial distribution
map of the SLA trend rate (Figure 4), it can be seen that the trend rate of SLA has a good
spatial continuity in the sea areas near both sides of the GSR, and the results would not be
significantly changed due to slight difference in the selection of the grid location.

Figure 6. The variations of annual mean of ΔPtrop, ΔPclin, and ΔP. The positions of the selected grid
points to calculate pressure difference on both sides of the GSR are shown in Figure 1.

Specifically, ΔPtrop experienced a slow decline with fluctuation from 1993 to 2005
and reached the minimum value in the past 23 years before 2005. ΔPtrop increased with
fluctuation from 2005 to 2013 and rose rapidly from 2013 to 2014; after that, it fell back.
The year 2014 had the maximum value of ΔPtrop in the past 23 years (Figure 6). ΔPclin
first decreased slightly in the period of 1993–1997, then increased before 2004, and reached
the maximum value in the past 23 years before 2004; then it decreased slowly in the
period of 2004–2013, and decreased rapidly in the last two years. ΔPclin in 2015 reached
the minimum value in the past 23 years. ΔP was basically at an average level in 1993,
followed by a relatively large fluctuation. After experiencing the minimum value in 1995
and the maximum value in 2003, it basically returned to the mean level in 2015. The linear
regression of the annual mean ΔP results in a change rate of 1.6 × 102 Pa/dec. Olsen et al. [4]
gave a linear coefficient of FBC overflow flux change (Δq) and ΔP of k = 10−3 Sv/Pa. Using
this linear coefficient, we obtain the FBC overflow enhancement rate of about 0.16 Sv/dec,
which is quite small relative to the mean FBC overflow flux (2.9 Sv). At the same time, the
linearly increasing trend of ΔP failed the 95% confidence test but passed the 90% confidence
test. In fact, ΔP in 2015 was only about 1 × 102 Pa larger than in 1993, which is quite small.

The changes in these three parameters have no significant correspondence with NAO,
and most of the wind stress curl changes in the Nordic Sea are related to NAO [30]. This
indicates that the interannual sea level changes are not mainly driven by wind stress, but
more likely are the result of changes in the properties of the upper seawater.

5. Relationship between Barotropic Pressure and Baroclinic Pressure

Olsen et al. [4] concluded that ΔPtrop and ΔPclin on both sides of the FBC have a
correlation lag of about three years, and analyzed the mechanism of the correlation as
follows: due to wind stress, the sea level difference on both sides of the FBC increases
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(decreases) and the ΔP on both sides increases (decreases) through the barotropic pressure
effect. Then, the overflow transport is enhanced (weakened), causing the iso-density
interface in the Norwegian Basin to sink (rise) and the ΔPclin gradually decreases (increases);
and then ΔP gradually decreases (increases) until recovers to normal level. This feedback
mechanism could help ΔP remain stable, which means the overflow transport is stable.
They use a simplified two-layer model to express the mechanism as:

Ptrop = ρ0gΔh (2)

ΔPclin = −gΔρΔD (3)

ΔPclin = −gΔρΔD =
−gΔρkT

A
ΔPtrop (4)

where ρ0 = 1.025 × 103 kg/m3 is the surface seawater density, g = 9.8 kg/m3 is the
gravitational acceleration, and Δρ = 0.5 kg/m3 is the density difference between overflow
water and upper water body. Linear regression coefficient of overflow flux change (Δq)
and pressure difference (ΔP) is k = 10−3 Sv/Pa. A is the contact area between the overflow
layer and the upper layer in the Nordic Sea, or rather the area of the Norwegian Sea deeper
than 500 m, which is equal to 5.8 × 1011 m2 [4]. T is the time for the high-density water
interface to sink ΔD after the barotropic pressure disturbance, which is also the time for ΔP
to restore to the initial state. The calculated T is approximately equal to three years.

The monthly mean variation of ΔPtrop, ΔPclin, and ΔP was constructed based on
EN4 and SLA data, and the correlation between ΔPtrop and ΔPclin lagging or leading in
different months was analyzed (Figure 7). When ΔPtrop is about three months ahead
of ΔPclin, the negative correlation between them is the largest (−0.59). Olsen et al. [4]
defined the horizontal spatial area occupied by overflow water as the seabed deeper than
500 m. However, the dense water in the Norwegian Sea is not freely available for overflow
transport, and the dense water in the center of the basin, which occupies most of the area, is
circulated by the boundary oceanic circulation. Therefore, the size of the effective overflow
area is much smaller than that of the ocean basin. Based on the feedback mechanism of
Olsen et al. [4] and the lag time obtained in this article, the horizontal spatial range of
available overflow water upstream of the FBC can be estimated to be 0.5 × 1011 m2, which
is about 1/12 of the value given by Olsen et al. [4]. This ratio is close to the percentage of
available overflow water in the total overflow water in the Nordic Sea (80%~85%) obtained
by other studies [19].

  

(a) (b) 

Figure 7. The variation (a) and the correlation for different lag time lengths (b) of ΔPtrop and ΔPclin.

The high Pclin correlation with the station in the southern part of the Norwegian Sea
(64 N, 2 W) is limited to a small area in the southern part of the Norwegian Sea (the area
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with a correlation greater than 0.8 in Figure 8). The Pclin in this area has a good consistency
of change, which can be considered as the available overflow area upstream of the FBC
overflow. The area with a correlation greater than 0.8 is about 1.8 × 1011 m2, and the area
with a correlation greater than 0.9 is 0.9 × 1011 m2. It is more likely that the changes of
ΔPtrop and ΔPclin are both dominated by changes in seawater properties, so the largest
negative correlation between them basically has no lead or lag (Figure 9).

Figure 8. The correlation between Pclin and Pclin at selected stations in the Norwegian Sea. The
time series of the correlation analysis has undergone a 12-month moving average processing. The
correlation here is the maximum correlation within 5 years of lead or lag time. The selected stations
in the Norwegian Sea are shown in Figure 1 as a purple square. The time series of ΔPtrop, ΔPclin, and
ΔP are all carried on a 12-month moving mean to remove seasonal fluctuations in this figure. For the
sake of comparison, ΔPclin and ΔP are shown as anomalies.

Figure 9. The correlation between Pclin and Ptrop.

Changes in the properties of the upper seawater will cause the reverse change of
Pclin and Ptrop, while the total pressure will not change due to the unchanged seawater
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quality. Therefore, the sea area with a stronger negative correlation between Pclin and Ptrop
indicates that changes in the properties of the upper seawater play a greater role in the
changes of both there. It can be seen from Figure 9 that there is a strong negative correlation
between Pclin and Ptrop in the southern sea area of GSR, the correlation coefficient is close
to −1.0, while the total pressure at this place has no trend change characteristics (Figure 4),
which shows that the changes of Pclin and Ptrop are mainly caused by the changes in the
properties of the upper seawater. In the Nordic Sea north of GSR, this negative correlation
is not so strong. Among them, in the Norwegian Sea, Pclin and Ptrop have a certain negative
correlation, indicating that the change in the properties of the upper seawater is one of the
important factors which cause the changes in the two. There are other processes that lead
to the increase in the quality of the upper seawater, which causes a slight increase trend in
the total pressure (Figure 4). The negative correlation between Pclin and Ptrop is no longer
significant in other areas of the Nordic Sea except the Norwegian Sea. In the Icelandic Sea,
the correlation between Pclin and Ptrop is poor and the SLA increases significantly, which
leads to a significant increase in the total pressure (Figure 4). There is a weak positive
correlation between the two in the Greenland Sea, indicating that the changes of Pclin and
Ptrop in this area are mainly affected by other processes.

Under hydrostatic assumption, changes in the density of seawater above 840 m depth
will not change the hydrostatic pressure at this depth. To change the pressure at this depth,
it needs to change the mass of the water column at this depth. There are two ways. One is
to change the absolute mass of the water column, or to change the sea level through wind
stress curl, runoff input, sea-air material flux, and other factors. The other is to change the
relative mass of the water column by changing the density of the deep layer, causing the
column to expand or contract. The mass percentage of the water column above the 840 m
depth can change the entire water column.

At present, most ocean numerical models are based on Boussinesq approximation,
which cannot reflect sea level changes caused by changes in seawater properties. When the
density of the sea layer in Northern Europe decreases, the pressure obtained by simulation
decreases, which in turn leads to the weakening of simulated overflow [31]. It can be seen
from the results of this paper that the steric effect contributes to most of the sea level trend
changes in the sea area surrounding the GSR and has a significant impact on the long-term
changes in overflow transport. Therefore, the simulation and prediction of long-term
changes in overflow requires the use of non-Boussinesq ocean models, considering the
impact of changes in seawater properties on SLA.

6. Conclusions

The Nordic Sea overflow is hydraulically controlled; the changes of the overflow flux
depend only on the pressure difference at the depth of the overflow outlet on both sides
of the GSR. Based on the satellite altimeter data and the reanalysis hydrological data, we
obtained a slight increase in the pressure difference between the two sides of the GSR from
1995 to 2015. However, this trend is not significant and is more consistent with the observed
stable overflow flux. Among them, the barotropic pressure and baroclinic pressure in the
southern sea area of the GSR have a very good negative correlation (correlation coefficient
is close to −1.0). The changes in both are basically caused by the changes in the properties
of the upper seawater, and the total pressure there is only a slight increasing trend. The
barotropic pressure and baroclinic pressure of the Norwegian Sea in the northern part of the
GSR have a certain negative correlation (correlation coefficient is about −0.6), indicating
that changes in the properties of the upper seawater are important factors that cause
changes in the barotropic and baroclinic pressures in the sea area, and other processes
can also lead to a slight increase in the barotropic pressure there. While the correlation
between the barotropic pressure and the barotropic pressure in the Icelandic Sea is poor,
the barotropic pressure increases significantly which leads to a significant increase in the
total pressure there.
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By selecting two representative points, the barotropic pressure difference and baro-
clinic pressure difference on both sides of the FBC are constructed. The changes in the
barotropic pressure and baroclinic pressure on both sides of the FBC are more likely caused
by the changes in the properties of the local upper seawater. The total pressure difference
caused no significant trend changes characteristics between 1993–2015, which is consistent
with the observation of stable overflow flux.

In the Nordic Sea, the area with the fastest sinking of the overflow water upper
interface is the Lofton Basin, with a sinking speed of more than 100 m/dec, indicating
that the storage of overflow water there is rapidly decreasing. The physical processes that
produce dense water, such as deep convection in the Greenland Sea, are weakening, and
the source of overflow provided is reducing, leading to warming and lightening of the
upper layer of the Norwegian Sea and sinking of the upper interface of the overflow water.
However, the changes in the properties of the upper seawater in the Norwegian Sea cannot
reduce upstream pressure in the depth of the sill to weaken overflow transport. Therefore,
it will cause the upper interface of upstream overflow water to further decrease. In the
future, when the depth of the overflow water upper interface in the Nordic Sea is less than
the depth of the sill on the GSR, the overflow may greatly slow down or even experience a
hiatus. This is worthy of close attention and further study.
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Abstract: As determining the probability of the exceedance of maximum precipitation over a spec-
ified duration is critical to hydrotechnical design, particularly in the context of climate change, a
model was developed to perform a frequency analysis of maximum precipitation of a specified
duration. The PMAXTP model (Precipitation MAXimum Time (duration) Probability) harbors a pair
of computational modules fulfilling different roles: (i) statistical analysis of precipitation series, and
(ii) estimation of maximum precipitation for a specified duration and its probability of exceedance.
The input data consist of homogeneous 30-element series of precipitation values for 16 different
durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min, obtained
through Annual Maximum Precipitation (AMP) and Peaks-Over-Threshold (POT) approaches. The
statistical analysis of the precipitation series includes: (i) detecting outliers using the Grubbs-Beck
test; (ii) checking for the random variable’s independence using the Wald-Wolfowitz test and the
Anderson serial correlation coefficient test; (iii) checking the random variable’s stationarity using
nonparametric tests, e.g., the Kruskal-Wallis test and Spearman rank correlation coefficient test for
trends of mean and variance; (iv) identifying the trend of the random variables using correlation
and regression analysis, including an evaluation of the form of the trend function; and (v) checking
for the internal correlation of the random variables using the Anderson autocorrelation coefficient
test. To estimate maximum precipitations of a specified duration and with a specified probability of
exceedance, three-parameter theoretical probability distributions were used: a shifted gamma distri-
bution (Pearson type III), a log-normal distribution, a Weibull distribution (Fisher-Tippett type III), a
log-gamma distribution, as well as a two-parameter Gumbel distribution. The best distribution was
selected by: (i) maximum likelihood estimation of parameters; (ii) tests of the hypothesis of goodness
of fit of the theoretical probability distribution function with the empirical distribution using Pear-
son’s χ2 test; (iii) selection of the best-fitting function within each type according to the criterion of
minimum Kolmogorov distance; (iv) selection of the most credible probability distribution function
from the set of various types of best-fitting functions according to the Akaike information criterion;
and (v) verification of the most credible function using single-dimensional tests of goodness of fit:
the Kolmogorov-Smirnov test, the Anderson-Darling test, the Liao-Shimokawa test, and Kuiper’s
test. The PMAXTP model was tested on data from two meteorological stations in northern Poland
(Chojnice and Bialystok) drawn from a digital database of high-resolution precipitation records
for the period of 1986 to 2015, available for 100 stations in Poland (i.e., the Polish Atlas of Rainfall
Intensities (PANDa)). Values of maximum precipitation with a specified probability of exceedance
obtained from the PMAXTP model were compared with values obtained from the probabilistic
Bogdanowicz-Stachý model. The comparative analysis was based on the standard error of fit, graphs
of the density function for the probability of exceedance, and estimated quantile errors. The errors of
fit were lower for the PMAXTP compared to the Bogdanowicz-Stachý model. For both stations, the
smallest errors were obtained for the quantiles determined on the basis of maximum precipitation
POT using PMAXTP.
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1. Introduction

A frequency analysis of values of maximum precipitation of a specified duration and
probability of exceedance is an essential part of engineering [1]. Given the significant
impact of maximum precipitation on various spheres of human activity (e.g., the economy,
agriculture, industry, and the environment), such an analysis is widely applied, particularly
in the context of observed climate change [2,3].

A widely used tool in the statistical description of rare meteorological (climatic)
events is the extreme value theorem (EVT). Two probability distributions are used when
employing the EVT: the generalized extreme value distribution (GEV) and the generalized
Pareto distribution (GPD) [4,5]. Encompassing three families of distributions (Gumbel (G),
Fréchet (F), and Weibull (WE)), the GEV distribution offers the advantage of high accuracy
of fit to observed precipitation data [6]. Commonly used methods for the estimation
of the unknown parameters of theoretical probability distributions include: maximum
likelihood, L-moments, and the Bayesian method [7–9]. Ragulina and Reitan [10] proposed
a Bayesian hierarchical model approach to the selection of a GEV distribution, where
Bayesian inference was applied both to parameter estimation and model selection. For
most locations in Japan investigated by Yuan et al. [11], a log-Pearson type 3 distribution
(LGA) proved to be the best-fitting theoretical probability distribution for annual maximum
hourly precipitation data. Młyński et al. [12] found that among the G, GA, WE, log-normal
(LN), and GEV distributions, the latter best described annual maximum daily precipitation
in Poland’s upper Vistula basin.

An assumption of the EVT is that the random variables subjected to analysis show
stationarity, i.e., the statistical properties of the mechanism generating these variables re-
main unchanged over time. Such conditions are rarely encountered in nature, and extreme
events are increasingly of a nonstationary nature. In the case of maximum precipitation,
its natural variation is overlaid by changes in climate and human intervention in land use
(e.g., reduction in soil drainage). In this situation, time series of maximum precipitation
values exhibit non-stationarity in the form of long-term trends and/or periodic fluctuations.
In recent years, it has become increasingly common to analyze the frequency of nonstation-
ary phenomena using the theory of nonstationary extreme value (NSEV). Katz et al. [13]
extended the traditional approach to a frequency analysis to deal with nonstationary cases,
where it is assumed that there is a constant probability of the occurrence of an extreme
event with values that vary with time. Likewise, Adlouni et al. [14] developed a method
for estimating a GEV distribution under nonstationary conditions. Parameters of the distri-
bution were estimated by the maximum likelihood method (MLM), and the covariance of
the observed variables was included in the parameters of the probability distribution.

Another approach, used in engineering practice for estimating values of maximum
precipitation with a specified duration and probability of exceedance, is regionalization.
In Poland, Bogdanowicz and Stachý [15,16] used a clustering procedure for a series of
annual maximum precipitation values to distinguish three precipitation regions. In these
regions, annual maximum values were described using a WE extreme value distribution.
Satisfying the assumptions of independence, stationarity, and identity of probability dis-
tribution, Shahzadi et al. [17] used a regional analysis of flooding frequency and a Monte
Carlo method to divide the territory of Pakistan into three homogeneous subregions. The
estimation of parameters followed the L-moments method, while quantile estimation was
carried out using GA, GEV, GPA, generalized normal (GNO), and generalized logistic
(GLO) distributions.
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Quantiles of an extreme value distribution are usually estimated directly from a ran-
dom sample of annual maximum precipitation (AMP) values. In view of the shortness of
the time series, alternative solutions were used, thereby enabling statistical inference to
be carried out based on a broader set of information than the annual maxima. Examples
include analyses of seasonal maxima and models of annual maxima with different seasonal
variances. In these models, the probabilistic description is usually based on mixed dis-
tributions. Earlier research on mixed distributions assumed the same probability density
function for the distinguished seasons (homogeneous mixed distributions). An example of
this approach is the two-population general extreme value distribution (TPGEV), based
on the assumption of GEV-GEV distributions [18], gamma-gamma distributions (GA-GA),
and log-normal-log-normal distributions (LN-LN) [19,20]. However, hydrometeorological
variables are composed of different types of probability density functions.

Numerous studies on non-homogeneous mixed distributions have led to an improve-
ment of the characteristics of the analyzed variables through the use of two-component
models, such as the mixed gamma-Gumbel distribution (GA-G) [21] or the two-component
generalized extreme value distribution (TCGEV) composed of a GEV and a Gumbel (G)
distribution [22]. A GA-GP mixed distribution, incorporating a gamma distribution [23]
and generalized Pareto distribution (GP), is commonly used. It serves mainly to model
meteorological situations featuring both dry and wet periods. Another approach to the fre-
quency analysis of maximum precipitation is the determination of the relationship between
the intensity of precipitation and duration, and between duration and frequency of occur-
rence. For the modeling of two-dimensional dependences, the use of copula functions is
recommended as a method of estimation of a two-dimensional distribution function [24,25].
In recent years, analyses have been made of a multidimensional dependence structure of
extreme precipitation event variables using vine copula functions. The method involves
the step-by-step mixing of two-dimensional copulas, which leads to a simplification of the
estimation of multidimensional distribution functions [26].

Although there have been many attempts at using models for nonstationary series of
extreme events [27–34], engineering practice shows that the assumption of the stationarity
of time series is still widely adopted.

The purpose of this paper is to present the PMAXTP model for a frequency analysis of
maximum precipitation with a specified duration and probability of exceedance, together
with the results of testing the model against data from two meteorological stations located
in northern Poland: Chojnice and Białystok. Values of maximum precipitation with a
specified duration and probability of exceedance were estimated for two time series: (i) a
30-year series of annual maximum precipitation (AMP) values from the period 1986–2015
and (ii) a 30-element series of maximum precipitation values from the period 1986–2015
obtained by means of peaks-over-threshold (POT) analysis. The 30 highest values from the
obtained set were used for further analyses. Computations were performed for 16 different
durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min.
The results given by the PMAXTP model were compared with those obtained with the
probabilistic Bogdanowicz-Stachý model of maximum precipitation [15,16], which is in
common use in Polish engineering practice.

2. Problem Formulation and Methodology

The PMAXTP model for a frequency analysis of maximum precipitation with a speci-
fied duration and probability of exceedance was developed with the use of the method of
alternative events (MAE), which serves to compute annual maximum flows with a specified
probability of exceedance [35]. The overall scheme of the PMAXTP model is shown in
Figure 1. The model contains two computational modules, one that performs a statistical
analysis of series of precipitation data, and another that estimates maximum precipitation
with a given duration and probability of exceedance. The latter includes an estimation of
parameters of the distributions by the maximum likelihood method, verification of good-
ness of fit by Pearson’s χ2 test, selection of the best-fitting probability distribution function
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within each distribution type according to the criterion of minimum Kolmogorov distance,
selection of the most credible function according to the Akaike information criterion (AIC),
and determination of the quantile confidence interval with regard to the randomness of the
series of observations. The results returned by the PMAXTP model are values of maximum
precipitation with a specified duration τ (min) ∈ {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720,
1080, 1440, 2160, 2880, 4320} and a given probability of exceedance p (%) ∈ {99.9, 99.5, 99,
98.5, 98, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.02, 0.01}.

Figure 1. Overall scheme of the PMAXTP model.
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An analysis of the homogeneity of the random variables of series of maximum pre-
cipitation with different durations was performed by genetic (physical) methods and by
statistical methods [35,36]. The identification of the trend of the analyzed random vari-
ables and evaluation of the form of the trend function were carried out by correlation
and regression analysis, where the dependent variable is the maximum precipitation se-
lected by the AMP or POT method, and the independent variable is the time (τ). The
correlation was analyzed using the nonparametric Spearman rank correlation test [37] and
the parametric Pearson linear correlation coefficient test [38]. In regression analysis, the
global Fisher-Snedecor F-test [39] tests three equivalent null hypotheses: the significance of
the slope, the significance of the coefficient of determination, and the significance of the
linear relationship between the analyzed variables. Verification is performed for the null
hypothesis that the independent variable (time τ) has no effect on the analyzed dependent
variable, which here is the maximum precipitation (PAMP

τ and PPOT
τ ). An evaluation of

the form of the trend function is performed using scatter plots of the analyzed random
variables with respect to time (τ). These provide a visual assessment and an evaluation of
the form of the trend function: linear, power, exponential, etc.

The internal correlation of the analyzed random variable was checked using the
Anderson autocorrelation coefficient test [40]. This analysis identifies the occurrence of
periodic fluctuations and their effect on the variation of the analyzed variables. The
results are presented numerically and graphically for a specified lag, with an indication of
the autocorrelation coefficients and an evaluation of white noise (standard error) for the
confidence level assumed (α).

The computation of the maximum precipitation with a specified probability of ex-
ceedance is performed using probabilistic models of the properties of the random variables
PAMP

τ and PPOT
τ . An analysis of the properties of random maximum precipitations served

as the basis for the acceptance of potential probability distribution models: e.g., G, GA, LN,
log-gamma (LGA), and WE. The first four models are three-parameter distributions with
the following parameters: α (α > 0), λ (λ > 0) or μ (μ > 0), and ε (ε ≤ x ≤ + ∞), representing,
respectively, the parameters of scale, shape, and position, i.e., the lower (left-hand) limit of
the probability distribution (see details in Appendix A).

The PMAXTP model assumes that each type of distribution is represented by a family
of functions fi(x), shifted with respect to each other, each of which has a certain fixed lower
limit (εi) satisfying 0 ≤ εi < min

1≤j≤n

(
xj
)
, where n is the size of the random sample. The

value of εi may take values ranging from 0 up to the minimum value of the variable (X)
in the random sample (x1, x2, · · · , xn). Hence, the lower limit (εi) of the ith specific
function in the family of a selected type of distributions is the discriminant of that function
within the family, and is not subject to estimation. In the G distribution, described by
Equations (A9) and (A10) in Appendix A, only two parameters appear: the scale α and the
shape μ.

The parameters of probability density functions were estimated by the MLM using
dedicated software [41]. The procedure was as follows:

(i) Estimation of parameters of four types of functions belonging to the probability
distribution families GA, WE, LGA, and LN for a fixed value and range of variation
of the distribution lower limit εi for the ith function belonging to the family of the
selected probability distribution. In the case of the G distribution, the parameters are
estimated for a single function; there is no distribution lower limit (ε).

(ii) Obtainment of i sets of estimated values of parameters for each selected probability
distribution function by the solution of systems of equations according to explicit
formulas, or the determination of a set of parameter values using Brent’s or Newton’s
numerical methods [42].

(iii) Check of the goodness of fit of the selected theoretical distribution with the empirical
distribution using Pearson’s χ2 test [43] at a significance level α = 0.05.

(iv) Formation of a set of noncontradictory probability distribution functions from all
probability distribution functions for which the hypothesis of goodness of fit was not
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rejected. Sets of noncontradictory functions are formed separately for each selected
probability distribution function type: GA, WE, LGA, and LN.

(v) Selection of the best-fitting function within each distribution type. For each theoret-
ical distribution type used, there may exist many noncontradictory functions with
different lower limit values εi. A single function is selected for each distribution type
(GA, WE, LGA, LN) according to the criterion of minimum Kolmogorov distance,
min(Dmax) [35,44]. The probability distribution function for which, within a given
distribution type, the Kolmogorov distance Dmax attains its minimum value is called
the best-fitting function in the sense of the Kolmogorov distance criterion. These
single functions, identified for each of the distribution types used, form the set of
best-fitting functions.

(vi) Selection of the most credible probability distribution function from the set of best-
fitting functions of particular types (GA, WE, LGA, LN, G), performed by computing
the value of the Akaike information criterion (AIC) [45] for each of those functions.
The most credible function is taken to be the function with the smallest AIC value.

(vii) Verification of the most credible distribution of maximum precipitation values, PAMP
τ

and PPOT
τ , was based on nonparametric tests used to analyze the goodness-of-fit

of a theoretical mathematical model to an empirical model. The verification of the
distributions was concentrated on their tail part. The tails of the distributions are
significant in terms of the occurrence of extreme values of the random variable,
that is, values with a very low probability of exceedance. Thus, to evaluate the
goodness-of-fit of the distributions, the following single-dimensional statistical tests
were used: the Kolmogorov-Smirnov test (DK-S) [46,47], the Anderson-Darling test
(DA-D) [48], the Liao-Shimokawa test (DL-S) [49], and Kuiper’s test (DK) [50]. (For
details, see Appendix B.) The DK-S test may be used for the verification of large
deviations of a theoretical cumulative probability distribution from the empirical
distribution. The DA-D test is sensitive to deviations in the tail part, while the DL-S test
represents a weighted mean distance between the theoretical and empirical probability
distributions in the whole range of the analyzed random variable, and is regarded as
the most suitable for verification of the Gumbel and Weibull distributions [49]. The
DK test was used to verify the goodness-of-fit of the distribution in its central part, as
well as in the lower and upper parts of the tail of the distribution.

(viii) Selection of a probabilistic model, performed by comparing the estimated quantile
errors resulting from the randomness of the sample of maximum precipitations with
a specified duration τ selected by the AMP and POT methods (PAMP

τ and PPOT
τ ).

3. Study Area and Data

The PMAXTP model was tested on data from two meteorological stations located in
Poland: Chojnice and Bialystok (Figure 2, black hexagons). The choice of stations was based
on the availability of long series of historical data and current meteorological observations.

Data were drawn from the Rain-Brain database, created under the Development and
Implementation of a Polish Atlas of Rainfall Intensities (PANDa) project [51] carried out in
2016 and 2017 by Poland’s Institute of Meteorology and Water Management—National Re-
search Institute (IMGW—PIB). Under the PANDa project, a series of depths of precipitation
having specific durations were subjected to qualitative assessment, including a comparison
of digital records with analog data (from Hellmann rain gauges), and information was
drawn from a system of ground-based radars operating in the measurement and obser-
vation network of the IMGW—PIB. The observations were verified with respect to the
occurrence of meteorological configurations which might cause rainfall of a given quantity
in specified pressure conditions, characteristic of the analyzed region.

The study was based on the 30 highest precipitation depth values for 16 specified
durations, τ = {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320}
(minutes) for the two precipitation stations mentioned above.
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Figure 2. Location of the Chojnice and Bialystok meteorological stations in Poland.

Two methods were used to select maximum precipitation values: AMP [1,2,52] and
POT [53]. Under the AMP method, a single maximum precipitation value was selected
for the year, independent of its duration. A defect of the AMP method is that it fails to
take into account all the high precipitation depth values occurring in a given year. In
the POT method, it is possible to take into account all high precipitation depth values in
a given year, i.e., the method selects these values that exceed a threshold determined a
priori. The analyses were based on events with values not less than PPOT

min,τ = 3.5τ0.275 [51].
Thus, threshold values PMAX

τ (mm) were set for precipitation with specified durations (τ),
as given in Table 1 [51]. The subsequent analyses used 30-element series of maximum
precipitation data, selected by both methods.

Table 1. Minimum quantity of precipitation PPOT
min,τ (mm) taken as a threshold in the POT method.

τ
(min)

5 10 15 30 45 60 90 120 180 360 720 1080 1440 2160 2880 4320

PPOT
min,τ

(mm)
5.4 6.6 7.4 8.9 10.0 10.8 12.1 13.1 14.6 17.7 21.4 23.9 25.9 28.9 31.3 35.0

4. Results and Discussion

4.1. Results of Analysis of Homogeneity for the PMAXTP Model

An analysis was made of the genetic, time, and measurement homogeneity of the pre-
cipitation series from the stations in Chojnice and Bialystok. Based on a visual assessment
of the measurement series and information contained in IMGW—PIB reports (Meteoro-
logical Yearbooks and Precipitation Yearbooks Report [51]), no significant factors were
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found that might have an impact on the genetic homogeneity of the series of maximum
precipitation values observed in the years 1986–2015.

An analysis was made of the statistical properties of the series of precipitation mea-
surements from Chojnice and Bialystok using nonparametric significance tests [35,36]. The
results are presented in Tables 2–6. Tables 2 and 3 contain the results of outlier detection
using the Grubbs-Beck test [54,55], checking for the independence of the analyzed random
variable using the Wald-Wolfowitz test (Test of Series) and Anderson serial autocorrelation
coefficient test [40,55,56], and checking the stationarity of the analyzed random variable
using the Kruskal-Wallis test and Spearman rank correlation coefficient test for the trends
of mean and variance [57,58]. The final column of Tables 2 and 3 indicates genetically and
statistically homogeneous series of maximum precipitation data selected by the AMP and
POT methods.

In the case of PAMP
τ , the Grubbs-Beck test detected outliers for precipitation with the

duration τ = 360 and τ = 720 min, at both the Chojnice station (Table 2) and the Bialystok sta-
tion (Table 3). In Tables 2 and 3, for a positive test result (+), the number of the outlier in the
chronological sequence and the quantity of precipitation are also given. For the PPOT

τ series
at Chojnice (Table 2), outliers were detected for τ ∈ {15, 30} and τ ∈ {120, . . . , 4320} min,
while at Bialystok (Table 3), outliers were detected for τ ∈ {5, . . . , 15}, τ ∈ {60, . . . , 360}
and τ ∈ {2160, . . . , 4320} min. Based on the theorem developed by Neyman and Scott [59]
stating that the families of LN, G, and WE distributions—these being the distributions
assumed as potential models describing the maximum precipitation values—are entirely
susceptible to the occurrence of outliers in a random sample, it was concluded that the
occurrence of the detected outliers should be considered entirely natural, and such elements
were not removed from the measurement series.

Table 2. Results of nonhomogeneity analysis of AMP and POT precipitation series from Chojnice meteorological station;
(−)/(+) denotes, respectively, negative and positive test results;

√
—denotes homogenous series.

τ
(min)

Grubbs-Beck Test
±Outliers (mm)

Test of Series
Kruskal-Wallis

Test

Spearman Rank Correlation Test Homogeneity
of Precipitation

PMAX
τ

for Trend
of Mean

for Trend
of Variance

AMP POT AMP POT AMP POT AMP POT AMP POT AMP POT

5 (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
√ √

10 (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)

15 (−) (+) [5] = 24.5 (−) (−) (+) (−) (+) (−) (+) (−)
√

30 (−) (+) [4] = 33.7 (−) (−) (+) (−) (+) (−) (+) (−)
√

45 (−) (−) (−) (−) (+) (−) (+) (−) (+) (+)

60 (−) (−) (−) (−) (+) (−) (+) (−) (−) (+)

90 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

120 (−) (+) [19] = 42.9 (−) (−) (+) (−) (+) (−) (−) (−)
√

180 (−) (+) [19] = 48.4 (−) (−) (+) (−) (+) (−) (+) (−)
√

360 (+) [25] = 60.3 (+) [24] = 60.3 (−) (−) (+) (−) (+) (−) (+) (−)
√

720 (+) [4] = 11.8
[25] = 67.7 (+) [24] = 67.6 (−) (−) (−) (−) (−) (−) (−) (−)

√ √

1080 (+) [4] = 11.8 (+) [24] = 71.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

1440 (−) (+) [25] = 71.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

2160 (−) (+) [20] = 80.5 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

2880 (−) (+) [22] = 87.2 (−) (−) (−) (−) (−) (−) (−) (−)
√ √

4320 (−) (+) [21] = 87.9 (−) (−) (−) (−) (−) (−) (−) (−)
√ √
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Table 3. Results of nonhomogeneity analysis of AMP and POT precipitation series from Bialystok meteorological station;
(−)/(+) denotes, respectively, negative and positive test results;

√
—denotes homogenous series.

τ
(min)

Grubbs-Beck Test
±Outliers (mm)

Test of Series
Kruskal-Wallis

Test

Spearman Rank Correlation Test Homogeneity
of Precipitation

PMAX
τ

for Trend of
Mean

for Trend
of Variance

AMP POT AMP POT AMP POT AMP POT AMP POT AMP POT

5 (−) (+) [15] = 15.5 (−) (−) (+) (−) (+) (−) (−) (−)
√

10 (−) (+) [15] = 22.3 (−) (−) (+) (−) (+) (−) (−) (−)
√

15 (−) (+) [17] = 24.6 (−) (−) (+) (+) (+) (−) (−) (+)

30 (−) (−) (−) (−) (+) (+) (+) (−) (−) (+)

45 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

60 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

90 (−) (+) [22] = 42.0 (−) (−) (+) (−) (+) (−) (−) (−)
√

120 (−) (+) [23] = 47.7 (−) (−) (+) (−) (+) (−) (−) (+)

180 (−) (+) [23] = 52.2 (−) (−) (+) (−) (+) (−) (−) (−)
√

360 (+) [4] = 10.89
[25] = 67.70 (+) [23] = 67.7 (−) (−) (+) (+) (+) (+) (−) (−)

720 (+) [25] = 73.90 (+) [21] = 73.9 (−) (−) (+) (−) (+) (−) (−) (−)
√

1080 (−) (+) [20] = 79.6 (−) (−) (+) (−) (+) (−) (−) (−)
√

1440 (−) (+) [23] = 84.50 (−) (−) (+) (+) (+) (+) (−) (−)

2160 (−) (+) [21] = 101.30 (−) (−) (+) (−) (+) (−) (−) (−)
√

2880 (−) (+) [20] = 106.20 (−) (−) (+) (−) (+) (−) (−) (−)
√

4320 (−) (−) (−) (−) (+) (−) (+) (−) (−) (−)
√

For all observed values of maximum precipitation PAMP
τ and PPOT

τ (Tables 2 and 3),
the Wald-Wolfowitz test (Test of Series) and the Anderson serial correlation coefficient test
showed that the analyzed measurement series were random and formed a simple sample,
i.e., the random variables were independent variables. The significance level α = 0.05 used
in the test took account of the size of the random sample, n = 30. For series of length
greater than 30, a lower value may be taken as the test significance level (e.g., α = 0.01). For
the detection of outliers with the Grubbs-Beck test, the higher value α = 0.10 was used,
on the assumption that series of measurements of meteorological phenomena may be
characterized by greater anthropogenic impact.

The stationarity of the measurement series was checked using the Kruskal-Wallis
test and Spearman rank correlation test for the trends of the mean and variance. Ac-
cording to the Kruskal-Wallis test, in the PAMP

τ series from both Chojnice and Bialystok,
jumps in the mean were detected, with the exception of the observations for τ = 5 and
τ ∈ {720, . . . , 4320} min at Chojnice. In the case of the PPOT

τ precipitation values, most of
the observations were stationary, with the exception of τ = 5 at Chojnice and τ ∈ {15, 30}
and τ = 1440 min at Bialystok.

The Spearman’s rank correlation test for the trends of mean and variance revealed
nonstationarity mainly for the PAMP

τ precipitation values. In the case of PPOT
τ , nonsta-

tionary observations were the exception. For example, in the observations from Chojnice
for τ = 10 min and τ ∈ {45, 60} min, a trend was detected in the mean and variance,
respectively, while for the Bialystok data, such trends were detected, respectively, for
τ ∈ {360, 1440} and τ = 120 min.

The results of correlation testing and the identification of the trend of maximum
precipitation for the AMP and POT series are given in Tables 4–6. The identification of the
trend of the analyzed random variables was performed using the nonparametric Spearman
rank correlation test [37] and the parametric Pearson linear correlation coefficient test [38].
An analysis was made of the correlation between the studied random variables (PAMP

τ and
PPOT
τ ) and the time variable τ (Table 4). Positive and negative values indicate upward and
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downward trends, respectively. Spearman’s coefficient also indicates the strength of the
trend. The closer the values are to 1.0, the stronger is the relationship between the analyzed
random variable and the time variable τ. Pearson’s coefficient indicates proportionality,
that is, linear dependence between variables, while Spearman’s coefficient indicates any
monotonic relationship, even if nonlinear. Figures shown in bold type in Table 4 indicate
significant correlations, with the probability p ≤ 0.05. Strong dependences between the
observed maximum precipitation values and the independent variable τ were recorded in
the case of PAMP

τ at both Chojnice and Bialystok.

Table 4. Correlations between the maximum precipitation variables and time τ for the Chojnice and Bialystok stations.
Bold values of Spearman’s rank correlation and Pearson’s linear correlation coefficients are significant at p < 0.05 for n = 30,
where n is the size of the sample.

τ
(min)

5 10 15 30 45 60 90 120 180 360 720 1080 1440 2160 2880 4320

Nonparametric Spearman rank correlation coefficient test for CHOJNICE station

PAMP
τ 0.277 0.309 0.396 0.481 0.452 0.472 0.439 0.495 0.516 0.458 0.198 0.100 0.136 0.112 0.206 0.220

PPOT
τ 0.175 −0.449 −0.181 −0.270 −0.019 −0.169 −0.129 −0.046 −0.319 0.036 −0.201 −0.203 −0.226 −0.326 −0.285 −0.340

Parametric Pearson linear correlation coefficient test for CHOJNICE station

PAMP
τ 0.267 0.297 0.290 0.292 0.303 0.335 0.388 0.434 0.425 0.387 0.299 0.186 0.159 0.101 0.189 0.210

PPOT
τ 0.209 −0.299 −0.255 −0.331 −0.124 −0.235 −0.142 −0.068 −0.222 0.090 0.046 −0.045 −0.114 −0.205 −0.145 −0.193

Nonparametric Spearman rank correlation coefficient test for BIAŁYSTOK station

PAMP
τ 0.584 0.552 0.553 0.524 0.471 0.477 0.482 0.458 0.482 0.454 0.470 0.415 0.458 0.433 0.417 0.366

PPOT
τ 0.181 0.007 0.222 0.227 0.042 0.056 0.137 0.271 0.194 0.434 0.315 0.236 0.407 0.251 0.067 0.353

Parametric Pearson linear correlation coefficient test for BIAŁYSTOK station

PAMP
τ 0.448 0.490 0.489 0.427 0.399 0.396 0.428 0.411 0.466 0.468 0.486 0.457 0.456 0.451 0.434 0.423

PPOT
τ 0.131 0.054 0.174 0.115 0.018 0.006 0.102 0.168 0.195 0.375 0.368 0.304 0.371 0.228 0.129 0.364

The form of the trend function was assessed using regression analysis (Tables 5 and 6),
where the dependent variable is the maximum precipitation and the independent variable
is the time τ. Tables 5 and 6 give the results of the regression analysis, including the
following indicators: Pearson’s correlation coefficient r, the coefficient of determination r2,
the Fisher-Snedecor global F-test [60], the test probability p resulting from the latter test,
the size of the random sample n, and the standard error of estimation S(E). Statistically
significant regression coefficients for the analyzed variables are identified according to the
criterion for statistical significance adopted in the model, with α = 0.05. This means that
the regression coefficients are significant for a test probability p ≤ 0.05.

The global F-test tests three equivalent null hypotheses: H0: β1 = 0 (significance of
the slope); H0: r2 = 0 (significance of the coefficient of determination); and H0: y = β1x+ β0
(significance of the linear relationship between the analyzed variables), where β1 is the
slope; β0 is a free term; and x and y denote the independent and dependent variables,
respectively. Verification is made of the null hypothesis that the independent variable x
(in Tables 5 and 6, the independent variable is time, τ) does not influence the analyzed
dependent variable y (in Tables 5 and 6, the dependent variables are PAMP

5 , . . . , PAMP
4320

and PPOT
5 , . . . , PPOT

4320 ). If, in the course of verification, the null hypothesis is rejected, the
regression coefficient is assessed as significant, meaning that τ has a significant influence
on the analyzed dependent variable. Examples of random variables with no trend and
showing a trend are given in Tables 5 and 6, respectively, for observations from Chojnice
and Bialystok.
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Table 5. Results of simple regression analysis for the Chojnice station, where the dependent variables are PAMP
τ and PPOT

τ ,
and the independent variable is time (τ), for n = 30, where r is Pearson’s correlation coefficient; r2 is the coefficient of
determination; F(1,n) is the Fisher-Snedecor test; S(E) is the standard error of estimation; and p (p-value) is the value of the
test probability. Bold type indicates significance of regression parameters, namely the existence (for p ≤ 0.05) of a significant
linear trend coefficient.

τ
PAMP

τ —CHOJNICE PPOT
τ —CHOJNICE

r r2 F(1,n = 28) S(E) p r r2 F(1,n = 28) S(E) p

5 0.266 0.071 2.142 2.278 0.154 0.208 0.043 1.274 1.374 0.268
10 0.297 0.088 2.718 3.780 0.110 0.299 0.089 2.751 2.641 0.108
15 0.296 0.087 2.691 4.872 0.112 0.255 0.065 1.949 3.754 0.173
30 0.292 0.085 2.609 6.916 0.117 0.331 0.109 3.447 5.396 0.073
45 0.302 0.092 2.824 7.244 0.103 0.124 0.015 0.440 5.757 0.512
60 0.335 0.112 3.545 7.244 0.070 0.234 0.055 1.634 5.596 0.211
90 0.388 0.151 4.967 7.399 0.034 0.142 0.020 0.577 5.762 0.453
120 0.434 0.188 6.513 7.623 0.016 0.067 0.004 0.128 5.983 0.722
180 0.425 0.181 6.181 8.089 0.019 0.221 0.049 1.447 6.489 0.238
360 0.386 0.149 4.926 9.047 0.034 0.090 0.008 0.229 7.484 0.635
720 0.298 0.089 2.744 9.857 0.108 0.046 0.002 0.059 7.524 0.808
1080 0.185 0.034 0.998 12.241 0.326 0.045 0.002 0.056 9.465 0.813
1440 0.158 0.025 0.726 13.263 0.401 0.113 0.012 0.366 10.337 0.550
2160 0.101 0.010 0.289 15.139 0.594 0.204 0.042 1.226 11.338 0.277
2880 0.188 0.035 1.035 15.589 0.317 0.145 0.021 0.604 11.986 0.443
4320 0.209 0.043 1.287 16.387 0.266 0.193 0.037 1.086 12.190 0.306

Table 6. Results of simple regression analysis for the Bialystok station, where the dependent variables are PAMP
τ and PPOT

τ ,
and the independent variable is time (τ), for n = 30, where r is Pearson’s correlation coefficient; r2 is the coefficient of
determination; F(1,n) is the Fisher-Snedecor test; S(E) is the standard error of estimation; and p (p-value) is the value of the
test probability. Bold type indicates significance of regression parameters, namely the existence (for p ≤ 0.05) of a significant
influence of the variable τ on the analyzed dependent variable.

τ
PAMP

τ —BIALYSTOK PPOT
τ —BIALYSTOK

r r2 F(1,n = 28) S(E) p r r2 F(1,n = 28) S(E) p

5 0.489 0.240 8.846 2.407 0.006 0.253 0.064 1.915 1.840 0.177
10 0.4901 0.240 8.879 3.352 0.006 0.083 0.007 0.197 2.979 0.660
15 0.489 0.239 8.826 4.147 0.006 0.197 0.039 1.137 3.454 0.295
30 0.425 0.181 6.232 5.768 0.019 0.061 0.004 0.104 4.854 0.749
45 0.399 0.159 5.309 6.816 0.028 0.106 0.011 0.323 5.407 0.574
60 0.397 0.157 5.248 6.825 0.029 −0.017 0.0003 0.008 5.124 0.928
90 0.427 0.183 6.269 7.513 0.018 0.113 0.012 0.363 5.866 0.551

120 0.409 0.167 5.628 8.285 0.024 0.142 0.020 0.576 6.456 0.454
180 0.465 0.216 7.729 8.195 0.009 0.145 0.021 0.605 6.837 0.443
360 0.466 0.217 7.773 9.875 0.009 0.301 0.091 2.801 8.684 0.105
720 0.487 0.237 8.708 10.828 0.006 0.368 0.135 4.390 10.032 0.045
1080 0.459 0.212 7.513 12.186 0.010 0.376 0.142 4.624 11.615 0.040
1440 0.458 0.210 7.465 13.717 0.011 0.367 0.134 4.350 12.633 0.046
2160 0.454 0.206 7.267 16.796 0.012 0.287 0.083 2.531 15.312 0.123
2880 0.436 0.191 6.600 18.190 0.016 0.193 0.037 1.088 16.566 0.306
4320 0.426 0.182 6.217 21.715 0.018 0.359 0.129 4.152 19.319 0.515

Values shown in bold type in Tables 5 and 6 indicate the presence of a significant in-
fluence of time τ on the analyzed random variable. In these cases, the estimated regression
slope coefficients β1 are significantly different from zero. At Chojnice, the observations
of maximum precipitation showed a trend only in the case of PAMP

τ for the durations
τ ∈ {90, . . . , 360} min. At Bialystok, however, in all of the analyzed observations of maxi-
mum precipitation PAMP

τ and in three cases of PPOT
τ (τ ∈ {720, . . . , 1440} min), an upward
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trend was detected. The test probability p determined for the computed regression coeffi-
cients was below the assumed significance level α = 0.05.

An assessment of the form of the trend function (linear, power, exponential, etc.) was
made using scatter plots of the analyzed random variables with respect to time τ (Figure 3).
The scatter plots of PAMP

10 , PAMP
30 , and PAMO

60 showed a clear linear upward trend, while those
for the variables PPOT

10 , PPOT
30 , and PPOT

60 showed, respectively, small upward and downward
trends. In this case, the slope β1 was close to 0, and the test probabilities (PPOT

10 : p = 0.660;
PPOT

30 : p = 0.749; PPOT
60 : p = 0.928) were substantially higher than the significance level

α = 0.05 used in the analysis. In the annual data, seasonal (monthly or daily) fluctuations
were not analyzed. If the analyzed series of values of PAMP

τ or PPOT
τ contain a trend or

periodic fluctuations, they cannot be used as an input in the computational procedures of
the PMAXTP method.

Figure 3. Scatter plots of dependent random variables observed at the Bialystok station: PPOT
10 , PPOT

ao , PPOT
60 and PAMP

10 , PAMP
30 ,

PAMP
60 with respect to the independent variable time (τ), with indication of the simple regression equation, coefficient of deter-

mination (r2), linear correlation coefficient (r), and test probability (p) compared with the assumed significance level α < 0.05.

An analysis was made of the internal correlation of the series of random variables
PAMP
τ and PPOT

τ using Anderson’s test [40]. An autocorrelation analysis was performed
for lags up to 25 (Figure 4). The greatest autocorrelation coefficients were detected for
PAMP

1080 with lag = 1 (ρ = 0.358) and for PPOT
90 with lag = 4 (ρ = 0.417). Other autocorrelation

values were not large and lay within the confidence interval for the assumed significance
level α = 0.05. This is a sufficient condition to conclude a lack of correlation; that is, that
the analyzed random variables are independent. An analysis of the autocorrelation plots
(Figure 4) also showed an absence of periodic fluctuations.

Nonhomogeneity analysis, performed using genetic and statistical methods, showed
that most of the observations of maximum precipitation selected by the POT method satisfied
the homogeneity requirements, except for the observations for duration τ = {10, 45, 60} min at
Chojnice and τ = {15, 30, 120, 1440} min at Bialystok (Tables 2 and 3). Most of the maximum
precipitation observations selected by the AMP method are nonhomogeneous; exceptions are
the PAMP

τ observations from Chojnice with duration τ = 5 and τ = {720, . . . , 4320} min.
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Figure 4. Autocorrelation function of random variables observed at Bialystok: PPOT
10 , PPOT

30 , and PPOT
60 for lags of up to 25 elements

in a series, with indication of autocorrelation coefficients, calculated white noise (standard error), and confidence level α.

4.2. Computation of Maximum Precipitation with Specified Probability of Exceedance Using the
PMAXTP Method

Parameters of the probability distributions of the analyzed random variables were
estimated for the two adopted methods of selection of maximum precipitations, PAMP

τ

and PPOT
τ (for details, see Section 2). The most credible distribution was selected for the

analyzed random variable by minimizing the value of the Akaike information criterion
(AIC) [45]. Calculations were performed for three-parameter (α, λ or μ, ε; Equations (A1),
(A3), (A5) and (A7) in Appendix A) probability distributions GA, WE, LGA, and LN, and
for the two-parameter (α, μ; Equation (A9) in Appendix A) G distribution. Sample results
obtained at each stage of the procedure are given in Table 7. The most credible theoretical
probability distribution for precipitation PAMP

5 at the Chojnice station was found to be
GA, while for PPOT

5 , it was found to be WE. At the Bialystok station, the most credible
theoretical distribution for PPOT

5 was determined to be LGA.
Verification of the distributions of maximum precipitation identified as most credible

at the meteorological stations in Chojnice and Bialystok was performed by means of
nonparametric tests of goodness of fit: DK−S, DA−D, DL−S, and DK (defined by Equations
(A11)–(A14) in Appendix B). For purposes of inference, a significance level of α = 0.05
was arbitrarily selected. This is a consequence of the fact that the value of the significance
level of a test is closely related to the size (length) of the random sample on whose basis
the parameters of the theoretical distributions are estimated. In the present analysis,
the series contained n = 30 elements, which means that the significance level can be
taken to be at most α = 0.05. Verification was performed for the most credible theoretical
probability distributions, which are shown in Table 8 for maximum precipitation with
specified duration τ, together with the results obtained in single-dimensional statistical tests
and the critical values, respectively for PAMP

τ and PPOT
τ at the Chojnice station and PPOT

τ at
Bialystok. All of the tests failed to reject the null hypothesis on the goodness of fit of the
theoretical distribution with the empirical distribution, for the analyzed variables PAMP

τ and
PPOT

τ , with the exception of the DA−D test in relation to the maximum precipitation PPOT
90 at

Chojnice (value shown in bold type in Table 8). The least of the maximum distances between
values of the theoretical and empirical cumulative probability distributions, particularly in

135



Water 2021, 13, 2688

the tail part, was situated decidedly below the critical value of the DA−D test defined at a
significance level of α = 0.05, which signifies rejection of the hypothesis of the goodness of
fit of the theoretical and empirical distributions.

Table 7. Sample results of the procedure to select probability distributions for maximum precipitation values PAMP
τ and PPOT

τ

for τ = 5 min. GA—gamma distribution; WE—Weibull; LN—log-normal; LGA—log-gamma; G—Gumbel; χ2—Pearson’s
χ2 goodness-of-fit test; min(Dmax)—Kolmogorov’s minimum distance criterion. Bold values represent the most credible
distributions according to the Akaike information criterion (AIC).

Precipitation

Probability Distribution

Type
Parameters χ2

χ2
(αkr=0.05)

= 7.815 min(Dmax) AIC
α λ μ ε

C
H

O
JN

IC
E

PAMP
5

GA 1.321 3.642 - 0.1 0.831 0.500 138.738
WE 4.534 1.678 - 2.4 0.569 0.496 139.551
LN 0.379 - 1.806 0.1 1.090 0.514 139.268

LGA 0.036 113.463 - 0.1 1.182 0.552 140.164
G 2.009 - 5.394 - 0.977 0.499 139.215

PPOT
5

GA 0.732 3.356 - 5.2 5.292 0.579 100.323
WE 2.172 1.481 - 5.7 5.751 0.549 98.064
LN 0.360 - 1.231 4.0 5.268 0.601 101.625

LGA 0.048 12.131 - 4.2 5.194 0.603 101.709
G 1.022 - 7.031 - 6.013 0.667 102.049

BI
A

ŁY
ST

O
K

PPOT
5

GA 1.224 1.683 - 5.8 5.293 0.500 103.137
WE 2.087 1.188 - 5.9 5.751 0.553 102.860
LN 0.805 - 0.566 0.1 5.269 0.479 103.267

LGA 0.107 2.967 - 5.6 5.194 0.473 102.737
G 1.079 - 7.153 - 6.014 0.643 107.837

Table 8. Results of tests of fit of the theoretical probability distributions for PAMP
τ and PPOT

τ , where
τ = {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320} (min). DK−S—Kolmogorov-Smirnov test, DA−D—
Anderson-Darling test, DL−S—Liao-Shimokawa test, DK—Kuiper’s test, significance level α = 0.05. The value in bold type
indicates rejection of the hypothesis of goodness of fit to the empirical distribution according to the statistic DA−D at α = 0.05.

τ
CHOJNICE BIALYSTOK

AMP DK−S DA−D DL−S DK POT DK−S DA−D DL−S DK POT DK−S DA−D DL−S DK

5 GA 0.091 0.332 0.714 0.160 WE 0.100 0.472 0.819 0.195 LGA 0.086 0.323 0.764 0.168
10 - - LN 0.084 0.245 0.691 0.158
15 - WE 0.117 0.268 0.668 0.206 -
30 - WE 0.108 0.285 0.678 0.185 -
45 - - WE 0.078 0.259 0.647 0.155
60 - - WE 0.080 0.194 0.621 0.157
90 - GA 0.150 1.098 1.199 0.278 WE 0.085 0.186 0.607 0.163

120 - GA 0.062 0.119 0.516 0.123 -
180 - LGA 0.087 0.155 0.537 0.155 GA 0.103 0.253 0.666 0.195
360 - LGA 0.071 0.184 0.613 0.133 -
720 GA 0.183 0.749 1.016 0.308 LGA 0.088 0.324 0.771 0.173 WE 0.093 0.265 0.655 0.186
1080 G 0.124 0.485 0.836 0.245 WE 0.105 0.423 0.819 0.189 WE 0.091 0.263 0.677 0.161
1440 G 0.125 0.443 0.825 0.229 WE 0.109 0.286 0.676 0.172 -
2160 G 0.080 0.118 0.514 0.124 GA 0.078 0.257 0.662 0.153 WE 0.071 0.164 0.591 0.136
2880 WE 0.079 0.209 0.650 0.157 GA 0.103 0.470 0.831 0.204 WE 0.087 0.217 0.616 0.166
4320 WE 0.072 0.166 0.575 0.145 GA 0.107 0.401 0.762 0.211 WE 0.107 0.276 0.680 0.192

αcr. = 0.05 for: DK−Scr. = 0.242; DA−Dcr. = 0.795; DL−Scr. = 1.505; DKcr. = 0.317.

The results obtained from the PMAXTP model for the values of maximum precipita-
tion with a specified probability of exceedance were compared with the results from the
Bogdanowicz-Stachý model [1,2]. In the latter model, the procedure for computing the
values of maximum precipitation with a specified probability of exceedance p consisted of:
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(i) regionalization of maximum precipitation;
(ii) estimation of parameters of the probability distribution function depending on the

identified region and selected duration.

The procedure of the Bogdanowicz-Stachý model conforms to the recommendations
of the World Meteorological Organization [61]. The input data originated from 20 me-
teorological stations situated in latitudinal strips running along the coast, lake districts,
lowland parts, and southern upland parts of Poland. Mountain areas were omitted, due to
the absence of stations monitoring precipitation at all altitudes. The maximum quantity
of precipitation with a specified duration and specified probability of exceedance was
determined using the formula (A16) in Appendix C, taking account of the regionalization
of the meteorological stations in Chojnice and Bialystok.

Quantile values determined using the PMAXTP and Bogdanowicz-Stachý models
were compared using statistical and graphical measures. According to the regionalization
carried out by Bogdanowicz and Stachý, the Chojnice meteorological station belongs to
the north-west region for precipitation with durations in the range <5, >60 min, to the
central region for durations in the range <60, >720 min, and to the southern/coastal region
for durations in the range <720, >4320 min. The Bialystok station, located in the north-
east of Poland, belongs to the central region irrespective of the duration of precipitation
being considered.

For a comparison of the results given by the two models, i.e., PMAXTP and Bogdanowicz-
Stachý, various statistical measures can be used [62]. In our study, we used the standard error
of fit S(E), which is shown in Table 9. The error is given by the following formula [63]:

S(E) =

√√√√√ i=m
∑

i=1

(
PMAX

τi
− P̂MAX

τi

)
m − l

(1)

where PMAX
τ,i is the observed maximum precipitation selected by the AMP or POT method

for a specified duration (τ); P̂MAX
τ,i is the estimated maximum precipitation from the

PMAXTP or Bogdanowicz-Stachý model; m = 30 is the size of the random sample formed
from empirical quantiles for m = 30 selected probabilities p ∈ {96.8, 93.6, 90.3, 87.1, 83.9,
80.7, 77.4, 74.2, 70.9, 67.7, 64.5, 61.3, 58.1, 54.8, 51.6, 48.4, 45.2, 41.9, 38.7, 35.5, 32.3, 29.0,
25.8, 22.6, 19.4, 16.1, 12.9, 9.7, 6.5, 3.2} % and the corresponding theoretical distributions
computed using the PMAXTP and Bogdanowicz-Stachý methods. Finally, l is the number
of parameters of the theoretical probability distribution according to the density function
(Equations (A1), (A3), (A5), (A7) and (A9) in Appendix A).

Computations of the error S(E) were performed separately for specified durations τ of
maximum precipitation. The value of the standard error of fit increased with increasing
values of τ for both models. The smallest errors were obtained for the quantiles determined
from the maximum precipitation values selected using the POT method and the PMAXTP
model. An exception was the quantiles determined for the AMP values at the Chojnice
station for duration τ equal to 720 and 4320 min. The errors of fit of the theoretical to the
empirical distributions in the Bogdanowicz-Stachý model for precipitation values selected
by the AMP method were on average 210% greater than those obtained with the PMAXTP
model, and for the POT precipitation values, the errors were 300% greater. The most
frequently selected most credible theoretical probability distribution for random samples
of both AMP and POT maximum precipitation values, and for both the Bialystok and the
Chojnice stations, was the WE distribution.

Figures 5–10 show a comparison of the functions for the probability of exceedance
of maximum precipitations PAMP

τ or PPOT
τ determined using the models, for Chojnice

(Figures 5–7) and Bialystok (Figures 8–10). The plots contain density functions of probabil-
ity distributions computed only for homogeneous observations of precipitation selected by
the AMP and POT methods, in accordance with the results shown in Tables 2, 3 and 8. The
diagrams show comparisons of: (i) the most credible probability functions for maximum
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precipitation determined by the PMAXTP model for the AMP observation series (orange
solid line) and for maximum precipitation selected by the POT method (blue solid line);
(ii) upper limits of confidence intervals (orange and blue dotted lines); (iii) observations of
AMP and POT maximum precipitation (orange and blue squares); and (iv) the probability
function determined using the probabilistic Bogdanowicz-Stachý model (red solid line).

Table 9. Comparison of the PMAXTP and Bogdanowicz-Stachý methods for PAMP
τ and PPOT

τ , where τ = {5, 10, 15, 30, 45,
60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, 4320} (min), using the standard error of fit S(E). The comparison refers to
the maximum precipitation values computed for the meteorological station in Chojnice (PAMP

τ and PPOT
τ ) and in Bialystok

(PPOT
τ ). Values in bold type are the smallest errors S(E) obtained separately for the Chojnice and Bialystok stations.

τ

CHOJNICE BIAŁYSTOK
PMAXTP B&S PMAXTP B&S

AMP POT AMP POT POT POT
Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E) Distrib. S(E)

5 GA 0.484 WE 0.263 WE 0.801 WE 1.380 LGA 0.780 WE 2.139
10 LN 0.639 WE 2.613
15 WE 0.742 WE 2.135
30 WE 1.418 WE 2.654
45 WE 0.778 WE 3.037
60 WE 0.737 WE 3.902
90 GA 1.992 WE 4.761 WE 1.133 WE 4.424

120 GA 1.325 WE 5.469
180 LGA 1.558 WE 5.557 GA 1.999 WE 5.209
360 LGA 2.902 WE 6.095
720 GA 4.113 LGA 4.236 WE 7.246 WE 7.713 WE 2.869 WE 5.854
1080 G 3.341 WE 3.287 WE 8.441 WE 7.814 WE 2.610 WE 6.280
1440 G 3.359 WE 2.847 WE 10.430 WE 8.588
2160 G 2.924 GA 2.383 WE 11.139 WE 8.866 WE 3.543 WE 7.704
2880 WE 3.083 GA 2.761 WE 12.845 WE 10.442 WE 3.646 WE 8.593
4320 WE 2.720 GA 2.738 WE 14.218 WE 11.486 WE 4.648 WE 11.634

At the Chojnice station, for practically all of the analyzed durations of maximum
precipitation, the quantile values from the Bogdanowicz-Stachý model are markedly higher
than the observed precipitations and values of corresponding quantiles from the PMAXTP
model, in relation to the maximum precipitations selected both by the AMP method
(orange squares and solid line) and by the POT method (blue squares and solid line). The
differences between the quantiles are particularly visible in the central region and in the
region of the upper tails of the probability distributions. Similar maximum quantile values
were obtained for precipitation with duration τ = {15, 30, 180, 1080} min. At Chojnice, the
AMP values were described by the models GA and WE, while for description of the POT
maximum precipitation values, the WE distribution was selected for short durations τ, and
GA and LGA for medium and long durations.

At the Bialystok station, in the case of maximum precipitations with duration
τ = {5, 45, 60, 90, 180} min (Figures 8 and 9), the quantile values determined using the
Bogdanowicz-Stachý model (red solid line) are markedly higher than the corresponding
quantiles obtained using the PMAXTP model for the maximum precipitations determined
by the POT method (blue squares and solid line). Differences between quantiles are partic-
ularly visible in the central region and in the region of the upper tails of the probability
distributions. The closest results for quantiles of POT maximum precipitations calculated
using the PMAXTP method and from the Bogdanowicz-Stachý model were obtained for
precipitation with duration τ = {720, 1080} min (Figure 9). For maximum precipitation with
such durations, the most credible theoretical distribution was WE, while for short durations,
τ = {5, 10} min, the respective distributions were LGA and GA. For maximum precipitation
selected by the POT method with duration τ = {2160, . . . , 4320} min, the Bogdanowicz-
Stachý model returned markedly lower quantile values than the PMAXTP method.
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Figure 5. Plots of functions of probability of exceedance for the random variables PAMP
τ and/or PPOT

τ ,
where τ = {5, 15, 30, 120} min, for the most credible probability distributions, with indicated upper limits of quantile
confidence intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the
Chojnice meteorological station.

Figure 6. Plots of functions of probability of exceedance for the random variables PAMP
τ and/or PPOT

τ , where
τ = {180, 360, 720, 1080} min, for the most credible probability distributions, with indication of upper limits of quantile confi-
dence intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Chojnice
meteorological station.
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Figure 7. Plots of functions of probability of exceedance for the random variables PAMP
τ and PPOT

τ , where τ = {1440, 2160,
2880, 4320} min, for the most credible probability distributions, with indication of upper limits of quantile confidence
intervals according to the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Chojnice
meteorological station.

Figure 8. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {5, 10, 45, 60} min, for the

most credible probability distributions, with indication of upper limits of quantile confidence intervals according to the
PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.
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Figure 9. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {90, 180, 720, 1080} min,

for the most credible probability distributions, with indication of upper limits of quantile confidence intervals according to
the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.

Figure 10. Plots of functions of probability of exceedance for the random variables PPOT
τ where τ = {2160, 2880, 4320} min,

for the most credible probability distributions, with indication of upper limits of quantile confidence intervals according to
the PMAXTP method, compared with the model of Bogdanowicz and Stachý, for the Bialystok meteorological station.
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The final element of the verification of maximum precipitation values was a com-
parison of the estimated quantile error resulting from the randomness of the sample of
maximum precipitations computed using the PMAXTP model for the random variables
PAMP

τ and PPOT
τ at the meteorological station in Chojnice (Figures 11–13) and for PPOT

τ at
the meteorological station in Bialystok (Figures 14–16).

The largest errors for values of maximum precipitation with high probabilities, such
as 99.0 and 99.9, at the Chojnice station were observed for maximum precipitations selected
using the AMP method (Figure 11 for τ = 5, Figure 12 for τ = {720, 1080}, Figure 13
for τ = {1440, . . . , 2160} min)—markedly higher errors for the AMP series than for the
POT series at Chojnice. The largest errors for values of maximum precipitation with low
probabilities, such as 0.01 and 0.001, were recorded for the Chojnice station (Figure 12
for τ = {720, 1080} and Figure 13 for τ = {1440, . . . , 2160} min) for POT precipitations
(markedly higher errors for the POT series than for the AMP series at Chojnice). The
smallest differences in the quantile error in the entire range of theoretical occurrence of
maximum precipitation were observed at Chojnice (Figure 13 for τ = {2880, 4320} min).

Calculations were made for 100 total rainfall measuring sites in Poland (Figure 17).
Calculated characteristics of maximum rainfall totals, i.e., quantile values for p(%) ∈ {99.9,
99.5, 99, 98.5, 98, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 3, 2, 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03,
0.02, 0.01} of a specified duration, τ(min) ∈ {5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080,
1440, 2160, 2880, 4320}, upper limits of the confidence interval and quantile errors were
interpolated by the Thiessen Polygons (TP) method, which allowed for the assignment of
certain areas for which measuring sites are representative as well as for the proportional
division and distribution of sites within Poland. Higher resolution calculations can be
achieved using Gaussian geostatistical simulation models [64] that accept any simple
kriging model [65] or residual kriging model [66].

Figure 11. Comparison of estimated values of quantile error resulting from the randomness of the sample of max-
imum precipitations computed using the PMAXTP model for the random variables PAMP

τ and PPOT
τ with durations

τ = {5, 15, 30, 120} min, for the Chojnice meteorological station.

142



Water 2021, 13, 2688

Figure 12. Comparison of estimated values of quantile error resulting from the randomness of the sample of maxi-
mum precipitations computed using the PMAXTP method for the random variables PAMP

τ and PPOT
τ with durations

τ = {180, 360, 720, 1080} min, for the Chojnice meteorological station.

Figure 13. Comparison of estimated values of quantile error resulting from the randomness of the sample of maxi-
mum precipitations computed using the PMAXTP method for the random variables PAMP

τ and PPOT
τ with durations

τ = {1440, 2160, 2880, 4320} min, for the Chojnice meteorological station.
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Figure 14. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {5, 10, 45, 60} min, for
the Bialystok meteorological station.

Figure 15. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {90, 180, 720, 1080} min,
for the Bialystok meteorological station.
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Figure 16. Comparison of estimated values of quantile error resulting from the randomness of the sample of maximum
precipitations computed using the PMAXTP model for the random variable PPOT

τ with durations τ = {2160, 2880, 4320} min,
for the Bialystok meteorological station.

Interpolation also can be performed using the Inverse Distance Weighted (IDW)
method, which uses a linearly weighted set of sampling points to determine mesh node
values by using reverse weighted distance values. The weight is a function of the inverse
distance, and the interpolated surface should be a variable surface depending on the
position of the point [67]. An example of interpolating the maximum precipitation value
PAMP

τ with a duration of τ = 30 min with a probability p = 1% calculated using the IDW
method is shown in Figure 18 (left part).

The IDW is a deterministic interpolation method because it is directly based on
surrounding measured values. Another example is the set of geostatistical methods, such
as the Kriging methods (right part of Figure 18), which include autocorrelation, which
represents the statistical relationship between the measured points, thus providing a certain
measure of reliability or accuracy of the forecast. The Kriging method is most suitable
when one knows that there is spatial distance correlation or directional deviation in the
data being analyzed.

Figure 17. Thiessen Polygons based on precipitation measurement sites in Poland.
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Figure 18. Interpolation of maximum precipitations computed using the PMAXTP model for the random variable PAMP
τ

with durations τ = 30 min with probability of exceedance p = 1% using IDW method (left part) and kriging method
(right part) for the Bialystok and Chojnice meteorological stations.

5. Conclusions

This paper described the PMAXTP model for a frequency analysis of maximum precip-
itation with a specified duration. It consists of two modules: statistical and computational.
The first step selects values of maximum precipitation of a specified duration, which is
conducted using two different methods: Annual Maximum Precipitation (AMP) and Peaks-
Over-Threshold (POT). The advantage of the POT method is that it selects a larger number
of observations of precipitation with the highest values in a given year, which leads to a
better estimation of the characteristics of maximum precipitation with a specified duration
and probability of exceedance. This is a significant issue in the design of drainage struc-
tures, particularly when they are at high risk of damage. The statistical module enables
an analysis of the homogeneity of the series of measurements of maximum precipitation
that serve as the input to the computational module, in which the mathematical models
used for parameter estimation require a simple random sample, that is, one that satisfies
the assumptions of independence and stationarity.

The computational module enables the selection of the best (the most credible) theoret-
ical probability distribution by means of: (i) estimation of the parameters of four types of
distributions belonging to the families gamma (GA), Weibull (WE), log-gamma (LGA), log-
normal (LN), and Gumbel function (G); (ii) test of the hypothesis of goodness of fit of the
theoretical probability distribution function with the empirical distribution using Pearson’s
χ2 test; (iii) selection of the best-fitting function in each distribution type according to the
criterion of minimum Kolmogorov distance; (iv) selection of the most credible distribution
function from the set of best-fitting functions of various types; and (v) verification of the
most credible distributions of precipitations PAMP

τ and PPOT
τ using the single-dimensional

tests DK−S, DA−D, DL−S, and DK.
The PMAXTP model was tested on data from two meteorological stations in Poland

(Chojnice and Bialystok) representing two regions characterized by different spatial vari-
ability of maximum precipitation. The results were compared with those given by the
Bogdanowicz-Stachý model—which to date has frequently been used in engineering
practice in Poland—based on estimated values of the quantile error resulting from the ran-
domness of the sample of maximum precipitation values computed for the tested stations.

In general, the errors of fit for the theoretical to the empirical distribution for the
PMAXTP model were lower than the errors for the Bogdanowicz-Stachý model. The
smallest errors were obtained for the quantiles determined on the basis of maximum
precipitation POT using the PMAXTP model for both analyzed stations.

The following detailed conclusions may be drawn from the results:
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• Most of the observations of maximum precipitation selected by the POT method
satisfied the requirement of homogeneity, with the exception of the observations with
durations τ = {10, 45, 60} min at Chojnice and τ = {15, 30, 120, 1440} min at Bialystok.

• Most of the observations selected by the AMP method did not satisfy the requirement
of homogeneity, with the exception of the observations with durations τ = 5 min and
τ = {720, . . . , 4320} min at Chojnice.

• Errors of fit of the theoretical to the empirical distributions for the Bogdanowicz-Stachý
model were on average 210% higher than the errors for the PMAXTP model in the
case of the precipitation PAMP

τ , and 300% higher in the case of PPOT
τ .

• The smallest errors were obtained for the quantiles determined on the basis of obser-
vations of maximum precipitation PPOT

τ obtained using the PMAXTP model.
• For the meteorological station in Chojnice, practically all of the quantile values

determined by the Bogdanowicz-Stachý model were markedly higher than those
obtained by the PMAXTP model and the quantiles of the empirical precipitations
PAMP

τ and PPOT
τ , while for the station in Bialystok, the Bogdanowicz-Stachý model

gave higher quantile values for τ = {5, . . . , 180} min and markedly lower values for
τ = {2160, . . . , 4320} min.

• The greatest errors for the low quantiles, i.e., the values of maximum precipitation
that are exceeded with high probability, were observed for the precipitation values for
PAMP

τ , and the greatest errors for high quantiles, i.e., the values of maximum precipita-
tion that are exceeded with low probability, were observed for the precipitation values
for PPOT

τ .
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Appendix A. The Density Function f (x) and the Quantile Function xp

The density function f (x) and the quantile function xp of the three-parameter GA
distribution are written as [68]:

f (x) =
(x − ε)λ−1

αλΓ(λ)
exp

(
− x − ε

α

)
(A1)

xp = ε + αtp(λ) (A2)

where Γ(λ) =
∫ ∞

0 tλ−1 exp(−t)dt is Euler’s gamma function; x is an observation of the
random variable X; xp is a quantile of the theoretical GA distribution; and tp(λ) is a quantile
of the standardized gamma distribution, with probability of exceedance p.
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The WE distribution is defined as [68]:

f (x) =
λ

α

(
x − ε

α

)λ−1
exp

[
−

(
x − ε

α

)λ
]

(A3)

xp = α[− ln(1 − (1 − p))]
1
λ + ε (A4)

The LGA distribution [69] is represented by the equations:

f (x) =
(ln x − ln ε)λ−1

αλΓ(λ)x
exp

(
− ln x − ln ε

α

)
(A5)

xp = ε exp
[
αtp(λ)

]
(A6)

The log-normal distribution (LN) [70] is represented as:

f (x) =
1

(x − ε)α
√

2π
exp

[
−1

2

(
ln(x − ε)− μ

α

)2
]

(A7)

xp = exp

[
μ +

α
√

2
erf(2(1 − p)− 1)

]
+ ε (A8)

where: erf( . . . ) is the Gauss error function, and other symbols have the same meanings as
above, except that xp denotes a quantile of the theoretical WE, LGA, and LN distributions,
respectively.

The Gumbel distribution [71] is written as:

f (x) =
1
α

exp
[
− x − μ

α
− exp

(
− x − μ

α

)]
(A9)

xp = −α ln[− ln(1 − p)] + μ (A10)

where xp is a quantile of the theoretical G distribution.

Appendix B. The Goodness-of-Fit Tests

The following are nonparametric goodness-of-fit tests used to test the goodness of fit of
a mathematical model (theoretical distribution) with observations (empirical distribution).

The Kolmogorov-Smirnov statistic DK−S [46]:

DK−S = max
1<i≤n

(
δ̂i
)
, gdzie :δ̂i = max

[
i
n
− F0

(
xi; θ̂

)
, F0

(
xi; θ̂

)− i − 1
n

]
(A11)

where n is the size of the random sample, and F0
(

xi; θ̂
)

is the distribution function of the
theoretical probability distribution for the estimated parameter vector θ̂.

The Anderson-Darling statistic DA−D [48]:

DA−D = −n − 1
n

n

∑
i=1

{
(2i − 1)lnF0

(
xi; θ̂

)
+ (2n + 1 − 2i)ln

(
1 − F0

(
xn+1−i; θ̂

))}
(A12)

The Liao-Shimokawa statistic DL−S [49]:

DL−S =
1√
n

n

∑
i=1

max
[

i
n − F0

(
xi; θ̂

)
, F0

(
xi; θ̂

)− i−1
n

]
√

F0
(

xi; θ̂
)[

1 − F0
(
xi; θ̂

)] (A13)
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The Kuiper statistic DK [50]:

DK = max
1<i≤n

(
δ̂+i

)
+ max

1<i≤n

(
δ̂−i

)
(A14)

where δ̂+i = max
[

i
n − F0

(
xi; θ̂

)]
; δ̂−i = max

[
F0

(
xi; θ̂

)− i−1
n

]
.

Appendix C. Formulas Used in the Probabilistic Model of Maximum Precipitation of

Bogdanowicz and Stachý Model

The Weibull probability distribution (extreme value type 3, EV3), f (x), and quantile of
maximum precipitation xp are given as follows [1,2]:

f (x) =
λ

θ − ε

[
x − ε

θ − ε

]λ−1
exp

{
−

[
x − ε

θ − ε

]λ
}

(A15)

xp = ε + α(− ln p)
1
λ (A16)

where ε is the lowest bound; ε(τ) = 1.42τ0.33; θ is the quantile with probability of exceedance
1/e = 0.367 . . . ; λ is a shape parameter; and α = θ − ε is a scale parameter.
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Abstract: Drought has become a recurrent phenomenon in Algeria in the last few decades. Significant
drought conditions were observed during the late 1980s and late 1990s. The agricultural sector and
water resources have been under severe constraints from the recurrent droughts. In this study,
spatial and temporal dimensions of meteorological droughts in the Wadi Mina basin (4900 km2) were
investigated to assess vulnerability. The Standardized Precipitation Index (SPI) method and GIS were
used to detail temporal and geographical variations in drought based on monthly records for the
period 1970–2010 at 16 rainfall stations located in the Wadi Mina basin. Trends in annual SPI for
stations in the basin were analyzed using the Mann–Kendall test and Sen’s slope estimator. Results
showed that the SPI was able to detect historical droughts in 1982/83, 1983/84, 1989/90, 1992/93,
1993/94, 1996/97, 1998/99, 1999/00, 2004/05 and 2006/07. Wet years were observed in 1971/72,
1972/73, 1995/96, 2008/09 and 2009/10. Six out of 16 stations had significant decreasing precipitation
trends (at 95% confidence), whereas no stations had significant increasing precipitation trends. Based
on these findings, measures to ameliorate and mitigate the effects of droughts, especially the dominant
intensity types, on the people, community and environment are suggested.

Keywords: drought; trends; SPI; mina basin; Algeria

1. Introduction

Drought is a recurring phenomenon that affects a wide variety of sectors, making
it difficult to develop a single definition of it. According to a water-resource-oriented
definition, which takes into account the water requirements related to biological, economic
and social characteristics of a region, drought refers to a condition of severe reduction
of water supply availability (compared to a normal value), extending along a significant
period of time over a large region [1]. Drought is a complex phenomenon that involves
different human and natural factors that determine the risk and vulnerability to it [2].

The particularly strong influence of drought on many sectors is visible in arid and
semiarid regions, where water is scarce [3]. Water scarcity can strongly impact the agricul-
tural sector in such regions [4]. In the case of the Mediterranean Basin, much of which is
arid or semiarid, the extremely variable precipitation across temporal and spatial scales is
influenced by geographical position of the region between two contrasting masses of water:
the Atlantic Ocean and the Mediterranean Sea [5–7]. An additional feature determining
high variability of precipitation in this region is the presence of various mountain ranges
distributed along the coastal areas from east to west [7]. To avoid water scarcity, increased
knowledge about variability of meteorological conditions could be used to mitigate the
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effect of drought, as well as guide various irrigation scheduling and water productivity
strategies in arid sandy soils. According to Rossi [8] the drought mitigation measures
can be divided into three main categories: (1) water-supply oriented, such as using addi-
tional sources of low quality water and improvement of existing water system efficiency,
(2) water-demand reduction: restriction of municipal uses and irrigation, pricing, dual
distribution system, water recycling and (3) minimalization of drought impact by temporal
relocation of water resources, tax relief, and development of warning systems. Knowledge
about drought phenomena can also help with sustaining reforestation programs under an
eventual increase in aridity [9] and with water resources planning and management via
reservoirs to overcome scarcity [10].

Meteorological drought can be assessed using many indicators. For example, Weighted
Anomaly Standardized Precipitation Index (WASP) was developed by Lyon [11] to monitor
precipitation in the tropical regions. Crop Moisture Index (CMI) is commonly calculated
weekly along with the Palmer Drought Severity Index (PDSI) output as a short-term
drought indicator of impact on agriculture [12]. Drought Reconnaissance Index (DRI) [13]
is based on a simplified water balance equation considering precipitation and potential
evapotranspiration. Effective Drought Index (EDI) as a good index for operational mon-
itoring of both meteorological and agricultural drought [14]. Hydro-thermal Coefficient
of Selyaninov (HTC) developed by Selyaninov, Bokwa et al. [15] uses temperature and
precipitation values, and is sensitive to dry conditions specific to the climate regime being
monitored. RPI (Relative Precipitation Index) is the ratio of precipitation sum for the
given period and the long-term average for the same period expressed in percent [15].
NOAA Drought Index (NDI) is a precipitation-based index in which the actual precipita-
tion measured is compared with normal values during the growing season [16]. Palmer
Drought Severity Index (PDSI) [17] uses monthly temperature and precipitation data along
with information on the water-holding capacity of soils. SPEI (Standardized Precipitation
Evapotranspiration Index) is a standardized monthly climatic balance computed as the
difference between the cumulative precipitation and the potential evapotranspiration [18].
The Standardized Precipitation Index (SPI), developed by McKee et al. [19] in the 1990s,
is robust and effective for evaluating meteorological drought and remains a very popular
choice among researchers to reveal drought and to estimate duration and intensity of
drought events [19]. The SPI has several advantages, as discussed by [20] and [21], over
many other drought indices, such as some of those mentioned above. Firstly, it is based only
on rainfall, so that in the absence of other hydro-meteorological measurements, drought
assessment is still possible. Secondly, SPI can be used to quantify precipitation deficit
for multiple timescales, which enables it to assess drought conditions in meteorological,
hydrological and agriculture applications. Finally, standardization of the SPI index en-
sures that the frequency of extreme drought events at any location and any timescale is
approximately constant.

Due to its robustness and convenience, SPI has already been widely used to char-
acterize dry and wet conditions in many countries in the Mediterranean region, such
as Turkey [22,23], Spain [24,25], Italy [26–30], Iran [31–33], Greece [34–36], Iraq [37–39],
and Palestine [40].

In particular, many researchers in North Africa have studied meteorological drought
using SPI indices, including in Algeria [41–45], in Morocco [46], and in Tunisia [47–49].
So far, there has not been a study on spatial and temporal variations of meteorological
drought, expressed by SPI, in the region of the Wadi Mina basin of northwest Algeria, which
is characterized by high intensities of agriculture and presence of forest cover. According
to [50], renewable water resources in Algeria are quite low and can be approximated as
19 billion cubic meters per year. In the other words, the water resources are equal 450 cubic
meters (m3) per capita per year and are slightly below the 500 m3 per capita per year that
is recommended as the scarcity threshold indicating a water crisis. Moreover, the water
resources have high variability and projections are that rainfall could decrease by more than
20% by 2050, which would result in greatly worsening water shortages in different basins
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of Algeria [51]. Knowledge on extreme dry conditions is also very important because these
can influence not only on water scarcity for agriculture but also on natural ecosystems,
mainly forest in the case of the studied basin. For example, Mensah et al. [52] showed that
elevated temperatures will further exacerbate the drought impacts on forest ecosystems at
sites with precipitation levels equal or smaller than the atmospheric evaporative demand
and strong influence of vapor pressure deficits on carbon uptake, and can worsen the
decline in soil moisture.

In this work, the objective was to better characterize annual-scale drought patterns
over the Wadi Mina basin in order to aid water resource planning. The main objectives are
to (1) map characteristics of drought patterns over the basin during 1970–2010, (2) identify
any trends in precipitation or in drought characteristics, (3) identify drought years over the
observation period, and (4) estimate the return periods for severe drought across the basin.

2. Study Area and Data

2.1. Study Area

The Wadi Mina basin, with an area of 4900 km2, is located in the northwest of Algeria
(Figure 1). The Wadi Mina involves four major tributaries: Wadi Mina, Wadi Haddad,
Wadi Abd and Wadi Taht. The climate is continental, with cold winters and hot summers.
Mean annual precipitation ranges from about 220 to 400 mm, and most precipitation occurs
between November and March. Mean annual temperatures are about 16 ◦C to 19.5 ◦C.
Almost half the basin is covered by a varying density of vegetation, with in particular 32%
of scrub, 35.8% of forests and 20% cereal crops [53].

 

Figure 1. Topography and station distribution for the Wadi Mina basin in northern Algeria.
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2.2. Data Used

Monthly precipitation records for a 40-year observation period (September 1970 to
August 2010, using water years that go from September to August) are compiled for 16
stations from the Algeria National Agency of Water Resources (Figure 1 and Table 1).
These stations constitute a relatively well-distributed network with acceptable spatial
density over the basin. To assure quality, data was checked for inhomogeneities using the
double mass curve, linear regression and Mann-Whitney test methods. The procedure
detected a few inhomogeneities, for which the irregular data were adjusted using data of
nearby reliable stations. Rainfall data of these 16 stations were analyzed statistically to
evaluate rainfall variability in the study area (Table 2). These preliminary statistical analyses
included measure of central tendency (mean, and median), dispersion (standard deviation
SD, coefficient of variation CV) and distribution (skewness Cs and kurtosis Ck) (Table 3).

Table 1. Characteristics of rain gauge stations used in the analysis.

Geographical Coordinates Elevation Period of Observation

Rain
Station

ID Name Longitude (E)
Latitude

(N)

(◦) (◦) (m)

S1 12702 Rahuia 1◦00′ 35◦31′ 650

Septmber 1970–August 2010

S2 13001 Kef Mahboula 0◦49′ 35◦18′ 475
S3 13002 Frenda 1◦01′ 35◦04′ 990
S4 13004 Ain El Haddid 0◦51′ 35◦04′ 829
S5 13101 Mechra Safa 1◦02′ 35◦23′ 655
S6 13102 Djilali Benamar 0◦49′ 35◦27′ 300
S7 13201 Ain Kermes 1◦05′ 34◦55′ 1162
S8 13202 Rosfa 0◦49′ 34◦54′ 960
S9 13203 Tiricine 0◦32′ 34◦54′ 1070

S10 13204 Sidi Youcef 0◦33′ 34◦48′ 1100
S11 13302 Ain Hamara 0◦39′ 35◦23′ 288
S12 13304 Takmaret 0◦37′ 35◦06′ 655
S13 13306 Oues El-Abtal 0◦40′ 35◦28′ 354
S14 13401 Sidi A.E.K Djilali 0◦34′ 35◦29′ 225
S15 13407 El Hachem 0◦28′ 35◦23′ 417
S16 13410 SMBA 0◦35′ 35◦34′ 145

Table 2. Descriptive statistics of annual rainfall series in the Wadi Mina basin (1970/71–2009/10 water years).

N◦ Min (mm) Max (mm) Mean (mm) Median (mm) SD (mm) Cv (%) Cs Ck

S1 210.00 524.70 352.53 333.10 89.27 25.32 −0.87 0.19
S2 143.00 672.20 343.63 326.85 106.90 31.11 1.06 0.88
S3 221.00 672.90 396.42 388.00 11203 28.26 0.09 0.61
S4 194.80 610.00 312.83 302.65 102.92 32.90 1.60 1.23
S5 197.70 734.40 378.03 366.40 119.22 31.54 1.02 0.88
S6 158.60 645.10 345.38 314.35 120.84 34.99 0.15 0.75
S7 155.70 580.20 323.70 320.80 107.93 33.34 0.25 0.83
S8 77.70 557.00 218.40 187.80 113.76 52.09 2.18 1.55
S9 115.20 561.50 306.84 306.75 104.40 34.02 0.11 0.54
S10 159.20 631.00 294.89 270.40 99.59 33.77 1.76 1.15
S11 164.80 506.40 265.10 260.55 74.97 28.28 3.13 1.51
S12 120.50 413.10 254.25 241.65 73.14 28.77 −0.34 0.57
S13 129.60 558.00 278.65 266.10 84.84 30.45 2.12 1.18
S14 135.60 474.20 254.13 239.55 72.12 28.38 1.33 1.08
S15 152.60 517.00 291.01 276.25 78.85 27.10 0.21 0.57
S16 141.00 436.60 237.97 226.95 63.09 26.51 1.86 1.15
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To test for stationarity, the Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) was
used [54]. The results of the stationarity test for monthly, seasonal and yearly series are
shown in Table 3. All the monthly, seasonal and annual series of the rainfall stations are
indicated as showing stationarity (p-value is more than 0.05).

Table 3. Results of stationarity tests for the monthly, seasonal and yearly series.

Station
Monthly Series

p-Value
Seasonal Series

p-Value
Yearly Series

p-Value

S1 0.576 0.427 0.412
S2 0.459 0.529 0.425
S3 0.756 0.871 0.345
S4 0.842 0.777 0.310
S5 0.912 0.867 0.610
S6 0.956 0.569 0.524
S7 0.875 0.784 0.459
S8 0.758 0.657 0.351
S9 0.910 0.741 0.301

S10 0.986 0.891 0.295
S11 0.886 0.741 0.287
S12 0.782 0.625 0.254
S13 0.975 0.412 0.210
S14 0.754 0.541 0.354
S15 0.621 0.459 0.311
S16 0.524 0.567 0.421

3. Methodology

3.1. SPI

The standardized precipitation index (SPI) is commonly used to detect meteorological
drought. Each drought is characterized by drought intensity (Di), a drought magnitude
(Dm) and drought duration (Dd). Run intensity can be either the value of the SPI at any
moment (Dint) or the minimum SPI value during a drought event (Dmi) The drought
magnitude (Dm) is equal to the accumulated values of below-threshold SPI during each
drought event (Figure 2).

 

Figure 2. Definition of drought properties based on the SPI index [55].

SPI is mathematically based on the cumulative probability of monthly precipitation
amount recorded at the observation post [56,57]. No evaporation estimate is considered,
unlike other drought indices such as SPEI. SPI = 0 denotes average (climatological) precipi-
tation, SPI = 1 denotes 1 standard deviation wetter than average, and SPI = −1 denotes 1
standard deviation drier than average. In the case of the presented analysis, the monthly
precipitations were aggregated over water years, and finally a yearly SPI (12-month
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timescale) for each water year was calculated. SPI periods (years) with SPI below the de-
fined threshold are considered drought years, and consecutive drought years are grouped
into droughts. The whole period of observation at a meteorological station is used to
determine the parameters of a precipitation probability density function, taken to be in the
form of a gamma distribution:

g(x) =
1

βαΓ(α)
xα−1e−x/β (1)

where α and β are the shape and scale parameters respectively. x is consecutively precipita-
tion and Γ(α) is the gamma function. The gamma function defined by the following:

Γ(a) =
∫ ∞

0
ya−1e−ydy (2)

The alpha and beta parameters of the gamma distribution are estimated from the
precipitation time series as

∝=
1

4A

(
1 +

√
1 +

4A
3

)
, A = ln(x)− ∑ ln(xi)

n
, β =

x
∝

(3)

where x is the mean value of precipitation quantity; n is the precipitation measurement
number; xi is the quantity of precipitation in a sequence of data.

The cumulative probability can be presented as:

G(x) =
∫ x

0
g(x)dx =

1

ˆ
β

ˆ
a

Γ
(

ˆ
α

)
∫ x

0
x∝pro−1e−x/βpro dx (4)

To allow for the possibility that the precipitation may be zero, a mixture probability
distribution is used, for which the cumulative probability becomes

H(x) = q + (1 − q)G(x) (5)

where q is the probability that the quantity of precipitation equals zero.
The calculation of the SPI is presented on the basis of the following equation [20,58]:

SPI =

⎧⎨
⎩

−
(

t − c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
. 0 < H(x) ≤ 0.5

+
(

t − c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
. 0.5 < H(x) ≤ 1.0

(6)

where t is determined as

t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
ln

(
1

(H(x))2

)
. 0 < H(x) ≤ 0.5√

ln
(

1
1−(H(x))2

)
. 0.5 < H(x) ≤ 1.0

(7)

and c0. c1. c2. d1. d2 and d3 are coefficients whose values are:

c0 = 2.515517. c1 = 0.802853. c2 = 0.010328

d1 = 1.432788. d2 = 0.189269. d3 = 0.001308

According to McKee et al. [18] different categories and approximate probabilities of
wet and dry spells can be considered based on SPI for the timescale of interest, as shown in
Table 4. SPI is expected to follow a near-normal (bell curve) distribution, with SPI values
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near 0 being the most common and high positive or negative SPI (corresponding to very
wet or very dry periods, respectively) being rare.

Table 4. Drought classification based on SPI value and corresponding event probabilities based on
the approximation that SPI values follow a standard normal distribution.

SPI Values Drought Category Probability (%)

2.00 or more Extremely wet 2.3
1.50 to 1.99 Very wet 4.4
1.00 to 1.49 Moderately wet 9.2
−0.99 to 0.99 Near normal 68.2
−1.00 to −1.49 Moderate drought 9.2
−1.50 to −1.99 Severe drought 4.4
−2.00 or less Extreme drought 2.3

These probabilities shown in Table 4 are estimates, assuming that SPI is normally
distributed. Achieving an approximately standard normal probability distribution is the
main motivation behind the transformation of precipitation to SPI.

3.2. Trend Analysis

Trend analysis determines whether the measured values of a variable show a consistent
increase or decrease during a time period. Many statistical methods can be used for trend
detection in a time series of meteorological and hydrological records. In this study we
used simple and accepted methods for evaluating trends, the Mann–Kendall test and Sen’s
estimator of slope.

The Mann–Kendall method is a widely used non-parametric test for detecting trends
in climatological and hydrological time series. It has been suggested by many authors
to assess trends in environmental data time series because, unlike least-squares linear
regression, it is robust to outlying and extreme values.

The Mann–Kendall test statistic S is given by [59]:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(

xj − xk
)

(8)

where n is the number of data. x are the data values at times j and k (j > k) and the sign
function is

sgn
(
xj − xk

)
= sgn

(
Rj − Ri

)
=

⎧⎨
⎩

+1, i f
(
xj − xk

)
> 0

0, i f
(
xj − xk

)
= 0

−1, i f
(
xj − xk

)
< 0

(9)

The variance of S is computed by

Var(S) =
[n(n − 1)(2n + 5)]− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(10)

where ti is the number of ties of extent i and m is the number of tied rank groups. For n larger
than 10, a Z test statistic that, under the null hypothesis of no correlation, approximates a
standard normal distribution is computed as the Mann–Kendall test statistic as follows:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
Var(S)

, i f S > 0

0, i f S = 0
S−1√

Var(S)
, i f S < 0

(11)
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If a linear trend is present in a time series, then the true slope (change per unit time)
can be estimated by using a simple non-parametric procedure developed by Sen [60]. The
slope estimates of the n(n − 1)/2 unique pairs of data are first computed by:

Q(i, j) =
Xj − Xi

j − i
for i, j = 1, 2. . . . .n (12)

where xj and xi are data values at time j and i (j > i). respectively. The median of these N
values of Q is Sen’s estimator of slope. After sorting the Q values, if N is even, then Sen’s
estimator is calculated by:

Qmed =
1
2

(
Q N

2
+ Q N+2

2

)
(13)

If N is odd, then Sen’s estimator is computed by:

Qmed =
(

Q N+1
2

)
(14)

Sen’s estimator Qmed provides the rate of change and enables determination of the
total change in any variable during the analysis period. Sen’s slopes are expressed here as
rate of change per 40 years (1970–2010) in mm.

3.3. Drought Charcateristics
3.3.1. Frequency Analysis

Drought frequency (Fi) is the chance of a station being in drought in a given year. This
was estimated empirically based on the following formula:

Fi =
n
N

100% (15)

where n—number of years of drought (SPI equal 0 or less), N—number of analyzed years.

3.3.2. Drought Intensity (DI)

Drought intensity (DI) is used to represent the severity of the drought. The drought
intensity of a site within a certain period is usually reflected by the SPI value. The more
negative the SPI value, the more serious the drought is. Its formula is as follows:

Di =

(
1
m

m

∑
i=1

|SPIi|
)

j (16)

3.3.3. Drought Magnitude (DM)

DM corresponds to the cumulative water deficit over a drought period. DM is the sum
of the absolute values of all SPI values (0 or less) during a drought event (Equation (16)):

DM = −
i

∑
j=1

SPIi,j (17)

3.3.4. Drought Duration (DD)

DD equals the number of time periods between the drought start and its end. In our
case, we consider all SPI values below 0 as drought years.

3.4. Return Period of Drought

In addition to computing drought frequencies as empirical probabilities in the 40-year
observation record, return periods of severe drought were also computed in this study
using the annual maximum series (AMS) approach. The AMS here is based on the time
series of SPI values for drought years. A drought was described as an SPI value less
than zero. Drought-free years were given a zero value. The number of years for which
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SPI values are available is used to calculate the duration of the sequence. Only non-zero
values were used in the drought frequency calculation. To account for the number of
zero values, a correction was made using nonexceedance likelihood (F′) according to the
following expression [55,61]:

F′ = q + (1 − q)F (18)

where F is the non exceedance probability value obtained by using frequency analysis on
the non zero values and q is the probability of zero values which can be calculated as the
ratio of the number of time intervals without drought occurrences to the total number of
time intervals in the recording period [55,61].

To estimate the return period of drought severity that may go beyond the values ob-
served over the 40-year period for which we have data, we fitted a probability distribution
to the derived AMS. In this case, the drought event time series were fitted with gamma
distributions. The return period of drought with particular severity was then calculated as:

F′(s) =
1

1 − F′(x)
(19)

4. Results and Discussion

4.1. Temporal Variability

The SPI was used to provide an indicator of drought severity in this study. The
temporal characteristics of droughts in Wadi Mina basin was analyzed based on the
12-month timescale water-year SPI computed for each station (Figure 3). Analysis of
the computed SPI series shows the basin has experienced droughts of high severity and
duration in the 1980s and 1990s. A drought is defined whenever the SPI reaches a value of
0.00 and continues until the SPI becomes positive again.

The main historical droughts observed in the study area were in 1982/83, 1983/84,
1989/90, 1992/93, 1993/94, 1996/97, 1998/99, 1999/00, 2004/05 and 2006/07. Wet years
were observed in 1971/72, 1972/73, 1995/96, 2008/09 and 2009/10. A decreasing trend
of SPI, implying a likely increased frequency and intensity of drought, was observed on
13 of 16 rain gauge stations. Most of the stations with the strongest decreasing SPI trend
are observed in the lower part of the Wadi Mina basin where are observed relatively lower
sums of precipitation (Table 2). Increase of trend of SPI and likely decreased intensity
of drought is observed on three rain gauge stations located mainly in upper part of the
basin, in the Wadi Abd tributary. Spatio-temporal changes of SPI is caused by change
of precipitation. Elouissi et al. [62] detected similar decreasing trends of precipitation
in the northern part of the Macta basin (Algeria), close to the Mediterranean coast, and
increasing trends in the southern part. The changes of precipitation and SPI can be affected
by geographical position of the area in relation to the Atlantic Ocean, the Mediterranean
Sea and the Atlas mountain ranges [63]. We can also see from Figure 3 that dry periods
have tendency to cluster over long stretches of years. Clustering is especially visible in
station S8 during 1975–1993, S5 (1981–1999), S6 (1981–1999) and S13 (1996–2007). Figure 3
also shows that at station S3 located in the upper part of the Wadi Taht subbasin, and S6
and S5 in the upper Wadi Mina, intensity of meteorological drought since 2000, expressed
by SPI, was small, with wet years being more common.

Trend analysis determines whether the measured values of a variable show a signifi-
cant increase or decrease during a time period. In this study, we used a simple method for
evaluating trends, Mann-Kendall test and annual and seasonal Sen’s slopes of trend values
are expressed as rate of change per 40 years (1970–2010) in mm. The result of this analysis is
shown in Table 5. At 7 of 16 rain gauge stations, or 44% all stations, there was a significant
negative trend (p < 0.1). The significance level of trend in 6 cases was p < 0.05, and in
the case of S13 station the p value was under 0.01. At most stations, from 1996 onward
there were mainly severe droughts. Significant decreasing trends were observed at stations
located in the upper part of the Wadi Mina and middle part of the Wadi Taht tributary. A
significant increasing trend was not detected at any of the Wadi Mina basin stations.
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Figure 3. Annual SPI time series and its linear trend and 3 year moving average of the pluviometric stations of Wadi Mina
basin. Note that colors are linked with drought classification based on Table 4. Number in branches above figures is number
of station.

Table 5. Values of statistics b, Z of the Mann–Kendall test for the annual SPI series (1970–2010).

Stations Area (km2) Z Sen’s Slope Describtion

S1 57.40 −1.969 −0.031 Significant at 95% level of confidence or p = 0.05
S2 413.10 −2.540 −0.038 Significant at 95% level of confidence or p = 0.05
S3 160.60 −1.037 −0.015
S4 560.20 −1.340 −0.02
S5 150.30 −0.722 −0.012
S6 254.60 0.011 0.001
S 165.20 0.163 0.002
S8 607.40 0.524 0.063
S9 398.90 0.000 0.080
S10 534.40 −1.002 0.334
S11 261.70 −2.005 0.455 Significant at 95% level of confidence or p = 0.05
S12 568.90 −1.270 −0.019
S13 193.30 −3.251 −0.906 Significant at 99% level of confidence or p = 0.01
S14 205.40 −1.969 −0.554 Significant at 95% level of confidence or p = 0.05
S15 300.40 −1.899 −0.653 Significant at 90% level of confidence or p = 0.1
S16 68.30 −2.237 −0.650 Significant at 95% level of confidence or p = 0.05

Table 1 presents drought classification for the 16 rain gauge stations in each year. The
most common SPI category overall was near normal (NN). For several years (1971, 1972,
1995, 2008 and 2009) most stations were in wet categories (EW, VW and MW). For 1971,
1995 and 2008 only 2–5 out of 16 stations were dry, and no severe or extreme drought was
observed. The highest number of stations with severe or extreme drought (SD and ED) was
observed in the years 1981, 1983, 1989, 1992, 1996, 1998, 1999 and 2004. The highest number
of years with unusually wet conditions (MW, VW and EW) were observed on stations S13
and S15-8 cases. These stations were located in the lower part of the Wadi Mina. The most
cases of intense drought (ED, SD and ED) were observed at station S9-9 cases, and the
highest number of years with severe and extreme drought were observed at stations S1, S9
and S12-4 cases.

4.2. Spatial Variability

To visualize the distribution of droughts in the basin, the study area is divided using
Theissen Polygon tool in Arc GIS 10.2 into 16 polygons corresponding to the 16 rainfall
stations. Stations that are closely spaced are assigned less area and vice versa (Figure 4).
Lee et al. [64] showed that the spatial distribution of the rain gauge networks and the den-
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sity have a significant influence on accurately calculating areal precipitation and Thiessen
method gave good results when the spatial distribution of the rain gauge networks was
even, as was the case here. Moreover, the weights assigned to the different stations do
not vary with time, and thus it is easy to map the precipitation falling during each period.
Geostatistical methods offer more sophisticated approaches to making maps based on
station data, but the uncertainty of areal precipitation is in any case high if there are rela-
tively few stations, like in this basin [65]. Even though some stations may show drought
conditions, a regional drought is acknowledged only when some major portion of the
total study area is under drought. Regional drought is determined by the intra-annual
precipitation distribution, which can be affected by teleconnection patterns [66,67], and the
North Atlantic Oscillation indices [68]. Moreover, regional-scale influence on the rainfall
conditions in North Africa could result from the response of the African summer monsoon
to oceanic forcing, amplified by land-atmosphere interaction [69].

The spatial distribution of drought intensity is shown (Figure 4) in each analyzed year.
In 1971, 1995, and 2008, wet conditions prevailed over almost all the Wadi Mina basin
(SPI ≥ 1.0). Less widespread wet conditions were seen in 1972 (east and central part of
basin in wet condition) and 2009 (upper and middle part of basin). No droughts were seen
between 1970 and 1979 in the region. The year 1980 is an example of intra-basin variability:
almost all area of basin had near normal conditions, but particular areas had either very
wet conditions (middle part of the Wadi Abd catchment) or extreme drought (upper part of
the Wadi Haddad tributary). The years where a large part of the Wadi Mina basin was in
drought were 1982, 1989, 1999, 2004 and 2006, but the worst situation was in 2004, where all
the upper and middle parts of the basin had moderate to extreme drought. Spatial patterns
of drought within the basin varied unpredictably during the study period, which could be
due to the complex interaction of storm tracks with orographic features.

4.3. Drought Evaluation Indicators
4.3.1. Frequency Analysis

Drought frequency calculated for all analyzed stations is presented in Table 6. Near
normal (NN) conditions occurred most frequently at all stations (57.5% to 72.5% of the
time, depending on station). The extreme categories—extreme wetness (EW) and extreme
drought (ED)—were the least frequently observed. Extreme drought only occurred at 3 of
16 rainfall gauge stations over the 40-year observation period. However, all but 2 rainfall
gauge stations (S4 and S8) observed either ED and SD.

Table 2 shows drought duration, magnitude and intensity, as well as average, maxi-
mum and minimum SPI at annual time scale for the meteorological stations considered in
this study area. All drought indicators have strong variability over the study area. Drought
duration (DD) varied between 1 to 16 years, and most frequently was only 1 year. The
highest DD of 12, 13 and 16 years were observed at stations S13, S6 and S5, respectively.
The highest drought intensity was observed at S16 station and lowest at S8. The largest
drought magnitude was observed at S5 and the smallest at S11. Extreme drought was
observed in 1980/81, 1996/97 and 2004/05 in stations located in the lower part of basin.

Table 6. Frequency of each drought and wetness class for the considered stations, %.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

EW 0 2.5 5 5 0 2.5 5 5 2.5 2.5 5 0 2.5 5 2.5 2.5
VW 10 5 2.5 2.5 5 5 2.5 10 7.5 7.5 2.5 13 7.5 7.5 2.5 5
MW 7.5 5 7.5 5 7.5 7.5 7.5 5 7.5 7.5 2.5 2.5 10 2.5 15 5
NN 65 73 70 65 65 70 68 70 65 65 70 70 65 65 58 73
MD 7.5 13 7.5 23 13 7.5 13 10 7.5 13 18 5 7.5 18 15 7.5
SD 10 0 7.5 0 7.5 7.5 5 0 10 5 2.5 10 7.5 2.5 5 7.5
ED 0 2.5 0 0 2.5 0 0 0 0 0 0 0 0 0 2.5 0

Sums 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Figure 4. Spatial variability of meteorological drought in the wadi Mina basin.

4.3.2. Calculation of Return Period and the Severity-Area-Frequency (SAF) Curve

The Severity-Area-Frequency (SAF) curve is a very useful method for showing the
spatial extent of different types of drought in a given area. This technique has been
undertaken by several researchers around the world, for example in India [70]; China [71];
Southern Africa [72] and in Iraq [39]. Figure 5 illustrates the drought Severity-Area-
Frequency curves of SPI annual scale time for 10-, 25-, 50-, 100-year exceedance periods,
along with the curves for the four most severe drought years of 1984/85, 1993/94, 1998/99
and 2004/05 that affected the region.

 

Figure 5. Estimated drought severity—area—frequency curves for the annual SPI values for the Wadi
Mina basin, as compared those seen in historical droughts.

The severity analysis shows that all selected droughts have smaller severity than for
return periods 10, 25, 50 and 100 years. Moreover, the high drought severity occurred on
relatively small areas, less than 20% of analyzed basin and is observed mainly on the north
part of the basin—Figure 4. Moderate or near normal years are observed on the most parts
of the basin.

4.3.3. Spatial Pattern of Return Periods of Droughts

The return periods of moderate, severe and extreme droughts at all stations were
calculated and the values were then used to prepare the corresponding maps by using
inverse distance weighted (IDW) interpolation method analysis tool of ArcMap (Figure 6).
The presentation of these maps shows spatial variability of the drought for the different
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classes, with extreme drought more likely (shorter return period) in the north and east,
apparently modulated by the high heterogeneity of the spatial distribution of the rain-
fall [45,73]. Assessing vulnerability to drought across the Wadi Mina basin is important,
considering that, as shown by Henchiri et al. [74], grasslands and croplands in the northern
region of the Africa are highly vulnerable to drought risk.

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 6. Return periods of meteorological droughts in Wadi Mina with (a) moderate; (b) severe; and (c) extreme severities.

To mitigate risks of drought, proper water management techniques must be adopted.
One of these techniques is supplemental irrigation, which is an efficient practice used
for increasing agricultural production under limited water resources in areas affected
by drought [75].

5. Conclusions

This study was focused on analyzing temporal and spatial extents of droughts in the
Wadi Mina basin, Algeria, using SPI as an indicator of drought severity. The aim of this
study was to investigate spatial and temporal dimensions of meteorological droughts in the
Wadi Mina basin. Meteorological drought was expressed by the Standardized Precipitation
Index (SPI) method and GIS was used to detail temporal and geographical variations in
the drought vulnerability based on severity of drought events at annual time steps. This
study is applied to rainfall monthly records for the period 1970–2010 at 16 rainfall stations
located in the Wadi Mina basin.

The results showed that the SPI was able to detect historical droughts of 1982/83,
1983/84, 1989/90, 1992/93, 1993/94, 1996/97, 1998/99, 1999/00, 2004/05 and 2006/07.
Wet years were observed in 1971/72, 1972/73, 1995/96, 2008/09 and 2009/10. Decreasing
SPI was observed on 13 of 16 rain gauge stations, with six showing statistically significant
(p < 0.05) decreases. Most of the stations with the greatest decreasing trend were observed
in the lower part of the Wadi Mina basin, where average precipitation is already low. As
expected given the process used to construct SPI, near normal conditions dominated at
all stations, and severe and extreme drought categories were uncommon. The spatial
variability of the drought showed that extreme drought is more likely (shorter return
period) in the north and east.
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Severity-Area-Frequency curves that can aid the development of a drought prepared-
ness plan were developed for Wadi Mina basin, so as to ensure sustainable water resource
planning within the basin.

One limitation of the study is that we used only SPI to detect drought intensities.
In the future, we plan to add evapotranspiration and calculate the SPEI indicator, which
can give more complex information about meteorological conditions influencing drought
events, particularly for agricultural and forestry applications. Moreover, in this study
only annual sum of precipitation was used and thus seasonal variability of drought was
not detected. While this is to some extent justified for this region given that precipitation
is concentrated in only a few months per year, in a future study monthly and seasonal
precipitation variations could also be explored. Moreover, as a future study, we plan to
compare drought analyses based on different sources of rainfall data, including the Soil
Moisture to Rainfall (SM2RAIN) [76] algorithm to estimate rainfall based on soil moisture
time series.

The SM2RAIN is based on the inversion of the hydrological water balance, for esti-
mation of rainfall from soil moisture observations. In this approach the soil is assumed
as reservoir used for measuring the amount of rainfall [77]. This method gives indepen-
dent rainfall product with a different error structure and allows integration with other
satellite-based rainfall products. According to [76], the SM2RAIN method can be useful
in regions for which satellite rainfall data are affected by higher errors or not available.
Because Northwest Algeria is the region where water scarcity is high, we will perform
analysis that can show potential use of SM2RAIN as indirect source of rainfall to detect
meteorological drought, including seasonal variations.
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Appendix A

Table 1. Drought classification in the Wadi Mina basin.

Years S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

1970 NN NN NN NN NN NN NN MW MW NN MW NN NN NN NN NN
1971 NN EW EW EW VW VW NN VW EW VW EW VW VW EW EW VW
1972 MW NN MW MW MW NN NN NN MW EW NN VW MW VW MW MW
1973 NN NN NN NN NN NN NN NN NN NN NN NN MW VW MW VW
1974 VW MW NN NN NN VW NN NN NN NN NN NN EW MW MW NN
1975 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
1976 VW VW MW NN NN NN NN NN NN MW NN NN NN NN NN NN
1977 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
1978 NN NN NN NN NN NN NN NN NN NN NN NN MW NN NN NN
1979 NN NN NN NN VW NN MW NN NN NN NN NN NN NN MW NN
1980 NN NN NN NN NN NN NN NN NN NN NN VW NN NN ED NN
1981 SD MD NN NN NN NN NN NN NN NN MD MD MD MD SD SD
1982 NN MD MD MD MD NN MD MD SD MD NN MD NN NN NN NN
1983 NN NN NN MD NN NN SD NN SD MD NN SD NN NN NN NN
1984 NN NN NN MD NN MD NN NN NN NN NN NN NN MD MD NN
1985 VW NN NN NN NN NN NN MD NN NN NN NN NN MD NN MD
1986 NN MW NN NN NN NN NN NN NN NN NN NN NN NN MW NN
1987 NN NN NN MD MD NN MD NN NN NN NN NN NN NN NN NN
1988 NN NN NN NN MD NN NN NN NN NN NN NN NN NN NN NN
1989 SD MD SD NN SD MD NN MD MD MD MD NN NN NN NN MD
1990 NN NN NN MD NN NN NN NN NN MW NN NN NN NN NN NN
1991 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
1992 NN NN SD NN NN NN MD NN SD SD MD SD NN MD MD MD
1993 SD NN MD NN MD SD NN NN NN NN MD NN NN MD NN NN
1994 NN NN NN NN NN NN NN MW NN NN NN NN NN NN NN NN
1995 VW VW EW VW NN NN EW VW VW VW EW VW VW EW VW EW
1996 NN NN NN NN MD SD NN NN NN NN MD NN SD SD MD SD
1997 MW NN NN NN NN NN NN NN MD MD NN NN NN NN NN NN
1998 NN NN NN MD SD SD MD NN NN NN MD SD SD MD MD NN
1999 NN MD MD MD SD MD MD NN MD SD SD NN MD MD NN SD
2000 NN NN NN NN NN NN NN NN NN NN NN NN NN NN MW NN
2001 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
2002 MD NN NN NN MW MW NN NN NN NN NN NN NN NN SD NN
2003 NN NN NN NN NN MW MW VW NN NN NN NN NN NN NN NN
2004 MD ED SD MD NN NN SD MD SD MD NN SD SD NN NN NN
2005 NN NN MW NN MW MW MW VW MW NN NN NN NN NN NN NN
2006 MD MD NN MD NN NN NN NN NN NN MD NN MD NN MD NN
2007 SD NN NN NN NN NN NN NN NN NN NN NN NN NN MD NN
2008 MW NN VW EW EW EW EW EW VW MW VW MW MW VW NN MW
2009 NN NN NN MW NN NN VW EW VW VW NN VW VW NN NN NN

EW—extremely wet, VW—very wet, MW—moderately wet, NN—near normal, MD—moderate drought, SD—severe drought,
ED—extreme drought.
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Table 2. Average and maximum annual SPI values during drought years for the meteorological stations considered.

Stations Events
Duration

DD (Years)
Intensity

DI
Magnitude

DM

SPI Values

Average Maximum Year Minimum Year

S1

1 1 −0.11 −0.11

−0.74 −1.71 1989/90 −0.07 1984/85

2 1 −0.39 −0.39

3 4 −0.86 −3.42

4 8 −0.80 −6.42

5 1 −0.21 −0.21

6 2 −0.43 −0.86

7 6 −0.93 −5.58

S2

1 1 −0.39 −0.39

−0.79 −2.56 2004/05 −0.01 1985/86

2 5 −0.74 −3.71

3 1 −0.86 −0.86

4 1 −1.25 −1.25

5 4 −0.29 −1.14

6 2 −0.83 −1.66

7 6 −1.13 −6.76

S3

1 1 −0.32 −0.32

−0.84 −1.84 2004/05 −0.04 1980/81

2 5 −0.74 −3.71

3 7 −0.89 −6.24

4 1 −0.44 −0.44

5 4 −0.96 −3.84

6 1 −1.84 −1.84

7 1 −0.31 −0.31

S4

1 1 −0.21 −0.21

−0.80 −1.36 1999/00 −0.02 1991/92

2 4 −1.12 −4.48

3 7 −0.63 −4.43

4 1 −0.67 −0.67

5 4 −0.92 −3.67

6 1 −1.09 −1.09

7 2 −0.71 −1.42

S5

1 1 −0.94 −0.94

−0.86 −1.88 1999/00 −0.05 1997/98
2 13 −0.76 −9.84

3 4 −1.25 −4.98

4 1 −0.54 −0.54

S6

1 2 −0.10 −0.19

−0.77 −1.93 1989/99 −0.06 1977/78

2 1 −0.21 −0.21

3 7 −0.74 −5.16

4 6 −0.88 −5.30

5 4 −1.29 −5.15

6 1 −0.17 −0.17
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Table 2. Cont.

Stations Events
Duration

DD (Years)
Intensity

DI
Magnitude

DM

SPI Values

Average Maximum Year Minimum Year

S7

1 3 −0.62 −1.87

−0.97 −1.98 2004/05 −0.26 1977/78

2 7 −0.85 −5.97

3 1 −0.41 −0.41

4 2 −0.95 −1.90

5 1 −0.59 −0.59

6 4 −0.94 −3.77

7 1 −1.98 −1.98

8 1 −0.52 −0.52

S8

1 2 −0.31 −0.62

−0.62 −1.33 1983/84 −0.02 1978/79

2 16 −0.73 −11.67

3 1 −0.55 −0.55

4 2 −0.51 −1.02

5 2 −0.20 −0.40

6 1 −1.22 −1.22

7 1 −0.14 −0.14

S9

1 1 −0.01 −0.01

−0.81 −1.60 2004/05 −0.01 1973/74

2 3 −0.59 −1.77

3 3 −1.19 −3.56

4 8 −0.49 −3.91

5 4 −0.92 −3.69

6 1 −0.27 −0.27

7 1 −1.60 −1.6

8 1 −0.53 −0.53

S10

1 1 −0.28 −0.28

−0.85 −1.96 1992/93 −0.11 1984/85

2 1 −0.41 −0.41

3 3 −0.91 −2.74

4 4 −0.75 −2.98

5 2 −1.12 −2.24

6 4 −0.91 −3.65

7 2 −0.79 −1.57

8 1 −1.45 −1.45

9 2 −0.81 −1.61
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Table 2. Cont.

Stations Events
Duration

DD (Years)
Intensity

DI
Magnitude

DM

SPI Values

Average Maximum Year Minimum Year

S11

1 1 −0.07 −0.07

−0.85 −1.67 1999/00 −0.07 1977/78

2 2 −0.90 −1.80

3 2 −0.66 −1.32

4 3 −0.81 −2.42

5 3 −1.00 −2.99

6 1 −1.29 −1.29

7 2 −1.37 −2.73

8 3 −0.49 −1.47

9 1 −0.19 −0.19

S12

1 1 −0.37 −0.37

−0.8 −1.70 1983/84 −0.10 1978/79

2 1 −0.10 −0.10

3 5 −0.93 −4.65

4 1 −0.76 −0.76

5 1 −0.34 −0.34

6 3 −0.91 −2.73

7 1 −0.90 −0.90

8 5 −0.75 −3.76

9 1 −1.50 −1.50

10 1 −0.98 −0.98

S13

1 1 −1.25 −1.25

−0.77 −1.77 1998/99 −0.04 1991/92

2 3 −0.49 −1.48

3 2 −0.69 −1.38

4 3 −0.57 −1.70

5 12 −0.87 −10.42

S14

1 1 −0.17 −0.17

−0.68 −2.02 1996/97 −0.02 1980/81

2 3 −0.61 −1.83

3 2 −1.07 −2.13

4 3 −0.54 −1.62

5 3 −0.81 −2.42

6 5 −0.56 −2.79

7 4 −0.31 −1.22

8 2 −0.42 −0.83
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Table 2. Cont.

Stations Events
Duration

DD (Years)
Intensity

DI
Magnitude

DM

SPI Values

Average Maximum Year Minimum Year

S15

1 2 −0.32 −0.64

−0.81 −2.03 1980/81 −0.17 2005/06

2 3 −1.29 −3.86

3 1 −1.14 −1.14

4 1 −0.71 −0.71

5 2 −0.39 −0.78

6 2 −1.03 −2.05

7 1 −1.25 −1.25

8 2 −0.68 −1.35

9 7 −0.76 −5.32

S16

1 1 −1.88 −1.88

−0.76 −1.88 1981/82 −0.01 2005/06

2 7 −0.63 −4.43

3 4 −0.70 −2.80

4 1 −1.73 −1.73

5 2 −1.11 −2.21

6 2 −0.54 −1.07

7 4 −0.47 −1.87
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Abstract: Pakistan is amongst the most water-stressed countries in the world, with changes in the
frequency of extreme events, notably droughts, under climate change expected to further increase
water scarcity. This study examines the impacts of climate change and anthropogenic activities on the
runoff of the Kunhar River Basin (KRB) in Pakistan. The Mann Kendall (MK) test detected statistically
significant increasing trends in both precipitation and evapotranspiration during the period 1971–2010
over the basin, but with the lack of a statistically significant trend in runoff over the same time-period.
Then, a change-point analysis identified changes in the temporal behavior of the annual runoff time
series in 1996. Hence, the time series was divided into two time periods, i.e., prior to and after that
change: 1971–1996 and 1997–2010, respectively. For the time-period prior to the change point, the
analysis revealed a statistically significant increasing trend in precipitation, which is also reflected
in the runoff time series, and a decreasing trend in evapotranspiration, albeit lacking statistical
significance, was observed. After 1996, however, increasing trends in precipitation and runoff were
detected, but the former lacked statistical significance, while no trend in evapotranspiration was
noted. Through a hydrological modelling approach reconstructing the natural runoff of the KRB,
a 16.1 m3/s (or 15.3%) reduction in the mean flow in the KRB was simulated for the period 1997–
2010 in comparison to the period 1971–1996. The trend analyses and modeling study suggest the
importance of anthropogenic activities on the variability of runoff over KRB since 1996. The changes
in streamflow caused by irrigation, urbanization, and recreational activities, in addition to climate
change, have influenced the regional water resources, and there is consequently an urgent need to
adapt existing practices for the water requirements of the domestic, agricultural and energy sector to
continue being met in the future.

Keywords: climate change; Kunhar River Basin; streamflow; trend analysis; Soil and Water Assessment
Tool (SWAT); anthropogenic impacts
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1. Introduction

Human development has been increasing at a substantial rate since the Industrial
Revolution [1], at the expense of anthropogenic activities causing land use changes, an
increase in emissions of greenhouse gases (GHGs), and therefore climate change [2]. Both
changes in climate and anthropogenic activities can affect hydrological processes of a river
catchment [3,4], thus impacting on water resources, hydropower production [5,6], and
crop yield [7]. According to the Intergovernmental Panel on Climate Change (IPCC) [8],
GHG emission have caused a 0.85 ◦C increase in global mean temperature with associated
changes in precipitation over the period from 1880 to 2012, thus impacting on the hydro-
logical characteristics of the catchment [9], notably the volume of runoff [10] and peaks
value [11], in addition to other runoff characteristics [12].

The identification of trends in precipitation and evapotranspiration time series (or
more commonly temperature as a proxy for evapotranspiration) can help us understand
the complex temporal variability of streamflow. Canchala et al. [10], for example, examined
the variability of river flow of two Colombian rivers, which they corelated with various
indices of atmospheric teleconnections as well as precipitation. Similarly, a trend analysis
was performed on the runoff of the Athabasca River Basin in western Canada [11]. The
author found that the decreasing trend in streamflow in recent decades was coherent with
the temperature and precipitation trends, and that the trends in hydrological variables that
the catchment have recently experienced are projected to continue under climate change.

The generation of runoff and its characteristics are not only affected by climatic
changes, but also by anthropogenic activities [13]. For this reason, land-use/land-cover
(LULC) types and changes in the latter are important to monitor, as the hydrological
response of forested land, urbanized land [14], and cultivated land [15,16] to a precipitation
event does vary. Applying a catchment-based approach with regard to managing the
hydrology of a river basin, including water resources availability, for the benefits of all
users is thus necessary [17].

There is a growing body of research on simulating the hydrological response and
estimating changes in the characteristics of streamflow to the impacts of climate change
and anthropogenic activities. The impacts of anthropogenic activities on streamflow were
examined by [10,11,18,19], for instance, while other studies have focused on assessing
the impacts of climate change on the hydrological response [20–24]. However, there is
a limited number of studies that investigated the hydrological response to the impacts
of both climate change and anthropogenic activities in river basin [2,9,25–30], those that
have been performed to date have used various methods, including hydrological model-
ing [31,32], statistical techniques [33,34], empirical methods [35,36] and paired catchment
techniques [37,38] and paired years methods [39,40], with each method having its limita-
tions. For instance, in the case of hydrological modeling, the models require long-term and
detailed data for their calibration, which are not always available. Moreover, the calibration
of the model with limited input data can causes uncertainties and discrepancies in the
model outputs. Empirical methods for their part, provide physical interpretation and have
fewer data requirements, hence they are usually preferred in developing countries where
there are fewer resources to monitor the hydrological conditions.

Many catchments have their source in mountainous regions and hence these regions
play an important role in the water balance of areas located further downstream. The
majority of inhabitants of the Kunhar River Basin (KRB), located in the western Himalaya
of Pakistan, for instance, rely on agriculture for their livelihoods, with the water required
for the latter originating from upstream mountain areas, and used for irrigation, power
generation, recreation, and municipal use [41]. The region also has great potential for
tourism and for further development in hydropower generation and agriculture, which
may put additional pressure on water supply in the future.

The KRB has experienced changes in LULC types in recent decades. Woods burning
to meet the domestic energy needs and a growing population have caused deforestation
in the uphill areas of the basin [42], with forests being replaced by grasses and shrub [43].
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Moreover, slope agriculture is becoming more and more common, causing further changes
to the vegetation type over the basin [44]. A study conducted by Saifullah et.al. [45]
determined the threshold levels and a climate-sensitivity model for the hydrological regime
of the KRB. The current study is directly associated with the water-related ecosystem
that is designed in accordance with the Sustainable Development Goals of the United
Nations (SDGs 6.3), to integrate climate change measures and policies (SDGs 13.2), and
anthropogenic impacts (SDGs 15.1.1).

The objectives of this study are: (1) To examine the temporal variability and trends in
hydro-climatic variables over the KRB (2) to quantify of the relative contribution of climate
change and anthropogenic activities on the variability of runoff in the KRB.

2. Materials and Methods

2.1. Study Area

This study was conducted in the KRB, a high-altitude catchment in Northern Pak-
istan (Figure 1). The Kunhar River is 171 km long; it originates in lake Lulusar in the
Kaghan Valley of Khyber Pakhtunkhwa passing through the town of Jalkhand, Bata Kundi,
Naran, Kaghan, Kwai, Balakot, and Garhi Habibullah and exiting into the Jhelum River
at Rara [22]. The Kunhar River is an important source of water for the Mangla reservoir,
which contributes nearly 11% of its water [46]. The drainage area of KRB is approximately
2600 km2, it is mountainous [44], with elevation ranging from 672 to 5192 m above sea
level [47].

Figure 1. Geographical location of the KRB in Pakistan.

Mangla is the second-largest reservoir in Pakistan and its storage is used to irrigate
nearly six million hectares of the country’s agricultural land, in addition to producing
nearly 1000 MW of hydroelectricity [41,48]. The region experiences mild summers and
cold winters. Average annual maximum temperature at Naran, Balakot, and Muzaffarabad
is 12.3, 24.9, and 28.4 ◦C, respectively, whereas the average annual minimum temperature
is 3.2, 12.4, and 13.5 ◦C, respectively [22]. Annual rainfall at Muzaffarabad and Balakot
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is on average, 1351 and 1531 mm, respectively [43]. The basin also receives a substantial
amount of precipitation in the form of snowfall in the winter (December-March) [44].

The vegetation of the KRB is divers, consisting of coniferous and broadleaf forests,
grasses and shrubs, in addition to bare soil and snow and glaciers, and water bodies
(Figure 2, Table 1). Three dominant land cover types dominate the basin: grasses/shrubs,
bare soil/rocks, and dense coniferous forests, with crops covering only 4.35% of the basin
(Table 1).

Figure 2. Land-cover classes of the KRB.

Table 1. Land-cover classes of the KRB.

ID Class Name Area (km2) Area (%)

1 Dense coniferous forest 359.9 13.70
2 Sparse coniferous forest 160.8 6.12
3 Dense mix forest 122.7 4.67
4 Sparse mix forest 61.6 2.35
5 Dense broadleaf forest 30.6 1.17
6 Sparse broadleaf forest 21.5 0.82
7 Grasses/shrubs 853.5 32.49
8 Alpine grasses 183.3 6.98
9 Agriculture (cropped) 114.2 4.35
10 Agriculture (fallow) 0.9 0.03
11 Bare Soil/Rocks 585.7 22.29
12 Snow/Glaciers 128.2 4.88
13 Water bodies 4.0 0.15

2.2. Datasets and Pre-Processing

A Digital Elevation Model (DEM), with a 30 m resolution, was downloaded from
the website of the United States Geological Survey (USGS) [49] and used to delineate the
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boundaries of the KRB. The land-cover data over the basin, for their part, were down-
loaded from the website of the International Center for Integrated Mountain Development
(ICIMOD) [50], while the Harmonized World Soil Database v 1.2 was acquired from the
website of Food and Agriculture Organization (FAO) [51]. There are two gauging stations
and three meteorological stations in the KRB (Table 2). The Water and Power Development
Authority (WAPDA) provided daily streamflow data from the two gauging stations, while
daily temperature and precipitation data were obtained from the Pakistan Meteorological
Department (PMD). Wind speed, solar radiation, and relative humidity were extracted
from the ERA5 reanalysis dataset at an hourly time scale [52]. The analyses were performed
at the monthly and annual time scales, but some methods required daily data, e.g., the
hydrological model, as described below.

Table 2. List of hydro-meteorological data of the KRB.

Station Latitude (◦) Longitude (◦) Altitude (m) Period of Record Source of Data

Hydrological stations
Naran 34.9 73.65 2362 1971–2010 WAPDA

Gari Habibullah 34.40 73.38 810 1971–2010 WAPDA
Meteorological stations

Balakot 34.55 73.35 995 1971–2010 PMD
Muzaffarabad 34.37 73.48 702 1971–2010 PMD

Naran 34.9 73.65 2421 1971–2010 PMD

Note: WAPDA refer to the Water and Power Development Authority and PMD to Pakistan Meteorological department.

2.3. Methods
2.3.1. Mann Kendall Trend Test

Mann-Kendall (MK) trend test [53,54], calculated using Equations (1) and (2), is a
commonly used non-parametric test to detect trends in a climatological and hydrological
time series.

S =
n−1

∑
i=1

∑n
j=i+1 sgn

(
xj − xi

)
(1)

sgn
(

xj − xi
)
=

⎧⎨
⎩

+1, xj > xi
0, xj = xi
−1, xj < xi

(2)

where xi and xj denote the data values at times i and j, respectively, n specifies the length
of the data set. A positive value of S indicates an increasing trend, while a negative value
refers to a decreasing trend. The variance of S, Var(S), is calculated using Equation (3),
assuming a normally distributed time series with n > 10 and.

Var(S) =
n(n − 1)(2n + 5)− ∑n

i=1 tii(i − 1)(2i + 5)
18

(3)

where ti denotes the number of data ties. The test statistic, Z, is then calculated using
Equation (4).

z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
var(S)

S > 0

0 S = 0
S−1√
var(S)

S < 0
(4)

In a two-tailed test, the standard Z value is compared with the standard normal
distribution table at a 5% significance level (α). The null hypothesis (Ho) is rejected
if |Z| > |Z1-α/2|, meaning that the trend is statistically significant, otherwise Ho is
accepted, i.e., there is no presence of a statistically significant trend in the time series at the
95% confidence level.
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2.3.2. Innovative Trend Analysis

The Innovative Trend Analysis (ITA) was proposed by Sen [55]. The technique consists
of the dividing a time series into two subsets. Hence, the observed hydrological time series
was divided into two sub-series after having re-arranged the time series in ascending order.
Based on the Cartesian coordinate system, the first sub-series (Xi) is drawn on X-axis while
the second (Xj) is on Y-axis as shown in Figure 3. Generally, the hydrological time series is
described as trendless if it is located on the 1:1 (45◦) straight line whereas it is a decreasing
trend in time series if the data values are found below the triangular area of the straight
line (45◦), and an increasing trend if it is above it.

Figure 3. Interpretation of the ITA technique.

2.4. Change Point Analysis

A change-point analysis, as described in [11], was conducted on the time series with
the purpose of determining the presence of abrupt changes in time series. Test determines
the number of change points and estimate their time occurrence. This study used the
Combinations of the Sum Boxes (CUSUM) plot to determine the change point in a time
series. This procedure is described in [56] procedure. The accumulated sum of data points
i.e., X1, X2, . . . , X24 is calculated and CUSUM graphs are produced. Moreover, in general,
the average value displays periods that are greater than the average. Mostly, the values are
below the average and the downward slope segment is displayed by the sudden changes
in CUSUM direction, which points out an average or sudden change. The period of the
CUSUM column is straightforward when the average or sudden change does not occur.

2.5. Double Mass Curve Analysis

The consistency of of hydrological time series is checked by comparing data for a
single station using double mass curve analysis [57]. It can be used to correct the unstable
precipitation data. It is basically a fraction of the accumulated image arithmetic figures in a
variable different from the accumulated figures of another variable or the same variable
occasionally. The relative mass ratios of these variables change concerning the interrelations
between the variables. This may be due to changes in the data collection procedure or
might be the physical changes that mark the relationship. It must not be thought that all
discrepancies shown by a double mass curve were inconsistent due to changes in data
collection methods or errors in data collection.
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2.6. Flow Duration Curve

Flow Duration Curve (FDC) [58] is a graphical representation of the overall historical
variability in river flow. FDC is a corresponding distribution function of daily flows. The
probability that a certain value will be exceeded in a predefined future period is called the
probability of exceedance. It is used to predict extreme events such as floods, hurricanes,
and earthquakes. The exceedance probability P can be calculated using Equation (5).

P =

[
M

(n + 1)

]
× 100 (5)

where M specifies the ranked position on the listing (dimensionless) and n denotes the
number of events during the data record. The exceedance predicts the probability of a
given streamflow [11]. Further detail about FDC can be found in a study conducted by [11].

2.7. Eco-Hydrological Framework

This framework focuses on studying the interactions between water and ecological
systems. The annual hydrological budget for a catchment can be expressed by Equation (6):

P = ET + Q + D + ΔS (6)

where P stands for precipitation, ET for the evapotranspiration, Q for streamflow, D for
deep groundwater losses, and ΔS for the changes in storage. Deep groundwater losses and
changes in water storage can reasonably be assumed to be zero over a long time period.
The available water and energy in an agricultural watershed can be assessed through the
excess water (PEx) and excess energy (EEx), which can be estimated using the following
equations:

PEx =
( P − ET)

P
(7)

EEx =
(PET − ET)

PET
(8)

where PET denotes potential evapotranspiration. The value of PEx and EEx can range
from 0 to 1. PET denotes potential evapotranspiration. The eco-hydrological analysis
represented by Figure 4 is an example of the conceptual model that is applicable for
understanding the soil water conservations measures and climatic variability impacts on
watershed hydrology [59].

2.8. Climate Elasticity Model

Climate change impacts can also be assessed using the climate elasticity model [35,60,61].
Schaake [60] presented the concept of climate elasticity to assess the sensitivity of stream-
flow to climate changes. It can be defined as the relative change in streamflow divided by
the relative change in a climate variable, precipitation for instance. Schaake [60] defined
the precipitation elasticity, εp, through Equation (9):

εp(P, Q) =

dQ
Q
dp
P

=
dQ
dP

P
Q

(9)

where P and Q represent precipitation and streamflow, respectively, and εp denotes the
precipitation elasticity. The precipitation elasticity of streamflow is a random variable that
depends on P and Q. A non-parametric estimator of precipitation elasticity was defined
by [35]. Another similar study conducted by [62] defined an estimator of precipitation
elasticity of streamflow by Equation (10) given below:

ΔQi

Q
= εp.

ΔPi

P
(10)
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where ΔQi and ΔPi represents a change in annual streamflow and precipitation in compari-
son to the long-term average of Q and P, respectively. The current study used historical
data of precipitation and streamflow from 1971 to 1996 for the calculating the precipitation
elasticity. It also considers the impacts of evapotranspiration in the climate elasticity model
by adding evapotranspiration to Equation (10), resulting in Equation (11):

ΔQi

Q
= εp.

ΔPi

P
+ εet.

ΔET
ET

(11)

where εp and εet designate precipitation and evapotranspiration elasticity of streamflow,
respectively, in multiple regression systems whereas ΔET represents a change in annual
mean evapotranspiration in comparison to the long-term mean evapotranspiration (ET).

Figure 4. Tomer Schilling framework.

2.9. Statistical Model

The linear regression between averaged annual precipitation (Pref) and annual runoff
(Qref) can be represented by Equation (12):

Qre f = aPre f+bET + c (12)

where ‘a and b’ represents the regression equation constant and ‘c’ denotes the regression
intercept. The coefficients of the equation are determined by the least square method.
Climate variability is due to external factors such as a, change in LULC and climate
variability as represented by Equation (13):

ΔQtotal = ΔQp + ΔQL (13)

where ΔQtotal denotes a change in observed mean annual streamflow which is the result of
a change in streamflow due to climate change (ΔQp) and anthropogenic activities (ΔQL).
Equation (14) specifies the difference between streamflow of the reference period and
change period and the output is a change in average annual streamflow ΔQ.

ΔQ = Q2 − Q1 (14)
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where ΔQ denotes the change in average annual streamflow, Q1 denotes the streamflow of
the reference period whereas Q2 denotes the streamflow during the change period.

2.10. Hydrological Modeling

The Soil and Water Assessment Tool (SWAT) is a semi-distributed river basin scale
model that can be used to compute the impacts of land-use changes by using climatic and
streamflow data over a long period [32,63]. The SWAT model is based on the physical
characteristics of the basin. In the Arc SWAT model, a watershed is divided into multiple
subbasins and then each subbasin is further sub-divided into Hydrological Response Units
(HRUs). The SWAT model simulates streamflow based on the following water balance
Equation (15) [64]:

SWt = SW0 +
t

∑
i=1

(Rday − Qsur f − Ea − Wseep − Qgw) (15)

where SWt denotes the final soil water content (mm); SW0 denotes the initial soil water
content on the day i; ‘t’ designates the time (days); Rday specifies the amount of precipitation
on the day i (mm); Qsurf represents the amount of precipitation on the day i (mm); Ea denotes
the amount of evapotranspiration on the day i (mm); Wseep specifies the amount of water
entering the vadose zone from the soil profile on the day i (mm) and Qgw represents the
amount of return flow on the day i (mm).

The simulated runoff in the SWAT model can be achieved at the HRUs level by using
the Soil Conservation Service (SCS) curve number method [65]. This method mainly
depends on the soil, land cover, and hydrological characteristics. The basic equation of the
SCS curve number method:

Qsur f =

(
Rday − 0.2S

)2

(
Rday + 0.8S

) (16)

where Qsurf denotes the daily surface runoff (mm), Rday specifies the daily rainfall (mm)
and S represents the retention parameter (mm). The parameter ‘S’ changes due to change
in soil, land-use, water conservation measures, slope, and also with time due to variations
in the soil water contents of the watershed. The retention parameter can be defined by
Equation (17):

S = 25.4
(

1000
CN

− 10
)

(17)

where S denotes the retention parameter which gives the value of the drainable volume
of soil water per unit area of the saturated thickness (mm/day); CN represents the curve
number. A more detailed explanation of the SWAT model can be found [65].

The current study divided the KRB into 15 subbasins and 223 HRUs were created based
on the areas with homogeneous soil types, vegetation, and slope (Figure 5). The number
of subbasins divisions depends on the stream networks of the watershed. Generally, the
runoff values are not affected by the number of subbasins [66]. The land use, soil, and
slope classification of the KRB in the Arc SWAT model are displayed in Figure 5. The major
land-use type in the KRB is pasture whereas the major soil type is lithosols. The slope map
shows that a major part of the basin lies at a slope greater than 60% (Figure 5).

2.10.1. Model Setup

The SWAT model requires the preparation of the forcing data such as soil type, land
use, DEM, and climatic data. The key steps in the application of the SWAT model are dis-
played in Figure 6 and include; (a) watershed delineation and subbasin feature derivation;
(b) HRU definition; (c) climatic inputs and weather generator; (d) simulation of the SWAT
model; (e) sensitivity and uncertainty analysis, and (f) calibration and validation of the
SWAT model.

187



Water 2021, 13, 3163

The surface runoff volume was computed using the SCS curve number method [67].
The Penman-Monteith method was used for the calculation of evapotranspiration [68,69].
The SWAT model was run at the monthly time scale. The SWAT calibration and uncertainty
program (SWAT-CUP) [70] was used for calibration, validation, sensitivity, and uncertainty
analysis using the sequential uncertainty fitting algorithm (SUFI-2 algorithm). The SWAT
model was calibrated for the period (1972–1981) and validated (1983–1996) against the
observed flows at Gari Habibullah streamflow gauging station in SWAT-CUP.

The sensitivity analysis was performed in SWAT-CUP to determine the parameters
that streamflow is most sensitive to. A total of 18 parameters of the SWAT model that
relate to surface runoff, groundwater, and snowmelt were selected for model calibration
in Table 3. The parameters related to snowmelt such as SMFMX, SMFMN, SFTMP and
SMTMP, TLAPS, and others such as CN2, PLAPS, and ALPHA_BF were found to be more
sensitive in the KRB as the basin is mainly snow-fed.

Figure 5. (a) Sub-basins; (b) Land-use classification; (c) Soil classification and (d) Slope classification
of the KRB in the Arc SWAT model.

2.10.2. Model Performance and Evaluation Criteria

The performance of the SWAT model was assessed using the Nash-Sutcliffe model
efficiency (NSE) and coefficient of determination (R2):

NSE = 1 − ∑n
i=1(Q0 − Qs)

2

∑n
i=1

(
Q0 − Qo

)2 (18)

R2 =

⎡
⎣ ∑n

i=1
(
Qo − Qo

)(
Qs − Qs

)
√

∑n
i=1

(
Qo − Qo

)2
∑n

i=1
(
Qs − Qs

)2

⎤
⎦

2

(19)

where i denotes the time step and n specifies the total number of simulated time steps.
Qo and Qs represent the observed and simulated streamflow values, respectively. NSE
specifies how well the graph between observed and simulated data fits the 1:1 line. The
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value of NSE is considered satisfactory when NSE is higher than 0.5 [71]. The greater value
of NSE, the better is the model accuracy. The model’s simulations are considered perfectly
fit if NSE = 1 [72].

Whereas, R2 measures the strength of the linear relationship between the simulated
and observed streamflow time series. R2 value can range between 0 and 1. The model is
considered ideal if the R2 value is equal to 1, and satisfactory if R2 > 0.6 [71].

Figure 6. Flowsheet diagram of the SWAT model.

Table 3. List of parameters used for calibrating of the SWAT model.

Parameter Description Adjusted Value

r_CN2.mgt Initial SCS runoff curve number for moisture condition II −0.25
v__CH_N2.rte Manning’s “n” for the main channel −0.01

r_SOL_AWC.sol Soil available water capacity (mm H2O/mm soil) 0.48
v__GWQMN.gw Threshold depth in the shallow aquifer for return flow (mm) 1888

v__RCHRG_DP.gw Fraction of root zone percolation that reaches the deep aquifer 0.62
v_ALPHA_BF.gw Baseflow alpha-factor (days) 0.034
v_GW_DELAY.gw Groundwater delay (days) 71

v_SURLAG.bsn Surface Runoff lag coefficient 4.47

v_SMFMN.bsn Minimum melt rate for snow during the year (occurs on winter solstice)
H2O/◦C-day) 4.88

v_SMFMX.bsn Maximum melt rate for snow during the year (occurs on the summer solstice).
(mm H2O/◦C-day) 11.20

v_SMTMP.bsn Snowmelt base temperature (◦C) −2.81
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Table 3. Cont.

Parameter Description Adjusted Value

v_SFTMP.bsn Snowfall temperature (◦C) 4.91
v__TIMP.bsn Snowpack temperature lag factor 0.045

v_SNOCOVMX.bsn Minimum snow water content that corresponds to 100% snow cover 192.17
v__PLAPS.sub Precipitation lapse rate (mm H2O/km) 135.2
v_TLPAS.sub Temperature lapse rate (◦C/km) −6.4
v__ESCO.hru Soil evaporation compensation factor 0.42
v__EPCO.hru Plant uptake consumption factor 0.80

Note: where ‘v’ designates that the parameter value is replaced by a given value, whereas ‘r’ specifies that the parameter value is multiplied
by (1 + a given value).

3. Results and Discussion

3.1. Trends in Hydro-Climatic Variables

The statistical indices explaining the annual variations in observed precipitation, evap-
otranspiration, and runoff (from 1971 to 2010) of the KRB are listed in Table 4. Table 4 shows
the combined annual trend analysis of all the variables. It was observed that the coefficient
of variance (Cv) of precipitation was higher than that of runoff and evapotranspiration
whereas the Cv of evapotranspiration was found the lowest i.e., 0.12 as compared to pre-
cipitation (0.22) and runoff (0.21). Moreover, the ratio of precipitation to runoff was found
smaller than the ratio of precipitation to evapotranspiration. Overall, the mean value of
precipitation was found to be 14% higher than runoff whereas runoff was found to be 70%
higher than evapotranspiration. The skewness of evapotranspiration was observed to be
74% higher than runoff while 72% greater than precipitation. The skewness of precipitation
was found as 10% higher than runoff (Table 4).

Table 4. Statistical indices for annual variations in precipitation, evapotranspiration, and runoff of the KRB.

Climatic Variables

1971–2010

Mean (mm)
Standard

Deviation (mm)
Skewness

Coefficient of
Variance (CV)

Ratio of (CV)

Precipitation 1636 365 0.611 0.22 0.96
Evapotranspiration 422 48 2.15 0.12 1.85

Runoff 1413 302 0.55 0.21 -

The results of the MK test on the precipitation, evapotranspiration, and runoff time
series are presented in Table 4, and are also illustrated in Supplementary Figure S1 (for the
entire data record), and Figure S2 (for the pre- and post-change time-periods separately).
Precipitation and evapotranspiration exhibited statically significantly increasing trends,
whereas no statistically significant trends were observed in the runoff time series.

The results of the ITA supports the trend analyses conducted using the MK test,
particularly for precipitation, where all data points are above the 1:1 line (Table 5, Figure 7).

Table 5. Results of the MK trend test and ITA on the annual for the hydro-climatic time series of the KRB.

Variables Z-Value Trend ITA

Precipitation 1.74 + Sig. Increasing

Evapotranspiration 1.67 + Sig. Increasing

Runoff 1.36 Non-significant

Note: ‘Sig.’ stands for statistically significant and‘+.’ Refers to the 0.1 level of significance.
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Figure 7. ITA of precipitation, evapotranspiration, and runoff time series of the KRB. (a) Precipitation;
(b) Evapotranspiration; (c) Runoff.

The results of the recent trend analyses by Latif et al. [73] which was conducted
over the Jhelum River Basin (JRB) also located in Northern Pakistan and extending into
India, were found to be consistent with current study as they detected increasing trends
in annual precipitation and evapotranspiration. Similarly, [74] examined the flow regime
of the JRB and found trends similar to those in our study in the runoff of a few stations,
whereas trends contrasting those of our study were identified at a few weather stations.
Furthermore, [75] found an increase in the frequency of wet precipitation days from
the northeast to the middle parts of the northern highlands of Pakistan. The trends
in temperature and precipitation of our previous study i.e., [45] were found consistent
with our current study but runoff in the upper part of the KRB was found to increase in
comparison to the lower part (downstream) of the basin. Moreover, [3] also identified the
lack of a trend in the runoff of the upper and middle stream of the Syr Darya River basin,
and their results were found consistent with our current study.

3.2. Abrupt Changes in the Hydrological Time Series

The abrupt change or change point in the annual precipitation, evapotranspiration,
and runoff of the KRB is displayed in Figure 8. The accumulative difference curve and
double mass curve methods were used to identify the abrupt change in the runoff. An
abrupt change in all three-time series was identified in 1996 (Figure 8). A study conducted
by [34] used the accumulative anomaly method to determine the abrupt change in the
runoff of the Huangfuchuan River, China, and their results were found to be consistent.
Moreover, a study performed by [76] also observed an abrupt change in the runoff of the
Wei He River basin in the year (i.e., 1993) as similar to our study. A study conducted by [74]
also determined the change point in streamflow which was consistent with our results.

Table 6 shows the smaller Cv of during the post-change period in comparison to the
pre-change period. The Cv of evapotranspiration, for its part, is higher during the post
change than in the pre-change period, while for runoff, it is also higher during the later
period.
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Figure 8. Change point analysis on the annual precipitation (ADP), evapotranspiration (ADET), and runoff (ADR) time
series.

Table 6. Descriptive statistics of the time period before and after the abrupt change in time series.

Variables

Pre-Change (1971–1996) Post-Change (1997–2010) Relative Change

Mean
(mm)

Cv Ratio of Cv
Mean
(mm)

Cv Ratio of Cv mm %

Precipitation 1643 0.23 0.88 1624 0.22 1.10 −19 −1.0
Evapotranspiration 417 0.10 2.06 431 0.14 1.72 14 3.25

Runoff 1426 0.20 1390 0.25 −36 −2.59

Regarding the pre-change period, the precipitation (−1%) and runoff (−2.59%) de-
creased whereas evapotranspiration (+3.25%) increased during the post-change period
(Table 6, Figure 9). The ratio of Cv for precipitation to runoff was observed to be 20% higher
in the post-change period whereas the ratio of Cv for evapotranspiration to runoff was 18%
less during the post-change period in relation to the pre-change period.

The abrupt change was also determined by plotting the data of cumulative precipita-
tion and cumulative runoff in double mass curve analysis (Figure 10). Figure 10a shows
the deviation of the double mass curve from the linear relation.

The MK test for the pre (1971–1996) and post-change (1997–2010) periods for pre-
cipitation, evapotranspiration, and runoff are displayed in Figure S3 (Supplementary
Material) and Table 7 From the results of the MK trend test and ITA method, one can see
increasing trends in precipitation and runoff but a decreasing trend, and lacking statistical
significance, in evapotranspiration during the pre-change period. After the change point,
both the MK test and ITA show statistically significant increasing trend for runoff and
an insignificant increasing trend for precipitation and no trend for evapotranspiration
(Table 7). The status of evapotranspiration changed from decreasing trend (pre-change)
to a trendless (post-change) period which showed that evapotranspiration has increased
during the post-change period in comparison with the pre-change period.

Liang [77] investigated the trends in precipitation, temperature, and runoff time
series upstream of the Minjiang River Basin, China and observed an increasing trend in
precipitation for a similar period to that of our study. They also observed an increase in
runoff during the post-change period. Another study conducted by Latif [74] also identified
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increasing trends in several hydrological stations of the Indus, Jhelum, and Kabul River
basins. They observed decreasing trends in precipitation in recent decades as compared to
the reference period, which is consistent with the trends of precipitation for the post-change
period of our study. Moreover, Khattak [78] observed increasing trends in temperature
and runoff but noted an inconsistent pattern for precipitation trend in UIB, Pakistan. Their
precipitation and temperature innovative trends were found consistent, whereas runoff
innovative trends were found conflicting with the findings of [45].

Figure 9. Temporal variation in precipitation, evapotranspiration, and runoff over the KRB.

Figure 10. The determination of abrupt change in a time series using (a) a double mass curve and; (b) a flow duration curve
analysis.
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Table 7. Results of the MK trend test and ITA on the hydro-climatic variables of the KRB during the pre and post-change
periods.

Variables
1971–1996 1997–2010

Z-Value Trend ITA Z-Value Trend ITA

Precipitation 3.13 ** Sig. Increasing 1.53 Non-significant

ETp 1.06 Non-significant 0.88 No-trend

Runoff 2.07 * Sig. Increasing 2.19 * Sig. Increasing

Note: ** refers to the 0.01 significance level and * to the 0.05 significance level.

3.3. Runoff Response to Climate Change and Anthropogenic Activities using Different Methods

In the eco-hydrological framework, the variations in runoff are assessed by considering
similar precipitation and evapotranspiration of the basin in different pairs of years. This
framework was used to quantify the contribution of climate change and anthropogenic
activities in response to variations in the runoff. In this analysis, the abrupt change was
also observed in the year 1996 (Figure 11). Moreover, in this framework, Pex was found to
decrease from 0.88 to 0.84 while Eex was found to decrease from 0.45 to 0.37 for pre and
post change period as shown in Figure 11. The decrease in both excess energy and excess
water implies that anthropogenic activities are pronounced in this region.

Figure 11. Eco-hydrological approach applied to the KRB.

In the modeling approach, the SWAT model was successfully calibrated (1972–1981)
and validated (1983–1996) on the KRB on a monthly time scale as shown in Figures 12 and 13.
Overall, the SWAT model simulated both low and high flows very well during both
calibration and validation. Table 8 shows the results of the calibration and validation of
the SWAT model, which confirm that the SWAT model can be used with confidence in
simulating the streamflow of the KRB.
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Figure 12. Model performance during the calibration stage.

Figure 13. Model performance during the validation stage.

Table 8. Statistical evaluation of the calibration and validation of the SWAT model on the KRB at a
monthly time scale.

Statistical Parameters Calibration Validation

R2 0.79 0.85
NSE 0.78 0.84

PBIAS (%) −3.5 0.6
p-factor 0.95 0.89
r-factor 1.24 0.81

Moreover, the calibrated SWAT model was used to reconstruct natural flows for the
post-change period without changing the calibrated parameters, however, only temperature
and precipitation data were changed according to the period (Figure 14). Figure 14 depicts
that the SWAT model simulated the streamflow of the post-change period as satisfactorily.
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The method of reconstructing natural runoff was applied to the SWAT model to find out the
impacts of climate change and anthropogenic activities on the streamflow (Figure 14). The
results obtained from the SWAT model suggest that the impacts of anthropogenic activities
on streamflow variations of the KRB are evident as compared to climate change (Table 9).

Figure 14. The graph between observed and reconstructed flow using SWAT model for the post-
change period.

Table 9. Differentiating the impacts of climate change and anthropogenic activities on the runoff of the KRB using different
methods.

Activity/Methods
Eco-Hydrological

Approach
Statistical Approach

Climate Elasticity
Model

SWAT Model

Anthropogenic activities
Pex and Eex decreased

95% 75% 176%
Climate change 5% 25% −76%

The statistical model was developed for the baseline period (1971–1996) following
Equation (20).

RRe f = 0.69P + 0.81ET − 60.89 (20)

The statistical model also suggests that the anthropogenic activities are mainly respon-
sible for streamflow variations in the KRB (Table 9).

Similarly, the climate elasticity model was calibrated for the reference period (1971–1996)
as shown in Equation (21). For the development of the climate elasticity model, the model
parameters were determined from the natural period. The climate elasticity model for the
KRB is given by:

δRi

R
= 0.53

δPi

P
+0.51

δET
ET

(21)

From the climate elasticity model one can see that anthropogenic activities played a
major role in streamflow variations of the KRB during the post-change period as compared
to climate change. A study conducted by [79] also investigated that the streamflow varia-
tions in the Soan River basin, Pakistan is mainly attributed to anthropogenic activities. The
results of their study were found similar to our findings. Another study performed by [80]
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determined that the relative contribution of climate change and land-use change in stream-
flow variations in the Tarbela catchment was 39.3% and 60.7%, respectively. Similarly, [81]
determined that the impacts of human activities on runoff variability of the Dongjiang
River basin were obvious and their findings were found consistent with our findings of the
current study. The study of [76] also identified human activities as a major factor for runoff
variations of the upper Wei He River basin, China by using similar methods as we did. The
results of several other studies such as [32,33,39,77] are also in agreement with the results
of our study.

3.4. Discussion

The correlation between runoff coefficient and precipitation, evapotranspiration, and
drought index in the KRB is shown in Figure 15. There could be a significant or non-
significant correlation between the annual runoff coefficient and precipitation. The signifi-
cant correlation depends on soil type and vegetation characteristics of the watershed area.
Runoff also depends on infiltration which is indirectly influenced by the weather condition;
geography, soil texture, and land cover [11]. In the current study, the mean annual data
were used for correlation analysis. Figure 15a displayed that more than 50% points of
the runoff coefficient vs. precipitation occurred in the second quadrant of the coordinate
system, whereas few points were found in the first, third, and fourth quadrant, and this
condition suggested the weak relationship between runoff coefficients versus precipitation.
However, the scatter plot between runoff coefficient and evapotranspiration displayed
a strong relationship as compared to runoff coefficient versus precipitation (Figure 15b).
Moreover, the correlation between precipitation and runoff was found to be 0.90 whereas it
was observed 0.1 for evapotranspiration and runoff for the study period. However, the
precipitation was found to be negatively correlated with runoff coefficient and drought
index whereas the evapotranspiration was found to be positively correlated with drought
index (0.21) and negatively correlated with runoff coefficient (0.37). Furthermore, strong
correlation (0.37) was observed between evapotranspiration and drought index during
the post-change period, whereas a weak correlation was found during the pre-change
period. A weak correlation was found between precipitation and drought index during
the post-change period. Moreover, a negative correlation was observed between evap-
otranspiration and runoff coefficients during both pre-change (−0.46) and post-change
(−0.26) periods (Figure 15) whereas precipitation was found to have a positive impact on
runoff coefficient during the post-change period. A study performed by [11] determined
the correlation of annual time series of streamflow, precipitation, and temperature. The
coherency analysis of KRB was also found to be consistent during the pre-change period.
However, the coherency analysis displayed a different behavior for the post-change period
as compared to the pre-change period. The coherency analysis did not consider the other
factors except precipitation and evapotranspiration. Moreover, the results of coherency of
streamflow of Colombian Pacific Basins [10] were found consistent with the results of our
study. It was also unveiled that the influence of climate was dominant on streamflow in
this region.

Past studies [15,82,83] conducted in different parts of the world also explained that
runoff is more sensitive to precipitation as compared to evapotranspiration. However, [84]
identified that the coefficient for soil water content and maximum soil water holding
capacity were key factors influencing the long-term hydrological response. Moreover, it
was observed that under different climatic conditions, the impact of precipitation and
evapotranspiration on hydrological response was varied [85], which further indicates
the different mechanisms for runoff generation. However, the correlation analysis of
runoff does not consider the geography, vegetation characteristics, soil type, and other
characteristics of KRB. The correlation analysis only considers the relation between hydro-
metrological variables [10,11].
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Figure 15. Scatter plots of (a) runoff coefficient vs. precipitation; (b) runoff coefficient vs. evapotranspiration; and (c) runoff
coefficient vs. drought index.

Large variations have been observed in the land-cover types of the KRB since 1992
as shown in Figure 16. A large part of the basin had been transformed from natural
forest/grassland into agricultural lands and residential areas(Figure 10). A study conducted
by Ramírez [86] observed that forests usually evaporate more water than other types of
plants (such as agricultural and annual crops), and a decrease in forest area is subjected
to increased runoff of the basin. Naran and Kaghan are tourists’ spots in the KRB and
these areas produce environmental impacts associated with travel, accommodation, and
recreational activities. To minimize the environmental degradation associated with tourism
and recreation it may require appropriate land-use zoning, regulation and surveillance
of access and activities, direct physical protection of particular areas and education both
on-site and elsewhere. In addition, it is important to provide incentives to encourage
low-impact types of recreation, such as contemplative, naturalist, and wilderness travel
activities, and discourage high-impact type recreation such as sports, social activities,
motorcycles heavy vehicles, and accommodation involving building and engineering
construction. Unmanaged recreational activities and increased encroachment in forest land
were found to have an impact on runoff characteristics of the KRB. The population has also
increased from 0.77 million (1981) to 1.15 million (1998) in the KRB. The current population
of the basin has reached 1.6 million.

Figure 16. Land cover variations in KRB during the period 1992–2014.
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Moreover, several storage dams and small ponds have been built in the KRB in recent
years. The different hydropower projects have been initiated under the United Nations
(UN) goal of sustainable clean energy and the Paris agreement. Several hydropower projects
have been started by the government of Khyber Pakhtunkhawa such as the Balakot project
(190 MW), Kari-Muskhui (446 MW), Naran Dam (210 MW), Batakundi (65 MW), Laspur-
Muri Gram (130 MW), Shushghai-Zhendoli (144 MW), Shogo Sin (132 MW), Torkum-
Gudubar (409 MW) and Samshel Toren (260 MW) [87].

3.5. Comparison with Other River Basins

In the last fifty years, a number of studies have related abrupt changes in river runoff
to climate change in different parts of the world [75,76] and anthropogenic activities [13].
Several researchers found that the watershed characteristics were the main driving factors
that influenced the hydrological response [82]. Another study conducted by [88] deter-
mined the runoff characteristics in different environmental conditions of the United States.
Moreover, [89] observed the impacts of climate change on the hydro-climatology of Lake
Tana Basin, Ethiopia. Another study performed by [90] observed that climate change and
anthropogenic activities are mainly responsible for influencing the runoff characteristics of
the Tualatin River basin, Oregon. Similarly, [91] observed the remarkable changes in the
hydrological response of the Swedish Rivers due to the impacts of anthropogenic activities
and climate change. The grassland plains in Russia showed a greater delay in runoff due
to watershed characteristics observed by [92].

Moreover, few Asian rivers are largely attributed to watershed characteristics, such as
the Yellow River [39,93], Ganga River [94], Huifa River [32], Kofarnihon River [95], Bagmati
River [2], and Pearl River [96], and the results of these studies were found consistent with
our study. Another study conducted by [79] observed that just after the change point,
reduction in Soan River runoff was due to climate change and land cover changes. Similarly,
a study conducted by [80] on the Tarbela catchment found that watershed characteristics
play a major role in changes in runoff and climate change relatively contributes less as
compared to watershed characteristics (anthropogenic activities). Moreover, [97] observed
that watershed characteristics were evident for the increased runoff in the Simly watershed.
Under the different climatic zone, there is a need to plan watershed-scale water resources
management to face global climate change and frequent extreme precipitation as well as
land use degradation. The national self-regulation ability is not strong enough to obtain
the key object of hydrologic protection and management for climate-sensitive areas.

This study examined the impact of climate change and anthropogenic activities on
the hydrology of a river basin. It is necessary to determine the impact of individual
anthropogenic activities on the hydrological response. This research also assumed that
climate variability and anthropogenic activities are independent, which is not the case.

4. Conclusions

This study investigated the impacts of climate change and anthropogenic activities on
the runoff characteristics of the KRB during the period 1971–2010 using empirical, statistical,
and modeling techniques. Potential causes for the observed changes in streamflow were
identified and, the following conclusions were drawn:

• The MK trend test and the ITA technique revealed statistically significant increases
in both precipitation and evapotranspiration over the study region but no trend in
runoff during the period 1971 to 2010.

• A change point analysis identified a change in the annual runoff time series in 1996.
This abrupt change in 1996 was also observed using the double mass and flow duration
curves

• The time series was divided into two time-periods: 1971–1996 and 1997–2010. The
MK test applied over those two time-period revealed statistically significant increas-
ing tends in precipitation and runoff, and a decreasing trend in evapotranspiration,
although lacking statistical significance during the pre-change period. During the
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post-change period, only an increasing trend in runoff was found to be statistically sig-
nificant; no trend was seen in the evapotranspiration time series, while the increasing
trend in precipitation was not found to be statistically significant.

• An eco-hydrological framework showed a decrease in both excess energy and excess
water between two time periods, implying an evident contribution from anthropogenic
activities to variations in runoff in the KRB.

• A climate elasticity model quantified the relative contribution of climate change and
anthropogenic activities (25% and 75% respectively) to the variability of streamflow in
the KRB.

• The statistical model developed in this paper estimated a 95% contribution from
anthropogenic sources and a 5% contribution from climate change to streamflow
variability in the KRB.

• The method used to reconstruct natural runoff estimated a 16.1 m3/s (or 15.3%)
reduction in the mean flow of the KRB during the post-change period in comparison
to the pre-change period of which, −76% changes was calculated to be due to climate
change and 176% to changes in anthropogenic activities over the catchment.

• Overall, it is concluded role of anthropogenic activities was evident in terms of runoff
variability in the KRB in comparison to climate change, especially since 1996.

• This study quantified the impacts of climate change and anthropogenic activities on
the streamflow of the KRB using the different techniques and identifies the areas that
have experienced most change within the basin.

• The results of this study improved our understanding of the main cause of streamflow
variability in the KRB, which will help with the planning of water management
strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13223163/s1, Figure S1: MK trend analysis of Runoff (R), Precipitation (Pr), and Evapo-
transpiration (Et) for whole period (1971–2010); Figure S2: MK trend analysis of Precipitation (Pr),
Evapotranspiration (Et), and Runoff (R) during pre-change (1971–1996) and post-change (1997–2010)
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pre-change (1971–1996), and post-change (1997–2010) periods.
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Abbreviations

KRB Kunhar River Basin
SDGs Sustainable Development Goals
ITA Innovative Trend Analysis
MK Mann Kendall
KPK Khyber Pakhtunkhwa
DEM Digital Elevation Model
ICIMOD International Center for Integrated Mountain Development
WAPDA Water and Power Development Authority
PMD Pakistan Meteorological Department
CUSUM Combinations of the Sum Boxes
FDC Flow Duration Curve
PET Potential Evapotranspiration
ET Evapotranspiration
SWAT Soil and Water Assessment Tool
HRUs Hydrological Response Units
SCS Soil Conservation Service
CN Curve Number
SUFI Sequential Uncertainty Fitting
NSE Nash-Sutcliffe model efficiency
Cv Coefficient of Variance
UN United Nations
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Abstract: Flood routing can be subclassified into hydraulic and hydrologic flood routing; the former
yields accurate values but requires a large amount of data and complex calculations. The latter,
in contrast, requires only inflow and outflow data, and has a simpler calculation process than the
hydraulic one. The Muskingum model is a representative hydrologic flood routing model, and
various versions of Muskingum flood routing models have been studied. The new Muskingum
flood routing model considers inflows at previous and next time during the calculation of the inflow
and storage. The self-adaptive vision correction algorithm is used to calculate the parameters of the
proposed model. The new model leads to a smaller error compared to the existing Muskingum flood
routing models in various flood data. The sum of squares obtained by applying the new model to
Wilson’s flood data, Wang’s flood data, the flood data of River Wye from December 1960, Sutculer
flood data, and the flood data of River Wyre from October 1982 were 4.11, 759.79, 18,816.99, 217.73,
38.81 (m3/s)2, respectively. The magnitude of error for different types of flood data may be different,
but the error may be large if the flow rate of the flood data is large.

Keywords: hydrologic flood routing; Muskingum flood routing model; meta-heuristic optimization;
self-adaptive vision correction algorithm

1. Introduction

Water resources from rivers are sources of hydroelectric power generation, agricultural
water, and industrial water; however, owing to the large volumes of water, such rivers are
prone to floods that have adverse impacts on life and property [1]. To reduce or prevent
such damage, engineering measures, such as the construction of flood control dams or
flood walls (levees), are necessary. Therefore, the evaluation of engineering measures for
flood control is critical, and these measures are generally directly related to flood routing.
Flood routing can be defined as a procedure for determining the flood hydrograph at a
point downstream from the base flood hydrograph at an upstream point. In other words,
flood routing is the process of determining the amount by which a flood wave is reduced
and how long it takes for a flood wave to pass through an arbitrary section of a river based
on the amount of storage in that section.

There are two types of flood routing methodologies: hydraulic and hydrologic [2].
Hydraulic flood routing is a method for solving the partial differential continuity and
momentum equations, the governing equations of an unsteady nonuniform flow, which
hydraulically represent the flow of the flood wave according to the initial and boundary
conditions [3]. In contrast, the hydrologic flood routing method yields an approximate
solution using the storage equation based on the continuity equation of the flood wave [2].
The hydrologic flood routing method can be divided into three categories: reservoir routing,
channel routing, and watershed routing. Channel routing allows the measurement of the
storage effect of natural rivers on flood waves by calculating how the discharge of a flood
changes as it progresses downstream and provides a standard hydrologic quantity for
river planning. The Muskingum flood routing model is a representative channel-routing
model [2].
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The first Muskingum flood routing model proposed was the linear Muskingum flood
routing model (LMM) with two parameters [4]. However, the LMM did not include
lateral inflow, and a new Muskingum flood routing model with three variables (LMM-
L) was thus proposed [5]. Additionally, a study using the nonlinear Muskingum flood
routing model (NLMM) considered the nonlinear relationship between storage and outflow
as means of improving upon the LMM [6]. Two types of NLMMs determined by the
location of nonlinear factor have been proposed to calculate the storage [7]. The Broyden–
Fletcher–Goldfarb–Shanno technique based on a mathematical gradient was applied to the
NLMM [8]. NLMM incorporating lateral flow (NLMM-L) was developed to complement
the existing NLMM [9]. In 2018, a Muskingum flood routing model called the advanced
NLMM (ANLMM-L) was used for calculating a continuous inflow [2]. ANLMM-L is a type
of nonlinear Muskingum flood routing model that considers lateral inflow and continuous
flow with time. Generalized storage equations for the NLMM have also been suggested to
apply more degrees of freedom in the suggested model [10].

In addition to the aforementioned studies, various other investigations have focused
on recalculating the error between the outflow from flood data and the calculated outflow.
Various studies on Muskingum flood routing models were conducted before the 2000s. The
two parameters of the LMM including nonlinear relation between the storage and weighted
flow were determined using the least-squares method [11]. The least-squares method
was used to adjust the two parameters of LMM, K and X. The Muskingum parameter
estimation/flood routing system was developed for linear LMMs and NLMMs and their
results have been compared [12]. The results of the two different Muskingum flood routing
models were compared. The genetic algorithm was used to estimate the parameters of
the NLMMs [13]. In order to overcome the limitations of traditional methods used for
Muskingum flood routing models, the genetic algorithm, a well-known meta-heuristic
optimization algorithm, was applied.

Since the 2000s, studies applying various meta-heuristic optimization algorithms
to the Muskingum flood routing models have continued. An immune clonal selection
algorithm was suggested to improve the convergence speed and it was applied to estimate
parameters of the NLMM [14]. The Nelder–Mead simplex algorithm was introduced to
improve the usability, and it was used to estimate parameters of the NLMM [15]. Fur-
thermore, the simulated annealing and shuffled frog leaping algorithms were used to
estimate the parameters of the Muskingum flood routing model in two benchmark/real
case studies, and they were compared with the results of Tung’s method [16]. The honeybee
mating optimization algorithm with past convergence speed has also been applied for the
parameter estimation of the NLMM [17]. The elitist-mutated particle swarm optimization
and improved gravitational search algorithm were applied to estimate the parameters of
LMMs and NLMMs [18]. Particle swarm optimization was applied to the parameter esti-
mation of the NLMM with four parameters to fit the multiple-peak hydrographs [19], and
various NLMMs with different storage calculations such as parameterized initial storage
have been proposed using a weed optimization algorithm [20]. Various meta-heuristic
optimization algorithms, such as the genetic algorithm, evolution, particle swarm, and a
harmony search have been used for parameter estimations of the nonlinear Muskingum
model and the variable parameter McCarthy–Muskingum model [21]. The adaptive genetic
algorithm was used to estimate the various exponent parameters of the NLMM and it was
applied to Wilson’s flood data [22]. In addition, genetic expression programming with
faster convergence speed than existing genetic programming was developed for parameter
estimation in the Muskingum flood routing model [23]. The water cycle algorithm was
applied to estimate the parameters of the NLMM and compared with the genetic algorithm,
particle swarm optimization, harmony search, and imperialist competitive algorithm [24].
Although various meta-heuristic optimization algorithms have been tested, studies focus-
ing on comparing the results of each algorithm have indicated limited improvements for
the Muskingum flood routing model.
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Studies have also been conducted on the application of hybrid meta-heuristic opti-
mization algorithms, combining a charged system search and particle swarm optimization,
for parameter estimation of the Muskingum flood routing models [25]. For example, a
hybrid meta-heuristic optimization algorithm combining particle swarm optimization and
the Nelder–Mead simplex method was used to estimate the parameters of the Muskingum
flood routing model [26]. Parameter estimation was conducted using a hybrid meta-
heuristic optimization algorithm combining the shuffled frog leaping algorithm and the
Nelder–Mead simplex method [27]. The improved real-coded adaptive genetic algorithm
and the Nelder–Mead simplex algorithm were combined for the parameter estimation of
two improved NLMMs [28]. The hybrid meta-heuristic optimization algorithm applied in
particle swarm optimization and the bat algorithm were used to reduce the computational
time of the Muskingum flood routing model [29]. Although good results were obtained in
some studies, it is difficult to accurately compare them with the results of other existing
Muskingum flood routing models because they were calculated using additional variables.

General improvements of the Muskingum flood routing model have also been con-
sidered. For example, a modified Muskingum flood routing approach, in conjunction
with the HEC-RAS model, was implemented to determine floodplain flows [30]. A new
NLMM with four parameters has been suggested [31]. A parameter estimation method
of the Muskingum flood routing model in ungagged channel reaches has also been sug-
gested [32].

Studies have been conducted to apply the hybrid method to Muskingum flood rout-
ing models. A hybrid harmony search combined with local search algorithm such as
Broyden–Fletcher–Goldfarb–Shanno technique was developed and was applied to estimate
parameters in NLMM [33]. The new hybrid optimization technique was suggested by
combining the modified honeybee mating optimization and generalized reduced gradient
algorithm for the application of the new Muskingum model with six parameters [34]. The
particle swarm optimization hybridized with Nelder–Mead simplex method was proposed
to improve precision and convergence speed in Muskingum model [26]. The hybrid al-
gorithm combining the shuffled frog leaping algorithm and Nelder–Mead simplex was
applied to NLMM with four parameters and NLMM with five parameters, and it was
compared with the genetic algorithm-generalized reduced gradient [27]. The improved
NLMM was suggested for flood prediction using the hybrid algorithm of particle swarm
optimization and bat algorithm and it was compared with particle swarm optimization and
bat algorithm [29]. The parameters in the two types of NLMM were estimated to improve
precision using the hybrid algorithm combining the improved real-coded adaptive genetic
algorithm and the Nelder–Mead simplex [28]. Most of the previously proposed hybrid
methods combine optimization algorithms, but the hybrid method of this study is a method
combining the inflow at the previous time and the inflow at the next time in the Musk-
ingum flood routing. The honey bee mating optimization algorithm was combined with the
generalized reduced gradient algorithm to estimate parameters of improved Muskingum
flood routing model and applied to the single and multi-peak flood hydrographs [35].

In this study, a new Muskingum flood routing model was suggested. The new
Muskingum flood routing model, which considers continuous inflow at previous and next
time in the storage and inflow calculations, can enable accurate flood routing in various
flood data. The self-adaptive vision correction algorithm (SAVCA), a recently developed
meta-heuristic optimization algorithm, was applied to calibrate various parameters in the
new Muskingum flood routing model. SAVCA can overcome the disadvantages of the
previously developed vision correction algorithm (VCA). When applied to mathematical
benchmark functions and water distribution problems, SAVCA has previously displayed
good performance [36]. Various meta-heuristic optimization algorithms as well as SAVCA
can be applied to the new Muskingum flood routing model to show good results. In the
previous study, the type of meta-heuristic optimization algorithm did not significantly
affect the results of Muskingum flood routing models [37].
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2. Materials and Methodologies

2.1. Overview

The two primary methods used in this study were the SAVCA and new Muskingum
flood routing model. The error between the flood outflow data and the calculated outflow in
the new Muskingum flood routing model was used as an objective function in the SAVCA,
which applied an iterative calculation to minimize the error. The iterative calculation
progresses as follows:

1. A group of initial solutions is generated by a random value determined between
the lower and upper boundaries for each variable of the new Muskingum flood
routing model.

2. One among a group of existing solutions is then selected, or a new solution is gener-
ated according to the selected probability.

3. The inflow, storage, and outflow are calculated according to the generated solution,
and the error between the flood outflow data and calculated outflow is determined as
the objective function.

4. The error is calculated using the sum of squares (SSQ), the Nash–Sutcliffe efficiency
(NSE), and the root mean square error (RMSE).

The solution refers to the values of the parameters for Muskingum flood routing
models. The calculation in the SAVCA is as follows: If all initial solutions are calculated
according to the new Muskingum flood routing model process, the errors of the initial
solutions are calculated and sorted in ascending order. SAVCA consists of two types of
parameters: self-adaptive and fixed. Division rate 1 (DR1), division rate 2 (DR2), and the
compression factor (CF) are self-adaptive parameters. The modulation transfer function
rate (MR) and astigmatic rate (AR) are fixed parameters.

DR1 determines whether a new solution should be generated in the range of each
variable (global search) or if one solution should be selected from the existing solution
group (local search). If the generation of a new solution is determined in DR1, the positive
and negative direction searches are determined by DR2. The decision variables of the
new solution, generated by global search or selected by local search, are adjusted in detail
by MR, CF, and AR. After generating a new solution, the calculation process of the new
Muskingum flood routing model is applied. The error (SSQ) is calculated for the inflow,
storage, and outflow during each time period. If the error of the new solution is lower than
that of the worst solution among the existing solution groups, the new solution is included
in the existing solution group. DR1 and DR2 are adjusted according to the calculation
process for the new solution. All processes are repeated until a certain number of iterations
of SAVCA.

The SSQ was used to calculate the first error value for the Muskingum flood routing
models in this study. The SSQ between the observed and calculated outflows was used as
the objective function in the optimization process. In the new Muskingum flood routing
model, eight parameters were used as decision variables, and the objective function is
shown in Equation (1).

Minimize SSQ = ∑(Oo − Os)
2 (1)

where Oo is the observed outflow (m3/s), and Os is the calculated outflow (m3/s). The
NSE was used to calculate the second error value for the Muskingum flood routing models
in this study. The equation of NSE is shown in Equation (2).

NSE = 1 − ∑n
i=1(Oo − Os)

2

∑n
i=1

(
Oo − Oo

)2 (2)

208



Water 2021, 13, 3170

where Oo is the average of observed outflow (m3/s), and n is the number of data. The
RMSE was used to calculate the third error value for the Muskingum flood routing models
in this study. The equation of RMSE is shown in Equation (3).

RMSE =

√
∑n

i=1(Oo − Os)
2

n
(3)

2.2. New Muskingum Flood Routing Model

The initial LMM was calculated by assuming the amount of storage in the channel as
the sum of prism storage and wedge storage. Prism storage is proportional to the outflow,
and wedge storage is proportional to the difference between the inflow and outflow. In the
LMM, storage is calculated using Equation (4).

St = K[XIt + (1 − X)Ot] (4)

where St, It, and Ot are the storage, inflow, and outflow at time t, respectively, and X is the
weighted factor. In the NLMM, the nonlinear factor is added in the exponential form of
Equation (4). Equation (5) represents the storage in an NLMM.

St = K[XIt + (1 − X)Ot]
m (5)

where m is a nonlinear factor, namely different from 1. The storage calculation in the new
Muskingum flood routing model is applied by considering an existing generalized storage.
The storage is calculated by considering not only the inflow at the current time (t) but also
the inflow at the next time point (t + 1). The reason for considering the inflow at t + 1
instead of t − 1 in the storage calculation is as follows. In the nonlinear Muskingum flood
routing models, it is assumed that the storage at time t depends on the upstream storage
Sin, and the downstream storage Sout. Inflow (I), outflow (O), Sin, Sout were organized as
follows according to water depth [38]. I and Sin are shown in Equations (6) and (7).

I = a1yc1 (6)

Sin = b1yd1 (7)

where y is the water depth and a1, b1, c1, d1 are coefficients. If c1 and d1 are equal, then Sin
is shown in Equation (8).

Sin = b1

(
I

a1

)
(8)

O and Sout are shown in Equations (9) and (10).

O = a2yc2 (9)

Sout = b2yd2 (10)

where a2, b2, c2 and d2 are coefficients. If c2 and d2 are equal, then Sout is shown in
Equation (11).

Sout = b2

(
O
a2

)
(11)

In NLMM, inflow, outflow and storage are assumed to be water depth related. The
storage can be summarized in Equation (12) [38].

S = XSin + (1 − X)Sout (12)

The storage with K = b1/a1 = b2/a2 can be expressed as Equation (13).

S = KXI + K(1 − X)O (13)
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Nonlinear parameter m was applied to Equation (11) and it can be expressed as
Equation (14).

S = K[XI + (1 − X)O]m (14)

Additionally, it is assumed that there is an interdependence between the storage at
time t and storage at time t + 1 in generalized storage [10].

St = X1Sin, t + X2Sin,t+1 + (1 − X1 − X2)Sout,t (15)

Equation (16) can be rearranged as in the process from Equations (12)–(14) and it
represents storage in the new Muskingum flood routing model.

St = K[X1 It + X2 It+1 + (1 − X1 − X2)Ot]
m (16)

where X1 is the weighted factor at time t, and X2 is the weighted factor at time t + 1. In
addition, It is the inflow at time t, and It+1 is the inflow at time t + 1. Based on Equation (4),
the outflow calculation is summarized in Equation (17).

Ot =
1

(1 − X1 − X2)

(
St

K

) 1
m − X1

(1 − X1 − X2)
It − X2

(1 − X1 − X2)
It+1 (17)

A weighted inflow, including a continuous inflow has been proposed previously [2].
In this study, the inflow at time t + 1 was included to consider the additional continuous
inflow, and the weighted inflow could be calculated as shown in Equation (18).

Wt = [(1 − θ1 − θ2 − θ3)It + θ1 It−1 + θ2 It−2 + θ3 It+1] (18)

where Wt is the weighted inflow at time t, and θ1 is the weighted factor of the previous
inflow at time t − 1. In addition, θ2 is the weighted factor of the previous inflow at time
t − 2, and θ3 is the weighted factor of the next inflow at time t + 1. In previous studies, the
inflow at time t − 1 (It−1) and the inflow at time t − 2 (It−2) were considered [2,9]. In this
study, all inflows before and after the current time were considered by including the inflow
at time t + 1 (It+1). If the weighted inflow of Equation (18) is substituted into Equation (17),
the outflow is calculated using Equation (19).

Ot =
1

(1 − X1 − X2)

(
St

K

) 1
m − X1

(1 − X1 − X2)
Wt − X2

(1 − X1 − X2)
Wt+1 (19)

where Wt+1 is the weighted inflow at time t + 1. The storage at time t + 1 can be calculated
from the outflow in Equation (19) and the observed inflow. The general storage equation is
calculated as Equation (20).

dS
dt

= It − Ot (20)

Equation (21) shows the modified storage equation that considers a change in lateral flow.

dS
dt

=
ΔS
Δt

= (1 + β)It − Ot (21)

where β is the parameter accounting for the lateral flow. The storage at time t + 1 is shown
in Equation (22).

St+1 = St + ΔS (22)

Equation (23) represents the storage at time t + 1, and it can be obtained by substituting
Equation (21) into Equation (22).

St+1 = St + [(1 + β)It − Ot]Δt (23)
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where St+1 is the storage at time t + 1. The outflow in the new Muskingum flood routing
model is calculated using eight variables, i.e., K, X1, X2, m, β, θ1, θ2, and θ3. The initial
Muskingum flood routing model is based on mass conservation. Therefore, the new
Muskingum flood routing model was calculated based on the mass conservation.

2.3. Self-Adaptive Vision Correction Algorithm

SAVCA has a total of six parameters: DR1, DR2, MR, CF, AR, and AF. Among these,
DR1, DR2, and CF are self-adaptive, and MR, AR, and AF are fixed. Table 1 shows the
parameter types of SAVCA [36].

Table 1. Parameter types of SAVCA.

Parameters DR1 DR2 MR CF AR AF

Types Self-adaptive Self-adaptive Fixed Self-adaptive Fixed Fixed

In SAVCA, the initial decision variables and decision variables generated by the global
search are randomly generated within the range between the upper and lower boundaries.
Decision variables in the global search are between the current optimal value and the upper
boundary or between the lower boundary and the current optimal value based on the
probability of DR2. The decision variable generated between the current optimal decision
variable and the upper boundary by a global search is shown in Equation (24).

xn = xb + random(0, 1)× (bu − xb) (24)

where xn is the new decision variable, and xb is the current optimal value. In addition,
random(0, 1) is a random value generated from 0 to 1, and bu is the upper boundary. The
decision variable generated between the lower boundary and the current optimal decision
variable through a global search is shown in Equation (25).

xn = bl + random(0, 1)× (xb − bl) (25)

where bl is the lower boundary. In SAVCA, each decision variable is adjusted by the
parameters used in the local search, such as MR, CF, AR, and AF. Equation (26) shows the
calculation of the new decision variable.

xn = xn ×
{

1 + MTF × random(−1, 1)×
(

1 − current iteration
total iteration

)CF
}

(26)

where MTF is the calculated modulation transfer function value. The term random(−1, 1) is
a random value between −1 and 1. In addition, CF is a parameter for lens compression.
The calculation of MTF is based on the distance (dx) between the current best decision
variable and the selected decision variable. dx can be calculated using Equation (27).

dx =
rank(xs)− rank(xb)

rank(xl)− rank(xb)
(27)

where dx is the relative distance between each decision variable, rank(xs) is the fitness rank
of the selected decision variable (xs), rank(xb) is the fitness rank of the best decision variable
(xb), and rank(xl) is the fitness rank of the worst decision variable (xl). The fitness rank is the
order in which the values of the objective function are sorted. The worst decision variable
has the lowest fitness rank. Figure 1 shows the relative distance of dx.
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Figure 1. Relative distance of dx.

The calculation of the MTF by applying dx is shown in Equation (28).

MTFs =

⎛
⎜⎝ dxs(

∑k
i=1 dx2

i

)0.5

⎞
⎟⎠

0.5

(28)

where MTFs is the MTF value of the selected decision variable, and k is the total number of
decision variables. In addition, dxs is the relative distance of the selected decision variable,
and dxi is the relative distance of the i-th decision variable. The CF in SAVCA can be
calculated as shown in Equation (29).

CF = 10 ×
{

standard deviation(xi)

average(xi)

}
(29)

where xi is the i-th decision variable. The probability of applying the astigmatism correction
process is determined using the AR. The new decision variable adjusted by the application
of the astigmatism correction process on a local search is shown in Equation (30).

xn = xn ×
{

1 + random(−1, 1)× sin2(AF)
}

(30)

where AF is the angle of the astigmatic axis. The application process of SAVCA is summa-
rized as follows: (1) generation of an initial solution group, (2) calculation of the fitness
of the initial solution groups, (3) generation of a new solution, (4) application of MR and
AR, (5) decision to replace after comparing the new solution with the worst solution in
the existing solution group, and (6) repeating (2)–(5) until the total number of iterations is
reached. The worst solution is the solution with the lowest fitness rank among the existing
solution group. Figure 2 shows the application process.
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Figure 2. Application process.

An initial solution group was created to apply SAVCA to the new Muskingum flood
routing model. The weighted inflow, storage, outflow, and SSQ were then calculated.
According to the probability of DR1, a new solution was generated by a global search, or
one of the existing solution groups was selected through a local search. When creating a
new solution with a global search, a new decision variable was created in the positive and
negative directions based on the current best decision variable. Each new decision variable
was corrected using the MR and AR. In addition, the weighted inflow, storage, outflow, and
SSQ were calculated using the new solution with new decision variables. Whether a new
solution should be added to the existing solution group was determined by comparing
the SSQ of the new solution with the SSQ of the worst solution among the existing group
of solutions.

2.4. Flood Data

Five types of flood data were applied to the Muskingum flood routing models: Wil-
son’s flood data, Wang’s flood data, flood data for River Wye December in 1960, Sutculer
flood data, and flood data for River Wyre October in 1982 [5,39–41]. All flood data used
in this study have been applied in several Muskingum flood routing models in existing
studies. The most important aspect of the Muskingum flood routing model is the range of
each parameter. The range of each parameter in the new Muskingum flood routing model
applied to the five flood datasets is presented in Table 2.
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Table 2. Range of parameters in the new Muskingum flood routing model.

Parameters
Wilson’s Flood

Data
Wang’s Flood

Data
Flood Data for River

Wye December in 1960
Sutculer Flood

Data
Flood Data for River
Wyre October in 1982

K 0.01–50.00 0.01–50.00 0.01–50.00 0.01–50.00 0.01–50.00

X1 −0.50–0.50 −1.50–1.50 −0.50–0.50 −0.50–0.50 −0.50–0.50

X2 −0.50–0.50 −1.50–1.50 −0.50–0.50 −0.50–0.50 −0.50–0.50

m 1.00–3.00 1.00–3.00 1.00–3.00 1.00–3.00 0.00–1.00

β −0.10–0.10 −3.00–3.00 −0.10–0.10 −0.10–0.10 −3.00–3.00

θ1 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00

θ2 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00

θ3 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00 0.00–1.00

Various Muskingum flood routing models, i.e., LMM, LMM-L, NLMM, NLMM-L,
ANLMM-L, and the new Muskingum flood routing model, were compared herein. The
parameters used in each Muskingum flood routing model are listed in Table 3.

Table 3. Parameters used in each Muskingum flood routing model (�: applied, X: not applied).

Parameters LMM LMM-L NLMM NLMM-L ANLMM-L This Study

K � � � � � �
X1 � � � � � �
X2 X X X X X �
m X X � � � �
β X � X � � �
θ1 X X X � � �
θ2 X X X X � �
θ3 X X X X X �

Differences were observed in the results of the Muskingum flood routing models
proposed in other studies. However, the simulation used in this study was conducted
according to the parameters listed in Table 3. The data values from existing studies were
considered only up to two decimal points when using them as an input for the models
in this study. The parameters of Muskingum flood routing models without results from
previous studies were obtained by applying SAVCA. However, the values of each parameter
were all calculated differently.

3. Application and Results

The first flood dataset used for the application of all Muskingum flood routing models
was Wilson’s flood data. The parameters of the LMM for Wilson’s flood data were deter-
mined to be 29.164640 for K, and 0.118200 for X1. The parameters of the new Muskingum
flood routing model for Wilson’s flood data were determined to be 0.943442 for K, 0.340333
for X1, −0.00102 for X2, 1.744439 for m, −0.02166 for β, 0.758873 for θ1, 0.230779 for θ2,
and 0.047773 for θ3. The results, including those obtained using the new Muskingum flood
routing model, are compared in Table 4.
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Table 4. Results when using Wilson’s flood data.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s) [5]

NLMM
(m3/s) [42]

NLMM-L
(m3/s) [9]

ANLMM-L
(m3/s) [2]

This Study
(m3/s)

0 22 22 22.00 22.00 22.00 22.00 22.00 22.00

6 23 21 21.87 21.10 22.00 21.71 21.57 21.33

12 35 21 20.52 21.70 22.40 22.02 21.67 21.13

18 71 26 19.07 22.60 26.60 26.08 25.46 25.53

24 103 34 26.90 30.70 34.50 33.51 34.59 34.75

30 111 44 43.58 44.70 44.20 42.83 43.73 43.52

36 109 55 59.58 58.10 56.90 55.44 54.59 54.62

42 100 66 72.32 68.90 68.10 66.67 66.01 66.08

48 86 75 80.65 76.10 77.10 75.77 75.52 75.53

54 71 82 83.91 79.20 83.30 82.12 82.16 82.11

60 59 85 82.51 78.50 85.90 84.78 85.04 85.08

66 47 84 78.63 75.60 84.50 83.42 84.00 83.89

72 39 80 72.32 70.70 80.60 79.44 79.62 79.61

78 32 73 65.49 65.10 73.70 72.48 72.63 72.53

84 28 64 58.21 59.10 65.40 64.08 63.80 63.81

90 24 54 51.70 53.40 56.00 54.58 54.31 54.27

96 22 44 45.50 47.90 46.70 45.22 44.80 44.84

102 21 36 40.15 43.10 37.70 36.34 36.25 36.32

108 20 30 35.82 38.90 30.50 29.21 29.45 29.52

114 19 25 32.26 35.40 25.20 24.21 24.63 24.66

120 19 22 29.17 32.30 21.70 20.96 21.39 21.46

126 18 19 26.93 29.90 20.00 19.41 19.81 19.77

SSQ (m3/s)2 - - 605.63 815.68 36.77 9.82 4.54 4.11

Squared root of
SSQ (m3/s) - - 24.61 28.56 6.06 3.13 2.13 2.03

NSE - - 0.974322 0.974326 0.992412 0.999583 0.999808 0.999826

RMSE (m3/s) - - 5.310259 5.369885 2.919411 0.683993 0.464124 0.442254

Among the results in Table 4, those of the LMM-L, NLMM, NLMM-L, and ANLMM-L
were calculated in previous studies [2,5,9,42]. The results of LMM and new Muskingum
flood routing model were calculated using Wilson’s flood data by applying SAVCA. No-
tably, the results of the LMM are better than those of the LMM-L. This is because the results
of the LMM-L are the results of a previous study wherein the optimization method was not
used, while the results of the LMM were obtained using SAVCA. It should be noted that
the results of the new Muskingum flood routing model were better than those of the LMM,
LMM-L, NLMM, NLMM-L, and ANLMM-L because the new Muskingum flood routing
model showed the smallest error in the initial part from 0 to 24 h and showed the smallest
error in the overall results. Because the errors of the NLMM-L and ANLMM-L were small,
the new Muskingum flood routing model did not lead to a substantial improvement.

Among the existing Muskingum flood routing models, ANLMM-L showed the best
results (smallest error). The difference in SSQ between the ANLMM-L and new Muskingum
flood routing model was 0.43 (m3/s)2. The differences between the results of the two
models were most notable from 6 to 18 h and from 108 to 126 h. The new Muskingum flood
routing model showed the closest outflow to the observed outflow from 6 to 18 h. Among
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other Muskingum flood routing models, the outflows obtained from LMM-L at 6 h, LMM
at 12 h, and NLMM-L at 18 h were close to the observed outflow. The difference between
the observed outflow and the outflow obtained from the new Muskingum flood routing
model was smaller than that attained using other Muskingum flood routing models.

The second flood dataset was Wang’s flood data. The parameters of the LMM-L for
Wang’s flood data were determined to be 1.075331 for K, −0.762101 for X1, and −0.003024
for β. The parameters of the new Muskingum flood routing model for Wang’s flood data
were determined to be 0.079266 for K, −1.49742 for X1, 0.011592 for X2, 1.360300 for m,
−0.000450 for β, 0.421275 for θ1, 0.044483 for θ2, and 0.261537 for θ3. The results using
Wang’s flood data, including those for the new Muskingum flood routing model, are
compared in Table 5.

The results of LMM, NLMM, NLMM-L, and ANLMM-L were calculated in previous
studies [2,8,9,39]. The results of LMM-L and new Muskingum flood routing model were
calculated by applying SAVCA. Notably, the results improved dramatically when the
lateral inflow was considered, indicated by the difference between the results of the LMM
and LMM-L and between those of the NLMM and NLMM-L. A difference between the
results of the ANLMM-L and new Muskingum flood routing model was also observed,
although it was not due to a lateral inflow but to differences in the calculation equations of
the weighted inflow and storage. The results of the new Muskingum flood routing model
were overwhelmingly better than those of other Muskingum flood routing models because
the new Muskingum flood routing model showed the smallest error in the latter part from
19 to 29 h and showed the smallest error in the overall results.

Among the existing Muskingum flood routing models, the ANLMM-L showed the
best results (smallest error). The difference in SSQ between the ANLMM-L and new
Muskingum flood routing model was 149.56 (m3/s)2. The difference between the two
results was clear from 228 (19) to 288 (24) h. The differences in the outflow obtained using
the Muskingum flood routing models and the observed outflow was small. The outflow
calculated by the new Muskingum flood routing model was closest to the observed outflow.
Among other Muskingum flood routing models, the outflow obtained using NLMM at
21 h was close to the observed outflow. The difference between the observed outflow and
the outflow obtained using the new Muskingum flood routing model was smaller than
that when using other Muskingum flood routing models.

The third flood dataset was the flood data of River Wye December in 1960. The
parameters for the LMM using these data were determined to be 23.877307 for K, and
0.153174 for X1. The parameters for the new Muskingum flood routing model using these
data were determined to be 2.318963 for K, 0.499999 for X1, 0.000390 for X2, 1.359406 for m,
0.057839 for β, 0.805567 for θ1, 0.233550 for θ2, and 6.88×10−11 for θ3. The results of all the
models for these data are compared in Table 6.

LMM-L, NLMM, NLMM-L, and ANLMM-L results were calculated in previous stud-
ies [2,5,9,42]. The results of LMM and new Muskingum flood routing model were calculated
by applying SAVCA. Table 6 displays a notable difference between the results of the LMMs
and NLMMs; the difference was large because the error in the flood data of River Wye
from December 1960 was large. The new Muskingum flood routing model results were
better than those of other Muskingum flood routing models because the new Muskingum
flood routing model showed the smallest error from 102 to 198 h including the peak value
and showed the smallest error in the overall result.

Among other Muskingum flood routing models, ANLMM-L showed the best results
(smallest error). The difference in SSQ between the ANLMM-L and new Muskingum flood
routing model was 1677.99 (m3/s)2. The greatest difference between the models occurred
at 138–186 h. Among other Muskingum flood routing models, the outflow from ANLMM-L
was close to the observed outflow at 180 and 186 h. The difference between the observed
outflow and the outflow for the new Muskingum flood routing model was smaller than
that for other Muskingum flood routing models.
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Table 5. Results when using Wang’s flood data.

Time
(12 h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s) [39]

LMM-L
(m3/s)

NLMM
(m3/s) [8]

NLMM-L
(m3/s) [9]

ANLMM-L
(m3/s) [2]

This Study
(m3/s)

1 261 228 228.00 228.00 228.00 228.00 228.00 228.00

2 389 300 305.19 300.19 303.80 299.74 300.92 301.75

3 462 382 382.00 377.92 382.30 382.57 381.51 382.38

4 505 444 442.70 440.10 442.40 442.76 443.15 442.81

5 525 490 483.60 482.17 482.40 482.16 482.69 483.63

6 543 513 513.00 511.70 511.2 509.89 510.09 510.15

7 556 528 534.29 532.96 532.30 530.72 530.66 530.75

8 567 543 550.44 548.97 548.50 546.77 546.62 546.79

9 577 553 563.53 561.89 561.70 559.96 559.77 559.53

10 583 564 573.16 571.53 571.60 569.94 569.80 569.75

11 587 573 580.02 578.38 578.70 577.07 576.95 577.89

12 595 581 587.32 585.44 586.20 584.39 584.22 584.03

13 597 588 592.14 590.40 591.20 589.68 589.60 589.77

14 597 594 594.59 592.93 593.90 592.34 592.30 591.61

15 589 592 592.02 590.68 591.80 590.33 590.34 586.67

16 556 584 574.89 574.62 575.70 574.68 574.86 576.15

17 538 566 556.85 556.15 558.50 556.41 556.23 556.07

18 516 550 536.93 536.22 539.00 537.43 537.13 536.33

19 486 520 512.18 511.79 514.80 513.47 513.35 521.23

20 505 504 507.96 505.60 509.60 507.07 506.51 502.72

21 477 483 493.22 492.40 484.90 494.86 494.95 492.05

22 429 461 462.34 462.82 464.80 464.39 464.94 463.80

23 379 420 421.87 422.73 425.10 423.97 424.15 422.09

24 320 368 372.34 373.60 376.10 375.05 375.07 374.32

25 263 318 318.97 320.23 322.40 321.35 321.35 322.59

26 220 271 270.39 271.06 272.50 271.42 271.40 271.68

27 182 234 226.99 227.38 227.50 226.94 227.09 229.70

28 167 193 197.20 196.67 195.70 194.92 195.13 194.64

29 152 178 174.87 174.28 172.60 172.46 172.76 174.61

SSQ (m3/s)2 - - 1086.84 999.83 979.96 917.06 909.35 759.79

Squared root of
SSQ (m3/s) - - 32.97 31.62 31.30 30.28 30.16 27.56

NSE - - 0.998247 0.998326 0.998359 0.998464 0.998478 0.998728

RMSE (m3/s) - - 6.008111 5.8711693 5.813054 5.623423 5.598762 5.118558
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Table 6. Results when using flood data of River Wye December in 1960.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s) [5]

NLMM
(m3/s) [42]

NLMM-L
(m3/s) [9]

ANLMM-L
(m3/s) [2]

This Study
(m3/s)

0 154 102 102.00 102.00 102.00 102.00 102.00 102.00

6 150 140 118.15 116.00 154.00 149.50 146.52 141.89

12 219 169 115.12 120.00 152.00 156.59 155.74 155.50

18 182 190 152.64 147.00 181.00 191.40 194.41 185.46

24 182 209 161.35 158.00 191.00 200.79 194.19 190.53

30 192 218 165.67 165.00 185.00 195.14 196.05 195.99

36 165 210 178.37 176.00 187.00 197.46 198.35 196.69

42 150 194 177.11 178.00 179.00 188.48 186.83 188.20

48 128 172 173.05 176.00 162.00 170.80 172.12 175.53

54 168 149 152.45 164.00 141.00 148.10 150.37 157.72

60 260 136 140.42 160.00 154.00 162.59 167.56 169.06

66 471 228 137.74 167.00 198.00 210.36 216.61 213.24

72 717 303 192.13 218.00 264.00 281.58 294.27 287.51

78 1092 366 280.05 303.00 344.00 367.75 378.29 378.89

84 1145 456 511.40 484.00 416.00 447.65 461.17 465.87

90 600 615 797.99 690.00 599.00 629.57 612.03 609.41

96 365 830 781.75 700.00 871.00 892.78 862.51 863.65

102 277 969 674.00 642.00 834.00 859.01 884.60 887.00

108 227 665 565.24 572.00 689.00 719.30 737.54 730.86

114 187 519 472.11 505.00 535.00 567.50 565.33 555.56

120 161 444 392.21 442.00 397.00 427.85 414.97 410.06

126 143 321 326.86 386.00 283.00 308.86 297.45 300.33

132 126 208 275.37 338.00 202.00 220.90 216.14 224.40

138 115 176 233.04 296.00 152.00 163.64 164.43 174.61

144 102 148 200.36 260.00 124.00 131.90 134.94 143.56

150 93 125 172.80 228.00 106.00 111.93 114.46 121.64

156 88 114 150.03 201.00 94.00 99.28 101.24 106.75

162 82 106 132.71 179.00 88.00 92.90 94.00 97.42

168 76 97 118.75 160.00 82.00 86.14 86.94 89.67

174 73 89 106.60 144.00 75.00 79.34 80.13 82.79

180 70 81 97.18 130.00 73.00 76.46 76.87 78.56

186 67 76 89.65 118.00 69.00 73.13 73.54 74.88

192 63 71 83.66 109.00 66.00 69.85 70.23 71.46

198 59 66 78.25 100.00 62.00 65.09 65.60 67.24

SSQ (m3/s)2 - - 196,077.12 251,802.00 37,944.15 25,915.27 20,494.98 18,816.99

Squared root of
SSQ (m3/s) - - 442.81 501.80 194.79 160.98 143.16 137.18

NSE - - 0.916666 0.921600 0.959208 0.988986 0.991290 0.992003

RMSE (m3/s) - - 77.082625 74.765750 53.930178 28.023612 24.921077 23.879109
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The fourth flood dataset used was Sutculer flood data which is a flood data with a
double-peak. The parameters of the LMM for Sutculer flood data were determined to be
1.0 for K, and −0.006097 for X1. The parameters of the LMM-L for Sutculer flood data were
determined to be 1.0 for K, −0.025914 for X1, and −0.041042 for β. The parameters of the
NLMM for Sutculer flood data were determined to be 1.0 for K, −0.053787 for X1, and
1.002498 for m. The parameters of the new Muskingum flood routing model for Sutculer
flood data were determined to be 0.931599 for K, −0.092988 for X1, 0.009066 for X2, 1.000013
for m, −0.036144 for β, 0.817639 for θ1, 0.214801 for θ2, and 0.745272 for θ3. The results of
all models are shown in Table 7.

Among the results in Table 7, those of NLMM-L and ANLMM-L were calculated in
previous studies [2,9]. The results of LMM, LMM-L, NLMM, and new Muskingum flood
routing model were calculated by applying the SAVCA. Notably, the models that consider
the lateral inflow show good results. In addition, the results of LMM-L, NLMM-L, and
ANLMM-L were better than those of LMM and NLMM because LMM-L, NLMM-L, and
ANLMM-L showed relatively small errors in the overall results. Moreover, the difference
between the results of the new Muskingum flood routing model and other Muskingum
flood routing models was substantial.

The ANLMM-L showed the best results (smallest error) among the considered models.
The difference in SSQ between the ANLMM-L and new Muskingum flood routing model
was 63.22 (m3/s)2. The time required to show the difference between the two results
ranged from 1 to 3 h. At 1 h, the outflow of most Muskingum flood routing models was
close to the observed outflow. At 2 and 3 h, except for the new Muskingum flood routing
model, the outflow of most Muskingum flood routing models showed a difference from
the observed outflow.

The last flood dataset analyzed was the flood data of River Wyre October in 1982.
The parameters of the LMM for the flood data of River Wyre from October 1982 were
determined to be 3.950351 for K and 0.295668 for X1. The parameters of the NLMM for the
flood data of River Wyre from October 1982 were determined to be 8.248204 for K, 0.284338
for X1, and 0.812821 for m. The parameters of the new Muskingum flood routing model
for the flood data of River Wyre from October 1982 were determined to be 0.931599 for K,
−0.092988 for X1, 0.009066 for X2, 1.000013 for m, −0.036144 for β, 0.817639 for θ1, 0.214801
for θ2, and 0.745272 for θ3; the results, and their comparison with those of the other models,
are shown in Table 8.

Of the results given in Table 8, the LMM-L, NLMM-L, and ANLMM-L results were
calculated in previous studies [2,5,9], while those of the LMM and NLMM were calculated
by applying SAVCA; the results of the latter two models were the same. The errors were
the greatest for the results of both LMM and NLMM, and some of the calculated outflow
values obtained were negative. The new Muskingum flood routing model results in Table 8
were also calculated by applying SAVCA.

Notably, the results obtained for the models considering the lateral inflow were good;
those of the LMM-L, NLMM-L, and ANLMM-L were significantly better than those of the
LMM and NLMM. The difference in the results of all Muskingum flood routing models
occurs from 26 to 31 h. The outflows of NLMM-L, ANLMM-L, and new Muskingum flood
routing model were the closest to the observed outflow from 26 to 31 h. Although the
results of the NLMM-L and ANLMM-L were similar to the observed outflow at 26 h, these
differed over time. However, the new Muskingum flood routing model results did not
differ significantly from the observed outflow from 26 to 31 h. ANLMM-L showed the
best results (smallest error) among the existing Muskingum flood routing models. The
difference in SSQ between the ANLMM-L and new Muskingum flood routing model was
1.35 (m3/s)2. Although varying results were obtained when using different flood data for
the various models, the overall results of new Muskingum flood routing model were better
than those of other Muskingum flood routing models because the error of new Muskingum
flood routing model was relatively small in the latter part from 16 to 31 h.
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Table 7. Results when using Sutculer flood data.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s)

NLMM
(m3/s)

NLMM-L
(m3/s) [9]

ANLMM-L
(m3/s) [2]

This Study
(m3/s)

0 7.53 7.00 7.00 7.00 7.00 7.00 7.00 7.00

1 9.06 8.00 7.59 7.25 7.58 7.24 7.26 8.14

2 28.00 23.00 10.06 9.11 9.94 9.00 9.01 11.97

3 79.80 25.00 29.95 27.66 29.56 27.35 27.35 25.63

4 64.30 75.00 76.04 74.92 75.86 74.84 74.81 73.93

5 38.20 60.00 63.47 61.36 63.70 61.57 61.59 62.61

6 41.40 40.00 39.84 37.33 39.96 37.40 37.41 37.54

7 41.30 41.00 41.30 39.64 41.31 39.63 39.62 39.37

8 33.80 41.00 40.87 39.42 40.92 39.47 39.47 39.72

9 32.00 32.00 34.10 32.55 34.15 32.57 32.58 32.56

10 29.00 30.00 31.95 30.66 31.98 30.68 30.68 31.10

11 35.00 34.00 29.51 28.03 29.49 28.00 28.00 29.48

12 63.10 35.00 36.30 34.10 36.10 33.93 33.93 36.09

13 110.00 60.00 64.26 60.98 63.81 60.62 60.62 63.47

14 170.00 105.00 110.82 105.81 110.12 105.25 105.25 108.08

15 216.00 160.00 169.24 162.69 168.46 162.06 162.07 157.14

16 131.00 206.00 208.43 203.95 208.54 204.11 204.11 205.42

17 101.00 128.00 133.73 126.88 134.55 127.58 127.61 126.32

18 65.00 97.00 100.81 96.74 101.33 97.14 97.10 98.08

19 62.40 61.00 66.91 63.14 67.19 63.33 63.32 63.18

20 53.80 60.00 62.16 59.71 62.26 59.78 59.76 59.18

21 36.30 50.00 53.27 51.37 53.44 51.51 51.50 51.71

22 29.60 33.00 36.89 35.07 37.03 35.16 35.16 35.19

23 25.00 27.00 29.75 28.44 29.82 28.49 28.48 28.49

24 21.30 23.00 25.06 24.00 25.11 24.03 24.03 24.13

25 19.60 19.00 21.42 20.47 21.44 20.49 20.49 20.53

26 18.00 18.00 19.61 18.80 19.63 18.81 18.81 18.90

27 17.30 17.00 18.05 17.28 18.06 17.29 17.29 17.38

28 17.00 17.00 17.33 16.60 17.33 16.60 16.60 16.63

29 16.00 17.00 16.96 16.29 16.97 16.29 16.29 16.53

SSQ (m3/s)2 - - 512.87 282.89 510.18 281.11 280.95 217.73

Squared root of
SSQ (m3/s) - - 22.65 16.82 22.59 16.77 16.76 14.76

NSE - - 0.992557 0.995895 0.992596 0.995921 0.995922 0.996840

RMSE (m3/s) - - 4.134694 3.070802 4.123823 3.061080 3.060593 2.694028
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Table 8. Results when using flood data of River Wyre October in 1982.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s) [5]

NLMM
(m3/s)

NLMM-L
(m3/s) [9]

ANLMM-L
(m3/s) [2]

This Study
(m3/s)

0 2.60 8.30 8.30 8.30 8.30 8.30 8.30 8.30

1 4.20 9.00 5.58 8.20 6.00 8.51 8.52 8.73

2 12.30 9.90 1.68 8.10 2.27 8.79 9.94 10.11

3 25.40 10.20 0.00 12.70 0.00 10.94 12.74 12.75

4 24.10 18.90 9.67 27.90 8.66 20.28 19.71 19.51

5 20.30 35.90 16.45 39.90 15.50 37.54 35.73 36.22

6 23.30 51.80 16.58 45.70 16.02 49.07 48.87 49.25

7 27.70 59.40 17.15 52.20 16.91 55.11 55.95 55.83

8 27.70 63.30 20.94 61.40 20.90 62.50 62.74 62.54

9 26.90 69.60 23.71 68.90 23.78 71.44 71.35 71.33

10 24.80 76.70 25.73 74.70 25.80 78.03 77.95 77.87

11 26.90 82.00 24.52 77.20 24.59 82.07 82.67 82.68

12 33.70 85.30 22.52 79.80 22.77 83.72 85.27 85.10

13 33.90 89.00 26.45 87.80 26.92 87.43 88.11 87.71

14 27.80 94.60 31.69 95.50 32.09 95.49 94.74 94.61

15 20.80 98.80 33.23 97.70 33.18 100.88 99.90 99.91

16 15.60 98.00 30.95 94.40 30.43 99.29 98.87 98.75

17 11.90 91.80 26.98 87.90 26.29 92.06 92.05 91.82

18 9.50 82.30 22.57 79.80 21.98 82.22 82.36 82.12

19 7.80 72.00 18.59 71.50 18.24 71.75 71.88 71.67

20 6.50 61.90 15.26 63.60 15.19 61.94 61.93 61.80

21 5.80 53.00 12.40 56.10 12.60 53.12 53.10 53.03

22 5.00 45.60 10.37 49.60 10.74 45.47 45.37 45.34

23 4.80 39.20 8.52 43.70 9.04 39.14 39.04 39.07

24 4.50 33.80 7.31 38.80 7.87 33.76 33.65 33.68

25 4.10 29.30 6.47 34.60 7.03 29.55 29.39 29.44

26 3.70 26.20 5.78 30.90 6.34 26.12 25.96 26.02

27 3.40 23.50 5.16 27.70 5.71 23.20 23.08 23.14

28 3.20 21.20 4.61 24.80 5.14 20.67 20.59 20.64

29 2.90 19.20 4.23 22.30 4.73 18.52 18.44 18.48

30 2.80 17.70 3.79 20.10 4.27 16.71 16.68 16.72

31 2.60 16.40 3.52 18.20 3.96 15.12 15.09 15.23

SSQ (m3/s)2 - - 53,544.67 468.84 53,544.99 53.66 40.16 38.81

Squared root of
SSQ (m3/s) - - 231.40 21.65 231.40 7.33 6.34 6.23

NSE - - −0.213958 0.989570 −0.213965 0.998842 0.999090 0.999120

RMSE (m3/s) - - 40.905633 3.790780 40.905755 1.263563 1.120320 1.101288

The new flood data in Daechung were applied to calibrate and validate the new
Muskingum flood routing model. The flood data in April, 2014 were used for calibration
and the flood data in April, 2018 were used for validation. Among various Muskingum
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flood routing models, LMM-L considering lateral inflow to LMM, NLMM considering
nonlinearity to LMM and new Muskingum flood routing model were applied to Daechung
flood data and compared.

The parameters of LMM were 3.989981 for K and −0.034950 for X. The parameters
of LMM-L were 3.865970 for K, −0.043293 for X, and −0.020080 for β. The parameters
of NLMM were 2.225924 for K, −1.5 for X, and 1.0 for m. The parameters of NLMM-L
were 2.225076 for K, −1.406061 for X, 1.000000 for m, −0.007072 for β, 1.000000 for θ. The
parameters of ANLMM-L were 2.123526 for K, −1.500000 for X, 1.000000 for m, −0.010223
for β, 1.000000 for θ1, and 0.017871 for θ2. The parameters of new Muskingum flood
routing model were 2.220910 for K, −1.498329 for X1, 0.094832 for X2, 1.000008 for m,
−0.012616 for β, 0.999660 for θ1, 0.000093 for θ2, and 0.000288 for θ3. Each parameter was
applied equally for 2014 and 2018 data. A total of 100 simulations were conducted for each
Muskingum flood routing model, yielding the best results. Table 9 shows the results of
Daechung flood data in 2014.

Based on the variable values determined from the 2014 flood data, it was applied to
the 2018 flood data. Table 10 shows the results of Daechung flood data in 2018.

Figure 3 shows the results of calibration and validation in Daechung flood data.

Figure 3. Results of calibration and validation in Daechung flood data (a) 2014 flood data; (b) 2018 flood data..

In the 2014 flood data, the SSQs of LMM, LMM-L, NLMM, NLMM-L, ANLMM-L
and new Muskingum flood routing model were 88.23, 73.81, 43.79, 42.32, 40.16, and 39.55,
respectively. In the 2014 flood data, the error of new Muskingum flood routing model was
relatively small and the calibration of new Muskingum flood routing model was relatively
accurate. The SSQs of new Muskingum flood routing model in the 2018 flood data was
relatively small. In the 2018 flood data, the SSQs of LMM, LMM-L, NLMM, NLMM-L,
ANLMM-L and new Muskingum flood routing model were 221.92, 180.41, 171.45, 161.99,
159.84, and 157.64, respectively. In the results of Figure 2, more accurate flood routing
was performed by applying the new Muskingum flood routing model compared to LMM,
LMM-L, NLMM, NLMM-L and ANLMM-L.
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Table 9. Results of Daechung flood data in 2014.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s)

NLMM
(m3/s)

NLMM-L
(m3/s)

ANLMM-L
(m3/s)

This Study
(m3/s)

0 0.79 0.47 0.47 0.47 0.47 0.47 0.47 0.47

3 2.12 1.04 0.75 0.75 0.64 0.65 0.65 0.62

6 3.54 2.11 1.79 1.80 1.81 1.80 1.78 1.79

9 50.75 3.19 4.66 4.96 3.14 3.12 2.62 2.34

12 103.90 38.32 39.94 40.42 41.86 41.65 40.88 41.01

15 112.33 90.68 86.69 86.43 89.99 89.68 89.43 89.79

18 82.41 106.18 104.31 102.80 104.36 104.08 104.41 104.44

21 45.06 82.32 87.14 84.88 84.25 83.98 84.39 84.04

24 23.12 51.59 55.83 53.70 52.80 52.46 52.58 52.12

27 15.76 31.21 31.82 30.31 30.74 30.33 30.17 29.87

30 15.03 20.82 20.13 19.22 20.63 20.23 19.98 19.86

33 17.22 17.24 16.50 15.97 17.41 17.07 16.86 16.80

36 17.27 17.65 17.02 16.64 17.91 17.64 17.51 17.50

39 15.04 16.09 17.13 16.76 17.58 17.38 17.32 17.30

42 9.97 13.02 15.44 15.05 15.59 15.44 15.44 15.41

45 6.38 10.39 11.34 10.98 11.16 11.04 11.04 10.98

48 5.67 8.17 7.71 7.43 7.59 7.49 7.45 7.39

51 4.45 7.07 6.19 5.99 6.36 6.27 6.23 6.21

54 4.23 5.99 4.92 4.77 4.99 4.92 4.89 4.87

57 4.18 4.91 4.42 4.30 4.52 4.46 4.43 4.42

60 2.25 4.20 4.18 4.07 4.32 4.27 4.27 4.27

63 2.33 4.02 2.78 2.69 2.67 2.64 2.63 2.60

66 2.24 3.01 2.45 2.38 2.51 2.48 2.46 2.45

69 2.11 3.13 2.29 2.24 2.34 2.31 2.30 2.30

72 2.83 3.49 2.18 2.14 2.18 2.16 2.14 2.13

75 4.25 4.55 2.70 2.67 2.73 2.71 2.68 2.67

78 2.83 4.20 3.78 3.72 3.94 3.92 3.92 3.94

81 2.15 2.08 3.07 2.99 2.95 2.93 2.94 2.92

84 2.13 1.04 2.40 2.33 2.33 2.31 2.30 2.37

SSQ (m3/s)2 - - 88.23 73.81 43.79 42.32 40.16 39.55

Squared root of
SSQ (m3/s) - - 1.78 1.62 1.25 1.23 1.20 1.19

NSE - - 0.996612 0.997166 0.998319 0.998375 0.998458 0.998482

RMSE (m3/s) - - 1.775135 1.623577 1.250501 1.229365 1.197584 1.188440
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Table 10. Results of Daechung flood data in 2018.

Time
(h)

Inflow
(m3/s)

Outflow
(m3/s)

LMM
(m3/s)

LMM-L
(m3/s)

NLMM
(m3/s)

NLMM-L
(m3/s)

ANLMM-L
(m3/s)

This Study
(m3/s)

0 0.53 0.32 0.32 0.32 0.32 0.32 0.32 0.32

3 1.86 1.02 0.52 0.52 0.43 0.44 0.44 0.41

6 3.30 2.09 1.54 1.55 1.57 1.56 1.54 1.55

9 59.34 3.79 4.71 5.08 2.91 2.90 2.30 1.95

12 85.37 42.46 45.27 45.61 48.82 48.58 48.05 48.45

15 124.77 79.88 75.73 75.51 75.72 75.50 75.05 74.93

18 88.73 115.68 110.14 108.82 113.04 112.65 112.85 113.28

21 48.98 87.42 93.24 90.93 89.96 89.69 90.22 89.81

24 25.23 57.05 60.29 58.03 56.88 56.55 56.70 56.21

27 17.09 25.19 34.54 32.93 33.26 32.85 32.68 32.36

30 12.43 19.64 21.71 20.70 22.29 21.88 21.66 21.54

33 19.03 15.39 15.19 14.63 15.69 15.35 15.09 14.96

36 16.39 20.74 17.89 17.51 19.31 19.02 18.88 18.94

39 16.44 15.69 16.80 16.43 17.01 16.81 16.74 16.68

42 8.97 12.45 16.28 15.89 16.71 16.54 16.55 16.56

45 6.89 10.17 10.90 10.52 10.48 10.36 10.36 10.26

48 6.76 9.50 7.98 7.71 7.97 7.86 7.80 7.76

51 4.90 5.93 7.03 6.83 7.28 7.19 7.15 7.15

54 4.55 4.98 5.47 5.31 5.49 5.41 5.39 5.36

57 3.51 4.50 4.76 4.63 4.88 4.82 4.80 4.79

60 2.45 4.05 3.82 3.70 3.85 3.80 3.80 3.88

SSQ (m3/s)2 - - 221.92 180.41 171.45 161.99 159.84 157.64

Squared root of
SSQ (m3/s) - - 2.82 2.54 2.47 2.41 2.39 2.37

NSE - - 0.990792 0.992514 0.992886 0.993279 0.993368 0.993459

RMSE (m3/s) - - 2.815292 2.538342 2.474522 2.405271 2.389282 2.372746

4. Discussion

Because the calculation process differs for each Muskingum flood routing model,
the time required to find the parameters when applying a meta-heuristic optimization
algorithm is different for each method. The time required to apply SAVCA was summarized
to determine the parameters of each Muskingum flood routing model for Wilson’s flood
data. The parameters of SAVCA were set at a constant, and the simulation was conducted
10 times. In addition, the number of iterations was set to 100,000. Table 11 shows the time
taken for SAVCA when using Wilson’s flood data.

Table 11. Time required by Muskingum flood routing models when using Wilson’s flood data.

Comparative
Indicators

LMM LMM-L NLMM NLMM-L ANLMM-L
This

Study

Time (s) 634 633 741 753 810 936

Depending on the parameters of the SAVCA and flood data, the results over time using
the Muskingum flood routing models differ from the results in Table 9. As the number

224



Water 2021, 13, 3170

of parameters of the Muskingum flood routing models increased, the time required also
increased. The time required by LMMs, LMM and LMM-L, was the shortest. NLMM and
NLMM-L required a greater amount of time compared to the LMMs. The new Muskingum
flood routing model required more time than the ANLMM-L, which in turn required more
time than the NLMM-L. The time required by the new Muskingum flood routing model
was approximately 1.5-times that required by LMM and LMM-L. In conclusion, the new
Muskingum flood routing model produced more accurate results but took more time owing
to the greater number of parameters and calculations.

An analysis was conducted on how each parameter of new Muskingum flood routing
model affects the results. Daechung flood data in April, 2014 was applied to analyze the
sensitivity of each parameter in the new Muskingum flood routing model. Figure 4 showed
the results of the sensitivity analysis for the parameters in the new Muskingum flood
routing model.

Figure 4. Results of sensitivity analysis for the parameters in the new Muskingum flood routing model.
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SSQ decreases and then increases as parameter K increases, and SSQ increases as
parameter X1 increases. SSQ increases as parameter X2 increases and SSQ increases as
parameter m increases. SSQ decreases and then increases as parameter β increases, and
SSQ decreases as the parameter θ1 increases. SSQ increases as parameter θ2 increases, and
SSQ increases as parameter θ3 increases. As each parameter changed, the change of the
results was not constant. It is difficult to find a uniform pattern in all the results. However,
what can be confirmed from the results of sensitivity analysis is that a meta-heuristic
optimization algorithm such as SAVCA is required to produce results with a low SSQ.

5. Conclusions

The Muskingum flood routing model is a representative hydrologic flood routing
model that is widely used owing to its easy applicability. The proposed Muskingum flood
routing model in this study is a simple model that can be applied by researchers that use
the existing Muskingum models for accurate flood routing.

In this study, the new Muskingum flood routing model was applied to various flood
data, and the results obtained were compared with those of previously developed Musk-
ingum flood routing models. As an index for comparison, the error was calculated between
the observed and simulated outflows using the SSQ, NSE and RMSE. In addition, SAVCA,
a meta-heuristic optimization algorithm, was applied to adjust the parameters of the new
Muskingum flood routing model.

In the sensitivity analysis, the changes of the eight parameters in the new Muskingum
flood routing model are different. There are parameters whose results are improved as the
value (θ1) increases, some parameters (m, θ2, θ3, x1, x2) whose results are improved as the
value decreases, and some parameters (K, β) whose results are changed (improved and
then deteriorated) as the value increases. The eight parameters of the new Muskingum
flood routing model are decision variables of SAVCA and are calculated through the
optimization process.

Muskingum flood routing models considering the lateral inflow are capable of rel-
atively sophisticated simulations, which corroborates that the influence of lateral inflow
on the outflow can be considered. Among the existing models, the ANLMM-L showed
the highest accuracy, although the difference between its results and those of the other
Muskingum flood routing models was insignificant. In the new Muskingum flood routing
model, the improved calculation method of the inflow at previous time and next time
reflected the trend of the observed outflow.

Since the Muskingum flood routing model proposed in this study has eight parameters,
the calculation process is more complicated than the existing Muskingum flood routing
models. Accurate flood prediction is possible due to the complicated calculation process,
but the calculation time is long.

Many studies, including this study, have been performed by applying various meta-
heuristic optimization algorithms to the Muskingum flood routing models. Since vari-
ous optimization algorithms cannot show advantages in all problems, the results can be
improved by appropriately selecting the operators of each meta-heuristic optimization
algorithm. In addition, deep learning techniques have been widely used to apply various
flood prediction methods including Muskingum flood routing models. By replacing the
optimizer in deep learning techniques with meta-heuristic optimization algorithms, it
would be possible to produce improved results in flood prediction.
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Abbreviations

ANLMM-L Advanced nonlinear Muskingum flood routing model considering continuous inflow
NLMM-L Nonlinear Muskingum flood routing model incorporating lateral flow
NLMM Nonlinear Muskingum method
LMM-L Linear Muskingum method incorporating lateral flow
LMM Linear Muskingum method
SAVCA Self-adaptive vision correction algorithm
DR1 Division rate 1
DR2 Division rate 2
MTF Modulation transfer function
CF Compression factor
AR Astigmatic rate
AF Astigmatic angle
SSQ Sum of squares
NSE Nash–Sutcliffe efficiency
RMSE Root mean square error
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Abstract: Water is a fundamental resource needed for human life and functioning and the envi-
ronment. Water management requires a comprehensive, adaptive approach that also considers the
dynamics of changes in the water management system. This is particularly important in areas where
different groups of stakeholders intertwine, whose needs often contradict, which hampers effective
water management, particularly in places of high natural value. This research aimed to analyze
selected issues in water management in the Białka River Basin in Southern Poland. The analysis was
based on a review of scientific publications, internet sources, and a survey on water management
in the basin. Our research shows that the dominant issues in the study area are the flood risk and
water pollution related to, among other factors, the intensive development of tourism. Moreover, the
effective management of water resources is hampered by poor communication between the admin-
istration and stakeholders, which results in a low level of knowledge, negative attitudes towards
nature protection, and the emergence of conflicts. The main conclusion of this paper indicates that,
despite the existing social potential for implementing comprehensive water management methods,
the lack of an appropriate legal framework prevents the implementation of concepts such as Adaptive
Water Management.

Keywords: Adaptive Water Management; stakeholder engagement; legislation; survey; uncertainty
in water management

1. Introduction

Water, as a fundamental resource needed for human life and the activities of daily
living and the environment, requires the particular attention of all parties involved in the
process of managing its resources. Contemporary social, economic, and climatic changes
are causing growing problems related to water [1]. In many regions of the world, water
resources are polluted, which negatively affects the aquatic ecosystems and reduces the
availability of water to humans. On the one hand, developing urbanization reduces the
resources of groundwater on a local scale, enlarging the runoff of waters from the catchment
area, and, on the other hand, it increases the flood risk. On a global scale, the availability of
water is uneven [2]. The progressive population growth, industrialization, and the lack
of appropriate conservation practices of its quality and quantity make almost 80% of the
world’s population vulnerable to water stress [2,3]. Exposure to water stress depends
on the Earth’s climatic diversity and economic conditions—highly developed countries
are able to allocate much greater financial resources to water resource management than
less developed countries. An additional factor that affects the quantitative and spatial
availability of water resources is climate change [4–7]. Similar to other regions of the world,
Europe is affected by climate change [6]. Depending on latitude or other factors (e.g.,
high mountain areas), these changes can be positive or negative from a water resource
perspective. The negative phenomena include an increase in temperature, a decrease in
snowfall in winter, and an increase in evaporation. These changes may have a negative
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impact on the availability of fresh water in countries such as Poland. The increased
frequency of droughts [8–11] can affect both humans and the environment, causing, among
others, the drying of forests [12], water shortages in agriculture [13,14], increased risk
of disease, malnutrition, high infant mortality, a decrease in the efficiency of electricity
production processes, and a negative impact on water quality [15]. The reason for water
scarcity is not necessarily natural; for example, in certain areas of India, poor management
practices and government policies exacerbate the water issues [16]. Another reason for
water scarcity is also cross-border conflicts regarding access to water resources [17] or a
lack of appropriate measures to protect the water quality [18–20]. Transboundary water
management is one of the most difficult challenges. It requires cooperation at the level
of a legal framework, communication between national authorities, a joint action plan,
and compliance with agreements [21]. A further challenge in water management is the
progressive urbanization and the increase in floods, including floods in cities, which are
a growing threat to both people and the economy [22,23]. Extreme climatic phenomena
associated with water resources can interact with many environmental and socio-economic
sectors, including health, public safety, biodiversity, industry, shipping, and tourism [24].

Traditional management based on the provision of an adequate quantity of water of
appropriate quality is insufficient in view of the increasing water-related issues. It requires
a more comprehensive approach that considers the needs of the environment, society,
and the economy in terms of access to water [25–29]. This approach is called Integrated
Water Resource Management (IWRM) [30–32]. In this concept, stakeholder involvement
is a key issue in water management. It should be based on the cooperation of various
entities—representatives of the public administration, entrepreneurs, residents, nature
protection associations, and other social groups that want to be involved in the water
management process. This cooperation is a multi-stage process, from public consultations
and meetings and the implementation of the agreed roadmaps to their evaluation [33–36].
Stakeholder involvement requires appropriate legal forms to develop tools to support the
water management process [30]. IWRM points out that it is necessary to formalize this
concept in water legislation as one of the stages leading to the decentralization of gov-
ernment management towards river basin management. Collaboration with stakeholders
throughout the water management process is a key criterion for the success of IWRM. It is
a comprehensive approach to the development of a water management policy in terms of
both resources and services provided related to water [37]. On the other hand, decentraliza-
tion can make it difficult to control the transparency and fairness of the process [38]. There
are known cases around the world of newly created IWRM-related institutions becoming
power-laden, gendered, and beset with conflict and factional divisions. According to critics,
IWRM could be seen as a form of coercion as it imposes a set of principles and tools to be
followed, or also as an idea of a hegemonic discourse that prevents any alternative [39].
The implementation of IWRM may encounter many problems, such as insufficient admin-
istrative structure, poor knowledge, and conflicts of interest in water needs [25,33,40]. As
Michalak [40] indicates in his work, the lack of knowledge about the functioning of the en-
vironment and awareness of the negative effects of anthropopressure is one of the barriers
to the implementation of effective water resource management. Furthermore, conflicting
and often competing water needs require an appropriately integrated approach [33] that
will seek to resolve water-related conflicts on a different scale—from local communities to
national needs [25]. Measurement uncertainty is an additional obstacle to effective water
management. According to McMillan et al. [41], this issue applies to all stages of data
processing, from differences in the quality of measuring equipment and errors caused
by individuals carrying out measurements to an incomplete/insufficient measurement
network. This network in uncontrolled places requires empirical data interpolation with
the selected method, also burdened with the uncertainty of the result. The measurement
uncertainty or lack of measurement is significant in forecasting changes in the volume of
water resources in view of climate change [42]. As a result, it also has a negative impact
on the development of appropriate water management policies [43]. Therefore, water
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management requires the creation of a resilient management system capable of absorbing
disruptions and adapting to changes while maintaining its functions, structure, and pur-
pose [26,44]. Van der Keur et al. [37] indicate that Adaptive Integrated Water Resources
Management (AWM) should therefore be used. Its main features are learning, reflection
and adaptation capacity, co-management, the formal and informal involvement of deci-
sion makers [45], and the drive to decentralize management structures, which benefits
stakeholder cooperation [28,34,46,47]. AWM provides added value to IWRM by taking
into account uncertainty and adapting to changes (e.g., climate change, lack of complete
hydrological data, changing water demand) in the system. It also emphasizes the edu-
cation of the stakeholders involved [28,48–50]. One of the most significant elements of
AWM is social learning, which aims to connect laypeople, enthusiasts, business represen-
tatives, and experts in the common goal of water resource management [27,35]. It can be
defined as social interactions between stakeholders based on knowledge exchange and
an understanding of the management of a water system, where knowledge is acquired
from all sides—from legal persons and individuals to organizations [27]. According to
Pahl-Wost [51], social learning should focus on learning the social entity as a whole to
“learn management together”. The framework for this process should be context-specific
and involve multilateral cooperation, leading to particular outcomes. AWM also assumes
the complexity of the managed systems and the limitations resulting from forecasting their
behavior and the possibility of controlling them [37]. Water management will always have
to proceed with an incomplete understanding of how the system operates and the effects
of its management. Adaptation policy should therefore be planned, taking into account
environmental and human behavior processes for measures implemented as part of water
management.

Water management in Poland has been regulated by the provisions of the Water
Law Act [52] since 2018. As Poland is a member state of the European Union, water
management legislation is based on the assumptions of the Water Framework Directive [53].
The relatively small water resources of the country and the unfavorable climatic conditions
related to, among others, the high dynamics of flow changes during the year make Poland
a country that requires proper management of water resources [54]. The southern parts of
Poland are mountainous areas—national and landscape park regions, which are also the
main tourist and holiday regions [55]. It is an area where water management should be of
particular concern to society due to its natural value and the broad group of stakeholders
that benefit from the region’s water resources. As a result of the research, this manuscript
presents an analysis of selected issues related to water management in the Białka River
Basin, located in the south of Poland—in a unique culturally and naturally significant area.
The aim of the research was achieved by identifying the issues and the barriers involved in
water resource management in the study area. The study was based on a query of scientific
publications, press reports, and the results of a survey conducted in 2021. In essence,
issues were identified based on query. The results of the survey were used as an additional
source of information about problems in water resource management in the Białka River
Basin and allowed for the identification of other management barriers, especially in the
context of IWRM and AWM. The survey results additionally confirmed that the lack of
legal solutions to stimulate cooperation between stakeholders at the lowest level is one of
the main barriers to management.

2. Study Area

The Białka River is the right tributary of the Dunajec River, originating in the Tatra
Mountains at an altitude of around 1075 m above sea level from the merging of the Rybi
Potok, flowing from the Polish part of the Tatra Mountains, and Biała Woda, flowing from
the Slovak part of the Tatra Mountains. The length of the Białka River is approximately
42 km [56], including the Biała Woda source stream flowing from the Kacza Valley at an
altitude of around 1577 m above sea level. Moving northwards, the Białka River is run by
numerous streams flowing from mountainous areas. Its major tributaries include, among
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others, Roztoka, Jaworowy Potok, Jurgowczyk, and Trybska Rzeka. Białka is a river with
typical mountainous characteristics, characterized by a fast current and high dynamics of
changes in the hydrological regime [57]. According to Wrzesiński [58], the Białka River is
characterized by a pluvial–nival regime. Between September and February, lower than
average flows are observed, and from March, snowmelt-related flow increases, which, in
the longer term, are combined with summer floods. Data from the Institute of Meteorology
and Water Management—National Research Institute (IMGW-PIB) water gauge network
for the years 2001–2020 confirm this characteristic. The lowest flows on the Białka River
in Trybsz and Łysa Polana occur from January to February (Figure 1), and the highest
during the flood period, which is in May. The river flow variability coefficient in both
water gauges exceeds 100% (Table 1). Essential flow characteristics in the catchment area
are presented in Table 1. The water level in Białka is subject to significant fluctuations,
caused by factors such as the intense melting of snow cover or heavy rainfall, especially in
mountainous areas. In the upper flow, the river’s bed fall reaches around 72‰, while, in
the lower flow, it drops to below 20‰ [59]. Spring and summer floods also cause the river
to change its bed frequently. The riverbank can be described as steep, rocky, and partially
regulated, with sections of a natural character. The river’s course is also distinguished
by significant terrain height differences—from 530 to 883 m above sea level [60]. The
Białka River is one of the few mountainous Carpathian rivers with a natural, anastomosing
character [59]. The Białka Valley has been designated as Natura 2000 SOO site (under the
Habitats Directive) no. PLH 120024, with an area of 716.03 ha, and as an area of community
importance [61]. The site contains eleven natural habitats from Annex I of the Habitats
Directive [62]. It is home to many unique habitat types and plant and animal species.
At the Białka River, one can observe the region’s largest resources of riverside habitats,
rare on a national scale, linked to natural mountain rivers, e.g., German tamarisk thickets
(Myricaria germanica) on stony river beds and willow thickets (Salix eleagnos). In the
area of the Przełom Białki reserve in the vicinity of Krempachy, 457 species of vascular
plants have been declared [59]. The fish that live here include brown trout (Salmo trutta
m. fario) and barb (Barbus petenyi), while, on land, one can find deer (Cervus elaphus
elaphus), wild boar (Sus scrofa), wolf (Canis lupus), European viper (Vipera berus), or bear
(Ursus arctos) [63]. The Białka Valley also forms a significant ecological corridor on the
north–south line, connecting the Tatra Mountains with the Gorce and Pieniny Mountains.
The area of the Polish part of the Białka River Basin is approximately 123.27 km2, which is
55% of the total area of the basin of around 225.33 km2 [56] and includes, among others, the
areas of the Tatra National Park, involving the whole area of the northern slopes of the High
Tatras. The basin has varied physical and geographical locations. It is located within seven
mesoregions. Listed from the south side, it belongs to the High Tatras, the Reglowe Tatras,
the Podtatrzańska Bruzda, the Podtatrzański Foothills, the Magura Spiska, the Pieniny
Mountains, and the Orawsko-Nowotarska Valley [64,65]. Various types of land cover can
be observed in the basin. There are [66] anthropogenic areas, agricultural areas, forests,
semi-natural ecosystems, and water areas (Table 2). The largest area in the basin is covered
by coniferous forests, followed by meadows and pastures, arable land beyond the reach
of irrigation equipment, exposed rocks, and land mainly occupied by agriculture, with a
large share of natural vegetation. Other land cover classes account for less than 10% of the
total catchment area. In the southern part of the catchment area, there are primarily forest
and rocky areas (Figure 2). In contrast, the central part is dominated by agricultural areas,
with discontinuous urban fabric along the Białka River and its tributaries. The northern
part of the basin catchment area, covering a narrow strip of the river valley up to the river
mouth, is mainly covered by forest and arable land.
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Figure 1. Average monthly water flow in 2001–2020.

Figure 2. Study area based on Corine Land Cover [66].
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Table 1. The Białka River flow.

2001–2020
σ Min Q25% Me Mean Max Q75% Cv

m3/s %

Łysa Polana 4.2 0.3 1.0 2.1 3.3 67.4 4.1 138
Trybsz 10.9 0.9 2.9 5.0 7.9 216.0 8.8 126

Table 2. Land cover classes in the Białka River Basin [66].

Type of Land Cover (Level 1) Area Area

km2 %

Artificial surfaces 5.9 4.8
Agricultural areas 52.2 42.3

Forest and semi-natural areas 62.1 50.4
Water bodies 3.1 2.5

Total 123.3 100

3. Materials and Methods

The study was carried out in two stages. In the first one, an inventory of the issues
of the Białka River Basin was made based on a query of available knowledge—scientific
publications, press reports, and information posted on the websites of public institutions
(Table 3). The Statistics Poland (SP) data on population, tourism, nature protection, and
water and sewage management from the years 2014–2020 [67] were used. Land cover
classes were determined using the CORINE Land Cover 2018 database [66]. The database
containing information on the water-legal permits in the selected river basin was obtained
from the National Water Holding Polish Waters. Based on the available materials (literature,
analysis of materials published by local media), the issues in the basin in the context of
water management were reviewed. For the hydrological characterization of the area, data
from the IMGW-PIB for two water gauges—Łysa Polana and Trybsz—were used. The
analysis of the current legal situation regarding water management in the Białka River
Basin was carried out on the basis of the Water Law Act [52].

In the second stage, a survey was conducted on water management in the Białka
River Basin. The study took place from 15 June to 16 July 2021. The questionnaire was
addressed to residents, entrepreneurs, and other people associated with the Białka River
Basin. The survey was distributed via e-mail and social media (it was made available
through the Facebook portal by a person associated with the catchment area). The sources
of contact information were: municipal websites, schools, fire brigades, national parks,
and other local government organizations. The booking.com portal and the Google search
engine were also used. The online query focused on identifying small guesthouses and
agrotourism, with the assumption that a significant portion of the people employed there
were local residents. The questionnaire consisted of single and multiple-choice questions
and, in selected cases, also included the possibility for the respondent’s own answers. A
total of 22 questions were formulated.

The first part of the questionnaire concerned the respondent’s characteristics: age,
gender, education, commune of residence, and the type of relationship with the Białka
River Basin. In the next part, attempts were made to identify society’s awareness related
to the river basin in terms of water management. Questions were formulated based on
the issues of water management, sources of information on this subject, knowledge of
planning documents, institutions responsible for water management, forms of nature
protection in the river basin, and the functioning of the river basin over time. The next part
aimed to identify the perception of water-related issues in the river basin. The respondents
were asked to select from a list of problems their causes and give them a rank. They were
allowed to formulate their own statements on selected questions. The last part of the survey
was to identify the potential of public involvement in water management. The questions
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concerned the interest of stakeholder groups in caring for the quality and quantity of water
in the river basin, the respondent’s direct interest in involvement in the water management
process, and the willingness of both individuals and entrepreneurs to cooperate.

Table 3. Categories of identified issues with data sources division.

Category The Type of Source References

All Survey research -

Urbanization Database [66]

Tourism developmnent

Scientific publication [68–73]

Website [74–76]

Database [67]

Water pollution from point
sources

Scientific publication [77–80]

Other [81]

Website [82–89]

Databese [67]

Use of water

Legal act [52]

Water-legal permits -

IMGW-PIB hydrological database -

Flood risk

Scientific publication [73,90]

Other [91,92]

Website [63,93–108]

Context of climate change Scientific publication [6,109–116]

Impact of Polish legal forms
Legal act [52,117]

Website [118]

4. Results

The Białka River Basin is one of the most valuable landscape systems in the Polish
Carpathians. It is characterized by high natural value—despite the settlement, it has
preserved its natural mountainous character [68]. Due to environmental conditions and
high economic activity, it is a zone where various issues and interest groups related to
water resource management intertwine.

4.1. Tourism Development

One of the main aspects of the economic development of the region is tourism. The
development of tourism in the Białka River Basin has a long history. The high natural
value of the valley and the surrounding area makes these lands very attractive for tourists.
The first ski lifts in Białka Tatrzańska were built in the early 1960s. In the following years,
the ski infrastructure was expanded [69]. There are many ski resorts in the catchment
area, including Jurgów Ski, Kotelnica Białczańska, Kozieniec Ski, and two large thermal
baths—Termy Bania. In 2020, there were 97 tourist accommodation facilities here, includ-
ing hotels, guesthouses, private accommodation, agrotourism lodgings, holiday centers,
and hostels [67]. These facilities had a total of 5384 bed places. According to research
carried out in the Tatra National Park, around 30% of the total touristic traffic in the Polish
Tatras is concentrated on the route from Palenica Białczańska to Morskie Oko. In Au-
gust 2009, on average, around 20,000 tourists entered the territory of the Tatra National
Park every day [68]. Due to strong tourist pressure, there have been numerous attempts
at limiting tourist traffic—for example, the online sale of tickets for the parking lot in
Palenica Białczańska [74]. The analysis carried out by the service intermediating in booking
accommodation—nocowanie.pl [75]—showed that tourists most often chose Małopolska

235



Water 2021, 13, 3540

as their place of rest in 2017. Zakopane dominated (44% of inquiries), followed by Białka
Tatrzańska (8% of inquiries), with Bukowina Tatrzańska (4%) in the 6th position. On the
other hand, during the winter holidays in 2019, Zakopane was chosen most often (13.5%
of inquiries) in the entire country [76], while Białka Tatrzańska was ranked 4th (5.5% of
inquiries) among the analyzed towns. Białka Tatrzańska is considered to be the fastest-
growing town of Podhale, especially regarding the tourist aspect [70]. The development
of mass tourism has caused the intense transformation of the natural environment and
landscape of Białka Tatrzańska [71]. A large concentration of ski resorts in a relatively
small space leads to extensive degradation of the slopes. The creation of new service
facilities negatively impacts the environment and causes the devastation of the traditional
aesthetics of the Białka Tatrzańska area [72]. Building on the valley floor also results in
the disappearance of ecological corridors, limiting the free migration of animals in the
catchment area. The annual influx of tourists during the summer and winter holidays is
crucial for water management. Enlarging urbanization could be the cause of the increasing
flood risk—impermeable surfaces such as roofs, roads, and parking lots are the cause of
increasing runoff [73]. The well-developed tourist base is associated with the abstraction of
water for economic purposes, including the snowing of slopes in winter [68]. The increase
in the number of people in the tourist season (which now includes both winter and sum-
mer) combined with poorly developed infrastructure results in the strong pollution of the
river waters. Selected issues related to the tourism are described in Sections 4.2 and 4.3.

4.2. Water Pollution from Point Sources

The increasing pressure resulting from tourism development in the catchment area
necessitates water and sewage infrastructure development. In the territory of the Bukowina
Tatrzańska community, the number of industrial and sewage treatment plants has doubled
in recent years. In 2020, there were six such treatment plants [67]. Their capacity in
2014–2020 increased more than three times (Table 4). The number of residents who benefit
from the treatment plant is also gradually increasing. The number of septic tanks (more than
five times) and household sewage treatment plants (more than four times) has increased
significantly in recent years. The municipality has also systematically recorded an increase
in water consumption since 2014 (except for 2018 and 2020, when a decrease was noted
compared to the previous year). A similar trend also occurs in the share of industry in
overall water consumption [67]. Water quality monitoring is carried out by the Regional
Inspectorate for Environmental Protection (WIOŚ), which has two measurement points on
the Białka River—in Łysa Polana and Dębno (Białka estuary to the Czorsztyn reservoir) [81].
Information contained in the Classification and Assessment of the Condition of Surface
Waters Bodies in 2019 (analysis based on data from 2014 to 2019) shows that the Białka
River at the tested measurement points is characterized by a moderate ecological and
good chemical state. The overall assessment of the surface water body indicates poor
water conditions.

Table 4. Water and sewage management in the Bukowina Tatrzańska commune based on Statistics Poland [67].

Statistics Poland Data Subgroup Unit 2014 2015 2016 2017 2018 2019 2020

Number of industrial and municipal sewage
treatment plants

Number of units
3 3 4 4 4 6 6

Number of household sewage treatment plants 7 7 30 30 30 30 no data
Number of septic tanks 540 540 540 540 2804 2765 no data

People using the sewage treatment plants people 6624 6690 7203 7453 7691 7713 7855
Capacity of industrial and municipal sewage

treatment plants m3/d 835 1790 2150 2150 2150 2410 2410

Water consumption for the needs of the national
economy and population during the year dam3 840.3 872.5 1001.3 2041.2 1152.9 1309.4 1021.2

Industry share in water consumption % 64.1 65.8 66.9 83.2 69.0 72.2 70.3
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Despite the measures taken, the intensive development of tourism adversely affects
water quality, especially in terms of microbiology [77,78]. Along the course of the river,
the impact of point and diffuse sources of water pollution increases. Moreover, sewage
treatment in plants has low efficiency [79]. The water is treated mainly in terms of physic-
ochemical indicators, while bacteriological contamination and high concentrations of
antibiotics are observed below the discharges of treated sewage [80]. This problem is also
the subject of public discussion in the media, which appears in the context of extreme
events or the lack of an adequate sewage system [82–84]. There are reports in the local
media about the contamination of the Białka River in the area of Białka Tatrzańska, where
there is a lack of sewage, especially during peak tourism periods. The local government and
the inhabitants of Białka Tatrzańska have drawn attention to the growing problem of illegal
sewage discharge by, among others, owners of small- and medium-sized guesthouses or
small farms with rooms for rent. On the other hand, the construction of the sewage system
causes resistance from the owners of the plots through which the pipeline would run,
which, in 2014, led to the blocking of local government activities leading to the sewerage
of Białka Tatrzańska [85,86]. Another cause of water quality problems in the Białka River,
which has been noticed by residents, tourists, and pro-environmental organizations, is the
inefficient operation of the sewage treatment plant in Czarna Góra [87–89].

4.3. Use of Water in the Białka River Basin

One of the tools for managing water resources in Poland is water-legal permits—they
are necessary to obtain a water law approval, which is a type of administrative decision
authorizing the use of water or affecting the water environment [52]. Data on water-legal
permits have been collected in the PGW WP databases since 2018. The current resources are
not yet complete and require further arrangement with regard to the new provisions of the
Water Law Act. In June 2021, information was obtained from PGW WP on all applicable
water permits in the Białka River catchment area. The shared raw database was then
prepared and developed for further work. As a result of the selection, those water-legal
permits were rejected that did not apply to any water activity, water services, or use in
the catchment area, but were only corrections, instructions, remissions, etc. A total of
203 water-legal permits were finally used for further analyses. They all have the status of
writing as up to date. For 83 water permits (41%), water users are private persons, while
the remaining are private and public enterprises, companies, and local governments. Water
permits in the Białka catchment area were obtained for various types of activities, water
services, or water use. They concern such categories as (some permits fall into more than
one category): regulations (6), power plants (2), surface intakes (6), protection zones of
surface intakes (1), groundwater intakes (62), protection zones of intakes underground
(26), sewage treatment plants (10), wastewater discharges (62), pre-treatment facilities (2),
crossing by watercourses (44), periodic surface intakes (1), fish ponds (1). A total of 38
water permits were issued between 1998 and 2010 and are still valid today. In the last
decade (2011–2020), 165 such permits were issued, the most (20 and more permits) in 2016,
2017, 2019, and 2020. There was also a sharp increase in wastewater discharge permits
granted between 2011 and 2020. During this period, 59 of the 62 permits currently in force
were issued. Table 5 shows the general distribution of water-legal permits granted and in
selected categories in 1998–2020.

According to the analysis of the database, it should be assumed that at least 32 permits
in the detailed description have direct reference to the tourist function (guesthouse, hotel,
restaurant, recreational function, ski, sports and recreation resort, etc.). Seven water-
legal permits concerning the abstraction of surface waters (including one periodical) apply
currently in the area of the Białka River Basin. Four permits were issued to entrepreneurs for
snowmaking on ski slopes, while the others were issued for the needs of small hydroelectric
power stations and for supplying waterworks. Water intake for skiing purposes exceeds
15,000 m3 per day (Table 6). The permits provide for the abstraction of water from the
Białka River in the following locations: Czarna Góra Grapa, Bukowina Tatrzańska, Białka
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Tatrzańska, and Jurgów. Out of all water-legal permits related to wastewater discharge,
only 14 were classified as discharges of treated domestic sewage or domestic sewage, with
information on the permissible discharge. In total, on the basis of the information contained
in the obtained database of the permits in force, their discharge is allowed in the amount of
Qśr = 231 m3/d (Table 7).

Table 5. Number of water-legal permits issued in 1998–2020 in the Białka River Basin.

Year
Number of Water-Legal Permits

Issued (Currently Valid)

Type of Water-Legal Permit

Surface Water Abstractions
(Including Periodic Intakes)

Sewage
Discharges

2020 23 - 4
2019 20 - 7
2018 14 1 6
2017 21 2 (1) 10
2016 21 1 6
2015 19 - 7
2014 17 - 5
2013 10 - 5
2012 11 - 7
2011 9 - 2
2010 7 1 1
2009 1 - -
2008 7 - -
2007 3 - -
2006 7 1 1
2005 5 1 1
2004 2 - -
2003 1 - -
2002 3 - -
2001 1 - -
2000 0 - -
1999 0 - -
1998 1 - -

TOTAL 203 7 (1) 62

Table 6. Purposes of water abstractions.

Purpose

Acceptable Quantity

Qmean

m3/d
Qmax

m3/s

Artificial snowmaking of slopes
(the Białka River) 16,950 -

Small hydroelectric power stations - 2.3
Waterworks no data

Table 7. Sewage discharges.

Sewage Discharge Site

Acceptable Quantity

Qmean

m3/d

Czerwonka 67.8
Bryjów Potok 60

Rybi Potok 9.5
Unnamed stream 51.3

To the ground 42.3
Total 230.9
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Over 40% of all water-legal permits in the catchment area were issued for Białka
Tatrzańska (84 water-legal permits). According to the information obtained, 52% of users
are private individuals (44 permits). The issued decisions concern, among others, wastew-
ater discharge (35 permits), underground intakes (27), protection zones of underground
intakes (11), exceedances (11), treatment plants (6), and surface intakes (1). According to
the data, wastewater (including treated domestic sewage, rainwater, and snowmelt) is
most often discharged to the ground, mainly using absorbent wells and sewage outlets to
the Czerwonka stream. In the other major towns located in the catchment area (Czarna
Góra, Bukowina Tatrzańska, Brzegi, Trybsz, Jurgów), 103 water-legal permits apply in
total, out of which 36 permits (35%) are for private individuals. The permits issued in
these towns include wastewater discharges (21 permits), exceedances (30), underground
intakes (31), surface intakes (4, including one periodical), and sewage treatment plants (2).
Wastewater is most often discharged into ditches and streams without names, representing
the tributaries of other rivers, and to the ground using absorbent wells. Apart from water
permits, which specify the volume of abstraction, discharge, or other environmental effects,
information about the volume of water resources and how it changes over time in different
parts of the catchment area is an integral part of water resource management. Currently,
apart from two water gauges on the Białka River, the Institute of Meteorology and Water
Management—National Research has a water gauge on the Morskie Oko Lake. Between
1967 and 1979, there was also a water gauge on the Wielki Staw Lake (Roztoka) in the
Valley of the Five Polish Ponds (Table 8).

Table 8. IMGW-PIB measurement network in the Białka River Basin.

Type Gauge Name
Date of Starting the

Measurements
Date of Termination

of the Station

Lake Wielki Staw (Roztoka) 1967 1979
Lake Morskie Oko 1951 Active
River Białka 1917 Active
River Białka 1994 Active
River Młynówka (Białka) 1942 2000

4.4. Flood Risk

Floods in the Białka River Basin are a permanent manifestation of its hydrological
regime [73]. This is related to the mountainous nature of the catchment area—the diverse
morphology of the terrain and the significant height differences, which, combined with high
rainfall, often of a torrential nature, result in the rapid development of floods, especially
in the southern part of the catchment area. In addition, the spatial distribution of the
population is uneven and concentrated in the central and northern parts of the catchment
area, in the valley axis—along rivers and streams. This is another characteristic of this area
that contributes to the development of floods, threatening the health and lives of residents.
The first mentions of floods in Podhale date back to the early 19th century. The floods in
1934, 1970, 1997, and 2010 are considered extremely catastrophic events [90]. According
to the inhabitants of the Białka catchment area [91], starting from 1997 and in the years
2001, 2002, 2004, 2005, 2008, 2010, 2014, and 2018, as a result of the floods, numerous roads,
bridges, power transmission lines, and water supply systems were destroyed; moreover,
drinking water intakes, sports fields, and houses were flooded. In 1965–2008, the bridge
over the Białka River between Nowa Biała and Krempachy was broken three times. Flood
losses between 2007 and 2012 in the community of Bukowina Tatrzańska amounted to over
PLN 10 million [92]. The issue of flood risk, particularly the regulation of the Białka river
bed, is the subject of a conflict between stakeholders representing the local and regional
authorities, the inhabitants of the area, and the Regional Directorate for Environmental
Protection in Cracow. This issue is reflected in the local media publications, similarly as
in the case of water pollution [63,93–105]. At the lowest level, the inhabitants of the area
demand effective regulation of the river bed through the construction of embankments
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and weirs and consent to the deepening and thus narrowing of the river bed, also in
the area of a Natura 2000 nature reserve. Representatives of the local administration,
such as the major of Nowy Targ, present a similar position. At the regional level, there
is a conflict between the above stakeholders, the conservator of nature protection, and
environmental organizations, which indicate that the proposed solutions are short-term
and do not consider the nature of the Białka River [106]. In such circumstances, conflicts
escalate, including protests. Flood risk is currently under discussion between the public
administration and the local community [107]. Representatives of the local administration
(commune heads, district governors, village chiefs), as part of consultations on regulatory
works carried out on the Białka River in 2018, indicated that the protection of residents
against the effects of floods is one of the management priorities in districts, communes,
and towns. According to the information posted on the National Water Holding Polish
Waters (PGW WP) website, in 2009, the first attempt was made to implement a flood
protection project, taking into account the protection of the unique nature of the Białka
River environment [108]. However, the proposed solutions met with the reluctance of
the local community. Work is currently underway on a multidirectional flood protection
project from the border of the Tatra National Park to the mouth of the Białka River to the
Czorsztyn Reservoir. The Program for Białka is intended to protect valuable habitats and
ensure corridors of free migration for aquatic and water-dependent organisms.

4.5. The Białka River Basin in the Context of Climate Change

When analyzing climate change, we will use two projects’ results based on scenario
analyses that form its basis. The scenarios relate to the specific emission of gases that
retain solar energy in the Earth’s atmosphere, known as greenhouse gases, and contribute
to positive radiative forcing. In such a situation, there is an increase in energy absorbed
by the climate system, which leads to climate warming. The scenarios included in the
Special Report of Emission Scenarios (SRES) [109] are defined by families (A1, A2, B1, and
B2) designed on the basis of a set of consistent assumptions. In turn, the Representative
Concentration Pathways (RCP) scenarios [6] are classified according to the change in
radiative forcing (+2.6 to +8.5 W/m2) that will occur by 2100. The four proposed scenarios
are called RCP2.6, RCP4.5, RCP6.0, and RCP8.5. They estimate the approximate radiative
forcing in 2100 against 1750. The year 1750 is the reference year as the conventional end
of the pre-industrial era. In the second half of the 21st century, the SRES A2 has a similar
trajectory to RCP8.5. Both trajectories will reach around 8 W/m2 by 2100. SRES A2 is also
similar to RCP8.5 in terms of changes in mean global temperature [110].

Taking into account the described similarity of the A2 scenario to the RCP8.5 scenario,
to illustrate the changes in water resources, the figures below show the percentage change in
the mean annual flow and mean seasonal flows in rivers between 2071 and 2100 compared
to the period 1961–1990 for the A2 scenario [110,111]. For the Tatra Mountains and Podhale
region, the forecasted flow change is within the range of -5 to 5% in terms of mean annual
flows (Figure 3).

In turn, a detailed analysis of the results of the Chase-PL project shows that, in
the south of Poland, the number of hot days has increased, and winters are becoming
milder—the number of very cold and extremely cold days is decreasing. In high mountain
areas (such as the southern part of the Białka River Basin), a decrease in annual precipitation
is observed, while, in the foreland of the Tatra Mountains, the opposite trend is observed. In
the Podhale region, the ratio of winter precipitation to summer precipitation changes [112].
Both in the station located in the high mountain region and in the foreground of the Tatra
Mountains, the mean seasonal precipitation decreases in winter and summer, while, in
spring and autumn, it increases. A particularly unfavorable phenomenon is the change
in the type of precipitation from snow to rain in winter. As a result, the water retained by
plants during the summer quickly escapes beyond the catchment area. Additionally, the
lack of snow cover may reduce the retention capacity of the soil as a result of soil freezing.
The climate scenarios based on the radiative forcing in the RCP 4.5 and 8.5 variants for the
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time horizons 2021–2050 and 2071–2100 for the empirical–statistical downscaling (ESD)
and dynamic downscaling (DD) models clearly forecast an increase in air temperature [113].
The DD projections indicate that the mountainous areas of Southern Poland will be exposed
over a longer time horizon to temperatures above 2 ◦C per year in the RCP 8.5 scenario.
The most significant change will take place for the winter months (both RCP 8.5 and 4.5).
According to the DD method, precipitation in both time horizons and emission scenarios
will increase from a few to several percent per year (Table 9). The highest increases are
forecast for the winter months. In the case of ESD projections for the Podhale region, a
decrease or a slight increase in annual precipitation is forecast. In winter and autumn, a
weaker decrease for the RCP 4.5 scenario and stronger for RCP 8.5 (multi-year 2021–2050)
is expected. The decrease in precipitation total is carried over to the spring and summer
months for a longer time horizon. In addition, the authors of the study point out that the
appearing divergences in the projection results for various types of models introduce high
uncertainty of the obtained results. The results of the SWAT model for RCP 4.5 and 8.5
in the time horizons 2024–2050 and 2074–2100 for the value of river outflow do not show
statistical significance of the projected changes [114]. Climate change will also affect aquatic
organisms in the Białka River. Okruszko et al. [115] analyzed three groups of fish species:
settled, partially migratory, and migratory. For the first group, the impact of the change on
the rivers in the Podhale region will be medium for both RCP 4.5 and RCP 8.5 in the near
and far future. Similarly, for the second and third groups, there will be slight deviations
towards high and low impact. The IHA index [116] was used for the analyses, including
identifying changes in parameters affecting fish habitat conditions. These included features
such as water temperature, flow velocity, and vegetation changes.

4.6. Legal Forms—Polish Water Law in the Context of the Stakeholders’ Participation

The current legal framework for water management in Poland is defined in the new
Water Law Act, which entered into force in 2018 [52]. According to its content, water
management in Poland should be carried out according to the principle of sustainable
development, particularly regarding the development and protection of water resources,
water use, and water resource management, including a wide and open process of con-
sultation. For water management purposes, a system of management units with different
spatial resolutions has been established. At the highest level of generality, the Białka River
Basin is classified as the Vistula river basin, then to the Upper-Western Vistula water region.
In the current text of the Act, the minister responsible for water management, the President
of Polish Waters, the directors of the regional water management board in Cracow of Polish
Waters, the management of the water catchment in Nowy Sącz, the head of the Water
Supervision Zakopane, the Małopolska voivode, the governor of the Tatra and Nowotary
district, and commune mayors (Bukowina Tatrzańska, Nowy Targ, Łapsze Niżne) are
mentioned as the governing bodies in the context of the Białka catchment area [118]. It is
understood through the principle of common interests based on the cooperation of various
stakeholders groups to obtain the maximum benefit with minimum environmental costs.
According to this Act, stakeholder participation at the national level of responsibility is
assured by the State Council for Water Management. For a specific case, the President of
Polish Waters also has the opportunity to appoint a consultative team consisting of experts
and representatives of the public administration. However, the Act does not further define
which rights such teams would have. The new Act has a direct impact on the management
of water resources at lower levels of responsibility, through the limited possibilities of
stakeholder participation. The previous water act established “water region councils”,
whose members were stakeholders representing economic, agricultural, fisheries, and
community organizations and representatives of water users [117]. The current Act has
abolished such councils.
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Figure 3. Projected changes (%) in the annual flow for the time horizon 2071–2100 in relation to the
multi-year period 1961–1990 based on Majewski and Walczykiewicz [111].

Table 9. Projected changes in annual precipitation for the Podhale region—modeled by empirical–
statistical downscaling (ESD) and dynamic downscaling (DD) based on Mezghani et al. [113].

Downscaling Method RCP Scenario Range of Changes (%)

DD

2021–2050
4.5

from 0 to 5
2071–2100 from 5 to 10

2021–2050
8.5

from 0 to 5
2071–2100 from 5 to 10

ESD

2021–2050
4.5

from 0 to 5
2071–2100 from 0 to 5

2021–2050
8.5

from −5 to 0
2071–2100 from 0 to 5

4.7. Survey Results

A total of 371 respondents took part in the survey. People with a Master’s degree
and secondary education prevailed. This trend was maintained for all age groups (except
for “up to 18”). The older the age category, the fewer people participated in the study. In
total, 63.6% of the respondents came from the Nowy Targ commune, 17.3% from Bukowina
Tatrzańska, and 12.4% from Łapsze Niżne. The remaining 7.0% were respondents from
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other communes. A significant fraction of the respondents—85.2%—declared that they
were associated with the Białka River Basin as a resident, and approximately 14% were
entrepreneurs (Table 10). Other responses did not exceed 10%.

Table 10. Links between respondents and the Białka River Basin.

Type of Connection Number of Answers %

I live here 316 85.2
I run a business 53 14.3

I work in a non-governmental
organization

(NGO)/association
21 5.7

I work in public
administration 28 7.5

Tourism 18 4.9
Other 14 3.8

4.7.1. Knowledge of Water Management and the Environment in the Białka River Basin

More than 80% of respondents indicated internet portals as the primary source of
knowledge on water management. Radio and television were ranked lower—37%—while
the remaining sources did not exceed 35% of all respondents. In their own responses, the
respondents most often cited their experience and observation of the environment as the
source of knowledge (20 responses—5.3% of all respondents). The survey respondents’
knowledge of planning documents was relatively low—63.6% answered that they were not
familiar with the planning documents related to water management (Figure 4). Awareness
of documents did not exceed 30% of all respondents. Understanding the definition of
water management was different—almost 60% of the respondents answered this question
correctly, choosing the answer based on the definition of water management from the
Water Law Act [52].

Figure 4. Knowledge of planning documents.

The high percentage (20.5% of respondents) of responses identifying the regulation of
rivers and streams with the process of water management is also puzzling. The respon-
dents noticed the variability of the water flow in the Białka River Basin during the year.
Overall, 74.1% of people believed that the quantitative status of the waters in the basin
had deteriorated. The answer to the question regarding what forms of nature protection
exist in the Białka River Basin was quite surprising. Only 15.1% of people indicated the
national park (a significant part of the basin is the Polish and Slovak Tatra National Park).
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The vast majority (73.6%) pointed to Natura 2000 sites. Almost half of the respondents
(49%) pointed to nature reserves and approximately 7.0% replied that they did not know
the forms of nature protection in the Białka River Basin. Approximately 12.0% pointed
to a landscape park but, in the Białka River Basin, such a form of nature protection does
not exist.

4.7.2. Issues in the Białka River Basin

The survey included two questions on the issues surrounding the Białka River Basin
and their causes. The number of responses to the questions varied from 330 to 361 for the
question concerning the problems and from 288 to 342 for the question related to the causes
of the issues. More than one answer was possible for the question, but few respondents
made such a choice—in Tables 9 and 10, they are marked as “other”. When asked about the
issues in the Białka River Basin, the respondents indicated the flood risk and poor quality
of water in rivers and streams as huge problems. In both cases, the responses amounted
to more than 50% (Table 11). The most frequently cited cause of flood risk issues was
the variability of the course of the river bed throughout the year. Subsequently, building
on floodplains was mentioned as the cause (Table 12). Although water shortage was not
the most crucial problem, many respondents believed that excessive water abstraction
for tourist purposes, artificial snowmaking of slopes, and a lack of precipitation were
significant causes of issues in the Białka River Basin. More than 40% of respondents
identified this issue as very important. For the problem of poor water quality in rivers
and streams, the respondents’ highlighted the following as essential reasons: discharge
of untreated sewage to surface water bodies, lack of sewage system, leaky septic tanks,
excessive discharge of untreated sewage during the tourist season. For all four of these
reasons, the answer “very important” was chosen by more than 60% of the respondents.

Table 11. Issues related to water in the Białka River Basin.

Scale of the Issue

Flood Risk
(n = 361)

Water Shortage
(n = 330)

Poor Water Quality in Rivers
and Streams

(n = 347)

%

Huge issue 53.7 14.8 56.2
Big issue 19.7 20.3 25.4

Moderate issue 18.0 37.3 12.7
Very small issue 3.6 15.2 3.2

There is no such issue 2.2 9.4 1.4
Other 2.8 3 1.2

Both questions enabled respondents to enter their own statements. Since the first
question concerned the identification of issues in the Białka River Basin, and the second
concerned the causes of these issues, respondents gave similar answers to both questions in
the “other” category. Therefore, it was decided to group thematically the answers assigned
to this category for both questions together. The result of grouping responses was to create
eight categories of issues, the order of which was determined based on the most frequent
responses among respondents. The results of this analysis are presented in Table 13. The
comments included in the “other” category show that “poor water quality” (33.0%) is the
most significant issue in the Białka River Basin. Among the other responses of respondents
were “riverbed regulations” (18.0%), “formal and legal conditions, education” (14.0%),
“digging up gravel and stones from the river bed “ (10), and “flood risk” (9.0%). Problems
related to “protected areas” (6.0%) and “water abstraction” (2.0%) were the least relevant,
according to respondents.
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Table 12. Causes of water issues in the Baiłka River Basin.

Cause

Total Number of
Responses

Very
Important

Important
Moderately
Important

Unimportant Negligible
I Don’t
Know

Other

n %

Building on floodplains 288 26.4 28.8 18.1 14.2 8.3 2.8 1.3
Variability of the course
of the riverbed during

the year
342 52.3 21.6 13.5 7.6 2 0.9 2.1

Excessive water
abstraction for tourist

purposes
305 36.7 18.0 19.0 16.7 8.2 1.0 0.3

Artificial snowmaking
of slopes 314 44.9 16.2 17.5 12.7 7.0 1.3 0.3

Discharge of untreated
sewage to

surface water
328 76.2 13.4 4.3 1.2 1.2 3.0 0.6

No precipitation,
drought 297 23.6 30.0 24.6 13.1 5.7 1.7 1.2

No sewage system 333 76.6 12.0 3.6 2.1 1.2 3.6 0.9
Leaky septic tanks 320 64.7 15.9 7.2 3.8 3.4 4.4 0.6
No water supply

network 295 41.4 18.0 16.9 9.2 9.5 4.1 1.0

Excessive discharge of
sewage during the

tourist season
336 76.8 8.6 4.8 2.4 2.1 4.8 0.6

4.7.3. Social Potential

When asked about the local community’s interest in maintaining the quality and quan-
tity of water in the Białka River Basin, 36% of respondents said that the local community
was very interested in such activities, and 21% stated that this was moderately the case.
The remaining 43% responded “Yes, slightly” (25%), “No” (17%), and “I don’t know” (1%).
In terms of the question regarding the selection of social groups that should be involved
in the water management process, representatives of the residents were dominant (88%).
Other social groups questioned, i.e., “entrepreneurs” and “representatives of organiza-
tions and associations related to nature protection”, received 55% and 50% of responses,
respectively. When asked about their willingness to cooperate in water management, 53%
of respondents expressed their willingness to get involved, 17% stated that they would
not like to get involved, while the rest did not have an opinion. In terms of the activities
that the respondents wished to undertake, the most dominant was participation in the
identification of water quality endangering sites (53%). Meanwhile, 20% wished to be
involved in co-organizing training and workshops related to water management, while a
similar number wished to help in carrying out measurements (23%), while assistance in
the preparation of training and promotional materials was the least popular option.

The final part of the survey concerned entrepreneurs. The number of people who
defined themselves as entrepreneurs (110 responses) differed from those who introduced
themselves as a person running a business in the river basin at the beginning of the survey
(53 people). The first question aimed to identify the possibility of incurring the costs of
maintaining the measurement and observation infrastructure to support business activity.
The number of affirmative responses was 50%, 21% were not interested in maintaining
the measuring devices, and 29% had no opinion. Moreover, among entrepreneurs, 14%
answered that they maintained the measurement infrastructure, while 50% of the respon-
dents indicated that they would be willing to incur such costs. The last issue concerned
establishing a hierarchy of water users—41% of the responses agreed to the creation of
such a structure, while 36% disagreed, and others did not have an opinion.
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Table 13. Respondents’ own statements.

Issue Category Description of the Category

Poor water quality

Direct and indirect responses related to poor water quality:

• information on discharge of pollutants to surface water/water bodies
from tourist centers in Białka Tatrzańska, Bukowina Tatrzańska, and
Czarna Góra.

• high-temperature water discharge from thermal baths.
• illegal discharge of pollutants by residents.
• information relating to the broadly understood contamination of the

river basin, e.g., garbage and debris removal to the river, landfills along
the riverbed.

• no sewage system in Białka Tatrzańska.

Riverbed regulation

Responses concerning the issues related to the lack of regulation of the Białka
River:

• information on the lack of reinforcements of the banks and the river bed
in critical places, i.e., in the sections of the river’s regular flooding
during floods.

Formal and legal conditions,
education

Responses on formal, legal, and educational aspects related to the proper
understanding of water management:

• information on the lack of solutions regarding charges for land taken up
by the flood.

• improper river basin management, lack of knowledge of water retention,
no compromise between the needs of the environment and local
communities, improperly functioning administration.

• lack of cooperation between the river basin managers and the
inhabitants of towns threatened by the river, improper management of
financial resources.

Digging up gravel and
stones from the river bed

Responses to the illegal digging up of gravel and stones from the Białka river
bed and the resulting problems:
rising of the river bed due to the accumulation of transported rock material in
the downstream river, thus contributing to flooding.

Flood risk

Responses concerning:

• information on the frequency of floods and related damage.
• activities related to reducing of flood risk, the impact of an

anastomosing river on the flood risk.

Other

Responses of respondents that could not be assigned to any of the other
categories. The statements were in the form of deliberations, assessments, or
statements:

• “Why and with whom the Slovaks agreed that they cut off one tributary
of this stream”

• “Rushing flow” “The problem is people who have nothing to do with
our region and are fighting against the regulation of the river, allegedly
. . . ”.

5. Discussion

The results of the analyses show that the Białka River Basin requires a multifaceted and
comprehensive approach to water management. It is an area of interest for many groups
of stakeholders due to the region’s high natural value. It is a place of residence for many
people and, additionally, a zone of development of intensive tourism, both summer and
winter. This phenomenon is confirmed by the significant number of water-legal permits
granted to tourist facilities. Due to the valuable mountain and river ecosystems in the
catchment area, there are many forms of nature protection, including water-oriented ones,
which remain an integral part of the water management process in this area. The Białka
River, because of its mountainous nature—high flow dynamics and the flood-like nature of
the river—affects various aspects of the functioning of the communities associated with
the catchment area. Due to the fact that the Białka River Basin is a transboundary area,
it may require cooperation between the Polish and the Slovak governments in the future.
As Hussein [119] points out, transboundary issues in the context of water resources are a
common problem in regions where there are frequent water shortages, and the group of
stakeholders at the country level is large. However, the current situation in the management
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of the Białka River’s resources is not of strategic importance for these countries and is not
the subject of conflict.

5.1. Water Issues in the Białka River Basin

Analyses of the obtained questionnaire surveys, the information contained in the
literature on the subject, and the media indicated that the main risks related to water man-
agement in the catchment area are the phenomena of flooding and water pollution. The
causes of these problems were most often indicated as inadequately organized water and
sewage management and, in the event of flood risk, the variability of the course of the river
bed. Much less frequently, the respondents indicated the development of floodplains. The
tourist significance of the region means that stakeholders related to the accommodation
network, ski slopes, and restaurants have and will have strategic importance in water
management in the Białka River Basin. Anthropopressure related to tourism has a negative
impact on the quality of the water in the area. Due to the region’s attractiveness, it is
burdened with a year-round influx of tourists, which also results in an increased supply
of sewage to the waters of both Białka and its tributaries. According to the permits, there
are sites of discharge of domestic, treated domestic, rainfall, and snowmelt sewage in the
catchment area. They are discharged into rivers, streams, or with absorbent wells to the
ground. The occurrence of negative phenomena related to inefficient water and sewage
management is confirmed by research conducted by A. Lenart Boroń and her team [77–80]
in the field of microbiology. They indicate that the water from the treatment plant itself
is not sufficiently purified. These studies also confirm the observations of the inhabitants
of the Białka River Basin expressed in the survey, as well as the information available in
the media. However, it should be remembered that this is a subjective assessment, often of
people not involved in water management. The activities of entrepreneurs in the tourism
industry now also generate increased water abstraction throughout the catchment area.
Abstraction for snowmaking of the ski slopes in Białka Tatrzańska, Bukowina Tatrzańska,
Jurgów, and Czarna Góra is becoming particularly significant. Based on the data from the
permits, it appears that they can collect in total approximately 0.2 m3/s (while the mini-
mum flow in the multi-year 2001–2020 in Trybsz is 0.9 L/s—taking into account that this
measurement is burdened with the abstractions mentioned above). As in the case of water
quality, the location of IMGW-PIB measurement points does not allow for the monitoring
of water abstraction because the distance between the stations is too large. However, it
should be remembered that the Water Law in pp. 316–320 requires [52] that the method of
monitoring the quantitative and qualitative parameters of the abstracted water is specified
in the water law consent. Nonetheless, there is no publicly available database that contains
data on water abstraction and the quality and quantity of discharged sewage. As a result,
there is no information flow in this regard between the stakeholders. As a consequence,
those who abstract water for snowmaking also do not know its quality parameters.

Due to the increase in the number of permits issued for the abstraction of surface wa-
ters (four permits have been issued for snowmaking of ski slopes since 2010—a two-times
increase compared to previous years), the uncertainty of the results obtained from the
above-mentioned measurement networks is also increasing. Climate change analyses do
not clearly indicate an increase or decrease in water resources. In the Białka River Basin, a
change in the precipitation structure is expected during the year. It will increase the time un-
certainty, which may necessitate appropriate adaptation measures. The climatic scenarios
for the southern regions of Poland indicate an increase in rainfall at the expense of snowfall,
which may disrupt the river’s natural regime and water availability in different seasons of
the year. At the same time, the divergent results of climate models in terms of the various
components of the water balance indicate that they are fraught with uncertainty, which
significantly hinders the development of an appropriate water management strategy. Many
authors point out that the uncertainty of climate projections is an important challenge for
entities responsible for managing various areas of life, including water resources [120–125].
This uncertainty hampers policy-making, reduces public and management confidence in
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research results, and may increase investment costs. Moreover, according to Refsgaard
et al. [126], uncertainty is a major obstacle to the efficient management of water resources
and a key obstacle to the development of adaptation measures.

5.2. Barriers to Water Management in the Białka River Basin
5.2.1. Involving Stakeholders

It should be emphasized that even the full availability of data and the full ability to
forecast changes in the aquatic environment are not enough to ensure the correctness of
the water management process. It requires a socialization aspect of the decision-making
process by ensuring stakeholder participation. This is a challenging task that requires
involved stakeholders to influence different elements of the decision-making process in
line with the common objective of adequate water management, taking into account
needs, uncertainties, and conflicts [127,128]. It is crucial to move from imposing optimal
solutions developed by experts to supporting experts in developing appropriate solutions
considering stakeholders [129]. Public consultation in Sweden showed that the public was
interested in participating in the water management process [130]. However, non-expert
stakeholders indicated that they were overwhelmed by an overload of information and
expressed doubts as to whether they should be involved at all phases of the process due
to a poor level of knowledge. Moreover, many of them indicated that they would be
more willing to engage in the problems of “their own backyard” than the entire catchment
area, the impact of which on their lives they do not see. In the Białka River Basin, social
potential in terms of willingness to participate in the water management process was also
observed as a result of the survey. At least half of the respondents were interested in
participating. As with the Swedish consultations, respondents claimed that they would
prefer to be involved in local issues such as the localization of sources of pollution, while
participatory activities, such as cooperation in the information exchange process, aroused
much less interest among them. It is worth noting that, in the studies by Jacobs et al. [131],
it is confirmed that positive effects of these activities can be observed, especially in terms
of consensus building and conflict resolution in the catchment areas of Mexico, the USA,
Brazil, and Thailand, where stakeholders were involved in the water management process.
At the same time, the authors note that participatory processes generate huge financial and
time costs.

5.2.2. Dialogue and Knowledge

Nevertheless, given the respondents’ interest in participation, it can be assumed that
implementing this type of management would improve the quality of water management
processes in the Białka River Basin. Social participation allows for the development of
thoughtful, open solutions that consider the change in knowledge concerning the water
system in the future. The need to implement a new management model in the Białka
River Basin is also reflected in the low communication assessment between stakeholders.
Both the survey results and the literature query indicate that, currently, in the Białka River
Basin, there is no proper dialogue between the public administration, stakeholders using
water, and the inhabitants of the catchment area. This is reflected in a social sense of poor
resource management (both in media reports and the survey, there are accusations that
water management is insufficiently conducted). The implementation of a participatory
management model would facilitate the flow of information and make stakeholders aware
of the difficulties in reconciling all sides of the issues. These communication problems
also translate into the level of knowledge. The survey results partially confirm this. Every
fifth respondent believed that water management is based on the regulation of rivers
and streams. Although the respondents perceived the river’s variability throughout the
year, they did not know about the forms of nature protection in the catchment area or
about planning documents related to water management. Respondents also identified the
internet as their main source of knowledge. The PGW WP is responsible for disseminating
information on water management, whose principal medium of communication is the
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website www.wody.gov.pl (accessed on 15 October 2021). By analyzing the respondents’
responses, it was found that the existing methods of communication used by public
institutions do not meet the needs of society.

A worrying phenomenon is the increasing negative assessment of the Natura 2000
program and legal regulations in environmental protection, particularly regarding flood
protection. In many cases, the respondents perceived nature protection as a tool for the
unfounded repression of the local inhabitants. The situation is aggravated by the fact that
the responsible institutions are unable to implement the assumptions of the environmental
protection program, taking into account the needs of the inhabitants of the Białka River
Basin (in particular, the Nowa Biała and Krempachy regions). This points to an imperfection
in the functioning of the water management process (especially in terms of communication
and knowledge transfer), which is intended to ensure the common interest of the whole of
society. According to the inhabitants, the strong and fast current of the Białka River, during
heavy rainfall, brings huge amounts of rubble, which causes the bed’s grade line to rise
continuously. Presumably, the grade line has been increased in some places by at least 2 m
for 80 years, and thus the Białka river bed, in some sites, reaches 200–250 m wide [91].

In the survey and media reports, people associated with the region indicated that
the most appropriate solution is artificially deepening the river bed and building flood
embankments. Significantly, such activities would lead to the destruction of the unique
character of the Białka River Basin, and, from a broader perspective, it would not improve
flood safety. This problem reveals the low level of knowledge of society—in this case
with regard to the development of the river bed and natural floodplain terraces. At the
same time, a certain contradiction appeared in the results of the survey. Some respondents
expressed a desire to deepen the riverbed on their own, while a large group indicated that
one of the area’s problems is the digging up of gravel and stones from the Białka River’s
bed. This is defined as an unequivocally negative phenomenon. There are also no legal
permits for this type of activity in the catchment area. Flood risk is a sphere where the poor
quality of communication plays a very negative role. Residents do not know which public
administration bodies they should address. They acquire knowledge about flood protection
from uncertain sources, which often do not consider the broader perspective. One example
is the perception of an anostomotic river bed as a flood risk factor. This leads to conflicts
between the residents, the administration, and organizations dealing with nature protection.
Purkey et al. [132] indicate that conflicts of stakeholder needs and different perceptions of
reality are premises for implementing a participatory management model. This is one of the
more complex elements of the process because reaching a consensus is long and arduous. It
is impossible to satisfy all parties to the conflict entirely. Furthermore, developing optimal
solutions through social participation requires a willingness to cooperate, thoughtful and
reasonable actions, precise and efficient communication, and the building of positive
relations based on respect between stakeholders [129]. An essential element of this model
is the exchange of knowledge and information, which is most effective through social
learning, which is crucial for initiating changes and building and maintaining water
management systems’ adaptive capacity [133]. Effective social learning leads to new
knowledge, a common understanding of the processes taking place in the environment,
the transparent exchange of information between stakeholders, and increased trust in the
managing authorities [134]. As a result, there is a change in practices and behaviors, the
system of values is restructured, institutional changes take place, and the policy is adapted
to the needs of the water management process.

5.2.3. Policy

The wide range of stakeholders and barriers and conflicts related to the management
of water resources in the Białka River Basin requires the implementation of appropriate
operational rules. It is worth noting that despite the low level of knowledge in nature
protection forms and planning documents, a significant percentage of respondents were
interested in cooperating in the development of the water management process, especially

249



Water 2021, 13, 3540

in identifying the risks and issues related to water resources. This potential can be used to
implement the IWRM’s principles in the studied area. IWRM’s objectives are complemen-
tary at the national level, river basin level, and sub-basin levels [135]. It is optimal in this
respect to achieve such a balance in activities that support the IWRM process from all par-
ties involved. A holistic, integrated objective means that all aspects of water management,
soil maintenance, spatial planning, land use, agriculture, transport, urban development,
and nature conservation should be considered at the appropriate scale and administrative
level [136]. Within a river basin or sub-basin, the integration of water management with
spatial planning is not an easy process because aspects of spatial planning are related to,
among others, agriculture, urban policy, transport, and industry, supervised by various
administrations guided by their own policies [137]. Depending on the level of activities in
the IWRM, three levels can be distinguished. At a local level, problems in the catchment
area, water supply, and water protection plans are analyzed. Second, the implementation
level covers the river basin scale or a separate administrative unit. Third, the political level
is where national and international problems are resolved, and legislation is created to reg-
ulate water management issues. This requires the creation of an appropriate management
structure with a network of connections, which will include public structures, including
ministry offices responsible for water management in a strategic dimension; organizations,
agreements, and agencies operating at the river basin level or its parts; local authorities
and local governments; associations of communes and catchment unions; associations of
water users; and non-governmental organizations. The local level is mainly responsible for
the practical implementation of all measures while being their direct beneficiaries. At this
level, the real, local problems of water management are known. The local level should form
the IWRM based on the correlation between two complementary activity groups [138]. The
first group should focus on the development of natural resources to ensure, among others,
economic development, while the second group includes activities in the field of resource
management, protection, and restoration. Both groups of activities require the participation
and interaction of the operational level (users and society) to ensure balance and correctness
in the management process. Given the numerous identified areas of uncertainty in water
management in the Białka River Basin and the low level of public knowledge about the
water management process, it seems that a necessary complement is the implementation of
the Adaptive Water Management (AWM) principles into the IWRM. The AWM rules aim
to build a resilient management system based on always incomplete information about the
system, considering the uncertainty of its results [139]. AWM considers the complexity of
the managed systems and the limitations in anticipating and controlling them. It assumes
a comprehensive approach to all issues and the relations between them. The key tool for
developing AWM is social learning, which should include the cooperation and exchange
of knowledge of laypeople with experts and scientists, developing an understanding of
key issues related to water resource management. AWM strives to build capacity through
training and information distribution at every stage of the management process and shape
stakeholders’ conscious attitudes in the water resource management process. Properly
built public awareness is intended to help broaden knowledge of the system and reduce
uncertainty. From this perspective, AWM ensures greater resistance to unexpected and
uncontrolled conditions in the system, reducing the negative environmental impact of its
activities, building and strengthening the dialogue between stakeholders and area man-
agers, including building positive communication relationships. Considering the barrier
to the development of adequate water resource management, which is the low level of
knowledge and measurement uncertainty, the AWM concept is probably the best way to
achieve balance, resolve conflicts, and deal with the low spatial resolution of measurement
networks and the uncertainty of climate projections for the Białka River Basin.

Both the IRWM and AWM need to develop an appropriate legal framework that
will support the transition of all management stages to a local scale. Do the changes to
the Water Law introduced in Poland in 2018 create the conditions for such support? The
Act, in its current form, has maintained an opinion-making and advisory body at the
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national level as the State Water Management Council. It is of strategic importance, and
its role is mainly based on issuing opinions on strategic documents or formal and legal
solutions on a national scale. The water region councils have been abolished, and advisory
committees have been proposed instead. Pursuant to Article 250 para. 1 of the above
Act, the President of Polish Waters appoints consultative committees as opinion-making
and advisory teams composed of governors, voivodeship marshals, representatives of
the local government of the Joint Government and Local Government Commission, and
directors of inland navigation offices. These committees are established for one or more
water regions. However, is such a solution sufficient from a local point of view? Certainly
not, because the act should also allow for the formal appointment of river basin committees
and their operation at the local level, which is significant because of the aforementioned
interactions. Thus, it is a barrier to the implementation of both IWRM and AWM. Table 14
shows how the current legal framework in Poland fits into the IWRM concept. The ideas of
the concept are reflected at the political and implementation level. The legislation has the
appropriate solutions here. On the other hand, the problem is the local level, theoretical
assumptions of which are presented in the table, and which, in the current legislation, has
not been defined (except for the spatial development plan). Local stakeholders, such as
inhabitants and entrepreneurs associated with the Białka River Basin, are not included in
the water management process. Their only tool is applications and petitions to the public
administration managing the catchment area. The local level is crucial for AWM. The
implementation of social learning must involve the exchange of knowledge between all
stakeholders. Moreover, there are conceptual inconsistencies in the current Water Law,
which make it difficult to understand the issue of water resource management. According
to the first article of the current Water Law (in p. 1) [52], water management consists of
water resource management, water development and protection, and water use. On the
other hand, Article 10 of the Water Law (in p. 3) defines the following elements of water
resource management: meeting the needs of the population and economy, the protection of
waters, and the protection of the environment associated with these resources [52]. The
emerging inconsistencies and lack of appropriate tools in the Water Law are some of the
main barriers to the implementation of AWM, as well as IWRM. This is a basic problem, but
the fragmentation of the management stages into many stages will generate further issues
that the current legislation cannot minimize. For example, Saravanan et al. [140] indicate
that although the decentralization of management is necessary, there is a particular risk of
uncontrolled behavior, such as unfair selection of stakeholders for political reasons. It also
confirms that a significant obstacle to engaging society in the water management process in
many countries is unfavorable legal solutions that do not provide tools for building social
participation.

Table 14. A concpetual framework for catchment management in the context of IWRM for the Białka River Basin.

Assumption/Premises of IWRM Political Level Implementation Level Local Level

The type of river basin
organization

International River Basin
Committee

PGW WP National Water
Management Board, regional
water management boards,

committees, associations, etc.

Local group, an association of
communes, catchment union, the

association of catchment users

Strategies and plans for the
river basin

Agreement for the international
catchment, management plan River basin management plan

Local water plan, land use plan,
local water and sewage

management plan, local flood and
drought protection plan

Decision-making level Highest political level Voivodeship, district, commune
Local administration, user

associations, producer
associations

The existing system of
natural resources

A delimited geographical area,
river basin, or part thereof, lake

A regional ecological system,
catchment, groundwater

reservoir, aquifer

Areas with relatively uniform
ecological and

hydrological conditions
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6. Conclusions

The water resource management in the Białka River Basin is facing many difficulties.
The most significant are river basin issues such as flood risk and water pollution, and,
to a lesser extent, the risk of water scarcity. The causes of these problems are complex.
They result from natural conditions (the seasonal variability of the hydrological regime of
the Białka River, the flood-like nature of the river) and anthropogenic conditions (intense
tourist pressure resulting in excessive discharge of municipal sewage and increasing water
abstraction). The low emphasis on education in terms of water management results,
among others, in the emergence of conflicts between the stakeholders and institutions
responsible for water resource management. The low level of knowledge also leads to
a considerable diversification of attitudes towards current methods of nature protection,
and, in some cases, a strongly anthropocentric approach, especially in terms of the area’s
flood safety. Poor communication between stakeholders is the cause of, and, at the same
time, the solution to this issue. The hydrological and socio-economic complexity of the
river basin requires appropriate management methods such as IWRM, which will strive
to preserve the unique value of the area, taking into account the needs of its inhabitants.
Due to the low level of knowledge, high uncertainty of forecasts of changes in water
resources, and uncertainty of measurements, the Białka River Basin needs a solution that
will focus on the social aspects of management in order to reduce the negative effects of the
uncertainty of system elements. The AWM seems to be the answer to these needs, which
emphasizes social learning and knowledge exchange in adapting to changes in the water
and economic system. In order for IWRM and, in the broader context, for AWM to be
able to exist at all levels within the river basin, appropriate legislation is necessary. The
current legal framework in Polish law covers the political and implementation level at the
public administration level. However, at the local level, which is crucial for AWM, there is
no defined framework for action and functioning in the context of developing the water
management process.
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Wydawnictwa Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2015; pp. 79–88.

254



Water 2021, 13, 3540
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logical water quality of the Białka River and its relation to the selected physicochemical parameters of water. Water Air Soil Pollut.
2016, 227, 1–12. [CrossRef]
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82. Kuraś, B. Białka Tatrzańska. Turystów Przybywa, a Kanalizacji Jak Nie było, Tak Nie Ma. Trza Skończyć z Tym Szambem”. 2020.
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87. Białka Tatrzańska: Płyną Ścieki Do Rzeki. 2014. Available online: https://24tp.pl/?mod=news&id=21987 (accessed on 15 October 2021).
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105. Słowik, J. Białka Znowu Groźna. Mieszkańcy Chcą Udrożnienia Koryta i Zabezpieczenia Brzegów. 2020. Available on-
line: https://podhale24.pl/aktualnosci/artykul/71175/Bialka_znowu_grozna_Mieszkancy_chca_udroznienia_koryta_i_
zabezpieczenia_brzegow.html (accessed on 15 October 2021).

106. Skowron, G. Kraków. Protest Przeciwko Regulacji Rzeki BIAŁKI. 2018. Available online: https://dziennikpolski24.pl/krakow-
protest-przeciwko-regulacji-rzeki-bialki/ar/c3-13741932 (accessed on 15 October 2021).
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Świetle Prognozowanych Zmian Klimatycznych; IMGW-PIB: Warsaw, Poland, 2012.
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Abstract: Allocating finite water resources between different water uses is always a challenging
task. Searching for a solution which satisfies the water needs (requirements) of all water users
without compromising the water requirements of river ecosystems calls for analyzing different water
management options and their expected consequences. Water management balances are usually
used for comparison of water resources with the needs of water users. When aquatic and water
dependent ecosystems are considered in a similar manner as other users, searching for the optimum
water resources allocation, without neglecting requirements of the natural environment, is possible.
This paper describes basic modeling assumptions and methodological solutions, which allow for
taking into account some tasks related to the protection of aquatic and water dependent ecosystems.
The water balance model, developed for a catchment comprising the Warta Mouth National Park, was
applied to find out whether supplying adequate amounts of water for conservation (or restoration)
of wet meadows and wetland habitats in the area is possible, while still satisfying the demands of
other water users.

Keywords: water requirements of aquatic and water dependent ecosystems; water resources alloca-
tion; water balance model

1. Introduction

The issue of allocating sufficient volumes of water for aquatic and water-dependent
terrestrial ecosystems has been analyzed for many years, but, in 2000, the Water Framework
Directive (WFD [1]) introduced new and ambitious objectives to protect and restore these
ecosystems as a basis for ensuring the long-term sustainable use of water for people,
businesses, and nature. The key objective of the WFD is to achieve a good status for all
water bodies. This comprises the objectives of good ecological and chemical status for
surface waters and good quantitative and chemical status for groundwater. This becomes a
priority task of water management. Maintenance of the appropriate environmental flows
is mentioned often as one of the basic conditions to achieve good status of surface water
bodies [2]. There are many methods of defining the environmental flows required for
an aquatic environment—at least 200 of them have been identified [3–5]. These methods
differ considerably from one another as regards the method of determination, scope of
application, the hydrological regime elements taken into account [6–8], interactions with
groundwater [9,10], and the socio-economic objectives of water use [11–13]. The flow
magnitude and characteristics of the hydrological regime, such as variability of flows, their
distribution during high- and low-water periods, duration, and frequency of occurrence,
are treated as the key parameters [7]. Other parameters, such as water velocity and depth of
the stream, river bed morphology, and connection with floodplains, are also mentioned in
the context of quantitative requirements of river ecosystems [14–16]. For water dependent
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ecosystems, including a variety of wetlands, water requirements pertain to hydrological
feeding types, time distribution and dynamics of water level changes, soil moisture content,
and frequency of droughts [17,18].

Identification of water requirements of ecosystems or protected organisms is the first
basic condition of their protection. Other conditions are related to the ability of meeting these
requirements—in view of the existing socio-economic tasks of water management [19,20].
The search for a compromise fits into the concept of sustainable development. What has
fundamental importance is the possibility of analyzing the potential alternatives of water
resources allocation in a specific location and time [21,22].

At the current level of economic development, in Poland and Europe alike, and
with the effected anthropogenic changes of the environment as a whole, one can hardly
approve the idea of preservation or reconstruction of the natural hydrological conditions
that originally formed the existing aquatic and water-dependent ecosystems. One should
focus instead on allocation of sufficient (or appropriate) volume of water, which—in a
specific situation as regards to water use, anthropogenic transformation of the basin, and
social expectations, e.g., those related to flood risk—at least partly meet the ecosystems’
requirements and secure a sufficient level of protection [23]. One of the tools for analyzing
the water resources allocation alternatives is the model of water management balance
(e.g., [24]). Since the water management balance means comparison of water resources
with the needs of their users, both the resources and the needs should be described with
sufficient precision. A dynamic balance takes into account data that change over time and
the calculations are based on a simulation of the functioning of the water management
system, usually a river basin [25,26].

In the Warta Mouth National Park (WMNP) there are conflicting objectives of water
resources management: agricultural areas located in the park require at least periodical
drainage, while protection of the Park’s natural values requires maintenance of high
humidity of habitats. The use of water resources of the Warta River to improve habitats’
moisture conditions is limited due to the necessity to provide adequate flows for inland
navigation. The aim of the study was to answer the question if it was possible for effective
protection of wetland habitats, navigation, and agriculture to coexist in the area. In order
to answer this question, a water management balance of part of the Warta catchment
was performed, in which tasks related to maintaining appropriate moisture conditions
in the WMNP area were taken into account. In this paper special emphasis is put on
methodological solutions for these elements of water balances, which are of crucial value for
adequate representation of the quantitative requirements of water dependent ecosystems.
The balance model, which takes into account the specific features of a catchment comprising
The Warta Mouth National Park, was applied to find out whether supplying an adequate
volume of water for conservation or restoration of the marshy meadow ecosystems is
possible, while still satisfying the demands of other water users. The present balance model
assumptions, methodological solutions, and calculations are the effects of a study: “Water
management optimization model for the Warta Mouth National Park” [27] undertaken
within the preparations of a draft protection plan for the Park and Natura 2000 site PLC
080001, implemented by MGGP S.A. in 2013.

In the following part of the article a short description of the Warta Mouth National
Park is presented, the applied water management balance methodology is discussed,
and then the way in which the specific uses of the studied area were included in the
balance model is described. The results of simulation calculations are presented on the
example of a selected habitat that is protected in the WMNp. In the discussion, attention
is paid to possible sources of uncertainty of the obtained results. Conclusions formulated
in the final part concern both the usefulness of the applied approach in assessing the
possibility of obtaining a compromise in case of conflicts between water management tasks
and the scope of information necessary for an adequate description of tasks related to
ecosystem protection.
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2. Materials and Methods

2.1. Study Area

The Warta Mouth National Park (WMNP) lies in the lower part of the Warta River
basin and comprises the right-hand part of the Warta valley and a fragment of the area
between the Odra and Warta rivers. The WMNP covers an area of 8037.6 hectares. It
is one of the most important refuges of water birds and marsh birds, as well as birds of
prey, both in Poland and in Europe [28]. Due to its natural values, it has been entered
on the list of the RAMSAR Sites and included in the Natura 2000 network (PLC 080001).
The prevalent land cover consists of meadows with various moisture contents, some of
them being used for agricultural purposes. The southern part of the park is regularly
flooded during the spring freshets of Warta and the swelling of its waters at the mouth of
the Odra River. The northern, right-hand part of the valley, located behind flood dikes, is
not hydrologically connected with the Warta River today. The water conditions are shaped
by small watercourses flowing down from the edge of the valley, and—first of all—by a
system of drainage canals and ditches, as well as pumping stations, that drain water from
the area [28]. The nature of the WMNP water conditions is one of the key elements for
the protection of open meadow and marsh habitats, as well as nesting and resting areas of
valuable bird species.

Besides meeting water needs related to the WMNP protection, the water management
tasks in the Warta mouth catchment include: maintenance of the environmental (hydrobio-
logical) flows in Warta and its tributaries; ensuring navigation flows in the Warta River
(II class navigable route stretch); and water supply to the existing agricultural users.

2.2. Water Management Balance

The water management balance of surface water is a comparison of water resources
with the needs of water users, which takes into account the requirements of the natural
environment, the hierarchy of users, the effects of hydrotechnical facilities, and the impact
of water abstractions and wastewater discharges on the volume of surface water resources,
as well as the interactions with groundwater [29,30]. The balance calculations are performed
as a simulation of water resources allocation among the users, for all time steps of the
selected multi-annual period, taking into account the time variability of the input data
(water resources, water needs and wastewater discharges, operation rules of hydrotechnical
facilities, etc.). Simulation analyses shall cover the longest possible period for which reliable
data on resources and needs are available. The allocation of water resources is carried out
according to the adopted hierarchy of water use, which represents the priorities prevailing
in the analyzed area and denotes the order in which users receive access to water. Water
abstraction for a user placed lower in the hierarchy must not cause the occurrence or
worsening of the deficit of the more important user. The comparison of water resources
and water users’ needs is carried out at control cross-sections, which are important for
determining the quantity of water at main rivers above and below the mouth of significant
tributary; at tributaries above the mouth to a higher-order river; at locations of significant
water abstraction and sewage discharge, or hydrotechnical facilities (storage reservoirs,
transfer channels); and at places important for the assessment of the amount of water
resources due to protected ecosystems/habitats.

Time series of mean periodic flow (weekly, 10-day, monthly) at water gauge cross-
sections are the basis for determining surface water resources. The flow series should be
continuous, synchronous, and homogeneous, and should be free from the water use impact.
Ensuring the last condition can be achieved, subject to data availability, by naturalizing
water gauge flows (e.g., [31,32]). Flows at control cross-sections are computed by interpola-
tion and extrapolation methods on the basis of water gauge observations, or, results of a
hydrological model can be imported.

The needs of water users are represented by time series of average water demands
(e.g., municipal or industrial users), or flow requirements at specific river cross sections
(environmental flows, navigation flows, etc.). However, for water users capable of retaining

261



Water 2021, 13, 3628

water, such as fishponds, irrigated facilities, or certain nature conservation tasks, whose
needs depend on the current water retention (including the amount of water supplied
in previous time steps) and current hydrometeorological conditions, they are calculated
during balance analyses. This approach allows for considering the build-up of demand
volumes that have not been met in previous time steps. The simulation of users retaining
water is carried out in two steps: first, user needs are calculated based on retention volumes
and hydrometeorological conditions. Then, after the allocation of water resources in a
given time step, the final state of retention is calculated based on the allocated water. This
retention becomes the initial state in the next time step of simulation.

The wastewater discharges of groundwater users represent an additional source of
water in the river. Discharges (return flows) of surface water users are calculated during
water resources allocation, based on the amount of water allocated to the user.

The impact of groundwater use on river flows is described by pseudo-users of surface
water, whose needs represent the reduction in groundwater discharge to rivers due to
groundwater use. The volumes of pseudo-user needs are determined at the balance cross-
sections either on the basis of the results of a groundwater model, or in a simplified way,
according to the assumption that the reduction of groundwater discharge to a river is
proportional to the area of groundwater filtration to the wells located in the catchment.
However, the possibility to take into account the impact of groundwater use depends on
the availability of results of hydrogeological analyses and groundwater use data.

The water system under study is modeled as a flow network of arcs and nodes. It
reflects the spatial structure of the system: the layout of the river network, the routes of
water transfer, the location of hydrotechnical structures, and the points of water intake
and sewage discharge. The nodes of the network correspond to control cross-sections,
water users, and hydrotechnical structures and the arcs represent the routes of water
movement between the nodes: along river or water transfer stretches and between rivers
or hydrotechnical structures and water users.

The basic task of the model is the multi-period simulation of the allocation of water
resources between users. The flows calculated in the network arcs for each simulation time
step must satisfy two basic conditions: flow compliance with the arc constraints (e.g., the
water intake for a user must not exceed the amount of needs and must be a non-negative
value) and preservation of the mass balance at the nodes (the sum of water inflows to a node
must be equal to the sum of outflows). Allowing variability of flows within the constraints
indicates that many different combinations that satisfy the constraints are possible. If in a
time step there is a surplus of resources over demand, the solution is to assign to the intake
arcs a flow equal to demand; the flows in the other arcs result from a simple summation
(balance). In case of water scarcity, a combination of flows corresponding to the adopted
hierarchy of water resource use is determined. The criterion for optimizing flows in the
network is to minimize the sum of losses caused by failure to satisfy the needs of water
users or to provide the required flows in river sections. The values of unit loss coefficients
for water users and river reaches represent the water use hierarchy. The Out-of-Kilter
network programming algorithm [33] is used to solve the water allocation task thus defined.
The results of the calculations consist of the time series of: water intakes and wastewater
discharges by users, volumes of water in storage reservoirs and at users that retain water,
and flows in transfer channels and in all river reaches. From these, assessment criteria,
such as time reliability, volume guarantee, maximum depth, maximum volume, and
maximum duration of continuous deficit, are calculated. Criteria for users retaining water
are usually based on the frequency of occurrence of a given retention condition [22,32].
Moreover, reserves of available water resources with assumed guarantees of occurrence
are determined in all control cross-sections.

Balancing calculations often consider several water management variants, i.e., system
operation is simulated for different sets of input data and model parameters. These variants
may include: the occurrence, parameters and water management principles of hydrotechni-
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cal facilities (storage reservoirs, transfer channels), environmental flows, and water needs
of users, as well as the hierarchy of water resource use.

2.3. Model Concept

The developed balance model allows for the consideration of the specificity of the area
and identifies water users and their water needs related to WMNP protection—the basic
scheme used to construct the model is shown in Figure 1. The following has been taken
into account to assure the appropriate water conditions in the WMNP area: (i) satisfying
the Northern Polder’s water needs from the Old Warta River (N Polder PU4); (ii) supple-
mentary Warta water supplies to the Northern Polder (N Polder PU4*); (iii) appraisal of the
volume and time distribution of Warta water reserves for potential supplementary supplies
to the southern part of the WMNP (Słoński Basin). The most important assumptions pertain
to the method of modeling water requirements of the Northern Polder, the estimation of
water volumes available for supplementary supplies to the Słoński Basin, and the method
of representing water needs for navigation purposes (PU5).

Figure 1. Water management system scheme.

Environmental (hydrobiological) flows (QN) were determined at control cross-sections
(PB1-PB8) by the hydrological method defined by the Regional Water Management Author-
ity, based on the method of Kostrzewa [34,35]. According to this method, the environmental
flow is equal to the higher of two values: the product of the multi-year average of the
annual minimum flows and the parameter of the method (k coefficient), or the lowest flow
in the multi-year period. The k coefficient depends on the hydrological type of the river
(lowland, transitional, mountain), which is selected on the basis of the average specific
runoff and on the catchment area to the cross-section under consideration. The existing
agricultural uses included fishpond complexes and areas of irrigated grassland, the needs
of which were determined on the basis of water permits. The needs of these users were
represented in the model as aggregated water demands PU1–PU3.
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2.3.1. Northern Polder

The protection of the natural values of the Northern Polder WMNP aims to prevent the
degradation of organic soils and vegetation and should, therefore, consist in maintaining
the highest possible moisture content of the local hydrogenic habitats [28]. The habitats
have been classified into three types based on their moisture conditions, and their respective
uses have been defined:

• Marshy habitats, including reed fields not used for agricultural purposes, located
in the southern part of the Polder—between Old Warta and the flood bank (area of
marshy habitats Fmarsh = 500 hectares),

• Moist habitats, including extensivelyutilizedonce-mowedmeadows(Fmeadow = 1050 hectares),
• Moderately moist habitats, including pastures (Fpasture = 1000 hectares).

The task of ensuring the habitats’ high moisture content has been formulated as
follows [28]:

• Admission of spring floods to the marshy and moist areas (until the end of June);
• Avoidance of excessive drainage when used for agricultural purposes (the groundwa-

ter level may be reduced to 50–60 cm below the ground from early June to mid-October
in the case of pastures, and in July-August in the case of extensive meadows);

• Stopping of drainage and reconstructing of water retention in the soil profile after
agricultural utilization ceases.

To maintain the habitats’ high moisture content, the own waters and Old Warta’s
resources should be used first of all, with Warta waters used only in case of shortage of
such resources. To represent water requirements of the Polder mentioned above, simplified
water balance in the soil profile has been used to develop a model of the habitat’s water
needs, and the required parameters have been determined for each habitat moisture type
(the desired water retention in the soil profile by seasons, the possibility of drainage or
irrigation, and the occurrence of floods). According to the modeling method of water
retaining user, the water needs of each habitats were calculated based on the soil water
balance and the desired retention. Then, after solving the water allocation task, the final
retention state was calculated, which became the initial state in the next simulation step.

2.3.2. Słoński Basin

No model of the Słoński Basin’s water needs has been developed, due to insufficient
exploration of the site and inventory/survey works carried out during the balance analyses.
Instead, the volume of water resources (reserves) available for use as supplementary
supplies for the area was estimated. The available reserves were determined based on the
assumption that they are equal to the volume of water that remained after the needs of
all users located downstream of the examined cross-section had been satisfied. Of crucial
importance for the allocation of water for the potential supplementary supplies to the
Słoński Basin, has been a discussion concerning satisfaction of the inland navigation
water requirements.

2.3.3. Navigation

As follows from the information obtained from the Regional Water Management
Authority in Poznań, the navigation season along the analyzed stretch of the Warta River
comprises the whole year. The proper (standard) navigation conditions require water
levels exceeding a specific threshold value (Hnav_stand). At the same time, navigation
may take place, with some limitations, already at a specific lower water level (Hnav_min).
Below that level, navigation is impossible. After preliminary balance analyses, it has been
arranged with the Regional Water Management Authority in Poznań, that no resources
are reserved for navigation purposes in the periods with water levels below Hnav_min.
Therefore, current water requirements for navigation purposes (Qnavigation) have been
modeled as:

• Equal to the navigable flow at water levels exceeding Hnav_stand,
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• Equal to the actual flow within water level range 〈Hnav_min–Hnav_stand〉, and
• Equal to 0 at water levels below Hnav_min.

The water demand for navigation (PU5) is represented in the balance model as the
excess flow over the environmental flow (PU5 = QNavigation − QN5).

2.4. Simulation

The balance analyses have been carried out in accordance with the methodology
described in Section 2.2 by simulation of the catchment’s functioning. The balance model
was developed in an MS Excel workbook with Visual Basic Application macro support
enabled. The model developed for the Warta mouth catchment consisted of 16 nodes and
81 arcs. The following hierarchy of water use was assumed in the balance calculations:
maintaining environmental flows, maintaining navigation conditions, supplying existing
agricultural users, and providing adequate moisture conditions for wetland habitats in the
Northern Polder. The balancing covered the years 1984–2012, and the simulation based on
10 days’ time steps. The interpolation and extrapolation method was used to determine
the magnitude of flows at control cross-sections.

3. Results

On the basis of the balance simulation results, the criteria for assessing the degree to
which users’ water needs were met were calculated. In the system under analysis, water
supply problems occurred in the basins of small watercourses—tributaries of Warta or
Old Warta. With respect to those rivers, relatively low time reliability of maintenance
of the environmental (hydrobiological) flows and satisfying water users demands were
determined: QN8—58%, QN6 and QN7—60%, and PU1–PU3, respectively, 61%, 77%,
and 23%. The volumetric guarantee, defining the ratio between the volume of water
supplied and that required, was approximately 85% for maintaining environmental flows.
The volumetric guarantee of water supply to agricultural users was in the range of 30–75%.
Environmental flows in the Warta River, on the other hand, were 100% guaranteed, and
navigable conditions occurred in 82% of the analyzed time steps (standard conditions—47%,
minimum acceptable conditions—35%). The estimated water reserves are quite large and
occur during periods when flows in the Warta River are greater than the environmental flow,
but smaller than the minimum navigable flow, or they are above the standard navigable
level. A considerable part of these reserves occurs in the spring period from March to May.
The flow volumes determined in the control cross-section PB5, in which both environmental
flow and the task of maintaining adequate navigable conditions were determined, are
shown in Figure 2 (in hydrological years, that start in the 1 November). The volumes of
water reserves that can be used for additional supply of the Słoński Basin are also included
there. As can be seen from this figure, water reserves are not available all the time. They
occur in about 50% of the time steps.

The water retention time series in the Northern Polder habitats demonstrate the
habitats’ satisfactory moisture content for most of the time. Considerable drying was found
most often (18% of the time) in the moderately moist pasture areas. These are the driest
of the habitats considered, with the smallest desired retention, which is related to their
natural conditions and actual land use. Due to problems with maintaining appropriate
humidity conditions, Figure 3 presents the water retention time series in this habitat in
the studied multi-year period. Apart from the retention, the available water resources
in the Old Warta River and water intakes to improve water conditions in this habitat are
presented. Figure 4 shows the water retention and meteorological parameters for a selected
year (2000), where relatively unfavorable moisture conditions were observed. Winter
season retention was high, but drainage at the start of the grazing season, the subsequent
period of high temperatures, lack of rainfall, and deficit of water resources for irrigation
resulted in significant drying of the habitat, which lasted from early August to late October.
In November the restoration of retention began.
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Figure 2. Balance flows of the Warta River at the cross-section PB5 with appraisal of the navigation conditions and
water reserves.

Figure 3. Water retention in moderately moist habitats in the analyzed multiple years’ period.
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Figure 4. Water retention and other water balance elements in moderately moist habitats in 2000.

In moist habitats (meadows) water retention below the assumed irrigation threshold,
i.e., overdrying threshold, was observed only 5% of the time. In marshy habitats, such
a situation occurred more frequently, i.e., in about 12% of time steps, which is related to
higher humidity of these habitats.

The resources of the Old Warta River were mainly used for irrigation. The task of
providing suitable conditions for navigation limited the supply to the Polder from the
Warta River.

4. Discussion

As identified within the water balance analyses, the problems with maintenance
of the environmental hydrobiological flows—and, thus, with meeting the users’ water
requirements—in small water courses of the analyzed basin, are related to the high val-
ues of the required flows, determined in some of the still valid documents [34], much
exceeding those determined in earlier studies [28]. Since maintenance of environmental
flows was defined as the most important task in the modeled system, low values of its
implementation criteria indicate the need for verification of the determined requirements.
Verification, ideally preceded by research of the existing water ecosystems and definition
of their specific quantitative requirements, would lead to a more reliable appraisal of any
potential problems with maintaining appropriate flows, possibly threatening the good
ecological status.

Furthermore, a more precise determination of the water resources of small water-
courses would certainly contribute to a better recognition of the relevant catchment
problems. The water flow data used in the balance calculations are subject to high
uncertainty—the flows in all rivers were estimated on the basis of observations from
the water gauge on the Warta River. For higher reliability of resource determination, it is
advisable to establish at least periodic water gauges, which would provide data to improve
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the relationships used to transfer hydrological data, or to calibrate hydrological models [36].
Similar problems concerning availability, reliability of hydrological data, and the necessity
to strive for their improvement, were also raised by other authors dealing with modeling
for decision support in water management (e.g., [37–39]).

The problem of reliability of input data to the balance appears again when analyzing
results for the habitats of the Northern Polder. In 7 years out of the 29 analyzed, water
retention was not restored to the assumed optimum level during the winter season. Reasons
for such results could be:

• too low values of groundwater recharge for habitats in the valley edge zone and of
infiltration from the Warta River to habitats located near its bed, based on estimates
and other studies’ data [28] and

• the applied method of determining reference evapotranspiration (Penman’s method),
for which overestimation of calculation results was reported in other studies [40].

Field measurements and modeling aimed at identifying the best method of estimation
of actual evapotranspiration from the area, and monitoring of groundwater levels permit-
ting estimation of the inflow of waters from the upland and from the Warta River, would
improve the accuracy of the habitats’ water balance modeling.

In spite of the discussed inaccuracies in the description of some elements of habitats’
water balance, it can be concluded from the results for the Northern Polder that a possibility
to irrigate and retain water in the polder (prohibition of land drainage) in spring is of
key importance for the occurrence of high moisture content in hydrogenic habitats. Water
reserves of the Old Warta River might be used to ensure appropriate moisture conditions
in the Northern Polder (Figures 3 and 4), however, due to their time distribution, the use of
these reserves depends on the possibility of water retention in the area. The application
of hydrotechnical solutions, e.g., trough damming devices, is one of the options, whose
expediency and effectiveness should be further considered.

Another thing worth considering is the task of ensuring adequate navigation condi-
tions. The proposed concept of giving up resources’ preservation, in periods when the
river flow is below the minimum navigable requirements, yields considerable volumes of
water for other tasks. For the practice of water resources management, this way of meeting
the navigation requirements, negotiated on the basis of the preliminary balance results, is
an advantageous option for the environment. In the context of modeling the navigation
requirements in balance analyses, the proposed approach is recommended where the needs
depend on the defined threshold values and the current river flow.

5. Conclusions

This paper presents the application of water management balances to the search for
a compromise between socio-economic water use and the tasks of protecting water and
water-dependent ecosystems. The water management balance model proved to be a useful
tool for such analyses. A necessary condition for including the tasks of protecting water
and water-dependent ecosystems in the balance analyses is treating the water needs of
these ecosystems as one of the water users. Only then can the impact of water management
priorities on the amount of water available to both ecosystems and socio-economic users
be analyzed. However, the possibility to model the water needs of ecosystems depends on
the recognition of their water needs, which is necessary to define the model parameters.

For a complete description of the water needs of ecosystems it is necessary to pro-
vide not only the desired values that ensure optimum conditions for the development
of ecosystems, but also the threshold values, beyond which significant changes in the
ecosystems’ functioning occur. The determination of desirable and threshold values has,
for years, been an important research problem in the field of water management and
protection of water-dependent ecosystems. The accuracy with which the requirements of
aquatic and water-dependent ecosystems are represented in a water balance model depends
on the recognition of their functioning and the role of flow for ecosystem sustainability
and conservation.
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The balance model was developed for the part of the Warta River catchment com-
prising the Warta Mouth National Park. The low availability of hydrological data and
the resulting inaccuracy of water resources assessment, together with the uncertainty of
input data for modeling the requirements of protected habitats in the WMNP, contributed
to the limited reliability of the balance results. Nevertheless, it can be concluded that
it is possible to satisfy both the needs of water users—agriculture and navigation—and,
to a considerable extent, the requirements of protected wetlands. The abandonment of
drainage in spring and the possibility of irrigation in late summer are both key to ensuring
high moisture content of the Northern Polder habitats. As navigation requirements limit
the use of the Warta River flows, and due to the unfavorable time distribution, the Old
Warta River resources do not allow for fully meeting the water needs of the protected
habitats, and the increase of water quantity for the Northern Polder would depend on the
implementation of retention measures in the area. The developed balance model can be
used to help determine the location and technical parameters of potential facilities.

The possibilities to improve the reliability of the balance results depend primarily
on improving the quality of the input data. The coupling of water user models with
the balance model allows for the correct determination of water needs and the proper
assessment of the degree to which water needs are being met.
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development and applications. In Ecohydraulics: An Integrated Approach; Maddock, I., Harby, A., Kemp, P., Wood, P., Eds.; John
Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 109–124.
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