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Introduction

Rotating machinery is part and parcel of modern industrial applications. Due to
their continuous nature of operation in harsh and varying operating conditions, rotating
machinery is much more prone to failure. Failure to diagnose the fault on time can lead to
catastrophic effects from both a financial and safety point of view. In this context, research
on entropy theory and its application in machine condition monitoring is very interesting,
as it can bring some new insights into the prognostic and health management of academic
and industrial files. Information theory, as one of the greatest discoveries in the history
of science, has formed more than ten different calculation forms after more than 70 years
of development. Information theory has been widely used in the feature extraction field
due to its merits of independence with prior knowledge, the lack of a need to preprocess,
and ease of performance. It has powerful ability for feature representation, has received
extensive attention from both academic and industrial attentions.

This Special Issue in Entropy aims to collect recent research results and the latest
developments in condition monitoring techniques by means of information theory. This
collection contains 10 papers that represent the state of the art application of information
theory in the field of condition monitoring.

To resolve the dilemma of diagnosing non-structural failures, Mao et al. proposed a
fusion domain-adaptation convolutional neural network (FDACNN) to combine infrared
thermal images and vibration signals for the diagnosis of both structural and non-structural
failures under various working conditions [1]. They designed an adversarial network to
recognize of the health condition of structural and non-structural faults in the unlabeled
target domain. The results suggest that the proposed FDACNN method performs best in
the cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data.

Bai et al. proposed a new method based on an improved YOLOv4 for railway surface
defect detection [2]. In this method, MobileNetv3 was used as the backbone network of
YOLOv4 to extract image features, and deep separable convolution as applied on the PANet
layer in YOLOv4 to realize the lightweight network and achieve real-time detection of the
railway surface.

Xiao et al. diagnosed the different types of misalignment fault, such as parallel mis-
alignment, angular misalignment and integrated misalignment, of a wind turbine by means
of information fusion [3]. The concept of information fusion was realized by fusing dif-
ferent types of sensor data, such as vibration, temperature and current. Finally, fault
diagnosis of the wind turbine was achieved from the fused information with the help of
Dempster–Shafer evidence theory.

Jia et al. showed a partial transfer fault diagnosis model based on a weighted subdo-
main adaptation network (WSAN) [4]. This model paid more attention to the important
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local data distribution, while aligning the global distribution through a specially designed
weighted local maximum mean discrepancy (WLMMD), which was able to align relevant
distributions of domain-specific layer activations across different domains.

Targeting the challenges regarding weak fault signal, coupling among different di-
mensions of the collected signal, and scarcity of fault datasets, Wei et al. proposed a
novel fault detection based on multi-dimensional KDE and Jensen–Shannon divergence [5].
Addressing the limitations of the conventional KDE method regarding information loss
for multidimensional problems, in this research, it was extended to a multidimensional
version for tackling the weak fault signal and coupling problem of the collected signal.
Later, Jensen–Shannon divergence was used for unknown fault detection.

Hu et al. proposed a subway gearbox fault diagnosis algorithm based on adaptive
spline impact suppression [6]. Signals collected from the gearbox in a subway are often
associated with the impacts between wheelsets and rail joint gaps. A long time-series
is more often affected by unsteadiness due to the wheel-rail impacts. Motivated by this
phenomenon, in this paper, long times-series were segmented adaptively into short time
series, in order to suppress the effect of the high amplitude of the shock response signal.
The adaptive segmentation of the original signal was achieved using a cubic spline interpo-
lation algorithm. The proposed method was verified by data collected from a real Beijing
subway line.

Yan et al. proposed a universal domain adaptation method to recognize unknown
fault types in the target domain [7]. They took into account the discrepancy of the fault
features shown by different fault types, and formed the feature center for fault diagnosis
by extracting the features of the samples of each fault type.

Wind turbines are one of the major sources of green energy. However, the majority of
the wind turbine fault diagnosis research is focused on single faults rather than combined
faults. In order to fill this gap, in this Special Issue, Xiao et al. proposed a machine-learning-
based approach with the help of the feature extracted by a novel low-pass filtering empirical
wavelet transform [8].

Li et al. proposed a novel anomaly detection framework for a satellite momentum
wheel [9]. Aimed at the lack of research on simulation data, and the scarcity of research
on real telemetry data, the proposed framework was able to detect anomalies in a satellite
momentum wheel, based on the features extracted by a newly proposed Huffman-multi-
scale entropy method. The extracted features were then classified by an optimized support
vector machine algorithm.

Mao et al. suggested a new online detection method, called the deep dual-temporal do-
main adaptation model (DTDA), to effectively extract a domain-invariant temporal feature
representation for online early-fault detection of bearings [10]. They developed a new state
assessment method to determine the period of the normal state and that of the degradation
state for whole-life degradation sequences. A health indicator of target bearings was also
built based on the DTDA features, to intuitively evaluate the detection results.
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Abstract: The vibration signal of gearboxes contains abundant fault information, which can be used
for condition monitoring. However, vibration signal is ineffective for some non-structural failures.
In order to resolve this dilemma, infrared thermal images are introduced to combine with vibration
signals via fusion domain-adaptation convolutional neural network (FDACNN), which can diagnose
both structural and non-structural failures under various working conditions. First, the measured
raw signals are converted into frequency and squared envelope spectrum to characterize the health
states of the gearbox. Second, the sequences of the frequency and squared envelope spectrum are
arranged into two-dimensional format, which are combined with infrared thermal images to form
fusion data. Finally, the adversarial network is introduced to realize the state recognition of structural
and non-structural faults in the unlabeled target domain. An experiment of gearbox test rigs was
used for effectiveness validation by measuring both vibration and infrared thermal images. The
results suggest that the proposed FDACNN method performs best in cross-domain fault diagnosis of
gearboxes via multi-source heterogeneous data compared with the other four methods.

Keywords: deep learning; fault diagnosis; multi-source heterogeneous fusion; gearbox; transfer learning

1. Introduction

The gearboxes play an irreplaceable role in the mechanical power system, which
usually works in harsh and complex environments [1,2]. The failure of gearboxes may
cause unexpected accidents and economic losses. Therefore, accurately identifying and
diagnosing faults is the key to ensuring that gearboxes normally operate [3].

The intelligent diagnosis method has received wide attention from researchers because
of its ability to detect faults automatically and is not limited by manual experience. The
methods based on deep learning are particularly prominent because they can adaptively
learn the fault information hidden in the collected signals, such as long short-term mem-
ory network (LSTM) [4], recurrent neural network (RNN) [5] and convolutional neural
network (CNN) [6]. In addition, some extended models based on standard deep learning
models are proposed for rotating machinery fault diagnosis, such as deep convolutional
auto-encoder (DCAE) [7], CNN with capsule network [8] and multiscale CNN [9], etc.
Yao et al. [10] proposed a stacked inverted residual CNN (SIRCNN), which had stable
and reliable fault diagnosis accuracy. Shao et al. [11] established an ensemble deep auto-
encoder (EDAE), which consists of several DAEs with different activation functions. The
results indicated that it has good accuracy in rolling bearing fault diagnosis. However,
the methods mentioned above assume that adequate high-quality data collected from the
concerned machine are available for estimating underlying data distributions. In addition,
these methods need training and testing data drawn from the same probability distribu-
tion [12]. In actual applications, it is impractical to obtain a large amount of labeled data.

Entropy 2022, 24, 119. https://doi.org/10.3390/e24010119 https://www.mdpi.com/journal/entropy
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In addition, the performance of the aforementioned methods may decrease in recognizing
unlabeled data collected from another machine or different working conditions due to data
discrepancy [13].

Transfer learning can transfer learned knowledge to related machinery or fields, and it
is widely applied to address the above-mentioned cross-domain fault diagnosis problem.
Currently, parameter transfer and feature domain-adaptation are two popular transfer
learning implementation methods. Parameter transfer is suitable for scenarios where only
a few labeled data from the target domain are available, but it is not enough to train
the model. Qian et al. [14] proposed a method for rolling bearing fault diagnosis under
variable working conditions by transferring the parameters of the stack auto-encoder (SAE).
Chen et al. [15] proposed the transfer neural network to diagnose the faults of the rotary
machinery, which pre-trains a 1D-CNN with the source data and then uses the limited target
data to fine-tune the model to obtain a transfer convolutional neural network. However, in
most practical applications, there is no available labeled target data to participate in the
model training process. Domain adaptation techniques based on feature transfer have been
much preferred in this case. One implementation of domain adaption is to add a domain
adaptation term to the loss function, such as Maximum Mean Discrepancy (MMD) [16–18]
and Wasserstein distance [19]. Another implementation of domain adaption is through
domain adversarial training, in which a feature extractor aims to extract common features
from both source and target domain by adversarial training [20–22]. In addition to this, in
order to further improve transfer and generalization capabilities of the models, multiple
source domains of data are used to extract transferable features, which are used to diagnose
the faults of rotating machinery [23–25].

However, most existing studies on transfer diagnosis mainly focus on single-channel
signals with vibration signals as the mainstay. This is because the vibration signal can be
collected by the acceleration sensor attached to the surface of the component, which is
sensitive to the impact caused by structural damage, such as gear fracture and bearing outer
race crack. For some non-structural faults, such as gear box oil shortages, vibration signals
are not sensitive to them. These failures can also cause serious consequences and should not
be ignored. Infrared thermal image can perfectly reflect non-structural fault information
and is widely applied in fault diagnosis [26,27]. However, the single infrared thermal
image is very sensitive and is easily affected by external factors such as oil temperature [28].
Therefore, the fault diagnosis method based on multi-source heterogeneous data fusion is
an issue worthy of study. Bai et al. [29] proposed a method for coupling fault diagnosis of
rotary machinery by using infrared images and vibration signals, in which the enhanced
infrared thermal image and two-dimensional vibration signals are spliced and inputted
into CNN to obtain final diagnosis result. Shao et al. [30] pre-trained multiple novel SAEs
using multisensory signals from the source domain and finetuned each novel SAE using
a target domain sample. The diagnosis result is obtained by a modified voting strategy.
In the above research studies, multi-source heterogeneous signals are widely applied in
fault diagnosis since they can supply abundant fault information. However, it is rare to
use infrared thermal images and vibration signals to diagnose structured and unstructured
failure states in unlabeled target domains.

This paper proposed a fusion domain-adaptation CNN (FDACNN) driven by images
and vibration signals. An FDACNN consists of two main stages: data-level fusion and
domain-adaptation network training. In the stages of data-level fusion, raw signals are
transformed into frequency and squared envelope spectrum, and they are arranged into
two-dimensional format. Two-dimensional format data are combined with the infrared
thermal image to form fusion data samples for model training. In the stages of domain-
adaptation network training, a features extractor, a domain discriminator and a state
classifier are constructed. After a number of adversarial training, the domain invariant
features can be extracted from fusion samples and used for the classification of health states.
In actual industrial gearbox, both the accelerators and infrared camera can be installed
to collect the infrared images and vibration signals. The vibration signal can be used to
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effectively diagnose structural failures such as tooth breakage, tooth missing, and gear
wear. Moreover, the infrared thermal image is sensitive to non-structural failures, such as
oil shortage and oil temperature exorbitant. In this study, more comprehensive features
can be extracted from infrared thermal image and vibration signals than a single sensor.
Moreover, the proposed method has lower calculation complexity, which can rely in the
online fault diagnosis of gearbox. The main contributions and insights of this study are
listed below:

(1) A data-level multi-source heterogeneous fusion scheme is proposed. The frequency
and squared envelope spectrum can more clearly reflect fault information contained in
the vibration signal. The fusion of the preprocessed vibration signal and the infrared
thermal image makes the fault information in the training sample more abundant
and obvious.

(2) A fusion domain-adaptation CNN fault diagnosis method for gearboxes is explored. It
can extract domain invariant features from the fusion information of vibration signals
and infrared thermal images and implement gearbox fault diagnosis in an unlabeled
target domain.

The rest of this article is arranged as follows: Section 2 presents preliminary and basic
knowledge. The details of the proposed FDACNN are provided in Section 3. Section 4
validates the proposed method and analyzes the results. Finally, the conclusion in Section 5
brings the study to a close.

2. Preliminaries

2.1. Squared Envelope Spectrum

Demodulation analysis methods can extract and identify fault characteristic frequen-
cies from the resonance band. Envelope analysis is widely applied to acquire the harmonics
of characteristic frequencies, such as the squared envelope spectrum (SES). Since the faulty
rotating machinery vibration signals usually contain second-order cyclostationary (CS2)
components, they are often used to extract fault features. CS2 is commonly calculated using
SES, and the formulas can be expressed as follows:

SES(α) =

∣∣∣∣∣ 1
L

L−1

∑
n=0

|x̃(n)|2e−j2πnα/Fs

∣∣∣∣∣
2

=
∣∣∣DFT

(
|x̃(n)|2

)∣∣∣2
(1)

where α represents cyclic frequency, and Fs denotes the sample frequency. x̃ (n) is converted
by the Hilbert transform from time-domain vibration signals. DFT(•) represents the
discrete flourier transform, and it is formulated as follows:

DFT[x(n)] =
L−1

∑
n=0

x (n) e−j·k n 2π
L (2)

where x (n) represents the signal sequence [0 L−1]. Thus, CS2 components is acquired
with cyclic frequency α.

2.2. Convolutional Neural Network

Convolutional neural network is a typical deep feed-forward artificial neural network
that can be used to process time sequences and images by convolution operation. This
operation can reduce the number of weights and biases to decrease the complexity of the
model. A standard CNN consists of convolution layer, pooling layer, fully connected layer
and classification layer. In a convolutional layer, multiple convolutional kernels are used to
convolution the input, and the weights and bias are shared between hidden neurons. The
process in the convolutional layer can be expressed as follows:

zl
n = f l(∑

k
xl−1

k ∗ wl
n + bl

n) (3)
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where xl−1
k is the k-th input sample in the l-1 layer. * represents convolution operation.

wl
n and bl

n denote the weight and corresponding bias, respectively. Additionally, f l(·)
represents the activation function.

A pooling layer usually follows the convolutional layer, and the subsampling opera-
tions is employed to reduce the spatial dimension for reducing overfitting risk. Mathemati-
cally, a maximum pooling operation is defined as follows:

poj = max{cj(i)}
i∈mj

(4)

where cj represent the j-th location, and poj is the output of the pooling. Moreover, average
pooling and stochastic pooling are also usually used in pooling layer.

After several convolutional and pooling layers, the fully connected layer immediately
converts the output matrix into a row or column. The last layer is usually served by a
softmax output layer in which a softmax function is utilized to predict the probability of
each target.

2.3. Deep Adversarial Convolution Neural Network

Generally, a deep adversarial convolution neural network usually consists of a feature
extractor Gf, a domain discriminator Gd and a classifier Gc [13]. The feature extractor, which
is a competitor in the DACNN, is typically served by several convolution blocks or fully
connected layers. It can be expressed as Gf = Gf (x, θ f ) : x → RD with parameter θ f ,
which indicates that the input sample x is transformed into D-dimensional features. In
addition, the domain discriminator (binary classifier) is treated as the opponent, which
is expressed as Gd = Gd(Gf (x), θd) with parameters θd. Inputting the source and target
samples into the feature extractor and the output is further distinguished by the domain
discriminator Gd. The binary cross entropy (BCE) loss is taken as objective function, which
can be described as follows:

L(Gd(Gf (xi)), di) = di log
1

Gd(Gf (xi))
+ (1 − di)× log

1
1−Gd(Gf (xi))

(5)

where di denotes the binary variable for xi. By conducting adversarial training between the
two parts, feature extractor Gf tends to extract common features from two types of data
and makes the domain discriminator difficult to distinguish in terms of zero or one. Thus,
the model can perform well on both the source and target datasets. Assuming n samples
in the source domain dataset and N-n samples in the target domain dataset, the objective
function is expressed as follows:

E(θ f , θd) = − (
1
n

n

∑
i=1

Li
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (6)

where Li
d(θ f , θd) = Ld(Gd(Gf (xi, θ f ), θd), di), and this equation includes a maximization

problem with respect to θd and a minimization problem with respect to θ f .
Additionally, all the labeled samples should be supervised and trained to ensure the

accuracy of the diagnosis in the adversarial procedure. Therefore, a classifier is established,
and it is expressed as Gy = Gy(Gf (x), θy) : RD → RL with parameters θy, in which L is
the number of classes. Cross-entropy loss is applied in the Softmax function, and it can be
described as follows.

Ly(Gy(Gf (xi)), yi)= log
1

Gy(Gf (xi))yi

(7)
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By adding the Equation (7) to objective function (6), the optimization objective can be
expressed as follows:

E(θ f , θy, θd) =
1
n

n

∑
i=1

L i
y(θ f , θy) − λ(

1
n

n

∑
i=1

L i
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (8)

where Li
y(θ f , θy) = Ly(Gy(Gf (xi, θ f ), θy), yi). The entire training process of DANN is to

optimize the parameters θ f , θy and θd, and it is expressed as follows.

(θ̂ f , θ̂y) = argmax
θ f , θy

E(θ f , θy, θ̂d) (9)

θ̂d = argmax
θd

E(θ̂ f , θ̂y, θd) (10)

In the training stage, parameter updates are implemented in the opposite direction
to the gradient in the adversarial process. The update in the domain discriminator Gd is
to reduce the loss with the purpose of improving the discriminative ability. However,
the update in the feature extractor Gf is to maximize the loss to fool the discriminator.
In order to frame a flexible implement of the stochastic gradient descent (SGD) algo-
rithms in the training of DACNN, we use a circuitous method by rewriting the loss as
L′ i

d(θ f , θd) = Ld(Gd(Gf (xi, θ f ), θd), 1 − di) in updating the feature extractor parameters.
Maximizing Li

d(θ f , θd) can be accomplished by minimizing L′ i
d(θ f , θd). During backprop-

agation, the features extractor takes the gradient of the recalculated L′ i
d(θ f , θd) from the

domain discriminator and updates its parameters with SGD. Overall, the update rales of
parameters θ f , θy and θd can be formulated as follows:

θ f ← θ f − μ (
∂Li

y

∂θ f
+ λ

∂L′ i
d

∂θ f
) (11)

θd ← θd − μ
∂Li

d
∂θd

(12)

θy ← θy − μ
∂Li

y

∂θy
(13)

where μ represents the learning rate.
By the above optimization process, DACNN tends to train a feature extractor Gf that

can extract suitable representations from input samples (either source domain datasets or
target domain datasets), which can be classified accurately by the classifier Gy but weakens
the ability of the domain discriminator Gd to differentiate a sample from the source or target
domain datasets. In the phases of testing, domain insensitive features will be extracted by
feature descriptor Gf and fed into the classifier Gy to identify the states immediately.

3. The Proposed Method

3.1. Data-Level Fusion

Data-level fusion is a relatively direct fusion method that can retain the effective
fault information hidden in the measured signals and reduce the complexity of the model.
Therefore, a data-level fusion strategy is designed in this study to fuse one-dimensional
vibration signals and two-dimensional infrared thermal images.

In general, the measured time-domain vibration signals are feeble and inadequate,
particularly in the early stages of a failure. Although many deep learning methods only use
raw time-domain signals for fault diagnosis, they rely heavily on deep learning structure.
It is considered that frequency features play a significant role in rotating machinery failure
diagnostics. The frequency domain signal and the squared envelope spectrum, in particular,
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are widely used in classical signal processing methods [31,32]. Therefore, measured raw
signals are transformed to acquire frequency domain signals by fast Fourier transform
(FFT) and CS2 by squared envelope spectrum in this study. Then, they are reshaped into
two-dimensional matrix as part of the input of the convolution layer as shown in Figure 1.

 

Figure 1. The procedures of the proposed method.

After that, the RGB 3-channels of each infrared thermal image are combined with the
2-dimensional frequency domain signal and the squared envelope spectrum to synthesize a
5-channel data. The 5-channel fusion data will be used for subsequent domain adaptation
CNN training.

3.2. Fusion Domain-Adaptation CNN Construction

Domain adaptation based on adversarial networks is an effective approach for cross-
domain fault diagnosis. In this section, fusion 5-channel data are used to train a domain-
adaptation CNN for cross-domain fault diagnosis of gearboxes.

10
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Firstly, a feature extractor is constructed, which contains multiple convolutional
blocks and several fully connected layers. The feature extractor is used to extract domain-
insensitive features from 5-channel fusion data. The extracted features are fed into the state
classifier to recognize health states. Meanwhile, the extracted features are inputted into the
domain discriminator to distinguish whether they are from the source or target domain.

In the training process, the feature extractor minimizes the state classification loss
and maximizes the domain discrimination loss so that it can extract features that are not
only not sensitive to the domain and make the state classifier easy to classify. As the
opponent, the domain discriminator aims to minimize domain discrimination loss so that
it can distinguish the feature from the source or target domain. Finally, through a large
amount of adversarial training, the diagnosis model composed of feature extractor and
state classifier can recognize fault states accurately with multi-source heterogeneous data
under cross-working conditions.

3.3. Procedures of Proposed Fusion Domain-Adaptation CNN

This section presents the summaries of the proposed fusion domain-adaptation CNN
as shown in Figure 1. The main procedures are described as follows.

Collect the infrared thermal images and raw vibration signals from the concerned
gearboxes under different working conditions and divide them into labeled source domain
samples and unlabeled target domain samples.

Convert the raw time-domain signals into frequency domain signals and the squared
envelope spectrum and arrange them into matrixes.

Fuse the RGB 3-channels of infrared thermal image and two matrixes (frequency
domain and squared envelope spectrum) to obtain 5-channel fusion samples.

Train the FDACNN model using 5-channel fusion samples by adversarial training.
Test the performance of the proposed FDACNN model by using the remaining samples

from the target domain.

4. Experimental and Result Discussion

4.1. Dataset Descriptions

Test data are from a compound gear failure experiment performed on a helical gearbox
called Spectra Quest Mechanical Failure Simulator (MFS) from Northwestern Polytechnical
University lab [33,34]. The experiment system and the layout of the experiment rig are
shown in Figure 2a,b, respectively. The experiment system mainly consists of an AC motor,
two gearboxes and a generator. The infrared camera is fixed on the front of gearbox 1 to
collect the infrared thermal image. The detailed parameters of the infrared camera are
listed in Table 1. Vibration signals are collected by an acceleration sensor mounted on
the surface of the gearbox 1. The sample frequency is 12.8 kHz, and the motor speed is
3000 rpm. In this experiment, there are two kinds of lubricating oil, i.e., EP 320 and EP 100.
EP 320 lubricant viscosity is 320cSt @ 40 ◦C, EP 100 lubricant viscosity is 100cSt @ 40 ◦C.
The EP 320 lubricant is applied in this article.

In this study, five different health states are introduced, including a normal state, two
structural fault states (TB 50 and TB 100) and two non-structural fault states (OS 1500
and OS 2000). “TB 50” and “TB 100” refer to 50% and 100% tooth breakage in driving
gear, respectively. Based on the baseline oil of 2600 mL, “OS 1500” and “OS 2000” refer
to the reduction of 600 mL and 1100 mL of oil from GB1, respectively. Vibration signals
and infrared images were collected under four different loads of 0%, 30%, 70% and 100%
(L0, L30, L70 and L 100). For each load, vibration signals in each state were divided into
800 samples with 2048 data points. Four-hundred and eighty samples were randomly
selected as tests, and the remaining 320 samples were used to train. Similarly, 480 infrared
images were used to train, and the other 320 were used to test. The size of each infrared
thermal image is 64 × 32. The details of the dataset are listed in Table 2.
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4.2. Implementation Details

At first, data-level fusion strategy is used to fuse infrared thermal images and vibration
signals. The measured raw samples in five different health states are transformed to acquire
frequency domain signals by FFT and CS2 by squared envelope spectrum in this study.
Under L0 load, the three kinds of signal waveforms of different health states are shown in
Figure 3. As shown in Figure 3, the left column is the measured raw signals, and the middle
column and the right column are the corresponding spectral distribution and squared
envelope spectrum, respectively. It can be observed that the time-domain characteristics
and frequency domain characteristics of each health state are relatively similar and difficult
to distinguish. Then, frequency domain signals and CS2 sequence are arranged into
2 × 64 × 32 formats.

 

Figure 2. The gear box fault simulator system: (a) the experimental test rig; (b) the layout of the test rig.

Table 1. The detailed parameters of the infrared camera.

Parameters Values

Alg type PHE
Frame rate 25 fps

Temperate measurement range −25 ◦C~260 ◦C
Environment temperature 18.9 ◦C

Thermal sensitivity 0.050 ◦C
Image resolution 384 × 288

Contrast 50
Brightness 50

Gain 2
Palette rainbow

Table 2. 5 health states of gearbox.

Label Health States The Number of Training/Testing Samples

1 Normal 480/320
2 TB 50 480/320
3 TB 100 480/320
4 OS 1500 480/320
5 OS 2000 480/320
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Figure 3. Raw signals, spectral distribution and squared envelope spectrum of different health states.
(a) Normal; (b) TB 50; (c) TB 100; (d) OS 1500; (e) OS 2000.

Each infrared thermal image has RGB channels, i.e., 3 × 64 × 32 formats. The collected
infrared thermal images of each health state under L0 are shown in Figure 4. From Figure 4,
we can observe that the images of normal, OS 1500 and OS 2000 are relatively similar, and
the images of TB 50 and TB 100 are relatively similar. However, it is still very difficult to
visually distinguish concrete health states. RGB channels of the infrared thermal image
(3 × 64 × 32) will be combined with the frequency domain signals and CS2 (2 × 64 × 32),
and the 5-channel fusion samples (5 × 64 × 32) are obtained to train DACNN.

Figure 4. The infrared thermal image of different health states.
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In DACNN, a feature extractor, a domain discriminator and a state classifier were
constructed, and the structures of those are listed in Table 3. The DACNN is trained by
adversarial training using fusion data. In order to illustrate the robustness of the proposed
method, multiple test tasks are designed. The concrete setting of different tasks and
the results are listed in Table 4. It can be observed that the proposed method has good
performance among the five test tasks, especially the accuracy of reaching 100.00% in T1,
T3 and T4. In task T5, the transfer span is larger from load L0 to L100. The accuracy
of the proposed method can still reach 96.67%. This suggests that the fusion of infrared
thermal images and vibration signals to implement cross-domain fault diagnosis has good
performance, and the result is relatively robust.

Table 3. The structures of features extractor, domain discriminator and states classifier.

Model Layer Filter Number Size of Kernel Output Size Stride Padding Active Function

Features
extractor

Conv2d 1 8 3 × 3 8 × 62 × 30 [1,1] 0 ReLU
BN 1 8 - 8 × 62 × 30 - - -

MaxPool2d 1 8 2 × 2 8 × 31 × 15 [2,2] - -
Conv2d 2 16 3 × 3 16 × 29 × 13 [1,1] 0 ReLU

BN 2 16 - 16 × 29 × 13 - - -
MaxPool2d 2 16 2 × 2 16 × 14 × 6 [2,2] - -

FC 1 - - 680 - - -
FC 2 - - 300 - - ReLU
FC 3 - - 56 - - ReLU
FC 4 - - 28 - - ReLU

States classifier FC - - 5 - - Softmax

Domain
discriminator FC - - 1 - - Softmax

Table 4. Result of different test tasks.

Tasks Source Domain Target Domain Accuracy (%)

T1 L0 L30 100.00%
T2 L0 L70 98.98%
T3 L30 L70 100.00%
T4 L70 L0 100.00%
T5 L0 L100 96.67%

4.3. Methods Comparison and Results Discussion

In this section, four methods are employed for comparison on the test tasks T1~T5 to
illustrate the superiority of the proposed FDACNN. The details of compared methods are
described as below.

The standard DANN method is utilized for comparisons [35]. Training data are
sequences that convert fusion data into one dimension.

Another popular domain-adaptation method based on maximum mean discrepancy
(DA-MMD) is applied for comparisons [36]. The train data and network structure used in
DA-MMD are consistent with the proposed method.

The DACNN model was trained using single vibration signals (DACNN-SV). This
model is trained using frequency domain signals and CS2 sequence (2 × 64 × 32 formats).

The DACNN model was trained using single infrared thermal image (DACNN-SI).
This model is trained using RGB 3-channels of infrared thermal images (3 × 64 × 32 formats).

The results of different comparison methods are listed in Table 5. Meanwhile, in order
to compare the results more intuitively, the bar diagram of results is shown in Figure 5. It
can be observed that DACNN_SV has the lowest accuracy in five tasks: 47.38%, 40.88%,
67.44%, 35.56% and 35.44%, respectively. This is due to the fact that the vibration signal is
not sensitive to two non-structural faults, which makes it impossible to classify, and the
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resulting accuracy is low. DACNN_SI has a good performance on T1 and T3, but it is not
satisfactory in other test tasks; in particular, the accuracy of T5 is only 83%. It illustrates
that infrared thermal images can be used to identify structural and non-structural failure
states effectively, but they are susceptible to environmental interference. From the results of
DANN and DA-MMD, it can be observed that the accuracy in all test tasks is lower than the
proposed FDACNN. This is because two-dimensional data fusion can effectively maintain
the fault information contained in the infrared image and vibration signal. Meanwhile, the
adversarial domain adaptation network can enable the extracted extractor to extract target
domain features that are easy to distinguish.

Table 5. The results of different comparisons methods.

Tasks DANN DA-MMD DACNN_SV DACNN_SI Proposed FDACNN

T1 98.98% 100.00% 47.38% 100% 100.00%
T2 92.96% 97.12% 40.88% 95.69% 98.98%
T3 97.38% 98.97% 67.44% 100% 100.00%
T4 80.00% 92.69% 35.56% 97.94% 100.00%
T5 60.00% 85% 35.44% 83% 96.67%

 

Figure 5. Bar diagram of results in different test tasks.

Additionally, in order to demonstrate the ability of the feature extractor to extract
domain invariant features, principal analysis (PCA) is used to map extracted features into
2-dimensional space. Figure 6 shows 2-dimensional visualizations in different test tasks,
in which PCA 1 and PCA 2 denote first and second principal components, respectively. It
can be observed that the points with the same color are clustered in T1 and T3, and the
point clusters of different colors are obviously isolated. In T2, T4 and T5, only a few points
with the same color are confused, and most of them with the same color are relatively
concentrated. Therefore, extracted features are relatively separable in all test tasks. It
suggests that the trained feature extractor has the ability to extract distinguishable features
from the unlabeled target domain fusion samples.
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Figure 6. Feature visualization of different test tasks.

5. Conclusions

This study focuses on cross-domain fault diagnosis of gearboxes via multi-source het-
erogeneous data. Infrared thermal images and vibration signals are fused to characterize the
health states of the gearbox, which can effectively recognize structural and non-structural
faults. Moreover, the domain-adaptation neural network is trained via adversarial training
using fusion data samples to extract the common transfer knowledge, called the FDACNN
method. By performing this, the proposed FDACNN method can be used to recognize
the unlabeled target domain samples of gearbox. For validation, the proposed FDACNN
method is used to analyze gearbox multi-source heterogeneous data measured under vari-
ous operating conditions. Moreover, we compare the FDACNN method with four other
relevant methods to confirm its superiority in cross-domain fault diagnosis of gearboxes
under various operating conditions. The results demonstrate that the proposed method
obtains highest classification accuracy among four methods.
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Abstract: The detection of rail surface defects is an important tool to ensure the safe operation
of rail transit. Due to the complex diversity of track surface defect features and the small size
of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision
methods. The existing deep learning-based methods have the problems of large model sizes, excessive
parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on
an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this
method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at
the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes
the lightweight network and real-time detection of the railway surface. The test results show that,
compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up
the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with
other methods, the proposed method can achieve a higher detection accuracy, making it suitable for
the fast and accurate detection of railway surface defects.

Keywords: deep learning; rail surface defect detection; machine vision; YOLOv4; MobileNetV3

1. Introduction

With the prosperous development of the railway industry, the mileage, speed and
density of operations continue to increase, and the inspection requirements for railways are
further improved [1]. When it runs at high speed, the phenomena such as friction, rolling
contact and elastic deformation occur between the train and the track surface. With the
running time increasing, it will result in rail surface defects, such as rail wear, broken, peel-
ing and cracks, which seriously threaten the safety of the rail transit system [2]. Therefore,
it is particularly important to study the detection methods for railway surface defects.

As a traditional method for rail surface detection, manual inspection [3] is charac-
teristic of time-consuming, labor-intensive [4] and low detection efficiency [5]. With the
development of defect detection technology, many rail surface defect detection methods
have emerged, such as ultrasonic flaw detection [6], eddy current flaw detection [7], three-
dimensional detection [8], radar detection [9] and so on. The above methods are very
effective in detecting internal defects. However, the signals generated by the defects on
railway surfaces are very weak, and they are difficult to detect by the above methods. At
the same time, the defect signals are easily interfered with by the surrounding environment,
leading it difficult to achieve satisfying results. There is still a big margin for improvement
in the detection technology of rail surface defects.

With the development of computer technology, the machine vision [10] method is
applied to rail surface defect detection. Rail surface detection images are obtained by
linear array cameras, and the images are automatically synthesized according to the
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required length. Defect data are obtained by manual screening from actual detection
images for model training and testing. This method requires an analysis of rail surface
defect information, gray information [11] and background information [12]. It needs to
use a feature extraction algorithm [13] or to use an operator template and model-based
threshold segmentation method [14] to detect rail surface defects. However, these methods
are susceptible to defect characteristics that may lead to blind spot detection [15]. This
makes it difficult for machine vision methods to obtain good detection performances.

In recent years, with the development of target detection technology and the neural
network [16], deep learning frameworks have been proposed for the detection of various
railway components. Liu et al. [17] proposed a method based on image fusion features and
Bayesian compression image classification and recognition, which detected the status of
fasteners by extracting improved edge orientation histograms (IEOH) and macroscopic
local binary pattern (MSLBP) features. Cui et al. [18] segmented the fastener image into dif-
ferent parts to avoid the interference of the fastener fragments and tested the segmentation
model in a real-time deep learning module.

In the application of a deep learning framework for rail surface defect detection, Xu
et al. [19] proposed to improve the Faster R-CNN (Convolutional Neural Networks) for
railway subgrade defect recognition. The improved method can obtain good performance,
but it has disadvantages such as a slow detection speed and large detection model. Lu
et al. [20] proposed to apply the combined U-Net graph segmentation network and damage
location method for damage detection of high-speed railways. This method can obtain a
high detection accuracy but has the limitations of slow detection speed and large model
volume. Yuan et al. [21] proposed the application of MobileNetV2 to detect rail surface
defects, which achieved high-speed real-time detection, but the detection accuracy was low.
Faghih-Roohi et al. [22] proposed improved deep convolutional neural networks (DCNN)
to efficiently extract and recognize image features, and a small batch gradient descent
method was used to optimize the network for the automatic detection of track surface
defects. This method requires a long time for network training. Song et al. [23] proposed
a deep learning method where the YOLOv3 (You Only Look Once, YOLO) algorithm
was used to detect rail surface defects. This method has a fast detection speed but low
detection accuracy.

In order to solve the above problems, this paper proposes an improved YOLOv4 [24]
rail surface detection method. It studies the use of the MobileNetV3 lightweight network
as the backbone of YOLOv4. Depthwise separable convolution is applied for the PANet
layer in YOLOv4 to further reduce the amounts of the parameters. It treats rail surface
defect detection as an end-to-end regression problem and ensures the effectiveness of rail
surface defect detection with a simplified network, improving the detection speed and
accuracy. It provides a new idea for rail surface defect detection technology.

The main contributions of this paper are as follows: (1) The MobileNetV3 network
is proposed to optimize the YOLOv4 model for rail surface defect detection, using depth-
wise separable convolution for the PANet layer in YOLOv4. This method optimizes the
parameter quantity and model size and improves the detection speed. (2) Field tests are
conducted on the track to collect data, a dataset is created with Gaussian noise added, and
finally, a rail surface defect detection model is established. The test results show that the
method used in the study can effectively detect rail surface defects.

The rest of this article is organized as follows. The second part discusses the theoretical
background of YOLOv4 and depth separable convolution. The third part gives the technical
route of the proposed method. The fourth part verifies the effectiveness of the method
through practical application. Finally, the conclusion is drawn in Section 5.

2. Theoretical Background

The deep learning and machine vision-based object detection methods are widely
used in the current research. For the application of these methods, firstly, a large number
of images is collected to establish the image datasets, and secondly, image annotation is
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performed on the object to be detected in the dataset to obtain the object information; then,
a training dataset and the object information are trained by the deep network to obtain a
deep network model, and finally, the trained model is used for the object detection test.
Among them, the most important part is the training of the deep network model. At this
stage, the target detector is mainly composed of four parts: input, backbone, neck and head.
As shown in Figure 1, the structure of the one-stage network is simpler than the two-stage
one, in which a sparse prediction is added.

 
Figure 1. Object detector framework.

Before the YOLO [25] algorithm was proposed, the R-CNN [26] algorithm was one
of the most popular algorithms in the two-stage field. CNN has been applied to target
detection and formed a relationship with R-CNN [27], the algorithm region. First, the
selective search [28] or edge box of the algorithm is used to generate candidate regions [29],
and then, each region is trained and classified in the CNN. Compared with the one-
stage algorithms, the detection speed of the two-stage ones is slower. Therefore, a YOLO
algorithm with the characteristics of the one-stage network structure is proposed. Its core
concept is to convert the target detection into a regression problem, and the target map
is used as the input of the network. Only through a neural network can the position of
the bounding box and the target category be obtained. A fast detection speed and high
precision can be realized through the feature information.

The YOLOv4 algorithm is improved from the basis of YOLOv3. As a powerful target
detection algorithm, a fast and accurate target detector can be trained by YOLOv4. As
shown in Figure 1, the network structure is mainly composed of a backbone network, a
neck network and a head network. CSPDarknet53 is applied in the backbone network, an
SPP add-on module and PANet path aggregation is performed in the neck network and
the YOLOv3 head network is used as the head network.

The PANet layer uses an instance segmentation algorithm. The network structure is
shown in the neck part of Figure 2. Compared with the feature pyramid networks (FPN)
network, the DownSample operation is added in PANet after UpSample to repeatedly
improve the features. Parameter aggregation is carried out on the different backbone layers.
It further improves the ability of feature extraction. In YOLOv4, the PANet structure is
mainly used in the three effective feature layers.
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Figure 2. YOLOv4 structure diagram.

3. Proposed Method

3.1. Technical Route

Figure 3 shows the technical route of rail surface defect detection. Firstly, feature ex-
traction is performed on the whole rail image. While retaining the rail surface information,
the invalid information is removed from the rail image to increase the network training
speed. Secondly, the processed rail surface dataset is input into the improved YOLOv4
network for training. Then, the trained model is used to predict the rail surface defects.
Finally, the rail surface defect detection results are obtained.

Figure 3. Technical route of the proposed method.

3.2. YOLOv4 Backbone Network Adaptability Improvement

In practical engineering applications, the detection of rail surface defects has particu-
larities, including the accuracy, the speed and the model size of detection. The method in
this paper takes into account the particularity of rail surface defect detection, making it
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adaptable to YOLOv4. MobileNetV3 is used as the backbone network of YOLOv4. Mo-
bileNet is a lightweight deep neural network proposed by Google for embedded devices.
The core idea is the depthwise separable convolution. Compared with the traditional
convolution used in YOLOv4, the deep separable convolution in MobileNetV3 can further
reduce the amount of parameters and calculations, thus realizing the lightweight of the
network.

A lightweight attention (Squeeze-and-Excitation, SE) module is used in MobileNetV3.
Its advantage is that it can improve the performance of the algorithm with a negligible
increase in the calculations. The specific process of the SE module is implemented as shown
in Figure 4. First, the features of C′ × H′ × W ′ are optimized to C × H × W. Then, in the
process of squeeze, global average pooling is performed on the C × H × W features to
obtain a global receptive field feature map of 1 × 1 × C in size. Then, a fully connected
neural network is used for nonlinear transformation in the process of excitation. Finally, the
input feature is weighted by the activation value of each feature layer from the SE module.

trF

sqF
exF

scaleF

C× × C× × X

Figure 4. The RPN candidate box generation process.

3.3. Adaptability Improvement of PANet Layer in YOLOv4

PANet in YOLOv4 has the advantages of dynamic feature pooling, fully connected
layer fusion and bottom-up path enhancement but disadvantages such as a large amount
of parameters and complex calculations. To resolve this problem, the convolution structure
in PANet is modified, where the 3 × 3 and 5 × 5 standard convolutions are replaced by
depth separable convolutions.

Depth separable convolution [30] is a lightweight convolution module. It consists of
the following two parts: depthwise convolution (DW) and pointwise convolution (PW).
In DW, each dimension in the input information is convolved with a convolution block
separately. Then, PW applies a point convolution kernel to perform dimensional lifting of
the output maps from DW.

In the standard convolutional layer, assume that the size of the input feature map is
Dz × Dz, the number of channels is M, the size of the convolution kernel is Di × Di and the
number of convolution kernels is K. Then, the standard convolution calculation amount C1
can be calculated by Formula (1):

C1 = Dz × Dz × M × K × Di × Di (1)

In depth separable convolution, DW and PW are performed separately, as shown in
Figure 5. The calculation amount C2 of the depth separable convolution can be calculated
as Formula (2):

C2 = Dz × Dz × M × Di × Di + K × M × Dz × Dz (2)

The calculation amounts of the depth separable convolution and classic convolution
are compared as follows:

C2

C1
=

Dz × Dz × M × Di × Di + K × M × Dz × Dz

Dz × Dz × M × K × Di × Di
=

1
K
+

1
D2

i
(3)

In the equation, the channels number of the convolutional layer K is usually greater
than 1, and the commonly used sizes of the convolution kernel are 3 × 3 and 5 × 5, so
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the result of the formula is less than 1. The calculation amount of the depth separable
convolution is smaller than that of the standard convolution.

iD

iD

iD
iD

 
Figure 5. Classic convolution and depth separable convolution.

The PANet layer is improved, as shown in Figure 6. It can retain the advantages
of PANet dynamic feature pooling, fully connected layer fusion and bottom-up path
enhancement and also reduce the computation in PANet, so as to realize the lightweight of
the network and, finally, achieve the optimization of YOLOv4.

Figure 6. Improved PANet layer.

4. Case Studies

4.1. Image Acquisition

According to the technical route of the proposed method, a track inspection field test
was carried out in this paper. As shown in Figure 7, the intelligent track inspection vehicle
used in the test was developed by Beijing Yinglu Technology Co., Ltd. (Beijing, China). The
vehicle is composed of two parts: an electric inspection vehicle and a track state inspection
system. The electric inspection vehicle contains a car body, track wheels and seats; the track
state inspection system is composed of a host and a high-definition linear image scanning
module. In this test, a 15 km track on the Beijing–Shanghai high-speed rail line is chosen
as the test section. The travel speed of the inspection vehicle is 20 km/h, and the image
resolution is 2048 × 2048.
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Figure 7. Intelligent track inspection vehicle.

The specific collection equipment data is shown in Table 1.

Table 1. Track inspection vehicle camera parameters.

Camera Model TVI-LCM-01

Voltage input range 2-K linear array image acquisition module
power 20–30 V DC

Protection class 120 W
Working temperature −20 ◦C to + 70 ◦C
storage temperature −40 ◦C to + 85 ◦C

The specific configuration of the algorithm environment used in the test is shown in
Table 2.

Table 2. Test environment.

Project Environment

Development language Python 3.9
Development framework PyTorch1.2

CPU Intel(R) i7-9700 CPU @ 3.00 GHz
GPU NVIDIA GeForce RTX 2080 Ti

Running memory 16 GB
Hard disk size 1 TB

One thousand rail images collected in the field test are chosen for rail surface defect
detection; among which, 900 are randomly selected as the training dataset and 100 as the
test dataset. Before applying the improved YOLOv4, it needs to operate image annotation
to establish a dataset feature database. In this paper, LABELIMG software with version 1.0
was used for image annotation. LABELIMG is an image annotation tool that is written in
python and uses QT as a graphical interface. The rail surface in the image is regarded as
the target detection area, as shown in Figure 8.

After annotation, the coordinates of the rail surface defect area are obtained, and the
training algorithm and the defect detection test are performed on the coordinate dataset
generated by the image annotation.
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Figure 8. Image annotation.

4.2. Establish a Detection Model for Rail Surface Defects

In order to verify the effectiveness of the method proposed in the study, 5% and 10%
Gaussian noise are added to the original dataset, respectively, as shown in Figure 9.

 

Figure 9. Gaussian noise processing diagram.

The improved YOLOv4 uses MobileNetV3 as the backbone network of the feature
extraction and, at the same time, uses deep separable convolution to replace the traditional
convolution in PANet. A rail defect detection model is established, as shown in Figure 10,
(1) to reset the size of the input image, (2) to apply the improved YOLOv4 network based
on the image operation and (3) to output the detection target.

 
Figure 10. Rail defect detection model. (1) to reset the size of the input image; (2) to apply the
improved YOLOv4 network based on the image operation; (3) to output the detection target.
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The CIOU calculation method in YOLOv4 will make the target frame regression stable.
It takes into account the distance, overlap, scale and penalty items between the target and
the anchor point, and there will be no training divergence problem. Figure 11 illustrates
the surface defects of the rail, and the red box indicates the target frame in which the rail
surface defects are surrounded. The green box is the prediction box, and the purple box is
the smallest rectangle that can cover the above two. d represents the center point distance
between the target box and the predicated one. c represents the diagonal distance of the
smallest area simultaneously covering the prediction box and the target box.

 

Figure 11. Comparison of the parameters of the methods.

CIOU calculation formula is as shown in Formulas (4)–(6):

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(4)

α =
v

1 − IOU + v
(5)

CIOU = IOU − ρ2(b, bgt)
c2 − αv (6)

where ρ refers to Euclidean distance; b, w and h refer to the center coordinates, width and
height of the prediction box and bgt, wgt and hgt refer to the center coordinates, width and
height of the frame.

In the study, the CIOU threshold was set to 0.7. The detection image can be output
only when the result is greater than 0.7, which makes the bounding box more accurate.

In the establishment of the rail defect detection model, the learning rate and the step
size for each update is too large; thus, the model cannot converge on the extreme optimal
value. If the learning rate is too small, the convergence can be guaranteed, but the efficiency
of the model is sacrificed.

In order to avoid the above-mentioned problems, trade-offs have to be considered
by modifying the model parameters with the best performances. The adaptive learning
rate is used in the experiment to improve the optimization speed of the model, and the
initial value of the learning rate is set to 0.001. In the training process, after each epoch,
the current model loss and accuracy are evaluated in the training set, and the loss value
change is detected every other epoch. When it is less than 0.0001, the learning rate lr is
attenuated. The attenuation formula is expressed as Formula (7):

lr∗ = lr × 0.1 (7)
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4.3. Result Analysis

In the study, the same dataset is applied on the Faster R-CNN, YOLOv3 and YOLOv4
methods to compare and verify the effectiveness of the proposed method.

Figure 12 illustrates the comparison of the parameter quantity of each method. It
shows that the parameter quantity in the proposed method is the least, which is about 1/20
of the Faster R-CNN. Since YOLOv4 is improved from the basis of YOLOv3, the parameter
quantities of the two are not much different. Improved from the basis of YOLOv4, the
proposed method replaces lightweight MobileNetv3 as the backbone network and uses
deep separable convolution for PANet to further reduce the amounts of the parameters.
From Table 3, the parameter quantity in the proposed method is decreased by 78.04%
compared with YOLOv4, effectively reducing the amounts of the parameters.

 

Figure 12. Comparison of the parameter quantities of the methods.

Table 3. Comparison of the detection results of rail defects.

Method Pr Re mAP
FPS
(Hz)

Volume
(MB)

Faster R-CNN 89.36% 79.07% 87.32% 12.26 521.8
Mask R-CNN 90.62% 81.36% 89.18% 5.60 245.4

YOLOv3 87.23% 77.27% 86.74% 28.40 234.2
YOLOv4 92.48% 81.40% 90.98% 34.28 244.1
YOLOv5 93.06% 82.08% 92.16% 37.32 185.6

The proposed method 94.24% 82.56% 93.21% 44.64 53.6

In order to evaluate the detection results of rail defects, precision (Pr), recall (Re), mean
Average Precision (mAP), Frames Per Second (FPS) and volume are introduced. Among
them, mAP is a common parameter for accuracy evaluations of different target detection
models. Specifically, it is the mean of the average precision (AP) of each query. FPS refers to
the number of frames transmitted per second, and volume refers to the size of the memory
occupied by the model. The specific calculation formula is as follows:

Pr =
TP

TP + FP
× 100% (8)

Re =
TP

TP + FN
× 100% (9)

AP =
∫ l

0
p(r)dr (10)

mAP =
1
N ∑ APi (11)
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where True Positives (TP) and False Positives (FP) are the number of rail defects detected
correctly or not, respectively. False Negatives (FN) is the number of rail defects detected
incorrectly. N is the number of defects in all the rails.

From the detection results of rail surface defects by various methods in Table 3, it can
be seen that, as a popular traditional method in the two-stage field, Faster R-CNN has a
higher accuracy, recall and mAP than YOLOv3 but a lower detection speed. A slow, large
model size not suitable for lightweight real-time detection, YOLOv3 has the advantage
of a faster detection speed and smaller model size, but its accuracy, recall rate and mAP
and Faster R-CNN methods are small; YOLOv4 in the accuracy, recall rate, mAP and FPS
ahead of Faster R-CNN and YOLOv3, and its detection speed and model volume still have
room for improvement. The research method in this paper was improved from the basis
of YOLOv4. Due to the use of lightweight MobileNet V3 as the backbone network and
deep separable convolution to improve the PANet, the model volume was 0.22 times that
of YOLOv4, and the accuracy was improved by 1.64% compared to YOLOv4. Compared
with YOLOv4, the recall rate and mAP were increased by 1.16% and 2.54%, respectively.
At the same time, the detection speed of the research method exceeded YOLOv4 by 10.36
frames per second, which can better meet the requirement of rapidity.

Due to the complex environment of the rail, the algorithm is required to have a good
anti-noise performance. In order to test the noise resistance of the research, Gaussian noise
was added into the dataset. Tables 4 and 5 are the detection results of rail defects with 5%
and 10% Gaussian noise, respectively. It can be seen the proposed method has a higher
mAP than the other methods and has more superior performance when noise exists. As the
same models are used with slightly different test data, the FPS and volume of each method
are consistent with those in Table 3. The results of Tables 3–5 show that the proposed
method in this paper has good performance and can be applied to lightweight steel rail
surface defect detection.

Table 4. Comparison of the detection results of rail defects with 5% Gaussian noise.

Method Pr Re mAP
FPS
(Hz)

Volume (MB)

Faster R-CNN 82.61% 75.22% 85.08% 12.31 521.8
Mask R-CNN 88.26% 77.93% 86.92% 5.53 245.4

YOLOv3 80.02% 72.73% 83.10% 27.07 234.2
YOLOv4 90.48% 79.36% 87.23% 35.92 244.1
YOLOv5 91.62% 80.14% 90.08% 38.54 13.6

The proposed method 92.44% 80.27% 88.42% 42.78 53.6

Table 5. Comparison of the detection results of rail defects with 10% Gaussian noise.

Method Pr Re mAP
FPS
(Hz)

Volume (MB)

Faster R-CNN 79.35% 71.52% 80.65% 11.80 521.8
Mask R-CNN 85.48% 72.30% 81.23% 5.47 245.4

YOLOv3 75.36% 68.18% 74.40% 28.33 234.2
YOLOv4 88.89% 72.73% 83.02% 32.35 244.1
YOLOv5 91.62% 80.14% 90.08% 36.00 13.6

The proposed method 89.92% 79.63% 84.28% 43.42 53.6

5. Conclusions

The rapid, accurate and intelligent detection of rail surface defects is of great signifi-
cance for ensuring the safe operations of railway vehicles. According to the characteristics
of rail surface defect detection, a one-stage detection model based on deep learning was
constructed for the detection of rail surface defects. Through experimental verification and
comparative analysis, the following conclusions were drawn:

(1) In order to reduce the weight of the rail surface defect detection network, the YOLOv4
algorithm was improved. The backbone network of YOLOv4 was optimized, and
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the PANet layer in YOLOv4 was lightened and improved. It reduced the algorithm
parameters, increased the detection speed and reduced the model size.

(2) In order to solve the problem of small objects detection, the improved YOLOv4
method was used in rail surface defect detection. The test results verified the effec-
tiveness of the method.

(3) Establish training and test datasets and adding Gaussian noise processing to the
datasets let us conduct the detection case studies. The analysis results showed that,
compared with the traditional detection method, the proposed method had a higher
detection accuracy.

In addition to the above conclusions, with the rapid development of object detection
methods, the ideas proposed in this paper can be extended to different deep learning
networks. At the same time, in order to verify the effectiveness of the proposed method
and to avoid introducing more variables, image preprocessing was not introduced in this
paper. It can be inferred that the accuracy of the defect detection can be further improved if
the image is effectively preprocessed. Finally, if sufficient railway surface defect images
can be obtained to establish datasets, statistical tests can be performed to achieve a full
statistical analysis of the proposed deep learning approaches.
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Abstract: The health status of the momentum wheel is vital for a satellite. Recently, research on
anomaly detection for satellites has become more and more extensive. Previous research mostly
required simulation models for key components. However, the physical models are difficult to
construct, and the simulation data does not match the telemetry data in engineering applications.
To overcome the above problem, this paper proposes a new anomaly detection framework based
on real telemetry data. First, the time-domain and frequency-domain features of the preprocessed
telemetry signal are calculated, and the effective features are selected through evaluation. Second,
a new Huffman-multi-scale entropy (HMSE) system is proposed, which can effectively improve
the discrimination between different data types. Third, this paper adopts a multi-class SVM model
based on the directed acyclic graph (DAG) principle and proposes an improved adaptive particle
swarm optimization (APSO) method to train the SVM model. The proposed method is applied to
anomaly detection for satellite momentum wheel voltage telemetry data. The recognition accuracy
and detection rate of the method proposed in this paper can reach 99.60% and 99.87%. Compared
with other methods, the proposed method can effectively improve the recognition accuracy and
detection rate, and it can also effectively reduce the false alarm rate and the missed alarm rate.

Keywords: satellite momentum wheel; anomaly detection; Huffman-multi-scale entropy (HMSE);
support vector machine (SVM); adaptive particle swarm optimization (APSO)

1. Introduction

As important spacecraft, study of the reliability of artificial satellites is a hot topic at
present. Generally, an artificial satellite consists of a structural system, temperature control
system, attitude control system, measurement and control system, and power supply
system. The mission of the attitude control system is to help the satellite achieve attitude
stability or attitude maneuver, to further guarantee the normal operation of the satellite
platform and the normal work of the payload.

Satellites have high requirements for attitude accuracy, which makes the task of
attitude control systems very heavy. Health state and reliability are the basic guarantee for
the normal operation of satellites [1]. Therefore, research on the theory and technology of
automatic fault diagnosis and anomaly detection of satellite attitude control systems will
further ensure the safe and reliable operation of on-orbit aircraft, reducing the possibility
of space accidents.

In recent years, many scholars have conducted research on fault diagnosis technology
or health management technology. These research contents can be roughly divided into
three main aspects. First, when there is a specific research object, a feasible solution is
to construct a simulation model of the object by analyzing the working mechanism and
failure mode of the object. The data generated based on the simulation data is used as the
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theoretical prediction value, and then the judgment criterion is designed to complete the
detection task. Luo et al. propose an improved phenomenological model based on meshing
vibration to generate fault simulation data [2]. Li et al. established an INS/ADS fault
detection model based on kinematic equations, and combined an unscented Kalman filter
(UKF) with Runge-Kutta to deal with the non-linear and discretization problem [3]. Second,
some research aims at extracting the fault features by constructing more effective signal
processing methods, such as the feature extraction method based on entropy value [4,5],
the feature extraction method based on spectral kurtosis time (Spectral Kurtosis, SK) [6], or
the Frequency domain feature extraction method [7]. To fully excavate the features of the
momentum wheel telemetry signal, this paper uses a combination of time domain features,
frequency domain features and complexity features for feature extraction. Considering
that, compared with permutation, dispersion, hierarchy, etc., sample entropy has better
consistency for different parameters, this paper chooses a complex quantification method
based on sample entropy. Third, for the fault recognition process, various pattern recog-
nition methods are used to learn the mapping relationship between features and failure
modes, so as to realize automatic fault recognition [8].

Due to the extremely complex structure and working principle of the spacecraft
itself, and the strong coupling between the sub-systems, it is very difficult to construct an
accurate simulation model of the spacecraft or its components [9,10]. As the spacecraft
is affected by the special space environment during its orbiting operation, it is extremely
prone to unpredictable failures, for example, the circuit signal disturbance caused by
electromagnetic background [11], the sudden change of attitude caused by the impact
of space debris [12], etc. In addition, during the process of the spacecraft downloading
telemetry data to the ground-based measurement and control station, data jumps and even
partial loss can occur [13]. Therefore, the data generated by the simulation model is often
difficult to simulate the actual telemetry data of the spacecraft, and it becomes very difficult
to use the spacecraft anomaly detection method based on the physical simulation model in
practical applications.

The fault diagnosis method based on the data mode does not impose necessary
restrictions on the prior knowledge of the object or system (including mathematical models
and expert experience, etc.), such as artificial neural network (ANN), support vector
machine (SVM), Bayesian network (BN) and other health assessment methods.

ANN is a method that is widely used in fault identification problems. Multilayer
Perceptron (MLP) is the most typical type of feedforward neural network model, which
usually uses a BP algorithm to learn the parameters of the model. Kumar et al. proposed a
method based on principal component analysis (PCA) and MLP to detect and classify the
three-phase current signals online [14]. In addition, probabilistic neural network (PNN) [15],
RBF neural network [16], extension neural network (ENN) [17] and recurrent neural
network (RNN) [18–20] have also been applied to fault detection and diagnosis problems.

For high-dimensional identification problems in fault diagnosis, the SVM method
based on the principle of structural risk minimization has been widely used in recent
years [21–23]. Compared with the ANN method based on the principle of empirical risk
minimization, the learning goal of the SVM is to learn the optimal classification hyperplane
in the feature space. The ANN has the ability to deal with pattern recognition problems,
but the sample size is large, and it takes a long time to adjust the network structure pa-
rameters. Bayesian decision-making has significant execution ability under the premise of
considering prior probability, but good accuracy is based on a prior model with appropriate
assumptions. Compared with the above methods, the SVM only needs a small number of
samples for training and has better generalization ability. Therefore, this paper chooses
SVM as the means of pattern recognition. In the field of fault diagnosis, research on the
SVM method mainly focuses on two aspects of obtaining more accurate recognition accu-
racy, i.e., by optimizing the hyperparameters of the model and constructing a new kernel
function. For specific recognition tasks, to optimize the hyperparameters of the model to
obtain better recognition performance, many optimization methods are applied [24–26].
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Liu et al. proposed a novel small sample data missing filling method based on support
vector regression (SVR) and genetic algorithm (GA) to improve the equipment health
diagnosis effect [25]. Particle swarm optimization (PSO) is a hyperparameter optimization
algorithm which is used by Cuong-Le et al. for damage identifications [26]. In terms
of constructing a new kernel function, Wang et al. proposed a kernel function selection
mechanism under sparse representation and the superiority of the selection mechanism
was performed in simulations and engineering experiments involving high-speed bearing
fault diagnosis [27]. Although both GA and PSO can solve high-dimensional complex
optimization problems well, in the iterative process of PSO, the particles can retain the
memory of the good solution, but the GA cannot, so PSO can often converge to a better
solution more quickly. Based on the above analysis, this paper uses PSO to optimize the
multi-class SVM.

From the above analysis, it can be seen that the following problems still exist in the
direct application of existing anomaly detection or fault diagnosis methods to the anomaly
detection problem of the satellite momentum wheel.

(1) Due to the complex structure and control law of the satellite momentum wheel itself,
it is very difficult to construct an accurate simulation model, so model-based anomaly
detection methods often fail to achieve satellite momentum wheel anomaly detection.

(2) Satellite telemetry data often contains outliers (due to the data with very large de-
viations introduced by the telemetry process). These data alone cannot characterize
the health of the spacecraft, but they can easily be detected as abnormal values by
existing methods. At the same time, some segments of the telemetry data are lost
in the process of downloading the data from the satellite to the ground. Therefore,
reasonable preprocessing of telemetry data is required.

(3) The sampling frequency of telemetry data collected by on-orbit satellite is often
less than 1Hz, and the data itself has a long change period, so traditional anomaly
detection methods based on time-frequency domain analysis are difficult to work
with telemetry data.

Therefore, in response to the above problems, this article proposes a new method
based on multi-type features fusion and improved SVM to handle the problem of anomaly
detection for the satellite. The main contributions of the proposed framework can be
summarized as follows:

(1) We design a new anomaly detection framework for satellites, which includes a teleme-
try data preprocessing part, a telemetry data multi-type feature extraction part, and a
data-driven anomaly detection part.

(2) We propose a new method to construct the fusion-feature sequence HMSE-T/F. The
HMSE-T/F is based on the Huffman-multi-scale entropy and the selected time/
frequency-domain feature. The Huffman-multi-scale entropy is a new method based
on the Huffman coding principle and sample entropy.

(3) We build a multi-class SVM model based on the directed acyclic graph (DAG) princi-
ple. We propose an improved adaptive particle swarm optimization (APSO) to train
the multi-class SVM model. Compared with other methods, the proposed method
has an excellent ability in anomaly detection.

The rest of this paper is organized as follows. Section 2 presents the scheme of the
proposed anomaly detection framework. The construction method of multi-type feature
sequence HMSE-T/F is provided in Section 3. In Section 4, the anomaly detection method
based on multi-class SVM model and the improved adaptive particle swarm optimization
(APSO) are stated. In Section 5, the performance of the proposed method is evaluated
from different aspects. Finally, in Section 6, a comprehensive summary of this paper and
prospects for future work are given.
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2. The Scheme of the Proposed Anomaly Detection Framework

2.1. Description of Difficulties in Spacecraft Anomaly Detection

In fact, since satellites are at normal working conditions at most of the time during
their orbits, the proportion of normal data in the telemetry data collected on the ground
is very high. For most detection methods that rely on plenty of training data, satellite
telemetry data can provide very few abnormal or fault samples, and there are very few
effective samples that can be used for classification model training. Therefore, some
adaptive improvements are needed when using the classification model to detect anomalies
in spacecraft.

Figure 1a shows the momentum wheel voltage change of a certain type of satellite
within 10 days, and its sampling frequency is 0.125 Hz. Figure 1b shows a sudden voltage
change in a certain type of satellite. Figure 1c is the frequency spectrum of the telemetry
signal in Figure 1a,d is the partially enlarged view of Figure 1c. According to Figure 1a–d,
apart from the feature of less abnormal data, satellite telemetry data also exhibits the
characteristics of extremely low sampling frequency, slow data change over a long period
of time, and many sudden abnormalities. Therefore, anomaly detection methods that
rely on time domain and frequency domain feature extraction often find it difficult to
distinguish the health status of their telemetry data.

Figure 1. A satellite’s momentum wheel voltage telemetry data: (a) 10-day data sampled at a fre-
quency of 0.125 Hz, (b) sample with sudden change, (c) frequency spectrum, (d) partially enlarged
view of (c).

2.2. The Proposed Anomaly Detection Framework

To effectively solve the problem of satellite momentum wheel anomaly detection,
a new anomaly detection framework based on multi-type feature extraction and fusion
is proposed in this paper. The overall procedure of the proposed anomaly detection
framework is shown in Figure 2. Specifically, the descriptions of each Step are detailed
as follows.
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Figure 2. The overall procedure of the proposed anomaly detection framework.

Step 1: Telemetry data collection.
When the satellite is in orbit, to obtain its internal operating status and further provide

real-time data for the remote-control object, the sensors in the satellite telemetry system
need to measure the operating status of each key component and convert it into electrical
signals. After the signals of each channel are combined according to a certain system,
they are transmitted to the ground telemetry equipment (including receiver, antenna and
splitter demodulator) using radio communication technology, and the ground terminal
equipment restores and stores the original parameter information of each channel through
signal demodulation technology.

Step 2: Data preprocessing.
The collection process of telemetry data is interfered with by sensors, converters, and

wireless transmission. The data obtained by the ground receiving end often produces
abnormal jump points. These kind of data points that deviate from the change law of
the measured signal are usually called abnormal outliers. The abnormal outliers of the
telemetry data will provide wrong information and affect the processing and analysis
results of the telemetry signal. Outlier elimination is an important part of telemetry data
preprocessing. By eliminating random measurement values with large errors, the authen-
ticity of telemetry data can be guaranteed to a certain extent, and the reliability of data
analysis can be improved. Commonly used methods to eliminate outliers include visual
inspection, mean square method, point discrimination, Letts criterion, etc. Different outlier
elimination methods should be used for different types of telemetry data. Considering that
this article mainly analyzes the telemetry data of the satellite momentum wheel, the outlier
elimination method based on the Letts criterion is adopted.

The premise of the Letts criterion is that the distribution of the measured data is close
to the normal distribution. Based on this assumption, the given confidence probability is
99.7% as the standard, and the standard deviation of three times the measured quantity is
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used as the basis. Any measurement value exceeding this limit is judged for wild value.
For a given sequence of telemetry measurement values. For a given telemetry sequence
x = {xi}, i = 1, · · · , N, the specific process of the method is as follows.

(1) Calculate the mean of the series:

x =
N

∑
i=1

xi (1)

(2) Calculate the standard deviation of the series:

σ =
1
N

√√√√ N

∑
i=1

(xi − x) (2)

(3) Eliminate outliers:{ |xi − x| ≤ 3σ, not outliers, keep
|xi − x| > 3σ, outliers, delete

(3)

In addition to the problem of outliers, the process of satellite telemetry data transmis-
sion to the ground is affected by the ionosphere, and data may be missing during the signal
decoding process. A telemetry sequence that has many data problems should be discarded
and not used as training data, but the missing value at a certain point in the sequence can
be handled by the filling method. From the distribution of the missing values, they can
be divided into missing completely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). MCAR means that the law of missing values in the data
is completely random and does not affect the unbiasedness of the overall sample. MAR
means that the mechanism of missing data is not completely random. The missing data of
this type depends on other variables. Such missing values are relatively rare in telemetry
data. MNAR means that the missing data is related to the value of the variable itself.

The missing values in satellite telemetry data are generally MCAR, so this paper uses
an interpolation method based on two short sequences before and after the missing point
to fill in the missing values. Given the data sequence to be filled is y = {yi}, i = 1, · · · , M,
The missing value to be filled is y∗. The auxiliary variable used to construct the regression
equation is x = {xi}, j = 1, · · · , M. The auxiliary variable value corresponding to the
missing value of the variable to be filled is x∗, and x∗ is a known variable. Use x, y to
construct the regression equation:

yi = f ∗(xi) (4)

where f ∗ needs to choose different regression models according to different telemetry data.
Then the missing value is y∗ = f (x∗).

Step 3: Features extraction.
Considering the difficulty of using satellite telemetry data for anomaly detection

as mentioned above, this paper adopts a time-frequency domain feature extraction and
selection method based on feature quality evaluation. At the same time, a complexity
feature extraction method based on Hoffman multi-scale entropy is proposed, which
enriches signal feature types and provides effective feature learning samples for training
satellite telemetry data anomaly detection models. The specific method of feature extraction
is described in detail in Section 3.

Step 4: Obtaining the anomaly detection model.
This paper takes support vector machine (SVM) as the basic unit and uses a directed

acyclic graph (DAG) principle to construct a satellite momentum wheel anomaly detection
model based on the support vector machine. This model can effectively solve the multi-
classification problem when some categories are difficult to distinguish. In addition, to
improve the classification accuracy of the anomaly detection model, an improved particle
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swarm optimization (PSO) algorithm is proposed to train SVMs. The specific method of
Obtaining anomaly detection model is described in detail in Section 4.

3. Multi-Type Feature Sequence HMSE-T/F Construction Method

3.1. Time/Frequency Domain Feature Extraction and Selection
3.1.1. Time/Frequency-Domain Feature

The time domain signal is a time series in which time is the independent variable
to describe the change of a certain physical quantity, and it is the most basic and most
intuitive form of expression of the signal. The time domain signal reflects the corresponding
relationship between real physical information and time. The processing of filtering,
amplifying, statistical feature calculation, and correlation analysis of signals in the time
domain is collectively referred to as time domain analysis.

When a device fails, its spectrum distribution may change. Like the statistical analysis
of time-domain signals, this type of change can be described by statistical analysis of the
signal’s frequency spectrum.

Given a period of time domain signal x(t), the frequency spectrum of this signal is
y(k), k = 1, · · · , k, fk is the k-th line of the spectrum. Then the time-domain statistical
characteristics and frequency-domain statistical features of x(t) are shown in Table 1 [28].

Table 1. The time/frequency-domain statistical features of x(t).

No. Time-Domain No. Frequency-Domain

1 peak : Xp = max{x(n)} 14 F1 = 1
K

K
∑

k=1
y(k)

2 peak-to-peak : Xpp = max{x(n)} − min{x(n)} 15 F2 = 1
K−1

K
∑

k=1
(y(k)− F1)

2

3 mean : μ = 1
N

N
∑

n=1
x(n) 16 F3 = 1

K(
√

F2)
3

K
∑

k=1
(y(k)− F1)

3

4 absolute mean : Xam = 1
N

N−1
∑

n=1
|xi| 17 F4 = 1

K(F2)
2

K
∑

k=1
(y(k)− F1)

4

5 root amplitude : Xra =

(
1
N

N
∑

n=1

√|x(n)|
)2

18
F5 =

K
∑

k=1
y(k) fk

K
∑

k=1
y(k)

6 standard deviation : σ =

√
1

N−1

N
∑

n=1
[x(n)− μ]2 19

F6 =

√
K
∑

k=1
y(k)( fk−F5)

2

K

7 root mean square : Xrms =

√
1
N

N
∑

n=0
x2(n) 20

F7 =

√√√√√ K
∑

k=1
fk

2y(k)

K
∑

k=1
y(k)

8 skewness : Xske =

(
1
N

N
∑

n=1
(x(n)− μ)3

)
/σ3 21

F8 =

√√√√√ K
∑

k=1
fk

4y(k)

K
∑

k=1
fk

2y(k)

9 kurtosis : Xkur =

(
1
N

N
∑

n=1
(x(n)− μ)4

)
/σ4 22

F9 =

K
∑

k=1
fk

2y(k)√
K
∑

k=1
y(k)

K
∑

k=1
fk

4y(k)

10 peak index : Xpi = Xp/Xrms 23 F10 = F6
F5

11 impulse factor : Ximp = Xp/Xam 24 F11 = ∑K
k=1 ( fk−F5)

3y(k)
K(F6)

3

12 margin index : Xmi = Xp/Xra 25 F12 = ∑K
k=1 ( fk−F5)

4y(k)
K(F6)

4

13 waveform index : Xwi = Xrms/Xam

3.1.2. Feature Evaluation and Selection

In this paper, two commonly used feature evaluation methods, Laplacian Score
(LS) [29] and Relief-F Score (RFS) [30], are used to evaluate the effectiveness of the time-
domain and frequency-domain features of the satellite momentum wheel telemetry signal.
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Feature selection is based on two different feature evaluation results, and the feature with
the higher evaluation score is taken as the effective feature in the time/frequency domain.

(1) Laplacian Score (LS).
In practical problems, data of the same type are generally close to each other. Under

this premise, the importance of describing features can be transformed into evaluating
the local retention of features. The Laplace score is based on this idea. Let the data set be
X ∈ R

m×n, Lr is the LS of the r-th feature, fri is the the r-th feature of the i-th sample. Lr
can be calculated as follows.

Step 1: Construct a neighbor graph G containing n nodes, the i-th node corresponds
to the i-th sample xi, if xi and xj are close to each other, that is, xi is within the k-neighbor
range of xj, then an edge is constructed between nodes xi and xj. When the data labels are
known, edges can be constructed directly between samples of the same type.

Step 2: If nodes xi and xj are connected, put Sij = e
‖xi−xj‖2

t , where t is a suitable
constant. Otherwise, put Sij = 0. The weight matrix S of the graph models the local
structure of the data space.

Step 3: For the r-th feature, the fr and D can be defined as fr = [ fr1, fr2, · · · , frm]
T,

D= diag(S1). The matrix L = D − S is often called graph Laplacian. Let

f̃r = fr −
fT
r D1

1TD1
1 (5)

where 1 = [1, · · · , 1]T.
Step 4: Compute the LS of the r-th feature as follows:

Lr =
f̃
T
r L̃fr

f̃
T
r Df̃r

(6)

(2) Relief-F Score (RFS).
The Relief-F Score method is a multi-class variant of the Relief method. The Relief

method designs a correlation statistic to measure the importance of features. The statistic is
a vector, each component of which corresponds to an initial feature, and the importance
of the feature subset is determined by the sum of the relevant statistic components corre-
sponding to each feature in the subset. For each xi in the data set X ∈ R

m×n, first find its
nearest neighbor xi,nh in the same sample of xi, which is called guessing nearest neighbor,
and then find its nearest neighbor xi,nm from different type samples of xi, which is called
guessing wrong neighbor. The component of the correlation statistic corresponding to the
feature is:

δ(r) = ∑
i

(
−di f f

(
x(r)i , x(r)i,nh

)2
+ di f f

(
x(r)i , x(r)i,nm

)2
)

(7)

where x(r)i is the value of the r-th feature of xi. For xa and xb, di f f
(

x(r)a , x(r)b

)
depends on the

type of the r-th feature. If the r-th feature r is discrete, when x(r)a = x(r)b , di f f
(

x(r)a , x(r)b

)
= 0,

otherwise di f f
(

x(r)a , x(r)b

)
= 1. If the r-th feature r is continuous, then di f f

(
x(r)a , x(r)b

)
=∣∣∣x(r)a − x(r)b

∣∣∣.
Relief is designed for two classification problems, while Relief-F can handle multiple

classification problems. For the sample xi, if it belongs to the k-th class, the Relief-F method
first finds its nearest neighbor xi,nh in the k-th class sample, and then finds a nearest
neighbor xi,l,nm, l �= k of xi in each class except the k-th class as a guessing wrong neighbor,
so the correlation statistic corresponding to the component of the r-th feature is

δ(r) = ∑
i
−di f f

(
x(r)i , x(r)i,nh

)2
+ ∑

l �=k

(
pl × di f f

(
x(r)i , x(r)i,nm

)2
)

(8)
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where pl is the proportion of the l-th class sample in the data set X.

3.2. Complexity Features Based on Huffman-Multi-Scale Entropy (HMSE)

Sample entropy (SampEn) is a new time series complexity characterization parameter
proposed by Richman et al. in 2004 [31]. The sample entropy is improved on the basis
of approximate entropy, both of which measure the complexity of the time series and the
probability of a new pattern generated by the sequence when the dimensionality changes.
The greater the probability of generating a new pattern, the more complex the sequence
and the higher the entropy value. Compared with other nonlinear dynamic methods such
as Lyapunov exponent, information entropy, and correlation dimension, sample entropy
has the advantages of short data, strong anti-noise and anti-interference ability, and good
consistency within a large range of parameters. Therefore, it has attracted the attention of
many scholars and has been frequently used in the field of mechanical signal analysis and
fault diagnosis in recent years.

3.2.1. Traditional Multi-Scale Sample Entropy (MSE)

Suppose a time series of length N is X = {x1, x2, · · · , xN−1, xN}, and the calculation
method of sample entropy is as follows:

Step 1: Construct the time series X into an m-dimensional vector:

X(i) = {xi, xi+1 · · · , xi+m−1}, i = 1, 2, · · · , N − m + 1 (9)

Step 2: Define the distance between X(i) and X(j) as d[X(i), X(j)], (i �= j), which is
the largest difference between the two corresponding elements:

d[X(i), X(j)] = max
k∈(0,m−1)

∣∣∣∣x(i + k)− x(j + k)
∣∣∣∣, (i �= j) (10)

Step 3: Given a threshold r > 0, count the number of d[X(i), X(j)] < r and calculate
the ratio to the total number of vectors N − m:

Bm
i (r) =

1
N − m

num{d[X(i), X(j)] < r} (11)

Step 4: Average all the results obtained by Equation (12):

Bm(r) =
1

N − m + 1

N−m+1

∑
i=1

Bm
i (r) (12)

Step 5: Then m = m + 1, repeat Step1–Step4.
Step 6: Then theoretically the sample entropy of this sequence is:

SampEn(m, r) = lim
N→∞

{
− ln(

Bm+1(r)
Bm(r)

)

}
(13)

However, N cannot be infinite in fact, but a finite value. The estimated value of sample
entropy is:

SampEn(m, r, N) = − ln(
Bm+1(r)

Bm(r)
) (14)

The sample entropy does not include the comparison of its own data segments, which
not only improves the calculation accuracy and saves the calculation time, but also makes
the calculation of the sample entropy independent of the data length. In addition, the
sample entropy has better consistency. In other words, if one sequence has a higher SampEn
than another sequence, then when the parameters m and r are changed, the sequence still
has a relatively high SampEn value. However, the disadvantage of sample entropy is that
it does not consider the different time scales that may exist in the time series.
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To calculate the complexity of the signal at different time scales, Costa et al. proposed
multi-scale entropy [32], which aims to extend the sample entropy to multiple time scales
to provide additional observation perspectives when the time scale is uncertain. Like
other entropy measurement methods, the goal of multi-scale entropy is to evaluate the
complexity of time series. One of the main reasons for using multi-scale entropy is that the
relevant time scale in the time series is not known. For example, when analyzing a speech
signal, it is more effective to count the complexity of the signal under the word time scale
than the complexity of the entire speech segment. However, the actual situation is that we
often cannot know how many words a certain speech segment contains, or know what time
scale should be used to obtain more useful information from the original signal. Therefore,
analyzing the problem through multiple time scales will obtain more effective information.

The basic principle of multi-scale entropy (MSE) includes coarse-graining or down-
sampling the time series, so that the time series can be analyzed at increasingly coarse time
resolutions. Given a time series X = {x1, x2, · · · , xN−1, xN} of length N, set the coarse-
grained scale to s, then the original time series can be split into i consecutive segments
without overlap, where i = f loor(N/s), f loor(∗) means taking the largest integer smaller
than *. The original sequence can be transformed into a new sequence by calculating the
average value of each fragment by Equation (15). Then the MSE of the original sequence
can be obtained by solving the sample entropy of the new sequence Y = {y1, y2, · · · , yi}
obtained under different s. The process of coarse-graining the time series is shown in
Figure 3.

yi =

s
∑

k=1
x(i−1)s+k

s
(15)

x sx sx + sx i sx − +

y y iy
isx

Figure 3. The process of coarse-graining the time series.

3.2.2. The Huffman-Multi-Scale Entropy (HMSE)

According to the process of the calculation of multi-scale sample entropy, the core of
this method is to coarse-grain the original time series on different time scales by averaging.
Figure 4a shows a satellite momentum wheel voltage telemetry signal with the length of
10,000. This signal is coarse-granulated and averaged on time scales s = 10, s = 50, and
s = 100 respectively. The results are shown in Figure 4b–d. As can be seen from Figure 4,
the waveform of the new signal obtained by averaging the original signal at different time
scales is almost the same.

It can be seen from Figure 4 that the state of the signal changes at about the 4000th
sample point in the original signal. However, the use of different coarse-grained scales
cannot reflect the difference in signal changes. Therefore, this paper proposes a new
improved multi-scale entropy calculation method based on the Huffman mean model. The
main innovation of this method is that when the original data is coarse-grained on different
time scales, the average value is not taken, but the Huffman average value is taken. This
section will introduce the Huffman mean model and the improved multi-scale entropy
calculation method based on the Huffman mean model in detail.

(1) Huffman Coding.
In 1952, Huffman proposed an optimum method of coding an ensemble of messages

consisting of a finite number of members [33]. A minimum-redundancy code is one con-
structed in such a way that the average number of coding digits per message is minimized.
The process of Huffman coding is as follows.
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Step 1: Given a sequence containing n kinds of symbols. Suppose the set of sym-
bol types is S0 =

{
s0

1, s0
2, · · · , s0

i , · · · s0
n
}

, i = 1, 2, · · · , n. The probability of each symbol

appearing is P0 =
{

p0
1, p0

2, · · · , p0
i , · · · p0

n
}

, i = 1, 2, · · · , n, and
n
∑

i=1
p0

i = 1.

Step 2: Set the iteration parameter to t, the maximum value of t is n − 1 and the initial
value of t is 0. The symbol sequence and the corresponding probability at the beginning
of the k-th iteration are Sk−1 and Pk−1. The symbol sequence and the corresponding
probability at the end of the k-th iteration are Sk and Pk.

Figure 4. The average value of voltage telemetry under different scales: (a) original signal, (b) scale =
10, (c) scale = 50, (d) scale = 100.

Step 3: When t = k, arrange the symbol Sk−1 in ascending order of probability Pk−1

as Sk−1 =
{

sk−1
1 , sk−1

2 , · · · , sk−1
i , · · · sk−1

n−k+1

}
. Then the probability Pk−1 is also rearranged

accordingly as Pk−1 =
{

pk−1
1 , pk−1

2 , · · · , pk−1
i , · · · pk−1

n−k+1

}
.

Step 4: Take the two symbols sk−1
1 and sk−1

2 with the least probability in the symbols
sequence. Encode the symbol sk−1

2 with higher probability into “1” and the symbol sk−1
1

with lower probability as “0”. Add the probabilities pk−1
1 and pk−1

2 of the sk−1
1 and sk−1

2 as
the probability p∗ of the new symbol s∗.

Step 5: Delete sk−1
1 and sk−1

2 from Sk−1, and add s∗ into Sk−1. Then the Sk−1 turns into
Sk, and the size of Sk is n − k. Delete pk−1

1 and pk−1
2 from Pk−1, and add p∗ into Pk−1. Then

the Pk−1 turns into Pk, and the size of Pk is also n − k.
Step 6: Repeat the Step 3 to Step 5 until t = n − 1. Then the symbols sequence will be

Sn−1 =
{

sn−1
1

}
and the probability will be Pn−1 =

{
pn−1

1

}
, pn−1

1 = 1.
It can be seen from the above coding process that the symbol with the lower probability

in the original signal has the longer Huffman code length. Conversely, the symbol with the
higher probability has the shorter Huffman code length. The complexity of the probability
distribution of the signal can be described by solving the Huffman average code length of
the original signal. Based on the above-mentioned Huffman coding process, the method to
further calculate the average Huffman coding length is as follows.

Backtrack from the symbol sn−1
1 with the probability of pn−1

1 = 1 to each source
symbol and record 0/1 in the backtracking path. The Huffman code of s0

i is ci. The
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average Huffman coding length L∗ can be calculated according to the length of ci and the
corresponding probability p0

i as Equation (16). L(ci) is the length of ci.

L∗ =
n

∑
i=1

p0
i ∗ L(ci) (16)

For a set of source symbols S0 = {s1, s2, s3, s4, s5, s6} with probability P0 = {0.35,0.28,
0.14,0.13,0.07,0.03} , the process of Huffman coding is shown in Table 2. The average
Huffman coding length of S0 can be calculated as 2.33 as follows.

L∗(S0) = (0.35 + 0.28 + 0.14) ∗ 2 + 0.13 ∗ 3 + (0.07 + 0.03) ∗ 4 = 2.33

Table 2. An example of the Huffman coding process.

S0 P0 Huffman Coding ci L(ci)

s1 0.35  0.35  0.35  0.37  0.63 1 1
 0.28  0.28  0.35 1 0.37 0  
 0.14  0.23 1 0.28 0    
 0.13 1 0.14 0      

1 0.1 0        
0          

11 2

s2 0.28 10 2

s3 0.14 00 2

s4 0.13 011 3

s5 0.07 0101 4

s6 0.03 0100 4

(2) Huffman Mean Model.
The basic principle of Huffman coding and the calculation method for solving the

average Huffman coding length were introduced above. In this paper, a new Huffman
mean model based on the Huffman coding is proposed for the problem of satellite anomaly
detection. For a sequence T = {t1, t2, · · · , ti, · · · , tn}, the expression of the Huffman mean
model is shown in Equation (17).

HM(T) =

⎧⎪⎪⎨⎪⎪⎩
T′ = T/sum(T)
C = Hu f f man_coding(T′)
� = L(C)
Hu f f man_mean = sum(T ∗ (�/sum(�)))

(17)

where HM(T) is the Huffman mean value of T, T′ = T/sum(T) means to convert the origi-
nal time series into a probability series, C = Hu f f man_coding(T′) represents the Huffman
coding result of the probability sequence T′, C = {c1, c2, · · · , ci, · · · , cn}, i = 1, 2, · · · , n,
ci is the Huffman code corresponding to ti in the original sequence, � = L(C) means
to calculate the length of each ci, Hu f f man_mean = sum(T ∗ (�/sum(�))) represents the
Huffman mean value of the sequence T considering the length weight of the Huffman code.

(3) The Improved Method of Huffman-multi-scale Entropy.
The Figure 5 shows the calculation process of Huffman-multi-scale entropy. The

inputs of both two methods are original signal X = {x1, x2, · · · , xN−1, xN}, the scale se-
quence Scale =

{
s1, s2, · · · , sp

}
and the parameter set θ = {m, r}, usually 0.1std(X) < r <

0.2std(X). Compared with the classic MSE, the Huffman-multi-scale entropy method pro-
posed in this paper adopts the coarse-grained method based on the Huffman mean model.
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Figure 5. The process of the improved method of Huffman-multi-scale Entropy.

Figure 6 shows the same satellite momentum wheel voltage telemetry signal with the
length of 10,000. This signal is coarse-granulated and calculated by Huffman mean model
on time scales s = 10, s = 50, and s = 100, respectively. Obviously, the coarse-grained
method based on the Huffman mean model can enhance the difference of signal changes at
different time scales.
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Figure 6. The Huffman average code length of voltage telemetry under different scales: (a) original
signal, (b) scale = 10, (c) scale = 50, (d) scale = 100.

4. Anomaly Detection Method Based on Multi-Class SVM

4.1. Multi-Class SVM

A support vector machine (SVM) is widely used in classification problems. The basic
idea is to find a hyperplane so that all sample points in the positive and negative categories
are farthest from the plane, and points that are far enough from the plane can basically
be correctly classified. Therefore, if the points closer to the hyperplane are as far away as
possible from the hyperplane, a better classification effect can be achieved.

This article uses the most interval classifier to achieve two-class SVM, and then uses
the directed acyclic graph (DAG) method to achieve the multi-class SVM based on two-
class SVM.

Set the dataset as {(xi, yi)|i = 1, 2, · · · , N}, xi ∈ Rn, y ∈ {−1,+1}, the hyperplane is
wTx + b = 0, Then the distance from the support vector to the hyperplane is wTx + b = y,
which can be written as ∣∣y(wTx + b)

∣∣
||w||2

=
1

||w||2
(18)

The SVM model keeps all the points on both sides of the support vector of their respec-
tive categories, while keeping away from this hyperplane. It can be seen from Equation (18)
that when ||w||2 is the smallest, the interval is the largest. Introduce the penalty parameter
λ for misclassification and the relaxation factor ξ that allows misclassification, and the
objective function can be

min 1
2 ||w||22 + λ

N
∑

i=1
ξi

s.t. yi(wTx + b) ≥ 1 − ξi, i = 1, 2, · · · , N
ξi ≥ 0, i = 1, 2, · · · , N

(19)
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According to Lagrange’s duality, the optimization objective can be converted into an
equivalent dual problem. The Equation (19) can be transformed into:

min
α

1
2

N
∑

i,j=1
yiyjαiαjK〈xi, x〉 −

N
∑

j=1
αj

s.t. yi(wTx + b) ≥ 1 − ξi, i = 1, 2, · · · , N

ξi ≥ 0, i = 1, 2, · · · , N

(20)

where K〈xi, x〉 is the kernel function. The radial basis function is used as the kernel function

in this paper, K〈xi, x〉 = exp
{
−||xi−x||2

2σ2

}
, σ is the kernel function parameter. Then the

decision function is

f (x) = wTx + b = sgn[
N

∑
i=1

yiαiK〈xi, x〉+ b], 0 < αi < λ (21)

Among the multi-class SVM methods, one is the direct solution method, but this
method has high time complexity and is difficult to implement. It is not suitable for a
large amount of data. The other one is to combine multiple two-class SVM models into a
multi-class SVM model. In this paper, a directed acyclic graph method is used to construct
a multi-class SVM.

The DAG method uses the “competition” rule. For n types, the height of the decision
tree is n − 1. Put the classes that are easy to distinguish on the upper layer, and the classes
that are difficult to distinguish on the lower layer. The schematic diagram of DAG method
for five-class SVM is shown in Figure 7.

Figure 7. The schematic diagram of DAG method for five-class SVM model.

4.2. Improved Adaptive Particle Swarm Optimization (APSO)

Kennedy and Eberhart first proposed particle swarm optimization (PSO) in 1995 [34].
PSO is an algorithm for finding the optimal solution inspired by the foraging behavior of
bird groups. In the PSO algorithm, each particle represents a feasible solution of a function
to be optimized, and the movement of the particle is restricted by two aspects: speed
and position. The speed constrains the distance of particle movement, while the position
constrains the direction of particle movement. Each particle’s movement is given a fitness
function to evaluate the particle’s location. Under the control of constraint conditions and
evaluation function, the particles search for a better area in the process of moving. After
many iterations, they gather near the optimal solution. The particle velocity and position
update formula are as follows:

vk+1
id = ωvk

id + c1r1(pid − xk
id) + c2r2(pgd − xk

id) (22)

xk+1
id = xk

id + vk+1
id (23)
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where vk
id is the current velocity of the d-th component in the i-th particle, vk+1

id is the next
velocity of the d-th component in the i-th particle, ω is the inertia weight, ω ≥ 0, c1 and c2
are the acceleration constant of the particle, r1 and r2 are random numbers between 0 and
1, r1, r2 = random(0, 1), pid represents the best position of the d-th component of the i-th
particle, pgd represents the best position of the d-th component of all particles, xk

id is the
current position of the d-th component in the i-th particle, and xk+1

id is the next position of
the d-th component in the i-th particle.

PSO has the advantages of fewer parameters and fast convergence, but it also has
shortcomings such as premature convergence and falling into local optimum. It can be
seen from Equations (22) and (23) that the inertia weight ω determines the relationship
between the next flight distance and the current flight distance, which further affects the
position after the flight. The larger the ω, the stronger the particle’s flying ability in the
solution space, which is conducive to searching in the global scope. The smaller the ω,
the smaller the flight length, and the stronger the search ability of the particles in a local
area, which is conducive to the convergence of the algorithm. However, if the value of ω is
too large, it will easily cause the algorithm to skip the optimal solution or oscillate near
the optimal solution, which will lead to the premature convergence; if ω is too small, the
algorithm will easily fall into a local optimum.

The inertia weight ω should be a larger value at the beginning of the iteration to
ensure a strong global search ability and the ability to jump out of the local optimum.
However, in the later stage of the algorithm iteration, smaller ω should be used to ensure
strong local search capabilities, which is conducive to the convergence of the algorithm.

In response to the above problem, this paper proposes a strategy for adaptively
changing the ω according to the number of iterations and the current fitness value. The
formula is as follows:

ωk+1
id =

⎧⎪⎨⎪⎩
ω0 − e−k/K ∗ f k

max− f k
id

f k
max− f k

avg
, f k

id ≤ f k
avg

ω0 + e−k/K ∗ f k
id− f k

min
f k
avg− f k

min
, f k

id > f k
avg

(24)

where k is the current number of iterations, k + 1 is the next number of iterations, K is the
maximum number of iterations, ωk+1

id is the inertia weight for the next iteration for the d-th
component of the i-th particle, ω0 is the initial value of ω, ω0 = 0.5 in this paper, f k

id is the
fitness value of the d-th component of the i-th particle obtained in the k-th iteration, f k

max is
the maximum fitness value in the k-th iteration, f k

min is the minimum fitness value in the
k-th iteration, f k

avg is the average fitness value in the k-th iteration.
At the beginning of the iteration, the weight of the particle changes greatly, and as the

number of iterations of the particle increases, the weight change decreases. At the same
time, the weight change is determined by the fitness function. When the particle fitness
is less than or equal to the average fitness, that is, when the accuracy of the classification
model is greater than or equal to the average accuracy, the inertia weight decreases; when
the particle fitness is greater than the average fitness, the accuracy of the classification
model is lower than the average accuracy, and the inertia weight increases.

The increase or decrease of the inertia weight is determined by the number of iterations.
At the beginning of the iteration, the increase or decrease of the weight is large, which is
convenient for searching in the global and optimal solution neighborhood. At the later
stage of the iteration, the increase or decrease of the weight is small. The increase of the
weight can avoid falling into the local optimal solution for random search, and the decrease
of the weight facilitates the local fine search.

4.3. The Algorithm of the Proposed APSO-SVM

In this paper, the improved Adaptive Particle Swarm Optimization (APSO) is used to
optimize the penalty factor λ and the kernel function parameter σ in the SVM. The specific
steps of APSO-SVM are as follows.

48



Entropy 2021, 23, 1062

Step 1: Input the dataset with labels.
Step 2: Divide the dataset into training set and test set, then normalize both two sets.
Step 3: Population initialization. Set the number of particles in the initial population

as n. Set the range of penalty factor λ to [λmin, λmax]. Set the range of kernel function
parameter σ to [σmin, σmax]. Initialize the parameter set θ = {ω0, c1, c2, K}. Initialize the
position x0

i , the speed v0
i , the optimal position pid of i-th particle and the global optimal

position pgd. Set fitness error ε.
Step 4: Calculate the corresponding inertia weight ωk+1

id according to Equation (24) in
the adaptive adjustment strategy. Update the velocity vk+1

id and position xk+1
id of the particles

according to Equations (22) and (23). Determine whether λ and σ are in [λmin, λmax] and
[σmin, σmax] respectively. If λ < λmin, set λ = λmin. If λ > λmax, set λ = λmax. If σ < σmin,
set σ = σmin. If σ > σmax, set σ = σmax.

Step 5: If fi > f (pi) or | fi − f (pi)|≤ ε, λ(xi) < λ(pi) , update pi. If fi > f (pg) or∣∣ fi − f (pg)
∣∣≤ ε, λ(xi) < λ(pg) , update pg. The expression of f (∗) is shown in Equa-

tion (21).
Step 6: If k < K, repeat the step 4 to step 6. If k ≥ K, end the APSO.
Step 7: Use the optimal solution (λ∗, σ∗) to create the SVMs model and use this model

for classification.
The flow chart of APSO-SVM is shown in Figure 8.

k 
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k
idω + k

idx +

λ λ λ∈ σ σ σ∈
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λ σ

λ σ
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Figure 8. Flow chart of APSO-SVM.
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5. Case Study of Anomaly Detection

5.1. Data Description

The data set used in this article is from a satellite’s telemetry voltage value of its
momentum wheel. In this data set, five types of sample with different health status are
screened out. Stable Change (large) indicates that the momentum wheel voltage value
continuously and steadily changes with a large change amplitude. Stable Change (small)
indicates that the momentum wheel voltage value continuously and steadily changes with
a small change amplitude. Large to Small indicates that the amplitude of the momentum
wheel voltage change smoothly transitions from large to small. The above three types
of sample all represent that the momentum wheel is in a normal state. Irregular Change
indicates that the voltage of the momentum wheel changes irregularly. Sudden Change
indicates that the voltage of the momentum wheel has a sudden change, such as the
voltage suddenly jumping to 0. Irregular Change and Sudden Change represent that the
momentum wheel is in an abnormal state. The time-domain waveforms of different types
of data are shown in the Figure 9.

Figure 9. The waveform of five different types of voltage telemetry data for the momentum wheel:
(a) comparison of 5 types of data in time-domain, (b) the waveform of Stable Change (large), (c) the
waveform of Stable Change (small), (d) the waveform of Large to Small, (e) the waveform of Irreg-ular
Change, (f) the waveform of Sudden Change.
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To verify the effectiveness of the method proposed in this article, the training set and
test set used in this article are shown in the Table 3.

Table 3. Label description of the momentum wheel voltage telemetry dataset.

Class Label Health Status Training Set Test Set

1 Stable Change (large) Normal 400 200
2 Stable Change (small) Normal 400 200
3 Large to Small Normal 400 200
4 Irregular Change Abnormal 400 200
5 Sudden Change Abnormal 400 200

5.2. Feature Extraction and Selection
5.2.1. Time/Frequency Domain Feature Extraction and Selection

According to the time-domain feature and frequency-domain feature calculation
methods shown in Table 1, the time-frequency feature values of the five types of momentum
wheel voltage telemetry data are calculated. The time-domain features are shown in
Figure 10, and the frequency-domain features are shown in Figure 11.

According to the time-frequency feature statistical feature distribution diagrams
of different types of data in Figures 10 and 11, the time-domain feature distribution of
SC is very scattered, but the frequency-domain feature distribution is relatively more
concentrated. Intuitively, peak and peak-to-peak in the time domain feature can distinguish
five types of data to a certain extent, and F3 and F4 in the frequency domain feature can
also distinguish five types of sample to a certain extent.

In order to quantify the ability of different feature values to distinguish samples, we
use the feature evaluation method (Laplacian Score and Relief-F Score) in Section 3.1.2
to score the above 25 types of time-domain features and frequency-domain features. The
evaluation results are shown in Figure 12. Comprehensively considering the evaluation
results of LS and RFS, this paper chooses nine features (peak, peak-to-peak, skewness,
kurtosis, F3, F4, F8, F10 and F11), which have higher scores in two evaluation methods,
as part of the feature sequence. These high-scoring features describe the amplitude char-
acteristics, fluctuation characteristics and spectral density characteristics of the voltage
telemetry signals.

5.2.2. Complexity Feature Analysis

To verify the effectiveness of the proposed complexity feature extraction method
of Huffman-multi-scale entropy, this paper analyzes the sample entropy under different
sample lengths and different scales.

Taking a normal type data Stable Change (large) as an example to study the impact
of sample length on complexity characteristics, the sample length is taken from 5000 to
25,000 at intervals of 2000. Figure 13 shows the results of calculating the multi-scale entropy
and Huffman-multi-scale entropy with each sample length respectively. The scale is from
10 to 300 at intervals of 10. It can be found that when the sample length is 9000 to 15,000,
both methods can achieve higher sample entropy. Therefore, this paper selects the sample
length as 10,000.
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Figure 10. The time-domain features of the five types of momentum wheel voltage telemetry data: (a) peak, (b) peak-to-peak,
(c) mean, (d) absolute mean, (e) root amplitude, (f) standard deviation, (g) root mean square, (h) skewness, (i) kur-tosis, (j)
peak index, (k) impulse factor, (l) margin index, (m) waveform index.
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Figure 11. The frequency-domain features of the five types of momentum wheel voltage telemetry data: (a) F1, (b) F2, (c) F3,
(d) F4, (e) F5, (f) F6, (g) F7, (h) F8, (i) F9, (j) F10, (k) F11, (l) F12.
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Figure 12. The time-domain (a) and frequency-domain (b) features evaluation results.

Figure 13. The results of the multi-scale entropy (a) and Huffman-multi-scale entropy (b) with
different sample length.

At the same time, this paper also calculates the multi-scale entropy and Huffman-
multi-scale entropy of different types of momentum wheel voltage telemetry signals when
the sample length is 10,000. The scale ranges from 10 to 300, with an interval of 10. The
calculation result is shown in Figure 14. It can be seen from Figure 14 that, for normal data,
the results of multi-scale entropy and Huffman-multi-scale entropy are close. For Irregular
Change data, the value of Huffman-multi-scale entropy is significantly lower than that of
multi-scale entropy. This shows that Huffman-multi-scale entropy has better distinguishing
ability for data with high complexity. It is worth noting that, for the abnormal data of
Sudden Change type, the data itself has pulse characteristics, which causes the fluctuation
characteristics of the data before and after the sudden change to be concealed to a certain
extent. Therefore, both multi-scale entropy and Huffman-multi-scale entropy can well
describe the characteristics of increased complexity caused by sudden and large changes
in data.
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Figure 14. Results of the multi-scale entropy (a) and Huffman-multi-scale entropy (b) for different data type.

Based on the above analysis, this paper selects the sample length as 10,000. The feature
sequence (HMSE + T/F) is composed of 30 complexity features (scale from 10 to 300 at
intervals of 10) and nine time/frequency-domain features.

5.3. Anomaly Detection Results and Discussion

This paper uses a five-class SVM model based on the DAG method, and uses the
proposed APSO to train the classification model. To verify the effectiveness of the proposed
method on the spacecraft anomaly detection problem, this paper not only calculates the
recognition accuracy (RA) of the classification model for each category, but also calculates
the detection rate (DR), false alarm rate (FAR) and the missed alarm rate (MAR). The
calculation method of RA, DR, FAR and MAR are shown in Equations (25)–(28).

RA =
Num(predicted = true)

Num(true)
∗ 100% (25)

DR =
Num(NN + FF)

Num(true)
∗ 100% (26)

FAR =
Num(NF)
Num(N)

∗ 100% (27)

MAR =
Num(FN)

Num(F)
∗ 100% (28)

where Num(predicted = true) is the total number of category predictions that are ex-
actly the same as the true value, Num(true) is the total number of the test samples,
Num(NN + FF) is the total number of the real normal data predicted as normal data
and the real abnormal data predicted as abnormal data, Num(NF) is the total number of
real normal data predicted as abnormal data, Num(N) is the total number of real normal
data, Num(FN) is the total number of real abnormal data predicted as normal data, and
Num(F) is the total number of real abnormal data.

Figure 15 shows the corresponding part of the false alarm rate and the missed alarm
rate in the confusion matrix. C(large) is the Stable Change (large), C(small) is the Stable
Change (small), L-S is the Large to Small, IC is the Irregular Change, and SC is the
Sudden Change.
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Figure 15. Correct, false alarms and missed alarms in the confusion matrix.

This paper calculates the confusion matrix of the abnormal detection of the momentum
wheel voltage telemetry signal calculated by HMSE-T/F-APSO-SVM, MSE-T/F-APSO-
SVM and MSE-T/F-PSO-SVM. The results are shown in Figure 16. It can be seen from
the Figure 16, the identification accuracy of Sudden Change by the above three methods
can all reach 100%. This result is consistent with the conclusion of the qualitative analysis
of eigenvalues in the previous article. The probability of MSE-T/F-PSO-SVM identifying
Stable Change (large) and Stable Change (small) as Irregular Change reaches 10.33% and
11.33%, respectively. At the same time, the probability of MSE-T/F-PSO-SVM identifying
Irregular Change as Stable Change (large) and Stable Change (small) reaches 16.67% and
7.67%, respectively. The probability of HMSE-T/F-APSO-SVM and MSE-T/F-PSO-SVM
identifying Stable Change (large) and Stable Change (small) as Irregular Change are 0%.
At the same time, the probability of MSE-T/F-PSO-SVM identifying Irregular Change as
Stable Change (large) and Stable Change (small) reaches 16.67% and 7.67%, respectively.
The distinction between Stable Change (large) Stable Change (small) and Irregular Change
can be effectively improved by calculating Huffman-multi-scale entropy. This conclusion is
also consistent with the result in Figure 14.

In addition, the recognition accuracy of Large to Small and Sudden Change of the
three methods has reached 100%, which shows that the feature sequence and anomaly
detection model selected in this paper have strong sensitivity to signals with a definite
change rule.

To further verify that the method proposed in this paper can effectively improve the
accuracy of spacecraft anomaly detection and reduce the rate of false alarms and missed
alarms, this paper compares the proposed method with other methods, and calculates the
anomaly detection under different processing methods. Principal Component Analysis
(PCA), Random forest (RF), Logistic Regression (LR), K-Nearest Neighbor (KNN) and
Multilayer perceptron (MLP) are used in this paper. The results of the recognition accuracy,
false alarm rate and missed alarm rate of different methods are shown in Table 4.
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Figure 16. The confusion matrix of the abnormal detection for the momentum wheel voltage telemetry signal calculated by
different processing methods (%): (a) HMSE-T/F-APSO-SVM, (b) HMSE-T/F-PSO-SVM, (c) MSE-T/F-PSO-SVM.

Table 4. Results of the recognition accuracy, detection rate, false alarm rate and missed alarm rate of
different methods (%).

Methods
Recognition

Accuracy
Detection Rate False Alarms Rate Missed Alarms Rate

HMSE + T/F +
APSO + SVM 99.60 ± 0.28 99.87 ± 0.32 0.00 ± 0.00 0.34 ± 0.01

HMSE + T/F + PSO +
SVM 95.93 ± 0.36 97.80 ± 0.47 0.00 ± 0.00 5.50 ± 0.12

MSE + T/F + PSO +
SVM 90.20 ± 0.74 90.80 ± 0.39 7.22 ± 0.85 12.17 ± 1.68

Original data + SVM 80.55 ± 2.01 83.61 ± 2.34 15.88 ± 1.58 17.16 ± 2.54
Original data + PCA 75.26 ± 4.97 77.31 ± 6.28 23.32 ± 2.69 21.74 ± 4.71
HMSE + T/F + PCA 81.75 ± 2.96 85.36 ± 3.12 12.61 ± 1.47 17.68 ± 3.63
Original data + RF 76.95 ± 4.38 80.73 ± 5.26 19.54 ± 1.85 18.86 ± 1.95
HMSE + T/F+ RF 84.28 ± 1.98 87.62 ± 2.41 14.46 ± 1.74 9.26 ± 0.36
Original data + LR 70.36 ± 4.33 72.95 ± 8.57 20.35 ± 3.54 37.1 ± 5.43
HMSE + T/F+ LR 83.78 ± 4.05 85.74 ± 4.69 10.68 ± 0.79 19.63 ± 1.37

Original data + KNN 70.37 ± 4.69 72.83 ± 5.78 24.79 ± 4.75 30.74 ± 6.35
HMSE + T/F+ KNN 83.55 ± 1.38 86.28 ± 1.54 14.82 ± 1.24 12.07 ± 1.73
Original data + MLP 86.69 ± 2.17 87.94 ± 2.24 10.67 ± 2.42 14.14 ± 1.58
HMSE + T/F + MLP 95.25 ± 0.57 96.63 ± 0.68 0.00 ± 0.00 8.42 ± 0.83
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From the results in Table 4, it can be seen that: First, the recognition accuracy and
detection rate of the method proposed in this paper can reach 99.60% and 99.87%, which
are higher than other methods listed in the table, and the false alarm rate is reduced to
0, while the false alarm rate is reduced to 0.34%, which are lower than other methods.
Second, the detection method based on the feature sequence (HMSE + T/F) has a higher
recognition accuracy and detection rate as well as lower false alarm rate and missed
detection rate than the detection method based on the original data. Third, by comparing
the standard deviation of various indicators, it can be found that the feature sequence
based on Huffman-multi-scale entropy and time-frequency domain features proposed in
this paper can effectively improve the stability of the detection method.

6. Conclusions

In this research, we propose a new detection framework for anomaly detection based
on spacecraft telemetry data. Due to the very low frequency characteristics of telemetry
data, most frequency analysis methods are not suitable for spacecraft anomaly detection.
Therefore, this paper first proposes a feature sequence construction method based on
time-domain and frequency-domain feature screening and complexity feature fusion. On
this basis, a new method of Huffman-multi-scale entropy (HMSE) based on the Huffman
coding principle is proposed. To improve the classification accuracy of SVM, this paper
adopts a multi-class SVM model based on the DAG principle, and proposes an improved
adaptive particle swarm optimization (APSO) to train the SVM model. Then we apply
the proposed method to the voltage telemetry data set of the satellite momentum wheel.
Compared with other methods, the results show that the proposed method has a good
performance in improving the recognition accuracy and detection rate, and it can also
effectively reduce the false alarm rate and the missed alarm rate. Therefore, the method
proposed in this paper has a good development prospect in the field of anomaly detection
of spacecraft.

In the future work, more real-world datasets will be applied to verify the effectiveness
of the detection ability of the proposed method. In addition, more methods based on
artificial neural networks will be studied to further improve the versatility of anomaly
detection methods.
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Abstract: The domain adaptation problem in transfer learning has received extensive attention in
recent years. The existing transfer model for solving domain alignment always assumes that the
label space is completely shared between domains. However, this assumption is untrue in the actual
industry and limits the application scope of the transfer model. Therefore, a universal domain
method is proposed, which not only effectively reduces the problem of network failure caused by
unknown fault types in the target domain but also breaks the premise of sharing the label space. The
proposed framework takes into account the discrepancy of the fault features shown by different fault
types and forms the feature center for fault diagnosis by extracting the features of samples of each
fault type. Three optimization functions are added to solve the negative transfer problem when the
model solves samples of unknown fault types. This study verifies the performance advantages of
the framework for variable speed through experiments of multiple datasets. It can be seen from the
experimental results that the proposed method has better fault diagnosis performance than related
transfer methods for solving unknown mechanical faults.

Keywords: fault diagnosis; rotating machinery; transfer learning; domain adaptation

1. Introduction

Existing deep neural networks have shown superior performance in various diagnos-
tic tasks for rotating component faults due to their impressive feature learning capabili-
ties [1–3]. Such networks include the convolutional neural network [4,5], recurrent neural
network [6], and restricted Boltzmann machine [7]. The outstanding performances of these
networks heavily depend on the pretraining of deep diagnostic networks with real sample
data from the same domain as the test data [8]. However, under actual operating conditions,
the dataset is often time-varying and unknowable. Improving the generalization capability
of a model under variable working conditions has been regarded as a potential solution for
solve unknown working conditions.

Domain discrepancy causes the model based on the previous training data to perform
poorly with the new test data set [9,10]. The typical solution to this problem is to pre-train
the model and fine-tune the diagnostic network trained from the source domain with the
feature distribution of the target domain [11], and the method for the marginal distribution
alignment of feature spaces is widely used to narrow the distance between two different
domains [12]. Li et al. [13] proposed a fault diagnosis model based on multi-scale permuta-
tion entropy (MPE) and multi-channel fusion convolutional neural networks (MCFCNN),
which constructs a feature vector set by permuting entropy so that the high accuracy
and stability of fault diagnosis are realized. Guo et al. [14] reported a new transfer learn-
ing network, which gradually realized the multi-module operation of automatic features
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learning and machine health status recognition through a one-dimensional convolutional
network. Singh et al. [15] presented a deep convolution model to diagnose the type of the
gearbox fault under the obvious change of speed. The model minimizes the cross-entropy
loss of the source domain and the maximum mean discrepancy loss between the two
domains to obtain superior diagnostic performance. Hasan et al. [16] proposed a transfer
diagnosis framework based on high-order spectral analysis and multitask learning, which
can diagnose non-stationary and non-linear rolling bearing signals in combination with
different modes of a given fault type. As can be seen from the above-mentioned networks,
solving the problem of domain discrepancies has become a tacit prerequisite for current
fault diagnosis.

Traditional diagnostic networks usually assume that the label space of the fault sam-
ples in the target domain and the source domain is consistent. However, in actual engi-
neering practice, the fault type of the target domain is often difficult to predict, and the
fault type label space is often smaller than the source domain fault label space. Therefore,
Cao et al. [17] proposed the use of selective weighting to maximize the positive migration
of shared tag space data; this approach can achieve the purpose of per-class adversarial
distribution matching. Zhang et al. [18] established an importance weighted adversarial
network. This network is especially suitable for partial domain adaptation where the
number of fault types in the target domain is less than the number of fault types in the
source domain, and can effectively reduce the distribution difference to realize knowledge
migration and the fault diagnosis of the target sample. Li et al. [19] suggested applying
unsupervised prediction consistency schemes and conditional data alignment for partial
domain adaptation. This method effectively solves the partial domain adaptation problem
that the target domain data under unsupervised training cannot cover the entire healthy
label space. Jia et al. [20] proposed a weighted subdomain adaptation network (WSAN),
and a weighted local maximum-mean-discrepancy (WLMMD) is introduced to obtain the
transferable information and weight of the sample to realize the diagnosis of the fault type.
The research on partial domain adaptation pushes the field of intelligent fault diagnosis
into a practical setting.

However, only a very small number of networks can cope with the identification
and diagnosis of sudden unknown fault types in the existing fault diagnosis models. We
cannot know that the fault type of the target samples must belong to the source domain
label space when providing unlabeled target samples. Therefore, open set recognition is
an urgent problem faced by transfer learning to broaden practical application scenarios.
Busto et al. [21] were the first to suggest marking the shared classes of the source and
target domains as general classes and constructed an iterative method to solve the labeling
problem. Saito et al. [22] modified the description of open set domain adaptation, which
allows only the target domain to contain the private label set. His team also added a
boundary between the source domain and the target domain to facilitate the separation of
unknown fault samples from known fault samples. This method has been widely evaluated
in the field. You et al. [23] provided a concept of universal domain in the field of image
recognition which allows intersection between source and target domains and provides a
benchmark for future related research.

Considering that the current domain transfer methods often assume that the fault
type of the test data is the same as the training data set, while ignores that the specific
working conditions and label types of the target domain samples are often unpredictable. It
is impossible to diagnose the fault type by directly comparing the distribution of the source
domain and the target domain. Thus, we propose a new universal domain adaptation
(UDA) method for fault diagnosis under the changing conditions of bearing speed. As
shown in Figure 1, the model allows different types of faults to exist between data sets
and generates a feature center belonging to each fault type for fault diagnosis by learning
the fault features of each fault sample. In order to solve the problem of negative model
transfer caused by the input of unknown samples into the network, the model proposes
three optimization goals, and train the network gradually by optimizing the objective
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function to alleviate the phenomenon of negative network transfer. The main contributions
of this model are as follows:

Figure 1. Universal domain adaptation setting (unshaded shapes indicate shared labels).

1. The proposed model breaks the assumption of the shared label space in the field of
mechanical fault diagnosis and proposes the universal domain to solve the fault type
samples that did not appear in the training dataset.

2. The proposed network innovatively proposes to rely on source domain samples to
generate feature centers of each fault type and determine the fault type based on the
distance between the feature extracted from the sample and the feature center.

3. The model introduces Wasserstein distance to measure the marginal probability
distribution between different data, and three optimization equations are added to
the network training to optimize the model to alleviate the negative transfer problem
of the network when solving unknown domains.

In this paper, a new transfer learning model based on universal domain adaptation
is proposed and the proposed model is described in detail. The specific article structure
is organized as follows. The details of the proposed method for fault diagnosis under
changing speed conditions are provided in Section 2. The fault diagnosis experiment with
two sets of bearing data is presented in Section 3. Finally, the conclusions are provided
in Section 4.

2. Research Methods

2.1. Proposed Framework

The frame structure of the proposed approach is shown in Figure 2.
The proposed framework adopts two modules, i.e., the feature extractor G and the

classifier C. The feature extractor G is composed of 4 fully connected layers, and the
dimensions of the samples extracted from each layer are 512, 128, 64, and 16 dimensions.
The classifier C is a two-layer Softmax classifier, which is used to diagnose fault sample
types. The original source time-domain signal is processed by FFT and input into the
feature extractor G to extract the features of the source domain fault sample. The extracted
fault features are then classified by the classifier C to extract the feature center of each
fault type from the feature signal of the source domain gradually. After the first model
pre-classification, the features of the target domain fault samples are added multiple times
with tiny noise containing their own features, and the distance from the feature center is
measured. The model realizes the fault diagnosis of the target domain samples after many
times of learning and training. The training process of the model is described in detail in
Section 3.2. The model introduces the following target objects to improve the diagnostic
performance and generalization ability.
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Figure 2. Framework diagram of the proposed method.

2.1.1. Classification Loss

Minimizing the classification error of source domain samples is the first optimization
goal of the proposed framework. The classifier learns classification knowledge from the
labeled samples in the source domain. The standard Softmax regression loss is selected as
the objective function [24]. The specific function formula and explanation are as follows:

LC = − 1
m
[∑m

i=1

(
1 − y(i)

)
log

(
1 − hθ

(
x(i)

))
+ ∑m

i=1 y(i) log hθ

(
x(i)

)
] (1)

where x(i) and y(i) represent the input signal of the i-th sample and the probability output
corresponding to the sample, and hθ(x(i)) is the set of probabilities of various fault types
corresponding to the i-th sample.

2.1.2. Feature Loss

Feature loss is used to correct the error loss caused by discarding useless fault type
features in the process of extracting feature centers. Feature loss can be expressed as the
absolute difference between the feature extracted from the source domain and the feature
center generated by the learning process. The function formula [25] is as follows:

LF(xc, oc) =
1
C

C

∑
c=1

| f (xc)− f (oc)| (2)

where xc and oc are the c-th features of the feature extraction and feature center.

2.1.3. Distance Loss

Wasserstein distance, which is often used to measure the discrepancy between differ-
ent distributions, can be understood as the minimum consumption under optimal path
planning. The Wasserstein distance is used as distance loss to reflect accurately the distance
between the two distributions with little to no overlap in the support set with the objec-
tive of measuring the overall distance between the feature center and the target domain
feature [26]. The function formula is as follows:

LD(P1, P2) = inf
γ∈∏ (p1,p2)

E(x,y)∼γ[‖x − y‖] (3)

where ∏ (p1, p2) is the set of all possible joint distributions that combine the P1 and P2
distributions, and γ represents the joint distribution of each possible fault type. x represents
the feature center sample feature and y represents the target sample feature.
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2.2. Training Process

The goal of the model is to identify the fault type of the target domain sample and
reduce the domain distance between two identical faults. At the same time, the fault types
of unknown samples in the target domain are identified. The training process of the model
is shown in the figure below:

Step 1: Figure 3 shows that the network learns the features of the fault types from
the source domain samples to form the characteristic centers of multiple fault types. The
classifier tries to pre-classify the target domain samples and attempts to shorten the dis-
tance discrepancy between domains. Therefore, the source domain classification loss is
introduced into the model. The mathematical equation used is as follows:

LC = − 1
m

[
m

∑
i=1

k

∑
j=1

I{y(i) = j} log
exp(θT

j · x(i))

∑k
l=1 exp(θT

l · x(i))

]
(4)

where m represents the number of samples in the source domain and I[·] is an index
function used to represent the value of the probability that the sample is true. θ1, θ2, ..., θk

ε �n+1 are the parameters of the model and 1/
(

∑k
j=1 eθT

j x(i)
)

normalizes the distribution

such that it sums to 1.

Figure 3. Model training steps.

Step 2: Tiny noise is mixed into the target domain samples in the classification, and
these tiny noises merge the features of the target domain sample extracted from the feature
extractor G. The fault features of the target domain samples mixed with the noise will then
undergo a slight change. Given that the mixed tiny noise is related to the target sample
features themselves, the extracted fault sample feature will be closer to the feature center
of its own fault type. The function formula is as follows:

Xto = Xt + λ ·�x ·t (5)

where λ represents the feature coefficient of the tiny noise.
�
x is the feature coefficient of

the extracted target domain, which is the sample feature extracted from the target domain
sample. ot is Gaussian white noise used as the tiny noise for network training.

Step 3: The network recalculates the distance between the features of the target sample
and the center of each fault type after the addition of noise, and the distance loss between
the features of the target sample and the feature center is calculated to judge the fault. The
specific distance loss function [25] is shown in the following formula:

Ldis =

∣∣∣∣∣ 1
ms

ms

∑
i=1

T(xsi)− 1
mt

mt

∑
i=1

T(xti)

∣∣∣∣∣ (6)
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where xsi and xti are the i-th features extracted from the target domain Xt and source
domain Xs through the fully connected layer.

The three steps of model training are looped continuously until the expected per-
formance is achieved as shown in Figure 3. The network repeatedly adds tiny noise
interference containing the characteristics of the target domain sample to the target domain
samples and measures the feature distance to ensure the accurate diagnosis of the fault
type of the target domain samples. The stable samples that have been classified accurately
do not undergo classification changes after multiple small disturbances are added, whereas
the active samples that have been classified incorrectly jump or leave the feature center.

3. Experimental Verification

3.1. Experimental Dataset Description

The intelligent fault diagnosis methods trained with the labeled data are required to
classify the unlabeled data accurately to validate the effectiveness of this method in universal
domain transfer learning. Therefore, as discussed in this section, the datasets acquired from
two dedicated rotating part workbenches are used for bearing fault diagnosis experiments.

CWRU: The Case Western Reserve University (CWRU) bearing dataset was collected
from an experimental platform provided by the CWRU [27]. The CWRU workbench
collected sample data of four health conditions at the 6 o’clock position (orthogonal area
of applied load) of the deep groove ball bearing on the drive end of the motor housing.
The four health conditions were normal condition (NC), inner race failure (IF), outer race
failure (OF), and ball failure (BF). The sampling frequency at the time of data collection is
set to 48 kHz, and each fault type was run with varying degrees of damage (0.007-, 0.014-,
and 0.021-inch fault diameters). Each type of fault data was collected by the test motor
running at three different motor speeds (i.e., 1772, 1750, and 1730 rpm) for fault diagnosis.
The CWRU dataset information is shown in Table 1.

Table 1. Information of the two datasets.

Dataset Class Label 1 2 3 4 5 6 7 8 9 10

CWRU Fault location N/A IF IF IF BF BF BF OF OF OF
Fault size (mil) 0 7 14 21 7 14 21 7 14 21

SDUST Fault location IF IF N/A OF OF RF RF ROF ROF
Fault size (mm) 0.2 0.4 0 0.2 0.4 0.2 0.4 0.2 0.4

SDUST: The Shandong University of Science and Technology (SDUST) bearing dataset
was collected from a diagnostic test bench specially designed for bearing faults. The time-
domain signal of bearings at different speeds of the motor is collected. Figure 4a shows that
the bearing fault test bench is composed of a motor, a rotor, a brake, a bearing seat, and two
shaft couplings. The cylindrical roller bearing faults in the SDUST dataset contains three
single types of fault and a type of composite fault, which are: OF, roller fault (RF), IF, and
roller and outer race fault (ROF). Figure 4 is a schematic diagram of the three single types of
fault bearings. The collected bearing signals of each type of fault are divided into two fault
severity levels: crack 0.2 mm and crack 0.4 mm. The NC time-domain signal was added
to the SDUST dataset to obtain nine types of faults as shown in Table 1. Each acceleration
sensor was respectively installed in different parts of the bearing seat, and the sampling
frequency was set at 25.6 kHz. The motor speed was set to 1500 r/min, 1800 r/min, and
2000 r/min during data collection, and a total of 200 samples were collected for each
fault health status at different motor speeds, and each time-domain sample contained
6400 data points.
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Figure 4. (a) Bearing fault test rig and (b) three single types of fault bearings.

3.2. Compared Methods Description

The proposed method shares the same experimental configuration and test dataset
with all the following comparison methods to evaluate the diagnostic advantages of the
proposed model.:

Baseline: First, a baseline method without a special technique is proposed to diagnose
the UDA problem [28]. The feature extractor and classifier are trained under supervision,
and the network is used directly for the fault diagnosis of the target domain dataset.

L1/2-SF: The L1/2-SF (L1/2 regularized sparse filtering) approach [29] is widely used
as an excellent method for bearing and gear fault diagnosis. This method follows the
traditional unsupervised machine learning model, thus providing a benchmark for the
proposed method.

WD-MCD: The Wasserstein Distance—Maximum Classifier Discrepancy (WD–MCD)
approach maximizes the output discrepancy of the classifier and combines marginal proba-
bility distribution adaptation to focus on the diagnosis of the transfer model [20]. This model
is compared with the proposed model because it is a popular transfer learning method.

BN–SAE: As a popular method, the Batch Normalization—Stacked AutoEncoders
(BNSAE) approach [30] is an adaptive reparametrization algorithm that aims not to opti-
mize but to regularize the model. The effect of the healthy data classification scheme can
thus be examined.

3.3. Experimental Results Display

As reported in this section, the UDA problem is experimentally verified. The model
parameters during the experiment are shown in Table 2 and are mainly determined in
accordance with the verification results of the diagnostic task.

Table 2. Parameters used in this study.

Parameter Value Parameter Value

Epochs in general training Es 2000 Sample dimension S 1200
Epochs in testing Et 500 Feature center dimension Cd 16

Batch size Bs 10 First-level feature dimension f 1 512
Dropout_rate D 0.1 Second-level feature dimension f 2 128
Learning rate Lr 0.001 the feature coefficient of the tiny noise λ 0.05

The detailed task information is shown in Table 3. This information randomly selects
the fault type for fault diagnosis in the two datasets. In order to verify the fault diagnosis
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performance of the framework under variable speed conditions, the experiment sets the
fault type diagnosis in the phase of gradually increasing bearing speed and the fault type
diagnosis in the phase of gradually decreasing speed. The “source classes” represent the
fault type of the source domain training sample, the type of fault marked red represents the
private type of the source domain (the category does not appear in the target domain fault
sample), and the “unknown class” represents the fault type that has not been learned during
source domain training. A total of 100 labeled samples under each machine condition are
randomly selected as source domain data for model training, and 100 unlabeled samples are
used as target domain samples for experimental verification. An average of 10 experiments
for each group of results is performed to reduce the effect of randomness.

Table 3. Universal domain transfer learning task information.

CWRU SDUST

Task Name Transfer (Speed)
Source
Classes

Unknown
Class

Task Name
Transfer
(Speed)

Source
Classes

Unknown
Class

A1 1730 → 1750 1, 2, 3, 5, 8 6 B1 1500 → 1800 1, 3, 4, 6, 7 8
A2 1730 → 1750 1, 2, 3, 6, 9 8 B2 1500 → 1800 2, 3, 4, 5, 7 9
A3 1730 → 1750 1, 4, 5, 7, 10 2 B3 1500 → 1800 1, 3, 5, 6, 8 7
A4 1730 → 1750 No unknown fault B4 1500 → 1800 No unknown fault
A5 1730 → 1772 1, 2, 3, 5, 8 6 B5 1500 → 2000 1, 3, 4, 6, 7 8
A6 1730 → 1772 2, 3, 5, 7, 9 1 B6 1500 → 2000 1, 3, 4, 5, 6 8
A7 1730 → 1772 4, 5, 6, 8, 9 3 B7 1500 → 2000 1, 3, 5, 6, 8 2
A8 1750 → 1730 1, 2, 3, 5, 8 6 B8 1800 → 1500 1, 3, 4, 6, 7 8
A9 1750 → 1730 1, 4, 5, 7, 10 2 B9 1800 → 1500 1, 2, 3, 4, 8 6
A10 1772 → 1730 1, 2, 4, 5, 8 10 B10 2000 → 1500 1, 3, 4, 6, 8 9

3.3.1. CWRU Task Set Result Analysis

Table 4 shows the fault diagnosis results of the proposed model using the CWRU
dataset for different universal domain tasks. The selected comparison approaches are
currently the highly popular domain adaptive and transfer learning methods. The stable
diagnostic performance presented by the proposed method in the CWRU dataset task group
shows its superiority in solving universal domain adaptation. Furthermore, the proposed
method generally obtains smaller standard deviations than other models when performing
different tasks, indicating that it has good convergence in the experimental process.

Table 4. Means of the testing accuracies in different tasks with the CWRU dataset (%).

Method Baseline L1/2-SF WD-MCD DA-BNSAE Proposed

A1 54.67 (±12.4) 82.2 (±6.3) 80.08 (±2.6) 78.23 (±0.4) 82.98 (±2.1)
A2 43.2 (±8.4) 73.68 (±5.1) 75.02 (±3.2) 74.22 (±2.1) 80.32 (±1.4)
A3 57.46 (±3.7) 70.31 (±8.2) 82.38 (±5.0) 73.65 (±3.4) 90.31 (±2.7)
A4 72.56 (±6.2) 98.83 (±1.7) 99.43 (±0.5) 98.53 (±1.6) 99.88 (±0.2)
A5 55.07 (±4.6) 69.45 (±1.2) 80.2 (±0.4) 71.07 (±2.7) 80.96 (±6.5)
A6 47.9 (±3.0) 69.67 (±3.2) 72.15 (±3.8) 65.2 (±2.3) 77.38 (±9.3)
A7 33.3 (±6.4) 64.78 (±11.7) 73.06 (±5.4) 64.93 (±15.1) 92.37 (±2.2)
A8 48.47 (±10.7) 74.32 (±3.6) 79.6 (±3.3) 75.54 (±6.5) 84.31 (±3.8)
A9 48.78 (±7.1) 71.56 (±5.9) 70.34 (±8.4) 67.3 (±7.9) 88.01 (±4.5)

A10 44.7 (±15.3) 55.62 (±5.5) 71.62 (±7.8) 65.07 (±13.6) 85.96 (±7.4)
Average 50.61 73.04 78.39 73.37 86.25

The L1/2-SF, the WD-MCD, and the DA-BNSAE methods achieve relatively ideal
accuracy rates in the tasks with the CWRU dataset compared with the baseline method, and
their accuracy in some tasks is as high as 80 or more. These methods generally have good
feature recognition capabilities in the diagnosis of minor faults. However, in serious fault
diagnosis, the proposed model has superior feature recognition and diagnosis performance.
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Typical task cases are represented by tasks A3 and A7. The accuracy of the proposed
method is as high as over 90%, and high accuracy is also obtained in the process of solving
task 9. Task 4 is specially set as the task benchmark, which has no unknown fault type and
belongs to pure rotation speed transfer. It can be seen that the proposed method can still
guarantee high diagnostic accuracy. Comparing the standard deviation of each method
reveals that the proposed method exhibits relatively stable performance in multiple tasks,
further verifying its convergence performance. Although the performance in minor fault
diagnosis shown by the proposed method is not as good as that of the three comparison
methods, the superiority of the modified model can be seen in the overall task performance
comparison. Moreover, the proposed model is more suitable for fault diagnosis problems
in the universal domain than other comparison methods.

The t-distributed Stochastic Neighbor Embedding (t-SNE) method [31] is widely
used in the display of various fault diagnosis results. This approach can reduce the
dimensionality of the output of the high-dimensional features by the model and provide
visualization processing. The A1 task based on the CWRU dataset is selected as the
demonstration experiment for t-SNE dimensionality reduction processing for visually
displaying the fault diagnosis performance of each network as shown in Figure 5.

Figure 5. Feature visualization of the t-SNE results for the CWRU dataset in the A1 task.

The baseline approach exhibits poor fault diagnosis performance as illustrated in
Figure 5a. It not only fails to aggregate various types of faults completely, but it also
clusters BF14 faults and BF7 faults together. As can be seen in Figure 5b,d, the L1/2-SF,
and the DA-BNSAE approach incorrectly classify the BF14 fault as the BF7 fault, and the
L1/2-SF approach also shows that the target domain and the source domain samples of the
OF7 fault are not clustered. As presented in Figure 5c, although the WD-MCD approach
has a better fault clustering effect than the previous three methods, a situation wherein
the fault type BF14 is mistakenly classified as a healthy sample exists. The clustering
dimensionality reduction graph of the proposed method is shown in Figure 5e. Although
a small number of IF14 fault samples are close to the BF14 fault in the proposed method,
the target domain and the source domain samples of various types of faults have obvious
domain boundaries and show a good fault classification effect.

Figure 6 depicts that the training accuracy and testing accuracy of the method tends to
stabilize as the training progresses, and feature and distance losses in the model gradually
decrease as accuracy increases.
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Figure 6. Accuracy and training loss of the proposed method in the A1 task.

3.3.2. SDUST Task Set Result Analysis

The experimental accuracy for the SDUST dataset is shown in Table 5. Given that
this dataset has more drastic speed changes, diagnostic performance with this dataset is
worse than that with the CWRU dataset. It can be seen that the three comparison methods
show good diagnostic performance in individual tasks. However, the proposed method is
more convincing in terms of overall fault classification effect and stability. The model still
provides superior fault diagnosis accuracy under variable speed conditions that further
validates its robustness and superiority for UDA problems.

Table 5. Means of the testing accuracies in different tasks with the SDUST dataset (%).

Task Baseline L1/2-SF WD-MCD DA-BNSAE Proposed

B1 44.8 (±3.4) 79.44 (±4.6) 77.32 (±2.7) 77.18 (±3.9) 80.04 (±2.1)
B2 41.45 (±7.5) 72.72 (±2.4) 67.26 (±5.6) 68.67 (±7.2) 83.06 (±5.7)
B3 47.67 (±4.3) 71.32 (±8.5) 76.84 (±3.0) 76.57 (±2.9) 81.96 (±4.3)
B4 70.42 (±3.4) 97.53 (±1.4) 99.44 (±0.9) 98.94 (±1.1) 99.76 (±0.5)
B5 45.07 (±6.3) 75.97 (±3.2) 78.67 (±9.6) 64.87 (±4.1) 84.72 (±5.9)
B6 46.3 (±7.2) 67.05 (±10.5) 76.1 (±13.7) 58.31 (±17.3) 79.9 (±3.5)
B7 52.78 (±3.8) 72.14 (±7.2) 76.18 (±9.4) 72.23 (±4.5) 90.7 (±2.9)
B8 51.21 (±5.2) 78.3 (±5.9) 81.04 (±2.1) 64.01 (±7.9) 90.44 (±4.7)
B9 44.23 (±6.5) 49.52 (±17.8) 64.4 (±14.5) 60.03 (±15.9) 82.64 (±7.9)
B10 39.78 (±6.3) 57.23 (±5.6) 45.63 (±6.7) 57.22 (±9.0) 73.62 (±12.3)

Average 48.37 72.12 74.29 69.80 84.68

Considering that the experimental task is too heavy, the B1 task based on the SDUST
dataset is selected as the demonstration experiment for t-SNE dimensionality reduction pro-
cessing for visually displaying the fault diagnosis performance of each network (Figure 7).
Although the baseline approach provides a good clustering of the source domain fault
types, it shows a small amount of confusion between the fault type 3 (NC) and the fault
type 8 (ROF0.2), as well as between the fault type 8 (ROF0.2) and the fault type 1 (IF0.2)
in the target domain. The baseline approach mistakenly classifies the target domain fault
type 8 (ROF0.2) sample as the fault RF0.2 as shown in Figure 7a. As can be seen from
Figure 7c, the WD-MCD approach incorrectly classifies the NC samples at 1800 speed
as the OF0.2 fault, and some samples as the fault type 8 (ROF0.2) in the target domain
are mixed with the fault RF0.2. The DA-BNSAE network, one of the approaches used
for comparison, confuses the fault type boundaries of IF0.2, RF0.2, and ROF0.2 faults as
presented in Figure 7d. Comparing the proposed method with the L1/2-SF approach, it is
found that although the L1/2-SF method has a good clustering effect on the source domain
samples, there are still a small number of OF0.2, RF0.2, and ROF0.2 fault samples that
are misclassified. The proposed network not only has a more obvious clustering effect on
samples of various fault types but also has obvious separation between samples of different
fault types, as shown in Figure 7b,e.
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Figure 7. Feature visualization of the t-SNE results for the SDUST dataset in the B1 task.

Therefore, the proposed model can diagnose the samples of the unknown fault types
more effectively than other networks.

4. Conclusions

This paper presents a new UDA method for bearing fault diagnosis under different
working conditions, which breaks the assumption that the traditional domain adaptive
network shares the label space and attempts to solve the unknown scale domain by using
a universal label domain method. The proposed method was compared with the current
popular domain adaptation methods in the experimental verification stage. Under the
premise of sharing the experimental configuration and dataset, we set up multiple sets
of experimental tasks for different actual work needs. Through multiple experimental
verifications, it is concluded that the proposed method has higher classification accuracy
and robustness than the comparison methods in diagnosing bearing datasets under variable
conditions, and it can still guarantee high diagnostic performance even in the presence of
bearing samples of unknown fault types. Therefore, the proposed method is more suitable
for actual working conditions that change from time to time.

Author Contributions: Conceptualization, Z.Y. and J.W.; methodology, Z.Y.; software, H.B.; valida-
tion, Z.Z., X.Z., and B.H.; formal analysis, Z.Y.; investigation, Z.Y.; resources, J.W.; data curation,
Z.Y.; writing-original draft preparation, Z.Y.; writing-review and editing, Z.Y.; visualization, Z.Y.;
supervision, J.W.; project administration, G.L.; funding acquisition, J.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China, grant
number 52005303, the Project of China Postdoctoral Science Foundation, grant number 2019M662399,
and the Natural Science Foundation of Shandong Province, grant number ZR202020QE157.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: This research was supported by special funds and experimental equipment
from the Shandong University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Notations

Bs Batch size
Cd Feature center dimension
D Dropout_rate

71



Entropy 2021, 23, 1052

Es Epochs in general training
Et Epochs in testing
f 1 First-level feature dimension
f 2 Second-level feature dimension
hθ(x(i)) The probability set of various fault types for the i-th sample
I[·] An index function used to represent the value of the probability
Lr Learning rate
m The number of samples in the source domain
ot The tiny noise used for network training
oc The c-th features of the feature center
S Sample dimension
x(i) The input signal of the i-th sample
�
x The feature coefficient of the extracted target domain
xc The c-th features of the feature extraction
xsi The i-th features extracted from the target domain
xti The i-th features extracted from the source domain
Xt The target domain
Xs The source domain
y(i) The probability output corresponding to the i-th sample
∏ (p1, p2) The set of all possible joint distributions that combine the P1 and P2 distributions
θ1,θ2,...,θk The parameters of the model
θC The parameters of the classifier
θG The parameters of the feature extractor
λ The feature coefficient of the tiny noise
γ The joint distribution of each possible fault type
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Abstract: Fault diagnosis of wind turbines is of great importance to reduce operating and mainte-
nance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on
single faults, and the methods for combined faults usually depend on inefficient manual analysis.
Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT)
machine learning based fault diagnosis method for combined fault of wind turbines, which can
identify the fault type of wind turbines simply and efficiently without human experience and with
low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed
to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of
the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine
(SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can
simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models,
the proposed model has superiority for this classification problem.

Keywords: combined fault diagnosis; empirical wavelet transform; grey wolf optimizer; low pass
FIR filter; support vector machine

1. Introduction

With the improvement of people’s environmental awareness, sustainable and carbon-
neutral renewable energy has gradually developed to replace oil, coal and other traditional
fossil fuels [1]. According to a recent report about renewable capacity statistics [2], the
world’s wind energy capacity is 622,704 MW in 2019, accounting for 24.55% of the total
renewable energy capacity, second only to the hydropower which is the oldest renewable
energy source [3]. The annual growth rate of wind energy is 10.44% in 2019, second
only to the rapidly developing solar energy. Improving the efficiency of wind turbines
has always been a hot issue in terms of wind energy utilization. In addition to study
the selection of wind turbine [4–6], it is useful to reasonably design the wind turbines’
structure [7,8]. At the same time, wind turbines are usually exposed to dynamic and harsh
weather conditions, experiencing variable and rough working environments, which makes
them prone to failure than other ordinary machinery. If a component of the wind turbine
is broken without awareness of workers, it may well cause damage to other components,
and even lead to the shutdown of the wind turbine, resulting in huge economic losses [9].
Operating and maintenance costs account for more than 25% of total costs for onshore
wind farms and these costs are even higher for offshore projects [10]. Therefore, it is of
great significance to reduce maintenance costs and improve the efficiency of wind farms by
detecting the fault of wind turbines in time.

Many studies have been carried out on fault diagnosis of wind turbines. Such as
Liu et al. [11] introduced local mean decomposition (LMD) to analyze the wind turbine
gearbox vibration signals for fault diagnosis. Feng et al. [12] proposed a frequency demod-
ulation analysis method based on the ensemble empirical mode decomposition (EEMD)
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and energy separation algorithm to detect and locate the fault of wind turbine planetary
gearbox by analyzing vibration signals. Chen et al. [13] applied empirical wavelet trans-
formation (EWT) to vibration signals to diagnose wind turbine generator bearings faults.
Those methods depend on experienced people to analyze the signal and determine the fault
of drivetrains of wind turbines, although the precision is guaranteed, it is lack of efficiency.
In recent years, with the rise of machine learning (ML), some scholars have tried to use ML
methods to diagnosis the drivetrain of wind turbines. For example, Liu et al. [14] extracted
features from vibration signals by diagonal spectrum and employed clustering binary tree
support vector machines to diagnosis the wind turbines gearbox. Tang et al. [15] proposed
a fault diagnosis method for the drivetrain of wind turbines based on manifold learning
and Shannon wavelet support vector machine. Gao et al. [16] decomposed vibration signals
by integral extension local mean decomposition (IELMD) and calculated multiscale en-
tropy values as features for least squares support vector machines to identify fault type of
rolling bearing in wind turbine gearbox. Lei et al. [17] introduced long-short term memory
(LSTM) networks in wind turbine fault diagnosis. Jiang et al. [18] proposed multiscale
convolutional neural network (MSCNN) to diagnose wind turbine gearbox faults.

Almost two-thirds of ML-based wind turbine fault diagnosis methods use classifi-
cation, whose procedures include preprocess data, equalize classes, feature extraction,
feature selection, hyperparameter tuning, cross-validation and use the best model [19].
This intelligent way allows the diagnosis to be free from expert experience.

However, most of these ML-based wind turbine fault diagnosis methods only studied
on single fault [15–19]. In reality, a wind turbine is a complex system, failures could happen
one after another or simultaneously, therefore, a wind turbine may have more than one fault
at the same time, i.e., combined fault occurs. For example, misalignment may lead to gear or
bearing fails, then multiple faults coexist. Gear faults in different stages is also a common
combined fault [20]. Combined fault (also called compound fault) is more difficult to
diagnose than single fault because typical fault features will become difficult to be extracted.
At present, combined fault diagnosis of wind turbines usually depends on manual analysis
to calculate, extract and show the frequencies of different faults in spectrums [21–27]. Only
a few scholars have studied combined fault diagnosis by ML. For example, Zhong et al. [28]
decomposed the vibration signal into a series of intrinsic mode functions (IMFs) by Hilbert-
Huang transform (HHT) with ensemble empirical mode decomposition (EEMD), then
selected useful IMFs by correlation coefficients, and calculated the energy vector from
the selected IMFs together with maximum amplitude and corresponding frequency and
six time-domain statistical indices as features of pairwise-coupled sparse Bayes extreme
learning machine to detect several common gearbox single-faults and simultaneous-faults.

This paper will focus on a ML-based fault diagnosis method for combined faults and
single faults of wind turbines. In our method, a composite fault is considered as a fault
equivalent to a single fault, which means the output of a combined fault is not multiple
binary tags for each single fault (multilabel classification problem). The reminder of this
paper is structured as follows: Section 2 introduces the proposed method and related
theories. Section 3 presents the test rig, the experiments and the results. Finally, the
conclusion in Section 4.

2. Methods

The fault diagnosis method for combined fault of wind turbines we proposed can be
described as follows. First, extract features from vibration signals by low pass filtering
empirical wavelet transform (LPFEWT). Then, build features datasets in different condi-
tions (normal, single faults and combined fault). Last, train the support vector machine
(SVM) for classification, using grey wolf optimizer (GWO) for hyperparameter tuning.
After training, the obtained SVM model can identify faults of wind turbines by inputting
features of vibration signals. The flow chart of the method is shown in Figure 1.
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Figure 1. The flow chart of the proposed ML-based fault diagnosis method for combined fault of
wind turbines.

2.1. Low Pass Filtering Empirical Wavelet Transform (LPFEWT)

Empirical Wavelet Transform (EWT) is a new adaptive signal processing approach
proposed by Gilles in 2013 [29]. The main idea is to adaptively decompose the modes of a
signal from its Fourier spectrum by an appropriately built wavelet filter bank. The steps of
EWT are summarized as follows:

• Fast Fourier Transform (FFT);

Convert the signal f to the frequency domain by FFT to get its Fourier spectrum
(frequency ω ∈ [0,π]).

• Fourier Spectrum Segmentation;

Divide the Fourier spectrum into N contiguous segments. Let �n denote the limits
between each segment. Each segment is denoted as Λn = [ωn−1, ωn]. With each �n as
center, a transition phase of width 2τn is defined.

• Mode Extraction;

Let
ˆ
f and f̌ denote the Fourier transform and its inverse respectively. Choose τn

proportional to �n: τn = γωn, where 0 < γ < 1. Consequently, ∀n > 0, the empirical

scaling function
ˆ
φn(ω) and the empirical wavelets

ˆ
ψn(ω) are as follows:

ˆ
φn(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |ω| ≤ (1 − γ)ωn

cos
[

π
2 β

(
1

2τn
(|ω| − (1 − γ)ωn)

)]
,

(1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0, otherwise

(1)

and

ˆ
ψn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, ωn + τn ≤ |ω| ≤ (1 − γ)ωn+1

cos
[

π
2 β

(
1

2τωn+1
(|ω| − (1 − γ)ωn+1)

)]
,

(1 − γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[

π
2 β

(
1

2γωn
(|ω| − (1 − γ)ωn)

)]
,

(1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0, otherwise

(2)
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To construct a tight frame set of empirical wavelets, choose

γ < minn

(
ωn+1 − ωn

ωn+1 + ωn

)
(3)

The detail coefficients W ε
f (n, t) are given by the inner products with the empirical

wavelets function
ˆ
ψn(ω), and the approximation coefficients W ε

f (0, t) are given by the

inner product with the scaling function
ˆ
φ1(ω).

W ε
f (n, t) = 〈 f , ψn〉 =

∫
f (τ) ψn(τ − t)dτ

=
(

f̂ (ω)ψn(ω)
) (4)

W ε
f (0, t) = 〈 f , φ1〉 =

∫
f (τ) φ1(τ − t)dτ

=

(
ˆ
f (ω)φ1(ω)

) (5)

The reconstruction is obtained by

f (t) = W ε
f (0, t) � φ1(t) +

N
∑

n=1
W ε

f (n, t) � ψn(t)

=

(
Ŵ ε

f (0, ω)φ̂1(ω) +
N
∑

n=1
Ŵ ε

f (n, t)ψ̂n(t)
) (6)

There are multiple algorithms to automatically segment the Fourier spectrum, such
as local-maxima, local-maxima-minima and scale-space (including otsu, half-normal, em-
pirical law, means and k-means) [29,30]. The scale-space algorithms are parameterless,
but it takes long time for the computation when processing a long signal. And different
signals are often decomposed into different amounts of modes, which is inconvenient for
the comparison with each other. Considering these factors, we choose the simplest and
fastest algorithm–local-maxima, which can set the max number of segments.

Based on EWT, LPFEWT is proposed to extract features. First, design a low pass FIR
filter with an appropriate cut-off frequency for the signal. Next, employ EWT on the filtered
signal to decompose the signal into several empirical modes. Then, exclude the empirical
mode of the highest frequencies which is mostly affected by the filter. Last, calculate the
indices of the left modes as features. According to this approach, the feature required for
fault diagnosis can be obtained easily.

Compared to the tradition wavelet transform, LPFEWT is adaptive, which means it
decomposes the signal based on the information contained in the signal itself so that there
is no need to choose or design specific wavelet basis for the signal.

2.2. Support Vector Machine (SVM)

SVM is a very powerful and versatile ML model and particularly well suited for
classification of complex but small- or medium-sized datasets [31].

The simplest linear SVM for binary classification can be described as follows. For all
samples to be classified xi(i = 1, 2, . . . , m), the output is

yi = sign
(

wTxi + b
)

(7)

i.e., yi = −1 if wTxi + b < 0, yi = +1 if wTxi + b > 0. So the hyperplane wTx + b = 0
is decision boundary. To make the decision boundary best for separation, construct two
hyperplanes wTx + b = −1 and wTx + b = 1 which are parallel and at equal distance to
the decision boundary, i.e., yi = −1 if wTxi + b ≤ −1, yi = +1 if wTxi + b ≥ 1. Training
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SVM means finding the value of w and b that make the width of the margin 2/ ‖ w ‖ as
large as possible. That is a constrained optimization problem

max
w,b

2
‖ w ‖ s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n (8)

which can be converted to an equivalent problem

min
w,b

1
2
‖ w ‖2 s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n (9)

This is a convex quadratic optimization problem with linear constraints, which is
known as quadratic programming (QP) problems and can be solved by the method of
Lagrange multipliers. Introduce Lagrange multipliers λ = (λ1, λ2, · · · , λm), the objective
function of optimization can be expressed as

L(w, b, λ) = 1
2‖ w ‖2 +

n
∑

i=1
λi

[
1 − yi

(
wTxi + b

)]
λi ≥ 0, i = 1, 2, · · · , n

(10)

The problem is to solve
min
w,b

max
λ

L(w, b, λ) (11)

The dual problem is
max

λ
min
w, b

L(w, b, λ) (12)

Calculate the gradients of both w and b, and set them equal to zero.

∇wL(w, b, λ) = w −
n

∑
i=1

λixiyi = 0 (13)

∂

∂b
L(w, b, λ) = −

n

∑
i=1

λiyi = 0 (14)

Substitute (13) and (14) into problem (12), obtain

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyj(xi · xj)

s.t.
n
∑

i=1
λiyi = 0, λi ≥ 0, i = 1, 2, . . . , m

(15)

Consequently, the original minimization problem about w and b is converted to a QP
problem about solving λ.

To make the model more flexible, soft margin classification is proposed which allows
few instances between the margins or even on the wrong side. Soft margin SVM introduces
slack variable ξi(i = 1, 2, · · · , n), so the problem becomes

min
w,b,ξ

1
2‖ w ‖2 + C

n
∑

t=1
ξi

s.t. yi
(
wTxi + b

) ≥ 1 − ξi, ξi > 0, i = 1, 2, . . . , m
(16)

where C is penalty term. The bigger the C, the more penalty SVM gets when it makes
misclassification, the less the tolerance, the smaller the margin.
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The QP problem equivalent to soft margin SVM classification is

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyj(xi · xj)

s.t.
n
∑

i=1
λiyi = 0, 0 ≤ λi ≤ C, i = 1, 2, . . . , m

(17)

For problems that are not linearly separable, transformation φ is introduced to
map x from the original space to a higher dimensional space φ(x), which makes it eas-
ier to find a linear decision boundary in the new feature space. The kernel function
K
(
xi, xj

)
= φ(xi) · φ

(
xj
)

is proposed to focus on the results without computing the coordi-
nates of the data in the new space. The kernel trick makes the whole process much more
computationally efficient. Problem (17) can be rewritten as

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyjK

(
xi, xj

)
s.t.

n
∑

i=1
λiyi = 0, 0 ≤ λi ≤ C, i = 1, 2, . . . , m

(18)

In this paper, we use radial basis function (RBF) kernel as below

K
(
xi, xj

)
= e−γ‖xi−xj‖2

, γ > 0 (19)

RBF kernel is one of the most used kernel functions, which can deal with both linear
and nonlinear classification problems. The result of linear classification using RBF kernel is
comparable to using linear kernel [32,33].

2.3. Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a swarm intelligence (SI) algorithm proposed by
Mirjalili et al. [34] in 2014 that imitates the leadership hierarchy and hunting mechanism
of grey wolves in nature. In this paper, it is used to optimize the parameters in SVM. The
social hierarchy of gray wolves is shown in Figure 2. Grey wolves are divided into four
levels from α to ω. The upper level wolves dominate the lower level ones, and the lower
level wolves follow the upper level ones.

Figure 2. The social hierarchy of grey wolves.

In the GWO algorithm, imitating the social hierarchy of grey wolves, the first best
candidate solution is regarded as α, the second best candidate solution is regarded as β,
the third best candidate solution is regarded as δ, the remaining candidate solutions are
regarded as ω. The hunting (optimization) is guided by α, β and δ, while ω follow them.
The encircling behavior is modeled as follows:

D =
∣∣C · Xp(t)− X(t)

∣∣ (20)
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X(t + 1) = Xp(t)− A · D (21)

where t represents the number of iterations, A and C are coefficient vectors, Xp is the
position vector of the prey (optimum), X is the position vector of a grey wolf, and D
represents the distance between the grey wolf and the prey.

The vectors A and C are defined as follows:

A = 2a · r1 − a (22)

C = 2 · r2 (23)

where components of a are linearly dropped from 2 to 0 over the course of iterations,
components of r1 and r2 are random numbers in [0, 1].

The random vectors r1 and r2 allow grey wolves to move any position within a certain
range of the prey. With the vector a decreases, grey wolves encircle and pursue the prey.
The location of the prey is replaced by the decisions of all three grey wolves α, β and δ. The
following equations are used for updating the position of each grey wolf.⎧⎨⎩

Dα = |C1 · Xα − X(t)|
Dβ =

∣∣C2 · Xβ − X(t)
∣∣

Dδ = |C3 · Xδ − X(t)|
(24)

⎧⎨⎩
X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

(25)

X(t + 1) =
X1 + X2 + X3

3
(26)

Since A is a random vector in the interval [−a, a], the next position of wolves will
approach the prey if |A| < 1, and move away from the prey if |A| > 1. This means that
grey wolves not only pursue and attack current prey but also leave to search for other prey.
In other words, the GWO algorithm has exploration feature to help avoid local optima.
The random vector C simulates the obstacles to approaching prey in nature.

GWO can make the process of hyperparameter tuning of SVM more effective than
normal way (grid search or randomized search). Also, GWO hyperparameter tuned
has better classification accuracy than the typical one-versus-one multi-class SVM [35].
Compared with particle swarm optimization (PSO), GWO has fewer parameters to be
determined, only the population and the max number of iterations, because it updates the
positions of search agents by the positions of the three best wolves, while PSO updates the
positions of search agents by the global best position and the personal best position, and
each search agent has velocity besides position.

3. Experimental Results

3.1. Experimental Test Rig and Data Collection

The laboratory’s wind turbine drivetrain fault test rig is shown in Figure 3, which
consists of a control panel cabinet and an experimental test bench to simulate doubly-fed
induction generator (DFIG) wind turbine shaft misalignment (between the gearbox and
the generator) and broken gear tooth faulty conditions. In Figure 3a, the speed of the
motor of the experimental test bench on the right side is decelerated by a planetary gear
reducer to simulate the wind blowing blade speed, then it is accelerated by a planetary gear
accelerator and a gearbox to drive the generator. The maximum speed of the driving motor
is 720 r/min, the speed of the generator is 500 r/min. The left gearbox can be adjusted
by the handle to select a normal gear or a broken gear. The generator can be adjusted by
the support to create offset or angular misalignment. The control panel cabinet shown in
Figure 3b can set and display the motor speed, showing the angle between the generator
and the gearbox and other electrical parameters.
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Figure 3. Wind turbine drivetrain fault experimental test rig: (a) experimental test bench; (b) control
panel cabine.

The vibration signals in normal, misalignment, broken tooth and combined fault
(misalignment and tooth broken) conditions were collected from the test rig. Set two
measuring point, at the vertical and horizontal direction of the gearbox high-speed output
shaft side, with a sampling frequency of 1 kHz and a sample time of 20 s. In the normal and
broken tooth conditions, 18 sets of data were collected at the motor speed from 200 r/min
to 720 r/min respectively. In misalignment condition, 26 sets of data were collected at the
motor speed from 200 r/min to 680 r/min. In combined fault condition, 10 sets of data were
collected at the motor speed from 200 r/min to 520 r/min. After preliminary frequency
domain analysis of the signals, only the vertical direction signal is used for diagnosis in this
paper. With non-overlapping 10,000 points of the signal, the samples in different conditions
are shown in Figure 4, from which it can be seen that the presence of broken tooth is easy
to distinguish, while the presence of misalignment is not.

3.2. LPFEWT and Comparison with Other Approaches

Employ LPFEWT to extract features from the signal. The cut-off frequency of the
low-pass filter is 50 Hz, about 6 times the rated rotating frequency of the generator. The
magnitude and phase responses of the designed 40th-order Hamming Window FIR low-
pass filter are shown in Figure 5. The filtered signal is decomposed by EWT and the
number of EWT Fourier spectrum segments is set to 6. The EWT decomposition results
of a combined fault signal are shown in Figure 6, obtained 6 empirical mode components
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from low frequency to high frequency. Discard the highest frequency component (the 6th
mode) and calculate features of the left 5 empirical modes.

Figure 4. Samples of vibration signals in different conditions: (a) normal; (b) misalignment; (c) broken tooth; (d) com-
bined fault.

Figure 5. The magnitude and phase responses of the designed FIR low-pass filter.
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Figure 6. The EWT decomposition results of a combined fault signal: (a) Fourier spectrum segmenta-
tion; (b) empirical mode components.

We choose energies of the components as features, that is, the sum of the squares of
the amplitude. There are 20 combined fault samples, 27 broken tooth samples, 26 mis-
alignment samples and 27 normal samples, 100 samples in total. Shuffle the dataset and
save. Take 14 combined fault samples, 18 broken tooth samples, 18 misalignment samples
and 18 normal as training set. The remaining 32 samples of the dataset is testing set. We
use LIBSVM Version 3.24 package for SVM classification under MATLAB 2018b. Train the
SVM classification model for fault diagnosis, using GWO algorithm search the optimum
values of penalty term C and RBF kernel parameter γ in the range of [0.01, 100]. The
average accuracy of 3-fold cross-validation of the training set is used as the fitness of the
agents. The grey wolf population is set as 100 and the iteration is set as 50. Empirical
modal decomposition (EMD) which is similar to EWT is chosen for comparison. Energies
of components obtained by different approaches are inputs of the SVM model. Figure 7
shows the confusion matrix obtained by inputting the components energies of different
methods into the SVM model. The horizontal direction represents the predicted class, and
the vertical direction represents the true class. The 4 × 4 matrix is the number of samples
of each type, and the percentage includes the prediction accuracy rate, false alarm rate and
missing alarm rate of each type. Comparison of results are shown in Table 1. Different
approaches with ‘LPF’ prefix use the same FIR low-pass. All approaches use same amounts
of components of the signals.
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Figure 7. Confusion matrix charts of fault diagnosis results with features obtained by different approaches: (a) EWT;
(b) LPFEWT; (c) EMD high frequency components; (d) LPFEMD high frequency components; (e) EMD low frequency
components; (f) LPFEMD low frequency components.
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Table 1. Comparison of Fault Diagnosis Results with Different Feature Extraction Approaches.

Approach C γ
Training Set

Accuracy
Testing

Set Accuracy
False Alarm

Rate
Missing Alarm

Rate

EWT 98.135258 4.997962 80.8824% (55/68) 53.125% (17/32) 88.9% (8/9) 4.3% (1/23)
LPFEWT 66.953529 57.624745 94.1176% (64/68) 100% (32/32) 0% (0/9) 0% (0/23)
EMD high
frequency
components

17.297601 39.468164 76.4706% (52/68) 68.75% (22/32) 44.4% (4/9) 21.7% (5/23)

LPFEMD high
frequency
components

45.388002 96.255492 76.4706% (52/68) 62.5% (20/32) 100% (9/9) 0% (0/23)

EMD low
frequency
components

26.988942 37.129502 85.2941% (58/68) 75% (24/32) 11.1% (1/9) 0% (0/23)

LPFEMD low
frequency
components

48.145791 1.052425 69.1176% (47/68) 65.625% (21/32) 22.2% (2/9) 21.7% (5/23)

From Figure 7 and Table 1 we can see, the testing set accuracy of using EWT directly
is low, only 53.125%, and there is a lot of conditions confusions. Using LPFEWT to extract
time-frequency domain features, the testing set accuracy is highly improved, reaching
100%. In addition, using EWT directly has high false alarm rate, while LPFEWT solves
this problem. Among approaches based on EMD, EMD low frequency components has
the highest accuracy and the lowest false alarm rate and missing alarm rate, which is
75%, but there are confusions between combined fault and broken tooth or misalignment
and normal condition. LPFEMD low frequency components can only identify combined
fault and broken tooth correctly. Both with or without the low-pass filter, EMD low
frequency components has lower false alarm rate than the high frequency components.
Both using high and low frequency components, the accuracy of LPFEMD is lower than
that of EMD, and the false alarm rate is higher. The use of low-pass filter in diagnosis with
approaches based on EMD will decrease the accuracy instead of increase that, and increase
the false alarm rate. Among the six approaches of feature extraction, LPFEWT has the
best performance.

We also tried SVM with linear kernel, the accuracy of training set and testing set are
82.4% and 87.5% respectively. So the classification of the dataset is a nonlinear problem,
using RBF kernel is proper.

3.3. LPFEWT with Different Number of Fourier Spectrum Segments

To explore the effect of the number of LPFEWT Fourier spectrum segments on fault
diagnosis results, the diagnosis was carried out with different number of Fourier spectrum
segments, using energies of empirical modes as features, the results are shown in Table 2.

Table 2. Diagnosis Results of Employing LPFEWT with Different Number of Fourier Spectrum Segments.

Number of Segments C γ Training Set Accuracy Testing Set Accuracy

3 54.450584 44.708328 88.2353% (60/68) 100% (32/32)
4 43.410799 96.515668 92.6471% (63/68) 100% (32/32)
5 49.290038 78.087215 94.1176% (64/68) 100% (32/32)
6 66.953529 57.624745 94.1176% (64/68) 100% (32/32)
7 60.868225 95.642439 94.1176% (64/68) 100% (32/32)
8 98.149020 74.985752 94.1176% (64/68) 100% (32/32)
9 80.564115 91.484842 95.5882% (65/68) 96.875% (31/32)

From Table 2, it can be seen that when the number of LPFEWT Fourier spectrum
segments is small, although the testing set has good accuracy, the training set accuracy is
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slightly lower. When the number of LPFEWT Fourier spectrum segments is 5, 6, 7, 8, the
diagnosis performance does not change. When the number of LPFEWT Fourier spectrum
segments is 9, the accuracy of training set is improved a little, but the accuracy of testing
set is reduced. Therefore, the number of LPFEWT Fourier spectrum segments should not
be too small or too large, and there is a range of proper number of segments. It is suggested
that the number of LPFEWT Fourier spectrum segments is set to 6 first, if the diagnosis
results is not good enough, increase the number of segments one by one.

3.4. Effectiveness of the Proposed SVM Based Method

In the proposed method, we choose SVM for classification because it has superiority
when dealing with small datasets. Since the samples of wind turbines in faults are relatively
few. So deep learning which needs a large dataset is not suitable. Considering the speed of
prediction after training, k-nearest neighbors (k-NN) algorithm which computes the dis-
tances between the instance and all the training instances to make decisions is abandoned.
We compared SVM with naive Bayes, decision trees, random forests and artificial neural
networks (ANN), the results are shown in Table 3.

Table 3. Comparison Results of Different ML Classification Models.

Model Training Set Accuracy Testing Set Accuracy False Alarm Rate Missing Alarm Rate

SVM 94.1176% (64/68) 100% (32/32) 0% (0/9) 0% (0/23)
Naive Bayes 95.5882% (65/68) 96.875% (31/32) 0% (0/9) 0% (0/23)
Decision trees 89.7059% (61/68) 100% (32/32) 0% (0/9) 0% (0/23)
Random forests 97.0588% (66/68) 96.875% (31/32) 0% (0/9) 0% (0/23)
ANN 92.6471% (63/68) 96.875% (31/32) 0% (0/9) 0% (0/23)

From Table 3, we can see, for this classification problem, SVM has the best training
performance and the accuracy of the training set is 94.1176%. The decision trees model has
the lowest accuracy on training set with the highest accuracy as SVM model on testing set.
All the models have good generalization ability. This show the feature selected is powerful.
SVM has the best testing set accuracy and medium training set accuracy. Obviously,
SVM is the best choice for this particular wind turbine fault diagnosis problem, which
has good generalization ability even on a small dataset and easy to use (only has two
hyperparameters need to tune).

4. Conclusions

This paper studies a ML-based fault diagnosis method for combined fault of wind
turbines. LPFEWT is proposed to extract time-frequency domain features from vibration
signals. And a GWO hyperparameter tuned SVM is employed for fault diagnosis. The
method is verified on a DFIG wind turbine drivetrain fault test rig in the laboratory.
The experimental results show that LPFEWT can greatly improve the accuracy of fault
diagnosis and it is superior to other feature extraction approaches. The effect of the
number of LPFEWT Fourier spectrum segments on fault diagnosis results is explored and
a reasonable strategy to choose the number of segments is given. SVM is proved to be
superior in this classification problem.

Compared with the existing analysis methods for combined fault, this ML-based
method is efficient. After training the ML model at low computation costs, it can quickly
handle the data of wind turbines working at different speeds and easily identify the faults
without human knowledge. The method can also be applied to fault diagnosis of other
rotating machinery.
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Abstract: In the signal processing of real subway vehicles, impacts between wheelsets and rail joint
gaps have significant negative effects on the spectrum. This introduces great difficulties for the fault
diagnosis of gearboxes. To solve this problem, this paper proposes an adaptive time-domain signal
segmentation method that envelopes the original signal using a cubic spline interpolation. The peak
values of the rail joint gap impacts are extracted to realize the adaptive segmentation of gearbox fault
signals when the vehicle was moving at a uniform speed. A long-time and unsteady signal affected
by wheel–rail impacts is segmented into multiple short-term, steady-state signals, which can suppress
the high amplitude of the shock response signal. Finally, on this basis, multiple short-term sample
signals are analyzed by time- and frequency-domain analyses and compared with the nonfaulty
results. The results showed that the method can efficiently suppress the high-amplitude components
of subway gearbox vibration signals and effectively extract the characteristics of weak faults due to
uniform wear of the gearbox in the time and frequency domains. This provides reference value for
the gearbox fault diagnosis in engineering practice.

Keywords: gearbox; signal interception; peak extraction; cubic spline interpolation envelope

1. Introduction

The gearbox is an important part of an urban rail train, and a malfunctioning gearbox
will significantly affect the smoothness and comfort of the train operation. Furthermore,
the service life of the whole structure will be reduced due to the long-term wear of gear
damage [1]. At present, in actual train operation management and maintenance, most of the
gearbox fault diagnosis is completed during the maintenance of the unit. To find a gearbox
fault as early as possible, the real vehicle signals must be processed and diagnosed [2].
However, for the signal processing of a real vehicle gearbox, the working environment of
the gearbox is complex and easily affected by vibrations of all kinds of connected parts.
This can lead to various problems, such as spectrum distortion caused by the impact of
the rail joint gap, the failure frequency not being obvious due to the uniform wear of the
gearbox, and the speed of the train and frequency of gearbox being in an uncertain state.
The traditional signal processing methods have difficulty capturing the fault characteristics
of a gearbox. Therefore, filtering the interference in a real vehicle signal and accurately
extracting the fault characteristic information from the vibration time-domain signal are
the key problems to be solved in the fault diagnosis of subway gearboxes.

In recent years, scholars have proposed a series of methods for processing the fault
signals of nonstationary stochastic processes, and many algorithms and processing ideas
have been improved and applied to gearbox fault diagnosis. As a previously proposed
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signal decomposition method, empirical mode decomposition (EMD) [3], has been gradu-
ally developed in recent years, the optimized form of EMD is now relatively mature and
widely used in fault diagnosis [4]. Ensemble empirical mode decomposition (EEMD) has
been proposed to reduce the mode mixing phenomenon [5–10] in the process of EMD
decomposition. This is realized by adding Gaussian white noise to change the character-
istics of the extrema, and variants of this algorithm have been developed. Wu et al. [11]
proposed a feature learning detection method based on EEMD and a Gaussian process
classifier. Trelet was used for data dimension reduction as the Gaussian process input,
and it is optimized by bacterial foraging optimization. In addition, complementary set
empirical mode decomposition (CEEMD) introduces complementary noise [12–14], which
eliminates redundant noise to a large extent in the reconstruction of signals, greatly shorten-
ing the processing time and improving the computational efficiency. Han et al. [15] used a
combination of the Teager energy operator and CEEMD to extract features from the bearing
fault signals of a wind turbine. This algorithm showed unique advantages in detecting the
impact characteristics of signals and effectively extracted the fault features of low-speed
bearings. Li et al. [16] used the improved complete CEEMD with adaptive noise method
to decompose bearing vibration signals, extracted nonlinear entropy features, and built a
multiclass intelligent recognition model based on an integrated support vector machine,
effectively classifying experimental data under various operating conditions. Variational
mode decomposition (VMD) is a kind of adaptive signal decomposition method. This
method assumes that each mode is around a center frequency. The modal solution can be
converted to a constrained optimization problem, drastically reducing the modal aliasing
phenomenon [17]. Based on this method, many scholars modified the VMD algorithm for
mechanical fault diagnosis [18–22]. Cai et al. [23] proposed a multipoint kurtosis–VMD
compound algorithm that can reduce the original signal noise and extract recurrent failures
by using multipoint kurtosis at the same time, and more cycle vectors were constructed
to determine the decomposition layers K. Compared with the traditional particle swarm
optimization algorithm and ant colony algorithm, this method shows a speed advantage
and eventually effectively extracts the compound fault characteristics. Hua et al. [24] pro-
posed an inherent mode function selection method based on the resonance frequency for
VMD parameter optimization and selected the modal components with fault information
according to the resonance frequency. The results showed that this method can extract
weak signals of early rolling bearing faults and realize correct judgment of bearing faults.
Liu et al. [25] improved the VMD algorithm based on an autoregression (AR) model. By
reducing the interference of low-frequency components and denoising each component,
Hilbert envelope analysis was used to demodulate the signal, and the fault was determined
by combining the demodulation frequency and theoretical fault frequency. Miao et al. [26]
proposed an improved parameter-adaptive VMD method to construct a new comprehen-
sive kurtosis index, which takes into account periodicity and impacts. This algorithm is
superior to the traditional VMD method and further extends the application of VMD for
compound fault diagnosis. Many scholars have also applied neural networks for fault di-
agnosis [27–35], and the improved algorithms have shown good results. In addition, there
are also many decomposition methods based on signal processing, including local mean
decomposition [36–40], Fourier decomposition [41], and other methods, which are widely
used in gearbox fault diagnosis. Lei et al. [42] combined the advantages of integrated
local mean decomposition and fast spectral kurtosis to carry out fault detection of rotating
machinery and finally verified the effectiveness of this algorithm for the fault diagnosis
of gearboxes and rolling bearings. Dou et al. [43] proposed a mechanical fault feature ex-
traction method based on Fourier decomposition, which has the characteristics of adaptive
narrowband filtering at high and low frequencies. In terms of separating low-frequency
signal components, due to the traditional EMD method, it has a good effect when used
for the feature extraction of mechanical vibration signals. Pang et al. [44] proposed an
enhanced singular spectrum decomposition (ESSD) method that highlights fault signal
components by introducing differentiation and integration operators. This method exhibits
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strong anti-interference abilities and better performances when processing experimental
signals compared with traditional singular spectrum decomposition (SSD) and VMD.

For the research on wheel–rail impact caused by rail joints, Yang et al. [45] designed
an experiment and finite element model to reproduce the noise and vibration signals of a
wheelset passing the rail joints. The results show that the vibration energy of the vertical
impact is mainly concentrated around 300 and 1000 Hz, while the dominant frequency
range of transverse vibration is between 300 and 1200 Hz. Tajalli et al. [46] used an
experiment and finite element model to study different relative positions of sleeper and
rail joint influence on wheel–rail impact; the results show that the wheel–rail contact force
is 1.77 times the size of the static load when wheelset passes the rail joint, which caused
the wheel–rail vibration acceleration signal to change sharply. The research also points
out that the impact force can be reduced by 40% when using a fishplate to connect the rail
joint. Choi et al. [47] used the ANSYS model to analyze the wheel–rail impact force at the
rail joint, and the model was verified by experimental data. They evaluated the wheel–rail
contact force by comparing track impact factor (TIF), and the results showed that TIF value
with rail joints is 57% higher than that for continuous welded rails. This research shows
that rail joints produce wheel–rail impact, which will bring interference components to
gearbox diagnosis. Real vehicle signal data are very scarce currently, and this problem is
proposed in real vehicle signal processing. The traditional EMD and VMD methods have
remarkable performance on the bearing vibration signals collected in the laboratory, but the
effect on the wheel–rail impact filtering in the measured train gearbox signals is not ideal;
most of these algorithms were proposed based on laboratory data, and their feasibility in
practical engineering needs to be further verified. The method proposed in this paper aims
to eliminate the interference of wheel–rail impact on the spectrum more effectively.

To solve this problem, this paper proposes a time-domain adaptive interception
algorithm based on a cubic spline interpolation envelope. The purpose is to remove wheel–
rail impact interference in real train signals. The basic idea is to automatically extract
the peak value from the whole large sample signal and calculate the train speed data
corresponding to the short-term sample by using the peak interval. Based on the position
of the peak value, the single large sample signal is adaptively intercepted and divided into
several short-term samples, after which it is analyzed in the time–frequency domain and
finally compared with healthy signals. The results show that this method can effectively
eliminate the low-frequency interference caused by rail impacts, and it can calculate and
complement the missing train speed data. Moreover, the processed signals can reflect
certain fault rules in both the time-domain statistics and frequency-domain analysis, and
the method can diagnose uniform wear of subway gearboxes.

The main contributions of this work are summarized as follows: A gearbox fault diag-
nosis algorithm based on adaptive spline is proposed for suppressing impact components
in real vehicle signals adaptively. Speed data can also be calculated based on the proposed
algorithm. A new feature representation method is used in the analysis part; it is based on
multisample preponderance after processing by the proposed algorithm.

This work has the following organization: The foundational spline method and the
proposed algorithm are both introduced in Section 2. Section 3 describes the acquisition of
real vehicle signal and presents the results of the analysis of the proposed method carried
out using real vehicle signal, compared with EEMD and VMD. Conclusions are drawn in
Section 4.

2. Signal Segmentation Method Based on Cubic Spline Interpolation Envelope

The impact components will seriously interfere with the low frequency after Fourier
transform, which causes severe distortion of the spectrum. At present, there may be some
difficulties in finding the peak and intercept signal adaptively. In this section, a time-
domain adaptive interception algorithm based on cubic spline interpolation envelope is
proposed to deal with interference of wheel–rail impact in real vehicle signals. A long-time
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large sample signal is divided into several short-term small sample signals, and impact
components are extracted and eliminated at the same time.

2.1. Cubic Spline Interpolation Envelope

The cubic spline interpolation method has good convergence properties. In the process
of adaptive signal segmentation, it exhibits good stability. Cubic spline interpolation uses
multiple piecewise cubic polynomials and is piecewise continuous, so its first and second
derivative functions are continuous, and there are no errors at the nodes or at the nodes of
the first and second derivatives.

Cubic spline interpolation is defined as a partition x0 < x1 < . . . < xn−1 < xn
given in the interval [x0, xn]. The function L(x) is defined on each segment interval
[xi−1, xi](i = 1, 2, . . . , n). L(x) is a cubic polynomial, and in the entire interval [x0, xn], L(x)
is a second-order continuous and differentiable function. Each polynomial satisfies the
following at each node xi(i = 1, 2, . . . , n − 1):

L(k)(xi − 0) = L(k)(xi + 0), k = 0, 1, 2, (1)

The constraint conditions are as follows:⎧⎪⎪⎨⎪⎪⎩
L(xi) = yi, (i = 0, 1, . . . , n)
L(xi − 0) = L(xi + 0), (i = 1, 2, . . . , n − 1)
L′(xi − 0) = L′(xi + 0), (i = 1, 2, . . . , n − 1)
L′′ (xi − 0) = L′′ (xi + 0), (i = 1, 2, . . . , n − 1)

, (2)

In the cubic spline interpolation method, there are three types of boundary conditions:
clamped, natural, and not-a-knot. Since the second derivative of cubic polynomial L(x)
is a first-order function, let [L′′ (x0), L′′ (x1), . . . , L′′ (xn)] = [Q0, Q1, . . . , Qn], and then the
interpolation function of each piecewise interval is as follows:

L(x) = Qi−1
6hi

(xi − x)3 + Qi
6hi

(x − xi−1)
3 + (

yi−yi−1
hi

− Qi−Qi−1
6 hi)x

+yi − Qi
6 hi

2 − (
yi−yi−1

hi
− Qi−Qi−1

6 hi)xi
(3)

In Equation (3), hi = xi − xi−1.
With the support of the above principle, the original signal is processed by a cubic

spline interpolation envelope. In the whole signal, the amplitude sequence is x, the
corresponding time series is t, and n + 1 signal sequence points are denoted as (t0, x0),
(t1, x1) . . . (ti, xi) . . . (tn, xn). The step size to find the maximum number of points np is
defined, and the maximum value from the fixed signal step size is output. The signal
length is optimized based on experience. An excessive step size will cause significant
distortion, while too small of a step size will increase the number of calculations. Therefore,
it is necessary to optimize the selection of step size, as shown in Figure 1, which is the
amount of peak value under different step sizes. It can be seen that when the step size
reaches a certain range, the amount of peak value tends to be stable several times. In the
first stabilization, the average of corresponding values will be the best np (red mark), and
then the coordinate of each maximum point is (aj, bj), j = 0, . . . , n.

Using the maximum output point (aj, bj) in the above fixed step size np as the interpo-
lation point, Equation (3) shows that the cubic spline interpolation function on the interval
[aj, aj+1] is expressed as follows:

L(t) =
Qj−1

6hj
(aj − t)3 +

Qj
6hj

(t − aj−1)
3 + (

bj−bj−1
hj

− Qj−Qj−1
6 hj)t

+bj − Qj
6 hj

2 − (
bj−bj−1

hj
− Qj−Qj−1

6 hj)aj

(4)
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Figure 1. The selection of np value.

In Equation (4), hj = aj − aj−1. A fixed boundary condition is selected; that is, the first
derivative value at each maximum coordinate point a0 and aj is L′(a0) = b′0 = L′(an) =
b′n = 0, and the solution of Qj is as follows:⎡⎢⎢⎢⎢⎢⎣

2 1
μ2 2 1 − μ2

. . . . . . . . .
μn−1 2 1 − μn−1

1 2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Q1
Q2
...

Qn−1
Qn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
λ1
λ2
...

λn−1
λn

⎤⎥⎥⎥⎥⎥⎦, (5)

where μj =
hj

hj+hj+1
, λ1 = 6

h1
( b1−b0

h1
− b′0), λn = 6

hn
(b′n − bn−bn−1

hn
), and λj = 6(

bj+1−bj
hj+1

−
bj−bj−1

hj
) 1

hj+hj+1
(j = 2, 3, . . . , n − 1).

Through the catch-up method, [Q0, Q1, . . . , Qn] can be solved for using Equation (5),
which can be back-substituted into Equation (5) to obtain the cubic spline interpolation
envelope of the original signal. At this time, the envelope curve has filtered out a significant
amount of peak interference other than the wheel–rail impact, and the maximum value of
the envelope curve can be determined and output as (Gi, Hi), i = 0, 1, . . . , n.

2.2. Impact Component Extraction and Short-Term Signal Sample Segmentation

There is some error between the crude extracted coordinates and the original signal
due to the envelope curve fitting. Therefore, to eliminate this error, the original signal
peak is extracted. Because the time interval between the wheel and rail impact has a
certain regularity, that is, the ratio of the rail length to vehicle speed, the abscess interval
of the pulse can be estimated as Δt ≈ 1.4 s. The search interval [Gi − Δt

2 • fs, Gi +
Δt
2 • fs]

is set according to the abscissa of the maximum value of the envelope curve Gi, and the
maximum values (Gi

′, (Hi
′, i = 0, 1, . . . , n are found within the search interval to complete

the extraction steps of the whole signal.
After the impact component is extracted, the x-coordinate difference of maximum

values (Gi
′, Hi

′), which is ΔG = Gi
′ − Gi−1

′, is calculated; ΔG is the interval time of the
train passing along a steel rail. To control the length of each short-term sample and reduce
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the number of variables, a 1 s signal is intercepted between the extracted wheel–rail impact
interval to complete the overall signal segmentation.

3. Experiment and Results

3.1. Real Vehicle Data Collection

The vibration acceleration data of a real vehicle gearbox were collected. Test informa-
tion is as follows:

Data acquisition equipment: three-axis vibration sensor (measurement range is 500 g),
MDR-80 dynamic acquisition instrument, MDR-80 mobile data recording system.

Test object: subway vehicle.
Test location: a whole Beijing subway line, total distance of single acquisition is about

81 km.
Figure 2a shows the field sensor layout, and the vibration sensor was installed on

the outer shell of the gearbox. The sensor adopted a triaxial vibration sensor, and the
sampling frequency was set to 10 kHz. Figure 2b shows the data acquisition equipment.
The acceleration and deceleration processes of the vehicle were kept as uniform as possible.
When driving at a constant speed on a straight line segment, the speed should be kept at
about 67 km/h, and the stopping time of each stop should be 2 s. The data of the faulty
and healthy gearbox were collected on the same subway line twice. Two data samples were
collected, and the single sample collection time lasted about 120 min. The total number
of sample points was above 70 million for one sample. The tooth ratio of the measured
gearbox was 100:13. The surface damage of the internal gear of the fault gearbox is shown
in Figure 2c, and there were cracks, peeling, and wear on the gear surface. The other
calculation parameters are shown in Table 1.

Figure 2. Data acquisition of real vehicle gearbox: (a) gearbox sensor layout; (b) data acquisition equipment; (c) tooth
surface fault.

Table 1. Train speed calculation parameters.

Length of Rail/lr(m) Wheel Diameter/d (mm) Gear Ratio/i

Parameter 25 821 100:13

3.2. Results

Figure 3 shows a segment of the signal when the vehicle was operating at a uniform
speed in the time domain. Wheel–rail impacts were distributed uniformly over the whole
segment of the time-domain signal. After the Fourier transform, the spectral components
were mixed, and the fault components could not be determined and separated. The fault
frequency could not be distinguished, and there was more interference at low frequencies,
which was caused to some extent by the frequency of rail joint gap impacts.
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Figure 3. Time-domain diagram of original signals.

Tooth surface wear is an inevitable phenomenon over the life of a gearbox. The failure
frequency was not fixed, the train speed varied during the signal measurement, and the
gear switching frequency floated up and down. Figure 4 shows the healthy and faulty
original signal spectrum graph. The original noise signal interference was evident, and
various frequency components were mutually coupled. The signal characteristics of some
weak faults were easily submerged by noise, so it was difficult to judge the fault situation
based on the spectrum peaks.

Figure 4. Spectrum comparison of healthy and faulty states.

Figure 5 shows the original signal power spectrum diagram, and the inset shows the
meshing frequencies. The red line represents the faulty signal, and the blue line represents
the healthy signal. The healthy and faulty states of the power spectrum in the frequency
domain were similar, and the power of the healthy signal was even greater than that
of the faulty signal in one region. A pattern of the differences between the two spectra
is not evident, and the power spectrum analysis of the original signal cannot show the
fault characteristics.
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Figure 5. Power spectrum of original signal.

Based on the principle described above, the cubic spline interpolation envelope signal
intercept method was applied. The real vehicle operating conditions and changes interfered
with the signal, and the gearbox signal was mixed with the wheel–rail impact signal. Thus,
direct calculation and analysis of the original signal could not provide better analysis of
the composition of the gearbox fault.

The specific steps of the algorithm are as follows, and the algorithm flow chart is
shown in Figure 6:

(1) The extremum step np is defined to find and output the maximum value (aj, bj)
from the extremum step in the original signal.

(2) Using the cubic spline interpolation method, the envelope curve S(t) is calculated
for the above maximum array, and the maximum value (Gi, Hi) of the envelope is output.

(3) The maximum value (Gi
′, Hi

′) of the original signal is found within half of the
abscess interval of the maximum value, which is the peak value of the original signal rail
joint gap impact.

(4) According to the coordinates of the adjacent impact peak, some of the short-term
sample signals between the peak values were intercepted, and a large number of short-term
sample signals were intercepted for statistical analysis in the time–frequency domain.

In this way, the wheel–rail impact components in the original signal can be effectively
removed, and the sample size of the data can also be increased, laying a foundation for
the next step of the time-domain statistics. Figure 7 shows the whole signal segment. The
signal after adaptive interception is shown, where the gray components are the original
signal and the blue components are parts of the intercepted signal. The rail joint gap
impact component was effectively eliminated, and a gearbox signal component with a
more uniform amplitude was retained. Wheel–rail impact components are marked in red
circles; their accuracy directly determines the effectiveness of the algorithm. After many
instances of verification and calculation, the accuracy rate was about 98%, and errors often
occurred at the boundary part of signals.
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Figure 6. Algorithm flow chart.

Figure 7. Schematic diagram of signal interception.
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Since the original measured signals often lack the speed information of the train when
it is operating, the calculation of the speed data is completed according to the extracted
time between the wheel–rail impact peak and the length of the rail. The parameters such as
the length of the rail and the measured wheel diameter are shown in Table 1, and the train
speed is v = lr

ΔG . It is also possible to calculate the pinion frequency fr =
v

πd , the large gear
frequency fR = fr•i, and the meshing frequency fm = 100 fr = 13 fR. It should be noted that
the speed calculated at this time is the average speed of the train passing a whole section of
rail, as shown in Figure 8. After the signal interception, there are some incorrect calculated
speed data. Due to changes in speed and rail length, the distance between impacts may
become irregular, which will make calculated speed data invalid. To ensure that the data
were collected when the train moved at as constant a speed as possible, the calculated speed
was used as the discriminant standard. Outlying speed points were screened out by setting
a threshold: the maximum acceleration could not be greater than 1.5 m/s2 when the train
was running. In the figure, the slope of the curve pointed to by the arrow is too steep, so
points on either side of this point will be regarded as outlying speed data, and short-term
samples on either side of the point will not be analyzed in the time–frequency domain. At
this point, the entire adaptive signal segmentation processing was completed.

Figure 8. Velocity line diagram.

3.3. Statistical Analysis of Time-Domain Root Mean Square Values

First, the state of the gearbox was judged in the time-domain analysis. Since a single
large sample was divided into several short-term samples after signal segmentation, the
time-domain statistical analysis was carried out with the advantage of multiple samples,
and the main calculated parameter was the root mean square (RMS) value. The time-
domain index RMS of each signal after segmentation was calculated. The RMS is plotted
versus the train speed for both the healthy and faulty states in Figure 9. The blue points are
the healthy state data, the red points are the faulty state data, the red line is the faulty data
envelope, the blue line is the healthy data envelope, and the dark red and dark blue X marks
are the faulty and healthy data scatter centers of mass, respectively. From the perspective of
the root mean square value, the overall level and average level of the faulty state were 30%
higher than those of the healthy state. Combined with the speed distribution, although
the root mean square value from low speed to high speed had a slight linear increase, the
faulty state level was always above the healthy state.

The Jaccard similarity coefficient of the two types of cluster areas is used to indicate
the similarity degree of the clusters. The formula of the Jaccard coefficient is as follows:
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J(SH , SF) =
|SH∩SF |
|SH∪SF | , where SH is the area of the convex envelope of the healthy scattered

points and SF is the area of the convex envelope of the faulty scattered points. As shown in
Figure 10, the Jaccard similarity coefficient of the two clusters was 33.87%, indicating that
the similarity degree of the two types of data was extremely low. This further indicated
that there was a significant difference between the healthy and faulty data, and the fault
features of the time-domain root mean square statistics were prominent.

Figure 9. Statistics on root mean square values of short-term samples.

Figure 10. Cluster area and Jaccard similarity coefficient.

3.4. Multiple Mean Power Spectrum Analysis in Frequency Domain

After the fault differences were found in the time domain, the fault characteristics
were further characterized in the frequency domain. According to the above analysis, since
the train speed varied continuously, the average speed of the short-term sample train was
66 km/h. To determine the rotational frequency range of the large and small gears, the
rotational frequencies of the small and large gears were 55.5 and 7.22 Hz, which were
calculated using the wheel diameter and tooth ratio.

The signal segmentation algorithm proposed in this paper was used to divide the
large sample signal into several short-term sample signals, and then the power spectrum
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of each small sample signal was calculated. To control the variables as much as possible,
35 short-term healthy samples and 35 short-term faulty samples were selected, and all the
samples were collected from the same section on the rail line. The signal power spectrum
is shown in Figure 11, where each curve represents the signal power spectral density
for a short-term sample. Figure 11a,b show the results for healthy and faulty gearboxes,
respectively. Most of the peak values of the faulty sample were concentrated at small gear
rotation frequencies. Relative to the healthy data, the curve of the faulty data was steeper,
and the peak frequency range was more concentrated. However, the above characteristics
were not prominent in the large gear rotational frequency range.

Figure 11. Power spectrum of each short-term sample.

To represent the differences in the characteristics, the average power spectra of the
faulty and healthy states were obtained, as shown in Figure 12. The main plot shows the
power spectrum of the gear rotational frequency, and the inset shows the power spectrum
of the meshing frequency. The blue line represents the healthy state, and the red line
represents the faulty state. The power spectral density function of the fault near the gear
rotational frequency was much higher than that of the healthy state, especially in the region
corresponding to the double small gear rotational frequency. Due to cracks and spalling
failures in the gear surface and the changing speed of the train, the frequency-domain
features had no specific fault frequency, which confirmed the fault features of multiple
cracks and wear on the gearbox tooth surface. Thus, the fault diagnosis of the measured
gearbox data was complete.

Figure 12. Average power spectrum of short-term samples with proposed method.
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EEMD and VMD were selected to be compared with the proposed method, and the
signal was divided into several 10 s short-term signals. After decomposed by using the
two methods, IMFs were obtained, as shown in Figure 13. The IMFs with larger kurtosis
were selected for reconstruction. The power spectra of reconstructed signals are shown in
Figure 14. It can be clearly seen that EEMD and VMD failed to filter the impact components,
which still affected the spectra significantly.

Figure 13. IMFs after decomposition by EEMD and VMD: (a) IMFs of EEMD; (b) IMFs of VMD.
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Figure 14. Average power spectra of compared methods: (a) EEMD average power spectrum; (b) VMD average power spectrum.

The difference between healthy and faulty power spectra was calculated to evaluate
the methods’ effects. As shown in Figure 15, a larger value at the fr range means the
method has a better effect. It can be seen that the value of EEMD is far less than 0, and
VMD is slightly better than EEMD, but it is still in the state of less than 0, which means
it failed to distinguish between faulty and healthy signals. The method proposed in this
paper has the best effect, with a value that is much greater than 0. In summary, removing
the wheel–rail impact interference from the original signal can effectively highlight the
gearbox fault features with cracks, wear, and other damage.
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Figure 15. Power spectrum difference of each method.

4. Conclusions

In this paper, measured signals of real trains were analyzed. This work provides
reference value for the fault diagnosis of train gearboxes in engineering practice. A signal
segmentation algorithm was proposed, and the advantages of this algorithm are as follows:

(1) The impacts between the wheelsets and rail joint gaps in a real vehicle signal
cause significant spectrum distortion in the low-frequency region. However, the signal
also exhibits a certain regularity in the time domain. By using this regularity, this paper
proposes a segmentation algorithm based on cubic spline interpolation. It can suppress the
high amplitude of the shock response signal and divide a single large sample signal into
several short-term sample signals.

(2) In the case of an uncertain train speed, this method can calculate the data for the
train speed by using the extracted wheel–rail impacts, which provides a certain data basis
for the calculation of the rotational frequency and fault frequency band in the frequency-
domain analysis.

(3) Taking advantage of the number of samples after signal segmentation, statistical
analysis of the short-term sample signal was completed in the time and frequency domains.
The results showed that the algorithm has a strong ability to filter the disturbances caused
by the impact of the rail joint gap. It can extract the useful short-term signal sample
accurately. Compared to EEMD and VMD, the proposed algorithm can suppress and
remove the impact components of the original real vehicle signal effectively. The results
can detect regularities in the faulty signal and highlight the gearbox fault characteristics
due to cracks, wear, and other damage in the time- and frequency-domain analyses.
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Abstract: Domain adaptation-based models for fault classification under variable working conditions
have become a research focus in recent years. Previous domain adaptation approaches generally
assume identical label spaces in the source and target domains, however, such an assumption may
be no longer legitimate in a more realistic situation that requires adaptation from a larger and more
diverse source domain to a smaller target domain with less number of fault classes. To address
the above deficiencies, we propose a partial transfer fault diagnosis model based on a weighted
subdomain adaptation network (WSAN) in this paper. Our method pays more attention to the
local data distribution while aligning the global distribution. An auxiliary classifier is introduced
to obtain the class-level weights of the source samples, so the network can avoid negative transfer
caused by unique fault classes in the source domain. Furthermore, a weighted local maximum
mean discrepancy (WLMMD) is proposed to capture the fine-grained transferable information and
obtain sample-level weights. Finally, relevant distributions of domain-specific layer activations across
different domains are aligned. Experimental results show that our method could assign appropriate
weights to each source sample and realize efficient partial transfer fault diagnosis.

Keywords: domain adaptation; partial transfer; fault diagnosis; subdomain; rotating machinery

1. Introduction

As indispensable parts of rotating machinery, the fault identification and diagnosis of
bearings and gears are crucial for the normal operation of the machinery. Since traditional
fault diagnosis methods rely on manual processing of vibration signals, it is difficult to ex-
plore the depth of fault diagnosis knowledge. With the widely application in industry and
academia of deep learning technology, it is possible to mine effective diagnosis knowledge
from massive amounts of fault data [1–3]. Therefore, such methods have been extensively
applied in fault diagnosis of rotating machinery [4–7].

Li et al. [8] proposed a fault diagnosis framework based on multi-scale permutation
entropy (MPE) and multi-channel fusion convolutional neural networks (MCFCNN). Since it
considers the structure and spatial information between different sensor measurement points,
the fault diagnosis with high accuracy and speed is realized. Valtierra-Rodriguez et al. [9]
proposed a methodology based on convolutional neural networks for automatic detection
of broken rotor bars by considering different severity levels. This method applies a notch
filter to remove the fundamental frequency component of the current signal, and the short-
time Fourier transform (STFT) is used to obtain time-frequency plane. Experimental results
show that the methods is capable of identifying the healthy condition of the induction motor.
However, the distributions of the collected datasets may different due to the change of the
operating environments. The diagnostic knowledge in the original training data will no longer
be fully applicable to the new testing data when the working condition changes [10–14]. In this
case, the fault diagnosis methods under variable working conditions based on transfer learning
come into being. Recently, some transfer learning-based methods have been developed to
solve cross domain fault diagnosis problem. Mao et al. [15] proposed a deep dual temporal

Entropy 2021, 23, 424. https://doi.org/10.3390/e23040424 https://www.mdpi.com/journal/entropy

109



Entropy 2021, 23, 424

domain adaptation (DTDA) model which could recognize whether an early fault occurs
and achieve an earlier detection location and lower false alarm rate. An et al. [16] proposed
to apply the maximum mean discrepancy (MMD) based on multiple kernels to intelligent
fault diagnosis, and the features of different layers were involved in the domain adaptation
process. Wang et al. [17] presented a deep adaptive adversarial network (DAAN) which
could narrow the discrepancy to learn domain-invariant features. Chen et al. [18] proposed
an unsupervised domain adaptation method which could maximize the mutual information
between the target feature space and the entire feature space and minimize the feature-
level discrepancy between the two domains. Hasan et al. [19] proposed a multitask-aided
transfer learning-based diagnostic framework. This method applies multitask learning-based
convolutional network to identify working conditions, and then identifies health status of the
rolling element bearings based on transfer learning. In a word, transfer learning techniques
provide an efficient solution to cross domain fault diagnosis problems.

Although transfer learning-based methods have made great progress, partial transfer
fault diagnosis problem has not been well solved. The partial transfer diagnosis means
that the number of fault types in the test data is less than that in the training data. Since
the machine is in a healthy working state most of the time, the test data may contain only
a few types of fault data. That is, the distribution of two domains is different and the
label space of target domain is a subset of that of the source domain [20–22]. As many
different health types as possible can be involved by training data through a long period
of data accumulation, while it is difficult to guarantee the symmetry of health types in
testing data and training data. Therefore, this setting is closer to engineering practice
compared with the scenario for which the standard domain adaptation is targeted. Since
most of the transfer fault diagnosis methods use all source samples for domain adaptation,
the unique types of source samples can enable the network to learn false classification
knowledge during domain adaptation, which is the major challenge in partial transfer fault
diagnosis. Actually, partial transfer problem has been studied in the field of target detection
and computer vision. Cao et al. [23] proposed a selective adversarial network (SAN) to
facilitate positive transfer by selecting the source samples highly correlated with the target
samples. Chen et al. [24] proposed reinforced transfer network (RTNet) which could apply
both high-level and pixel-level information to solve partial transfer problem. In addition,
importance weighted adversarial nets [25] and example transfer network (ETN) [26] also
obtained excellent performance in the image classification task. These works have laid a
solid foundation for solving the problem of partial transfer in mechanical fault diagnosis.

Recently, the partial transfer problem has made initial progress in fault diagnosis.
Jiao et al. [27] applied weighted cross entropy loss to give smaller weight to the unique
source samples, and such weight is determined by the predicted outputs of two classi-
fiers [28]. Li et al. [29] presented a weighted adversarial transfer network (WATN) which
used adversarial training to reweight the source domain samples. Yang et al. [30] proposed
a deep partial transfer learning network (DPTL-Net) which could learn domain-asymmetry
factor to weight the source samples and finally block unnecessary knowledge. The pre-
vious partial domain adaptation methods mainly tried to get the weight of the source
samples from a global perspective without considering the relationships between two
subdomains [31] in source and target domains, which is not conducive to obtaining the
fine-grained transferable information in each type of data. To solve the above problem,
this paper proposed a weighted subdomain adaptation network (WSAN) to improve the
efficiency of partial transfer diagnosis of machinery. All the samples are divided into class-
level subdomains, and the subdomain distributions of deep features in multiple layers
are aligned. In order to block the samples of outlier source types, an auxiliary classifier is
introduced to conduct adversarial training with the feature generator to obtain the class-
level weights. To achieve weighted subdomain adaptation, we propose a weighted local
maximum mean discrepancy (WLMMD) to measure the Hilbert-Schmidt norm between
kernel mean embedding of empirical distributions between relevant subdomains. The main
innovations of this work are summarized as follows:
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(1) A WSAN framework is presented to solve the partial transfer fault diagnosis problem.
Relevant subdomains are built to capture fine-grained transferable information and
avoid negative transfer caused by redundant source samples.

(2) The class-level weights are obtained through the adversarial training between the
auxiliary classifier and the feature generator. WLMMD is designed to measure
the distribution discrepancy between relevant subdomains and obtain fine-grained
transferable information. As a result, proper alignment of relevant subdomains in
specific activation layers is realized.

The remainder of this work begins with the background of theory in Section 2. In
addition, Section 3 provides an introduction to the methodology presented, and Section 4
applies the proposed model to partial transfer fault diagnosis and verifies the advantages of
the model by comparing other methods. Finally, some conclusions are drawn in Section 5.

2. Theoretical Background

2.1. Partial Transfer Fault Diagnosis

For standard domain adaptation-based frameworks, target domain Dt and source
domain Ds are collected under different but related working conditions [26]. As shown
in the upper part of Figure 1, the job of standard transfer fault diagnosis is to facilitate a
knowledge transfer from the labeled source data {Xs, Cs} to the unlabeled target dataset Xt.
However, different from the closed transfer fault diagnosis, the source label space Cs and
target label space Ct are different in partial transfer diagnosis problem. In the bottom part
of Figure 1, there are more source classes than target classes, i.e., Ct ⊆ Cs. In addition, it
should be noted that the sample types in the target domain do not deviate from the scope
of the source domain, which ensures the authority of the diagnostic knowledge in source
domain. The purpose of partial transfer fault diagnosis is to find the categories associated
with the source domain and classify them accurately.

 

Figure 1. Comparison of standard transfer fault diagnosis and partial transfer fault diagnosis.

2.2. Subdomain Adaptation

The source and target domains may consist of some subdomains that can be defined
according to different criteria, such as class or category. For partial transfer fault diagnosis,
the number of sample types in the source domain must be no less than that in the target
domain, so is practicable to delimit the subdomains based on the number of types in the
source domain, although this may not be appropriate for the target domain, but it ensures
alignment of local data distribution discrepancy. As can be seen from Figure 2a,b, it is
difficult to match two data distributions directly in the process of global or partial domain
adaptation. In Figure 2c,d, subdomain adaptation is of superior feature representation
ability because the fine-grained transferable information within the subdomains is uti-
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lized [31]. However, the problem with this is that the data in the target domain is unlabeled,
which prevents target domain from being partitioned. Fortunately, we take the prediction
probability output of the model for the target samples as pseudo-labels to divide them into
some subdomains. In this way, subdomain adaptation enables the model to focus more on
local data distribution differences.

Figure 2. Comparison of standard domain adaptation (a,b) and subdomain adaptation (c,d). The box represents the data
distribution range and the arrows represent the domain or subdomain adaptation process. The dotted circles represent the
divided subdomains.

2.3. Weighted Local Maximum Mean Discrepancy

In the field of transfer learning, MMD [32] is a common nonparametric metric that
measures the discrepancy between two distributions. It takes the mean embeddings of
two distributions in a Reproducing Kernel Hilbert Space (RKHS) as a distance calculation
to avoid the density estimation. MMD can be defined as:

dH(Ds,Dt) � ‖Ep[φ(xs)]− Eq
[
φ
(
xt)]‖2

H, (1)

where φ(·) is the feature mapping function that maps the original data to RKHS H. There-
fore, an estimate of the MMD compares the square distance between the empirical kernel
mean embeddings as:
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where d̂H(p, q) is an unbiased estimator of dH(p, q). ns and nt are the number of source
samples and target samples, respectively.
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Most previous domain adaptation methods apply MMD to narrow the distribution
discrepancy without considering the internal distribution of the data. However, such meth-
ods may result in poor alignment because the relationship between related subdomains
is ignored. Furthermore, these methods also fail to selectively involve source samples
in the adaptation process due to the asymmetry of data types across the two domains.
Considering the above problems, we propose the WLMMD to achieve weighted subdo-
main adaptation:

dH(Ds,Dt) � Ec ‖ Ep(c) [φ(x
s)]− Eq(c)

[
φ
(
xt)] ‖2

H, (3)

where xs and xt are the instances in Ds and Dt, and p(c), and q(c) are the distributions of D(c)
s

and D(c)
t , respectively. So we can calculate an unbiased estimator of WLMMD as:

d̂H(Ds,Dt) =
1
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where wsk
i and wtk

j denote the weights of xs
i and xt

i belonging to class k, respectively.

Obviously, ∑ns
i=1 wsk

i = ∑nt
i=1 wtk

i = 1, and wk
i for the sample xi can be computed as:

wk
i =

yik

∑(xj ,yj)∈D yjk
, (5)

where yic is the k-th entry of vector yi. Since the source samples are labeled with a one-hot
vector, we can directly calculate the weight wsk

i by the labels. Although the samples of
the target domain are unlabeled, it is feasible to use pseudo labels to partition related
subdomains. Note that the predicted output ŷt

i given by the classifier can be used as
pseudo target labels which measures the probability that the target sample belongs to
the corresponding category. ŷt

i can be regarded as the probability of assigning xt
i to each

of the C classes, and the weight wtk
i of target samples could be acquired. Thus, we can

approximate Equation (5) as:
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where zl is the lth layer activation of L layers. By using Equation (6), the distribution
discrepancy between the two subdomains at a particular activation layer can be calculated.

3. Proposed Method

3.1. Weighted Subdomain Adaptation Network

In order to achieve efficient partial transfer fault diagnosis, we design a novel weighted
subdomain adaptation network (WSAN). The details of the proposed model are clearly
presented in Figure 3. The feature generator G is a deep structure based on one dimensional
convolutional neural network (1D-CNN) that is expected to extract domain invariant deep
features. The auxiliary classifier CA is set to obtain the class-level weights of the source
samples, which is achieved by adversarial training. After acquiring class-level weights,
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weighted subdomain adaptation can be carried out in activation layers of the classifier C
based on WLMMD. The objective function can be written as:

F0(θG, θC) = 1
ns

ns
∑
i

Lc
(
G
(
xsi

)
, ysi

)
− λ0

ns+nt
∑

xi∈(Ds∪Dt)
Ld(D(G(xi)), di)

+γ0d̂l(Ds,Dt)

(7)

where λ0 and γ0 are the penalty coefficients, ysi and di are the source sample label and
domain label, and L denotes the condition prediction loss.

Figure 3. The structural composition of the proposed model.

3.2. Adversarial Training-Based Class-Level Weights Obtaining

Due to the asymmetry of the fault classes in the two domains, samples of redundant
types in the source domain may cause a negative transfer. Therefore, these redundant
subdomains must be selected to block the classification knowledge that is unfavorable to
the recognition of target samples. Inspired by generative adversarial networks (GAN),
we set up an auxiliary classifier CA to play the mini-max game with the feature generator.
Specifically, given input xs or xt with the label 1 or 0, after multiple layers of extraction, the
feature generator G narrows the domain shift to make classifier cannot distinguish the true
source of the input sample. The auxiliary classifier is trained to give the correct label. The
objective of the adversarial training can be defined as:

min
G

max
CA

L(CA, G) = 1
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∑

i=1
log

(
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(
G(xsi)

))
+ 1

nt
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log

(
1 − CA

(
G(xtj)

)) (8)

The distribution differences of the deep features of shared fault types will be narrowed
in the training process, so the auxiliary classifier will be unable to distinguish samples of
these types and give an output close to 0, while the output of the unique source samples
will be close to 1. The aim of adversarial training is to learn the relative importance of
source samples, suggesting that the outlier samples should be assigned a relatively small
weight. Therefore, the weight function is inversely related to CA(G(x)) and the importance
weights function can be defined as:

wc(x) = 1 − CA(G(x)), (9)
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After obtaining the class weights of the source samples, the overall objective can be
rewritten as:
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where wcj and Dj
s denote the weights and samples for the j-th source class, ys is the source

sample labels and γ is a penalty coefficient.

4. Experiments

4.1. Dataset Introduction

The proposed framework is verified with the datasets collected in our laboratory
to validate the performance in partial transfer fault diagnosis. Figure 4a indicates the
experimental equipment used in our laboratory. The platform consists of a motor, two bal-
ancing rotors, two bearing seats, a planetary gearbox, and a magnetic brake for controlling
load. Vibration sensors are installed on fixed holders at both ends of the gearbox, and the
sampling frequency is 25.6 kHz.

Figure 4. Representation for rotating machinery fault diagnosis test bed in our laboratory (a) and
different types of bearing fault (b) and gear fault (c). Red box indicates the location of damage.
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(1) Bearing fault dataset

Five health conditions are involved in the bearing fault dataset, namely, normal, inner
ring fault, outer ring fault, rolling element fault, and combined fault of the rolling element
and outer ring. The fault parts are shown in Figure 4b. There are two damage sizes for
each type of fault, specifically, 0.2 and 0.4 mm. Thus, the bearing fault dataset contains
samples of nine health types, namely, NC, IF1, IF2, OF1, OF2, RF1, RF2, RO1, and RO2.
Four datasets are obtained under different loads, specifically, L1 (80 N), L2 (60 N), L3 (40 N),
and L4 (20 N). And the engine speed is 2000 r/min.

(2) Gear fault dataset

As shown in Figure 4c, the gear fault dataset contains samples of seven health types,
namely, normal condition (NC), sun gear fracture (SF), sun gear pitting (SP), sun gear
wear (SW), planet gear fracture (PF), planet gear pitting (PP), and planet gear wear (PW).
We collected three datasets at different rotational speeds (without load), specifically,
S1 (2200 r/min), S2 (2000 r/min), and S3 (1800 r/min).

The number of each type of samples is 500. Thus, the number of samples in bearing
and gear datasets are 4500 and 3500, respectively. In order to give full play to the feature
extraction and weight learning ability of the proposed method, 40% of the samples were
used for training and the remaining for testing.

4.2. Compared Methods

To show the superior performance of the proposed model, four comparative methods
are adopted as follows:

(1) Supervised training without classification knowledge transfer is adopted as a basic
comparative method (Basic), and it obtained classification knowledge only from the
source domain samples.

(2) Domain adaptation framework based on multiple kernel variant of maximum mean
discrepancy (MKMMD) [16]: Efficient kernel method is adopted in different lay-
ers of the network, and excellent performance was achieved on the global domain
adaptation task.

(3) Deep subdomain adaptation network (DSAN) [31]: As a typical global domain adap-
tation approach, it does not include class-level weight acquisition, that is, the auxiliary
classifier is not adopted in the network. In this method, local maximum mean differ-
ence (LMMD) is used for effective subdomain adaptation.

(4) Example transfer network (ETN) [26]: It is an adversarial discriminative domain
adaptation method, and the adversarial training is adopted to obtain the weights of
the source samples. Similar to the proposed method, an auxiliary domain discrim-
inator and an auxiliary classifier are adopted to obtain the sample weights in the
source domain.

4.3. Implementation Details

As detailed in Table 1, we randomly discarded a number of fault types to design
different partial transfer diagnosis tasks on the basis of the two fault diagnosis datasets. For
the dataset, each sample consists of 2400 data points, then fast Fourier transformation (FFT)
is applied to transform the time-domain signal to frequency-domain signal that contains
1200 Fourier coefficients. The structure of the framework are illustrated in Table 2. The
learning rate is set as 0.0001, and the maximum training epoch is 1000. In order to avoid
the effects of random cause, we conducted 10 experiments on each task. The running
steps of the proposed model are shown in Algorithm 1. In the test process, the spectral
data of the target domain can be directly input into the model for classification. The code
programming of the model is implemented on the Pytorch platform.
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Algorithm 1: Weighted Subdomain Adaptation Network (WSAN)

Model: Feature generator G; Auxiliary classifier CA; Classifier C.
Input: Labeled source data {Xs, Cs} and unlabeled target data Xt.
For i in epochs:

Step 1: The feature generator G outputs the high-dimensional features of the two
domains and inputs them into the feature generator G and classifier C.

Step 2: Auxiliary classifier CA obtains the class-level weights. The classifier gives
prediction probability output on the target samples and obtains sample-level weights to guide
WLMMD to perform subdomain adaptation.

Step 3: Train the feature generator G and classifier C to obtain the optimal parameters θ̂G
and θ̂C by minimizing F(θG, θC);

Step 4: Train the auxiliary classifier CA to obtain the optimal parameters θ̂CA by
minimizing F(θCA );

Table 1. Descriptions of the diagnosis tasks.

Dataset Task Transfer Target Source

Bearing

B1 L1→L2 All types

All types

B2 L1→L3 NC, IF1, IF2, OF1, OF2, RF1, RF2, RO2
B3 L1→L4 NC, IF1, IF2, OF2, RF1, RO2
B4 L2→L3 NC, IF1, OF2, RF1, RO1
B5 L2→L1 NC, OF1, OF2, RO1
B6 L3→L4 IF1, OF1, RF1
B7 L3→L1 IF1, IF2
B8 L4→L3 RO2

Gear

G1 S1→S2 NC, SF, SP, SW, PF, PP

All types

G2 S1→S3 NC, SF, SP, SW, PF
G3 S2→S3 SF, SP, SW, PF
G4 S2→S1 SF, SP, SW
G5 S3→S1 NC, SP
G6 S3→S2 PW

Table 2. Structural composition of the proposed model.

Module Layer Size Channels × Kernel Size Stride Activation

Feature Generator

Input data 1200 / / /
Conv 8 × 300 8 × 3 4 ReLu

MaxPool 8 × 150 8 × 2 2 /
Conv 16 × 150 16 × 3 1 ReLu

MaxPool 16 × 75 16 × 2 2 /
Conv 32 × 75 32 × 3 1 ReLu

MaxPool 32 × 37 32 × 2 2 /
Conv 32 × 37 32 × 2 1 ReLu

MaxPool 32 × 17 32 × 2 2 /
Fc 512 / / /

Classifier
Fc 256 / / /
Fc 128 / / /
Fc C / / Softmax

Auxiliary Classifier
Fc 256 / / /
Fc 128 / / /
Fc 1 / / Sigmoid

4.4. Experimental Results

As mentioned in Section 2, the deep features in different activation layers of the
model are involved in subdomain adaptation. In order to obtain the best performance
for subdomain adaptation, the deep features with dimensions 128, 256 and 512 in fully
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connected layers of the classifier and feature generator (named L1, L2 and L3, respectively)
are extracted and combined for comparison. B7 task was selected to verify the combination
of different layers, and the experiment was conducted for 15 times. As shown in Figure 5, it
is clear that L1 achieves the best performance during the single layer, while L3 performs the
worst. It means that the model needs to carry out deep operation to extract more separable
domain invariant features. In the multi-layer combination, L1 + L2 performed better than
single layer while L1 + L2 + L3 has a lower performance than L1 + L2. This indicates
that some non-invariant features may exist in the shallow layers and using subdomain
adaptation to align these features will degrade the performance of the model. Therefore,
we apply the combination of L1 + L2 for the designed tasks.

L3 L2 L1 L1+L2 L1+L2+L3

Figure 5. Boxplot for the performance of different layer combinations under the same task.

The average accuracy of the proposed method and the comparison method in all tasks
are detailly shown in Table 3. In general, our method obtains the highest average accuracy
and the lowest standard deviation. This indicates that WSAN has excellent and stable
performance in both global and partial domain adaptation tasks. Since the basic approach
does not include any domain adaptation operations, it obtains the worst performance
on all tasks. MKMMD achieves the highest accuracy on the non-partial transfer fault
diagnosis task B1, but performed poorly on the partial transfer tasks. This indicates that
the domain adaptation methods based on MMD has superior performance in the fault
diagnosis task under variable conditions, but it is not feasible to directly apply it to partial
transfer scenarios. DSAN performed better than MKMMD in most tasks, and its average
accuracy is 4.2% higher than that of MKMMD. But it still lags behind the other two partial
transfer methods because it does not carry out any weight learning operation. WSAN
achieved an average accuracy of 97.7%, which was 4.7% higher than ETN, 13.2% higher
than DSAN, and 17.4 higher than MKMMD.

It can be noted that ETN and WSAN, as two domain adaptation methods with
weighted learning, perform significantly better than other methods in partial transfer
diagnosis tasks. In addition, it can be found that the proposed method gets more ahead of
ETN with the increasing degree of domain class asymmetry. For task B2, the accuracy of
WSAN is 1.4% higher than that of ETN, while WSAN is 5.6% higher than that of ETN on
task B8. The same phenomenon can be observed for tasks G1 and G6.
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Table 3. Experimental results of the average testing accuracies in all tasks (%).

Task Basic MKMMD DSAN ETN WSAN (Ours)

B1 73.1 (±2.1) 99.5 (±0.1) 98.3 (±0.3) 98.8 (±0.2) 99.4 (±0.1)
B2 65.5 (±4.5) 90.1 (±0.3) 92.6 (±0.8) 97.1 (±0.3) 98.5 (±0.1)
B3 63.7 (±3.4) 87.2 (±0.8) 90.3 (±1.1) 95.5 (±0.5) 98.6 (±0.2)
B4 59.1 (±5.8) 80.4 (±2.1) 90.1 (±1.5) 92.5 (±0.6) 98.5 (±0.2)
B5 59.7 (±4.6) 82.3 (±2.0) 85.4 (±2.6) 93.0 (±0.7) 97.9 (±0.2)
B6 64.0 (±5.8) 79.6 (±3.9) 80.1 (±3.9) 91.4 (±1.0) 98.0 (±0.1)
B7 45.2 (±8.1) 68.2 (±7.3) 75.2 (±5.4) 88.5 (±1.1) 97.8 (±0.3)
B8 42.4 (±6.5) 63.1 (±8.0) 78.9 (±7.2) 92.4 (±0.6) 98.0 (±0.2)

G1 60.2 (±4.4) 88.1 (±0.3) 90.6 (±0.5) 98.4 (±0.6) 99.2 (±0.1)
G2 55.1 (±5.0) 85.2 (±0.8) 90.0 (±1.1) 92.5 (±0.9) 97.1 (±0.1)
G3 50.7 (±5.3) 80.4 (±2.1) 84.1 (±1.5) 94.3 (±1.7) 98.2 (±0.2)
G4 52.0 (±3.8) 82.3 (±2.0) 85.4 (±2.6) 92.4 (±2.0) 95.6 (±0.3)
G5 41.2 (±4.0) 69.6 (±3.9) 71.2 (±3.5) 88.5 (±1.8) 95.1 (±0.3)
G6 35.4 (±5.6) 68.2 (±5.3) 70.2 (±4.0) 88.1 (±0.9) 95.5 (±0.6)

Average 55.2 80.3 84.5 93.0 97.7

To demonstrate the feature classification effect of our method intuitively, the high-
dimensional features extracted of the model are processed with the well-known t-SNE [33]
technology for dimension reduction. The dimension reduction results of B3 are shown
in Figure 6. In Figure 6a, we can see that the feature separability and clustering effect
obtained by the basic method are inefficient. Features become separable but shared types
and outliers are still cannot be distinguished in Figure 6b,c when domain adaptation is
adopted. Although MKMMD and DSAN perform efficient global domain adaptation,
the existence of outlier types would enable the model to extract classification knowledge
that is not applicable in the target domain. This also indicates that the global adaptation
methods only pays attention to the alignment of the two domains, but does not consider the
relationship between the subdomains within the domain. In Figure 6d, it can be seen that
ETN basically separates outlier samples but the alignment of shared type features is not
accurate enough, which indicates that the classifier cannot carry out effective sample-level
alignment after obtaining class-level weights and it may leads to inaccurate classification.
There are some confusions between the source samples of RO2 and RF1 types. In this
case, ETN may treat the RF1 samples as outliers and filter out some useful classification
knowledge. For the proposed method, precise alignment of the related subdomains is
performed while blocking the outlier types in Figure 6e. After obtaining accurate class-level
weights, WSAN can use the proposed WLMMD to perform effective subdomain alignment
which involves the sample-level weights learning.

In order to further explore how the weights learned affect the alignment of deep features,
the similarity matrix of source and target features in deep layer is drawn on task G4. According
to [30], the similarity matrix can be calculated by G(xi,xj) = exp(−‖xi − xj‖2/200) wherein
xi ∈ Ds and xj ∈ Dt. Figure 7a shows the actual correspondence between the source and target
labels. In Figure 7b, only the samples of SW type can be identified to a certain extent, while
the features extracted from the other two target types of samples are highly similar to various
source types, which is extremely unfavorable for classification. Obviously, the deep features
extracted by the basic method are chaotic due to the lack of domain adaptation operation. In
Figure 7c,d, the corresponding samples of SP and SW types have low similarity degree, and
some of the samples have great similarity with other types. Consequently, global domain
adaptation methods may extract fuzzy deep features when dealing with partial transfer
problem. Figure 7e shows that ETN can assign large weight to shared types, but there are
still some outlier samples with large weights, resulting in a higher similarity between target
features of SP and source features of PP and PW. By comparison, Figure 7f indicates that
WSAN obtains more accurate weights, which is reflected in the large similarity between the
extracted features of the target domain and corresponding features of source domain, and
only a few samples are weakly similar to other source types. In general, the proposed method
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can make the shared samples fully participate in the subdomain adaptation and block outliers.
Thus, the extracted domain invariant features own high similarity among the corresponding
shared types.

Figure 6. t-SNE visualization results of (a) Basic, (b) MKMMD, (c) DSAN, (d) ETN, and (e) WSAN in task B3. The samples
circled in red are outlier types.

Figure 7. Similarity matrix of learned features by (a) ture label, (b–e) comparison methods, and (f) the proposed method.
The abscissa and ordinate represent the source sample sequence and target sample sequence, respectively. The depth of the
color indicates the similarity between the corresponding samples.
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5. Conclusions

A weighted subdomain adaptation network (WSAN) is presented to solve partial
transfer fault diagnosis problem of machinery. Different from the previous global domain
adaptation approaches, we divide all samples into different subdomains according to
sample types of the source domain, and design WLMMD to perform accurate subdomain
alignment. In addition, in order to obtain class-level weights, an additional auxiliary classi-
fier is set up to conduct adversarial training with the feature generator. Under the guidance
of class-level weights, the prediction probability output of the target domain by the clas-
sifier is used as the sample-level weights, so that the model could capture fine-grained
transferable information within the relevant subdomains. The optimal layer combination
was found by exploring the performance of the deep features in different activation layers
participating the subdomain adaptation. The best diagnostic performance can be obtained
under the combination of fully connected layers (L1 + L2) with dimensions 128 and 256.
Experimental results on the bearing and gear datasets collected in our laboratory indicates
that the average accuracy of the proposed method on the designed fault diagnosis task
is 97.7%, which is higher than that of several comparison methods. This means WSAN
could solve the partial transfer fault diagnosis problem more efficiently compared several
popular methods. t-SNE dimension reduction and correlation matrix show that WSAN can
learn accurate weights and carry out accurate weighted subdomain adaptation.

Although the proposed weighted subdomain adaptation approach achieves superior
performance on the partial transfer fault diagnosis tasks, the laboratory works on the
premise that the target data is available during training. It is difficult to guarantee the
performance of such a model under unknown working conditions. Such approaches may
fail when we need real-time diagnosis. However, this problem may be solved with the help
of domain generalization technology [34], and we will explore this issue in depth in our
future work.
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Abstract: Weak fault signals, high coupling data, and unknown faults commonly exist in fault
diagnosis systems, causing low detection and identification performance of fault diagnosis methods
based on T2 statistics or cross entropy. This paper proposes a new fault diagnosis method based on
optimal bandwidth kernel density estimation (KDE) and Jensen–Shannon (JS) divergence distribution
for improved fault detection performance. KDE addresses weak signal and coupling fault detection,
and JS divergence addresses unknown fault detection. Firstly, the formula and algorithm of the
optimal bandwidth of multidimensional KDE are presented, and the convergence of the algorithm is
proved. Secondly, the difference in JS divergence between the data is obtained based on the optimal
KDE and used for fault detection. Finally, the fault diagnosis experiment based on the bearing data
from Case Western Reserve University Bearing Data Center is conducted. The results show that for
known faults, the proposed method has 10% and 2% higher detection rate than T2 statistics and
the cross entropy method, respectively. For unknown faults, T2statistics cannot effectively detect
faults, and the proposed method has approximately 15% higher detection rate than the cross entropy
method. Thus, the proposed method can effectively improve the fault detection rate.

Keywords: fault detection; optimal bandwidth; kernel density estimation; JS divergence; bearing

1. Introduction

The development of industrial informatization has given rise to a large amount of
data in various fields. This has led to data processing becoming a difficult problem in
the industry, especially for fault diagnosis. The explosive growth of data provides more
information, and therefore, typical data analysis theories often fail in achieving the neces-
sary results. The main reason for this failure can be attributed to the typical data analysis
theory that often sets the data distribution type through prior information and performs
analyses based on this assumption. Once the distribution type is set, the subsequent anal-
ysis can perform the estimation and parametric analysis based on only that distribution
type; however, with the growth of data, more information is provided, and thus, the type
of data distribution will need to be modified. As a nonparametric estimation method,
kernel density estimation (KDE) is the most suitable method for the massive amount of the
current data. KDE does not employ a priori assumption for the overall data distribution,
and it directly starts from the sample data. When the sample size is sufficient, the KDE
can approximate different distributions. Furthermore, Sheather and Jones [1] provides
the optimal bandwidth estimation formula for a one-dimensional KDE and proves that
the kernel function is asymptotically unbiased and consistent in the density estimation.
However, with the growth of the dimension, the multidimensional KDE becomes more
complex, and its optimal bandwidth formula is not provided. The distribution of multidi-
mensional data has been described to a certain extent by estimating the kernel density of

Entropy 2021, 23, 266. https://doi.org/10.3390/e23030266 https://www.mdpi.com/journal/entropy

123



Entropy 2021, 23, 266

the reduced data in different dimensions Muir [2], Laurent [3]. In fact, the optimal KDE of
multidimensional data is a problem that needs to be studied further.

In the field of fault diagnosis, an essential problem is measuring the difference between
samples. A frequency histogram has been used to indicate the distribution difference
between two samples Sugumaran and Ramachandran [4], Scott [5]; however, there are
three shortcomings to this method: (1) the large number of discrete operations require
a higher amount of time; (2) the process depends on the selection of the interval, which
is more subjective; (3) there is no intuitive index to reflect this difference. In fact, based
on KDE, the JS divergence can be used to measure the difference in data distribution,
which can overcome the above shortcomings to a certain extent. For example, the failure
of a rolling bearing, which is a key component of mechanical equipment, will have a
serious effect on the safe and stable operation of the equipment, and the incipient fault
detection of rolling bearings can help avoid equipment running with faults and avoid
causing serious safety accidents and economic losses, which has important practical and
engineering significance.

In Saruhan et al. [6], vibration analysis of rolling element bearings (REBs) defects
is studied. The REBs are the most widely used mechanical parts in rotating machinery
under high load and high rotational speeds. In addition, characteristics of bearing faults
are analyzed in detail in references Razavi-Far et al. [7], Harmouche et al. [8]. Compared
with traditional fault diagnosis, the fault diagnosis of rolling bearings is more complex:

• The fault signal is weak: Bearing data is a type of high-frequency data, and the fault
signal is often covered by these high-frequency signals, thereby leading to the failure
of traditional fault diagnosis methods. KDE is highly accurate in describing data
distribution, so it can identify weak signals.

• Data is highly coupled: Bearing data is reflected in the form of a vibration signal,
and there is strong coupling in different dimension signals, thereby making fault
diagnosis difficult. Multi-dimensional KDE plays an important role in depicting
the correlation of data, which can characterize the relationship between different
dimensions of data.

• Incomplete data set: Most bearings work under normal conditions, and the fault data
collected are often fewer, which makes the data incomplete, thereby resulting in the
imperfection of the fault data set and increasing the difficulty of fault detection. The
fault detection method constructed by JS divergence can deal with unknown faults
and incomplete data sets without using additional data sets.

To overcome these problems, in-depth research has been conducted on this topic. Fault
detection technology based on trend elimination and noise reduction has been proposed pre-
viously He et al. [9], Demetriou and Polycarpou [10]. The signal trend ratio is enhanced by
eliminating the trend, and the signal–noise ratio is enhanced by noise reduction, and there-
fore, the fault detection effect is improved. However, this method uses the traditional
detection method and cannot effectively solve the problem of data coupling. In refer-
ence Zhang et al. [11], Fu et al. [12], a fault detection method based on PCA dimension
reduction and modal decomposition feature extraction is proposed. For multidimensional
data, PCA dimension reduction is performed to reduce data dimensions and eliminate
correlation between different dimensions. Then, the modal decomposition method is used
to extract features among dimensions for fault detection. This method can effectively
solve the strong coupling between data; however, it will lose some information in the
process of PCA dimension reduction, and it leads to a reduction in the fault detection effect.
In reference Itani et al. [13], Kong et al. [14], Jones and Sheather [15], Desforges et al. [16],
a bearing fault detection method based on KDE is proposed. These studies analyzed the
feasibility of KDE method in fault detection, and combined different classification methods
for experiments. However, these methods only use one-dimensional KDE, and cannot
directly describe high-dimensional data.

The data distribution is reconstructed by KDE and the cross-entropy function is
constructed to measure the distribution difference for improving the fault detection results.
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However, this method cannot reflect the correlation between different dimensions, and the
cross-entropy function is not precise in the description of density distribution, which leads
to a reduction in the fault detection effect, especially for unknown fault detection, which is
not included in the fault set.

In this study, the KDE method is extended to multidimensional data to avoid infor-
mation loss caused by the KDE for each dimension, and to better describe the density
probability distribution of the data. Meanwhile, this study improves the traditional method
using the cross-entropy function as the measurement of density distribution difference,
and it uses JS divergence as the measurement of density distribution difference, thereby
avoiding the relativity caused by the cross-entropy function. Most fault identification
methods are based only on distance measurement; however, only relying on distance mea-
surement cannot effectively detect unknown faults. Based on JS divergence, distribution
characteristics of JS divergence between the sample density distribution and population
density distribution are derived using the sliding window principle. Thus, the detection
threshold of fault identification is assigned to realize the identification of unknown faults.

This paper is based on the following structure. In Section 2, the trend elimination
method and detection method are introduced, and the intrinsic and extrinsic signals in
the observation data are separated. Then, the fault detection threshold is constructed via
statistics. In Section 3, the KDE method is extended to multidimensional data, and the
optimal bandwidth is derived. Then, JS divergence is employed to measure the difference
between probability distributions of different densities. In Section 4, the sliding window
principle is used to sample the training data to obtain the distribution characteristics of JS
divergence between the sample density distribution and the overall density distribution,
and the detection threshold of fault identification is obtained using the KDE method.
In Section 5, the normal data, two known faults, and one unknown fault are identified
using the bearing data of the Case Western Reserve University Bearing Data Center as the
fault diagnosis data. The experimental results show that the method can identify all types
of faults well.

2. T2 Statistics Fault Detection

In the operation process of the complex equipment or systems, the common obser-
vation state can be divided into intrinsic and extrinsic parts. In general, the intrinsic part
represents the main working state of the system, which has a certain trend, monotony,
and periodicity. The extrinsic part represents system noise, which has a certain zero mean
value, high frequency vibration, and statistical stability. For the intrinsic part, the state
equation of the system can be used to describe the law. When a fault occurs in the intrinsic
part, the symptoms are relatively significant, and the corresponding fault detection meth-
ods are relatively mature. However, for high-frequency vibration signals, the incipient
fault is often hidden in the extrinsic part, which is easily covered by noise. Therefore, it is
necessary to analyze the observed data in depth.

2.1. Signal Decomposition

In the initial operation stage of the equipment, the unstable operation of the system
causes large data fluctuations, which will not only have a great effect on the system trend,
but also affect the statistical characteristics of the data. Therefore, it is necessary to truncate
the data to remove unstable signals [9]. The corresponding time of the time series after
removing the nonstationary period data is t1, t2, · · · , tm, and the following m observation
data are obtained:

Y = [y(t1), y(t2), · · · , y(tm)]. (1)

Each sampling y(ti) contains n features, which are expressed as components in the
form of

y(ti) = [y1(ti), y2(ti), · · · , yn(ti)]
T, i = 1, 2, · · · , m. (2)

125



Entropy 2021, 23, 266

Then, the data Y can be decomposed into

Y = Ŷ + R, (3)

where Ŷ denotes the intrinsic part, which is composed of trend, and R denotes the extrinsic
part, which is composed of observation noise and fault data.

The intrinsic part is composed of multiple signals. Selecting the appropriate basis
function f (t) = [ f1(t), f2(t), · · · , fs(t)]

T can help describe the intrinsic part. By traversing
m data to model the nonlinear data Y ,

[y1, y2, · · · , ym] =

⎡⎢⎢⎢⎢⎣
β
(1)
1 β

(1)
2 · · · β

(1)
s

β
(2)
1 β

(2)
2 · · · β

(2)
s

...
...

. . .
...

β
(n)
1 β

(n)
2 · · · β

(n)
s

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

f0(t1) f0(t2) · · · f0(tm)
f1(t1) f1(t2) · · · f1(tm)
...

...
. . .

...
fs(t1) fs(t2) · · · fs(tm)

⎤⎥⎥⎥⎦. (4)

Note that

F Δ
=

⎡⎢⎢⎢⎣
f0(t1) f0(t2) · · · f0(tm)
f1(t1) f1(t2) · · · f1(tm)
...
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⎤⎥⎥⎥⎦, β
Δ
=

⎡⎢⎢⎢⎢⎣
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(1)
1 β

(1)
2 · · · β

(1)
s

β
(2)
1 β

(2)
2 · · · β

(2)
s

...
...

. . .
...

β
(n)
1 β

(n)
2 · · · β

(n)
s

⎤⎥⎥⎥⎥⎦ (5)

Then, Equation (4) can be expressed as

Y = βF. (6)

Thus, the efficient estimator of β is

β̂=YFT
(

FFT
)−1

. (7)

Using Equations (3) and (7), the signal can be decomposed into{
Ŷ = β̂F = YFT(FFT)−1F
R = Y − Ŷ = Y

(
I − FT(FFT)−1F

) (8)

Usually, the choice of the basis function is a problem worthy of discussion, and it
depends on prior knowledge of practical application scenarios; however, this is not the
focus of this paper, and is therefore not covered here.

Remark 1. For the bearing data, the data is generally stable and periodic. Therefore, Fourier
transform is usually used to extract periodic features instead of more complex basis functions, such
as a polynomial basis function and wavelet basis function.

2.2. T2 Statistics Detection

For simplicity, remember ri = r(ti), i = 1, 2, · · · , m. According to Equation (8),
the training data after signal decomposition are R = [r1, r2, · · · , rm], which is generally
considered a normal random vector with expectation of 0, so that

ri ∼ N(0, Σ), (9)
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where Σ denotes the total covariance matrix. When the covariance matrix Σ is unknown,
the unbiased estimation is given by

Σ̂ =
RRT

m − 1
. (10)

Let Z =
[
z1, z2, . . . , zp

]
be the data in the test window to be tested; the sample mean

value z̄ is

z̄ =
1
p

p

∑
i=1

zi. (11)

Then, z̄ is still normal distributed and

z̄ ∼ N
(

0,
1
p

Σ

)
. (12)

The T2 statistics can be constructed as

T2 = pz̄TΣ̂−1z̄. (13)

Reference Solomons and Hotelling [17] reports that the distribution of the T2 statis-
tic satisfies

m − n
n(m − 1)

T2 =
p(m − n)
n(m − 1)

z̄TΣ̂−1z̄ ∼ F(n, m − n). (14)

Therefore, if the significance level is α, we can get that

m − n
n(m − 1)

T2 =
l(m − n)
n(m − 1)

z̄TΣ̂−1z̄ < Fα(n, m − n). (15)

The testing data Z and the training data R both come from the same mode; otherwise,
they are considered different. The error rate of this criterion is α.

3. Optimal Kernel Density Estimation

Section 2 introduces the fault detection method based on T2 statistics, including the
signal decomposition technology and fault detection method based on the T2 statistics.
However, the fault detection method based on the T2 statistics assumes that data satisfies
the normal distribution, while the actual observation data may not meet the hypothesis,
which can lead the discriminant performance of the T2 statistics to not satisfy the design
requirements. In addition, the statistics test the data from the angle of the intrinsic part Ŷ
and covariance matrix Σ̂. These two attributes are not sufficient to describe all statistical
characteristics of the system. When the incipient fault is submerged by data noise, it is easy
to miss the detection. In this study, a KDE method for multidimensional data is constructed
to describe the probability and statistical characteristics of the data more accurately.

3.1. Optimal Bandwidth Theorem

For the observed data, the frequency histogram can be used to show its statistical
characteristics directly. However, in the actual application process, the frequency histogram
is a discrete statistical method, the interval number of the histogram is difficult to divide,
and more importantly, the discretization operation inconveniences the subsequent data
processing. To overcome these limitations, the KDE method is proposed. This method
is a nonparametric estimation method that estimates the population probability density
distribution directly by sampling data.
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For any point x ∈ R
n, assuming that the probability density of a certain mode is f (x),

the kernel density of f (x) is estimated based on the sampling data R = [r1, r2, · · · , rm] in
Section 2.1. As reported in reference Rao [18], the estimation formula is

f̂K(x, hm) =
1

mhn
m

m

∑
i=1

K
(

ri − x
hm

)
, (16)

where m, n, K(·), and hm denote the number of sampling data, dimension of sampling data,
kernel function, and bandwidth, respectively.

For the sake of convenience in the following discussions, in the case of no doubt,{
f̂K(x) � f̂K(x, hm)∫

g(x)dx �
∫

x∈Rn g(x)dx
(17)

The kernel function K(·) satisfies
∫

K(x)dx = 1; therefore,
∫

K
(

ri−x
hm

)
dx = hn

m, that is,∫
f̂K(x)dx = 1. Thus, f̂K(x) satisfies both positive definiteness, continuity, and normality.

Therefore, it is reasonable to use it as the KDE. The Gaussian kernel function is a good
choice as given by

K(x) = (2π)−n/2e−(xTx)
/

2 (18)

In this study, the performance of the kernel density estimator is characterized by the
mean integral square error (MISE).

MISE
(

f̂K(x)
)
=

∫
E
[

f̂K(x)− f (x)
]2

dx (19)

Reference Rao [18] shows that the estimation result f̂K(x) is not sensitive to the
selection of the kernel function K(·); that is, the MISE of the estimation results obtained
using different kernel functions is almost the same, which is reflected in the subsequent
derivation process. In addition, the MISE depends on the selection of the bandwidth hm.
If hm is too small, the density estimation f̂K(x) shows an irregular shape because of the
increase in the randomness. While hm is too large, density estimation f̂K(x) is too averaged
to show sufficient detail.

The optimal bandwidth formula is provided in the following theorem, and it is one of
the key theoretical results of this study.

Theorem 1. For any dimensional probability density function f (·) and any kernel function K(·)
with a symmetric form, if f̂K(·) in Equation (16) is used to estimate f (·), and if the function

tr
(

∂2 f (x)
∂x∂xT

)
with respect to x is integrable when the MISE

(
f̂K(·)

)
in Equation (19) is the minimum,

the bandwidth hm satisfies

hm =

(
md2

K
n3cK

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx

)−1/(n+4)

, (20)

where cK and dK are two constant values given by{
cK =

∫
K2(x)dx

dK =
∫

xTxK2(x)dx
(21)

Equation (20) is called the optimal bandwidth formula and hm denotes the optimal bandwidth.

A detailed proof of this theorem is given below.
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Proof. It can be proved that the following two equations hold⎧⎪⎪⎨⎪⎪⎩
E
[

f̂K(x)
]
=

∫
K(u) f (x + hmu)du

E
[

f̂ 2
K(x)

]
=

∫
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mhn
m
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(m − 1)(

∫
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m

(22)

In fact,
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f (ri)
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In addition,
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)
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(

mhn
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∫

K2(u) f (x + hmu)du + m(m − 1)(hn
m
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f (x + hmu)K(u)du)2
)

.

(24)

From Equation (23),

E
[

f̂K(x)
]
− f (x) =

h2
m
2

∫
uT

(
∂2 f (x + θhmu)

∂x∂xT

)
uK(u)du, (25)

where θ represents a constant value between 0 and 1. According to Equations (23) and (24),

E
[

f̂ 2
K(x)

]
−

(
E
[

f̂K(x)
])2

=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m
. (26)

According to the Equations (25) and (26), the following equation holds.

E
[

f̂K(x)− f (x)
]2
= E

[
f̂ 2
K(x)

]
−

(
E
[

f̂K(x)
])2

+
(

E
[

f̂K(x)
]
− f (x)

)2

=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m

+

(
1
2

h2
m

∫
uT

(
∂2 f (x + θhmu)

∂x∂xT

)
uK(u)du

)2

(27)

To facilitate the subsequent reasoning, the following theorem is given.
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Theorem 2. For any matrix Φ, K(·) is a kernel density function with symmetric form; then,∫
xTΦxK(x)dx =

tr(Φ)

n

∫
xTxK(x)dx. (28)

Proof. If the odd function g(x) is integrable on R, there must be ∫∞−∞ g(x)dx = 0. Similarly,
it can be verified that the kernel function K(·) with a symmetric form satisfies∫

· · ·
∫

∑
i �=j

ΦijxixjK(x)dx1 · · · dxn = 0. (29)

Then,∫
xTΦxK(x)dx =

∫
· · ·

∫
xTΦxK(x)dx1 · · · dxn

=
∫

· · ·
∫

∑
i

Φiix2
i K(x)dx1 · · · dxn +

∫
· · ·

∫
∑
i �=j

ΦijxixjK(x)dx1 · · · dxn

= tr(Φ)
∫

· · ·
∫

x2
1K(x)dx1 · · · dxn

=
tr(Φ)

n

∫
· · ·

∫
xTxK(x)dx1 · · · dxn

=
tr(Φ)

n

∫
xTxK(x)dx.

(30)

Thus, the Theorem 2 is proved.

For any unit length vector u ∈ R
n, the Taylor expansion can be used to obtain⎧⎪⎪⎨⎪⎪⎩

f (x + hmu) = f (x) + hmuT∇( f (x)) + o(hm)

∂2 f (x + θhmu)
∂xi∂xj

=
∂2 f (x)
∂xi∂xj

+ θhmuT∇
(

∂2 f (x)
∂xi∂xj

)
+ o(hm)

(31)

If the bandwidth hm satisfies the condition⎧⎪⎨⎪⎩
lim

m→∞
(hm) = 0,

lim
m→∞

(
1

mhn
m

)
= 0,

(32)

Then, from Equations (22)–(32), we get that

E
[

f̂K(x)− f (x)
]2

=
cK f (x)
mhn

m
+ o

(
1

mhn
m

)
+

h4
md2

K
4n2

(
tr
(

∂2 f (x)
∂x∂xT

))2

+ o
(

h4
m

)
. (33)

In fact,

E
[

f̂K(x)− f (x)
]2
=

∫
K2(u) f (x + hmu)du

mhn
m

− (
∫

K(u) f (x + hmu)du)2

m

+

(
h2

m
2

∫
uT

(
∂2 f (x + θhmu)

∂x∂xT

)
uK(u)du

)2

=
cK f (x)
mhn

m
+ o

(
1

mhn
m

)
− f (x)2

m
+ o

(
1
m

)
+

(
h2

m
2n

tr
(

∂2 f (x + θhmu)
∂x∂xT

) ∫
uTuK(u)du

)2

=
cK f (x)
mhn

m
+ o

(
1

mhn
m

)
+

(
h2

m
2n

tr
(

∂2 f (x)
∂x∂xT

)
dK + o

(
h2

m

))2

=
cK f (x)
mhn

m
+ o

(
1

mhn
m

)
+

h4
md2

K
4n2

(
tr
(

∂2 f (x)
∂x∂xT

))2

+ o
(

h4
m

)
.

(34)
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Based on Equation (33), if tr
(

∂2 f (x)
∂x∂xT

)
is integrable, there is

MISE
(

f̂K(x)
)
=

∫ (
cK f (x)
mhn

m
+

h4
m

4n2

(
dKtr

(
∂2 f (x)
∂x∂xT

))2)
dx + o

(
1

mhn
m

)
+ o(hm)

=
cK

mhn
m
+

1
4n2 h4

md2
K

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx + o
(

1
mhn

m

)
+ o(hm).

(35)

When MISE
(

f̂K(·)
)

is the smallest, the derivative of Equation (35) with respect to hm

is 0, which means
∂MISE

(
f̂K(x)

)
∂hm

= 0. (36)

Thus, the optimal bandwidth hm in Theorem 1 is obtained as

hm =

(
md2

K
n3cK

∫
tr
(

∂2 f (x)
∂x∂xT

)2

dx

)−1/(n+4)

. (37)

Remark 2. When the number of samples m is determined, the appropriate bandwidth hm can be
selected using Equation (20) to construct the KDE, which can better fit the sample distribution.
In Equation (20), the influence of the kernel function on bandwidth selection is on cK and dK, which
are almost the same under different kernel function selection, and they have a slight effect on the
final bandwidth selection.

3.2. Optimal Bandwidth Algorithm

The optimal bandwidth formula is given by Equation (20). However, f (x) is unknown

in Equation (20), and therefore, ∫ tr
(

∂2 f (x)
∂x∂xT

)
dx is also unknown. An approximate value of

the bandwidth parameter hm can be obtained by replacing f (x) with f̂K(x) in Equation (16).
Furthermore, an iterative algorithm can be used to calculate a more accurate bandwidth
parameter. Theorem 3 shows that the algorithm is convergent.

Theorem 3. For any n-dimensional probability density function f (·) and Gaussian kernel function
K(·), if f̂K(·) in Equation (16) is used to estimate f (·), then the iterative calculation formula of hm
is obtained as

hm,k+1 =

⎛⎝ md2
K

n3cK

∫
tr

(
∂2 f̂K(x, hm,k)

∂x∂xT

)2

dx

⎞⎠−1/(n+4)

(38)

and it is convergent, where hm,k is the value of hm during the k − th iteration.

Proof. For a particular Gaussian kernel function

K(u) = (2π)−n/2e−(uTu)
/

2 (39)

dK is a χ2 distribution with degree of freedom n, and the expectation is equal to the degree
of freedom.

dK =
∫

uTuK(u)du = n (40)

In addition,

cK =
∫

K2(u)du =
∫

(2π)−ne−uTudu =
(
2
√

π
)−n. (41)
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Substituting Equations (39)–(40) into Equation (20) and substituting f̂K(x) in Equation (16)
for f (x), the iterative form of calculating hm is obtained as

hm,k+1 =
( n

m
)1/(n+4)(2

√
π
)−n/(n+4)

(∫
tr
(

∂2 f̂K(x)
∂x∂xT

)2
dx

)−1/(n+4)

=
(

mnh2n
m,k

)1/(n+4)(
2
√

π
)−n/(n+4)

(∫
tr
(

∂2

∂x∂xT

(
m
∑

i=1
K
(

ri−x
hm,k

)))2
dx

)−1/(n+4) (42)

To facilitate the subsequent reasoning, the following lemma is given as

Lemma 1. For any function f1, f2, · · · , fn, inequality∫
( f1 + f2 + · · ·+ fn)

2dx ≤
∫

n
(

f 2
1 + f 2

2 + · · ·+ f 2
n

)
dx. (43)

If and only if f1(x) = f2(x) = · · · = fn(x) holds almost everywhere.

Proof. In fact, for any function f1, f2, · · · , fn, there are

0 ≤ ( f1(x) + f2(x) + · · ·+ fn(x))2 ≤ n
(

f1(x)2 + f2(x)2 + · · ·+ fn(x)2
)

. (44)

Thus, the two sides of Equation (44) are integrated as∫
( f1 + f2 + · · ·+ fn)

2dx ≤
∫

n
(

f 2
1 + f 2

2 + · · ·+ f 2
n

)
dx. (45)

It is obvious that the sign of Equation (43) holds the condition that f1(x) = f2(x) =
· · · = fn(x) is almost everywhere.

Because the second derivative of Equation (39) with respect to xi is

∂2

∂xi∂xi
K(x) = (2π)−n/2e−(xTx)

/
2
(

x2
i − 1

)
. (46)

In addition,

∫ (
∂2

∂xj∂xj

(
K
(

ri − x
hm,k

)))2

dx=
∫ (

∂2

∂xj∂xj

(
(2π)−n/2e−(ri−x)T(ri−x)

/
2h2

m,k

))2

dx

=
3
4
(
2
√

π
)−nhn−4

m,k .

(47)

From Lemma 1 and Equation (47)

∫
tr

(
∂2

∂x∂xT

(
m

∑
i=1

K
(

ri − x
hm,k

)))2

dx ≤
∫

nm ∑
i,j

(
∂2

∂xj∂xj

(
K
(

ri − x
hm,k

)))2

dx

=
3
4
(nm)2(2

√
π
)−nhn−4

m,k .

(48)

When hm,k is sufficiently large, we can assume that K
(

ri−x
hm,k

)
is almost the same

everywhere, i.e., the equal sign in Equation (48) is tenable.

hm,k+1=

(
mnh2n

m,k

2
√

π

)1/(n+4)(
3
4
(nm)2(2

√
π
)−nhn−4

m,k

)−1/(n+4)

= hm,k

(
3
4

nm
)−1/(n+4)

< hm,k

(49)
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When hm,k is large, the iterative process decreases. Because hm,k has a lower bound,
the algorithm converges.

In summary, the KDE method based on optimal bandwidth is given (see Algorithm 1),
and the flowchart of the KDE method is shown in Figure 1.

Algorithm 1: Kernel density estimation (KDE) method based on optimal band-
width

Input: Training set: R = [r1, r2, · · · , rm]; Given the estimation accuracy: ε;
Maximum number of iterations: kmax.

Output: Optimal bandwidth: hm; Optimal KDE: f̂K(x).

1 Select the initial iteration hm,1 = hm,0;
2 for k = 1, 2, · · · , kmax do

3 Calculate the KDE f̂K(x) using Equation (16)
4 Update the optimal bandwidth hm,k by Equation (38)
5 if k < kmax&

∣∣hm,k − hm,k−1
∣∣ > ε then

6 k = k + 1, return step3;
7 else if k = kmax then
8 Iteration times overrun, jump out;
9 else if

∣∣hm,k − hm,k−1
∣∣ < ε then

10 Obtain the optimal bandwidth.
11 end

12 end

Figure 1. Flowchart of KDE method based on optimal bandwidth.

4. Fault Detection Method Based on JS Divergence Distribution

In Section 3, we construct a multidimensional KDE method based on the optimal
bandwidth; this method can accurately describe the density distribution of multidimen-
sional data. JS divergence is used to measure the distribution difference, and thus, it can
highlight the difference in the statistical characteristics of different mode data.

4.1. Mode Difference Index

In Section 3, the probability density estimation of multidimensional data is obtained
using the kernel function method, and the optimal bandwidth formula is derived. When the
system fails, the state of the system will inevitably change, and the statistical characteristics
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of the system output will also change, thereby leading to significant changes in the density
distribution of the observed data. For two groups of the sample window data R and Z,
the cross entropy H(R, Z) can be used to measure the distribution difference of R and Z.

H(R, Z) =
∫

− f̂K,Z(x) log
(

f̂K,R(x)
)

dx, (50)

where f̂K,R, f̂K,Z represents the optimal KDE of R and Z calculated using Equation (16).
H(R, Z) does not satisfy the definition of distance because H(R, Z) does not necessar-

ily satisfy positive definiteness and symmetry; that is, H(R, Z) < 0 or H(R, Z) �= H(R, Z).

• The smaller the difference of distribution, the smaller is H(R, Z), which means that
even H(R, Z) < 0, and therefore, it is reasonable to use H(R, Z) to measure the
distribution difference of R and Z.

• However, the quantitative description of distribution difference must satisfy symmetry;
otherwise, the exchange position and distribution difference will be different, which is
difficult to accept.

The JS divergence JS(R, Z) was used as a measure of the distribution difference
between R and Z in reference Zhang et al. [19], Bruni et al. [20] as follows:

JS(R, Z) =
∫ f̂K,R log

(
f̂K,R

)
+ f̂K,Z log

(
f̂K,Z

)
−

(
f̂K,R + f̂K,Z

)
log

((
f̂K,R + f̂K,Z

)
/2

) dx. (51)

It is easy to get that {
JS(R, Z) ≥ 0
JS(R, Z) = JS(Z, R)

(52)

In this paper, Equation (52) is used to measure the distribution difference between
testing data Z and training data R for realizing fault detection and isolation.

4.2. Mode Discrimination Method

If the training data has q patterns
{

R1, R2, · · · , Rq
}

, the JS divergence set{
JS(Z, R1), JS(Z, R2), · · · , JS

(
Z, Rq

)}
between the testing data Z and different modes R can be calculated using Equation (51).

If i0 is the schema tag corresponding to the minimum JS divergence, it means that

i0 = arg min
{

JS(Z, R1), JS(Z, R2), · · · , JS
(
Z, Rq

)}
. (53)

It is reasonable to assume that testing data Z and training data Ri0 belong to the
same mode. However, for a new failure mode that may be unknown in the application,
Equation (50) evaluates the testing data Z as the known failure mode of type i0, which is
obviously unreasonable.

If JS
(
Z, Ri0

)
is too large, we believe that testing data Z comes from an unknown

new failure mode; its label is q + 1. However, the method to obtain the threshold JShigh
of JS

(
Z, Ri0

)
is a problem that should be investigated. A method to determine JShigh is

provided below.
For the training data Ri0 = [r1, r2, · · · , rm] of the i0 mode, the density estimation of

the data set can be obtained using Equation (16).

f̂K,R(x) =
1

m(hm)
n

m

∑
i=1

K
(

ri − x
hm

)
(54)
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In addition, if the length of the sampling window is fixed as p(p < m), the new sam-
pling data is R(j) =

[
rj, rj+1, · · · , rj+p

] ⊂ Ri0 , j = 1, 2, · · · , m − p by sliding the sampling
window. For each R(j), the density of the dataset can be estimated as

f̂K,R(j) (x) =
1

p
(
hp

)n

j+p

∑
i=j

K
(

ri − x
hp

)
. (55)

Using Equation (52), the divergence between the training data R and the sample data
R(j) can be obtained as

JSj = JS
(

R, R(j)
)

= H
((

f̂K,R + f̂K,R(j)

)
,
(

f̂K,R + f̂K,R(j)

)
/2

)
− H

(
f̂K,R

)
− H

(
f̂K,R(j)

)
.

(56)

Using Equation (55), we can obtain a series of JS divergence calculation value sets

JS =
{

JS1, JS2, · · · , JSm−p
}

.

We use this set to provide the estimation formula f̂ JS(x) of the density function f JS(x)
of the JS divergence as

f̂ JS(x) =
1

(m − p)
(
hm−p

)n

m−p

∑
j=1

K
( JSj − x

hm−p

)
. (57)

If the significance level is α, the probability of f̂ JS(x) that exceeds the threshold JShigh is

P
{∫ JShigh

0
f̂ JS(x)dx.

}
< α (58)

Because the distribution type of JS divergence is not a common random distribution,
the quantile cannot be obtained by looking up the table; instead, it can only be obtained by
numerical integration. If h is the step size, and∫ +∞

h∗(i−1)
f̂ JS(x)dx ≤ α ≤

∫ +∞

h∗i
f̂ JS(x)dx, (59)

it is reasonable to deduce that

JShigh = h ∗ i. (60)

The following fault detection and isolation criteria are constructed by Equation (58).

Criterion 1. Suppose i0 is the pattern label corresponding to the minimum JS divergence—see
Equation (38)—the training data Ri0 = [r1, r2, · · · , rm] corresponding to the i0 mode and the upper
bound of JS divergence is JShigh—see Equation (56). If the testing data Z = [z1, z2, . . . , zl ] meet
the requirements,

JS
(
Z, Ri0

) ≤ JShigh. (61)

The testing data Z and training data Ri0 belong to the same failure mode; otherwise, the testing
data Z are considered to originate from the unknown new failure mode, and their label is marked as
q + 1.

In conclusion, the fault diagnosis method based on optimal bandwidth is provided
(See Algorithm 2), and the corresponding fault diagnosis method flowchart is shown in
Figure 2.
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Algorithm 2: Fault Diagnosis Method Based on Optimal KDE

Input: Training data:
{

R1, R2, · · · , Rp
}

; Significance level: α; Testing data:
Z = [z1, z2, . . . , zl ].

Output: Pattern classification labels for testing data Z.

1 Calculate the optimal KDE JS = {JS1, JS2, · · · , JSm−l} of R by Algorithm 1;
2 Calculate the optimal KDE f̂K,Z(x) of Z by Algorithm 1;
3 Calculate the JS divergence set

{
JS(Z, R1), JS(Z, R2), · · · , JS

(
Z, Rp

)}
of R and Z

using Equation (51);
4 Calculate the minimum JS divergence label i0 using Equation (53), and the

corresponding training data were Ri0 = [r1, r2, · · · , rm] ∈ R;
5 for j = 1, 2, · · · , m − l do

6 Get the training data R(j) =
[
rj, rj+1, · · · , rj+l

]
⊂ Ri0 by sliding the windows;

7 Calculate f̂K(x) based on hm,i, kernel function K(·), and Equation (16);
8 Update the optimal bandwidth hm,i by Equation (37);
9 Calculate the optimal KDE of R(j) using Algorithm 1 and Equation (55);

10 Calculate JS
(

f̂K,R, f̂K,R(j)

)
according to Equation (56)

11 end
12 Calculate the density function of the JS divergence according to Equation (57)

f JS(x);
13 Calculate the upper bound JShigh of the JS divergence according to Equation (58)

and 60;
14 Assess the pattern of testing data Z according to Criterion 1,

Figure 2. Flowchart of fault diagnosis method based on optimal KDE.
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Remark 3. Equations (54) and (55) show that the calculation result of JS divergence is directly
related to the length of sampling data. Indeed, with the increase in the sampling data length,
the density estimation obtained by Equation (54) can describe the distribution characteristics of
samples more effectively, thereby significantly improving the accuracy of fault detection.

5. Numerical Simulation

The bearing data from Case Western Reserve University Bearing Data Center were
used as the diagnosis research object, and they have been considered as a case for many
fault diagnosis, such as in references Smith and Randall [21], Lou and Loparo [22], Rai and
Mohanty [23].

The sampling frequency of the motor data was 12 kHz, and 12 kHz is the default
sampling frequency for Case Western Reserve University Bearing Data Center. The dataset
contains four groups of sample data: normal data ( f0), 0.007 inch inner raceway fault data
( f1), 0.014 inch inner raceway fault data ( f2), and 0.014 inch outer raceway fault data( f3).
Each group of data had two dimensions: the acceleration data of the drive end ( fi − DE)
and the acceleration data of the fan end ( fi − FE). All the experiments were conducted on
an Lenovo Ryzen 3700X CPU with 3.60 GHz processor, 16 GB RAM.

5.1. Data Preprocessing

The observed data in the process of the bearing operation show obvious periodicity,
which needs to be eliminated. Taking normal data f0 as an example, the main frequency in
the observed signal can be obtained by fast Fourier transform (FFT), and the result of the
FFT is shown in Figure 3.
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Figure 3. Single-sided amplitude spectrum of f0.

Figure 3 indicates that the main frequency is approximately 1036 Hz, and thus, the ba-
sis function is constructed as

f (t) =
[

1 sin(1036 × 2πt) cos(1036 × 2πt)
]T.

The estimation of β calculated using Equation (7) is

β̂ =

[
0.0116 −0.0158 0.0548
0.0280 0.0326 −0.0396

]
.

Thus, the data after removing the intrinsic signal are shown in Figure 4, where
Figure 4a represents the acceleration data of the drive end and Figure 4b represents the
acceleration data of the fan end.
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(a) Acceleration data of drive end of f0
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(b) Acceleration data of fan end of f0

Figure 4. Preprocessed data to remove trends by fast Fourier transform (FFT).

In the later fault detection process, the data of all modes are similar to the above
operation, and the results are recorded as fi.

5.2. Fault Detection Effect
5.2.1. Norm Data and Known Fault

For the norm data f0 and the known fault f1, f2, the first 20,480 sample points are
selected as the training set, which are recorded as fi−train. The last 81,920 sample points
are taken as the testing set, which are recorded as fi−test. A total of 128 sample points are
used as detection objects in each test. The training set data are shown in Figure 5, where
Figure 5a,b represent data fi−train, i = 1, 2 of the two dimensions, respectively.
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(a) Training data of f1
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(b) Training data of f2

Figure 5. Training data f1, f2 after being preprocessed.

Figure 5 shows that the bearing data have high frequency, and the fault does not
change the observed mean value; however, it changes the dispersion characteristics or the
correlation of data.
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5.2.2. Unknown Fault

The training data does not necessarily contain all types of patterns, and the detection
of unknown faults is always a difficult problem. f3 is used as an unknown fault for fault
detection; the training set sample does not contain any information about f3. The unknown
fault data are shown in Figure 6, where in Figure 6a represents the acceleration data at the
driving end and Figure 6b represents the acceleration data at the fan end.

Figure 6 shows that the data of unknown faults is close to the other two types
of fault data. If the fault detection method is not sensitive, the detection rate will be
reduced significantly.
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(a) Acceleration data at the drive end of f3
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(b) Acceleration data at the fan end of f3

Figure 6. Training data f3 after preprocessed.

5.2.3. Detection Effect

The characteristics of bearing data make bearing fault detection extremely challenging.
The input of the training set is f0−train, the estimation accuracy is ε = 10−4, and the
maximum number of iterations is kmax = 100, according to Algorithm 1, the optimal
bandwidth is

hm = 0.0445.

The KDE of the training set is obtained by Equation (15), and the results are shown in
Figure 7, where Figure 7a,c,e represent the two-dimensional frequency histograms of the
training data fi−train, i = 0, 1, 2, and Figure 7b,d,f represent the two-dimensional KDE of
the training data fi−train, i = 0, 1, 2.

Figure 7 further shows that the bearing fault changes the dispersion characteristics
and data correlation. Meanwhile, Figure 7 shows that the KDE of the training data obtained
by Equation (15) is in good agreement with the data distribution of the training data,
and therefore, this method can really describe the distribution of multidimensional data.
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Figure 7. Training data after being preprocessed.

The JS divergence of the training data and KDE of the distribution are obtained by
Equations (51) and (58); the results are shown in Figure 8.
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(c) The detection threshold of f2

Figure 8. The results of detection threshold.

When the significance level is α = 95%, the detection thresholds of the training set,
which are calculated using Equation (58), are⎧⎨⎩

f0 : JShigh < 0.1375
f1 : JShigh < 0.0995
f2 : JShigh < 0.1225

Thus, the detection results of using JS divergence methods on the testing data are
shown in Figure 9. If the detection points fall within the threshold, the data set to be
detected is in the same pattern; otherwise, the data have different patterns.
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Figure 9. Fault detection effect using JS divergence as index.

Furthermore, detection rates using different methods are shown in Table 1.

Table 1. Detection rate of normal and different failure modes using different methods.

Method T2 Statistics Detection Cross Entropy JS Divergence

Normal mode f0 95.80% 96.95% 97.03%
Known fault f1 83.47% 94.41% 95.81%
Known fault f2 78.11% 94.19% 95.36%

Unknown fault f3 \ 53.16% 69.49%
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For the known fault, Table 1 indicates that the bearing fault identification based
on multidimensional KDE and JS divergence achieves better results compared to those
obtained using the T2 statistics detection methods in the testing data. The detection rate
of normal data f0 increases from 95.08% to 97.03%, the detection rate of fault data f1
increases from 81.33% to 95.81%, and the detection rate of fault data f2 increases from
70.69% to 95.36%. Meanwhile, compared with the cross-entropy methods, the detection
rate of normal data f0 increased from 96.95% to 97.03%; of fault data f1 increased from
94.41% to 95.81%; and of fault data f2 increased from 94.19% to 95.36%.

For the unknown fault f3, Table 1 shows that the T2 statistics detection method cannot
detect the unknown faults. The method using cross entropy as a measure can only detect
unknown faults with a detection rate of 53.16%, which is not obvious. The JS divergence
method constructed in this study can identify the unknown fault accurately, and the
detection rate reaches 69.49%. This is because JS divergence is more accurate at measuring
the differences between distributions.

5.3. Influence of Window Width on Fault Diagnosis

The fault diagnosis effect is related to the data window width; therefore, the fault
diagnosis effect under different window widths is investigated. The results are shown in
Figure 10.
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Figure 10. Fault diagnosis effect under different window width hm.

Figure 10 indicates that, with the increase in the detection window, the detection
performance of the proposed method for the known fault detection first rises, and then, it
tends to be stable. This is because when the length of the detection window increases to a
certain extent, the data to be detected already contains sufficient information. Meanwhile,
if the detection window continues to increase, the contribution rate to the improvement
of the fault detection rate is not large. Meanwhile, for unknown faults, the detection rate
increases rapidly with the length of the detection window because the longer the detection
window, the higher the amount of information contained in the data to be detected, and the
better is the difference characterized between the fault and the known fault.

6. Conclusions

In this study, a method of bearing fault detection and identification was constructed
using multidimensional KDE and JS divergence. The distribution characteristics of JS
divergence between the sample density distribution and population density distribution
were derived using the sliding sampling window method. Thus, the threshold of fault
detection was provided, and therefore, different faults, especially unknown faults, could
be identified. The theory showed that the multidimensional KDE method could reduce
information loss caused by processing each dimension; the JS divergence is more accu-
rate than the traditional cross entropy to measure the difference in density distribution.
The experimental results verified the above conclusions.

For a known fault, the detection effect of this method was obviously better than that of
the traditional method, and it also had a certain degree of improvement compared with the
cross-entropy method. Second, for unknown faults, the traditional method could not detect
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the distribution difference accurately, while the detection effect of the proposed method
was significantly improved.

Furthermore, the detection effect of this method depends on the window width.
The detection effect improved with a growth in the detection window. In this paper,
under the condition of a given window width, the estimation formula for the optimal band-
width of a multidimensional KDE was provided. The experimental results showed that the
formula was applicable to any mode of data, and therefore, it had a certain universality.

However, this study has certain limitations. Firstly, although the calculation formula
of multidimensional KDE is given in this study, the computational complexity will increase
when the dimension is large, which may restrict the further application of the method.
Secondly, the calculation of JS divergence is time consuming, which is not conducive to
rapid fault diagnosis.

In future research, we can try to use the PCA dimension reduction method to solve
the computational complexity caused by very large dimension, and optimize the algorithm
flow of JS divergence to expedite the calculation. In the latest study Ginzarly et al. [24],
prognosis of the vehicle’s electrical machine is treated using a hidden Markov model after
modeling the electrical machine using the finite element method. Therefore, we will try to
combine this method in future work and apply it to the fault detection of other systems.
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Abstract: Most conventional wind turbine fault diagnosis techniques only use a single type of
signal as fault feature and their performance could be limited to such signal characteristics. In
this paper, multiple types of signals including vibration, temperature, and stator current are used
simultaneously for wind turbine misalignment diagnosis. The model is constructed by integrated
methods based on Dempster–Shafer (D–S) evidence theory. First, the time domain, frequency
domain, and time–frequency domain features of the collected vibration, temperature, and stator
current signal are respectively taken as the inputs of the least square support vector machine (LSSVM).
Then, the LSSVM outputs the posterior probabilities of the normal, parallel misalignment, angular
misalignment, and integrated misalignment of the transmission systems. The posterior probabilities
are used as the basic probabilities of the evidence fusion, and the fault diagnosis is completed
according to the D–S synthesis and decision rules. Considering the correlation between the inputs,
the vibration and current feature vectors’ dimensionalities are reduced by t-distributed stochastic
neighbor embedding (t-SNE), and the improved artificial bee colony algorithm is used to optimize
the parameters of the LSSVM. The results of the simulation and experimental platform demonstrate
the accuracy of the proposed model and its superiority compared with other models.

Keywords: wind turbines; misalignment; fault diagnosis; information fusion; improved artificial bee
colony algorithm; LSSVM; D–S evidence theory

1. Introduction

In order to address global warming issues, many countries have reduced carbon
emissions year by year as one of their targets for economic and social development. As
one typical source of clean energy, wind power has significant advantages in terms of
environmental and ecological impact compared with hydropower and nuclear power [1]. In
recent years, wind power has been rapidly developed in many countries, and the installed
capacity has been increasing year by year [2].

The working environment of wind turbines is often complex, so the failure rate of
the components of wind turbines is relatively high [3]. If the key components of the wind
turbine system fail, it will cause damage and even stop the whole turbine, resulting in
huge economic losses. Therefore, in recent years, a large number of research work has
been focused on fault diagnosis of wind turbines. The failures typically include blade
failures, transmission system failures, generator failures, and tower failures. Among
them, misalignment of the transmission system is one of the common failures [4]. Many
reasons, such as bearing eccentricity, installation error, and coupling misalignment, can
cause misalignment of the wind turbine transmission system that connects the gearbox and
generator for a typical doubly-fed wind turbine [5]. The misalignment of the transmission
system can inevitably lead to vibration of the unit, which will reduce the reliability of the
power generation system. In addition, the misalignment failure can cause damage to gears
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and bearings [6]. Therefore, it is necessary to monitor and diagnose the misalignment of
the transmission system in doubly-fed wind turbines.

Although there is much work on the misalignment fault diagnosis for a conventional
rotating system, there is little work for wind turbine misalignment diagnosis. In particular,
a wind turbine presents additional and unique challenges as it operates under variable
rotational conditions [7,8]. At present, the main research on detecting the misalignment
of wind turbines includes the following work. Zhao et al. applied variational mode
decomposition (VMD) to decompose the fault vibration signal to isolate features and
diagnose the misalignment faults in a direct drive wind turbine [9]. Abdalla et al. diagnosed
misalignment of planetary gearbox based on vibration measurements using spectrum
analysis and modulation signal bispectrum (MSB) analysis [10]. Huang et al. applied the
Hilbert–Huang transform (HHT) method for fault diagnosis of wind turbine rotors and
discussed three typical faults by the HHT, including rotor mass imbalance, aerodynamic
asymmetries, and yaw misalignment [11]. An and Kong proposed a modified empirical
mode decomposition (EMD) method to extract characteristics from vibration signals and
applied a back-propagation neural network to data from various sensors to diagnose
faults of offshore wind turbines included stator imbalanced, rotor unbalanced, and bearing
misalignment [12]. Villa et al. developed a statistical diagnosis algorithm based on the
significance level of the modeled fault to detected unbalance fault and misalignment fault
of wind turbine, and tested the algorithm on vibration from a test-bed [13]. He et al.
analyzed the vibration characteristics of the transmission chain of a wind turbine based
on double-elastic support with natural axial misalignment between the output shaft of
gearbox and the shaft of generator causing vibration signals of normal gearbox blend with
serious high-order gear mesh frequency and smooth modulation [14]. However, these
methods mainly applied rely on single information, and their performance could be limited
owing to the limited source of information.

Because the diagnosis based on single information often cannot reflect the overall
condition, the information fusion methodology for multiple source information is needed
for the diagnostic system. Information fusion is a synchronous and comprehensive pro-
cessing of the information obtained from multiple sensors. It can ensure the integrity of
the information from a different perspective and overcome the shortcomings of traditional
single information to form a more objective and closer understanding of the system [15],
which can greatly improve the accuracy of diagnosis.

Information fusion can be divided into three levels: data level, feature level, and
decision level [16,17].

• Data level fusion. The direct fusion of signals collected by the same type of sensors
retains the most information among the three levels.

• Feature level fusion. In this process, the signals from multiple sensors need to be
preprocessed. Features are extracted to form the fusion vector and its attributes are
used to judge the state of targets to be diagnosed.

• Decision level fusion. After initial state judgment of the target to be diagnosed, the
final state is obtained based on the fusion of some decision rules. Decision level fusion
is the highest among the three levels. Its real-time performance and fault tolerance
are very good, but the information loss is very large, so more complex algorithms are
needed.

At present, there are many research methods and achievements in decision level
fusion, including Bayesian theory [18], Dempster–Shafer (D–S) evidence theory [19], fuzzy
set theory [20,21], rough set theory [22], and so on. The classification principle of Bayesian
theory is to calculate the posterior probability of an object (the probability that the object
belongs to a certain class) using the prior probability and Bayes formula, and select the class
with the largest posterior probability as the one to which the object belongs. In D–S evidence
theory, trust function and likelihood function are obtained by calculating the orthogonal
sum of basic probability distribution functions of different evidences. After fusing multiple
evidences, the final decision is made according to decision rules. Among them, basic
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probability distribution function is the probability distribution of all possible faults in
each state, trust function is the lower bound of fault event probability, and likelihood
function is the upper bound. Fuzzy set theory (FS) was founded by Zadeh. Membership
T(x) was used to describe fuzzy information. At this time, non-membership F(x) did not
appear. Then, intuitionistic fuzzy sets (IFSs) and interval intuitionistic fuzzy sets (IVIFSs)
appeared successively. The fuzzy information processing technology developed from fuzzy
set theory can provide a simple and effective means to explore uncertainty and simulate
human recognition mechanism. Rough set theory, initially developed by Pawlak (1982), is
a mathematical tool that deals with vague, uncertain, and incomplete information. Rough
set theory has been successfully applied in many fields such as machine learning, pattern
recognition, control systems, data mining, and image classification.

The advantages and limitations of the above four methods are listed in Table 1.

Table 1. Comparison of information fusion algorithms. D–S, Dempster–Shafer.

Approach Advantages Disadvantages

Bayes’ theorem Takes probability as the input data,
has sufficient theoretical knowledge

Difficult to define prior probability
function, lacks the ability to allocate

the total uncertainty
D–S evidence

theory
The premise is easier to meet, no
need to know prior probability

Cannot solve the serious conflict or
complete conflict of evidences

Fuzzy set theory
Based on local theory of

classification, has strong adaptive
ability

Determines the uncertainty
according to the subjective

judgement

Rough set theory
Deals with redundant information

and inconsistent information
effectively

Discretization of symptom
attributes is needed

In this paper, based on the good theoretical basis and application effect of D–S evidence
theory [23–27], it is used to complete decision fusion, which provides a sufficient fault
diagnosis solution for wind turbine misalignment fault.

The aim of this paper is to use multiple sources of information to distinguish the
misalignment-free (normal condition) and three different types of transmission misalign-
ment. The main contributions are summarized as follows.

Multiple sources of information and integrated approach are used for wind turbine
transmission misalignment detection. More specifically, the vibration, temperature, and
stator current signal are taken as the original source, and their time domain features,
frequency domain features, and time-frequency domain features are extracted as fault
characteristics. t-distributed stochastic neighbor embedding (t-SNE) is used to reduce the
vibration and current characteristics dimensionality, and then three posterior probability
least squares support vector machine with parameters optimized by improved artificial bee
colony algorithm are constructed. The probability outputs of the three LSSVM are taken
as the basic probabilities of evidence fusion. The probability distribution after fusion is
calculated according to the Dempster fusion rule. Compared with the non-fusion models,
it is demonstrated that the model based on D–S evidence fusion has higher diagnostic
accuracy for wind turbine misalignment faults.

The remainder of the paper is organized in the following way. In Section 2, the formu-
las of D–S evidence theory, posterior probability least squares support vector machines,
and the improved artificial bee colony are presented in detail. Section 3 describes the
specific steps for D–S fault diagnosis. Section 4 presents the fault diagnosis case study
based on the simulation model. Section 5 presents the fault diagnosis case study based on
the experimental platform. Section 6 concludes the current work.
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2. Theoretical Background

2.1. D–S Evidence Theory

The D–S evidence theory is a method of uncertainty reasoning, proposed by Dempster
in 1967 and later improved and developed by Shafer [28]. The D–S evidence method can
produce a probability interval to an uncertain event by fusing multiple evidences with
known probability distribution. As an indeterminate reasoning method, D–S evidence
theory uses weaker conditions than Bayesian, and has the ability to quantify unknown and
uncertainty [29]. The evidence theory contains three important functions: basic probability
assignment function, belief function, and plausibility function. The basic probability
assignment function is the probability distribution of all possible faults in each state, the
belief function is the lower bound of the probability of the fault event, and the plausibility
function is the upper bound of the probability of the fault event. The belief function and
the plausibility function can be obtained by calculating the sum of the basic probability
assignment function, and the final decision is made after combining multiple evidences
from different sources.

The D–S evidence theory consists of the following parts [30].

• Frame of discernment:

A variety of possible mutually exclusive hypothesis Xi(i = 1, 2, · · · , s) of a question
constitute a finite and non-empty set, which is called the frame of discernment, denoted as
Ω = {X1, X2, · · · , Xs}.

• Basic probability assignment (BPA) function:

BPA function is also known as the mass function. Suppose H is a subset of Ω, if
function m(H) satisfying

(a) m(φ) = 0
(b) ∑ m(H) = 1
(c) m(H) > 0

then, function m(H) is called the basic probability assignment of H on Ω.

• Belief function:

In the frame of discernment, the belief function represents the sum of the basic
probability assignment functions of all subsets of H. The expression of the belief function
is as follows:

bel(H) = ∑
Y/Y⊆H

m(Y) (1)

• Plausibility function:

In the frame of discernment, the plausibility function represents the degrees of belief
for not denying H, which is the sum of the basic probability assignments of all the subsets
intersecting H. The expression of the plausibility function is as follows:

pl(H) = ∑
S/S∩H �=∅

m(S) (2)

• Dempster’s rule of combination:

Dempster’s rule of combination is used to combine the BPA functions of multiple
evidences. Although this rule is controversial at present, the authors of [31] have showed
that it behaves perfectly when evidences do not conflict reciprocally. Only if we integrate
conflicting evidences do we need to improve it. In this paper, there is no serious and
complete conflict among the outputs from vibration signal, temperature signal, and stator
current signal as evidences in this study. Therefore, Dempster’s rule is still used here.
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Suppose there are n independent evidences (sensors or expert opinions), H1, H2, · · · , Hn
(are subsets of Ω), the BPA of them are m1, m2, · · · , mn. Then, Dempster’s rule for the BPA
functions on Ω is as follows:

m = m1 ⊕ m2 ⊕ · · · ⊕ mn (3)

Specifically, it can be expressed as follows:

m(H) =
∑H1∩···∩Hn m1(H1)m2(H2) · · ·mn(Hn)

1 − K
, H �= ∅ (4)

where the expression of K is as follows:

K = ∑
H1∩···∩Hn=∅

m1(H1)m2(H2) · · ·mn(Hn) (5)

where K is the degree of conflict between evidences. When K = 1, the evidences are
completely conflicted and cannot be synthesized by this formula; when K tends to 1, the
evidences are highly conflicted, and synthesizing by this formula may lead to results
contrary to fact [32].

• Decision rules:

The decision rule is to draw a diagnosis based on the uncertain interval [bel(H), pl(H)]
of the evidence. In the interval of [0, 1], the uncertainty of a proposition is shown in Figure 1.

Figure 1. Uncertainty representation of a proposition.

In Figure 1, [0, bel(H)] belongs to the support interval, [0, pl(H)] is the accept interval,
[pl(H), 1] is the rejection interval, and [bel(H), pl(H)] is the uncertain interval.

When making a decision, choose a value in the uncertain interval as the final trustwor-
thiness of the proposition. If this value has the highest trustworthiness among the possible
hypothesis, this assumption is the final decision result.

2.2. Posterior Probability Least Squares Support Vector Machine

In the study, the fault samples collected are limited, while support vector machine
(SVM) and LSSVM can obtain high diagnosis accuracy based on small sample data. More-
over, the speed of LSSVM is faster than that of SVM, so LSSVM is selected to be the initial
classifier to judge the state. As the input parameters of the D–S evidence fusion are basic
probability assignments in all classification spaces, the hard output (whether or not) of the
traditional classifier has to be converted to a soft one (probability) [33]; that is, the output
of the classifier must be changed to the posterior probability output. For the two-class
problem, the posterior probability can be calculated using the sigmoid function to map the
output f (x) (+1,−1) of the LSSVM to the [0, 1] interval. Assuming that the probability is
consistent with the sigmoid distribution, the posterior probability can be calculated [34]:

p(y = 1/ f ) =
1

1 + exp(A f + B)
(6)
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p(y = −1/ f ) = 1 − p(y = 1/ f ) (7)

where f is the classification result of the standard LSSVM, p(y = 1/ f ) is the proba-
bility when the classification is correct under the condition that the output value is
f , p(y = −1/ f ) is the probability when the classification is wrong under the condition that
the output value is f , and A and B are parameters. So, the key to calculating the posterior
probability is to obtain parameters A and B. The posterior probability least squares support
vector machine model is usually established by first establishing a standard LSSVM model,
and then obtaining A and B on the training set ( fi, ti), where ti is the target probability
output of the standard LSSVM:

ti =

{
N++1
N++2 , fi = +1

1
N−+2 , fi = −1

(8)

where N+ is the number of positive samples; N− is the number of negative samples; and the
problem of obtaining parameters A and B is to solve the minimum likelihood optimization
problem of the following, i.e.,

min

{
−

n

∑
i=1

[ti log(pi) + (1 − ti)log(1 − pi)]

}
(9)

where
pi =

1
1 + exp(A fi + B)

(10)

The Hessian matrix for solving (9) is as follows:

H(z) =

⎡⎣ ∑
i

fi
2 pi(1 − pi) ∑

i
fi pi(1 − pi)

∑
i

fi pi(1 − pi) ∑
i

pi(1 − pi)

⎤⎦ (11)

In order to get the minimum value of (9), the Hessian matrix must be positively
determined. So, A and B are finally obtained by solving all the eigenvalues of the matrix
that are greater than zero. The posterior probability can be obtained.

It is proved that the posterior probability least squares support vector machine with
sigmoid function works well in practical applications [35], but this method can only be
used for the two-class problem. The main methods for extending LSSVM from two-class to
multi-class are the “one-versus-one” and “one-versus-all” methods. The Platt algorithm
calculates the probability formula for each classifier as follows, where pm is the probability
that sample x belongs to the i-th class [35]:

pm = (y = m/x) =
1

1 + exp(Am f (x) + Bm)
(12)

2.3. The Improved Artificial Bee Colony

There are three kinds of kernel functions commonly used in LSSVM: linear ker-
nel function, polynomial kernel function, and radial basis function (RBF) (K(xi, xi) =
exp

(− ‖ xi − xi ‖2 /σ2), where σ is the kernel width). Many studies and experiments [36]
show that, compared with other kernel functions, RBF can map the original space into
an infinite dimensional space and find the hyperplane better. It is a better choice as the
kernel function. Therefore, it is necessary to select the regularization parameter γ (neces-
sary for LSSVM, determining the trade-off between the training error minimization and
smoothness) and the kernel squared bandwidth σ2.

Choosing a better parameter value can greatly improve the performance of the LSSVM
classifier and the accuracy of diagnosis. At present, the commonly used methods include
trial and error, cross validation, grid search, and intelligent optimization algorithm [37].
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Among them, the trial and error method not only consumes time and energy, but also the
choice of parameters is greatly affected by subjective factors; the cross validation method
divides the data set into training, validation, and testing, and different proportions will lead
to different optimal models and optimal parameters; and the grid search method optimizes
the model according to the set step size in the upper and lower limits of parameters,
and then determines the optimal parameters, so the search speed is too slow and the
precision is not high. Therefore, the advantages of the intelligent optimization algorithm
are highlighted. It realizes the optimal distribution of food by simulating the behavior of
animals in the population (interact information and cooperation among individuals). A
swarm intelligence optimization algorithm is easy to implement and has high efficiency, so
it is applied to the parameter optimization process of LSSVM.

Swarm intelligence optimization algorithms include genetic algorithm, particle swarm
optimization, artificial fish swarm algorithm, artificial bee colony algorithm, and so on.
Among them, artificial bee colony algorithm (ABC) is an optimization algorithm proposed
in recent years, which not only has good optimization ability, but also controls less pa-
rameters in the process. Furthermore, it is simple, flexible, and easier to implement. The
research [38] shows that the optimization performance of ABC is better than that of ge-
netic algorithm and particle swarm algorithm, and the classification diagnosis accuracy of
LSSVM optimized by ABC is higher than that of LSSVM optimized by genetic algorithm
and particle swarm algorithm.

However, ABC has some shortcomings, such as slow convergence speed in the later
stage of operation and the fact that it is easy to fall into local optimum. Therefore, in
this paper, on the one hand, chaotic initialization is introduced in the artificial bee colony
algorithm, which is used to initialize the population position to improve the diversity of
the population and the ergodicity of the population search process. On the other hand, in
the collecting bees stage of the artificial bee colony algorithm, the bees are divided into
two parts: one part collects the optimal information of the region according to the original
algorithm, and the other does Lévy flight around the global optimal solution to improve
their global search capabilities. At the same time, in the observing bees stage, a search
strategy based on the current local optimal solution (called pbest) is adopted to improve
the local search ability of the algorithm.

(1) The logistic chaotic map is proposed to initialize the population. The equation for
the logistic chaotic map is as follows:

yt+1 = μyt(1 − yt) t = 0, 1, · · · , l (13)

In the formula, yt ∈ (0, 1), t is the number of iterations of the chaotic sequence, μ is
the control parameter of the chaotic sequence, and the value range is [3.75, 4] [39].

(2) Lévy flight was introduced in the evolution strategy to improve the performance
of the algorithm and achieve good results [39]. The calculation method is based on

L(α) =

⎡⎣Γ(1 + α)sin
(

πα
2
)

Γ
(

1+α
2

)
α2(

α−1
2 )

⎤⎦1/α

(14)

where α is the characteristic index, which usually satisfies 0 < α < 2. Γ(·) is the Gamma
function defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Its update equation is as follows:

vij = xij + α
(

xij − xbest
)

L(α) (15)

where α is the step length, which usually meets the standard normal distribution, and L(·)
is the random search path for Lévy flight.
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(3) In the observing bees stage, for any current solution in each generation, the top p%
solutions are randomly selected among all current solutions, and the best one (called pbest)
can be used to balance global search capabilities and local development capabilities. The
neighborhood search formula is as follows:

vij = xij + ϕij

(
xij − xkj

)
+∅ij(xbest

randp,j − xij) (16)

where k ∈ {1, 2, · · · , SN}, SN is the number of solutions for the bee colony, j ∈ {1, 2, · · · D},
D is the dimension of the optimization problem, k �= i, ϕij ∈ [−1, 1], and ∅ij ∈ [0, 1.5].

3. Specific Steps for Misalignment Diagnosis

D–S evidence theory is used to carry out the fault diagnosis of wind turbines. The
specific steps are as follows.

(1) Identify the frame of discernment of the fault diagnosis system
The frame of discernment is the common faults of the wind turbines misalignment in

the study. At the same time, the normal working state of the unit is added. So, the frame of
discernment is expressed as follows: {normal, parallel misalignment, angular misalignment
and integrated misalignment}.

(2) Determination of evidence
The posterior probability least squares support vector machines are trained by the

vibration signal, the temperature signal, and the stator current signal feature vectors
separately. The hard outputs of the traditional LSSVM are mapped to the [0, 1] interval
using the sigmoid function. The soft outputs of the transformation are used as evidences
for D–S evidence theory.

(3) Determination of basic probability assignment function, belief function, and plau-
sibility function

The three least squares support vector machines give the probability vectors of all
the classifications on the entire identification framework respectively, and the probabil-
ity vectors to be directly used as the basic probability assignments, belief function, and
plausibility function can be obtained by calculation.

(4) Evidence synthesis and diagnosis
According to Dempster’s law, the probability vectors directly participate in the evi-

dence fusion process. After the final probability vector is given, the final diagnosis result
based on the probability vector after fusion can be obtained.

Figure 2 summarizes process of D–S evidence-based misalignment diagnosis.
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Figure 2. Process of Dempster–Shafer (D–S) evidence fusion. LSSVM, least square support vector
machine; BPA, basic probability assignment.

4. The Simulation Case Studies of Misalignment Fault Diagnosis

The simulation wind turbine system is established by ADAMS 2013, MATLAB R2014a,
and Ansys 17.0. The three-dimensional (3D) model of the 1.5 MW wind turbine is estab-
lished using SolidWorks, and then it is imported into ADAMS 2013, where the Marker
point is moved according to the type and degree of misalignment; that is, parallel misalign-
ment is simulated by making the center of mass deviate from the center of rotation for a
certain distance; angle misalignment is simulated by rotating the marker a certain angle
around the y-axis, and placing the rotation axis of the coupling relative to the ground on
the z-axis of the Marker point; and integrated misalignment is simulated by adding the
parallel misalignment and angle misalignment in the local coordinate system (maker) of
the left half coupling at the same time. The correctness of the models has been verified in
the literature [40]. The vibration signals were extracted under the input speeds of 81.3◦/s,
using step function as the input of ADAMS, the simulation time is 1.5 s, and simulation
steps are 6000 steps. The wind turbine models and its control system are established by
SIMULINK/MATLAB, where the stator current was sampled at the same speed at which
the vibration signal was sampled, and the sample frequency is 200 kHz. The correctness of
the models has been verified in the literature [41]. After that, the high-speed gear shaft and
the main shaft of the generator are introduced into HyperMesh to divide the grid. Then,
the model is imported into Ansys Workbench to get the corresponding temperature signals
(details in the literature [42]). In this paper, 100 samples are taken for each of the four types
of diagnostic states (normal, parallel misalignment, angular misalignment, and integrated
misalignment), of which 60 are for training and 40 are for testing. So, there are 240 (60 × 4)
samples in the training set and there are 160 (40 × 4) samples in the testing set.
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4.1. Data Processing

After the vibration signal, temperature signal, and stator current signal under four
working conditions are collected, in order to make better use of them and get good diagnosis
results, the feature indexes in the time, frequency, and time–frequency domain are extracted.
Table 2 shows a 21-dimension mixed feature library of the vibration signal.

Table 2. Mixed feature library of vibration signals. IEMD, image extended empirical mode decompo-
sition.

Feature Library Feature Index

Mixed-domain
feature
library

Time domain

Root mean square, square root amplitude, variance,
standard deviation, kurtosis, waveform index, peak

index, pulse index, margin index, kurtosis
index

Frequency domain Center of gravity frequency, mean square frequency,
frequency variance

Time–frequency
domain

The first eight energy entropy of the IMF (intrinsic
mode function)

component of IEMD decomposition

Suppose signal x (x0, x1, x2, · · · , xN−1) is a discrete time series with a finite length,
the calculation formulas of time domain characteristic indexes are shown in Table 3, where
x is the mean value of the signal, x′ is the average amplitude, and xp is the peak value of
the signal.

Table 3. Time domain characteristic index.

Time Domain Index Calculation Formula

Dimensional indicators

Root mean square

Square root amplitude

Variance

Standard deviation

Kurtosis

xrms = ( 1
N

N−1
∑

i=0
xi

2)
1/2

xr = ( 1
N

N−1
∑

i=0
|xi|

1
2 )

2

δ = 1
N

N−1
∑

i=0
(xi − x)2

xstd = ( 1
N

N
∑

i=1
(xi − x)2)

1/2

β = 1
N

N
∑

i=1
xi

4

Dimensionless index

Waveform index

Peak index

Pulse index

Margin index

Kurtosis index

K = xrms/x′ (x′ = 1
N

N−1
∑

i=0
|xi|)

C = xp/xrms

I = xp/x′

L = xp/xr

Kr =
1
N ∑N

i=1 xi
4

xrms4

In signal analysis, power spectrum analysis is usually used to extract the frequency
domain index. Center of gravity frequency, mean square frequency, root mean square
frequency, and frequency variance are commonly used. The sampling frequency is set as
fs, and the calculation formula of each index is shown in Table 4, where S(ω) is the power

spectrum of discrete time series, S(ω) = X(ω)·X(ω), X(ω) =
N−1
∑

i=0
x(i)e−jπω, ω is the

angular frequency.
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Table 4. Frequency domain characteristic index.

Frequency Domain Index Calculation Formula

Center of gravity frequency

Mean square frequency

Root mean square frequency

Frequency variance

FC = 1
2π fs

·
∫ π

0 ωS(ω)dω∫ π

0 S(ω)dω

MSF = 1
4π2 fs2 ·

∫ π

0 ω2S(ω)dω∫ π

0 S(ω)dω

RMSF = ( 1
4π2 fs2 ·

∫ π

0 ω2S(ω)dω∫ π

0 S(ω)dω
)

1
2

VF = 1
4π2 fs2 ·

∫ π

0 (ω−2π fs FC)S(ω)dω∫ π

0 S(ω)dω

Time–frequency analysis is a fault diagnosis method that combines the law and reason
of frequency changing with time. In this paper, image extended empirical mode decom-
position (IEMD) is used to process the vibration signal, and dual tree complex wavelet
transform (DTCWT) is used to process the stator current signal (see the literature [43]
for details).

The gearbox tooth temperature T1 and the generator rotor shaft temperature T2 are
selected as the characteristic values of the temperature signal. Construct a two-dimensional
vector of the temperature signal: X = [T1, T2].

Table 5 is a mixed feature library with a total of 29 dimensions in the time domain,
frequency domain, and time–frequency domain of the stator current signal (see the litera-
ture [41] for details).

Table 5. Mixed feature library of stator current signals.

Feature Library Feature Index

Mixed-domain
feature
library

Time domain

Root mean square, square root amplitude,
variance, standard deviation, kurtosis,

waveform index, peak index, pulse index,
margin index, kurtosis

index

Frequency domain
Center of gravity frequency, mean square

frequency, root mean square frequency,
frequency variance

Time–frequency domain
Sample entropy 1–5, energy entropy H1,

H2, H3, H4, H5, spectral kurtosis a1, a2, a3,
a4, a5

In order to eliminate the influence of different input dataset dimensions and large
numerical differences, the original dataset is normalized, i.e.,

y =
ymax − ymin
xmax − xmin

∗ (x − xmin) + ymin (17)

where x is the value to be normalized, ymin is the lower bound of the normalized interval,
and ymax is the upper bound of the normalized interval. In this paper, ymin = 0, ymax = 1,
and the vector is normalized by column.

Because of the high dimensionality of the constructed vectors of the vibration signal
and the stator current signal, not only does the amount of calculation increase, but also
some difficulties are brought to fault diagnosis [44]. In order to make better use of vari-
ous information and obtain good diagnostic results, the feature vectors are subjected to
dimensionality reduction using t-SNE.

t-SNE based on conditional probability retains the similarity between high-dimensional
and low dimensional space data and adopts symmetric objective function, and t distribu-
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tion in low-dimensional space replaces Gaussian distribution, which solves the problem of
crowding and clear visualization in low-dimensional space [45]. Its implementation steps
are as follows:

(1) Define a high-dimensional data set: x = {x1, x2, · · · , xn}.
(2) Compute the complexity parameter of the value equation c:

c = ∑
i

∑
j

pijlog
pij

qij
(18)

perp(pi) = 2H(pi) (19)

H(pi) = −∑
j

pj/i log
pj/i
2 (20)

where pi is the conditional probability of data points (other than xi) with respect to xi, pj/i
is the conditional probability of high-dimensional data, pij is the joint probability density in
the high-dimensional space, and qij is the joint probability density in the low-dimensional
mapping space.

(3) Define the optimization parameters: the number of iterations T, the learning rate
η, and the momentum factor at the tth (t ≤ T) iteration α(t) (0 < α(t) < 1). The value
equation c is learned by the gradient descent method, and the low-dimensional mapping
of the high-dimensional data is finally obtained:

δc
δyi

= 4 ∑
j

(
pij − qij

)(
yi − yj

)
(1+ ‖ yi − yj ‖2)

−1
(21)

where yi and yj are the mapping of the high-dimensional data xi and xj in the low-
dimensional space.

In order to speed up the optimization process and prevent trapping into local minima,
a relatively large momentum condition is imposed on the descent process. The current
gradient value is summed to the previous gradient value for each iteration and then decays
exponentially to determine the coordinates of the low-dimensional data. The momentum
formula is as follows:

y(t) = y(t−1) + η
δc
δy

+ α(t)
(

y(t−1) − y(t−2)
)

(22)

where y is the data in the low-dimensional space.

4.2. The Fault Diagnosis Results

In this paper, “one-versus-all” is used to extend LSSVM from two classifications to
multiple classifications. That is, each time, one fault is selected as one type, and the rest of
the states are selected as another type. In order to produce the posterior probabilities of the
four classifications in the vibration feature space, four two-class LSSVM are constructed,
and each LSSVM calculates a set of A and B, and then the corresponding posterior proba-
bility is calculated according to (5) and (6). In the same way, the probability vectors of the
temperature and stator current signal classifiers for the four states can be obtained as the
BPA of D–S evidence fusion.

The five-dimensional feature vectors of the vibration signal after t-SNE dimensionality
reduction are used as the inputs, and the four working conditions of the transmission
system are used as outputs to train the LSSVM, which is optimized by the improved
artificial bee colony algorithm. The parameters of the four two-classification LSSVM in the
vibration feature space are shown in Table 6. Four samples are selected, such as samples 5,
44, 82, and 130, and the corresponding BPA1 calculated is shown in Table 7.
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Table 6. Parameters in four vibration least square support vector machine (LSSVM).

LSSVM Γ σ2 A B

(normal, the rest) 84.2784 31.1601 −10.8211 −4.2378
(parallel misalignment, the rest) 85.8947 30 −7.4866 −1.9740
(angular misalignment, the rest) 36.0326 39.9616 −6.1128 −1.5637

(integrated misalignment, the rest) 99.4093 96.6015 −6.9786 −2.4798

Table 7. Basic probability assignment 1 (BPA1) of vibration LSSVM.

Sample
Number

Normal
Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.8433 0.0314 0.0538 0.0715
44 0.0080 0.9246 0.0295 0.0379
82 0.0025 0.0070 0.8873 0.1032

130 0.0208 0.0147 0.0495 0.9150

The two-dimensional feature vectors of the temperature signal are used as the inputs,
and the four operating states of the transmission system are used as the outputs to train the
optimized LSSVM. The parameters of the four binary LSSVM in the temperature feature
space are shown in Table 8. The BPA2 calculated from the same four samples is shown
in Table 9.

Table 8. Parameters in four temperature LSSVM.

LSSVM Γ σ2 A B

(normal, the rest) 97.4952 89.7017 −3.0178 −0.4262
(parallel misalignment, the rest) 98.3829 30 −2.8893 0.1963
(angular misalignment, the rest) 46.3907 88.9951 −3.9974 −0.3622

(integrated misalignment, the rest) 93.6931 96.3611 −2.4749 0.3805

Table 9. BPA2 of temperature LSSVM.

Sample
Number

Normal
Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.7418 0.0387 0.0228 0.1967
44 0.1314 0.7670 0.0243 0.0773
82 0.3644 0.0357 0.5549 0.0450

130 0.4365 0.0394 0.0220 0.5021

The four-dimensional vectors after the dimensionality reduction of the stator current
signal are used as inputs, and the four operating states of the transmission system are as
outputs to train the optimized LSSVM. The parameters of the four two-class LSSVM in the
stator current feature space are shown in Table 10, and the BPA3 calculated by the same
four samples is shown in Table 11.

Table 10. Parameters in four current LSSVM.

LSSVM Γ σ2 A B

(normal, the rest) 35.2345 53.0811 −4.858 −0.6011
(parallel misalignment, the rest) 87.5286 30 −3.2022 −0.1165
(angular misalignment, the rest) 100 30 −3.2755 −0.2514

(integrated misalignment, the rest) 77.1503 33.2639 −3.2803 −0.2146
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Table 11. BPA3 of current LSSVM.

Sample
Number

Normal
Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.8635 0.0440 0.0468 0.0457
44 0.0164 0.6193 0.3159 0.0484
82 0.0170 0.1236 0.8093 0.0501

130 0.0127 0.1093 0.0521 0.8259

Then, the probability assignments are calculated after the fusion of the three BPAs.
The category with the highest degree of belief is selected as belonging to the class of the
fusion model. Table 12 shows the basic and the fusion probability of the three LSSVM
outputs for the selected test samples. Table 13 shows the fusion and classification results
of the four test samples. Figure 3 shows the test samples’ diagnosis results, in which “0”
indicates normal operation, “1” indicates parallel misalignment, “2” indicates angular
misalignment, and “3” indicates integrated misalignment.

Table 12. Probability assignment of three LSSVMs and fusion.

BPA 1 BPA 2 BPA3 D–S Evidence Fusion

[0.8433, 0.0314, 0.0538, 0.0715] [0.7418, 0.0387, 0.0228, 0.1967] [0.8635, 0.0440, 0.0468, 0.0457] [0.9986, 0.0001, 0.0001, 0.0012]
[0.0080, 0.9246, 0.0295, 0.0379] [0.1314, 0.7670, 0.0243, 0.0773] [0.0164, 0.6193, 0.3159, 0.0484] [0.0001, 0.9991, 0.0005, 0.0003]
[0.0025, 0.0070, 0.8873, 0.1032] [0.3644, 0.0357, 0.5549, 0.0450] [0.0170, 0.1236, 0.8093, 0.0501] [0.0001, 0.0001, 0.9993, 0.0005]
[0.0208, 0.0147, 0.0495, 0.9150] [0.4365, 0.0394, 0.0220, 0.5021] [0.0127, 0.1093, 0.0521, 0.8259] [0.0003, 0.0002, 0.0001, 0.9994]

Table 13. Fusion and classification results of four test samples.

D–S Evidence Fusion Category Is the Classification Correct?

[0.9986, 0.0001, 0.0001, 0.0012] Normal Yes
[0.0001, 0.9991, 0.0005, 0.0003] Parallel misalignment Yes
[0.0001, 0.0001, 0.9993, 0.0005] Angular misalignment Yes
[0.0003, 0.0002, 0.0001, 0.9994] Integrated misalignment Yes

Figure 3. The diagnosis results of the testing set.

In order to better evaluate the performance of the fault diagnosis method, three
indexes are adopted: the training set classification accuracy, the testing set classification
accuracy, and the fault false alarm rate. The fault false alarm rate means that the fault
does not actually occur, but the fault detection alarm is given by the detection system. The
false alarm rate equals the number of false alarm samples divided by the total number
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of actual fault-free samples. Table 14 compares the results of the sample sets diagnosed
by the indexes of a single signal (vibration, temperature, or current signal) with the D–S
evidence fusion.

Table 14. Comparison of diagnostic results.

Signal Selection
Training Set Classification

Accuracy
Testing Set Classification

Accuracy
False Alarm Rate

Vibration signal 100% (240/240) 85.625% (137/160) 5% (2/40)
Temperature signal 90.8333% (218/240) 81.25% (130/160) 35% (14/40)

Current signal 99.5833% (239/240) 84.375% (135/160) 10% (4/40)
D–S evidence fusion 100% (240/240) 98.125% (157/160) 0% (0/40)

From Table 14, it can be seen that the accuracy of D–S fusion is higher than that
of any single signal, and the failure false alarm rate is equal to zero, lower than oth-
ers, which proves the advantage of information fusion in the diagnosis of wind turbine
misalignment fault.

5. Experimental Verification of Platform

In this paper, the 1.5 kW misalignment experimental platform is used for experimental
verification. The platform is shown in Figure 4a. It includes a generator, coupling, gearbox,
driving motor, and so on. The speed of the driving motor is changed by a planetary gear
reducer with a transmission ratio of 1:50 to simulate the wind blowing blade speed, then it
is accelerated by a planetary gear with a transmission ratio of 40:1 and a spur gear with
a transmission ratio of 1.5:1 to drive the generator. The generator can be adjusted by the
support to create parallel or angular misalignment.

(a) (b)

(c)

Figure 4. Experiment equipment. (a) The platform of wind turbine; (b) layout of vibration sensor; (c) current signal
acquisition card USB 4AD Plus.
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The vibration signal of the gearbox is obtained using the DFT5100 dynamic data
collector from the acceleration sensor (ICP type) on the experimental platform (Figure 4b).
The current signal is transmitted to the USB signal acquisition and recording platform
through the signal acquisition card USB 4AD Plus (Figure 4c). In this paper, the rotation
speed of the motor is set to 600 rpm; the sampling time is 10 s; and the sampling frequency of
vibration and current is 1 kHz and 2 kHz, respectively. In the experiments, the temperature
signal is easily affected by the operation time of the unit and the ambient temperature,
and it cannot reflect the actual operating temperature of the wind turbine. Therefore,
when fusing different signals by D–S evidence theory, we set the temperature signal to
0, regardless of its influence. Four groups for each working condition, with a total of 16
groups, are sampled on the platform. Some characteristic indexes of vibration and current
signal are shown in Tables 15 and 16. The actual classification and diagnosis results of
fusion signals and individual signals are shown in Figure 5. Table 17 is the calculation of
two examples.

Table 15. Part of the characteristic index of the vibration signal.

Fault Type
Root Mean

Square Value
Center of Gravity

Frequency
IMF1 Energy

Entropy
IMF2 Energy

Entropy

Normal

0.0286 −118.3859 0.3671 0.0991
0.0270 −184.0340 0.3461 0.1265
0.0288 −308.9050 0.3678 0.1624
0.0626 −993.2476 0.3524 0.3675

Parallel
misalignment

0.0248 −272.4819 0.3678 0.1229
0.0258 −196.5053 0.3677 0.1201
0.0253 −286.5526 0.3668 0.1769
0.0607 −1082.4788 0.3678 0.3455

Angular
misalignment

0.0266 −166.9377 0.3488 0.1005
0.0296 −145.9158 0.3658 0.1083
0.0280 −232.8465 0.3620 0.1347
0.0569 −1052.415 0.3583 0.3677

Integrated
misalignment

0.0284 −261.2838 0.3544 0.1615
0.0342 −334.0774 0.3621 0.2021
0.0311 −388.9565 0.3675 0.2138
0.0670 −1138.6520 0.3603 0.3670

Table 16. Partial characteristic index of current signal.

Fault Type
Root Mean

Square Value
Center of Gravity

Frequency
Energy

Entropy1
Sample

Entropy1

Normal
2.4944 −0.0571 0.0001 0.6859
2.4952 −0.0741 0.0003 0.8285
3.5641 −0.1023 0.0008 0.9624

Parallel
misalignment

2.4948 −0.1238 0.0001 0.6099
2.5293 −0.2608 0.0004 0.7046
2.7607 −0.4788 0.0015 0.9455

Angular
misalignment

2.4990 −0.1062 0.0002 1.0642
2.6908 −0.2794 0.0008 1.1659
3.0569 −0.4415 0.0016 1.3677

Integrated
misalignment

2.5051 −0.0524 0.0003 1.2666
2.8986 −0.3861 0.0009 1.6857
3.2670 −0.6520 0.0023 1.7670
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(a)

(b)

(c)

Figure 5. Diagnostic result. (a) Vibration signal + current signal; (b) vibration signal; (c) current
signal.

Table 17. Basic probability assignment of two kinds signals and probability after fusion.

Probability
Value

Normal
Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

Vibration signal 0.5161
0.1770

0.1663
0.1927

0.1510
0.4194

0.1666
0.2109

Current signal 0.8209
0.7705

0.0737
0.0566

0.0181
0.1063

0.0873
0.0666

Fusion signal 0.9348 0.0281 0.0050 0.0321
0.6623 0.0530 0.2164 0.0683

It can be seen from Figure 5 that the classification accuracy of the testing set is 75%,
while that of the single vibration signal is 62.5% and that of the single current signal is
62.5%, which indicates that the accuracy of the diagnosis is improved by using the D–S
decision fusion method with multi-source signals as the diagnosis information. In addition,
the reason the classification accuracy of the experimental results is much lower than that
of the simulation results is that there is no temperature signal in the D–S evidence theory
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fusion. It can be seen from Table 17 that the first sample is correctly identified using either
the single signal or fusion signal, while the second sample is mistakenly diagnosed as angle
misalignment using only the vibration signal, but is correctly identified by D–S fusion.

6. Conclusions

This paper proposes an integrated fault diagnosis method for wind turbine trans-
mission system misalignment based on information decision fusion. The method uses
multiple sources of signal including vibration signal, temperature signal, and stator cur-
rent signal as the original source, and extracts different features from their time domain,
frequency domain, and time–frequency domain. t-SNE is used to eliminate the correlation
of characteristic values of the vibration signal and the stator current signal. Three posterior
probability least squares support vector machines optimized using improved artificial bee
colony algorithm are constructed respectively. The output probabilities of least squares sup-
port vector machines are used as the basic probability distribution of evidence fusion, and
the fault diagnosis is completed by D–S synthesis and decision rules. Finally, the simulation
experiments and platform verification show that the D–S evidence fusion model has higher
diagnostic accuracy than the non-fusion model for the wind turbine misalignment fault.
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Abstract: With the quick development of sensor technology in recent years, online detection of early
fault without system halt has received much attention in the field of bearing prognostics and health
management. While lacking representative samples of the online data, one can try to adapt the
previously-learned detection rule to the online detection task instead of training a new rule merely
using online data. As one may come across a change of the data distribution between offline and
online working conditions, it is challenging to utilize the data from different working conditions to
improve detection accuracy and robustness. To solve this problem, a new online detection method of
bearing early fault is proposed in this paper based on deep transfer learning. The proposed method
contains an offline stage and an online stage. In the offline stage, a new state assessment method
is proposed to determine the period of the normal state and the degradation state for whole-life
degradation sequences. Moreover, a new deep dual temporal domain adaptation (DTDA) model is
proposed. By adopting a dual adaptation strategy on the time convolutional network and domain
adversarial neural network, the DTDA model can effectively extract domain-invariant temporal
feature representation. In the online stage, each sequentially-arrived data batch is directly fed into
the trained DTDA model to recognize whether an early fault occurs. Furthermore, a health indicator
of target bearing is also built based on the DTDA features to intuitively evaluate the detection results.
Experiments are conducted on the IEEE Prognostics and Health Management (PHM) Challenge
2012 bearing dataset. The results show that, compared with nine state-of-the-art fault detection
and diagnosis methods, the proposed method can get an earlier detection location and lower false
alarm rate.

Keywords: fault detection; deep learning; transfer learning; anomaly detection; bearing

1. Introduction

Early fault detection always plays a key role in the field of bearing prognostics and
health management (PHM). In most recent years, the quick development of sensor tech-
niques and artificial intelligence gave rise to a new problem: early fault online detection [1].
Compared with the traditional fault detection and diagnosis problems [2–4], early fault
online detection is essentially a problem of anomaly detection with streaming data, that
is the monitoring data of the target bearing arrive sequentially, and fault detection is
conducted within a sampling interval. This new detection mode can evaluate the change
of the working status of bearings in a very short time, avoiding economic losses caused
by system halt. Obviously, early fault online detection should not only be sensitive to an
early fault, but also be robust enough to avoid false alarms that are usually caused by
running-in, lubrication, and so on. Especially, a false alarm can cause unplanned equipment
shutdown, so online detection should pay more attention to avoiding false alarms rather
than missing alarms. Such characteristics and requirements present a new challenge to the
online detection method.
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This paper mainly tackles early fault online detection in unsupervised mode, i.e., with
no available state information for whole-life degradation data. For online scenarios, a
straightforward solution is using the initial part of online data (regarded as the normal
state) to construct a one-class classification model. However, a trustful model can usually be
built waiting for a long enough time to get sufficient data for model training, especially for
a deep neural network. One can certainly accumulate enough whole-life degradation data
in an offline environment, e.g., a laboratory. However, the distribution drift between offline
data and online data is inevitable due to the change of working conditions. In this scenario,
the offline trained model cannot be directly applied to the online task. Therefore, how to
transfer fault information (e.g., detection rules) between different working conditions has
become a key issue to improve the accuracy and robustness of early fault online detection.

Presently, most traditional fault detection methods heavily rely on the fault features [5]
extracted from vibration signals, such as wavelet features [6] and envelop spectrum fea-
tures [7]. These features are then fed into a classification model such as support vector
machine (SVM) [5], naive Bayesian [8], Fisher discrimination analysis [9], artificial neu-
ral network [10], and support vector data description (SVDD) [11]. In the past decade,
deep learning techniques have been successfully introduced to bearing PHM due to their
superior capability of end-to-end feature extraction. As the process of deep feature ex-
traction is self-adaptive with no human intervention, various deep learning techniques
have been successfully applied to the fault detection and diagnosis of different rotating
machinery [12–15]. However, neither traditional machine learning methods, nor deep
learning techniques can effectively solve the problem of distribution drift. Therefore, these
methods are not applicable to online detection. According to the authors’ literature survey,
very few works were found to conduct online anomaly detection. For instance, Lu et al. [16]
utilized merely the initial part of online data to build a long short-term memory (LSTM)
network and then recognized anomalies by calculating the residual error between real
data and the LSTM prediction. Mao et al. [17] utilized semi-supervised SVM and a deep
auto-encoder network to sequentially update the classification model for online detection.
However, as this method merely used a small amount of normal state data to train the
initial model, the extracted deep features are easily biased and then cause a false alarm.

From the discussion above, the most vital challenge to improve the performance of
online detection is the effective transfer of fault knowledge between offline and online work-
ing conditions. As one of the research hotspots in machine learning, transfer learning aims
to improve the predictive performance in one domain (called the target domain) by using
the prior information contained in the data of another related, but different domain (called
the source domain) [18]. As a kind of transfer learning technique, domain adaptation [19]
focuses on the across-domain transfer of domain information. Domain adaptation can be
realized well on deep neural networks by adaptively extracting domain-invariant feature
representation [20]. Especially in the recent 2–3 years, deep domain adaptation has been
applied to fault diagnosis [21–23] and remaining useful life prediction [24,25]. According
to our literature survey, there are some preliminary research works [26] in the field of
early fault detection. In these works, the role of deep domain adaptation is to learn fault
information by leveraging the data from different working conditions. However, there
still are some shortcomings: (1) most of these works need labeled data to train a classi-
fication model, which is not easy to realize in real-world applications; (2) most of these
works mainly focus on anomalous samples rather than the temporal relationship between
consecutive samples. As a result, the fault information cannot be sufficiently extracted,
which may cause false alarms and reduce detection accuracy.

To solve such shortcomings, this paper proposes a new online detection method of
bearing early fault based on deep transfer learning techniques. Specifically, this method
contains an offline stage and an online stage. In the offline stage, a new state assessment
method is firstly proposed by integrating the Hilbert–Huang transform (HHT) and support
vector data description (SVDD) to determine the period of the normal state and the degra-
dation state. The assessment results can provide the corrected data label for further domain
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adaptation. Furthermore, a new deep dual temporal domain adaptation (DTDA) model
is proposed to extract temporal common fault information between different working
conditions. In the online stage, the sequentially collected monitoring signals are directly
fed into the DTDA model to recognize if a fault occurs. This process does not need a
re-training model, since the domain-invariant feature representation has been extracted
by the DTDA model. Finally, a set of comparative experiments is conducted on the IEEE
PHM Challenge 2012 bearing dataset, and the results demonstrate the effectiveness of the
proposed method.

The main contributions of this paper can be summarized as follows:

(1) This paper proposes a new dual temporal domain adaptation model with a dual
adaptation strategy. Different from most current deep transfer learning techniques,
this model can transfer temporal information of degradation sequences by integrating
the time convolutional network (TCN) [27] and the domain adversarial neural network
(DANN) [28]. This model can enlarge the temporal characteristics in domain-invariant
feature representation and then raise the discrimination between the early fault feature
and the normal state feature. According to the authors’ best knowledge, there are very
few fault detection methods based on transfer learning with temporal information.

(2) This paper presents a new online health indicator (HI) construction method of bearings.
This method adopts the temporal common features extracted by the DTDA model and
uses principal component analysis (PCA) [29] to get a one-dimensional component. As
the extracted common features are representative of the online working condition, the
obtained HI can effectively describe the degradation process and provide an intuitive
evaluation of online detection results.

This paper is organized as follows. In Section 2, a brief summary about TCN and
DANN is provided. In Section 3, the details of the proposed method are elaborated.
Section 4 is devoted to showing the experimental results on a widely-used bearing dataset,
the IEEE PHM Challenge 2012 dataset, followed by the conclusion of this paper in the
last section.

2. Background

2.1. Introduction of the TCN

Rooted in the convolutional neural network (CNN) [30], the TCN has been proven
equal to or even better than the recurrent neural network (RNN) [31] in dealing with
temporal data [27]. The TCN is mainly composed of three parts: causal convolution,
dilated convolution, and residual module, as depicted in Figure 1. A detailed introduction
of each part will be given as follows.

Causal convolution is a one-way structure, i.e., the value at time t of the upper layer
only depends on the value at time t and before time t of the next layer [27], as shown in
Figure 1a. Causal convolution brings the time constraint structure. Dilated convolution is
designed to solve the problem that the modeling length with temporal data is restrained by
the size of the convolution kernel. In Figure 1b for example, the dilated factor d = 1 in the
first layer means that every sample is calculated in convolution. If d = 4, all four samples
are calculated together. As a result, the TCN can obtain a larger receptive field through
fewer layers. Here, the function F of dilated convolution with the element s of the sequence
X is shown as:

F(s) = (X ∗ d f )(s) =
k−1

∑
i=0

f (i) · Xs−d·i (1)

where f is the convolution operation and k is the size of the convolutional kernel.
As shown in Figure 1c, the residual module contains two layers of dilated causal

convolution and ReLU mapping. Besides, the TCN runs the dropout after each convolution
layer to achieve regularization. The residual module can be expressed as:

ẑ(i) = ẑ(i−1) + F(s) (2)
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Figure 1. Structure of the time convolutional network (TCN) with (a) causal convolution, (b) dilated convolution, and (c) the
residual module.

2.2. Introduction of the DANN

Proposed by Ganin et al. [28], the DANN has become an overwhelming domain
adaptation model. The structure of the DANN is shown in Figure 2. In Figure 2, given
source domain samples (xs

i , yi) and domain samples (xi, di), the green part is a feature
extractor Gf (·; θ f ), the blue part is a source domain classifier Gy(·; θy), and the red part
is a domain classifier Gd(·; θd). The adversarial training strategy means that Gy(·; θy) can
recognize the data from the source domain using the features extracted by Gf (·; θ f ) while
ensuring that Gd(·; θd) cannot recognize from which domain the data come.

The training process of the DANN mainly concentrates on optimizing Gy(·; θy) and
Gd(·; θd). Then, the loss function of Gy(·; θy) is:

Li
y(θ f , θy) = Ly(Gy(Gf (xs

i ; θ f ); θy), yi) (3)

The loss function of Gd(·; θd) is:

Li
d(θ f , θd) = Ld(Gd(Gf (xi; θ f ); θd), di) (4)

By adding a gradient reversal layer between Gy(·; θy) and Gd(·; θd), the total loss
function of the DANN becomes:

E(θ f , θy, θd) = ∑
i=1,2,...N

Ly(Gy(Gf (xi; θ f ); θy), yi)− λ ∑
i=1,2,...N

Ld(Gd(Gf (xi; θ f ); θd), di)

= ∑
i=1,2,...N

Li
y(θ f , θy)− λ ∑

i=1,2,...N
Li

d(θ f , θd)
(5)

Using a back-propagation optimization algorithm like the stochastic gradient descent
(SGD) algorithm, Equation (5) can be minimized to reach equilibrium. Then, a domain-
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invariant feature representation can be determined. The test data can then be classified
using Gy(Gf (xi; θ f ); θy).

Figure 2. Schematic diagram of the domain adversarial neural network (DANN).

3. Proposed Approach of Early Fault Online Detection

It is worth noting that the proposed method is unsupervised, i.e., all training data are
whole-life degradation sequences with no state labels. The training data include a sufficient
amount of data from offline working conditions (for example, in a laboratory) and a small
amount of data from online working conditions (for example, in a real application). The
goal of the proposed method is to recognize the occurrence of an early fault in the online
data of a target bearing.

To reach this goal, the proposed method contains an offline stage and an online stage.
In the offline stage, it needs to first grab the label information of offline data via state
assessment and then extract the domain-invariant feature representation between the
offline and online working conditions. Following this idea, a new state assessment method
and a novel deep domain adaptation model named DTDA are proposed. In the online
stage, the sequentially collected data batch is simply fed into such a feature representation
to get the discriminative features for the online tasks and directly get the detection results.
The steps stated above are shown in Figure 3.

3.1. State Assessment

The offline data are a whole-life degradation sequence, so we need to determine the
label information of the normal state and early fault before conducting domain adaptation.
Therefore, an efficient state assessment method is first presented in this section. Given a
raw vibration signal sequence of a rolling bearing, the steps of the state assessment are
as follows:

(1) Obtain the HHT [32] marginal spectrum data from the raw signal. First, decom-

pose the raw signal x(t) as: x(t) =
k
∑

i=1
ci(t) + rk(t), where ci(t) is the i-th intrinsic

mode function (IMF) component and rk(t) is the residual term. Second, run the

Hilbert transform for each IMF component: H[x(t)] = 1
π

+∞∫
−∞

x(τ)
t−τ dτ, and get the

corresponding analytic signal: CA
i (t) = ci(t) + jcH

i (t) = ai(t)ejθi(t), where cH
i (t) =
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1
π

+∞∫
−∞

ci(s)
t−s ds, ai(t) =

√
ci

2 + (cH
i )

2, θi(t) = arctan(cH
j /ci), with the instantaneous fre-

quency ω = dθ(t)
dt . Third, calculate the Hilbert spectrum: H(ω, t) =

n
∑

i=1
ai(t)ejθi(t), and

obtain the marginal spectrum: H(ω) =
∫

H(ω, t)dt.
Here, the HHT is regarded as a signal processing method, as the HHT has two merits
for analyzing signals: (1) no need to preset the orthogonal basis and (2) the good
capability of processing the non-stationary signal. Therefore, here, the HHT is chosen
as the signal processing method.

(2) Select the initial 500 samples of the whole-life degradation sequence. Set the HHT
marginal spectrum of these samples as the normal state data, and train an SVDD
model. Specifically, the optimization target of the SVDD is:

min
a,R,ξ

R2 + C
n
∑

i=1
ξi

s.t.‖φ(xi − a)‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, 2, . . . n
(6)

where ξ is the slack variable, R and a are the radius and center of the hyper-sphere,
and C is the regularization parameter.

(3) Select the sample sequentially from the beginning and feed the spectrum of the
sample into the obtained SVDD. Calculate the distance between this sample and the
hyper-sphere center of the SVDD:

d =

√√√√K(xtest, xtest)− 2
n

∑
i=1

αiK(xtest, xi) +
n

∑
i=1

n

∑
j=1

αiαiK(xi, xj) (7)

where K(xi, xj) is the kernel function and αi is the Lagrange coefficient. If d ≤ R, the
sample xtest is recognized as in the normal state, otherwise it is a fault sample. As a
result, the boundary between the normal state and the fault state can be determined.

3.2. Proposed DTDA Model

To realize an effective domain adaptation between offline and online working condi-
tions, the DANN is chosen as the baseline algorithm. The DANN adopts the adversarial
training strategy and can get a better domain-invariant feature representation even between
quite different domains [28]. As training the DANN requires label the information of the
source domain, the results of the state assessment presented in Section 3.1 can be used.
Different from mature fault data, early fault data generally have a temporal character-
istic that reflects the degradation process from the normal state to the fault state. More
importantly, the degradation part of the early fault is similar between different bearing
sequences [1]. Therefore, the effect of domain adaptation by the DANN can be further
enhanced by extracting common temporal information. To extract temporal information
well, the TCN is adopted as the feature extractor in the classical DANN, and we propose a
new DTDA model.

Specifically, a strategy of dual adaptation is proposed in the DTDA model. This
strategy comes from the following observations: (1) Different domains have different
requirements on the amount of temporal information, e.g., degradation length. Then, the
TCN may perform poorly due it not having a sufficiently large receptive field. (2) The
adversarial training strategy used in the DANN may perform unstably when tackling the
data with a large distribution difference. Following this analysis, an adaptation layer with
the maximum mean discrepancy (MMD) [33] is first added after the TCN’s residual blocks.
This layer can shrink the distribution difference of temporal features between the source
domain and the target domain to some extent. Then, the DANN is run based on such
adapted TCN features and can improve the stability of the DANN training as well.
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Figure 3. Flowchart of the proposed online detection method of early fault. SVDD, support vector data description; DTDA,
dual temporal domain adaptation.

The above idea is shown in Figure 4. Specifically, the orange part represents the source
data with labels that are obtained by the state assessment in Section 3.1. The purple part
represents the available input data in the target domain. The green part is the feature
extractor using the TCN, linked by an MMD adaptation layer. The blue part is the source
domain label classifier that aims to recognize the normal state data from the fault data. The
pink part is the domain classifier whose task is to discriminate the source domain data and
the target domain data. The blue part and pink part are the same as the ones in Figure 2.

The training process of the DTDA model can be summarized as follows:
Step 1. Initialize randomly the weight w and bias b.
Step 2. Combine the source domain data and the target domain data as a whole, and

feed them into the TCN to get the output:

H1 = Gf (
m+n

∑
i=1

wixi − b) (8)

where m and n are the sample number in the source domain and target domain, respectively,
and Gf (·) is the feature extractor of the TCN.

Step 3. Denote by Xs and Xt the source domain feature and target domain feature
in H1, respectively. Then, realize the domain adaptation for Xs and Xt by using an MMD
layer. The definition of the MMD is as follows:

MMD(Xs, Xt) =

∥∥∥∥∥ 1
m

m

∑
i=1

φ(xs
i )−

1
n

n

∑
j=1

φ(xt
j)

∥∥∥∥∥
H

(9)

where the function φ(·) indicates a nonlinear mapping to a reproducing kernel Hilbert
space (RKHS) and the subscript H refers to this RKHS.
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Figure 4. Structure diagram of the proposed DTDA model.

Step 4. Denote by Xs
MMD the source domain feature set adapted by the MMD layer.

Feed Xs
MMD into the source domain label classifier Gy(·) in Figure 4, and get the output

Gy(Xs
MMD; wy). The loss function of Gy(·) can be expressed as:

Li
y(w f , wy) = Ly(Gy(Xs

MMD; wy), yi) (10)

where w f is the model parameter of the feature extractor composed of the TCN and MMD
adaptation layer and wy is the model parameter of the source domain label classifier.

Step 5. Feed the adapted feature set XMMD of the source and target domains into the
domain classifier Gd(·), then get the output: Gd(XMMD; wd). The loss function of Gd(·) can
be expressed as:

Li
d(w f , wd) = Ld(Gd(XMMD; wd), di) (11)

where wd is the model parameter of the domain classifier.
Step 6. After combining Equations (9)–(11), the optimization function of the DTDA

model is:
E(w f , wy, wd) = Li

y(w f , wy)− λLi
d(w f , wd) + μMMD(Xs, Xt) (12)

where λ, μ > 0 are the regularization parameters, which are used to tune a trade-off
between these three quantities during the learning process. Specifically, the larger the
value of μ is, the higher the requirement for extracting common features is, and vice
versa. Similarly, if the value of λ becomes smaller, the effect of the domain classifier is
equivalent to being enhanced, and correspondingly, the samples are more difficult to
recognize from the source domain or the target domain. In Section 4, a reverse cross-
validation approach, which was adopted in the original DANN model [28], is employed
to update the regularization parameters λ and μ. It is worth noting that the minus sign
in Equation (12) means gradient reversal for reducing the distribution difference between
source domain features and target domain features.

Another thing that needs to be noticed is that the classifier parameters of wy and wd
are optimized in order to minimize their error on the training set; the feature extractor
parameter of w f is optimized in order to minimize the loss of the source domain label
classifier and to maximize the loss of the domain classifier; and the SGD algorithm is
employed to minimize Equation (12) to update all three of them.
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Step 7. In the training process, if the iteration number reaches a pre-defined number
ρ or the difference between two consecutive training errors is less than a pre-defined
threshold, the training is terminated; otherwise, go to Step 6.

After dual adaptation, i.e., MMD adaptation and the DANN, the feature distribution
of the source domain data and target domain data tends to be consistent. After reaching
convergence, the DTDA model can extract the common temporal feature representation of
different domain data. In the experiment of this paper, the offline working condition is set
as the source domain, and the online working condition is set as the target domain, then
such a common feature representation can provide a channel to transfer fault information
from the offline data to the online task.

3.3. Online Detection

Once the DTDA is trained, the common temporal feature representation can be ob-
tained. The source domain label classifier Gy(·) can then be used well to recognize the fault
in the data of the target domain. Therefore, in the online stage, the sequentially collected
data batch is directly fed into Gy(·) to determine if a fault has occurred. This process does
no need to re-train the DTDA, while the main computational cost is the linear calculation
in Gy(·). As a result, the detection speed is very fast.

3.4. HI Construction

To intuitively evaluate the reliability of the detection results, a new HI construction
method is also proposed based on the DTDA model. This method is simple and effective.
Specifically, through feeding sequentially the online data batch into Gy(·), not only the
detection results, but also the temporal features of the target bearing can be obtained.
After detecting all the online data, the features of the whole degradation sequence can
be obtained. Then, PCA is run to get the first principal component. After the smoothing
operation, the obtained feature sequence is the HI of the target bearing. Since the feature
extractor in the DTDA model can extract domain-invariant feature representation with
strong discriminative ability, the HI constructed based on such a feature representation
can be more sensitive to reflect various state changes of the target bearing. Certainly, the
obtained HI can also verify the reliability of the online detection results.

4. Experimental Results

To verify the effectiveness of the proposed method, a set of comparative experiments is
run on the IEEE PHM Challenge 2012 bearing dataset [34] in this section. The programming
environment was Python 3.6 and MATLAB R2014. The experiments used the Windows
operating system (OS) with an i5-7300 processor and 8 G memory.

4.1. Dataset Description

The IEEE PHM Challenge 2012 dataset was collected from PRONOSTIAtest platform,
as shown in Figure 5, on which an accelerated degradation experiment was conducted to
collect run-to-failure data within a few hours. The PRONOSTIA platform is composed
of three parts: rotating part, load part, and data collection part. The rotating part has a
motor with a power of 250 W. To accelerate degradation, the load part provides a 4000 N
load for the rolling bearing. Vibration signals were collected using an accelerometer sensor
placed in the horizontal direction. The sampling frequency was 25.6 kHz, while the data
were recorded every 10 s. In total, seventeen bearings were selected to collect whole-life
degradation data under three working conditions. The specific information of the working
conditions is shown in Table 1.

In this experiment, the seven bearings (i.e., Bearing1_1 to Bearing1_7) under the first
working condition were selected as the source domain data. Moreover, Bearing 2 and
Bearing 3 under the second working condition (i.e., Bearing2_2 and Bearing2_3) were
taken as the offline data in the target domain, and we took Bearing 1 (i.e., Bearing2_1) and
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Bearing 4 (i.e., Bearing2_4) under the second working condition as the target bearings to be
tested in the target domain.

Figure 5. PRONOSTIAtest platform [34].

Table 1. Description of the three working conditions in IEEE Prognostics and Health Management
(PHM) Challenge 2012 dataset.

Operating Condition Rotating Speed (rpm) Radial Force (N)

First operating condition 1800 4000
Second operating condition 1650 4200
Third operating condition 1500 5000

4.2. Results of State Assessment

In this section, the results of the state assessment are provided. Taking Bearing 1_1
as an example, HHT was first run to get the marginal spectrum data for this bearing, and
then, we chose the first 500 samples to train an SVDD model. The Gaussian radial basis
function (RBF) kernel was adopted, and the regularization parameter and kernel parameter
of SVDD were set to one and 0.001, respectively. After feeding the HHT spectrum data into
the trained SVDD model sequentially, the results of the state assessment can be obtained.
Table 2 shows the period of the normal state and the fault state of all seven bearings under
the first working conditions. These results will be used as the label information for training
a DTDA model in the next section.

4.3. Results of Online Detection

In this section, Bearing2_1 and Bearing2_4 under the second working condition are cho-
sen as the target bearings to evaluate the effectiveness of the proposed method. Specifically,
these two bearings have quite different degradation trends and noise levels in the normal
state. Bearing2_1 has a long period of slow degradation, while Bearing2_4 has no apparent
early fault state and quickly evolves to the fast degradation state. Therefore, these two
bearings are believed to be representative enough to provide a comprehensive evaluation.
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Table 2. State assessment results of the IEEE PHM Challenge 2012 dataset.

Bearing Normal State Period Fault State Period

Bearing1_1 [1–1371] [1372–2803]
Bearing1_2 [1–716] [717–871]
Bearing1_3 [1–1165] [1166–2375]
Bearing1_4 [1–931] [932–1428]
Bearing1_5 [1–2235] [2236–2463]
Bearing1_6 [1–1587] [1588–2448]
Bearing1_7 [1–2067] [2068–2259]

4.3.1. Results of Bearing2_1

First, Figure 6 provides the visualized feature distribution after domain adaptation
by DTDA. Here, two bearings (Bearing1_2 and Bearing1_3) in the source domain and two
bearings (Bearing2_2 and Bearing2_3) in the target domain are chosen. For comparison,
Figure 6 also provides the feature distribution by using the deep autoencoder (DAE)
without domain adaptation. Here, PCA is used for visualization. From Figure 6b, before
domain adaptation, the feature distribution of the bearings in the source domain (red
points and blue points) and the target domain (purple points and green points) vary
largely, which indicates that different working conditions have different data distribution
characteristics. However, after domain adaptation by the DTDA, the feature distribution
of different domains tends to be consistent, as shown in Figure 6a. The results shown
in Figure 6 demonstrate that the DTDA model can effectively extract domain-invariant
feature representation between different working conditions.

(a) (b)

Figure 6. Feature distribution of the four bearings under the first and second working conditions extracted by (a) the DTDA
and (b) the deep autoencoder (DAE). Here, PCA is used for visualization.

Second, Figure 7 provides the results of early fault online detection on Bearing2_1. To
ensure the results are more reliable, the location of five successive anomalous samples is
defined as the occurrence of an early fault. The anomaly before the occurrence location
is defined as a false alarm. For straightforward comparison, Figure 7 also reports the HI
sequence built by the proposed method in Section 3.4 and the root mean square (RMS)
curve. From Figure 7a, an early fault occurs at Sample 162 with only four false alarms.
From Figure 7b, the HI sequence has a basically consistent trend with Figure 7a, which
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proves that the HI sequence can be used to evaluate the reliability of the detection results.
As a widely-used indicator to reflect the degradation trend, the RMS curve rises slowly
at Sample 180, which lags by nearly 20 samples. This comparison demonstrates that
the domain-invariant feature representation extracted by the DTDA model has a better
discriminative ability.
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Figure 7. Online anomaly detection results on Bearing2_1 using (a) the proposed method, (b) the constructed health
indicator (HI) by PCA, (c) the constructed HI by DAE, and (d) the RMS curve. Here, the label “1” in Subfigure (a) indicates
the normal state; “−1” indicates the fault state.

The effectiveness of the obtained HI sequence is further analyzed. In Section 3.4,
PCA is used to shrink the degradation features into a one-dimensional component, which
performs as an HI. To test the effectiveness of PCA in HI construction, the DAE is also
introduced to build an HI sequence by replacing PCA, as shown in Figure 7c. Specifically,
after extracting the domain-invariant feature representation, the features of Bearing2_2
and Bearing2_3 in the target domain can be generated. Then, a DAE model with one-
dimensional output is trained using the feature set of these two bearings. Finally, the
online features of Bearing2_1 are directly fed into the obtained DAE model to get a one-
dimensional output, i.e., the expected HI sequence. It is clear that the two HI sequences
built by PCA and DAE are nearly identical in geometric shape, and the location of the early
fault is almost the same. This phenomenon indicates that the common features obtained
by the DTDA have good representative capability to reflect the degradation trend, while
both PCA and the DAE can easily extract a representative component from the features to
build the HI. Still, the HI by PCA is a little more sensitive to the early fault. Since training a
DAE model generally needs a sufficient amount of data, less samples in the online stage
may cause over-fitting. Moreover, the DAE is trained by a gradient descent algorithm,
which has more computational cost than PCA. Under comprehensive consideration, PCA
is believed to be more suitable for HI construction than the DAE.

In Figure 7d, the RMS curve fluctuates drastically in the initial part, even locating
in the normal state. This phenomenon is mainly caused by the irregular vibration of
running-in, assembly errors, etc., not by early fault. If the features are not representative
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(like RMS), there will be many false alarms in the normal state. Quite different from the
RMS curve, the HI sequence has almost no irregular fluctuations in the normal state. This
phenomenon shows that the DTDA model can extract fault features that are robust to
the irregular fluctuations in the normal state. Moreover, the HI sequence has an obvious
upward trend after the location of the early fault, while the RMS curve keeps flat for a long
period. It is clear that the features extracted by the DTDA are more sensitive to early fault
than the RMS feature. As a result, the DTDA model can generate deep features with better
discriminative ability, which is helpful to improve the performance of early fault detection.

To further analyze the comparative advantage of the proposed method, the trained
DTDA in the offline stage is used to generate the online features of Bearing2_1, as shown
in Figure 8. It is worth noting that the visualization label in Figure 8 corresponds to the
results in Figure 7a. The features of the two states are almost linearly separable, which
indicates that the features extracted by DTDA are discriminative for early fault and very
applicable for online detection.

Figure 8. Online features of the target bearing Bearing2_1 in the IEEE PHM Challenge 2012 dataset.

4.3.2. Results of Bearing2_4

First, similar to Figure 7, Figure 9 shows the results of the online detection for Bear-
ing2_4. This bearing falls into the early fault state at Sample 744, with no false alarm. It
is also clear that the trend of the HI sequence and the RMS curve completely matches the
detection results in Figure 9a, as shown in the dotted frame. Moreover, compared with
the RMS curve, the HI sequence does not have an obvious fluctuation, which proves the
effectiveness of the proposed method in early fault online detection.
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Figure 9. Online anomaly detection results for Bearing2_4 using (a) the proposed method, (b) the constructed HI, and (c)
the RMS curve. Here, the label “1” in Subfigure (a) indicates the normal state; “−1” indicates the fault state.

Figure 10 further shows the online features of Bearing2_4, which were generated
using the domain-invariant feature representation extracted by the DTDA. The separability
of these features is even more obvious than the online features of Bearing2_1 shown in
Figure 8. This phenomenon is caused by the degradation process of Bearing2_4 in which
the bearing transitions directly from the normal state to the fault state. In this scenario,
the fault state data are certainly easy to distinguish from the normal state data. Figure 10
proves again that the proposed method can effectively recognize the normal state and the
early fault state.

4.4. Comparative Results with State-of-the-Art Methods

In this section, nine state-of-the-art methods of bearing fault detection are intro-
duced for a comprehensive comparison. These nine methods include one typical signal
analysis method (Method 1), five anomaly detection methods without transfer learning
(Methods 2–6), and three anomaly detection methods with transfer learning (Methods 7–9).
For simplicity, the proposed method is named DTDA.

Following [16], two evaluation metrics are employed: (1) the detection location, which
is the location (number) of the signal snapshot of the appearing fault; (2) the number of false
alarms, which is the number of anomalies before the detection location. The comparative
results are reported in Table 3.

From Table 3, the proposed method DTDA obtains the earliest detection location and
almost the lowest number of false alarms. Although RD-DTL and SDFMhave a lower
number of false alarms than the DTDA, the detection location of these two methods
is relatively late. It is worth noting that the detection locations of all ten methods on
Bearing2_4 are not much different. This is because the bearing evolves quickly from the
normal state to the fast degradation state, with a very short period of early fault. Since
the data of the fast degradation state are quite different from the normal state data, all
methods can detect faults at the location of the state change. However, the number of
false alarms produced by different methods on Bearing2_4 is not the same. Some methods
like iFOREST and the local outlier factor (LOF) produce too many false alarms. Moreover,
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bandwidth empirical mode decomposition-adaptive multi-scale morphological analysis
(BEMD-AMMA) has no false alarm since it utilizes signal analysis to conduct fault detection
by observing the fault frequency.

Figure 10. Online features of the target Bearing2_4. Here, PCA is used for visualization.

Table 3. Comparative results of the proposed method with nine state-of-the-art methods. Earlier detection location
and lower number of false alarms indicate better. BEMD-AMMA, bandwidth empirical mode decomposition-adaptive
multi-scale morphological analysis; LOF, local outlier factor; TCA, transfer component analysis.

Type of Methods Methods
Bearing2_1 Bearing2_4

Detection
Location

Number of
False Alarms

Detection
Location

Number of
False Alarms

Signal analysis 1. BEMD-AMMA [35] 185 – 748 –

Anomaly detection without
transfer learning

2. LOF [36] 610 40 746 137
3. iFOREST [37] 307 35 745 152
4. SRD [38] 870 12 745 13

Online anomaly detection
without transfer learning

5. SDFM [1] 175 0 744 0
6. S4VM-SODRMB [17] 763 10 744 11

Anomaly detection with
transfer learning 7. TCA+SVDD 615 21 744 46

Online anomaly detection
with transfer learning

8. RD-DTL [39] 175 0 744 0
9. OD -DTL [26] 169 5 744 3
10. DTDA 162 3 744 0

Here, a detailed analysis of the comparative results is listed as follows:

(1) Comparison with BEMD-AMMA:
BEMD-AMMA can be viewed as a state-of-the-art signal analysis-based method for
bearing early fault detection. This method first uses the bandwidth empirical mode
decomposition (BEMD) to reconstruct the raw vibration signal and then utilizes an
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adaptive multi-scale morphological analysis (AMMA) algorithm to demodulate the
reconstructed signal to obtain time-domain signals. Finally, a fault can be determined if
the fault characteristic frequency can be observed. To calculate the fault characteristic
frequency, this method has to know the various parameters of the target bearing
and working condition in advance. Obviously, this limitation is too strict to achieve
in the online scenario. Moreover, a fault only evolves to a certain degree, and the
corresponding characteristic frequency can then appear. Therefore, the detection
location will be delayed. In contrast, benefiting from the sensitivity of the early
fault features extracted by the DTDA model, the proposed method can detect fault
occurrence at an earlier location.

(2) Comparison with LOF:
The LOF is a typical anomaly detection algorithm running on sample density. In this
experiment, the first 100 samples at the starting online stage were chosen to calculate
the LOF value, and then, the largest value is selected as the alarm threshold. The
parameter K in the LOF was set to 10. From Table 3, the detection location of the LOF
is later than that of the proposed method, while the number of false alarms is much
larger. This is because the normal state of a bearing may have unexpected irregular
fluctuations. Moreover, when using normal state data to train the LOF, the threshold
value will be relatively larger, resulting in a late detection location.

(3) Comparison with iFOREST:
iFOREST is also a typical anomaly detection algorithm adopting a random segmenta-
tion strategy. iFOREST segments all samples into various isolated outliers, and the
ones with a shorter path are viewed as anomalies. In this experiment, the number of
trees was set to 100. From Table 3, the detection location of iFOREST is much delayed
for Bearing2_1, and too many false alarms appear. This is because with online samples
arriving sequentially, the segmentation number continues to increase. Consequently,
the detection performance is not stable.

(4) Comparison with SRD:
SRD is a state-of-the-art early fault detection algorithm based on probability density
estimation. In the offline stage, this method directly uses the original signals of
multiple working conditions to establish a global model and determine the alarm
limit. The online signals are fed into this model to get the detection results. However,
this method does not take into account the difference between the bearing data under
different working conditions. The setting of the alarm limit is also too subjective.
Therefore, the detection location was very much delayed for Bearing2_1. In contrast,
the proposed method does not need to manually set a threshold for detection, and
the DTDA model can effectively transfer fault information between different working
conditions to improve the detection performance.

(5) Comparison with SDFM:
SDFM is a state-of-the-art online detection method for bearing early fault. This method
employs a sliding window to determine the location of early fault occurrence by means
of DAE features. The DAE network structure was set to [800, 512, 10], and the size of
the sliding window was set to 100. Benefiting from the sliding window, this method
had no false alarm, but the detection location was a bit delayed. The main reason is
that this method is not a transfer learning method and heavily relies on the amount
of offline training data. If the amount of training data is insufficient, the early fault
information could not be extracted completely. In contrast, the proposed method can
borrow data from offline working conditions to supplement early fault information
for online detection.

(6) Comparison with S4VM-SODRMB:
This method is also a state-of-the-art online detection method for bearing early fault.
This method only needs online data to update model training in an unsupervised
learning architecture. In this experiment, the first 100 samples of online data were
accumulated to extract the DAE features and then train an initial SVM model. The
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sequentially collected data batch was used to update the SVM model successively. The
radius-margin upper bound of leave-one-out error was then utilized to calculate an
index for online detection. In Table 3, the detection location of this method was much
delayed for Bearing2_1. The reason is that only a small amount of online data was
used to train an initial model. Once the data contain irregular fluctuation or colored
noise, the initial model will be biased, and the detection results will deteriorate. In
contrast, the proposed method can utilize offline data to facilitate online detection.
The transfer learning technique in the DTDA model guarantees the effective use of
early fault information from offline data.

(7) Comparison with TCA + SVDD:
Transfer component analysis (TCA) is a widely used transfer learning algorithm
by minimizing the MMD distance between different domains. In this experiment,
TCA was first run to conduct domain adaptation between the available data from
offline and online working conditions. Then, the common features were used to
train an SVDD model by using the available training data from the online working
condition. This SVDD model was used to recognize anomalies in the online stage. In
this experiment, the regularization parameter and kernel parameter were set to 10 and
one, respectively. From Table 3, it is clear that the detection location of TCA+SVDD
was much delayed for Bearing2_1, and the number of false alarms became larger. The
reason is that TCA conducts domain adaptation with a shallow model, while such
domain adaptation is in a single mode. In contrast, the proposed method not only
conducts dual domain adaptation, but also extracts common temporal information of
early fault. Therefore, the proposed method can provide more representative features
for online detection.

(8) Comparison with RD-DTL and OD-DTL:
RD-DTL and OD-DTL are both the newest state-of-the-art early fault online detection
methods based on deep transfer learning. RD-DTL first uses a robust auto-encoder to
determine the periods of different degradation states and then constructs an MMD-
based DAE network to extract common features for the normal state, followed by
an SVM model for recognition. This method focuses on the robustness of the online
detection model. OD-DTL utilizes a pre-trained VGG-16 network on the ImageNet
dataset to fine-tune a deep neural network for bearing online detection. This method
only conducts model-level domain adaptation, not considering the feature transfer.
Therefore, the performance of fault detection is limited. From Table 3, these two
methods get similar results as the proposed method. RD-DTL even gets zero false
alarms. However, the proposed method gets an earlier detection location than them.
The main reason is that the proposed method conducts dual domain adaptation with
temporal information. Therefore, the online features by DTDA are more sensitive to
early fault.

In summary, the proposed DTDA model can achieve dual domain adaptation at
the feature level, which can facilitate the transfer of fault information between different
working conditions. Moreover, the DTDA utilizes the TCN as the feature extractor to extract
the temporal information of the degradation process, which can improve the representative
ability of the online features for early fault. Therefore, the proposed method is more
applicable to the online detection of bearing early fault.

Another problem of online detection is computational time. The proposed method
needs to train the DTDA model in the offline stage and then directly inputs the sequentially
collected online data into the model to recognize the fault occurrence. The dual domain
adaptation by the DTDA provides a domain-invariant feature representation with a better
discriminative ability for the online task. The offline model training is computationally
expensive, since the adversarial training of the DTDA is an iteration process. However,
no additional training time is required in the online stage. The classification on an online
sample by the trained DTDA model is almost a linear operation, so the time for recognizing
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an online sample is very short. For this reason, the corresponding time data are not
provided in Table 3.

5. Conclusions

Online detection of bearing early fault is an application-oriented fault detection
method with significant practical meaning. This paper proposes a new online detec-
tion method of early fault based on deep dual temporal domain adaptation. This method
adopts deep domain adaptation with temporal information to extract domain-invariant
feature representation with stronger discriminative ability. Employing this representation
as the channel of information transfer, the proposed method can improve the detection
robustness and accuracy in the online scenario with fewer false alarms as well. This method
can directly tackle whole-life degradation data, with no need to manually mark fault data
in advance. Therefore, this method is more applicable for the online detection of early fault,
and the idea of this paper can be widely expanded for different objects.

In the next work, an attention mechanism will be introduced into domain adversarial
training to improve the effect of domain adaptation for time series data. Besides, this
paper focuses on the anomaly detection problem for a bearing across different working
conditions. How to achieve online transfer learning across different machinery and extract
common features from multiple sources is an interesting problem.
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