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Evolutionary Design of a System for Online Surface Roughness Measurements
Reprinted from: Mathematics 2021, 9, 1904, doi:10.3390/math9161904 . . . . . . . . . . . . . . . . 127

Mihailo Micev, Martin Ćalasan and Diego Oliva
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Preface to ”Evolutionary Algorithms in Engineering

Design Optimization”

Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their

characteristics, have allowed us to solve, in a straightforward way, many real-world optimization

problems in the last three decades, particularly in engineering fields. Their main advantages

are the following: they do not require any requisite to the objective/fitness evaluation function

(continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or

mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they

can deal with more than one objective function simultaneously through the use of evolutionary

multi-objective optimization algorithms. This set of advantages, and the continuously increased

computing capability of modern computers, has enhanced their application in research and industry.

To help address and resolve these engineering optimization problems, this book comprises 14

chapters that present a series of contributions in the field. The chapters collect the papers included in

the “Evolutionary Algorithms in Engineering Design Optimization” Special Issue of the Mathematics

MDPI journal, 2020, first decile of the JCR 2020 in the Mathematics category.

The manuscripts cover a wide spectrum in terms of type of problems, methodologies and

applications. Type of problems: single-objective and multi-objective optimization (among them,

analysis of archiving strategies in evolutionary multi-objective algorithms, and preference directions

in multi-objective optimization problems). Methods: genetic programming, genetic algorithms,

particle swarm optimization, differential evolution, estimation of distribution algorithms, memetic

algorithms, among others. Applications: Identification of thermal systems, plastics thermoforming,

reliability (maintenance) and design of systems, multi-objective design of general universal–

prismatic–spherical Gough–Stewart structure platforms, aero-acoustical trailing-edge noise problem,

surrogate modelling of beam T-junctions for characterization of tubular structures, vibration absorber,

online surface roughness measurement of automobile components, daily diet design problem,

bankruptcy prediction problem, optimal tuning of a fractional order proportional– integral-derivative

controller for an automatic voltage regulator system, control system for an aerospace re-entry vehicle,

and design of descent trajectories for spaceplane-based two-stage launch systems.

We would like to thank the MDPI publishing editorial team, the scientific peer reviewers and

the 41 authors who have contributed to this volume. We hope that the manuscripts are of value

to researchers, academics and professionals of multidisciplinary engineering, mathematicians and

computer scientists involved in the resolution and optimization of real world engineering problems.

David Greiner, António Gaspar-Cunha, Daniel Hernández-Sosa, Edmondo Minisci,

Aleš Zamuda

Editors
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Abstract: In a multi-objective optimization problem, in addition to optimal solutions, multimodal
and/or nearly optimal alternatives can also provide additional useful information for the decision
maker. However, obtaining all nearly optimal solutions entails an excessive number of alternatives.
Therefore, to consider the nearly optimal solutions, it is convenient to obtain a reduced set, putting
the focus on the potentially useful alternatives. These solutions are the alternatives that are close
to the optimal solutions in objective space, but which differ significantly in the decision space. To
characterize this set, it is essential to simultaneously analyze the decision and objective spaces.
One of the crucial points in an evolutionary multi-objective optimization algorithm is the archiving
strategy. This is in charge of keeping the solution set, called the archive, updated during the
optimization process. The motivation of this work is to analyze the three existing archiving strategies
proposed in the literature (ArchiveUpdatePQ,εDxy, Archive_nevMOGA, and targetSelect) that aim to
characterize the potentially useful solutions. The archivers are evaluated on two benchmarks and
in a real engineering example. The contribution clearly shows the main differences between the
three archivers. This analysis is useful for the design of evolutionary algorithms that consider nearly
optimal solutions.

Keywords: multi-objective optimization; nearly optimal solutions; archiving strategy; evolutionary
algorithm; non-linear parametric identification

1. Introduction

Many real-world applications pose different objectives (usually in conflict) to opti-
mize [1–3]. This leads to the proposal of a multi-objective optimization approach (MOOP—
multi-objective optimization problem) [4–7]. In a posteriori multi-objective approach [8],
after the MOOP definition and the optimization stage, a set of Pareto optimal solutions [9]
is generated. The decision maker (DM) can then analyze, at the decision-making stage,
the trade-off of the optimal alternatives for each design objective. This enables a better
understanding of the problem and a better-informed final decision.

For the DM, it is useful to have a diverse set of solutions. Traditionally, diversity
is sought in the objective space. However, obtaining a diverse set in the decision space
also offers advantages [10]: (1) it enables the DM to obtain different (even significantly
different) alternatives before the final decision; (2) it helps speed up the search, improving
exploration, and preventing premature convergence towards a non-global minimum. In
addition, the best solutions are sometimes too sensitive to disturbances, or are not feasible
in practice [11–14]. In this scenario, the multimodal solutions or the nearly optimal solution
set (also called approximate or ε-efficient solutions) plays a key role in enhancing the
diversity of solutions. Two multimodal solutions are those that, being optimal, obtain
the same performance. Nearly optimal solutions are those that have similar performance
to optimal solutions. Generalizing, it can be considered that multimodal solutions are
included in nearly optimal solutions. Nearly optimal solutions have been studied by many
authors in the bibliography [15–19], have similar performance to optimal solutions and can

Mathematics 2021, 9, 999. https://doi.org/10.3390/math9090999 https://www.mdpi.com/journal/mathematics
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sometimes be more adequate according to DM preferences (for instance, more robust [14]).
Therefore, an additional challenge then arises: to obtain a set of solutions that, in addition
to good performance in the design objectives, offer the greatest possible diversity.

However, considering all the nearly optimal solutions requires obtaining and analyz-
ing a great number of alternatives and this causes two problems:

1. It slows down the optimization process. In evolutionary algorithms, an archive (a set
to store solutions during the execution) is required. The computational cost of the
optimization process largely depends on the archive size. This is because to check
for the inclusion of a new candidate solution in the archive, it is necessary to check
the dominance (or ε−dominance) for each solution in the current archive. Many
new candidate solutions are analyzed in an optimization process. Therefore, a large
archive results in a significantly higher computational cost.

2. The decision stage is made more difficult. The designer must choose the final solution
from a much larger number of alternatives.

Therefore, it is necessary to reduce the set of optimal solutions obtained by the designer.
In the literature, there are different algorithms aimed at finding nearly optimal solutions
in multi-objective optimization problems. The multimodal multi-objective evolutionary
algorithms (MMEAs [20]) are intended for multimodal optimization problems. Some
of the MMEAs take into account nearly optimal solutions in the optimization process,
but most of them do not provide these solutions to the DM. Furthermore, evolutionary
algorithms with an unbounded external archive [21] can also be interesting to analyze
these solutions. These unbounded external archives can be analyzed to obtain the relevant
nearly optimal solutions.

One of the crucial points in an evolutionary multi-objective optimization algorithm
is the archiving strategy (or archiver). An archiving strategy is the strategy that selects
and updates a solution set, called the archive, during the evolutionary process. Some
archivers have been studied previously [19,22–26]. In this paper, we address the problem
of discretization of the potentially useful alternatives. For this purpose, we compare
different archiving strategies that aim to obtain the set of potentially useful nearly optimal
solutions. An archiving strategy must take into account the decision space to ensure that
the potentially useful nearly optimal solutions are not discarded.

For the comparison of the results in this real problem, we have chosen to embed the
archiver in a basic evolutionary algorithm. First, to observe the impact of each archiver
when incorporated into an evolutionary mechanism. In addition, second, because the
computational cost associated with the objective functions of the real problem does not
allow simulations on large numbers of points. Therefore, it is not feasible to test each
archiver with a random or exhaustive search as has been done with the benchmarks.

These archivers have not been compared in the literature, so this work is useful for
future designs of evolutionary algorithms that consider nearly optimal solutions or even
to modify the archivers of the old evolutionary algorithms considering such solutions.
Therefore, the purpose of the paper is: (1) to understand the properties of these archivers,
(2) to provide an analysis for choosing one of these archivers and (3) to give ideas for
designing new archivers. The design of these algorithms are currently open issues in this
research area [18,20,27].

This work is structured as follows. In Section 2, a small state of the art on potentially
useful nearly optimal solutions is introduced. In Section 3 some basic multi-objective
backgrounds are presented. In Section 4, different archiving strategies to characterize the
optimal and nearly optimal set are described. In Section 5 the MOOPs and the archivers
comparison procedure are presented. The results obtained on the archivers are shown in
Section 6. Finally, the conclusions are given in Section 7.

2. State of the Art

As discussed in the previous section, obtaining all nearly optimal solutions leads
to problems. Considering only the most relevant solutions largely avoids the problems

2
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mentioned above. Not all nearly optimal solutions are equally useful to the DM. Therefore,
if we manage to discard those that are less useful, we will reduce both mentioned problems.
Let us see a graphic example to illustrate what we consider as potentially useful solu-
tions. Suppose we have a MOOP with two design objectives and two decision variables
(see Figure 1). Three solutions x1, x2 and x3 are selected. x1 is an optimal solution (member
of the Pareto set), and it slightly dominates the nearly optimal solutions x2 and x3. x1 and
x2 are very similar alternatives in their parameters (both belong to neighborhood1, the same
area in the parameter space), while x3 is significantly different (it belongs to neighborhood2).
In this scenario, x2 does not provide new relevant information to the DM. This solution is
similar to x1 but with a worse performance in design objectives. Predictably, both will have
similar characteristics, therefore the DM will choose x1 since it obtains a better performance
in the design objectives. However, x3 does provide useful new information to the DM
because it has a similar performance to the optimal ones and is in a different neighborhood.
The solutions in neighborhood1 could be, for example, not very robust or not feasible in
practice. In this context, x3 (and the solutions in neighborhood2) could be a potentially
useful solution due to their significantly different characteristics. It is possible, and often
common, for the DM to analyze in the decision stage additional indicators/objectives not
included in the optimization phase. Thus, the DM can assume a small loss of performance
in the design objectives in exchange for an improvement in a new feature not contemplated
in the optimization process. This analysis can decide the final choice in one way or another.
In short, including solutions of neighborhood2 increases the diversity with useful solutions
and enables the DM to make a better-informed final decision.

x
1

x 2 SET
1

x3

SET
2

neighborhood
2

x2

x1

neighborhood
1

Figure 1. A MOOP example. On the left, the objective space is shown, and on the right, the decision space is shown. SET1 is
the Pareto optimal set and SET2 is a potentially useful nearly optimal set.

Therefore, the potentially useful nearly optimal solutions are those nearly optimal
alternatives that differ significantly in the parameter space [28–30]. Thus, the new set must:
(1) not neglect the diversity existing in the set of nearly optimal alternatives; (2) obtain the
least number of solutions. To achieve both aims, it is necessary to employ an evolutionary
algorithm that characterizes the set of solutions by means of a discretization which takes
into account both the decision space and the objective space, simultaneously. A discretiza-
tion that takes into account only the objective space can lead to the loss of significantly
different nearly optimal alternatives in the decision space. This loss is a drawback because,
as we have previously discussed, these alternatives are potentially useful. On the other
hand, a discretization that takes into account only the decision space can lead to archives
with a huge number of solutions [19] and cause the two problems previously mentioned.
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3. Background

A multi-objective optimization problem can be defined as follows:

min
x∈Q

f (x) (1)

where x = [x1, ..., xk] is defined as a decision vector in the domain Q ⊂ �k and f : Q → �m

is defined as the vector of objective functions f (x) = [ f1(x), ..., fm(x)]. A maximization
problem can be converted into a minimization problem. For each objective to be maximized
max fi(x) = −min(− fi(x)) will be performed. The domain Q is defined by the set of
constraints on x. For instance (but not limited to –any other constraints could be introduced
in a general MOOP–):

xi ≤ xi ≤ xi, i = [1, ..., k] (2)

where xi and xi are the lower and upper bounds of x components.
Consequently, the MOOP obtains a Pareto set PQ (see Definition 2). This set has

solutions non-dominated by any other solution (see Definition 1) in Q.

Definition 1 (Dominance [31]). A decision vector x1 is dominated by another decision vector x2

if fi(x2) ≤ fi(x1) for all i ∈ [1, ..., m] and fj(x2) < f j(x1) for at least one j, j ∈ [1, ..., m]. This is
denoted as x2 � x1.

Definition 2. (Pareto set PQ): is the set of solutions in Q that is non-dominated by any other
solution in Q: PQ := {x ∈ Q|�x

′ ∈ Q : x
′ � x}

Definition 3. (Pareto front f (PQ)): given a set of Pareto optimal solutions PQ, the Pareto front is
defined as:

f (PQ) := { f (x)|x ∈ PQ}

In any MOOP, there is a set of solutions with objective values close to the Pareto front.
These solutions receive several names in the bibliography: nearly optimal, approximate,
or ε-efficient solutions. To formalize the treatment of the nearly optimal solutions, the
following definitions are used:

Definition 4. (−ε-dominance [32]): define ε = [ε1, ..., εm] as the maximum acceptable degrada-
tion. A decision vector x1 is −ε-dominated by another decision vector x2 if fi(x2) + εi ≤ fi(x1)
for all i ∈ [1, ..., m] and fj(x2) + εj < f j(x1) for at least one j, j ∈ [1, ..., m]. This is denoted by
x2 �−ε x1.

Definition 5. (Set of nearly optimal solutions, PQ,ε [30]): is the set of solutions in Q which are
not −ε-dominated by another solution in Q:

PQ,ε := {x ∈ Q|�x
′ ∈ Q : x

′ �−ε x}

The sets defined PQ and PQ,ε usually contain a great, or even infinite, number of
solutions. Optimization algorithms try to characterize these sets using a discrete approx-
imation P∗

Q and P∗
Q,ε. In general, if such an approach has a limited set of solutions, the

computational cost falls. However, the number of solutions must be sufficient to obtain a
good characterization of these sets.

To compare the archiving strategies, it is useful to use a metric. Different metrics are
used in the literature to measure the convergence of the outcome set. An example of these
is the Hausdorff distance (dH [33–35] see Equation (3)).

4
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dH(A, B) : = max(dist(A, B), dist(B, A))

dist(A, B) : = sup
u∈A

dist(u, B)

dist(u, B) : = inf
v∈B

||u − v||
(3)

This metric is a measure of the distance between two sets. Therefore, dH can be used
to measure convergence between the outcome set (or final archive) f (A) to the target set
f (H) of a given MOOP (or archiving strategy). However, dH only penalizes the largest
outlier of the candidate set. Thus, a high value of dH(A, H) can indicate both that A is
a bad approximation of H and that A is a good approximation but contains at least one
outlier. The dH is used by the archiver ArchiveUpdatePQ,εDxy.

To avoid this problem, a new indicator appears in the literature: the averaged Haus-
dorff distance Δp (the standard Hausdorff distance is recoverable from Δp by taking the
limit limp→∞ Δp = dH). This metric (with 1 ≤ p < ∞) assigns a lower value to sets uni-
formly distributed throughout its domain. Δp is based on the known generational distance
metrics (GD [36] and represents how “far” f (H) is from f (A)), and inverted generational
distance (IGD [37] represents how “far” f (A) is from f (H)). However, these metrics are
slightly modified in Δp (GDp and IGDp, see Equation (5)). This modification means that
the larger archive sizes and finer discretizations of the target set do not automatically lead
to better approximations under Δp [34]. Δp measures the diversity and convergence in the
decision and objective spaces. In this work we use Δp with p = 2 (as in [18,38]) so that the
influence of outliers is low.

Δp(X, Y) := max(GDp(X, Y), IGDp(X, Y)) (4)

where

GDp =

(
1

nx

nx

∑
i=1

dist(xi, Y)p

)1/p

IGDp =

(
1

ny

ny

∑
i=1

dist(yi, X)p

)1/p
(5)

where

dist(u, A) := inf
v ∈ A

||u − v|| (6)

To use Δp it is necessary to define the target set H with which to compare the final
archive A obtained by the archivers. The target set is defined in the decision space (H) and
it has its representation in the objective space ( f (H)). The definition of H is possible on the
benchmarks used in this work (where the global and local optimum are known), but this
definition is not trivial. Archive_nevMOGA and ArchiveUpdatePQ,εDxy archivers discard
solutions similar in both spaces at the same time. However, Archive- _nevMOGA, unlike
ArchiveUpdatePQ,εDxy, discards dominated solutions in their neighborhood. targetSelect
looks for diversity in both spaces simultaneously. On the one hand, defining H as the
optimal and nearly optimal solutions that are not similar in both spaces at the same
time, would give the archive ArchiveUpdatePQ,εDxy an advantage. If H is defined as
the set of optimal and nearly optimal solutions non-dominated in their neighborhood,
Archive_nevMOGA would be benefited. However, the archivers have a common goal: to
obtain the solutions close to the optimals in the objective space but significantly different in
the decision space (potentially useful solutions). Consequently, to be as “fair” as possible
we must define H as the set that defines the common objective. Thus, the potentially useful
solutions can be represented by the local Pareto set (see Definition 6).
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Definition 6. (Local Pareto set [5,39]): is the set of solutions in Q that is non-dominated by any
another neighbor solution in Q (where n is a small positive number):

H := {x ∈ Q|�y ∈ Q : ||x − y||∞ ≤ n and y � x}

Figure 2 shows an example of a MOOP with two design objectives and two decision
variables. Sets SET1 and SET2 form the global Pareto set. Both sets, together with SET3
and SET4 form the local Pareto set (since the global Pareto set is also a local Pareto set).
No solution of a local Pareto set is dominated by a neighboring solution. Furthermore, all
the solutions neighboring the local Pareto set are dominated by a neighboring solution,
and therefore they are not part of this set. This can be verified by the colored areas around
the sets SET1, SET2, SET3 and SET4. For example, solutions in the gray area, which are
neighboring solutions to SET3, obtain a worse objective value than SET3. For this reason,
the solutions of the gray area are dominated by neighboring solutions, and therefore are
not part of the local Pareto set. Sets SET3 and SET4 provide the DM with alternatives
potentially useful (significantly different to SET1 and SET2), enabling the DM to make a
more informed final decision. For this work, the ε−dominated solutions (solutions that
are not in the set PQ,ε) will not be considered to be local Pareto solutions (H) because their
degradation in performance is significant for the DM.

x
1

x 2

H := SET
1
  SET

2
  SET

3
  SET

4

SET
3

SET
4

SET
2

SET
1

Figure 2. Visualization of an MOOP in the objective space (on the left) and decision space (on the right). The sets SET1 and
SET2 are the optimal solutions. Both sets and SET3 and SET4 form the local Pareto set.

4. Description of the Compared Archivers

As already discussed above, nearly optimal solutions can be very useful. However,
it is necessary to discretize this set in order to find a reduced set of solutions to avoid the
problems associated with an excessive number of solutions. Furthermore, it is necessary not
to neglect the potentially useful nearly optimal solutions, i.e., nearly optimal alternatives
significantly different (in the decision space) to the optimal solutions. To achieve both
purposes, it is essential to discretize the set of solutions taking into account the decision
and objective spaces at the same time. In this section, three archivers that discretize the set
PQ,ε in both spaces are described.

There are MMEAs and algorithms that consider nearly optimal solutions that of-
fer these solutions: PQ,ε-NSGA-II [28], PQ,ε-MOEA [30], nevMOGA [29], NεSGA [18],
DIOP [10], 4D-Miner [40,41], MNCA [42].

PQ,ε-NSGA-II [28] was one of the first algorithms aimed at finding approximate (nearly
optimal) solutions. PQ,ε-NSGA-II uses the same classification strategy as the algorithm
on which it is based, NSGA-II [43], and therefore, the highest pressure of the population
is taken toward the Pareto set. Thus, this may result in the neighborhoods with only

6
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nearly optimal solutions not being adequately explored [30]. To avoid this problem, the
algorithm PQ,ε-MOEA [30] is created. This algorithm was designed to avoid Pareto set bias.
Nevertheless, PQ,ε-MOEA does not take into account the location of solutions in the decision
space. PQ,ε-MOEA does not then guarantee that the potentially useful alternatives will
not be discarded. To overcome this problem, the nevMOGA [29] algorithm was designed.
This algorithm seeks to ensure that the potentially useful alternatives are not discarded.
DIOP [10] is a set-based algorithm that can maintain dominated solutions. This algorithm
simultaneously evolves two populations A and T. Population A approaches the Pareto
front, and is not provided to the DM, while T is the target population that seeks to maximize
diversity in the decision and objective spaces. MNCA [42] is an evolutive algorithm that
simultaneously evolves multiple subpopulations. In MNCA each subpopulation converges
to a different set of non-dominated solutions. Finally, 4D-Miner [40,41] is an algorithm
especially designed for functional brain imaging problems.

One of the crucial points in an evolutionary multi-objective optimization algo-
rithm is the archiving strategy. The PQ,ε-NSGA-II and PQ,ε-MOEA algorithms share the
ArchiveUpdatePQ,ε archiver. This archiver seeks to characterize all nearly optimal solu-
tions without taking into account the decision space. In [19], different archiving strate-
gies are compared: ArchiveUpdatePQ,ε, ArchiveU pdatePQ,ε Dx , ArchiveU pdatePQ,ε Dy
and ArchiveUpdatePQ,εDxy. On the one hand, ArchiveUpdatePQ,ε gets an excessive num-
ber of solutions. On the other hand, ArchiveUpdatePQ,εDx, ArchiveUpdatePQ,εDy do not
discretize the decision and objective spaces simultaneously. Therefore, these archivers
do not achieve the two purposes discussed above. The mentioned work concludes that
archiver ArchiveUpdatePQ,εDxy is most practical use within stochastic search algorithms.
Furthermore, this archiver is the only one of the archivers compared in this paper that
discretizes the decision and objective spaces simultaneously [27], a factor that we consider
necessary to obtain potentially useful solutions. The archiver ArchiveUpdatePQ,εDxy has
been employed in the recent NεSGA algorithm to maintain a well-distributed represen-
tation in the decision and objective spaces. For this reason, the present work compares
the archiver ArchiveUpdatePQ,εDxy and not ArchiveUpdatePQ,ε, ArchiveUpdatePQ,εDx and
ArchiveUpdatePQ,εDy.

The second archiver included in this comparison is the archiver of the nevMOGA algo-
rithm (Archive_nevMOGA). This archiver characterizes the set of potentially useful solutions
by discretizing both spaces simultaneously. Finally, the archiver of the DIOP algorithm
(targetSelect) is also compared in this work. targetSelect seeks to find the population that max-
imizes an indicator that measures diversity in the decision and objective spaces simultaneously.
Therefore, a metric-based archiver targetSelect is compared to the distance-based archivers
ArchiveUpdatePQ,εDxy and Archive_nevMOGA. The three archivers compared in this work
seek to characterize the potentially useful solutions. The archiver of the MNCA algorithm
has not been included in the comparison because it looks for non-dominated solutions. The
archiver of the 4D-Miner algorithm has also not been included in the comparison because
4D-Miner is a very specific algorithm for functional brain imaging problems.

4.1. ArchiveUpdatePQ,εDxy

ArchiveUpdatePQ,εDxy is the proposed archiving strategy in [19] (see Algorithm 1). As
already mentioned, potentially useful solutions are those that obtain similar performance
(in the design objectives) but differ significantly in their parameters (in the decision space).
This archiver aims to maintain these solutions. This archiver uses, in addition to the
parameter ε (maximum degradation acceptable to the DM, see Definition 4), the parameters
Δx and Δy. Two solutions are considered similar if their distance in the decision space is
less than Δx. Therefore, the parameter Δx is the maximum distance, in the decision space,
between two similar solutions. Two alternative solutions obtain a similar performance
if their distance in the objective space is less than Δy. Therefore, the parameter Δy is the
maximum distance between two solutions to be considered similar in the objectives space.
Both parameters are measured using the Hausdorff distance [34] (dH , see Equation (3)). The
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archive A stores the set of obtained alternatives. A new solution p from P (new candidate
solutions) will only be incorporated in A if: (1) p is a nearly optimal solution; and (2) A
does not contain any solution similar to p, in the decision and objective spaces at the same
time. If the new solution p is stored in archive A, the new set of optimal and nearly optimal
solutions (Â) belonging to archive A is calculated. Thus, a solution a ∈ A will be removed
if: (1) it is not a nearly optimal solution (p ≺−(ε+Δy) a); and (2) the distance to the set Â
fulfills the condition dist(a, Â) ≥ 2Δx.

Algorithm 1 A := ArchiveUpdatePQ,εDxy(P, A0, ε, Δx, Δy)

Require: population P, archive A0, ε ∈ Rm
+, Δx ∈ R+, Δy ∈ R+

Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if (�a1 ∈ A : a1 ≺−ε p) and (�a2 : (dH( f (a2), f (p)) ≤ Δy and dH(a2, p) ≤ Δx))

then
4: A ← A ∪ {p}
5: Â = {a1 ∈ A|�a2 ∈ A : a2 ≺−(ε+Δy) a1}
6: for all a ∈ A \ Â do
7: if p ≺−(ε+Δy) a and dist(a, Â) ≥ 2Δx then

8: A ← A \ {a}
9: end if

10: end for
11: end if
12: end for

The archiver ArchiveUpdatePQ,εDxy goes through all the set of candidate solutions
p ∈ P, and in the worst case, the algorithm compares them with all the solutions a ∈ A.
Thus, the complexity of the archiver is O(|P||A|) [44]. Also, ArchiveUpdatePQ,εDxy has a
maximum number of solutions |A(Dxy)| [19] which is given by:

|A(Dxy)| ≤ |A(Dx
xy)||A(Dy

xy)| (7)

where |A(Dx
xy)| is the maximum number of neighborhoods that the decision space can

contain (based on Δx) and |A(Dy
xy)| is the maximum number of solutions that can exist in

each neighborhood (based on Δy and ε), and are defined as:

|A(Dx
xy)| ≤

k

∏
i=1

(
1

Δx
+ 1
) k

∏
j=1

(xj − xj) (8)

|A(Dy
xy)| ≤

(
1

Δy

)m−1 m

∑
i=1

(
εi
Δy

+ 3
) m

∏
i=1

i 
=j

(Mj − mj + Δy) (9)

xj and xj are the bounds in the decision space (PQ,ε+2Δy is included in [x1, x1]...[xk, xk]) and
Mj and mj are the bounds in the objective space of the set to discretize f (PQ,ε+2Δy). Also, it
is assumed that any εi is greater than Δy.

4.2. Archive_nevMOGA

Archive_nevMOGA is the archiving strategy used by the nevMOGA evolutionary
algorithm [29]. This archiver, just as ArchiveUpdatePQ,εDxy, aims to guarantee solu-
tions that obtain similar performance to the optimals, but are significantly different in
the decision space. The archiver Archive_nevMOGA uses the same three parameters as
ArchiveUpdatePQ,εDxy (ε, Δx, Δy). However, there are differences in the definition of some
parameters in this archiver with respect to ArchiveUpdatePQ,εDxy: (1) Δx is a vector that

8
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contains the maximum distances (in the decision space) between similar solutions for each
dimension. Thus, two individuals a and b are similar if: |ai − bi| ≤ Δxi ∀i ∈ [1, ..., k]. (2) Δy
is also a vector that contains the maximum distances (in the objective space) between
solutions with similar performance for each dimension. Thus, two individuals a and b
have a similar performance if: | fi(a)− fi(b)| ≤ Δyi ∀i ∈ [1, ..., m].

The archiver Archive_nevMOGA will add a new candidate solution p to the archive
A if the following conditions are met simultaneously: (1) p is a nearly optimal solution;
(2) there is no similar solution to p (in the decision space) ∈ A that dominates it; and (3)
there is no similar solution to p in A in both spaces at the same time (if it exists, and p
dominates it, it will be replaced). If a solution p is incorporated in the archive A, it will
remove from A: (1) the similar individuals (in the parameter space) that are dominated by
p and (2) the individuals ε−dominated by p.

The complexity of the archiver Archive_nevMOGA is equivalent to the complexity
of ArchiveUpdatePQ,εDxy previously defined (O(|P||A|)). Moreover, Archive_nevMOGA
has a maximum number of solutions |A(nMOGA)| which is given by:

|A(nMOGA)| ≤ |A(nMOGAx)||A(nMOGAy)| (10)

where |A(nMOGA)|x is the maximum number of neighborhoods that the decision space
can contain (based on Δx) and |A(nMOGA)|y is the maximum number of solutions that
can exist in each neighborhood (based on Δy and ε), and are defined as:

|A(nMOGAx)| ≤
k

∏
i=1

(
1

Δxi

+ 1
) k

∏
j=1

(xj − xj) (11)

|A(nMOGAy)| ≤ ∏m
i=1 n_boxi

n_boxmax
(12)

where n_boxi = (Mi − mi)/Δyi , n_boxmax = maxi n_boxi and Mj and mj are the bounds in
the objective space of the set to discretize f (PQ,ε).

The archive size with respect to the decision space is equivalent for the com-
pared archivers (A(Dx

xy) and A(nMOGAx)). However, there is a difference between
A(Dy

xy) and A(nMOGAy) (objective space). The archiver Archive_nevMOGA, unlike
ArchiveUpdatePQ,εDxy, discards nearly optimal solutions dominated by a similar so-
lution in the decision space. Thus, in the worst case, Archive_nevMOGA will obtain
the best solutions (non-dominated) in each neighborhood. These solutions will have a
maximum number of alternatives depending on Δy . However, ArchiveU pdatePQ,εDxy ,
in the worst case, will obtain, in each neighborhood, in addition to the best solutions,
additional solutions. These additional solutions are dominated by neighboring solu-
tions, but are considered solutions with different performance (based on Δy). As a
result, the archive of Archive_nevMOGA will have fewer solutions than the archive of
ArchiveU pdatePQ,εDxy . Therefore, we can deduce that the archiver Archive_nevMOGA
has a lower computational cost than ArchiveU pdatePQ,εDxy because its archive con-
tains fewer solutions (the candidate solutions are compared with a smaller number
of solutions).

4.3. targetSelect

targetSelect is the archiving strategy used by the DIOP evolutionary algorithm [10].
This archiver seeks to obtain a diverse set of solutions (keeping solutions close to the Pareto
set) in the decision and objective spaces. A = targetSelect(F, T, μt, ε) has as inputs: an
approximation to the Pareto front F, the set of solutions to be analyzed T, the size of the
set target μt, and ε. This archiver selects μt solutions from set T. The goal is to find the
population A, with size μt, to maximize G(T) (see Equation (13)). G(T) is defined as the
sum of the product between a metric and its respective weight.

G(T) := ωo · Do(T) + ωd · Dd(T), |T| = μ with qF(t) ≤ ε ∀t ∈ T, ωo + ωd = 1 (13)

9
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where Do and Dd are metrics that measure diversity in the objective and decision spaces
respectively, and qF is a distance metric defined as:

qF(x) := min{ε | ∃y ∈ F : x �ε y} (14)

Do is an indicator that measures diversity and convergence to the Pareto front, and Dd
is an indicator that measures diversity in the decision space. In this work, as in [10], Do and
Dd were specified by the hypervolume indicator [45] and the Solow–Polasky diversity
measure [46], respectively. An advantage of the archiver targetSelect is that you can directly
and arbitrarily specify the archive size.

5. Materials and Methods

In this section, the MOOPs, on which the three archivers will be compared, will be
defined. In addition, the methodology for carrying out the comparison is introduced.

5.1. Definition of MOOPs

The archivers will be compared on two benchmarks and a real engineering example.
Benchmarks have a very low computational cost for the objective function. For this reason,
it is inexpensive to obtain a target set (with a very fine discretization in the decision space)
H. This discrete set is necessary for the use of the metric Δp (see Section 3). Furthermore,
the definition of this set must be as “fair” as possible. Therefore, for the benchmarks, the
target set H is defined as the local and global Pareto set (see justification in Section 3). This
set is obtained by discretizing the decision space with 10,000,000 solutions in the range
of the parameters. Furthermore, the target set H has its representation in the objective
space. In the real engineering example, obtaining a set H would be computationally very
expensive (or even unaffordable). Therefore, this set is not defined in this MOOP. By
means of these problems it is possible to analyze the behavior of the archivers for different
characteristics in the MOOP: multimodal solutions; local Pareto sets; or discontinuous
Pareto fronts. However, there are other features of MOPs that are not analyzed in this
article (such as MOPs with many objectives and/or decision variables).

5.1.1. Benchmark 1

Benchmark 1 (see Equation (15)) is a test problem called SYM-PART defined in [47]
widely used in the literature [18,20,48–50] for the evaluation of algorithms that characterize
nearly optimal or multimodal solutions. Benchmark 1 has the Pareto set located in a single
neighborhood, and it also has eight local Pareto set that overlap in the objective space
(see Equation (20) and Figure 3). Thus, this benchmark is very useful to observe if the
compared archivers can adequately characterize the nine existing neighborhoods, and
provide all the existing diversity to the DM.

min
x

f (x) = [ f1(x) f2(x)] (15)

f1(x) = (x1 − t1(c + 2a) + a)2 + (x2 − t2b)2 + δt

f2(x) = (x1 − t1(c + 2a)− a)2 + (x2 − t2b)2 + δt
(16)

where

t1 = sgn(x1)min
(⌈

|x1|−a−c/2
2a+c

⌉
, 1
)

t2 = sgn(x2)min
(⌈

|x2|−b/2
b

⌉
, 1
)

and

δt =

{
0 f or t1 = 0 and t2 = 0
0.1 else

10
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subject to:

−20 ≤ x1 ≤ 20

−20 ≤ x2 ≤ 20
(17)

using a = 0.5, b = 5 and c = 5.
This MOOP contains one global Pareto set:

P0,0 = [−0.5, 0.5]× {0} = PQ (18)

as well as the following eight local Pareto sets:

P−1,−1 = [−6.5,−5.5]× {−5}
P0,−1 = [−0.5, 0.5]× {−5}
P1,−1 = [5.5, 6.5]× {−5}
P−1,0 = [−6.5,−5.5]× {0}
P1,0 = [5.5, 6.5]× {0}

P−1,1 = [−6.5,−5.5]× {5}
P0,1 = [−0.5, 0.5]× {5}
P1,1 = [5.5, 6.5]× {5}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Local Pareto set (19)

Therefore, the target set H is defined as:

H := P0,0 ∪ P−1,−1 ∪ P0,−1 ∪ P1,−1 ∪ P−1,0 ∪ P1,0 ∪ P−1,1 ∪ P0,1 ∪ P1,1 (20)

Figure 3. Target set H for the benchmark 1 formed by the global (blue) and local (red) Pareto set.

To evaluate the archivers on benchmark 1, the parameters are defined in Table 1.
The parameters ε, Δx and Δy are defined based on prior knowledge of the problem. The
targetSelect archiver is based on an indicator, and therefore has different parameters from
the rest of the compared archives. For the choice of the parameter μt, based on the size of
the archives obtained by the rest of the archivers, the following values have been analyzed:
μt = {100, 75, 50}. For the choice of the ωo parameter, the following parameters suggested
in [10] have been analyzed: ωo = {0, 0.7692, 0.9091, 0.9677, 1}. Among all these values,
μt = 100 and ωo = 0.9677 have been defined as the parameters that obtain the best
performance, with respect to Δp, for the uniform dispersion. For random dispersion,
ωo = 0.7692 obtain the best performance.

11
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Table 1. Parameters for benchmark 1.

Parameters Value

ε [0.15 0.15]

ArchiveUpdatePQ,εDxy

Δx 1

Δy 0.2

Archive_nevMOGA

Δx [1 1]

Δy [0.2 0.2]

targetSelect

μt 100

ωo 0.9677 (uniform dispersion)

ωo 0.7692 (random dispersion)

5.1.2. Benchmark 2

The benchmark 2 (see Equation (21)) is an adaptation of the modified Rastrigin bench-
mark [51–54]. Figure 4 show the global and local Pareto set H of benchmark 2. This
benchmark has a discontinuous Pareto front made up of solutions in different neighbor-
hoods. In addition, it also provides nearly optimal solutions significantly different from
the optimal solutions (in different neighborhoods).

min
x

f (x) = [ f1(x) f2(x)] (21)

f1(x) = −(
2

∑
i=1

10 + 9cos(2π · ki · xi))(1 −
√
(x1 − 0.65)2 + (x2 − 0.5)2)

f2(x) = min((x1 − 0.65) + (x2 − 0.5), (x1 − 0.65) + (x2 − 0.25), (x1−
0.65) + (x2 − 0.75), (x1 − 0.35) + (x2 − 0.5), (x1 − 0.35) + (x2 − 0.75),

(x1 − 0.35) + (x2 − 0.25))

(22)

where k1 = 2 and k2 = 3, and subject to:

0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 4
(23)

-40 -20 0
f1(x)

-1.4

-1

-0.6

-0.2

f 2
(x
)

Nearly optimal set
Pareto set
Local Pareto set

0 0.25 0.5 0.75
x1

0

0.2

0.4

0.6

x 2

Figure 4. Target set H for the benchmark 2 formed by the global (blue) and local (red) Pareto set.
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To analyze the archivers on the benchmark 2, we define the parameters of Table 2. The
parameters ε, Δx and Δy are defined based on prior knowledge of the problem. Following
the same procedure as the previous benchmark, μt = 150 (in this case μt = {200, 150, 100}
has been analyzed) and ωo = 0.9677 is defined as the parameters that obtains the best
performance, with respect to Δp, for the uniform dispersion. For random dispersion,
ωo = 0.9091 obtains the best performance.

Table 2. Parameters for benchmark 2.

Parameters Value

ε [2.5 0.15]

ArchiveUpdatePQ,εDxy

Δx 0.15

Δy 0.25

Archive_nevMOGA

Δx [0.15 0.15]

Δy [0.25 0.25]

targetSelect

μt 150

ωo 0.9677 (uniform dispersion)

ωo 0.9091 (random dispersion)

5.1.3. Identification of a Thermal System

Finally, a MOOP is defined to solve a real engineering problem: identification of a
thermal system. In this problem, the energy contribution inside the process is due to the
power dissipated by the resistance inside it (see Figure 5). Air circulation inside the process
is produced by a fan, which constantly introduces air from outside. The actuator is made
up of a voltage source which is controlled by voltage. The actuator input range is [0 100]
% ([0 7.5] V). Two thermocouples are used to measure the resistance temperature and the
air temperature in the range [−50 250] ◦C. Figure 6 shows the signals that will be used in
the identification process. The ambient temperature Ta is considered constant and equal to
17 ◦C for the entire identification test.

Figure 5. Block diagram of the thermal system.

Taking into account the physical laws of thermodynamics [55], the initial structure of
the model can be defined using the following differential equations, where heat losses due
to convection and conduction are modeled, as well as losses due to radiation:
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Ṫ(t) =
1

1000

(
x1v(t)2 − x2(T(t)− Ta(t))− x3

(
273.0 + T(t)

100

)4
)

(24)

where T(t) is the process output temperature and state variable in ◦C, v(t) is the input
voltage to the process in volts, Ta(t) is the ambient temperature in ◦C and x = [x1 x2 x3]
are the parameters of the model to estimate.

The MOOP is defined as follows:

min
x

f (x) = [ f1(x) f2(x)] (25)

subject to:
x ≤ x ≤ x

where:
f1 =

1
τ

∫ τ

0
|T̂ − T|dt (26)

f2 = max
i ∈ 1...τ

|T̂i − Ti| (27)

τ = 2500 is the duration of the identification test, variables with circumflex accent are
process outputs (experimental data), variables without circumflex accent are the model
outputs, x the parameter vector:

x = [x1 x2 x3] (28)

and x and x (see Table 3) the lower and upper limits of the parameter vector x which define
the decision space Q.

Figure 6. Identification test of the thermal system.

Table 3. Lower (x) and upper (x) limits of the parameters x.

Limits θ1 θ2 θ3

x 0.01 2 0

x 0.15 10 0.8

14
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In this MOOP, the design objectives measure the mean and maximum error between
the temperatures of the process outlet and the model. The parameters to be estimated and
the design objectives have a physical meaning. This fact makes it easier to choose the ε, Δx
and Δy (see Table 4). The ε parameter (maximum acceptable degradation) is the same for
all archivers. Δy is similar for ArchiveUpdatePQ,εDxy and Archive_nevMOGA, taking into
account the difference in vector size. However, Δx is different for ArchiveUpdatePQ,εDxy
and Archive_nevMOGA. For ArchiveUpdatePQ,εDxy, Δx = 0.1. A lower value increases
significantly higher number of solutions. A higher value gives a poor approximation to the
set of optimal and nearly optimal solutions. For Archive_nevMOGA, Δx = [0.0015 0.2 0.1].
In this case, Δx is independent for each dimension in the decision space, being different for
each parameter due to its different limits (see Table 3). For targetSelect, μt = 78 solutions
to obtain the same number of solutions as Archive_nevMOGA. In this way, both archivers
will have equal conditions. Additionally, ωo = 0.7692 is defined to give greater weight to
diversity in the decision space.

Table 4. Parameters for identification of thermal system.

Parameters Value

ε [0.25 0.25]

ArchiveUpdatePQ,εDxy

Δx 0.1

Δy 0.025

Archive_nevMOGA

Δx [0.0015 0.2 0.1]

Δy [0.025 0.025]

targetSelect

μt 78

ωo 0.7692

5.2. Archivers Comparison Procedure

The procedure performed to carry out the archiver comparison is different on the
benchmarks and on the real example. Benchmarks have a very low computational cost for
the objective function. Therefore, it is possible to evaluate large populations that discretize
the entire search space. These populations are entered in the archiver as input population.
To analyze the behavior of the archivers on different types of populations, a uniform and
random distribution is used to obtain these initial populations.

Because the computational cost of the objective functions of the engineering problem
are significantly higher, it is not feasible to test each archiver with random or exhaustive
searches as has been done with the benchmarks. Thus, the archiver has been embedded in a
basic evolutionary algorithm. In addition to the reduction of computational cost, this enables
observing the impact of each archiver when incorporated into an evolutionary mechanism.

5.2.1. Benchmarks

For the comparison of the archivers on the two benchmarks presented, the archivers
will be fed in two ways: (1) by a uniform distribution; (2) by a random distribution
of solutions in the search space. The comparison of the results will be made using the
averaged Hausdorff distance Δp [34] (see Equation (4)). This metric measures the averaged
Hausdorff distance between the outcome set (or final archive) f (A) and the target set f (H)
(local Pareto set in this paper) of a given MOOP. Since Δp considers the averaged distances
between the entries of f (A) and f (H), this indicator is very insensitive to outliers. This
metric measures the diversity and convergence towards the target set. Furthermore, this
metric can be applied both in the decision and objective space.
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To carry out the comparison of the archiving strategies with data of a uniform disper-
sion, each archiver is fed with a file of 100,000 solutions uniformly distributed throughout
the domain Q (generating a hypergrid). These solutions are introduced in a random or-
der. This process is repeated with 25 different files, where each file slightly displaces the
generated hypergrid vertically and/or horizontally on the search space.

To carry out the analysis with data of a random dispersion, each archiver is fed with a
file of 100,000 solutions randomly distributed throughout the domain Q. This process is
repeated with 25 different files, avoiding as far as possible the random component.

5.2.2. Identification of Thermal System

In this example, we are going to analyze the different archivers on a multi-objective
generic optimization algorithm [23,34] (see Algorithm 2). This algorithm generates the
initial population randomly with NindP0 individuals, obtaining the initial archive A0
(through the archiver). Subsequently, in each iteration, new solutions are generated and
the archive At is updated (using the selected archiver). The Generate() function generates
new individuals in each iteration. To do this, two solutions are randomly selected from
the current file At−1. A random number u ∈ [0 1] is generated. If u > Pcm (probability of
crossing/mutation) a crossing is made. The crossover generates two new solutions using
the simulated binary crossover (SBX [56]) technique. If u ≤ Pcm a mutation is performed.
The mutation generates two solutions through the polynomial mutation [43]. In this way,
the three archivers are compared using the same evolutionary strategy. For this example,
an initial population of 500 individuals (NindP0 = 500), a probability of crossing/mutation
of 0.2 (Pcm = 0.2), and 5000 generations are used. Therefore, 10,500 solutions are evaluated
(500 + 2 × 5000) for each archiver.

Algorithm 2 Generic multi-objective optimization algorithm
1: P0 ⊂ Q � Random selection
2: A0 := Archiver(P0, ∅)
3: for t := 1:Number of iterations do
4: Pt := Generate(At−1)
5: At := Archiver(Pt, At−1)
6: end for

6. Results and Discussion

This section shows the results obtained on the two benchmarks and the real example
previously introduced.

6.1. Benchmark 1 with Uniform Dispersion

The archivers are tested on 25 different input populations obtained by uniform dis-
persion. Figure 7 shows the median results of archive A on the benchmark 1 for both
decision and objective spaces with respect to Δp(A, H) in decision space. As can be seen,
the archivers make a good approximation to the target set H, characterizing the nine neigh-
borhoods that compose it. However, there are differences between the sets found by the
archivers. First, the Archive_nevMOGA archiver obtains fewer solutions. The number of
solutions μt = 100 for the targetSelect is user-defined, but a smaller size makes Δp worse
for both spaces. The archive A obtained by ArchiveUpdatePQ,εDxy obtains a larger number
of solutions.

The targetSelect archiver obtains a better approximation to the Pareto front than the other
archivers. This is because the weight ωo has a high value, giving greater weight to the Do indica-
tor that measures convergence and diversity for the Pareto front. The ArchiveUpdatePQ,εDxy
and Archive_nevMOGA archivers do not select a candidate solution p (even if p belongs to the
Pareto set) if an alternative already exists in the current archive that is similar in both spaces (in
Archive_nevMOGA, p is selected if it dominates the similar solution). These archivers could
obtain a better approximation to the Pareto front by reducing the parameter Δy (parameter
with which the degree of similarity in the objective space is decided), but it probably also
implies obtaining a greater number of solutions.
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Regarding the local Pareto set, the archive Archive_nevMOGA obtains a better ap-
proximation in the comparison. ArchiveUpdatePQ,εDxy and targetSelect obtain solutions
in all neighborhoods where nearly optimal solutions exist. However, these solutions are
rarely located on the lines that define the local Pareto set.

Notice that ArchiveUpdatePQ,εDxy and Archive_nevMOGA archivers obtain ε− domi-
nated solutions. In ArchiveUpdatePQ,εDxy, it is possible that a solution in A that is no longer
nearly optimal due to the apparition of a new candidate solution p. p may not be removed
because it does not satisfy condition in the line 7 of Algorithm 1. In Archive_nevMOGA, a
new candidate solution p can be added to the archive A through the condition of line 8 of
Algorithm 3. In some cases, solutions that are not nearly optimal due to the appearance of
p (by line 8 of Algorithm 3) are not eliminated. Therefore, the archive A obtained by both
archivers may contain solutions that do not belong to the nearly optimal set.

Figure 7. Median result of archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
uniform dispersion on benchmark 1.
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Figure 8 shows the boxplot of the indicators Δp( f (A), f (H)), Δp(A, H) and archive
size for the 25 tests performed. Archive_nevMOGA achieves a better approximation in
the decision and objective spaces, and obtains fewer solutions. targetSelect also obtains
a better approximation in both spaces with fewer solutions than ArchiveUpdatePQ,ε Dxy.
ArchiveUpdatePQ,εDxy obtains greater variability among the 25 archives obtained. There-
fore, Archive_nevMOGA has achieved, in a better way, the two main objectives: not
neglecting the diversity of solutions (locates all nine neighborhoods) and obtains a reduced
number of solutions (simplifying the optimization and decision stages).

Algorithm 3 A := Archive_nevMOGA(P, A0, ε, Δx, Δy)

Require: population P, archive A0, ε ∈ Rm
+, Δx ∈ Rk

+, Δy ∈ Rm
+

Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if (�a1 ∈ A : a1 ≺−ε p) and (�a2 ∈ A : |a2 − p| ≤ Δx and a2 ≺ p) and (�a3 :

|a3 − p| ≤ Δx and | f (a3)− f (p)| ≤ Δy) then
4: A ← A ∪ p
5: if ∃a4 ∈ A : p ≺−ε a4 or |a4 − p| ≤ Δx and p ≺ a4 then
6: A ← A \ a4
7: end if
8: else if ∃a5 : |a5 − p| ≤ Δx and | f (a5)− f (p)| ≤ Δy and p ≺ a5 then
9: a5 := p

10: end if
11: end for

PQeDxy nevMOGA targetSelect

0.1

0.2

0.3

p
 Decision Space

PQeDxy nevMOGA targetSelect

0.1

0.3

0.5
p
 Objective Space

Figure 8. Boxplot of Δp(A, H) (decision space), Δp( f (A), f (H)) (objective space) and archive size with a uniform dispersion
on the benchmark 1.

6.2. Benchmark 1 with Random Dispersion

The archivers are tested on 25 different input populations obtained by random dispersion.
Figure 9 shows the archive A, with median result for Δp(A, H). The archivers characterize the
nine neighborhoods that form the target set H. The archive A obtained by Archive_nevMOGA
has a smaller number of solutions. Decreasing the number of solutions μt ≤ 100 for the
archive targetSelect makes Δp worse in both spaces. Comparing Figures 7 and 9, targetSelect
in random dispersion produces a worse approximation of the Pareto front than in uniform
search. This is for two reasons: (1) the lower value of the weight ωo = 0.7692 (lower weight
of the metric Do, which measures convergence in Pareto front); (2) the initial population has
been obtained in a random way (meaning certain areas have not been adequately explored).
Figure 10 shows the boxplot, of the 25 archives obtained in the tests. Archive_nevMOGA
obtains better results in both spaces, also obtaining a smaller number of solutions. On the
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benchmark 1, the approximations obtained by the archivers in a random dispersion are slightly
worse than in a uniform dispersion.

Figure 9. Median result of Archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
random dispersion on benchmark 1.
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6.3. Benchmark 2 with Uniform Dispersion

The archive A, with the median result (in the decision space), for each archiver is
shown in Figure 11. The archivers locate the neighborhoods where nearly optimal solutions
are found. The archive of Archive_nevMOGA again obtains fewer solutions. Keep in mind
that decreasing μt = 150 for targetSelect causes a considerable increase in the variability of
the results obtained Δp(A, H) for the 25 tests. targetSelect obtains a better approximation
to the Pareto front due to the high value of the weight ωo. However, Archive_nevMOGA
obtains solutions closer to the local Pareto set. This is because targetSelect seeks to achieve
the greatest diversity in the decision space (through Dd) without taking into account
whether these solutions are worse than a close solution (if they are not optimal).

Figure 12 shows the boxplot, of the 25 archives obtained for the archivers, for the indi-
cator Δp in the decision and objective spaces and the archive size. Regarding the decision
space, Archive_nevMOGA obtains a better approximation to the target set than its competi-
tors. Regarding the objective space, Archive_nevMOGA and targetSelect obtain a similar
minimum value. However, targetSelect obtains worse variability. Therefore, as occurred
with benchmark 1, the archiver Archive_nevMOGA achieves a better approximation in
both spaces and obtains a smaller number of solutions.

PQeDxy nevMOGA targetSelect

0.1

0.2

0.3

p
 Decision Space

PQeDxy nevMOGA targetSelect

0.1

0.3

0.5
p
 Objective Space

Figure 10. Boxplot of Δp(A, H) (decision space), Δp( f (A), f (H)) (objective space) and archive size with a random dispersion
on the benchmark 1.

6.4. Benchmark 2 with Random Dispersion

Figure 13 shows the archive A, which obtains a median result for Δp(A, H) for the
archivers. Again, the archiver Archive_nevMOGA obtains significantly fewer solutions
while also obtaining a better characterization of the target set H. Figure 14 shows the
boxplot of the archivers. The archiver Archive_nevMOGA obtains a better value of Δp
in both spaces. Regarding the objective space, targetSelect obtains results similar to
Archive_nevMOGA but worse variability. The archiver Archive_nevMOGA obtains fewer
solutions, which simplifies the optimization and decision stages. Using the random search,
ArchiveUpdatePQ,εDxy and Archive_nevMOGA perform slightly worse than the uniform
search. targetSelect obtains slightly better results than the uniform search.
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Figure 11. Median result of archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
uniform dispersion on the benchmark 2.
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Figure 12. Boxplot of Δp(A, H) (decision space), Δp( f (A), f (H)) (objective space) and archive size with a uniform dispersion
on the benchmark 2.

6.5. Identification of a Thermal System

Figure 15 shows the final archive A obtained when using the three archivers inside
a compared basic optimization algorithm. In this example, the obtained archives are
compared by pairs to better observe the differences between them.

The three archivers obtain diversity in the decision space, and convergence in the
Pareto front. The first thing that stands out is the large number of solutions (610 solutions)
obtained by the archive ArchiveUpdatePQ,εDxy. This high number of solutions complicates
the optimization and decision phases. For each iteration, the newly generated solutions
must be compared with the solutions in the current file A(t). Therefore, many solutions in
the file A(t) implies a higher computational cost. In addition, a high number of solutions
makes the final decision of the DM more difficult. This large number of solutions can be
reduced by increasing the parameters Δx and Δy. However, this increase also implies a
worse discretization in both spaces. ArchiveUpdatePQ,εDxy obtains a worse approximation
to the Pareto front.

The results show more similarities with respect to the other two archivers. Archiver
Archive_nevMOGA obtains 78 solutions. To compare under similar conditions, we set the
size of the file obtained by targetSelect to 78 solutions (μt = 78). In this way, both archivers
obtain the same number of solutions. The set of solutions found by both archivers are
different. With respect to the Pareto front, both archivers achieve a good approximation
in the range f1(x) = [0.3 0.8]. However, Archive_nevMOGA does not get solutions in the
range f1(x) = [0.8 0.9] of the Pareto front. Therefore, in this example, targetselect gets a
little more diversity in the Pareto front.

targetSelect focuses on obtaining, in addition to a good convergence in the Pareto
front, the greatest diversity in the decision space (using Dd, see Section 4.3). However,
solutions that provide greater diversity may be worse than neighboring solutions. For
example, Figure 15 shows the solution x1 obtained by Archive_nevMOGA. This solution
has similar parameters to the neighborhood1 solutions (see decision space). x1 performs
better ( f (x1)) than all the neighborhood1 solutions obtained by targetSelect. Therefore,
Archive_nevMOGA would eliminate all these solutions (dominated in its neighborhood
by x1). targetSelect maintains them because they increase the diversity in the decision
space. This happens repeatedly in this MOOP. For this reason, targetSelect obtains nearly
optimal solutions farther from the Pareto front than obtained by Archive_nevMOGA. These
solutions are in the contour/ends of the plane that form the optimal and nearly optimal
solutions in the decision space, and therefore, they obtain a better diversity under the Dd
indicator. Archive_nevMOGA could find solutions closer to the contour/ends of the plane
formed in the decision space (as is the case with targetSelect) by reducing the parameter Δx,
although this would imply obtaining a larger number of solutions. Therefore, depending
on the needs or preferences of the DM, the use of one archiver or another may be more
appropriate. This archiver can be embedded in most of the multi-objective algorithms avail-
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able. ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect archivers are currently
built into the algorithms NεSGA, nevMOGA and DIOP respectively.
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Figure 13. Median result of Archive A obtained by ArchiveUpdatePQ,εDxy, Archive_nevMOGA and targetSelect with a
random dispersion on benchmark 2.
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Figure 14. Boxplot of Δp(A, H) (decision space), Δp( f (A), f (H)) (objective space) and archive size with a random dispersion
on the benchmark 2.
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Figure 15. Archive A obtained with a generic algorithm and the archivers ArchiveUpdatePQ,εDxy, Archive_nevMOGA and
targetSelect for the identification of the thermal system.
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7. Conclusions

In this paper, the characterization of nearly optimal solutions potentially useful in
a MOOP has been addressed. In this type of problem, in practice, the DM may wish to
obtain nearly optimal solutions, since they can play a relevant role in the decision-making
stage. However, an adequate approximation to this set is necessary to avoid an excessive
number of alternatives that could hinder the optimization and decision-making stages. Not
all nearly optimal solutions provide the same useful information to the DM. To reduce the
number of solutions to be analyzed, we consider potentially useful solutions (in addition to
the optimals) that are close to the optimals in objective space—but which differ significantly
in the decision space. To adequately characterize this set, it is necessary to discretize the
nearly optimal solutions by analyzing the decision and objective spaces simultaneously.

This article compares different archiving strategies that perform this task: Archive-
UpdatePQ,εDxy, Archive_nevMOGA and targetSelect. The main objective of the archivers
is to obtain potentially useful solutions. This analysis is of great help to designers
of evolutionary algorithms who wish to obtain such solutions. In this way, design-
ers will have more information to choose their archivers based on their preferences.
ArchiveUpdatePQ,εDxy and Archive_nevMOGA are two distance-based archivers. Both
archivers simultaneously discard solutions that are similar in decision and objective spaces.
However, Archive_nevMOGA, in contrast to ArchiveUpdatePQ,εDxy, discards solutions
dominated by a neighboring solution in the decision space. targetSelect is an archive based
on an indicator that measures the diversity in both spaces simultaneously. targetSelect,
unlike the other archivers, can directly and arbitrarily specify the archive size. This can
be an advantage. The archivers are evaluated using two benchmarks. They obtain a good
approximation to the set of potentially useful solutions, characterizing the diversity exist-
ing in the set of nearly optimal solutions. As discussed in [19], the ArchiveUpdatePQ,εDxy
archiver is more practical than other archivers in the literature. However, this archiver, as
demonstrated in this paper, obtains significantly more solutions than its competitors in
this paper. This can make the optimization and decision phase more difficult. In addition,
Archive_nevMOGA obtains a better approximation to the target set H under the averaged
Hausdorff distance Δp. In addition, Archive_nevMOGA obtains a smaller number of solu-
tions, which speeds up the optimization process and facilitates the decision-making stage.
However, fewer solutions can also decrease diversity (which can lead to degraded global
search capabilities).

Finally, the compared archivers are analyzed on a real engineering example. This
real example is the identification of a thermal system. To carry out this analysis, a generic
multi-objective optimization algorithm is used, in which it is possible to select different
archivers. This enables a more realistic comparison of the impact of the archivers on the
entire optimization process.

The three archivers obtain the existing diversity in the set of optimal and nearly optimal
solutions. In this last example, we can see how the archive obtained by ArchiveUpdatePQ,εDxy
obtains a very high number of solutions, complicating the optimization and decision stages.
Archive_nevMOGA and targetSelect obtain the same number of solutions. Both archivers
obtain an adequate Pareto front. However, targetSelect gets more diversity on the Pareto front.
The main difference between the two archivers is in the set of nearly optimal solutions. On the
one hand, Archive_nevMOGA obtains solutions closer to the Pareto front, but significantly
different in the decision space. On the other hand, targetSelect obtains the solutions that
provide the greatest diversity in the decision space, even though these solutions are farther
away from the Pareto front, and therefore, offer significantly worse performance.

Finally, this analysis suggests two possible future lines of research: (1) design of new
evolutionary algorithms, which characterize the nearly optimal solutions, using some of the
archivers compared in this work and (2) design of new archivers that improve the current ones.
For example, the clustering techniques could improve the archivers compared in this work.
These techniques, not analyzed in this work, allow the location of new neighborhoods, allowing
their exploration and evaluation. In this way, the optimization process could be improved.
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Abstract: Including designer preferences in every phase of the resolution of a multi-objective opti-
mization problem is a fundamental issue to achieve a good quality in the final solution. To consider
preferences, the proposal of this paper is based on the definition of what we call a preference basis
that shows the preferred optimization directions in the objective space. Associated to this preference
basis a new basis in the objective space—dominance basis—is computed. With this new basis the
meaning of dominance is reinterpreted to include the designer’s preferences. In this paper, we show
the effect of changing the geometric properties of the underlying structure of the Euclidean objective
space by including preferences. This way of incorporating preferences is very simple and can be
used in two ways: by redefining the optimization problem and/or in the decision-making phase. The
approach can be used with any multi-objective optimization algorithm. An advantage of including
preferences in the optimization process is that the solutions obtained are focused on the region of
interest to the designer and the number of solutions is reduced, which facilitates the interpretation
and analysis of the results. The article shows an example of the use of the preference basis and
its associated dominance basis in the reformulation of the optimization problem, as well as in the
decision-making phase.

Keywords: multi-objective decision-making; Pareto front; multi-objective optimization; preference
in multi-objective optimization

1. Introduction

In a design problem posed as a multi-objective optimization, there is not a single
solution. Therefore, the designer—decision maker (DM in what follows)—must get, from
the set of optimal solutions—Pareto set—, a suitable solution adjusted to a given set of
preferences. It is accepted that the preferences of the designer might play a fundamental
role in the resolution of this type of problems [1–4]. Using preference handling mechanisms
in the optimization process has shown to be a valuable tool when facing multi-objective
optimization problems [5]. These mechanisms also facilitate the decision-making process
at the selection step, because the DM will focus its attention to the pertinent region of the
Pareto front [6]. Nevertheless, this implies that it is necessary to have tools that allow to
take into account the preferences in any of the phases of resolution of a design problem that
is intended to be solved through multi-objective optimization. Thus, preferences of the DM
affect the definition of the objectives, the optimization to reach an approximation to the
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Pareto set, and/or the selection of the final solution. There are already some papers that
explain how to bring some progress in all these steps but most of them are mainly focused
to incorporating preferences in the optimization problem. For example, there are some
works on how to build functions to optimize according preferences [7]. Mechanisms for per-
tinency have also been included in some multi-objective optimization algorithms [2,6,8–10]
in which the preferences guide the approach to the front. Reference [11] proposes a
new angle-based preference selection mechanism to be included in the optimization al-
gorithm. Reference [12] investigates two methods to find simultaneously optimal (in the
objective space) and practically desirable solutions (in the decision space). Reference [13]
incorporates preference information into evolutionary multi-objective optimization in an
interactive way, at each iteration, the decision maker has to include preference information
(as points corresponding to aspiration levels for objectives). Reference [2] introduces a new
preference relation based on a reference point approach that is used into an interactive
optimization scheme that uses a multi-objective evolutionary algorithm (MOEA). Refer-
ence [14] integrates preferences in the optimization process by a nonuniform mapping
of the objective space according to an aspiration level vector, and some other parameters
(number of divisions, expected extend of the region of interest, etc.) supplied by the
DM. A recent work [15] proposes a modification of a decomposition-based multi-objective
evolutionary algorithm to obtain a denser set of solution closer to a reference point.

Most of the works found in the bibliography try to provide new developments appli-
cable in the final decision phase or throughout the optimization via interactive mechanisms.
Another large group of proposals tries to modify the optimization algorithm to incorporate
preferences in the optimization process itself. The proposal described here is based on
modifying the original problem to incorporate preferences without having to modify the
optimization algorithm. That is there is no need to incorporate any additional mechanism
or layer in the algorithm. In this paper, we show a very simple way to incorporate pref-
erences in the objective definition phase. It allows the use of any current optimization
algorithm without special requirements, being compatible with any advance made in the
multi-objective optimization algorithm. Additionally, it is shown how to use this same
methodology in the final decision phase helping in the visualization of the preferred solu-
tions. This is applicable in case of problems in which the Pareto front has been obtained
without taking into account the preferences, and it is necessary to incorporate them in the
final decision stage.

The adaptation of the original problem to include preferences usually also depends
on the problem itself. It involves the adaptation or design of functions to be optimized
that reflect the preferences. A widely used way is to transform the multi-objective problem
into a single-objective problem by means of scalarization [16]. A classic method widely
used is the weighted sum of the objectives where it is necessary to adjust weighting factors
that, in some way, incorporate the preferences of the designer. The idea of this work is
somewhat similar; it consists of modifying the functions to be optimized but maintaining
the multi-objective character, that is, without turning it into a single-objective function.
Technically, we use what we call preference directions, that are introduced by choosing a
special basis for the space of objectives Rn. Broadly speaking, the elements of such a basis
represent the directions in the space in which the DM feels that the optimization must be
realized. Associated to these preference directions, a new basis, called dominance basis, is
obtained. Their elements are defined as intersection of hyperplanes which are orthogonal
to the preference directions. From the geometrical point of view, the cone generated by the
dominance basis provides a representation of the dominance cone. Thus, the corresponding
change of basis allows a reinterpretation of the classical dominance relationship that is used
for defining the Pareto front, that represents the solution of a multi-objective optimization
problem. The underlying idea is very simple and consists of the fact that the change of
base produces a deformation of the objective space in a way that favors the preferences of
the DM. The definition of these bases is beyond the scope of this paper, and it is problem
dependent: it is assumed that the DM has established such preference directions using his
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own criteria. Nevertheless, for the aim of illustrating this notion, we will shown how to
obtain it in some particular examples.

The paper is organized as follows. Section 2 introduces the main concepts involved
in the proposal. In Section 3, we show how to use preference and dominance bases to
reformulate the multi-objective problem and also to help in the decision-making step.
Section 4 shows an application example, and the last Section 5 summarizes the main
conclusion and future works.

2. Preference Directions and Dominance

The way proposed to introduce preferences in the geometric space is by means of the
space basis of Rn: Bp := {vi : i = 1, ..., n} (preference basis). We will call the vectors of such
basis preference directions. Our main idea is that these vectors model the preferred directions
for minimization. In other words, each hyperplane that is orthogonal to a vector in this
basis separates the points of the space into two sets: the points “below” the hyperplane
dominate—with respect to this preference direction—the points “above” the hyperplane.

Thus, associated with Bp, a new basis Bd := {vdi : i = 1, ..., n} of Rn can be defined
by using a geometric procedure that will be explained later on (see Proposition 1). We
will call it the dominance basis. The positive cone C+

d (dominance cone see Definition 1)
generated by Bp, and also associated with Bd, allows to reinterpret dominance according
to the new preference directions provided. Recall that the notion of dominance depends on
the lattice order that is considered in the Euclidean space. The usual order in Rn is given
by the “coordinates" ordering, when these coordinates correspond to the canonical basis in
the Euclidean n-dimensional space. If we consider the coordinate order with respect to a
different basis of Rn—in our case, Bd—, we obtain a different dominance relation among
points. Our main contributions in the present paper are: (1) to show how to obtain the
dominance basis from the preference basis; and (2) how to use it in the multi-objective
optimization problem.

Figure 1 shows an example of the reinterpretation of dominance for a 2-objective space.
The figure shows the canonical interpretation of dominance and how the dominance area
changes when a different basis of preference directions is considered. Note that the effect
of considering the dominance defined by the cone generated by Bd can be understood
as a deformation of the area that is dominated by a given point. Remark that, if the
canonical base is set as the preference basis, the dominance basis is also the canonical basis
(dominance and preference basis are the same). In the next subsection, we will provide the
equations to obtain the dominance basis Bd from the preference directions basis.

Area dominated 
by point A

A

Direction for 
minimization

Direction for 
minimization

v2=vd1

v1=vd2

Area dominated 
by point A

A

Directions for 
minimization with
preferences 

v2

v1

vd2

vd1

Figure 1. Graphical interpretation of canonical dominance and dominance with preferences. Domi-
nated area by point A for different dominance basis (vd1, vd2). Dominance with the canonical basis
(figure on the left) and dominance when preferences are included with a basis change (figure on
the right).
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Computation of Dominance Basis Bd

Let (Rn, ‖ · ‖2) be the n-dimensional Euclidean space. Consider a basis Bp := {vi : i =
1, ..., n} norm one elements of Rn included in the positive cone of Rn. Each of the elements
of the basis defines what we have called a preference direction for the optimization. The
optimization procedure that we present here proposes to consider the associated dominance
cone as the set of all vectors that are over the hyperplane defined by each vector defining a
preference direction (its projection on this vector must be positive). Therefore, we define
the positive semispace S+

vi
associated with the preference direction vi, i = 1, ..., n, as

S+
vi

:=
{

v ∈ Rn : v · vi ≥ 0}.

Consequently, the dominance cone C+
d can be defined as follows.

Definition 1. Let Bp := {vi : i = 1, ..., n} be a basis of preference directions of Rn. We define the
dominance cone as the intersection of all the semispaces S+

vi
, that is:

C+
d :=

n⋂
i=1

S+
vi
=
{

v ∈ Rn : v · vi ≥ 0, i = 1, ..., n
}

.

The positive cone C+
d generated by Bp allows to reinterpret dominance according to

the new preference directions: if A is a point in Rn, A + C+
d gives the set of all the points

that are dominated by A. In Figure 1, a 2D example is given, where the dark grey area
shows the area dominated by point A, that is, A + C+

d .

Definition 2. Given a set of vectors Z = {z1, ..., zm} ⊂ Rn, we define its positive linear hull
as the set

Pos(Z) :=
{ m

∑
i=1

λizi : λi ≥ 0
}

.

For the subsequent proposals described in Section 3.2, it is necessary to obtain the
dominance basis Bd corresponding to the preference basis Bp defined by the DM. A way to
obtain Bd is based on the equivalence of C+

d and Pos(Bd) (see Proposition 1). As we already
mentioned, the dominance basis is defined by vectors that are orthogonal to vectors of the
preference basis.

Proposition 1. The dominance cone associated with a basis of preference directions Bp = {vi :
i = 1, ..., n} coincides with the positive linear hull Pos(Bd) of the set of vectors Bd := {vdi : i =
1, ..., n} defined as follows.

For every i = 1, ..., n, vdi ∈ Rn is a (norm one) solution of the system⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 · vdi = 0
...

vi−1 · vdi = 0
vi+1 · vdi = 0

...
vn · vdi = 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

which also satisfies that vi · vdi > 0.

Proof. First, note that for each i = 1, ..., n, the linear system defined above always has a
subspace of solutions of dimension 1, because it is made of n − 1 linear equations. So, we
can choose a solution with norm equal to one, and also vi · vdi > 0 (if vi · vdi = 0 for all i,
then vdi = 0, since Bp is a basis).
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Let us prove first that C+
d ⊆ Pos(Bd). Take an element v ∈ C+

d . By the definition of
the set of preference directions—they are linearly independent—, we have that the set
{vd1, ..., vdn} defined as in the statement of the result, is a basis for Rn. Then, v can be
written as v = ∑n

i=1 xi vdi, for real numbers x1, ..., xn. We have that

0 ≤ v · vk =
n

∑
i=1

xi vdi · vk = xk vdk · vk

for all k = 1, ..., n. Since vdk · vk > 0, we get that xk ≥ 0. This can be done for all k = 1, ..., n,
and so we get that C+

d ⊆ Pos(Bd).
Conversely, take an element v ∈ Pos(Bd). Then, it can be written as v = ∑n

i=1 xi vdi,
where all the coordinates xi are non-negative. Then,

v · vk =
n

∑
i=1

xi vdi · vk = xk vdk · vk.

But xk ≥ 0 and vdk · vk ≥ 0, and so v · vk ≥ 0 for all k. Consequently, v ∈ C+
d , and so

Pos(Bd) ⊆ C+
d .

Therefore, Pos(Bd) = C+
d , and the result is proved.

Based on Proposition 1, it is possible to give an algorithm that computes the vectors of
the corresponding dominance basis Bd. An example with MATLAB is shown in Figure 2.

function Md=dominanceCone(Mp)
% Mp matrix of preference directions (each column is a vector of the basis)
% Mp=[v1' v2' ... vn']
% Md matrix that define dominance cone
% Md=[vd1' vd2' ... vdn'] (each column is a vector of the basis)

n=size(Mp,1);
Md=zeros(n,n);

for i=1:n
Maux=Mp;
Maux(:,i)=[]; % Remove i column
v=Mp(:,i)'; % Extract i column
% Building system of linear equation
for ii=1:n % to avoid det(A)=0

A=[Maux'; zeros(1,n)];
A(end,ii)=1;
if det(A)�=0

break;
end

end
B=zeros(n,1);
B(end)=1;
% Solve system of linear equations Av = B for v
vaux1=(A\B)';
% Compute inverse vector (opposite direction)
vaux2=-vaux1;
% Checking convenient cone (v*vi>0)
if (vaux1*v')>(vaux2*v')

Md(:,i)=vaux1'/norm(vaux1);
else

Md(:,i)=vaux2'/norm(vaux2);
end

end

Figure 2. MATLAB function based on proposition 1 that computes dominance basis from preference basis.

3. Using Preference Directions in Multi-Objective Optimization Problems

There are two direct uses of the dominance bases:

• Including preferences in the decision-making step.
• Including preferences by reformulating the optimization problem.

In both cases, the mathematical meaning underlying the concept of “optimization
direction" refers to the definition of preference basis. From this basis, it is possible to obtain
the dominance basis—as described in the previous section—which is the one that redefines
the space of objectives, thus incorporating the preferences.
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3.1. Including Preferences in the Decision Making Step

As a first application, we consider the case of a DM who is provided with a Pareto front
and tries to select a solution based on his preferences. In this selection process, graphical
tools are important to visually analyze the Pareto front. A standard way used is to color
the different points of the Pareto front according to the designer’s preferences [17].

To illustrate this use, a 2D example is shown below. Let us suppose that all possible
solutions of a 2D multi-objective problem are placed on a disc of radius r = 1, and centered
on the origin. Obviously, the perimeter of this set of solutions is formed by the circle of
radius unit centered on the origin (see Figure 3a). If the optimization problem consists on
minimizing both objectives, it is easy to locate the Pareto front, represented as a discrete
approach formed by the points highlighted in black in Figure 3a. Once the Pareto front is
obtained, the DM usually has to choose one of the solutions included in the front. Assuming
that both objectives are equally relevant, it seems reasonable to select a solution close to the
ideal point. The ideal point has the minimum possible value for each objective, which is
highlighted with a diamond in Figure 3b. A commonly used tool in the decision phase is to
color the points of the Pareto front according to their proximity to the designer’s preferred
area. In the case of Figure 3b, the points closest to the ideal point are colored dark blue,
and the furthest points are colored red.
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Figure 3. (a) Possible values of the objectives (grey disc) and approximation to Pareto front (black
points). (b) Coloring Pareto front according to proximity to ideal point (diamond).

However, if the DM defines some preference directions, the analysis of the solutions
of the Pareto front changes. If we suppose that Bp is defined by the DM, Bd can be easily
obtained applying the algorithm provided by Proposition 1:

Bp =

{
v1 = (0.3162, 0.9487)
v2 = (0, 1)

}
→ Bd =

{
vd1 = (1, 0)
vd2 = (−0.9487, 0.3162)

}
. (1)

With this new base, which incorporates the DM’s preferences, the objective space is
deformed by affecting the distances between points. With the associated dominance basis
Bd and the matrix Md, the new distances are easily calculated (see Appendix A). Figure 4a
shows, in the canonical space, the Pareto front colored according to the proximity to the
ideal point with the new Bd base. In the same figure, the vectors of the Bp preference base
(in blue color) are shown, as well as the vectors corresponding to the Bd dominance base
(in red color). In addition, to better understand how the relationship of distances to the
ideal point has been changed, Figure 4b is shown. In this figure, the Pareto front and the
ideal point in the space defined by Bd are represented.
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Figure 4. (a) Pareto front colored according to proximity to ideal point computed in the basis Bd
and plotted in canonical basis. Vectors of preference directions in blue and vectors of dominance
directions in red. (b) Same points but plotted in the basis Bd.

As seen in the figure, this simple preference-based coloring allows the DM to select a
subset of relevant solutions according to his preferences.

3.2. Including Preferences by Reformulating the Optimization Problem

This way of considering preferences—by selecting a new basis—is easy to apply with
all the available optimization tools because it is just a change of coordinates. Defining a
multi-objective problem as:

min
θ

J(θ) (2)

subject to: θ ∈ S ⊂ Rm,

where θ = (θ1, . . . , θm) ∈ Rm is the decision vector, J(θ) = (J1(θ), . . . , Jn(θ)) ∈ Rn is objec-
tive vector, and S is the subspace that satisfies all the additional constraints of the problem.

We must define a new basis that collects the preference directions:

Bp := {vi : i = 1, ..., n}. (3)

The redefinition of the multi-objective optimization problem that include preferences
is done using the associated dominance basis Bd := {vdi : i = 1, ..., n} and the matrix Md
(see Equation (A1), Appendix A):

min
θ

Jd(θ) (4)

Jd(θ) = (M−1
d J(θ)T)T

subject to: θ ∈ S ⊂ Rm.

To see the effect of the preference directions in the optimization problem, an example
of a 2D problem (in the objective space) is shown. It is assumed that the space of possible
objectives is on a disk of unit radius. Figure 5a shows the periphery of this set on a canonical
basis, while Figure 5b shows the same circle but at the base Bd. It is clearly shown how
the circle is deformed and becomes an ellipse. The equivalent points have been colored
identically in both figures to make them easier to locate.
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Figure 5. (a) Representation of the unit circle in the canonical basis, and the preference (red) and
dominance (blue) vectors of the corresponding basis. Lines with ’o’ and ’x’ show Pareto front in
canonical and Bd basis, respectively. (b) Same circle and Pareto fronts drawn in Bd basis.

Figure 5a also shows the vectors that correspond to the preferences base (in blue) and
to the dominance base (in red). Note that Pareto front changes according to the base on
which the points are represented. The points that correspond to an approximation of the
front that would be obtained using the canonical base are highlighted with circles, and
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the points of the front that would be obtained using the dominance base Bd are marked
with “x”. It can be seen that the use of this basis allows the front to be focused on the area
preferred by the DM, which has been previously defined by Bp. As a additional comment,
it can be observed that by focusing on the region of interest, in general fewer solutions
are obtained. This facilitates the final decision stage, since the DM has to choose between
fewer options but all oriented according to his preferences.

Therefore, the use of Bd directly in the formulation of the optimization problem
provides the pertinency property without having to modify the optimization algorithm.
This methodology can be used with any optimizer since it only involves a reformulation of
the optimization problem.

A 3D example comparing canonical dominance and dominance with preferences is
shown in Figure 6. For demonstration purposes, the set of possible objective values is a
sphere, and the boundary of the sphere is represented in blue. The basis Bp defines the
dominance cone Bd. Remark that, if Bp is the canonical base, Bp = Bd.

Figure 6. 3D Pareto front approximation (in magenta) with canonical dominance (upper figure) and
dominance with preferences (bottom figure).
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Bp =

⎧⎨
⎩

v1 = (1, 0, 0)
v2 = (0, 1, 0)
v3 = (0, 0, 1)

⎫⎬
⎭→ Bd =

⎧⎨
⎩

vd1 = (1, 0, 0)
vd2 = (0, 1, 0)
vd3 = (0, 0, 1)

⎫⎬
⎭. (5)

The dominance cone defined by Bd is represented with a polyhedron with one of its
vertex at the origin. Each of the edges starting at the origin represents a vector of Bd. The
polyhedron is colored in red. The resulting Pareto front has been highlighted in magenta.

Figure 6 shows the resulting Pareto front for canonical dominance (upper figure) and
Pareto front obtained with a base of preferences defined by Bp (bottom figure):

Bp =

⎧⎨
⎩

v1 = (0, 0.7071, 0.7071)
v2 = (0.5774, 0.5774, 0.5774)
v3 = (0.7071, 0.7071, 0)

⎫⎬
⎭→

Bd =

⎧⎨
⎩

vd1 = (−0.7071, 0.7071, 0)
vd2 = (0.5774,−0.5774, 0.5774)
vd3 = (0, 0.7071,−0.7071)

⎫⎬
⎭.

(6)

The reader can notice how the selection of preference directions provides a narrower
Pareto set when comparing with the canonical situation. Indeed, the preference direc-
tion basis Bp is strictly included in the canonical positive cone, what provides a wider
dominance cone (see the picture on the bottom of Figure 6). This means that, in the new
situation, each point in the Pareto front dominates more points of the original sphere of
objective values, what gives a smaller set of dominating relevant points. To understand the
deformation produced by the preferences, Figure 7 shows the same that Figure 6 (bottom)
but drawn in Bp basis. The DM has to consider a smaller set of optimal points for his final
election, all of them fitting with his original preference requirements.

Figure 7. 3D deformed sphere (blue points) resulting from preferences and Pareto front approxima-
tion (in magenta) drawn in Bd.
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4. Application Example: The Daily Diet Design Problem

In this section, we will develop a complete example regarding the design of a healthy
diet. The original problem can be found in Reference [18], where an alternative form of
decision-making called TOPSIS is presented. The methodology tries to reach the com-
promise that the chosen alternative should have the smallest distance from the positive ideal
solution and the largest distance from the negative ideal solution. Therefore, no preferences are
proposed by the DM and cannot be compared with the proposal of the present work. In
order to illustrate the methodology, we will propose some DM preferences.

The problem concerns the prescription of a diet for a patient who has some particular
health characteristics. Suppose that the decision variables with their bound constraints are
the following.

• Milk pints: 0.0 ≤ x1 ≤ 6.00.
• Beef pounds: 0.0 ≤ x2 ≤ 1.00.
• Eggs dozen: 0.0 ≤ x3 ≤ 0.25.
• Bread ounces: 0.0 ≤ x4 ≤ 10.00.
• Lettuce and salad ounces: 0.0 ≤ x5 ≤ 10.00.
• Orange juice pints: 0.0 ≤ x6 ≤ 4.00.

The problem has three design objectives, J1, J2 and J3:

J1(x) = 24x1 + 27x2 + 15x4 + 1.1x5 + 52x6
J2(x) = 10x1 + 20x2 + 120x3
J3(x) = 0.22x1 + 2.2x2 + 0.8x3 + 0.1x4 + 0.05x5 + 0.26x6

, (7)

where J1(x) is the Carbohydrate intake [g], J2(x) is the Cholesterol intake [unit], and J3(x)
is the Cost [$].

There are also some constraints that affects the optimization calculations, regarding
the amount of vitamin A [i.u] (g1(x)), iron [mg] (g2(x)), food energy [calories] (g3(x)), and
proteins [g] (g4(x)).

g1(x) = 720x1 + 107x2 + 7080x3 + 134x5 + 1000x6 ≥ 5000
g2(x) = 0.2x1 + 10.1x2 + 13.2x3 + 0.75x4 + 0.15x5 + 1.2x6 ≥ 12.5
g3(x) = 344x1 + 1460x2 + 1040x3 + 75x4 + 17.4x5 + 240x6 ≥ 2500
g4(x) = 18x1 + 151x2 + 78x3 + 2.5x4 + 0.2x5 + 4.0x6 ≥ 63

(8)

The multi-objective problem to be solved can be written as follows:

min
x

J(x) (9)

J(x) = (J1(x), J2(x), J3(x)) ∈ R3

subject to: x ≤ x ≤ x, x ∈ R6

gi(x) ≥ bi, i = 1 . . . 4, gi(x) ∈ R, bi ∈ R.

Since it is a linear problem in both objectives and constraints, a classic optimization
method obtains good results with a reasonable computational cost. Pareto front is obtained
using a classic method, ε-constraint method, described in Reference [16]. Pareto front
values are achieved by solving multiple mono-objective problems in which only one of the
objectives is minimized, and the rest are considered as constraints. In order to obtain a
suitable discretization of the front, it is necessary to vary the value of these constraints on
the objectives in an adequate way. The steps are the following: first, the minimums of each
independent objective are obtained. With these values we have the range of values where
approximately the Pareto front is located. Subsequently, the increase to be applied to the
restriction in each mono-objective problem is defined. In this particular case, the range of
variation of two of the objectives (J1 y J3) has been divided into 50 parts, obtaining εJ1 y
εJ3. Subsequently, multiple problems of a single objective are solved by adding constraints
on the other objectives. Then, multiple problems (50 × 50 = 2500) of a single objective are
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solved by adding constraints on the other objectives, that is, varying n from 1 to 50 and m
from 1 to 50, and solving the following mono-objective problems:

min
x

J2(x) (10)

subject to: x ≤ x ≤ x, x ∈ R6

gi(x) ≥ bi, i = 1 . . . 4, gi(x) ∈ R, bi ∈ R

J1(x) ≤ J1min + εJ1 · n

J1(x) ≤ J3min + εJ3 · m.

If a better approach to the front is required, the process can be repeated minimizing
J1(x) or J3(x).

Since the problem is linear in both the target and the constraints, linear programming
has been used. The approximation to the front obtained consists of 2049 points. Twenty-five
hundred mono-objective problems have been executed, but some of them were not feasible;
therefore, they did not provide a solution. Figure 8 shows a 3D representation of the Pareto
front approximation obtained.
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Figure 8. Pareto front approximation obtained for daily diet problem.

The DM must analyze this front and select a solution that fits his preferences. The
first step, to have fewer points to choose from, is to reduce the number of points to 342
while maintaining a good representation of the front. This can be done reducing the
discretization step.

Then, to help in the decision-making, the Pareto front is colored according to distance
to the ideal point; see Figure 9 (upper). The ideal point corresponds to a possible solution
obtained with the minimum values of each of the objectives.

This representation shows to the DM which are the points that present a more ’bal-
anced’ compromise between objectives. It should be noted that, in order to calculate the
distance to the ideal point, the front has been scaled trying to avoid the distortions that can
be caused by the different units and orders of magnitude of each of the objectives. Each
objective is rescaled between 0 and 1. With these new values, the distances to the ideal
point are calculated (that corresponds to the point (0, 0, 0) when applying the scaling).
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This ’balanced’ solution is not always the preferred one, and the DM can decide on
another order of preferences. It is very useful that these preferences will be incorporated
in all phases of the MO problem resolution. In this case, a set of preferences defined by a
vector base will be established.

Let us show now how to implement the preference directions by the DM, in this case,
the doctor who treats the patient with special needs. Concretely, the doctor knows that the
diet for the patient must satisfy preferably the following relations:

• The ratio among the Carbohydrate intake and the Cholesterol intake must be as near
as possible to 2. This means that the preference equation J1 = 2 · J2 must be taken
into account. This condition supplies one of the preference directions: v1 = (2, 1, 0).

• Since there are a lot of bad quality Carbohydrates in the market, the doctor wants to
promote the use of the correct ones.
An indirect way to increase the use of good quality carbohydrates is through cost. It is
estimated that the impact on the price of the diet of such carbohydrates is around 1$
per 100 g of carbohydrates. Poor quality carbohydrates are significantly cheaper on
the market. This allows to set a new direction of preference that is J1/100 = J3. This
second conditions supplies another preference direction: v2 = (1/100, 0, 1).

• The third preference direction maintains the original objective of minimizing cost:
v3 = (0, 0, 1).

Summing up all these assumptions and converting these vectors into unit vectors the
preference basis Bp and its corresponding dominance basis are:

Bp =

⎧⎨
⎩

v1 = (0.8944, 0.4472, 0)
v2 = (0.01, 0, 1)
v3 = (0, 0, 1)

⎫⎬
⎭→

Bd =

⎧⎨
⎩

vd1 = (0, 1, 0)
vd2 = (0.4472,−0.8944, 0)
vd3 = (−0.4472, 0.8944, 0.0045)

⎫⎬
⎭

. (11)

By changing the base, the calculation of the distances is modified. The example shows
how the ’color’ of the solutions closest to the ideal changes when these preferences are
incorporated; see Figure 9 (bottom).

It can be seen that coloring, considering these new preferences (see Figure 9 (bottom)),
orients the DM towards a different area of the front. Usually, these points would be more
interesting for DM, and, consequently, he could choose more suitable solutions.

Table 1 shows the five best solutions extracted from each of the colored fronts. In
particular, the points closest to the ideal point are shown. As you can see, the solutions
obtained from coloring with preferences are closer to the preferences of the DM. The cost
is lower, ratios among the Carbohydrate intake and the Cholesterol intake are nearest to
two and ratios among Carbohydrate intake and Cost are nearest to 100. In this first case,
the preference directions are used in the decision phase to assist the DM in making the
final decision. This procedure does not reduce the number of solutions to be evaluated but
enables a very simple way to visualize the results and select a subset of solutions of interest.
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Figure 9. Pareto front obtained for daily diet problem. Upper figure shows the Pareto front colored
according to the proximity to ideal point. Figure on the bottom shows the Pareto front colored
according to the proximity to ideal point computed in basis Bd. In both cases, dark blue color
highlights the best solutions (dark red the worst).

Another alternative is to use the preference directions in the optimization process
itself as proposed in Equation (4). The same multi-objective optimization method has
been used to obtain the new front (constraint method). In this case, the range of variation
of two of the objectives (Jd1 and Jd3) has been divided into 10 parts and 10 × 10 = 100
mono-objective problems have been solved. The Pareto front achieved has 10 points (many
of the mono-objective problems raised were not feasible and, therefore, did not provide a
solution). Applying the preferences to modify the optimization problem has significantly
reduced the computational cost and has focused the solution to the area of interest.
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Table 1. alt1: The five nearest points to ideal point without considering preferences. alt2: The five
nearest points to ideal point considering preferences.

Sol J1 J2 J3 x1 x2 x3 x4 x5 x6

alt1 236.87 39.51 2.85 1.78 0.69 0.07 0.69 0 3.17
222.52 42.66 2.85 1.81 0.72 0.08 0.17 0 3.02
236.87 35.97 2.91 1.60 0.74 0.04 0 0.24 3.43
251.22 36.36 2.85 1.76 0.65 0.05 1.22 0 3.33
222.52 39.79 2.91 1.74 0.74 0.06 0 1.13 3.07

alt2 236.87 69.26 2.36 3.52 0.21 0.25 7.40 0 0.68
222.52 68.69 2.42 3.33 0.30 0.24 6.04 0 0.84
281.67 67.83 2.24 3.78 0 0.25 10.00 0 0.79
265.57 66.68 2.30 3.68 0.09 0.23 9.29 0 0.68
251.22 66.11 2.36 3.50 0.18 0.23 7.92 0 0.84

Figure 10 shows the new front obtained compared to the previous one (Figure 8), the
new front is colored in orange. There is a noticeable difference, since now the preferences
have deformed the target space and have oriented the search towards a different zone
adjusted to the DM’s preferences. It should be noted that the number of points of the
front obtained is 10, which is significantly lower than the number of points obtained in the
original front without considering preferences (2049 points). Among these new values, the
DM can select, for example, a more balanced solution. The points highlighted with black
square in the figure show 3 examples of balanced solutions. The particular values of this
3 solutions are shown in Table 2.
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Figure 10. Pareto front obtained for daily diet problem. In orange, the Pareto front obtained including
preferences into the optimization problem resolution. In blue, the original Pareto front obtained
without preferences. Black square shows 3 balanced solutions.
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Table 2. Balanced solutions obtained from the Pareto front with preferences.

J1 J2 J3 x1 x2 x3 x4 x5 x6

151.65 70.34 2.65 2.66 0.69 0.25 0.31 0 1.24
175.46 70.13 2.57 2.91 0.55 0.25 2.31 0 1.08
199.27 69.91 2.49 3.15 0.42 0.25 4.31 0 0.92

5. Conclusions

This work shows a very easy alternative to introduce preferences both in the opti-
mization problem formulation and/or in the final decision phases. The methodology is
based on defining vectors that mark the directions of optimization and constitute what
is called the preference base. It is shown and formally demonstrated how to obtain the
dominance base from the preference one. In addition, the MATLAB code is provided for
its calculation. This base is the one used to redefine the dominance relations, and it is the
one in charge of ’deforming’ the space to include the defined preferences. In Section 3, it
is shown that the deformation of the space resulting from applying the dominance basis
reconfigures the problem so that the points in the directions of preference dominate the rest
of the solutions. This deformation is usable both to redefine the concept of dominance (this
feature is usable by optimization algorithms) and to recalculate the distances that reorder
the points in the space according to the preferences (this feature can be used in the decision
phase to order solutions).

An important advantage of this methodology, when applied in the problem refor-
mulation, is it can be used with any multi-objective optimization algorithm. In order to
prove the use and usefulness of this methodology, a problem with three objectives has been
raised. The results obtained show the simplicity of the use of this methodology and opens
up a new range of possibilities for the inclusion of preferences. It has not been the objective
of this work to show a general methodology for defining the directions of preferences; this
aspect is particular to each problem and opens a very interesting research line that would
allow to popularize the use of the methodology proposed in this article.
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Appendix A. Equations of the Change of Basis and Related Distance

Once the preference directions which define the dominating basis are established, we
have to make a change of basis, which modifies also the equation of the distance in Rn

that must be used. So, the equation for this new distance is provided just by considering
the change of basis. Using elementary linear algebra, we get that changing coordinates
from the canonical basis to another one—in this case, Bd—is done by using the matrix
Md defined by the coordinates of the vectors vd1 = (v1

d1, ..., vn
d1), v2..., vn = (v1

dn, ..., vn
dv) as

columns, that is,

Md =

⎡
⎢⎣

v1
d1 · · · v1

dn
...

. . .
...

vn
d1 · · · vn

dn

⎤
⎥⎦. (A1)

Consider a vector v = (x1, ..., xn) ∈ Rn, and write (α1, ..., αn) for the coordinates of v
with respect to the basis Bd. Then,

Md ·

⎡
⎢⎣

α1

...
αn

⎤
⎥⎦ =

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦, (A2)

⎡
⎢⎣

α1

...
αn

⎤
⎥⎦ = M−1

d ·

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦, (A3)

Thus, the definition of a new basis changes the associated norm, and this can also be
used in the decision-making step for selecting/coloring points with the lower distance to
a particular goal (see Section 3.2). Note that this distance takes into account the designer
preferences. The definition of the norm with the new basis can be obtained as follows.

Let us find the equations that allow to write the scalar product ·Bd in Rn that satisfies
that the elements of Bd define an orthonormal basis of the space. For this, take the matrix
Md (see (A1)), if w = (y1, ..., yn) ∈ Rn, the scalar product v ·Bd w can be written as:

v ·Bd w = (x1, ..., xn) ·Bd

⎡
⎢⎣

y1

...
yn

⎤
⎥⎦ = (x1, ..., xn) · (M−1

d )T · (M−1
d ) ·

⎡
⎢⎣

y1

...
yn

⎤
⎥⎦. (A4)

That is, the Gram matrix G associated with ·Bd is given by G = (M−1
d )T · (M−1

d ).
Therefore, the associated Euclidean norm can be computed as:

‖v‖ :=

√√√√√√(x1, ..., xn)(M−1
d )T · (M−1

d )

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ =

√
n

∑
i=1

(αi)2, (A5)

where (α1, ..., αn) are the coordinates of v in Bp.
Summing up, we have that the norm computed following the new dominance basis

change the perception of distance according to the selected preference directions. Figure A1
shows all the points that are at a distance equal to 1, together with the preference directions
and the dominance basis.

45



Mathematics 2021, 9, 991

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

J1

-1.5

-1

-0.5

0

0.5

1

1.5

J2

v1
vd1

vd2

v2

Figure A1. Ellipsoid representing the unit circle in the norm associated with the dominance basis.
The preference directions fixed by the DM are shown (blue). The corresponding dominance basis is
also shown (red).
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Abstract: This paper introduces a two-stage method based on bio-inspired algorithms for the design
optimization of a class of general Stewart platforms. The first stage performs a mono-objective
optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing
the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms:
the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate
Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a
Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one
based on energy consumption and the tracking error of a target trajectory. To this effect, we compare
two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions
lie in the optimization model, the proposal of a two-stage optimization method, and the findings of
the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized
designs delivered by the proposed method and provide directions for the best-performing algorithms
through performance metrics and statistical hypothesis tests.

Keywords: two-stage method; mono and multi-objective optimization; multi-objective optimization;
optimal design; Gough–Stewart; parallel manipulator; performance metrics

1. Introduction

Over the last few decades, parallel robotic architectures have attracted considerable
attention because they provide precise motion, high rigidity, and low inertia of moving
parts under high loads. Compared to serial link manipulators, they do not have a long
range of motion displacements, but they exhibit higher stiffness and better load capacity,
as the external forces are distributed to several in-parallel kinematic chains [1]. In particu-
lar, the general 6 6-Degrees-Of-Freedom (DOF) Stewart platform is composed of closed
kinematic chains sharing the same payload platform, a base, six extendable linear actuators,
and two sets of six joints (see Figure 1). It was proposed first as the moving platform for
aircraft simulators, but recently, it has been adopted in different domains, such as machine
tools [2,3], vibration isolation devices [4], secondary positioning of radio telescopes [5,6],
and non-destructive aeronautical inspection [7].

The design optimization of robotic manipulators deals with finding the best lengths,
control gains, and other configuration parameters that minimize or maximize one or sev-
eral objectives—for instance, minimizing the error or energy and maximizing dexterity or
rigidity. Optimization algorithms from various families are employed for robotic design,
and metaheuristics have shown impressive results in this engineering area. Working meth-
ods vary under a system’s complexity and the number of objectives to optimize. According
to Botello et al. [8,9], the optimization problems of robotic manipulators can be classified

Mathematics 2021, 9, 543. https://doi.org/10.3390/math9050543 https://www.mdpi.com/journal/mathematics

49



Mathematics 2021, 9, 543

into three categories: The first is the static design problem, in which a homogeneous
transformation or zero-order differential equation needs to be solved. Typical problems of
this group are dexterity, stiffness, workspace volume, and manipulability maximization.
The characteristic of this kind of problem is that the mathematical model does not depend
on time. That is to say, the numerical simulation only computes indexes that are dependent
on static positions. Usually, the output of this optimization is a set of lengths or sizes of the
robot elements; this is called dimensional synthesis. In the state of the art, Panda et al. [10]
proposed an evolutionary optimization algorithm based on the foraging behavior of Es-
cherichia Coli bacteria for the optimization of the workspace volume of a three-revolute-type
manipulator. The results were compared with the Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Differential Evolution (DE). Badescu and Mavroidis [11] proposed
the optimization of the workspace of three-legged parallel platforms through a Monte
Carlo method using three different indices: the workspace volume, the inverse of the
condition number, and the global condition index. Lou et al. [12] addressed the workspace
maximization of a Gough–Stewart platform by applying the Controlled Random Search
(CRS) technique and measuring the dexterity index over the workspace. The solution of the
inverse kinematics of serial robots also falls into this classification; in this subject, Ayyildiz
and Cetinkaya applied the GA, PSO, Quantum Particle Swarm Optimization (QPSO),
and Gravitational Search Algorithm (GSA) to the solution of the inverse kinematics of a
four-DOF manipulator. Similarly, Dereli and Köker [13] addressed the inverse kinematics
problem of a seven-DOF mechanism through the Firefly Algorithm (FA), PSO, and Artifi-
cial Bee Colony (ABC). Falconi et al. [14] proposed a solution to the inverse kinematics of
generic serial robots in a more general way through the Behavioral-based Particle Swarm
Optimization (B-PSO) algorithm. Considering that there is no need to solve differential
equations, but rather algebraic expressions, this kind of problem usually demands the
lowest computational resources compared to the next two categories. In addition, they
usually do not require specialized robotics software.

Figure 1. General scheme of the 6–6 degree-of-freedom (DOF) Stewart platform mechanism.

The second category is the kinematic design problem, which implies the solution
of first-order ordinary differential equations, that is, the computation of velocities in a
system. They are usually controlled by a Proportional Integral Derivative (PID) controller
or some of its variations. This case is less common because it does not represent the
complete physics of the problem, since neither the mass nor accelerations are involved
in the equations. In this view, the kinematic design problem is useful when the involved
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forces are not considered. Hence, the most important and the main purpose is the control
of velocities.

In the third category, the dynamic design problem, second-order differential equations
are involved. Hatem et al. [15] developed a clear example of this category, in which
trajectory planning subject to kinematic and dynamic constraints was approached. A Direct
Search Optimization method was developed for determining the optimal task time and
optimal joint torques of serial robots. Kuçuk [16] performed trajectory planning using the
PSO for parallel manipulators. This optimization was divided into two stages: The first one
was focused on the derivation of a minimum-time trajectory, and the second stage looked
for the elimination of the jerk. Furthermore, more evolutionary algorithms have been
implemented for the dynamic optimization of robotic design [17]. These works perform
dynamic optimization, but they do not consider optimization of the dimensional structure
as an initial step. This may cause the design to be inappropriate for the task.

In addition, the classification of the optimization tasks using metaheuristics takes
another direction when the objectives are more than one. In this case, the optimization
can be approached by dividing the process into the individual solution of each objective
function. Most of the current approaches in robotics optimization address a separate
analysis of the dimensional synthesis [18,19], accuracy, or dexterity maximization [20] and
the control design [21], among other objectives. Nevertheless, there are a few proposals
that consider an optimization framework that integrates several objectives into a single
process [22–26]. For instance, a concurrent design has been tested through various design
methods in delta parallel manipulators [8]. In this regard, a limitation for considering such
a unified framework is that various objectives conflict. In the real-world design process,
decision-makers select parameters through different design stages in an iterative process by
using their knowledge and expertise to approach the best selection. This process requires
several inputs, such as time, hardware, software, knowledge, and expertise. It outputs a
design with different degrees of closeness to the best according to the set of decisions made.
Thus, the aim of optimizing several objectives simultaneously is to support real-world
designers, that is to say, it is not to replace the designer’s final decision, but to provide a
reduced set of close-to-optimal solutions by automatically discarding those solutions that,
evidently, are not optimal. In this regard, evolutionary multi-objective algorithms naturally
work on a set of candidate solutions that are evolved to approach a Pareto optimal set.
The solutions in this set are incomparable in the sense that one cannot improve an objective
without the detriment of another. From these solutions, the decision-maker must select
the most convenient. Notice that the method does not substitute the designer’s work,
but reduces the dependence on experiments, time, and expertise. In addition, it foments
the generation of high-performance designs.

In this context, research with multi-objective genetic algorithms for symmetric and
unsymmetrical Stewart platforms has been applied for aeronautical purposes. Here,
Cirillo et al. [27] intended to maximize the payload and minimize the forces used to ex-
periment during positioning. Joumah and Albitar [28] approached the optimization of
a six-DOF Revolute-Universal-Spherical (RUS) Stewart platform in two ways: The first
stage solved three cost functions separately related to the workspace volume and the
global conditioning index, as well as the stiffness index of the structure with a GA, while
the second stage unified these indices into a single cost function with a GA and PSO.
The output was a manipulator with optimal geometry and structure. Analogously to
this work, Nabavi et al. [29] proposed a one-stage optimization for similar indices: the
global workspace index, the global dexterity Index, and the global kinetic energy index.
They found Stewart platform configurations with a Prismatic-Universal-Spheric (PUS)
structure. In addition, they analyzed the obtained Pareto front and the interaction between
the existing indices, elucidating that there exists an architecture that significantly lowers
the maximum actuator’s static and dynamic forces. Lara-Molina et al. [30] addressed the
optimal design of parallel manipulators based on multi-objective optimization by consider-
ing as objective functions the global conditioning index, the global payload index, and the

51



Mathematics 2021, 9, 543

global gradient index. These indices were evaluated over a required workspace. This
optimization method consisted of two stages: The first one, solved with a GA, comprised
a simulation for the maximization of the global conditioning index, and the behavior of
the rest of the indices was observed. The second was a simultaneous optimization of the
three indices by applying a Multiobjective Evolutionary Algorithm (MOEA) based on the
Control Elitist Non-dominated Sorting Genetic Algorithm (CENSGA) to find the Pareto
front. The second stage derived an optimal geometric configuration for the parallel manipu-
lator. According to the review of this research in the field of Stewart platform optimization,
and despite the application of many metaheuristic algorithms, multi-objective optimization
for dynamic problems is still weak.

Contributions

We contemplate three possible cases in multi-objective optimization: The first occurs
when minimizing one of the objectives, which leads to minimization of the other; this is
called support. The second case is when the objectives can be independently optimized
and minimizing one does not affect the other; mathematically this means that the different
objective functions depend on sets of variables without intersection. The third case occurs
when minimizing one objective, which leads to maximizing another; this case is called
conflict.

In this proposal, we consider that dimensional synthesis for approaching a regular
workspace with sufficient dexterity is independent of error and energy. This assumption
is due to practical considerations. To optimize the geometry, we only use kinematics,
which is cheap in the computational sense; in addition, a configuration with minimum
lengths and high dexterity provokes less error and reduces the peaks of energy required in
near-to-singular positions. For the sake of completeness, the problem could be approached
as a three-objective problem, including the workspace fitting as an additional objective.
Nevertheless, this will considerably increase the computational cost and it would incre-
ment the complexity of the software development in order include parametric design
changes in a dynamic simulator. Optimizing the three objectives means that a different
geometry is delivered for each trajectory, which is not the rule in practical applications.
This dimensional synthesis is performed independently with three different trajectories
given by parametric equations. In the second stage, we aim to minimize the error and
energy; both objectives are in conflict and depend on the control gains. This optimization
requires a dynamic simulation, which is the most computationally expensive part of the
algorithm. In addition, different trajectories can be optimized for different control gains
without modifying the geometry of the mechanism. This stage considers only the opti-
mization of one of the three trajectories from the dimensional synthesis. To the best of
our knowledge, there is not similar research on the state of the art that combines mono-
and multi-objective optimization to define a methodology that integrates various design
objectives. The existing research on optimizing the Stewart platform focuses separately
on either the static or dynamic parameters. Moreover, many of the above-mentioned
approaches for multi-objective optimization combine the many objectives into one single
objective function using weighted sums. Hence, the designer obtains a single objective
value instead of a Pareto front, which offers the designer a family of optimal solutions
along the objectives. Consequently, the designer makes decisions about the importance of
the objectives without the information of the affectation in the platform’s performance. For
this reason, this proposal considers treating the objectives in the second stage as separate
issues so that the designer can decide on the most optimal parameters by analyzing only a
reduced set of the best-performing solutions.

Our proposal considers the merging of both sequential and concurrent optimization
methodologies as a design method for parallel robots considering both static and dynamic
optimization. The static optimization ensures that the parallel robot is capable of reaching
a desired dexterous workspace, and the dynamic optimization looks for high-performance
operation conditions using the optimal control.
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Finally, in light of the metaheuristics used, we contrast several mono- and multi-
objective evolutionary algorithms to give directions about the best-performing optimizer
for these kinds of applications.

2. Optimization Design Criteria

In this section, we briefly review the kinematics and dynamics of the general Universal
Prismatic Spherical (UPS) Gough–Stewart platform to present the necessary concepts for
defining the objective functions of the optimization problems.

2.1. Kinematics Computation

To define a reachable workspace, we need the computation of the inverse kinematics
of the system in order to obtain the lengths effected by each linear actuator in terms of the
position and orientation, as shown in Equation (1). The Jacobian expression in Equation (2)
is derived from the inverse kinematics. It is used for defining the dexterity index.

Thus, the inverse kinematics can be derived from the schematic of Figure 2a. Li
represents the vector along the linear positioners and ni represents its corresponding unit
vector, acting in terms of the position x and orientation in the moving platform [ψ, θ, φ], also
called the end-effector. Vectors describing the positions of the spherical and universal joints
are included to form closed kinematic chains. Thus, pi and bi denote the position of both
spherical and universal joints, respectively, according to the inertial reference framework B,
while pP

i denotes the spherical joint with P as a reference framework. Moreover, the manip-
ulator is assumed to be symmetric, and the locations of the universal and spherical joints
are equally distant with a radius rB in the base (Figure 2b) and rP in the moving platform
(Figure 2c), with equal aperture angles between pairs δB and δP. Thereby, the expression
for the lengths Li can be written as

li = |Li| = |x + RB
P pP

i − bi|, (1)

and, after deriving it, we can obtain the Jacobian expression in the next form:

l̇ = J1

[
ẋ
ω

]
=

⎡
⎢⎢⎢⎣

nT
1 (

RB
p

rP
pP

1 × n1)T

...
...

nT
6 (

RB
p

rP
pP

6 × n6)T

⎤
⎥⎥⎥⎦
[

ẋ
ω

]
. (2)

In Equation (1), RB
P corresponds to the rotation matrix, which is derived in this work

by following the z − y − x sequence of axis rotation, while the angles ψ, θ, and φ denote the
rotations made about the z, y, and x axis, most commonly known as yaw, pitch, and roll
angles, respectively, and trigonometric functions are written in a short form: s denotes sine
and c denotes cosine.

RB
P =

⎡
⎣cψcθ, −sψcθ + cψsθsφ, sψsφ + cψsθcφ,

sψcθ, cψcθ + sψsθsφ, −cψsφ + sψsθcφ,
−sθ, cθsφ, cθcφ,

⎤
⎦ . (3)
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(a) Defining vectors for kinematic model

(b) Fixed base

(c) End-effector

Figure 2. General Universal-Prismatic-Spherical (UPS) Gough-Stewart structure. Stage 1 looks for
the optimal rB, rP, δB, δP, and maximum stroke lmax to cover a dexterous workspace. Stage 2 uses the
resulting geometry to provide an optimal dynamic control.

2.2. Regular Workspace Computation Considering Sufficient Dexterity

The optimization algorithms generate candidate length configurations corresponding
to the defining sizes of the parallel robot. Each length configuration is called a candidate
solution (an individual in the GA context). In order to evaluate them, we must quantify
whether they are capable of reaching any point in a set of trajectories with sufficient dexter-
ity. We measure the dexterity of the system with the inverse of the global condition number
in Equation (4) using the maximum and minimum singular values of the dimensionally
homogeneous Jacobian matrix shown in Equation (2). The dexterity index decreases its
value when the robot is close to a singular non-desirable position and increases otherwise.
Thus, an acceptable workspace should be restricted to the permitted limits of this value
over its complete volume according to the designer’s decision.

κ−1 =
σmin(J)
σmax(J)

. (4)

For this purpose, consider a set of tasks given as target trajectories. They are performed
inside a bounding box built by the maximum and minimum coordinates of the target
trajectories (see Figure 3) within a limited period. Hence, the platform must be designed to
reach, with sufficient dexterity, any point inside such a bounding box.
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(a) x = a cos t,
y = a sin t, z = b cos 2t,

b = a (b) x = a cos3 t,
y = a sin3 t, z = b cos t,

b = 2a

(c) x = a cos 3t,
y = 2(a cos2 t − 1), z = b sin 2t,

b = a/2
Figure 3. Target trajectories, named hereafter (a–c), labelled correspondingly, within prismatic
bounding boxes, and points of the discretized workspace.

Here, we introduce the procedure for quantifying the volume of the bounding box
reached by a candidate platform. To ensure that the target trajectories lie in allowable
dexterity boundaries (in terms of the condition number), the bounding boxes are discretized
in points that are spatially distributed along the surfaces and interior, and then, the inverse
condition number is evaluated at each of these points. For the case of the cube-shaped
trajectory shown in Figure 3a, which is called Trajectory a hereafter, points are uniformly
allocated to ensure their position along the edges, corners, and intermediate positions. This
distribution can be seen as the positioning of three equal planes that are parallel to the
xy plane and composed of nine points along three different equidistant heights in the z
axis, that is to say, a total of 27 points. In a similar way, the trajectory of Figure 3b, called
Trajectory b, is discretized by placing the nine-point planes at five equidistant heights of the
z axis, resulting in a total of 45 distributed points. For the trajectory of Figure 3c, Trajectory
c, it is considered that the bounding box height measures half of the sides’ lengths. Here,
sixteen points distributed in planes parallel to xy were placed at three different equidistant
heights of z, giving a total of 48 points.

For every candidate solution, namely, the lengths of a Stewart platform, the inverse
condition number is evaluated at all of the n discretized points, in which the orientation is
maintained constant and parallel to the platform base. If the manipulator is not capable of
reaching the total of the bounding box points within the allowable dexterity, and with the
stroke limitation of each linear actuator, the candidate solution is not considered suitable.
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Mono-Objective Optimization for Dimensional Synthesis

The candidate solutions are generated from a vector of decision variables, which
mainly denote the geometrical characteristics of the Stewart platform, d = [rB, rP, δB, δP,
lmax, cm ]. Here, lmax denotes the maximum stroke of the linear actuators, and a last term,
cm, is added as a decision variable, indicating the position along the z axis of the center
of mass of the bounding box. This way, not only a dimensional synthesis of the robot is
made, but also a decision about the best place to locate the trajectory according to this
candidate solution.

The objective function in Equation (5) comprises two terms. For the n discretized
points, the first term evaluates the competence of the Stewart platform of: (1) reaching
the position xw with the proposed maximum stroke lmax and (2) fulfilling the dexterity
desired for this point. Each time that a point fulfilling stroke and dexterity conditions
is reached, I takes a unit value, and zero otherwise. If all points in the workspace are
adequately reached, the sum is equal to n. The second term looks for the minimization
of the radius of the base, the radius of the end-effector, and the maximum stroke of the
linear actuators. Hence, the optimization parameters of the second term are defined as
dm = [rB/rmax

B , rP/rmax
P , lmax/lmax

max ]. In this vector, the variables to minimize are normalized
with respect to their upper boundaries in such a manner that, in the second term of the
objective function, the sum does not take a value higher than the unit, and the smaller this
value is, the better the dimensional synthesis. Notice that all feasible geometries that reach
the whole workspace report an objective value greater than n − 1, and the best—that with
the minimum lengths—is the maximum value.

f (d) =
n

∑
w=1

I(xw)−
1
3 ∑ |dm|, (5)

where I(xw) =

{
1 if κ−1(xw) ≥ 0.2 and li < lmax
0 otherwise

}
,

for the xw positions of the w = 1, . . . n discretized points and for the i = 1, . . . 6 linear
actuators. The search limits of the decision variables are given in terms of the bounding
boxes’ sizes, as shown in Table 1.

Table 1. Upper and lower boundaries of the decision variables for the dimensional synthesis.

Trajectory a Trajectory b Trajectory c

0.1a < rB < 3a 0.1b < rB < 3b 0.1a < rB < 3a
0.3a < rP < 3a 0.4b < rP < 3b 0.4a < rP < 4a
5◦ < δB < 30◦ 5◦ < δB < 30◦ 5◦ < δB < 30◦

7◦ < δP < 30◦ 7◦ < δP < 30◦ 7◦ < δP < 30◦

0.1a < lmax < 3a 0.1b < lmax < 3b 0.1a < lmax < 4a
b < cm < 5b b < cm < 5b b < cm < 5b

2.3. Computation of the Dynamics

The dynamics of the Stewart platform are solved through the simulation software
Simwise 4D [31]. First, the Stewart platform is constructed according to the best geometry
obtained in the first stage with the mono-objective optimization using a CAD software;
then, the assembly is exported to Simwise 4D for the simulation of the dynamics, with the
linear actuators controlled from MATLAB Simulink. This simulation is used to measure
the dynamic properties during the tracking of trajectories along with the time steps.

Error and Energy Multi-Objective Optimization

The optimization algorithms look for the minimal accumulated error and energy
consumption during the tracking of a trajectory. To this effect, a PID control (see Figure 4)
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is applied on the linear actuators, which is limited in stroke by the lmax resulting from the
first stage. Our decision variables are the PID gains for controlling the Stewart platform,
which are d = [kp, ki, kd]. Similarly to the first stage, decision variables are limited with
lower and upper boundaries so that [0, 0, 0] ≤ d ≤ [2, 20, 2]. Notice that the force of the
actuators is intrinsically limited by the control gains; hence, they are intrinsically bounded
by the search limits. Joint constraints are not considered in this simulation. The PID control
law appears in Equation (6).

kp + ki
1
s
+ kd

1
1 + 1

s
. (6)

 

Figure 4. Proportional Integral Derivative (PID) control scheme of the lengths. It is used for the error
and energy optimization.

The objective function of this second stage is shown in Equation (7). In the first term,
it is the integral over the time of the absolute error of the trajectory. The second term is
the integral of the absolute multiplication of force times displacement; this term measures
a function related to the accumulated energy through the simulation time. Nevertheless,
the first lengths have a larger weight than the last because li is the total displacement at
time t. This objective function helps us to emphasize the energy expended during the
initial steps rather than the rest of the trajectory, considering that the initial steps are those
with the greatest energy consumption and greatest energy,

f (d) =

[ ∫ t
0 |e|dt∫ t

0 ∑ |Fi · li|dt

]
, for the i = 1, ..., 6 linear actuators. (7)

3. Optimization Design Process: Implementation and Results

The integral optimization proposal is defined in two stages as follows:

1. Dimensional synthesis of the platform: Using a mono-objective optimization algo-
rithm, we determine the lengths of a platform with minimum dimensions that, with a
dexterity measure equal to or greater than 0.2, reaches the points inside a regular
workspace.

2. Error and energy optimization: Using the lengths of the previous stage and a multi-
objective evolutionary algorithm, we approximate the Pareto set, that is, we obtain a
set of arrays of gains of the PID controller with the best performance in both objectives.

For Stage 1, we compare three bio-inspired algorithms, and for Stage 2, we compare
two multi-objective algorithms from the state of the art. This methodology is briefly
explained in Figure 5.
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Figure 5. Flowchart of the general optimization process. Stage 1, on the left, finds the geometrical
configuration, and Stage 2, on the right, finds the optimal control parameters. Notice that both stages
are connected.

3.1. Mono-Objective Optimization Algorithms

For the workspace optimization, a comparison among three different population-
based algorithms was made: the Boltzmann Univariate Marginal Distribution Algorithm
(BUMDA) [32], which uses a probabilistic method to sample the optimum values, Particle
Swarm Optimization, inspired by flocks of birds or swarming insects [33–35], and a Ge-
netic Algorithm based on the research performed by Goldberg [36] and Conn et al. [37,38].
The Particle Swarm Optimization and Genetic Algorithm were taken from the MATLAB
routines particleswarm [39] and ga [40].

The PSO used a weight of the neighborhood best and global best equal to 1.49, and the
GA used a scattered crossover, that is to say, a binary random array was generated; the
positions with 1 were inherited from parent 1; otherwise, they were inherited from parent
2, with a crossover fraction and Gaussian mutation of 0.8.

For the sake of a fair comparison of the mono-objective optimization algorithms, we
executed the three algorithms with an equal population size of 50 and 200 maximum
iterations, that is, approximately 10,000 maximum function evaluations; the algorithms
also stopped if the search suffered stagnation during the last generations. The stagnation
of the objective value was measured as follows:

• For the BUMDA, the standard deviation of the objective function values of the popu-
lation was less than 10−8.

• For the PSO, the relative change in the best objective function value over the last 20
iterations was less than 10−6, or the maximum number of iterations is met. The relative
change was computed with the formula | f 20

best − fbest/ max(1, | fbest|)|, where f k
best is

the best function value in the k-th iteration.
• For the GA, the average relative change in the best objective function value over

the last 50 generations was less than or equal to 10−6, or the maximum number of
iterations is reached. The average relative change was computed as | f 1

best − f 50
best|/(50 ·

max(1, | f 50
best|), where f k

best is the best function value in the k-th iteration.
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Nevertheless, these settings could favor the BUMDA, which converges faster than
the other algorithms, considering that the best results for Trajectory a were [26.561535,
26.560189, 26.502771], for Trajectory b, they were [44.645261,44.714242, 44.620334], and for
Trajectory c, they were [47.713794, 45.584584, 39.524893] for the BUMDA, PSO, and GA,
respectively. In consequence, we changed the population sizes to the recommended
values [39,40] of 60 and 200 for the PSO and GA, respectively. For both cases, the number
of iterations was unlimited. Using these last settings, we obtained the results in Table 2.
Detailed information about the algorithms’ results can be found by following the “Data
Availability” link.

3.2. Multi-Objective Optimization Algorithms

The implementation of two algorithms of different natures [41,42], whose performance
has been been recently compared, MOEA/D and NSGA-III [43,44], are executed to find
the optimal gains of a PID control given three defined trajectories to track with the end-
effector while maintaining a constant orientation. In this second stage, the bi-objective
optimization focuses on minimizing the error in the trajectory, as well as the energy
consumed. The MOEA/D implementation solves the optimization by decomposing the
multi-objective problem into multiple single problems; meanwhile, the NSGA-III proceeds
with the Pareto dominance for fitness assignment.

For the sake of completeness, the optimization algorithms were executed with the
following parameters: MOEA/D used a weighted crossover as follows: α · p1+ (1− α) · p2,
where · is a position by position vector multiplication, and α is an array of the same size as
the parents, randomly picked from [−γ, 1 + γ] and γ = 0.5 without mutation, as presented
in [41]. NSGA-III used a crossover percentage of 0.5 and mutation percentage of 0.02; it
used the same crossover as the MOEA/D, but two children were generated in a single
operation from two parents by inverting the positions of the parents. The children mutated
a single position using Gaussian mutation with σ = 0.1(Varmax − Varmin).

3.3. Mono-Objective Optimization Results

Optimization algorithms use stochastic operators; hence, the results may differ one
from another. With the intention of obtaining representative results from each algorithm,
we executed them 15 times each and performed a statistical analysis to evaluate the
performance of the algorithms in solving these problems. In Table 2, we show the best
value of the objective function f resulting from this mono-objective stage for each trajectory.
These results show the decision variables, that is, the best geometrical configuration of
the Stewart platform yielding the best value of the objective function. The last column
shows the number of function evaluations required by the algorithm to reach the resulting
objective function value. These results are used for the construction of the geometrical
models for the tracking of their related trajectories, as shown in Figure 6.

Table 2. Mono-objective optimization results: the optimized parameters and best objective function values from 15 independent
executions of each algorithm.

Traj. Alg. rB(mm) rP(mm) δB(rad) δP(rad) lmax(mm) cm(mm) f neval

a
BUMDA 748.45 160.21 0.21 0.23 669.82 1099.29 26.56154 589
PSO 815.85 120.02 0.12 0.12 647.26 999.99 26.56024 17,100
GA 876.03 120.03 0.26 0.13 664.66 999.99 26.53869 50,400

b
BUMDA 927.03 151.24 0.19 0.23 837.33 1316.65 44.64526 442
PSO 592.71 240 0.09 0.12 710.25 1262.62 44.71426 10,080
GA 691.70 260.54 0.21 0.12 736.93 1296.01 44.68719 20,600

c
BUMDA 495.40 322.40 0.18 0.27 391.22 791.50 47.71379 2843
PSO 1113.84 160.00 0.11 0.12 578.97 500 47.53664 8100
GA 988.34 160.04 0.12 0.13 521.48 499.88 45.58347 52,800
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We compared our Stewart platform’s design from Stage 1 with a generic methodology
proposed in [45]. In this design method, the author proposed a set of decision variables
to define the dimensions of a Stewart platform manipulator; then, he used a simulator
to verify that it complied with the desired workspace. If the proposed dimensions do
not fit the workspace, then the designer should modify them until a satisfactory solution
is found. We applied this methodology to find a configuration for comparing and an
objective function value for Trajectory a within the same lower and upper boundaries.
The best value found after many iterations in the decision variables was f (d) = 23.5278
for the configuration d = [800, 300, 0.14, 0.40, 600, 1000], while the best values found by
the metaheuristics were 26.56152, 26.56024, and 26.53869 by the BUMDA, PSO, and GA,
respectively. Despite the many attempts, we could not find a greater value of the objective
function with the methodology in [45]. In addition, since f did not meet f >= n − 1,
the desired workspace was not completely fulfilled. In comparison, our methodology
found an objective function value greater than n − 1 and also optimizes it in seconds, while
the contrasting method took hours.

(a) Model for Trajectory a (b) Model for Trajectory b

(c) Model for Trajectory c

Figure 6. Results for dimensional synthesis based on target trajectories.

Despite the best results obtained with our optimization, we performed statistical
analyses among the performances of the algorithms in this stage. This way, we could
demonstrate whether one algorithm was better than the others in each trajectory. Table 3
shows a statistical comparison using a non-parametric test, the Wilcoxon rank sum test,
and a t-test. These tests evaluated the null hypothesis—that the mean objective values from
two algorithms are equal at the 5% significance level. The samples consist in the objective
function values f obtained from 15 executions of each algorithm. The rejection of the null
hypothesis shows that the two samples compared are significantly different. We compared
the algorithms with the best results for each trajectory against the others.
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Table 3. p-values and acceptance/rejection of the null hypothesis of the Wilcoxon rank sum test and
the t-test. × indicates that the left algorithm is better than the right one, while

√
indicates that there

is not a significant difference between them.

Traj. Algorithm
Wilcoxon t-Test

p ×/
√

p ×/
√

a BUMDA vs. PSO 0.000576 × 0.000642 ×
BUMDA vs. GA 0.198456

√
0.268204

√

b PSO vs. BUMDA 0.00000 × 0.000003 ×
PSO vs. GA 0.000001 × 0.000003 ×

c BUMDA vs. PSO 0.861813
√

0.213323
√

BUMDA vs. GA 0.000007 × 0.000003 ×

3.4. Multi-Objective Optimization Results

This section shows the results obtained from the multi-objective optimization over
Trajectory a. The second stage of this approach yields a set of Pareto solutions that help
the designer to decide on the best gains for the PID controllers of the lengths of the
actuators, since each individual in the Pareto front is a PID gain combination. The outputs
of the optimization algorithms are highly influenced by the population and number of
generations used for the executions. We executed the MOEA/D and NSGA-III 15 times with
the configurations of [50, 200] and [100, 100] in population size and generations, respectively
(60 total executions). The Pareto sets resulting from all of the executions were combined
to yield the reference Pareto front, shown in Figure 7. This Pareto front only considered
the non-dominated solutions, shown in red dots, while the dominated (blue crosses) were
discarded. Then, each algorithm with the two sets of parameters was compared to the
reference Pareto front using performance metrics to find which configuration was the best
for the solution of the multi-objective problem. The results from each algorithm separately
are depicted in Figure 8. The first performance metric was the Approximated Hypervolume
(HV), which, in practical terms, reveals the extension and covering of the Pareto front.
The other performance metrics were the Generational Distance (GD) and the Positive
Inverse Generational Distance (IGD+); this last metric is a unique weak Pareto-compliant
binary metric. These metrics expose how close the current Pareto set is in comparison to
the reference one. The lower the value of the GD, the better the proximity to the ideal
set, while the IGD+ acts inversely. Table 4 shows the metric results obtained from 15
executions of each algorithm configuration. On average, the MOEA/D performed the
best, although these average values did not reveal whether the difference between the
compared algorithms was statistically significant. In this regard, Table 5 shows the results
of the Wilcoxon test and the t-test to statistically compare the mean of the IGD+ of the 15
independent executions. In the discussion section, we argue that this metric is the best
suited for determining the best multi-objective solution from an engineering point of view.
As a final result of this stage, we highlighted three results in the Pareto front in Figure 7,
corresponding to three different regions of the objective function’s space, that is to say,
in the middle and extremes of both objectives. Then, we simulated these optimal results
to visually analyze the tracking error; the simulations and their associated PID gains are
shown in Figure 9.
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Figure 7. The non-dominated Pareto front versus the dominated error–energy values of both the
MOEA/D and NSGA-III executions; labeled points are the configurations in Figure 9.

(a) MOEA/D [100,100]) (b) MOEA/D [50,200]

(c) NSGA-III [100,100] (d) NSGA-III [50,200]

Figure 8. Pareto front from individual configurations of MOEA/D and NSGA-III from 15 inde-
pendent executions. (a) MOEA/D with population size of 100 and 100 generations, (b) MOEA/D
with population size of 50 and 200 generations, (c) NAGS-III with population size of 100 and 100
generations, and (d) NSGA-III with population size of 50 and 200 generations.
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(a) Error= 13.7504 mm, Energy= 31.8549 J;
(kp = 1.9965, ki = 20, kd = 1.7312)

(b) Error= 18.1557 mm, Energy= 4.2898 J;
(kp = 0.7099, ki = 19.7958, kd = 0.0011)

(c) Error= 126.6734 mm, Energy= 0.3168 J;
(kp = 0.0272, ki = 0, kd = 0.0122)

Figure 9. Three different simulations from the extremes and middle of the obtained Pareto front of
Figure 7 and associated PID gains. (a) Low error but high energy consumption; (b) an error–energy
balance; (c) denotes low energy but high error.

Table 4. Averages of performance metrics over the multi-objective results. Best values in bold.

Algorithm
[nPop,nGen]

Approx. Hypervolume
(Higher Is Better)

Generational Distance
(Lower Is Better)

Positive Inverse
Generational Distance
(Higher Is Better)

MOEA/D [100,100] 5345.740519 1.823100 0.299273
MOEA/D [50,200] 3297.389387 1.158101 0.348441
NSGA-III [100,100] 1102.987694 1.623127 0.049558
NSGA-III [50,200] 927.873283 2.064423 0.181521

Table 5. p-values and acceptance/rejection of the Wilcoxon test and t-test for the multi-objective
results of the Positive Inverse Generational Distance (IGD+) for 15 independent executions. Algo-
rithms with statistical differences are in bold. × indicates that the left algorithm is better than the
right one, while

√
indicates that there is not a significant difference between them.

Algorithm Comparison [nPop,nGen]
Wilcoxon t-Test
p ×/

√
p ×/

√

MOEA/D ([100,100] vs. [50,200]) 1.000000
√

0.632716
√

MOEA/D [100,100] vs. NSGA-III [100,100] 0.000003 × 0.000246 ×
MOEA/D [100,100] vs. NSGA-III [50,200] 0.020191 × 0.191011

√
MOEA/D [50,200] vs. NSGA-III [100,100] 0.000003 × 0.000004 ×
MOEA/D [50,200] vs. NSGA-III [50,200] 0.018054 × 0.231068

√
NSGA-III ([100,100] vs. [50,200]) 0.000057 × 0.006621 ×
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4. Discussion

4.1. Mono-Objective Optimization

The results in Table 2 show that the BUMDA delivers the best results for two of the
three cases, and the PSO delivers the best result for the other; then, according to Table 3,
for the BUMDA for Trajectory a, the tests reject the null hypothesis when comparing the
BUMDA to the PSO and accept it when comparing BUMDA with the GA. For the second
trajectory, the PSO performs the best, and for the third, the BUMDA is better than the GA,
but it is not significantly better than the PSO.

In general, the GA is not the best for any case, and the best algorithm for each trajectory
is significantly better than it. Hence, the adequate algorithm selection is between the PSO
and the BUMDA. Both algorithms were executed with their default parameters; in this
sense, it is possible that the PSO improves its performance if the best execution parameters
are used; nevertheless, this requires additional research and computational time for each
design problem. On the other hand, the BUMDA requires a single execution parameter,
the population size, which is not required to be tuned, according to the recommended
settings of 10 times the number of optimization variables [8,32]. Thus, we recommend the
use of the BUMDA by default, and to use the PSO if the solution with the BUMDA is not
satisfactory or if the trajectory is highly complex, although using the PSO could require
one to look for optimal execution parameters.

4.2. Multi-Objective Optimization

The results of the hypothesis tests in Table 5 show that the MOEA/D performed better
than the NSGA-III for all cases; nevertheless, there are no statistical differences when using
the MOEA/D with different execution parameters. According to the observed results,
the largest population size increases the coverage of the Pareto front, while the shortest
benefited the convergence. Usually, in the research field of multi-objective optimization,
researchers aim to find Pareto front approximations with the maximum extension or
coverage of the solution space. Nevertheless, although the results in the Pareto front
represent a minimization in one or both objectives, as observed in Figure 7, the extreme
solutions that indicate the full extension of the Pareto front are not the most interesting
from an engineering point of view, considering that they have the greatest pay-off in the
objective functions. That is to say, one extreme of the Pareto front shows a solution that
must substantially increase the energy consumption in order to reduce the error by a small
quantity, while the second extreme increases the energy for reducing the error with a
shorter pay-off than the other. However, even in this case, the solution is not of interest
because the energy is too high in contrast with the solutions in the middle, and even though
the error is lower than the other solutions, the error signal oscillates due to the large value
of the proportional gain, as noticed in Figure 9. Hence, the most useful solutions from an
engineering point of view are those with the most balanced pay-off, namely, those in the
middle of the Pareto front. For this reason, in the statistical comparison shown in Table 5,
we preferred to use the IGD+ metric to emphasize the proximity of the Pareto fronts to the
reference instead of using the HV to prioritize the optimality of the solutions rather than
the extension of the Pareto front. Once we identified that the middle of the Pareto front was
our interest area, comparing the HV was incorrect, since it does not represent the measure
of our target. Thus, according to Table 5, we preferred the set of parameters that benefited
the convergence, that is, MOEA/D with a population size of 50 and 200 generations.

Table 4 shows the HV of the two algorithms and parameters that were compared.
Usually, the performance of multi-objective evolutionary algorithms is measured according
to three features: spreading, distribution, and convergence. The first is the extension of the
solutions of the approximation of the Pareto front, the second is the representativeness of
the solutions—usually, a finite set of equally distributed solutions is desirable to represent
a possibly infinite set of optimal solutions—and convergence is measured as the distance
to the real Pareto front. The HV measures the first two features; the hypervolume in 2D,
such as in this case, is an area measured from the zenith point (the minimum value for each
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objective) to the points in the Pareto front. Notice that clustered points result in intersecting
areas, and the more spread the points are, the larger the covered area is. In this regard,
in Table 4, the NSGA-III delivers hypervolumes of approximately one-fifth of the greatest
delivered by the MOEA/D, which means that the MOEA/D delivers an approximation to
the Pareto front with a larger extension and better-distributed solutions than that delivered
by the NSGA-III. In other words, the area generated by the NSGA-III solutions is one-fifth
of that delivered by the MOEA/D.

Moreover, the simulation results in Figure 9 confirm that the desired path tracking
belongs to the solutions in the middle of the Pareto front, where both error and energy
have intermediate values (Figure 9b). In this case, the controller has the greatest gains for
the proportional and integrative terms and the lowest for the derivative. For the case in
Figure 9a, we see that many oscillations are made around the desired path, and a very
abrupt initial step is made because of the high energy expended. This might cause the
platform’s elements to experiment with high values of stress, and may also be derived
from a failure of the linear actuators, which operate under many limitations, such as
the payload and velocities. On the other hand, when the energy is kept at the minimal
values, the tracked trajectory is not even close to the expected one (Figure 9c), thus highly
increasing the error value. As a final point, notice that even the three presented solutions
are not dominated; they are not applicable from an engineering point of view. However,
this information is a priori unknown, and the desired solutions can only be selected after
the multi-objective optimization.

5. Conclusions

In this work, we introduced a method comprised of two stages for the optimization of
the structure and control of a Stewart platform by considering a task of trajectory tracking.
The purpose of the two stages is to reduce the computational cost by means of partitioning
the three-objective problem into mono-objective and bi-objective sub-problems.

In a first stage, we search for the dimensional synthesis of the structure, reaching a
bounding box of the trajectory that fulfills a dexterity index to circumvent singular posi-
tions. This process is applied to three different trajectories by means of three optimization
algorithms: the BUMDA, PSO, and GA. The BUMDA performs the best most of the time,
with a significant difference for Trajectories a and c; meanwhile, for Trajectory b, the best
algorithm is the PSO. Hence, we suggest using the BUMDA for dimensional synthesis
because of its low computational cost and its use of a single execution parameter. Then,
for the second stage, we use the geometry generated by the BUMDA for Trajectory a to
model the geometry of the Stewart platform for the second stage.

In the second stage, we look for the best set of gains of a PID controller using the
simulation software Simwise 4D for the dynamics of the robot. The MOEA/D and NSGA-
III are used for the optimization of the energy and accumulated error. There exists a
conflict between the error and energy; in other words, when the error decreases, the en-
ergy increases, and vice versa. As a result of this optimization, we obtain a Pareto front
approximation and recall that it is unknown until the multi-objective algorithms compute
it. Hence, a posteriori, we detect that the most desirable values for the energy and error
are those that are most balanced, that is to say, those in the middle of the Pareto front.
The associated PID gains for these solutions reveal that the controller acts with a very
small derivative gain, with the highest values in the PI terms. In contrast, for the solutions
with the smallest values of error, the energy is highly increased, resulting in non-desired
oscillations around the trajectory and a very abrupt initial step that might cause the linear
positioners to fail. On the contrary, when the energy is the lowest, the error is the highest,
making the trajectory highly distant from the desired path.

Since the initial population is selected randomly, the results from algorithms vary in
each execution. We executed each algorithm 15 times in the first and second stages to obtain
the best results. The samples obtained from the 15 executions were statistically compared
through the Wilcoxon rank sum test and t-tests to show which algorithm performed the
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best for each optimization problem. For the first stage, it was the BUMDA in most of the
cases, while in the second stage, the samples for the statistical comparison were made
with the IGD+ metric because the interest was in measuring how close the Pareto front
approximation was in comparison to the reference front, considering that the best results
are located in the middle of the Pareto front, and the solutions in the extremes are not
desirable in engineering. Based on this perspective, we observed that the MOEA/D
performed better than the NSGA-III in the IGD+ metric, a fact that was further validated
by the statistical tests. In this same regard, the population size and iterations were varied
for the purpose of obtaining the best execution parameters; they were a population size of
50 and 200 iterations.

For the sake of completeness, three metrics were used for the numerical evaluation
of the performance of each algorithm: the Approximate Hypervolume, the Generational
Distance, and the Positive Inverse Generational Distance. The MOEA/D performed the
best in most cases.

In essence, the main contributions of this work are the proposal of the objective
functions and the two-stage method. Furthermore, the implementation of a simulation
of the dynamics contributes to decision-makers in selecting practically feasible solutions
from a set of optimal solutions. Finally, we contributed with the application of metrics and
statistical tests to support the evaluation of the optimization algorithms’ performance and
to provide directions for the adequate metaheuristics for this problem.
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Abstract: Our concern in this paper is in the fine-tuning of the arbitrary parameters within the
upstream turbulence structure for the acoustic spectrum of a rapid-distortion theory (RDT)-based
model of trailing-edge noise. RDT models are based on an appropriate asymptotic limit of the
Linearized Euler Equations and apply when the interaction time of the turbulence with the surface
edge discontinuity is small compared to the eddy turnover time. When an arbitrary transversely
sheared jet mean flow convects a finite region of nonhomogeneous turbulence, the acoustic spectrum
of the pressure field scattered by the trailing-edge depends on (among other things) the upstream
turbulence via the Fourier transform of the correlation function, R22 (where subscript 2 refers to
a co-ordinate surface normal to the plate). We show that the length and time scale parameters
that govern the spatial and temporal de-correlation of R22 can be found using formal optimization
methods to avoid any uncertainty in their selection by hand-tuning. We assess various optimization
methods that are broadly categorized into an ‘evolutionary’ and ‘non-evolutionary’ paradigm. That
is, we optimize the acoustic spectrum using the Multi-Start algorithm, Particle Swarm Optimization
and the Multi-Population Adaptive Inflationary Differential Evolution Algorithm. The optimization
is based upon different objective functions for the acoustic spectrum and/or turbulence structure.
We show that this approach, while resulting in the total modest increase in computation time (on
average 2 h), gives excellent prediction over most frequencies (within 2–4 dB) where the trailing-edge
noise associated amplification in sound exists.

Keywords: aeroacoustics; trailing-edge noise; global optimization; evolutionary algorithms

1. Introduction

The advent of the jet engine in the mid-twentieth century [1] brought with it the
intrusion caused by aircraft noise to the communities living near airports. In its entirety,
however, the aircraft noise problem is an incredibly complex one [2]. For example, Do-
brzynski [3] shows that the radiated sound on approach for both short and long stage
length aircraft is evenly split between the engine and the airframe. Engine associated noise
is generated from the internal moving surfaces within the engine components as well as
from the exhaust gas emanating at the nozzle exit. The breakdown of the latter results in
both jet noise and jet-surface interaction noise components when the turbulent air interacts
with the airframe, wing edges and other external surfaces.

The trailing-edge component is a particularly dangerous noise source owing to the
large increase in low frequency sound when the observation point is above or below the
plate surface and vertical location (h) of the trailing-edge is of the order of jet diameter,
h ∼ D. Experiments on edge noise began in the 1970s by Olsen & Boldman [4] (discussed
below). In the early 1980’s, Wang [5] showed that the presence of an external surface
increased the noise measured on the same side as the jet flow in comparison to the isolated
jet. This amplification of sound due to the interaction with the trailing-edge is mainly at low
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frequencies up to the peak Strouhal number (i.e., the normalized angular frequency, St =
f D/Uj based on jet exit velocity, Uj and diameter, D); typically this is at St ∼ 0.1. It also
dominates at larger observation angles θ to the jet axis [6,7]. Bridges’ recent experiments [8]
confirm the work done in the 1970s by Olsen & Boldman [4] and Wang’s result by showing
that the amplification in sound perpendicular to the jet axis (i.e., θ = 90◦) is typically of
the order of 10 dB for a high speed jet at an acoustic Mach number based on the speed
of sound at infinity, Ma = U/c∞, of Ma = 0.9. As (θ) reduces, the jet noise contribution
increases until, at shallow angles (e.g., θ = 30◦), the latter jet noise dominates the total
noise radiation signature at almost all measured frequencies; typically this covers Strouhal
numbers, St = [0.01, 2.0]. The Bridges’ [8] and Bridges et al. [9] datasets also covered
the parameter range of acoustic Mach number, Ma, edge location with respect to the
nozzle lower lip line and the nozzle shape itself. We briefly summarize these trends now.
(1). The amplification in sound is greater at lower Ma, e.g., at Ma = 0.5 cf. 0.9; this is
consistent with the ‘dipole’ directionality of the edge noise source. (2). As the vertical
standoff distance, h/D, is increased the edge noise reduces in magnitude. At the limiting
condition where h � D, the amplification in sound due to the edge vanishes and the total
sound owes itself to the jet noise alone. The streamwise location also has an important
impact on the magnitude of low frequency noise amplification. Bridges’ results show that
the edge must be placed in the vicinity of where the jet potential core terminates for the
amplification to reach its greatest magnitude. (3). The round jet appears to result in greater
noise amplification than the high-aspect ratio rectangular (i.e., planar) jet flow [9].

From an analytical and numerical standpoint, a lot of work has been done on this
problem [10–15]. The discontinuity in the solid surface boundary condition can be treated
formally using the Wiener-Hopf technique for a flat plate that is doubly infinite in the
spanwise direction and lies parallel to the level curves of the streamwise mean flow. See
Figure 1 for a depiction of this problem in the (y1 − y2) plane. The so-called ‘gust solution’
then acts as the input to an inhomogeneous boundary value problem in which the scattered
pressure field is determined at the output. Goldstein et al. [10–12] used the method of
matched asymptotic expansions at the low frequency limit to construct the gust-induced
boundary condition and the homogeneous solutions to the Rayleigh equation that enter in
the solution to the Wiener-Hopf problem for the acoustic field scattered by the edge. This
solution (Equations (6.26) and (6.27) in [12]) was analytically continued to high frequencies,
and (Equations (6.28)–(6.30)) show that the mean square scattered pressure depends on
the upstream structure of the two-point time-delayed turbulence correlation R22 where
the subscript 2 denotes the co-ordinate plane normal the plate surface. Just as in acoustic
analogy models of jet noise [16,17], the correlation function is modeled by comparing to a
wide bank of experimental data (see, e.g., ref. [18]) on jet flow turbulence.

Figure 1. Canonical trailing-edge noise problem seen in the (y1 − y2)-plane.

All models are formulated with arbitrary ’tuning’ parameters to quantify the degree
of spatial and temporal de-correlation as well as the permanence of a finite anti-correlation
region in spatial and temporal separation [14]. Previous modeling approaches tuned these
scales by hand to obtain good agreement with the acoustic data. In this paper we show
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that this form of empiricism can be avoided entirely by using an appropriate numerical
optimization routine to determine the parameters for an objective function that seeks
to minimize the difference between the functional form of the turbulence model and
turbulence data as well as minimizing the difference between acoustic predictions and
acoustic data.

A (single-objective) optimization problem can be described in terms of minimizing the
objective function J(x, ψ), where xi(i = 1, n) are the n design variables which are modified
to find the optimum, and ψ are the state parameters which describe the system [19]. The ob-
jective function may also be subject to (in general) a total (m, p) of (inequality/equality)
constraints that take the form:

gj(x) ≤ 0 j = 1, m

hk(x) = 0 k = 1, p
(1)

Additionally, the design variables may be bounded (xi,LOWER ≤ xi ≤ xi,UPPER, i =
1, n), which are known as side constraints.

Optimization algorithms can find multiple solutions to this problem which are known
as local optima. Hence, the algorithms can be split into two categories: local optimization
methods (which find the local minimum for the starting conditions) and global optimiza-
tion methods (which aim to find the global minimum of the search space). The majority of
local methods use gradient information to find the optimum and there are several methods
to do this [20–23]. However if the problem has multiple local minima, these gradient
methods will converge to the closest minimum not necessarily the global. Each minimum
has a basin of attraction, where a design point initialised within the basin converges to
that local minimum. Hence, local optimization strongly depends on the location of the
initial design point. Global optimization methods aim to find the global optimum, however,
it should be noted that it cannot be guaranteed that the global optimum will be found,
only that it would be if the algorithm could run indefinitely. Global optimization can be
split into three types of algorithm: Multi-Start algorithms, evolutionary algorithms and
deterministic algorithms. Multi-Start algorithms perform local optimizations at different
starting locations, and choose the best local optimum to be the global optimum. Evo-
lutionary algorithms are stochastic and heuristic, they advance a population of design
parameters through the search space to find the global optimum. Deterministic algorithms
typically require manipulation of the objective function and are designed to solve specific
classes of problem [24], an overview of these is described in [25], and will not be further
discussed here.

Optimization methods have been used for this kind of problem in aeroacoustics before,
for example the Multipoint Approximation Method (MAM) [26–28]. This method was de-
signed for computationally expensive and noisy objective functions, so it uses trust regions
and a series of approximations to the objective function. It is similar to the Multi-Start
algorithm in that it uses multiple starting locations, however it differs by approximating the
objective function. In this paper, the objective function is not computationally expensive,
therefore we investigate the Multi-Start method instead.

The rest of the paper is organized as follows. In Section 2 we summarize the general
theory to determine the acoustic field scattered by the trailing-edge and show the final
formula that we use for the subsequent optimization experiments that we perform in
order to fine tune the modeling of the correlation function R22. Section 3 then reviews the
various types of optimization that can be used for problems of this type paying particular
attention to evolutionary algorithms. Popular evolutionary algorithms include the Genetic
Algorithm (GA) [29] which was inspired by Darwin’s principle of survival of the fittest,
Particle Swarm Optimization (PSO) [30] which is based on a social model and differential
evolution (DE) [31].

Specifically, we discuss the advantages and disadvantages of three methods (the
non-evolutionary Multi-Start [32–34] , and the evolutionary algorithms: Particle Swarm
Optimization (PSO) [30] and Multi-Population Adaptive Inflationary Differential Evolution
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Algorithm (MP-AIDEA) [35] which is an extension to the original differential evolution
algorithm) for a problem of this type and the results that are obtained for the parameters
under different objective functions for the turbulence and/or final acoustic predictions (i.e.,
when comparison is made to turbulence and/or acoustic data). Finally in Section 4 we
conclude by discussing the applicability of using such optimization approaches in acoustic
modeling problems.

2. Summary of the Mathematical Modeling of Trailing-Edge Noise and Defining the
Objective Functions

Rapid-distortion theory (RDT) analyzes the changes in turbulent flows by using
linearized equations. It is, therefore, ideally suited to analyze the rapid changes that
occur when a turbulent flow interacts with a discontinuity at the boundary of a solid
surface embedded in the flow. It applies whenever the turbulence intensity is small
and the length (or time) scale over which the changes take place is short compared to
the length (or time) scale over which the turbulent eddies evolve. These assumptions
imply, among other things, that the resulting flow is inviscid and non-heat conducting
and is, therefore, governed by the Linearized Euler Equations, i.e., the Euler equations
linearized about an arbitrary, usually steady, solution (the base flow) to the nonlinear
equations. Goldstein et al. [11] showed that the upstream boundary conditions can be
imposed infinitely far upstream in a region where the flow is undisturbed by the interaction.

Goldstein et al. [12] used rapid distortion theory to determine the trailing-edge noise
spectrum above the flat plate (given the Fourier transform of the mean square scattered
pressure [p′s(x, t)]2), denoted by I(x, ω) for the axisymmetric jet U(yT) interacting with the
flat plate as depicted in Figure 1, and is given by (Equations (6.26) and (6.27) in their paper):

I(x, ω) →
( k∞

4π|x|
)2

0∫
−∞

0∫
−∞

D(u, ũ; θ)S̄(u, ũ; ω) du dũ, (2)

where D(u, ũ; θ) is the round jet directivity factor determined by application of the Wiener-
Hopf technique (i.e., Equation (13) in Afsar et al. [13]), yT = (y2, y3) are transverse co-
ordinates and,

S̄(u, ũ; ω) = (ρ∞c2
∞)2

π∫
−π

π∫
−π

S(u, ũ|v, ṽ; ω)

∣∣∣∣ dz
dW

∣∣∣∣2
∣∣∣∣ dz̃
dW̃

∣∣∣∣2 dv dṽ. (3)

The function S(u, ũ|v, ṽ; ω) derived in [12] is

S(u, ũ|v, ṽ; ω) =

[
dU/du
U2(u)

dU/dũ
U2(ũ)

∇u∇̃ũω2

]
F(u, ũ, v, ṽ) (4)

This result shows, among other things, that S(u, ũ|v, ṽ; ω) is directly proportional
to the Fourier transform of the streamwise-independent turbulence statistical quantity,
R̂22(ũ − u, ṽ − v; ω) which represents the Fourier transform of the two-point time delayed
correlation function of the transverse velocity normal to the plate surface at u = 0 (see
Afsar et al. [13]).

Our starting point is, however, a spectral function F(u, ũ, v, ṽ) which is slightly more
general than that used in [12] (Equation (4.22) in their paper). Since correlation functions of
the type R22 will anti-correlate (i.e., become negative) for some values of its arguments [13],
including such effects means that a mathematical model for R22 must have additional
algebraic behaviour, for example given by the a1 term in the following formula

R22(τ) ∼ (1 − a1τ)e−τ , (5)
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where τ is the time-delay between the two space-time points being correlated far upstream
of the interaction region near the trailing edge as required by the theory in [11]. Hence, the
spectral function, F(u, ũ, v, ṽ), from Equation (4) is given by the following formula:

F(u, ũ, v, ṽ) =l4
2 A(u, ũ)

[
(1 − a1)

τ0 f
π
√

1 + ω̃2
K1( f

√
1 + ω̃2) +

a1τ0 f 2ω̃2

π(1 + ω̃2)

[1
2
(K0( f

√
1 + ω̃2) + K2( f

√
1 + ω̃2)) +

K1( f
√

1 + ω̃2)

f
√

1 + ω̃2

]]
,

(6)

where K0, K1, and K2 are the modified Bessel functions of the second kind of order 0, 1, and
2 respectively, A(u, ũ) is the amplitude function and f = |(ũ − u)/l2 + (ṽ − v)/l3| controls
the (u, v) de-correlation via the parameters (l2, l3).

The objective functions are then defined as the mean squared error between the acous-
tic/turbulence models (Equations (2) and (5)) and the relevant experimental data [36,37] is
given by the following optimization norms:

JA(x, ψ) =
1

NA

NA

∑
i=1

(I(x, ωi, ψ)− EA(x, ωi, ψ))2

JR(x, ψ) =
1

NR

NR

∑
i=1

(R22(x, τi, ψ)− ER(x, τi, ψ))2,

(7)

where: NA, NR is the number of experimental data points we are optimizing against for
acoustics and R22 respectively, I(x, ωi, ψ) is the acoustic spectrum result using the model
for the ith frequency ωi, and EA(x, ωi, ψ) is the corresponding experimental data. Likewise
R22(x, τi, ψ) is the result using our turbulence model at the ith time delay τi, and ER is the
corresponding experimental data.

The vector of state parameters (ψ) is the minimum set of parameters which describe
the system and how it responds to input [19]. Our problem can be thought of as an “in-
put/output system” where an input turbulence spectrum interacts with the streamwise
discontinuity at the trailing-edge and produces noise. The sound radiation will depend
on the acoustic Mach number of the jet (Ma), and the location where the noise measure-
ments take place (far field angle, θ, measured with respect to the jet axis and azimuthal
angle, φ). On the other hand the turbulence correlation function, R22, is independent of
these parameters, and instead depends on the location where the turbulence is measured
(y1/D, r/D), where y1/D is the streamwise location from the nozzle exit normalized by
the nozzle diameter and r/D is the radial location from the jet centerline (r2 = y2

2 + y2
3).

The experimental set-up can be found in several papers [11,12,37].
The O(1) parameters (a1, l2, l3, τ0) in the spectral function F(u, ũ, v, ṽ) are selected in

order to find the optimum acoustic spectrum predictions across acoustic Mach number
(Ma) and far-field angle θ, whilst maintaining a physically admissible turbulence structure.
In the following sections we discuss the different optimization methods that can be used
to achieve this. Since it was found that there were multiple local minima, only global
optimization routines were considered. The location of the trailing edge (xTE/D, y/D) in
all of the numerical tests investigated below is taken to be the same as Goldstein et al. [12]
(see their Figure 4). In the following sections of this paper, the acoustic spectrum I(x, ω) is
calculated in the form of the power spectral density of the far-field pressure fluctuation
versus Strouhal number, which is defined in this case as St = f h/U, and is presented
in the usual dB scale where PSD = 10log(4π I(x, ω)U/hp2

ref) (relative to pref = 20 μPa).
We show results only at the observation point of θ = 90◦ where the trailing edge noise is
largest [36] to illustrate the benefit of optimization.
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3. Evolutionary Versus Non-Evolutionary Optimization Methods

The non-evolutionary Multi-Start method is the most straightforward global opti-
mization routine. It follows on from local optimization in that it simply performs a local
optimization algorithm at several different starting points within the design space [32–34].
The local optima can then be compared to find the global optimum. As the number of
starting points increase, the probability of finding the global optimum also increase. Often,
a Design of Experiments (DOE) is performed prior to Multi-Start to initialise design points
within known basins.

Evolutionary algorithms are specifically designed to work on black box problems,
i.e., they do not need direct access to the inner workings of the objective function nor do
they need gradient information. Consequently, they can be used for non-smooth functions
and it is not required that the programmer knows anything about the structure of the
objective function. Evolutionary algorithms are known to be robust and have a good
chance of finding the global optimum since they advance a fixed population of design
variables through the search space. However, they are computationally expensive and
require the tuning of parameters to solve each problem [24]. There are several types of
evolutionary algorithm, two of the most popular are Particle Swarm Optimization (PSO)
and Differential Evolution (DE).

Particle Swarm Optimization (PSO) [30] was developed from a social model. Each
particle utilizes not only its own past experience to find an optimum but also that of
the group at large. It involves initializing the population and a velocity vector for each
particle. The velocity vector is then updated by including information from the particles
past and from the group. More recently there have been modifications to PSO to better
handle optimization problems with constraints [38]. There are three parameters which
need to be tuned for the specific optimization problem. These are, the inertia parameter
w, and the trust parameters c1, c2. The choices of parameters are very important and
some recommendations are given in [39]. This paper uses the default parameters given in
Matlab which adapts the inertia weight within bounds (0.1 ≤ w ≤ 1.1) and uses the trust
parameters (c1 = c2 = 1.49).

Differential Evolution (DE) [31] also initializes a population of design points and
then utilizes information from these points to mutate and find the next generation of
design points. There are several different methods of differential evolution but the ‘classic’

method (DE/rand/1/bin) mutates the design parameters through the equation: x
′g+1
i =

xg
r1 + F(xg

r2 − xg
r3) where g is the current generation, i is the individual in the population,

and (r1, r2, r3 
= i) are random parents in the population. The parameter F is the differential
weight and controls the amplification of the differential, it typically lies within the interval
0.4–1 [40]. The mutation is demonstrated in Figure 2 for two dimensions.

Following mutation, crossover is used to increase the diversity of the population,
after which the parent and child designs are compared and the best is selected to be the
design point for the next generation. The second parameter of differential evolution is the
crossover ratio: 0 < CR < 1, this and the differential weight, F, need to be selected by
the programmer.

There are several variations of the evolutionary algorithms which make them more
complex and robust. An extension of the differential evolution algorithm, which we use in
this paper, is the Multi-Population Adaptive Inflationary Differential Evolution Algorithm
(MP-AIDEA) [35]. This uses multiple populations and combines basic differential evolution
with monotonic basin hopping (MBH) to reduce the risk of converging to a minimum
which is not global, it also adapts the optimization parameters autonomously. It is a further
advancement on the inflationary differential evolution algorithm (IDEA) which only uses a
single population and requires the parameters to be chosen by the programmer [41].
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Figure 2. Example of Differential Evolution mutation in 2D (DE/rand/1/bin) (Adapted by permis-
sion from licensor: Springer Nature, Journal of Global Optimization, 1997 [31] https://www.springer.
com/journal/10898 accessed on 18 February 21).

When a minimum has been found the monotonic basin hopping (MBH) [42] method
generates a new point within the neighbourhood of this minimum (where the neighbour-
hood is defined as 2Δ). A local search is performed from this point and if the minimum
found is better than the previous one it is chosen and a new point generated in its neighbour-
hood, and so on. If no better points are found for nsamples then a restart can be performed.

IDEA uses MBH when the population contracts within a radius defined as the contrac-
tion limit (a parameter to be defined), when the population reaches this limit it is unlikely
to be able to escape and search elsewhere in the design space, hence the need for a restart.
Instead of using a local search within MBH it uses differential evolution. MP-AIDEA
adapted IDEA to adjust the main parameters (crossover probability CR, differential weight
F, local restart bubble δlocal , and the number of local restarts nLR) autonomously. This
makes the algorithm easier to apply to different problems. For full details of the algorithm
refer to [35]. To adapt the values of δlocal and nLR the restart of the population needs to be
evaluated, therefore, multiple populations are used and evolved in parallel. The parameter
nLR is removed in this algorithm and a procedure to decide whether a local or global restart
should be run is implemented instead. Figure 3 demonstrates the algorithm.

Figure 3. Description of the Multi-Population Adaptive Inflationary Differential Evolution Algorithm
(MP-AIDEA).

4. Possible Routes to Minimizing the Objective Function in Equation (7)

There are various approaches to determine the parameters in the spectral function
F(u, ũ, v, ṽ). One way is by hand as in [12], but here we use the following methods:

Method 1: Optimize the acoustic model to find the 4 parameters.
Method 2: Optimize the R22 model to find a1 and hand-tune the other 3 parameters
for acoustic predictions.
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Method 3: Optimize the R22 model to find a1, and optimize the acoustic model to find
the other 3 parameters.

Table 1 sets out the optimization problem which is to be solved for each method,
where the objective functions JA, JR were defined in Equation (7).

Table 1. Optimization problem statement for each method (hyphens indicate that no optimization
was carried out).

Method 1 Method 2 Method 3

Acoustics R22 Acoustics R22 Acoustics R22

Objective function JA(x, ψ) = 0 - - JR(x, ψ) = 0 JA(x, ψ) = 0 JR(x, ψ) = 0
State parameters (ψ) Ma, θ, φ - - x/D, y/D Ma, θ, φ x/D, y/D
Design parameters (x) a1, l2, l3, τ0 - - a1 l2, l3, τ0 a1
Constraints g1 - - g2 g3 g2

There are no equality or inequality constraints for this problem, only side constraints
which were chosen to be:

g1 : 0 < a1 < 1, 0 < l2 < 5, 1 < l3 < 10, 1 < τ0 < 10

g2 : 0 < a1 < 1

g3 : 0 < l2 < 5, 1 < l3 < 10, 1 < τ0 < 10

(8)

The acoustic spectrum results using these methods will be compared to experimental
results from [37] for three acoustic Mach numbers Ma = 0.5, 0.7, 0.9 above the plate
(φ = 90), and at the far field angle (θ = 90) where jet surface interaction is greatest.

We also compare the R22 model using the values found for a1 against experimental data
from Bridges [36] at the end of the potential core on the shear layer (y1/D = 6, r/D = 0.5).

To reduce the time taken in optimization, for each acoustic Mach number 30 points
were chosen from the experimental acoustic data (see Figure 4). The acoustic model was
then run for each of these points to calculate the objective function.

Figure 4. Points chosen from experimental data to calculate the objective function (a) Ma = 0.5
(b) Ma = 0.7 (c) Ma = 0.9.
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We compare the results from three optimization routines: The Multi-Population
Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA), Particle Swarm
Optimization (PSO), and Multi-Start. The Multi-Start and PSO optimizations were done
using the in-built Matlab routines. Multi-Start was carried out using 500 starting points.

5. Results

Since the optimization routines are stochastic, they were ran several times for Ma =
0.9, θ = 90 to see if they consistently converged. Figure 5 shows the variance of parameters
found using Particle Swarm Optimization. Likewise, Figures 6 and 7 show the variance of
parameters for MP-AIDEA and Multi-Start respectively. The range of objective function
values corresponding to these parameters obtained from each routine are shown in Figure 8.

Figure 5. Parameter variance across 10 runs of PSO (a) l2 (b) l3 (c) τ0 (d) a1.

Tables 2–4 compare the parameters found through each method and optimization
routine, the resulting objective function value ( f val) and the time taken for the optimization
routine to run.

Table 2. Ma = 0.5, θ = 90: Comparison of parameters found from the optimization methods.

Ma = 0.5, θ = 90

Method 1 Method 2 Method 3

MP-AIDEA Multi-Start PSO Hand-Tuned MP-AIDEA Multi-Start PSO

a1 0.01 0.10 0.00 0.85 0.85 0.85 0.85
l2 2.52 2.18 2.57 1.30 1.51 1.30 1.49
l3 1.01 1.01 1.00 5.00 1.00 2.50 1.00
τ0 2.61 2.04 2.69 5.00 3.68 3.52 3.54
fval 14.29 15.47 14.24 20.75 15.68 17.90 15.66
Time (s) 9538 6044 7766 - 7098 4700 7507
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Table 3. Ma = 0.7, θ = 90: Comparison of parameters found from the optimization methods.

Ma = 0.7, θ = 90

Method 1 Method 2 Method 3

MP-AIDEA Multi-Start PSO Hand-Tuned MP-AIDEA Multi-Start PSO

a1 0.59 0.56 0.60 0.85 0.85 0.85 0.85
l2 1.39 1.14 1.37 0.90 1.05 0.89 1.06
l3 1.02 3.22 1.00 5.00 1.00 2.80 1.00
τ0 3.71 3.73 3.64 5.00 3.75 4.28 3.75
fval 4.91 5.15 4.18 5.70 4.27 5.12 4.26
Time (s) 9596 5841 8944 - 7183 4610 7264

Table 4. Ma = 0.9, θ = 90: Comparison of parameters found from the optimization methods.

Ma = 0.9, θ = 90

Method 1 Method 2 Method 3

MP-AIDEA Multi-Start PSO Hand-Tuned MP-AIDEA Multi-Start PSO

a1 0.52 0.56 0.54 0.85 0.85 0.85 0.85
l2 0.89 0.82 0.89 0.55 0.68 0.57 0.69
l3 1.22 2.37 1.16 5.00 1.12 9.19 1.07
τ0 3.54 4.35 3.55 5.00 4.08 5.48 4.08
fval 9.21 9.73 9.20 11.36 9.97 10.48 9.96
Time (s) 9501 5684 14,921 - 7075 4450 7393

Figure 6. Parameter variance across 10 runs of MP-AIDEA (a) l2 (b) l3 (c) τ0 (d) a1.
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Figure 7. Parameter variance across 10 runs of Multi-Start (a) l2 (b) l3 (c) τ0 (d) a1.

Figure 8. Objective function value range across 10 runs (a) PSO (b) MP-AIDEA (c) Multi-Start.
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Figure 9 compares the turbulence correlation function R22 for methods 1, 2, and 3.
Since the model for R22 only depends on the parameter a1, methods 2 and 3 give identical
results. In Method 1, a1 varies for each optimization routine.

Figure 9. Comparison of R22 for different optimization methods and routines (a) Ma = 0.5
(b) Ma = 0.7 (c) Ma = 0.9.

Figure 10 compares the acoustic spectrum for method 1 using each optimization
routine. Similarly, Figure 11 compares the routines for method 3. In Figures 12–14 we
compare the acoustic spectrum for methods 1, 2, and 3 using Particle Swarm Optimization,
MP-AIDEA, and Multi-Start respectively.

Figure 10. Comparison of acoustic predictions using different optimization routines for method 1
(a) Ma = 0.5 (b) Ma = 0.7 (c) Ma = 0.9.
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Figure 11. Comparison of acoustic predictions using different optimization routines for method 3
(a) Ma = 0.5 (b) Ma = 0.7 (c) Ma = 0.9.

Figure 12. Comparison of the acoustic predictions for methods 1, 2 and 3 using Particle Swarm
Optimization (a) Ma = 0.5 (b) Ma = 0.7 (c) Ma = 0.9.
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Figure 13. Comparison of the acoustic predictions for methods 1, 2 and 3 using MP-AIDEA (a) Ma =

0.5 (b) Ma = 0.7 (c) Ma = 0.9.

Figure 14. Comparison of the acoustic predictions for methods 1, 2 and 3 using Multi-Start
(a) Ma = 0.5 (b) Ma = 0.7 (c) Ma = 0.9.

82



Mathematics 2021, 9, 998

6. Discussion

Method 1 was used to find the four parameters through optimization of our acoustic
model against the experimental data in [12]. Figure 10 shows that the predictions are
particularly good for Ma = 0.7, and Ma = 0.9 for all optimization routines. For Ma = 0.5
Multi-Start gives a poorer prediction due to the change in l3 which affects low frequency
roll-off. From this figure, it is shown that MP-AIDEA and PSO give more or less the same
acoustic predictions for all acoustic Mach numbers.

However, the turbulence correlation function R22 that we use (Equation (5)) is a
function of a1, and the values for a1 that were found from this method for each optimization
routine do not give a good representation of R22, as shown in Figure 9. The initial decay
is too slow and there is little to no anti-correlation region, this is particularly the case for
Ma = 0.5. Note, that we’ve allowed τUc/D → 10 to show where the model goes to zero,
there is no turbulence data at these locations most likely due to measurement difficulties.

In methods 2 and 3, we optimized the R22 model separately against experimental
data from Bridges (y1/D = 6, r/D = 0.5) [36]. This means that the anti-correlation region
is represented and the initial decay is steeper, as shown in Figure 9 for methods 2 and 3.
Only the initial de-correlation is of interest, therefore we have used a simple model for
R22. A different model could be used to capture the oscillations but this would make
the acoustic model much more complicated and have no improvement on the acoustic
spectrum predictions.

For method 3 we use the this R22 optimized value a1 (0.85) in the acoustic model and
then optimize the other parameters against the acoustic data to find the best prediction.
This allows us to find the optimal predictions for the acoustic spectrum while also having
a good representation of the turbulence structure. It results in slightly poorer acoustic
predictions, with the exception of Multi-Start for Ma = 0.7, as noted in Tables 2–4. However,
Figure 11 shows that they still give very good predictions for the level of accuracy that we
require. Since this method also allows R22 to be better represented, overall it is deemed to
be better than method 1.

In method 2, we also use this value (a1 = 0.85) in the acoustic model and hand tune
the other parameters to find the best prediction. We aimed to find one set of parameters
for all acoustic Mach numbers. However, it was found that due to the level shift in the
acoustic spectrum, one parameter (l2) must change for each Mach number. As this method
did not require different optimization routines, the results are included in Figures 12–14
and is identical in each. We can see that the predictions are similar to methods 1 and 3.
However, hand tuning these parameters is not ideal as it relies on human judgement as to
what is a ‘good’ prediction.

It is easy to see in Figures 12–14 that the three methods of optimization give similar
acoustic predictions for all optimization routines, with only Multi-Start giving a noticeable
change in prediction for Ma = 0.5. Note that from Figure 8 only PSO and MP-AIDEA
consistently converged to a minimum objective function value ( f val = 9.2), Multi-Start
displayed a more widely varying value, possibly due to the number of starting points
chosen (500). Figure 7 shows that the parameters found for Multi-Start also vary widely
on each run of the routine, hence it is less likely that acoustic predictions found using
Multi-Start are optimal. On the other hand, Figures 5 and 6 show that the parameters found
by PSO and MP-AIDEA respectively, only vary slightly.

We can conclude that our acoustic spectrum model for the trailing-edge noise problem
is ‘parametrically flat’, i.e., the objective function is not noticeably sensitive to the variation
of parameters (l2, l3, a1, τ0) within their specified range. Both evolutionary optimization
routines that we have used in this paper have given good results and almost identical
predictions. The time taken in optimising method 1 naturally took longer than method 3
since an extra parameter was being found. In general, it was found that method 1 was faster
using PSO, however method 3 was faster using MP-AIDEA. However, for the number
of starting points that was chosen, Multi-Start was fastest of all, and since the objective
function value was still smaller than method 2, if there was a time constraint which
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restricted the use of evolutionary algorithms, it would be worthwhile to use Multi-Start
rather than hand-tuning the problem.

7. Conclusions

Aeroacoustic models for turbulence interaction problems will always require a set of
parameters that define the rate of temporal and spatial de-correlation. For the trailing-edge
noise problem as illustrated in Figure 1, the acoustic spectrum (Equation (2)) is proportional
to the Fourier transform of the streamwise-independent transverse velocity correlation
function, R22(ũ− u, ṽ− v; ω) via Equations (3), (4) and (6) and depends on O(1) parameters
(l2, l3, a1, τ0). The latter can be chosen by hand-tuning, however this will not result in a
‘mathematically‘ optimal choice of parameters, and could result in under/over prediction
of the acoustic spectrum (as illustrated in Figures 12–14). It also adds to the time taken in
assessing its predictive capability. This paper highlights how optimization routines, both
evolutionary and non-evolutionary, can be used to determine what the optimal parameters
are, resulting in slightly better acoustic predictions (see Figures 12–14). When determining
turbulence-associated parameters in acoustic models for which more than the 3 state
variables considered in this paper (i.e., Ma, θ, φ) are required, such as in predictive models
of the full jet-installation noise signature, the use of a numerical optimization routine will
become even more beneficial.
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Abstract: The actual behavior of welded T-junctions in tubular structures depends strongly on the
topology of the junction at the joint level. In finite element analysis, beam-type elements are usually
employed due to their simplicity and low computational cost, even though they cannot reproduce
the joints topologies and characteristics. To adjust their behavior to a more realistic situation, elastic
elements can be introduced at the joint level, whose characteristics must be determined through
costly validations. This paper studies the optimization and implementation of the validation data,
through the creation of an optimal surrogate model based on neural networks, leading to a model
that predicts the stiffness of elastic elements, introduced at the joint level based on available data. The
paper focuses on how the neural network should be chosen, when training data is very limited and,
more importantly, which of the available data should be used for training and which for verification.
The methodology used is based on a Monte Carlo analysis that allows an exhaustive study of both
the network parameters and the distribution and choice of the limited data in the training set to
optimize its performance. The results obtained indicate that the use of neural networks without a
careful methodology in this type of problems could lead to inaccurate results. It is also shown that a
conscientious choice of training data, among the data available in the problem of choice of elastic
parameters for T-junctions in finite elements, is fundamental to achieve functional surrogate models.

Keywords: T-junctions; neural networks; finite elements analysis; surrogate; beam improvements;
beam T-junctions models; artificial neural networks (ANN) limited training data

1. Introduction

The utilization of finite element modeling for the simulation of structural components
has become a fundamental part of modern engineering, being utilized in the majority of
industrial fields.

Despite the advances of the finite element analysis (FEA) software and the increased
calculation capabilities, for the modeling of tubular structures in which the length of the
profiles is significantly bigger than the width and thickness of the sections, the beam type
elements are still widely utilized despite their limitations and the fact that they cannot
reproduce the characteristics of the joints neither from the geometrical point of view nor
from the behavioral one. Figure 1 presents the equivalent beam type element T-junction
that would be utilized for the simulation of the original T1 and T2 junctions.

The joint configuration of these T-junctions (T1 and T2) has a direct influence on the
behavior of the structures, determining significant behavioral differences depending on the
type and direction of the load. Despite this reality, the beam type element equivalent model
will always be composed of three nodes and three beam type elements. This way all the
geometrical characteristics of the joint get lost into an infinitely rigid node, which represents
a significant shortcoming of these elements in the correct characterization of T-junctions.
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Figure 1. T-junctions equivalent beam type element model.

This issue could be avoided by utilizing shell or volume type elements. However,
these alternatives are feasible only for small models, which is not the case when common
tubular structures such as buses upper modules, bridges, support structures, or similar big
structures need to be modeled. The complexities of the modeling process along with the
increase in computational resources due to the increment of nodes make these alternatives
unfeasible for general industrial use.

The magnitude of this issue is illustrated in Table 1, in which a comparative analysis
is performed based on the number of nodes and degrees of freedom for a simple T-junction
of 1 m by 1 m having a standard square hollow profile of 40 mm × 40 mm × 4 mm
presented in Figure 2. The table presents the comparative analysis of the T-junction,
modeled using beam, shell and volume element types, for comparative purposes, the three
models where meshed using 4 mm first order elements. The resulting number of nodes are
a consequence of the meshing dimension and the degrees of freedom are calculated taking
into consideration the mathematical formulation of the elements. In the case of the beam
and shell elements we have 6 degrees of freedom (DOF) per node and in the case of the
volume type elements we have 3 DOF per node. A comparative evaluation criterion taking
into consideration the complexity of the modeling process and the precision of the results,
based on the experience of the authors for modeling structures. The value is calculated as
the product between the DOFs and the complexity of the modeling process along with the
precision of the results (Table 1).

Table 1. Comparative analysis between characteristics of T-junctions modeled with beam, shell, and
volume type elements.

Element
Type

No. of
Nodes

DOFs
Complexity of
Modeling (1–3)

Results
Precision (1–3)

Evaluation
Coefficient

Beam 910 5460 1 3 16,380
Shell 19,520 117,120 2 2 468,480

Volume 36,144 108,432 3 1 325,296
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Figure 2. Analyzed T-junction with the cross section detail.

From the previously presented results, it can be seen that, despite their limitations,
the beam type elements represent the most feasible alternative when analyzing tubular
structures in which the relation of the length and the profile dimensions is quite significant.
Due to the above, it can be concluded that the calculation of complex tubular structure
(buses, bridges, and railway carriages) is significantly simplified by using beam-type
elements. This is why, these elements have been widely recommended [1–3] for modeling
large tubular structures.

However, despite being recommended and widely utilized in the industry, the beam
formulation is simply not designed to take into account and reproduce the behavior of real
joints, since all the elements that reach the same joint are joined in a single infinitely rigid
node [4–6]. Furthermore, beam-type elements cannot represent the topological character-
istics of the joints and do not differentiate between joints that are apparently similar, but
with different topologies. Therefore, there is a clear necessity for the improvements of the
beam modeled T-junctions.

One of the improvement solutions proposed in order to avoid ignoring the specific
characteristics of the joint topologies was the introduction of elastic elements at the joint
level when modeling T-junctions. In [4] it was shown that the flexibility of the joints has a
determining influence on the behavior of the analyzed structures and could not be ignored.
Later, in [5] it was again confirmed that ignoring the influence of joint stiffness on structural
behavior was a mistake. In this case, it was shown that, when the stiffness of the elastic
elements in the joint exceeds a certain maximum value, the total deformation energy of the
vehicle is insensitive to the joint.

Furthermore, in [7], Lee presented the hypothesis that the behavior of welded joints
was elastic and linear, obtaining a general methodology for the model of joints. Applying
this, in [8], three rotational springs were introduced into the joints with the aim of opti-
mizing vehicle structures. This way, the deformations that could occur in the joints due to
torsional or bending moments were considered. In contrast, infinite stiffness values were
assumed in the axial directions, this study showed that it was possible to obtain better
approximations with this approach and validated modal calculations with experimental
modal analyses. The introduction of elastic elements when modeling beam T-junctions has
a fundamental advantage since it provides the possibility to modify the overall behavior
of the structure while maintaining the mass distribution of the input model, having the
downside of requiring the adjustment of the appropriate stiffness values which would lead
to the need for expensive experiments.

Another alternative was to model beam T-junctions with variable stiffness in the
adjacent regions to the joints, this was proposed in [9] since the rigidity of the joint is
much greater than the surrounding area. Later, in [10] the idea was reformulated by using
partially rigid beams. Taking advantage of this new concept, in [11] H-shaped structures
with rectangular hollow profiles were studied and partially rigid beams were used at
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their joints, the model was validated through modal correlation with good results. The
same methodology was applied in [12] for the optimization of a three-dimensional bus
structure formed by hollow rectangular profiles of 40 mm × 40 mm × 3 mm. To do this, it
was necessary to perform a sensitivity analysis to identify the joints that had the greatest
influence on the overall behavior of the structure, this way, partially rigid beams were
progressively introduced in the most important regions. Alternatively, a new technique
was proposed in [13]. In this case, the parameters of the elements near the joint were
modified. This approach of the problem is similar to the previous one, but also allowing
the modification of the mass and rigidity independently.

Given these limitations, some authors have used shell or volume type elements as an
alternative for the study of the joints, modeling the rest of the structure with beam type
elements, these elements allow the characteristics of the joint to be modeled more accurately.
In [14] the shell element model was applied to tubular joints and major improvements
were reported. In [15] the models of a single beam with shell elements were compared
against the same shell and beam modeled and it was shown that hybrid modeling could
reduce the number of elements without compromising the results.

The same approach has been applied to the analysis of structural joints in cars. Thus,
hybrid modeling has led to satisfactory results [14,16,17] in this field, however, the appli-
cation of this hybrid technique to larger models (e.g., hollow beam structures in buses) is
unattractive, since it would be necessary to specifically model a large number of joints,
which leads to a substantial increase in the model preparation time and more computational
resources by increasing the number of elements in the model.

In their study [18] developed an alternative beam T-junction model that allowed
them to obtain more precise deformation results when utilizing beam type elements, also
allowing them to take into consideration different T-junction configurations. Their focus
was to improve the results provided by beam type elements when simulating structures
that by their characteristics cannot be realistically simulated with anything but beam type
elements due to the complexity of the modeling process, the computational requirements
or other practical aspects. The authors proposed an alternative beam model in which they
introduced a total of six elastic elements at the joint level along with a complete methodol-
ogy based on finite element methodology (FEM) comparative analysis that allowed them to
improve the behavior of the modeled T-junctions in terms of displacements. This proposal,
however, required the user to reproduce the complete methodology in order to obtain six
stiffness values for each individual modeled T-junction making it somehow not attractive
when having to characterize a wide variety of T-junction combinations. Figure 3 presents
the alternative beam T-junction model proposed and utilized by [18]. This T-junction
introduces a total of six elastic elements at the joint level, three of them behaving as linear
springs (represented by the letter k) and noted with the sub index ux, uy, and uz correspond-
ing to (u) displacement and (x, y, z) the axial directions and another three corresponding to
(r) rotations along the (x, y, z) axial directions.

Figure 3. Alternative T-junction model.

90



Mathematics 2021, 9, 943

This approach was also used by [19], in which multiple simulations utilizing the most
common profiles found in buses and coaches upper structures were performed, followed
by a statistical analysis in order to obtain regression models for the calculation of the
stiffness values for the alternative T-junctions, based on the profile dimensions (E1, E2, E3,
g1, and g2). They utilized a Bayesian Kriging regression model that provided satisfactory
results, however, the regression equations obtained were notably complicated having, in
some cases, more than 33 terms per equation, making them impractical for everyday use in
the wide industry. These regressions were obtained with a MISO (multiple input, single
output) approach in which a total of six regression models had to be calculated, one for
each kux, kuy, kux, krx, kry, and krz stiffness value, leading to the necessity of any potential
user to use six complex equations for the estimation of the stiffness values for a single
T-junction type.

From the previous studies it can be concluded that it is possible to make an adjustment
of the existing data coming from analysis by finite elements in complicated models. In
this way, the time and effort needed to carry out new simulations for sets of junction
parameters not previously studied can be drastically reduced. Unfortunately, the basic
laws that allow for optimal adjustment are not known. In this sense, artificial neural
networks (ANN) surrogate models allow, from sufficient known training data, to infer
the unknown laws behind the analyzed data. The use of ANNs is not new. There are
countless studies that have applied them to the most diverse applications. Specifically, in
the last years, the development and implementation of neural networks for the evaluation
of multiple processes with a pronounced non-linear behavior has become a reality [20].
ANN have also been utilized along with finite elements such as in [21] where the authors
implemented their use with good results in the evaluation of damage detection in bridges.
In [22], ANN was used to simplify contact estimation models in ANSYS®. In [23] the use
of response surface and ANN models was successfully evaluated against other methods of
structural reliability analysis. In addition, ANNs can generate valid surrogated models,
based on data obtained from finite elements, to evaluate such complicated issues as noise
reduction in braking systems, with very high accuracy [24].

Taking into consideration the benefits of the implementation of neural networks
for finite element analysis, the authors considered of great interest the development of a
methodology for the estimation of the stiffness values utilizing ANN as an alternative to the
utilization of Bayesian Kriging regressions similar to those utilized in [19], that provided
satisfactory results although not realistic from the practical point of view due to the
complexity of the obtained equations. In fact, ANNs have been used as a valid alternative to
such Kriging networks in various articles for the creation of metamodels [25,26] providing
very satisfactory results.

This article studies the application of ANN in the creation of surrogate models that
allow inferring the information obtained from complicated finite element models, such
as those obtained in the analysis of optimal stiffness to predict the behavior of T-welded
junctions. The biggest problem when trying to replace finite element modeling with
surrogate models is that a lot of training data needs to be obtained for the prediction to be
reliable. However, obtaining this data is often very costly in time and effort. There is also
uncertainty about how the ANN should be created to learn effectively and be useful for
unknown finite element models.

This article presents a detailed study, leading to the presentation of a new methodology
for the creation of surrogate models (or metamodels) based on data obtained from finite
element calculations. The particularity in this case is that the number of initial data, for
the training of the model, is very limited. Few training data can make the model a failure.
However, as mentioned, this is usually a common situation in FEM due to the high time
of creation of FEM models and their calculation. The possibility of creating models that
can learn from these “few” data obtained from FEM calculations, using them in an optimal
way, can allow to obtain more precise models and enable the use of ANN to cases with
limited data.
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The rest of the article is distributed as follows: Section 2 presents the methodology
followed for the determination of the ANN topology and the optimal use of the available
data; Section 3 describes the results and the analyses obtained, which are discussed in
Section 4. Finally, Section 5 presents the conclusions, applicability, and future lines.

2. Methodology

Using the same data from [19] the experimental design for the neural network anal-
ysis had a five dimensional input and six dimensional output, where the input values
represented the dimensions of the analyzed T-junction profiles (E1, E2, E3, g1, and g2) and
the output values represented the calculated stiffness values for the alternative T-junction
model having 3 axial spring (kux, kuy, kuz) and 3 rotational springs (krx, kry, krz) at the
junction level as presented in Figure 3.

This data is based on hollow rectangular profiles commonly utilized in the buses and
coaches upper structures, focusing the study on a total of 243 profile combinations for two
different T-junction configurations named T1 and T2 presented in Figure 1.

The 243 input values were obtained by getting all of the possible combinations for the
five input variables, each variable having 3 levels as presented in Table 2.

Table 2. Input base variable values.

E1
(mm)

E2
(mm)

E3
(mm)

g1
(mm)

g2
(mm)

40 40 40 2 2
60 60 60 3 3
80 80 80 4 4

As can be seen in the previous table, the input data is staggered and only provides
information about the studied process for specific values, leaving significant empty spaces
between variables as can be seen in Figure 4, in which the utilized input values for the
E1–E3 characteristics are plotted in a 3D graphic.

Figure 4. Three dimensional plot for the E1–E3 utilized values.

Since the base methodology requires comparative FEM analysis between beam and
shell modeled T-junctions, for example adding 2 additional thicknesses for the g1 and
g2 variables, would require a total of 675 comparative simulations for each one of the T1
and T2 junctions determining a significant increase in the required computational time.
This leads to a situation in which predictive models need to be constructed from a limited
amount of staggered input data, in which a proper selection of the neural network training
data is of paramount importance. To illustrate that, Figure 5 presents the average error
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obtained for 50 different neural networks, constructed using different training data sets
versus using the same training data set. This error is determined for each neural network
as the average difference between the network output values and the target outputs of the
validation data obtained from FEM models. As it can be seen, although both cases reach
the same average error (0.072), the standard deviation is almost one order of magnitude
higher in the case of neural networks constructed using different training data, evidencing
the importance of a proper selection of this data.

Figure 5. Neural network error dispersion comparison between using same versus different
training data.

This behavior motivates a more detailed study of the performance of neural networks
with respect of the chosen data set. To carry out this study it was necessary to decide
the topology and design of a neural network that could be effectively trained from few
input data. In a neural network, the increase of hidden layers and nodes in each layer,
requires a lot of training data to avoid the known problem of over fitting. As the number
of training data is very limited in our case the network was kept simple, with only one
hidden layer and a limited number of nodes (1 to 20) within that layer. In addition,
to check the performance of the neural network, the initial data were divided into two
subsets. The first one was dedicated to the training of the network (75% of them) and the
second one to its validation (25%). Usually, the distribution of training and validation
data is around 50% in cases where there are large amounts of data. However, in this
case, due to the high cost of obtaining additional training data, it was decided to vary the
standard. The rest of the parameters and functionality of the neural network were also
kept simple. For the comparison between the outcome between neural networks a limit
of 2000 training iterations (epocs) was taken, with a learning rate of 0.1. The activation
function of the neurons was the hyperbolic tangent sigmoid, and the training was based on
a Levenberg–Marquardt backpropagation algorithm, Figure 6 presents the characteristics
of the ANN.

Figure 6. Characteristics of the ANN evaluated.
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As mentioned, the limitation of training data has a fundamental influence on the
choice of the type of neural network to be used, its topology and its configuration, since
it can cause the network not to learn the pattern behind the data, or to learn it too well,
fitting perfectly to the training data, but offering very poor results in the validation data.
This effect is called over fitting and it is critical to avoid it. The goal is to train with as much
data as possible and to learn in a robust way and to reduce the error in the validation data.

But, apart from the issue of reasoned choice of network topology, there is the major
problem of optimal selection of training data. Since there is so little training data, the
information that such data provides about the behavior of the welded T-joints is very
valuable. The choice of which data should be used for network training and which data
should be used for validation has a critical influence on the result of the analysis. Therefore,
the choice of which data will go to 75% of the training set should not be made at random in
this type of problem. At this point, the choice of suitable training sets is not evident. For
this reason, a thorough study is needed to shed light on this point.

In this sense, next sections show the results of this complete study, where a total
of 1000 different training data sets were used to construct the neural network, leading
to a total of 20,000 different neural networks for each joint configuration. Input layer
consisted of 5 neurons containing input information of the joint dimensions (E1, E2, E3,
g1, and g2, see Figure 3 and Table 2). For the output layer both MISO (multiple input
single output) and MIMO (multiple input multiple output) models were initially explored.
Both approaches showed very similar results, so it was decided to focus on MIMO models
due to the obvious computational cost saving of not having to construct independent
neural networks for each output. Thus, output layer consisted of 6 neurons with the 6 DOF
spring rates (kux, kuy, kuz, krx, kry, and krz, see Figure 3). Due to the different behavior of the
different joint configurations, independent neural networks were analyzed for T1 and T2
junctions (Figure 1). The following Figure 7 shows a block diagram with the methodology
used to construct and check the performance of each neural network. As it is shown, the
same input data with the geometric information that was used to construct the beam and
shell FEM models and obtain the spring stiffness, is used to feed the neural networks,
which are constructed using 1000 randomly chosen trained sets, and 1 to 20 neurons in its
hidden layer. For each network, the average error is recorded, which is obtained as the
mean absolute difference between the predicted and correct outputs of the validations set
(remaining 25% of the data).

Figure 7. Block diagram of the applied methodology for the selection of the best ANN.

Finally, once the complete methodology is executed, the best performance networks
are selected for further analysis in order to validate the selection methodology proposed.

3. Results and Analysis

In the following subsections, the most relevant information, and the obtained results
of the application of the methodology will be presented.
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3.1. Neural Networks Behavioral Analysis Results

This section shows all relevant findings encountered during the application of the
methodology itself. It should be noted that, although of great interest to understand the
behavior of the data, the analysis presented in this section in not strictly necessary to run
the methodology since it does not affect the network selection, which ultimately depends
in the overall average error.

In relation to the performance of the neural network with respect to the number of
neurons, Figure 8 shows the average error obtained for each spring and joint configuration,
averaged over the 1000 training data sets utilized. As it can be seen, the minimum error
values are generally obtained for a number of neurons that ranges approximately between
5 and 10. It can be also noticed that the error level is highly dependent on the spring
direction and the junction configuration.

Figure 8. Average errors in comparison to the number of nodes in the ANN (1000 networks).

Although in some cases the average error reach minimum values for more than
10 neurons, it was observed that the variability of these errors increased significantly as
the number of neurons is increased, and that some outputs with extremely bad predictions
where obtained. In this regard, Figure 9 shows the number of networks observed with
an average error above one, identified as outliers. It is clearly noticed that from about
10 neurons, outlier results start to increase. In general, springs with better performance
show fewer networks with exceptionally high errors.

Figure 9. Outlier networks with respect to the number of neurons.
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With respect to the performance of the networks regarding the training data, it was
noticed a dependency among the number of neurons, i.e., if any network performs opti-
mally for a given number of neurons, it will show the same tendency for the rest number of
neurons. To assess this, the 1000 networks were ranked from 1 (least error) to 1000 (highest
error) for each direction and number of neurons. If a given training data shows similar
rankings for all number of neurons, it would mean that such dependency of the perfor-
mance with respect to the number of neurons exists. On the other hand, if the rankings
from 1 to 20 neurons approach to a uniform distribution, it would indicate not dependency
at all. This behavior was quantified by means of the standard deviation of the rankings in
Figure 10, for both junction configuration and spring direction. It is noticed that dispersion
of rankings is always significantly lower than the one for uniform distribution (σ = 288.6),
and that it is especially low for networks that show best or worst rankings, meaning
that dependency is especially high in these cases. As expected, behavior differences are
observed between junction configuration and spring direction.

Figure 10. Network ranking dispersion with respect to the number of neurons.

Additionally to the relation of the network performance with respect to the number of
neurons, possible dependency with respect to the spring directions were also assessed to
check if a given network that performs optimally in one direction, should show the same
tendency for the rest of directions. To quantify that in an equivalent manner, standard
deviation of the rankings with respect to the spring directions were obtained for each
number of neurons, as shown in Figure 11. For the sake of clarity, and since the behavior was
found to be very similar for all number of neurons, only results for 1, 5, 10, and 15 neurons
are included. In this case, it is observed that for mid rankings, no significant dependency
between directions can be stated, since dispersions approaches to the one of uniform
distribution. In contrast, extreme rankings show once again lower dispersion, meaning that
networks with worst and best results will show dependency between spring directions.
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Figure 11. Network ranking dispersion with respect to the spring direction.

Finally, a detailed analysis of the characteristics of the networks that showed the best
results was carried out in order to evaluate if there is any affinity among them regarding
the input data and variable values. To do so, the 10 best overall ranked networks were
selected for both T1 and T2. Later, the input data that was present in at least 8 out of the
10 for all directions were accounted. These data are highlighted for the 243 input data
(abscissa), and for each spring direction (ordinate), for both T1 and T2 in Figures 12 and 13,

respectively. It can be noticed that there are certain input data that appears systematically
in all best performance networks (14 data inputs are shown for T1 in Figure 12, and 13 data
inputs are shown for T2 in Figure 13), regardless the spring directions. It is also noticed
that such data are different for T1 and T2 junction configurations.

Figure 12. Data frequency graph in the 10 best performance networks for T1. Most used 14 input
data are shown.
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Figure 13. Data frequency graph in the 10 best performance networks for T2. Most used 13 input
data are shown.

Furthermore, the values of the geometric variables contained in these input data
that appeared systematically in at least 8 out of the 10 best performance networks (14 in
Figure 12 and 13 in Figure 13) are analyzed in Figures 14 and 15 for T1 and T2, respectively.
The figures show the frequencies of each parameter value. It is noticed a clear tendency
to certain values for some of the parameters. Junction configuration T1, for example,
takes preferably lower values of E2, and higher values for E3 and g1; meanwhile, junction
configuration T2 shows preference for lower values of E1 and E2, and higher values for g1.
A priori, no physical meaning to explain this behavior and, its differences between junction
configuration, was found.

Figure 14. Variables values of frequent input data in best performance networks—T1.

Figure 15. Variables values of frequent input data in best performance networks—T2.

From the evaluation of the 1000 different networks, the best overall for T1 and T2 was
selected for validation. Since no performance improvement was observed from around
10 neurons, and in order to avoid isolated high error values, the selection was limited
to a maximum of 10 neurons. The selected ones were a 9 and 10 neuron network for T1
and T2, respectively, that performed with overall average errors of 0.039 and 0.035. The
corresponding neuron weights are gathered in Tables 3 and 4 (for T1), and in Tables 5 and 6
(for T2).
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Table 3. Input layer to hidden layer weights for T1.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9

Input
layer

E1 17.68 −0.52 0.38 0.90 −0.38 −0.38 0.05 −0.74 3.50
E2 −1.49 −0.01 −0.02 1.75 0.02 0.83 1.50 0.21 6.05
E3 0.90 −0.15 −0.96 −1.34 0.96 −0.97 1.03 1.61 −4.16
g1 0.79 −0.73 3.25 −0.32 −3.23 −0.48 23.36 0.66 −1.60
g2 −0.30 −0.05 −0.81 −0.28 0.81 0.09 1.15 0.83 0.06

Table 4. Hidden layer to output layer weights for T1.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9

Output
layer

kux −0.63 −0.68 −5.86 −286.73 −5.85 −44.07 −0.07 10.83 0.82
kuy 0.30 −0.44 21.54 −10.59 21.43 42.36 0.21 18.12 −0.01
kuz −3.08 −0.16 2.93 6.33 2.94 −245.51 −0.01 22.29 −0.20
krx 0.94 −0.10 30.83 −117.97 30.96 103.39 0.01 157.71 0.19
kry −0.43 0.08 3.82 19.53 3.83 −154.39 0.01 21.58 −0.36
krz −0.13 −0.26 22.90 −42.41 22.81 29.46 0.21 37.62 0.07

Table 5. Input layer to hidden layer weights for T2.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9 10

Input
layer

E1 −0.05 0.41 −0.21 0.53 0.13 −0.34 0.43 15.70 2.01 −0.13
E2 −18.19 −0.06 0.00 1.01 0.12 0.96 −2.03 2.67 −2.19 −0.12
E3 0.34 −0.08 0.05 −1.18 0.21 −0.65 0.33 −3.50 −48.09 −0.22
g1 −20.36 0.13 0.09 −0.45 0.37 −0.09 −1.42 −0.83 21.88 −0.35
g2 20.00 0.24 −0.72 0.23 0.19 −0.51 2.22 −0.77 −25.75 −0.20

Table 6. Hidden layer to output layer weights for T2.

Hidden Layer Neuron

1 2 3 4 5 6 7 8 9 10

Output
layer

kux −0.02 91.15 44.78 18.55 −56.35 −92.22 0.26 3.80 −0.01 −77.39
kuy −0.06 18.77 26.16 −5.54 143.37 27.15 0.06 −9.37 −0.01 186.32
kuz −0.01 −0.59 14.25 −128.62 −34.06 −161.27 −0.20 −31.99 0.04 −49.50
krx 0.01 −14.05 −52.31 11.67 −28.38 48.26 0.86 −5.78 −0.01 −43.06
kry 0.00 −3.27 3.02 52.74 −24.07 −211.65 −0.35 −93.02 0.03 −34.27
krz −0.06 4.72 15.56 −22.93 149.42 18.68 0.03 −16.70 0.00 194.29

3.2. Analysis of Selected Neural Network

Although global evaluation of the 1000 different training data sets was based on
averaged errors and dispersions, a more detailed look on the network estimations becomes
necessary to complete the analysis and assess the capability to properly predict the vali-
dation outputs. In this regard, Figures 16 and 17 show the correct and estimated outputs
of the selected networks for T1 and T2, respectively. A general good fit can be observed.
It is noted that there are significant differences in the precision of some spring directions,
especially for T2 joint configuration, where UX, UY, RX, and RZ show an average error of
approximately one third with respect to the rest of directions. In any case, the worst-case
average error keeps below 7% regardless spring directions and junction configurations
(6.7% for RY in T2), which already supposes a significant error improvement with respect to
the original deviation in beam type structural models, which can reach up to 90% according
to [19].
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Figure 16. Validation results—T1.

Figure 17. Validation results—T2.

4. Discussion

A neural network-based approach is presented as an alternative to Bayesian Kriging
regressions for improving the accuracy of beam type element structural models. Due to the
limited amount of input data, an adequate selection of the training set was proved to be
fundamental in order to get valid results. In this regard, a methodology that deals with
this reality and ensures a valid choice of the training data was also developed.

The notable amount of information generated during the application of the method-
ology allowed a more profound study of the behavior and performance of the different
neural networks constructed. Such study is not strictly necessary to run the methodology
since it has no influence on the best network selections. Nevertheless, the information
obtained can be of great interest to increase the understanding about the input data and
the behavior of the networks, and thus be utilized in futures related studies.

The obtained results show that there is a general increase in the accuracy of the
networks when increasing the number of neurons up to 4 to 5. The optimal number of
neurons was observed to be dependent on the joint configuration and the elastic element
direction, ranging from 6 to 10, the use of more neurons increases the risk of obtaining
isolated extremely bad predictions, probably due to over fitting.
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It was also found that there is a clear correlation between the accuracy of the network
with respect to the number of neurons, meaning that if a certain training set presents high
precision for a given number of neurons, it will also present the same tendency for the rest.
With respect to the correlation of the accuracy of the networks with respect to the elastic
element direction, it was only observed for extreme ranked networks, i.e., only if a given
network is one of the best (or the worst) ranked for a specific direction, it will also tend to
be one of the best (or the worst) for other directions. Both T1 and T2 joint configurations
showed very similar behavior regarding these dependencies.

Additionally, there were located specific input data that appeared systematically in
the 10 most accurate networks, regardless the spring direction. Although the same was
observed for both joint configurations, the data that appeared systematically in T1 and
in T2 were different. It was also found that these data had preference to contain certain
variable values in the case of T1, lower values of E2 and higher values for E3 and g1 where
observed, while T2 showed preference for lower values of E1 and E2, and higher values
for g1.

A priori, no physical meaning was found to explain the behavior of the networks
for this data. Consequently, it cannot be stated that similar behavior should be noticed
in other structural problems. Future works would be needed to prove if these tendencies
apply to data sets of similar problems or could be even extensive to data sets of completely
different nature.

After running the 20,000 neural networks of the methodology, the least error networks
for T1 and T2 were selected for validation. As it was proven, from about 10 neurons
no accuracy improvement was observed at the same time the deviations on isolated
predictions increased, so such selection was limited from 1 to 10 neurons. Validation results
showed that some spring directions predictions were very close to the reference values,
with average errors around 2%. The highest average error was of 6.7% corresponding to
the Ry elastic element of the T2 junction.

From the performed study, it can be concluded that neural networks represent a solid
alternative to the Bayesian Kriging regressions for the accuracy improvement of structural
models constructed with beam type elements, as long as a proper selection of the training
data set is assured through the presented methodology.

The present study provides a detailed insight on all the relevant aspects and difficulties
that could be encountered when applying neural networks for the estimation of the elastic
element stiffness in the alternative beam T-junction model studied. At the same time, it
evaluates real aspects such as the generation of ANN with a reduced number of training
data, the high sensitivity of the process to the selection of the initial sampling for training,
and the deviation ranges that would be considered as acceptable so that any potential user
could apply this methodology with a significant amount of confidence.

The interactions that take place at the joint level of T-junctions are complex and
depend on the geometry of the junction, the type of loads and their direction. As it was
pointed in the literature, these interactions are hard to characterize, and thus the alternative
of presenting a complete methodology for the improvement of these T-junctions with a
significant degree of confidence suppose a valuable tool for the structural design using
finite element models.

5. Conclusions

In this paper the behavior of welded T-junctions in tubular structures was studied with
the purpose of improving their behavior by means of artificial neural networks trained
with finite element models. The topology of the junction at the joint level determines
significant behavioral differences that cannot be taken into consideration with regular
beam type elements.

To adjust their behavior to more precise results, elastic elements were introduced at
the joint level, characterizing their stiffness utilizing artificial neural networks. In this
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paper the optimization and implementation of the validation data, through the creation of
an optimal surrogate model based on neural networks was presented.

The results led to a model that predicted the stiffness of these elastic elements, in a
satisfactory manner. The paper also focuses on how the neural network should be chosen,
when training data is very limited and, more importantly, which of the available data
should be used for training and which for validation.

The results indicated that the use of neural networks without a careful methodology
in this type of problems could lead to inaccurate results.

The present work, more generally, is applicable to many other applications where
there is insufficient training data (or data that costs a lot of time or money to obtain). This
situation occurs in experimental trials, where the manufacture and use of the necessary
test equipment to obtain more data is limiting. Furthermore, this situation appears in the
computational calculation of complicated FEM or computational fluid dynamics (CFD)
models, where a complicated calculation can take several hours and days and obtaining a
large pool of data to train a neural network is pure utopia. In this sense, the methodology
presented in this paper would be applicable to all these cases where data availability is
scarce. The work presented is part of a broader development, where in the future it is
expected to apply this methodology to larger problems based on this type of profiles, such
as the study of bus structures.
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Abstract: Worst-case scenario optimization deals with the minimization of the maximum output in
all scenarios of a problem, and it is usually formulated as a min-max problem. Employing nested
evolutionary algorithms to solve the problem requires numerous function evaluations. This work
proposes a differential evolution with an estimation of distribution algorithm. The algorithm has
a nested form, where a differential evolution is applied for both the design and scenario space
optimization. To reduce the computational cost, we estimate the distribution of the best worst
solution for the best solutions found so far. The probabilistic model is used to sample part of
the initial population of the scenario space differential evolution, using a priori knowledge of the
previous generations. The method is compared with a state-of-the-art algorithm on both benchmark
problems and an engineering application, and the related results are reported.

Keywords: worst-case scenario; robust; min-max optimization; evolutionary algorithms

1. Introduction

Many real-world optimization problems, including engineering design optimization,
typically involve uncertainty that needs to be considered for a robust solution to be found.
The worst-case scenario optimization refers to obtaining the solution that will perform best
under the worst possible conditions. This approach gives the most conservative solution
but also the most robust solution to the problem under uncertainty.

The formulation of the problem that arises is a special case of a bilevel optimization
problem (BOP), where one optimization problem has another optimization problem in its
constraints [1,2]. In the worst-case scenario case, the maximization of the function in the
uncertain space is nested in the minimization in the design space, leading to a min-max
optimization problem. Therefore, optimization can be achieved in a hierarchical way.

Min-max optimization has been solved by classical methods such as mathematical
programming [3], branch-and-bound algorithms [4] and approximation methods [5]. These
methods have limited application as they require simplifying assumptions about the fitness
function, such as linearity and convexity.

In recent years, evolutionary algorithms (EAs) have been developed to solve min-max
optimization problems. Using EAs mitigates the problem of making specific assumptions
about the underlying problem, as they are population-based and they directly use the
objectives. In this way, they can handle mathematically intractable problems that do not
follow specific mathematical properties.

A very popular approach to solve min-max problems with the EAs is the co-evolutionary
approach, where the populations of design and scenario space are co-evolving. In [6], a
co-evolutionary genetic algorithm was developed, while in [7], particle swarm optimization
was used as the evolution strategy. In such approaches, the optimization search over the
design and scenario space is parallelized, reducing significantly the number of function
evaluations. In general, they manage to successfully solve symmetrical problems but
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perform poorly in asymmetrical problems by looping over bad solutions, due to the red
queen effect [8]. As the condition of symmetry does not hold in the majority of the problems
[definition can be found in Section 2, they become unsuitable for most of the problems.

One approach to mitigate this problem is to apply a nested structure, solving the
problem hierarchically as for e.g., in [9], where a nested particle swarm optimization is
applied. This leads to a prohibitively increased computation cost, as the design and sce-
nario space is infinite for continuous problems. Min-max optimization problems solved
as bilevel problems with bilevel evolutionary algorithms were presented in [10], where
three algorithms—the BLDE [11], a completely nested algorithm, the BLEAQ [1], an evo-
lutionary algorithm that employs quadratic approximation in the mappings of the two
levels, and the BLCMAES [12], a specialized bilevel CMA-ES—known to perform well in
bilevel problems, were tested on a min-max test function and showed good performance in
most of the cases but required a high number of function evaluations. A recently proposed
differential evolution (DE) with a bottom-boosting scheme that does not use surrogates
proved to reach superior accuracy, though the number of functional evaluations (FEs)
needed is still relatively high [13].

Using a surrogate model can lower the computational cost. Surrogate models are
approximation functions of the actual evaluation and are quicker and easier to evaluate.
Surrogate-assisted EAs have been developed for min-max optimization, such as in [14].
In that work, a surrogate model is built with a Gaussian process to approximate the
decision variables and the objective value, assuming that evaluating the worst-case scenario
performance is expensive. This might be problematic when the real function evaluation is
also expensive. In [15], a Kriging-based optimization algorithm is proposed, where Kriging
models the objective function as a gaussian process. A newly proposed surrogate-assisted
EA applying multitasking can be found in [16], where a radial basis function is trained and
used as a surrogate.

As already explained, there are two ways so far to reduce the computational cost when
using EAs for min-max problems: the co-evolutionary approach and the use of surrogates,
which both come with the disadvantage that either cannot be applied in all the problems
or the final solution lacks accuracy.

The DE [17] is one of the most popular EAs because of its efficiency for global optimiza-
tion. Estimation of distribution algorithm (EDA) is a newer population-based algorithm
that relies on estimating the distribution for global convergence, rather than crossover and
mutation, and has great convergence [18]. Hybrid DE-EDAs have been proposed to com-
bine the good exploration and exploitation characteristics of each in several optimization
problems, such as in [19] for solving a job-shop scheduling problem and in [20] for the
multi-point dynamic aggregation problem. EDA with a particle swarm optimization has
been developed for bilevel optimization problems, where it served as a hybrid algorithm
of the upper-level [21].

In this paper, we propose a DE with EDA for solving min-max optimization problems.
The algorithm has a nested form, where a DE is applied for both the design and scenario
space optimization. To reduce the computational cost, instead of using surrogates, we
estimate the distribution of the best worst solution for the best solutions found so far. Then,
this distribution is passed to a scenario space optimization, and a part of the population
is sampled from it as a priori knowledge. That way, there is a higher probability that the
population will contain the best solution, and there is no need for training a surrogate
model. We also limit the search for the scenario space. If one solution found is already
worse than the best worst scenario, it is skipped.

The rest of this paper is organized as follows: Section 2 introduces the basic concepts
of the worst-case scenario and min-max optimization. A brief description of the general
DE and EDA algorithm is provided in Section 3, along with a detailed description of the
proposed method. In Section 4, we describe the test functions and the parameter settings
used in our experiments. In Section 5, the results are presented and discussed. Finally,
Section 6 concludes our paper.
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2. Background

In this section, the definitions of the deterministic optimization problem and the
worst-case scenario optimization as an instance of robust optimization are presented.

2.1. Definition of Classical Optimization Problem

A typical optimization problem is the problem of minimizing an objective over a set
of decision variables subject to a set of constraints. The generic mathematical form of an
optimization problem is:

min
x

f (x)

subject to g(x) ≤ 0,
(1)

where x ∈ Rn, xL ≤ x ≤ xU is a decision vector of n dimension, f (x) is the objective
function and g(x) are the inequality constraints. The global optimization techniques
solve this problem, giving a deterministic optimal design. Usually, no uncertainties are
considered. This approach, though widely used, is not very useful when a designer desires
the optimal solution given the uncertainties of the system. Therefore, robust optimization
approaches are applied [22].

2.2. Definition of Worst Case Scenario Optimization Problem

When one seeks the most robust solution under uncertainties, then the worst-case
scenario approach is applied. Worst-case scenario optimization deals with minimizing
the maximum output in the scenario space of a problem, and it is usually formulated as a
min-max problem. The general worst-case scenario optimization problem in its min-max
formulation is described as:

min
x∈X

max
y∈Y

f (x, y) (2)

where X ∈ Rm represents the set of possible solutions and Y ∈ Rn the set of possible
scenarios. The problem is a special instance of a bilevel optimization problem (BOP), where
one optimization problem (the upper level, UL) has another optimization problem in its
constraints (the lower level, LL). The reader can find more about the BOPs in [1]. Here, the
UL and LL share the same objective function f (x, y), where UL is optimizing with respect
to the variables x of the design space and the lower level is optimizing with respect to the
uncertain parameters y of the scenario space. If the upper-level problem is a minimization
problem, then the worst-case scenario given by the uncertain variables y of a solution x can
be found by maximizing f (x, y). From now on, we will refer to the design space as upper
level (UL) and scenario space as lower level (LL) interchangeably. In Figure 1, a general
sketch of the min-max optimization problem as bilevel problem is shown, where for every
fixed x in the UL, a maximization problem over the scenario space y is activated in the LL.

When the problem holds the following condition:

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y)

then the problem is symmetrical. Problems that satisfy the symmetrical condition are
simpler to solve since the feasible regions of the upper and lower level are independent.
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Figure 1. A general sketch of the min-max optimization problem as a bilevel problem, inspired by [16].

3. Algorithm Method

In this section, we briefly describe the differential evolution and estimation of dis-
tribution algorithms. Then, we explain the proposed algorithm for obtaining worst-case
scenario optimization.

3.1. Differential Evolution (DE)

DE [17] is a population-based metaheuristic search algorithm and falls under the
category of evolutionary algorithm methods. Following the standard schema of such
methods, it is based on an evolutionary process, where a population of candidate solutions
goes through mutation, crossover, and selection operations. The main steps of the algorithm
can be seen below:

1. Initialization: A population of NPop individuals is randomly initialized. Each indi-
vidual is represented by a D dimensional parameter vector, Xi,g = (x1

i,g, x2
i,g, ..., xD

i,g)

where i = 1, 2, ..., nPop, g = 1, 2, ...MaxGen, where MaxGen is the maximum number
of generations. Each vector component is subject to upper and lower bounds Xmin
and Xmax. The initial values of the ith individual are generated as:

Xi = Xmin + rand(0, 1) ∗ (Xmax − Xmin) (3)

where rand(0,1) is a random integer between 0 and 1.
2. Mutation: The new individual is generated by adding the weighted difference vector

between two randomly selected population members to a third member. This process
is expressed as:

Vi,G = Xr1,G + F ∗ (Xr2,G − Xr3,G) (4)

V is the mutant vector, X is an individual, r1, r2, r3 are randomly chosen integers
within the range of [1, NPop] and r1, r2, r3 
= i, G corresponds to the current gen-
eration, F is the scale factor, usually a positive real number between 0.2 and 0.8. F
controls the rate at which the population evolves.

3. Crossover: After mutation, the binomial crossover operation is applied. The mutant
individual Vi,G is recombined with the parent vector Xi,G, in order to generate the
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offspring Ui,G. The vectors of the offspring are inherited from Xi,G or Vi,G depending
on a parameter called crossover probability, Cr ∈ [0, 1] as follows:

Ui,G =

{
Vi,G, if rand ≤ Cr or t = random(i).
Xi,G, otherwise.

(5)

where rand ∈ (0, 1) is a uniformly generated number, random(i) ∈ 1, ..., D is a
randomly chosen index, which assures that Vi,G gives at least one element to Ui,G.
t = 1, ..., D denotes the t-th element of the individual’s vector.

4. Selection: The selection operation is a competition between each individual Xi,G and
its offspring Ui,G and defines which individual will prevail in the next generation.
The winner is the one with the best fitness value. The operation is expressed by the
following equation:

Xi,G+1 =

{
Ui,G, if f (Ui,G) ≤ f (Xi,G) .
Xi,G, otherwise.

(6)

The above steps of mutation, crossover, and selection are repeated for each generation
until a certain set of termination criteria has been met. Figure 2 shows the basic
flowchart of the DE.

Population
InitializationStart Mutation Crossover Selection

Termination

Stop

no

yes

Figure 2. Basic flowchart of the differential evolution algorithm (DE).

3.2. Estimation of Distribution Algorithms (EDAs)

The basic flowchart of the EDA is shown in Figure 3. The general steps of the EDA
algorithm are the following:

1. Initialization: A population is initialized randomly.
2. Selection: The most promising individuals S(t) from the population P(t), where t is

the current generation, are selected.
3. Estimation of the probabilistic distribution: A probabilistic model M(t) is built from S(t).
4. Generate new individuals: New candidate solutions are generated by sampling from

the M(t).
5. Create new population: The new solutions are incorporated into P(t), and go to the

next generation. The procedure ends when the termination criteria are met.

109



Mathematics 2021, 9, 2137

Population
InitializationStart Selection

Estimate
probabilistic
distribution

Generate new
individuals

by sampling
the estimated
distribution

Create new
Population

Termination

Stop

no

yes

Figure 3. Basic flowchart of the estimation of distribution algorithm (EDA).

3.3. Proposed Algorithm

In the proposed algorithm, we keep the hierarchically nested formulation of a min-max
problem, which solves asymmetrical problems. The design space (UL) decision variables
are evolving with a DE. For the evaluation of each UL individual, first the scenario space
(LL) problem is solved by the DE. This solution is then transferred to the upper level. To
reduce the cost, we apply an estimation of distribution mechanism between the decision
space search (UL) and the scenario space search (LL). In that way, we use a priori knowledge
obtained during the optimization. To further reduce the FEs, we search only for solutions
with good worst-case scenarios. If the objective function of a solution X1 under any
scenario is already worse in terms of worst-case performance of the best solution X2 found
so far, there is no need for further exploring X1 over scenario space. Therefore, the mutant
individual’s performance is checked under the parent’s worst-case scenario, and further
explored only when it is better in terms of the fitness function. Figure 4 shows the general
framework of the proposed approach. The main steps of the proposed algorithm for the UL:

1. Initialization: A population of size NPop is initialized according to the general DE
procedure mentioned in the previous section, where the individuals are representing
candidate solutions in the design space X.

2. Evaluation: To evaluate the fitness function, we need to solve the problem in the
scenario space. For a fixed candidate UL solution Xi, the LL DE is executed. More
detailed steps are given in the next paragraphs. The LL DE returns the solution
corresponding to the worst-case scenario for the specific Xi. For each individual,
the corresponding best Ybest = argmaxy∈Y f (Xi, y) solutions are stored, meaning the
solution y that for a fixed x maximizes the objective function.

3. Building: The individuals in the population P(i) are sorted as the ascending of the UL
fitness values. The best nPop/2 are selected. From the best nPop/2 individuals, we
build the distribution to establish a probabilistic model MG for the LL solution. The
d-dimensional multivariate normal densities to factorize the joint probability density
function (pdf) are:

F(x, μ, Σ) =
1√

|Σ|(2π)d
e−1/2(x−μ)Σ−1(x−μ)

′
(7)

where x is the d-dimensional random vector, μ is the d-dimensional mean vector
and Σ is the dxd covariance matrix. The two parameters are estimated from the best
nPop/2 of the population, from the stored lower level best solutions. In that way,
in each generation, we extract statistical information about the LL solutions of the
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previous UL population. The parameters are updated accordingly in each generation,
following the general schema of an estimation of distribution algorithm.

4. Evolution: Evolve UL with the steps of the standard DE of mutation, crossover,
producing an offspring Ui,G.

5. Selection: As mentioned above, the selection operation is a competition between each
individual Xi,G and its offspring Ui,G. The offspring will be evaluated in the scenario
space and sent in LL only if f (Ui,G, Yi,G) ≤ f (Xi,G, Yi,G), where Yi,G corresponds to
the worst case vector of the parent individual Xi,G. In that way, a lot of unneeded LL
optimization calls will be avoided, reducing FEs. If the offspring is evaluated in the
scenario space, the selection procedure in Equation (6) is applied.

6. Termination criteria:

• Stop if the maximum number of function evaluations MaxFEs is reached.
• Stop if the improvement of the best objective value of the last MaxImpGen

generations is below a specific number.
• Stop if the absolute difference of the best and the known true optimal objective

value is below a specific number.

7. Output: the best worst case function value f (x∗, y∗), the solution corresponding to
the best worst-case scenario x∗, y∗

For the LL:

1. Setting: Set the parameters of the probability of crossover CR, the population size
nPop, the mutation rate F, the sampling probability β.

2. Initialization: Sample nPop individuals to initialize the population. If β ≤ random(0, 1),
then the individual is sampled from the probabilistic model MGUL built in the UL with
the Equation (7). The model here is sampled with the mvnrnd(mu, Sigma) built-in
function of Matlab, which accepts a mean vector mu and covariance matrix sigma as
input and returns a random vector chosen from the multivariate normal distribution
with that mean and covariance [23]. Otherwise, it is uniformly sampled in the scenario
space according to the Equation (3). Please note that for the first UL generation, β
is always 0, as no probabilistic model is built yet. For the following generations, β
can range from (0,1) number, where β = 1 means that the population will be sampled
only from the probabilistic model. This might lead the algorithm to be stuck in local
optima and to converge prematurely. An example of an initial population generated
with the aforementioned method with β = 0.5 is shown in Figure 5. Magenta asterisk
points represent the population generated by the probabilistic model MGUL of the
previous UL generation. Blue points are samples uniformly distributed in the search
space. In Figure 6, the effect of the probabilistic model on the initial population of LL
for f8 during the optimization is shown. As the iterations increase, the LL members of
the populations sampled from the probabilistic distribution reach the promising area
that maximizes the function. In the zoomed subplot in each subfigure, one can see
that all such members of the population are close to the global maximum, compared
to the randomly distributed members.

3. Mutation, crossover, and selection as the standard DE.
4. Termination criteria:

• Stop if the maximum number of generations MaxGen is reached.
• Stop if the absolute difference between the best and the known true optimal

objective value is below a specific number.

5. Output: the maximum function value f (x∗, y∗), the solution corresponding to the
worst-case scenario y∗ = argmax( f (x∗, y)).
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Figure 4. General framework of the proposed algorithm.

Initial Population of the Lower Level

Figure 5. Balancing exploration and exploitation with the sharing distribution mechanism of the LL
population. Magenta asterisk points represent the population generated by the distribution of the
previous UL generations. Blue points are samples uniformly distributed in the search space. The idea
behind this is to keep the “knowledge” already gained in previous generations while also giving the
opportunity to the algorithm to search the whole search space. Here with β = 0.5.
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Initial Population of the Lower Level, iteration =1 Initial Population of the Lower Level, iteration =2

Initial Population of the Lower Level, iteration =7 Initial Population of the Lower Level, iteration =15

Figure 6. Effect of the probabilistic model on the initial population of LL for f8. As the iterations increase, the LL members
of the population that were produced from the probabilistic model reach the promising area that maximizes the function.
The area they are concentrated is shown in the zoomed plots of each plot.

4. Experimental Settings

In this section, we describe the 13 benchmark test functions used for this study and
provide the parameter settings for our experiments.

4.1. Test Functions

The performance of the proposed algorithm was tested on 13 benchmark problems
of min-max optimization. The problems used are found collected in [15] along with their
referenced optimal values. The first 7 problems f1– f7 are taken from [24] and they are
convex in UL and concave in the LL. The problems described as min-max are:

Test function f1:

min
x∈X

max
y∈Y

f1(x, y) = 5(x2
1 + x2

2)− (y2
1 + y2

2) + x1(−y1 + y2 + 5) + x2(y1 − y2 + 3) (8)
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with x ∈ [−5, 5]2, y ∈ [−5, 5]2. The points x∗ = −0.4833,−0.3167 and y∗ = 0.0833,−0.0833
are the known solutions of the f1, and the optimal value is approximated at
f1(x∗, y∗) = −1.6833.

Test function f2:

min
x∈X

max
y∈Y

f2(x, y) = 4(x1 − 2)2 − 2y2
1 + x2

1y1 − y2
2 + 2x2

2y2 (9)

with x ∈ [−5, 5]2, y ∈ [−5, 5]2. The points x∗ = 1.6954,−0.0032 and y∗ = 0.7186,−0.0001
are the known solutions of the f2, and the optimal value is approximated at
f2(x∗, y∗) = 1.4039.

Test function f3:

min
x∈X

max
y∈Y

f3(x, y) = x4
1y2 + 2x3

1y1 − x2
2y2(y2 − 3)− 2x2(y1 − 3)3 (10)

with x ∈ [−5, 5]2, y ∈ [−3, 3]2. The points x∗ = −1.1807, 0.9128 and y∗ = 2.0985, 2.666 are
the known solutions of the f4, and the optimal value is approximated at
f3(x∗, y∗) = −2.4688.

Test function f4:

min
x∈X

max
y∈Y

f4(x, y) = −
3

∑
i=1

(yi − 1)2) +
2

∑
i=1

(xi − 1)2 + y3(x2 − 1) + y1(x1 − 1) + y2x1x2 (11)

with x ∈ [−5, 5]2, y ∈ [−3, 3]3. The points x∗ = 0.4181, 0.4181 and y∗ = 0.709, 1.0874, 0.709
are the known solutions of the f4, and the optimal value is approximated at
f4(x∗, y∗) = −0.1348.

Test function f5:

min
x∈X

max
y∈Y

f5(x, y) = −(x1 − 1)y1 − (x2 − 2)y2 − (x3 − 1)y3 + 2x2
1 + 3x2

2 + x2
3 (12)

with x ∈ [−5, 5]3, y ∈ [−1, 1]3. The points x∗ = 0.1111, 0.1538, 0.2 and y∗ = 0.4444, 0.9231, 0.4
are the known solutions of the f5, and the optimal value is approximated at
f5(x∗, y∗) = 1.3453.

Test function f6:

min
x∈X

max
y∈Y

f6(x, y) = −y1(x2
1 − x2 + x3 − x4 + 2) + y2(−x1 + 2x2

2 − x2
3 + 2x4 + 1)+

y3(2x1 − x2 + 2x3 − x2
4 + 5) + 5x2

1 + 4x2
2 + 3x2

3 + 2x2
4 −

3

∑
i=1

y2
i

(13)

with x ∈ [−5, 5]4, y ∈ [−2, 2]3. The points x∗ = −0.2316, 0.2228,−0.6755,−0.0838 and
y∗ = 0.6195, 0.3535, 1.478 are the known solutions of the f6, and the optimal value is
approximated at f6(x∗, y∗) = 4.543.

Test function f7:

min
x∈X

max
y∈Y

f7(x, y) = 2x1x5 + 3x4x2 + x5x3 + 5y2
4 + 5y2

5 − x4(y4 − y5 − 5)+

x5(y4 − y5 + 3) +
3

∑
i=1

(xi(y2
i − 1))−

5

∑
i=1

y2
i

(14)

with x ∈ [−5, 5]5, y ∈ [−3, 3]5. The points x∗ = 1.4252, 1.6612, 1.2585,−0.9744,−0.7348
and y∗ = 0.5156, 0.8798, 0.2919, 0.1198,−0.1198 are the known solutions of the f7, and the
optimal value is approximated at f7(x∗, y∗) = −6.3509.

114



Mathematics 2021, 9, 2137

Test function f8 [25]:

min
x∈X

max
y∈Y

f8(x, y) = (x1 − 5)2 − (y1 − 5)2 (15)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 5 and y∗ = 5 are the known solutions of the
f8, and the optimal value is approximated at f8(x∗, y∗) = 0. This test function is a saddle
point function. The function along with the known optimum is plotted in Figure 7, and it
serves as an example of a symmetric function.
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Figure 7. Three-dimensional mesh and contour plots of the symmetrical test function f8. Green dot corresponds to the
known optimum. (a) A 3D mesh of the symmetrical test function f8. (b) Contour plot of the symmetrical test function f8.

Test function f9 [25]:

min
x∈X

max
y∈Y

f9(x, y) = min
{

3 − 0.2x1 + 0.3y1, 3 + 0.2x1 − 0.1y1
}

(16)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 0 and y∗ = 0 are the known solutions of the f9,
and the optimal value is approximated at f9(x∗, y∗) = 3. It is a two-plane asymmetrical
function. The contour plot and 3-D plot of this function, along with the known optima, are
shown in Figure 8 and serves as an example of an asymmetrical function.
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Figure 8. 3D mesh and contour plots of the asymmetrical test function f9. Green dot corresponds to the known optimum.
(a) 3D mesh of the asymmetrical test function f9. (b) Contour plot of the asymmetrical test function f9.
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Test function f10 [25]:

min
x∈X

max
y∈Y

f10(x, y) =
sin (x1 − y1)√

x2
1 + y2

1

(17)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 10 and y∗ = 2.1257 are the known solutions of
the f10, and the optimal value is approximated at f10(x∗, y∗) = 0.097794. It is a damped
sinus asymmetrical function.

Test function f11 [25]:

min
x∈X

max
y∈Y

f11(x, y) =
cos (
√

x2
1 + y2

1)√
x2

1 + y2
1 + 10

(18)

with x ∈ [0, 10], y ∈ [0, 10]. The points x∗ = 7.0441 and y∗ = 10 or y∗ = 0 are the known
solutions of the f11, and the optimal value is approximated at f11(x∗, y∗) = 0.042488. It is a
damped cosine wave asymmetrical function.

Test function f12 [6]:

min
x∈X

max
y∈Y

f12(x, y) = 100(x2 − x2
1)

2 + (1 − x1)
2 − y1(x1 + x2

2)− y2(x2
1 + x2) (19)

with x ∈ [−0.5, 0.5]x[0, 1], y ∈ [0, 10]2. The points x∗ = 0.5, 0.25 and y∗ = 0, 0 are the
known solutions of the f12, and the optimal value is approximated at f12(x∗, y∗) = 0.25.

Test function f13 [6]:

min
x∈X

max
y∈Y

f13(x, y) = (x1 − 2)2 + (x2 − 1)2 + y1(x2
1 − x2) + y2(x1 − x2 − 2) (20)

with x ∈ [−1, 3]2, y ∈ [0, 10]2. The points x∗ = 1, 1 and y∗ = any, any are the known
solutions of the f13, and the optimal value is approximated at f13(x∗, y∗) = 1.

4.2. Parameter Settings

The parameter setting used for all the experiments of this study are shown in Table 1.
The population size depends on the dimensionality of the problem, where for the UL
max(nx + ny, 5) ∗ 2 is used and for the LL max(ny, 5) ∗ 2, where nx, ny is the dimensionality
of the UL and LL, respectively.

Table 1. Control parameters used in the reported results.

Upper-Level Lower-Level

Population size max(nx + ny, 5) ∗ 2 max(ny, 5) ∗ 2
Crossover 0.9 0.9
Mutation uniformly (0.2, 0.8) uniformly (0.2, 0.8)
Desired Accuracy 1 × 10−5 1 × 10−5

Maximum Number of Generations - 10
Maximum Number of Function Evaluations 5000 -
Maximum Number of Improvement Generations 30 -
Least Improvement 1 × 10−5 -

All the simulations were undertaken on an Intel (R) Core (TM) i7-7500 CPU @ 2.70
GHz, 16 GB of RAM, and the Windows 10 operating system. The code and the experiments
were implemented and run in Matlab R2018b.
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5. Experimental Results and Discussion

5.1. Effectiveness of the Probabilistic Sharing Mechanism

To evaluate the effectiveness of the probabilistic sharing mechanism of the proposed
algorithm, we compare three different instances that correspond to three different β values.
The first algorithmic instance has β = 0, meaning that the estimation of distribution in the
optimization procedure is not activated, and the algorithm becomes a traditional nested DE.
This instance serves therefore as the baseline. The second algorithmic instance corresponds
to β = 0.5, where half of the initial population of the LL is sampled from the probabilistic
model. Last, for the third algorithmic instance, we set a value of β = 0.8, testing the
ability of the algorithm when 80% of the initial population of the LL is sampled from the
probabilistic model.

Due to the inherent randomness of the EAs, repeated experiments are held to assess a
statistical analysis of the performance of the algorithm. We report results of 30 independent
runs, which is the minimum number of samples used for statistical assessment and tests.
In Table 2, the statistical results of the 30 runs of the different instances of the algorithm are
reported. More specifically, we report the mean, median, and standard deviation of the
accuracy of the objective function. We calculate the accuracy as the absolute differences
between the best objective function values provided by the algorithms and the known
global optimal objective values of each test function. This is expressed as

Acc = | f
′ − f ∗| (21)

where f
′

and f ∗ are the best and the true optimal values, respectively.

Table 2. Accuracy comparison of the different instances of the algorithm over the 30 runs.

Problems β = 0 β = 0.5 β = 0.8

f1

Mean 3.45 × 10−1 2.77 × 10−5 2.29 × 10−5

Median 9.49 × 10−2 3.33 × 10−5 3.33 × 10−5

Std 6.55 × 10−1 3.43 × 10−5 1.53 × 10−5

p-value ≤0.05 NA >0.05
Median FEs 20,115 28,300 46,535

f2

Mean 1.11 × 10−1 1.25 × 10−3 1.28 × 10−4

Median 4.96 × 10−2 5.53 × 10−6 5.79 × 10−6

Std 5.38 × 10−1 4.27 × 10−3 5.43 × 10−4

p-value ≤0.05 NA >0.05
Median FEs 20,665 16,180 17,140

f3

Mean 1.64 × 100 2.27 × 10−3 2.35 × 10−2

Median 9.51 × 10−1 1.86 × 10−5 2.47 × 10−5

Std 2.29 × 100 1.30 × 10−2 8.35 × 10−2

p-value ≤0.05 NA >0.05
Median FEs 27,535 39,830 46,785

f4

Mean 3.49 × 10−1 2.93 × 10−5 1.64 × 10−3

Median 2.27 × 10−1 2.03 × 10−5 3.39 × 10−5

Std 4.49 × 10−1 4.41 × 10−5 8.88 × 10−3

p-value ≤0.05 NA >0.05
Median FEs 19,940 26,478 40,516

f5

Mean 6.23 × 10−2 9.95 × 10−4 8.43 × 10−6

Median 2.63 × 10−2 2.99 × 10−4 8.55 × 10−7

Std 1.05 × 10−1 4.18 × 10−3 5.08 × 10−5

p-value ≤0.05 >0.05 NA
Median FEs 38,694 78,444 97,506
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Table 2. Cont.

Problems β = 0 β = 0.5 β = 0.8

f6

Mean 2.16 × 10−1 1.96 × 10−3 1.19 × 10−2

Median 1.62 × 10−1 7.86 × 10−6 6.33 × 10−6

Std 2.67 × 10−1 6.74 × 10−3 6.50 × 10−2

p-value ≤0.05 >0.05 NA
Median FEs 55,740 69,798 77,356

f7

Mean 5.57 × 10−1 7.90 × 10−2 7.90 × 10−2

Median 4.76 × 10−1 7.90 × 10−2 7.90 × 10−2

Std 3.75 × 10−1 1.34 × 10−4 9.54 × 10−6

p-value ≤0.05 NA ≤0.05
Median FEs 143,580 360,460 541,940

f8

Mean 9.27 × 10−6 3.03 × 10−6 3.34 × 10−6

Median 6.16 × 10−6 1.17 × 10−6 2.12 × 10−6

Std 1.99 × 10−5 3.24 × 10−6 3.23 × 10−6

p-value ≤0.05 NA >0.05
Median FEs 9120 8150 8070

f9

Mean 0.00 × 100 0.00 × 100 2.96 × 10−3

Median 0.00 × 100 0.00 × 100 0.00 × 100

Std 0.00 × 100 0.00 × 100 1.62 × 10−2

p-value NaN NA >0.05
Median FEs 3435 3935 3715

f10

Mean 7.54 × 10−6 8.03 × 10−8 8.74 × 10−4

Median 2.86 × 10−7 2.98 × 10−7 2.95 × 10−7

Std 3.60 × 10−5 4.96 × 10−7 4.79 × 10−3

p-value NA >0.05 >0.05
FEs 4435 3995 3880

f11

Mean 5.11 × 10−3 3.62 × 10−3 1.43 × 10−2

Median 1.79 × 10−3 2.95 × 10−4 1.14 × 10−2

Std 7.44 × 10−3 8.06 × 10−3 1.25 × 10−2

p-value >0.05 NA ≤0.05
FEs 21,965 30,480 33,485

f12

Mean 3.72 × 10−1 5.21 × 10−1 7.05 × 10−1

Median 2.25 × 10−1 4.77 × 10−1 7.43 × 10−1

Std 5.98 × 10−1 5.23 × 10−1 1.42 × 10−1

p-value NA ≤0.05 ≤0.05
Median FEs 14,945 15,795 28,210

f13

Mean 3.99 × 10−2 2.42 × 10−2 1.98 × 10−1

Median 6.51 × 10−2 1.82 × 10−4 1.07 × 10−5

Std 7.29 × 10−1 1.21 × 10−1 1.04 × 100

p-value ≤0.05 >0.05 NA
Median FEs 22,430 56,880 61525

In order to compare the instances, the non-parametric statistical Wilcoxon signed-rank
test [26] was carried out at the 5% significance, where for each test function, the best instance
in terms of median accuracy used a control algorithm against the other two. The reported
≤0.05 means that it rejects the null hypothesis and the two samples are different, while >0.05
means the opposite. The best algorithm in terms of median accuracy is shown in bold. We
also report the median of the total number of function evaluations. In bold are the lowest
median FEs corresponding to the best algorithmic instance in terms of median accuracy. As
we can see, the proposed method outperforms the baseline in most of the test functions. More
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specifically, the second and the third instances are significantly better than the first in the
test functions f1 − f8 and f13. For these test functions, the results of these two instances do
not differ significantly, therefore there is a tie. What we can note though, is that instance 2
repeatedly requires fewer FEs to reach the same results. Therefore, it performs better in terms
of computation expense. For test function f9, all the instances are performing equally in terms
of median accuracy, while the baseline instance reports less FEs. The third instance is best in
test functions f5- f6. For test function f7, there is a tie between the second and third instance.
The first instance performs better in test functions f10 and f12, while for f11, the first and
second instance outperforms the third. In many cases, the baseline algorithmic case reports
a low number of FEs. These cases, where it does not reach the desired accuracy, indicate
premature convergence, when the “least improvement” termination criterion is activated and
the algorithm is terminated before reaching the maximum number of evaluations. In 11 out
of 13 test functions, instance 2 outperforms at least one instance or performs equally, which
makes selecting a β = 0.5 a safe choice.

In Figure 9, the success rate of each algorithmic instance and each test function is
reported. As a success rate, we define here the percentage of the number of runs where
the algorithm reached the desired accuracy of the total runs for each test function. It is
interesting to note that the baseline first instance did not at all reach the desired accuracy
in 9 out of 13 test problems. The performance of the algorithm improves dramatically by
the use of the estimation of distribution. On the other hand, the instance with β = 0.5
reaches the desired accuracy for at least one run in 11 out of 13 problems and, instance
with β = 0.8 in 10 out of 13 problems. The second instance reaches the accuracy of 100%
for asymmetrical functions f9 and f10. For test functions f7 and f12, none of the algorithms
reach the desired accuracy in the predefined number of FEs. f7 is one of the test problems
with higher dimensionality, and a higher number of function evaluations might be needed
in order to reach higher accuracy.
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Figure 9. Barchart of the success rate (%) of each algorithmic instance and each test function. The red
color corresponds to the instance where β = 0.0, magenta β = 0.5 and blue β = 0.8.

In Figure 10, the convergence plots of the accuracy of the upper level for each algo-
rithmic instance and test function are shown. The red color corresponds to the instance
where β = 0.0, magenta β = 0.5 and blue β = 0.8. The bumps that can be spotted in the
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convergence are probably because of inaccurate solutions of the worst-case scenario. This
can be mostly seen in Figure 10g, for test function f7, where the convergence seems to go
further than the desired accuracy. In Figure 10j for f10, algorithmic instance 2 and 3 seem to
converge in even earlier generations, in contrast to the baseline first algorithmic instance.
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(a) Convergence plot for f1
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(b) Convergence plot for f2
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(c) Convergence plot for f3

100 101 102

Generations

0

10

20

30

40

50

60

70

A
cc

ur
ac

y 
of

 B
es

t F
itn

es
s

f4

0.0
0.5
0.8

(d) Convergence plot for f4
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(e) Convergence plot for f5
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(f) Convergence plot for f6
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(g) Convergence plot for f7
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(h) Convergence plot for f8
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(i) Convergence plot for f9
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(j) Convergence plot for f10

100 101 102

Generations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
cc

ur
ac

y 
of

 B
es

t F
itn

es
s

f11

0.0
0.5
0.8

(k) Convergence plot for f11
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(l) Convergence plot for f12

Figure 10. Cont.
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(m) Convergence plot for f13

Figure 10. Fitness accuracy convergence of the upper level of the median run for all the test functions and algorithm
instances. The red color corresponds to the instance where β = 0.0, magenta β = 0.5 and blue β = 0.8. Generations axes is
in logarithmic scale.

5.2. Comparison with State-of-the-Art Method MMDE

In this subsection, we compare the proposed method with one state-of-the-art min-
max EA. The MMDE [13] employs a differential evolution algorithm along with a bottom-
boosting scheme and a regeneration strategy to detect best worst-case solutions. The MMDE
showed statistically significant superior performance against a number of other min-max
EAs, so we only compared with the MMDE. For the comparative experiments, the following
settings are applied. For the proposed method, the DE parameters of UL are the same
as in Table 1, while for the LL, the population size was set to max(ny, 5) ∗ 3 and β = 0.5.
For the MMDE, the proposed settings from the reference paper are used and are crossover
CR = 0.5 and mutation F = 0.7. The MMDE also has two parameters Ks and T that
control the number of FEs in the bottom-boosting scheme and partial-regeneration strategy.
Here, they are set to 190 and 10, respectively, as in the original settings. To have a fair
comparison, the termination criterion for both algorithms is only the total number of FEs
and set to 104. Since the number of FEs is limited, an additional check was employed for
the proposed method, where if a new solution of the UL is already found in the previous
population, then it is not passed to the lower level, since the worst-case scenario is already
known. The algorithms are run 30 times on test functions f 8 − f 13. For comparing the two
methods, we use the mean square error (MSE) of the obtained solutions in the design space
(UL) to the true optimum, a metric commonly used for comparing min-max algorithms.
More specifically, the MSE is calculated:

MSE(Xbest, Xopt) =
1

DX

DX

∑
n=1

(xn
best − xn

opt)
2 (22)

where Xbest is the best solution found by the algorithm and Xopt the known optimal solution,
while DX is the dimensionality of the solution. In Table 3, we report the mean, median and
standard deviation of the mean square error (MSE). In Figure 11, these values are illustrated
as boxplots. The Wilcoxon signed-rank test [26] was conducted at the 5% significance,
and we report if the p-value rejects or not the null hypothesis. The proposed method
outperforms the MMDE for the test functions f8 and f10, while it performs equally good
on asymmetrical test function f9. On the test functions f11– f13, the MMDE performs better
than the proposed method.
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Table 3. MSE Comparison with MMDE over 30 runs and 104 FEs.

Problems β = 0.5 MMDE

f8

Mean 2.0234 × 10−5 2.6618 × 10−5

Median 1.8269 × 10−7 9.5487 × 10−6

Std 7.5060 × 10−5 6.1841 × 10−5

p-value NA ≤0.05

f9

Mean 2.5849 × 10−1 3.3719 × 10−3

Median 0.0000 × 100 0.0000 × 100

Std 9.6251 × 10−1 1.1081 × 10−2

p-value NA >0.05

f10

Mean 1.0029 × 100 5.1712 × 10−1

Median 0.0000 × 100 0.0000 × 100

Std 2.8499 × 100 2.4408 × 100

p-value NA ≤0.05

f11

Mean 3.3428 × 10−1 7.9495 × 10−4

Median 5.5485 × 10−2 8.8027 × 10−5

Std 8.7588 × 10−1 1.4876 × 10−3

p-value ≤0.05 NA

f12

Mean 8.1786 × 10−3 1.1339 × 10−5

Median 9.6258 × 10−5 2.1344 × 10−6

Std 1.9804 × 10−2 3.2300 × 10−5

p-value ≤0.05 NA

f13

Mean 5.0537 × 10−2 5.5425 × 10−3

Median 1.9716 × 10−2 2.7037 × 10−3

Std 7.7093 × 10−2 7.7943 × 10−3

p-value ≤0.05 NA

Figure 11. Cont.
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Figure 11. Boxplots of MSE values of the proposed method and MMDE over 30 runs for the test functions f8– f13.

5.3. Engineering Application

To further investigate the performance of the proposed method, we solved a simple
engineering application that also serves a benchmark, taken from [27]. It refers to the
optimal design of a vibration absorber (Figure 12) for a structure where uncertainties occur
in the forcing frequency. A structure with mass m1 is subjected to a force and an unknown
frequency. Through a viscous damping effect, a smaller structure of mass m2 is employed
to compensate for the oscillations caused by this disturbance. The design challenge is to
figure out how to make this damper robust to the worst force frequency. The objective
function is the normalized maximum displacement of the main structure and is expressed
as [27]:

J =
1
Z

√
(1 − β2

f req/T2 + 4 ∗ (ζ2β f req/T)2 (23)

where

Z2 =[β2
f req(β2

f req − 1)/T2 − β2
f req(1 + μ)− 4

ζ1ζ2β2
f req

T
+ 1]2

+ 4[ζ1β3
f req/T2 +

ζ2β3
f req(1 − μ)− ζ2β f req

T
− ζ1β f req]

2

(24)

The fixed parameters for the specific problem are μ = 0.1 and ζ1 = 0.1. The decision
variables in the design space are ζ2 and T, while variable β f req is the decision variable in
the scenario space against which the design should be robust against. The problem can be
written as a min-max problem:

min
x∈X

max
y∈Y

J(x, y) = min
ζ2,T

max
β f req

J(ζ2, T, β f req) (25)

with ζ2 ∈ [0, 1], T ∈ [0, 1] and β f req ∈ [0, 2.5]. The points x∗ = (ζ∗2 , T∗) = 0.1986, 0.8619 and
y∗ = β∗

f req = 1.043 are the known solutions of the J, and the optimal value is approximated
at J(x∗, y∗) = 2.6227 as reported in [28]. We run the problem 30 independent times for both
the proposed method and the MMDE algorithm with the same parameter settings as in the
previous subsection. In Table 4, we report the mean, median and standard deviation of
the obtained accuracy and MSE for the proposed method and the MMDE. Both algorithms
perform well at approximate the known global optima with an accuracy of ×10−2 and
MSE × 10−4. The statistical test showed that the proposed method performs equally well
with the MMDE for the engineering application.
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m1
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x

Figure 12. Vibration absorber.

Table 4. Statistical comparison with MMDE over 30 runs and 104 FEs for the engineering application.

Problems β = 0.5 MMDE

Acc(Jminmax) Mean 1.7100 × 10−1 1.0472 × 10−1

Median 6.4784 × 10−2 9.9247 × 10−2

Std 2.6084 × 10−1 6.0458 × 10−2

p-value NA >0.05

MSE(x) Mean 1.4668 × 10−2 7.6533 × 10−4

Median 6.4275 × 10−4 3.6815 × 10−4

Std 5.1909 × 10−2 7.6206 × 10−4

p-value >0.05 NA

6. Conclusions

In this work, we propose an algorithm for solving worst-case scenario optimization
as a min-max problem. The algorithm employs a nested differential evolution with an
estimation of the distribution between the two levels to enhance the efficiency of solving
the problems in terms of both accuracy and computational cost. A probabilistic model is
built from the best worst-case solutions found so far and is used to generate samples as an
initial population of the lower level DE to speed up the convergence. First, the efficiency
is investigated by comparing the nested algorithm with different probabilities of using
the probabilistic model on 13 test functions of various dimensions and characteristics.
To further investigate the performance of the algorithm, it is compared with the MMDE,
one state-of-the-art algorithm known to perform well on these problems on both bench-
mark functions and on an engineering application. The results show that, most times,
the proposed method performs better or equal to the MMDE.

In future work, the method could be tested with different population-based EAs in
UL or LL, as it is independent of the evolutionary strategy. The parameter, β, that defines
the probability that the probabilistic model will be used, could be adapted during the
optimization. Last, the method can be tested on higher dimensional test functions and/or
engineering applications.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A.; validation,
M.A.; formal analysis, M.A.; investigation, M.A.; writing—original draft preparation, M.A.; writing—
review and editing, M.A. and G.P.; visualization, M.A.; supervision, G.P.; project administration, G.P.;
funding acquisition, G.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the European Commission’s H2020 program under the Marie
Skłodowska-Curie grant agreement No. 722734 (UTOPIAE) and by the Slovenian Research Agency
(research core funding No. P2-0098).

124



Mathematics 2021, 9, 2137

Data Availability Statement: The code and the related results are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank Xin Qiu for providing the source code of
the MMDE.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DE differential evolution
EDA estimation of distribution algorithm
UL upper level
LL lower level
BOP bilevel optimization problem
FEs function evaluations

References

1. Sinha, A.; Lu, Z.; Deb, K.; Malo, P. Bilevel optimization based on iterative approximation of multiple mappings. J. Heuristics 2017,
26, 1–35. [CrossRef]

2. Antoniou, M.; Korošec, P. Multilevel Optimisation. Optimization under Uncertainty with Applications to Aerospace Engineering;
Springer: Cham, Switzerland, 2021; pp. 307–331.

3. Feng, Y.; Hongwei, L.; Shuisheng, Z.; Sanyang, L. A smoothing trust-region Newton-CG method for minimax problem. Appl.
Math. Comput. 2008, 199, 581–589. [CrossRef]

4. Montemanni, R.; Gambardella, L.M.; Donati, A.V. A branch and bound algorithm for the robust shortest path problem with
interval data. Oper. Res. Lett. 2004, 32, 225–232. [CrossRef]

5. Aissi, H.; Bazgan, C.; Vanderpooten, D. Min–max and min–max regret versions of combinatorial optimization problems: A
survey. Eur. J. Oper. Res. 2009, 197, 427–438. [CrossRef]

6. Barbosa, H.J. A coevolutionary genetic algorithm for constrained optimization. In Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Piscataway, NJ, USA; 3,
pp. 1605–1611.

7. Shi, Y.; Krohling, R.A. Co-evolutionary particle swarm optimization to solve min-max problems. In Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway,
NJ, USA; Volume 2, pp. 1682–1687.

8. Vasile, M. On the solution of min-max problems in robust optimization. In Proceedings of the EVOLVE 2014 International
Conference, A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computing, Beijing, China, 1–4 July 2014.

9. Chen, R.B.; Chang, S.P.; Wang, W.; Tung, H.C.; Wong, W.K. Minimax optimal designs via particle swarm optimization methods.
Stat. Comput. 2015, 25, 975–988. [CrossRef]

10. Antoniou, M.; Papa, G. Solving min-max optimisation problems by means of bilevel evolutionary algorithms: A preliminary
study. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancun, Mexico, 8–12 July
2020; pp. 187–188.

11. Angelo, J.S.; Krempser, E.; Barbosa, H.J. Differential evolution for bilevel programming. In Proceedings of the 2013 IEEE Congress
on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE: Piscataway, NJ, USA; pp. 470–477.

12. He, X.; Zhou, Y.; Chen, Z. Evolutionary bilevel optimization based on covariance matrix adaptation. IEEE Trans. Evol. Comput.
2018, 23, 258–272. [CrossRef]

13. Qiu, X.; Xu, J.X.; Xu, Y.; Tan, K.C. A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans.
Cybern. 2017, 48, 1355–1368. [CrossRef] [PubMed]

14. Zhou, A.; Zhang, Q. A surrogate-assisted evolutionary algorithm for minimax optimization. In Proceedings of the IEEE Congress
on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ, USA; pp. 1–7.

15. Marzat, J.; Walter, E.; Piet-Lahanier, H. Worst-case global optimization of black-box functions through Kriging and relaxation. J.
Glob. Optim. 2013, 55, 707–727. [CrossRef]

16. Wang, H.; Feng, L.; Jin, Y.; Doherty, J. Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in
Multiple Scenarios. IEEE Comput. Intell. Mag. 2021, 16, 34–48. [CrossRef]

17. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

18. Larranaga, P. A review on estimation of distribution algorithms. In Estimation of Distribution Algorithms; Springer: Boston, MA,
USA, 2002; pp. 57–100.

19. Zhao, F.; Shao, Z.; Wang, J.; Zhang, C. A hybrid differential evolution and estimation of distribution algorithm based on
neighbourhood search for job shop scheduling problems. Int. J. Prod. Res. 2016, 54, 1039–1060. [CrossRef]

125



Mathematics 2021, 9, 2137

20. Hao, R.; Zhang, J.; Xin, B.; Chen, C.; Dou, L. A hybrid differential evolution and estimation of distribution algorithm for the
multi-point dynamic aggregation problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
Kyoto, Japan, 15–19 July 2018; pp. 251–252.

21. Wang, G.; Ma, L. The estimation of particle swarm distribution algorithm with sensitivity analysis for solving nonlinear bilevel
programming problems. IEEE Access 2020, 8, 137133–137149. [CrossRef]
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Abstract: Surface roughness is one of the key characteristics of machined components as it affects
the surface quality and, consequently, the lifetime of the components themselves. The most common
method of measuring the surface roughness is contact profilometry. Although this method is
still widely applied, it has several drawbacks, such as limited measurement speed, sensitivity to
vibrations, and requirement for precise positioning of the measured samples. In this paper, machine
vision, machine learning and evolutionary optimization algorithms are used to induce a model
for predicting the surface roughness of automotive components. Based on the attributes extracted
by a machine vision algorithm, a machine learning algorithm generates the roughness predictive
model. In addition, an evolutionary algorithm is used to tune the machine vision and machine
learning algorithm parameters in order to find the most accurate predictive model. The developed
methodology is comparable to the existing contact measurement method with respect to accuracy,
but advantageous in that it is capable of predicting the surface roughness online and in real time.

Keywords: quality control; roughness measurement; machine vision; machine learning; evolutionary
algorithm; parameter optimization

1. Introduction

Demands for increased productivity and product quality in highly competitive in-
dustries, such as the automotive industry, have necessitated the use of online systems
for inspecting the quality of massively produced parts. One of the quality measures that
is especially challenging for online examination is surface roughness of machined parts.
Surface roughness is defined as an amplitude value measuring the vertical heights of the
surface deviations from a reference line [1]. Inadequate surface roughness of machined
parts can significantly affect the functionality of a product and can lead to a premature
failure. Moreover, measurement of surface roughness in production can reduce machining
costs, since the machining parameters, such as machining speed and the period between
the changes of machining tools, can be appropriately chosen.

The most widely used method of surface roughness measuring is contact profilom-
etry. This method uses a stylus type device that correlates displacements induced by
surface irregularities to the surface roughness of the inspected specimen. The method
is standardized and has been widely used in industrial laboratories and manufacturing
industry [2]. The technology of contact profilometry is well developed and can provide
measurements of surface roughness within the accuracy of a micrometer. However, this
method has several drawbacks. Since the stylus tip must be brought into contact with
the measured specimen, the measured surface can be altered by scratches. Moreover, this
method is time-consuming and sensitive to vibrations, and therefore not suitable for online
measurements in high-volume production processes. More details about stylus-based
roughness measurements and their advantages and shortcomings can be found in [3].
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To overcome the drawbacks of contact methods, several non-contact methods, such
as optical profilometry, scanning electron microscopy, atomic force microscopy, and laser
scanning microscopy, have been developed. These methods can provide very accurate
measurements of surface roughness and are becoming increasingly popular, also in the
automotive industry [4]. However, the methods still require the preparation of adequate
samples, are sensitive to vibrations and the measuring apparatuses are expensive. Con-
sequently, none of these methods can be used for online and real-time surface roughness
measurements.

This paper presents the development of a machine vision system for roughness evalu-
ation of graphite commutator mounting holes. The graphite commutators are components
of electric motors used in automotive fuel pumps. The final phase in the graphite com-
mutator production is the precise turning of the commutator mounting hole to achieve an
adequate hole inner diameter and surface roughness. Both characteristics, the diameter
and roughness, are important for reliable operation of a fuel pump. Several online meth-
ods for measuring the inner diameter of holes are applicable; however, online roughness
measurement of the hole surface roughness represents a major challenge.

Specifically, the work proposes combining machine vision (MV), machine learning
(ML) and optimization methods to build a predictive model capable of determining the
mounting hole roughness. The MV algorithm extracts the attributes from the commutator
mounting hole surface that are used by ML to build a roughness predictive model. However,
MV and ML methods depend on numerous parameters that notably affect the outcome
and are hard to set to their optimum values. To overcome this limitation, an optimization
algorithm is used to set the MV and ML algorithm parameters.

The paper is further organized as follows. Section 2 presents the related work in
MV-based systems for measurement of surface roughness. The design and development of
the online surface roughness measurement system are presented in Section 3. Section 4
describes the optimization methodology for automated tuning of MV and ML algorithm
parameters in the development process. Section 5 describes the experimental setup and
validation procedure used in the development. The experimental results are discussed in
Section 6. Finally, Section 7 concludes the paper with a summary of findings and ideas for
future work.

2. Related Work

The initial experiment with a setup similar to the one presented in this paper, combin-
ing MV, ML and optimization methods was carried out in [5]. The differential evolution
(DE) [6] algorithm was used to search for optimal MV parameter settings, such as binary
threshold and filter parameter values. Based on the attributes extracted from 300 images of
the commutator mounting holes, the ML algorithm was employed to build classification
and regression predictive models. The study found that in comparison to the domain
expert this methodology always finds better MV parameter settings. In the classification
task, the methodology was able to find a classification model of 100% accuracy in very few
examined generations, while the regression task proved to be more demanding.

Much research and development has been carried out in the field of prediction and
control of surface roughness using MV. Regarding the way of calculating the roughness
parameters, these methods can be divided into analytical methods [7–11], where parame-
ters extracted from images are correlated to the measured roughness by a mathematical
function, and methods engaging artificial intelligence (AI) [12–19] to build the roughness
predictive models.

Shahabi and Ratnam [7] studied vision-based roughness measurements in a turning
process. They used back-light illumination to extract the line profiles of turned workpieces.
By varying the parameters on the lathe, such as the turning speed and feed rate, they
produced workpieces with various roughness values. They showed that after applying the
smoothing filter and performing linear regression data fitting, the extracted edge profile
of the workpiece can be directly correlated to the average surface roughness parameter
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Ra. The maximum difference of Ra between the MV-based estimate and the roughness
measured by the conventional stylus method was 10%.

Jeyapoovan and Murugan [8] developed an MV-based roughness measurement
method using Euclidean and Hamming distances of the surface features to determine
the value of the roughness parameter Ra. The Euclidean distance is a distance between two
points in a plane or space, while the Hamming distance represents a distance between two
items by the number of mismatches among their pairs of variables. These two parameters
were then compared to the values of the parameters in the database of specimen images
that were measured using a stylus instrument. The authors observed that the values of
the Euclidean and Hamming distances were very low for surfaces with similar surface
roughness values. Therefore, the roughness values can be successfully classified using
these two parameters.

Nithyanantham and Suresh [9] demonstrated that using the optical surface roughness
parameter Ga, the algebraic average of an image’s gray levels results in a strong correlation
between Ga and Ra. After applying a geometric search technique that enhanced the edges
detected in the images, the correlation coefficient between the parameters Ga and Ra was
significantly improved and was higher than 0.92.

Jibin and Arunachalam [10] studied the illumination compensation techniques for
surface roughness evaluation using MV. The acquired images of ground samples machined
at different parameter values were used for illumination compensation utilizing image
filtration techniques. Based on these images, the authors calculated the correlation between
the extracted surface texture parameters and the reference measurements carried out by
an optical profiler. The results of the study showed that by using additional lightning,
filtration techniques and statistical methods, the extracted texture parameters are highly
correlated to the measured roughness values. Therefore, such a system can be an integral
part of any grinding system to inspect the machined components.

Patel and Kiran [11] used the correlation approach to calculate the roughness parame-
ters for end-milled parts. The authors used the contrast, energy, entropy and homogeneity
features of the captured images to calculate the correlation with the reference measurements
of the roughness parameter Ra obtained by a surface profilometer. The authors gained the
best results using the correlation of image energy feature and roughness parameter Ra,
where the maximum relative error was 8%.

More advanced methodologies for vision-based roughness measurements incorpo-
rate AI methods. These methods are able to find more complex and consequently more
accurate models for the evaluation of surface roughness. Fadare and Oni [12] presented a
methodology that uses an artificial neural network (ANN) to predict the roughness values.
In contrast to the previously described analytical methods, several features are extracted
from images using the fast Fourier transform (FFT) analysis. Based on these features and
the tool wear index (TWI), a predictive ANN model was trained. The output of the ANN
model was the optical surface roughness parameter Ga, which was then correlated with
the Ra parameter value measured on the reference pieces. The authors reported that the
proposed MV system using the ANN model has acceptable accuracy for online monitoring
of surface roughness.

Instead of an ANN, Ravikumar et al. [13] used the algorithm for induction of decision
trees called C4.5. The classification model was built based on the histogram features ex-
tracted from sample images. Since the decision tree can only classify the given instances
into different quality classes, the authors determined three quality classes the instances be-
longed to. These classes were defined as acceptable workpieces, workpieces with scratches
and workpieces with major defects. The result of the classification model was validated
and compared to the manually determined classes. The misclassification of the decision
tree model was estimated to 8.6%.

Samtaş [14] used an ANN to train a predictive model for surface roughness estimation
after the face milling operation. The reference workpieces were firstly measured by the
surface roughness profilometer. Afterwards, images of the reference workpieces were
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captured and processed by an MV algorithm. Next, each image was converted to a binary
image and represented by a matrix of “0” and “1”, and further transformed to a single-
dimensional array which had a length of the number of pixels in the image. The ANN
was then trained to match the arrays of the measured workpieces with the arrays of the
reference workpieces in order to predict the roughness values. The author reported to
achieve the confidence of the roughness prediction above 99%.

Elangovan et al. [15] studied the prediction of surface roughness using vibration
signals in a turning process. The data for roughness prediction consisted of the cutting
parameters, the flank wear and the captured vibration signal parameters. Based on these
data and using a ML regression algorithm, a model for predicting the roughness parameter
Ra was built. Several combinations of input attributes were studied; however, the best
results were gained after applying the principal component analysis (PCA) [20]. The
reported root mean square error (RMSE) was about 0.35.

In a paper by Simunovic et al. [16], an adaptive neuro-fuzzy inference system (ANFIS)
for roughness assessment was proposed. In the experiment, the input variables were
represented by the face milling machining parameters: spindle speed, feed per tooth, and
depth of cut. In addition, for every set of the input variables the roughness parameter
Ra was measured. Based on the attributes extracted from the captured grayscale images,
fuzzy rules mapping the grayscale image attributes to roughness parameter values were
generated. The authors reported high accuracy in determining the roughness value, which
is reflected in a low normalized root mean square error (NRMSE) value of 6.98%.

An alternative method for roughness measurement was presented by Yi et al. [17].
The authors proposed a visual method where light from the red and green color block
is projected at a predetermined angle to the grinding workpiece surface. From the color
difference (CD), i.e., the difference in the values of the red and green components of each
point, the authors calculated the correlation between the CD value and the roughness
parameter Ra. For this purpose, they used a support vector machine (SVM) [21]. The re-
ported accuracy calculated as a relative difference between the measured and the predicted
roughness values was over 90%.

Morales Tamayo et al. [18] used an ANN model to predict the steel surface roughness
in the dry turning process of stainless steel. The researchers produced the specimens by
varying the cutting parameters during the turning process. These parameters were then
used as an input for the ANN model to predict the surface roughness parameter Ra. The
results were analyzed by calculating the mean absolute error (MAE) and R2 value between
the reference and predicted values of the Ra parameter. The minimum reported MAE was
2.87% and the maximum achieved R2 value 99%. Based on these results, the authors claim
that this methodology can be used to predict the surface roughness in dry turning of steel.

Recently, Lin et al. [19] presented surface roughness modeling for machined parts
considering the cutting parameters and machining vibration in the end-milling process.
Predictive models were developed using multiple regression analysis and ANN modeling.
In addition to the cutting parameters, the authors also measured the machining vibration
and used it as an input parameter for the ANN model. Utilizing the built ANN model,
they predicted the surface roughness parameter Ra and compared it to the reference
measurements. The comparison between the prediction performance of the multiple
regression and ANN models revealed that the latter achieved higher prediction accuracy.
Based on the RMSE and mean absolute percentage error (MAPE) values, the authors
state that the ANN predictive model can serve as base for an on-line surface roughness
measurement system.

According to the reviewed literature, we can state that there is no unique method
suitable for online MV-based roughness measurements. In contrast to our application,
where the roughness of the inner hole surface has to be measured, in most previous studies,
roughness was measured on a flat surface or at the outer diameter of workpieces. The inner
diameter of a commutator mounting hole amounts to only a few millimeters, what makes
our application especially challenging.
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As already mentioned, we initially treated the roughness determination problem as
a classification task which was to distinguish acceptable and unacceptable commutators,
and as a regression task where the roughness parameter Rz was predicted [5]. Since the
regression task has proved to be much more demanding than the classification task, this
work further extends the scope of the research for predicting the Rz parameter value.

3. Online Surface Roughness Measurement System

The proposed system for online prediction of the commutator mounting hole rough-
ness operates in the following steps (see Figure 1):

• Online capturing of images;
• Preprocessing of images;
• Extraction of attributes from the preprocessed images;
• Prediction of commutator mounting hole roughness based on the ML model.

Figure 1. Steps of predicting the mounting hole roughness.

A preparatory step in designing the online roughness prediction system was the
selection of representative specimens. In addition, the roughness value of each specimen
was measured to obtain the reference roughness values. These were later used to assess
the prediction accuracy. A detailed description of each step of the proposed approach is
presented in Sections 3.1–3.4.

The parameter settings of image capturing and image preprocessing steps were deter-
mined by a domain expert, based on a trial-and-error method. The criterion in the online
image capturing step was to find the camera-illumination setup, where the features of the
commutator mounting hole surface were emphasized the most. In the image preprocessing
step, the hole surface region was extracted from the original captured image. The MV oper-
ators were selected in a way that the MV algorithm always extracts the most informative
region, regardless of its absolute position in the original image.

Extraction of attributes from an image and roughness prediction based on the extracted
attributes are the crucial steps in designing the online roughness measurement system. The
inputs are the MV algorithm settings and the ML model obtained during the optimization
process in the development phase of the proposed system. In order to obtain the most
appropriate MV and ML algorithm settings, the optimization procedure presented in
Section 4 was carried out.

3.1. Data Preparation

The design of the online system for roughness measurements started with selecting
representative samples and performing the reference roughness measurements. Surface
roughness can be determined by several parameters that are categorized into amplitude
parameters, spacing parameters, and hybrid parameters [22]. The commutator concerned
in this study has a hole roughness defined by the parameter Rz; hence, this parameter
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was used as a roughness measure in the experiments. Rz represents the height difference
between the maximum peak height and the maximum valley depth of a line profile on a
predetermined sampling length.

The samples were selected from a recalled batch of commutators with inadequate hole
roughness values. The dataset contained 700 instances, which is significantly higher than
the dataset in our initial study [5]. The dataset was split into the training set (630 instances)
and hold-out set (70 instances) used for the result evaluation. The hold-out set was selected
manually and represented 10% of all available instances. To achieve a representative
distribution of instances with regard to the roughness parameter Rz, all 700 instances were
sorted by the Rz parameter value in ascending order and every tenth instance was moved
to the hold-out set (systematic sampling).

The reference roughness measurements were performed by the contact profilometer
Mitutoyo Surftest SJ-210. To reduce the measurement error originating from the previously
described stylus sensitivity, the reference Rz values were calculated as an average of
three measurements. Commutators with the roughness parameter value Rz ≤ 16 μm are
considered acceptable, while the ones with Rz > 16 μm unacceptable. The distribution of
instances with regard to the Rz value is shown in Figure 2.
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Figure 2. Distribution of instances with respect to the value of Rz.

3.2. Image Capturing and Preprocessing

The inner diameter of the commutator mounting hole concerned in this study is
only 6 mm. This fact represented a major challenge in capturing the hole surface images.
However, after the validation of several camera-illumination setups, the setup shown in
Figure 3 was established.

Grayscale images of all 700 commutator mounting holes were manually captured and
labeled with the corresponding reference roughness values. The 8-bit grayscale image of the
mounting hole surface has a resolution of 2592× 1944 pixels. However, to be able to extract
the attributes that are correlated with the Rz roughness value, additional preprocessing of
the images has to be performed. The purpose of preprocessing is to extract only the portion
of the image where the hole surface treatment is clearly visible. The sequence of the MV
operators used in the image preprocessing step is shown in Figure 4. The operators, their
parameter settings and their sequence in the preprocessing step were determined based on
the expert knowledge, gained in the development of similar MV applications.
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Figure 3. Camera-illumination setup.

Figure 4. Image preprocessing algorithm.

The initial step in preprocessing the images is binarization, where a binary threshold
is applied to the 256-grayscale image. In the next step, the resulting binary image is used
to calculate the image intensity centroid. Since the camera-illumination setup is designed
in such a way that the hole surface image contains the highest proportion of high-intensity
pixels, the calculated coordinates of intensity centroid are always positioned at about the
same location of the mounting hole, regardless of its absolute position in the image. The
coordinate system for precise positioning of an image mask is then applied to the calculated
centroid position. Finally, the extraction mask positioned at the coordinate system origin
is applied to the image, and the region of the mask size (700 × 300 pixels), i.e., the region
of interest (ROI), is extracted from the original grayscale image. An example of the image
with marked and extracted ROI can be seen in Figure 5.

3.3. Attribute Extraction

The attribute extraction algorithm consists of four image operators that require four
parameters to be set. Similarly as in the image preprocessing, the operators and their
sequence were determined manually, based on the expert knowledge and experience. The
operators and their sequence in the attribute extraction algorithm are outlined in Figure 6.
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Figure 5. Captured image with marked ROI (top) and extracted part of the image (bottom).

Figure 6. The attribute extraction algorithm.

First, a box filter with a varying kernel size {1, 2, . . . , 200} is applied to the image. Due
to the inhomogeneities of the thermoset material used in commutator body manufacturing,
some “salt-and-pepper” noise is present in the image. The box filter reduces this noise and
emphasizes the features describing the mounting hole roughness. Next, the FFT filtering is
applied, truncating a certain portion of high frequencies and thus additionally emphasizing
the features that result from the machine treatment of the hole. The FFT filter enables to set
the filter kernel size in both X and Y directions in the image, in the range of {1, 2, . . . , 25}.
Afterwarsd, line profile measurements analog to the contact profilometer measurements
are performed on the grayscale image and the image attributes are extracted. An additional
set of attributes is extracted after applying the Niblack binarization algorithm [23]. The
threshold of the Niblack algorithm is set in the range of {1, 2, . . . , 255} and outputs a binary
image consisting of the stripes representing the “peaks” and “valleys” on the commutator
hole surface (see Figure 6).

134



Mathematics 2021, 9, 1904

In total, 24 numerical attributes describing the properties of the commutator mounting
hole surface were extracted from each image. Specifically, 20 attributes were extracted
from the grayscale images and four from the binary images. The grayscale attributes were
describing the highest and the lowest grayscale value of a pixel in a selected line profile,
the number of grayscale peaks and valleys along the line profile, and the mean grayscale
value of all the peaks and valleys. In addition, four attributes representing the roughness
parameter estimates were calculated from the grayscale line profile. These were Rt, Ra, and
Rz (ISO and DIN variants). Here, Rt (maximum profile height) is determined as

Rt = rmax − rmin, (1)

where rmax is the highest grayscale value representing the highest peak and rmin the lowest
grayscale value representing the lowest valley. Ra (arithmetic mean of profile values) is
calculated as

Ra =
1
n

n

∑
1

ri, (2)

where n is the number of values in the line profile and ri the i-th value in the profile. RISO
z

is obtained as

RISO
z =

1
5

5

∑
j=1

(rmax
j − rmin

j ), (3)

where rmax
j and rmin

j represent the highest peak and the lowest valley in the j-th profile,

respectively. Similarly, RDIN
z is determined as

RDIN
z =

1
N

N

∑
j=1

(rmax
j − rmin

j ), (4)

where N is the number of considered profiles. Details on these roughness parameters can
be found in [3].

Moreover, the maximum, the minimum and the average peak and valley grayscale
values were calculated. Lastly, two additional grayscale attributes, the maximum value of
a grayscale image signal and its corresponding index, were extracted by the FFT algorithm.
Finally, the four attributes extracted from the binary images were the percentage of pixels
representing the peaks, the percentage of pixels representing the valleys, and the average
peak and valley width in the image.

3.4. Roughness Prediction

The task in this research was to predict the value of the roughness parameter Rz
considering the attributes extracted from the images. An MV algorithm with given settings
(Figure 6) was applied to the commutator mounting hole images to create a dataset of
attributes. In the roughness prediction step, the ML predictive model was applied to the
extracted attributes dataset, and the value of the roughness parameter Rz is predicted. For
Rz prediction, algorithms for building regression trees and ensembles of regression trees
were used. The reason for using the regression trees was in that they can be interpreted and
their implementation in the online roughness measurement system is not overly complex.

Besides the MV parameter settings, the ML parameter settings influence the ML
prediction accuracy too. In order to find suitable MV and ML algorithm settings, the
optimization procedure presented in Section 4 was applied. The goal of this procedure was
to find the ML model with the highest prediction accuracy.

The chosen evaluation metric was the root relative squared error (RRSE), which has
already been used in [5]. It measures the error of the induced ML model in comparison
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to the error of a simple predictor which ignores the predictions and always outputs the
average of the actual values. It is defined as

RRSE =

√
∑n

i=1(pi − ai)2

∑n
i=1(ai − a)2 (5)

where n is the number of instances, pi the predicted value of i-th instance, ai the actual
value of i-th instance, and a the average actual value. The final results of the experiments
were additionally assessed with respect to the mean absolute error

MAE =
1
n

n

∑
i=1

|pi − ai| (6)

that is informative for practical considerations as it is expressed in μm.

4. Optimization of Algorithm Parameters

In contrast to manual search for suitable MV and ML algorithm parameter settings,
the task can be formulated as an optimization problem where the goal is to find the MV
and ML algorithm settings that minimize the roughness prediction error. The optimization
procedure that produces the most accurate predictive model is shown in Figure 7.

Figure 7. Optimization procedure that searches for the best MV and ML algorithm settings and
outputs the best Rz predictive model.
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The input to the optimization procedure are images of the commutator mounting
hole surfaces. First, the images are preprocessed to extract the part of the image where
the mounting hole is located. During the first run of the optimization procedure, the
initial MV and ML algorithm settings are set by the optimization algorithm. Based on
these settings, the MV algorithm extracts the attributes from the images and creates an
attribute file. The number of instances in the file corresponds to the number of input images.
Next, the attribute file together with the previously initialized ML settings is passed to the
ML algorithm. The output of the ML algorithm is a roughness predictive model and its
objective function value, that is the RRSE prediction error. While the stopping criterion
is not met, the optimization algorithm keeps generating new populations of solutions.
The procedure of generating a new population depends on the employed optimization
algorithm. In our case, solutions represent the MV and ML parameter settings, which
are passed to the MV and ML algorithms and are in the next iteration evaluated by the
optimization algorithm. The optimization procedure stops when a predefined number
of solution evaluations is completed. The output of the optimization procedure is the
best found roughness predictive model with the corresponding MV and ML algorithm
parameter settings.

5. Experimental Setup and Validation Procedure

5.1. Setup

The software environment used in the experiments consisted of MV algorithms for
image preprocessing and attribute extraction, the open-source data mining tool Weka [24],
and the optimization algorithm jDE [25]. The components were integrated through an
interface written in the C++ programming language.

The MV algorithms were implemented using the Open Computer Vision (OpenCV)
library [26] and utilizing the CUDA parallel computing platform and programming mod-
ule [27]. CUDA supports the use of graphical processing units (GPUs) for accelerated
algorithm execution.

Weka was selected as a data mining tool since it is easy to call from the C++ inter-
face. Two regression algorithms available in Weka were used to generate the roughness
predictive models:

• M5P [28] for building regression trees, and
• RandomForest (RF) [29] for constructing forests of random trees.

Both algorithms involve various parameters that influence the training of predictive
models and, consequently, the predictive model accuracy. In this study, the ML algorithm
parameters were subject to an automated optimization procedure and, therefore, the best
ML parameter values were found by the optimization algorithm.

The following parameters of the M5P algorithm and their values were considered in
the optimization procedure:

• M, the minimum number of instances per leaf in the tree, {1, 2, . . . , 20};
• N, use of tree pruning, {true, f alse};
• U, use of smoothing in predictions, {true, f alse}.

The parameters and their values for the RF algorithm were as follows:

• Depth, the maximum depth of the tree, {1, 2, . . . , 150};
• K, the number of attributes to randomly investigate, {1, 2, . . . , 25};
• I, the number of iterations, {20, 21, . . . , 200};
• B, randomly breaking the ties when several attributes are equally good, {true, f alse}.

The optimization algorithm jDE was used to search the MV and ML parameter decision
spaces. jDE is a variant of differential evolution (DE) [6], where only the population size
and the stopping condition need to be set manually, while the differential weight and the
crossover rate are set through self-adaptation [25]. In all the experiments, the population
size was set to 50 and 100 generations were examined, resulting in 5000 evaluated solutions
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per optimization run. The population size and the number of generations were determined
empirically by monitoring the solution improvement over generations.

The decision space size in the case of optimizing the MV and M5P algorithm param-
eters was 2.6 · 109 (number of possible MV and ML algorithm parameter settings, which
is equal to the number of possible values multiplied over all parameters). In the case of
optimizing the MV and RF algorithm parameters, it was even larger, i.e., 4.3 · 1013.

5.2. Validation Procedure

To build the most accurate roughness predictive model, the optimization was per-
formed over the MV parameters, and the M5P and RF algorithm parameters. The optimiza-
tion procedure was run ten times for each ML algorithm. Based on the extracted dataset of
attributes, for each solution, namely ML and MV parameter settings, a regression predictive
model was built. The prediction error, i.e., the RRSE value, of each built predictive model
was calculated using 10-fold cross-validation (CV). This error was used as the predictive
model accuracy estimate and was the optimization objective to be minimized. In Figure 8,
the RRSE values averaged over ten optimization runs are denoted with suffix “OPT”. The
error during the optimization runs could also be assessed using the hold-out set, but as
shown in [30], in general, minimizing the error estimated with single CV also minimizes
other error estimates.
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Figure 8. Roughness prediction error (RRSE) estimates for regression trees, random forests and the
expert-defined setting. Error estimates for the optimized regression trees and random forests are
averaged over ten runs and marked with suffix “OPT”. Error estimates for the expert defined setting
are marked with “EXP”. For details see Section 5.2.

After each run of the optimization procedure, the accuracy of the best found predictive
model was assessed using the hold-out set. In addition, the same RRSE assessment was
performed for the M5P and RF predictive models built using the expert-defined MV
settings. In this case, the expert settings were defined just for the MV parameters, while the
parameters of the ML algorithms were set to their default values. Since a single predictive
model is constructed in this way, the related result in Figure 8 is represented by a straight
line and marked with the suffix “EXP”.

6. Results and Discussion

Observing the progress of optimization in terms of RRSE over generations for different
algorithms and setups shown in Figure 8, one can draw several conclusions on the resulting
predictive models and their accuracy.

138



Mathematics 2021, 9, 1904

First, the manual setup of the MV algorithm parameters does not result in optimal
parameter settings. Comparison of the final RRSE values for the manual and optimized
settings shows a major difference in the accuracy of the roughness predictive models.
The results clearly show that the optimization of the MV parameter settings increases the
prediction accuracy.

Next, using different ML algorithms results in predictive models of quite different
prediction accuracy, i.e., average RRSE 28.2% for M5P and 25.9% for RF. Recall that the
expert parameter settings of the MV algorithm in these runs were kept constant and the
ML algorithm parameters were set to their default values. Given the fact that the default
values of ML algorithm parameters are not optimized for a specific ML task, it can be
expected that the optimization of the ML algorithm parameters improves the accuracy of
the predictive model.

Finally, the comparison of the RRSE values averaged over the optimization runs for
the M5P and RF algorithms shows that RF achieves better prediction results. In these runs,
both the MV and ML algorithm parameters are subject to optimization. As a result, the
average RRSE for M5P is 22.9% and for RF 22.4%.

Table 1 shows the comparison of the predictive models validation results between the
expert and optimized MV parameters settings. The models were validated by 10-fold CV
and by the hold-out set, and averaged over ten runs of each algorithm. The best average
prediction accuracy was achieved by the “RF-OPT” algorithm. However, based on the
comparison of the RRSE estimates for each ML algorithm, we can observe that the hold-out
set validation always yields lower RRSE value than the 10-fold CV. This may be due to the
performed systematic sampling of the instances in the hold-out set and relatively small
size of the hold-out set (70 instances). The related MAE values were proportional to the
RRSE results.

Table 1. Prediction error estimates.

Algorithm
10-Fold CV Hold-Out Set

RRSE [%] MAE [μm] RRSE [%] MAE [μm]

M5P-EXP 28.2 0.82 26.1 0.84
RF-EXP 25.9 0.80 23.9 0.83
M5P-OPT 22.9 0.74 22.5 0.71
RF-OPT 22.4 0.71 21.9 0.70

To better understand the difference between the expert-defined MV settings and MV
settings found by the optimization algorithm, we compared the MV algorithm output
images. The differences between the original image and the images processed using
the expert-defined and the jDE-optimized MV parameter settings are shown in Figure 9.
The images processed using the expert-defined and the jDE-optimized MV settings are
in comparison to the original image filtered and smoothed. They are very similar from
the human eye perspective. However, based on the differences in the output image, a
predictive model with a substantially better prediction accuracy is built in the latter case.
This indicates that even small differences in image preprocessing arising from different
MV parameter settings can result in improved prediction accuracy.

In addition, we analyzed the most informative attributes appearing in the predictive
models. The analysis was performed in Weka [24] for the M5P and RF algorithms. The
most informative attributes were always selected from the grayscale image attributes
mostly describing the geometrical properties of the commutator mounting hole. These
properties result from the final treatment of the commutator mounting hole. Regardless
of the used ML algorithm, the five most frequent attributes were the number of detected
valleys in the image, the number of detected peaks in the image, the lowest grayscale
value of a pixel in the valley, and the minimum and the average valley width. Recall that
the roughness parameter Rz, which we are trying to predict, represents the maximum
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difference between the peak height and the valley depth along the measured line profile.
Based on this knowledge, the connection between the geometrical properties extracted
from the image and the Rz parameter can be interpreted. However, other attributes were
also used to build the predictive models, but their selection varied depending on the used
algorithm and specific run.

Figure 9. Comparison of the processed images using the expert and the optimized settings: the origi-
nal extracted image (top), the image processed with expert-defined MV parameter settings (center),
and the image processed with MV and ML parameters set by the optimization algorithm (bottom).

To verify the prediction results of the M5P and RF algorithms using the optimized
settings, the best model found by each algorithm was identified and applied to predict
the roughness of all 700 instances. This was done separately for the training set and
the hold-out set. The results of prediction for the two learning algorithms are shown in
Figures 10 and 11, respectively.

The results of the M5P regression tree show that the accuracies on the training set and
the hold-out set are similar. The estimated RRSE of the best regression tree found on the
training set was 21.2%, while the RSSE achieved on the hold-out set was 22.5%. The MAE
of this predictive model assessed on the hold-out set was 0.71 μm, which is an acceptable
result for practical application.
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Figure 10. Comparison of the measured and predicted values of Rz for the training and hold-out set,
using the best found regression tree model.
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Figure 11. Comparison of the measured and predicted values of Rz for the training and hold-out sets,
using the best found random forest model.

Comparison of the prediction accuracy of the M5P and RF models shows that the
spread of prediction error is much lower in the case of RF. The best found RF model has the
RRSE measured on the training set equal to 8.6%, while the estimated RRSE of the same
model on the hold-out set is 22.1%. The MAE of this model assessed on the hold-out set is
0.70 μm.

In addition, we compared the accuracy of the best found predictive model and the
accuracy of the existing contact method. Recall that the reference value of the roughness
parameter Rz was calculated as an average of three measurements performed with a contact
profilometer. The MAE of these measurements was calculated as a difference between a
randomly selected one of the three measurements and the average value of these three
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measurements. The resulting value was 0.60 μm. The MAE of the best RF model was
0.70 μm, which is comparable to the accuracy of the contact measurements. In addition,
it was confirmed by a customer that the method is appropriate to perform the statistical
process control (SPC) in the commutator production.

The proposed MV-based roughness measurement method has, in comparison to the
existing contact method, several advantages. Performing a single measurement with a
contact profilometer takes at least 10 seconds, while a complete MV-based measurement,
which consists of capturing the image, extracting the attributes and predicting the rough-
ness value, is performed in approximately one second. Since the MV-based method is very
efficient and enables contactless measurements, it is suitable for online implementation. In
addition, if the method is used in SPC, it enables to perform a higher number of roughness
measurements per batch, resulting in a higher reliability of SPC.

7. Conclusions

This paper presents a novel method of measuring the surface roughness of specific
machined parts for the automotive industry. The method is based on the MV quality
control that enables online and real-time roughness measurements. In addition to MV, the
methodology combines ML and evolutionary optimization to build an accurate model
for predicting the Rz roughness parameter. The evolutionary optimization algorithm
searches for appropriate MV and ML parameter settings to produce a predictive model of
acceptable accuracy.

During the development of the MV-based roughness measurement system, two ML
algorithms were tested: an algorithm for building the regression trees and a random forest
algorithm. The random forest algorithm proved to be more repeatable and accurate on
average than the regression tree algorithm; however, the best solutions found by both algo-
rithms were comparable. During the MV and ML parameter optimization, the prediction
error was assessed by 10-fold cross-validation. After the optimization, the accuracy of
the final predictive models was tested on a hold-out set of previously unseen instances.
The validation showed that the found predictive models achieved comparable accuracy
on training and hold-out datasets. In addition, it was confirmed, that the optimization
methodology is beneficial in setting of the MV parameters for reliable quality control.

The best found RF predictive model has the RRSE value of 22.1%, resulting in the
absolute mean prediction error of 0.70 μm. This result is satisfactory and comparable to
the accuracy of the SPC contact roughness measurement systems currently installed in
the commutator production. However, the developed methodology enables to perform
the roughness measurement on the production line and control the quality of the turning
process online and in real-time.

The optimization methodology presented in this work can be applied to any MV
algorithm to tune its settings and build a predictive model. Nonetheless, the MV operators
and their sequence used in the optimization procedure were determined manually, relying
on the expert knowledge and experience. Therefore, they may not be optimally selected,
and consequently, the prediction error of the best found regression model, in the case of
using alternative MV operators and their sequence, could be even lower. Accordingly,
our future work will focus on upgrading the presented methodology with automated MV
algorithm construction where expert assistance will no longer be needed.
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Abstract: This paper presents a novel method for optimal tunning of a Fractional Order
Proportional-Integral-Derivative (FOPID) controller for an Automatic Voltage Regulator (AVR)
system. The presented method is based on the Yellow Saddle Goatfish Algorithm (YSGA), which is
improved with Chaotic Logistic Maps. Additionally, a novel objective function for the optimization of
the FOPID parameters is proposed. The performance of the obtained FOPID controller is verified by
comparison with various FOPID controllers tuned by other metaheuristic algorithms. A comparative
analysis is performed in terms of step response, frequency response, root locus, robustness test,
and disturbance rejection ability. Results of the simulations undoubtedly show that the FOPID
controller tuned with the proposed Chaotic Yellow Saddle Goatfish Algorithm (C-YSGA) outperforms
FOPID controllers tuned by other algorithms, in all of the previously mentioned performance tests.

Keywords: Automatic Voltage Regulation system; Chaotic optimization; Fractional Order
Proportional-Integral-Derivative controller; Yellow Saddle Goatfish Algorithm

1. Introduction

The quality of electrical energy is the main demand from consumers in the power system.
Since the indicators of the quality are voltage and frequency, these parameters must be maintained
at the desired level at every moment. Generally, in every power system, the frequency depends
on the active power flow, while the reactive power flow has a greater impact on the voltage level.
Additionally, any deviation of the voltage from the nominal value requires the flow of the reactive
power, which automatically increases line losses. The fluctuations of the voltage can be repressed
using various devices: serial and parallel capacitor banks, synchronous compensators, tap-changing
transformers, reactors, Static VAr Compensators (SVC), and Automatic Voltage Regulators (AVR) [1,2].
This paper deals with AVR systems.

The AVR represents the main control loop for the voltage regulation of the synchronous generator
(SG), which is the main unit for producing electrical energy in the whole power system. Concretely,
the control of the terminal voltage of the synchronous generator is achieved by adjusting its’ exciter
voltage. Although the main task of the AVR is to provide stable voltage level at the generator’s terminals,
it is also very important in improving the dynamic response of the terminal voltage. Regardless of the
fact that the control theory developed many modern control techniques, the traditional PID controller
is still the most used in the AVR systems. In general, in this paper, the optimal tuning of the controller
is considered.
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Enhancing the performance of the PID controller for AVR systems is possible by using fractional
calculus. Fractional order PID controller (FOPID) is the general form of the PID controller that uses
fractional order of derivatives and integrals, instead of integer order. Moreover, FOPID can provide
a better transient response and is more robust and stable compared to the conventional (known as
integer order controller) PID controller [3]. Due to the previously mentioned advantages of the FOPID,
this paper deals with this type of controller.

The optimal design of the FOPID controller implies determining the parameters to satisfy defined
optimization criteria (or fitness/objective function). In the available literature, the most used method
for optimal tuning of the FOPID controller is based on metaheuristic algorithms [4–12]. Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) are applied in [4,5,8,11] to determine the optimal
values of the FOPID parameters. For the same purpose, D. L. Zhang et al. proposed an Improved
Artificial Bee Colony Algorithm (CNC-ABC) [6]. Also, it can be found that the authors used Chaotic
Ant Swarm (CAS) [7], Multi-Objective Extremal Optimization (MOEO) [9], Cuckoo Search (CS) [10],
and Salp Swarm Optimization (SSO) algorithm [12] to determine unknown parameters of the FOPID.
Besides the FOPID, many existing studies deal with the optimization of the parameters of the classical
PID controller for the AVR systems [13–22].

Another very important aspect of the optimization process that needs to be particularly reviewed
is the choice of the fitness function. Previously mentioned algorithms introduce a huge variety of fitness
functions that take into account time-domain (rise time, settling time, overshoot, and steady-state
error), as well as frequency domain parameters (gain margin, phase margin, gain crossover frequency,
and so on). One of the most common error-based functions is Integrated Absolute Error (IAE) [6].
Another commonly used time-domain criterion is Zwee Lee Gaing’s function originally proposed
in [13] for PID controller tuning and applied in [7,10] for optimal tunning of the FOPID controller.
Ortiz-Quisbert et al. used the complex function that tends to minimize only time-domain parameters:
overshoot, settling time, and maximum voltage signal derivative [11]. One of the most interesting
approaches in a fitness function definition is combining error-based functions with time-domain
parameters, as presented in [8,9,11]. Concretely, an interesting approach minimizes the Integrated
Time Squared Error (ITSE) of the output voltage, energy of the control signal, and ITSE of the load
disturbance [8]. The objective function in [9] is composed of IAE, steady-state error, and settling
time, while in [11], the objective is to minimize not only IAE, steady-state error, and settling time as
previously mentioned, but also the overshoot and the control signal energy. Fitness function that
consists only of the frequency domain parameters is proposed in [5] and tends to maximize phase
margin and the gain crossover frequency. The trade-off between different frequency domain parameters
(phase margin and gain margin) and time-domain parameters (overshoot, rise time, settling time,
steady-state error, IAE, and control signal energy) is formulated as an objective function in [4].

Although a large number of FOPID tuning techniques have been proposed in the available
literature, the optimal design of the FOPID controller can still be improved by further research. To that
end, this paper proposes a novel design approach of the FOPID controller. The contributions of this
work are highlighted as follows:

• Firstly, the recently proposed Yellow Saddle Goatfish Algorithm (YSGA) [23] is merged with Chaos
Optimization Algorithm [24] in order to obtain novel Chaotic Yellow Saddle Goatfish Algorithm
(C-YSGA). Original YSGA can improve the optimization process in terms of accuracy and
convergence in comparison to several state-of-the-art optimization methods. The improvement
is proven by applying this method on five engineering problems, while the comparison with
other methods is carried out by using 27 well-known functions [23]. Additionally, in this
paper, the superiority of the original YSGA over several other metaheuristic techniques will be
demonstrated on the particular optimization problem. Moreover, an improvement of the YSGA
by adding Chaotic Logistic Mapping is introduced. The purpose of merging two algorithms is
to additionally improve the convergence speed of the YSGA algorithm. Therefore, the original
optimization algorithm for optimal tuning of the FOPID controller will be presented in this paper.
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• Afterward, the new objective function that tends to optimize time-domain parameters has
been proposed. It is demonstrated that the usage of the proposed objective function provides
significantly better results than the other functions proposed in the literature.

• Such an obtained FOPID controller has been compared with those tuned by different optimization
algorithms in terms of transient response quality. The conducted analysis clearly demonstrates
the superiority of the FOPID controller tuned by C-YSGA.

• Finally, different uncertainties have been introduced to the system in order to examine its behavior.
Precisely, the robustness test that implies changing the AVR system parameters is carried out.
Also, the ability of the system to cope with the different disturbances (control signal disturbance,
load disturbance, and measurement noise) is investigated. During all of the mentioned tests,
the FOPID controller tuned by C-YSGA shows significantly better performances compared to
the FOPID controller, whose parameters are optimized by the other algorithms considered in
the literature.

The organization of this paper is as follows. A brief overview of the AVR system, along with the
performance analysis, is provided in Section 2. Section 3 demonstrates the basics of the fractional-order
calculus, which is needed for simulating a FOPID controller. Afterward, a compact and wide overview
of the available literature related to FOPID parameters optimization is given in Section 4. Section 5
shows the mathematical formulation of the novel C-YSGA algorithm that is presented in this paper.
The results of the simulation are given in Section 6. Conclusions are provided in Section 7.

2. Description of the AVR System

The primary function of an AVR system is to maintain the terminal voltage of the generator at
a constant level through the excitation system. However, due to the different disturbances in the power
system, a synchronous generator does not always work at the equilibrium point. Such oscillations
around the equilibrium state can cause deviations of the frequency and the voltage, which can be very
harmful to the overall stability of the power system. In order to enhance the dynamic stability of the
power system, as well as to provide quality energy to the consumers, excitation systems equipped
with AVR are employed. Because of such an important role, the design of an AVR system is a crucial
and challenging task.

A typical AVR system consists of the following components:

• controller,
• amplifier,
• exciter,
• generator, and
• sensor.

The object that needs to be controlled in this control scheme is a synchronous generator, whose
terminal voltage is measured and rectified by the sensor. An error signal, which presents the difference
between the desired and the measured voltage value, is formed in the comparator. One of the main
components in the AVR scheme that needs to be chosen carefully is the controller. Based on the
error signal and the appropriate control algorithm selected, the controller defines the control signal.
Very often the controller is realized as a microcontroller unit, whose output power is deficient. Due to
this, the existence of the amplifier is necessary in order to increase the power of the control signal.
Finally, an amplified signal is used to control the excitation system of the synchronous generator,
and therefore, to define the terminal voltage level. The scheme of such a described system is depicted
in Figure 1.
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Figure 1. Scheme of the AVR.

In the available literature [4–22], the components of the AVR (except the controller) are presented
as the first-order transfer function, which is composed of gain and time constant. Table 1 gives
a compact review of the transfer functions and the range of each parameter.

Table 1. Transfer functions of each AVR system component.

Component Transfer Function Range of the Parameters

Amplifier KA/(1 + sTA) 10 ≤ KA ≤ 400, 0.02 s ≤ TA ≤ 0.1 s
Exciter KE/(1 + sTE) 1 ≤ KE ≤ 10, 0.4 s ≤ TE ≤ 1 s

Generator KG/(1 + sTG) 0.7 ≤ KG ≤ 1, 1 s ≤ TG ≤ 2 s
Sensor KS/(1 + sTS) 1 ≤ KS ≤ 2, 0.001 s ≤ TS ≤ 0.06 s

In the previous table, KA, KE, KG, and KS stand for gains of an amplifier, exciter, generator,
and sensor, respectively, while TA, TE, TG, and TS are time constants of the amplifier, exciter, generator,
and sensor. Values that are considered in this paper are KA = 10, KE = 1, KG = 1, KS = 1, TA = 0.1,
TE = 0.4, TG = 1, and TS = 0.01 [5–22]. It is important to mention that the gain of the generator KG
depends on the load of the generator. Namely, KG can take a value from 0.7 (non-loaded generator) to
1 (nominal loaded generator).

Before including the controller in the system analysis, it is necessary to carry out the analysis of
the system in the absence of the controller. To that end, the step response of the AVR system without
the controller is given in Figure 2. In order to demonstrate the behavior of the system in the different
cases of the load, simulations are conducted for different values of parameter KG (0.7, 0.8, 0.9, and 1).

Figure 2. Step response of the AVR system without the controller.

Despite the transient response (time-domain) analysis, it is also very important to take a look at
the frequency response of the system. Frequency characteristics or Bode diagrams of the open-loop
system can provide information about margins of the stability of the closed-loop system. Precisely,
it is important to determine the values of the gain margin and the phase margin, which both need to
be positive in order to have a stable system. For the different values of the parameter KG, frequency
responses are shown in Figure 3.
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Figure 3. Bode diagrams of the open-loop system.

Another essential characteristic of the system, and the main indicator of stability, is the root
locus of the closed-loop system. Root locus gives information about the location of the poles of the
closed-loop system. As it is well known from control theory, for the stable system, all the poles must
be located in the left half-plane. The graphical representation of the location of the poles is given in
Figure 4.

 
Figure 4. Root locus of the AVR system.

Based on the previously presented figures, all-important time domain and frequency domain
parameters can be computed. Namely, Table 2 shows transient response indices-rise time (tr),
settling time (ts), overshoot in percentage (OS), steady-state error (Ess), frequency response
parameters-gain margin (Gm) and phase margin (Pm), as well as the poles of the closed-loop system.

Table 2. Values of the transient response and frequency response parameters.

Parameter KG = 1 KG = 0.9 KG = 0.8 KG = 0.7

Overshoot (%) 65.214 61.3825 55.9051 50.4818
Rise time (s) 0.2613 0.2755 0.2945 0.3171

Settling time (s) 7.0192 6.5237 5.4086 4.9012
Steady-state error (p.u.) 0.0881 0.102 0.1108 0.1249

Closed-loop system poles
−0.51 ± 4.66i
−12.48
−99.97

−0.6 ± 4.46i
−12.31
−99.97

−0.69 ± 4.25i
−12.12
−99.97

−0.79 ± 4.01i
−11.92
−99.97

Gain margin (dB) 4.61 5.53 6.55 7.71
Phase margin (o) 16.1 19.56 23.56 28.26
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Root locus and frequency characteristics prove that the AVR system is stable, but the margins of
the stability are low due to the poles that are very close to the imaginary axis of the complex plane.
Also, large values of the overshoot, the settling time, and the steady-state error indicate that the
transient response of the AVR system in the absence of the controller is feeble. In fact, the steady-state
error varies from 8% to 12% (depending on the load of the generator), which means the AVR cannot
complete the main task—maintaining the voltage level at the reference value. All of the aforementioned
deficiencies can be eliminated by adding the controller into the system. According to the available
literature, the most used control strategies for AVR systems are based on classical or integer-order
PID controller, as well as the generic version of the PID controller that is called Fractional-Order PID
controller (FOPID).

Integer-order PID controller is presented by the following transfer function:

PID(s) = Kp +
Ki
s
+ Kds, (1)

where Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative gain. Integer-order is
a specific case of the PID controller, where the integral and the derivative are first order.

The general type of the PID controller is called Fractional-Order PID controller and is presented
using the following transfer function:

FOPID(s) = Kp +
Ki

sλ
+ Kdsμ, (2)

where λ and μ represent the order of the integral and of the derivative, respectively. As the name of the
FOPID indicates, these two numbers can be any real numbers (not strictly integers). The aforementioned
facts make the FOPID the most general form of the PID controller. Specific forms of FOPID controllers
are PID (λ = 1, μ = 1), PI (λ = 1, μ = 0), PD (λ = 0, μ = 1) and P controller (λ = 0, μ = 0), as illustrated in
Figure 5.

Figure 5. Graphical representation of the different PID controllers.

3. About the Fractional Order Calculus

Regarding the problem of the fractional-order calculus, many different approaches have been
proposed. According to [3], the most commonly used definitions of the fractional-order calculus are
Grunwald–Letnikov, Riemann–Liouville, and Caputo definition.

Grundwald–Letnikov’s approach defines the αth order derivative of the function f in the limits
from a to t as follows:

Dα
t|
a
= lim

h→0

1
hα

[ t−a
h ]∑

r=0

(−1)r
(

n
r

)
f (t− rh), (3)
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where h stands for the time step, and the operator [·] takes only the integer part of the argument.
The variable n must satisfy the condition n−1 < α < n, while the binomial coefficients are defined by:

(
n
r

)
=

Γ(n + 1)
Γ(r + 1)Γ(n− r + 1)

, (4)

where the definition of the Gamma function is well known:

Γ(x) =
∫ ∞

0
tx−1e−tdt. (5)

Riemann and Liouville proposed the definition of the fractional-order derivative that avoids using
limit and sum, but uses integer-order derivative and integral, as follows:

Dα
t|
a
=

1
Γ(n− α)

(
d
dt

)n∫ t

a

f (τ)

(t− τ)α−n+1
dτ. (6)

Another definition of fractional order derivative is proposed by M. Caputo and is defined by the
following Equation:

Dα
t|
a
=

1
Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ. (7)

However, the aforementioned formal definitions show the lack of applicability in real-time
implementation (digital implementation on a computer) [24]. In order to exceed such a problem,
A. Oustaloup proposed the recursive approximation of the fractional-order derivative [25].
Such an approach is trendy among the large number of authors that deal with optimal tuning
of the FOPID controller [4,5,7,8,11]. Moreover, in practical implementations of the fractional-order
calculus, it can be seen that the Oustaloup’s idea dominates over the formal definitions. Because of that,
in this paper, Oustaloup’s recursive approximation will be used to model fractional-order derivatives
and integrals. Mathematical approximation of the αth order derivative (sα) is given by Equation (8):

sα ≈ ωh
α

N∏
k=−N

s +ωk
′

s +ωk
′ , (8)

where the zeros and the poles are defined as follows:

ωk = ωb

(
ωh
ωb

) (k+N+(1+α)/2)
(2N+1)

, ωk
′ = ωb

(
ωh
ωb

) (k+N+(1−α)/2)
(2N+1)

. (9)

Before applying the given recursive filter, it is necessary to define the number N that determines the
order of the filter (order is 2N + 1) and the frequency range of the approximation {ωb, ωh}. In this study,
the order of the filter is chosen to be 9 (N = 4), and the selected frequency range is {10−4, 104} rad/s.

It is imperative to mention that Equation (8) is valid only for α∈(0, 1). Thus, in the case the
fractional-order α is higher than 1, it is necessary to conduct a simple mathematical manipulation.
Precisely, fractional-order α can be separated as follows:

sα = snsδ, α = n + δ, n ∈ Z, δ ∈ (0, 1). (10)

Afterward, Outstaloup’s recursive approximation is applied only on sδ, since sn is already
an integer-order derivative.
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4. Overview of the Literature

The problem of optimal design of the FOPID controller means the determination of the parameters
Kp, Ki, Kd, λ, and μ so that the certain objective function achieves the minimum (or maximum) value.
The most common performance indicators of the tuned FOPID controller are the transient response
parameters of the closed-loop system: rise time, settling time, overshoot, and steady-state error. In order
to present the results obtained by the recent studies that deal with FOPID tuning, Table 3 provides
optimal values of the FOPID parameters and the corresponding transient response parameters of the
acquired AVR system.

Table 3. FOPID parameters and transient response parameters from the literature.

Method
Number

Reference Kp Ki Kd μ λ tr (s) ts (s) OS (%) |Ess| (pu)

1 [5] 0.408 0.374 0.1773 1.3336 0.6827 1.0083 1.512 0.0221 0.0155
2 [5] 0.9632 0.3599 0.2816 1.8307 0.5491 1.3008 1.6967 6.99 0.0677
3 [5] 1.0376 0.3657 0.6546 1.8716 0.5497 0.0104 1.8796 30.8479 0.0595
4 [6] 1.9605 0.4922 0.2355 1.4331 1.5508 0.1904 1.0259 4.8187 0.0102
5 [7] 1.0537 0.4418 0.251 1.1122 1.0624 0.2133 0.6145 5.2398 0.0153
6 [7] 0.9315 0.4776 0.2536 1.0838 1.0275 0.2259 0.564 3.7006 0.0098
7 [8] 0.9894 1.7628 0.3674 0.7051 0.9467 0.1823 1.8835 58.315 0.0409
8 [8] 0.8399 1.3359 0.3511 0.7107 0.9146 0.1998 1.8727 44.8059 0.0146
9 [8] 0.4667 0.9519 0.2967 0.2306 0.8872 0.3041 1.986 45.2452 0.1768

10 [9] 2.9737 0.9089 0.5383 1.3462 1.1446 0.0769 0.388 8.6266 0.0086
11 [10] 2.549 0.1759 0.3904 1.38 0.97 0.0963 0.9774 3.5604 0.0321
12 [10] 2.515 0.1629 0.3888 1.38 0.97 0.0967 0.9849 3.5141 0.033
13 [10] 2.4676 0.302 0.423 1.38 0.97 0.0902 0.9933 3.2504 0.0283
14 [11] 1.5338 0.6523 0.9722 1.209 0.9702 0.0614 1.3313 22.5865 0.0175
15 [12] 1.9982 1.1706 0.5749 1.1656 1.1395 0.1011 0.5633 13.2065 0.0068

It is important to mention that the transient response parameters presented in the table are the
calculated values obtained by carrying out the simulations with the given FOPID parameters. In order
to conduct the graphical comparison between given references in terms of the transient response
parameters, Figures 6–9 present rise time, settling time, overshoot, and steady-state error, respectively,
for each method from Table 3.

Figure 6. Rise time for each method from Table 3.
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Figure 7. Settling time for each method from Table 3.

Figure 8. Overshoot for each method from Table 3.

Figure 9. Steady-state error for each method from Table 3.
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The process of the optimization of the FOPID parameters highly depends on the chosen objective
function that has to be minimized (or maximized). Considering the importance of the objective
function, the list of different used functions is given in Table 4. It can be observed that certain authors
use a single objective function [4,6,7,10–12], while others perform multi-objective optimization [5,8,9].

Table 4. The list of the used objective functions.

Objective Function Reference

OF = w1 ·OS + w2 · tr + w3 · ts + w4 · Ess +
∫ (

w5 · |e(t)|+ w6 ·V f (t)
2
)
dt + w7

Pm
+ w8

Gm
[4]

J1 = ωgc, J2 = Pm [5]
IAE =

∫ |e(t)|dt [6]
ZLG = (1− e−β) · (OS + Ess) + e−β · (ts − tr) [7,10]

J1 =
∫

te2(t)dt, J2 =
∫

Δu2(t)dt, J3 =
∫

teload
2(t)dt [8]

J1 = IAE, J2 = 1000|Ess|, J3 = ts [9]
OF = w1 ·OS + w2 · ts + w3 · Ess + w4

∫ |e(t)|dt + w5
∫

u2(t)dt [11]
OF = (w1 ·OS)2 + w2ts

2 + w3

(max_dv)2 [11]

ITAE =
∫

t|e(t)|dt [12]

In the previous table, e is the error signal (the difference between the reference voltage and the
terminal voltage), Vf is the voltage of the generator field winding, ωgc is the gain crossover frequency,
u is the control signal (the output of the controller), eload is the error signal when load disturbances are
present, and max_dv is the maximum point of the voltage signal derivative. The weighting coefficients
are marked as w1, w2, w3, ..., w8.

5. Proposed Chaotic-Yellow Saddle Goatfish Algorithm

The development of the Yellow Saddle Goatfish Algorithm (YSGA) is based on the model of
the hunting process by a group of yellow saddle goatfishes, as proposed in [23]. According to this
approach, the whole population of the fishes is split into sub-populations. Each sub-population has one
fish that is called a chaser, while the others are called blockers. Also, the search space of the possible
solutions for the optimization problem is represented by the hunting area of the goatfishes.

The first step of the YSGA is the initialization of the population. Assuming that a population P
consists of m goatfishes (P = {p1, p2, ..., pm}), each goatfish is initialized randomly between the low
boundary (bL) and the high boundary (bH) of the search space [23]:

pi = rand ·
(
bH − bL

)
+ bL, i = 1, 2, . . . , m, (11)

where rand is a vector of random numbers between 0 and 1. It is very important to mention that pi is
a vector that consists of n decision variables (variables that are being optimized). Furthermore, bL and
bH are also vectors that represent lower and upper boundaries for each decision variable.

According to (11), the initialization process of the original YSGA proposed in [23] is random,
which does not ensure a good starting point in the optimization process. Namely, metaheuristic
algorithms have extremely sensitive dependence on the initial conditions, so the improvements in
this part may have a great effect on the overall performance of an algorithm. The idea of introducing
Chaotic maps into the metaheuristic algorithms in order to replace the random parameters that
appear in the algorithm is shown in [26–28]. Among the most interesting approaches are the ones
presented in [29–31], where the random population is replaced with the population generated by
Chaotic algorithm with different maps. There are many existing Chaotic maps, such as circle map,
cubic map, Gauss map, ICMIC map, logistic map, sinusoidal map, and so on. In order to examine the
performances of the mentioned maps, many authors provide a mutual comparison of the different
maps [29–33]. Concretely, the comparison is carried out by solving concrete optimization problems
employing the different Chaotic maps. The existing studies demonstrate that the logistic mapping is
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the most convenient to use, due to the better computational efficiency than other mentioned Chaotic
maps [29–33].

Based on the previous analysis, this paper introduces the initialization of the population using
Chaotic Logistic Mapping [24]. Thus, the random initialization is given by (11), which is proposed by
the original YSGA algorithm, is replaced by the initialization provided as a result of Chaotic Logistic
Mapping. The proposed model of the initialization of the population is described by (12) and (13).
Firstly, vectors yi that are the products of Logistic Mapping are introduced as follows:

y1 = rand,
yi+1 = μ · yi · (1− yi), i = 1, 2, . . .m,

(12)

where rand stands for a vector of random numbers in the interval [0,1], and μ is the coefficient that is
chosen to be 4 in this study. In this manner, we gave the chaotic character of the basic Yellow Saddle
Goatfish Algorithm.

Afterward, initialization in C-YSGA is realized according to the following Equation:

pi = yi ·
(
bH − bL

)
+ bL, i = 1, 2, . . . , m. (13)

Before starting the process of the hunt, the whole population must be divided into sub-populations
or clusters. Each of the k clusters ck has a chaser fishΦl and the blocker fish ϕg. Clustering can be made
using any of the clustering algorithms. However, the YSGA algorithm uses the K-means clustering
algorithm in order to divide the population, as it is described in [23] in detail. The cluster organization
of the population is depicted in Figure 10.

 
Figure 10. Graphical view of the goatfish population.

The chaser fish of each cluster is the one with the best fitness value. The first step of the hunting
process is to update the position of the chaser fish. If the current position is denoted asΦl

t, the updated
position is Φl

t+1, and the best chaser fish from all clusters is Φbest
t, where t represents the number of

the iteration; the updated law is given by the following Equation:

Φl
t+1 = Φl

t + α

(
u

|v|1/β

)(
Φl

t −Φbest
t
)
, (14)

where α defines the step size (it is set to 1 in this study), and β is Levy index that is calculated as follows
(tmax stands for the maximum number of iterations):

β = 1.99 + 0.01t/tmax. (15)
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Parameters u and v from (14) are defined using the following equations:

u ∼ N
(
0, σu

2
)
, σu =

⎛⎜⎜⎜⎜⎜⎝ Γ(1 + β) · sin βπ2
Γ(1 + β) · β · 2(β−1)/2

⎞⎟⎟⎟⎟⎟⎠
1/β

, (16)

v ∼ N
(
0, σv

2
)
, σv = 1, (17)

where Γ stands for Gamma function and N for normal distribution. In order to update the position of
the best chaser fish from all clusters, it is necessary to use (18) instead of (14):

Φbest
t+1 = Φbest

t + α

(
u

|v|1/β

)
, (18)

The next step in the optimization process is the update of the positions of the blocker fishes.
The new position of the blocker fish ϕg

t+1 can be determined based on the following Equation:

ϕg
t+1 = |r ·Φl −ϕg

t| · ebρ · cos(2πp) + Φl, (19)

where ρ is a random number between a and 1, r is a random number between 0 and 1, and b is the
constant that is set to be 1. The parameter a is called the exploitation factor and is linearly decreased
from −1 to −2 during the iterations.

It is vital to keep in mind that during the optimization process, the exchange of roles may occur.
Namely, if the blocker fish has a better fitness value than the chaser fish, they exchange the roles,
and the blocker fish becomes a new chaser fish in the next iteration.

The YSGA model has the predefined parameter λ, which is called an overexploitation parameter.
Precisely, if a solution is not improved in λ iterations, it is necessary to change an area of the hunt.
Each goatfish, no matter if it is chaser or blocker, must change the hunting area according to the
following Equation:

pg
t+1 =

Φbest + pg
t

2
, (20)

where pg
t and pg

t+1 represent old and new positions of the goatfish, respectively. The whole described
process is iteratively repeated until the maximum number of iterations is reached. The detailed
description is provided with the pseudo-code presented in Table 5.

Table 5. Pseudo-code of the proposed C-YSGA.

Pseudo-Code of the C-YSGA

Enter the input data: m, k, tmax, λ
Initialize the population P using chaotic logistic mapping

According to the fitness values determine Φbest
Split the population into k clusters and determine the chaser fish Φl for each cluster

while (t < tmax)
for each cluster

Update the position of the chaser fish and blocker fish
Calculate the fitness value of every fish

Exchange the roles if any blocker fish has better fitness value than the chaser fish
Update the Φbest if the chaser fish has better fitness value

If the fitness value of the chaser fish has not improved, increase the counter q by 1
If the counter q is higher than λ then apply the formula for the change of the zone

end for
t = t + 1

endwhile
Φbest is the output result of the algorithm

This section is not mandatory but can be added to the manuscript if the discussion is unusually
long or complicated.
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6. Simulation Results

This section presents the results that are obtained by applying the proposed C-YSGA method to
optimize the FOPID parameters of the AVR system.

Firstly, the formulation of the optimization problem is provided, including the novel objective
function presented in this paper. Afterward, the convergence characteristics of the different optimization
algorithms used in the literature are compared to the one obtained by C-YSGA in order to demonstrate
the convergence superiority of the proposed algorithm. Furthermore, the comparison is conducted in
terms of the step response of the AVR system, as well as in the cases of different kinds of uncertainties
and disturbances in the system.

6.1. Formulation of the Optimization Problem

From (2), it can be seen that the FOPID is defined with 5 parameters, Kp, Ki, Kd, λ, and μ,
which need to be optimized so that the controller satisfies the desired performances. The optimization
process is guided by the objective function that defines the performances of the AVR system.

In order to provide a good quality transient response (for the reference step signal), we tested
all of the previously used objective functions. However, none of the mentioned functions provide
the appropriate system responses as they do not take into account all of the essential characteristics
(time-domain parameters or frequency parameters). Furthermore, they do not give an appropriate
compromise between all the critical time-domain parameters. On the other side, the objective functions
that are based on frequency parameters have higher execution time, which makes the optimization
process slower. Observing the different mathematical formulations of the objective functions presented
in [4,7,10,11], the authors in this paper propose a novel objective function (21) that contains a smaller
number of weighting coefficients, but also outperforms other objective functions in the literature:

OF = w1 ·
∫

t|e(t)|dt + w2OS + w3|Ess|+ w4ts. (21)

Weighting coefficients are chosen carefully after many experiments, and the following values
are considered in this paper: w1 = 1, w2 = 0.02, w3 = 1, and w4 = 5. The values of the coefficients are
chosen after many experiments with different combinations. It can be seen that w2 has a significantly
lower value than the other three weighting coefficients. The reason for this is that the overshoot in
(21) is given in percentage, and its value is always larger than the values of ITAE, settling time, and
steady-state error. Concretely, from Table 3, it can be observed that the highest value of overshoot can
go to 45%, while the settling time and the steady-state error reach maximum values of 1.9 s and 0.17 pu,
respectively. However, it is very important to highlight that the presence of the FOPID controller can
make the closed-loop system unstable. In order to surpass that, this paper uses optimization with
constraints. In other words, each solution (each set of FOPID parameters) is first tested to examine if
the obtained closed-loop system remains stable. If a certain solution makes the system unstable, it is
automatically removed, ignoring its fitness value. The size of the population in the C-YSGA algorithm
is selected to be 40, and the maximum number of iterations is 50. Also, the lower and upper boundary
must be defined for each of the optimization variables. Taking into account previous studies related to
this topic, the chosen boundaries that are used in this paper are presented in Table 6.

Table 6. Boundaries of the optimization variables.

Parameter Lower Bound Upper Bound

Kp 1 2
Ki 0.1 1
Kd 0.1 0.4
λ 1 2
μ 1 2
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By using the proposed C-YSGA method and the novel objective function depicted above, the
optimal FOPID parameters are: Kp = 1.762, Ki = 0.897, Kd = 0.355, μ= 1.26, andλ= 1.032. The proposed
method is compared with all methods presented in Table 3, and the results are provided in Table 7 where
the best value is in bold. Note, the best solutions of each method, as it is shown in Table 3, are applied
with the proposed fitness function given by (21). It is clear that the new fitness function proposed in
this paper has the lowest value when the FOPID parameters obtained by C-YSGA algorithm are used.

Table 7. Comparison of the proposed method with other techniques from literature in terms of OF.

Method
Number

Proposed 1 2 3 4 5 6 7

OF value 1.08 24.6 47.3 50 10.1 8.4 4.5 12.3
Method
number 8 9 10 11 12 13 14 15

OF value 10.1 53.6 2.3 4.8 4.8 3 9.8 3.1

6.2. Convergence Characteristics

The main goal of hybridizing the concepts of two algorithms (classical YSGA and chaotic logistic
mapping) is to accelerate the convergence speed of the original algorithm. Due to the fact that the
initial population of the C-YSGA is not selected randomly, but it is the product of the chaotic logistic
mapping, it is expected that the proposed algorithm will reach the optimal solution for the least number
of iterations. In order to demonstrate that, the original YSGA algorithm, as well as PSO [11], CS [10],
and GA [5] algorithms have been implemented to determine the optimal FOPID parameters using the
proposed objective function (21). The convergence curves of all mentioned algorithms demonstrate that
the C-YSGA algorithm converges in a minimum number of iterations (approximately 10) compared
to the other algorithms, as it is depicted in Figure 11. In this figure, the convergence characteristics
represent the mean value of convergence characteristics when we started all the algorithms multiple
times. Therefore, the chaotic improvement of the standard YSGA algorithm enables obtaining better
convergence characteristics. In that manner, it is demonstrated that Chaotic maps, in combination with
the metaheuristic algorithm, improves the initial position, which is very important for the convergence
speed of the algorithm.

 
Figure 11. Convergence curves comparison for the different algorithms.

6.3. Step Response

Among all the presented results in Table 3, for the comparison with the proposed C-YSGA,
the papers [5,10,11] are chosen. The main indicators of the step response quality-rise time, settling time,
overshoot, and steady state-error, as well as the obtained FOPID parameters, are presented in Table 8,
the best values are marked in bold.
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Table 8. Comparison of the transient response parameters.

Algorithm Kp Ki Kd μ λ tr (s) ts (s) OS (%) |Ess| (pu)

C-YSGA 1.7775 0.9463 0.3525 1.2606 1.1273 0.1347 0.2 1.89 0.0009
PSO [11] 1.5338 0.6523 0.9722 1.209 0.9702 0.0614 1.3313 22.58 0.0175
CS [10] 2.549 0.1759 0.3904 1.38 0.97 0.0963 0.9774 3.56 0.0321
GA [5] 0.9632 0.3599 0.2816 1.8307 0.5491 1.3008 1.6967 6.99 0.0677

Additionally, the step response of the AVR system with FOPID parameters from Table 4 is shown
in Figure 12. Undoubtedly, it can be concluded that the FOPID controller tuned by the proposed
C-YSGA method provides better transient response compared to the other considered algorithms.
Precisely, the settling time, the overshoot, and the absolute value of the steady-state error have the
least values when the C-YSGA is used, while the rise time has a very low value. Taking a look into
the previous table, it can be seen that the overshoot with the PSO algorithm [11] is 22%, which is
an unacceptably big value. Similarly, the rise time and the settling time with the GA algorithm are
larger than 1 s, which makes the voltage response extremely slow.

Figure 12. Step response of the AVR system using different algorithms.

6.4. Robustness Analysis

The analysis in the previous section is conducted under the nominal conditions. However, it may
occur that the components of the AVR system change their parameters. One of the tasks of the FOPID
controller is to ensure the stability of the system and the high quality of the step response in the case
of the sudden change in the parameters’ values. To that end, the robustness analysis of the AVR
system with the C-YSGA FOPID controller is conducted, and the results are presented in Figures 13–16.
Precisely, the study is carried out for the change of time constants TA, TE, TG, and TS from −50%
to +50% of the nominal value, in steps of 25%. The step response of the AVR system is shown in
Figures 13–16.

Figure 13. Step response under the variation of TA.
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Figure 14. Step response under the variation of TE.

Figure 15. Step response under the variation of TG.

Figure 16. Step response under the variation of TS.

The results of the previous analysis prove that the C-YSGA FOPID controller makes the AVR
system very robust to the changes of each parameter. It is observed that the step response does not
deviate a lot compared to the nominal conditions.

6.5. Rejection of the Disturbances

The ability of the FOPID controller to cope with the different disturbances is analyzed
by introducing three kinds of disturbances into the AVR system: control signal disturbance,
load disturbance, and measurement noise. The block diagram of the AVR with considered disturbances
is depicted in Figure 17, while their detailed description is given as follows:

• One of the most common disturbances not only in the AVR system but generally in every
control system is control signal disturbance. In this subsection, the obtained C-YSGA FOPID
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controller is compared with FOPID controllers tuned by PSO [11], CS [10], and GA [5] algorithms.
Control signal disturbance is presented as a constant step signal in the first case, and in the second
case as a step signal that lasts from t = 2 s to t = 8 s. Step responses of the AVR system are shown
in Figure 18 for both cases.

• Afterward, the load disturbance that is specific mainly for AVR systems is presented. Similarly to
control signal disturbance, it is modeled as a step signal that lasts from t = 2 s to t = 3.5 s.
The obtained step responses, in this case, are shown in Figure 19.

• The last type of disturbance is measurement noise, which is modeled as white Gaussian noise
with the power 0.0001 dBW. Figure 20 presents the step responses of the AVR system when the
measurement noise is present.

Figure 17. Block diagram of the AVR system considering different kinds of disturbances.

(a) (b) 

Figure 18. Step responses in the two different cases of the control signal disturbance. (a) constant signal,
(b) step signal that lasts from t = 2 s to t = 8 s.

Figure 19. Step responses in the case of load disturbance.
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Figure 20. Step responses in the case of measurement noise.

Based on the previous figures, it is obvious that the FOPID controller whose parameters are
optimized by using a novel C-YSGA algorithm provides a significantly better ability to reject different
types of disturbances. Comparison is conducted with some of the most popular and most used
algorithms, whose performances, in this case, are remarkably weaker than the proposed method.
To be more precise, from Figures 18 and 19, it can be noted that the voltage does not reach its
nominal value after the disturbance is introduced, when the controllers presented in [5,10,11] are
used. Such fluctuations in the terminal voltage, caused by the inability of the controller to reject the
disturbance, can present a major problem for the consumers of the electrical energy. Unlike them,
the FOPID controller tuned by using C-YSGA provides a very stable level of the terminal voltage,
whose value reaches the nominal value in a very short period after the disturbance in the system occurs.

7. Conclusions

This paper proposes the novel optimization algorithm in order to optimize the FOPID controller
parameters in the AVR system. The proposed algorithm presents the compound of the Yellow Saddle
Goatfish Algorithm (YSGA) and Chaotic Logistic mapping to obtain the innovative Chaotic-Yellow
Saddle Goatfish Algorithm (C-YSGA). Instead of random initialization of the population, as in many
existing metaheuristic algorithms, Chaotic Logistic mapping is used to determine the initial point in
the optimization process. It is proved in the paper that such an approach significantly accelerates the
convergence of the algorithm. Furthermore, to determine optimal FOPID controller parameters, a new
objective function is presented. The results obtained by applying the proposed algorithm with the new
objective function introduced in this paper provide significantly better voltage response of the AVR
system compared to other considered algorithms. The robustness of the AVR system with such an
obtained FOPID controller is tested by changing the AVR system’s parameters. It is shown that in
all examined cases, the step response of the AVR system has extremely small deviations compared
to the nominal case, which means the system is robust to the uncertainties in the system. Moreover,
three very often disturbances are introduced into the system, and the system’s behavior with different
FOPID controllers is analyzed. The mutual comparison shows that the C-YSGA FOPID controller is by
far the best in rejecting all considered types of disturbances.

We think that in this way, the algorithm is improved, no matter what optimization problem is
considered. In this paper, we tested its applicability and efficiency on the problem of optimal FOPID
design. However, at the moment, we are working on proving its superiority over other literature
known methods for solving the synchronous machine parameters estimation problem. To that goal,
we consider field and armature current waveforms during the short circuit test.

162



Mathematics 2020, 8, 1182

Author Contributions: Conceptualization, M.M. and M.Ć.; methodology, M.M. and M.Ć.; software, M.M.;
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Abbreviations

AVR Automatic Voltage Regulation
SVC Static Var Compensator
SG Synchronous generator
PID Proportional-Integral-Derivative
FOPID Fractional Order Proportional-Integral Derivative
YSGA Yellow Saddle Goatfish Algorithm
C-YSGA Chaotic Yellow Saddle Goatfish Algorithm
PSO Particle Swarm Optimization
GA Genetic Algorithm
CNC-ABC Improved Artificial Bee Colony
CAS Chaotic Ant Swarm
MOEO Multi-Objective Extremal Optimization
CS Cuckoo Search
SSO Salp Swarm Optimization
IAE Integrated Absolute Error
ITSE Integrated Time Squared Error

Nomenclature

KA amplifier gain
KE exciter gain
KG generator gain
KS sensor gain
TA amplifier time constant
TE exciter time constant
TG generator time constant
TS sensor time constant
tr rise time
ts settling time
OS overshoot
Ess steady-state error
Gm gain margin
Pm phase margin
Kp proportional gain
Ki integral gain
Kd derivative gain
λ order of the integral
μ order of the derivative
e error signal
Vf voltage of the generator field winding
ωgc gain crossover frequency
u control signal
eload error signal when load disturbances are present
max_dv maximum point of the voltage signal derivative
w1, w2, w3, ..., w8 weighting coefficients
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P population
m number of goatfishes
bL low boundary
bH high boundary
rand vector of random numbers between 0 and 1
yi product vector of Logistic Mapping
k number of clusters
ck cluster
Φl chaser fish
ϕg blocker fish
Φbest best chaser fish
t number of the current iteration
tmax maximum number of iterations
α step size
β Levy index
Γ gamma function
N normal distribution
a exploitation factor
r random number between 0 and 1
ρ random number between a and
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Abstract: As technology improves, the complexity of controlled systems increases as well. Alongside
it, these systems need to face new challenges, which are made available by this technology advance-
ment. To overcome these challenges, the incorporation of AI into control systems is changing its
status, from being just an experiment made in academia, towards a necessity. Several methods to
perform this integration of AI into control systems have been considered in the past. In this work,
an approach involving GP to produce, offline, a control law for a reentry vehicle in the presence of
uncertainties on the environment and plant models is studied, implemented and tested. The results
show the robustness of the proposed approach, which is capable of producing a control law of a com-
plex nonlinear system in the presence of big uncertainties. This research aims to describe and analyze
the effectiveness of a control approach to generate a nonlinear control law for a highly nonlinear
system in an automated way. Such an approach would benefit the control practitioners by providing
an alternative to classical control approaches, without having to rely on linearization techniques.

Keywords: evolutionary optimization; genetic programming; control; differential evolution; reusable
launch vehicle

1. Introduction

Several decades after its formulation, and despite the great abundance of different
control schemes and paradigms in the academic literature, the PID controller is still the
most used control approach in industrial and real world applications. This is due to its
simplicity, effectiveness and to the decades long active research. Nonetheless, it needs to
be applied to linear or linearized models to work efficiently. This is particularly difficult in
the aerospace domain, where the physics of the controlled plant and of the environment
are defined by nonlinear models. To overcome the limitations of the PID controller and
improve the performances and robustness of a control system, several control system
design approaches have been proposed in the past, such as optimal control, adaptive
control and robust control. However, all these different control system design approaches
require accurate mathematical models and they are challenged by the nonlinear character of
these models [1]. Moreover, as discussed by Haibin et al. [2] and Xu et al. [3], these complex
systems have to meet stringent constraints on reliability, performances and robustness
and the current control methods can only satisfy these constraints partially, usually by
relying on simplified physical models. An in depth review of guidance control algorithms is
presented by Chai et al. [4]. In their work, several guidance control algorithms are analyzed
and divided into three main categories: Stability-theory based, optimisation-based and AI-
based. Each of these three approaches present pros and cons which can be summarized as
follows: Stability-theory based methods are characterized by a well defined mathematical
formulation and proof of their stability; nonetheless, they present issues when dealing with
uncertainties and when the controlled system models are not well defined. As for stability-
theory based methods, also the optimisation-based methods’ robustness and stability are
proved mathematically and they are flexible in the sense that they can be easily combined
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with other tools. However, they are computationally expensive, they have issues when
dealing with constraints and nonlinearities and the reliability of the approaches devised to
overcome these limitations, e.g., convexification, can be questioned. To overcome these
issues and to fully exploit the available nonlinear models, AI could be used and integrated
in classical control schemes. Despite the application of AI for control purposes is still
in an early stage, it could greatly enhance the control capabilities and the robustness of
classical control schemes. However, as pointed out in [4], they lack of mathematical proofs
of reliability. A more in depth survey on some of the latest applications of AI in spacecraft
guidance dynamics and control was produced by Izzo et al. [5] where the potential benefits
of this research direction were assessed. A promising AI technique which can be used for
control purposes is GP. GP is a CI technique belonging to the class of EAs. It was made
known by Koza in 1992 [6] and it is capable of autonomously finding a mathematical input-
output model from scratch to minimize/maximize a certain fitness function defined by
the user. As other EAs, it starts from an initial population of random individuals and then
evolves them using evolutionary operators such as crossover, mutation and selection until
a termination condition is met. The evolution is guided by the principle of the evolution of
the fittest and it proceeds by finding increasingly better individuals to solve the desired
problem. In contrast to other EAs, in GP an individual is structured as a tree which
represents a mathematical function. This clear representation of the models produced by
GP is an advantage when compared to other ML techniques, like NNs, especially in a
control context. In fact, to assess the reliability and robustness of a control scheme it is
desirable to have the complete mathematical representation of it. This can be naturally
achieved by GP while a NN produces a so called black-box model, where inputs are
provided and outputs are produced but what is inside the model is not known to the user.
The effectiveness of a GP based controller was discussed in [7], where it was shown that
GP is capable of producing human-competitive results. In general, in a control context GP
can be used to autonomously find a control law, starting from little or no knowledge of the
control system, capable of performing the guidance or attitude control of a desired plant. It
is not limited by the aforementioned nonlinearities and by being autonomous, it permits
to avoid the cumbersome mathematical formulation of other control approaches. Hence,
the aim of this work is to present a controller design approach based on GP applied to the
reentry guidance control problem of the FESTIP-FSS5 RLV, considering the presence of
uncertainties in the environment and plant models. The purpose of the presented control
approach is to overcome the challenges related to the control of highly nonlinear systems.
In particular, the proposed approach allows avoiding the use of linearization techniques
that introduce modelization discrepancies and over simplified controllers that can fail in
real conditions. This is particularly true for reentry applications, where the environment
and aerodynamic models vary rapidly and modelization and control simplifications can
result in system failures. To the best of the authors knowledge no application of GP to the
guidance control of a reentry vehicle was found in the literature. The learning process is
performed offline due to hardware limitations, but, as the hardware technologies improve,
there will be the possibility to perform the process online in the future. A recent example of
progress in this direction is represented by the work of Baeta et al. [8], where they proposed
a framework to deploy GP using TensorFlow. If such an approach proves to be easily
applicable to other GP applications, with improvements in the computational time of the
same order of magnitude of those found in [8], it would represent a big step forward in
the online usage of GP for control purposes. In fact, what was done so far in the literature
consists in applying the GP offline to find a control law. On the other hand, if GP is used
online, it is possible to define that control approach, IC [9].

The reminder of the paper is organized as follows: In Section 2 an overview of the
different control approaches for reentry applications is provided; in Section 3 the theory
behind GP and the particular GP algorithm employed in this work, the IGP, are presented
along with a description of the IGP settings for this work. In Section 4 the chosen test case

168



Mathematics 2021, 9, 1868

is described, while in Section 5 the obtained results are presented. Finally, in Section 6 the
found conclusions and future work directions are discussed.

2. Related Work

Among the different control approaches employed for reentry applications, the most
commonly used are MPC, Optimal Control and Sliding Mode Control. MPC is a control
strategy akin to optimal control, in the sense that a finite-horizon optimization of the control
variables is performed online while satisfying the imposed constraints. Luo et al. [10] used
this technique to solve the attitude control problem of a reentry vehicle while considering
the actuator dynamics and failure scenarios. A more recent approach involving MPC is
proposed by Wang et al. [11], where they used a convex optimization with pseudospectral
optimization inside an MPC framework, to solve a constrained rocket landing problem.
Both these approaches proved to be successful, but in order to be applied, they must rely
on simplified aerodynamic models or on the constraints convexification as done for the
convex optimization approach. These restrictions are common to Optimal Control. In fact,
the use of an optimizer, especially gradient based, inside a control framework is an issue
if the models involved are nonlinear. Nonetheless, Optimal Control is widely used, both
for ascent and reentry trajectory optimization. An example of that is represented by [12],
where a pseudospectral optimal control approach is used to generate online the optimal
guidance controls for a reentry vehicle in the presence of disturbances and constraints,
but simplified aerodynamic models are used. A similar approach is used in [13], where
a pseudospectral optimal control algorithm is combined with a sliding mode controller
to take into account uncertainties, but also here a simplified aerodynamic model is used.
Other usage of a sliding mode controller can be found in [14], where a sliding mode
controller is used for the approach and landing phase of a reentry vehicle but simplified
aerodynamic models are used and constraints are imposed only on the states variables.
While in [15], an adaptive twisting sliding mode controller is used for the attitude tracking
of an hypersonic reentry vehicle. Such an approach is not tested on a constrained problem
and involves a cumbersome mathematical formulation.

All the aforementioned techniques can be considered “classical” approaches, in con-
trast to those based on AI. AI control approaches for reentry vehicles are more rare in
the literature, but, as said above, the incorporation of AI in control systems is becoming
more and more frequent. Few examples of these approaches are represented by the work
done by Wu et al. [16] and Gao et al. [17]. In the former, a fuzzy logic-based controller
is developed for the attitude control of the X-38 reentry vehicle; while on the latter, a
Deep Reinforcement Learning approach is used for the reentry trajectory optimization of a
reusable launch vehicle.

Among the various AI techniques employed, EAs are among the less employed.
In particular to the best of the authors knowledge no control approach for a reentry vehicle
involving GP was studied in the literature. For reentry applications, EAs are mostly used
to find an optimal reentry trajectory, as it is done in [18–20]. Other uses of EAs in reentry
applications can be found in [21], where GA is used to optimize the parameters of a sliding
mode controller applied to the attitude control of a reentry vehicle. While, in [22] the
evolutionary method Pigeon Inspired Optimization is combined with a Gauss Newton
gradient based method to form a predictor-corrector guidance algorithm. The goal of this
guidance scheme is to use the EA to generate an initial condition for the gradient-based
method to solve the entry guidance problem.

3. Genetic Programming for Control

Genetic Programming (GP) is a Computational Intelligence (CI) technique pertaining
to the class of Evolutionary Algorithms (EAs) made known by Koza in 1992 [6]. As other
EAs, GP consists in evolving a program from an initial population of randomly generated
programs, to minimize/maximize a defined fitness function. Such evolution is performed
according to the defined crossover, mutation and selection operators, in order to steer the
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evolution of the population in the desired direction and avoid local minima. Compared
to other EAs, in GP the individuals are shaped as trees which corresponds to symbolic
mathematical equations as depicted in Figure 1, where a, b and 3 are called terminal nodes,
and a and b are the input variables. The other nodes in the GP tree corresponds to the
primitive functions provided by the user and employed by the GP algorithm to build
programs autonomously.

Figure 1. Structure of an individual in GP. The tree can be read as the equation on the right.

About the evolutionary operators, crossover consists in an exchange of genes between
two parents individuals to produce other two individuals as offspring. Looking at Figure 2,
two genes highlighted by the green and orange boxes are exchanged between the parents
to form the offspring. Regarding the mutation operation, a randomly chosen gene of
a chosen individual is randomly mutated to generate a new offspring, as depicted in
Figure 3. Several different types of the crossover and mutation operators were devised in
the past decades and which one to choose is highly dependant on the particular problem
to solve. Since it is not the aim of this work to provide a comprehensive description of the
peculiarities of the GP algorithm, the reader is referred to [6] for more details.

Figure 2. Schematic of crossover operation. From two parents, two offspring are generated.

Regarding the control applications of GP, several examples can be found in the lit-
erature. In [23] a multi-objective GP is used to evolve controllers for a UAV allowing it
to navigate towards a radar source. In [24] an adapted GP approach is used to generate
the control law for a UAV which provides recovery onto a ship considering real world
disturbances and uncertainties. Other control approaches involving GP are represented
by [25] where GP is used to generate a control Lyapunov function and the modes of a
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switched state feedback controller; while in [26] GP is used to generate a PID based con-
troller. All these approaches involving GP for control applications cannot be considered IC.
In fact, the GP evaluation is done offline and no online learning is present. An example of
GP used in an IC framework is represented by the work of Chiang [27] where the control
law for a small robot is produced online using GP, with the aim of moving the robot
in an environment filled with obstacles. A similar approach was used in [28], where a
guidance controller for a Goddard rocket is designed online to cope with different kinds of
uncertainties. In contrast to this last example, the work presented here aims to generate a
control law for a much more complex and nonlinear system, also considering more severe
uncertainties. This results in a longer computational time, hence the impossibility to use it
online with the current hardware technology. In fact, to generate the control law online
successfully, the considered plant must be very simple in order to perform the evolutionary
process in a useful time interval.

Figure 3. Schematic of mutation operation. A randomly selected gene of an individual is
mutated randomly.

As opposed to all these examples, the approach proposed in this work is developed
considering a more complex plant model and uncertainties are also taken into account. In
fact, the proposed control approach takes into account the nonlinearities present in the
models of the vehicle dynamics, the aerodynamics and the environment while uncertainties
are applied to the environment and aerodynamic models. Moreover, to the best of the
authors’ knowledge this is the first application of GP to perform guidance control of the
reentry trajectory of an RLV.

The work produced in [28] was later used as a foundation to design the Hybrid GP-
NN controller presented in [29]. In this control system, the GP was used offline to generate
a control law that was later optimized online by a NN. The approach to generate offline the
GP control law is the same used in this work, with the following differences: (1) A different
more challenging application is considered, (2) more severe uncertainties are applied and
(3) a more thorough analysis of the GP performances is conducted than the one performed
in [29].

3.1. Inclusive Genetic Programming

The particular GP algorithm used in this work is the Inclusive Genetic Programming
(IGP), which was originally presented in [29] and later analyzed in [30]. IGP was developed
in Python 3 relying on the open source library DEAP [31]. IGP was designed to promote
an maintain the population’s diversity throughout the evolutionary process, so to avoid
losing big individuals due to bloat control operators. In fact, it was observed in [29] that
bigger individuals are capable of handling the nonlinearities of the treated problem better
than smaller individuals. Therefore, to maintain the population’s diversity and hence
also preserve big individuals, three main features were inserted in the GP algorithm so
to make what is now called the IGP. These features are: (1) A niches creation mechanism;
(2) the Inclusive Reproduction and (3) the Inclusive Tournament. The creation of the niches
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implies that IGP belongs to the class of niching method. Niching methods are among the
various methods used to tackle the diversity issue in GP. In contrast to standard niches
approaches, the IGP makes use of the niches in a different manner. In fact, in the IGP the
niches are used to make sure that the majority of the individuals are considered during
the evolutionary process and that a flow of genes is established between the different
niches. While in standard niching methods, the niches are separated and are used to find
different local optima in a multimodal optimization, by parallel evolving the different
niches towards different optima [32].

The whole Inclusive Evolutionary Process is based on the μ + λ evolutionary strat-
egy [33] and it is schematized in Figure 4. The process starts with an initial population
which is subdivided into niches. Then the Inclusive Reproduction is performed, λ offspring
is produced and the total of the individuals (parents+offspring) is subdivided into niches.
These new niches are used to select μ individuals from the new population, which is again
subdivided into niches and the process starts again.

Regarding the niches creation mechanism, the individuals in the IGP populations are
divided into niches according to their genotypic diversity, which is the number of nodes
inside each individual, i.e., their length. Each niche will cover a lengths interval, defined by
the maximum and minimum lengths of the individuals in the population, and the number
of niches. This way, each niche will be placed between the extremes of each interval and
these extremes are evenly spaced between the maximum and minimum length of the
individuals in the population. For example, if the maximum length is 30, the minimum is 5
and 5 niches are created, the lengths intervals that the niches will cover will be [5, 11.25],
[11.25, 17.5], [17.5, 23.75], [23.75, 30]. So the first niche will contain those individuals with a
length between 5 and 11.25 and so on. The number of niches to create is decided by the
user and this number is kept constant throughout the evolutionary process. Nonetheless,
the lengths intervals that they cover will change during the evolution since the maximum
and minimum lengths of the individuals in the population will change. This allows for a
shifting of the individuals between contiguous niches, helping to maintain diversity.

Figure 4. Schematic representation of the Inclusive Evolutionary Process.

About the Inclusive Reproduction, it is designed to consider all the niches during
the mating process. To perform crossover, two niches are selected from a list of available
niches which is updated as the process goes on. Such an update consists in removing the
selected niches and when all of them are selected, the list of available niches is reset to its
initial state. Regarding the two selected niches, the best performing individual is selected
from the first niche and a random one is selected from the second, this to consider the best
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performing individuals but also to avoid losing diversity. When mutation is selected, a
niche is selected from the list of the available niches and such list is updated as said above.
Then a random individual is chosen from the list. The individual is chosen randomly since
applying mutation to the best performing ones does not guarantee an improvement. While,
when 1:1 reproduction is selected, the best individuals is passed unaltered to the offspring.
These selection criteria are summarized in Table 1.

Finally, the Inclusive Tournament consists in applying a Double Tournament [34] to
all the niches sequentially, where each niche can be considered at most t times, where t is
the number of individuals inside them. This is done to reduce the probability of having
clones in the population. More on the Inclusive Reproduction and Selection can be found
in [30]. Finally, other two peculiarities of the IGP in comparison to other GP formulations
are its ability to handle constraints and the fact that is set to evolve more than one GP
tree simultaneously.

3.2. Inclusive Genetic Programming Settings

The ability of the IGP to handle constraints and to evolve more than one GP tree at the
same time, makes it particularly suited to solve control problems. In fact, the possibility
to evolve more than one GP tree at the same time, allows to solve a control problem with
more than one control parameter, which is often the case for most applications.

To produce the results presented in Section 5, the IGP was set as in Table 1, and two
GP trees are evolved simultaneously, one for each control parameter of the considered
problem. These will referred as α-individual and σ-individual from this point onward.

Table 1. Settings of IGP algorithm. The percentages near the mutation mechanisms refers to the
probability of that mutation mechanism to be chosen when the mutation is performed. The selection
criteria refers to the criteria used to select the individuals from the niches when performing crossover,
mutation or 1:1 reproduction.

Population Size 300 individuals
Maximum Generations 150

Stopping criteria Reaching maximum number of generations or successful
trajectory found

Number of niches 10
Crossover probability 0.2 (+0.01 at every generation if Fit2 = 0) → 0.65
Mutation probability 0.7 (−0.01 at every generation if Fit2 = 0) → 0.35

1:1 Reproduction probability 0.1
Crossover selection criteria Best, random
Mutation selection criteria Random

1:1 Reproduction selection criteria Best
Evolutionary strategy μ + λ

μ Population size
λ Population Size × 1.2

Number of Ephemeral constants 2
Limit Height 30

Limit Size 50
Selection Mechanism Inclusive Tournament

Double Tournament fitness size 2
Double Tournament parsimony size 1.6

Tree creation mechanism Ramped half and half

Mutation mechanisms Uniform (50%), Shrink (5%),
Insertion (25%), Mutate Ephemeral (20%)

Crossover mechanism One point crossover

Primitives Set +, −, ∗, add3, tanh, psqrt
plog, pexp, sin, cos

Fitness measures Fit1, Fit2
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Regarding the fitness functions, they are designed to solve the considered problem:
The vehicle’s final position must be inside the FAC box, as described in Section 4, while
satisfying the imposed constraints on normal acceleration, dynamic pressure and heat rate.
To reach this goal, the fitness functions were implemented as in Equation (1). The evolu-
tionary strategy on which the IGP was built, is such that first it favors those individuals
that minimize and satisfy the constraints violation. So it first tries to get Fit2 = 0, then
it favors those individuals with a better, i.e., lower, value of the fitness Fit1, which tells
how close the final position is to the desired one. RMSE in Equation (1) is the Root Mean
Square Error.

Fit1 = RMSE([Te/100, FACR · 1000])

Fit2 = RMSE(CV)
(1)

In Equation (1), Te is an array composed as in Equation (2) by the values of the IAE
between the reference states and the actual ones evaluated on the last 50 points of the
trajectory, as in Equation (3), where ex is evaluated as in Equation (4). For more details on
the states and the whole test case, see Section 4.

Te = [IAE50(V), IAE50(χ), IAE50(γ), IAE50(θ), IAE50(λ), IAE50(h)] (2)

IAE50 =
∫ t f−50

t f

|ex|dt (3)

ex =

{ xre f −x
xmax

if x is V, χ, γ, h
xre f − x if x is θ, λ

(4)

The integrals inside Te were not evaluated on the whole trajectory but only on its last
50 points. This was done to encode in the fitness function the instruction for the GP to
find a control law that produces a trajectory similar to the reference one in the last part,
but it leaves it freedom on the rest of it, except for the constraints satisfaction. This way,
the GP has more freedom to find a control law that satisfies the constraints but does not
necessarily needs to track exactly the reference trajectory, which might be impossible due to
the presence of uncertainties. In fact, the trajectory is considered successful if the constraints
are satisfied and the vehicle’s final position is inside the FAC box. This last information
is encoded in the FACR array of Equation (1) which is composed as in Equation (5) and
where the errors are evaluated as in Equation (4).

FACR = [eθ f , eλ f , eh f
/10] (5)

The FACR array contains the errors between the final value of h, λ and θ and their
final value of reference. The different way to evaluate the errors on the states, as shown
in Equation (4), is done to balance their values since the errors on λ and θ tends to be
much smaller that those of the other states. For the same reason, eh f

was divided by
10 in Equation (5). Moreover, to make the FAC requirement more important than the
minimization of the tracking errors, in Equation (1) FACR was multiplied by 1000 and Te
was divided by 100. This combination of scaling factors is an heuristic that was defined
experimentally, so it could be improved. Nonetheless, it is important since the magnitude
of the different errors and IAEs varies of several orders of magnitude.

Fit2 is implemented in a more straightforward way. CV in Equation (1) represents
an array composed by the constraints violations measured during the evaluation of the
trajectory. The constraints violation is evaluated as the error between the constrained
quantity and its maximum or minimum value. If such an array is empty, meaning that the
trajectory satisfies all the constraints, Fit2 is set to 0.
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About the other features listed in Table 1, the mutation and crossover rates are changed
dynamically during the evolutionary process. The mutation rate starts at 0.7 and it is
decreased by 0.01 at every generation while the crossover rate starts at 0.2 and it is increased
by 0.01 at every generation, until the mutation rate becomes 0.35 and the crossover rate 0.65.
This change is done if at least one individual with Fit2 = 0 is found at the current generation.
The rationale behind this approach is that exploration is favored at the beginning of the
evolutionary process and until at least one individual that satisfies the imposed constraints
is found. While, exploitation is favored towards the end of the evolutionary process to
find better individuals. Then, limit height and size are two parameters used by the bloat
control operator, which is the same implemented in the DEAP library but modified to take
into account individuals composed by multiple GP trees. Moreover, the crossover and
mutation operations, which are the same of the DEAP library, are modified to take into
account individuals composed by multiple GP trees. Four different mutation mechanisms
were used as listed in Table 1 and the probability of them being selected when mutation is
applied is reported in the brackets near them. Finally, about the operations listed in the
primitive set, add3 is a ternary addition, psqrt, plog and pexp are protected square root,
logarithm and exponential to avoid numerical errors.

4. Test Case

To test the proposed control approach, a reentry mission of the FESTIP-FSS5 RLV is
simulated. This vehicle was chosen since by being a spaceplane, it possess more control
capabilities than a classical rocket and its guidance control during the reentry phase is
particularly challenging due to the rapidly varying aerodynamic forces. The model of the
vehicle, as well with the aerodynamic and atmospheric models, were taken from [35] and
it is characterized by a lifting body and an aerospike engine. For the considered mission,
two control parameters were considered, the angle of attack α and the bank angle σ. The
aerodynamics models are composed by two lookup tables that give the values of cl and cd
as a function of the Mach and angle of attack. These data were obtained from experimental
data, hence they form a nonlinear model. The aerodynamic data were smoothed with
the CSG approach described in [36]. The atmospheric model is the USSA-1962 model.
Regarding the mission, its details were taken from [37] and they are summarized in Table 2.

Table 2. Summary of the reentry mission.

States V, χ, γ, θ, λ, h
Controls α, σ
Initial V0 = 2600 m/s,
Conditions χ0 = 0 deg,

γ0 = −1.3 deg
θ0 = −85 deg,
λ0 = 30 deg,
h0 = 51 km,

Final Vf = 91.44 m/s,
Conditions χ f = −60 deg,

γ f = −6 deg,
θ f = −80.7112 ± 0.0014 deg,
λ f = 28.6439 ± 0.0014 deg,
h f = 609.6 ± 121.92 m

Controls −2 deg ≤ α ≤ 40 deg
Bounds −90 deg ≤ σ ≤ 90 deg,
Constraints −25 m/s2 ≤ az ≤ 25 m/s2,

q ≤ 40 kPa,
Q̇ ≤ 4 MW/m2
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As described in [37], the final conditions corresponds to the target FAC box so to have
an horizontal landing at the Space Shuttle Landing Facility at the NASA Kennedy Space
Center. The FAC is defined by the final values of h, λ, θ and their respective tolerances.
A trajectory was considered successful if the final position of the vehicle was inside the
FAC box.

Regarding the constraints in Table 2, the one on the dynamic pressure q comes from the
original formulation of the problem from [35]. The constraint on the normal acceleration
az was increased from 15 to 25 m/s2, to correspond to a load factor of about 2.5 g’s. This
choice was made to be more in line with the load factor constraint imposed in [37], since
the aim was to fly a similar trajectory. The heat rate constraint was taken from [38] and was
modeled as in Equation (6)

Q̇ = C
√

ρV3(1 − 0.18 sin2 Λ) cos Λ (6)

where C = 9.12 × 10−4 kg0.5m1.5s−3 and Λ = 45 deg. This heat rate model was chosen
since no data of the FESTIP-FSS5 vehicle were available, and as reported in [38], the chosen
heat rate model is a conservative approach. For more details on the heat rate model, please
refer to [38].

4.1. Reference Trajectory

The trajectory used as reference for the controller was obtained by solving an optimal
control problem using a Multiple-Shooting transcription. The initial guess research for
the Multiple-Shooting was performed with the approach presented in [36]. The objective
function was set to minimize the difference between the actual final position and the
desired one while satisfying the constraints in Table 2. The obtained reference trajectory is
shown in Figure 5.

(a) Reference trajectory (b) Close up on FAC box

Figure 5. Reference trajectory and close up on its final part. The red box highlights the FAC box.

4.2. Uncertainty Model

The control mission is simulated by inserting uncertainties into the aerodynamic and
atmospheric models. The formulation of the uncertainties was taken from [39]. According
to these models, the uncertainties were formulated by creating different sets of interpolating
surfaces which were applied to the atmospheric and aerodynamic models to make them
vary within a certain range from their unperturbed values, as in Equation (7).

xunc(t) = xnom(t)[r(t)((1 + ε)− (1 − ε)) + (1 − ε)] (7)

In Equation (7), xnom is the nominal value of the quantity on which the uncertainty is
applied, ε is the uncertainty bounding parameter and r is a random parameter varying in
the interval [0, 1]. Using Equation (7), the quantity nominal value is randomly varied in the
interval [1 − ε, 1 + ε]. The random value r is picked from an uncertainty profile obtained
by interpolating 50 points randomly generated and uniformly distributed as in Figure 6.
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Here, the time starts at 100 s since the uncertainties were inserted at 100 s, as explained in
Section 5.

In this work, three interpolating surfaces, for the pressure, temperature and aerody-
namics, were created for each different uncertainty scenario in the uncertainty set. Each
uncertainty set is composed of 20 uncertainty scenarios and 11 uncertainty sets were created
in this work, for a total of 220 uncertainty scenarios. According to what was done in [39],
three ε parameters were evaluated, one for each perturbed quantity. The reference values
of the upper and lower bounds, and the other quantities used to evaluate the ε parameters
are the same as in [39], and are summarized in Table 3, with the exception of hc, Mc and αc
which were changed according to the considered problem.

 

Figure 6. Example of an uncertainty profile.

Table 3. Reference values used to evaluate ε as in [39].

hc 121,920 m
Mc 10
αc 40 deg

lb,T 0.1
ub,T 0.5
lb,P 0.01
ub,P 0.5
lb,h 0.1
ub,h 0.2
lb,M 0.1
ub,M 0.2
lb,α 0.1
ub,α 0.2

5. Results

All the results in this work were obtained on a laptop with 16 GB of RAM and an
Intel® Core™ i7-8750H CPU @ 2.20GHz × 12 threads and multiprocessing was used.
The code was developed in Python 3 and it is open source and can be found at https:
//github.com/strath-ace/smart-ml (Last accessed on 4 April 2021).

The methodology to test the proposed control approach was structured so to prove
the ability of GP to find an adequate control law in the presence of various levels of
uncertainties. These uncertainties were applied after 100 s from the start of the mission.
After the applications of the uncertainties, the trajectory was flown using the reference
control values until one of the states went outside the range of 1% from its reference
value. When that happened, the GP evaluation was started. This was done to simulate the
scenario where the system has to adapt during flight to changes in the environment and
plant models.
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To define the level of uncertainty, the ε parameter in Equation (7) was varied. As
explained in Section 4, three ε parameters were used, one for each perturbed quantity. These
parameters were varied by increasing the boundaries used to evaluate them, by 10% in each
different simulation. The starting values are those listed in Table 3 and they correspond to
those used in Simulation 0 in Table 4. Then they were increased by 10% in Simulation 1, 20%
in Simulation 2 and so on. These settings are summarized in Table 4. For each simulation,
a different uncertainty set was produced which was composed by 20 different uncertainty
profiles, where an example of uncertainty profile is shown in Figure 6. Therefore, 20 GP
runs were performed for each different simulation and a total of 11 different simulations
was performed, so up to 100% increment in the bounds values. This lead to a total of 220 GP
runs performed. Twenty uncertainty profiles were produced for each uncertainty set so to
avoid having too big computational times and a total of 11 simulations was performed,
since it was physically meaningless to have too big uncertainties.

Table 4. Bounds values for each simulation.

lb,T ub,T lb,P ub,P lb,h ub,h lb,M ub,M lb,α ub,α

Simulation 0 0.1 0.5 0.01 0.5 0.1 0.2 0.1 0.2 0.1 0.2
Simulation 1 0.11 0.55 0.011 0.55 0.11 0.22 0.11 0.22 0.11 0.22
Simulation 2 0.12 0.6 0.012 0.6 0.12 0.24 0.12 0.24 0.12 0.24
Simulation 3 0.13 0.65 0.013 0.65 0.13 0.26 0.13 0.26 0.13 0.26
Simulation 4 0.14 0.7 0.014 0.7 0.14 0.28 0.14 0.28 0.14 0.28
Simulation 5 0.15 0.75 0.015 0.75 0.15 0.3 0.15 0.3 0.15 0.3
Simulation 6 0.16 0.8 0.016 0.8 0.16 0.32 0.16 0.32 0.16 0.32
Simulation 7 0.17 0.85 0.017 0.85 0.17 0.34 0.17 0.34 0.17 0.34
Simulation 8 0.18 0.9 0.018 0.9 0.18 0.36 0.18 0.36 0.18 0.36
Simulation 9 0.19 0.95 0.019 0.95 0.19 0.38 0.19 0.38 0.19 0.38

Simulation 10 0.2 1.0 0.02 1.0 0.2 0.4 0.2 0.4 0.2 0.4

Figures 7 and 8 show a qualitative depiction of some of the profiles of the perturbed
quantities. The profiles on these pictures come from the first GP run of each simulation.
The continuous lines represent the successful cases while the dashed lines the unsuccessful
ones. The shaded ares represent the regions contained between the uncertainty bounds
and in which the perturbed quantities could have varied when applying the disturbance
profiles like the one in Figure 6. As already said, Figures 7 and 8 are purely qualitative but
they give an idea of the magnitude of the applied uncertainties. In particular, in Figure 7b
the progressive increase of the uncertainty bounds from one simulation to the next is
clearly visible.

(a) Perturbed pressure profiles

 

(b) Perturbed temperature profiles

Figure 7. Perturbed pressure and temperature profiles of one GP run for each different simulation.
The continuous lines represent the successful cases and the dashed one the unsuccessful ones. The
time starts at 100 s since the uncertainties were applied at 100 s.
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(a) Perturbed lift profiles

 

(b) Perturbed drag profiles

Figure 8. Perturbed lift and drag profiles of one GP run for each different simulation. The continuous
lines represent the successful cases and the dashed one the unsuccessful ones. The time starts at 100 s
since the uncertainties were applied at 100 s.

As shown in Table 1, each GP simulation was run until a successful trajectory was
found or it was stopped after 150 generations. As stated above, a trajectory was considered
successful if the final position of the vehicle was within the FAC box and the constraints
were satisfied for the whole trajectory. A qualitative example of the performed trajectories is
depicted in Figures 9–11. Here the performed trajectories of the 20 GP runs for Simulations
0, 5 and 10 are shown. In plots Figures 9a–11a the full reentry trajectories are plotted in
terms of altitude h, longitude θ and latitude λ, where the red dashed line is the reference
trajectory, the green lines are the successful trajectories and the black lines are the failed
trajectories. These trajectories show the three-dimensional path of the vehicle during the
reentry phase and it is clear how, when increasing the magnitude of the applied uncertain-
ties, the vehicle tends to stray from the reference trajectory. The plots Figures 9b–11b show
a closeup on the final part of the trajectory to highlight the FAC box and how close the
obtained trajectories got to it. The FAC box is projected onto its components θ, λ and h and
it is represented by the black horizontal lines. Despite being a qualitative depiction, it can
be seen from Figures 9–11 how the performed trajectories deviates more and more from
the reference as the magnitude of the applied uncertainties increases.

(a) Simulation 0 results (b) Simulation 0 results-closeup

Figure 9. Trajectories obtained as a results of the 20 GP runs in Simulation 0. Plot a shows an overview of the performed
trajectories while plot b depicts a closeup on the final part of the trajectory to show which trajectory ended inside the FAC
box and which did not. The black horizontal lines in plot b show the FAC bounds for θ, λ and h. UP refers to the different
uncertainty profiles.
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(a) Simulation 5 results (b) Simulation 5 results-closeup

Figure 10. Trajectories obtained as a results of the 20 GP runs in Simulation 5. Plot a shows an overview of the performed
trajectories while plot b depicts a closeup on the final part of the trajectory to show which trajectory ended inside the FAC
box and which did not. The black horizontal lines in plot b show the FAC bounds for θ, λ and h. UP refers to the different
uncertainty profiles.

(a) Simulation 10 results (b) Simulation 10 results-closeup

Figure 11. Trajectories obtained as a results of the 20 GP runs in Simulation 10. Plot a shows an overview of the performed
trajectories while plot b depicts a closeup on the final part of the trajectory to show which trajectory ended inside the FAC
box and which did not. The black horizontal lines in plot b show the FAC bounds for θ, λ and h. UP refers to the different
uncertainty profiles.

For a more quantitative point of view, the number of successes for each simulation
is shown in Figure 12. Here, it is clear that with the reference values of the uncertainty
bounds, the GP is able to find a successful control law 100% of the times and this success
rate tends to decrease as the uncertainty bounds increase, as expected. Three cases go
against this trend, namely Simulations 1, 6 and 10. This is probably due to the fact that
20 GP runs for each simulation are not enough to constitute a statistically significant sample.
Therefore by increasing the number of GP runs for each simulation, a more accurate trend
could be achieved. Nonetheless, the obtained results are useful to understand the extent of
the capabilities of the GP. In fact, even with an increase of 100% of the uncertainty bounds,
the GP is capable of finding four good control laws.

This success trend is also highlighted in Figure 13, where the median and standard
deviation values of the first fitness function Fit1 are shown. Here the median fitness value
increases as the uncertainty bounds increase and the smaller value is found at Simulation 0.
Moreover, the standard deviation also increases as the uncertainty bounds increase, as
expected. A different perspective of the same phenomenon is observable in Figure 14. Here
the number and magnitude of the constraints violation for each simulation are shown.
The bar plots show the number of GP runs whose best individual violated the constraints,
for each simulation. For example, in Simulation 3, two individuals out of 20 violated the

180



Mathematics 2021, 9, 1868

constraints. The line plot refers to the mean value of the constraints violation for each
simulation. These results show an increase in the GP runs that violated the constraints as
the uncertainty bounds increase. Concurrently, the magnitude of constraints violation also
increases as the uncertainty bounds increases. Nonetheless, as said before, the number of
GP runs for each simulation was not enough to have a proper statistical sample.

Figure 12. Number of successful GP evaluations on each simulation.

Figure 13. Median an standard deviations of the Fit1 values evaluated on the 20 different GP runs
for each simulation.

 

Figure 14. Number of solutions that violated the constraints for each simulation and amount of the
constraints violation. The left ordinate axis refers to the bar plots which shows the number of GP
runs that violated the constraints. The right ordinate axis refers to the line plot and shows the mean
constraints violation among the 20 GP runs for each simulation.
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To have a greater insight into the produced individuals from a genotypic perspective,
the lengths of the individuals were analyzed. In Figure 15, the lengths of the successful
and unsuccessful individuals for each simulation are plotted. As said in Section 3, two
individuals were simultaneously produced in each GP run, since two control parameters
had to be found. The lengths of the α-individuals are plotted in Figure 15a and those of
the σ-individuals are depicted in Figure 15b. These lengths are represented by the green
dots for the successful individuals and the red crosses for the unsuccessful ones. On top
of these, the mean length of the successful α and σ individuals are plotted to observe
how they evolved as the magnitude of the applied uncertainties increased. From the
lengths of each particular individual found in the various simulations, it can be observed
that they vary greatly but the majority of the successful individuals are below 100 nodes.
Moreover, small successful individuals are still found also when the magnitude of the
uncertainties increases greatly. Considering the mean length of the α and σ individuals,
it can be observed that they oscillate around 50 nodes but no particular increase in the
length of the individuals is observed as the magnitude of the uncertainties increases. It was
expected to observe an increase of the length of the individuals as the uncertainties become
more severe. With GP usually the complexity of the produced models increases if the
data to fit are distributed in a more complex manner, also causing problems of overfitting.
In contrast, what was produced highlights how the IGP is capable of maintaining the mean
length of the successful individuals approximately constant even when the magnitude of
the uncertainties increases.

(a) Alpha Individuals

(b) Sigma Individuals

Figure 15. Lengths of successful and unsuccessful individuals for each simulation. The green dots
represent the successful individuals while the red crosses the unsuccessful ones. (a) depicts the first
control parameter α, and the second control parameter σ is in (b). In (a) the continuous orange line
represents the mean values of the lengths of the successful α individuals for each simulation, while
in (b) the dashed blue line represents the mean values of the lengths of the successful σ individuals.
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The obtained results show how GP is capable of generating a good guidance control
law even when severe uncertainties in the environment and aerodynamic models are
considered. Current research directions focus more on classical approaches to generate
the guidance control law rather than using an AI technique, and not all of them are tested
considering uncertainties and/or disturbances. As an example, Zang et al. [40] propose a
guidance algorithm based on the height-range (H-R) and height-velocity (H-V) joint design
method that is able to generate online a reference trajectory. Unfortunately, the robustness
of such an approach is not tested against disturbances and/or uncertainties. Hence the
approach using GP appears to be more robust.

Another guidance control approach which does not involve AI is the one presented by
Wang et al. [41]. Their approach consists in performing an online generation and tracking
of an optimal reentry trajectory using convex optimization. Such an approach proves to
be successful in generating and tracking an optimal trajectory online even considering
disturbances. It would be interesting to compare the latter approach with the GP guidance
controller presented in this work, to understand which solution is the more robust and
versatile. Moreover, it would also be interesting to compare the effort needed to apply both
algorithms to different systems, so to understand their degree of generalizability.

6. Conclusions

In this work, a guidance control algorithm based on GP for the reentry phase of
the FESTIP-FSS5 RLV was developed. The reentry trajectory was flown in the presence
of uncertainties in the atmospheric and aerodynamic models. Eleven simulations were
performed where, starting from Simulation 1, the bounds of the uncertainty ranges were
increased progressively by 10% in each subsequent simulation, until an increase of 100%
was reached in Simulation 10. For each simulation, a total of 20 GP runs was performed
considering 20 different uncertainty profiles, for a total of 220 GP runs. The particular GP
algorithm employed is the Inclusive Genetic Programming algorithm, whose characteristic
is the ability to maintain the population’s diversity throughout the evolutionary process.
Moreover, it is also set to handle constraints and to evolve more than one GP tree simultane-
ously, one for each control law of the considered problem. The results show that the IGP is
capable of always producing at least one successful individual even when the uncertainty
bounds were increased 100% from their reference value. Moreover, by analyzing the size of
the produced individuals, the IGP is capable of keeping the length of the successful indi-
viduals approximately constant as the magnitude of the uncertainties increases. Meaning
that the size of the successful individuals does not become too big in order to better fit a
more complex distribution of data. Overall, the shown results demonstrate that GP can be
used successfully to generate the guidance control law of a reentry vehicle which can deal
with nonlinearities and big uncertainties in the considered models while satisfying a set of
imposed constraints.

The GP evaluation was done offline, since it is a computationally expensive process
but, as the hardware technologies improve, it will be possible to perform such operations
online so as to constitute what is defined as Intelligent Control. Such a controller would
be able to deal in real time with unforeseen disturbances and to take into account the
uncertainties in the models considered at the design phase. Future work directions would
comprehend both a development of computationally more efficient GP algorithms and
different ways to apply them. In fact, in this work the guidance control was performed but
GP could also be employed for an attitude control task.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CI Computational Intelligence
CSG Cubic Spline Generalization
EA Evolutionary Algorithm
FAC Final Approach Corridor
GA Genetic Algorithm
GP Genetic Programming
IAE Integral of Absolute Error
IC Intelligent Control
IGP Inclusive Genetic Programming
ML Machine Learning
MPC Model Predictive Control
NN Neural Network
RLV Reusable Launch Vehicle
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Abstract: This paper presents a novel method for multi-objective optimisation under uncertainty
developed to study a range of mission trade-offs, and the impact of uncertainties on the evaluation
of launch system mission designs. A memetic multi-objective optimisation algorithm, named MOD-
HOC, which combines the Direct Finite Elements in Time transcription method with Multi Agent
Collaborative Search, is extended to account for model uncertainties. An Unscented Transformation
is used to capture the first two statistical moments of the quantities of interest. A quantification
model of the uncertainty was developed for the atmospheric model parameters. An optimisation
under uncertainty was run for the design of descent trajectories for a spaceplane-based two-stage
launch system.

Keywords: optimal control; multi-objective optimisation; robust design; trajectory optimisation;
uncertainty quantification; unscented transformation; spaceplanes; space systems; launchers

1. Introduction

This paper presents a novel method for multi-objective optimisation under uncertainty,
developed to study a range of mission trade-offs and the impact of uncertainties on
system models for space launch systems. This is applied to the analysis and design
of descent trajectories for a two-stage, partially re-usable launch system based on the
Orbital-500R, a commercial system developed by Orbital Access Ltd. (Prestwick, UK) [1].
The set of Pareto-optimal solutions show the trade-off between minimising the induced
acceleration limits and maximising the robustness of the solutions by minimising the
sensitivity to uncertainties.

Uncertainty quantification (UQ), the science of quantifying the uncertainty in the
desired performance of a system, can be a key step in analysing the robustness of a
control solution and of the whole guidance, navigation and control chain. Common
approaches to UQ use extensive Monte Carlo simulations to account for errors, unmodelled
components and disturbances. At a system level, UQ analysis can translate into the
assessment of the reliability of the system as a whole, or only of one or more components.
An uncertainty quantification analysis is, therefore, a fundamental step towards de-risking
any technological solution as it provides a quantification of the variation in performance
and probability of recoverable or unrecoverable system failures, given existing information.

The goal here is, therefore, to design a robust guidance trajectory considering the
uncertainty related to the atmospheric model which in turn affects the aero-, aerothermal
and flight dynamics.

The trajectories are designed using a MODHOC (Multi-Objective Direct Hybrid Opti-
mal Control) solver [2,3]. MODHOC, first developed in collaboration with ESA, is based
on a transcription using temporal finite elements (DFET, Direct Finite Elements in Time) of
the optimal control problem and a solution of the transcribed problem with a multi-agent
multi-objective optimisation algorithm (MACS, Multi-Agent Collaborative Search).
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This paper presents an extension of the multi-objective optimal control to account
for uncertainties. The extension is based on an unscented transformation to capture the
first two statistical moments of the quantities of interest. The result is an unscented multi-
objective optimal control approach that can efficiently handle the level of uncertainty in
model parameters.

Ross et al. [4] introduced unscented optimal control as the combination of the un-
scented transform by Julier and Uhlmann [5] combined with deterministic optimal control
theory to directly manage uncertainties within an open-loop control framework. This has
been applied to single objective optimisation problems mainly in the field of guidance and
attitude control [6,7], using pseudospectral optimal control methods [8] with the common
Legendre and Chebyhsev polynomials as the bases. Ross et al. [9] later extended the work
to account for path constraints on the states and controls. This paper builds on this work by
adapting and applying it to a multi-objective optimal control problem, subject to nonlinear
boundary and path constraints. The transcription method here uses finite elements on a
temporal basis, using Bernstein polynomials, which have been mathematically shown to
ensure both the states and controls representations remains feasible over the entire time
domain, not just at collocation nodes [10].

The methods presented will be applied to trade-off studies on the first stage of a
multi-stage horizontal take-off and landing launch system. The analysis focuses on the
unpowered descent trajectory of a spaceplane, starting from the stage separation point at
100 km altitude. Uncertainties are introduced on the atmospheric parameters, which in
turn strongly affect the aerodynamics and flight performance of the vehicle. The optimisa-
tion will trade-off robustness, by minimising the effect of these uncertainties, against the
structural loads induced by the flight dynamics.

The paper is structured first introducing the mathematical method and implementa-
tion, followed by the description of the applied test case and results. Specifically, Section 2
describes the integration of an unscented transform into a multi-objective optimal control
problem, including the direct transcription method using temporal finite elements with
Bernstein bases. Section 3 details the solution of the multi-objective nonlinear programming
problem through an adaption of a global evolutionary Multi-Agent Collaborative Search
(MACS) algorithm tailored to optimal control problems. Section 4 presents the quantifica-
tion of the uncertainty on the atmospheric parameters predicted by the International and
US-76 Standard Atmospheric models. Section 5 describes the vehicle and environment
models for the launch vehicle test case, with Section 6 presenting and discussing the results,
including a validation of the methods and results against a Monte Carlo analysis.

2. Unscented Multi-Objective Optimal Control

In order to perform robust optimisation of the trajectory, an Unscented Transformation [5]
was included in the formulation of the optimal control problem. An unscented transfor-
mation is defined as “the application of a given nonlinear transformation to a discrete
distribution of points, computed so as to capture a set of known statistics of an unknown
distribution, is referred to as an unscented transformation” [11]. These points are referred
to as sigma points.

Unscented transformations capture the first statistical moments, mean and covariance,
of the distributions of the states of a system subject to uncertainty and undergoing arbi-
trary nonlinear transformations by propagating a small number of sigma points. If the
system depends on Nuq uncertain variables, whose mean and covariances are known, the
unscented transformation requires the propagation of (2Nuq + 1) samples. The first sigma
point takes the mean value for all the uncertain variables, while the others assume the mean
plus (or minus) the square root of the matrix of the covariances of the uncertain variables.
All the sigma points are propagated simultaneously with the mean and covariance of the
final states computed as a weighted combination of the final states of each sigma point.

Let the dynamics of the system be given by

ẋ = f (x(u, t), u(t), b, t) (1)
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where x is the system state vector, u are the controls, t is time, and b are additional static
(time independent) parameters. Similar to (1), the dynamics of each sigma point χi are
given by

χ̇i = f (χi(u, t), u(t), bi, t) (2)

where i = [1, . . . , (2Nuq + 1)]. Each sigma point has a different value for the static variables,
its dynamics evolve independently of the other sigma points, but all sigma points are
controlled by the same control law u. The goal is to find a single control law that, when
applied to all sigma points, allows the system to reach a desired final condition and to be
optimal, in some sense. The particular values for each static variable bi is decided by the
application of the Unscented Transformation.

A known problem of the unscented transformation is that it can generate covariance
matrices that are not semidefinite positive. To avoid this problem, the Square Root Un-
scented Transformation [12] was implemented. Algorithmically, it is very similar to the
standard Unscented Transformation but differs in the way the samples are generated and
has the advantage that the resulting covariance matrix is guaranteed to be semidefinite
positive (up to machine precision). The sigma points are computed from the Cholesky
factorisation of the covariance matrix, which decomposes the matrix into lower triangular
matrix with real and positive diagonal entries, and its conjugate transpose [12].

The problem can be described as follows. Let X be a state vector of length Nσ Nx
defined as

X =
[
χ0, χ1, · · · , χNσ

]T (3)

where Nσ is the number of sigma points and Nx is the number of states of the system. The
state dynamics are then defined as

Ẋ =

⎡
⎢⎢⎢⎣

F(χ1, u, b0, t)
F(χ2, u, b1, t)

...
F
(
χNσ

, u, bNσ , t
)

⎤
⎥⎥⎥⎦ = F(X, u, B, t) (4)

The multi-objective unscented optimal control problem is then formulated as

min
u∈U

J(X, u, B, t) (5)

Ẋ = F(X, u, B, t) (6)

g(X, u, B, t) ≥ 0 (7)

ψ
(

X(t0), X(t f ), u(t0), u(t f ), b, t0, t f

)
≥ 0 (8)

t ∈ [t0, t f ]

where J = [J1, ..., Jm]T is, in general, a vector function of the state variables χi : [t0, t f ] → RNx ,
control variables u ∈ L∞(U ⊂ RNu) and time t. Functions X belong to the Sobolev space
W1,∞, objective functions are Ji : R2Nx+Nx × RNu × [t0, t f ] −→ R, F : RNx Nσ × RNu ×
[t0, t f ] −→ RNx Nσ , algebraic constraint function g : RNx Nσ ×RNu × [t0, t f ] −→ RNg , and
boundary condition functions ψ : R2Nx Nσ+2 −→ RNψ .

Direct Transcription with Temporal Finite Elements

The optimal control problem in (5)–(8) is transcribed into a many-objective, nonlinear
programming problem via Direct Transcription with Finite Elements in Time (DFET) [13].
DFET was first proposed by Vasile [14] in 2000, and uses finite elements in time on spectral
bases to transcribe the differential and algebraic constraints, and objective function into a
set of algebraic equations. The formation allows different bases to be selected for both the
states and controls, and for different segments. As a scheme, DFET has been proven to be
robust, accurate and flexible [13].
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For the continuous optimal control problem in (5), the time domain T = [t0, t f ]
is decomposed into N finite elements Tj(τj−1, τj), with each element normalised to the
interval [−1, 1] through the transformation

τ = 2
t − 1

2 (tj − tj−1)

tj − tj−1
tj−1 ≤ t ≤ tj for j = 1, . . . , N. (9)

This ensures the domain of the basis functions are consistent irrespective of the element
size. The differential constraints in (6) are first recast in weak variation form as∫

Tj

ẇTX + wTF(X, u, b, t) dt − wT(tj)X
b
j + wT(tj−1)X

b
j−1 = 0 (10)

where w are generalised weight functions, and Xb
j and Xb

j−1 are the values of the states
at the boundaries of each element. For each element Tj, the states, controls, and weight
functions can be parameterised according to the basis functions fs,j such that:

Xj =
lx

∑
s=0

f
Xj
s,j (τ)Xs,j (11)

uj =
lu

∑
s=0

f
uj
s,j(τ) us,j (12)

wj =
lx+1

∑
s=0

f
wj
s,j (τ)ws,j (13)

For this paper, Bernstein polynomials are used as the bases functions for all the
elements, of order lx for the states, lu for the controls and (lx + 1) for the weights. Bernstein
basis polynomials are defined generally as

bν,n(t) =
(

n
ν

)
tν(1 − t)n−ν for ν = 0, . . . , n and 0 ≤ t ≤ 1 (14)

where n is the order. Bernstein bases have the advantage of smooth control profiles with no
oscillations near discontinuities or step changes, meaning the polynomial representation of
both states and controls remains within the feasible set [10,15].

Recasting (10) into Gauss quadrature using the polynomials in (11)–(13) gives

lu

∑
k=0

βk

[
ẇj(τk)

TXj(τk) + wj(τk)
TFj(τk)

Δtj

2

]
− wT(1)Xb

j + wT(−1)Xb
j−1 = 0 (15)

where τk and βk are Gauss nodes and weights, respectively, Δtj = (tj − tj−1) and Fj(τk)
is the shorthand notation for F

(
Xj(τk), uj(τk), b, t(τk)

)
. Since (15) must be valid for every

arbitrary ws,j, this can be written as a system of equations for each element:

lu

∑
k=0

βk

[
ḟ0,j(τk)Xj(τk) + f1,j(τk)Fj(τk)

Δtj

2

]
+ Xb

j−1 = 0 for k = 0 (16)

lu

∑
k=0

βk

[
ḟs,j(τk)Xj(τk) + fs,j(τk)Fj(τk)

Δtj

2

]
= 0 for k = 1, . . . , lx (17)

lu

∑
k=0

βk

[
ḟlx+1,j(τk)Xj(τk) + flx+1,j(τk)Fj(τk)

Δtj

2

]
− Xb

j = 0 for k = (lx + 1) (18)
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The path constraints from (7) are directly collocated at the Gauss nodes, generating a
set of constraint equations for each element given by

g
(
Xj(τk), uj(τk), b, t(τk)

)
≥ 0 (19)

Constraints are also imposed on the boundary states of all adjacent elements to
ensure continuity.

The transcribed objective functions from (5) are therefore

J̃i =

⎧⎪⎨
⎪⎩

∑lu
k=0 φk(Xk, uk, τk, b)

φi(X
b
0, Xb

f , t0, t f , b)

(20)

which equate to the two terms in a Bolza optimisation problem [16].
The time domain T corresponds to a single time period [t0, t f ]. For launch systems,

however, trajectories often have multiple phases either in series, or in parallel. For example,
a multi-stage vehicle can have one phase per vehicle stage with all phases connected in
series for the ascent, and/or branching parallel phases for the upper stage ascent, and
first stage descent and landing. For a problem with Np distinct phases, the dynamic
constraints (15), path constraints (19), boundary constraints (8) and objective functions (20)
are defined per phase. An additional set of Np boundary constraints are introduced to
manage the connections between phases defined by

ψsp

(
Xb

0,Is,p
, Xb

f ,Isp
, t0,Isp

, t f ,Isp

)
≥ 0 sp = 1, . . . , Np (21)

where the index vector Isp collects all the indexes of the phases that are connected by the
constraint ψsp . Note that, while the number of phases Np is fixed, their temporal order is
defined by the phase boundary constraints (21).

The resulting multi-objective nonlinear programming (MONLP) problem coming
from the transcription of (5)–(8), with the inclusion of phase constraints (21), is given by

min
y∈Y,p∈Π

J̃(y, p) (22)

C(y, p) ≥ 0

where y = [X0,1, . . . , Xs,j, . . . , Xlx ,N ]
T , Y is a box in RnY with nY = n(lx + 1)N,

p = [u0,1, . . . , us,j, . . . , ulu ,N , b∗]T is a solution, or decision, vector that collects all the
static and discretised control variables with b∗ = [b, xb

0, xb
f , t0, t f ]

T , Π ⊆ Rns ×Rn∗
b with

ns = nu(lu + 1)N (assuming that each element has the same number of control parameters)
and nb∗ = nb + 2n + 2, and C collects all path and boundary constraints.

Similar to (5), the solution of (22) is a subset ΩΠ ⊂ Π that satisfies the constraints
C and contains solution vectors that are Pareto efficient. Given the subset ΩΠ of feasible
solution vectors, a solution vector p∗ ∈ ΩΠ is said to be Pareto efficient if p∗ � p, ∀p ∈ ΩΠ.
The symbol of dominance � indicates that, if p1 � p2, then J̃i(p2) ≤ J̃i(p1) for i = 1, . . . , m
and ∃j such that J̃j(p2) < J̃j(p1). In other words, a solution is non-dominated if the
values of any of the objective functions, using that solution, cannot be improved without
sacrificing at least one of the other objectives [17]. For continuous functions, the subset ΩΠ
is a manifold in Rns+nb∗ with dimension (ns + nb∗) ≤ (m − 1) [18]. In the following, the
goal is to identify a pre-defined countable number of Pareto-efficient solutions contained
in ΩΠ.

3. Solution of the Transcribed Problem

The MONLP problem in (22) is solved with an adaption of the Multi-Agent Col-
laborative Search (MACS) tailored to optimal control problems [10]. MACSoc combines
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the stochastic agent-based global search in MACS [19,20] with a local refinement of the
solutions [21,22] (see Algorithm 1).

Algorithm 1 MACS optimal control (MACSoc)

1: Initialise population P0 and global archive A0, k = 0, ρB = 1
2: Initialise weight vectors ω
3: while n_ f un_eval < max_ f un_eval do
4: Run individualistic heuristics on Pk using bi-level formulation
5: Pk → P+

k
6: Update archive Ak with potential field filter
7: Run social heuristics combining P+

k and Ak using bilevel formulation
8: Update archive Ak with potential field filter
9: P+

k → P†
k

10: if local search triggered then
11: Run gradient based refinement using single level formulation
12: P†

k → P∗
k

13: Update archive Ak with potential field filter
14: P∗

k → Pk+1
15: else
16: P†

k → Pk+1
17: end if
18: k = k + 1
19: Update ρB
20: end while

At the start of MACSoc, an initial population P0 is generated with Na agents repre-
senting feasible candidate solutions. Next, a set of Nw uniformly spread weight vectors ω
are generated. Each agent is associated with a different weight vector, allowing the agent
to converge to a different part of the Pareto-optimal set (set of non-dominated solutions for
the multi-objective optimisation problem).

The global search generates candidate solutions for the decision vector using a com-
bination of social and individualistic actions (lines 4 and 7 in Algorithm 1). Each action
generates a candidate decision vector, starting from the current solution allocated to a
given agent j, and submits it to a bi-level optimisation problem, where the inner level
makes the candidate decision vector feasible with respect to constraints, and the outer level
assesses whether the solution of the inner level represents an improvement with respect
to the current solution allocated to agent j. All feasible and non-dominated solutions are
added to the current population Pk, and saved in an archive Ak (lines 5, 6, 8, 9 and 13
in Algorithm 1). A local refinement is triggered periodically after a user-defined number
of iterations, and at the end of the algorithm, which update the current population and
archive (lines 10–17 in Algorithm 1). The local refinement solves a single level scalarised
version of (22).

The entire process alternates between social and individualistic actions, with periodic
local refinement, until a maximum number of calls to the objective vector max_fun_eval
is reached.

3.1. Bi-Level Global Optimisation Problem

The NLP problem for the global optimisation is defined by

min
p∗

J̃(y∗, p∗) (23)

(y∗, p∗) = argmin
y,p

{
δp(y, p) |C(y, p) ≥ 0

}
and represents two optimisation sub-problems at two different levels. The outer level
minimises the objective function vector J̃ and generates a first set of candidate solutions
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p. The inner level looks for state y∗ and control p∗ vectors that satisfy the constraint
functions C, and minimise a cost function based on the candidate solutions of the outer
loop δp = ‖p∗ −p‖ that look the closest feasible solution to the candidate solution provided
by the outer loop. The feasible solution is then passed back to the outer loop to evaluate
the objective functions J̃ with (y∗, p∗). The inner level problem is solved with a local,
gradient-based optimiser such as SQP or interior point.

In order to reduce the number of iterations required by the inner level to converge, the
outer level stores the feasible states y∗ from one iteration to be used as a first guess for the
inner level at the next iteration. As shown in Figure 1, the feasible states y∗

k are preserved
from iteration k to iteration (k + 1); therefore, the outer level only generates candidate
solutions for pk+1. Thus, for iteration (k + 1), the inner level is given (y∗

k , pk+1) as initial
guesses for states and controls. Despite y∗

k being associated with p∗
k , it has been shown to

work well as an initial guess also when associated with pk+1.
When individualistic actions are applied, each agent generates one or more candidate

solution vectors through three mechanisms that are triggered sequentially in the order:
Inertia → Pattern Search → Differential Evolution. If any of these mechanisms produces
an improved solution, the process is stopped and proceeds to update the population and
archive (line 5 and 6 of Algorithm 1).

Inertia is triggered by agent j only if, in the previous iteration, agent j generated an
improved solution. In this case, a step with random length is taken in the direction defined
by (p∗

k − p∗
k−1).

Pattern Search will change one optimisation parameter at a time, by a random amount
in each direction, within a given neighbourhood Bj of agent j. The order by which the
parameters are changed is a random permutation of the number of decision parameters.
The process is repeated until either an improvement is registered or the maximum number
of trials has been reached. As in Ricciardi and Vasile [20], the maximum number of trials
is dynamically adjusted during the optimisation process: when the archive is empty, the
maximum number of parameters scanned is equal to the total number of optimisation
parameters. This maximum value is decreased linearly as the archive fills up, until only
one optimisation parameter is changed when the archive is full. The neighbourhood Bj is a
box centred in the position of the agent in parameter space and with the edges equal to the
edges of the search space Π multiplied by the scaling parameter ρBj .

Differential Evolution generates a sample with the simple heuristic:

ptrial,j = pj + ξ1e
((

pj − pj1
)
+ cF
(
pj2 − pj3

))
(24)

where pj is the current candidate solution, pj1 , pj2 , pj3 are three randomly chosen solutions
from the current population Pk, ξ1 is a uniformly distributed random number in the unit
interval, cF is a user-defined constant and e is a mask vector defined as

ej =

{
1, if ξ2 < CR
0, otherwise

(25)

where ξ2 is another uniformly distributed random number in the unit interval, and CR is
the crossover rate. For the following test cases, cF = 0.9 and CR = 1.

If no improvement is made after trying all the three heuristics, ρB → 0.5ρB ; if instead
an improvement is made, ρB → 2ρB until the initial value ρB = 1 is reached again.

When social actions are applied, the outer level uses the population to generate a
candidate solution using the same heuristics of Differential Evolution (24), with the parent
solutions pj1 , pj2 , pj3 chosen from the union of the current population Pk and the current
archive Ak.
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Figure 1. Schematic representation of the bilevel approach acting on a single solution.

A candidate solution (y∗, p∗) generated by the inner level is evaluated in the outer
level by computing the weighted Chebychev norm

Φi = max
i

ωi
(

J̃i(y
∗, p∗)− zi

)
(26)

zi = min
Pk∪Ak

J̃i

where ω is the weight vector in objective space and z is the current utopia point.
Given the value of Φi at step k, or Φk

i , an improvement corresponds to Φk+1
i < Φk

i .
This improvement criterion has two very important properties: first, it allows the search
to reach even non-convex parts of the Pareto front, and, second, if the weights are cho-
sen appropriately, it enables an efficient convergence to the global minimum for each
objective function.

Note that, if the inner level does not converge to the required tolerance, the objective
functions of the outer level are recalculated to be the infinity norm of the constraint violation
plus the maximum values of each objective functions in the archive and population. This
creates an adaptive rejection mechanism: if none of the agents are feasible, the ones that
best satisfy the feasibility are entered in the archive, with the next iterations trying to
improve their feasibility. Once an agent finds a feasible solution, it will explore the search
space through the global bi-level approach, generating several feasible and non-dominated
solutions. These solutions will enter in the archive as they will dominate many of the
existing infeasible solutions, and due to the social actions, some agents will be directly
moved onto those solutions, allowing the entire population to converge to feasible solutions
in a handful of iterations.

Finally, if any candidate solutions for y and p fall outside the boundaries of the search
space Y × Π, the solution vector is reduced until it is back within the search space.

3.2. Single Level Local Search

The local refinement solves the following scalarised problem for each agent j:

min
ε≥0

ε (27)

ωi,j ϑi,j(y, p) ≤ ε for i = 1, . . . , m

C(y, p) ≥ 0

where ωi,j is the ith component of the weights for the jth agent, ϑi,j is the ith component of
the rescaled objective vector of the jth agent, and ε is a slack variable.

This reformulation of the problem, which uses Pascoletti–Serafini scalarisation [23],
constrains the movement of the agent to within a descent cone defined by the point
(εdj + ıj) and along the direction dj = (1/ω1,j, . . . , 1/ωi,j, . . . , 1/ωm,j). The rescaled vector
of the objective functions is therefore

ϑ j(y, p) =
J̃i,j(y, p)− z̃i

z∗i,j − z̃i
for i = 1, . . . , m (28)
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where z∗j is equal to J̃j(y, p), (y, p) is the initial guess for the solution of (27), and
z̃ = (z − zA) where zA is the nadir of the archive. The components of the vector ζ j
are derived from the normalisation

ζi,j =
zi

z∗i,j − z̃i
for i = 1, . . . , m (29)

This allows the components of ϑ j(y, p) to have values of 1 at the beginning of the local
search, and 0 if the agent converges to the target point z̃. Thus, the single level approach
avoids biases when the objectives have significantly different scales.

The weighted Chebychev norm in (26) and (27) are equivalent and lead to the same
optimal solution if the target point for the Pascoletti–Serafini scalarisation coincides with
the utopia point, and the weight vectors are the same [24]. By combining (26) in the global
search phase with (27) in the refinement phase, the algorithm ensures a smooth transition
from global exploration of the Pareto set, to local convergence.

3.3. Archiving Strategy

MACSoc, through MACS, employs an archiving strategy described in Ricciardi and
Vasile [20]. When the elements in the archive A are less than the maximum allowed
cardinality of A, every new feasible and non-dominated solution is recorded in the archive.
Once the defined maximum size for the archive is reached, new elements are added to A
only if they minimise the potential function,

E
(
J̃1, · · · , J̃NA

)
=

NA

∑
i=1

NA

∑
j=i+1

1
(J̃i − J̃j)T(J̃i − J̃j)

(30)

where NA is the number of elements in the archive A.
To avoid biasing in the rejection–retention process when the objectives have different

scales, the objective values of the set of non-dominated solutions are all normalised between
0 and 1. This leads to a combinatorial problem that can be solved approximately but
efficiently and returns a uniformly spread set of points [20].

3.4. Generation of the Initial Feasible Population

Before the optimisation starts, MACSoc generates an initial population of agents P0
representing feasible candidate solutions.

A first guess for the candidate solutions is generated using Latin Hypercube sampling
within the given boundaries, which gives a near-random sample of parameter values from
a multidimensional distribution [18]. State variables for each phase are initialised with a
linear interpolation between initial and final conditions. For each phase, each equation
in (15) is optimised using the inner level subproblem (23) to ensure feasibility through a
local gradient-based optimiser. Additional constraints within the phase are then added in,
and the problem is re-optimised. Lastly, the linking constraints between phases are then
included, and the full resulting problem is optimised for a final time (always using a local
optimiser with the inner level objective function in (23)). If at the end of the initialisation
phase, an agent is associated with a solution that is not feasible within the prescribed
tolerance, that solution is still included in the initial population P0 and submitted to the
subsequent optimisation cycle.

For the test case, the tolerance on feasibility is set to 10−6, both for the initial popu-
lation generation, and for determining feasibility within loop. By default, the maximum
number of calls to the constraint function is set equal to 10(n∗

b + ns + nY). An interior
point NLP solver was used as it delivered a more robust and consistent convergence to
feasible solutions.
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3.5. Definition of the Descent Directions and Target Points

The weight vectors for the bi-level global search are generated as follows: first, a
simplex in objective space is generated through simplex lattice design [25]. Then, the points
of this simplex lattice are projected on the unit sphere by dividing their position vectors by
their distance to the origin. This gives a fairly uniform distribution of weight vectors (and
thus descent directions) in any Nw dimensional space.

In order to generate a more uniform distribution, however, these weight vectors are
refined using a local optimisation of the same potential function E given in (30),

min E(ω1, . . . , ωNw) (31)

ωT
i ωi = 1

While this approach is valid for general m-objective problems, for two objectives,
it is simpler and faster to generate uniform angularly spaced weight vectors. In the
following, Na = Nw and each agent is associated with the closest descent direction in
criteria space, at the initialisation stage, with the constraint that no two agents can have the
same descent direction.

For the single level approach, the weight vectors ωj = [
√

2, . . . ,
√

2]T are allocated
to all agents except to those m agents that minimise each individual objective function.
For these m agents, the weight vectors are ωj = [0, . . . , j, . . . , 0]T with j = 1, . . . , m. These
weights are orthogonal because they correspond to the m orthogonal directions in criteria
space. If agent j associated with weight ωj does not generate any improvement after two
iterations, a new random orthogonal weight is associated with j and (27) is solved with the
added constraints,

J̃i ≤ zi ∀i 
= j (32)

The reason for the different choice of weight vectors between the bi-level and the
single level formulation can be explained as follows: the bi-level formulation explores
globally the search space with a population of agents, thus there is the need to maximise
the spreading of the solutions; on the contrary, the single-level is used to improve the local
convergence of each agent in a normalised criteria space. Thus, the goal of the single level is
to return dominating solutions without altering too much their spreading in criteria space.

4. Uncertainty Model for Atmospheric Parameters

Preliminary design and trade-off studies, in particular those employing computa-
tionally intensive multidisciplinary design and multi-objective optimisations, typically
use global static atmospheric models such as US-76 Standard Atmospheric model, or the
International Standard Atmospheric (ISA) model. These models predict the atmospheric
pressure p, temperature T and density ρ as function solely of altitude, and employ simpli-
fied algebraic expressions for the different atmospheric layers. The models are based on
average values for year-round, mid-latitude conditions with moderate solar activity. The
ISA is valid up to an altitude above mean sea level of 86 km, while US-76 has an extension
up to 1000 km. Due to this, US-76 is often preferred in the field of space launchers over
ISA. These two models rely on similar assumptions and methodologies, differing only in
the prediction of the temperature in the upper atmosphere (above 32 km).

In order to assess the robustness of the mission design against uncertainties in the
atmospheric model, a model of the uncertainty was developed using higher fidelity atmo-
spheric models to create a data set. A number of empirical, global reference atmospheric
models exist, for example, to analyse the effect of atmospheric drag on satellites. The
Committee on Space Research (COSPAR) in their International Reference Atmosphere
reports details three of these models [26]: NRLMSISE-00 [27], Jacchia Bowman reference
atmospheric model JB2008 [28], and DTM2013 [29].

The NRLMSISE-00 is a model developed by the US Naval Research Laboratory and
accounts for geographic, temporal, solar and magnetic effects through inputs for: date,
time of day, geodetic altitude from 0 to 1000 km, geodetic latitude and longitude, local
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apparent solar time, 81-day average of F10.7 solar flux, daily F10.7 solar flux for previous
day, and daily magnetic index.

A statistical analysis of the difference in the models was performed treating those
all the input parameters save altitude as uncertain. A set of 105 quasi-random samples
were generated for the altitude using a low discrepancy Halton sequence [30], with the
corresponding values for T, P and ρ computed using the NRLMSISE-00 model for all
altitudes in the range between 0 and 100 km. The altitude limit of 100 km was driven by
the test case of the descent phase of a first stage, reusuable spaceplane which is designed to
operate within this range.

Every sample of the NRLMSISE-00 model was treated as an equivalent static global
atmospheric model, and used to compare against the US-76 model. These differences were
treated as random fluctuations in order to quantify the uncertainty.

As shown in Figure 2, the means and standard deviations σ were determined for each
of the three atmospheric parameters. It can be observed that, for the temperature, the mean
differences, or relative errors, are very low, with a 1σ relative error around 5% for altitudes
below 80 km. The mean relative errors for pressure and density are also low for relatively
low altitudes, but increase at higher altitudes, with the largest 1σ bands around 60 km.
Above 40 km, the pressure and density have a very low absolute value, so a large relative
error still means a low absolute error.
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Figure 2. Mean and standard deviation (±1σ) of the differences between every sample (representing
an equivalent global static atmospheric model) and the US-76 model for each of the atmospheric
parameters as a function of altitude. (a) Atmospheric density (kg/m3); (b) Atmospheric pressure
(kPa); (c) Atmospheric temperature (K).

Since the approach employed is that of the Square Root Unscented Transformation,
different models were generated: one employing the mean relative error, and the others
adding to the mean the Cholesky factorisation of the covariance matrix of the uncertain
quantities at each altitude. Figure 3 shows the five generated temperature profiles, and
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their comparison with respect to the US-76 model. A similar approach was followed for
the density.

As it can be seen, the Sigma Point 0 model is quite close to the US-76 model. Sigma
points 1 and 2 add the standard deviation to this mean, while Sigma points 3 and 4
also include the correlation between variations in temperature and variations in density.
The correlation between temperature and density changes sign repeatedly as the altitude
changes, thus the profiles assume values lower than one standard deviation only to cross
the mean and assume values higher than one standard deviation elsewhere.

Among the 105 samples generated by the Halton sequence on the NRLMSISE-00
model, several profiles do indeed have this kind of shape, which is significantly different to
the US-76 model. The temperature affects the computation of the Mach number, on which
the aerodynamic coefficients depend. The dependence of the aerodynamic coefficients on
the Mach number is stronger around Mach 1 and weaker for high Mach numbers, thus it is
not easy to foresee the effect of these variations.
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Figure 3. Temperature profiles for the models of each sigma point, and comparison with the
US76 model.

5. Vehicle System Models

The Orbital-500R launch system is composed of a first stage reusable spaceplane,
capable of rocket-powered ascent and an unpowered, glided descent, and an expendable,
rocket-based upper stage. The system is air-launched from a carrier aircraft. The system
was designed to launch from the UK and carry small payloads (500 kg) to Low Earth Orbits
(e.g., up to 1500 km). The dry mass of the spaceplane is 20 tonnes.

The flight dynamics are modelled as a variable-mass point with three degrees of
freedom in the Earth-centered Earth-fixed reference frame, subject to gravitational, aerody-
namic lift and drag forces. The state vector contains the translational position and velocity
components, x = [h, λ, θ, v, γ, χ], where h = rE − r is the altitude given radial distance
r and the Earth’s radius rE(λ, θ), (λ, θ) are the geodetic latitude and longitude, v is the
magnitude of the relative velocity vector directed by the flight path angle γ and the flight
heading angle χ. The vehicle is controlled through the angle of attack α, and the bank angle
μ of the vehicle. The dynamic model is therefore [31]
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ṙ = ḣ = v sin γ (33)

λ̇ =
v cos γ cos χ

r
(34)

θ̇ =
v cos γ sin χ

r cos λ
(35)

v̇ =
−D
m

− gr sin γ + gφ cos γ cos χ + ω2
Er cos λ(sin γ cos λ − cos γ cos χ sin λ) (36)

γ̇ =
1
v

(
L cos μ

m
− gr cos γ − gφ sin γ cos χ

)
+

v
r

cos γ

+
ω2

Er
v

cos λ(sin γ cos χ sin λ + cos γ cos λ) + 2ωE sin χ cos λ (37)

χ̇ =
1

v cos γ

(
L sin μ

m
− gφ sin χ

)
+

v
r

cos γ sin χ tan λ

+ ω2
Er

sin χ sin λ cos λ

v cos γ
+ 2ωE(sin λ − tan γ cos χ cos λ) (38)

The Earth is modelled using WSG-84, with gravitational acceleration expressed in
radial gr and tangential gφ components.

The accelerations induced on the vehicle are determined, using the relative vehicle
body reference frame B.

aBx =
−D cos α + L sin α

m
− gr(sin γ cos α + cos γ cos μ sin α)

+ gφ(cos γ cos χ cos α − cos χ sin γ cos μ sin α − sin χ sin μ sin α)

− v
r

cos γ sin α(cos μ − sin χ tan λ sin μ) (39)

aBy = gr cos γ sin μ + gφ(cos χ sin γ sin μ − cos μ sin χ)

+
v
r

cos γ(sin μ + cos μ sin χ tan λ) (40)

aBz =
−D sin α − L cos α

m
+ gr(cos γ cos μ cos α − sin γ sin α)

+ gφ(cos χ sin γ cos μ cos α + sin χ sin μ cos α + cos γ cos χ sin α)

+
v
r

cos α cos γ(cos μ − sin χ tan λ sin μ) (41)

Surrogate models were used for the lift cL and drag cD coefficients as a function
of Mach number M, angle of attack α and altitude h. An artificial neural network was
employed, using an aerodynamic database for the training data coming from a mix of
panel methods and CFD simulations (see Stindt et al. [32] for details on the generation of
the aerodynamic database). The lift and drag forces were computed assuming no wind,
with the relative velocity vrel = v − ωEr.

L =
1
2

CL(M, α, h) ρSre f v2
rel (42)

D =
1
2

CD(M, α, h) ρSre f v2
rel (43)

where Sre f is the reference area of the vehicle, and ρ is the atmospheric density.
Maddock et al. [1], Ricciardi et al. [10] performed a number trade-off studies through a

multi-disciplinary design optimisation on design of the Orbital-500R launch system and on
various missions, analysing the full trajectories for both stages. Extrapolating from these
results, a nominal starting point for the descent was set. Table 1 lists the initial and final
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conditions of the state variables. A final condition was imposed on the expected value of
the altitude, with a value of 10 km. In addition, the trajectories of all sigma points were
required to have a flight path angle greater or equal to −20°.

Table 1. Values and constraints on the boundary values of the state variables.

Initial Condition Final Condition (Requirement)

Altitude h 90 km h = 10 km
Latitude λ 60° N
Longitude θ −12° E
Velocity v 3 km/s
Flight path angle γ −5°
Heading angle χ 20° χ ≥ −20°

6. Application and Results

6.1. Problem Formulation and Set-Up

For the applied test case here, the initial conditions are fixed. The final conditions are
affected by the uncertainty, and are expressed as difference between the mean and target
values. A boundary constraint is added as follows:

ψ(X(t f )) = μχ − x(t f ) = 0 (44)

where μχ is the mean of the final states of the sigma points, and x(t f ) is the target value.
The first objective uses a metric to minimise the average induced acceleration on the

vehicle. The general formulation is

J1 =
∫ t f

t0

E
(
‖a‖2
)

dt (45)

where the transcribed version using DFET is

J1 =
N

∑
j

δtj

2

lu

∑
k

βk

Nσ

∑
i

a2(χi, τk)Wσ,i (46)

where a = ‖a‖ =
√

a2
x + a2

y + a2
z , given in (39)–(41). As part of the generation of the sigma

points, Nσ weights Wσ are generated, associated with each sigma point. The computation
of the mean of a quantity, within the transcribed NLP, is the weighted sum of the quantities
associated with each sigma point [12].

The second objective aims to reduce the uncertainty of the final state by minimising
the sum of the square of all the entries of the covariance matrix:

J2 = ∑
i,j

(
Covi,j(X(t f )

)2
(47)

where Covi,j is computed using the standard algebraic manipulations employed for the
Square Root Unscented transformation, with the additional consideration that no update
of the Cholesky factorisation is needed since no measurement is here performed and thus
no error is present. This formulation has the advantage that the quantity to compute is
smooth and differentiable, it involves all components of the covariance matrix, and does
not require iterative procedures like decomposition in eigenvalues to compute the principal
axes of the ellipsoid of the uncertainty. In order to give each element of the covariance
matrix the same weight even if the quantities of interest have different scales, the state
variables were scaled by the same factors internally employed by MODHOC to ensure that
all variables assume values between 0 and 1.
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The equations were transcribed through DFET, using 6 elements of order 7 for all the
states and the controls. Since all five sigma points are propagated simultaneously, there are
30 elements for the states and 12 elements for the controls. MODHOC was run for a total
of 30,000 function evaluations, keeping 10 solutions in the archive.

6.2. Trajectory Results

The computed Pareto front is shown in Figure 4, which confirms a trade-off between
the two objectives corresponding to metrics to minimising the induced acceleration load
on the vehicle (J1), and maximising the robustness of the trajectory by minimising the
covariance of the final values of the state variables (J2).
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Figure 4. Pareto Front for the two-objective problem. (a) Linear scale; (b) Log-log scale.

Figure 5 shows the time histories of the state variables for altitude, velocity vector
components given by the magnitude, flight path and heading angles. The solutions are
shown for a set of Pareto-optimal solutions from Figure 4, along with the ±1σ uncertainty
indicated by the dashed and dotted lines. It can be seen that Solutions 1 to 4 (in greens
and blues) have lower uncertainty for the final state, as expected as Solution 1 represents
the extrema for min(J2). This can also be seen from Figure 6, which show the standard
deviation of the same four state variables in Figure 5. As previously stated, even if the
uncertainty on atmospheric density is relatively high at high altitudes, its effect is quite
limited for the first part of the trajectory as the absolute value is very small (e.g., 10−6 at
85 km, 10−3 Pa at 40 km). The uncertainty in the density starts to have a noticeable effect
as the altitudes get to approximately 40 km and below.
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Figure 5. Cont.
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Figure 5. State variables for set of 10 Pareto-optimal solutions, with dashed and dotted lines showing
±1σ uncertainty. (a) Altitude; (b) Magnitude of the velocity; (c) Flight path angle; (d) Heading angle.
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Figure 6. Standard deviations of state variables. (a) Altitude; (b) Magnitude of velocity; (c) Flight
path angle; (d) Heading angle.

As the Pareto front (Figure 4) indicated, the solutions with a lower uncertainty of
final states have higher acceleration loads, as shown in Figure 7. This further shows the
breakdown between the accelerations in the three vehicle (or body) axes, as well as the
magnitude of the acceleration vector.
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Figure 7. Magnitude and components (in vehicle body reference frame) of the induced accelerations,
normalised against sea level gravity g = g0. (a) Magnitude of acceleration; (b) Component in x-axis;
(c) Component in y-axis; (d) Component in z-axis.

Figure 8 shows the time history for the two control variables: angle of attack α and
bank angle μ. In all cases, the angle of attack starts with the maximum possible value
of 45 deg, and then progressively decreases to a more moderate value around 5–10 deg.
Solutions with lower accelerations stay in this regime for a while, and finally conclude with
a value around 0 deg. Solutions with lower final uncertainty instead have a progressive
decrease in α until small negative values, then a sharp increase to values around 10–15 deg,
and finally stabilise around 0 deg.
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Figure 8. Control variables, which are consistent across all solutions in the Pareto-optimal set.
(a) Angle of attack; (b) Bank attack.
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Finally, Figures 9 show the time history of the states for all sigma points for extrema
Solutions 1 and 10. As it is evident, the green lines have a much lower scattering at the final
time than the black lines, indicating that Solution 1 (green) is subject to less uncertainty
than solution 10 (black). These figures also give an idea of the complexity of the problem
tackled by this approach, where the same control law is applied to multiple independent
sigma points (lines with the same colour) and is able to steer the system to a given expected
final state while also reducing the uncertainty associated with the final state, or reducing
the expected acceleration load.
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Figure 9. State variables of sigma points for the two extrema of the Pareto-optimal set (Solutions 1
and 10). (a) Altitude; (b) Velocity; (c) Flight path angle; (d) Heading angle.

6.3. Validation

A Monte Carlo analysis was run to validate the method and results. Starting from the
Pareto-optimal set of 10 solutions, the solution was re-integrated using a different sample
for the atmospheric model. A 100 different samples (for the atmospheric model) were taken
for each Pareto-optimal solution, using the same sampling bounds as used to generate the
sigma points (i.e., 1 standard deviation for each of the two atmospheric parameters, density
and temperature).

Figure 10 shows the results of the Monte Carlo analysis for a middle set solutions
(Solution 7, Figure 10a,b), and the two extrema (Solutions 1 and 10, Figure 10c,d). In each
plot, the five sigma points are shown (Point 0 is green, and Points 2–4 in blue), with each of
the 100 Monte Carlo runs shown as a grey line.

The values of the objective functions are compared in Table 2, looking at the optimised
values against the mean values for J1 and J2 across the Monte Carlo runs.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Monte Carlo analysis for Solution 7 (a,b), Solution 1 (c,d) and Solution 10 (e,f). Green is
the central Sigma point 0, blue are Sigma points 1–4, and grey lines are the 100 Monte Carlo samples.
(a) Altitude, Solution 7; (b) Velocity, Solution 7; (c) Altitude, Solution 1; (d) Velocity, Solution 1;
(e) Altitude, Solution 10; (f) Velocity, Solution 10.
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Table 2. Comparison of the mean value of the objective functions across the 100 runs of the Monte
Carlo analysis with the optimised values.

Optimisation Monte Carlo

Solution 1 Objective function J1 1.5375 × 105 1.4696 × 105

Objective function J2 2.1029 × 10−14 1.0542 × 10−8

Mean final altitude 10.00 km (target) 10.354 km

Solution 7 Objective function J1 3.6761 × 104 3.5939 × 104

Objective function J2 2.9916 × 10−10 5.7082 × 10−10

Mean final altitude 10.00 km (target) 9.9277 km

Solution 10 Objective function J1 3.2629 × 104 3.2396 × 104

Objective function J2 7.7731 × 10−9 1.8189 × 10−8

Mean final altitude 10.00 km (target) 9.9014 km

The results from Monte Carlo analysis are consistent with the results found using the
unscented transform integrated into the multi-objective optimal control solver MODHOC.
Small deviations can be seen towards the middle-end of the trajectory at altitudes below
50 km. The five sigma points chosen are all orthogonal, however the sample points for
the Monte Carlo run are not so constrained (though the boundaries are the same). The
absolute values for atmospheric parameters, in particular density ρ and pressure p, have
higher values in lower atmosphere, so it is consistent with the expectation that this area
would experience an increased impact, coupled with the larger standard deviation between
40–60 km.

7. Conclusions

This paper presented an extension of a memetic multi-objective optimisation algorithm
MODHOC to perform optimisation under uncertainty. This was applied to a test case
to determine a set of Pareto-optimal solutions for the descent trajectory of a first-stage
spaceplane, based on the conceptual commercial launch vehicle Orbital 500R. The robust
multi-objective optimisation traded off a performance objective, the induced accelerations
on the vehicle corresponding to the dynamics loads, with a metric on the robustness of the
trajectory to uncertainties on the atmospheric temperature, pressure and density.

Through a square root unscented transformation, different atmospheric models were
generated for five sigma points. All the sigma points share the same control law, thus
making the trajectory robust against model uncertainty. While only the first two statistical
moments of the uncertain values were considered for this work, future work will account
for higher order moments, making the resulting trajectory even more robust. A larger
number of sigma points will also be required, however, and the resulting optimal control
problem becomes progressively larger, requiring the use of large scale optimisation code.
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Abstract: The practical application of a multi-objective optimization strategy based on evolutionary
algorithms was proposed to optimize the plastics thermoforming process. For that purpose, in this
work, differently from the other works proposed in the literature, the shaping step was considered
individually with the aim of optimizing the thickness distribution of the final part originated from
sheets characterized by different thickness profiles, such as constant thickness, spline thickness
variation in one direction and concentric thickness variation in two directions, while maintaining
the temperature constant. As far we know, this is the first work where such a type of approach is
proposed. A multi-objective optimization strategy based on Evolutionary Algorithms was applied to
the determination of the final part thickness distribution with the aim of demonstrating the validity
of the methodology proposed. The results obtained considering three different theoretical initial
sheet shapes indicate clearly that the methodology proposed is valid, as it provides solutions with
physical meaning and with great potential to be applied in real practice. The different thickness
profiles obtained for the optimal Pareto solutions show, in all cases, that that the different profiles
along the front are related to the objectives considered. Also, there is a clear improvement in the
successive generations of the evolutionary algorithm.

Keywords: plastics thermoforming; sheet thickness distribution; evolutionary algorithms; multi-
objective optimization

1. Introduction

Thermoforming is a thermoplastic processing technique commonly used in the rigid
packaging industry. A variety of thermoplastic materials can be used in this process,
including semi-crystalline polymers, such as High Density Polyethylene (HDPE) and
Polypropylene (PP) and amorphous polymers, such as Acrylonitrile Butadiene Styrene
(ABS), Polystyrene (PS) and High Impact Polystyrene (HIPS). HIPS is a lightweight and
inexpensive thermoplastic often used in thermoformed food and pharmaceutical packag-
ing containers.

Thermoforming comprises a sequence of interdependent operations and is character-
ized by being sensitive to the intrinsic properties of thermoplastics, namely the lower heat
conduction and the deformation capability strongly dependent on temperature. In general,
the thermoforming comprises: a heating stage, which aims to allow the sheet to acquire the
required deformability; a sheet deformation stage in order to reproduce the contours of
the piece and finally, a cooling stage, which allows the part to be extracted from the mold
without distorting. In this way, the final performance of thermoformed products results
from the sum of all actions that occur in these three main stages. Since there are processing
variables associated with each of the three stages, including the material properties as a
function of temperature, optimizing the thermoforming process is a complex task.

Generally, the optimization of thermoforming, like in the other real word optimization
problems, consists of relating the effect of the operating variables of each stage with the
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performance of the part. Since thermoformed parts are characterized by having a non-
uniform thickness that can hinder their performance, the thickness distribution of the
final part is one of the most used variables to characterize the performance of the part.
Furthermore, the effects of processing parameters on the thermoforming of polymeric
sheets are highly nonlinear and fully coupled, which increases the difficulty of the process
design. The following studies aim at optimizing the sheet deformation stage with the
objective of obtaining thermoformed parts with the most uniform thickness distribution.

Yang and Hung [1] proposed an inverse Artificial Neural Network (ANN) with the
aim of predicting the optimum processing conditions (decision variables), including sheet
temperature, vacuum pressure, plug speed and displacement inside the mold. The network
inputs are the thickness distribution at different positions of molded PET parts, and the
outputs are the processing conditions obtained by the ANN presented, which show a good
agreement between the computed result and experimental data. However, the ANN was
trained using experimental data and the authors were not clear about the optimization
method used. Also, the fact that different inputs for this inverse ANN can produce identical
results at the output side was not discussed.

Chang et al. [2] used a similar inverse ANN to obtain the optimal processing param-
eters of polypropylene foam thermoforming. The studied variables included the mold
temperature, plug speed and displacement, vacuum pressure and time and the heat transfer
coefficient of the plug. Experimental data from tests carried out on a lab-scale thermoform-
ing machine were used to train the ANN, used as an inverse model of the process. Product
dimensions were used as the inverse model inputs and the corresponding processing
parameters as outputs. The feasibility of the proposed method was demonstrated by exper-
imental manufacturing of cups with optimal geometry derived from the computational
method. In almost all points, the deviations between predicted and measured points were
all below 3.5%. Like in the previous paper, the authors did not take into account that
different inputs can produce identical results.

Leite et al. [3,4] developed models to predict and optimize the thermoforming using
ANN defining the processing parameters set as the networks’ inputs and deviations in part
thickness as the outputs. For the ANN data, thermoformed samples were experimentally
produced using a 1 mm polystyrene sheet, using a fractional factorial design (2k−p). The
studied processing variables included heating time and the electric heating power of
the heater panel vacuum time pressure. Preliminary computational studies were carried
out with various ANN structures and configurations with the test data, until reaching
satisfactory models and, afterward, multi-criteria optimization models were developed.
The validation tests were developed with the models’ predictions and solutions showed
that the estimates for them have prediction errors within the limit of values found in
the samples produced. Thus, it was demonstrated that, within certain limits, the ANN
models are valid to simulate the vacuum thermoforming process using multiple parameters,
decision variables and objectives, by means of reduced data quantity.

Sasimowski [5] used experimental data to determine a utility function by regression
analysis in order to calculate the thickness distribution of the thermoformed parts. This
utility function was used to optimize the operating conditions of the machine, namely
heating time, heater temperature, pre-blow time, vacuum time and cooling time. In
all of these works, the ANN was used to predict the behavior evolution of the thermo-
formed parts thickness during information. Thus, no specific optimization method was
described/applied to optimize the results that the trained ANN predicted, being these
modeling results were used to optimize the process based on empirical knowledge.

In all of these works, it was not clear what is the optimization method used. In fact,
ANN is not an optimization method by itself, but a way of predicting output values from a
set of input data, obtained experimentally or computationally, very similar to a regression
model. The ANN, in the present context, works as a modeling program with the aim
of predicting the process performance. To optimize the process, it is necessary to link a
modeling routine with an optimization method through an optimization methodology able
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to deal with the objectives to be optimized, as will be described in Section 3. Additionally,
most of these works are based on experimental data, which makes the process unrealistic
given the time required to do the experiments.

In addition to the general studies on the optimization of thermoforming, it is possible
to find in the literature studies aiming at controlling the different stages of the process,
namely the heating and forming stages.

Regarding the heating stage, the main objective is controlling the sheet temperature
and the temperature fields developing during this step. This is very complex since the
heating methods are indirect, that is, the sheet temperature is controlled by adjusting the
heaters variables, and not directly. Furthermore, determining an optimum processing
window in thermoforming process with the aim of achieving high quality parts is critical.
In practice, the infrared heating stage is crucial since the final thickness distribution of the
thermoformed part is closely related to the temperature of the sheet.

Wang and Nied [6] used a numerical approach based on the finite element method to
obtain inverse solutions for the thermoforming processes. This was done by specifying a
desired final thickness distribution and iteratively solving the system for the temperature
field needed to obtain the desired result. A uniform initial temperature distribution is
used as the initial guess for the iterative optimization procedure. Subsequently, updated
non-uniform initial temperatures are obtained, based on the complete process of simulation
for achieving the final thickness distribution during thermoforming. Suitable inverse
solutions are achieved once the desired thickness distribution is obtained within a specified
tolerance. The sensitivity of final part thickness to perturbations in temperature distribution
is also investigated and shown to be a potential problem for precise thickness control in
industrial applications.

Bordival et al. [7] developed an automatic optimization method of the ovens geometric
parameters to be used in thermoforming. The first time, a simple analytical model, coupled
to a nonlinear constraint optimization method (Sequential Quadratic Programming) allows
one to find the best set of parameters, according to a cost function representing, for example,
the heat flux uniformity. Then, with these optimized parameters, an accurate raytracing
method is used to compute the irradiation resulting from the interaction between lamps and
the thermoplastic sheet. Finally, a control volume method is implemented to solve the three-
dimensional transient heat transfer equation, where the radiation source is approximated
by a diffusion Rosseland model.

Chy and co-authors [8,9] presented a method to control the surface temperature of a
plastic sheet using model predictive control (MPC) to solve the inverse heating problem
(IHP). The model was implemented on a complex thermoforming oven with a large number
of inputs and outputs for precise control of sheet temperatures under hard constraints
on heater temperature and their rates. Even though the MPC controller can handle a
multivariable process, the large number of computations makes it difficult to apply to large
systems such as multi-zone temperature control in a thermoforming machine.

Li and co-authors [10,11] suggested a methodology to compute and optimize the sheet
temperature by controlling the heater temperature. The steady-state optimum distribution
of heater power is first ascertained by a numerical optimization to obtain a uniform sheet
temperature. The time-dependent optimal heater input is then determined to decrease the
temperature difference through the direction of the thickness using the response surface
method and the D-optimal method. The results show that the time-dependent optimum
heater power distribution gives an acceptable uniform sheet temperature in the forming
temperature range by the end of the heating process.

More recently, Erchiqui and co-authors [12–15] proposed the application of two differ-
ent meta-heuristic algorithms, Simulated Annealing (SA) and Evolutionary Algorithms
(EA) to detect, from a fixed and random set of temperatures of the radiant zones of the
oven, the best temperatures that must be assigned to the heating zones in order to ensure a
uniform sheet temperature. For numerical heating analysis, the nonlinear heat conduction
problem is solved by a specific 3D volumetric enthalpy-based computational method.
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However, these studies only considered the effects of the heating phase on the final
thickness distribution of the thermoformed parts, having a starting point a sheet with
constant thickness, that is, the aim is to determine how to heat the different zones of the
sheet in order to induce uniform thickness on the final part.

Furthermore, an important limitation of the methodologies proposed in the literature
lies in the fact that the process is intrinsically multi-objective, and the different stages
cannot be considered independent. In reality, the results of one stage of the process depend
strongly on the remaining stages, the final part thickness distribution does not depend only
on the heating, but also on the initial thickness of the sheet used. Therefore, the main aim
of the work is to apply multi-objective strategies to optimize the plastics thermoforming
process. The intention is to propose a more global methodology that can take into account
the different steps and characteristics of this process, as described in the next section.
However, due to its complexity, only the stage of the sheet deformation will be considered
here. More specifically, the aim is to study the influence of the initial sheet thickness
distribution on the optimization of the process. For that purpose, three different initial
thickness distribution sheets will be considered. As far as we know, there is no work
in the literature that addresses the problem from this point of view. From an industrial
perspective, the fabrication of the sheets to be thermoformed must be changed if economic
and/or environmental gains can be obtained.

The paper is organized as follows: in Section 2 the details of thermoforming related to
optimization are explained, Section 3 addresses the concepts of multi-objective optimization
and the algorithm used, in Section 4 the results and discussion for the optimization of
thermoforming are presented and in Section 5 the conclusions are stated.

2. Thermoforming

2.1. The Process

Figure 1 illustrates schematically the thermoforming phases and the optimization
sequence. The phase order is indicated by open arrows and consist basically of: (A)
producing a plastic sheet, typically by extrusion; (B) heating the sheet until it can be
deformed without breaking; (C) shaping the sheet against the contours of a mold by
applying a pressure difference on both sides, either by vacuum or pressurized air; (D)
cooling the product obtained to make it possible to remove it from the mold and (E) remove
the part from the mold. Each one of these phases has particular characteristics that must be
considered when optimizing the process, either in terms of what concerns the operating
conditions (e.g., heating and cooling times, air pressure and oven temperatures) and/or
design parameters (e.g., sheet thicknesses, heater location, heating methods and mold
geometry) [16,17].

Figure 2 shows schematically how the shaping process evolves. The heated sheet is
forced to deform by the action of a pressure differential between both sides of the sheet.
Initially, this deformation is uniformly distributed, but when it touches the cold mold
surfaces the plastic material is frozen and only the remaining part of the sheet continues
to deform. This implies that the last part of the sheet touching the mold will present the
lowest thickness, since that the total volume of the sheet is conserved. This corresponds to
the region of the lower corners in Figure 2B.
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Figure 1. Thermoforming process and optimization. Thermoforming phases: (A) sheet; (B) heating; (C) shaping; (D)
cooling; (E) final part. Optimization steps: (i) part properties; (ii) cooling effects; (iii) final part thickness distribution; (iv)
sheet thickness distribution.

vacuum

sheet 
deformation

(A) (B)

female 
mold

Figure 2. Thermoforming process: (A) sheet deformation in the mold; (B) evolution of the part
thickness during deformation.

Therefore, the most important objective when producing a thermoformed part is to
guarantee that its final thickness is as uniform as possible. This requirement is necessary
in order to be possible to accomplish two main objectives, mainly in the shaping phase:
to minimize the amount of material necessary and to maximize the mechanical behavior
and/or other required characteristics.

To produce a part with uniform thickness, it is possible to act in different phases of
the process. First, as shown in Figure 3, it is possible to produce sheets with different
thicknesses at different regions of the part to be produced. Therefore, in the regions where
more deformation occurs during the shaping phase, and, as a consequence, the thickness
of the part will be smaller, it is possible to increase the thickness of the original sheet. Three
situations are possible, as illustrated in Figure 3: (A) constant sheet thickness, (B) variable
sheet thickness in one direction (x) and (C) variable sheet thickness in two directions (x and
y). However, the processes used to produce the sheets are different, which must be taken
into account in any optimization process since the costs can be very different as well. While
(A) and (B) can be produced by extrusion, (C) must be produced by injection molding,
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given the specific and complicated geometry. While the sheet with constant thickness (A)
can be produced in the usual way, using a flat die and a calender, to produce sheet (B) it is
necessary to change the die and the calender rolls in order to induce different thicknesses.

t = constant

t = f(x,y)

y

xz

t = f(x)

(A)

(B)

(C)

Figure 3. Types of sheets that can be used: (A) constant thickness; (B) spline thickness variation on x
direction and (C) concentric thickness variation (direction x,y).

Secondly, the sheet deformation during the shaping phase depends on the mechanical
properties of the polymeric material used at the heating temperature. This temperature
dependency makes it possible to obtain different sheet deformations in order to control
the thickness distribution, that is, in the regions where more deformation is required, the
temperature must be lower [11,18]. Figure 4 illustrates schematically the process of heating
the plastic sheet. Several parameters can be considered: (i) the number of heaters, for
example, for sheets with higher thickness two heaters can be used, one each side; (ii) the
distance between the heaters bank and the sheet; (iii) the dimensions of each individual
heater and (iv) temperature of each individual heater. This approach is illustrated in
Figure 4, where a mesh of heaters (e.g., ceramic heaters) can be used, each one with the
possibility of having different temperature distributions. In any case, it is fundamental
to control the correct temperature in the entire sheet surface. In practice, and given the
lower heat conductivity of plastics, a temperature gradient along the thickness of the sheet
will arise. Furthermore, and if radiation heating is used, due to geometric reasons, the
temperature at the center of the sheet will be higher than in its edge [19,20]. From the
practical point of view and after the heating phase, the temperature of the entire sheet
must be in the range of the forming temperatures. This temperature window is intrinsic to
each polymer.
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Figure 4. Heating phase: one or two heaters with constant or variable temperature.

Third, a straightforward way of minimizing the difference of thicknesses in the part
thermoformed is related to the process of shaping. For that purpose, several thermo-
forming variants can be used: female mold (as illustrated in Figure 2), male mold, plug
assisted, bubble forming, bubble forming and plug assisted and other combinations of the
above [21–25].

2.2. Numerical Modeling

During the inflation process, the polymer sheet deforms due to the pressure difference
imposed on both sides. Additionally, due to the deformation process, internal stresses are
generated, which will limit the deformation promoted by the pressure difference. If the
balance from those two loads is not null the velocity of the sheet changes, that is, there is a
non-null acceleration.

For the adopted numerical approach, the polymer sheet is discretized into different
computational cells as illustrated in Figure 5A. Moreover, the sheet is assumed to be thin
enough to allow resorting to a membrane formulation, thus it is discretized into planar
triangular cells each one with thickness tk (Figure 5B).

Considering the conditions above, the conservation of linear momentum is given by:

ρ
∂2u
∂t2 = ∇·σ+ ρg, (1)

where t is time, ρ is the density, u is the displacement vector, σ is the Cauchy stress tensor
and g is the gravitational acceleration vector. Following the classical Finite Volume Method
approach, Equation (1) is integrated into the space in a computational cell with volume
Ω and surrounded by the surface Γ, which, after applying the Gauss Divergence theorem
results in: ∫

Ω
ρ

∂2u
∂t2 dΩ︸ ︷︷ ︸

Inertia

=
∮

Γ
n ·σdΓ︸ ︷︷ ︸

Surface Forces

+
∫

Ω
ρgdΩ︸ ︷︷ ︸

Body Forces

, (2)

which shows that the acceleration of the computational cell is affected by the surface and
body forces. For the body forces, only the weight due to gravity is considered, which can
be obtained by:

FBody = ρgVc (3)

where Vc is the computational cell volume.
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(a) (b)

tk

(B)(A)
Figure 5. Geometry and illustrative mesh (A) and computational cell (B) of the polymeric sheet.

The surface forces are of two types, namely external and internal forces. Following
the membrane formulation, the external forces are due to the pressure difference between
the inner and outer surfaces and the internal forces result from the stress induced by the
material deformation. Based on Equation (2), where, in each time step, the acceleration of
each computational cell is an explicit function of the applied loads, the surface forces are
the sum of the internal and external forces and can be calculated by the following equation:

FSur f ace =
∮

Γ
n ·σdΓ =

∫
AS

pnsdAS +
∫

A f

n f · τdA f = Fpressure + Finternal (4)

where p is the imposed pressure difference, τ the internal stress vector, AS the cell surface
area (see Figure 5), with normal vector ns and A f the cross-sectional cell area, with normal
vector n f . The internal forces are calculated at each cell cross section along the thickness.
Due to the quick deformation process that takes place in thermoforming, which has
been shown to be mostly elastic since the original shape of the sheet if the plastic part is
heated [26], for this problem, the relation between the internal stresses was assumed to be
based on the elasticity theory:

τ = C : ε (5)

where C is the stiffness fourth-order constitutive tensor and ε the strain tensor. In this,
τ and ε must be work conjugate pairs of stresses and strains respectively. Considering
the membrane formulation, the elastic solid undergoes through large displacements, large
rotations and large strains and non-linearity cannot be neglected, the proper work conjugate
pair of stresses and strains are the Second Piola–Kirchhoff stress tensor, for τ and the Green–
Lagrange strain tensor, for ε, which is given by:

ε =
1
2

(
FT·F − I

)
(6)

In Equation (6), F is the deformation gradient tensor, given by the derivative of each
component of the deformed position x vector with respect to each component of the
reference position X vector, and I is the unit tensor. This formulation is equivalent to the
hyperelastic Saint Venant–Kirchhoff model [27].

On the implemented explicit numerical procedure, at each time step all the loads are
calculated with Equations (3)–(7) and the acceleration of each cell is given by Equation (2).
This allows one to calculate the new cell position and advance to the next time step.

On all the numerical studies performed in this work an elastic modulus of 10 MPa was
employed, which is representative of HIPS at the usually employed processing temperature
of 140 ◦C [28]. Moreover, the material was assumed to be incompressible, thus, a Poisson’s
ratio of 0.5 was considered.
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2.3. Experimental Assessment

The modeling computational results were assessed using the circular cup illustrated
in Figure 6 [29]. The experimental work was performed on a modified Illig thermoforming
machine that allows individual monitoring and control of the main thermoforming vari-
ables. The heater bank included 110 Elstein 125 W ceramic radiators (each 120 × 60 mm).
Square portions of the sheet were cut and manually clamped (fixed) on all four sides,
in such a way that the material was not allowed to slide into the mold cavity. Once the
heating stage is completed and a uniform sheet temperature of 150 ◦C is reached, the
frame (holding the sheet) moves toward the forming station. The lower mold section
moves vertically, clamping the sheet circularly. The parts were vacuum-formed at 0.7 bar.
After forming and cooling, the cups were extracted, cut into four equal portions along a
line passing by the center of the base midpoint and their thicknesses along that line and
circumferentially were measured with a caliper (precision of 0.01 mm). At least five cups
were produced for each set of variables. The results are generally presented along the arc
length but correspond to averages in the circumferential direction. The material used in the
sheets is a mixture of 50% Polystyrene (PS Laquerene 1540) with 50% Impact Polystyrene
(HIPS Laquerene 7240), both produced by Elf-Atochem.
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Figure 6. Experimental assessment of the computational results.

The theoretical results were computed using a commercial software T-SIM using a
K-BKZ viscoelastic model whose material properties are described in [29] and by using the
OpenFOAM considering the hyperelastic Saint Venant–Kirchhoff model for the material.
As can be seen, the computational results show a good agreement with the experimental
measurements, the behavior of both theoretical models being very similar. In fact, re-
garding the simulation of the thickness distribution in thermoforming, it is possible to
find, throughout the literature, several works that use hyperplastic models (e.g., Ghobad-
nam [30], Bernard et al. [31], Oueslati et al. [32], Jeet et al. [33]) and viscoelastic models
(e.g., Cha et al. [34], Atami et al. [28]). Although researchers are increasingly turning to
viscoelastic models for thermoforming applications, according to O’Connor et al. [35], there
is little agreement on the best model to use for any given polymer material.

Furthermore, the use of hyperelastic models is based on the experience reported by
Schmidt and Carley [26] and Rosenzweig et al. [36]. They described the “plastic memory”,

217



Mathematics 2021, 9, 1760

where blown bubbles returned completely to their original flat sheet form, either by
suddenly releasing the forming pressure or by annealing spheroidal bubbles at a proper
temperature. The observation of complete recovery has led the authors to conclude that
elastic-like behavior can be ascribed to the processes of blowing soft plastic sheets.

Therefore, and considering that the main objective of this work is to evaluate the
optimization process and not to predict more accurately the thickness distribution, and
for computation time reasons, a hyperelastic model was chosen to predict the plastic sheet
behavior during the forming process.

3. Multi-Objective Optimization

3.1. Multi-Objective Evolutionary Algorithms

In a Multi-Objective Optimization Problem (MOP), the goal is to minimize all ob-
jectives simultaneously, that is, to find feasible solutions where every objective function
is minimized. A multi-objective optimization problem with m objectives and n decision
variables can be formulated as follows:

min
x∈Ω

f(x) ≡ ( f1(x), . . . , fm(x))

subject to gi(x) ≤ 0, i ∈ {1, . . . , p}
hj(x) = 0, j ∈ {1, . . . , q}

l ≤ x ≤ u

(7)

where x is the decision vector, i.e., x ∈ Ω ⊆ Rn, f is the objective vector of m objective
functions, that is, f ∈ Ω ⊆ Rm, gi are p inequality constraint functions and hj are q equality
constraint functions and l and u are the vectors of the lower and upper bounds on decision
variables, respectively.

Solutions are compared in terms of Pareto dominance, that is, a solution x is said
to dominate a solution y (x ≺ y), if and only if fi(x) ≤ fi(y), for all i ∈ {1, . . . , m} and
f j(x) < f j(y) for at least one j ∈ {1, . . . , m}. If all objectives do not conflict with each
other, there exists a unique solution that minimizes all the objectives. In general, there are
multiple conflicting objectives giving rise to a set of optimal solutions—the Pareto optimal
set, instead of a single optimal solution. A feasible solution, x∗ is Pareto optimal if and only
if there is no other solution y ∈ Ω, y 
= x∗, that y ≺ x∗. These solutions are incomparable
to each other since none of these solutions can be said to be better than others.

In order to facilitate the decision-making process, an a posteriori method in which the
search for an approximation (as close and diverse as possible) to the Pareto optimal set is
performed before the decision-making process. Thus, the decision-maker can select the
most suitable solution from this set according to their preferences. The Pareto optimal set
provides valuable information with respect to the trade-offs between alternatives.

There is a large variety of approaches to solving MOPs. The designated classical (or
traditional methods) are known as scalarization methods in which the MOP is reformulated
and solved as a single objective optimization problem [37]. However, usually, scalarization
functions involve several parameters that can be difficult to define in order to obtain
different approximations to the Pareto optimal solutions. Other approaches are based
on Evolutionary Algorithms (EAs). EAs are meta-heuristics that mimic the process of
evolution of a population of individuals over generations. The fittest individuals to the
environment will survive over time and therefore will be likely to reproduce. The offspring
are generated by genetic operators, such as crossover and mutation and inherit the parent
characteristics. Basically, in EAs, a population of individuals representing a candidate
solution to the problem evolves using two mechanisms: Selection and Variation. The quality
of each individual is measured using a fitness function that, in optimization problems, is
related to the objective or objectives functions for single or multi-objective optimization
problems, respectively. The selection mechanism guarantees that the best individuals have
a higher probability of being selected for generating offspring. The variation mechanism
provides the generation of new individuals by application of genetic operators.
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Multi-Objective Evolutionary Algorithms (MOEAs) are EAs for solving MOPs. There
are advantages to using this type of algorithms. They work with a population of candidate
solutions, which makes it possible to approximate the entire Pareto optimal set in a single
run. The performance of any MOEA is strongly related to the efficacy of its Selection mech-
anism that guides the search in the objective space, balancing convergence and diversity
and also the variation mechanism that is responsible for the generation of offspring. A
common approach to simulating natural selection in MOEAs consists of assigning fitness
values to individuals in the population according to its quality for the MOP being solved.
In terms of the type of fitness function used, MOEAs can be classified into three different
types: dominance-, scalarizing- and indicator-based algorithms.

Dominance-based approaches calculate an individual’s fitness on the basis of the
Pareto dominance relation [38] or according to different criteria [39]. Scalarizing-based
approaches [40] incorporate traditional mathematical techniques based on the aggregation
of multiple objectives into a single parameterized function. Indicator-based approaches
use performance indicators for fitness assignment; pairs of individuals are compared using
some quality measure such as the hypervolume indicator [41,42]. The fitness value reflects
the loss in quality if a given solution is removed [42,43].

3.2. SMS-EMOA

The multi-objective evolutionary optimization algorithm used in this work is based
on the SMS-EMOA [32] and implemented in MATLAB. The outline of the SMS-EMO is
given by Algorithm 1.

Algorithm 1 SMS-EMOA

P0 ← initialize() % Initialize population at random with μ individuals
k ← 0
Repeat

qk+1 ← generate(Pk) % generate offspring by genetic operators
Pk+1 ← selection(Pk ∪ {qk+1}) % select μ best individuals

k ← k + 1
Repeat until the stopping criterion is fulfilled

The search starts from an initial population of μ individuals randomly generated
satisfying the boundary constraints of the decision variables. In each generation, one
parent is selected at random from the population and a single offspring is produced by
application of a variation procedure. In this procedure, a Gaussian mutation with covari-
ance matrix adaptation [44] is applied to the parent to produce a single offspring. Next, a
deterministic selection procedure selects the μ best individuals to the next generation. The
selection involves the non-dominated ranking of the population and the computation of
the hypervolume contribution of each individual of the population.

The non-dominated sorting procedure is illustrated in Figure 7. First, the Pk ∪ {qk+1}
individuals are ranked according to a non-dominated sorting procedure defining f fronts
of sets of non-dominated individuals [28]. A rank is assigned to each front representing its
level of domination. All solutions belonging to each front are incomparable. The first front
F1 contains the non-dominated solutions in Pk ∪ {qk+1}. The second front F2 contains all
non-dominated solutions in Pk ∪ {qk+1}\F1. This procedure is repeated until all solutions
in Pk ∪ {qk+1} are included in a front. Any solution in front Fi+1 is dominated by at least
one solution of front Fi for i ≥ 1.
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Figure 7. Non-dominated sorting procedure.

Afterward, the hypervolume contribution [39] of each individual in the last front
Pk ∪ {qk+1} is computed. Hypervolume definition guarantees that any non-dominated
solution will not be replaced by a dominated solution since non-dominated solutions will
have a higher hypervolume contribution than dominated ones. Hypervolume allows one
to obtain a well-distributed set of solutions in the objective space as well as to guide the
search toward the Pareto optimal front.

The hypervolume contribution computation is straightforward for problems with two
objectives [41]. The approximations to the ideal vector (z∗i ) and the nadir vector (znad

i )
computed in the current population are used to normalize objectives functions to the same
order of magnitude in the interval [0,1]. The normalized objective function f norm

i for the
i-th objective function is computed by:

f norm
i =

fi − z∗i
znad

i − z∗i
. (8)

The solutions of the worst-ranked non-dominated front are sorted in ascending order
according to the values of the first normalized objective function. A sequence that is
additionally sorted in descending order is obtained since the solutions are mutually non-
dominated. Then, the hypervolume contributions of the solutions can be obtained by
computing the rectangle area as illustrated in Figure 8. Given a sorted front with r solutions
F = {s1, s2 . . . , sr}, the hypervolume contribution of solution si (I(si)) is computed by [39]:

I(si) = ( f1(si+1)− f1(si))× ( f2(si−1)− f2(si)) (9)

where i = 2, . . . , r − 1.

Figure 8. Hypervolume contribution.
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In Figure 8, it can be seen that the hypervolume contribution of solution b is inferior
to c, as the area covered by b is smaller, which implies that this solution will not be selected
in the next generation.

The μ best individuals in terms of the domination ranking are selected to be the
progenitors of the next generation. On the last front, the individual with the worst hy-
pervolume contribution is discarded. This process is repeated until the stopping criterion
is fulfilled.

4. Case Study

4.1. The Optimization Problem to Solve

In the present study, the cup illustrated in Figure 9 was thermoformed with constant
temperature, a female mold and three types of sheets (as shown in Figure 3): constant
thickness, linear spline variation and concentric spline variation. The aim was to determine
the sheet thickness profile in order to: (i) minimize the initial sheet volume, as it implies
less material use (f1); (ii) minimize the minimum thickness found in the cells of the mesh
used in the modeling calculations without hindering its mechanical behavior, as it is related
with the capacity of the polymer sheet deformability, representing indirectly a measure
of the thickness heterogeneity (f2); and (iii) minimize the thickness heterogeneity, that is,
the difference between the thickness of the part and a reference thickness, as defined by
Equation (10) (f3).

f3 =
1
M

M

∑
i=1

|t0 − ti|
t0

(10)

where M is the number of points located in a line defining the center of the cup in direction
x, t0 is a reference thickness defined by the user and ti are the thicknesses of the M points.

This is a bound constrained multi-objective optimization problem with the following
decision variables and objectives limitations (dimensions in meters):

2.0 × 10−3 ≤ xi ≤ 4.0 × 10−3

Minimum thickness ≥ 1.0 × 10−4 (11)

where xi is the sheet thickness of the constant thickness along the x direction. The thickness
along the x direction is then imposed using a spline variation based on the 10 control
points (see Figure 3), or the thickness of the five control points determining the concentric
thickness variation, from the center to the border of the circle represented in Figure 3C.
First, three bi-objective problems were considered (Cases 1 to 3), one for each case of sheet
thickness variation and taking into account objectives f1 and f2, with the aim of showing
the effectiveness of the methodology in solving this problem. Then, two bi-objective
problems using objectives f1 and f3 were considered (Cases 4 and 5, respectively with spline
and concentric variations), the aim being to approach the solutions to a more realistic
industrial situation.

The multi-objective evolutionary algorithm used in this work is based on the SMS-
EMOA. Considering the characteristics of the multi-objective optimization problem being
solved, different configurations and search mechanisms can be adopted for SMS-EMOA.
Thus, as described in Section 3.2, Gaussian mutation with covariance matrix adaptation was
selected as the variation procedure, since the problem being solved comprises continuous
variables. simultaneously, the hypervolume metric was chosen to provide well-distributed
alternative solutions in the objective space. The configuration, including the parameter
values of the algorithm, takes into account the considerable computational effort required
to compute the objective function values. The population size was set to 20 individuals.
The selection was carried out using a uniform distribution and variation was performed
by the CMA evolution strategy operator [8], which is designed to work with real number
representations. The maximum number of generations was set to 20.
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Figure 9. Part dimensions: square cup with rounded vertices.

4.2. Results and Discussion

For Case 1, the sheet with constant thickness, both objectives (volume and thermo-
formed part minimum thickness) are in harmony, which means that the solutions of all
generations are located in a line and the single optimal solution is the one more near the
minimum of these two objectives. The same does not occur for the other two cases.

Figure 10 shows the random initial population and the non-dominated solutions of
the last generation for optimization Case 2, which comprises seven solutions. In this case,
the sheet thickness is a spline generated from the 10 decision variables represented by
black dots in the graphs, provided in Figure 11. It is clear that there is improvement along
the 20 generations. The Pareto optimal front of the last generation presents some gaps
between the solutions due to the thermoforming problem characteristics, as the location of
the 10 points used to generate the sheet spline thickness are fixed and equally spaced along
the x axis, which limits the search space.

 

Figure 10. Initial population and non-dominated solutions of final population (20th generation).
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Figure 11. Thickness profile for solutions Ps1, Ps4 and Ps7 (Figure 9): left—black points are the
decision variables, dashed line is the spline and the continuous line the part thickness profile a x = 0;
right—sheet and part thickness profiles for x = 0.

The sheet and final part thickness profiles of solutions Ps1, Ps4 and Ps7 are illustrated
in Figure 11. As can be seen in the graphs, the thickness profiles perpendicular to the spline
(Figure 11-left), when moving from solutions Ps1 to Ps7 the final part profile, are more
uniform. From the point of view of the Decision-Maker, this seems to indicate that Ps7 is
the best solution for practical purposes. This evidences the great advantage of performing
this type of multi-objective optimization. Not only does the algorithm converge to better
solutions, but it can also provide the Decision-Maker a set of solutions from which he
can choose the best one to be applied in the real thermoforming practice, in this case,
solution Ps7. Another characteristic of the solutions shown is that for x equal to zero
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(Figure 11-left) the sheet spline thickness is the same in all cases (t ≈ 2.0 × 10−3 m), which
produces identical part profiles in the transversal direction, as illustrated by the graphs of
Figure 11-right.

Figure 12 shows the Pareto optimal solutions for all the cases studied. As can be seen,
in Case 3 (concentric spline), the optimization converges to five non-dominated solutions,
identified by black dots. The final part thickness profile of four solutions for this case, Pc1,
Pc2, Pc4 and Pc5 are represented in Figure 13 (solution Pc3 was not represented due to
its similarity with solution Pc2). The black dots identify the location of the points used
to generate the symmetrical concentric spline represented by a dashed line, the decision
variables. Again, from solution Pc1 to solution Pc5, the profile obtained is more uniform,
as in Case 2. Also, it is important to note that, in this case, the part thickness profile is the
same in all directions, as the sheet thickness presents an axisymmetric distribution.

 
Figure 12. Non-dominated solutions for all cases: flat thickness, spline and concentric spline.

Figure 14 shows the part thickness profile of the unique solution found for Case 1,
Pf1. As can be seen, the profile obtained is very similar to that of solutions Ps7 and Pc5 of
the previous cases studied. This confirms that the optimization strategy is working and
identify solutions with physical meaning, since different starting points, corresponding to
diverse initial sheet thickness profiles, led to identical solutions when those solutions are
located in the same region of the search space, as can be seen in Figure 12.
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Figure 13. Thickness profile for solutions Pc1, Pc2, Pc4 and Pc5 (Figure 9): black points are the
decision variables, dashed line is the concentric spline and the continuous line the part thickness
profile a x = 0.

Figure 14. Thickness profile for solution Pf1 (Figure 9): dashed line is the constant sheet thickness
and the continuous line the part thickness profile a x = 0.

Finally, Figure 15 shows the non-dominated solutions of the 20th generation for Cases
4 and 5, considering spline and concentric sheet thickness variation and t0 equal to 0.5 mm.
As previously, the gaps between the solutions are due to the problem constraints related
to a limited search space. It is clear that, as expected, the concentric variation produces
much better results concerning the uniformity of the thickness. Solutions P’s3 and P’c3
are the same as those obtained previously, that is, solutions Ps7 and Pc5. However, the
solutions found depend strongly on the value chosen for t0. A practical alternative consists
of finding the desired thickness profile for the final part through a mechanical analysis, for
example, as suggested in the scheme of Figure 1.
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Figure 15. Non-dominated solutions of the 20th generation for Cases 4 (Spline) and 5 (Concentric), t0

equal to 0.5 mm.

Also, it is important to note that technically and economically it is difficult to produce
concentric initial sheet variations, as it implies high costs, mainly when the parts are to be
produced in big quantities, as is commonly the case.

5. Conclusions

Faced with the complexity of the real optimization problem in the field of plastics
thermoforming described in this paper, the applicability of a multi-objective optimization
strategy was proposed to deal with the process forming phase. The aim was to determine
the better sheet thickness distribution that allows the production of parts with the least
amount of material while assuring the appropriate characteristics of the final part. A
reduction of circa 30% in the volume of the material used can be obtained when comparing
the solutions of the initial population and the ones in the Pareto front.

The main scientific contribution of this work is to add a new approach to control the
thickness distribution of thermoformed parts, in addition to the variations of technique and
differential heating previously mentioned. Since the final thickness of the parts depends
on the initial thickness of the sheet, several solutions are proposed for adjusting the initial
thickness of the sheet in order to achieve the most favorable thickness.

The results obtained showed that the methodology proposed was able to capture the
singular features of the process allowing us to conclude that the strategy proposed might
be successfully applied in the optimization of the various steps of plastics thermoforming.
This work constitutes a further step to support design approaches associated with this
important plastics processing technology.
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Abstract: Maximising profit is an important target for industries in a competitive world and
it is possible to achieve this by improving the system availability. Engineers have employed
many techniques to improve systems availability, such as adding redundant devices or scheduling
maintenance strategies. However, the idea of using such techniques simultaneously has not received
enough attention. The authors of the present paper recently studied the simultaneous optimisation
of system design and maintenance strategy in order to achieve both maximum availability and
minimum cost: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was coupled with
Discrete Event Simulation in a real encoding environment in order to achieve a set of non-dominated
solutions. In this work, that study is extended and a thorough exploration using the above-mentioned
Multi-objective Evolutionary Algorithm is developed using an industrial case study, paying attention
to the possible impact on solutions as a result of different encodings, parameter configurations and
chromosome lengths, which affect the accuracy levels when scheduling preventive maintenance.
Non-significant differences were observed in the experimental results, which raises interesting
conclusions regarding flexibility in the preventive maintenance strategy.

Keywords: multi-objective evolutionary algorithms; availability; design; preventive maintenance
scheduling; encoding; accuracy levels

1. Introduction

System Reliability (R(t)) can be defined as the probability of failure free operation
under specified conditions over an intended period of time [1]. System Maintainability
(M(t)) can be defined as the probability of being restored to a fully operational condition
within a specific period of time [2]. These definitions lead to interest both in time taken
for a system to failure (Time To Failure) and in time taken to repair the system (Time To
Repair). System Availability (A(t)) can be defined as the fraction of the total time in which
systems are able to perform their required function [2]. The concepts of Reliability and
Maintainability are related to Availability in order to define the way in which the system is
able to achieve the function for which it was designed, over a period of time. Therefore,
whereas Reliability is a concept related to non-repairable systems, Availability is a concept
related to repairable systems because it encompasses the complete failure-recovery cycle
over the mission time. From above, it can be seen that repairable systems operate during a
certain period of time (Time To Failure) until a failure occurs. After that, a period of time is
needed to recover the system operating status (Time To Repair). This creates an interest in
Time To Failure and Time To Repair, which can be modelled as random variables that can
be represented by continuous probability distributions.

Optimisation through Evolutionary Algorithms is useful when complex problems
have to be solved; that is, problems in which the number of potential solutions is usually
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high and whilst achieving the best solution is a daunting task and achieving the best
solution can be extremely difficult, achieving at least a good solution (if not exactly the best)
can be a manageable task [3]. Typical reliability optimisation problems have considered the
possibility of maximising the system Availability. There are many techniques commonly
used to improve it and the present paper focuses on two of them. On the one hand,
modifying the structural design through redundancies improves the system Availability.
A redundancy is a component added to a subsystem from a series-parallel configuration
in order to increase the number of alternative paths [4]. On the other hand, an overall
improvement of system availability is possible through preventive maintenance [5]. The
unavailability of a system due to its failure can occur at any time, which necessitates a
significant effort to recover the operating state. Conversely, a programmed shutdown to
perform a preventive maintenance task represents a controlled situation with materials,
spares and human teams available.

These techniques were jointly explored by the authors of the present paper preliminarily
in [6], coupling Multi-objective EvolutionaryAlgorithm and Discrete Simulation and
dealing with the joint optimisation of systems design (considering whether or not to
include redundant devices) and their preventive maintenance strategy (choosing optimum
periodical preventive maintenance times in relation to each system device). This allowed
necessary preventive maintenance activities to be carried out. The system Availability and
operation Cost were the objectives to maximise and minimise, respectively. A simulation
approach was used in which each solution proposed by the Multi-objective Evolutionary
Algorithm (using real encoding) was evaluated through Discrete Simulation; the technique
used to build and modify (depending on the periodical preventive maintenance times)
the Functionability Profile. This is a concept presented by Knezevic [7], which explains
the history of the system varying among operating and recovery times. It is a powerful
modelling technique, which permits analysis of complex systems with a reality more
realistic representation of their behaviour. In the previous study, the performance of several
configurations of the Multi-objective Evolutionary Algorithm Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [8] in a real encoding environment was explored. In the
present paper an in-depth encoding comparative study is developed. Firstly, the real
encoding case study is extended, and secondly, some binary encoding alternatives are
explored, looking for possible advantages and disadvantages to encode this kind of real
world problems. Moreover, an accuracy-level experiment for the preventive maintenance
strategy is considered. The first part of the study determines the optimum periodical
Time To Start a Preventive Maintenance activity measured in hours. Two more levels are
explored in this study: days and weeks. There are preventive maintenance activities whose
accuracy level in time can be of little importance. It may not be important to determine the
exact instant for their development, being enough to define the day or the week. Therefore,
the effect of several chromosome lengths is explored looking to improve the evolutionary
process. Summarising the contributions of the present study:

• In this work, seven encoding alternatives are thoroughly explored: Real encoding
(with Simulated Binary Crossover), Binary encoding (with 1 point Crossover), Binary
encoding (with 2 point Crossover), Binary encoding (with Uniform Crossover), Gray
encoding (with 1 point Crossover), Gray encoding (with 2 point Crossover) and Gray
encoding (with Uniform Crossover). Their performances are compared using the
Hypervolume indicator and statistical significance tests.

• Additionally, three accuracy levels on time are explored for the binary encoding;
hours, days and weeks, in order to analyse the effect of chromosome length in the
evolutionary search and final non-dominated set of solutions. Their performances are
compared using the Hypervolume indicator and statistical significance tests.

• The methodology is applied in an industrial test case, obtaining an improved
non-dominated front of optimum solutions that could be considered as both a
benchmark case and reference solution.
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The paper is organised as follows. Section 2 explores the related literature. Section 3
shows an outline of the methodology. Section 4 presents the case study and Section 5 the
description of experiments carried out (encodings and accuracy levels). In Section 6, results
are shown and discussed, and finally, Section 7 introduces the conclusions.

2. Literature Review

Approaches dealing with reliability systems design (redundancy allocation) are
presented first, and approaches dealing with preventive maintenance optimum design are
presented secondly in this section. Finally, the third subsection deals with the simultaneous
optimisation of reliability systems design and preventive maintenance.

2.1. Redundancy Allocation of Reliability Systems Design Optimisation

Improving the Reliability or Availability for series-parallel systems through redundancy
allocation using Multi-objective Evolutionary Algorithms has been considered in several
studies. Many authors have developed Genetic Algorithms-based approaches to solve
the problem. Bussaca et al. [9] utilized a Multi-objective Genetic Algorithm to optimise
the design of a safety system through redundancy allocation, considering components
with constant failure rates. They employed profit during the mission time (formed by
the profit from plant operation minus costs due to purchases and installations, repairs
and penalties during downtime) and the reliability at mission time as objective functions.
Marseguerra et al. [10] presented an approach that couples a Multi-objective Evolutionary
Algorithm and Monte Carlo simulation for optimal networks design aimed at maximising
the network reliability estimate and minimising its uncertainty. Tian and Zuo [11] proposed
a multi-objective optimisation model for redundancy allocation for multi-state series-parallel
systems. They used physical programming as an approach to optimise the system structure
and a Genetic Algorithm to solve it. The objectives consisted of maximising the system
performance and minimising its cost and weight. Huang et al. [12] proposed a niched
Pareto Genetic Algorithm to solve reliability-based design problems aiming to achieve a
high number of feasible solutions. They used reliability and cost as objective functions.
Zoulfaghari et al. [13] presented a Mixed Integer Nonlinear Programming model to
availability optimisation of a system taking into account both repairable and non-repairable
components. They developed a Genetic Algorithm looking for maximum availability and
minimum cost. Taboada et al. [14] introduced a Genetic Algorithm to solve multi-state
optimisation design problems. The universal moment generating function was used to
evaluate the reliability indices of the system. They used reliability, cost and weight as
objective functions.

The use of the NSGA and NSGA-II algorithms has been extensive; some applications
ranging between the years 2003–2021 are shown as follows. Taboaba et al. [15] presented
two methods to reduce the size of the Pareto optimal set for multi-objective system-reliability
design problems: on the one hand using a pseudo ranking scheme and on the other hand
using data mining clustering techniques. To demonstrate the performance of the methods,
they solved the redundancy allocation problem using the Non-dominated Sorting Genetic
Algorithm (NSGA) to find the Pareto optimal solutions, and then the methods were
successfully applied to reduce the Pareto set. They studied reliability, cost and weight as
objective functions. However, the most widely used standard Genetic Algorithm is the
second version of the NSGA Multi-objective Evolutionary Algorithm. Greiner et al. [16]
introduced new safety systems multi-objective optimum design methodology (based
on fault trees evaluated by the weight method) using not only the standard NSGA-II
but also the Strength Pareto Evolutionary Genetic Algorithm (SPEA2) and the controlled
elitist-NSGA-II, with minimum unavailability and cost criteria. Salazar et al. [17] developed
a formulation to solve several optimal system design problems. They used the NSGA-II
to achieve maximum reliability and minimum cost. Limbourg and Kochs [18] applied
a specification method originating from software engineering named Feature Modelling
and a NSGA-II with an external repository. They maximised the life distribution and

231



Mathematics 2021, 9, 1751

minimised the system cost. Kumar et al. [19] proposed a multi-objective formulation of
multi-level redundancy allocation optimisation problems and a methodology to solve them.
They proposed a hierarchical Genetic Algorithm framework by introducing hierarchical
genotype encoding for design variables. Not only the NSGA-II but also the SPEA2
Multi-objective Evolutionary Algorithm were used, considering reliability and cost as
objective functions. Chambari et al. [20] modelled the redundancy allocation problem
taking into account non-repairable series-parallel systems, non-constant failure rates and
imperfect switching of redundant cold-standby components. They used NSGA-II as
well as Multi-objective Particle Swarm Optimisation (MOPSO) to solve the problem with
reliability and cost as objective functions. Safari [21] proposes a variant of the NSGA-II
method to solve a novel formulation for redundancy allocation. He considered for the
redundancy strategy both active and cold-standby redundancies with reliability and cost
as objective functions. Ardakan et al. [22] solved the redundancy allocation by using mixed
redundancies combining both active and cold-standby redundancies. Under this approach,
the redundancy strategy is not predetermined. They studied reliability and cost as objective
functions using the NSGA-II method. Ghorabaee et al. [23] considered reliability and cost
as objective functions to solve the redundancies allocation problem using NSGA-II. They
introduced modified methods of diversity preservation and constraints handling. Amiri
and Khajeh [24] considered repairable components to solve the redundancy allocation
problem in a series-parallel system. They used the NSGA-II method with availability and
cost as objective functions. Jahromi and Feizabadi [25] presented a formulation for the
redundancy allocation of non-homogeneous components considering reliability and cost
as objective functions. The NSGA-II method was used to achieve the Pareto optimal front.
Kayedpour et al. [26] developed an integrated algorithm to solve reliability design problems
taking into account instantaneous availability, repairable components and a selection of
configuration strategies (parallel, cold or warm) based on Markov processes and the
NSGA-II method. As objective functions, they considered availability and cost. Sharifi
et al. [27] presented a new multi-objective redundancy allocation problem for systems
where the subsystems were considered weighted-k-out-of-n parallel. They used NSGA-II
with reliability and cost as objective functions. Chambari et al. [28] proposed a bi-objective
simulation-based optimisation model to redundancy allocation in series-parallel systems
with homogeneous components to maximise the system reliability and minimise the cost
and using NSGA-II. They considered optimal component types, the redundancy level, and
the redundancy strategy (active, cold standby, mixed or K-mixed) with imperfect switching.

Other Multi-objective evolutionary and bio-inspired methods have been used in a
lesser measure. Zhao et al. [29] optimised the design of series-parallel systems using
the Ant Colony Algorithm in a multi-objective approach, considering reliability, cost
and weight as objective functions. Chiang and Chen [30] proposed a Multi-objective
Evolutionary Algorithm based on simulated annealing to solve the availability allocation
and optimisation problem of a repairable series-parallel system. They applied their algorithm
to two study cases presented in references [31] (with objective functions availability and cost)
and [9]. Khalili-Damghani et al. [32] proposed a novel dynamic self-adaptive Multi-objective
Particle Swarm Optimisation method to solve two-states reliability redundancy allocation
problems. They contemplated reliability, cost and weight as objective functions. Jiansheng
et al. [33] proposed an Artificial Bee Colony Algorithm to solve the redundancy allocation
problem for repairable series-parallel systems where uncertainty in failure rates, repair
rates and other relative coefficients involved were considered. They used availability and
cost as objective functions. Samanta and Basu [34] proposed an Attraction-based Particle
Swarm Optimisation to solve availability allocation problems for systems with repairable
components, where they introduced fuzzy theory to manage uncertainties. They used
availability and cost as objective functions.
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2.2. Preventive Maintenance Strategy Optimisation

Improving the Reliability or Availability for series-parallel systems through the
preventive maintenance strategy has been widely studied using Multi-objective Evolutionary
Algorithms, too. Many authors used Genetic Algorithms as an optimisation method.
Muñoz et al. [35] presented an approach based on Genetic Algorithms and focused on
the global and constrained optimisation of surveillance and maintenance of components
based on risk and cost criteria. Marseguerra et al. [36] coupled Genetic Algorithms and
Monte Carlo simulation in order to optimise profit and availability. The Monte Carlo
simulation was used to model system degradation while the Genetic Algorithm was
used to determine the optimal degradation level beyond which preventive maintenance
has to be performed. Gao et al. [37] studied the flexible job shop scheduling problem
with availability constraints affecting maintenance tasks. They used a Genetic Algorithm
looking for minimum makespan (time that elapses from the start of work to the end),
time expended on a machine and the total time expended on all machines. Sánchez
et al. [38] used Genetic Algorithms for the optimisation of testing and maintenance
tasks with unavailability and cost as objective functions. They considered the epistemic
uncertainty in relation to imperfect repairs. Wang and Pham [39] used a Genetic Algorithm
to estimate the preventive maintenance interval allowing for imperfect repairs and the
number of preventive maintenance activities before component needs to be replaced. They
used availability and cost as objective functions. Ben Ali et al. [40] developed an elitist
Genetic Algorithm to deal with the production and maintenance-scheduling problem,
minimising makespan and cost. Gao et al. [5] studied preventive maintenance considering
the dynamic interval for multi-component systems. They solved the problem using Genetic
Algorithms with availability and cost as objective functions. An et al. [41] built a novel
integrated optimisation model including the flexible job-shop scheduling problem to reduce
energy consumption in the manufacturing sector. They considered degradation effects and
imperfect maintenance. They proposed a Hybrid Multi-objective Evolutionary Algorithm
taking into account the makespan, total tardiness, total production cost and total energy
consumption as objective functions. Bressi et al. [42] proposed a methodology to minimise
the present value of the life cycle maintenance costs and maximise the life cycle quality
level of the railway track-bed considering different levels of reliability. They used a Genetic
Algorithm to achieve optimal solutions.

The use of the NSGA-II algorithm and other non-dominated criterion-based approaches
has been extensive with applications ranging across the years 2005-2021. Martorell et al. [43]
proposed a methodology to take decisions and determine technical specifications and
maintenance looking for increasing reliability, availability and maintainability. They used
SPEA2 as an optimisation method. Oyarbide-Zubillaga et al. [44] coupled Discrete Event
Simulation and Genetic Algorithms (NSGA-II) to determine the optimal frequency for
preventive maintenance of systems under cost and profit criteria. Berrichi et al. [45]
proposed a new method to deal with simultaneous production and maintenance scheduling.
They used the Weighted Sum Genetic Algorithm (WSGA) and NSGA-II as optimisation
methods to compare their performances. They worked with makespan and unavailability
due to maintenance tasks as objective functions. Moradi et al. [46] studied simultaneous
production and preventive maintenance scheduling to minimise the global time invested
in production tasks and unavailability due to preventive maintenance activities. They used
four Genetic Algorithms: NSGA-II, NRGA (Non-ranking Genetic Algorithm), CDRNSGA-II
(NSGA-II with Composite Dispatching Rule and active scheduling) and CDRNRGA (NRGA
with Composite Dispatching Rule and active scheduling). Hnaien and Yalaoui [47]
considered a similar problem, minimising the makespan and the delay between the
real and the theoretical maintenance frequency for two machines. They used NSGA-II
and SPEA2, including two new versions based on the Johnson Algorithm. Wang and
Liu [48] considered the optimisation of parallel-machine-scheduling integrated with two
kinds of resources (machines and moulds) and preventive maintenance planning. They
used makespan and availability as objective functions and NSGA-II as an optimisation
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method. Piasson et al. [49] proposed a model to solve the problem of optimising the
reliability-centred maintenance planning of an electric power distribution system. They
used NSGA-II to achieve the Pareto optimal front and, as objective functions, they minimised
the cost due to maintenance activities and maximised the index of reliability of the whole
system. Sheikhalishahi et al. [50] presented an open shop scheduling model that considers
human error and preventive maintenance. They considered three objective functions: human
error, maintenance and production factors. They used NSGA-II and SPEA2 as optimisation
methods. As well as that, they used another Evolutionary Algorithm, the Multi-Objective
Particle Swarm Optimisation (MOPSO) method. Boufellouh and Belkaid [51] proposed
a bi-objective model that determines production scheduling, maintenance planning and
resource supply rate decisions in order to minimise the makespan and total production costs
(including total maintenance, resource consumption and resource inventory costs). They
used NSGA-II and BOPSO (Bi-Objective Particle Swarm Optimization) as Evolutionary
Optimisation Algorithms. Zang and Yang [52] proposed a multi-objective model of
maintenance planning and resource allocation for wind farms using NSGA-II. They
considered the implementation of maintenance tasks using the minimal total resources and
at the minimal penalty cost.

Other Multi-objective Evolutionary methods have been used. Berrichi et al. [53] solved
the joint production and preventive maintenance-scheduling problem using the Ant Colony
Algorithm with availability and cost as objective functions. Suresh and Kumarappan [54]
presented a model for the maintenance scheduling of generators using hybrid Improved
Binary Particle Swarm Optimisation (IBPSO). As objective functions, they used a reduction
in the loss of load probability and minimisation of the annual supply reserve ratio deviation
for a power system. Li et al. [55] presented a novel Discrete Artificial Bee Colony Algorithm
for the flexible job-shop scheduling problem considering maintenance activities. They used
as objective functions the makespan, the total workload of machines and the workload of
the critical machine.

2.3. Redundancy Allocation and Preventive Strategy Optimisation

Therefore, it is possible to improve the availability of repairable systems by dealing
with their design and employing a preventive maintenance strategy. However, only a
few works have been developed to look at the simultaneous optimisation of both from a
multi-objective point of view. In Galván et al. [56], a methodology for Integrated Safety
System Design and Maintenance Optimisation based on a bi-level evolutionary process
was presented. While the inner loop is devoted to searching for the optimum maintenance
strategy for a given design, the outer loop searches for the optimum system design.
They used Genetic Algorithms as an optimisation method and cost and unavailability as
objective functions. Okasha and Frangopol [57] considered the simultaneous optimisation
of design and maintenance during the life cycle using Genetic Algorithms. They studied
system reliability, redundancy and life-cycle cost as objective functions. Adjoul et al. [58]
described a new approach to simultaneous optimisation of design and maintenance
of multi-component industrial systems improving their performances with reliability
and cost as objective functions. They used a two level Genetic Algorithm; the first
optimises the design based on reliability and cost, and the second optimises the dynamic
maintenance plan.

This work studies the simultaneous optimisation of design and preventive maintenance
strategy coupling Multi-objective Evolutionary Algorithms and Discrete Simulation: a technique
that has achieved good results in the Reliability field. Coupling Multi-objective Evolutionary
Algorithms with Discrete Simulation has been studied, on the one hand, to supply redundancy
allocation [10] and, on the other hand, to determine the preventive maintenance strategy [36,44].
Moreover, only a few works have been developed looking at design and corrective
maintenance strategy simultaneously [59,60]. Nevertheless, to the knowledge of the authors
of this work, coupling Multi-objective Evolutionary Algorithms and Discrete Simulation has
not yet been explored for both joint optimisation of the design and preventive maintenance
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strategy as in the current study where, additionally, a variety of encoding schemes were
considered in the analysis. In the studies cited in the present literature review, some used
real encoding, while others used binary or integer encoding; however, not one of them
studied the possible impact of such encoding schemes on performance. Moreover, an
accuracy experiment is developed in the present paper, including the time unit needed
to carry out the preventive maintenance activities. As shown in the above literature
review, NSGA-II is one of the state-of-the-art Multi-objective Evolutionary Algorithms
more commonly used to deal with redundancy allocation and scheduling preventive
maintenance problems. Therefore, this method is thorough explored in the present paper.

3. Methodology and Description of the Model

3.1. Extracting Availability and Cost from Functionability Profiles

Availability can be computed by using the unconditional failure w(t) and repair v(t)
intensities, as is explained in Ref. [2]. These are described by the following Equation (1),
where f (t) is the failure density function of a system,

∫ t
0 f (t − u)v(u)du is the failure

probability of the cited system in interval [0, t) having worked continuously since being
repaired in [u, u+ du) given that it was working at t = 0 and

∫ t
0 g(t− u)w(u)du is the repair

probability in interval [0, t), given that it has been in the failed state since the previous
failure in [u, u + du) and that it was working at t = 0.

w(t) = f (t) +
∫ t

0
f (t − u)v(u)du

v(t) =
∫ t

0
g(t − u)w(u)du

(1)

When the system devices have exponential failure and repair intensities (constant
failure and repair rates), it is not relatively straightforward to find its availability using
the solutions of Equation (1). However, when the system devices do not have exponential
failure and/or repair intensities, finding the system availability using Equation (1) is
difficult, so a simulation approach may be more suitable. In this paper, the system
availability is characterised in a simulation approach by using the system Functionability
Profile, a concept introduced by Knezevic [7] and defined as the inherent capacity of
systems to achieve the required function under specific features when they are used as
specified. Speaking in general, all systems achieve their function at the beginning of their
lives. However, irreversible changes occur over time and variations in system behaviour
happen. The deviation of the variations in relation to the satisfactory features reveals the
occurrence of system failure, which causes the transition from operating state to failure
state. After failing, recovery activities (corrective maintenance) can recover its capacity to
fulfil the required function when the system is repairable.

Additional tasks to maintain the operating status could be carried out. These are
called preventive maintenance activities. These are generally less complex than a repair
and should be done prior to failure. From the Functionability Profile point of view, the
states of a repairable system fluctuate between operation and failure over the mission
time. The shape of cited changes is called the Functionability Profile because it shows
the states over the mission time. Therefore, Functionability Profiles depend on operation
times (either Time To Failure or Time To Start a scheduled Preventive Maintenance activity)
(t f 1, t f 2, ..., t f n) and recovery times (either Time To Repair after failure or Time To Perform
a scheduled Preventive Maintenance activity) (tr1, tr2, ..., trn). It is obvious that, after a
period of operation, a period of recovery is needed.

In the present paper, the system Functionability Profile is built by using Discrete Event
Simulation in a simulation approach as will be explained later. Once known, the system
Functionability Profile will be able to compute the system Availability through the relation
between the system operation times and the system recovery times. The system will be able
to fulfil its purpose during t f times, so it is possible to evaluate its Availability at mission
time by using Equation (2).
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A =

n

∑
i=1

t f i

n

∑
i=1

t f i +
m

∑
j=1

trj

(2)

where:

• n is the total number of operation times,
• t f i is the i-th operation time in hours (Time To Failure or Time To Start a Preventive

Maintenance activity),
• m is the total number of recovery times,
• trj is the j-th recovery time in hours (Time To Repair or Time To Perform a Preventive

Maintenance activity).

Operation and recovery times are random variables so they may be treated statistically.
They can be defined as probability density functions through their respective parameters.
There are several databases such as OREDA [61], which supply the characteristic parameters
for the referred functions, so operation and recovery times can be characterised for system
devices. When systems are operating, earnings are generated due to the availability of the
system. Conversely, when systems have to be recovered, economic cost is invested in order
to regain the operation status. In this paper, the economic cost is a variable directly related
to recovery times, which are related to corrective and preventive maintenance activities;
quantities computed by Equation (3).

C =
q

∑
i=1

cci +
p

∑
j=1

cpj (3)

where:

• C is the system operation cost quantified in economic units,
• q is the total number of corrective maintenance activities,
• cci is the cost due to the i-th corrective maintenance activity,
• p is the total number of preventive maintenance activities,
• cpj is the cost due to the j-th preventive maintenance activity.

In this work, costs derived from maintenance activities depend on fixed quantities per
hour (corrective and preventive) so the global cost is directly related to the recovery times.
Preventive maintenance activities are scheduled shutdowns so recovery times will be
shorter and more economical than recovery times due to corrective maintenance activities
(for reasons explained before, such as access to human personnel who are willing and/or
trained, and/or the availability of spare parts). It will be necessary to carry out preventive
maintenance activities to avoid long recovery times. These should ideally be done before
the failure but as close as possible to it. Therefore, the basic Functionability Profile of
the system (i.e., the system Functionability Profile, which represents the continuous cycle
of failure-repair within the mission time, without considering preventive maintenance
activities) should be modified by including preventive maintenance activities for system
devices. This approach makes it possible to maximise the system Availability and minimise
the costs due to recovery times.

3.2. Building Functionability Profiles to Evaluate the Objective Functions

It is necessary to characterise both the system Availability and the Cost from the
system Functionability Profile in order to optimise the system design and preventive
maintenance strategy. The Functionability Profiles of all system devices are built by using
Discrete Event Simulation. Finally, the system Functionability Profile is built from these
Functionability Profiles. With this purpose, it is necessary to have information about how to
characterise operation Times To Failure (TF) and Times To Repair after failure (TR), which
are related to the parameters of their probability density functions. The Functionability
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Profiles for system devices are built by generating random times, which are obtained from
the respective probability density functions, both for Times To Failure (TF) and Times
To Repair (TR). In order to modify the Functionability Profiles relating to the preventive
maintenance activities, Times To Start a Preventive Maintenance (TP) have to be used.
This information is supplied via each solution provided by the behaviour Algorithm (each
individual of the population) which is used to build the Functionability Profile of each
device through Discrete Simulation. Moreover, recovery times in relation to the preventive
maintenance activities or Times To Perform a Preventive Maintenance activity (TRP) have
to be introduced by generating random times within the limits previously fixed. The
process is explained below:

1. System mission time must be defined and then, the process continues for all devices.
2. The device Functionability Profile (PF) must be initialised.
3. The Time To Start a Preventive Maintenance activity (TP) proposed by the Multi-objective

Evolutionary Algorithm is extracted from the individual (candidate solution) that is
being evaluated and a Time To Perform a Preventive Maintenance activity (TRP) is
randomly generated, within the limits previously fixed.

4. With reference to the failure probability density function related to the device, a Time
To Failure (TF) is randomly generated, within the limits previously fixed.

5. If TP < TF, the preventive maintenance activity is performed before the failure. In
this case, as many operating times units as TP units followed by as many recovery
times units as TRP units are added to the device Functionability Profile. Each time
unit represented in this way (both operating times and recovery times) is equivalent
to one hour, day or week of real time, depending on the accuracy level chosen.

6. If TP > TF, the failure occurs before carrying out the preventive maintenance activity.
In this case, taking into consideration the repair probability density function related
to the device, the Time To Repair after the failure (TR) is randomly generated, within
the limits previously fixed. Then, as many operating times units as TF units followed
by as many recovery times units as TR units are added to the device Functionability
Profile. Each time unit represented in this way (both operating times and recovery
times) is equivalent to one hour, day or week of real time, depending on the accuracy
level chosen.

7. Steps 4 to 6 have to be repeated until the end of the device mission time.
8. Steps 2 to 7 have to be repeated until the construction of the Functionability Profiles

of all devices.
9. After building the Functionability Profiles of the devices, the system Functionability

Profile is built by referring to the series (AND) or parallel (OR) distribution of the
system devices.

Once the system Functionability Profile is built, the values of the objective functions
can be computed by using both Equation (2) (evaluating the system Availability in relation
to the time in which the system is operating and being recovered) and Equation (3)
(evaluating the system operation Cost depending on the cost of the time units in relation to
the development of corrective or preventive maintenance).

3.3. Multi-Objective Optimisation Approach

The optimisation method used, the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) belongs to the Evolutionary Algorithms (EA) paradigm. These kind of methods
use a population of individuals with a specific size. Each individual is a multidimensional
vector, called a chromosome, representing a possible candidate solution to the problem,
while the vector components are called genes or decision variables. NSGA-II uses the
concept of Pareto dominance as the basis of its selection criterion. Extended information on
Evolutionary Optimisation Algorithms can be found in Ref. [3] and related to Multi-objective
Evolutionary Algorithms in Ref. [62]. In this work, each individual in the population
consists of a string (of real numbers or integers, depending on the encoding used, with
values between 0 and 1) in which the system design alternatives and the periodic Times
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To Start a Preventive Maintenance activity related to each device included in the system
design is codified. Optimisation problems can be minimised or maximised for one or more
of the objectives. In most cases, real world problems present various objectives in conflict
with each other. These problems are called “Multi-objective” and their solutions arise
from a solutions set which represents the best compromise among the objectives (Pareto
optimal set) [62,63]. These kind of problems are described by Equation (4) (considering a
minimisation problem) [3].

min
x

f (x) = min
x

[ f1(x), f2(x), ..., fk(x)] (4)

In problems defined in this way, the k functions have to be minimised simultaneously.
In the present paper, the objective functions are, on the one hand, the system Availability
(first objective function, which is maximised and which is mathematically expressed by
Equation (2); maximising Availability is similar to minimise Unavailability) and, on the
other hand, the operation Cost (second objective function, which is minimised and which
is mathematically expressed by Equation (3)).

4. The Case Study

The case study is based on the case presented in Ref. [6]. It consists of simultaneously
optimising the design and the preventive maintenance strategy for an industrial fluid
injection system, which is composed of cut valves (Vi) and impulsion pumps (Pi), taking
Availability and operation Cost as objective functions. The desired outcome is maximum
Availability and minimum operation Cost. The higher the investment in preventive
maintenance, the better the system Availability. Conversely, this policy implies the growth
of unwanted Cost. The system scheme is shown in Figure 1.

Figure 1. Case study: fluid injection system.

Some considerations are taken as follows:

• The number of redundant devices is limited as shown in Figure 1,
• two states are considered for each device: operation or failed state,
• the devices are independent of each other,
• a repair starts just after the failure of the device,
• a repair returns the device to the as-good-as-new state.

The data used in this work are shown in Table 1. Extended information regarding the
parameters is supplied in Appendix A.
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Table 1. Data set for system devices.

Parameter Value Source

Life Cycle 700,800 h -
Corrective Maintenance Cost 0.5 units Machinery & Reliability Institute
Preventive Maintenance Cost 0.125 units Machinery & Reliability Institute
Pump TFmin 1 h Machinery & Reliability Institute
Pump TFmax 70,080 h Machinery & Reliability Institute
Pump TF λ 159.57 × 10−6 h OREDA 2009
Pump TRmin 1 h Machinery & Reliability Institute
Pump TRmax 24.33 h μ + 4σ
Pump TR μ 11 h OREDA 2009
Pump TR σ 3.33 h (μ – TRmin)/3
Pump TPmin 2920 h Machinery & Reliability Institute
Pump TPmax 8760 h Machinery & Reliability Institute
Pump TRPmin 4 h Machinery & Reliability Institute
Pump TRPmax 8 h Machinery & Reliability Institute
Valve TFmin 1 h Machinery & Reliability Institute
Valve TFmax 70,080 h Machinery & Reliability Institute
Valve TF λ 44.61 × 10−6 h OREDA 2009
Valve TRmin 1 h Machinery & Reliability Institute
Valve TRmax 20.83 h μ + 4σ
Valve TR μ 9.5 h OREDA 2009
Valve TR σ 2.83 h (μ – TRmin)/3
Valve TPmin 8760 h Machinery & Reliability Institute
Valve TPmax 35,040 h Machinery & Reliability Institute
Valve TRPmin 1 h Machinery & Reliability Institute
Valve TRPmax 3 h Machinery & Reliability Institute

The data were obtained from specific literature [61], expert judgement (based on
professional experience from the Machinery & Reliability Institute (MRI), Alabama, USA)
and mathematical relations. In this sense, the TR σ for valves and pumps were set in
relation to the μ of their respective normal distribution functions and their TRmin previously
established. In relation to the TRmax, it is known that 99.7% of the values of a normally
distributed variable are included in the interval μ± 3σ. The interval was extended to μ± 4σ,
taking into account anecdotal further values. As shown above, optimisation objectives
consist of maximising the system Availability and minimising the operation Cost due
unproductive system phases (both because the system is being repaired and because the
system is being maintained). To do that:

• It is necessary to establish the optimum period to perform a preventive maintenance
activity for the system devices, and

• It is necessary to decide whether to include redundant devices such as P2 and/or
V4 by evaluating design alternatives. Including redundant devices will improve the
system Availability but it will also increase the system operation Cost.

5. Description of the Experiments Carried Out

Two sets of experiment comparisons have been developed: first, comparing several
encodings (real, binary and gray), and second, comparing several accuracies in the binary
encoding. Finally, a description of the NSGA-II configuration is shown in the last subsection.

5.1. Comparing Encodings

From the optimisation point of view, it was explained before that the Evolutionary
Algorithm (EA) uses a population of individuals called chromosomes, which represent
possible solutions to the problem through their decision variables. The encoding of the
system parameters is a crucial aspect of the algorithm. This has a significant influence on
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whether or not the algorithm works [3]. In the present paper, we intend to check whether
there is a significant difference between the performances of the different encodings.
Depending on the encoding type, each individual is codified as follows:

• Real encoding: This is formed by strings of real numbers (with 0 as a minimum
value and 1 as a maximum value) following the shape [B1 B2 T1 T2 T3 T4 T5 T6 T7].
The presence of redundant devices, P2 and V4, is defined by B1 and B2, respectively,
and the optimum Time To Start a Preventive Maintenance activity in relation to each
system device is represented by T1 to T7. The values of the decision variables must
be scaled and rounded, i.e., B1 and B2 are rounded to the nearest integer (0 implies
that the respective device is not selected whereas 1 implies the opposite). T1 to T7
are scaled among the respective TPmin and TPmax (depending on the type of device)
and rounded to the nearest integer using Equation (5), where TP is the true value
of the Time To Start a Preventive Maintenance activity, measured in hours (e.g., the
decision variable T1 represents the Time To Start a Preventive Maintenance for the
valve V1 whose TPmin and TPmax has a value of 8760 h and 35,040 h, respectively. If
the value of the decision variable T1 is 0.532, the value of the Time To Start a Preventive
Maintenance activity will be 8760 + 0.532 · (35,040 − 8760) ≈ 22,741) h.

TP = round(TPmin + X · (TPmax − TPmin)) (5)

• Binary encoding: This is formed by strings of binary numbers that vary between 0
and 1, where the total number of bits is 103 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the respective device is not selected whereas 1 implies the opposite).

2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the respective device is not selected whereas 1 implies the opposite).

3. T3 to T17: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax is needed. TPmin has a value of 8760 h and TPmax has a value of
35,040 h so 35, 040 − 8760 = 26, 280 steps needed, where the step 0 represents a
time of 8760 h and the step 26,279 represents a time of 35,040 h. A binary scale
with at least 26,280 steps involves using 15 bits (as 26,280 steps lies between
214 = 16, 384 and 215 = 32, 768). Since 26,280 steps are needed and 32,768 are
possible on the scale, an equivalent relation must be used. Each step in the scale
of 32,768 steps represents 26, 768 ÷ 32, 768 = 0.8020019531 steps in the scale
of 26,768 steps. Therefore, it is possible to calculate the true Time To Start a
Preventive Maintenance activity (in hours) using the scale change shown by
Equation (6), where B represents the decimal value of the binary string T3 to
T17 (e.g., if the values of the decision variables in binary encoding are 1 0 1 1 0
1 1 0 0 0 1 1 1 0 1, the decimal value in the scale of 32,768 steps will be 23,325.
If 26,768 steps are scaled, the number achieved is 23, 325 × 0.8020019531 ≈
18, 707 steps. Therefore, the true Time To Start a Preventive Maintenance activity
amounts to 18,707 + 8760 = 24,467 h).

TP = round(TPmin + B · (0.8020019531)) (6)

4. T18 to T30: These denote the Time To Start a Preventive Maintenance activity
to the pump P2. A binary scale that allows representation of the numbers
from TPmin to TPmax in needed. TPmin has a value of 2920 h and TPmax has
a value of 8760 h so 8760 − 2920 = 5840 steps needed, where the step 0
represents the time of 2920 h and the step 5839 represents the time of 8760 h.
A binary scale with at least 5840 steps involves using 13 bits (as 5840 steps
lies between 212 = 4096 and 213 = 8192). Since 5840 steps are needed and
8142 are possible on the scale, an equivalent relation must be used. Each step
in the scale of 8142 represents 5840 ÷ 8192 = 0.712890625 steps on a scale of
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5840 steps. Therefore, it is possible to calculate the true Time To Start a Preventive
Maintenance activity (hours) using the scale change shown by Equation (7),
where B represents the decimal value of the binary string T18 to T30 (e.g., if the
values of the decision variables in binary encoding are 1 0 1 1 0 1 1 0 0 0 1 1 1, the
value on a scale of 8192 steps will be 5831. If 5840 steps are scaled, the number
achieved is 5831 × 0.712890625 ≈ 4157 steps. Therefore, the true Time To Start a
Preventive Maintenance activity amounts to 4157 + 2920 = 7077 h).

TP = round(TPmin + B · (0.712890625)) (7)

5. T31 to T43: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T44 to T58: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T59 to T73: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T74 to T88: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

9. T89 to T103: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

• Gray encoding: When binary encoding is used, close numbers could bring big scheme
modifications (e.g., the code for 15 is 0 1 1 1 while the code for 16 is 1 0 0 0, which
represents changes in four (all) bits). Conversely, very similar numbers can represent
numbers that are very apart (e.g., the code for 0 is 0 0 0 0 while the code for 16 is 1 0 0
0). In addition to standard binary encoding, Gray encoding is used. Gray code is a
binary code where the difference among neighbouring numbers always differs by one
bit [64–66].

Therefore, the performance of real, standard binary and Gray encodings can be compared.

5.2. Comparing Accuracies

Once the encoding experiment had been developed, a second experiment was executed.
This consisted of studying the possible impact of the size of the chromosome. In the
encoding experiment, the hour was utilised by the chromosomes as a measure of time. In
this case, based on the idea that the exact hour to develop a preventive maintenance task is
not necessary, the day and the week were used as measures of time. Therefore, in these
cases, the solution regarding preventive maintenance strategy consisted of supplying the
Time To Start a Preventive Maintenance activity with the day or the week as a time unit,
respectively. The consequence was a reduction in the size of the chromosome, which was
applied to the binary encoding as follows:

• Binary encoding—Days: This is formed by strings of binary numbers that vary
between 0 and 1, where the total number of bits is 73 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

3. T3 to T13: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in days as a time unit is needed. TPmin has a value of
8760 h (equivalent to 365 days) and TPmax has a value of 35,040 h (equivalent to
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1460 days) so 1460 − 365 = 1095 steps needed, where the step 0 represents the
time of 365 days and the step 1094 represents the time of 1460 days. A binary
scale with at least 1095 steps involves using 11 bits (due to the fact that 1095 steps
lies between 210 = 1024 and 211 = 2048). Since 1095 steps are needed and 2048
are possible on the scale, an equivalent relation must be used. Each step on the
scale of 2048 steps represents 1095 ÷ 2048 = 0.5346679688 steps on a scale of
1095 steps. Therefore, it is possible to achieve the true Time To Start a Preventive
Maintenance activity (days) using the scale change shown by Equation (8), where
B represents the decimal value of the binary string T3 to T13 (e.g., if the values
of the decision variables in binary encoding are 1 0 1 1 0 1 1 0 0 0 1, the decimal
value on the scale of 2048 steps will be 1457. Scaling to a scale of 1095 steps, the
number achieved is 1457 × 0.5346679688 ≈ 779 steps. Therefore, the true Time
To Start a Preventive Maintenance activity amounts to 779 + 365 = 1144 days).

TP = round(TPmin + B · (0.5346679688)) (8)

4. T14 to T21: These denote the Time To Start a Preventive Maintenance activity to
the pump P2. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in days as a time unit is needed. TPmin has a value
of 2920 h (equivalent to 122 days) and TPmax has a value of 8760 (equivalent
to 365 days) so 365 − 122 = 243 steps needed, where the step 0 represents the
time of 122 days and the step 242 represents the time of 365 days. A binary scale
with at least 243 steps involves using 8 bits (as 243 steps lies between 27 = 128
and 28 = 256). Since 243 steps are needed and 256 are possible on the scale, an
equivalent relationship must be used. Each step in the scale of 256 represents
243 ÷ 256 = 0.94921875 steps in the scale of 243 steps. Therefore, it is possible to
achieve the true Time To Start a Preventive Maintenance activity (days) using
the scale change shown by Equation (9), where B represents the decimal value of
the binary string T14 to T21 (e.g., if the values of the decision variables in binary
encoding are 1 0 1 1 0 1 1 0, the value on the scale of 256 steps will be 182). Scaling
to a scale of 243 steps, the number achieved is 182 × 0.94921875 ≈ 173 steps.
Therefore, the true Time To Start a Preventive Maintenance activity amounts to
173 + 122 = 295 days).

TP = round(TPmin + B · (0.712890625)) (9)

5. T22 to T29: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T30 to T40: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T41 to T51: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T52 to T62: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

9. T63 to T73: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

• Binary encoding—Weeks: It is formed by strings of binary numbers that vary
between 0 and 1, where the total number of bits is 54 and they are:

1. B1: This denotes the presence of the pump P2 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).
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2. B2: This denotes the presence of the valve V4 in the system design (0 implies
that the device is not selected whereas 1 implies the opposite).

3. T3 to T10: These denote the Time To Start a Preventive Maintenance activity to
the valve V1. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in weeks as a time unit is needed. TPmin has a value
of 8760 h (equivalent to 52 weeks) and TPmax has a value of 35,040 h (equivalent
to 209 weeks) so 209 − 52 = 157 steps needed, where step 0 represents a
time of 52 weeks and step 156 represents a time of 209 weeks. A binary
scale with at least 157 steps involves using 8 bits (as 157 steps lies between
27 = 128 and 28 = 256). Since 157 steps are needed and 256 are possible on
the scale, an equivalent relationship must be used. Each step on a 256-steps
scale represents 157 ÷ 256 = 0.61328125 steps on the 157-steps scale. Therefore,
it is possible to achieve the true Time To Start a Preventive Maintenance activity
(weeks) using the scale change shown by Equation (10), where B represents the
decimal value of the binary string T3 to T10 (e.g., if the values of the decision
variables in binary encoding are 1 0 1 1 0 1 1 0, the decimal value in the scale of
256 steps will be 182. Working with a scale of 157 steps, the number achieved
is 182 × 0.61328125 ≈ 112 steps. Therefore, the true Time To Start a Preventive
Maintenance activity amounts to 112 + 52 = 164 weeks).

TP = round(TPmin + B · (0.61328125)) (10)

4. T11 to T16: These denote the Time To Start a Preventive Maintenance activity to
the pump P2. A binary scale that allows representation of the numbers from
TPmin to TPmax expressed in weeks as a time unit is needed. TPmin has a value
of 2920 h (equivalent to 17 weeks) and TPmax has a value of 8760 (equivalent
to 52 weeks) so 52 − 17 = 35 steps needed, where step 0 represents the time
of 17 weeks and step 34 represents the time of 52 weeks. A binary scale with
at least 35 steps involves using 6 bits (as 35 steps lies between 25 = 32 and
26 = 64). Since 35 steps are needed and 64 are possible on the scale, an equivalent
relationship must be used. Each step on the scale of 64-steps scale represents
35 ÷ 64 = 0.546875 steps in the 35-steps scale. Therefore, it is possible to achieve
the true Time To Start a Preventive Maintenance activity (weeks) using the
scale change shown by Equation (11), where B represents the decimal value
of the binary string T11 to T16 (e.g., if the values of the decision variables in
binary encoding are 1 0 1 1 0 1, the value in the scale of 64 steps will be 45.
Scaling on the 35-steps scale, the number achieved is 45 × 0.546875 ≈ 25 steps.
Therefore, the true Time To Start a Preventive Maintenance activity amounts to
45 + 17 = 62 weeks).

TP = round(TPmin + B · (0.546875)) (11)

5. T17 to T22: These denote the Time To Start a Preventive Maintenance activity to
the pump P3. The behaviour of its encoding is similar to the behaviour explained
for the pump P2.

6. T23 to T30: These denote the Time To Start a Preventive Maintenance activity to
the valve V4. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

7. T31 to T38: These denote the Time To Start a Preventive Maintenance activity to
the valve V5. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

8. T39 to T46: These denote the Time To Start a Preventive Maintenance activity to
the valve V6. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.
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9. T47 to T54: These denote the Time To Start a Preventive Maintenance activity to
the valve V7. The behaviour of its encoding is similar to the behaviour explained
for the valve V1.

5.3. NSGA-II Configuration

The parameters used to configure the NSGA-II evolutionary process are shown in
Table 2.

Table 2. Parameters to configure the evolutionary process.

Method Encoding Crossover Time Unit Population PrM disM PrC disC

NSGA-II

Real SBX Hour 50-100-150 0.5-1-1.5 20 1 20
Standard Binary 1 point (1PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray 1 Point (1PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray 2 Point (2PX) Hour 50-100-150 0.5-1-1.5 - 1 -
Gray Uniform (UX) Hour 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 1 Point (1PX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Day 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 1 Point (1PX) Week 50-100-150 0.5-1-1.5 - 1 -
Standard Binary 2 Point (2PX) Week 50-100-150 0.5-1-1.5 - 1 -
Standard Binary Uniform (UX) Week 50-100-150 0.5-1-1.5 - 1 -

Depending on the encoding applied, specific parameters have to be set, which are
described below:

• Crossover: Type of crossover during the evolutionary process. The Simulated Binary
Crossover (SBX) is used for real encoding while one point (1PX), two point (2PX) and
uniform crossover (UX) are used for binary and Gray encodings.

• Population size (N): The population sizes used are 50, 100 and 150 individuals.
• Mutation Probability (PrM): This is the expectation of the number of genes mutating.

The central value is equivalent to 1/decision variables (for the case study, the number
of decision variables is 9 using real encoding, 103 using standard and Gray encoding
with the hour as a time unit, 73 using standard binary encoding with the day as a time
unit and 54 using standard binary encoding with the week as a time unit). Two more
probabilities, one above and the other below the central value (1.5/decision variables
and 0.5/decision variables, respectively) are set.

• Mutation Distribution (disM): This is the mutation distribution index when the
Simulated Binary Crossover is used. It is set to the common value of 20.

• Crossover Probability (PrC): The probability of applying a crossover operator is set to
1 in all cases.

• Crossover Distribution (disC): The crossover distribution index when the Simulated
Binary Crossover is used. It is set to the common value of 20.

Each configuration was executed 10 times (for statistical purposes) with 10,000,000
evaluations used as the stopping criterion. Scale factors in relation to the value of the
objective functions were used with the purpose of achieving a dispersed non-dominated
front with the unit as maximum value. The values were obtained through a practical
approach in which the values of the scale factors are extracted from the values of the
objective functions when the optimisation process starts. This approach is based on the
assumption that the values of the objective functions will improve over the evolutionary
process. The scale factors were used as follows:

• The scale factor used to compute the Cost was 1700 economic units.
• The scale factor used to compute the system Unavailability was 0.003.
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Finally, a two dimensional reference point is needed to compute the Hypervolume
indicator. The cited point has to cover the values limited by the scale factors, which restricts
the values of the objective functions to a maximum of one. The reference point is set to (2,2).
The Software Platform PlatEMO [67] (programmed in MATLAB) is used to optimise the
application case. The Design and Maintenance Strategy analysis software (as explained in
Section 3) has been developed and implemented into the platform to solve the case study
shown in Section 4.

6. Results

Due to the complexity of the problem, a general-purpose calculation cluster was used
during the computational process. The cluster is composed of 28 calculation nodes and
one access node. Each calculation node consists of two Intel Xeon E5645 Westmere-EP
processors with 6 cores each and 48 GB of RAM memory, allowing 336 executions to be run
simultaneously.

Once the results were obtained, valuable information emerged. For each analysed
case, the following information is provided: Firstly, information related to the computational
process is given with the purpose of showing the complexity of the problem and computational
cost. It consists of the time taken for 10 executions of the nine configurations (three
population sizes and three mutation rates) related to each analysed case. Secondly, the
values of the main measures obtained for the final evaluation are shown. These measures
are the Average, Median, Minimum Value, Maximum Value and Standard Deviation of the
Hypervolume indicator [68] (HV). Thirdly, in order to establish the existence of significant
differences among the performance of the analysed case, a rigorous statistical analysis is
carried out. The Friedman’s test allows significant differences among results obtained to
be detected, and the null hypothesis (H0) to be rejected in that case. The p-value is a useful
datum, which represents the smallest significant value that can result in the rejection of H0.
The p-value provides information about whether a statistical hypothesis test is significant
(or not), and also indicates how significant the result is: The smaller the p-value (<0.05), the
stronger the evidence against the null hypothesis. Finally, the Hypervolume is computed
for the accumulated best non-dominated solutions obtained (the non-dominated front).
These represent the best equilibrium solutions among the objectives and the computational
procedure is described in Ref. [69].

Once the configurations had been ordered according to the Friedman’s test values,
one configuration of each analysed case was used for the final comparison taking two
experiments into consideration: one looking at encodings and the other looking at to
accuracy. In each case, additional information is given. The Hypervolume indicator
average value evolution (in ten executions) is shown for each configuration. Moreover,
box plots are given for the Hypervolume values distribution after the stopping criterion
is met. In addition, the Friedman’s test is used to detect significant differences among
the performance of the configurations for each experiment. Finally, the accumulated best
non-dominated solutions obtained (non-dominated front) are shown.

In Section 6.1, the results (of optimising the system that illustrate the case study)
obtained after using the NSGA-II with different encodings (Real, Standard Binary and
Gray) are presented; next, in Section 6.2 different accuracy levels of time (hours, days
and weeks) in the conditions explained above are analysed and finally, in Section 6.3, the
accumulated non-dominated designs are presented.

6.1. Encoding Experiment

The results of the Real encoding are presented first. Second, results of the binary
encoding are shown, followed by the results of the Gray encoding. Finally, a comparison of
the best performance cases of each codification is presented in Section 6.1.4.
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6.1.1. Real Encoding

The results of using real encoding with simulated binary crossover are shown below.
The computational time consumed is shown in Table 3. The average time represents the
computational time regarding each one of ten executions and nine different configurations
(real time consumed). The sequential time represents the computational time that would
have been needed in the case of not using the cluster. The computational time shows the
importance of using the cluster, which enables parallel processes.

Table 3. Computational time consumed.

Encoding Time Unit Average Time Sequential Time

Real SBX Hour 2 days, 18 h and 12 min. 8 months, 4 days, 23 h and 22 min.
Binary 1PX Hour 2 days, 18 h and 57 min. 8 months, 7 days, 18 h and 48 min.
Binary 2PX Hour 3 days, 2 h and 39 min. 9 months, 6 days, 5 h and 52 min.
Binary UX Hour 3 days and 39 min. 8 months, 29 days, 3 h and 8 min.
Gray 1PX Hour 2 days, 19 h and 35 min. 8 months, 10 days, 3 h and 23 min.
Gray 2PX Hour 2 days, 19 h and 56 min. 8 months, 11 days, 11 h and 29 min.
Gray UX Hour 2 days, 19 h and 40 min. 8 months, 10 days, 10 h and 34 min.

Total 2 days, 21 h and 6 min. 4 years, 11 months, 19 days, 8 h and 36 min.

The relationship between method configurations (where N represents the population
size and PrM the mutation probability) and identifiers is shown in Table 4. Moreover,
statistical information in relation to the Hypervolume value at the end of the evolutionary
process is shown (average, median, maximum, minimum and standard deviation, out
of 10 independent executions). It is possible to conclude that the configuration with the
identifier ID9 (with a population of 150 individuals and mutation probability of 1.5 gene per
chromosome) presents the highest Hypervolume average value, the highest Hypervolume
median value and the highest Hypervolume maximum value. The configuration with
identifier ID3 (population of 150 individuals and mutation probability of 0.5 gene per
chromosome) presents the highest Hypervolume minimum value and the configuration
with identifier ID4 (population of 50 individuals and mutation probability of one gene per
chromosome) presents the lowest Hypervolume standard deviation value.

Table 4. Hypervolume statistics (Real encoding).

Identifier Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

ID1 N = 50 ; PrM = 0.5 2.2821 2.2857 2.3079 2.2531 0.0179 5.900
ID2 N = 100 ; PrM = 0.5 2.2886 2.2831 2.3258 2.2682 0.0170 4.800
ID3 N = 150 ; PrM = 0.5 2.2938 2.2883 2.3187 2.2730 0.0144 4.300
ID4 N = 50 ; PrM = 1 2.2927 2.2932 2.3113 2.2710 0.0117 3.999
ID5 N = 100 ; PrM = 1 2.2863 2.2916 2.3064 2.2584 0.0148 5.200
ID6 N = 150 ; PrM = 1 2.2890 2.2885 2.3157 2.2619 0.0170 5.100
ID7 N = 50 ; PrM = 1.5 2.2857 2.2788 2.3228 2.2701 0.0171 6.100
ID8 N = 100 ; PrM = 1.5 2.2821 2.2826 2.3051 2.2561 0.0162 5.600
ID9 N = 150 ; PrM = 1.5 2.2968 2.2962 2.3307 2.2641 0.0211 4.000

p-value 0.5788

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 4. It can be seen that the configuration with identifier ID4 (population
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of 50 individuals and mutation probability of one gene per chromosome) presents the best
average rank (in order to maximise the Hypervolume, the average rank has to be as low as
possible) so it was selected for the final comparison study among encoding configurations.

Finally, the best accumulated non-dominated solutions obtained through the final
generation of the evolutionary process for all executions and all configurations were used
to compute the accumulated Hypervolume (as described in Ref. [69]) whose value was
2.3943. As expected, the value is higher than 2.3307, the maximum value shown in Table 4.

6.1.2. Standard Binary Encoding

The results of using standard binary encoding with one point, two point and uniform
crossover are shown below. The computational time consumed by each one is shown
in Table 3. The relationship between method configurations and identifiers is shown in
Table 5. Moreover, statistical information relating to the Hypervolume value at the final of
the evolutionary process is shown.

For the binary encoding with one point crossover (B1PX), it is possible to conclude
that the configuration with identifier ID8 (population of 100 individuals and mutation
probability of 1.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID9
(population of 150 individuals and mutation probability of 1.5 gene per chromosome)
presents the highest Hypervolume maximum value, the configuration with identifier ID6
(population of 150 individuals and mutation probability of one gene per chromosome)
presents the highest Hypervolume minimum value, and the configuration with identifier
ID2 (population of 100 individuals and mutation probability of 0.5 gene per chromosome)
presents the lowest Hypervolume standard deviation.

For the binary encoding with two point crossover (B2PX), it is possible to conclude
that the configuration with identifier ID2 (population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID3
(population of 150 individuals and mutation probability of 0.5 gene per chromosome)
presents the highest Hypervolume maximum value and the configuration with identifier
ID5 (population of 100 individuals and mutation probability of one gene per chromosome)
presents both the highest Hypervolume minimum value and the lowest Hypervolume
standard deviation value.

For the binary encoding with uniform crossover (BUX), it is possible to conclude
that the configuration with identifier ID4 (population of 50 individuals and mutation
probability of one gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume maximum value and the highest Hypervolume minimum
value. The configuration with identifier ID2 (population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume median value
and the configuration with identifier ID6 (population of 150 individuals and mutation
probability of one gene per chromosome) presents the lowest Hypervolume standard
deviation value.
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Table 5. Hypervolume statistics (Binary encoding).

Encoding Identifier Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

B1PX

ID1 N = 50 ; PrM = 0.5 2.2936 2.2919 2.3297 2.2738 0.0169 4.600
ID2 N = 100 ; PrM = 0.5 2.2919 2.2953 2.3057 2.2703 0.0107 4.500
ID3 N = 150 ; PrM = 0.5 2.2863 2.2915 2.2984 2.2554 0.0132 5.400
ID4 N = 50 ; PrM = 1 2.2929 2.2918 2.3151 2.2566 0.0171 4.400
ID5 N = 100 ; PrM = 1 2.2865 2.2822 2.3200 2.2674 0.0151 5.799
ID6 N = 150 ; PrM = 1 2.2932 2.2926 2.3216 2.2761 0.0150 4.700
ID7 N = 50 ; PrM = 1.5 2.2803 2.2775 2.2994 2.2642 0.0136 7.000
ID8 N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 3.100
ID9 N = 150 ; PrM = 1.5 2.2884 2.2871 2.3394 2.2616 0.0209 5.500

p-value 0.1228

B2PX

ID1 N = 50 ; PrM = 0.5 2.2808 2.2800 2.3173 2.2401 0.0237 6.500
ID2 N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.300
ID3 N = 150 ; PrM = 0.5 2.2916 2.2875 2.3627 2.2630 0.0298 5.400
ID4 N = 50 ; PrM = 1 2.2941 2.2926 2.3156 2.2724 0.0152 4.600
ID5 N = 100 ; PrM = 1 2.2908 2.2929 2.3056 2.2755 0.0089 4.800
ID6 N = 150 ; PrM = 1 2.2921 2.2905 2.3215 2.2644 0.0160 4.999
ID7 N = 50 ; PrM = 1.5 2.2924 2.2873 2.3483 2.2694 0.0226 5.100
ID8 N = 100 ; PrM = 1.5 2.2931 2.2930 2.3326 2.2606 0.0205 4.900
ID9 N = 150 ; PrM = 1.5 2.2883 2.2849 2.3107 2.2738 0.0145 5.399

p-value 0.4762

BUX

ID1 N = 50 ; PrM = 0.5 2.2841 2.2828 2.3023 2.2611 0.0122 5.500
ID2 N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 3.300
ID3 N = 150 ; PrM = 0.5 2.2883 2.2880 2.3265 2.2576 0.0199 5.200
ID4 N = 50 ; PrM = 1 2.2959 2.2939 2.3497 2.2702 0.0223 3.400
ID5 N = 100 ; PrM = 1 2.2848 2.2866 2.3046 2.2660 0.0140 5.700
ID6 N = 150 ; PrM = 1 2.2830 2.2850 2.2955 2.2687 0.0085 5.799
ID7 N = 50 ; PrM = 1.5 2.2893 2.2866 2.3112 2.2622 0.0163 5.100
ID8 N = 100 ; PrM = 1.5 2.2808 2.2800 2.2994 2.2579 0.0138 6.100
ID9 N = 150 ; PrM = 1.5 2.2857 2.2855 2.3036 2.2657 0.0121 4.899

p-value 0.2132

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 5. It can be seen that the configuration with identifier ID8 (population
of 100 individuals and mutation probability of 1.5 gene per chromosome) presents the best
average rank for the binary encoding with one point crossover. It can be seen that the
configuration with identifier ID2 (population of 100 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank both for the binary encoding
with two point crossover and for the binary encoding with uniform crossover. These
configurations were selected for the final comparison study among encoding configurations
which is shown later. The best accumulated non-dominated solutions obtained through
the final generation of the evolutionary process for all executions and all configurations
were used to compute the accumulated Hypervolume whose values were 2.4142, 2.4298
and 2.3984 for the binary encoding with one point, two point and uniform crossover,
respectively. As expected, the values are higher than 2.3394, 2.3627 and 2.3497, the
maximum values shown in Table 5, respectively.
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6.1.3. Gray Encoding

The results of using Gray encoding with one point, two point and uniform crossover
are shown below. The computational time consumed by each one is shown in Table 3. The
relationship between method configurations and identifiers is shown in Table 6. Moreover,
statistical information in relation to the Hypervolume value at the end of the evolutionary
process is shown. For the Gray encoding with one point crossover (G1PX), it is possible
to conclude that the configuration with identifier ID2 (population of 100 individuals and
mutation probability of 0.5 gene per chromosome) presents the highest Hypervolume
average value, the highest Hypervolume median value and the highest Hypervolume
maximum value. The configuration with identifier ID4 (population of 50 individuals and
mutation probability of one gene per chromosome) presents both the highest Hypervolume
minimum value and the lowest Hypervolume standard deviation value.

For the Gray encoding with two point crossover (G2PX), it is possible to conclude
that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume median value and the highest Hypervolume minimum
value. The configuration with identifier ID9 (population of 150 individuals and mutation
probability of 1.5 gene per chromosome) presents the highest Hypervolume maximum
value and the configuration with identifier ID5 (population of 100 individuals and mutation
probability of one gene per chromosome) presents the lowest Hypervolume standard
deviation value.

For the Gray encoding with uniform crossover (GUX), it is possible to conclude that
the configuration with identifier ID4 (population of 50 individuals and mutation probability
of one gene per chromosome) presents both the highest Hypervolume average value and
the highest Hypervolume median value. The configuration with identifier ID5 (population
of 100 individuals and mutation probability of 1 gene per chromosome) presents the
highest Hypervolume maximum value, the configuration with identifier ID6 (population of
150 individuals and mutation probability of one gene per chromosome) presents the highest
Hypervolume minimum value and the configuration with identifier ID2 (population of
100 individuals and mutation probability of 0.5 gene per chromosome) presents the lowest
Hypervolume standard deviation value.

In order to establish the best behaviour amongst the configurations, a statistical
significance hypothesis test was conducted. The average ranks computed through the
Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 6. It can be seen that the configuration with identifier ID5 (population
of 100 individuals and mutation probability of 1 gene per chromosome) presents the best
average rank for the Gray encoding with one point crossover. It can be seen that the
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank for the Gray encoding with
two point crossover. It can be seen that the configuration with identifier ID4 (population
of 50 individuals and mutation probability of one gene per chromosome) presents the
best average rank for the Gray encoding with uniform crossover. These configurations
were selected for the final comparison study among encoding configurations, which is
shown later. The best accumulated non-dominated solutions obtained through the final
generation of the evolutionary process for all executions and all configurations were used
to compute the accumulated Hypervolume whose values were 2.4011, 2.3982 and 2.3829
for the Gray encoding with one point, two point and uniform crossover, respectively. As
expected, the values are higher than 2.3556, 2.3364 and 2.3165, the maximum values shown
in Table 6, respectively.
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Table 6. Hypervolume Statistics (Gray Encoding).

Encoding Identifier Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

G1PX

ID1 N = 50 ; PrM = 0.5 2.2833 2.2838 2.2929 2.2710 0.0064 5.500
ID2 N = 100 ; PrM = 0.5 2.2990 2.3010 2.3556 2.2640 0.0252 3.600
ID3 N = 150 ; PrM = 0.5 2.2815 2.2850 2.2951 2.2626 0.0099 6.200
ID4 N = 50 ; PrM = 1 2.2865 2.2834 2.3017 2.2762 0.0083 5.200
ID5 N = 100 ; PrM = 1 2.2989 2.2986 2.3347 2.2652 0.0186 3.100
ID6 N = 150 ; PrM = 1 2.2812 2.2791 2.3043 2.2611 0.0117 6.000
ID7 N = 50 ; PrM = 1.5 2.2882 2.2916 2.3171 2.2526 0.0187 4.200
ID8 N = 100 ; PrM = 1.5 2.2786 2.2804 2.2992 2.2608 0.0137 6.100
ID9 N = 150 ; PrM = 1.5 2.2874 2.2820 2.3180 2.2706 0.0155 5.100

p-value 0.0943

G2PX

ID1 N = 50 ; PrM = 0.5 2.2947 2.2971 2.3192 2.2757 0.0128 3.700
ID2 N = 100 ; PrM = 0.5 2.2802 2.2814 2.2953 2.2592 0.0121 6.500
ID3 N = 150 ; PrM = 0.5 2.2856 2.2895 2.2978 2.2519 0.0136 4.299
ID4 N = 50 ; PrM = 1 2.2912 2.2868 2.3186 2.2659 0.0192 4.900
ID5 N = 100 ; PrM = 1 2.2832 2.2835 2.2951 2.2690 0.0070 5.600
ID6 N = 150 ; PrM = 1 2.2899 2.2913 2.3256 2.2640 0.0193 4.100
ID7 N = 50 ; PrM = 1.5 2.2866 2.2880 2.3132 2.2617 0.0169 4.800
ID8 N = 100 ; PrM = 1.5 2.2809 2.2813 2.3140 2.2585 0.0148 6.500
ID9 N = 150 ; PrM = 1.5 2.2920 2.2912 2.3364 2.2739 0.0169 4.600

p-value 0.2164

GUX

ID1 N = 50 ; PrM = 0.5 2.2862 2.2892 2.3088 2.2540 0.0180 4.300
ID2 N = 100 ; PrM = 0.5 2.2828 2.2813 2.2967 2.2696 0.0079 5.100
ID3 N = 150 ; PrM = 0.5 2.2885 2.2922 2.3077 2.2666 0.0136 4.100
ID4 N = 50 ; PrM = 1 2.2907 2.2939 2.3134 2.2683 0.0156 4.000
ID5 N = 100 ; PrM = 1 2.2879 2.2858 2.3165 2.2611 0.0187 4.699
ID6 N = 150 ; PrM = 1 2.2835 2.2816 2.3048 2.2701 0.0120 5.400
ID7 N = 50 ; PrM = 1.5 2.2862 2.2852 2.3056 2.2608 0.0143 5.600
ID8 N = 100 ; PrM = 1.5 2.2852 2.2851 2.3068 2.2524 0.0153 5.100
ID9 N = 150 ; PrM = 1.5 2.2755 2.2700 2.3064 2.2638 0.0142 6.700

p-value 0.4572

6.1.4. Comparing Encoding Configurations

The total computational time consumed is shown in Table 3. The computational
cost shows the importance of using the cluster. Previously, configurations with the best
average rank according to the Friedman’s test were selected to be compared globally. These
configurations are shown in Table 7.

Table 7. Hypervolume statistics (Encoding experiment).

Identifier Description Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

ID1 Real N = 50 ; PrM = 1 2.2927 2.2932 2.3113 2.2710 0.0117 4.600
ID2 Binary 1P N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 4.000
ID3 Binary 2P N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.000
ID4 Binary U N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 4.199
ID5 Gray 1P N = 100 ; PrM = 1 2.2989 2.2986 2.3347 2.2652 0.0186 3.500
ID6 Gray 2P N = 50 ; PrM = 0.5 2.2947 2.2971 2.3192 2.2757 0.0128 4.000
ID7 Gray U N = 50 ; PrM = 1 2.2907 2.2939 2.3134 2.2683 0.0156 4.699

p-value 0.5979
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The Hypervolume average values evolution versus the evaluations number is shown
in Figure 2a. The detail for the final evaluations (last million fitness function evaluations,
from 9 to 10 million) is shown in Figure 2b. It can be seen that the configuration with
identifier ID3 (with binary encoding and two point crossover, population of 100 individuals
and mutation probability of 0.5 gene per chromosome) reaches the highest Hypervolume
average value.

(a) Hypervolume Average vs. evaluations

(b) Hypervolume Average vs. evaluations, detail (last million evaluations displayed)

Figure 2. Hypervolume Average vs. evaluations (encoding experiment).
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Box plots of the Hypervolume values distribution at the end of the process are shown
in Figure 3. Statistical information in relation to the Hypervolume value at the final of the
evolutionary process is shown in Table 7. It can be seen that the configuration with identifier
ID3 (with Binary encoding and two point crossover, population of 100 individuals and
mutation probability of 0.5 gene per chromosome) presents both the highest Hypervolume
average value and the highest Hypervolume median value, the configuration with identifier
ID5 (with Gray encoding and one point crossover, population of 100 individuals and
mutation probability of one gene per chromosome) presents the highest Hypervolume
maximum value, the configuration with identifier ID6 (with Gray encoding and two
point crossover, population of 50 individuals and mutation probability of 0.5 gene per
chromosome) presents the highest Hypervolume minimum value and the configuration
with identifier ID1 (with real encoding, population of 50 individuals and mutation probability
of one gene per chromosome) presents the lowest Hypervolume standard deviation value.

Figure 3. Box plots of the final Hypervolume (encoding experiment).

In order to establish whether one of the configurations performs better than any other,
a statistical significance hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 7. It can be seen that the configuration with
identifier ID3 (with binary encoding and two point crossover, population of 100 individuals
and mutation probability of 0.5 gene per chromosome) presents the best average rank.
However, the p-value computed (0.5979) implies that the null hypothesis (H0) cannot be
rejected (p-value > 0.05), so it is possible to conclude that, in the studied conditions, there
is no configuration that performs better than another.

The best accumulated non-dominated solutions obtained for all encodings and
configurations were used to compute the accumulated Hypervolume, whose value was
2.4553. As expected, the value is higher than 2.4298, the maximum accumulated value
obtained after the evolutionary process for the standard binary encoding with two point
crossover. This is shown in Table 8.
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Table 8. Maximum accumulated Hypervolume value (encoding experiment).

Encoding Hypervolume Accumulated Value

Real 2.3943
Binary 1 Point Crossover 2.4142
Binary 2 Point Crossover 2.4298
Binary Uniform Crossover 2.3984
Gray 1 Point Crossover 2.4011
Gray 2 Point Crossover 2.3982
Gray Uniform Crossover 2.3829

Global 2.4553

6.2. Accuracy Experiment

In the first experiment, a thorough comparison of the performances of encodings was
developed using the hour as a time unit. Although non-significant differences among
performances were found, the best average rank using the Friedman’s test was presented
by the standard binary encoding. For this reason, the results achieved for the standard
binary encoding are used in the present experiment to compare the performance using the
day and the week as time units.

6.2.1. Standard Binary Encoding (Days)

The results of using standard binary encoding with one point, two point and uniform
crossover with the day as a time unit are shown below. The computational time consumed
by each one is shown in Table 9.

Table 9. Computational time consumed.

Encoding Time Unit Average Time Sequential Time

Binary 1PX Hour 2 days, 18 h and 57 min 8 months, 7 days, 18 h and 48 min.
Binary 2PX Hour 3 days, 2 h and 39 min 9 months, 6 days, 5 h and 52 min.
Binary UX Hour 3 days and 39 min 8 months, 29 days, 3 h and 8 min.
Binary 1PX Day 2 days, 22 h and 3 min 8 months, 19 days, 9 h and 14 min.
Binary 2PX Day 2 days, 19 h and 13 min 8 months, 8 days, 18 h and 18 min.
Binary UX Day 2 days, 19 h and 13 min 8 months, 8 days, 18 h and 55 min.
Binary 1PX Week 2 days, 18 h and 3 min 8 months, 4 days, 9 h and 39 min.
Binary 2PX Week 2 days, 19 h and 21 min 8 months, 9 days, 6 h and 55 min.
Binary UX Week 2 days, 19 h and 20 min 8 months, 9 days, 4 h and 40 min.

Total 2 days, 20 h and 53 min 6 years, 4 months, 12 days, 22 h and 41 min.

The relationship between method configurations and identifiers is shown in Table 10.
Moreover, statistical information in relation to the Hypervolume value at the final of the
evolutionary process is shown. For the binary encoding with one point crossover and the
day as a time unit (B1PX-D), it is possible to conclude that the configuration with identifier
ID6 (population of 150 individuals and mutation probability of one gene per chromosome)
presents the highest Hypervolume average value, the highest Hypervolume minimum
value and the lowest Hypervolume standard deviation. The configuration with identifier
ID9 (population of 150 individuals and mutation probability of 1.5 gene per chromosome)
presents the highest Hypervolume median value and the configuration with identifier
ID1 (population of 50 individuals and mutation probability of 0.5 gene per chromosome)
presents the highest Hypervolume maximum value.

For the binary encoding with two point crossover and the day as a time unit (B2PX-D), it
is possible to conclude that the configuration with identifier ID4 (population of 50 individuals
and mutation probability of one gene per chromosome) presents the highest Hypervolume
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average value, the configuration with identifier ID6 (population of 150 individuals and
mutation probability of one gene per chromosome) presents the highest Hypervolume
median value, the configuration with identifier ID9 (population of 150 individuals and
mutation probability of 1.5 gene per chromosome) presents the highest Hypervolume
maximum value and the configuration with identifier ID3 (population of 150 individuals
and mutation probability of 0.5 gene per chromosome) presents both the highest Hypervolume
minimum value and the lowest Hypervolume standard deviation value.

For the binary encoding with uniform crossover and the day as a time unit (BUX-D),
it is possible to conclude that the configurations with identifiers ID6 (population of
150 individuals and mutation probability of one gene per chromosome) and ID8 (population
of 100 individuals and mutation probability of 1.5 gene per chromosome) present the
highest Hypervolume average value, the configuration with identifier ID1 (population
of 50 individuals and mutation probability of 0.5 gene per chromosome) presents the
highest Hypervolume median value, the configuration with identifier ID9 (population
of 150 individuals and mutation probability of 1.5 gene per chromosome) presents the
highest Hypervolume maximum value, the configuration with identifier ID5 (population of
100 individuals and mutation probability of one gene per chromosome) presents the highest
Hypervolume minimum value, and the configuration with identifier ID7 (population of
50 individuals and mutation probability of 1.5 gene per chromosome) presents the lowest
Hypervolume standard deviation value.

Table 10. Hypervolume statistics (Binary encoding-Days).

Encoding Identifier Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

B1PX-D

ID1 N = 50 ; PrM = 0.5 2.2834 2.2781 2.3430 2.2655 0.0220 5.800
ID2 N = 100 ; PrM = 0.5 2.2942 2.2911 2.3198 2.2788 0.0133 4.100
ID3 N = 150 ; PrM = 0.5 2.2785 2.2834 2.2934 2.2563 0.0126 6.600
ID4 N = 50 ; PrM = 1 2.2819 2.2795 2.3127 2.2622 0.0152 5.800
ID5 N = 100 ; PrM = 1 2.2896 2.2870 2.3188 2.2621 0.0184 4.500
ID6 N = 150 ; PrM = 1 2.2964 2.2941 2.3193 2.2804 0.0103 3.200
ID7 N = 50 ; PrM = 1.5 2.2922 2.2932 2.3239 2.2707 0.0177 4.400
ID8 N = 100 ; PrM = 1.5 2.2776 2.2793 2.3057 2.2530 0.0171 6.800
ID9 N = 150 ; PrM = 1.5 2.2939 2.2947 2.3107 2.2758 0.0135 3.800

p-value 0.0246

B2PX-D

ID1 N = 50 ; PrM = 0.5 2.2838 2.2795 2.3043 2.2681 0.0123 5.400
ID2 N = 100 ; PrM = 0.5 2.2783 2.2785 2.2947 2.2609 0.0106 6.600
ID3 N = 150 ; PrM = 0.5 2.2867 2.2880 2.3043 2.2757 0.0084 4.300
ID4 N = 50 ; PrM = 1 2.2930 2.2865 2.3173 2.2746 0.0176 4.200
ID5 N = 100 ; PrM = 1 2.2874 2.2831 2.3188 2.2652 0.0192 5.399
ID6 N = 150 ; PrM = 1 2.2916 2.2937 2.3150 2.2712 0.0152 4.100
ID7 N = 50 ; PrM = 1.5 2.2877 2.2849 2.3249 2.2693 0.0161 4.600
ID8 N = 100 ; PrM = 1.5 2.2841 2.2817 2.3136 2.2658 0.0133 5.300
ID9 N = 150 ; PrM = 1.5 2.2887 2.2826 2.3372 2.2651 0.0216 5.100

p-value 0.5612

BUX-D

ID1 N = 50 ; PrM = 0.5 2.2918 2.2948 2.3152 2.2643 0.0168 4.200
ID2 N = 100 ; PrM = 0.5 2.2897 2.2865 2.3356 2.2602 0.0198 4.699
ID3 N = 150 ; PrM = 0.5 2.2844 2.2866 2.3104 2.2522 0.0179 5.600
ID4 N = 50 ; PrM = 1 2.2798 2.2732 2.3078 2.2601 0.0160 6.400
ID5 N = 100 ; PrM = 1 2.2897 2.2893 2.3127 2.2729 0.0151 4.800
ID6 N = 150 ; PrM = 1 2.2923 2.2907 2.3333 2.2666 0.0219 4.700
ID7 N = 50 ; PrM = 1.5 2.2894 2.2880 2.3201 2.2691 0.0138 5.100
ID8 N = 100 ; PrM = 1.5 2.2923 2.2901 2.3279 2.2637 0.0183 5.000
ID9 N = 150 ; PrM = 1.5 2.2908 2.2863 2.3461 2.2606 0.0249 4.500

p-value 0.8007
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In order to establish the best behaviour amongst the range of configurations, a
statistical significance hypothesis test was conducted. The average ranks computed through
the Friedman’s test and the p-value obtained (a value bigger than 0.05 implies that the null
hypothesis cannot be rejected, suggesting that all configurations perform in a similar way)
are shown in Table 10. It can be seen that the configuration with identifier ID6 (population
of 150 individuals and mutation probability of one gene per chromosome) presents the
best average rank for the binary encoding with one point crossover and the day as a time
unit. Moreover, the p-value obtained of 0.0246 explains that the null Hypothesis can be
rejected so, in this case, the configuration ID6 performs better than any other configuration.
In order to find the concrete pairwise comparisons that produce differences, a statistical
significance analysis using the Wilcoxon signed-rank test was run as explained by Benavoli
et al. [70]. The results of using such a test, in which the configuration ID6 is compared
with the rest of configurations, is shown in Table 11. It can be seen that configuration ID6
performs better than the configurations ID3, ID4 and ID8.

Table 11. p-values from Wilcoxon signed-rank test.

Comparison p-Value Conclusion

ID3 versus ID6 0.0059 Significant difference found
ID4 versus ID6 0.0371 Significant difference found
ID6 versus ID8 0.0371 Significant difference found
ID1 versus ID6 0.0840 The null hypothesis cannot be rejected
ID5 versus ID6 0.3223 The null hypothesis cannot be rejected
ID2 versus ID6 0.3750 The null hypothesis cannot be rejected
ID6 versus ID7 0.4922 The null hypothesis cannot be rejected
ID6 versus ID9 0.6250 The null hypothesis cannot be rejected

Regarding the binary encoding with two point crossover and the day as a time unit,
the same configuration (ID6) presents the best average rank. Finally, it can be seen that the
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents the best average rank for the binary encoding with
uniform crossover and the day as a time unit. In each case, the best configurations were
selected for the final comparison study between the accuracy level encodings.

The best accumulated non-dominated solutions obtained through the final generation
of the evolutionary process for all executions and all configurations were used to compute
the accumulated Hypervolume whose values were 2.4007, 2.3942 and 2.3984 for the
binary encoding with one point, two point and uniform crossover with the day as a
time unit, respectively. As expected, the values are higher than 2.3430, 2.3372 and 2.3461,
the maximum values shown in Table 10, respectively.

6.2.2. Standard Binary Encoding (Weeks)

The results of using standard binary encoding with one point, two point and uniform
crossover and the week as a time unit are shown below. The computational time consumed
by each one is shown in Table 9. The relationship between method configurations and
identifiers is shown in Table 12. Statistical information in relation to the Hypervolume
value at the final of the evolutionary process is also shown. For the binary encoding
with one point crossover and the week as a time unit (B1PX-W), it is possible to conclude
that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the highest Hypervolume average
value, the highest Hypervolume median value and the highest Hypervolume maximum
value. The configuration with identifier ID5 (population of 100 individuals and mutation
probability of one gene per chromosome) presents both the highest Hypervolume minimum
value and the lowest Hypervolume standard deviation value.

For the binary encoding with two point crossover and the week as a time unit
(B2PX-W), it is possible to conclude that the configuration with identifier ID7 (population

255



Mathematics 2021, 9, 1751

of 50 individuals and mutation probability of 1.5 gene per chromosome) presents both the
highest Hypervolume average value and the highest Hypervolume maximum value. The
configuration with identifier ID1 (population of 50 individuals and mutation probability
of 0.5 gene per chromosome) presents both the highest Hypervolume median value and
the highest Hypervolume minimum value. Finally, the configuration with identifier ID5
(population of 100 individuals and mutation probability of one gene per chromosome)
presents the lowest Hypervolume standard deviation value.

For the binary encoding with uniform crossover and the week as a time unit (BUX-W), it
is possible to conclude that the configuration with identifier ID8 (population of 100 individuals
and mutation probability of 1.5 gene per chromosome) presents the highest Hypervolume
average value, the highest Hypervolume median value and the highest Hypervolume
minimum value. The configuration with identifier ID1 (population of 50 individuals and
mutation probability of 0.5 gene per chromosome) presents the highest Hypervolume
minimum value and the configuration with identifier ID2 (population of 100 individuals
and mutation probability of 0.5 gene per chromosome) presents the lowest Hypervolume
standard deviation value.

Table 12. Hypervolume statistics (Binary encoding-Weeks).

Encoding Identifier Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

B1PX-W

ID1 N = 50 ; PrM = 0.5 2.2957 2.2935 2.3430 2.2561 0.0250 4.300
ID2 N = 100 ; PrM = 0.5 2.2872 2.2873 2.3127 2.2665 0.0142 5.100
ID3 N = 150 ; PrM = 0.5 2.2897 2.2808 2.3252 2.2623 0.0212 5.100
ID4 N = 50 ; PrM = 1 2.2812 2.2805 2.2977 2.2520 0.0157 5.799
ID5 N = 100 ; PrM = 1 2.2907 2.2893 2.3007 2.2812 0.0060 3.999
ID6 N = 150 ; PrM = 1 2.2825 2.2825 2.3004 2.2679 0.0101 6.100
ID7 N = 50 ; PrM = 1.5 2.2890 2.2899 2.3110 2.2597 0.0164 4.900
ID8 N = 100 ; PrM = 1.5 2.2874 2.2848 2.3066 2.2690 0.0123 5.000
ID9 N = 150 ; PrM = 1.5 2.2888 2.2892 2.3176 2.2634 0.0155 4.700

p-value 0.7979

B2PX-W

ID1 N = 50 ; PrM = 0.5 2.2917 2.2911 2.3101 2.2764 0.0121 4.000
ID2 N = 100 ; PrM = 0.5 2.2858 2.2858 2.3013 2.2671 0.0122 5.300
ID3 N = 150 ; PrM = 0.5 2.2892 2.2869 2.3237 2.2567 0.0250 4.900
ID4 N = 50 ; PrM = 1 2.2797 2.2743 2.3014 2.2703 0.0108 6.299
ID5 N = 100 ; PrM = 1 2.2840 2.2838 2.2965 2.2665 0.0085 5.200
ID6 N = 150 ; PrM = 1 2.2793 2.2780 2.3066 2.2502 0.0147 6.200
ID7 N = 50 ; PrM = 1.5 2.2921 2.2817 2.3465 2.2709 0.0246 4.899
ID8 N = 100 ; PrM = 1.5 2.2895 2.2880 2.3198 2.2546 0.0168 4.001
ID9 N = 150 ; PrM = 1.5 2.2918 2.2854 2.3130 2.2710 0.0145 4.200

p-value 0.4439

BUX-W

ID1 N = 50 ; PrM = 0.5 2.2894 2.2847 2.3336 2.2659 0.0197 5.500
ID2 N = 100 ; PrM = 0.5 2.2925 2.2922 2.3144 2.2756 0.0113 4.399
ID3 N = 150 ; PrM = 0.5 2.2911 2.2932 2.3216 2.2664 0.0156 4.399
ID4 N = 50 ; PrM = 1 2.2858 2.2836 2.3057 2.2660 0.0128 5.499
ID5 N = 100 ; PrM = 1 2.2826 2.2834 2.3144 2.2631 0.0140 6.700
ID6 N = 150 ; PrM = 1 2.2854 2.2857 2.3122 2.2645 0.0164 5.499
ID7 N = 50 ; PrM = 1.5 2.2893 2.2887 2.3094 2.2681 0.0125 4.899
ID8 N = 100 ; PrM = 1.5 2.3009 2.2942 2.3316 2.2870 0.0145 3.400
ID9 N = 150 ; PrM = 1.5 2.2921 2.2862 2.3163 2.2774 0.0143 4.700

p-value 0.3128

In order to establish the best behaviour amongst configurations, a statistical significance
hypothesis test was conducted. The average ranks computed through the Friedman’s test
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and the p-value obtained (a value bigger than 0.05 implies that the null hypothesis cannot be
rejected, suggesting that all configurations perform in a similar way) are shown in Table 12.
It can be seen that the configuration with identifier ID5 (population of 100 individuals
and mutation probability of one gene per chromosome) presents the best average rank
for the binary encoding with one point crossover and the week as a time unit. It can be
seen that the configuration with identifier ID1 (population of 50 individuals and mutation
probability of 0.5 gene per chromosome) presents the best average rank for the binary
encoding with two point crossover and the week as a time unit. It can be seen that the
configuration with identifier ID8 (population of 100 individuals and mutation probability
of 1.5 gene per chromosome) presents the best average rank for the binary encoding with
uniform crossover and the week as a time unit. These configurations were selected for the
final comparison study of the accuracy-level configurations.

The best accumulated non-dominated solutions obtained through the final generation
of the evolutionary process for all executions and all configurations were used to compute
the accumulated Hypervolume whose values were 2.4047, 2.4285 and 2.4037 for the binary
encoding with one point, two point and uniform crossover with the week as a time
unit, respectively. As expected, the values are higher than 2.3430, 2.3465 and 2.3336, the
maximum values shown in Table 12, respectively.

6.2.3. Comparing Accuracy-Level Configurations

The global computational time consumed is shown in Table 9. The computational
cost shows the importance of using the cluster. Previously, configurations with the best
average rank according to the Friedman’s test were selected to be globally compared. These
configurations are shown in Table 13.

Table 13. Hypervolume statistics (accuracy experiment).

Id. Description Configuration Average Median Max. Min. St. D.
Friedman’s Test

Av. Rank

ID1 Binary 1P (hour) N = 100 ; PrM = 1.5 2.2970 2.3008 2.3126 2.2708 0.0134 4.700
ID2 Binary 2P (hour) N = 100 ; PrM = 0.5 2.3013 2.3051 2.3260 2.2714 0.0172 3.699
ID3 Binary U (hour) N = 100 ; PrM = 0.5 2.2954 2.3000 2.3141 2.2647 0.0163 4.500
ID4 Binary 1P (day) N = 150 ; PrM = 1.0 2.2964 2.2941 2.3193 2.2804 0.0103 5.000
ID5 Binary 2P (day) N = 150 ; PrM = 1.0 2.2916 2.2937 2.3150 2.2712 0.0152 5.800
ID6 Binary U (day) N = 50 ; PrM = 0.5 2.2918 2.2948 2.3152 2.2643 0.0168 5.300
ID7 Binary 1P (week) N = 100 ; PrM = 1.0 2.2907 2.2893 2.3007 2.2812 0.0060 6.200
ID8 Binary 2P (week) N = 50 ; PrM = 0.5 2.2917 2.2911 2.3101 2.2764 0.0121 5.900
ID9 Binary U (week) N = 100 ; PrM = 1.5 2.3009 2.2942 2.3316 2.2870 0.0145 3.900

p-value 0.4053

The Hypervolume average values evolution versus the evaluations number is shown
in Figure 4a. The detail for the final evaluations (last million fitness function evaluations,
from 9 to 10 million) is shown in Figure 4b. It can be seen that the configuration with
identifier ID2 (with Binary encoding, two point crossover, the hour as a time unit, population
of 100 individuals and mutation probability of 0.5 gene per chromosome) reaches the
highest Hypervolume average value.
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(a) Hypervolume Average vs. evaluations

(b) Hypervolume Average vs. evaluations, detail (last million evaluations displayed)

Figure 4. Hypervolume Average vs. evaluations (accuracy experiment).

Box plots of the Hypervolume values distribution at the end of the process are shown
in Figure 5. They are ordered from left to right in relation to time units of hours (H), days
(D) and weeks (W) and crossover types of one point (1PX), two point (2PX) and uniform
crossover (UX). It can be seen that the medians are ordered from biggest to smallest for each
group of crossover. The greater the accuracy the bigger the Hypervolume median value (it is
greater for hours than for days and greater for days than for weeks). Statistical information
in relation to the Hypervolume value at the end of the evolutionary process is shown in
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Table 13. It can be seen that the configuration with identifier ID2 (with binary encoding, two
point crossover and the hour as a time unit, population of 100 individuals and mutation
probability of 0.5 gene per chromosome) presents both the highest Hypervolume average
value and the highest Hypervolume median value, the configuration with identifier ID9
(with binary encoding, uniform crossover and the week as a time unit, population of
100 individuals and mutation probability of 1.5 gene per chromosome) presents both the
highest Hypervolume maximum value and the highest Hypervolume minimum value.
The configuration with identifier ID7 (with binary encoding, one point crossover and the
week as a time unit, population of 100 individuals and mutation probability of one gene
per chromosome) presents the lowest Hypervolume standard deviation.

Figure 5. Box plots of the final Hypervolume (accuracy experiment).

In order to establish whether one of the configurations performs better than any other,
a statistical significance hypothesis test was conducted. The average ranks computed
through the Friedman’s test are shown in Table 13. It can be seen that the configuration
with identifier ID2 (with Binary encoding, two point crossover and the hour as a time
unit, population of 100 individuals and mutation probability of 0.5 gene per chromosome)
presents the best average rank. However, the p-value computed (0.4053) implies that the
null hypothesis (H0) cannot be rejected (p-value > 0.05), so it is possible to conclude that,
in the studied conditions, there is no configuration that performs better than any other.

The best accumulated non-dominated solutions obtained were used to compute the
accumulated Hypervolume, whose value was 2.4046. As expected, the value is higher than
2.4298, the maximum accumulated value obtained after the evolutionary process for the
standard binary encoding with two point crossover and the hour as a time unit. This is
shown in Table 14.
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Table 14. Maximum accumulated Hypervolume value (accuracy experiment).

Encoding Time Unit Hypervolume Accumulated Value

Binary 1 Point Crossover Hour 2.4142
Binary 2 Point Crossover Hour 2.4298
Binary Uniform Crossover Hour 2.3984
Binary 1 Point Crossover Day 2.4007
Binary 2 Point Crossover Day 2.3942
Binary Uniform Crossover Day 2.3984
Binary 1 Point Crossover Week 2.4047
Binary 2 Point Crossover Week 2.4285
Binary Uniform Crossover Week 2.4037

Global 2.4646

6.3. Accumulated Non-Dominated Set of Designs

The non-dominated solutions to the problem provided at the end of the evolutionary
process for all executions, all configurations, all encodings and time units are shown in
Figure 6. All optimum solutions belonging to the achieved non-dominated front are shown
in Table 15. Unavailability (Q) is shown as a fraction, Cost is shown in economic units and
the rest of the variables represent, for the respective devices, the optimum Time To Start a
Preventive Maintenance activity with the hour, day or week as a time unit.

Figure 6. Non-dominated front.
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Table 15. Optimum solutions (encoding experiment).

Id Q Cost [eu] Time Unit V1 [h] P2 [h] P3 [h] V4 [h] V5 [h] V6 [h] V7 [h]

1 0.002720 823.38 Hours 25,408 0 8633 0 34,179 34,903 31,386
2 0.002713 835.75 Hours 29,225 0 8633 0 27,070 33,454 33,690
3 0.002591 986.88 Days 1285 0 353 902 1441 967 1386
4 0.002576 988.00 Weeks 127 0 47 165 206 172 203
5 0.002295 992.75 Days 1435 0 350 830 1088 1459 1454
6 0.001495 1360.50 Hours 34,746 8239 8408 0 32,676 31,769 31,484
7 0.001334 1363.75 Days 1394 360 315 0 1125 1301 1026
8 0.001276 1424.25 Weeks 204 50 37 0 174 173 188
9 0.001189 1431.75 Hours 31,040 8617 8103 0 34,787 31,445 29,929
10 0.001174 1449.00 Days 178 51 50 0 182 171 195
11 0.001112 1496.12 Weeks 112 48 48 0 176 196 144
12 0.001056 1512.50 Days 880 358 354 1186 1020 1346 1098
13 0.001039 1524.00 Weeks 162 45 42 195 147 176 189
14 0.001002 1524.62 Hours 28,042 7228 6549 30,777 20,951 31,779 34,982
15 0.000939 1528.88 Hours 29,939 7028 7904 21,690 25,711 34,814 34,791
16 0.000913 1530.38 Weeks 194 47 49 103 137 145 179
17 0.000835 1567.75 Days 1028 363 340 1280 1430 986 1326
18 0.000813 1611.38 Hours 22,516 5955 6298 17,237 29,568 27,075 22,757
19 0.000776 1667.25 Hours 32,355 7185 8384 27,489 26,949 32,700 32,770
20 0.000771 1741.00 Hours 27,443 7556 8520 30,003 30,056 30,579 21,639
21 0.000742 1764.75 Hours 22,776 8696 8506 12,256 34,763 33,006 29,706
22 0.000725 1770.12 Hours 30,813 7371 8453 29,958 16,345 30,776 25,358

The solution with the lowest Cost (ID1) (823.38 economic units) represents the biggest
Unavailability (0.002720). These values are followed by periodic optimum times (using
the hour as a time unit in this case) measured from the moment in which the system
mission time starts (Time To Perform a Preventive Maintenance activity (TRP) is not
included). For solution ID1, it can be seen that periodic optimum Times To Start a
Preventive Maintenance activity (TP) for devices P2 and V4 are not supplied. This is
because the design alternative does not include such devices. The opposite case shows the
biggest Cost (ID22) (1770.12 economic units) and the lowest Unavailability (0.000725). For
solution ID22, periodic optimum Times To Start a Preventive Maintenance activity (TP) are
supplied for all devices. This is because the design alternative includes devices P2 and V4.
Other optimum solutions were found in these two solutions and can be seen in Table 15.
The decision makers will need to decide which is the preferable design for them, taking
into account their individual requirements.

Moreover, solutions were clustered in Figure 7 according to their final design. Solutions
are shown from left to right and in ascending order in relation to the Cost from ID1 to ID22.
The solutions contained in Cluster 1 (the solutions 1 to 2, see also Table 15) are the solutions
in which non-redundant devices were included in the design. In this case, the system
contains exclusively devices placed in series. These solutions present the lowest Cost and
the biggest Unavailability. The solutions contained in Cluster 2 (the solutions 3 to 5, see
also Table 15) are the solutions in which a redundant valve was included in the design as a
parallel device. These solutions present a bigger Cost and a lower Unavailability than the
solutions contained in Cluster 1. The solutions contained in Cluster 3 (the solutions 6 to 11,
see also Table 15) are the solutions in which a redundant pump was included in the design
as a parallel device. These solutions present a higher Cost and a lower Unavailability than
the solutions contained in Clusters 1 and 2. Finally, the solutions contained in Cluster 4
(the solutions 12 to 22, see also Table 15) are the solutions in which both a redundant valve
and a redundant pump were included in the design as parallel devices. These solutions
present the biggest Cost and the lowest Unavailability.
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Figure 7. Design alternatives (encoding experiment).

The best accumulated non-dominated solutions obtained were used to compute the
accumulated Hypervolume, whose value was 2.4651. As expected, the value is higher than
the rest of the maximum accumulated values obtained after the evolutionary process for
the encoding experiment and the accuracy experiment. This is shown in Table 16. This
value is also higher than the value obtained in [6] and could be considered as an actual
benchmark value of the case study.

Table 16. Maximum accumulated Hypervolume value.

Experiment Hypervolume Accumulated Value

Encoding 2.4553
Accuracy 2.4646

Total 2.4651

7. Conclusions

In the present paper, a methodology presented previously by the authors [6] was
used. This consists of coupling a Multi-Objective Evolutionary Algorithm and Discrete
Simulation in order to optimise simultaneously both the system design (based on redundancy
allocation) and its preventive maintenance strategy (based on determining periodic preventive
maintenance activities with regard to each device included in the design), whilst addressing
the conflict between Availability and operational Cost. The Multi-Objective Evolutionary
Algorithm gives rise to a population of individuals, each encoding one design alternative
and its preventive maintenance strategy. Each individual represents a possible solution
to the problem, which is then used to modify and evaluate the system Functionability
Profile through Discrete Simulation. The individuals evolve generation after generation
until the stopping criterion is reached. This process was applied to a technical system in
a case study in which two experiments were developed: Firstly, an encoding experiment
which consisted of comparing the performance of seven encoding types (real, standard
binary with one point, two point and uniform crossover, and Gray with one point, two
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point and uniform crossover), and secondly, an accuracy level encoding which consisted
of comparing the performance of using standard binary encoding with accuracy levels
across a range of time unit (hours, days and weeks) with impact in the form of size of the
chromosome (the smaller the time unit, the bigger the chromosome). The Multi-objective
Evolutionary Algorithm used was NSGA-II and a set of optimum non-dominated solutions
were obtained for all cases.

In conclusion, the use of the Multi-Objective Evolutionary Algorithm NSGA-II and
Discrete Simulation to address the joint optimisation of the system design and its preventive
maintenance strategy provides Availability-Cost-balanced solutions to the real world
problem studied, where data based on specific bibliography, mathematical relations and
field experience were used. The computational cost reveals the complexity of the process
and the necessity of using a computing cluster, which allowed parallel executions.

With regard to the encoding experiment, the best ordered method by the Friedman test
case based on the final Hypervolume indicator distributions was the two point crossover
standard binary encoding, although no statistically significant differences were observed.
With regard to the accuracy experiment, the best ordered method by the Friedman test
case based on the final Hypervolume indicator distributions was the two point crossover
standard binary encoding with hours as a time unit, although no statistically significant
differences were observed. From the authors’ point of view, an important conclusion arises
from this experiment, which relates to flexibility regarding the time unit to schedule the
preventive maintenance activities. Using the hour, the day or the week as a time unit does
not affect significantly the performance of the configurations so, in the studied conditions,
the preventive maintenance activities can be planned using weeks as a time unit. This
allows a better range of time for planning than if days or hours are used as a time unit.

In addition, a higher benchmark value of the case study (in terms of Hypervolume
indicator) is attained in this work as a reference.

As future work, the authors consider that these conclusions should be explored
in greater depth extending the analysis to other real world problems in the reliability
field, as well as comparing this analysis with other state of the art Multi-objective
Evolutionary Algorithms.
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Appendix A. Detailed Information of the Case Study Parameters

• Life Cycle. System mission time, expressed in hours.
• Corrective Maintenance Cost. The cost involved in developing a repair activity to

recover the system following a failure, expressed in economic units per hour.
• Preventive Maintenance Cost. The cost involved in developing a Preventive Maintenance

activity, expressed in relation to the Corrective Maintenance Cost.
• Pump TFmin. Minimum operation Time To Failure for a pump without Preventive

Maintenance, expressed in hours.
• Pump TFmax. Maximum operation Time To Failure for a pump without Preventive

Maintenance, expressed in hours.
• Pump TF λ. Failure rate for a pump, which follows an exponential failure distribution,

expressed in hours raised to the power of minus six.
• Pump TRmin. Minimum Time To Repair or duration of a Corrective Maintenance

activity for a pump, expressed in hours.
• Pump TRmax. Maximum Time To Repair or duration of a Corrective Maintenance

activity for a pump, expressed in hours.
• Pump TR μ. Mean for the normal distribution followed for the Time To Repair

assumed for a pump, expressed in hours.
• Pump TR σ. Standard deviation for the normal distribution followed for the Time To

Repair assumed for a pump, expressed in hours.
• Pump TPmin. Minimum operation Time To Start a scheduled Preventive Maintenance

activity for a pump, expressed in hours.
• Pump TPmax. Maximum operation Time To Start a scheduled Preventive Maintenance

activity for a pump, expressed in hours.
• Pump TRPmin. Minimum Time To Perform a Preventive Maintenance activity for a

pump, expressed in hours.
• Pump TRPmax. Maximum Time To Perform a Preventive Maintenance activity for a

pump, expressed in hours.
• Valve TFmin. Minimum operation Time To Failure for a valve without Preventive

Maintenance, expressed in hours.
• Valve TFmax. Maximum operation Time To Failure for a valve without Preventive

Maintenance, expressed in hours.
• Valve TF λ. Failure rate for a valve, which follows an exponential failure distribution,

expressed in hours raised to the power of minus six.
• Valve TRmin. Minimum Time To Repair or duration of a Corrective Maintenance

activity for a valve, expressed in hours.
• Valve TRmax. Maximum Time To Repair or duration of a Corrective Maintenance

activity for a valve, expressed in hours.
• Valve TR μ. Mean for the normal distribution followed for the Time To Repair

assumed for a valve, expressed in hours.
• Valve TR σ. Standard deviation for the normal distribution followed for the Time To

Repair assumed for a valve, expressed in hours.
• Valve TPmin. Minimum operation Time To Start a scheduled Preventive Maintenance

activity for a valve, expressed in hours.
• Valve TPmax. Maximum operation Time To Start a scheduled Preventive Maintenance

activity for a valve, expressed in hours.
• Valve TRPmin. Minimum Time To Perform a Preventive Maintenance activity for a

valve, expressed in hours.
• Valve TRPmax. Maximum Time To Perform a Preventive Maintenance activity for a

valve, expressed in hours.
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Abstract: Exploration and exploitation are the two main concepts of success for searching algorithms.
Controlling exploration and exploitation while executing the search algorithm will enhance the overall
performance of the searching algorithm. Exploration and exploitation are usually controlled offline
by proper settings of parameters that affect the population-based algorithm performance. In this
paper, we proposed a dynamic controller for one of the most well-known search algorithms, which is
the Genetic Algorithm (GA). Population Diversity Controller-GA (PDC-GA) is proposed as a novel
feature-selection algorithm to reduce the search space while building a machine-learning classifier.
The PDC-GA is proposed by combining GA with k-mean clustering to control population diversity
through the exploration process. An injection method is proposed to redistribute the population once
90% of the solutions are located in one cluster. A real case study of a bankruptcy problem obtained
from UCI Machine Learning Repository is used in this paper as a binary classification problem.
The obtained results show the ability of the proposed approach to enhance the performance of the
machine learning classifiers in the range of 1% to 4%.

Keywords: diversity control; genetic algorithm; bankruptcy problem; classification

1. Introduction

The concept of exploration and exploitation plays a vital role in the effectiveness of
any searching algorithm. In general, exploration is the process of visiting a new area in
the search space, while exploitation is visiting a specific area within the neighborhood of
previously visited points [1]. In order to find a good search algorithm, a good ratio between
exploration and exploitation should be defined. The performance of population-based
algorithms such as genetic algorithms, genetic programming, particle swarm optimiza-
tion, brainstorm optimization algorithms, and other algorithms, is determined by the
relationship between exploitation and exploration processes. Many researchers believe
that population-based algorithms are effective due to the good ratio between exploitation
and exploration [2,3].

In general, exploration and exploitation are usually controlled offline by proper
settings of parameters that affect the population-based algorithm performance. However,
the development process of such algorithms depends on the problem itself, which needs
different amounts of exploration and exploitation. Since the problem nature is not known
in advance, it is needed to find a controller to determine the amount of exploration and
exploitation that are to be dynamically changed during a run. This motivates us to propose
a novel approach that is able to control the exploration and exploitation processes inside
GA. We employed GA as a binary feature selection approach to select the most valuable
features for the bankruptcy prediction problem. The bankruptcy problem is one of the
most critical economic problems in the world, which economic decision makers have to
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face. Small or large companies that are related to the local community play a vital role in
decisions for policymakers and the directions for global economic growth. Therefore, the
performance of these companies and the prediction of bankruptcies attract researchers due
to its effluence on social economics [4,5]. Moreover, bankruptcy reflects on companies and
individuals based on several factors such as reputation, potential loss of customer base,
and credit history.

In the field of risk management for the bank’s sector, the bankruptcy problem is one
of the most critical problems that face the financial department every day. Predicting
bankruptcy in advance plays a key role in evaluating credit loan systems since it helps
banks to prevent them from insolvency due to bad loans. Moreover, predicting corporate
bankruptcy in an accurate way can contribute to the community by giving the right loan to
successful companies. In general, a bankruptcy problem depends on a set of input features
that are collected carefully from customer information (see Table 1). Moreover, this problem
is a binary classification problem, where the main objective is to predict if the customer will
have bankruptcy or not. Due to a large number of input features, finding a rigid wrapper
algorithm is needed to enhance the overall performance of machine learning classifiers. As
a result, we propose an enhanced version of the GA (i.e., Population Diversity Controller-
GA (PDC-GA)) to explore the search space in a good manner and prevent premature
convergence of the standard GA.

Table 1. Dataset features descriptions.

ID Description ID Description

X1 net profit / total assets X33 operating expenses / short-term liabilities

X2 total liabilities / total assets X34 operating expenses / total liabilities

X3 working capital / total assets X35 profit on sales / total assets

X4 current assets / short-term liabilities X36 total sales / total assets

X5 [(cash + short-term securities + receivables- short-term liabilities) /
(operating expenses - depreciation)] * 365,

X37 (current assets - inventories) / long-termliab ilities

X6 retained earnings / total assets X38 constant capital / total assets

X7 EBIT / total assets X39 profit on sales / sales

X8 book value of equity / total liabilities X40 (current assets - inventory - receivables) /short-term liabilities

X9 sales / total assets X41 total liabilities / ((profit on operating activities+ depreciation) * (12/365))

X10 equity / total assets X42 profit on operating activities / sales

X11 (gross profit + extraordinary items + financial expenses) / total assets X43 rotation receivables + inventory turnover in days

X12 gross profit / short-term liabilities X44 (receivables * 365) / sales

X13 (gross profit + depreciation) / sales X45 net profit / inventory

X14 (gross profit + interest) / total assets X46 (current assets - inventory) / short-term liabilities

X15 (total liabilities * 365) / (gross profit +depreciation) X47 (inventory * 365) / cost of products sold

X16 (gross profit + depreciation) / total liabilities X48 EBITDA (profit on operating activities -depreciation) / total assets

X17 total assets / total liabilities X49 EBITDA (profit on operating activities -depreciation) / sales

X18 gross profit / total assets X50 current assets / total liabilities

X19 gross profit / sales X51 short-term liabilities / total assets

X20 (inventory * 365) / sales X52 (short-term liabilities * 365) / cost of products sold)

X21 sales (n) / sales (n-1) X53 equity / fixed assets

X22 profit on operating activities / total assets X54 constant capital / fixed assets

X23 net profit / sales X55 working capital

X24 gross profit (in 3 years) / total assets X56 (sales - cost of products sold) / sales

X25 (equity - share capital) / total assets X57 (current assets - inventory - short-term liabilities)/ (sales - gross profit - depre-
ciation)

X26 (net profit + depreciation) / total liabilities X58 total costs /total sales

X27 profit on operating activities / financial expenses X59 long-term liabilities / equity

X28 working capital / fixed assets X60 sales / inventory

X29 logarithm of total assets X61 sales / receivables

X30 (total liabilities - cash) / sales X62 (short-term liabilities *365) / sales

X31 (gross profit + interest) / sales X63 sales / short-term liabilities

X32 (current liabilities * 365) / cost of products sold X64 sales / fixed assets
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In general, the bankruptcy problem is still a complex hard problem due to two main
factors: (i) a complex relationship between a large number of variables, and (ii) imbalanced
datasets, where the collected data for this problem usually are imbalanced (i.e., number
of bankrupt cases are less than positive cases). The first factor makes the search space of
this problem very high, where optimization methods try to reduce it as a feature selection
problem, while the second factor affects the performance of ML methods. As a result, it is
important to examine the collected data before building the prediction method and solving
the imbalanced data problem first.

Recently, machine learning (ML) and optimization methods have shown promising
performance while tackling the bankruptcy prediction problem [6,7]. ML solved the
bankruptcy prediction problem as a binary classification problem (i.e., bankrupt and non-
bankrupt), while optimization methods addressed this problem as a feature selection (FS)
problem [8,9]. ML and optimization methods are able to solve the bankruptcy prediction
problem due to their ability to handle big data and a large number of features (i.e., input
data) [7]. In contrast, statistical methods have a set of limitations while solving this problem,
such as solving the problem as a linear one, shortage in exploring the hidden relations
between all input data, and sensitivity to outliers [10].

Many research papers have been proposed using ML to solve the bankruptcy predic-
tion problem. For example, artificial neural networks (ANN) [11], genetic programming [12],
support vector machines [13], and ensemble learning [6], while optimization methods such
as genetic algorithm (GA)[14], ant colony optimization (ACO) [9], particle swarm optimiza-
tion (PSO) [15], and Grey wolf optimization (GWO) [16] are employed successfully for the
bankruptcy prediction problem. In general, optimization algorithms should have a balance
between exploration and exploitation processes while solving complex problems to reach
the optimal or near-optimal solutions. This balance can be achieved by controlling the
diversity of the optimization algorithm [17].

The main contribution of this paper involves employing an enhanced version of GA
that is able to control the population diversity during the search process. The main idea
works by injecting the search space with new solutions to enhance the balance between
exploration and exploitation processes to avoid being trapped in local optima.

In what follows, Section 2 presents the related works of bankruptcy prediction problem
and diversity control for optimization algorithms. Section 3 presents the dataset used in this
research, which is a public dataset obtained from the UCI Machine Learning Repository.
Section 4 explores the proposed PDC-GA method in detail. Section 5 investigates the
obtained results and our findings. Finally, Section 6 presents the conclusion and future
works of this research.

2. Related Works

2.1. Diversity Control

All searching algorithms have two main concepts, which are Exploration and Exploita-
tion processes [3]. Exploration refers to exploring or visiting all points in the search space,
while Exploitation means visiting the surrounding points for a specific area. In general,
finding a balance between Exploration and Exploitation is considered the main criterion
to evaluate the overall performance of optimization algorithms. Many research papers
highlight the concept of exploration and exploitation to gain a good ratio between both
criteria. Sun et al. [18] propose a clustering method (i.e., k-mean method) to achieve a
good ratio between exploration and exploitation for multi-objective optimization prob-
lems. Mittal et al. [19] enhanced the overall performance of Grey Wolf Optimizer (GWO)
to prevent the premature convergence of the GWO algorithm. In the original GWO, half
of the iterations work on exploration, while the second half work on exploitation, which
is considered as a weak point of the GWO algorithm. The authors address this problem
by finding a proper ratio between exploration and exploitation. Lynn and Suganthan [20]
modified the Particle Swarm Optimization (PSO) by generating two subpopulations from
the main population pool to enhance the exploration and exploitation processes. The main
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idea is that each sub-population focuses on exploration or exploitation based on the current
distribution of solutions in the search space. Chen et al. [21] employed a sigmoid function
that controls the velocity update process for PSO to overcome the premature convergence.

Shojaedini et al. [22] enhanced the performance of GA based on an adaptive genetic
operator for selection and mutation. The proposed approach tries to find a good ratio be-
tween exploration and exploitation based on the number of outliers. Kelly et al. [23] control
the exploration and exploitation processes for genetic programming (GP) by proposing a
new selection method called knobelty. Mirsaleh and Meybodi [24] studied the premature
convergence for GA and memetic algorithms.

2.2. Bankruptcy Prediction Problem

The bankruptcy prediction problem is a challenging problem that is related to compa-
nies’ evaluation and organizations’ solvency. Bankruptcy prediction was initially solved
based on statistical methods [25] and Multiple Discriminant Analysis [26]. However, statis-
tical methods are not able to explore all factors of the financial data or discover the hidden
information inside it.

To overcome the weaknesses of statistical methods, machine learning methods show
a great ability to address this problem [6,27]. Several methods have been adopted, such
as support vector machines (SVMs) [28], artificial neural networks (ANNs) [29], Decision
Tree [8], ensemble models [6], and deep learning methods [30]. Recently, many research
papers have focused on ensemble models due to their ability to model bankruptcy problem
in a good manner due to their ability to handle a large amount of financial data and produce
lower error frequency [31]. Moreover, ensemble models are able to handle imbalance
data [32].

2.3. Classification Models for Bankruptcy Prediction Problem

There are many machine learning methods that have been employed to predict the
bankruptcy problem. We will list the methods that have been employed in the literature
for this problem. Linear discriminant analysis (LDA) is a well-known classifier that has
been employed successfully for many real-world applications. LDA was firstly employed
for feature extraction, feature selection, and classification [33]. Altman [34] applied LDA
in 1968 to predict the bankruptcy problem. Multilayer perceptron (MLP) is the most well-
known model of artificial neural networks (ANNs), which consists of three layers (i.e.,
input, hidden, and output layers) [35]. MLP has been widely employed to predict the
bankruptcy problem [29,36]. The JRip algorithm refers to Repeated Incremental Pruning
to Produce Error Reduction (RIPPER), which enhances the correctness of a set of rules
by tuning individual rules [37]. JRip algorithm works as an incremental learner that
builds a set of rules in the training process. The error is evaluated based on the number
of misclassified records for the training dataset [38]. JRip algorithm has been employed
successfully in financial prediction problems [39,40].

The decision tree classifier (J48) is a well-known classifier constructed as a hierarchi-
cal model that consists of three main components (i.e., internal nodes, leaf nodes, and
branches). The J48 model is very simple to implement, and the obtained trees are readily
interpretable, while the weakness of this model is that it does not support multiple outputs
and is susceptible to noisy data [41]. Logistic regression (LR) is a statistical classification
model in ML, which is suitable for a binary class (bankruptcy and non-bankruptcy). LR
has been employed successfully in different fields, such as medical, engineering, and
social science [42]. Support vector machine (SVM) is an excellent classification method
for data classification and regression [43]. However, the main weakness of SVM is high
computational complexity.

Boosting is an ensemble learning method on ML for binary classification problems.
In general, boosting comes in many flavors, such as bagging and random forest. There
are many versions of boosting methods that have been employed successfully for binary
classification problems (e.g., XGB and EXGB [4]). AdaBoost (Adaptive Boosting) is a simple
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ML classifier based on boosting algorithms. In AdaBoost, the decision trees are employed
for weak learners with trees with a single split termed as decision stumps. The samples are
weighted in AdaBoost. The weights are increased for samples that are difficult to classify,
while the weights are decreased for weights that are simple to classify [44]. Random forest
(RF) is an ensemble machine learning method that involves construction (growing) of
multiple decision trees via bootstrap aggregation [45]. In simple terms, the input of RF is
passed down each of the constituent decision trees. Each tree classifies the input values
and “votes” for the corresponding class. The majority of the votes decide the overall RF
prediction [46].

Recently, many research studies have focused on reducing the number of variables of
bankruptcy prediction to enhance the overall performance of machine learning classifiers.
Wrapper feature selection methods are one of the most applicable methods that are able to
reduce the search space [47,48]. Therefore, we believe employing feature selection methods
will help decision-makers to explore the financial data and extract valuable features that
play an important role in bankruptcy cases.

3. Dataset

The dataset used in this research is adopted from [4], which represents several of
Polish companies. Since 2004, many Poland companies in the manufacturing sector went
to bankruptcy state, which makes this problem valuable to study and analyze. The dataset
was extracted from the Emerging Markets Information Service (EMIS) database. In general,
the dataset has information on emerging markets around the world, including the Polish
one, such as financial information, political, macroeconomic, and companies’ news in
Polish and English for 540 publications.

In this dataset, there are two periods of time. One is for bankruptcy, which is between
2007 and 2013, and the other period, which is between 2000 and 2012, without bankruptcy,
for companies that are still working based on the reported data in EMIS. Therefore, this
dataset has imbalanced samples. The dataset presents a binary classification problem
with 64 features (inputs) and a single output (i.e., 0 means bankruptcy or 1 means no
bankruptcy). Table 1 demonstrates the 64 features for this dataset.

4. Proposed Approach: PDC-GA

The proposed method of this work is depicted in Figure 1. The PDC-GA enhances
the performance of GA by controlling the population diversity of GA. In this work, GA
works as a feature selection method. After collecting the financial data for companies based
on historical data, eliminating the weak features will enhance the overall performance of
ML classifier(s) by reducing the search space of this problem. The population diversity is
controlled by clustering the population based on k-means method and redistributing the
solutions once most of the solutions are related to one cluster. An adaptive injection process
is proposed to balance the exploration and exploitation of GA. Five different ML classifiers
are employed to evaluate the selected features. Moreover, we applied the K-fold cross-
validation with k-fold = 10 to avoid the overfitting problem. The following subsections
explore the proposed method in more detail.

4.1. Preprocessing

The nature of financial data is very complex and may suffer from several problems
due to several reasons, such as missing data, imbalanced cases, human error, or corrupted
data. Therefore, building an accurate model is a challenging task. In this paper, to build an
accurate model, we examine the collected data, and we found that there are some records
that have missing data, as shown in Table 2. Figure 2 demonstrates the missing data
patterns for the dataset. It is clear that the distribution of missing data overall are input
features. Moreover, we performed two types of experiments: without missing data and
with imputting missing data. We employed Synthetic Minority Oversampling Technique
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(SMOTE) to address imbalanced data. To ensure that all the data were consistent, we
normalized all features to be within the range of [0,1].

Figure 1. Population Diversity Controller–Genetic Algorithm (PDC-GA) method.

Table 2. Missing data percentage.

Missing Data Percentage

Year 1 1.2775

Year 2 1.8385

Year 3 1.4484

Year 4 1.3788

Year 5 1.2146

4.2. Imbalanced Dataset

The performance of ML classifiers and optimization methods is affected by two factors:
number of class type and number of samples. The major problem is called an imbalance
problem when the class of interest is quite small compared to the normal one. In general,
ML performance is based on a dataset skewed toward the normal class (i.e., majority class).
In reality, financial data suffer from imbalanced data problem, which reduces the overall
performance of ML classifiers [49].

There are two main approaches to handle the imbalanced data problem: algorithm
perspective and data perspective [50]. The data perspective works based on re-sampling
the data space. Resampling works using either over-sampling for the minority class or
under-sampling instances for the majority class. Moreover, the re-sampling method address
the imbalanced data problem randomly or deterministically.

SMOTE is a well-known method used to address imbalanced data, which creates
synthetic samples between positive samples and the closest samples to it [50]. Adaptive
synthetic sampling (ADASYN) generates a weighted distribution for several minority
class based on their difficulty during the learning process [49]. ADASYN is able to reduce
the bias toward the minority class and adaptively learn. In this work, we employed the
ADASYN method to handle the imbalanced financial data.
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4.3. Enhanced Genetic Algorithm

In this paper, we proposed a clustered genetic algorithm, as shown in Figure 3. The
proposed approach works based on hybridization between k-means algorithm and the
genetic algorithm. To prevent the local optima problem, at each iteration, we performed
k-means clustering with k = 3. The process of injecting is demonstrated in Figure 4. The
initial population of GA is clustered using k-means method, as shown in Figure 4a. At
iteration t, all the solutions are converged (i.e., most solutions are located in one cluster),
as shown in Figure 4b. Once most of the solutions are located in one cluster, an injection
process of new solutions is obtained from a pool of solutions (i.e., worst solutions from
previous genetic operations).

Figure 3. The pseudo-code for enhanced Genetic Algorithm.

Figure 5 presents the pseudo-code for the injection process, which presents the re-
distribution process of the solutions in the search space once 90% of the solutions are
located in one cluster. Since the population size is fixed in GA, the number of injected
solutions should be equal to the number of removed solutions. This number is determined
based on Equation (2), where Maxc presents the highest number of solutions located in
clusters, Minc presents the lowest number of solutions located in clusters, Iter presents
the maximum number of iterations, and Populationsize presents the population size. All
injected solutions are obtained from a pool of solutions (i.e., generated randomly) to make
sure they are distributed over the search space.

We employed an internal classifier based on the k-Nearest Neighbors (kNN) algorithm
to evaluate the selected features. The reason behind selecting kNN as an internal classifier
is that the time complexity of kNN is O(n × s), where n means the number of training
samples, while s means the number of selected features. The fitness function of kNN is
presented in Equation (1), where the accuracy of kNN classification is used as a fitness
function, where TP, FP, TN, and FN are the calculated values of true positive, false positive,
and true negative, and false negative, respectively.
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Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Injectionpercentage =
Maxc − Minc

Iter
× Populationsize (2)

4.4. Machine Learning Classifier(S)

There are many classification methods that can be employed on binary classification
problems. However, in this work, the 10-fold cross-validation technique was employed
using five classification methods, namely K nearest neighbor (kNN), linear discriminant
(LD), decision tree (DT), support vector machine (SVM), and logistic regression (LR). Each
classifier works in a different manner, so examining the performance of these classifiers
over the bankruptcy problem using the 10-fold cross-validation technique is investigated
in this work. Moreover, the cross-validation method reduces the possibility of over-fitting
and redundancy of the data, so it enables us to generate a robust model.

4.5. Evaluation Process

Since the bankruptcy problem is a binary classification, we employed the area under
the receiver operating characteristics curve (AUC) as an evaluation criterion. The AUC
value reports the ratio between the number of correctly classified samples to the total
number of testing samples. Equation (3) presents an over average for the k-fold cross-
validation method.

CV =
1
k

k

∑
i=1

Ai (3)

where CV represents the cross-validation accuracy, k represents the number of folds (i.e.,
k-fold = 10), and A represents the AUC value for each fold. Figure 6 demonstrates a
pictorial diagram for AUC curves with its meanings.
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(a) Initial population
.

(b) Population state at iteration t.

(c) Injection process of new solutions.

Figure 4. Injection process for new solutions.

Given:
Current Population at iteration t
Cluster the population using K-mean clustering algorithm.
If 90% of the population located in one cluster

Determine the percentage of injection (D) based on Equation (2)
Remove the worst solutions from the population based on D
Inject new solutions to the population based on D

Figure 5. The pseudo-code for injection process.
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Figure 6. A pictorial diagram for the ROC curves and AUC values.

5. Results and Analysis

The proposed approach was implemented in MATLAB R2019b environment, and the
simulations were executed on an Intel Core i5- M40 2.4-GHz processor with 4 GB RAM. The
parameters adopted in all experiments, either for standard GA or the proposed enhanced
GA, are listed in Table 3. In this work, we performed two types of experiments: (i) standard
genetic algorithm based on the pseudo-code, and (ii) enhanced genetic algorithm. Both
experiments employed the same fitness function as shown in Equation (1). To evaluate
the overall performance of selected features either from standard or enhanced genetic
algorithm, we executed four different classifiers (i.e., KNN, LD, DT, SVM, and LR). Each
classifier is evaluated based on the average AUC value as shown in Equation (3). The
following subsections demonstrate the obtained results and analysis.

Table 3. Parameters setting of standard GA and enhanced GA.

Parameters Value

Population size 100
Crossover rate 0.7
Crossover type Uniform
Mutation Rate 0.14
Mutation type Multiple points
Selection type Roulette wheel Selection (RWS)
Number of iterations 500

5.1. Feature Selection Results

Finding the most important features for the bankruptcy problem gives us more in-
formation about this problem. We executed 21 different independent runs for each year.
Table 4 explores the obtained results for standard and enhanced genetic algorithm without
imputing missing data (i.e., removing missing data). It is obvious that the proposed ap-
proach outperforms the standard genetic algorithm based on fitness value and the number
of selected features. For example, the year 1 results show that the performance of enhanced
GA is 0.9573, which outperforms the standard GA, which is 0.9391. Moreover, the num-
ber of selected features is improved for all datasets. For example, there are 18 features
selected using standard GA for year 5, while enhanced GA selects 14 features. The re-
ported selected features are the best features out of 21 independent runs. Reducing the
number of features will reduce the computational time for machine learning and remove
the redundant/irrelevant features. Boxplot diagrams for enhanced GA and standard GA
are presented in Figure 7. It is obvious that the performance of enhanced GA for all years
has more robust performance compared to the standard GA during the 21 independent
runs and able to overcome the premature convergence during the search space. Figure 8
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demonstrates the performance of the exploration process for both methods. It is clear that
an enhanced genetic algorithm is able to explore the search space better than standard GA.

Table 4. Obtained results for standard and enhanced GA as a feature selection.

Dataset Approach Fitness Value (Accuracy) Selected Features

Year1
Standard GA 0.9391 [5,7,11,14,15,23,44,48,50,54,57,60,62]

Enhanced GA 0.9573 [5,8,11,14,15,20,27,35,41,52,60]

Year 2
Standard GA 0.9054 [2,8,16,17,19,22,27,29,30,33,34,35,38,42,55,59,61,62]

Enhanced GA 0.9379 [7,8,13,15,18,21,22,27,29,34,38,39,42,62]

Year 3
Standard GA 0.8687 [5,6,8,9,25,27,34,54,56,58,61,63]

Enhanced GA 0.885 [14,33,35,38,46,47,49,57,63]

Year 4
Standard GA 0.9338 [7,11,17,29,33,37,41,47,55,56,59,62]

Enhanced GA 0.9559 [4,12,14,18,19,20,33,44,59,63]

Year 5
Standard GA 0.9188 [2,7,8,12,14,16,17,22,24,27,35,39,40,47,49,57,59,63]

Enhanced GA 0.9666 [1,5,9,12,17,18,19,20,31,37,39,48,56,61]

Figure 7. Boxplot diagrams for 21 independent runs.

5.2. Classifiers Models Results

To evaluate the best feature selected in the previous section, we employed five different
binary classifiers (i.e., KNN, LD, DT, SVM, and LR), Since the datasets used in this work
have missing data, we employed two types of experiments: (i) without imputing missing
data, and (ii) with imputing missing data. We executed each classifier 21 times using a
10-fold cross-validation method. All reported results represent the mean value of AUC.
Table 5 shows the obtained results for all years without imputing. It is clear that SVM with
enhanced GA outperforms other methods in three datasets (i.e., year 2, year 3, and year
4), while KNN with enhanced GA outperforms in two datasets (i.e., year 1 and year 5).
It is clear that our proposed approach is able to enhance the performance of machine
learning classifiers.

Table 5. Obtained mean results with feature selection without imputing missing data.

Enhanced GA Standard GA

KNN LD DT SVM LR KNN LD DT SVM LR

Year 1 0.9573 0.9236 0.8742 0.9563 0.9221 0.9391 0.8821 0.8452 0.8893 0.8996

Year 2 0.9379 0.9072 0.8236 0.9453 0.9235 0.9054 0.7996 0.9236 0.8437 0.9351

Year 3 0.885 0.9136 0.8337 0.9447 0.9436 0.8687 0.8863 0.9108 0.7834 0.9228

Year 4 0.9559 0.9440 0.8906 0.9750 0.9412 0.9338 0.9327 0.9004 0.8961 0.9183

Year 5 0.9666 0.9571 0.8813 0.9636 0.9336 0.9188 0.8526 0.8821 0.8379 0.9037
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Table 6 shows the obtained results with imputing missing data. We employed the
average method to impute the missing data. The obtained results show that the en-
hanced genetic algorithm outperforms the standard GA in four datasets (i.e., year 1, year 2,
year 4, and year 5), while the performance of standard GA outperforms the enhanced GA
only in one dataset (i.e., year 3). Moreover, from comparing the obtained results from
Tables 5 and 6, it is clear that imputing missing data reduces the overall performance of
classifiers. Four datasets (i.e., year 1, year 2, year 4, and year 5) gain less accurate values
after imputing missing data. We believe that imputing missing is not valuable in our case
for two reasons: (i) percentage of missing data is small (less than 2%), and (ii) imputing
missing data based on average value is not a sufficient method.

Table 6. Obtained mean results with feature selection with imputing missing data.

Dataset
Enhanced GA Standard GA

KNN LD DT SVM LR KNN LD DT SVM LR

Year 1 0.9123 0.8794 0.9299 0.9171 0.9396 0.8457 0.9066 0.8594 0.8800 0.9058

Year 2 0.9400 0.9339 0.8734 0.8769 0.9020 0.8627 0.8678 0.9102 0.8645 0.9372

Year 3 0.9231 0.9354 0.9108 0.9520 0.9418 0.9577 0.9249 0.8747 0.9059 0.8440

Year 4 0.9669 0.9231 0.9025 0.8806 0.9311 0.9478 0.9444 0.9363 0.8639 0.9073

Year 5 0.9479 0.9123 0.8791 0.8966 0.8854 0.8329 0.8853 0.8707 0.8510 0.8532

Table 7 shows the obtained results without a feature selection algorithm. We executed
all classifiers in two different ways: without imputing missing data, and with imputing
missing data. The algorithm with imputing missing data outperforms that without imput-
ing missing data in all datasets except the year 5 dataset. Moreover, the reported results in
Table 6 show that applying feature selection improves the overall performance of machine
learning classifiers since the search space is reduced.

Table 7. Obtained mean results without feature selection.

Dataset
Without Imputing Missing Data With Imputing Missing Data

KNN LD DT SVM LR KNN LD DT SVM LR

Year 1 0.8266 0.8950 0.8247 0.8279 0.8774 0.8452 0.9052 0.9000 0.8809 0.9047

Year 2 0.8306 0.9100 0.9099 0.8995 0.8365 0.9000 0.8267 0.8192 0.9499 0.8257

Year 3 0.8926 0.8770 0.9270 0.8914 0.9080 0.8049 0.8842 0.9323 0.9004 0.8286

Year 4 0.8699 0.8676 0.9108 0.8292 0.8346 0.8553 0.8691 0.9472 0.8235 0.9283

Year 5 0.8391 0.8630 0.9115 0.9084 0.8267 0.8967 0.8564 0.8286 0.8642 0.8723

Table 8 compares the obtained results with a set of algorithms from the literature. It
is clear that the proposed feature selection is able to enhance the obtained results in three
datasets (i.e., year 3, year 4, and year 5), while imputing missing data without a feature
selection approach (i.e., Approach 4) outperforms all other methods in Year 2 using SVM
method. However, the EXGB method that is proposed by Zięba et al. [4] outperforms all
other methods in Year 1.
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Table 8. Comparison results of the literature.

Author Approach Year 1 Year 2 Year 3 Year 4 Year 5

Zięba et al. [4]

LDA 0.6390 0.6600 0.6880 0.7140 0.7960

MLP 0.5430 0.5140 0.5480 0.5960 0.6990

Jrip 0.5230 0.5400 0.5350 0.5380 0.6540

CJRip 0.7450 0.7740 0.8040 0.7990 0.7780

J48 0.7170 0.6530 0.7010 0.6910 0.6100

CJ48 0.6580 0.6520 0.6180 0.6110 0.7190

LR 0.6200 0.5130 0.5000 0.5000 0.6320

CLR 0.7040 0.6710 0.7140 0.7240 0.8210

AB 0.9160 0.8500 0.8610 0.8850 0.9250

AC 0.9160 0.8490 0.8590 0.8860 0.9280

SVM 0.5020 0.5020 0.5000 0.5000 0.5050

CSVM 0.5780 0.5170 0.6140 0.6150 0.7160

RF 0.8510 0.8420 0.8310 0.8480 0.8980

XGB 0.9450 0.9170 0.9220 0.9350 0.9510

EXGB 0.9590 0.9440 0.9400 0.9410 0.9550

Our Approach

Approach 1 0.9573 (kNN) 0.9453 (SVM) 0.9447 (SVM) 0.9750 (SVM) 0.9666 (kNN)

Approach 2 0.9299 (DT) 0.9400 (kNN) 0.9577 (kNN) 0.9669 (kNN) 0.9479 (kNN)

Approach 3 0.8774 (LR) 0.9100 (LD) 0.9270 (DT) 0.9108 (DT) 0.9115 (DT)

Approach 4 0.9052 (LD) 0.9499 (SVM) 0.9323 (DT) 0.9472 (DT) 0.8723 (LR)

where

• LDA: linear discriminant analysis.
• MLP: multilayer perceptron with a hidden layer.
• JRip: decision rules inducer.
• CJRip:cost-sensitive variation of JRip.
• J48: decision tree model.
• CJ48: cost-sensitive variation of J48.
• LR: Logistic Regression.
• CLR: cost-sensitive variation of Logistic Regression.
• AB: AdaBoost.
• AC: AdaCost.
• SVM: Support Vector Machines.
• CSVM: Cost-sensitive Support Vector Machines (CSVM)
• RF: Random Forest.
• XGB: Boosted trees trained with Extreme Gradient Boosting.
• EXGB: Ensemble of boosted trees.
• Approach 1: With feature selection and without imputing missing data.
• Approach 2: With feature selection and with imputing missing data.
• Approach 3: Without feature selection without imputing missing data.
• Approach 4: Without feature selection with imputing missing data.

Finally, employing feature selection based on enhanced GA is able to enhance the
overall performance of machine learning classifiers. Moreover, controlling the population
diversity of GA will help the searching algorithm to overcome the local optima problem.

6. Conclusions and Future Works

In this work, we present a novel approach to control the population diversity for
genetic algorithm while searching for optimal solutions. The PDC-GA method is presented
as a feature selection method. The genetic algorithm is hybridized with k-means cluster-
ing method to cluster the population while performing genetic operators. An injection
method is proposed to redistribute the population once 90% of the solutions are located in
one cluster. Predicting bankruptcy cases in advance is a challenging task for banks and
companies, due to its importance for financial sectors in all countries. As a result, finding a
robust method to predict bankruptcy cases is needed. PDC-GA method has been employed
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successfully in this domain. The obtained results of the PDC-GA outperform the standard
GA as a feature selection. Moreover, we employed five machine learning classifiers (i.e.,
KNN, LD, DT, SVM, and LR) to evaluate the obtained results of the proposed algorithm.
The performance of the proposed PDC-GA enhanced the original performance of standard
GA between 1 and 4%. In our future work, we will apply the proposed method to optimize
several real problems in industrial and research fields.
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3. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv.
2013, 45, 35:1–35:33. [CrossRef]
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Abstract: This paper proposes the real-world application of the Differential Evolution (DE) algorithm
using, distance-based mutation-selection, population size adaptation, and an archive for solutions
(DEDMNA). This simple framework uses three widely-used mutation types with the application of
binomial crossover. For each solution, the most proper position prior to evaluation is selected using
the Euclidean distances of three newly generated positions. Moreover, an efficient linear population-
size reduction mechanism is employed. Furthermore, an archive of older efficient solutions is used.
The DEDMNA algorithm is applied to three real-life engineering problems and 13 constrained
problems. Seven well-known state-of-the-art DE algorithms are used to compare the efficiency
of DEDMNA. The performance of DEDMNA and other algorithms are comparatively assessed
using statistical methods. The results obtained show that DEDMNA is a very comparable optimiser
compared to the best performing DE variants. The simple idea of measuring the distance of the
mutant solutions increases the performance of DE significantly.

Keywords: differential evolution; distance-based; mutation-selection; real application; experimental
study; global optimisation

1. Introduction

The solving of global optimisation problems is frequently needed in many areas of
research, industry, and engineering where minimal or maximal cost values are required. In
general, a global optimisation problem is specified in the search space Ω which is limited
by its boundary constraints, Ω = ∏D

j=1[aj, bj], aj < bj. The objective function f is defined
in all x ∈ Ω and the point x∗ for f (x∗) ≤ f (x), ∀x ∈ Ω is the solution of the global
optimisation problem.

In this study, several engineering optimisation problems are used to illustrate the
performance of both existing ( well-known) and newly proposed optimisation methods.
The motivation and aim is to show the efficiency of the newly proposed optimisation
algorithms. Achieving an optimal solution for engineering problems is a very popular
research area [1]. Generally, the real-life application of optimisation methods is extremely
important in many fields of industry, energy, and scheduling, etc. [2].

In addition to the area of engineering optimisation problems, the field of industrial
economics is also very popular. In 2019, Dosi et al. introduced a comprehensive theoretical
survey of the history of agent-based macroeconomics [3]. The authors critically discussed
the issues found in macroeconomics from different points of view. The authors recom-
mended the direct cooperation of agent-based macroeconomics with financial institutions.
In 2020, Bellomo et al. introduced a theoretical cooperation between evolutionary theory
and the theory of active particles [4]. The authors deeply analysed areas of evolutionary
landscapes and the interactions found in endogenous systems which resulted in a model of
differential equations. The results of the simulations showed the potential of their proposed
approach in aiding the cooperation between states and private companies.

There are various optimisation approaches to find the minimal (maximal) function
value of objective functions. The biggest group of optimisation methods is called the
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Evolutionary Algorithms (EAs), which are inspired by natural systems. One of the most
frequently used EA is the Differential Evolution (DE) algorithm [5]. The high popularity of
the DE algorithm is based on its simplicity and efficiency. Over more than 15 years, a lot of
powerful DE variants have been developed and studied very intensively [6–8]. Despite the
efficiency of DE, there is still not one specific variant of the optimisation algorithm which is
possible to solve all global optimisation problems in the most efficient way (No Free Lunch
theorem [9]).

Differential Evolution

Differential evolution was introduced by Storn and Price as a simple and efficient
optimisation algorithm in 1996 [5]. DE is a population-based optimisation algorithm
that uses three numerical control parameters. The main idea of DE is as follows. In the
beginning, the population of N individuals (D-dimensional vectors) is generated randomly
in Ω and evaluated by the objective function f . After initialisation, the development of
the population is performed from generation to generation until the stopping condition is
met. The development of the individuals in the population is controlled by evolutionary
operators—mutation, crossover, and selection. A new trial individual (offspring) yi is
derived from the current point xi as follows. A mutated individual ui is constructed from
the current individual using mutation. There are several well-known mutation variants,
the most widely-used mutation variant in DE is denoted rand/1 (1), where r1, r2, r3 are
randomly selected mutual indices from [1, N], different from i.The parameter F ∈ (0, 2] is
called a scale factor.

u = xr1 + F · (xr2 − xr3) (1)

After mutation, a crossover operation is performed. Here, elements of the original
xi and the mutated individuals ui are used for a new offspring solution—yi. The most
widely used crossover variant is known as binomial crossover (2), where the crossover
ratio CR ∈ (0, 1) controls the number of elements from a mutated individual selected for a
trial solution.

yi,j =

⎧⎪⎨
⎪⎩

ui,j, i f randj(0, 1) ≤ CR or j = randj(1, D)

xi,j, otherwise.
(2)

A new individual yi is evaluated by a cost function and it replaces the parent individ-
ual xi in the population if it is better, f (yi) ≤ f (xi). This evolutionary operation is known
as selection. When standard canonical DE is used for solving complex optimisation prob-
lems or large scale problems with high dimensions D, its efficiency is worse. The issue is
mainly caused by the fixed values of the control parameters—N, CR, F. Then, the adaptive
approach of the DE control parameters’ values helps to solve various optimisation tasks.
A lot of successful adaptive DE variants have been introduced and applied to real-world
problems [6–8].

In this paper, a new DE variant based on a distance-based selection of mutation indi-
viduals, using an archive of old-good solutions and a population-size reduction mechanism,
was applied to real-world problems. The main motivation for using the new algorithm
was derived from an attempt to control the speed of convergence in the DE by the proper
selection of a mutation individual [10,11]. Euclidean distance is employed to select the
correct mutation individual from a triplet based on the current stage of the algorithm.
Additionally, using historical yet correct, solutions in a reproduction process can enhance
the ability to avoid the local minimal area. Finally, changing the population size during
the search (from a bigger value to a smaller value) enables the support of exploration
in early generations and exploitation in later generations. The most important aspect
of the research is the practical use of the proposed optimisation methods for real-world
problems. Therefore, three real-world engineering problems and 13 constrained problems
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were used to evaluate the proposed DE and compare the results with other state-of-the-art
DE variants.

The rest of the paper is organised as follows. The newly proposed DE variant is
presented in Section 2. The real-world problems and experimental settings are represented
in Section 3. The results obtained from the experimental study are presented and discussed
in Section 4. The paper is briefly concluded in Section 5.

2. A Novel DE with Distance-Based Mutation-Selection (DEDMNA)

In this section, a DE variant with Distance-based Mutation-selection, population size
(N) reduction, and the use of an archive of old-good solutions (DEDMNA) is introduced.
The main motivation for this approach is to manage the speed of convergence in the DE
algorithm because the selection of the proper mutation operation significantly influences
the ability to increase or decrease the population diversity.

In 2012, Liang et al. proposed a new DE variant with a distance-based selection
approach [12]. Here, newly generated solutions are based on the Euclidean distance of
an individuals’ cost functions. A weakness of this approach is found in the necessity for
the evaluation of the individuals. This is because it is typically the most time-consuming
operation during the optimisation process.

In 2017, Gosh et al. proposed a DE variant with a distance-based mutation scheme
using the central tendency of the population [13]. The Manhattan distance of the parent
and offspring solution was applied to prioritise newly generated solutions with worse
quality. The mechanism proposed a higher level of population diversity during the search.

In 2020, Liang et al. presented a novel DE algorithm based on the function value of the
Euclidean-distance ratio [14]. This ratio reflects the function value and distance between
two individuals in the population, and it is computed for the whole population. Therefore,
the parent individuals are selected by roulette using the ratio values. The results of their
experiments showed an increased efficiency in some classification problems.

2.1. Proper Mutation Variants for Convergence-Control

Standard DE uses mutation and crossover operations to generate new solutions to
produce the next generation. There are many mutation variants, and preliminary results
show that various mutation variants perform significantly differently [15]. Therefore, a
couple of well-performing mutation variants which provide a variety of convergence-
speeds were selected. Preliminary experimental results [10] and a theoretical analysis [11]
provide an evaluation of DE mutation based on the speed of convergence. Based on
preliminary experiments, the DE mutation variants rand/1 (1), best/2 were assessed as a
balanced set of fast-converging and diversity-keeping mutation variants.

u = xbest + F · (xr1 − xr2) + F · (xr3 − xr4) (3)

u = xr1 + F · (xbest − xr1) + F · (xr2 − xr3) (4)

where xr1 , xr2 , xr3 , xr4 are mutually different points r1 
= r2 
= r3 
= r4 
= i and xbest is best
point of P.

2.2. Distance-Based Mutation-Selection Mechanism

The newly proposed DE with a distance-based approach is based on a previously
designed DEMD variant [16]. The original DEMD uses only a distance-based mutation-
selection approach and a control parameter adaptation approach. To improve the original
DEMD, a linear population size reduction approach and an archive for old solutions were
employed in our research. Here, more details of the original DEMD and its new enhanced
variant are provided.

The main motivation for using the original DEMD was the control of the convergence
ability (speed) of the DE algorithm. For each individual xi in population P, three mutation
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individuals are generated using the three mutation variants as discussed above. Then,
the most proper mutation individual is selected for the crossover and selection, using
the standard Euclidean distance, with respect to the current stage of the search process
(exploration or exploitation). Note that where the CoDE variant [17] selects one of the
three trial individuals evaluated by the cost function, the proposed DEDMNA uses the
Euclidean distance between the coordinates of the points in the population. Therefore,
the computational costs of the DEDMNA approach are substantially lower because the
function evaluation of the individuals is a computationally expensive operation.

At the beginning of DEDMNA, a population of P of N individuals xi, i = 1, 2, . . . , N
is generated randomly in Ω and evaluated by objective function. Next, for each individual
xi from P, a new solution yi is generated. The reproduction process of DEDMNA is divided
into two phases—exploration and exploitation. The exploration phase is performed in
the early generations of DEDMNA, and it keeps the coarse detection of potentially good
regions of Ω. In this phase, for each xi three new mutant vectors u1, u2, and u3 are
produced using (1), (3) and (4) mutations. Subsequently, a mutation point with the least
Euclidean distance between the mutation individuals and the current position xi is selected
to choose the proper mutation individual and to achieve a better exploration of Ω. The
second, exploitation, phase is controlled by (5), and the mutation point of the triplet
of mutation individuals u1, u2, and u3 with the least Euclidean distance between the
mutation individuals and the best individual xbest is selected to choose the proper mutation
individuals and maintain a better exploitation ability.

dist =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ D

∑
j=1

(uk,j − xi,j)2, if FES/maxFES < rand

√√√√ D

∑
j=1

(uk,j − xbest,j)2 otherwise, k = 1, 2, 3.

(5)

where FES is the current number of depleted function evaluations and maxFES the max-
imum FES for one run. Next, a new trial individual yi is developed using a standard
binomial crossover (2).

It is clear that setting the control parameters F and CR are crucial for the efficiency of
the DEDMNA algorithm. In DEDMNA, an adaptive approach to changing the values of
F and CR during the search process is employed. Simply, the values of CR are generated
randomly, uniformly from the interval (0, 1), and independently for each point in P.
Furthermore, the value of CRi is randomly re-sampled if it has a small probability of 0.1.
The adaptive mechanism for the values of F depend on the current phase. In the early
exploration phase, the values of Fi are computed as a random permutation of length N
divided by N for each point from P. Such values equidistantly cover the interval (0, 1). In
the late exploitation phase, values of Fi are sampled as a random number from the uniform
interval (0, 1). In both phases, the Fi values are randomly assigned to individuals of P and
modified by Fi = Fi + 0.1 ∗ rand. Such a modification guarantees slightly varying values in
each generation. Similar adaptation mechanisms for the DE control parameters were also
used in the original algorithms [18,19].

2.3. Archive of Historically Good Solutions

To simplify the use of archived historical solutions in A, point xr3 (see (1), (3) and (4))
is randomly selected from P

⋃
A (the remaining points for mutation are selected solely

from P). It means that when the archive is fully written, the randomly selected individual
xr3 has a 50% chance from being from P and a 50% chance from A.
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2.4. Population Size Adaptation

Preliminary experiments showed that varying the population size during the search
significantly increases the performance of the DE algorithm [20–22]. The population size
N of the DEDMNA algorithm is linearly reduced during the search process from a bigger
value at the beginning to a smaller value at the end. After each generation, the current
proper population size (based on linear dependency) is computed (6). When the current
population size N differs from the needed value, the population size is reduced:

N = round[(
Nmin − Ninit

maxFES
)FES + Ninit], (6)

where FES is the current number of function evaluations, Ninit is the initial population size,
Nmin represents the size of population at the end of the search process (counted by the total
number of maxFES function evaluations).

3. Experimental Settings

The proposed DEDMNA algorithm was applied to three engineering problems and 13
constrained problems. The results from DEDMNA were compared with six state-of-the-art
DE variants.

3.1. State-of-the-Art Variants in Comparison

Six state-of-the-art DE variants were selected for an experimental comparison to assess
the performance of the proposed DEDMNA variant. A brief description of the methods in
a chronological manner follows.

In 2006, Brest et al. proposed a simple and efficient adaptive DE variant (jDE) [18]. jDE
uses a DE/rand/1/bin strategy with an adaptive approach of F and CR. Each individual
has separate values of F and CR, and in each generation, it is regenerated with a probability
of 0.1. More details of the efficient jDE method can be found in [18].

In 2009, Qin et al. proposed a DE algorithm with strategy adaptation (SaDE) [23]. In
Sade, four mutation strategies (rand/1/bin, rand/2/bin, rand-to-best/2/bin, and current-
to-rand/1) are used for generating new trial solutions. The strategy to be applied is selected
by roulette based on the success and failure of previous LP generations. Each strategy
has the same probability set to 1/4, i.e., all the strategies have an equal probability of
being selected.

In 2013, Tanabe and Fukunaga introduced the Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [24] which was the best performing DE
variant in the CEC 2013 competition. SHADE is derived from JADE [25], where the main
difference between SHADE and the original JADE is a different history-based adaptation of
the control parameters F and CR. Both algorithms use a current-to-pbest mutation strategy
where one parent individual is selected from P

⋃
A. The SHADE algorithm is abbreviated

in the results of this paper as SHA.
In 2014, Wang et al. proposed a new DE variant using covariance-matrix learning and

bimodal parameter settings (CoBiDE and CoBi in results) [26]. CoBiDE advances the canon-
ical DE in two new aspects–the covariance-matrix crossover (based on Eigenvectors of the
population) and bimodal sampling of the control parameters, which distinguishes between
exploration and exploitation. The authors of CoBiDE supposed a higher performance in
problems defined by rotated objective functions. The Eigenvector crossover is controlled
by two control parameters pb = 0.4 is the probability of using the Eigenvector crossover
(instead of the classic binomial crossover) in the whole population, and ps = 0.5 is the
portion of the population used to determine the Eigenvectors. More details are provided in
the original paper.

In 2015, Tang et al. introduced a DE with an Individual-Dependent Mechanism [19].
The search process in IDE is divided into explorative and exploitative phases. The dynamic
setting of the F and CR values using the quality of the individuals is employed. Better
individuals with lesser objective function values have smaller values of F and CR and vice
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versa. In 2017, an advanced IDE variant was proposed with a novel mutation variant and
diversity-based population size control (IDEbd) [27]. The details of the IDEbd method can
be found in the original paper, and it is labelled simply by ‘IDE‘ in the results section of
this paper.

In 2017, Brest et al. introduced an adaptive DE variant derived from the successful
JADE, SHADE, and L-SHADE called jSO [21]. The jSO algorithm achieved second position
in the CEC 2017 competition. jSO uses historical circle memories of length 5 containing
the mean values for generating F and CR. In the first half of the jSO search process, higher
values of CR are used. In the first 60% of evaluations, the values of F are kept under 0.7. jSO
uses an advanced weighted current-to-pbest mutation. Finally, jSO uses a linear adaptation
of the population size where the initial population size is N = 25 ×

√
D × log D. More

details are available in [21].
In 2019, Brest et al. proposed a very efficient adaptive DE variant called jDE100 [28], In

2019, jDE100 was the optimisation algorithm with the best results in the CEC competition.
The jDE100 algorithm is derived from jDE. In jDE100, two independent populations are
used—one big and one small. Also, the initial values of the mutation and crossover are
set to F = 0.5 and CR = 0.9 for each individual in both populations. After one generation
of the big population, if the best solution for the jDE100 is in the big population, it is
copied to the small population. Then, when the condition for the re-initialisation of the
big population is satisfied, it is reset. Then several generations of the small population are
performed (equally to the number of function evaluations of the big population), and also
the reset condition is verified, and the best solutions are stored. More details regarding
jDE100 can be found in the original paper.

3.2. Well-Known Engineering Problems

The experimental comparison found here is based on three well-known engineering
problems [29]. All the problems are related to minimisation, i.e., the global minimum
point is the solution. The computational complexity of the problems are varied, and the
dimensionality of the search space is (D ∈ {3, 4}). For each algorithm and problem, 25
independent runs were performed. Each algorithm stops when it achieves a predefined
number of function evaluation, i.e., MaxFES = 150,000. A better insight into the results of
the algorithms is provided by results achieved at MaxFES = 50,000 and MaxFES = 100,000.
Finally, the individual of the final population with the least function value is the solution
of the algorithm for the given problem.

(a) (b) (c)

Figure 1. (a) Pressure vessel design problem, (b) Welded beam design problem, and (c) Tension-
compression string problem.

In the pressure vessel design problem (labelled preved in results), the production costs
represented by four parameters and constraints are minimised. The decision space area is
represented by a four-dimensional real-valued space: x1 defines the thickness of the head,
x2 is the thickness of the cylinder, x3 is the inner radius, and x4 is the length of the cylinder
part (see Figure 1a)). The objective function is defined:

f (y) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (7)
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with constraints:

y1 = −x1 + 0.0193x3 ≤ 0

y2 = −x2 + 0.00954x3 ≤ 0

y3 = −πx2
3x4 −

4
3

πx3
3 + 1,296,000 ≤ 0

y4 = x4 − 240 ≤ 0

(8)

The purpose of the second Welded Beam Design problem (labelled welded in results)
is to achieve the best production cost regarding a set of project constraints. An illustration
of this problem is depicted in Figure 1b). The problem variables are—the weld thickness
(x1) length (x2), height (x3), and thickness of the bar (x4).

f (y) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (9)

with settings:

tmax = 13,600

smax = 30,000

dmax = 0.25

M = P(L +
x2

2
)

R =
√

0.25(x2
2 + (x1 + x3)2)

P = 6000

L = 14

E = 3 × 106

G = 12 × 106

J = 2
√

2x1x2(x2
2/12 + 0.25(x1 + x3)

2)

Pc = (
4.013E
(6L2)

)x3x3
4(1 − 0.25x3

√
E/G/L)

t1 = P/(
√

2x1x2), t2 = MR/J

t =
√

12 + t1t2x2/R + t2
2

s = 6PL/(x4x2
3), d = 4PL3/(Ex4x3

3)

(10)

and constraints:

y1 = t − tmax

y2 = s − smax

y3 = x1 − x4

y4 = 0.10471x2
1 + 0.04811x3x4(14.0 + x))− 5.0

(11)

In the Tension-Compression String problem (labelled tecost in results), the weight of
the spring is minimised. The problem variables of the tecost problem are the wire diameter
(x1), the mean coil diameter (x2), and the number of active coils (x3). The tecost problem
is restricted by the constraints of shear stress, surge frequency, and minimum deflection
(Figure 1c)). The objective function is:

f (y) = x2
1x2(x3 + 2) (12)
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with constraints:

y1 = 1 − x3
2x3

71,785x4
1

y2 =
4x2

2 − x1x2

12,566x3
1(x2 − x1))

+
1

5108x2
1
− 1

y3 = 1 − 140.45x1/(x3x2
2)

y4 =
x1 + x2

1.5
− 1

(13)

3.3. Constrained Optimisation Problems

Real-world problems are very often defined as constrained optimisation problems.
The constrained conditions (based on equality or inequality) specify more accurate areas for
the allowed values of optimised variables. Therefore, a set of 13 minimisation constrained
problems are used in experiments to distinguish more and less efficient methods. Details
and definitions of the objective functions of the constrained problems are available in [29].
The constrained problems are labelled p1–p13 following the order of the original report.
The dimensionality of the search space is D ∈ (2, 20).

All algorithms and problems are implemented and experimentally compared in a
Matlab 2020b environment. All computations were carried out on a standard PC with
Windows 10, Intel(R) Core(TM)i7-9700 CPU 3.0 GHz, 16 GB RAM. For each algorithm
and problem maxFES = 100,000 and is the stopping condition of the search, and 25
independent runs were performed to achieve statistically significant results. The population
size of all algorithms is N = 90. The control parameters are minimal population size
(Nmin = 5, 20), initial population size (Ninit = round(25 ∗ log(D) ∗

√
D [21]), and the size

of the archive is equal to the population size N. Based on the final population size values,
two different DEDMNA variants are labelled in the results as DDMA5 and DDMA20. The
control parameters for the state-of-the-art algorithms used in this comparison, follow the
recommended settings from the original papers.

4. Results

In this paper, two variants of the novel DEDMNA algorithm are compared with six
state-of-the-art DE variants when solving three engineering and 13 constrained problems.
At first, the performance of all nine algorithms is compared using the Friedman test. This
method provides the mean ranks of the algorithms in comparison using the median values
of the best-achieved function values. The best-achieved solution for each algorithm was
recorded in ten phases of the search. The mean ranks for each algorithm and problem for
the ten phases are in Table 1. The mean ranks represent the overall performance of the
algorithm, including all 16 problems. The algorithms are ordered based on the mean rank
in the final 10th phase (MRst = 10). The mean rank of the best algorithm is printed bold
and underlined, the second-best is printed bold, and the algorithm in the third position
is underlined. In the last column, the achieved significance level of the Friedman tests is
presented. If the null hypothesis is rejected, symbol of ∗ ∗ ∗ (p < 0.001), ∗∗ (p < 0.01),
and ∗ (p < 0.05) is presented. Otherwise, symbol of ≈ demonstrate cases, where the null
hypothesis is not rejected.
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Table 1. Mean ranks of all algorithms from the Friedman tests computed for each stage independently.

MRst DDMA20 DDMA5 SHA SaDE jDE jDE100 IDE CoBi Sig.

1 4.38 4.50 3.41 5.53 5.84 2.66 3.66 6.03 ***
2 4.84 4.72 3.97 4.91 5.16 2.75 3.97 5.69 *
3 4.91 4.34 4.25 4.44 4.91 3.25 4.03 5.88 ≈
4 4.59 4.22 4.16 4.19 4.78 3.78 4.53 5.75 ≈
5 4.28 4.22 4.19 4.06 4.75 4.03 4.94 5.53 ≈
6 4.19 4.25 4.03 4.06 4.56 4.41 5.03 5.47 ≈
7 4.50 4.38 4.16 4.25 4.44 4.25 4.81 5.22 ≈
8 4.13 4.13 4.09 4.44 4.44 4.69 4.84 5.25 ≈
9 3.94 4.00 4.22 4.44 4.63 4.69 4.84 5.25 ≈
10 3.81 4.19 4.22 4.38 4.63 4.75 4.78 5.25 ≈

The null hypothesis is rejected only in the first two phases; the performance of the
algorithms in the remaining phases is rather similar. Very interesting information is
provided by the development of the mean rank values for each algorithm during the
progression of stages. In the early phases, jDE100 and SHADE variants are well-performing.
The best results, including all 16 problems in the last two (final) phases, were achieved by
the newly proposed DEDMNA20 and DEDMNA5. It highlights the effective performance
of the proposed DEDMNA method. A better insight into the mean rank comparison is
provided by the plots of the mean ranks in Figure 2. The performance of jDE100 decreases
during the search, whereas the efficiency of the DEDMNA algorithm increases (especially
for DEDMNA20).

Figure 2. Illustration of the algorithms’ mean ranks from the Friedman tests.

A more detailed comparison is provided by the Wilcoxon rank-sum tests. The test
is applied to compare the results of two algorithms with one problem. The reference
method is DEDMNA20 (best mean rank from the Friedman test), and it is compared with
the seven remaining counterparts. In Tables 2 and 3, the median values of all algorithms
and problems are shown, including the significance from the Wilcoxon rank-sum tests (‘−’
denotes the better performance of a counterpart method, ‘+’ shows the better performance
of DEDMNA20, and ‘≈’ is for similar results). Mostly, the median values of all the compared
algorithms are very similar to the achieved true solution.
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Table 2. Median values for each algorithm and problem, with significance from the Wilcoxon
rank-sum tests.

Fun DDMA20 IDE CoBi jDE SaDE

preved 5885.333 5885.3328 5885.333 5885.333 5885.33
(≈) (≈) (≈) (−−−)

welded 2.218151 2.218151 2.218151 2.218151 2.21815
(≈) (≈) (≈) (−−−)

tecost 0.012665 0.012665 0.012665 0.012665 0.012665
(−−−) (−−−) (≈) (−−−)

p1 −15 −14.99 −15 −15 −15
(+++) (≈) (≈) (≈)

p2 −0.8049 −0.792 −0.754 −0.803 −0.804
(+++) (+++) (+) (≈)

p3 −0.02377 −0.25338 −1.04 × 104 −3.00 × 106 −5.00 × 106

(−−−) (+++) (+++) (+++)
p4 −30665.5 −30665.5 −30665.5 −30665.5 −30665.5

(≈) (+++) (≈) (+++)
p5 1.19 × 1012 1.19 × 1012 1.19 × 1012 1.19 × 1012 1.19 × 1012

(≈) (−−−) (≈) (−−−)
p6 −6961.81 −6961.81 −6961.81 −6961.81 −6961.81

(≈) (+++) (≈) (+++)
p7 24.30697 24.35218 24.307 24.30798 24.3064

(+++) (≈) (++) (−−)
p8 −0.09583 −0.09583 −0.095825 −0.09583 −0.095825

(≈) (+++) (≈) (+++)
p9 680.6301 680.63007 680.63 680.6301 680.63

(+++) (−−−) (≈) (−−−)
p10 7049.42 7059.31 7054.68 7049.43 7049.41

(+++) (+++) (≈) (≈)
p11 0.7499 0.7499 0.7499 0.7499 0.9656

(≈) (≈) (≈) (+++)
p12 −1 −1 −1 −1 −1

(≈) (≈) (≈) (≈)
p13 4.1 × 108 0.95456 3.25 × 109 1.44 × 1010 8.95 × 1011

(−−) (+) (++) (+++)

Σ 5/8/3 7/6/3 4/12/0 6/4/6

For a better comparison of the algorithms, the counts of better, similar, and worse
results for the reference DEDMNA20 algorithm are depicted in the last row of the tables.

Compared to IDEbd (labelled IDE), DEDMNA20 performs better in five constrained
problems and is worse in one constrained and one engineering problem. CoBiDE is outper-
formed by the reference method in seven problems, and it performs better in three problems.
DEDMNA20 outperforms jDE in four constrained problems and never performs worse.
DEDMNA20 is better in six constrained problems and worse in three constrained problems
and three engineering problems, compared to SaDE. SHADE is able to outperform the
reference method in three constrained problems, and it performs worse in three constrained
and one engineering problem. The results of the two DEDMNA variants are very similar,
and each is better in one problem. DEDMNA20 outperforms jDE100 in eight constrained
problems, and it is worse in two engineering problems and two constrained problems.

More insight into the algorithms’ performance is provided by convergence plots for
all 16 problems (see Figures 3–6). It is clear that in constrained problems 8 and 12, all the
algorithms converge in the first phase. In the remaining problems, the convergence process
takes some time. An interesting observation is the convergence of constrained problem 2,
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where the curves of the best algorithms’ solutions differ to the last phase. The worst
convergence is with CoBiDE, whereas very good results are provided by DEDMNA20.

Table 3. Median values for each algorithm and problem, with significance from the Wilcoxon
rank-sum tests.

Fun DDMA20 SHADE DDMA5 jDE100

preved 5885.333 5885.3328(≈) 5885.3328(≈) 5885.330(−−−)
welded 2.218151 2.2181509(≈) 2.2181509(≈) 2.21815(−−−)
tecost 0.012665 0.012666(+++) 0.012665(+) 0.012665(≈)

p1 −15 −15(≈) −15(≈) −15(≈)
p2 −0.80359 −0.8036(−−−) −0.8036(≈) −0.79256(+++)
p3 −0.02377 −0.0004899(+++) −0.02249(≈) −0.00268(+++)
p4 −30665.5 −30665.5387(≈) −30665.5387(≈) −30665.5(+++)
p5 1.19 × 1012 1.19 × 1012(≈) 1.19 × 1012(≈) 1.19 × 1012(−−−)
p6 −6961.81 −6961.81388(≈) −6961.81388(≈) −6961.81(+++)
p7 24.30697 24.30625(−−−) 24.30699(≈) 24.3269(+++)
p8 −0.09583 −0.095823(≈) −0.09583(≈) −0.095825(+++)
p9 680.6301 680.630057(≈) 680.630057(≈) 680.633(+++)

p10 7049.42 7049.29(−−) 7049.55(≈) 7071.57(+++)
p11 0.7499 0.9401(+++) 0.7499(≈) 0.7499(≈)
p12 −1 −1(≈) −1(≈) −1(≈)
p13 4.1 × 108 5.07 × 1011(+++) 0.97026(−) 0.902(−−)

Σ 4/9/3 1/14/1 8/4/4

Pressure vessel design problem Welded Beam Design problem

Tension-Compression String problem Constrained problem 1

Figure 3. Convergence plots of the algorithms in comparison.
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Constrained problem 2 Constrained problem 3

Constrained problem 4 Constrained problem 5

Figure 4. Convergence plots of the algorithms in comparison.

Constrained problem 6 Constrained problem 7

Constrained problem 8 Constrained problem 9

Figure 5. Convergence plots of the algorithms in comparison.
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Constrained problem 10 Constrained problem 11

Constrained problem 12 Constrained problem 13

Figure 6. Convergence plots of the algorithms in comparison.

5. Conclusions

In this experimental comparison, two newly proposed DEDMNA variants are com-
pared with six state-of-the-art DE variants when solving three engineering problems and
13 constrained problems. The results of the Friedman tests show that the DEDMNA variant
provides the best performance in the last phase of the search, whereas the successful jDE100
variant performs better in the early phases of the search. The better results for DEDMNA,
with a bigger final population size, indicates the necessity for higher diversity during the
search process.

The counts of better and worse results from the Wilcoxon rank-sum test show that the
new DEDMNA variant is able to be comparable with optimised state-of-the-art methods
when applied to real-world problems. Despite this, all algorithms achieved mostly quite
similar results, which illustrate the ability of the methods to determine the area of the
true solution. The Proposed DEDMNA variant was successfully applied to the current
CEC 2021 competition, and it achieves a very promising performance compared to the
state-of-the-art DE algorithms from the preliminary experiments. This finding is very
promising for the future development of new optimisation methods. The performance of
DEDMNA will be studied and further tuned in future research.
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