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Milecki

Computer Tools to Analyze Lung CT Changes after Radiotherapy
Reprinted from: Appl. Sci. 2021, 11, 1582, doi:10.3390/app11041582 . . . . . . . . . . . . . . . . . 165

v





About the Editors

Michał Strzelecki Professor Michał Strzelecki has been employed at the Institute of Electronics, Lodz

University of Technology (TUL) since 1988, and he had been a Full Professor since 2007. His scientific

interests include the processing and analysis of biomedical signals and images, data analysis methods,

and artificial intelligence. In particular, he is interested in issues related to image texture analysis and

the applications and hardware implementations of artificial neural networks. He also works on the

development of software aimed to support medical imaging diagnostics. Within these interests, Prof.

Strzelecki conducts extensive cooperation with domestic and foreign medical universities on the

construction and development of systems supporting the diagnostic process.

Pawel Badura Dr. Pawel Badura, PhD, DSc, has been with the Faculty of Biomedical Engineering,

Silesian University of Technology, Poland, since 2007. He is an associate professor in the Department

of Medical Informatics and Artificial Intelligence, which defines his scientific interests. Dr. Badura is

experienced in medical image and signal analysis, computer-aided diagnosis systems, and artificial

intelligence for biomedical applications. In recent years, he has worked with machine learning and

deep learning applied to various fields of biomedical engineering, e.g., image analysis, acoustic

analysis, or classification.

vii





Citation: Strzelecki, M.; Badura, P.

Machine Learning for Biomedical

Application. Appl. Sci. 2022, 12, 2022.

https://doi.org/10.3390/app12042022

Received: 26 January 2022

Accepted: 8 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Machine Learning for Biomedical Application

Michał Strzelecki 1,* and Pawel Badura 2

1 Institute of Electronics, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
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The tremendous development of technology also affects medical science, including
imaging diagnostics. Computer tomographs enable the non-invasive visualization of
internal human organs and tissues without the need for a surgical operation. This leads to
the research and development of new, more efficient, and reliable diagnostic and therapeutic
procedures. Medical imaging, such as biomedical signal acquisition, plays an increasingly
important role not only in diagnostics, but also in therapy, monitoring its effects, and in
rehabilitation. On the other hand, the increasing data sets generated by medical diagnostic
devices make it difficult to explore and analyze data in a non-automatic way—as doctors
have done so far. Hence, recently, more and more attention has been paid to the design
and development of automatic data analysis systems, the application of which covers
various issues in the field of healthcare. Such systems can dynamically adapt to changing
conditions, and thus facilitate the analysis and solving of complex problems. Such systems
often implement machine learning methods.

Machine learning (ML) is a subset of artificial intelligence (AI). Algorithms are trained
to find patterns and correlations in large data sets, and to make the best decisions as well
as predictions based on the results of such analysis. Machine learning systems become
more effective over time, and the more data they have access to, the more accurate they
are. Nowadays, deep learning methods are also often used in medical imaging [1]. Deep
learning is a part of machine learning. It is based on complex artificial neural networks.
The learning process is deep because the structure of artificial neural networks consists of
many input, output, and hidden layers, which are often interconnected. Deep networks
achieve much better results in terms of the recognition, classification, and prediction of
medical data compared to classical machine learning algorithms.

Thanks to ML technology, including DL, health care workers, including doctors, can
cope with complex problems that would be difficult, time-consuming, and ineffective to
solve on their own. This Special Issue includes 10 publications that discuss the use of
broadly understood machine learning methods for processing and analyzing biomedical
signals and images coming from many medical modalities. The use of these methods allows
a better understanding of the principles of the human body functioning at various levels
(cellular, anatomical, and physiological) by providing additional, quantitative, reliable data
extracted from medical data.

Ihsanto [2] proposes an algorithm developed for automated electrocardiogram (ECG)
classification. ECG is a popular biosignal in heart disease diagnostics. However, it is
non-stationary; thus, the implementation of classic signal analysis techniques (such as
time-based analysis feature extraction and classification) is rather difficult. Thus, a machine
learning approach based on the ensemble of depthwise separable convolutional (DSC)
neural networks for the classification of cardiac arrhythmia ECG beats was proposed. This
method reduces the standard path of ECG analysis (QRS detection, preprocessing, feature
extraction, and classification) to two steps only, i.e., QRS detection and classification. Since
feature extraction was combined with classification, no ECG preprocessing was required. To
reduce the computational cost and maintain method reliability, All Convolutional Network
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(ACN), Batch Normalization (BN), and ensemble convolutional neural networks were
implemented. The developed ensemble of deep networks was validated using the MIT-BIH
arrhythmia database. The obtained classification results (16 class problem) resulted in
sensitivity (Sn), specificity (Sp), and positive predictivity (Pp), and accuracy (Acc) equal
to 99.03%, 99.94%, 99.03%, and 99.88%, respectively. It was demonstrated that presented
classification quality measures outperformed other state-of-the-art methods.

Biomedical signals are often used for the design and development of human–machine
interfaces, which is emerging branch biomedical engineering. Borowska-Terka [3] proposes
such a system dedicated to persons with disabilities, which that is a hands-free head-
gesture-controlled interface. It can help, for example, paralyzed people to send messages
or the visually impaired to handle travel aids. The system contains a small stereovision
rig with a built-in inertial measurement unit (IMU). To recognize head movements, two
methods are considered. In the first approach, for various time window sizes of the signals
recorded from a three-axis accelerometer and a three-axis gyroscope, selected statistical
parameters were calculated. In the second technique, the direct analysis of signal samples
recorded from the IMU was performed. Next, the accuracies of 16 different data classifiers
for distinguishing the head movements: pitch, roll, yaw, and immobility were evaluated.
The highest accuracies were obtained for the direct classification of unprocessed samples
of IMU signals and with the use of SVM classifier (95% correct recognitions), while the
random forests classifier reached 93%. Such results indicate that a person with physical or
sensory disability can efficiently communicate with other people or manage applications
using simple head gesture sequences.

MRI is one of most common imaging modalities used in diagnostics and treatment
planning. Klepaczko [4] shows an application of dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) for visualizing and quantifying kidney perfusion, which
is one of the most important indicators of an organ’s state. In clinical practice, kidney
function is assessed by measuring the glomerular filtration rate (GFR). Estimating the GFR
based on DCE-MRI data requires the application of an organ-specific pharmacokinetic (PK)
model, but the determination of the model parameters is sensitive to the determination of
the arterial input function (AIF). Thus, a multi-layer perceptron network was proposed
for PK model parameter determination. As a reference method, the trust-region reflective
algorithm was used. The efficiency of the proposed approach was tested for 20 data
sets, collected for 10 healthy volunteers whose image-derived GFR scores were compared
with ground-truth blood test values. The achieved mean difference between the image-
derived and ground-truth GFR values was 2.35 mL/min/1.73 m2, which is comparable
to the result obtained for the reference estimation method (−5.80 mL/min/1.73 m2). It
was demonstrated that the implemented neural networks ensure agreement with ground-
truth measurements at a comparable level. The advantages of using a neural network
are twofold. First, it can estimate a GFR value without the need to determine the AIF for
each individual patient. Second, a reliable estimate can be obtained, without the need to
manually set up either the initial parameter values or the constraints thereof. After further
validation and more exhaustive patient testing, the proposed approach can be implemented
in clinical practice.

Another important application of ML to fundus blood vessel image segmentation
is presented in [5]. Such analysis is important in the diagnosis and treatment of several
diseases, such as hypertension, coronary heart disease, and diabetes. The analysis of such
images is rather complicated, and classic algorithms suffer from relatively low segmen-
tation accuracy. Thus, an improved U-shaped neural network (MRU-NET) segmentation
method for retinal vessels was proposed. After the application of the image enhancement
algorithm, the image contrast is improved. Applied random segmentation divides the
image into smaller image blocks that help to reduce the complexity of the U-shaped neural
network model. Next, the residual learning is introduced into the encoder and decoder
to improve the efficiency of feature analysis. Finally, a feature balancing module is imple-
mented followed by the feature fusion module that is introduced between the encoder and
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decoder to extract image features with different granularities. The developed segmentation
technique was tested on the DRIVE and STARE datasets. It was demonstrated that the ob-
tained accuracies (96.11% and 96.62% for DRIVE and STARE, respectively) and sensitivities
(86.13% and 78.87%, respectively) outperform other state-of-the-art methods presented in
the literature.

A computer tool dedicated to the comprehensive analysis of lung changes in computed
tomography (CT) images is described in [6]. The proposed system enables the analysis of
the correlation between the radiation dose delivered during radiotherapy and the density
changes in lungs caused by the fibrosis. The input data, including patient dose, are extracted
from the CT images coded in DICOM format. The convolution neural networks are used
for CT processing. Next, the selected slices are segmented and registered by the developed
algorithms. The results of the analysis are visualized graphically, enabling, for example,
the presentation of dose distribution maps in the lungs. It is expected that, thanks to the
developed application, it will be possible to demonstrate the statistically significant impact
of low doses on lung function for a large number of patients.

Some areas of computer-aided diagnosis benefit from worldwide competitions for
research teams mainly due to the access to extensive and well-annotated datasets. The study
of Sage and Badura [7] addresses the detection of five subtypes of intracranial hemorrhage
(ICH) in head CT. The authors trained and validated their tools using a public database
provided by the Radiological Society of North America for the international ICH detection
competition. The set used in [7] consists of over 372k images from ten thousand patients.
Five separate models of a dedicated double-branch architecture were trained to detect
every ICH subtype. Each ResNet-50-based branch analyzes two artificial RGB images: one
reflecting the original CT slice in three different intensity windows and the other combining
the image with its neighbors in the series. The authors report the results produced by each
separate branch, but the best results came from another framework. Features extracted by
ResNet-50 cores are concatenated and passed to a classifier: either an SVM or a random
forest. Depending on the ICH type, the F1 score reaches from 75.3 to 96.6%, surpassing
other studies in the field thus far.

The ResNet-50 architecture is also the core of a method proposed by Song et al. [8]
for the automated detection of cephalometric landmarks in head X-ray images. Again,
the study takes advantage of a public database for an international ISBI Grand Challenge
in dental X-ray image analysis. However, the authors support the investigation with
their own dataset this time. The analysis is performed within patches extracted from the
X-ray image at a registration-based coarse landmark localization stage. The ResNet-50
architecture is replicated and trained nineteen times to address each of nineteen defined
landmarks separately. The fully connected layer works in a regression mode to estimate
the x and y coordinates of the landmark with a two-argument mean squared error (MSE)
loss function. The authors assess their methodology using a radial detection error and a
successful detection rate with an assumed tolerance. Despite a relatively small training
dataset, the method can detect most landmarks accurately, especially in the ISBI dataset
images. The comparison with some state-of-the-art methods favors the current study
in most evaluation metrics. The authors indicate that their approach still has room for
improvement in terms of computational time, mainly in the initial automated registration.

Mazur-Milecka et al. [9] applied deep learning models to segment laboratory rodents
in thermal images. Their study aimed at the efficient and non-intrusive monitoring of
animals’ activity and physiological changes, also in low light conditions. The image
data were captured at 60 frames per second by a thermal camera over a cage with two
rats. The authors implemented and investigated two approaches: a two-stage detect-
then-segment Mask R-CNN and a single-stage TensorMask network. Various training
schemes and parameter setups were used, including the transfer learning of models pre-
trained on public datasets. The TensorMask model produced the most accurate results
when pre-trained using visible light images and then trained with thermal sequences
(mean average precision over 90%). The authors also verified possible benefits from
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inputting alternative images created by rescaling the original thermal intensities in various
automatically adjusted ranges of animal temperature. However, they did not find any such
modifications improving the segmentation accuracy. In general, the single-stage methods
performed better than two-stage ones if pre-trained; the opposite was true in the case of
models trained from scratch.

Huang et al. [10] designed a prediction system for analyzing the risk of suffering
amyotrophic lateral sclerosis (ALS) based on combinatorial comorbidity patterns. They
employed medical history data gathered in electronic medical records (EMR) to support
the identification of high-risk ALS subjects in the early stage. One of the main contributions
of the study is the weighted Jaccard index (WJI) defined to balance the impact of particular
comorbidities in predicting the output risk. Comprehensive patient-group-wise distribu-
tions were determined over hundreds of individual- and mid-level diseases characterized
over the EMR database. This resulted in the determination of WJI weights. Four machine
learning models were trained and validated: logistic regression, random forest, SVM, and
XGBoost. The first two were considered most efficient based on seven canonic classification
assessment measures, including accuracy exceeding 80%. In general, the individual-level
disease classification turned out to be more efficient than the mid-level analysis, and the
WJI proved its advantage over the pure Jaccard index in the ALS risk prediction.

Finally, Loh et al. [11] delivered a systematic review of the automated detection of
sleep stages using deep learning models from the last decade. The authors summarize 36
studies from 2013 to 2020 that employ various deep models to analyze polysomnogram
(PSG) recordings. After providing some medical and machine learning background and
introducing five or six sleep stages, depending on the assumed standard, they analyze
their detection and classification from different points of view. First, the models and
architectures are introduced (convolutional or recurrent neural networks, long short-term
memory, autoencoders, and hybrid models). Second, the available databases are described.
Then, deep learning approaches addressing the sleep stage analysis are presented and
compared. Finally, the authors discuss the topic in detail and draw conclusions. Even
though electroencephalography (EEG) seems to be the most widely used signal in sleep
stage detection, the current review states that it may not be able to work efficiently enough:
automated systems should also involve other PSG recordings, e.g., electrooculography
(EOG) or electromyography (EMG).

The variety of topics covered by the articles in this Special Issue is yet another proof
of enormous opportunities for biomedical engineers and scientists familiar with artificial
intelligence, machine, and deep learning. These techniques respond to the emerging needs
of computer-aided diagnosis and therapy. Their development follows the explosion of
computing power; hence, the enormity of diagnostic, signal, or image data has a chance to
be processed, pre-analyzed, and presented to the physician within a reasonable time. From
predictive models based on classification and regression models to automated multi-scale
feature extraction from 2D, 3D, and even higher-dimensional data structures, contextual
analysis, segmentation, this is the future of the software branch of biomedical engineering.
The tools themselves are becoming increasingly reliable through the development of the
so-called explainable artificial intelligence (XAI). All these issues guarantee that the broad
biomedical application of machine learning is far from exhausted.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Sleep is vital for one’s general well-being, but it is often neglected, which has led to an
increase in sleep disorders worldwide. Indicators of sleep disorders, such as sleep interruptions,
extreme daytime drowsiness, or snoring, can be detected with sleep analysis. However, sleep analysis
relies on visuals conducted by experts, and is susceptible to inter- and intra-observer variabilities.
One way to overcome these limitations is to support experts with a programmed diagnostic tool
(PDT) based on artificial intelligence for timely detection of sleep disturbances. Artificial intelligence
technology, such as deep learning (DL), ensures that data are fully utilized with low to no information
loss during training. This paper provides a comprehensive review of 36 studies, published between
March 2013 and August 2020, which employed DL models to analyze overnight polysomnogram (PSG)
recordings for the classification of sleep stages. Our analysis shows that more than half of the studies
employed convolutional neural networks (CNNs) on electroencephalography (EEG) recordings for
sleep stage classification and achieved high performance. Our study also underscores that CNN
models, particularly one-dimensional CNN models, are advantageous in yielding higher accuracies
for classification. More importantly, we noticed that EEG alone is not sufficient to achieve robust
classification results. Future automated detection systems should consider other PSG recordings, such
as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals, along
with input from human experts, to achieve the required sleep stage classification robustness. Hence,
for DL methods to be fully realized as a practical PDT for sleep stage scoring in clinical applications,
inclusion of other PSG recordings, besides EEG recordings, is necessary. In this respect, our report
includes methods published in the last decade, underscoring the use of DL models with other PSG
recordings, for scoring of sleep stages.

Appl. Sci. 2020, 10, 8963; doi:10.3390/app10248963 www.mdpi.com/journal/applsci7
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1. Introduction

Sleep is crucial for the maintenance and regulation of various biological functions at a molecular
level [1], which helps humans to restore physical and mental wellbeing and proper brain function
during the day [2]. There are two primary types of sleep: non-rapid eye movement (NREM) and rapid
eye movement (REM) sleep. NREM sleep comprises four stages, after which, it continues into the
REM sleep stage. NREM and REM sleep stages are connected and cyclically alternated through the
sleep process wherein unbalanced cycling or the absence of sleep stages give rise to sleep disorders [3].
Unfortunately, sleep disorders, which lead to poor sleep quality, is often neglected [4]. Stranges et al. [4]
highlighted that sleep-related problems is a looming global health issue. In their study, datasets from
the World Health Organization (WHO) and International Network for the Demographic Evaluation of
Populations and Their Health (INDEPTH) were used to investigate the prevalence of sleep problems
in low-income countries. It was reported that 16.6% of the adult population, which amounts to
approximately 150 million, have sleep problems and current trends indicate that this figure will
increase to 260 million by 2030.

To date, it is mandatory that sleep stage scoring is done manually by human experts [5,6]. However,
human experts have limited capacity to handle slow changes in background electroencephalography
(EEG) and learn the different rules to score sleep stages for various polysomnogram (PSG) recordings [6].
Furthermore, evaluations by human experts are prone to inter- and intra-observer variabilities that can
negatively affect the quality of sleep stage scoring [7]. Another important factor affecting sleep stage
scoring is the patient convenience and the cost of diagnosis. As such, a sleep lab is a highly controlled
environment that requires dedicated facilities and highly trained personnel. Hence, sleep labs tend
to be in urban centers and patients must travel there to spend one or multiple nights in the facility.
These factors make sleep labs inconvenient for patients and the cost per diagnosis is high. Other
diagnostic methods, such as portable monitoring devices for sleep stages, exhibit some advantages,
such as enhancing access to patients, low cost, and user-friendliness. However, these advantages
are outweighed by several disadvantages, such as having diagnostic limitations, failure of device,
reliability concerns, and underestimating the apnea/hypopnea index, amongst others [8]. To improve
the situation requires a fundamental change in the sleep stage scoring process. We need machines to
replace the labor carried out by human experts. This can only be done with systems that understand
sleep stages in much of the same way as human experts do. Deep learning (DL) is hailed as a method
to mechanize knowledge work, such as sleep stage scoring. However, before we join and adopt this
technology, it is prudent to investigate both capabilities and limitations of current DL methods.

This paper aims to capture both capabilities and limitations of current DL methods in sleep
stage classification. It is intended to provide deep cohesive information for experts to consolidate
and extend their knowledge in the field. This knowledge might also be of interest to policy makers
and healthcare administrators because DL technologies are going to shape future sleep stage scoring
systems. This review paper summarizes the various DL models employed in the last 10 years and their
performances as sleep stage classification systems. This information is valuable for those who plan
to use established techniques to address a related problem. This review will also help establish the
distinctiveness of a study, because any claim for novelty requires an overview of established methods.
In this paper, we focused the review process on DL techniques, because during our practice in the
field we found that, among the various artificial intelligence technologies, DL is the most suitable to be
developed into a decision support tool for sleep stage scoring. In the foreseeable future, all studies on
the topic would either include DL or mention DL-based techniques as a reference point.
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To support our claim that DL technology will benefit sleep stage scoring, we have structured the
remainder of the manuscript as follows. Sections 3 and 4 describe programmed diagnostic tools (PDTs)
and various DL tools, respectively. Section 5 describes the guidelines for sleep stage classification and
the publicly available databases with sleep recordings to train and evaluate DL models. Section 6
discusses the key findings of automated sleep stage classification studies based on different DL models.
In Section 7, we elaborate on the potential future direction of sleep analysis. Section 8 concludes the
paper by highlighting our review findings, which includes a discussion of the best DL models and PSG
signals employed for automated sleep stage classification.

2. Medical Background

The discovery of obstructive sleep apnea (OSA) in 1965 is lauded as the greatest progress in the
history of sleep medicine [9]. For many years, OSA was regarded as the occasional closure of the upper
airway, thus, early treatments, such as tracheostomy, prioritized primarily on reducing the obstruction
to airway [10]. However, recent studies show that OSA is linked to the risk of cardiovascular disease
and death [11], emphasizing the need to consider other factors for treatment options.

The emergence of sleep disorders, such as insomnia, OSA, and various other sleep-related
disorders further contribute to poor sleep quality [12,13]. Some sleep disorders manifest themselves
in sleep interruptions, such as early morning awaking, and the lack or absence of restful sleep [14].
In OSA, this is more severe with symptoms such as extreme daytime drowsiness, snoring and repeated
occurrences of interruptions to the respiratory airflow during sleep, which stems from the collapse
of the upper airway in the throat [15]. These in turn affect the cardiovascular physiology, causing
cardiovascular diseases, such as stroke, angina, and heart failure [16]. OSA has also been linked to
higher morbidity and mortality rates [17] and low quality of vital scores [18]. Some studies had also
showed that a lack of sleep increases fatigue during the day, which decreases the performance of
individuals at work and threatens their occupational safety [19,20].

Overnight polysomnogram (PSG) is currently the “gold standard” to measure multiple
physiologic parameters of sleep, and it is used to score sleep stages [6]. These recordings
include electroencephalograms (EEGs), electrooculograms (EOGs), electromyograms (EMGs),
electrocardiogram (ECGs), respiratory efforts, airflow, and blood oxygenation [5]. According to
the American Academy of Sleep Medicine guidelines [21], sleep should be scored by segmenting these
PSG recordings into 30-s fragments, also known as epochs. Each epoch is then scored and categorized
based on the sleep stages that appear most often. For example, an epoch with one characteristic of
Sleep Stage 1 and two characteristics of Sleep Stage 2 will be classified as Sleep Stage 2.

Technology has been shown to help improve convenience and bring down healthcare costs.
In this case, such technology could take the form of a cost-effective programmed diagnostic tool (PDT)
for automated detection of sleep disorders. Some studies had demonstrated the ability of PDTs to
perform as well as experts in sleep stage scoring [22–24], and even outperforming the experts in the
detection of microstructures of sleep, such as arousal and cyclic alternating pattern. These highlight
PDT versatility and the potential to first augment (and perhaps replace) human experts in the analysis
of sleep recordings [6,25].

3. Programmed Diagnostic Tools (PDTs) for Polysomnogram (PSG) Analysis

PDTs are based on artificial intelligence, namely conventional machine learning and DL techniques.
Unfortunately, machine learning is often subjected to the curse of dimensionality or p(features)

>> n(samples), a common problem that surfaces when training machine learning models with high
dimensional data, such as PSG recordings, which cause the model to overfit [26]. Hence, data
reduction step such as feature extraction is helpful for traditional machine learning algorithms to
prevent overfitting problem when handling high dimensional PSG recordings [27]. Often, the feature
extraction from PSG recordings is done manually through experience and acquired skills of human
observers [27,28]. The extracted features are fed to standard machine learning models, such as
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the support vector machine or random forest classifiers, to classify PSG recordings into respective
sleep stages. However, this explicit feature engineering involves converting PSG recordings to a
low dimensional vector which can result in information loss [27]. Furthermore, the aforementioned
machine learning techniques are not ideally suited to handle high dimensional data because of the
lack of depth to capture relevant relationships between the covariates in large volumes of data. As a
result, standard machine learning is limited in its ability to reliably classify PSG recordings with high
precision and accuracy.

On the other hand, DL models can be trained with raw PSG recordings without the need for
information reduction [27]. DL techniques attempt to train the model, such that they learn how to
make sense of data on their own by extracting features automatically from PSG signals. The extracted
knowledge determines the inference. When a large data volume is available, DL models often
outperform machine learning models because they can utilize all the available information and make
accurate predictions [29]. In addition, DL models learn features that are useful to make inference and
neglect those that are not. Hence, DL techniques are more suitable than traditional machine learning
techniques when dealing with high-dimensional PSG signals and are thus considered state-of-art
methods for automated sleep stage classification.

4. DL Models

In contrast to other programming languages (such as MATLAB), the Python programming
language includes a plethora of libraries that can facilitate the development of DL models with greater
ease. Figure 1 shows that over 75% of the automated sleep stages classification studies employed DL
tools from Python (TensorFlow, Theano, Keras, PyTorch, Lasagne). Keras is a high-level Application
Programming Interface (API) for Python that can use either TensorFlow or Theano as its backend.
The programming process in TensorFlow and Theano is also simplified, such that the cognitive load
for human to build a DL model is significantly reduced.

Figure 1. Pie chart representation of the number of times (19 in total) and percentage each deep learning
(DL) tools were used to develop DL models in automated sleep stage classification studies as listed in
Tables 1–5.

4.1. Convolutional Neural Network (CNN)

The first CNN was created to mimic the human visual system. In the visual cortex, simple and
complex cortical cells break down visual information into simpler representations, so that it is easier for
the brain to perceive and classify the image [30,31]. In an analysis of multiple light recordings, a typical
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CNN model comprises three main layers: convolutional, pooling, and fully connected, as depicted in
Figure 2. In this model, an input data is first broken down by learned filters at the convolutional layer
to extract important features, and feature maps are created as outputs. These feature maps contain
different kinds of information about the data characteristics [32]. The pooling layer follows immediately
after the convolutional layer, and it is responsible for reducing the feature map dimension. By doing
so, the feature map complexity is reduced, and the visual information is broken down further. Another
desired effect of this architecture is the reduction of overfitting [33]. Multiple convolutional and
pooling layers can be incorporated in a model to make it “deeper” and increase its recognition ability to
classify complex images. After a series of convolutional and pooling layers, the resulting feature map
is flattened into a single list of vectors before it is fed to the fully connected layers, which establishes
connections between output and input via learnable weights [32]. The superiority of this architecture
was first demonstrated in image recognition and classification by Krizhevsky et al. [34], where their
proposed CNN model was awarded the top five award in an image classification competition, known
as ImageNet Large Scale Visual Recognition Competition (ILSVRC-2012).

Figure 2. Basic Convolutional Neural Network (CNN) model architecture for polysomnogram
(PSG) recording analysis. The CNN output model is represented by five red boxes indicating five
prediction classes for example W (Wakefulness), S1–S3 (Non-REM sleep Stages 1–3) and REM (rapid
eye movement) sleep.

4.2. Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)

Both RNN and LSTM models are designed for sequential data processing, such as speech [35], [36],
text [37], and handwriting recognition [38]. These models attempt to recognize a pattern in the
sequence. Previously, Kumar et al. [39] proposed LSTM model to analyze brain EEG for brain-computer
interface (BCI) systems. Their model achieved a low misclassification rate of 3.09% and 2.07% for two
publicly available BCI datasets. A recent study by Kim et al. [40] demonstrated the effectiveness of the
LSTM and RNN in analyzing bio signals. The LSTM-based deep RNN model, proposed in their study,
achieved exemplary performance: 100% accuracy, precision, and sensitivity in personal authentication
based on ECG signals. This makes them suitable for classifying bio signals like PSG recordings, which
have distinct patterns in different sleep stages.

It needs to be noted that very early versions of RNNs were incapable of learning long-term
dependencies, because these RNNs were unable to form connections between old and new data when
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a large information gap existed between them [41]. This resulted in a phenomenon known as vanishing
gradient problem, where the error signals vanished during backpropagation, which eventually led to a
model breakdown. Hochreiter and Schmidhuber [42] developed LSTM to solve the vanishing gradient
problem, but Ger et al. [43] showed that LSTM was still not able to efficiently learn sequences that
were very long or continuous. The reason for this failure was that the internal values of the memory
cell in LSTM models had grown out of bound from the continuous input stream, despite the fact that
the LSTM model was programmed to reset itself when faced with this kind of problem. As a remedy,
“forget gates” were introduced to LSTMs, which remove data that were no longer relevant in memory
cells, thereby forgetting and resetting information in memory cells at appropriate times [43]. Useful
information, on the other hand, was continuously backpropagated, thus, allowing these models to
memorize relevant information and recognize patterns in long-term dependencies. The architecture of
the LSTM model is shown in Figure 3.

Figure 3. Basic Long Short-Term Memory (LSTM) model architecture.

However, high computational complexity is the downside of RNN and LSTM, and they need
a large memory bandwidth to train [44,45]. As such, hardware designers often experience difficulty
when dealing with RNN or LSTM models, because these models occupy a large amount of cloud space,
which is not scalable. Therefore, reducing the computational complexity of RNN and LSTM models
must be considered for real-time or mobile applications.

4.3. Autoencoders (AEs)

Rumelhart et al. [46] were the first to propose Autoencoders (AEs), a DL technique that is
specialized in dimensionality reduction and denoising of data. The key player in an autoencoder
operation is the latent (hidden) representation, h, as shown in Figure 4. It plays the role of a bottleneck,
which retains only those features that are necessary to reconstruct the input data on the AE output [47].
This latent representation (features) is often used in data classification tasks. This implies that AEs and
CNNs have common characteristics and attempt to extract and learn only important features. While
CNNs make use of convolutional layers to concentrate the extracted features and improve recognition
ability, AEs make use of latent representation (h) to compress the data received from the encoder unit.
This step retains salient features and removes irrelevant data. Thus, the operation of AEs includes
denoising and reducing the data dimension while extracting features simultaneously. This reduces the
computational complexity which in certain classification tasks makes AE models easier to train [48].
However, AEs are also associated with disadvantages, such as poor data compressibility and the
inability to train a model effectively for certain tasks. For instance, the latent representation (h) will fail
to capture salient features if errors are present in the encoder unit [47]. This is because h cannot get
rid of errors; instead, it will compute the average of the input data rather than retain salient features
for the decoder unit. The goal of AEs is to reconstruct the input data as shown in Figure 4, hence,
the encoder units of AEs have to ensure that there are minimum errors before feeding the input data
into the latent representation, h.
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Figure 4. Basic autoencoder architecture.

4.4. Hybrid Models

Hybrid models are based on either CNN–RNN or CNN–LSTM models. The idea of creating
such hybrids is to combine the advantages associated with both CNNs and RNN/LSTMs, in terms of
feature extraction and pattern recognition ability in sequential data [49,50]. In these hybrid models,
the convolutional layers are at the frontline of the model to extract important features from PSG signals,
while RNN or LSTM layers would attempt to recognize patterns in feature maps received from the
convolutional layers.

5. Sleep Stages Classification Using DL Models

5.1. Different Stages of Sleep

According to Rechtschaffen and Kales (R and K) [51], humans can experience six discrete stages
during sleep: (1) wakefulness (W), (2) rapid eye movement (REM) sleep, and (3) four stages of non-REM
(NREM) sleep (S1 to S4) [52]. Based on the sleep electroencephalogram (EEG) characteristics, W occurs
when the brain is most active, which is represented by high frequency of alpha rhythms. In the NREM
sleep, these alpha rhythms eventually diminish when entering the S1 wherein theta rhythm dominates
instead. In the S2, sleep spindles and occasional K-complex waveform will appear. The K-complex
waveform usually lasts for approximately 1 to 2 s. The S3 sleep occurs when low frequency delta
rhythms appear intermittently and eventually, they dominate in the S4 sleep. Finally, REM sleep
usually follows after the S4 sleep. In the REM sleep, theta rhythms resurface again, but unlike in the
S1 sleep, theta rhythms are accompanied with EEG flattening [52]. Following the guidelines from
American Academy of Sleep Medicine (AASM), the S3 and S4 sleep stages can be merged into one
sleep stage S3, because of the similarity in their characteristics [21]. Since the delta rhythms are the
slowest EEG waves, S3 and S4 sleep stages are known as Slow Wave Sleep (SWS) or the deep sleep.
Thus, most sleep classification studies are based on five: W, S1, S2, S3, and REM sleep stages, instead
of six (Figure 5).
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Figure 5. Examples of electroencephalography (EEG) signals in different sleep stages.

5.2. Sleep Databases

Eight main sleep databases have been used for automated sleep stage classifications. Five of the
databases are free to download from PhysioNet [53], namely the Sleep-EDF [54], the expanded
Sleep-EDF [54], the St. Vincent’s University Hospital/University College Dublin Sleep Apnea
Database (UCD) [53], the Sleep Heart Health Study (SHHS) [55,56], and the Massachusetts Institute
of Technology-Beth Israel Hospital (MIT-BIH) [57] database. The ISRUC-Sleep datasets [58] can be
downloaded from the official websites. Permission is required to obtain the sleep datasets from the
Montreal Archive of Sleep Studies (MASS) [59].

The PSG recordings, in most of the sleep databases, are scored according to R and K rules [51],
wherein scoring is done based on wakefulness, NREM sleep and REM sleep. NREM sleep is then
subdivided into four stages (S1 to S4). Exceptions are ISRUC and MASS which follow the AASM
guideline and partition the recordings into five sleep stages instead of six [21].

5.3. DL Techniques Used in Automatic Sleep Stage Classification

The development of a program diagnostic tool (PDT) for automatic sleep stage classification
using DL techniques is shown in Figure 6. First, PSG recordings have to be pre-processed to achieve
standardization or normalization. Depending on the requirement and architecture of the proposed
DL model, additional steps to convert the PSG recordings into the right input format is required;
for example, converting one-dimensional (1D) signals into a two-dimensional (2D) format to train
2D-CNN models. Subsequently, the pre-processed signals are split into training, validation, and testing
sets. The training set is used to train the model, the validation set is to fine-tune the model, and the
testing set is used to evaluate the model’s performance. A well-trained model can accurately classify
PSG recordings into the five sleep stages.

Figure 6. Programmed diagnostic tool (PDT) block diagram with DL for automated sleep
stage classification.
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Figure 7 illustrates the number of times each sleep database had been used by studies for
automated sleep stage classification using DL techniques, from 2010 to 2020. The DL methods and
accuracy obtained from the respective sleep databases are summarized as follows: Sleep-EDF (Table 1),
expanded Sleep-EDF (Table 2), MASS (Table 3), MIT-BIH, and SHHS (Table 4), and studies that used the
remaining two sleep databases (ISRUC and UCD) and private datasets are listed in Table 5. With the
exception of three studies [60–62], which classified sleep into four stages, all automated sleep stage
classification studies, in Tables 1–5, followed the AASM guidelines [21] and classified sleep into five
stages. In studies with sleep databases following the R and K rules [51], (i.e., Sleep-EDF, expanded
Sleep-EDF, UCD, SHHS, and MIT-BIH), the S3 and S4 stages were often combined manually before
pre-processing the PSG signals.

Figure 7. Pie chart representation of the frequency in which each sleep database was used in automated
sleep stage classification studies. The total number of studies was 47, as listed in Tables 1–5. * Summary
statistics: using various databases for sleep stage classification.

Table 1. Summary of automated sleep stage classification approaches with DL applied to PSG recordings
in Sleep-EDF dataset.

Author Signals Samples Approach
Tools/Programming

Languages
Accuracy (%)

Zhu et al. [63] 2020 EEG 15,188 attention CNN − 93.7
Qureshi et al. [64] 2019 EEG 41,900 CNN − 92.5
Yildirim et al. [65] 2019 EEG 15,188 1D-CNN Keras 90.8

Hsu et al. [66] 2013 EEG 2880 Elman RNN − 87.2
Michielli et al. [67] 2019 EEG 10,280 RNN-LSTM MATLAB 86.7

Wei et al. [68] 2017 EEG − CNN − 84.5
Mousavi et al. [69] 2019 EEG 42,308 CNN-BiRNN TensorFlow 84.3

Seo et al. [70] 2020 EEG 42,308 CRNN PyTorch 83.9
Zhang et al. [71] 2020 EEG − CNN − 83.6

Supratak et al. [72] 2017 EEG 41,950 CNN-BiLSTM TensorFlow 82.0
Phan et al. [73] 2019 EEG − Multi-task CNN TensorFlow 81.9

Vilamala et al. [74] 2017 EEG − CNN − 81.3
Phan et al. [75] 2018 EEG − 1-max CNN − 79.8
Phan et al. [76] 2018 EEG − Attentional RNN − 79.1

Yildirim et al. [65] 2019 EOG 15,188 1D-CNN Keras 89.8
Yildirim et al. [65] 2019 EEG + EOG 15,188 1D-CNN Keras 91.2

Xu et al. [77] 2020 PSG signals − DNN − 86.1
Phan et al. [73] 2019 EEG + EOG − Multi-task CNN TensorFlow 82.3
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Table 2. Summary of automated sleep stage classification approaches with DL applied to PSG recordings
in Expanded Sleep-EDF dataset.

Author Signals Samples Approach
Tools/Programming

Languages
Accuracy (%)

Wang et al. [78] 2018 EEG − C-CNN − −
Wang et al. [78] 2018 EEG − RNN-biLSTM − −

Fernandez-Blanco et al.
[79] 2020 EEG − CNN − 92.7

Yildirim et al. [65] 2019 EEG 127,512 1D-CNN Keras 90.5
Jadhav et al. [80] 2020 EEG 62,177 CNN − 83.3

Zhu et al. [63] 2020 EEG 42,269 attention CNN − 82.8
Mousavi et al. [69] 2019 EEG 222,479 1D-CNN TensorFlow 80.0
Tsinalis et al. [81] 2016 EEG − 2D-CNN Lasagne + Theano 74.0
Yildirim et al. [65] 2019 EOG 127,512 1D-CNN Keras 88.8
Yildirim et al. [65] 2019 EEG + EOG 127,512 1D-CNN Keras 91.0
Sokolovsky et al. [82]

2019 EEG + EOG − CNN TensorFlow +
Keras 81.0

Table 3. Summary of automated sleep stages classification approaches with DL applied to PSG
recordings in Montreal Archive of Sleep Studies (MASS) dataset.

Author Signals Samples Approach
Tools/Programming

Languages
Accuracy (%)

Seo et al. [70] 2020 EEG 57,395 CRNN PyTorch 86.5
Supratak et al. [72] 2017 EEG 58,600 CNN-BiLSTM TensorFlow 86.2

Phan et al. [73] 2019 EEG − Multi-task CNN TensorFlow 78.6
Dong et al. [83] 2018 EOG F4 − MNN RNN-LSTM Theano 85.9
Dong et al. [83] 2018 EOG Fp2 − MNN RNN-LSTM Theano 83.4

Chambon et al. [84] 2018 EEG/EOG + EMG − 2D-CNN Keras −
Phan et al. [85] 2019 EEG + EOG + EMG − Hierarchical RNN TensorFlow 87.1
Phan et al. [73] 2019 EEG + EOG + EMG − Multi-task CNN TensorFlow 83.6
Phan et al. [73] 2019 EEG + EOG − Multi-task CNN TensorFlow 82.5

Table 4. Summary of automated sleep stage classification approaches with DL applied to PSG recordings
in Sleep Heart Health Study (SHHS) and Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) datasets.

Database Author Signals Samples Approach
Tools/Programming

Languages
Accuracy

(%)

MIT-BIH
Zhang et al. [86] 2020 EEG − Orthogonal

CNN − 87.6

Zhang et al. [87] 2018 EEG − CUCNN MATLAB 87.2

SHHS

Sors et al. [88] 2018 EEG 5793 CNN − 87.0
Seo et al. [70] 2020 EEG 5,421,338 CRNN PyTorch 86.7
Fernández-Varela

et al. [89] 2019
EEG + EOG
+ EMG 1,209,971 1D-CNN − 78.0

Zhang et al. [90] 2019 EEG + EOG
+ EMG 5793 CNN-LSTM − −

SHHS Li et al. [60] 2018 ECG HRV 400,547 CNN MATLAB 65.9

MIT-BIH
Li et al. [60] 2018 ECG HRV 2829 CNN MATLAB 75.4

Tripathy et al. [61]
2018 EEG + HRV 7500 DNN

Autoencoder MATLAB 73.7
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Table 5. Summary of automated sleep stage classification approaches with DL applied to PSG
recordings in ISRUC, Massachusetts General Hospital (MGH), and University College Dublin Sleep
Apnea Database (UCD) datasets.

Database Author Signals Samples Approach
Tools/Programming

Languages
Accuracy

(%)

ISRUC
Cui et al. [91] 2018 EEG − CNN − 92.2

Yang et al. [92] 2018 EEG − CNN-LSTM − −

UCD

Zhang et al. [86] 2020 EEG − Orthogonal
CNN − 88.4

Zhang et al. [87] 2018 EEG − CUCNN MATLAB 87.0

Yuan et al. [93] 2019 Multivariate
PSG signals 287,840 Hybrid CNN PyTorch 74.2

Private
datasets

Zhang et al. [71] 2020 EEG 264,736 CNN − 96.0
Biswal et al. [94] 2018 PSG signals 10,000 RCNN PyTorch 87.5
Biswal et al. [95] 2017 EEG 10,000 RCNN TensorFlow 85.7

Class = 4
Radha et al. [62] 2019 ECG HRV 541,214 LSTM − 77.0

* The accuracy scores in Tables 1–5 are based on AASM guidelines, five class classification [21].

Figure 8 shows the number of times PSG recordings such as EEG, EOG, EMG, and ECG signals
were used for sleep stage classification studies. It is not surprising that EEG signal was the most
popular input for DL models. The characteristic waves and description of each sleep stages are often
based on EEG characteristics (i.e., alpha waves, theta waves, delta waves, etc.); Figure 5.

Figure 8. Different subsets of PSG recordings used to train DL models for automated sleep stage
classification as listed in Tables 1–5. Of the 36 studies, the mixture of signals (electrooculogram (EOG),
electromyogram (EMG), and electroencephalography (EEG)) was employed 14 times while EEG signals
were used 28 times. Only a small fraction (five studies) employed ECG or EOG time series. * Summary
statistics: using EEG versus EEG + additional signals.

Nonetheless, other signals within the PSG recordings are indispensable, because they provide
additional information on biological aspects of sleep that may not be manifested in EEG recordings.
Since REM sleep is characterized by the movement of eyes and loss in muscle tone of the body core,
EOG, and EMG signals may provide key information to separate the REM sleep stage from the other
stages. It was shown that some of the REM sleep stages could be overlooked in single-channel EEG
input [27]. Therefore, a combination of signals, comprising of EOG, EMG, and EEG, are second in
terms of frequency of use after single-channel EEG inputs (Figure 8).
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Although ECG is an important sleep parameter [96], it is not common to use raw ECG signals as a
direct input for DL models. As seen in Table 4, heart rate variability (HRV) parameters derived from
ECG signals, were used to train the DL models instead. There are only three studies that employed
HRV parameters, and these studies classified sleep into four stages instead of five: wakefulness (W),
light sleep (S1 and S2), deep sleep (S3 and S4), and REM sleep. Li et al. [60] proposed a 3-layer CNN
model. They used a cardiorespiratory coupling (CRC) spectrogram, which was derived from ECG and
HRV. Besides alternations in physiological signals, there are other changes in body system changes
in some individuals such as cardiovascular [97], respiratory [98], or blood flow in the brain [99].
Hence, the CRC picks up the cardiovascular and respiratory changes. Their model achieved an overall
accuracy of 65.9% and 75.4% for SHHS and MIT-BIH respectively, as seen in Table 4. Tripathy et al. [61]
combined EEG and HRV features as input to an AE model. During testing, the model achieved an
overall accuracy of 73.7%. Radha et al. [62] published the only study that was based on ECG signals
from a private dataset that was collected as part of the European Union SIESTA project [100] as shown
in Table 5. Likewise, they converted ECG signals into HRV and used the HRV features to train an
LSTM model, which achieved an accuracy of 77.0%.

6. Discussion

Even though CNNs are primarily used in image classification, they can also be successfully
applied to 1D PSG recordings. Most of the automated sleep stage classification studies rely on the
CNN approach (Figure 9a). However, in order to convert 1D signals to 2D images, the input signals
need to be reshaped so that the 2D convolutional layer is able to read the data. There are various 1D to
2D transformation methods, such as spectrogram [101], time-frequency representations, which can
be established via Hilbert–Huang transform [86], or bispectrum algorithms [102]. To date, there are
eight studies that included 2D-convolutional layers in their models [60,74,81,84,86,90,93,95]. However,
the process of converting 1D signals to 2D signal representations should be carried out with caution
due to potential loss of useful information during the conversion step [103].

Figure 9. Selection of various DL techniques for automated sleep stage classification based on 36
studies. (a) Number of times and percentage of DL models, (b) Various CNN-based models. * Summary
statistics: using autoencoders versus hybrid versus LSTM versus CNN models (one-dimensional (1D),
2D, 3D).

One-dimensional (1D)-CNNs were specifically designed to process 1D signals [104]. Unlike
traditional 2D-CNNs, which require the input data to be in a matrix format, and 1D-CNNs can run
with a simple array, hence, significantly reducing the computational complexity. In addition, 2D-CNNs
require deeper model architecture to learn 1D signals. In contrast, 1D-CNN can easily learn 1D signals
with shallow model architecture. This means that training of 1D-CNN models with 1D signals is simpler,
easier, faster and, therefore, more efficient. This also highlights the 1D-CNN models’ compatibility
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with near real-time processing and deployment in mobile applications, which can potentially be used
to track and recognize sleep patterns at home [104]. The popularity of 1D-CNNs for the analysis of 1D
PSG signals is demonstrated in this review. Almost all of the studies that proposed CNN-based models
had employed 1D convolutional layers, as seen in Figure 9b. Furthermore, studies that proposed
1D-CNN models had higher performance compared to those with 2D-CNN. The highest accuracy
score obtained by a 1D-CNN model was 96% [71]. Conversely, none of the eight studies that proposed
2D-CNN models surpassed an accuracy score of 90%.

Two studies included a 3D convolutional layer in their proposed CNN models. Phan et al. [73]
used 3D filters to process a combination of signals, namely EEG, EOG, and EMG. Similar to signal
pre-processing for a 2D-CNN, these three signals were converted to a 2D time-frequency image before
arranging them as a 3D input. As a result, a higher accuracy was obtained with a combination of input
signals when compared to a single channel input. Jadhav et al. [80] converted their EEG input into
2D-Continuous Wavelet Transform (CWT) images. The CWT images came with three main colors,
red–green–blue (RGB), which provided the third-dimensional input. Hence, their convolutional layer
in their proposed model had 3D filters to read the CWT images in terms of width, height, and color of
the image.

From Table 4, it is evident that only Tripathy et al. [61] proposed AE models for automated sleep
stage classification. In the study by Zhang et al. [87], AE was used solely as a dimensionality reduction
tool to pre-process the EEG time-frequency distribution.

6.1. Proposed CNN-Based Models

From Figure 10, it can be observed that the performance of the CNN-based models had improved
over the years. To date, the model by Zhang et al. [71] achieved the best overall accuracy (96%) for sleep
stage classification. However, this accuracy was achieved using a private clinical dataset. When they
evaluated the performance of their model using the Sleep-EDF dataset, an overall accuracy score of
86.4% was achieved. This was lower than the accuracy obtained by Zhu et al. [63] (93.7%) who used
single channel EEG signals from the same database. The unique feature of the model proposed by
Zhu et al. was the attention mechanism that they incorporated into the CNN’s learning framework.
This attention mechanism improved the feature extraction performance of the model through intra-
and inter-epoch feature learning. However, the same model achieved a lower accuracy of 82.8% when
it was tested on EEG signals from the expanded Sleep-EDF database. Another unique CNN model
was proposed by Cui et al. [91] wherein fine-grained methods were used to assist the CNN model
to find the best time segment in the EEG signals. Fine-grained methods construct time series from
the EEG signals. Basically, if the time window in fine-grained method is set to 3, every 3 time-steps
along the EEG signals will be combined together as one-time segment, hence reducing the complexity
of EEG signals. The layers in their proposed CNN were shallow-7 layers, including 2 convolutional
layers. Yet, they were able to achieve a high overall accuracy of 92%.

A more versatile and consistent CNN model was proposed by Yildirim et al. [65], which was
a 19-layer 1D-CNN model with 10 convolutional layers. It achieved an accuracy higher than 90%
in both Sleep-EDF dataset and its expanded version, as seen in Figure 10. The peak accuracy was
achieved (91.2%) when a mixture of PSG signals was used as input (EEG and EOG), but when single
channel EOG signals were used, the accuracy of the model decreased to below 90% (88.8% and 89.8%),
(Figure 11).

Both Zhu et al. [63] and Cui et al. [91] showed that CNN models with a small number of layers
can achieve a high classification performance of sleep stages by improving the feature extraction
ability through additional tools, such as attention mechanism or fine-graining. On the other hand,
Yildirim et al. [65] showed that a deeper CNN model can achieve high accuracy classifications across
different inputs of PSG recordings (EEG, EOG, EEG + EOG).
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Figure 10. Performance of CNN-based models analyzing only EEG signals. Sleep datasets are presented
in different colors. * Summary statistics: Various sleep databases used to develop CNN models for
sleep stage detection.

Figure 11. Sleep stage classification accuracy of CNN-based models based on stand-alone EOG signals
or a mixture of EEG, EOG, and/or EMG signals. Various sleep datasets are represented by different
colors and the type of signals described in the bar chart. * Summary statistics: Using EEG+ other
signals/EOG in 2018–2019.
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6.2. Proposed RNN/LSTM-Based Models

Contrary to CNN models, very little automated sleep stage classification studies were done using
RNN/LSTM models. The best performance was observed in a study by Hsu et al. [66] back in 2013,
wherein a 4-layer RNN model was used. They had adopted the structure of an Elman network and had
successfully classified various sleep stages with an overall accuracy score of 87.2%, as seen in Figure 12.
A similar accuracy of 86.7% was achieved by Michielli et al. [67], where a cascaded RNN network was
proposed, with 2 LSTM units. Two other studies explored a mixture of signals to train RNN-based
models: Dong et al. [83] proposed a mixed neural network where a RNN model was substituted for a
multi-layer perception and an LSTM model was exchanged for an RNN model. The proposed final
model achieved accuracies of 85.9% and 83.4% using F4-EOG and Fp2-EOG inputs, respectively. Both
F4 and Fp2 were single channel EEG signals recorded at different electrode placements. Hence, F4-EOG
and Fp2-EOG inputs were considered a mixture of signals (EEG + EOG). Subsequently, Phan et al. [85]
proposed an end-to-end hierarchical RNN model, known as SeqSleepNet, which consisted of an
attention-based recurrent model and filter bank layers. Short-time Fourier transform was used to
convert multiple PSG recordings (EEG, EOG, and EMG) into power spectra signals which were then
fed to train the proposed model. The model achieved a high accuracy score of 87.1%, which was the
highest amongst the RNN/LSTM-based models.

Figure 12. Sleep stage classification accuracy of RNN/LSTM-based models based on stand-alone EEG
signals or a mixture of EEG, EOG, and ECG signals. Various sleep datasets are represented by different
colors and the type of signals described in the bar chart. * Summary statistics: Using RNN versus
LSTM models for EEG/EEG + other signals from 2013–2019.

6.3. Proposed Hybrid Models

There are limited studies on the employment of hybrid models. The best performing hybrid model
for EEG signals was proposed by Seo et al. [70]. Their IITNet model consisted of CNN layers and two
bidirectional LSTM layers. The CNN layers were responsible for extracting representative features in
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each epoch and producing sequential feature maps, which were analyzed by the bidirectional LSTM
layers to capture temporal sleep stage information [72]. Figure 13 shows that this model achieved
an overall accuracy score of 86.7% (SHHS database), compared to 83.9% when applied to Sleep-EDF
database. On the other hand, Mousavi et al. [69] proposed SleepEEGNet, a CNN-RNN model with
bidirectional RNN units. The difference between this model and Seo et al.’s model [70] was in the
architecture of bidirectional RNN units which resembled AEs in the former model. Comparing within
the same Sleep-EDF databases, this model achieved a higher overall accuracy score of 84.3%, as seen in
Figure 13. However, their proposed model achieved a lower accuracy score of 80.0%, with EEG signals
from the Expanded Sleep-EDF database.

Figure 13. Performance of proposed hybrid models using EEG signals or a mixture of signals. Various
sleep datasets are represented by different colors and the type of signals are described in the bar
chart. * Summary statistics: different datasets used to build hybrid models using EEG/PSG signals.
* The accuracy scores in Figures 9–12 are based on AASM guidelines and pertain to the five class
classification [21].

When a mixture of PSG signals were taken into consideration, the CNN-RNN based model
proposed by Biswal et al. [94] outperformed all other models. However, in their study they used
a private sleep database with recordings from the Massachusetts General Hospital (MGH) sleep
laboratory to train and test the model. They also trained their model with the MGH dataset and then
tested it on the SHHS dataset. With that setup, they obtained an overall accuracy of 77.7%. This score
is lower than that obtained by the CNN-based model proposed by Fernández-Varela et al. [89] who
employed a mixture of signals from the SHHS database to train and test their model.

22



Appl. Sci. 2020, 10, 8963

The number of studies employing DL methods for automated sleep stage classification has
increased in the past few years (Figure 14), most of the studies incorporated CNN models. The CNN
models became popular after the publication by Krizhevsky et al. [34] in 2015. However, the number
of studies relying on this architecture started to decline after 2018. This implies that CNN-based
approaches have perhaps reached their peak ability and peak performance in classifying sleep stages.
This decline is also likely due to the fact that best CNN based architectures are now less competitive
when compared to the other DL models. Conversely, the research on RNN/LSTM and hybrid models
remained stagnant from 2018 to 2019, and no further studies were carried out using AE models after
2018. This suggests that more attention should be paid to improve the performances of these models,
particularly to RNN/LSTM, and hybrid models in automated sleep stage classifications.

Figure 14. Number of studies published between 2013 and 2020 describing implementation of various
DL models for PSG recording analysis. * Summary statistics: year of the analyses for various deep
learning models used in sleep classification.

When assessing polysomnographic recordings, clinical experts rely on a combination of EEG, EOG,
and EMG signals before they determine the sleep stage for each sleep phase [63]. In order to be on par
with the clinical experts, an ideal DL model should effectively classify sleep stages based on a mixture
of signals. At present, the majority of automated sleep stage classification studies demonstrate a high
performance with single-EEG channel, but only a small fraction (25%) evaluated the performance of
their approaches on a mixture of signals (Figure 8).

In summary, research on a mixture of PSG signals should be the main focus in the automated
detection of sleep stages. The RNN/LSTM and hybrid models have yet to reach their peak performance
in classifying sleep stages. Further research on these models to evaluate their performance across
different databases could decrease the bias in these methods and help to identify architectures capable
of processing mixed PSG signals. A model with optimal architecture could be employed in various
applications and platforms, such as mobile, point-of-care monitoring devices.

This review underscores the advantages (key points discussed) as follows:

1. Numerous studies (15 from Figure 10) employed CNN models with EEG signals, and that CNN
models are effective in recognizing characteristic features of sleep EEG.

2. One-dimensional (1D)-CNN models were used more often than 2D- and 3D-CNN models. From
Figure 9b, 12, 8, and 2 1D, 2D, and 3D models were used, respectively.

3. Most studies (60% from Figure 8) used EEG signals and achieved high classification accuracy.
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4. EEG signals were mainly used in studies that explored a mixture of PSG signals. In other words,
EEG could be a reference signal when considering mixture of PSG signals to train and evaluate
newly proposed models.

The limitations of this review are as follows:

1. It is difficult to compare various models and identify the best performing approach, because the
majority of studies used data from only one sleep database to train and test the model.

2. There is a lack of studies that utilized other PSG recordings, such as EOG, EMG, or ECG signals.
Studies that used these PSG recordings also did not perform equally well as those that used
only EEG signals. Hence, this limits the implementation of these PSG recordings in real world
applications for automated sleep stages classification.

7. Future Work

We anticipate that more public databases with large data records will become available to
conduct studies on sleep stage classification and the development of more accurate approaches. When
constructing a DL model, the ability to implement it in cloud-based processing systems should be
considered, (Figure 15). Extracted EEG or PSG signals could then be sent to the model, for processing
in the cloud and results of the analysis returned to the clinician. The analysis could be performed
on-line or off-line with the goal to reduce expert workload who otherwise would have to review
hours of recordings manually. Subsequently, verified results could be sent to the patient’s mobile
phone. With the DL model deployed in the cloud, any device with access to internet, such as mobile
applications, could use it anytime and anywhere. For example, Patanaik et al. [105] developed a
cloud-based framework that could classify sleep stages using real-time data with 90% accuracy. Their
model performed better than expert scorers (82%). This type of framework is suitable for wearable
sleep devices, such as the Kokoon and Dreem headband that reads real-time data [105].

Figure 15. Block diagram of cloud-based sleep stage classification system using EEG signals.

Furthermore, future studies should focus on using various EEG signals to detect sleep stages.
Currently, the most common electrode placing to record EEG signals are Fpz-Cz, Pz-Oz, C4-A1,
and C3-A2.

Another area of development and research is the microstructure of sleep, such as Cyclic Alternating
Pattern (CAP) and arousal. Their duration is shorter than a half-minute epoch, hence, often undetected
by humans in conventional sleep stage scoring [6]. Since quantifying microstructures by humans has
poor reproducibility and is prone to errors, it would be desirable to develop automated approaches to
address this deficiency [6]. However, CAP sleep database (CAPSLPDB) is currently the only database
that provide PSG recordings for development of tools for CAP detection [106]. Hence, more public
databases designed for microstructure of sleep assessment should be available to allow advancement
of PDT in the detection of CAP.

8. Conclusions

Sleep disorders are a pressing global issue and the most dangerous sleep disorder is the obstructive
sleep apnea, which can lead to cardiovascular diseases, if left untreated. Hence, efficient and accurate
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diagnostic tools are required for early interventions. In this work, we reviewed 36 studies that employed
programmed diagnostic tools with the DL models as the backbone, analyzing overnight polysomnogram
recordings to classify sleep stages. Presently, CNN models can offer higher performance in classifying
sleep stages, especially with EEG signals. Hence, they are consistently and favorably used by researchers
to classify sleep stages as compared to the other machine learning models and physiological signals.
Moreover, employing 1D-CNN models is advantageous, because they yield high classification results
on EEG signals. However, EEG signals alone may not be sufficient to achieve robust classifications.
To achieve robustness and high accuracy one could develop a system that takes advantage of an
automated processing and human experts in the interpretation of EEG, EOG, and EMG signals together
when classifying sleep stages. Therefore, in this review, we highlighted that future studies should
focus on classifying sleep stages using all or a combination of these signals. Furthermore, other DL
models, such as RNN/LSTM and hybrid models, should also be explored as their full potential has
yet to be realized. Future studies could focus on the compatibility and applicability of the DL models
in mobile and real time applications. Lastly, more research in developing DL models to detect sleep
microstructures is required, as these are often undetected in sleep stage scoring.
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Abstract: Many algorithms have been developed for automated electrocardiogram (ECG) classification.
Due to the non-stationary nature of the ECG signal, it is rather challenging to use traditional handcraft
methods, such as time-based analysis of feature extraction and classification, to pave the way for
machine learning implementation. This paper proposed a novel method, i.e., the ensemble of
depthwise separable convolutional (DSC) neural networks for the classification of cardiac arrhythmia
ECG beats. Using our proposed method, the four stages of ECG classification, i.e., QRS detection,
preprocessing, feature extraction, and classification, were reduced to two steps only, i.e., QRS detection
and classification. No preprocessing method was required while feature extraction was combined
with classification. Moreover, to reduce the computational cost while maintaining its accuracy, several
techniques were implemented, including All Convolutional Network (ACN), Batch Normalization
(BN), and ensemble convolutional neural networks. The performance of the proposed ensemble
CNNs were evaluated using the MIT-BIH arrythmia database. In the training phase, around 22% of
the 110,057 beats data extracted from 48 records were utilized. Using only these 22% labeled training
data, our proposed algorithm was able to classify the remaining 78% of the database into 16 classes.
Furthermore, the sensitivity (Sn), specificity (Sp), and positive predictivity (Pp), and accuracy (Acc)
are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The proposed algorithm required around
180 μs, which is suitable for real time application. These results showed that our proposed method
outperformed other state of the art methods.

Keywords: depthwise separable convolution (DSC); all convolutional network (ACN); batch
normalization (BN); ensemble convolutional neural network (ECNN); electrocardiogram (ECG);
MIT-BIH database

1. Introduction

ECG signals can be easily acquired by putting one’s finger on the sensor for about 30 s [1]. There are
at least two types of important information contained in the ECG signal, including those related to
health or biomedical [2–4] and those related to the person identification or biometrics [5–7]. Due to its
convenience, many ECG classification algorithms have been developed, including handcraft [4,8,9]
and machine learning [10–15] methods. The handcraft method is rather difficult to utilize on
non-stationary signals, such as ECG, while machine learning methods normally require high
computational resources. Due to its high accuracy, the machine learning method is preferable
compared to the handcraft method. However, an efficient algorithm is required to minimize the
computational requirements while still maintaining its high accuracy.
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Many researches have been conducted on the implementation of handcraft techniques, including
the extraction of time-based ECG features using Fourier [8] and wavelet [4,9] transforms. Both Fourier
and wavelet transform can be used for ECG beats detection (QRS detection), as well as feature
extraction, such as R-peak, RR-interval, T-wave region, and QT-zone. After QRS detection, amplitude
and duration-based ECG features can also be measured using weighted diagnostic distortion (WDD) [16].
The feature extraction stage is usually followed by a classification stage with various methods such as
vector quantization [17], random forest [18–20], k-nearest neighbor (kNN) [10,20,21], support vector
machine (SVM) [10,13,18,20], multi-layer perceptron (MLP) [22–24] and convolutional neural network
(CNN) [25].

If the feature extraction and classification stages are done separately, SVM can be used and
optimized using particle swarm optimization (PSO) [10]. As presented in [10], after supervised training
was conducted using 500 beats, the model can classify 40,438 test beats into five classes with accuracy
of 89.72%, outperforming the other methods such as kNN or radial basis function (RBF). Nevertheless,
the quality of this classification can still be improved in terms of increasing the number of classes
and/or accuracy. For example, discrete orthogonal Stockwell transform (DOST) could be used during
feature extraction followed by principal component analysis (PCA) to reduce feature dimensions [13].
As shown in [13], after supervised training was conducted on 23,996 beats, the remainder 86,113 test
beats could be classified into 16 classes with better accuracy of 98.82%.

Another promising method for improving efficiency is by combining both feature extraction and
classification stages using MLP [26] and CNN [27]. For example, in [27], a neural network model
containing three layers of CNN and two layers of MLP was proposed. The input of this model is
a raw ECG beat signal containing 64 or 128 samples centered on the R-peak. While the number of
ECG beats used for training is kept at minimum at 245 and the testing beats is set to 100,144, it can
achieve accuracy of 95.14% to classify five classes. In [28], autoencoder was utilized with a rather good
result but it needs to fairly evaluate the performance with and without denoising. Moreover, the deep
networks configuration could be further optimized to reduce computational time.

Although many researches have been conducted, an efficient algorithm for cardiac arrhythmia
classification is still required. Therefore, the objective of this paper was to simplify the overall process
to lower the computational cost, while maintaining high accuracy. A neural network model presented
in [27] was adopted and modified to now classify 16 classes as in [13]. The performance of our proposed
algorithms was evaluated using number of classes, prediction stages, and accuracy.

2. 1D Convolutional Neural Network and Its Enhancement

In this paper, we use two stages of ECG classification, namely beat segmentation and
classification. For classification purposes, CNN could be used as stated in [27,29]. Although
CNN hyperparameters such as number of filters, filter size, padding type, activation type, pooling,
backpropagation, still have to be done intuitively or by trial and error, there are still some techniques
that can be used to reduce the amount of trial and error attempts to achieve the best results. Further
enhancement to the CNN could be done using All Convolutional Network (ACN) [30], Batch
Normalization (BN) [31]. Depthwise Separable Convolution (DSC) [32], ensemble CNN [33], which
are further elaborated in this section. Out of various methods for CNN enhancement, DSC has the
greatest effect on decreasing training time, while ensemble CNN enables further improvement on the
classification rate.

ACN is used to replace pooling layer with stride during convolution. Pooling or stride is used
for downsampling as CNN output parameters are less than the input parameter. In our case, the
CNN input parameter is set to 256, while the output parameter is set to 16. Normally, the last or
output layer of CNN uses the SoftMax activation function to determine the output class based on its
highest probability. To reduce the number of layers, pooling layer could be replaced with stride during
convolution [30].
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Input normalization is required to solve internal covariate shift, i.e., the change in the distribution
of network activations due to the change in network parameters during training. Without normalization,
this will slow down the training iteration or even stop the iteration before reaching adequate accuracy.
To solve this issue, BN can be conducted for each training mini-batch [31]. To reduce computational
cost, BN could be conducted during the convolution process before nonlinear activation, such as
rectified linear unit (ReLU). On the other hand, DSC could be used to reduce the number of parameters
and floating points multiplication operation, with negligible performance degradation [34]. DSC could
be performed on one layer or a group of layers of CNNs.

Another thing that must be considered in designing the CNN model is the implementation of the
Flatten layer before the Fully Connected (FC) layer. Even though Flatten technically can be replaced
by the AveragePool layer, these two techniques differ in terms of execution time and the final results
obtained. The Flatten process does not require any further calculations, it only changes the arrangement
of parameters in the last layer, while AveragePool must perform arithmetic operations to get the
average value of each group in the last layer according to its position. The next effect of Flatten causes
more neurons connected to FC, in comparison to the number of neurons produced by AveragePool
which is obviously related to the number of arithmetic operations at the FC layer. It should be noted
that the number of neurons in the Flatten layer represents all local features on the last layer without
having to be combined in the average value.

2.1. 1-D CNNs

As described in [27,29], during the forward propagation, the input map of the next layer neuron
will be obtained by the cumulation of the final output maps of the previous layer neurons convolved
with their individual kernels as follows:

xl
k = β

l
k +

Nl−1∑
i=1

conv1D
(
ωl−1

ik , sl−1
i

)
(1)

where conv1D(·, ·) is 1-D convolution, xl
k is the input, βl

k is the bias of the k-th neuron at layer l, sl−1
i is

the output of the i-th neuron at layer l− 1, ωl−1
ik is the kernel (weight) from the i-th neuron at layer l− 1

to the k-th neuron at layer l. Let l = 1 and l = L be the input and output layers, respectively. The inter
backpropagation delta error of the output sl

k can be expressed as follows:
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where rev(·) flips the array, and conv1Dz(·, ·) performs full convolution in 1-D with K − 1 zero padding.
Lastly, the weight and bias sensitivities can be expressed as follows:
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2.2. All Convolutional Network

All Convolutional Network (ACN) [30] is utilized by removing the max pooling layer and replacing
it with convolutional stride. As a result, the computational cost will be reduced, as it removes several
layers as well as reducing the floating point operation on the convolution operation. For example,
conv stride = 1 continued with max pooling 2 could be replaced with one layer, i.e., conv stride = 2
with an almost similar result.
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Let f denote a feature map produced by some layer of a CNN, while N is the number of filters in
this layer. Then p-norm subsampling with pooling size m (or half-length m

2 ) and stride r applied to the
feature map f is a 3-dimensional array s( f ) with the following entries:

si, j,u( f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
�m
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where g(h, w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to positions in f
representing the stride, p is the order of the p-norm (p→∞ represents max pooling). If r > m, pooling
regions do not overlap. The standard definition of a convolution layer c applied to the feature map f is
given as:

ci, j,o( f ) = σ
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where θ are the convolutional weights, σ(·) is the activation function, typically a rectified linear
activation ReLU σ(x) = max(x, 0), and o ∈ [1, M] is the number of output features of the convolutional
layer. From the two equations, it is evident that the computational cost will be reduced.

2.3. Batch Normalization

Batch Normalization (BN) is intended to avoid non-linear saturation or internal covariate shifts
causing a faster learning process [31]. The Batch Normalization allows much higher learning rates
and reduces dependence on the initialization process. It can also act as a regularizer to reduce the
generalization error and to avoid overfitting without the implementation of dropout layer. To reduce
computation, the Batch Normalization is carried out directly after the convolution and before ReLU.
ReLU before BN can mess up the calculations due to the non-linear nature of ReLU. Suppose we have
network activation as follows:

z = g(ωu + β) (7)

where ω and β are learned parameters of the model, and g(·) is the nonlinear activation function such
as sigmoid or ReLU. Since we normalize ωu + β, the bias β can be ignored since its effect will be
cancelled by the subsequent mean subtraction. Therefore, Equation (7) is replaced with:

z = g(BN(ωu)) (8)

where the BN transform is applied indenpendently to each dimension of x = ωu, with a separate pair
of learned parameters.

2.4. Depthwise Separable Convolution

In addition to the implementation of BN, the convolution part can also be further optimized,
for example by using depthwise separable convolution (DSC) to reduce the computational costs
by reducing the number of arithmetic operations while preserving the same final results [32,34,35].
This technique is applied with changes in filter sizes 3, 1, and 3, respectively. In addition to DSC, the size
of the stride in the third convolution should be set to be greater than one, for example 2, 3, or 4, allowing
the downsampling process to be implemented within the convolution process, instead of on a special
layer such as the MaxPool layer [30]. DSC [34] splits the convolution into two calculation stages, i.e.,
depthwise and pointwise, as follows:

Conv(ω, y)(i, j) =
K.L.M∑
k.l.m

ω(k.l.m) · y(i+k, j+l,m) (9)
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PointwiseConv(ω, y)(i, j) =
M∑
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)
(12)

3. Proposed Ensemble of Depthwise Separable Convolutional Neural Networks

Traditional methods of ECG classification are varied in stages, including four, three, and two.
The four stages are beat detection morphology feature extraction, feature dimension reduction,
and classification, as stated in [13,36]. The three stages are beat detection, feature detection, and
classification [10]. Moreover, the two stages of classification are beat detection and classification [27,37],
in which the feature extraction stage is combined with classification. In [38], one stage was used
for arrhythmia detection using 34 layer CNNs. However, it cannot be directly compared to our
proposed algorithm as they used a different database with 12 heart arrhythmias, sinus rhythm, and
noise for a total output of 14 classes. This paper proposes a two-stage ECG beat detection, as one
patient might experience a normal beat and another arrhythmia beats as described in the MIT-BIH
database. Furthermore, as will be explained in Section 5, the beat detection and segmentation require
minimum computational time while improving the classification process. In this section, beat detection
and segmentation, and ensemble of Depthwise Separable CNNs consists of around 34,719 train
parameters with 21 layer CNNs are explained.

3.1. Beat Detection and Segmentation

In this paper, beat detection, QRS detection, or R-peak detection are performed based on analysis
of gradient, amplitude, and duration of the ECG signals similar to [39]. R-peak detection of ECG signals
can be done through wavelet transforms with a detection accuracy of more than 99% [39,40]. R-peak
detection was performed on 48 records of the MIT-BIH database. With a 360 Hz sampling rate, each
record contains 650,000 samples or a duration of 30 min [41]. Each sample is a conversion of a range of
10 mV using an 11-bit ADC [41].

Figure 1 shows examples of ECG pieces of 3000 samples or 8.33 s from the 2nd, 18th, and 36th
records. The RR intervals on ECG chunk from the 2nd and 36th files tend to be uniform, while the RR
interval on the ECG chunk from the 18th file looks more diverse. Hence, the R-peak detection and the
RR interval measurement affect the beat segmentation process.
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Figure 1. The ECG chunk contains 3000 samples from 3 files, i.e., the 2nd, 18th, and 36th files.
The vertical axis is the voltage in mV, while the horizontal axis is time with a scale of 500 samples or
1388 s. The text on the horizontal axis contains the type of beat, and its R-peak position, for example,
/: 608, means that the beat is Paced Beat (see Table 1) with R-peak position at the 1608th sample from
650,000 samples in the 2nd file.

In this paper, after R-peak detection, beat segmentation starts from 1
4 Li to 3

4 Ri, in which Li is
the RR-interval right before the detected R-peak, while Ri is the RR-interval right after the detected
R-peak. This automatic segmentation window is necessary to ensure that there is only a single beat
or R-peak in each segment. The maximum number of samples taken for each segment is 256 points
which is equivalent to a duration of 256/360 s or 711 ms. The MIT-BIH database used a sampling rate
of 360 Hz, so the 256 sample segment size will be more than adequate as the typical RR interval is
around 500 ms [42].

Figure 2 shows the example of our proposed automatic beat segmentation. In our segmentation
method, if the RR-interval is too short, or there is more than one R-peak at the segment, then zero-
paddings are performed to keep the segment size to 256 samples with only one R-peak. If required,
this segment size could be downsampled to 128 or even 64 samples to further reduce the computational
cost. However, there will be a slight decrease in the classification accuracy. More experiments are
conducted on the sample sizes and its accuracy in the next section.
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Figure 2. Samples of 16 chunks out of 23,999 beats training data. The 10th chunk, our top left chunk,
contains the Normal beat taken from the 40th file. The first and third row were the original signals,
while the second and fourth row were the zero-padded signals.

3.2. Ensemble CNNs

Each segmented ECG beat can be replicated into three beat sizes, i.e., 64, 128, and 256 samples.
The 64 and 128 samples were the downsampled version of the original 256 beats segmented automatically
as explained in Section 3.1. In total, we have three CNN configurations with a difference only in layer 1
(input size), i.e., 64, 128, and 256. After the training and testing phase, the three outputs from three
CNNs were ensembled using the averaging method.

Using ensemble CNN by averaging, it can improve further the accuracy by reducing the
variance [33]. In our proposed algorithm, we calculate the average of all tensor SoftMax from 3 CNNs
as shown in Equation (13) and Figure 3. Let l = L denote the last layer of the CNN model, and sL

k is the
output of the k-th neuron at the output layer, and let m = 1, . . . , M denotes the number of CNNs to be
ensembled. The final output of the ensemble CNN using averaging can be calculated as follows:

37



Appl. Sci. 2020, 10, 483

P( s) =
1
N

M∑
m=1

sL
k [m] (13)

Figure 3. Ensemble CNN.

4. Implementation and Experimental Setup

This section discusses the ECG datasets from the MIT-BIH arrhythmia database, the computational
platform used for simulation, and the proposed ensemble CNN algorithm.

4.1. MIT-BIH Arrhythmia Database and Computing Platform

In this paper, ECG datasets from the MIT-BIH arrhythmia database [41] are used for the performance
evaluation of our proposed ensemble CNN algorithms. This database is the widely used database
for testing classification performance. It contains 48 records, in which each contain two- channel
ECG signals for 30 min duration selected from 24 h recording of 47 patients. The database consists of
19 types of ECG beats, in which 16 of them are related to cardiac arrhythmia.

From the total MIT-BIH database, we only used around 110,157 ECG beats out of 112,647 total
beats which were categorized into 16 classes as shown in Table 1. These beat samples were then further
divided into 23,999 beats for training and 86,158 beats for testing. As described in Figure 2, the total of
110,157 beats was also replicated with zero padding. Therefore, there are two sets of experimental data,
with and without zero padding.

Table 1. Sixteen classes of cardiac arrhythmia ECG beats from the MIT-BIH Database and its amount of
Training and Testing beats.

No Symbol Annotation Description Total Training Testing

1 N Normal beat 75,052 11,257 63,795
2 L Left bundle branch block beat 8075 2826 5249
3 R Right bundle branch block beat 7259 2540 4719
4 V Premature ventricular contraction 7130 2495 4635
5 / Paced beat 7028 2459 4569
6 A Atrial premature contraction 2546 891 1655
7 f Fusion of paced and normal beat 982 491 491
8 F Fusion of ventricular and normal beat 803 401 402
9 ! Ventricular flutter wave 472 236 236

10 j Nodal (junctional) escape beat 229 114 115
11 x Non-conducted P-wave 193 96 97
12 a Aberrated atrial premature beat 150 75 75
13 E Ventricular escape beat 106 53 53
14 J Nodal (junctional) premature beat 83 41 42
15 e Atrial escape beat 16 8 8
16 Q Unclassifiable beat 33 16 17

Total 16-class beats 110,157 23,999 86,158

Extracted from total 112,647 of labeled ECG beats

38



Appl. Sci. 2020, 10, 483

The proposed algorithm was implemented in Python with Tensorflow with GPU [43] and Keras
libraries [44]. The experiments were performed on a computer with Intel Core i7-7700 CPU with a total
of eight logical processors, memory of 8 GBytes, graphic card Nvidia GeForce GTX 1060 6 GB DDR5,
using Microsoft Windows 10 64 bits operating system. The experiments on the training and testing
time using this computing platform is elaborated further in Section 5.

4.2. Depthwise Separable and Ensemble of Depthwise Separable CNN Models

Using a heuristic approach and optimization, the proposed CNN model contains 21 layers.
Figure 4 shows the comparison between the CNN model with and without depthwise separable CNN
in terms of structure and number of train parameters. As shown in the figure, the total train parameters
are less with the implementation of depthwise separable. Hence, the training time will be faster for
depthwise separable CNN. Table 2 shows the depthwise separable CNN model summary along with
its total parameters’ calculation.

 
Figure 4. CNN Models with and without the depthwise separable algorithm.

Table 2. Depthwise separable CNN model summary.

# Layer Number of Filters, Size, Stride Output Shape Number of Parameters

1 input_1 (256, 1) 0
2 separable_conv1d_1 32, 5, 4 (64, 32) 69
3 batch_normalization_1 (64, 32) 128
4 activation_1 (64, 32) 0
5 separable_conv1d_2 32, 5, 1 (64, 32) 1216
6 conv1d_1 32, 1, 1 (64, 32) 1056
7 separable_conv1d_3 32, 5, 4 (16, 32) 1216
8 batch_normalization_2 (16, 32) 128
9 activation_2 (16, 32) 0
10 separable_conv1d_4 32, 5, 1 (16, 32) 1216
11 conv1d_2 32, 1, 1 (16, 32) 1056
12 separable_conv1d_5 32, 5, 4 (4, 32) 1216
13 batch_normalization_3 (4, 32) 128
14 activation_3 (4, 32) 0
15 separable_conv1d_6 32, 5, 1 (4, 32) 1216
16 conv1d_3 32, 1, 1 (4, 32) 1056
17 separable_conv1d_7 32, 5, 4 (1, 32) 1216
18 batch_normalization_4 (1, 32) 128
19 activation_4 (1, 32) 0
20 flatten_1 (32) 0
21 dense_1 (Dense) (16) 528

Total parameters: 11,573
Trainable parameters: 11,317

Non-trainable parameters: 256
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The depthwise separable CNN as described in Table 2 was used to improve the training time,
while the ensemble of depthwise separable CNN, as depicted in Figure 5, was used to improve further
its classification accuracy. The input layer size is 256 representing the raw ECG beat waveform, while
the output layer size is 16 representing the number of classes as described in the MIT-BIH database
(see Table 1). There is a group of layers repeated three times, i.e., layer 5 to 9, layer 10 to 14, and layer
15 to 19. These five layers contain three convolution layers with filter size of 5, 1, and 5, respectively.
Layer 5 to 7 is configured according to the DSC algorithm. Moreover, layer 2, 7, 12, and 17 were
using stride 4 to replace the function of pooling layer according to the ACN algorithm. Suppose that we
use an ensemble of three DSC, the total number of parameters will be three times larger, i.e., 34,719 train
parameters, which is still less than the train parameters without DSC, i.e., 47,600. As is discussed in
Section 5, the use of ensemble improves its accuracy.

 
Figure 5. Proposed ensemble of depthwise separable CNNs algorithm.

5. Results and Discussion

This section elaborates beat segmentation and detection, the training process, experiments on
the CNN model with and without DSC, the experiments on zero padding and various ensemble
configurations, and benchmarking with other algorithms.

5.1. Experiment on ECG Beat Segmentation and Detection

The ECG beat segmentation and detection algorithm described in [39] were implemented in the
computing platform described in Section 4. We evaluated the algorithm on the 48 records of the
MIT- BIH database. The experiment was repeated 10 times for each record and then the average
time was calculated. The experimental result showed that, on average, it requires around 26 μs
to detect and segment one ECG beat with zero padding. This result justified the use of two stage
ECG classification as proposed in this paper, as the segmentation time is minimal compared to the
improvement achieved in the classification stage.

5.2. Training Process

Figure 6 shows the training history for 1000 epochs using the CNN model as described in Table 2
and for the training data described in Table 1. There is a gap of accuracy around 1.5% between training
and testing. The accuracy curve for validation shows that the best accuracy can be achieved at epoch
of 50. The training accuracy has convergent tendency reaching almost 100% with fluctuation around
99.7%. This result is achieved for a zero-padding input size of 256.
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Figure 6. Training history of 1000 epochs iteration of CNN model as described in Table 2. The blue
curve is the classification accuracy of the training data. The orange curve is the classification accuracy
of the testing data. There is a visible gap around 1.5% between the two curves.

5.3. Performance Measures

We used the performance measure of sensitivity, specificity, positive predictivity, and accuracy
as shown in Figure 7 and described in [45]. Sensitivity is the rate of correctly classified classes among
all classes. Specificity is the rate of correctly classified nonevents among all events. Positive predictivity
is the fraction of real events in all detected events. Finally, the accuracy is the percentage of correctly
predicted classes.

Figure 7. Performance measures using sensitivity, specificity, positive predictivity, and accuracy.

5.4. On the Effect of Depthwise Separable CNN

Table 3 shows the experimental result for CNN models with and without depthwise separable
algorithms as described in Figure 4 for the input size of 256 samples. The total parameters were 47,600
and 11,573 for without and with DSC algorithm, respectively. The training time for 1000 epochs and
the accuracy of both CNN models were comparable. This could be due to the use of GPU during
training, in which a faster training time was not apparent in the result. When CPU only was used
during training, a faster training time was evident for the CNN model with DSC. Nevertheless,
the smaller parameters in the CNN model with DSC provided a faster computation time during the
classification stage compared to the model without DSC. Therefore, the CNN model with DSC is used
in our next experiments.
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Table 3. Effect of DSC implementation on CNN layers

# DSC
Total

Parameters
TN FN TP FP Sn Sp Pp Acc Training

Time
Testing
Time

1 Without DSC 47,600 1,291,271 1099 85,059 1099 98.72 99.91 98.72 99.84 711.9 s 81 μs
2 With DSC 11,573 1,290,966 1404 84,754 1404 98.37 99.89 98.37 99.80 745.8 s 62 μs

5.5. On the Effect of Zero Padding

Zero padding in ECG beats was required due to there being a possibility that the distance
between RR intervals is less than 256, as well as to avoid more than one R-peak being detected in
one segment (see Section 3.1). Furthermore, zero padding has a positive impact on the performance, in
terms of sensitivity, specificity, positive predictivity, and accuracy, as evidenced in Table 4. The best
performance is highlighted in bold. As shown in Table 4, our proposed ECG segmentation of
256 samples with zero padding has the highest performance. Hence, zero padding is used in our
next experiments.

Table 4. Effect of zero padding on various input sizes.

# Zero Padding Input Size TN FN TP FP Sn Sp Pp Acc

1 No 64 1,291,190 1180 84,978 1180 98.63 99.91 98.63 99.83
2 No 128 1,291,413 957 85,201 957 98.89 99.93 98.89 99.86
3 No 256 1,291,411 959 85,199 959 98.89 99.93 98.89 99.86
4 Yes 64 1,291,207 1163 84,995 1163 98.65 99.91 98.65 99.83
5 Yes 128 1,291,389 981 85,177 981 98.86 99.92 98.86 99.86
6 Yes 256 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88

5.6. On the Effect of Various Ensemble Configurations

As described in Section 4.2, ensemble of depthwise separable CNNs has been experimented
with various input sizes and various numbers of ensembles. The result is shown in Table 5, in terms
of sensitivity, specificity, positive predictivity, and accuracy, in which the [256 256 256] ensemble
configuration shows the best performance. Hence, the [256 256 256] ensemble configuration is used for
benchmarking purposes with other algorithms.

Table 5. Performance of various ensemble of depthwise separable CNN configurations.

#
Ensemble

Configuration
TN FN TP FP Sn Sp Pp Acc Testing Time

1 [128 64] 1,291,194 1176 84,982 1176 98.64 99.91 98.64 99.83 111 μs
2 [256 128] 1,291,369 1001 85,157 1001 98.84 99.92 98.84 99.85 113 μs
3 [256 256] 1,291,460 910 85,248 910 98.94 99.93 98.94 99.87 111 μs
4 [64 64 64] 1,291,207 1163 84,995 1163 98.65 99.91 98.65 99.83 143 μs
5 [128 128 128] 1,291,389 981 85,177 981 98.86 99.92 98.86 99.86 146 μs
6 [256 256 256] 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88 150 μs
7 [256 128 64] 1,291,408 962 85,196 962 98.88 99.93 98.88 99.86 150 μs

In the ensemble configuration, the CNN model was trained separately. For example, the [256
256 256] ensemble is trained three times. Therefore, the training time is increased by three times with
increased accuracy. As expected, the classification stage (testing time) will be increased around three
times as well but within the range of 150 μs. Hence, we can conclude that the proposed two stage
ECG classification requires around 180 μs for QRS detection and classification using the computing
platform described in Section 4.1.

For more detailed evaluation, the [256 256 256] ensemble confusion matrix is shown in Table 6.
The performance assessment of each class using the [256 256 256] ensemble configuration can be seen
in Table 7, in which the ECG class is sorted from the largest to the smallest available samples in the
MIT-BIH database. As can be seen from the table, fewer samples of data cause inaccurate classification.
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In conclusion, the [256 256 256] ensemble achieves the best performance in terms of sensitivity, specificity,
positive predictivity, and accuracy.

Table 6. Confusion matrix for [256 256 256] ensemble of CNNs.

Prediction

N L R V / A f F ! j x a E J e Q

Ground Truth 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 0 63,521 4 13 70 2 79 11 36 3 44 6 2 0 1 0 3
L 1 22 5211 0 13 1 0 0 0 0 0 0 0 1 0 0 1
R 2 11 0 4699 0 0 9 0 0 0 0 0 0 0 0 0 0
V 3 46 10 0 4528 1 11 0 22 10 0 0 7 0 0 0 0
/ 4 3 0 0 3 4553 0 9 0 0 0 0 0 1 0 0 0
A 5 143 0 5 16 0 1484 0 2 0 3 0 0 0 2 0 0
f 6 13 0 0 1 6 0 470 0 0 0 0 0 0 1 0 0
F 7 52 0 0 36 0 0 0 313 0 0 1 0 0 0 0 0
! 8 2 0 0 8 0 0 0 0 225 0 0 1 0 0 0 0
j 9 15 0 1 0 0 0 0 0 0 97 0 0 0 2 0 0
x 10 1 0 0 1 0 0 0 0 5 0 89 1 0 0 0 0
a 11 6 0 0 15 0 9 0 0 1 0 0 44 0 0 0 0
E 12 2 0 0 1 0 0 0 0 0 0 0 0 50 0 0 0
J 13 7 0 0 0 0 3 0 0 0 0 0 0 0 32 0 0
e 14 3 0 0 0 0 1 1 0 0 0 0 0 0 0 3 0
Q 15 11 0 2 1 0 0 3 0 0 0 0 0 0 0 0 0

Table 7. Performance evaluation for each class using [256 256 256] ensemble of
depthwise separable CNNs.

ECG
Class

Total
Beats

Train
Beats

Test
Beats

TN FN TP FP Sn Sp Pp Acc

N 75,052 11,257 63,795 22,026 274 63,521 337 99.57 98.49 99.47 99.29
L 8075 2826 5249 80,895 38 5211 14 99.28 99.98 99.73 99.94
R 7259 2540 4719 81,418 20 4699 21 99.58 99.97 99.56 99.95
V 7130 2495 4635 81,358 107 4528 165 97.69 99.80 96.48 99.68
/ 7028 2459 4569 81,579 16 4553 10 99.65 99.99 99.78 99.97
A 2546 891 1655 84,391 171 1484 112 89.67 99.87 92.98 99.67
f 982 491 491 85,643 21 470 24 95.72 99.97 95.14 99.95
F 803 401 402 85,696 89 313 60 77.86 99.93 83.91 99.83
! 472 236 236 85,903 11 225 19 95.34 99.98 92.21 99.97
j 229 114 115 85,996 18 97 47 84.35 99.95 67.36 99.92
x 193 96 97 86,054 8 89 7 91.75 99.99 92.71 99.98
a 150 75 75 86,072 31 44 11 58.67 99.99 80.00 99.95
E 106 53 53 86,103 3 50 2 94.34 100.00 96.15 99.99
J 83 41 42 86,110 10 32 6 76.19 99.99 84.21 99.98
e 16 8 8 86,150 5 3 0 37.5 100.00 100.00 99.99
Q 33 16 17 86,137 17 0 4 0 100.00 0.00 99.98
∑

110,157 23,999 86,158 1,291,531 839 85,319 839 99.03 99.94 99.03 99.88

5.7. On Comparison with Other Algorithms

Table 8 shows the benchmarking results with another 10 algorithms, in terms of number of classes
(some of the algorithms did not classify all 16 classes), methods, number of prediction stages, and
accuracy. In terms of accuracy, refs. [46] and [47] have the closest but still a lower accuracy than
our proposed algorithm, i.e., 99.61% and 99.80%, respectively. Note that, ref. [46] only performs
classification for eight classes, while [47] only performs classification for four classes, while we perform
classification for sixteen classes. Hence, it is evident that our proposed algorithm with the [256 256 256]
ensemble of CNNs outperforms the other algorithms. Particularly, we managed to classify all 16 classes
from the MIT-BIH database, while reducing the number of stages to two (lower computational cost),
and achieving highest accuracy.
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Table 8. Benchmarking of the proposed algorithm with other algorithms using MIT-BIH database.

No Author, Year #Class Methods Prediction Stage Accuracy

1 Melgani and Bazi, 2008 [10] 6 SVM and PSO 3 89.72%

2 Ince et al., 2009 [36] 5 DWT, PCA,
and ANN 4 98.30%

3 Wen et al., 2009 [37] 16
Self Organizing
CMAC Neural

Network
2 98.21%

4 Sarfraz et al., 2014 [46] 8 ICA and BPNN 3 99.61%

5 Kiranyaz et al., 2015 [27] 5 1D-CNN 2 95.14%

6 Raj and Ray, 2017 [13] 16
DCT_DOST,

PCA,
SVM_PSO

4 98.82%

7 Nanjun and Meshram, 2018 [48] 2 DWT and DNN 3 98.33%

8 Zhai and Tin, 2018 [29] 5 2D-CNN 2 96.05%

9 Rangappa and Agarwal, 2018 [49] 2 k-NN 3 98.40%

10 Xia et al., 2018 [47] 4 SDAE, DNN 4 99.80%

11 Proposed Algorithm 16 Ensemble
CNNs 2 99.88%

6. Conclusions

In this paper, we presented an efficient algorithm for cardiac arrhythmia classification using
the ensemble of depthwise separable convolutional neural networks. First, we optimized the
beat segmentation by taking ECG samples centered around the R-peak. Second, we used all
convolutional network, batch normalization, and depthwise separable convolution, to achieve the best
accuracy while reducing the computational cost. Finally, we ensembled three depthwise separable
CNNs by averaging three CNNs of 256 sample input size. Performance evaluation showed that our
proposed algorithms achieved around 99.88% accuracy in 16 classes classification. The proposed
two-stage ECG classification required around 180 μs, which can be implemented in a real time
application. Future work will include the implementation of the current CNN on GPU to speed up
its training, as well as to vary the input segment for various patients, the use of different databases,
the use of other optimization methods, and the implementation in clinical application validated by
a cardiologist.
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Abstract: Accurate automatic quantitative cephalometry are essential for orthodontics. However,
manual labeling of cephalometric landmarks is tedious and subjective, which also must be performed
by professional doctors. In recent years, deep learning has gained attention for its success in
computer vision field. It has achieved large progress in resolving problems like image classification
or image segmentation. In this paper, we propose a two-step method which can automatically
detect cephalometric landmarks on skeletal X-ray images. First, we roughly extract a region of
interest (ROI) patch for each landmark by registering the testing image to training images, which
have annotated landmarks. Then, we utilize pre-trained networks with a backbone of ResNet50,
which is a state-of-the-art convolutional neural network, to detect each landmark in each ROI patch.
The network directly outputs the coordinates of the landmarks. We evaluate our method on two
datasets: ISBI 2015 Grand Challenge in Dental X-ray Image Analysis and our own dataset provided by
Shandong University. The experiments demonstrate that the proposed method can achieve satisfying
results on both SDR (Successful Detection Rate) and SCR (Successful Classification Rate). However,
the computational time issue remains to be improved in the future.

Keywords: cephalometric landmark; X-ray; deep learning; ResNet; registration

1. Introduction

Cephalometric analysis is performed on skeletal X-ray images. This is necessary for doctors to
make orthodontic diagnoses [1–3]. In cephalometric analysis, the first step is to detect landmarks
in X-ray images. Experienced doctors are needed to identify the locations of the landmarks.
Measurements of the angles and distances between these landmarks greatly assist diagnosis and
treatment plans. The work is time-consuming and tedious, and the problem of intra-observer variability
arises since different doctors may differ considerably in their identification of landmarks [4].

Under these circumstances, computer-aided detection, which can automatically identify
landmarks objectively, is highly desirable. Studies on anatomical landmark detection have a long
history. In 2014 and 2015, International Symposium on Biomedical Imaging (ISBI) launched challenges
on cephalometry landmark detection [5,6], and several state-of-the-art methods were proposed.
In 2015’s challenge, Lindner and Cootes’s method based on random-forest achieved the highest
results, with a successful detection rate of 74.84% for a 2-mm precision range [7] (since landmark
location cannot be exactly same with manual annotation, Errors within a certain range are acceptable.
Usually, medically acceptable range is 2 mm). Ibragimov et al. achieved the second highest result
in 2015’s challenge, with a successful detection accuracy of 71.7% within a 2-mm range [8]. They
applied Haar-like feature extraction with a random-forest regression, then making refinements with
a global-context shape model. In 2017, Ibragimov et al. added a convolutional neural network for
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binary classification to their conventional method. They surpass the result of Lindner’s a little bit, with
around 75.3% prediction accuracy within a 2-mm range [9]. In 2017, Hansang Lee et al. proposed a
deep learning based method which achieved not bad results but in a small resized image. He trained
two networks to regress the landmark’s x and y coordinate directly [10]. In 2019, Jiahong Qian et al.
proposed a new architecture called CephaNet which improves the architecture of Faster R-CNN [11,12].
Its accuracy is nearly 6% higher than other conventional methods.

Despite the variety of techniques available, automatic cephalometric landmark detection remains
insufficient due to its limited accuracy. In recent years, deep learning has gained attention for its
success in computer vision field. For example, convolutional neural network models are widely used in
problems like landmark detection [13,14], image classification [15–17] and image segmentation [18,19].
Trained models’ performances surpass that of human beings in many applications. Since direct
regression of several landmarks is a highly non-linear mapping, which is difficult to learn [20–23]. In
our method, we only try to detect one key point in one patch image. We learn a non-linear mapping
function for only one key point. Each key point has its corresponding non-linear mapping function. So
we can achieve more accurate detection of key point than other methods.

In this paper, we propose a two-step method for the automatic detection of cephalometric
landmarks. First, we get the coarse landmark location by registering the test image to a most similar
image in the training set. Based on the registration result, we extract an ROI patch centered at the
coarse landmark location. Then, by using our pre-trained network with the backbone of ResNet50,
which is a state-of-the-art convolutional neural network, we detect the landmarks in the extracted ROI
patches to make refinements. The experiments demonstrate that our two-step method can achieve
satisfying results compared with other state-of-the-art methods.

The remainder of this paper is organized as follows: We describe the study materials in Section 2.
In Section 3, we explain the proposed method in detail. Then, in Section 4, we describe the experiments
and discuss the results. Lastly, we present the conclusion in Section 5.

2. Materials

2.1. Training Dataset

The training dataset is the 2015 ISBI Grand Challenge training dataset [6]. It contains 150 images,
each of which is 1935 × 2400 pixels in TIFF format. Each pixel’s size is 0.1 × 0.1 mm. The images
were labeled by two experienced doctors. We use the average coordinate value of the two doctors as
ground-truth for training.

We aim to detect 19 landmarks for each X-ray image, as presented in Figure 1, which are as follows:
sella turcica, nasion, orbitale, porion, subspinale, supramentale, pogonion, menton, gnathion, gonion,
lower incisal incision, upper incisal incision, upper lip, lower lip, subnasale, soft tissue pogonion,
posterior nasal spine, anterior nasal spine, and articulate.
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Figure 1. All 19 landmarks on x-ray images which we aim to detect.

Data Augmentation

The size of an X-ray image is 1935 × 2400 pixels. The scale is too huge to input the whole image
into a CNN to detect the locations of all 19 landmarks simultaneously. Therefore, we decide to detect
landmarks in small patches. In each patch, only one landmark will be detected. We train one model
for one landmark. Overall, we have 19 landmarks since there are 19 landmarks to be detected. These
models have the same architecture but different weights, as presented in Figure 2.

In order to do data augmentation, we select 400 patches randomly for each landmark in one
training image. Each patch is 512 × 512 pixels. The landmark could be everywhere in the patch. Its
coordinate (x,y) in the ROI patch is used as teaching signal (ground truth) for training. Then, we resize
them into 256 × 256 patches, as presented in Figure 3. This means we will have 60,000 (400 × 150)
images to train one model for landmark i (i = 1, 2, ... 19).

Figure 2. We train 19 networks with same architecture but with different weights.
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(a) Example of our training image,
the red boxes are cropped training
images.

(b) The cropped 512 × 512 patch (c) The resized 256
× 256 patch

Figure 3. The way we crop ROI patches for each landmark: the blue dot is a target landmark, the red
boxes are extracted 512 × 512 ROI patches. We can see the landmark is included in all the ROI patches.
We randomly extract 400 patches for one landmark in one x-ray image for training. Then we resize the
ROI patches into 256 × 256 to make predictions.

2.2. Test Dataset

We have two test datasets. Both datasets are tested through the models, which are trained with
the ISBI training dataset.

2.2.1. International Symposium on Biomedical Imaging (ISBI) Test Dataset

The first test dataset from the ISBI Grand Challenge includes two parts: Test Dataset 1 with
150 test images and test dataset 2 with 100 images. The ISBI test images are collected with the same
machine as the training data, and each image is 1935 × 2400 in TIFF format.

2.2.2. Our Dataset

Our own dataset is provided by Shandong University, China. In contrast to the ISBI dataset, the
data are taken with different machines. There are 100 images, each of which is 1804 × 2136 in JPEG
format.

Also, the landmarks labeled by the doctors are not exactly the same as those in the ISBI dataset (13
of them are same). We used labels for sella turcica, nasion, orbitale, porion, subspinale, supramentale,
pogonion, menton, gnathion, gonion, lower incisal incision, upper incisal incision, and anterior nasal
spine. Other landmarks were not labeled by the doctors.

2.2.3. Region Of Interest (ROI)

Extracted ROI patches are used as input images in our corresponding models. The method of
extraction is described in detail in Section 3.

3. Proposed Method

3.1. Overview

The method is a two-step method: ROI extraction and Landmark detection. For ROI extraction,
we crop patches by registering the test image to training images, which have annotated landmarks.
Then, we use pre-trained CNN models with the backbone of ResNet50, which is a state-of-the-art
CNN, to detect the landmarks in the extracted ROI patches. The procedure is presented in Figure 4.
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Figure 4. The overview of our two-step method.

3.2. Automatic ROI Extraction

Because of the limitation of the input image size, we aim to extract small ROI patches automatically.
That is, we extract ROI patches that include landmark i(i = 1, 2, 3. . . 19). To extract the ROI
automatically, we use registration to locate a coarse location of the landmark. Next, we extract
the ROI patch centered on the coarse location. Thus, the landmark location we aim to detect will be
included in the ROI patch.

In this process, the test image is registered to training images, which have annotated landmarks.
We consider the test images as moving images and the training images as reference images. The type
of transform that we used is translation transform. The optimizer is gradient descent, which we used
to update the locations of the moving images. We apply the intensity-based registration method and
calculate the mean squared error (MSE) between the reference image and moving image.

After registration, we copy the landmark locations of the reference images (training images) to
moving images (test images). We consider the landmark location of a reference image as the center of
the ROI patch, extract a 512 × 512 resolution patch image on the moving image, and then resize it to a
256 × 256 resolution patch for the test. The extracted images will be treated as input to our trained
convolutional neural network (CNN); thus, we can detect the corresponding landmark in the patch
image. The registration results are presented in Figure 5.

Since people’s heads vary in shape, randomly choosing one image among the training images as
a reference image is not sufficient, and the landmark to be detected will not be included in the ROI.
To avoid this situation, we iterate all the training images, which means we perform registration 150
times for one test image (the total number of training images is 150). Then, as the reference image, we
choose the training image that has the smallest square error with test images. This enables us to find
the closest training sample to the test images. For computational time, different references and moving
images vary a lot. The shortest only took a few seconds for one registration, while the longest could
take more than one minute. In all, the average time for registering one image to all training samples is
around twenty minutes. The procedure is presented in Figure 6.
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Figure 5. In the image, we take the reference image’s landmarks(Training images) as center of the patch
image, then we draw a bounding box (ROI) in the test image, as the input to our corresponding trained
models. Red dots are the reference images’ landmarks, green dots are test image’s landmarks, which
are the landmarks we aim to detect.

Figure 6. The architecture of Automatic registration.

3.3. Landmark Detection

3.3.1. Network Architecture

We use the ResNet50 architecture [24] as our backbone to extract features in ROI patches. CNN
can extract useful features automatically for different computer vision tasks. We use regression method
to estimate the landmark location after feature extraction. In our experiment, we choose to use fully
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connected layer for the estimation of landmark location as a regression problem. We first flatten all
the features. Then, we add one fully connected layer, which directly outputs the coordinate of the
landmark in the patch.

The state-of-the-art architecture ResNet is widely used for its unique architecture. It has
convolutional blocks and identity blocks. By adding former information to the later layers, ResNet
solves the gradient vanishing problems effectively. The overall architecture of ResNet50 is presented
in Figure 7.

Figure 7. The architecture of ResNet50, the identity block and convolutional block add the former
input to the later output. For identity block, it directly adds the former input to the later output. While
for convolutional block, before adding, the former input first goes through a convolutional layer to
make it the same size with later output.

3.3.2. Cost function

The cost function we used during training is mean squared error (MSE), since we want to make
the predicted landmark become as close as possible to the ground-truth landmark location during
training. In this case, MSE can be written as in Equation (1):

MSE =
1
n

n

∑
i=1

((xi − x̂i)
2 + (yi − ŷi)

2) (1)

where xi and yi indicate the ground-truth coordinate, and x̂i and ŷi indicate the estimated coordinate.

4. Experiments and Discussion

4.1. Implementation

For the implementation of our experiments, we use Titan X GPU (12 GB) to help accelerating
training. We use Python programming language along with deep learning tools Tensorflow and Keras
in our experiments. We use Adam optimizer and set learning rate to 0.001. Ten percent of our training
data (60,000 × 10% = 6000) are separated for validation during training procedure and early stopping
is applied to find the best weights.

4.2. Evaluation measures

According to the 2015 ISBI challenges on cephalometry landmark detection [6], we use the mean
radial error (MRE) to make evaluation. The radial error is defined in Equation (2). Δx and Δy are the
absolute differences of the estimated coordinate and ground-truth coordinate of x-axis and y-axis.

R =
√

Δx2 + Δy2 (2)
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The mean radial error (MRE) is defined in Equation (3):

MRE =
∑n

i=1 Ri

n
(3)

Because the predicted results have some difference with the ground-truth. If the difference is
within some range, we consider it correct in that range. In our experiment, we evaluate the range of z
mm (where z = 2, 2.5, 3, 4). For example, if the radial error is 1.5 mm, we consider it as a 2 mm success.
Equation (4) explains the meaning of successful detection rate (SDR), where Na indicates the number
of accurate detections, and N indicates total number of detections.

SDR =
Na

N
∗ 100% (4)

4.3. Landmark Detection Results

4.3.1. ISBI Test Dataset

The results for ISBI public data are presented in Tables 1 and 2. Table 1 presents the SDR, and
Table 2 presents the MRE results.

Table 1. Successful Detection Rate (SDR) Results on Testset1 and Testset2 of range 2 mm, 2.5 mm, 3 mm,
4 mm.

SDR (Successful Detection Rate)

Anatomical Landmarks 2 mm (%) 2.5 mm (%) 3 mm (%) 4 mm (%)

Testset1 Testset2 Testset1 Testset2 Testset1 Testset2 Testset1 Testset2

1. sella turcica 98.7 99.0 98.7 99.0 99.3 99.0 99.3 99.0
2. nasion 86.7 89.0 89.3 90.0 93.3 92.0 96.0 99.0
3. orbitale 84.7 36.0 92.0 61.0 96.0 80.0 99.3 96.0
4. porion 68.0 78.0 78.0 81.0 84.7 86.0 93.3 93.0
5. subspinale 66.0 84.0 76.0 94.0 87.3 99.0 95.3 100.0
6. supramentale 87.3 27.0 93.3 43.0 97.3 59.0 98.7 82.0
7. pogonion 93.3 98.0 97.3 100.0 98.7 100.0 99.3 100.0
8. menton 94.0 96.0 98.0 98.0 98.0 99.0 99.3 100.0
9. gnathion 94.0 100.0 98.0 100.0 98.0 100.0 99.3 100.0
10. gonion 62.7 75.0 75.3 87.0 84.7 94.0 92.0 98.0
11. lower incisal incision 92.7 93.0 97.3 96.0 97.3 97.0 99.3 99.0
12. upper incisal incision 97.3 95.0 98.0 98.0 98.7 98.0 99.3 98.0
13. upper lip 89.3 13.0 98.0 35.0 99.3 69.0 99.3 93.0
14. lower lip 99.3 63.0 99.3 80.0 100.0 93.0 100.0 98.0
15. subnasale 92.7 92.0 95.3 94.0 96.7 95.0 99.3 99.0
16. soft tissue pogonion 86.7 4.0 92.7 7.0 95.3 13.0 99.3 41.0
17. posterior nasal spine 94.7 91.0 97.3 98.0 98.7 100.0 99.3 100.0
18. anterior nasal spine 87.3 93.0 92.0 96.0 95.3 97.0 98.7 100.0
19. articulate 66.0 80.0 76.0 87.0 83.0 93.0 91.3 97.0

Average: 86.4 74.0 91.7 81.3 94.8 87.5 97.8 94.3
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Table 2. Results on Testset1 and Testset2 of mean radial error.

Anatomical Landmarks Mean Radial Error (mm)

Testset1 Testset2

1. sella turcica 0.577 0.613
2. nasion 1.133 0.981
3. orbitale 1.243 2.356
4. porion 1.828 1.702
5. subspinale 1.752 1.253
6. supramentale 1.136 2.738
7. pogonion 0.836 0.594
8. menton 0.952 0.705
9. gnathion 0.952 0.594
10. gonion 1.817 1.431
11. lower incisal incision 0.697 0.771
12. upper incisal incision 0.532 0.533
13. upper lip 1.332 2.841
14. lower lip 0.839 1.931
15. subnasale 0.853 0.999
16. soft tissue pogonion 1.173 4.265
17. posterior nasal spine 0.819 1.028
18. anterior nasal spine 1.157 0.995
19. articulate 1.780 1.310

Average: 1.077 1.542

We compare our detection results with other benchmarks’ results. Table 3 shows the comparison.

Table 3. SDR of the proposed method compared with other benchmarks for ISBI 2015 challenges on
cephalometry landmark detection Testset1 and Testset2.

Comparisons of SDR

Method 2 mm (%) 2.5 mm (%) 3 mm (%) 4 mm (%)

Testset1

Ibrgimov(2015) [8] 71.7 77.4 81.9 88.0
Lindner [7] 73.7 80.2 85.2 91.5
Ibragimov [9] 75.4 80.9 84.3 88.3
Jiahong Qian [11] 82.5 86.2 89.3 90.6
Proposed: 86.4 91.7 94.8 97.8

Testset2

Ibrgimov [8] 62.7 70.5 76.5 85.1
Lindner [7] 66.1 72.0 77.6 87.4
Ibragimov [9] 67.7 74.2 79.1 84.6
Jiahong Qian [11] 72.4 76.2 80.0 85.9
Proposed: 74.0 81.3 87.5 94.3

Figure 8 shows one of the examples of our results.
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Figure 8. Green points: predicted landmarks’ locations. Red points: ground-truth of landmarks’ locations.

4.3.2. Our Dataset

We use our trained model(use ISBI training dataset) to test our own dataset directly. We also
register all images first. Since there are some different landmarks labeled in our own dataset, in the
experiment, we only test same parts’ landmarks with ISBI dataset. The results are presented in
Tables 4 and 5.

Table 4. Results of 2 mm, 2.5 mm, 3 mm and 4 mm accuracy on our own dataset, since we do not have
label for landmark 13, 14, 15, 16, 17, 19, we test other landmarks exclude these ones.

Our own data from Shandong University

Anatomical Landmarks 2 mm (%) 2.5 mm (%) 3 mm (%) 4 mm (%)

1. sella turcica 68.0 71.0 76.0 82.0
2. nasion 83.0 90.0 95.0 99.0
3. orbitale 40.0 58.0 74.0 88.0
4. porion 48.0 56.0 66.0 72.0
5. subspinale 32.0 39.0 50.0 67.0
6. supramentale 33.0 43.0 55.0 71.0
7. pogonion 68.0 77.0 81.0 90.0
8. menton 82.0 86.0 95.0 99.0
9. gnathion 91.0 97.0 99.0 100.0
10.gonion 51.0 63.0 75.0 86.0
11.lower incisal incision 68.0 76.0 78.0 90.0
12.upper incisal incision 75.0 86.0 90.0 97.0
18.anterior nasal spine 67.0 74.0 81.0 85.0

Average: 62.0 70.5 78.1 86.6
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Table 5. Results of Mean Radial Error on our own dataset.

Our own data from Shandong University

Anatomical Landmarks Mean Radial Error (mm)

1. sella turcica 2.4
2. nasion 1.4
3. orbitale 2.5
4. porion 3.0
5. subspinale 3.6
6. supramentale 3.3
7. pogonion 1.7
8. menton 1.2
9. gnathion 1.2
10.gonion 2.4
11.lower incisal incision 1.8
12.upper incisal incision 1.3
18.anterior nasal spine 2.0

Average: 2.1

4.4. Skeletal Malformations Classification

For the ISBI Grand Challenge, the class labels of skeletal malformations based on ANB, SNB,
SNA, ODI, APDI, FHI, FMA, and MW were also annotated for each subject. The skeletal malformation
classifications for ANB, SNB, SNA, ODI, APDI, FHI, FMA, and MW are defined in Table 6 and the
definitions (calculations) of ANB, SNB, SNA, ODI, APDI, FHI, FMA, and MW are summarized as
follows:

1. ANB: The angle between Landmark 5, Landmark 2 and Landmark 6
2. SNB: The angle between Landmark 1, Landmark 2 and Landmark 6
3. SNA: The angle between Landmark 1, Landmark 2 and Landmark 5
4. ODI (Overbite Depth Indicator): Sum of the angle between the lines from Landmark 5 to

Landmark 6 and from Landmark 8 to Landmark 10 and the angle between the lines from
Landmark 3 to Landmark 4 and from Landmark 17 to Landmark 18

5. APDI (AnteroPosterior Dysplasia Indicator): Sum of the angle between the lines from Landmark 3
to Landmark 4 and from Landmark 2 to Landmark 7, the angle between the lines from Landmark
2 to Landmark 7 and from Landmark 5 to Landmark 6 and the angle between the lines from
Landmark 3 to Landmark 4 and from Landmark 17 to Landmark 18

6. FHI: Obtained by the ratio of the Posterior Face Height (PFH = the distance from Landmark 1 to
Landmark 10) to the Anterior Face Height (AFH = the distance from Landmark 2 to Landmark 8).
FHI = PFH/AFH.

7. FMA: The angle between the line from Landmark 1 to Landmark 2 and the line from Landmark
10 to Landmark 9.

8. Modify-Wits (MW): The distance between Landmark 12 and Landmark 11.

MW =
√
(xL12 − xL11)2 + (yL12 − yL11)2.
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Table 6. Classifications for 8 methods, ANB, SNB, SNA, ODI, APDI, FHI, FMA and MW.

ANB SNB SNA ODI APDI FHI FMA MW

Class1 (C1) 3.2°–5.7° 74.6°–78.7° 79.4°–83.2° 68.4°–80.5° 77.6°–85.2° 0.65–0.75 26.8°–31.4° 2–4.5 mm
Class2 (C2) >5.7° <74.6° >83.2° >80.5° <77.6° >0.75 >31.4° =0 mm
Class3 (C3) <3.2° >78.7° <79.4° <68.4° >85.2° <0.65 <26.8° <0 mm
Class4 (C4) – – – – – – – >4.5 mm

The Successful Classification Rate (SCR) for ANB, SNB, SNA, ODI, APDI, FHI, FMA, and MW
with the detected landmarks are presented in Table 7 (We run the official python program offered by
ISBI Grand Challenge [6] to automatically get the SCR results). To make a comparison, we also show
the SCR by the state-of-the-art methods in Table 7. As presented in Table 7, some of the SCRs of the
proposed method are much higher than those of the existing methods (eg: ANB, SNA, ODI, FHI). For
SNB measure, Lindner [7] is 0.1% percent higher than our result.

Table 7. Classification results for 8 measures, ANB, SNB, SNA, ODI, APDI, FHI, FMA and MW. We
used junior doctors’ annotations as ground-truth value.

SCR (%)

ANB SNB SNA ODI APDI FHI FMA MW

Ibrgimov(2015) [8] 68.0 78.7 56.7 77.3 83.3 76.0 81.3 84.0
Lindner [7] 71.3 83.3 60.0 80.0 83.3 77.3 81.3 85.3
Ibragimov [9] 72.9 73.7 64.1 75.9 84.8 79.7 82.0 80.2
Proposed: 82.0 83.2 75.2 85.2 86.4 86.0 82.0 86.8

4.5. Discussion

For registration, since people’s heads vary in shape, even though we selected the closest image
to the training data as the reference image for each test image, there are still missed situations. This
means that after the registration, the patch we created for the test does not include the ground-truth
landmark. For the ISBI dataset, there is only one missed patch, and the rate is about 0.0002 (1/(19 ×
250)), as presented in Figure 9. Overall, it has little impact on the results. For Testset2 of the ISBI Grand
Challenge, we can see that Landmark 3, Landmark 6, Landmark 13, and Landmark 16’s have relatively
low accuracy. However, the process works fine on Testset1. After we visualize the testing result, we
find out that the anatomy of those failed cases are very different from the successfully detected ones.
Since our training dataset has only 150 images, even though we did data augmentation, we still cannot
deny the fact that people’s skeletal anatomies are so different that many types are not included in the
training dataset. When we use our trained models to make predictions on those with huge anatomy
differences, we will achieve unsatisfying results. We think this explains the poor performance on those
landmarks in Testset2. We show an example in Figure 10.

At first, we try to input all the X-ray images to predict all 19 landmarks simultaneously.
We performed conventional data augmentation on training data, such as rotation, cropping, and
so on. However, the result is not satisfying; although the location of all the landmarks is very similar
to the ground truth, the predicted results are very far from the ground-truth result, as presented in
Figure 11.

When we performed skeletal malformation classification based on the detected result, we found
out that the result varies a lot when we use the annotation data of a different doctor as the ground
truth (There are two annotation data made by two doctors (junior doctor and senior doctor) in ISBI
Grand Challenge 2015; because their landmark locations are different, this results in the variability
of the skeletal malformation classification. Table 8 presents the proportion that two doctors have the
same classification label.). The result we showed previously was based on the annotation data of the
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junior doctor. If we used the annotation data of the senior doctor as the ground truth when performing
classification, the SCR would be lower. It proves that annotation data have great influence on the
results. During training, we use the average of the annotated landmark locations of the two doctors as
the ground truth. When we use only the senior doctor’s annotated landmark locations as the ground
truth during the training, the SDR would also drop, which also proves that the annotation data greatly
affects the final results.

Table 8. The proportion that two doctors made the same classification label over 400 images (training
and test images).

Proportion (%)

ANB SNB SNA ODI APDI FHI FMA MW

78.0 82.0 67.75 77.0 82.25 84.25 82.0 87.5

Figure 9. Green point: test image’s landmark location. Red point: reference image’s landmark location.
We can see that the green dot is not included in the bounding box we cropped.

Figure 10. Successful detection example from Testset1 and failed detection example from Testset2 on
Landmark 3. Green points: predicted result. Blue points: ground-truth location.
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Figure 11. Green points: predicted landmarks’ locations. Red points: ground-truth locations of
landmarks. We can see the result is not satisfying at all.

5. Conclusions

We proposed an approach to automatically predict landmark location and used a deep learning
method with very small training data, with only 150 X-ray training images. The results outperformed
other benchmarks’ results in all SDR and nearly all SCR, which proves that the proposed method are
effective for cephalometric landmark detection. The proposed method could be used for landmark
detection in clinical practice under the supervision of doctors.

For future work, we are developing a GUI for doctors to use. The system offers either automatic
or semi-automatic landmark detection. In the automatic mode, the system will automatically extract an
ROI (based on registration) and select a proper model for each landmark. In the semi-automatic mode,
the doctor needs to give a bounding box extract ROI manually and select a corresponding model for
each landmark detection, which can reduce computational time. Since we used simple registration
in this study and it took a long time to register one test image with all the training images, around
twenty minutes as we mentioned before. Under such case, we aim to design a better method that
reduces the registration time in testing phase, to make the automatic detection more efficient. For
example, maybe we will also utilize deep learning method, either to do registration or just simply to
regress a coarse landmark region, to replace the rigid registration we used in this paper. Moreover,
because we detected all the landmarks in patch images, we did not take global-context information
(i.e., the relationship among all the landmarks) into consideration. In future work, we want to utilize
this global-context information to check whether we can achieve better performance. For example,
maybe we will try to change the network architecture to allow the network to utilize whole image’s
features to better and faster locate the coarse locations of landmarks.
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Abbreviations

The following abbreviations are used in this manuscript:

GUI The graphical user interface

SCR Successful Classification Rate

SDR Successful Detection Rate

MRE Mean squared error

ROI Region of interest
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Abstract: Numerous applications of human–machine interfaces, e.g., dedicated to persons with
disabilities, require contactless handling of devices or systems. The purpose of this research is to
develop a hands-free head-gesture-controlled interface that can support persons with disabilities to
communicate with other people and devices, e.g., the paralyzed to signal messages or the visually
impaired to handle travel aids. The hardware of the interface consists of a small stereovision rig
with a built-in inertial measurement unit (IMU). The device is to be positioned on a user’s forehead.
Two approaches to recognize head movements were considered. In the first approach, for various
time window sizes of the signals recorded from a three-axis accelerometer and a three-axis gyroscope,
statistical parameters were calculated such as: average, minimum and maximum amplitude, standard
deviation, kurtosis, correlation coefficient, and signal energy. For the second approach, the focus was
put onto direct analysis of signal samples recorded from the IMU. In both approaches, the accuracies
of 16 different data classifiers for distinguishing the head movements: pitch, roll, yaw, and immobility
were evaluated. The recordings of head gestures were collected from 65 individuals. The best
results for the testing data were obtained for the non-parametric approach, i.e., direct classification
of unprocessed samples of IMU signals for Support Vector Machine (SVM) classifier (95% correct
recognitions). Slightly worse results, in this approach, were obtained for the random forests classifier
(93%). The achieved high recognition rates of the head gestures suggest that a person with physical
or sensory disability can efficiently communicate with other people or manage applications using
simple head gesture sequences.

Keywords: electronic human-machine interface; blindness; gesture recognition; inertial sensors; IMU

1. Introduction

Human–System Interaction (HSI) is currently actively pursued as a separate research field
dedicated to the development of new technologies facilitating human communication with systems [1].
Depending on the application, such interaction systems are also referred to as Human–Computer
Interfaces (HCI) or more generally human–machine interfaces. The design and construction of
such systems requires an interdisciplinary research approach and involves knowledge of sensory
perception mechanisms in humans, cognitive processes, and information processing, as well as basics
of ergonomics. A well-designed user interface often determines the usefulness of an entire system [2].

Designing interfaces accessible for persons with sensory and motor disabilities is a particularly
challenging research issue [3,4]. It is necessary to develop innovative solutions that enable handicapped
users to communicate with such devices or systems. The interfaces use alternative, often multimodal
communication methods that compensate for the diminished or lost sensorial or physical functions [5].
Individuals with hearing loss use sign language (one of the so-called visual-spatial languages) and
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are aided by sign language computer applications. For people with physical disabilities, special
input-output devices utilizing inertial sensors and innovative interfaces are built so that “contactless”
communication with a computer via, among others, Brain–Computer Interfaces (BCI) [6] and video
interfaces, which are capable of tracking eye movements [7] or detecting intentional blinks [8], have
been developed. The work reported in [9] shows that people with cerebral palsy can communicate
with the use of personalized gesture datasets while aided by an intelligent user interface. The visually
impaired, on the other hand, interact with computers using speech synthesizers and the so-called
Braille displays that allow them to type in and display the Braille alphabet. A more complex problem
for a blind person is handling devices while in motion. The basic mobility aid that the blind use is a
white cane, which engages one hand and hence, complicates the operation of an additional device, e.g.,
a navigation tool during a walk.

The control of computer applications is traditionally performed using a keyboard and/or a
computer mouse or a touch screen. However, solutions that enable people with serious physical
disabilities to work with computers are increasingly more common. In [10], an interface based on
the recognition of head movements and simultaneous lip movements designed for users with limb
disability was reported. It is, however, not only computer applications that can be controlled in a
non-contact manner. It was shown that the movement of an electric wheelchair of a disabled person
can be controlled by means of head movements [11–13] or eye gaze [14] and even EEG signals [15].

Recent advances in electromechanical MEMS (Micro Electro Mechanical Systems) technologies
have made it possible to develop miniature and cheap inertial sensors, and consequently use them in
human–computer interfaces [16]. In [17], in order to identify eight different types of physical activity,
a three-axis accelerometer placed on the wrist of the dominant hand was used. In [18], five acceleration
sensors were used to recognize the movement of hands and to distinguish gait from immobility.
The sensors were placed on the chest and on all the limbs. Similarly to our work, 3-axis compass, 3-axis
accelerometer and 3-axis gyroscope were mounted on the user’s head and used to identify six different
head gestures [19]. In [20], a system that can be utilized to monitor the body movements of people with
neurodegenerative diseases was reported. In this system, signals recorded from three sensors were
analyzed, one of them was mounted on the head and the other two on the shins. The fusion of signals
acquired from an accelerometer and surface EMG electrodes was used in [21] to assess Parkinson’s
disease-related symptoms. In [22], simultaneous processing of images and signals from inertial sensors
was employed to estimate six degree-of-freedom head movements. In the above-mentioned studies,
the first processing step in analyzing IMU signals is to parametrize the signals for predefined analysis
time windows [17,18]. The extracted parameters are then used to build appropriate classifiers that
recognize given types of movements.

In a recent work [23], novel methods for recognizing human physical activity that are based on the
so called symbolic representation algorithms were presented. Using three database sets, the authors
have shown that their approach performs best in terms of accuracy, processing time, and memory
consumption in comparison to other classic approaches that were based on supervised classification
techniques. In another very recent work [23], IMU were applied to measure the 3D range of motion of
the trunk and lower limb joints. The results of this study show that inertial sensors can be successfully
applied to investigate maladaptive movement strategies.

In our study, we propose a hands-free interface enabling blind persons to control the menu of a
navigation device by means of head movements. We also envision that such an interface can serve as a
communication aid for people with serious motor disabilities, e.g., for the paraplegic individuals.

The main contribution of our work, which has not been addressed in earlier studies [17–19,24],
is the comparison of the parametric and the time domain representations of IMU signals on which
different classifiers are trained to recognize four head movement patterns. Similarly to the work
reported in [25], in which IMU were used to recognize types of physical activities, we studied the
dependence of different lengths of time windows on the parametric representation of inertial signals
to recognize different types of head gestures. In our work, we show that time domain approaches
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to analysis of inertial signals can outperform parameter-based ones and are less computationally
demanding. The latter feature is particularly important for mobile implementations of the interface.
The ultimate motivation for our research is to develop user-friendly and efficient electronic travel aids
that will help the visually impaired retain orientation and mobility in unfamiliar environments [26,27].

The remainder of this paper is organized as follows. In Section 2, we describe the experimental
methods that we used for data recording and data pre-processing. We also shortly review the applied
data classifiers. In Section 3, we present the head gesture recognition results for the parametric and
time domain representations of IMU signals. Finally, in Section 4 we apprise the achieved results, show
the envisioned applications of our study, and point out limitations of the presented work.

2. Materials and Methods

In our proof of concept approach, we have applied a DUO MLX device (see Figure 1b)
equipped with a stereovision camera, a three-axis electronic gyroscope, three-axis acceleration sensor,
a thermometer, and a magnetometer [28]. The device is of small form factor: 52 × 25 × 13 mm and
weighs 12.5 g. The device is mounted on the user’s forehead (see Figure 1a). The study was conducted
with 65 persons. The participants were mainly second year university students, 44 of whom were
women. The trials were approved by the bioethics commission of the Medical University of Lodz
(No. RNN/261/16/KE). All the trial participants were informed about the purpose of the study, the
materials used and their role in the trial sessions. After fixing the DUO MLX device on their forehead,
the users were asked to perform rehearsal head movements and were instructed to proceed with
the movements just within a comfort zone of their head positions. During collection of the data, the
participants remained in a sitting position. Each participant was sitting straight in a chair and did not
change position during the experiment and performed only the given motions (yaw, pitch, roll, and
immobility). Each user had the DUO MLX device mounted rigidly on their forehead. The participant
did not touch the DUO MLX device or change its position on the forehead during the experiment.

  
(a) (b) 

Figure 1. (a) Placement of the inertial measurement unit on the user’s head; (b) DUO MLX Stereo
System equipped with inertial sensors with marked coordinate axes Ox, Oy, and Oz, and angular
velocities ωα, ωβ, and ωγ.

The aim of the study was to automatically classify three basic head gestures: roll (head movement
“sideways”), pitch (head movement “up-down”) and yaw (head movement “left-right”), and immobility
(head at rest). A single movement cycle lasted 2.5 s on average with 1.2 s standard deviation of the
movement period. The recordings of test and learning datasets from one individual took approx.
4 min each.

Sample plots of the signals recorded by the acceleration sensor and the gyroscope are shown in
Figure 2. The recorded accelerations ax, ay, and az along axes Ox, Oy, and Oz respectively are plotted in
Figure 2a and angular velocities ωα, ωβ, and ωγ (as shown in Figure 1b) recorded from the gyroscope
are plotted in Figure 2b. All the signals are recorded at a sampling rate of 100 Hz.
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(a) (b) 

Figure 2. Example signal waveforms recorded by: (a) acceleration sensors and (b) gyroscope sensors.

2.1. Signal Recordings and Pre-Processing

Signal recordings from 65 participants were grouped into the following datasets:

1. The learning dataset recorded from a randomly selected 53, i.e., approx. 80% of all the 65
trial participants. Signals that were used as the learning set were recorded as follows: 10 s
immobility—2.5 min of a specific motion type—10 s immobility, the type of gestures performed by test
participants were: yaw, roll, pitch, and immobility. The collection of the learning signals therefore
consisted of 53 × 4 = 212 recordings.

2. Two types of testing datasets that have not been used for training the classifiers:

• T_53_set that was recorded for 53 trial participants for whom the learning data were recorded,
• T_12_set that was recorded for the rest of the trial participants, i.e., 12 individuals who did

not take part in the recordings of the learning datasets,

further, for each of the two testing data sets there were two different testing scenarios applied:

• testing scenario T1 for which the dataset was recorded following the sequence of: 20 s of
immobility—40 s of yaw head movement—20 s of immobility—40 s of roll—20 s of immobility—40 s
of pitch—20 s of immobility; thus, two types of the testing datasets were recorded T1_53_set
and T1_12_set, respectively

• testing scenario T2 for which the datasets were recorded according to the following procedure:
head gesture sequences of roll, yaw and pitch gestures in random order for time periods
lasting from 5 to 20 s and no immobility time gaps between the gestures; thus, two other
types of the testing datasets were recorded: T2_53_set and T2_12_set respectively.

The signals recorded from the IMU were processed according to the two following procedures:

1. With signal parameterization (SP): for each of the six recorded IMU signals, i.e., three signals from the
accelerometer (ax, ay, az) and three signals from the gyroscope (ωα, ωβ, ωγ), the following features
were extracted: (1) average, (2) minimum, (3) maximum, (4) standard deviation, (5) kurtosis,
(6) correlation coefficients for pairs of signals from the accelerometer and pairs of signals from the
gyroscope, and (7) signal energy. Thus, the total number of parameters derived from the signals
was: 6 signals × 7 parameters = 42 parameters.

These parameters were calculated for different time window widths, i.e., T ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.8, 1.0, 2.0} given in seconds. The work focuses on the causal recognition mode of the gestures for
which the time windows are determined for current and past samples only. The consecutive windows
were shifted by a 0.1 s time step as shown in Figure 3.
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2. Time domain representation (TDR): current samples of signals recorded from the accelerometer
(ax, ay, az) and gyroscope (ωα, ωβ, ωγ) were used directly as six-element training vectors for
the classifiers.

Figure 3. An example of two consecutive time windows for which signal parameters were computed.

In order to eliminate user errors related to an excessively slow start of the selected type of
movement, too rapid cessation of motion or incorrect initial movement, the learning datasets comprised
90 s recordings approx. in the middle of the 150 s time recording span.

According to the described recording procedure of the learning datasets (collected from 53
individuals), the following datasets were built:

1. For the procedure with signal parametrization: 900 42-element vectors for each individual.
The calculations of these 900 vectors were made for each time window width T ∈ {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.8, 1.0, 2.0}, given in seconds, that were shifted with time steps of 0.1 s.

2. For the procedure based on the time domain: 9000 vectors for each individual, with six signal
samples representing a “time capture” of the given head motion.

Finally, the test datasets on which the performance of individual classifiers were evaluated were
correspondingly as follows:

1. For the SP procedure—set with 42-element vectors. Calculations for these testing vectors were
made for time windows of widths T ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 2.0} seconds, that were
shifted with time steps of 0.1 s.

2. For the TDR procedure—set of vectors each with six signal samples.

The datasets are available for download at [29].

2.2. The Classifiers

For the purpose of classification of the head gestures on the basis of the recorded IMU signals,
data classifiers generally recognized to be very efficient were applied [30]. In particular, various
architectures of decision trees and decision forests were used since they can provide an insight into the
data decision process, i.e., these classifiers can decompose the classification task into decision rules
of the input data features. The data classifiers that were applied were the following: (1) a decision
tree, (2) a decision tree with a minimum number of samples per leaf equal to 5, (3) a random forest
consisting of 10 decision trees, and (4) a random forest consisting of 10 decision trees, each of which
contained a minimum number of leaf samples equal to 5, (5) k-nearest neighbors method (k-NN) for
k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 19}, (6) Support Vector Machines (SVM) with a radial basis function kernel,
and lastly (7) the SVM with a third degree polynomial as the kernel function.

2.2.1. Decision Trees and Random Forest

Decision tree is a supervised non-parametric classifier that allows building decision rules by
multistage divisions of the dataset into disjoint classes [31].

Different algorithms can be used for building decision trees. In this work, we have employed
the CART (Classification and Regression Trees) algorithm and used the so-called Gini coefficient as a
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measure of the diversity of classes in the tree nodes [25]. Classification trees can be combined into
groups to form the so-called random forests. The final classification of the vector is performed by
voting, i.e., a vector is assigned to the class for which it receives the largest number of votes from
individual decision trees. Random forests are efficient classifiers for very large data sets [32,33].

2.2.2. The k-Nearest Neighbor classifier

The k-Nearest Neighbor Classifier (k-NN) is another non-parametric data classification technique.
This is an instance-based learning algorithm that works on a simple scheme in which data sample x is
assigned to a class for which there is a majority of data prototypes within the k nearest neighbors [34].
The k value should be selected in such a way as to retain the balance between overtraining and
insufficient fit. We have evaluated the performance of this classifier for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17,
19} neighbors. However, we present just the best classification results obtained for k = 7 for training
procedure SP, i.e., with IMU signal parametrization and for k = 19 obtained for the time domain
analysis. In all the tested k-NN classifiers, the Euclidean distance was used as the distance metric.

2.2.3. Support Vector Machines (SVM)

The SVM classifier is particularly suitable for classifying large dimensional datasets [35,36].
The basic optimization goal in this classifier is to maximize the margin, i.e., the between-class
separation region. The margin is defined as the distance between the decision boundary (separation
hyperspace) and the nearest learning samples, called the support vectors. The aim is to obtain decision
boundaries with the widest possible margins. In our implementation of the SVM classifier for the
multiclass problem, a scheme in which the one-vs-rest classification approach was adopted, we tested
the performance of these classifiers for regularization parameter values C ∈ {0.1, 1.0, 5.0, 10.0} for the
two types of kernels, a RBF kernel and a 3rd degree polynomial. The best classification results were
obtained for C = 1.0 for the parametrized signals and for C = 10.0 for time domain analysis. Thus,
we present the classification results for the regularization parameter values for which the corresponding
SVM classifiers performed best.

3. Classifier Training and Results

The classifiers were trained according to the procedures described in Section 2.1. The main aim
was to compare the performance of different classifiers for parametrized signals and raw signal samples
recorded from the inertial sensors.

The 10-fold cross validation method was used to evaluate the classifiers’ performance in the
head gesture classification task. The training sets (for both the SP and TDR training procedure) were
therefore randomly divided into 10 different subsets of equal cardinality. Each subset was sequentially
used as the validation set while the other nine subsets served as a training set for the classifiers.
Each classifier was cross validated on the same subsets, i.e., the division of the training and validation
sets was made first and then each classifier was trained on identical data subsets. Tables 1 and 2 report
the results of the 10-fold cross-validation for the SP and TDR training procedures, respectively.
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Table 1. Results of 10-fold cross-validation training—classification accuracy for the classifiers trained
on the parametrized data consisting of 42 parameters (training procedure SP).

No.
Decision

Tree

Cropped
Decision

Tree

Random
Forest

Cropped
Random

Forest

k-NN for
k = 7

SVM with
RBF Kernel

SVM with
3rd Degree
Polynomial

1. 97.63 97.84 98.57 98.52 95.40 97.82 98.14
2. 97.58 97.79 98.56 98.55 95.57 97.80 98.22
3. 97.50 97.74 98.64 98.58 95.51 97.86 98.22
4. 97.66 97.88 98.62 98.55 95.55 97.76 98.08
5. 97.55 97.87 98.71 98.60 95.52 97.68 98.17
6. 97.45 97.86 98.56 98.52 95.41 97.79 98.10
7. 97.49 97.81 98.57 98.57 95.50 97.77 98.03
8. 97.52 98.01 98.64 98.61 95.64 97.88 98.23
9. 97.62 97.86 98.65 98.55 95.49 97.84 98.17

10. 97.85 98.04 98.79 98.78 95.45 97.87 98.23
Mean ± Std 97.59 ± 0.11 97.87 ± 0.09 98.63 ± 0.07 98.58 ± 0.07 95.50 ± 0.07 97.81 ± 0.06 98.16 ± 0.07

Table 2. Results of 10-fold cross-validation training—classification accuracy for the classifiers trained
on the IMU signal samples (training procedure TDR).

No.
Decision

Tree

Cropped
Decision

Tree

Random
Forest

Cropped
Random

Forest

k-NN for
k = 19

SVM with
RBF Kernel

SVM with
3rd Degree
Polynomial

1. 97.45 97.59 98.17 98.05 98.19 94.27 92.58
2. 97.41 97.59 98.27 98.14 98.24 94.14 92.54
3. 97.48 97.57 98.26 98.13 98.21 94.31 92.59
4. 97.41 97.59 98.26 98.11 98.21 94.05 92.39
5. 97.41 97.52 98.18 98.06 98.20 94.25 92.53
6. 97.43 97.57 98.19 98.08 98.17 94.26 92.55
7. 97.45 97.60 98.27 98.10 98.19 94.28 92.53
8. 97.43 97.61 98.29 98.13 98.28 94.02 92.32
9. 97.42 97.63 98.23 98.11 98.22 94.14 92.41

10. 97.40 97.58 98.22 98.12 98.21 94.43 92.72
Mean ± Std 97.43 ± 0.02 97.59 ± 0.03 98.23 ± 0.04 98.11 ± 0.03 98.21 ± 0.03 94.22 ± 0.12 92.51 ± 0.11

For the classifiers trained on the parametrized signals (training procedure SP), the random forests
and the SVM with a third degree polynomial kernel excelled and achieved accuracies over 98%.
The poorest classification results were obtained for the k-NN classifier, but even this classifier achieved
accuracies exceeding 95%.

For the classifiers trained directly on signal samples (training procedure TDR), all classifiers but
the SVM achieved accuracies better than 97%. Although, the SVM classifier yielded results no worse
than 92% correct head gesture recognitions.

We have evaluated the performance of the classifiers and compared whether the accuracies they
yield are statistically different. Because we consider more than two classifiers and our data do not have a
normal distribution, the Friedman test was used for this purpose [37]. For both the training procedures,
i.e., the SP (with parametrization of IMU signals that generate 42 dimensional training vectors) and the
TDR (raw IMU signal samples that generate six dimensional training vectors), we have rejected the
null-hypothesis, i.e., we concluded that there are statistically significant differences (p < 0.05) between
the classifiers. We also compared the chosen seven classifiers (Tables 1 and 2) by conducting the
paired Wilcoxon signed rank test. For the SP training procedure for all classifiers we have also rejected
the null-hypothesis. In the case of the TDR training procedure, there were no significant differences
between the random forest and the k-NN for k = 19 (the null-hypothesis accepted). For other classifiers
for the TDR procedure we have rejected the null-hypothesis, i.e., the classifiers’ performances are
statistically equal.

3.1. Results for Datasets Consisting of the Parametrised IMU Signals

For the parametrized signals (the SP training procedure), the classifier performances were
evaluated for different time window widths T for which the statistical parameters of the signals were
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calculated. The results obtained for the combined test scenarios T1 and T2 are shown in Figure 4
for different time window sizes. Also, Figure 5 compares the results of head gesture classifications
obtained for two different testing datasets, i.e., the test data for trial participants whose data was
used for training the classifiers and the test data from trial participant whose data was not used for
training the classifiers. We can conclude that the results shown in Figure 5 show the user independent
performance of the system.

Figure 4. Accuracy of the classifiers for different widths of time window T for the test data.

Figure 5. Comparison of the classifiers’ accuracy obtained for the test data from participants who
trained classifiers on the T_53_set and the test data from individuals who did not record the training
data (T_12_set). Classifiers accuracy for the test data—causal system (vectors with 42 parameters).

Interestingly (as illustrated in Figure 4), the best results were obtained for the shortest time
window, i.e., T = 0.1 s window containing 10 signal samples. An increase in the width of the time
window negatively affected the classification accuracy. Note that for the test dataset, regardless of
the width of the time window, the best classifier was the SVM with a 3rd degree polynomial kernel
(accuracy better than 92%). The best classification accuracy for the k-NN classifier was obtained for
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k = 7 and was slightly worse than the one achieved by the random forest classifier (both with an
accuracy above 91%).

For the shortest time windows, the accuracies of individual classifiers tend to differ, whereas for
larger time windows, the performance of all the classifiers converges to similar albeit poorer values.
Figure 5 illustrates in more detail how the classifiers performed for the shortest time window (T = 0.1 s).

3.2. Results for Datasets Taken Directly from IMU Signal Samples

Subsequently, we evaluated the classifier performances for the testing datasets that were drawn
directly from the samples of IMU signals. The achieved classifiers’ accuracies for the test datasets are
shown in Figure 6.

Figure 6. Comparison of the classifiers’ accuracy obtained for the test data from participants who
trained the classifiers (T_53_set) and the test data from individuals who did not record the training
data (T_12_set). The test data collected directly from the accelerometer and gyroscope (vectors with
6 parameters).

Thus, we can note that for the classifiers trained on the IMU signal samples, the best accuracies
exceeding 95% were achieved for the SVM classifiers. Also, an important observation is that their
performance did not depend on the test data type (T_53_set or T_12_set).

3.3. Person Independent Recognition of Head Gestures

Here we report on the performance of the classifiers for the test data recorded for the 12 trial
participants for whom the recorded IMU signals were not used for training the classifiers. In Figures 5
and 6, we compare the recognition rates of head gestures for the new 12 users and the classification
results obtained for the test dataset recorded for 53 trial participants. Figure 5 contains the results for
the shortest time window T = 0.1 s for which 42 statistical parameters were computed and used for
training the classifiers, whereas Figure 6 shows the results for the classifiers trained on IMU signal
samples, i.e., on six-element vectors.

For the person-independent test datasets, i.e., for the 12 participants who did not take part in
training the classifiers, the best head movement recognition results for vectors with 42 parameters
were obtained for the SVM and random forests. For all of these classifiers, about 90% accuracy or
higher was achieved (Figure 5). Note also that for the person independent test datasets, the results
obtained were inferior to those for the T_53_set test data (i.e., person dependent dataset) except for the
SVM classifiers which performed equally on the two test datasets (for the TDR training procedure).
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On the other hand, for the classifiers trained directly on the IMU signal samples, head gesture
recognition accuracy exceeded 90% for all classifiers, except the decision tree classifier (see Figure 6).
Interestingly, the accuracy for all classifiers except SVM was better for T_12_set, however, the SVM
performed best for both T_53_set and T_12_set test datasets.

3.4. Head Gesture Recognition Rates for T1 and T2 Testing Scenarios

We also verified how the classifiers’ accuracy depends on the type of testing scenario as defined
in Section 2.1. For the causal system, the best results were obtained for test scenario T1 (see Figure 7).
The accuracy of all classifiers exceeded 90%. The results obtained for test scenario T2 were distinctly
inferior. For this testing scenario, the accuracy of the classifiers was below 90%. Again, the best
classifiers were the SVM and the random forests.

Figure 7. Comparison of the classifiers’ accuracy obtained for test scenarios T1 and T2 for the test data
recorded for individuals who did not record the training data (T_12_set) and the SP training procedure
(classifiers trained on the parameters of the IMU signals).

For the signal samples recorded directly from the IMU (vectors with six parameters), almost all
classifiers’ accuracies were above 90%. As is evident in Figure 8, except for the SVM, the best results
were obtained for test T2. Note that for the SVM classifier, the recognition accuracy for both tests was
almost identical and exceeded 95%.

Figure 8. Comparison of the classifiers’ accuracy obtained for test scenarios T1 and T2, i.e., for the test
data recorder for individuals who did not record the training data (T_12_set). Classifiers accuracy for
the test data collected directly from the accelerometer and gyroscope (vectors with six parameters).
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We have also verified which head gestures were most often confused with one another for the
classifiers which yielded the best results, i.e., for the SVM classifier with a 3rd degree polynomial and
regularization parameter C = 1.0 for the SP training procedure and for the SVM with an RBF kernel and
C = 10.0 for the TDR training procedure. The results are presented as confusion matrices in Tables 1
and 2. These tables show the results obtained for the 12 trial participants who did not take part in
training the classifiers.

As shown in Table 3, the highest error rate was reported for pitch (5.5% of the gestures recognised
as immobility). Further, considerably high error rates were noted for roll (4.6% of the gestures
recognised as immobility). The best recognition rates were obtained for head immobility (92.6%).
Interestingly, also for the immobility we have obtained the highest false positive recognitions.

Table 3. The confusion matrix showing inter-gesture recognition errors for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on parametrised IMU signals).

Recognised:
Pitch

Recognised:
Roll

Recognised:
Yaw

Recognised:
Immobility

True: Pitch 92.0% 1.1% 1.4% 5.5% 100%
True: Roll 1.1% 91.7% 2.6% 4.6% 100%
True: Yaw 3.5% 1.8% 91.3% 3.4% 100%

True: Immobility 1.2% 2.8% 3.4% 92.6% 100%

The sensitivity, specificity and F1 scores of the head gesture recognition rates are presented in
Table 4. Note that the F1 score is defined as a harmonic average of the sensitivity and positive predictive
value. It is a good measure of overall classifier performance.

Table 4. Statistical measures showing detection results of head gestures for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on parametrized IMU signals).

Pitch Roll Yaw Immobility

Sensitivity 92% 92% 91% 93%
Specificity 98% 98% 97% 96%
F1-score 92% 93% 92% 92%

Note that F1-score, sensitivity and specificity rates are similar for different gestures, however,
the specificity rates assume the highest values.

For the SVM classifier trained on IMU signal samples (Table 5), the distribution of errors was
different. For this case, the immobility was frequently and falsely recognized as yaw or as pitch (4.3%
and 3.9% error rates respectively).

Table 5. The confusion matrix showing inter-gesture recognition errors for the SVM classifier with an
RBF kernel and C = 10.0 (the classifier trained on IMU signal samples).

Recognized:
Pitch

Recognized:
Roll

Recognized:
Yaw

Recognized:
Immobility

True: Pitch 95.3% 0.3% 0.5% 3.9% 100%
True: Roll 0.3% 96.1% 1.8% 1.8% 100%
True: Yaw 0.6% 1.3% 93.8% 4.3% 100%

True: Immobility 0.5% 0.2% 0.5% 98.8% 100%

Note here that both the sensitivity and specificity rates in Table 6 (classifiers trained on raw IMU
signals) outperform the corresponding rates in Table 4 (classifiers trained on parametrized IMU signals).
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Table 6. Statistical measures showing detection results of head gestures for the SVM classifier with a
3rd degree polynomial and C = 1.0 (the classifier trained on raw IMU signals).

Pitch Roll Yaw Immobility

Sensitivity 95% 96% 94% 99%
Specificity 99% 99% 99% 97%
F1-score 97% 97% 95% 96%

Overall, however, the gesture recognition rates were better for the SVM classifier trained on
IMU signal samples than the classifier trained on the parametrized IMU signals (compare the matrix
diagonals in Tables 3 and 5, and also sensitivities, specificities and F1-scores in Tables 4 and 6).

The training times of the classifiers were also evaluated. The computations were performed on an
Intel Core i5-7500, 16 GB RAM, Windows 10 64-bit PC. Scripts were written in Python in the Enthought
Canopy environment using the Sklearn module. The obtained calculation times required for training
the classifiers are presented in Table 7.

Table 7. Training times of the classifiers.

No. Classifier Parametrized IMU Signals Raw IMU Signals

1. Decision tree 12.6 s 18 s

2. Decision tree with a minimum of 5 samples
in the leaf 11.9 s 17 s

3. Random forest 9.2 s 52 s

4. Random forest with a minimum of 5
samples in the leaf 8.8 s 50 s

5. k-NN for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} 0.6 s 2 s

6. SVM with an RBF kernel for
C ∈ {0.1, 1, 5, 10} 5 min, 17 s from 2 h, 27 min to 8 h,

42 min *

7. SVM with a 3rd degree polynomial kernel
for C ∈ {0.1, 1, 5, 10} 2 min, 12 s from 2 h, 46 min to 9 h,

57 min *

* training times depend on the values of the regularization parameter C.

Depending on the types of datasets (42-element or 6-element vectors), a different size of the
training datasets was used, hence the training times of the classifiers varied significantly. For the
42-element training vectors, the longest training time did not exceed 6 min. The training procedure was
the fastest for the k-NN classifier. On the other hand, it took several minutes to train the SVM classifier.

For the 6-element training vectors (and larger training datasets), the shortest training times were
obtained for the k-NN classifiers. Training of the decision trees (and random forests) took tens of
seconds while the longest training times were required for the SVM classifiers (a few hours).

Table 8 shows the time necessary to recognize a head gesture from a single vector by the
trained classifiers.

Table 8. Recognition times of a gesture for a single input data pattern.

No. Classifier
Recognition of

Parametrized Signals
Recognition of Raw

IMU Signals

1. Decision tree ~1 ms ~1 ms

2. Decision tree with a minimum of 5 samples
in the leaf ~1 ms ~1 ms

3. Random forest ~10 ms ~6 ms

4. Random forest with a minimum of 5
samples in the leaf ~6 ms ~7 ms

5. k-NN for k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} ~5 ms ~2 ms

6. SVM with an RBF kernel for
C ∈ {0.1, 1, 5, 10} ~10 ms ~5–11 ms

7. SVM with a 3rd degree polynomial kernel
for C ∈ {0.1, 1, 5, 10} ~10 ms ~4–10 ms
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The computation times required for processing the data by the trained classifiers (for a PC with
Intel Core i5-7500 processor) varies from 1 ms for the decision tree classifier to 11 ms for the SVM
classifier with an RBF kernel. It should be noted, that for the parametrized approach, we must first
compute the statistical parameters; for the shortest time window consisting of 10 signal samples, we
need to wait for 0.1 s before we feed these parameters to the classifiers.

4. Discussion

Our primary motivation for the study was to build a hands-free interface for the visually impaired
that would facilitate controlling an electronic travel aid built in our project dedicated to help the visually
disabled in independent mobility and travel [26]. The main role of the DUO MLX device and the image
processing software is to recover a 3D structure of the environment from the captured stereovision
images. The sequences of depth images are then sonified and acoustically presented to the visually
impaired user. In [38], we have shown that such a non-visual presentation of the environment can help
the blind to detect obstacles and find safe walking paths in the surroundings. One of the complications
we encountered in the conducted trials is handling of the device by the blind. The use of an additional
remote control to manipulate the interface proved to be inconvenient and occupied the other hand of
the user who carried a white cane. An example scenario of how the interface might be used is the
following. The navigation system generates a series of audio-haptic signals to indicate obstacles or
inform about points of interest. Such a system features numerous settings like loudness, sensitivity
range, sonification, and haptic activation schemes. The blind user, while standing still, by a series
of head gestures, can move within the menu of the system and select the appropriate setting for the
encountered environment or a navigation task at hand. System settings are confirmed by synthetized
voice messages. It is important to note that a blind person carries a white cane which occupies one
hand and the proposed solution does not need to engage the other hand to control the device. Also,
after consulting the visually impaired, we plan another application of the interface. The device can
play the role of a remote control that can aid the visually impaired in the activities of daily living, e.g.,
it can be used to control radio/TV volume without a need to seek for the remote of such devices.

Compared with the study reported in [24], we obtained a comparable F1-score of 92% for the
parametrized IMU signals. It should be noted, however, that in [24] and in [17], individual gestures
were not distinguished, but rather whole body activities, e.g., walking, running, cycling, hence the
need for longer time data analysis windows: 5 s, 3 s and 1 s in [24] and 5 s and 12 s in [17]. In our case,
we recognize delicate head movements, thereby the shorter the time window, the better the motion
recognition. In [17,18], the IMU sensors were attached to the wrist, in [24] two to five sensors were
used and they were mounted in different parts of the body, while in [19], IMU was mounted on the
head like in our work. The advantage of our study is that 65 people participated in the experiments
and our database is more diverse than e.g., in [19] where only five people took part in the trials. None
of the works [17–19,24] compared the recognition results of body movements for data derived from
the parametrized signals and time domain samples of IMU signals. We also tested the recognition
rates from a large pool of different data classifiers, i.e., the decision trees and forests (and their cropped
versions), k-NN, and SVMs (with an RBF kernel and a 3rd degree polynomial kernel). Finally, we show
that better classification results can be obtained if the classifiers are trained on raw IMU signals rather
than on the parametrized signals.

We are aware of the limitations of our study. The participants of the trials were mainly young
people recruited from the students. Thus, an open question is on the usability of the system for elder
people. Secondly, the trial participants remained seated during data collection. This limitation, for
some system applications, should be released. Also, we should underline that our choice of IMU
signals parameters, e.g., statistical parameters, was arbitrary and one might hypothesize that a different
set of parameters might be composed that would even further improve the recognition performance of
the head gestures.
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Finally, the proposed system would need to be tested with target groups recruited from persons
with physical or sensory disabilities.

5. Conclusions

In the presented study, we have compared two approaches to the classification of head gestures,
i.e., training the classifiers on the parametrized signals, and training on direct signal samples recorded
from the IMU.

The obtained results of head gestures recognition allow to formulate the following conclusions:

1. Head movements (roll, yaw, and pitch) can be efficiently recognized on the basis of signal recordings
from an IMU that is positioned on the user’s forehead.

2. The data classifiers trained on IMU signal samples outperformed the classifiers that were trained
on a set of statistical parameters derived from the IMU signals. These performance differences
were confirmed by running statistical tests. The Friedman test revealed that the classifiers yield
statistically different results (p < 0.05). Also, the paired Wilcoxon signed-rank test has confirmed
statistically valid differences for most of the classifiers (no significant differences between the
random forest and the k-NN classifier for k = 19 was noted only). Our explanation about high
head gesture recognition performance from raw IMU signals is that the six signal channels carry
rich enough information for the classifiers to confidently recognize the head gestures. Also, we
conclude that the inherent measurement noise (that occurs randomly) is averaged out during the
training procedures of the classifiers.

3. The SVM classifier outperformed other classifiers in recognizing the head gestures, and if trained
on the IMU signal samples, it achieved a recognition accuracy above 95%.

4. The recognition rates of the head gestures for the person-independent test dataset, i.e., the data
taken from 12 persons whose recordings were not used in training the classifiers are comparable
to the recognition rates obtained for the data recorded from the individuals who have also
recorded the training data (see Figures 5 and 6). Interestingly, if the classifiers were trained on
raw IMU signal samples, their recognition performance was generally better for data recorded
from participants who did not train the classifiers.

5. The proposed method is suitable for on-line implementations. In Table 8, we show that the
computation times required for detection of a gesture (on a PC with Intel Core i5 processor) by
pre-trained classifiers do not exceed 11 ms.

We hypothesize that the presented head-gesture-controlled interface can find numerous
applications. Firstly, it can offer an alternative communication channel for people with serious
physical disabilities, e.g., individuals suffering from serious spinal injuries or stroke that result in
tetraplegia. We made a new public benchmark dataset consisting of the training data (from 53
participants) and testing data (from 65 participants). The signal database with description is available
for download at [29].

In further studies, on the basis of high head-gesture recognition performance, one could even
further improve the recognition accuracy by accumulating classifier recognitions with each arriving
IMU signal sample (i.e., with every 100 ms time interval) and achieve close to 100% recognition rates
for the entire gesture. Our motivation is to further test the interface in a mobile travel aid system [38]
and as a supporting interface in activities of daily living for the visually impaired, e.g., as a remote
control system for home appliances. We will also consider the usefulness of such an interface as a
potential rehabilitation aid for individuals with neck stiffness.
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Abstract: Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an
imaging technique which helps in visualizing and quantifying perfusion—one of the most important
indicators of an organ’s state. This paper focuses on perfusion and filtration in the kidney, whose
performance directly influences versatile functions of the body. In clinical practice, kidney function is
assessed by measuring glomerular filtration rate (GFR). Estimating GFR based on DCE-MRI data
requires the application of an organ-specific pharmacokinetic (PK) model. However, determination
of the model parameters, and thus the characterization of GFR, is sensitive to determination of the
arterial input function (AIF) and the initial choice of parameter values. Methods: This paper proposes
a multi-layer perceptron network for PK model parameter determination, in order to overcome
the limitations of the traditional model’s optimization techniques based on non-linear least-squares
curve-fitting. As a reference method, we applied the trust-region reflective algorithm to numerically
optimize the model. The effectiveness of the proposed approach was tested for 20 data sets, collected
for 10 healthy volunteers whose image-derived GFR scores were compared with ground-truth blood
test values. Results: The achieved mean difference between the image-derived and ground-truth
GFR values was 2.35 mL/min/1.73 m2, which is comparable to the result obtained for the reference
estimation method (−5.80 mL/min/1.73 m2). Conclusions: Neural networks are a feasible alternative
to the least-squares curve-fitting algorithm, ensuring agreement with ground-truth measurements at
a comparable level. The advantages of using a neural network are twofold. Firstly, it can estimate a
GFR value without the need to determine the AIF for each individual patient. Secondly, a reliable
estimate can be obtained, without the need to manually set up either the initial parameter values or
the constraints thereof.

Keywords: dynamic contrast-enhanced MRI; kidney perfusion; glomerular filtration rate;
pharmacokinetic modeling; multi-layer perceptron; parameter estimation

1. Introduction

Monitoring the state of kidney functioning has become an increasingly important task in modern
medical diagnostics. Failures in renal operation may impair physiological homeostasis, leading to the
improper management of electrolytes, acid-base balance perturbation, or the deregulation of arterial
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blood pressure. Kidneys are responsible for blood filtration, and the removal of water-soluble waste
products of metabolism and surplus glucose and other organic substances. Kidney diseases include,
among others, acute kidney injury [1], chronic kidney disease (CKD) [2] and various cancers (e.g., renal
cell carcinoma). Treatment depends on the pathological condition, and may require life-long dialysis,
or kidney removal or transplantation. In any case, precise knowledge about kidney performance is
needed for the proper diagnosis, treatment and follow-up prognosis. Especially in the case of CKD,
which may be caused by longstanding hypertension or diabetes mellitus, it is important to continuously
and precisely monitor renal function, since early detection of the disease allows the prevention of its
development to the end stage.

Tissue perfusion is a viable means of preserving cell nutrition, humoral communication and the
elimination of waste products over a lifetime [3]. Thus information about local blood flow and the blood
filtration taking part in the glomeruli plays a fundamental role in the diagnosis and follow-up of the
aforementioned diseases. Routinely, renal diagnosis is accomplished through the creatinine clearance
procedure, or by using the more specific iohexol clearance test. These tests lead to determination of
the glomerular filtration rate (GFR)—the main indicator of kidney performance. However, neither
procedure enables differentiation between left and right kidney function [4].

Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) is an alternative technique
available for the assessment of kidney functioning [5–7]. The procedure requires the administration of
a contrast agent (CA) intravenously, given as a bolus injection, whose passage through the abdominal
arterial system and the capillary bed and tubular systems of the kidneys is measured. In contrast to
conventional methods, DCE-MRI enables the estimation of GFR for a single kidney, ultimately at the
voxel-level, and simultaneously it provides anatomical characteristics of the renal parenchyma.

The estimation of renal filtration based on the DCE-MR images involves the pharmacokinetic
(PK) modeling of the contrast agent, arriving from the abdominal aorta into a kidney artery, the renal
parenchyma and the afferent arterioles of the renal corpuscles, and then passing from the glomerular
capillaries through the filtration barrier into the Bowman’s space and the tubular system, ending up
in the renal pelvis, the ureter and then the bladder as a constituent of the urine. There have been
numerous PK models proposed in the literature [8], which vary in (1) the number of tissue compartments,
(2) the level of incorporating compartment-specific impulse residue functions, (3) the inclusion of the
effect of tracer agent leakage from capillaries in cancerous cells, and (4) the way in which the delay
and the broadening of peak CA concentration in the renal parenchyma, relative to the abdominal
aorta, is modeled. In the case of the normal-state kidney, all recent models exploit a two-compartment
approach [9]. In this setting, at any point in time, the contrast agent concentration in the tissue is the sum
of concentrations in the intravascular (IV) and extracellular extravascular (EEV) compartments. In the
present study, we used the two-compartment filtration model (2CFM) proposed by Tofts et al. [10].

One approach to finding the PK model’s parameters (defined below) is to fit the model-based signal
intensity time course to the image data using a non-linear least-squares (NLLS) method. Depending
on the model, various explicit parameters are used to characterize tracer agent kinetics. The so-called
primary or independent parameters include plasma volume, plasma flow, interstitial volume and
permeability product [9]. Based on these attributes, one may derive dependent parameters, i.e.,
the extraction fraction and the volume transfer constant. The latter, denoted as Ktrans, characterizes
regional renal filtration, as it measures the ratio of plasma flow that is transferred from the glomerular
capillary bed into the Bowman´s space. Ktrans multiplied by the kidney volume leads to an estimate of
the glomerular filtration rate, and is therefore a central descriptor in quantifying kidney function.

In this study, we propose to use a multi-layer perceptron (MLP) network for PK model parameter
estimation, instead of the non-linear least-squares curve-fitting method. The rationale behind this
concept arises from the fact that the results of the iterative methods may be located in a local and—in
general—suboptimal solution. Thus, the outcome depends largely on the initial choice of parameter
values. Moreover, one usually has to establish constraints on the expected parameter values, so that
the result falls into a physiologically feasible range. Bounds that are too narrow, however, may prevent
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the fitting algorithm from finding an optimum. Contrary to NLLS, MLP does not require that one
provides the initial parameter values; moreover, it ensures the optimal solution when properly trained.

Although MLP networks could be regarded as a legacy method, they are still in use, and prove
efficient in complex non-linear regression problems [11,12]. Moreover, according to the universal
approximation theorem, an artificial neural network with at least one hidden layer of nonpolynomial
activation (such as sigmoid or rectified linear) can model any measurable function that maps one
finite-dimensional space to another, provided the hidden layers contain enough units [13]. Therefore,
MLP seems to be particularly usefully in its application to the specific problem of PK model parameter
estimation in renal DCE-MRI examinations.

Also, the reliability of the fitted PK model parameters is conditioned by—among other factors—the
determination of the arterial input function (AIF), i.e., the tracer concentration’s time course in the
feeding artery. The standard way of annotating AIF consists of estimating it for each patient. However,
other approaches are accepted if patient-specific AIF measurements are not possible. Such problems
can arise due to data acquisition constraints or the lack of a suitable artery within the imaging field of
view. In the alternative strategy, one either utilizes a population-based mean AIF [14] (calculated for a
cohort of studies, where it is feasible to do so) or defines its parameterized functional form [15]. In this
study, we implicitly follow the population-based approach. The neural network is trained using a pool
of AIFs automatically derived for a subset of available DCE images. Then, the GFR for an individual
test case is estimated without the need to determine the case-specific AIF.

To sum up, the main contribution of this paper is the establishment of the architecture of an MLP
network for estimating parameters of the 2CFM, based solely on image intensity time courses in the
kidney region. Additionally, a side-contribution is the introduction of the algorithm for automatic
determination of the AIF in DCE-MRI examinations. The latter achievement was needed in order to
construct the data set for MLP training, but the algorithm can be equally used in standard approaches
to PK modeling.

2. Methods and Materials

2.1. Subjects

A total of 20 DCE-MRI examinations were available for experiments [16]. The data sets were
collected from 10 healthy volunteers. Each subject was imaged twice, seven days apart (further, these
examinations will be referred to as Session 1 and 2). The acquisition sequence used the standard 3D
fast low-angle shot (FLASH) spoiled gradient recalled echo technique with the following parameters:
TR = 2.36 ms, TE = 0.8 ms, FA = 20◦, in-plane resolution = 2.2 × 2.2 mm2, slice thickness = 3 mm,
acquisition matrix = 192 × 192, number of slices = 30. Prior to image acquisition, patients were
administered 0.025 mmol/kg of GdDOTA at 3 mL/s flow rate. The contrast agent was injected
intravenously. Then, 74 volumetric scans were gathered in 2.3 s time intervals.

Every image series was registered in the time domain using the b-splines method, as implemented
in the Insight Toolkit (ITK) library [17]. Specifically, we used Slicer 3D software to accomplish the
task. For every study, the same reference frame was used as a fixed volume that every other (moving)
volume was matched to. B-splines registration was performed fully automatically, i.e., no fiducial
points were marked over tissues of interest. Furthermore, the procedure was launched in a multi-stage
configuration. In each stage, various settings of grid size and subsampling rates were used. For a
detailed interpretation of these parameters, the reader is referred to the ITK documentation. In short,
they allow the registration of images at different scales—starting from coarse matching and then
refining the outcome.

A common practice in DCE series analysis is to interpolate the measured signal so as to achieve a
higher temporal resolution and capture more precisely the critical phases of the perfusion process,
such as, e.g., bolus arrival time or the peak of the signal enhancement [10]. As such, we applied cubic
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spline interpolation to the observed intensity time courses, and then resampled the interpolated signal
curves at 0.4 milliseconds intervals.

As stated in the introduction, analysis of the DCE images leads to estimation of the GFR. Thus,
in order to validate the obtained estimates against ground-truth values, volunteers underwent iohexol
clearance tests. The measurement was carried out by administrating a dose of 5 mL of iohexol
(300 mg I/mL; Omnipaque 300, GE Healthcare), and then acquiring a venous blood sample after 4 h.

No specific diet was imposed on the participating subjects, but they were asked to abstain
from alcohol and high-protein meals, avoid exhausting physical exertion, be normally hydrated at
least 2 days before examination, and have no caffeine on the examination day. Apart from these
restrictions, participants were instructed to retain their ordinary habits concerning the type and amount
of consumed food so as to assure stable examination conditions. All subjects gave their informed
consent for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the Regional Committees for
Medical Research Ethics Western Norway (REC West 2012/1869).

2.2. Two-Compartment Filtration Model of Kidney Perfusion

In the PK model considered in this study [10], it is assumed that renal tissue is composed
of two compartments—an intravascular (IV) one and an extracellular extravascular (EEV) one
(Figure 1). The model can be applied either to the whole kidney parenchyma or the kidney cortex only.
The assumption which could be violated here is that CA does not flow out from the tubular system
within the fitting period.

Figure 1. Schematic illustration of the two-compartment filtration model.

The contrast agent’s concentration in the renal tissue Ctissue(t) is governed by the equation

Ctissue(t) = Ktrans
∫ t

0
Ckid

p (τ) + vpCkid
p (t), (1)

where Cart
p denotes the arterial input function, vp—plasma volume fraction, and Ckid

p —CA concentration
in the plasma, given by the convolution

Ckid
p = Cart

p ⊗ g(t) =

∫ t

0
Cart

p (t− τ)g(τ)dτ. (2)

The first term in (1) represents the EEV compartment, whereas Equation (2) models the delay
and dispersion of the arterial input upon its arrival to the IV compartment by using the concept of
the vascular impulse response function (VIRF), denoted as g(t). In our study we used the delayed
exponential VIRF, defined as
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g(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t < Δ
1

Tg
e
− t−Δ

Tg t ≥ Δ
, (3)

with ∫ ∞
0

g(t)dt = 1. (4)

The variables Tg—the dispersion time constant—and Δ—the delay interval—together with the
volume fraction vp and transfer constant Ktrans form the complete set of the Tofts model’s parameters.

2.3. Arterial Input Function

Although in the proposed approach, the trained neural network enables the determination of GFR
without annotation of a patient-specific arterial input function, information about the time course of
the contrast agent’s concentration in a tissue-feeding artery is required at the training stage. As further
described, we use a subset of image-derived AIFs to construct a training data set. Therefore, in this
section, we present our custom method for automatic AIF determination.

Most frequently, AIF is determined based on signal averaged over a manually delineated region
of interest near to the perfused organ [18,19]. Specifically, in the case of renography it is recommended
to locate the AIF region-of-interest (ROI) near the place where the aorta bifurcates into common iliac
arteries. This location is in relative proximity to the kidney, and is simultaneously sufficiently far
from the upper aorta section, where the signal coming from the blood that enters the imaging slab
at high velocity is high, because of the inflow artifact and not because of the contrast agent [19].
Moreover, Cutajar et al. in [18] confirmed the significant dependence of renal perfusion and the
filtration coefficients on the size of the chosen AIF ROI. In [20], AIF was determined from voxels
chosen semi-automatically on the maximum signal-enhancement maps as the brightest locations in the
abdominal aorta, directly below the inlets of the renal arteries. Note that the manual or semi-automatic
approaches suffer from poor reproducibility and subjectivism, and they can be time-consuming and
can require the availability of well-trained staff. In addition, it may be necessary in such cases to obtain
patient-specific hemodynamic parameters in order to adjust the DCE-MRI protocol to the arterial pulse
wave, and thus reduce the inflow artifact. Therefore, there were several attempts made to automate
determination of the AIF. A common approach employs clustering techniques [21]. On the other hand,
in [22], the authors used Kendall’s coefficient of concordance. These attempts, however, were either
applied in preclinical studies, or to different organs such as the head or neck, but not to the kidney.

We postulate a fully automatic procedure for determining a patient-specific AIF based on the
clustering of abdominal aorta voxels’ time-series. Our approach consists of three stages, as illustrated
in Figure 2. The algorithm starts with delineation of the abdominal aorta region. This task, further
decomposed into four steps, is accomplished through the vessel segmentation of one time frame of the
DCE-MR image series. The appropriate time frame is selected for maximum signal enhancement in the
bottom-central region of the image, near the aorta’s bifurcation into common iliac arteries. The peak
intensity value in this region corresponds to the time point when the CA fills the whole aorta lumen,
thus ensuring the highest contrast between the background tissue and the aorta at its entire length.

Next, the image is blurred by the low-pass Gaussian filter (σ = 3 voxels) to suppress fine
structures that could be misinterpreted as vessels. Such a smoothed image is then submitted to
the vessel enhancement routine. In this step, we computed a multi-scale vesselness function in the
form proposed by Sato [23], using 5 scales of radius standard deviation ranging from 0.5 to 2.5 mm.
As a result, the filtered image contains only the elongated bright structures. Apart from the aorta, it may
contain smaller vessels, like renal arteries and some other elongated structures. In order to remove
them, the flood fill operation is executed, with the lower threshold set to an empirically found value
equal to 12.5% of the maximum image intensity. The upper bound is set to maximum, as we found
the aorta to be the brightest structure visible in the time frames selected for segmentation. Similarly,
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the seed point of the flood fill operation was determined as the brightest point in the central part of the
image along the coronal direction.

Figure 2. Steps of automatic arterial input function (AIF) determination algorithm.

In the second stage, abdominal aorta voxels are grouped into clusters using their signal intensity
time courses as the feature vectors. For this purpose, we employed a k-means clustering algorithm
with k = 5. We found this value to be a reasonable tradeoff between the need to reflect apparent
diversity in the aorta signal dynamics and the need to keep the cluster size sufficiently large, so that
each one represents a significant portion of aorta voxels. As an effect of clustering, points whose
temporal signal characteristics are similar are joined. Eventually, we select one of the clusters as the
AIF ROI. The selection is based on the minimum mean signal value calculated in the pre-bolus phase.
We assume that the best AIF candidate region has the lowest signal in this initial phase of bolus passage,
as it is free from the inflow-enhancement artifact.

2.4. PK Model Fitting

There are several optimizers utilized in the NLLS curve-fitting problems. Downhill Simplex,
Levenberg–Marquardt or non-linear conjugate gradients belong to the most frequently cited
algorithms [24]. In the DCE-MRI context, a popular solver is based on the gradient expansion
method implemented in the IDL Software [7]. Often, in order to ensure that the resulting parameter set
falls into a range of reasonable physiological values, it is also necessary to restrain the optimization
procedure to a specific solution subspace. In such a case, the Trust Region Reflective technique
can be considered as the algorithm of choice as it enables optimization with constraints. All the
above-mentioned methods are iterative, and require initiation with a starting point representing a
feasible solution. As such, there is a risk of getting stuck in a local minimum of the objective function,
usually defined as the mean squared error of the model residuals.

Therefore, we propose to solve the curve-fitting problem using an artificial neural network (ANN);
specifically, a fully-connected multi-layer perceptron structure. ANNs have been successfully employed
in a variety of optimization scenarios, including the fitting of complex, multi-parametric relationships
to the observed noisy data [25]. The neural network training process is configured to explore a wide
range of feasible parameter values, potentially covering the whole solution space. For every parameter
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candidate set, there is a corresponding CA concentration time course generated based on the PK model
equation. Thus, the network incorporates a priori knowledge about the underlying mechanism of
signal generation. Then, the network’s response to an observed, patient-specific CA time-course is
estimated in the generalized context of tracer kinetics, making the fitting process more robust to noise,
measurement errors and local minima.

The first step in the design of an MLP network is the choice of the number of hidden layers.
As formulated by the already recalled universal approximation theorem, one sufficiently large hidden
layer should enable the accurate approximation of the modeled function. In cases of complex problems,
however, two layers with lower numbers of units may be easier to train, and could better acquire a
general pattern that links input data vectors with estimated function parameters. We have observed
such behavior in the current study. One-hidden-layer structures turned out to be more prone to
overfitting, and their training process was less liable to converge. Therefore, in the rest of the paper
we concentrate on the description of the three-layer architecture, i.e., consisting of two hidden layers
and one output layer. However, in the Results section we provide example outcomes of training
two-layer structures to support the above observations. On the other hand, increasing the network
depth to three hidden layers did not improve training efficacy, while making the task of optimizing the
network architecture more complicated. Hence, the results of these computations are omitted in the
experiments description.

The overall concept of a three-layer perceptron network operating as an estimator of the Tofts
model parameters is shown in Figure 3. The network design is represented by weight vectors
w = [w1, w2], and v for two hidden layers and the output layer neurons respectively. The symbols
f (·) and h(·) denote the activation functions of perceptrons in a given layer. In our implementation
we used the same activation for both hidden layers, which was the rectified linear unit function, i.e.,
h(x) =max(x, 0). For the output layer we used linear activation. The detailed structure of implemented
MLP is presented in the Results section.

In principle, the network inputs accept a vector Ctissue(t) of CA concentrations in the subsequent
time frames of a given DCE series. Transformation from the image signal intensity S(t) to concentration
Ctissue(t) is given in the Appendix A. In the following, the time variable t will be skipped where possible,
for the sake of clarity.

There are two modes of network operation. In the recall mode, a trained network recognizes the
pattern in the observed data and predicts the possible values of the PK model’s parameters. Formally,
the network realizes the transformation θ̂ = f (v, h(w, Ctissue)), which approximates the unknown
mapping θ̂ = F (Ctissue) from the observation space to the parameter space. It is assumed that
this mapping exists and is unique. In the training mode, the network is fed by a large and versatile
collection of input vectors, and simultaneously it is presented with an expected parameter set θ for
each individual input example. The difference between these true parameter values and the output
drives the process of network weights adjustment. Specifically, we applied the mean squared error
(MSE) metric as the network loss function. Apart from MSE, during the network weights adjustment,
the mean absolute percentage error (MAPE) was also calculated for both the training and validation
samples. The definitions of the MSE and MAPE metrics are given in Appendix A.

The weights assigned to random values are updated after each iteration using the error back-
propagation algorithm [26]. The loss function (dependent on inter-layer weights) was optimized using
the stochastic gradient descent algorithm [27]. The network was implemented in a Python script using
Keras library with the Tensorflow backend [28].
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(a) 

(b) 

Figure 3. Overview of a pharmacokinetic (PK) model parameter fitting using an artificial neural
network operating in the training (a) and recall (b) modes. The three-layer perceptron structure is
shown only conceptually—the number of hidden units was adjusted during the network design process.
The number of output units was always set to 4, i.e., the number of PK model parameters. All layers
are fully connected, as in the conventional multi-layer perceptron (MLP) structures, except dropout
mechanism was switched on, in which case random connections between hidden layers were removed
during training to prevent network overfitting.

The crucial step in the above-described procedure is in the preparation of the training set. On the
one hand it must be sufficiently large and varied for the network to gain the generalization capabilities.
On the other hand, the input signal intensity vectors must be accompanied by the true parameter
values, which allow the observation of a given Ctissue in response to a specific arterial input function.
Moreover, since the available data set size is relatively small, we repeat this procedure using the
leave-one-out approach. Having a data set of 20 examinations, we invoked calculations 20 times, each
time excluding another subject AIF from the training stage. Hence, a training set in a given repetition
was established via the 3-step procedure described below.

Step 1. Selecting a subset of 19 realistic arterial input functions.
Step 2. Establishing ranges of model parameter values. Table 1 presents the assumed parameter

limits along with their corresponding probability distributions. These limits were fixed with respect to
the published values for normal subjects [7,10,29]. Training input samples were generated using the
model equation and parameters sampled from these distributions. According to the Tofts model [10],
there are four such parameters: Ktrans, vp, Tg and Δ. The latter two are the parameters of the vascular
impulse response function, whose sum defines the so-called mean residence time (MRT). Since [7,10]
report only the value of MRT, we sampled Tg and MRT, whereas Δ was calculated as

Δ =MRT − Tg (5)
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Step 3. For a given AIF, we sample the model parameters θ and calculate Ctissue according to
Equation (1). Sampling is repeated 104 times for each AIF. As a result, there were 19 × 104 < C(t), θ >
pairs available in each leave-one-out repetition. The calculated Ctissue curves were probed at time steps
adjusted to match the temporal resolution of the network input vector.

Table 1. Parameter limits and types of probability distributions used for sampling training data set for
ANN (artificial neural network).

Parameter Min Max Mean SD Probability Distribution

Ktrans [min−1] 0 – 0.25 0.1 Normal

vp [mm3] 0.2 0.8 – – Uniform

Δ [s] 1 3.5 – – Uniform

MRT [s] – – 5.5 0.7 Normal

Tg [s] 0.02 – – – Normal

The simulated tracer concentration time curves were optionally corrupted by the Gaussian noise
to increase their variability and make them more realistic. Data corruption was performed by adding
to each simulated CA concentration a value drawn from the normal distribution, with mean = 0,
and standard deviation was adjusted to a current time step, i.e., σnoise = s·[Ctissue(t) −min(Ctissue(t))].
The scale factor s was experimentally set to 0.025 to achieve reasonable deflection from the modeled
CA concentration time curves. Then, the data set was partitioned into training and test sets in the
proportion 7:3. Moreover, 30% of the training data vectors were randomly set apart in each epoch for
validation purposes.

The last issue which needs to be fixed is the establishing of a proper network architecture. During
experiments, it occurred that only one hidden layer cannot accurately encapsulate the non-linear
relationship between the PK model’s parameters and the variety of CA concentration time-curves.
The two-layer structure ensured a significant decrease in the loss function value, while the usage
of more than two hidden layers did not offer any further improvement in this respect. Eventually,
the number of perceptrons in each layer had to be established. We tested 12 configurations, listed in
Table 2. Apart from the various cardinalities of neurons in hidden layers, we also considered inclusion
of additional dropout layers between them to overcome the problem of overfitting [30]. For every
configuration and each leave-one-out fold, the training was run for a fixed number of 100 epochs.

Table 2. Number of neurons in the tested two-layer perceptron structures.

Configuration No. First Hidden Layer Dropout Rate * Second Hidden Layer Output Layer

#1
20

0.0
10

4

#2 0.2

#3
26

0.0
13#4 0.2

#5
30

0.0
15#6 0.2

#7
34

0.0
17#8 0.2

#9
40

0.0
20#10 0.2

#11
50

0.0
25#12 0.2

* Dropout rate = 0.0 means that effectively there was no dropout mechanism between hidden layers.
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3. Results

We compared the effectiveness of the postulated ANN-based approach to optimizing a PK model’s
parameters in reference to the algebraic curve-fitting method, configured to utilize the Trust Region
Reflective algorithm [31]. Apart from the direct comparison of particular model parameters, we also
estimated single- and two-kidney GFRs. The image-derived estimates were then compared against
reference values measured with iohexol clearance tests.

We also validated the designed algorithm for the determination of the arterial input function.
In this experiment, we calculated the GFR scores using the Trust Region Reflective method for AIFs
annotated manually, and using the proposed automated approach.

For every study we performed manual segmentation of the whole kidney, as well as cortex and
medulla. This step was accomplished by two professionals experienced in medical image analysis,
using our custom software annotation tool. The rate of agreement between the respective kidney
regions delineated by both experts was estimated by the Jaccard coefficient, and was equal to 0.93 on
average. For a given study, kidney segments were outlined only in a time frame corresponding to the
maximum signal enhancement in the perfusion phase, which ensured the largest contrast between
cortex, medulla and pelvis. Depending on the study, this maximal enhancement was observed in frames
numbered from 12 to 18. Then, the segmentations were applied to all other time frames reflected in the
parameter estimation procedure, so as to determine mean signal time courses in the perfused renal
tissue, and the selected frames became fixed reference frames in the b-spline registration algorithm.

3.1. Assessment of Automatic AIF Determination Method

Figure 4 visualizes the locations of the arterial input function ROIs, as identified by the proposed
automatic method and manual selection. The presented examples correspond to the two cases, where
the best and the worst model fits were obtained. As shown, in comparison to manual AIF annotations,
automatically found ROIs occupy many more voxels that are free from inflow artifacts. As a result, fitted
intensity time curves better encapsulate image signal changes. For example, in Figure 4c,e, the curve is
visible in the region of maximum signal enhancement. In the case of automatically determined AIF,
the curve approximates well the measured signal samples, whereas in the case of manual annotations,
the model overestimates signal values. The reliability of the GFR measurements based on automatically
determined AIFs is visualized in Figure 5b, and can be compared to the Bland–Altman plots shown in
Figure 5a, obtained with manually annotated AIFs. Since the automatically determined AIFs seemed to
improve the accuracy and precision of GFR assessment, this allowed us to use them in the generation
of the training set for the neural network.

  
(a) (b) 

Figure 4. Cont.
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(c) (d) 

 
(e) (f) 

Figure 4. Examples of automatically determined arterial input function region-of-interests (ROIs) (a,b).
For comparison, manually delineated ROIs placed directly above aorta bifurcation into iliac arteries are
shown as red rectangles. The corresponding fitted model curves are shown in (c,d) for manual ROIs
and in (e,f) for the automatic ones.

 
(a) (b) 

Figure 5. Bland–Altman plots of agreement for manually (a) and automatically (b) determined AIF
ROIs. Measurements were evaluated against normality using Shapiro–Wilk test. The obtained p-values
were equal to 0.52 (iohexol-based glomerular filtration rate (GFRs)), 0.29 (image-derived GFRs with
manual ROIs) and 0.12 (for image-derived GFRs with automatically determined ROIs), thus disallowing
us to reject the null hypothesis of the data with a normal distribution.

3.2. Selecting Network Configuration

In the first phase of experiments, we aimed to select an architecture for the neural network suitable
to solving the problem of fitting the 2CFM to the DCE-MRI data. We began with deciding upon
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the number of hidden layers and their activation units. Figure 6 presents the learning curves for
three configurations of two-layer architectures, whereas the plots shown in Figure 7 correspond to
the three-layer network configurations listed in Table 2. Although the selected learning curves were
obtained only for one of the leave-one-out repetitions, they are representative for all the subjects in the
study. It can be seen that in all cases, the loss function initially decreases rapidly, and converges to a
value in the range 0.01–0.13 depending on the network architecture and the existence of noise in the
training data. However, for configurations without the dropout layer, it is observable that the MSE
value in a validation subset heavily fluctuates until the very end of the training process. It must be
noted that for the single-hidden-layer configurations (Figure 6), the problem with the convergence of
the loss function also persists in the largest tested network, with 50 hidden units, despite even inserting
a dropout layer before the output nodes. This observation, combined with potential overfitting
(which manifests in larger errors in a validation sample, with respect to a training set), substantiates
the use of two hidden layers. In the latter case, the loss function stabilizes after around 40 iterations for
‘dropout’ configurations with higher numbers of neurons (architectures number 6, 8, 10 and 12). It is
especially pronounced if the training data was corrupted by noise.
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Figure 6. Learning curves for various two-layer MLP configurations—training set scores in blue,
validation set scores in orange. The plots in the first two and second two columns correspond to
architectures without and with the dropout layer, respectively. The curves in columns 1 and 3 were
obtained for the noise-free training data, whereas in columns 2 and 4 for the data corrupted with
Gaussian noise.

Apparently, increased data variability due to the presence of noise, along with the inclusion of a
dropout layer, ensures better loss function convergence and helps prevent the network from overfitting.
As can be observed in Figure 7 (second column), the loss function scores on the validation set start to
surpass the values obtained for the training set quite early in the learning process. This overfitting
dynamic is further confirmed by the MAPE scores obtained after 100 learning epochs (see Figure 8).
Without the dropout mechanism, the error remains higher for the validation set than for the training
one, for almost every network configuration.
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Figure 7. Learning curves for various three-layer MLP configurations—training set scores in blue,
validation set scores in orange. The plots in the first two and two second two columns correspond to
architectures without and with the dropout layer, respectively. The curves in columns 1 and 3 were
obtained for the noise-free training data, whereas in columns 2 and 4 for the data corrupted with
Gaussian noise.
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(a) (b) 

 
(c) (d) 

Figure 8. (a–d): Mean absolute percentage error obtained for various network architectures and with
respect to existence of noise in the training and validation data sets.

While the above analysis settles upon the usage of the dropout layer and the noisy training vectors,
the question regarding the sizes of the hidden layers must still be resolved. On one side, increasing the
number of neurons leads to the lowering of the MSE and MAPE scores. On the other hand, however,
it escalates the risk of overfitting. Figure 9 presents the distributions of the Δ parameter estimates
against the true values in the test set. Regression analysis shows good agreement between the predicted
and the actual parameter estimates. The performed t-test and its resulting large p-values indicate
that one cannot reject the hypothesis of equality between the group means. However, the overfitting
effect manifests itself in the case of noise-free data, and it appears deeper for the more complex MLP
architectures. The network tends to predict parameter values close to some discrete levels. Although
the determination coefficients R2 are higher in these cases, clearly the predicated outcomes do not
conform to the actual data distribution. This tendency is not observed in the case of noisy data; however,
changing the number of neurons in the first hidden layer from 40 to 50 did not bring significant
improvement in the R2 score (0.85 versus 0.86), and simultaneously, as shown in Figure 8d, it slightly
increased the mean absolute percentage error for the validation set (from 13.9% to 14.3%).

Therefore, for the rest of the experiments we chose configuration #10, with 40 and 20 perceptrons
in the first and second hidden layers, respectively, and with a dropout layer in between, with a dropout
rate = 0.2. This setting ensures the lowest mean absolute percentage error, relatively high R2 scores for
all estimated parameters (Figure 10), and that the network model’s capacity is appropriate for the data
set’s complexity.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 9. Predicted against actual values of the Δ parameter in the test set for three configurations of
the MLP structure with the dropout layer. The number of neurons in the hidden layers: 30/15 (a,b),
40/20 (c,d), 50/25 (e,f). Plots in the left and right columns represent, correspondingly, noise-free and
noisy data.
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Figure 10. Determination coefficients for two-compartment filtration model (2CFM) model parameters
obtained for various network configurations (test set).

3.3. Evaluation of MLP-Based Model Fitting Reliability

The second phase of experiments consisted of using the trained MLP network to estimate 2CFM
model parameters, as well as the GFR values for the 20 DCE-MRI examinations available in this study.
The statistics of the parameter estimates are summarized in Table 3, whereas the calculated GFR values
are collected in Table 4. The reliability of GFR estimation was also evaluated against the ground-truth
using the Bland–Altman plot, shown in Figure 11. When compared to Figure 5b, it emerges that the
mean biases from the reference values are similar for both optimization methods—MLP and NLLS
curve-fitting. However, the limits of agreement κ and confidence intervals are narrower for the neural
network. Moreover, our ANNs ensure the better balance of the estimated values around the mean.
The NLLS method, on the other hand, tends to overestimate the measured quantity, especially in the
lower range of values. On the other hand, in the case of ANN, GFR was estimated without explicit
determination of AIF for a given subject. It proves that the designed network was capable of extracting
the general characteristics of the underlying perfusion process.

From the analysis of Table 3, it emerges that MLP determined Ktrans and vp parameter values close
to those of the reference method. The box plots presented in Figure 12a,b visually illustrate that the
ranges of estimated Ktrans and vp values partially overlap, and their medians are similar. The result
of the t-test gives evidence that the vp results, as estimated by MLP and NLLS, are not statistically
different (p-value > 0.3), which effectively shows that both methods can be used interchangeably
for blood volume fraction assessment. In the case of Ktrans, the difference in parameter estimates
becomes statistically significant (p-value < 10−3), although the medians remain relatively close with
respect to the overall data variability. Estimates of Tg and Δ vary more significantly (cf. Figure 12c,d).
The evidence against the null hypothesis of there being equal means in the MLP- and NLLS-based
calculations is even stronger than for the Ktrans parameter (p-value < 10−6). Apparently, the variation
in the vascular impulse response function manifests itself in the CA concentration time courses in a
way which is less evident in comparison to the other two PK model parameters. As such, the neural
network could not precisely infer the relationship between the concentration time curves and the
expected Tg and Δ values. This effect is consistent with the observed R2 scores calculated on the test
set upon MLP training. The VIRF timing factors are remarkably lower than the blood volume fraction
and transfer constant.
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Table 3. Statistics of the estimated values of the two-compartment filtration model parameters.

Parameter
MLP Estimates NLLS Estimates

Min Max Mean Std. Dev. Min Max Mean Std. Dev.

Ktrans [min−1] (×10−2) 0.40 0.50 0.45 0.02 0.39 0.60 0.51 0.03
vp [mm3] 0.33 0.91 0.62 0.08 0.35 0.86 0.67 0.09

Δ [s] 1.10 1.69 1.34 0.15 1.00 4.97 2.46 0.92
Tg [s] 4.68 5.35 4.95 0.18 1.00 4.70 1.84 0.82

Table 4. Juxtaposition of GFR values estimated by MLP and NLLS methods based on DCE-MRI data
acquired in two examination sessions in comparison with ground-truth scores measured with iohexol
clearance test [ml/min/1.73 m2].

Subject
Number

MLP Estimates NLLS Estimates

Ground-
Truth
(Total)

Session 1 Session 2 Session 1 Session 2

Left
Kidney

Right
Kidney

Total
Left

Kidney
Right

Kidney
Total

Left
Kidney

Right
Kidney

Total
Left

Kidney
Right

Kidney
Total

1 48 70 118 56 59 115 48 62 110 69 75 144 107
2 52 62 114 56 71 127 52 67 119 34 48 82 98
3 40 35 75 44 42 86 41 25 66 67 69 136 90
4 43 49 92 46 58 104 49 55 103 72 68 140 93
5 42 45 87 41 44 85 19 34 53 49 41 90 94
6 33 32 65 51 54 105 32 33 65 47 75 122 103
7 50 46 96 55 47 101 72 65 137 71 83 154 112
8 41 48 89 41 47 88 38 34 72 44 42 86 96
9 49 55 104 54 65 119 55 69 124 70 79 149 119

10 64 72 136 52 53 105 58 54 112 63 89 152 112

Figure 11. Bland–Altman plot of agreement for MLP-based GFR estimation method. Normal
distribution of the measurements was confirmed using Shapiro–Wilk test. The obtained p-values were
equal to 0.52 (iohexol-based GFRs) and 0.97 (image-derived MLP-based GFRs).
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(a) (b) 

 
(c) (d) 

Figure 12. (a–d): Box plots showing distribution of 2CFM parameter values estimated by MLP and
NLLS methods. Provided p-values were obtained for the t-test under the null hypothesis that mean
estimated values are the same for both methods.

4. Discussion and Conclusions

The main goal of this study was to evaluate the possibility of estimating the parameters of
the two-compartment filtration model using an artificial neural network. As shown in the Results
section, especially in Table 4, overall the task was accomplished successfully. The estimated single-
and two-kidney estimates of glomerular filtration rate fall into the physiologically feasible range,
and are close to the reference values calculated with the Trust Region Reflective algorithm (a non-linear
least-squares curve-fitting method), as well as those measured by blood tests. Comparison with the
latter method, which serves as a gold standard in clinics, appears particularly optimistic. The mean
difference between the corresponding measurements is to μd = 2.35 mL/min/1.73 m2, with the
agreement interval κ = μd ± 36.16 mL/min/1.73 m2. This interval is even narrower than the one
obtained for the NLLS method (κ = μd ± 63.97 mL/min/1.73 m2), which signals the greater precision of
the designed MLP structures. This effect was achieved thanks to the usage of dropout layers between
the hidden ones, and the training of the network with data vectors purposely corrupted with noise.

Although the trained MLP network performs relatively well in predicting Ktrans, vp and Δ
parameters, it actually fails in estimating accurate values for the VIRF decay time constant Tg.
The corresponding R2 determination coefficients calculated for the test sets do not exceed the value of
0.64, which is remarkably less than for the other three parameters (0.85–0.92). Tg, however, does not
affect the calculation of GFR, which depends only on Ktrans. In contrast with the NLLS procedure, a
neural network does not actually fit a modeled curve to the input data. A failure in predicting a given
parameter value does not necessarily cause an error in another parameter’s estimation.
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It is instructive to compare the results obtained in this study to similar measurements presented
in [16], partly conducted on the same subjects. The scores presented therein were obtained using a
conventional curve-fitting approach, and were divided with respect to examination session. The mean
differences and limits of agreement reported in their study were μd = 1.5 mL/min/1.73 m2 and κ = μd ±
43.2 mL/min/1.73 m2 (Session 1), and μd = 6.1 mL/min/1.73 m2 and κ = μd ± 31.9 mL/min/1.73 m2

(Session 2). Hence, our MLP-based method estimates true GFR values at a comparable level,
demonstrating either slightly better (in the case of Session 1) or poorer (Session 2) precision. Apart from
different parameter estimation methods, the observed discrepancies may be caused by other factors,
including various post-processing algorithms, e.g., image registration and segmentation. Above
all, a different pharmacokinetic model has been utilized, namely the Sourbron’s two-compartment
separable model [7].

Regarding the PK models themselves, the most common of them are often claimed to be too
simple to properly represent patient-specific biophysiological processes. Then, even the most precise
parameter estimation may not lead to accurate GFR calculation. There have been several attempts to
develop more advanced models, including multi-compartmental [32] or patient-specific models [33],
as well as those with a modified functional form of CA retention in the renal tissue compartments [34].
As such, the reliability of our proposed MLP-based method for DCE-MRI processing should be further
examined with respect to various mathematical models of kidney perfusion.

Another constraint that narrows the scope of the conclusions that can be derived from this study
is that it presents methodological achievements tested solely on healthy subjects. Although we believe
that the proposed methods of ANN-based PK model parameter estimation and AIF determination
will manifest its applicability to diseased kidneys, this paper focuses exclusively on algorithms per se
and numerical image processing, rather than clinical applications. Such an approach is common in
numerous works published in the biomedical engineering domain, which postulate novel processing
techniques, including those devoted to renal perfusion measurement [7,10,16,35]. The reasoning
behind this approach states that the technical quality of the designed solution must be verified under
well-defined and controlled conditions for a statistically representative data sample. Such conditions
are ensured by a cohort of healthy volunteers. Besides, in the current study, the inclusion of abnormal
cases would not necessarily provide additional insight into the behavior of the automatic determination
of AIF. In the case of diseased kidneys, it should run in an unchanged manner, since tissue lesion is
independent of the blood flow dynamics in abdominal aorta. On the other hand, taking into account
renal impairments would involve experimenting with various pharmacokinetic models of perfusion,
and it would remarkably extend the scope of this study.

To conclude, the performed experiments show the potential of neural networks as an alternative
computational framework to the standard curve-fitting procedure in the context of quantitative
perfusion estimation. The overall agreement with the gold standard method obtained by ANN was
comparable to the results obtained using the non-linear least-squares approach. Moreover, GFR can
be estimated without explicit determination of AIF for a given patient, which constitutes the major
advantage of the proposed approach. Instead, AIFs must be found only for a limited number of studies
included in the training data set. The described algorithm for AIF ROI determination allows one to
determine it in an automatic manner, reducing the effect of the inflow artifact. It simultaneously increases
the reliability and precision of the 2CFM model’s parameter estimation. Hence, no additional process is
required in assessing patient-specific hemodynamic parameters by utilizing either clinical examinations
(MR angiography [36,37] or ultrasound [38]) or non-clinical methods (e.g., photopletysmographic
arterial pulse wave measurement [39]) that would otherwise be necessary to properly trigger the
DCE-MRI sequence.
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Appendix A

Appendix A.1. Transforming Signal to Concentration

Assuming the gradient echo sequence, Ctissue in a given time step t is derived from the observed
signal S(t) using the transformation

Ctissue(t) =
R1(t) − 1/T10

r1
(A1)

where T10 is the longitudinal relaxation time before arrival of the tracer agent bolus, r1 is the
compartment-specific longitudinal relaxivity constant and

R1(t) = − 1
TR

ln
[

1− a(t)b
1− a(t)b cosα

]
(A2)

with

a(t) =
S(t)
S0

(A3)

b =

(
1− e−R10TR

)
1− cosα e−R10TR . (A4)

In the equations above, α and TR are the MRI sequence parameters of flip angle and repetition
time, S0 is the signal baseline, i.e., before arrival of the CA bolus, and R10 is the relaxation constant
equal to 1/T10. Note that in the case of the tissue signal, the conversion function is valid only under the
assumption of equal longitudinal relaxivities in the EEV and IV compartments.

Appendix A.2. Assessment of MLP Training Process

The MSE metric used in our study as the loss function driving the MLP training procedure and
the MAPE score used to validate training efficiency are defined as follows

MSE =
1

NM

N−1∑
i = 0

M−1∑
j = 0

(
θ̂i j − θi j

)2
(A5)

MAPE =
1

NM

N−1∑
i = 0

M−1∑
j = 0

∣∣∣∣∣∣∣
θ̂i, j − θi,j

θi, j

∣∣∣∣∣∣∣ (A6)

where θi, j, θ̂i, j denote the actual and estimated value of a j-th parameter for an i-th data training vector,
whereas M and N are the total numbers of parameters and data vectors, correspondingly. Since the
model parameters have different scales, it was necessary to scale their values to the same range so as to
balance their contribution to the overall loss function.
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Abstract: In this paper we focus on the role of deep instance segmentation of laboratory rodents in
thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals,
especially in low light conditions. It is an non-intrusive method allowing to monitor the activity
of animals and potentially observe some physiological changes expressed in dynamic thermal
patterns. The analysis of the recorded sequence of thermal images requires smart algorithms for
automatic processing of millions of thermal frames. Instance image segmentation allows to extract
each animal from a frame and track its activity and thermal patterns. In this work, we adopted two
instance segmentation algorithms, i.e., Mask R-CNN and TensorMask. Both methods in different
configurations were applied to a set of thermal sequences, and both achieved high results. The best
results were obtained for the TensorMask model, initially pre-trained on visible light images and
finally trained on thermal images of rodents. The achieved mean average precision was above
90 percent, which proves that model pre-training on visible images can improve results of thermal
image segmentation.

Keywords: instance segmentation; deep learning; computer vision

1. Introduction

Laboratory animals’ behavior analysis is often used in studies of stress, anxiety, depression or
neurodegenerative diseases [1]. The automation of this analysis has undoubtedly many advantages,
among which objectivity and standardization are one of the most desirable. As far as the position
and motion analysis are easy and commonly used parameters [2], the action or behavior recognition
are quite difficult to automatize. Existing systems for laboratory animals’ behavior analysis are
restricted by, for example, the number or the color of the objects [2]. The spectrum of behavior analysis
performed by the available systems is usually limited to exploration, rest or grooming. All these
behaviors are detected based on simple object parameters representing the position, speed, direction of
the movement or the shape parameters of the observed rodent [3]. Objective detection and analysis of
more complex behaviors would open up new possibilities. An important parameter of animals’ health
and well-being is its social behavior. It ensures survival of the species and is the specific characteristics
of a single individual. Futhermore, deviations and abnormalities of social actions may be related to
stress, fear or illness [1]. Social behaviors are divided into three categories: aggressive, defensive and
neutral [4]. An example of aggressive behavior is an attack, bite or aggressive grooming. However,
gentle grooming can also be a form of defense, it can also be confused with other behavior—climbing.
All these insignificant differences make the classification of complex behaviors an extremely difficult
task, mainly performed by human observers.
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The presence of a man who, after all, is a rodent’s natural enemy, probably adversely affects the
results of behavior research [5]. This can be solved by using camcorders and analyze the behavior from
the recordings. An additional advantage of this solution is the ability to slow down or stop the action,
certainly helpful during fast animal movements, e.g., fights. Nevertheless, the need for a good lighting
for cameras is a very unfavorable and stressful factor for nocturnal animals such as rodents [6,7]. This is
where technology that offers alternative imaging comes to the rescue. Thermal camcorders record
the surface temperature and can work in limited light and even in complete darkness. In addition,
they provide data of the object’s surface temperature distribution, proved to be useful in early disease
diagnosis [8,9]. Changes in the rodent’s surface temperature can be an indicator of his health condition,
behavioral changes, anxiety or stress [10,11]. In paper [12] authors use mouse surface temperature
distribution as an object identifier to recover tracking algorithm identity swap after close contact.

The automatic analysis of rodents from video recordings requires the identification and tracking
of each animal in a scene. The distinction between the object and the background in animal tracking
visual systems is most often based on difference between frames, color threshold or color matching [13].
A clear temperature difference in thermal imaging greatly simplifies foreground-background
segmentation. Usually, the Otsu’s thresholding supported by morphology is enough [2,14]. Figure 1b
demonstrates the result of Otsu’s thresholding on thermal image. In a cluttered environment there is
also a need to segment the object from other parts of the foreground or to distinguish individuals from
each other. For small connections of the animals’ bodies, methods such as marker-controlled watershed
segmentation technique are sufficient [15]. However, the solution to the segmentation problem for the
objects that overlap significantly is not easy and most image analysis methods fail. Figure 1c shows the
results of rodent segmentation using watershed technique with markers build from the low gradient
regions. There are no clear differences between the images of both objects and no border between
them is visible. For these reasons a significant number of systems analyze only one individual at a
time [2,13]. That is why the correct segmentation between objects is necessary for further analysis.

(a) (b) (c) (d)

Figure 1. Results of the most popular algorithms used for segmentation of (a) original
image by: (b) Otsu’s thresholding, (c) watershed with gradient regions markers,
(d) U-Net—semantic segmentation.

Many segmentation techniques have been proposed in literature. However, the methods based
on deep-learning have been recently found to provide the best segmentation results in many computer
vision tasks. Segmentation techniques based on deep learning may be divided into two approaches:
(i) semantic segmentation—pixel classification-based approach and (ii) instance segmentation–object
detection and classification based approach.

Segmentation using (i) does not discriminate between instances. In paper [16] we have used
popular methods of semantic segmentation—U-Net [17] and V-Net [18] to separate two objects.
Algorithms correctly segmented animals in close contact, but they were not able to draw the boundary
between the objects at the time of body overlapping. Figure 1d shows the result of U-Net architecture
trained on 200 images on five epochs, 2000 steps each. The animals are not separated and are recognized
together as one object.

In (ii) each object is detected, represented as a separate segment and labeled with the class name.
Instance segmentation is one of the most challenging computer vision tasks. It was introduced by
Hariharan [19] and then popularized by COCO [20]. Instance segmentation algorithms classify and
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localize each object’s bounding box while also precisely segment each instance. Both those subtasks
can be performed as a single- or two-stage detection process.

1.1. Two-Stage Methods

Treating segmentation as an extension of the object detection is adopted by most of two-stage
methods [21–24]. They are designed according to the dominant paradigm for instance segmentation
which is: detect-then-segment. First, it detects an object with a box and then segments each object
using the box as a guide.

Mask R-CNN [23] is one of a state of the art two-stage method of instance segmentation. It extends
Fast [25] and Faster R-CNN [26] methods by adding a branch for predicting an object mask in parallel
with the existing branch for bounding box recognition [23]. This method detects object bounding
boxes, and then crops and segments them to find the objects.

Many approaches based on Mask R-CNN also have dominated leaderboards of recent
segmentation challenges.

In 2019 Mask Scoring R-CNN algorithm was introduced in [24]. This method focuses on scoring
the predicted instance masks. The model learns an Intersection-over-Union (IoU) score for each
mask and improves segmentation results by rewarding more accurate predictions during COCO AP
evaluation.

The method named PANet presented in [27] improves Mask R-CNN in three steps by:

1. creating bottom-up path augmentation,
2. adaptive feature pooling,
3. augmenting mask prediction with fully connected layers.

The results outperform Mask R-CNN architecture but are re-implemented by the PANet authors.
Another extension of the Mask R-CNN model, this time with a cascade architecture, is the

Hybrid Task Cascade (HTC) [28]. It improves the segmentation accuracy by incorporating cascade and
multi-tasking at each stage and explores more contextual information from the spatial context.

State-of-the-art two-stage methods achieve outstanding results. However, due to the cascade
strategy, these methods are usually time- and memory-consuming. That is why recently, performing
instance detection and segmentation in a single-stage architecture [29–32] has become more and more
popular, even though it does not yet perform as good as the two-stage methods.

1.2. Single-Stage Methods

Though single-stage methods simplify the procedure by removing the re-pooling step, usually
they cannot produce masks that are as accurate as the two-stage methods. Some of those methods
works in a per-pixel prediction way, similar to the semantic segmentation.

The algorithm Fully Convolutional One-Stage detection (FCOS) [33] has fully eliminated
pre-defined anchor boxes, thus avoids complicated computation such as calculating boxes overlapping
during training.

EmbedMask proposed in [32] unifies both segmentation- and proposal-based methods and takes
the advantages of both. It is built on top of the detection models and thus has strong detection
capabilities, just like the proposal-based methods. It applies extra embedding modules to generate
embeddings for pixels and proposals, what enables EmbedMask to generate high-resolution masks
without missing details from repooling, like segmentation-based methods.

TensorMask is an example of a dense sliding-window instance segmentation method [34]. The idea
is to use structured 4D tensors to represent masks over a spatial domain. It performs multiclass
classification in parallel to mask prediction. Authors show that this algorithm yields similar results to
Mask R-CNN.

In this paper, we are mainly interested in the detection of each rodent in reference to each other
and in reference to the background objects. Therefore, we focus on instance segmentation approach and
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more specifically deep instance segmentation architectures represented by two different approaches:
one- and two-stage methods. In particular, we addressed the problem of animals instance segmentation
in close physical contact on thermal images. The aim of this study was also to verify whether thermal
data bit depth reduction or re-scaling has an effect on the results.

The paper is organized as follows: Section 2 presents the general description of methods and
materials. Results are introduced in Section 3 and discussed in Section 4. The last section concludes
the work.

2. Methods

In this section we describe the methods for instance segmentation adopted by us for thermal
image of laboratory animals. For this purpose we use thermal database of rats introduced in [35].
The database consists of 300 min of social behavior tests recordings. Every single test was carried
out on two healthy male rats of the Wistar strain at the age of 12–16 weeks kept in a plexiglass
cage (dimensions: 35 length × 45 width × 46 cm height) for about 17 min in dimly illuminated
room with temperature about 22 Celsius degrees. Animals were not accustomed to the cage earlier,
it was an unfamiliar environment. There were no food, drink nor bedding material in the cage.
The image sequences were recorded by FLIR A320G camera situated 120 cm above the cage with the
spatial resolution of 320 × 240 pixels, 60 fps and 16-bit image representation. The results of semantic
segmentation on the same dataset are presented in paper [16].

The principles for the care and use of laboratory animals in research, as outlined by the Local
Ethical Committee, were strictly followed and all the protocols were reviewed and approved by
the Committee.

2.1. Data Preprocessing

Thermal data were measured and stored with a resolution of 16-bit. The reduction of bit depth
to 256-level standard images caused data loss. However, some data, e.g., background temperature,
were redundant. In order to minimize data loss and investigate the effect of a temperature range
selection, we proposed thermal frames processing to achieve five different images. This procedure is
described in details in paper [16] and presented in Figure 3 in brief. First, the entire range of recorded
raw thermal data (Figure 3a) was scaled to 256-level gray image (Figure 3b) and called orig image, as
these were the original raw thermal data re-scaled to 8 bits. Then the gray-scale image was created
from only three selected thermal ranges: animal body range (Figure 3c) and two thermal ranges
(Figure 3d,e), all marked as ch1, ch2 and ch3 respectively. Minimal temperature value of the object was
assumed to be equal to the threshold temperature between the background and the object calculated
by the Otsu method, marked as a red line in the Figure 3a and called maxOtsuthres. The green and blue
dashed lines named as T2 and T3 respectively defined one- and two-thirds of the temperature interval
from maxOtsuthres to the maximal value for all data. The ch1 range was selected between maxOtsuthres
and the maximal temperature value. The ch2 image was created for the temperature range from T2

to the maximal temperature value, and analogously, the lower limit of the ch3 image was T3 value
and the upper limit was the maximum temperature. Re-scaling 16-bit raw thermal data representation
to 8-bit image caused loss of accuracy. Therefore, the last type of images was an image of the entire
range of recorded data saved as a 16 bit image (16-bit). In [16] we proved that proper range selection
improved the results of semantic segmentation.

2.2. Training Models

In this study we chose one single- and one two-stage architectures to compare the instance
segmentation methods on thermal images of laboratory rodent. The decision was made for the Mask
R-CNN [23] and the TensorMask [34].
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(a)

(b) (c)

(d) (e)

Figure 3. Range selection: (a) histogram of one frame raw thermal data with values of: minimal
rodent’s surface thermal value named maxOtsuthres, marked with red solid line; the minimum values
for images ch2 and ch3 marked as green (T2) and blue (T3) lines respectively, (b) orig image of the whole
thermal range, (c) ch1 image of the first range: maxOtsuthres to Tmax, (d) ch2 image of the second range:
T2 to Tmax, (e) ch3 image of the third range: T3 to Tmax.

2.3. Learning Configurations

We made two training and one testing manually segmented datasets. The only difference between
training sets was their size: 200 and 500 images respectively. The smaller set was used for the
transfer-learning training, where we used pre-trained network: Mask R-CNN with a ResNet-Feature
Pyramid Network (FPN) backbone 50 layers deep trained on the COCO dataset [36], and similarly
TensorMask with a ResNet-FPN backbone 50 layers deep [37], both implementations from Detectron2
v0.1.2.

The 500 images were used for training the whole architectures from random initialization. In this
training the number of training iterations had to be increased so models could converge. However, even
despite the very large number of iterations, the TensorMask architecture sometimes had convergence
problems: the loss function increased over time. In such cases we have used normalization techniques
according to [38], and replaced Frozen Batch Normalization with Group Normalization [39]. Group
Normalization’s accuracy was insensitive to batch sizes [39] and allowed for successful TensorMask
model training from scratch.

The testing set consisted of 50 images not included in the training sets. Images in all data-sets
depicted two rodents during physical contact of varying degrees: from a small part of the body contact
(e.g., nose-to-nose) to the body overlapping and covering.

For every training model we performed three independent training sessions. Json files with
ground-truth rat regions were manually created for every training and testing set using the VGG
Image Annotator (VIA) [40]. The regions were marked on a zoomed image by a set of points forming a
closed polygon.

To compare the trained and commonly available models, we tested the inference using weights
pre-trained on MS COCO Dataset [20], Citiscapes [41] and LVIS [42] and not trained on our database.
We have also used two different Python3 implementations of Mask R-CNN (Mask R-CNN2.1 [36],
Detectron2 v0.1.2 [37]) and one for TensorMask Detectron2 v0.1.2 [37].

In total, we tested 24 different model configurations for pre-trained learning and 22 for training
from scratch.

For both models and both training methods with the best segmentation results 3-fold
cross-validation was performed. The first fold was made for all the model configurations. The second
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and third folds used the whole testing data-set from the first fold in their training sets and replaced the
training set with 50 different images selected from the training set of the first fold.

All experiments were performed using NVIDIA DGX-1 Station with Ubuntu 18.

2.4. Evaluation Metrics

To evaluate the results we are using three different detection metrics for bounding box- (bbox)
and segmentation-level (segm): mean Average Precision (mAP), AP under Intersection-over-Union
thresholds of 0.5 (AP50) and 0.75 (AP75).

The mean average precision (mAP) is actually the standard for the quantitative evaluation of
object detection and instance segmentation methods [43,44]. The general definition for the Average
Precision is finding the area under the precision-recall curve. The precision and recall are defined
as follows:

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

(1)

where: TP = True Positive, FP = False Positive and FN = False Negative.
The precision measures how accurate the prediction was, and recall measures how good all the

positives were found.
In object detection and instance segmentation it is important to appropriately define a true

positive and other types of results. As a current standard, the IoU metric was used. It was defined
as the intersection between the predicted segment (bbox) and the actual segment (bbox) divided by
their union:

IoU =
Area o f Overlap
Area o f Union

(2)

In this study the actual (ground truth) segment was manually drawn by the authors on each
reference image.

A prediction is considered to be True Positive if the IoU value is higher than the threshold
(e.g., IoU > 0.5), and False Positive otherwise. However, different thresholds could be used and the
precision recall curve could be obtained. Then, the area under the curve could be calculated as:

AP =
∫ 1

0
p(r)dr, (3)

where: p(r) is the precision-recall curve.
In practice, in a majority of current papers about instance segmentation, the interpolated curve is

calculated in ranges of IoU threshold values from 0.5 to 0.95 with a step size of 0.05. This method was
also used in this paper. The mAP metric calculates the mean of AP across all of the IoU thresholds.
We also used AP at fixed IoUs: IoU = 0.5 (AP50) and IoU = 0.75 (AP75). Which means, that a
prediction is considered as True Positive if its IoU is >0.5 and >0.75 respectively. Thus, the higher the
threshold, the greater the requirement for the accuracy of matching the prediction to the ground-truth.
The standard metrics used in this study allow direct comparison of future methods with the approach
used in this paper.

We have evaluated bounding box AP for object detection and segmentation AP for instance
segmentation. The metrics are measured for all five types of images (orig, ch1, ch2, ch3, 16-bit) and
training parameters shown in Table 1.
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Table 1. Training parameters that achieved the best results in training.

Transfer Learning Training from Scratch

Mask R-CNN TensorMask Mask R-CNN TensorMask

Batch Epochs Batch Epochs Batch Epochs Batch Epochs

2 1000 2 2000 4 16,000 2 100,000

4 1000 4 1000 4 24,000 4 100,000

4 2000 4 2000 8 16,000

8 2000 8 24,000

2 100,000

3. Results

The best results among all the training parameter combinations were achieved by the values
presented in Table 1.

The TensorMask’s convergence problems during training from scratch forced the use of a large
iteration number, much larger than for Mask R-CNN architecture. In order to compare the effectiveness
of both architectures, we performed additional Mask R-CNN training with optimal parameters for
TensorMask (2 batches, 100,000 epochs). Values in bold indicate parameters that have been selected for
cross-validation.

In Tables 2 and 3 we compare Mask R-CNN testing results for pre-trained and from scratch
learning respectively. Analogous measurements for the TensorMask architecture are presented in
Tables 4 and 5.

Table 2. Testing results for Mask R-CNN pre-trained learning and 200 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 1000 epochs 88.641 100 98.99 89.007 100 98.99

4 batch, 1000 epochs 89.025 100 100 89.444 100 100

4 batch, 2000 epochs 88.781 100 99 89.068 100 99

ch1 bbox segm

2 batch, 1000 epochs 87.332 100 100 89.289 100 100

4 batch, 1000 epochs 86.942 100 100 89.715 100 100

4 batch, 2000 epochs 90.205 100 100 89.655 100 100

ch2

2 batch, 1000 epochs 85.252 100 99 87.323 100 100

4 batch, 1000 epochs 85.847 100 98.98 88.256 100 100

4 batch, 2000 epochs 87.915 100 98.98 88.893 100 100

ch3

2 batch, 1000 epochs 63.719 99.114 73.409 52.901 93.649 59.722

4 batch, 1000 epochs 69.028 99.417 80.98 55.181 97.284 60.683

4 batch, 2000 epochs 73.908 99.952 87.824 65.687 98.902 83.376

16-bit bbox segm

2 batch, 1000 epochs 88.128 100 99.01 89.604 100 100

4 batch, 1000 epochs 89.965 100 100 89.194 100 100

4 batch, 2000 epochs 90.549 100 100 89.417 100 100
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Table 3. Training results for Mask R-CNN from scratch learning and 500 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

4 batch, 16,000 epochs 81.811 100 98.307 85.586 100 100

4 batch, 24,000 epochs 82.567 100 100 86.864 100 100

8 batch, 16,000 epochs 81.658 100 100 84.728 100 98.584

8 batch, 24,000 epochs 84.465 100 100 86.224 100 100

2 batch, 100,000 epochs 86.695 100 100 89.569 100 100

ch1

4 batch, 16,000 epochs 82.085 100 100 83.666 100 100

4 batch, 24,000 epochs 84.368 100 100 85.821 100 100

8 batch, 16,000 epochs 81.426 100 100 84.038 100 100

8 batch, 24,000 epochs 85.153 100 98.772 86.389 100 100

2 batch, 100,000 epochs 86.564 100 100 87.208 100 100

ch2

4 batch, 16,000 epochs 80.629 100 98.95 80.896 100 100

4 batch, 24,000 epochs 82.979 100 100 84.834 100 100

8 batch, 16,000 epochs 80.983 100 100 79.931 100 100

8 batch, 24,000 epochs 83.091 100 100 84.428 100 100

2 batch, 100,000 epochs 82.55 100 97.55 82.397 100 100

ch3

4 batch, 16,000 epochs 60.947 97.766 73.004 48.183 93.325 47.4

4 batch, 24,000 epochs 67.739 98.113 79.816 58.782 96.882 69.92

8 batch, 16,000 epochs 65.355 97.874 74.09 54.855 96.873 64.968

8 batch, 24,000 epochs 66.014 98.4 78.156 57.452 95.887 63.699

2 batch, 100,000 epochs 66.369 98.504 84.891 56.116 94.891 67.155

16-bit

4 batch, 16,000 epochs 82.826 100 98.842 84.561 100 100

4 batch, 24,000 epochs 84.29 100 100 86.111 100 100

8 batch, 16,000 epochs 83.493 100 97.82 85.313 100 100

8 batch, 24,000 epochs 85.596 100 100 86.607 100 100

2 batch, 100,000 epochs 84.862 100 100 85.877 100 100

Table 4. Training results for TensorMask pre-trained learning and 200 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 2000 epochs 90.646 100 98.01 89.82 100 100

4 batch, 1000 epochs 91.264 100 99.01 89.877 100 99.01

4 batch, 2000 epochs 90.916 100 99.01 90.158 100 100

8 batch, 2000 epochs 90.672 100 98.96 89.824 100 100
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Table 4. Cont.

mAP AP50 AP75 mAP AP50 AP75

ch1

2 batch, 2000 epochs 89.091 100 100 89.808 100 100

4 batch, 1000 epochs 89.624 100 100 89.547 100 99.01

4 batch, 2000 epochs 90.299 100 100 90.171 100 99.01

8 batch, 2000 epochs 90.052 100 100 90.087 100 99.01

ch2

2 batch, 2000 epochs 88.319 100 100 89.496 100 100

4 batch, 1000 epochs 88.17 100 100 87.949 100 100

4 batch, 2000 epochs 87.912 100 98.931 89.335 100 100

8 batch, 2000 epochs 88.828 100 100 89.264 100 100

ch3

2 batch, 2000 epochs 74.37 99.933 88.433 65.062 99.933 80.743

4 batch, 1000 epochs 71.325 99.834 84.895 60.251 99.602 69.757

4 batch, 2000 epochs 75.031 99.961 91.558 64.849 99.423 79.397

8 batch, 2000 epochs 76.159 100 91.406 65.307 99 83.105

16-bit

2 batch, 2000 epochs 91.248 100 100 90.249 100 100

4 batch, 1000 epochs 90.443 100 98.951 89.857 100 98.951

4 batch, 2000 epochs 91.609 100 100 90.199 100 100

8 batch, 2000 epochs 90.939 100 100 90.171 100 98.99

Table 5. Training results for TensorMask from scratch learning and 500 images.

mAP AP50 AP75 mAP AP50 AP75

orig bbox segm

2 batch, 100,000 epochs 78.235 100 92.41 79.615 100 95.535

4 batch, 100,000 epochs 76.413 99.99 95.435 80.371 99.99 91.678

ch1

2 batch, 100,000 epochs 78.862 100 98.307 77.724 100 90.687

4 batch, 100,000 epochs 77.725 100 94.535 81.259 100 95.188

ch2

2 batch, 100,000 epochs 64.42 99.18 69.516 62.307 96.206 71.867

4 batch, 100,000 epochs 75.275 99.833 90.342 74.431 99.833 89.674

ch3

2 batch, 100,000 epochs 44.557 84.367 40.402 13.097 60.133 0.012

4 batch, 100,000 epochs 55.982 95.072 57.009 32.752 89.025 16.88

16-bit

2 batch, 100,000 epochs 78.112 99.99 97.29 80.198 99.99 94.435

4 batch, 100,000 epochs 76.296 100 90.662 81.267 100 94.887
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Figure 4 presents the exemplary testing results for two images (Figures 4a,b) which constituted
quite a serious challenge for segmentation. For a better illustration, the contact area was zoomed and
manually segmented with a yellow line in Figures 4c,d. The examples given include animals that
overlapped one another. Figures 4e–h present the results of pre-trained learning for Mask R-CNN and
TensorMask respectively. The instance segmentation made by those architectures trained from scratch
are shown in Figures 4i–l.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Examples of segmentation and detection prediction made for (a,b) the original images;
(c,d) proper segmentation zoomed and marked with yellow lines. Results for: (e,f) pre-trained Mask
R-CNN; (g,h) pre-trained TensorMask; (i,j) random initialized Mask R-CNN; (k,l) random initialized
TensorMask.

Table 6 demonstrates the results of the inference made for orig images using commonly available
models pre-trained only on MS COCO Dataset, Citiscapes and LVIS. We also used two different
implementations of Mask R-CNN pre-trained on the COCO dataset.

Table 6. Segmentation results for commonly available models.

mAP AP50 AP75 mAP AP50 AP75

Mask R-CNN bbox segm

MS COCO—implementation [37] 4.14 13.39 1.4 5.36 14.44 1.05

MS COCO—implementation [36] 7.62 13.5 7.62 - - -

Citiscapes 0.06 0.3 0 0.01 0.09 0

LVIS 0.71 3.45 0.04 0 0 0

TensorMask

MS COCO—implementation [37] 1.69 3.41 1.29 3.06 6.31 2.6

The results of 3-fold cross-validation for the parameters of four batch size with 2000 epochs and
two batch size with 100,000 epochs for pre-trained and trained from random initialization models
respectively are presented in Table 7. The results are presented in the form of box and segmentation
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mAP. The folds of model training for three different training and testing datasets were repeated twice.
Presented result values are the best selected repetition.

Table 7. 3-fold cross-validation mean Average Precision (mAP) results for pre-trained (four batch, 2000
epochs) and trained from scratch (two batch, 100,000 epochs) models of Mask R-CNN and TensorMask.

Mask Mask TensorMask TensorMask
Pre-Trained From Scratch Pre-Trained From Scratch

mAP bbox segm bbox segm bbox segm bbox segm

orig

1. fold 88.8 89.1 83.6 85.9 90.9 90.2 78.2 79.6
2. fold 92.0 89.5 84.7 87.6 91.9 90.5 73.9 70.6
3. fold 89.7 89.2 87.7 88.0 90.5 90.2 70.6 76.6

average 90.2 89.3 85.3 87.2 91.1 90.3 74.2 75.6

ch1

1. fold 90.2 89.7 84.6 87.2 90.3 90.2 78.9 77.7
2. fold 88.4 89.1 88.3 88.9 91.3 90.4 78.7 77.8
3. fold 89.6 89.4 88.3 89.0 90.2 89.8 75 74.4

average 89.4 89.4 87.1 88.4 90.6 90.1 77.5 76.6

ch2

1. fold 87.9 88.9 82.6 82.4 87.9 89.3 64.4 62.3
2. fold 84.7 86.4 86.6 88.2 89.1 89.0 66 57.2
3. fold 89.5 88.1 85.0 87.7 88.3 88.9 65.7 54.3

average 87.4 87.8 84.7 86.1 88.4 89.1 65.4 57.9

ch3

1. fold 73.9 65.7 66.4 56.1 75.0 64.8 44.6 13.1
2. fold 63.0 51.9 65.6 57 70.9 61.9 40.2 11.2
3. fold 72.6 62.9 66.6 62.4 71.3 62.5 36.6 11.2

average 69.8 60.2 66.2 58.5 72.4 63.1 40.5 11.8

16-bit

1. fold 90.5 89.4 84.9 85.9 91.6 90.2 78.1 80.2
2. fold 89.2 89.4 85.8 88.5 92.5 90.8 76.8 77.6
3. fold 90.0 89.1 86.6 87.8 90.6 89.9 71.5 73.9

average 89.9 89.3 85.8 87.4 91.6 90.3 75.5 77.2

4. Discussion

The objective of the study was to compare two different instance segmentation approaches and
two different learning methods for the purpose of experimental animals segmentation on thermal
images. Various methods for re-scaling thermal data to a standard image were also compared.

In paper [38] authors showed that the model trained from random initialization, if it only has
proper training parameters, can get results similar to the pre-trained models, however, it needs more
iterations to converge. In our experiments training Mask R-CNN from scratch needed about 16 times
the number of epochs (16,000 or 24,000) (Tables 4 and 5) than for the pre-trained model (1000 or 2000)
to achieve similar results (Tables 2 and 3). Increasing the number of epochs to 100,000 improved the
results only for the orig and ch1 images, but not significantly. TensorMask architecture required a
much larger number of epochs for the random initialization training (100,000), and still did not achieve
results comparable to the pre-trained model (see Tables 4 and 5).

Mask R-CNN training from scratch neither is time nor data expensive. Only a slightly larger
number of images and epochs allow it to achieve all-layers training results comparable to the
pre-trained models.
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The values in Tables 2 and 4 indicate that the best segmentation results for the pre-trained models
can be obtained for the 16-bit and ch1 image followed by the orig for Mask R-CNN and also 16-bit
with orig this time followed by ch1 using TensorMask. Ch2 images achieved only slightly lower results
than the top ones. The bbox and segmentation mAP values for both architectures were close to 90
percent, with a slight TensorMask advantage. Detection for ch3 in both cases achieved the best mAP
above 70, while the segmentation best mAP was equal to 65 percent. If we look at the results for all
combinations of training parameters, not only the best ones, it can be clearly seen that TensorMask
achieves better results for various training models.

The results of training from scratch show the opposite trend (see Tables 3 and 5). This time
it is Mask R-CNN that achieves better results for all images (mAP above 80 percent for almost all
images) under various criteria, suggesting that this model trained from scratch catch up not only by
chance for a single metric. The differences were especially visible for the ch3 image, for which the best
TensorMask segmentation mAP was equal only to 32.752 percent.

The pre-trained model shows generally similar results for instance segmentation and detection for
all images except ch3. The image ch3 contains a very narrow range of only the highest animals’ surface
thermal values (Figure 3a,e), so it is deprived of a significant part of the body area. Such an object is
detectable, but difficult to correctly segment if there is no information about the object’s boundaries.
That is why the mAP for segmentation is much smaller than for detection.

The data in Tables 3 and 5 show that models trained from scratch are likely to perform
segmentation more accurately than the detection (except ch3). Detection and segmentation accuracy
for the pre-trained models are more similar.

In the Figure 4 we have presented the results of the detection and segmentation for challenging
views with the critical regions zoomed in white frames. The image in Figure 4c is difficult to segment,
because the snout of one rodent covers the snout of the other one over the entire width of the body.
However, there is a small element of the snout that belongs to the animal at the bottom and in this
camera view is not connected to the rest of the body. One of animals in Figure 4d has its snout hidden
under the body of the other rat, which, as a matter of fact, is not so rare. Here, the cooler water mark
left on the fur creates a line, that can be mistaken as a continuation of the body boundary. In this
particular way it was segmented by the pre-trained TensorMask (Figure 4h), as a result of which a
small area of the body on the border was miss-assigned to the wrong object. It also marked both
individuals as the object, however with low probability (7%). The Mask R-CNN architecture set the
boundaries more precisely (Figure 4f,j) but left a few pixels’ gap between the objects. TensorMask
trained from scratch segmented the rodents’ body areas similarly to the pre-trained model, (Figure 4l),
and here also an additional object—a combination of both body parts—was detected.

The separated object from the Figure 4c caused the Mask R-CNN the most problems. The
pre-trained model (Figure 4e) considered the separated part of the animal’s mouth as an element of
the other rat’s body. In addition, as the only one, it inaccurately determined the bbox of the detected
object. Mask R-CNN trained from scratch did not assign this small part of the snout to any object,
but correctly detected the bbox (Figure 4i). The pre-trained TensorMask (Figure 4g) classified the
problematic snout partly to both individuals—this line of segmentation seems to be the closest to the
correct one. TensorMask architecture trained from scratch assigned both animal snouts to both objects
at once (Figure 4k).

Although the segmentation results were not always satisfactory, it should be remembered that
difficult cases were presented here. For the vast majority of images, the prediction was very similar to
ground-truth images and succeeded in its mission of rodent segmentation, in contrast to the semantic
segmentation algorithms presented in paper [16]. The results of U-Net segmentation (see Figure 1d)
show that the boundary between objects disappears during close contact, although it was previously
visible during small connection.

The results of segmentation made by the commonly available models (see Table 6) are much
worse than those trained on the target images, and do not exceed 8 mAP. The Citiscapes and LVIS
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datasets achieved extremely low values—bellow 0.75 mAP. During the evaluation, the correctness of
class assignment is also taken into account. Although the COCO data-set has a “mouse” class [20],
however, rat objects were not assigned to it, so in this case the assignment correctness was zero.

The 3-fold cross-validation results presented in Table 7 are very similar. The top segmentation and
detection results (marked as bold in Table 7) on average was achieved by the pre-trained TensorMask.
Both pre-trained models show greater accuracy than those trained from scratch, which is consistent
with the previous results (see Tables 2–5). It is probably related to a much smaller training set
comparing to the COCO set [20]. As far as a random initialized models are concerned, the difference
between the both models is significant. Mask R-CNN (marked as bold italic in Table 7) obtains mAP
even 10 percent higher than TensorMask. It is possible that TensorMask needs more data and/or
epochs number to achieve a Mask R-CNN-like results.

5. Conclusions

The deep instance segmentation algorithms are able to distinguish between two individuals in
close contact where overlaps may appear. The segmentation mAP almost reach value of 90 percent.
The detection results are slightly higher and usually oscillate around 90 percent. The top results are
achieved by the single-stage (TensorMask) pre-trained network, however, two-stage method (Mask
R-CNN) works better than single-stage when trained from scratch. Training Mask R-CNN model from
random initialization is neither time nor data consuming. It can be used for training non-standard
images, however, keeping in mind that networks trained from scratch focuses more on segmentation
than detection. In turn, the cost of training TensorMask is large, and still does not achieve results
similar to the pre-trained version. The pre-trained TensorMask model shows the best performance.
The research indicates that thermal images can be successfully analyzed by architectures pre-trained
on standard images. However, some layers of the network must be trained on thermal images, because
the models pre-trained only on publicly available databases achieve very poor segmentation results
and even worse in detection.

The thermal data conversion from different thermal data range does not improve the quality of
segmentation. The results for 16-bit (16-bit) and 8-bit (orig) image representation as well as for image
deprived of the background (ch1) are comparable. Results of images with narrower thermal range
(ch2) do not differ much from the others. Unlike the results for ch3 image, where only the information
about the warmest parts of the body is visible. However, the bounding box mAP values of this images
for pre-trained model suggest that detection for limited-data images is possible.

The main contributions of this paper are the following:

• the adopted deep instance segmentation algorithms have been experimentally verified for the
laboratory rodents detection from thermal images,

• it was shown that laboratory rodents can be accurately detected (and separated from each other)
from the thermal images using the Mask R-CNN and TensorMask models,

• the obtained results demonstrated that the adopted TensorMask model, pre-trained using visible
light images and trained with thermal sequences gave the best results with the mean average
precision (mAP) greater that 90,

• it was verified that thermal data conversion from narrower raw thermal range does not improve
the quality of segmentation,

• single-stage pre-trained networks achieves better results than two-stage pre-trained models,
however two-stage methods seem to work better than single-stage when trained from scratch,

• network pre-training using visible light images improves the segmentation results for
thermal images.

The conclusion of this work is that segmentation algorithms can be used to segment experimental
animals in thermal images. Depending on the needs, one can customize architectures, learning
methods or image types for the best performance. Instance segmentation methods work better than the
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semantic segmentation methods. The presented approach will work well in social behaviour tests, but
not only that. It can be used wherever identification and tracking of experimental animals is required,
especially in numerous groups.

In the future it is worth training both architectures with a more diverse thermal database.
Increasing the amount of training data can also improve the results, especially for the TensorMask.
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Abstract: Fundus blood vessel image segmentation plays an important role in the diagnosis and
treatment of diseases and is the basis of computer-aided diagnosis. Feature information from the
retinal blood vessel image is relatively complicated, and the existing algorithms are sometimes
difficult to perform effective segmentation with. Aiming at the problems of low accuracy and low
sensitivity of the existing segmentation methods, an improved U-shaped neural network (MRU-NET)
segmentation method for retinal vessels was proposed. Firstly, the image enhancement algorithm and
random segmentation method are used to solve the problems of low contrast and insufficient image
data of the original image. Moreover, smaller image blocks after random segmentation are helpful
to reduce the complexity of the U-shaped neural network model; secondly, the residual learning
is introduced into the encoder and decoder to improve the efficiency of feature use and to reduce
information loss, and a feature fusion module is introduced between the encoder and decoder to
extract image features with different granularities; and finally, a feature balancing module is added to
the skip connections to resolve the semantic gap between low-dimensional features in the encoder and
high-dimensional features in decoder. Experimental results show that our method has better accuracy
and sensitivity on the DRIVE and STARE datasets (accuracy (ACC) = 0.9611, sensitivity (SE) = 0.8613;
STARE: ACC = 0.9662, SE = 0.7887) than some of the state-of-the-art methods.

Keywords: retinal blood vessel image; computer-aided diagnosis; U-shaped neural network;
residual learning; semantic gap

1. Introduction

Retinal blood vessel images are often used by doctors as a window to observe the response of
various diseases, such as hypertension, coronary heart disease, and diabetes, and vessel abnormalities
can reflect the severity of these diseases. Retinal blood vessels are the only blood vessels in the human
body that can be obtained without trauma. The fundus camera can directly take images of fundus
blood vessels and can respond clearly to microvessels and lesions. Therefore, the research of fundus
images has important medical application value. In order to make an effective diagnosis of the disease,
it is necessary to accurately segment blood vessels in the fundus. However, because the retinal blood
vessel image may have problems such as lesions, uneven lighting, noise, and low contrast between
small blood vessels and the background, it is difficult to completely segment the fundus blood vessel
image. Therefore, fundus blood vessel image segmentation has become a hot topic at home and abroad.

In recent years, many scholars have conducted extensive and in-depth research on automatic
segmentation of fundus blood vessel images and have proposed many segmentation methods.
These algorithms can be divided into supervised segmentation and unsupervised segmentation
based on whether a gold standard image is required. Unsupervised fundus vascular segmentation
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does not require a gold standard image as a segmentation standard. For example, Dash et al. [1]
proposed a morphological-based fundus image segmentation technology, which can use Kirsch edge
detection method to identify retinal vein from retinal image. The advantage of the method is that it can
identify the vasculature devoid of any tiny information, but the disadvantage is that the segmentation
of microvascular is insufficient. A matching filtering method designed by Zhang et al. [2] used a
multi-scale second-order Gaussian derivative filter and performs filtering in the direction score domain
to obtain the maximum response. This method has a good effect in dealing with complex vessels,
but there is a phenomenon of error segmentation. Abdallah et al. [3] employed a multi-scale tracking
method based on Heisson matrix feature vectors and gradient information. This method can extract
blood vessels, especially small blood vessels, at different resolutions. Although many scholars have
conducted in-depth research on the unsupervised segmentation method, its segmentation effect still
needs to be improved. Compared with the unsupervised segmentation method, the supervised
segmentation method can segment the fundus blood vessel images more effectively. For supervised
fundus blood vessel image segmentation, before being able to use end-to-end deep learning methods
for feature learning, researchers must manually extract image features based on prior knowledge
of the image. Orlando et al. [4], for example, adopted multi-scale linear detector response and
two-dimensional wavelet responses on the green channel as features, used structured output
support vector machine to train parameters of a fully connected conditional random field model,
and then used the trained conditional random field to segment blood vessels. This method can
effectively improve the performance index, but there will be error segmentation in the bright central
reflection area. Wang et al. [5] proposed a supervised learning method based on multi-feature and
multi-classifier fusion to segment retinal vessels. Four types of features were extracted, and the results
of decision tree and AdaBoost classifier were fused together to make a joint decision. This method
can effectively improve the accuracy and sensitivity of segmentation, but it needs to be improved
compared with the deep learning method. Although the above method has achieved certain effects,
the extraction of artificial features requires a wealth of prior knowledge, and it has a large subjectivity
for feature extraction, so it may cause problems such as insufficient microvessel segmentation and
incorrect segmentation.

The core idea of deep learning is to extract the main representation features from the original data
through a series of nonlinear transformations. This feature is multi-level and multi-angle, which also
makes the features extracted by deep learning method have stronger generalization and expressive
ability, which is exactly what the image segmentation process needs. Convolutional neural network,
as an effective deep learning model of image segmentation, has been widely concerned by researchers.
Gu et al. [6] proposed a context encoder network (CE-Net) to capture more high-level information,
to save spatial information, and to be used for 2D medical image segmentation. Although this method
has certain effects on various medical data sets, its accuracy still needs to be improved. Zhou et al. [7]
Proposed a neural network structure, UNET + +, for semantic and instance segmentation. By using
nested structure and improved hop connection structure, the segmentation performance of the model is
effectively improved. The disadvantage of the model is that the parameters increase greatly compared
with the original model. Soomro et al. [8] employed a fundus vessel segmentation method based on
deep convolutional neural network (CNN). Firstly, image enhancement was performed using fuzzy
logic and image processing strategy, and then, an encoding and decoding CNN model with skip
connection structure was proposed for retinal blood vessel segmentation.This method can effectively
improve the contrast between blood vessel and background, but there is over-segmentation in the
segmentation process. Kumawat et al. [9] adoped an improved local phase unit (ReLPU), which is
an efficient and trainable convolution layer. When the ReLPU layer is used at the top of the U-Net
segmentation network, it can effectively improve the segmentation performance of the U-Net model.
The disadvantage of this method is that it cannot segment the microvessels effectively. Tamim et al. [10]
proposed an improved Multi-Layer Perceptron (MLP) neural network that can automatically extract
and distinguish blood vessels and background pixels in fundus images. This method has strong
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robustness, but the model is more complex. Cheng et al. [11] used an improved U-Net model, that is,
adding dense block structures to the original model, which can effectively improve the accuracy, but the
segmentation sensitivity needs to be improved. Francia et al. [12] proposed a double U-Net model
structure of fundus image segmentation method. This method uses two U-Net models; the second
U-Net model adds residual structure. By adding the information flow extracted from the first U-Net
model to the second model, information loss can be effectively avoided. Pan et al. [13] developed
an improved U-Net model for retinal vascular segmentation. This method adds the Resnet module
to the original structure, which solves the problem that the traditional U-Net model cannot deepen.
However, the segmentation results show that the method cannot effectively segment the peripheral
blood vessels. Li et al. [14] used a new Resnet module to improve the U-Net. By adding more Resnet
modules, the network layer can be deepened, so the model can extract features better. However, with
the deepening of the network, the model becomes more complex.

Based on the above problems, such as discontinuous segmentation, difficult segmentation of
microvesselss and complex segmentation models, we propose a MRU-Net deep learning model
structure, i.e., a multi-scale residual U-shaped network model. The main work of our paper is
as follows:

• In MRU-Net, we add a multi-scale feature fusion module in the transition phase between the
encoder and decoder and extract the feature information with different granularities using
multi-scale dilated convolutions, so as to improve the model’s understanding of context
information and to improve the model’s segmentation ability for microvessels.

• In MRU-Net, we add a feature balance module in the skip connection between the encoder and
decoder to solve the problem of possible semantic gaps between low-dimensional features in the
encoder and high-dimensional features in the decoder.

2. Proposed Method

As shown in Figure 1, the retinal vessel segmentation framework proposed in this paper is divided
into two stages, namely training stage and testing stage. The overall process are as follows:

• Data preprocessing: The original retinal blood vessel image cannot be effectively segmented due to
factors such as uneven illumination, low noise, and low contrast. Therefore, image preprocessing
is required before training to ensure the maximum possible increase in contrast between the
retinal blood vessels and the background, thereby effectively improving the segmentation effect.

• Data expansion: Supervised segmentation training requires manual segmentation of images as
labels, so data acquisition is difficult, resulting in insufficient training data for deep learning
training. To solve this problem, we randomly divided each preprocessed image data into many
smaller image blocks to achieve the purpose of expanding the data set.

• Model training: The image block is divided into a training set and validation set according to the
ratio of 9:1. The training set is used as the input of U-Net model, and the corresponding gold
standard image block is used as the label. The gradient descent method is used to train the model.
According to the training effect of the training set and validation set, the model is continuously
optimized until the model reaches the optimum.

• Effect test: Firstly, preprocess the test data in the same way; secondly, orderly segment the
test image; then, input the segmented image blocks into the trained U-Net model to obtain the
corresponding segmentation results; and finally, the segmentation results of each image block are
combined to obtain a complete retinal blood vessel segmentation image.
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Figure 1. Overview of the architecture framework: the upper part shows the training process of the
model; the lower part shows the test process of the model.

2.1. Image Preprocessing

2.1.1. Data Set

We used two datasets for validation experiments: the DRIVE dataset and STARE dataset.
The DRIVE dataset was derived from the Dutch Diabetic Retinopathy Screening Project [15],

in which 400 subjects were aged between 25 and 90 years. The DRIVE dataset randomly selected
40 retinal blood vessel images, of which 20 were used as the training set and 20 were used as the
training set. Each image is 584 × 565 in size, and each image has a corresponding expert manual
segmentation result and mask image.

The STARE dataset is from the University of California, San Diego [16]. It contains 20 retinal
blood vessel images with a size of 700 × 605, 10 healthy images, and 10 pathological images, and each
image is provided with a corresponding expert manual segmentation result image.

Figure 2 is a data example of the two datasets, and the three columns are original fundus blood
vessel image, manual segmentation of blood vessels, and masks. Since the masks are not given by
STARE, we manually created masks among them.

Figure 2. Data example: the images from left to right are the original image, the manually segmented
label, and the mask image.
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2.1.2. Image Enhancement

Original retinal blood vessel image data are three-channel image data. Due to the optical effect
when taking pictures, contrast between the blood vessels and the background in the fundus image
is low, so it cannot effectively distinguish the fundus blood vessels from the background image.
Image enhancement preprocessing can effectively enhance the contrast between retinal blood vessels
and the background. The image enhancement preprocessing process is divided into the following
four types:

• Through the contrast experiment, the green channel of the retinal blood vessel image has a higher
contrast, so the fundus blood vessel image of the green channel is selected for experiments.

• The green channel image is processed for data standardization, and the conversion formula is
as follows:

x =
xi − xmin

xmax − xmin
(1)

where Xi is the current pixel value, xmin is the minimum pixel value, and xmax is the maximum
pixel value.

• Limited contrast histogram (CLAHE) is used to equalize the normalized image, thereby increasing
the contrast between the blood vessel and the background image and making the image easier
to segment.

• Gamma adaptive correction is performed according to different pixel characteristics of blood
vessels and background images, thereby suppressing uneven light and centerline reflection in the
fundus image, and the gamma value was set to 1.2.

The top-down images in Figure 3 are DRIVE and STARE data images, respectively. From left
to right: the first column is the original image, and columns 2–5 are the green channel image,
the normalized image, the Clahe equalized image, and the gamma locally adaptive correction
image, respectively.

Figure 3. Examples of parts of the image enhancement process: (a) original image, (b) green channel,
(c) normalized, (d) Clahe processing results, and (e) gamma processing results.

2.1.3. Image Expansion

Due to the complexity of manual segmentation of retinal blood vessels, the number of existing
images is very scarce, and deep learning is a complex model structure trained based on a large amount
of data. When the number is small, the model will be overtrained, which will lead to overfitting. In this
paper, the original image data is randomly divided into smaller image blocks to increase the amount
of training data.
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We randomly cut the original image into 48 × 48 image blocks. The original high-dimensional
pixel image segmentation into many low-dimensional pixel images has two main advantages. On the
one hand, the high-dimensional image segmentation into more low-dimensional image blocks can
effectively play a role in expanding the data, thereby avoiding overfitting caused by a small amount of
data. On the other hand, compared with high-dimensional images, the complexity of model design
based on low-dimensional image blocks is lower because the U-Net model of low-dimensional images
does not need to design deeper layers to extract complex high-dimensional image features and it also
effectively reduces the loss of image information caused by the deepening of the model. Figure 4 is an
example of several image blocks randomly extracted from the preprocessed DRIVE fundus image.

Figure 4. Samples of random segmentation: (a) randomly extract 48 × 48 patch image blocks from the
preprocessed image and (b) the corresponding label from the gold standard image.

2.2. MRU-Net Structure

U-Net [17] has a good effect in the field of medical image segmentation, and many scholars have
made different improvements on the segmentation of U-Net network in medical images. The limitation
of U-Net and its variants is that. in order to learn more abstract feature information in an image,
continuous convolution and pooling operations will be performed, but resolution of image features
will be reduced with the deepening of the network. The intuitive expression is that, as the network
level deepens, the detailed information in the image will be seriously lost. Based on this, we designed
a new U-Net structure, namely MRU-Net. As showned in Figure 5, the proposed model is mainly
composed of three modules: a feature encoder–decoder module, a multi-scale feature fusion module,
and a skip connection module.

2.2.1. Encoder–Decoder Structure

In the traditional U-Net structure, each block in the encoder and decoder contains two convolution
layers and a pooling layer, but frequent convolution and pooling will cause the image to lose
more semantic information. As the depth of the network deepens, the phenomenon of gradient
disappearance may occur. In order to avoid the gradient disappearing and speeding up network
convergence, the traditional convolution module is replaced by the Resnet module. In addition,
the convolution operation with a step size of 2 is used to replace the traditional pooling operation
in order to reduce the loss of image information as much as possible. The feature map obtained by
the convolution operation has the same dimensions as the feature map obtained by the traditional
pooling method.
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Figure 6 shows the proposed Res-Block structure. Among them, dropout is used to randomly
inactivate some neurons to prevent overfitting during model training; Batch Normalization (BN) is used
to normalize the activation value of hidden layer neurons, which can prevent the gradient vanishing
due to noise in the retina and can improve the expression ability of the model; each convolutional
layer in the paper uses linear correction units for feature extraction. Relu can effectively reduce the
complexity of the network and increase the convergence rate of the network. Its formula is as follows:

F(x) =

{
0 x ≤ 0
x x > 0

(2)

Figure 5. Improved U-shaped neural network (MRU-Net) structure: the structure of the MRU-Net
model is described in the lower right corner of the figure, including the methods used for
encoder–decoder, feature fusion, and skip connection.

Figure 6. Res-Block structure: each convolution process includes three processes: dropout, BN, and relu.

2.2.2. Feature Fusion Module

Medical image segmentation is different from traditional scene segmentation and has higher
requirements for fine-grained segmentation. The retinal blood vessel image is more complicated,
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and the difference is large in different parts, such as the main part of the blood vessel and microvessel
part. We propose a multiscale dilated convolution [18] fusion method. The fusion method mainly relies
on different dilation rates to provide multiple effective fields of view, thereby detecting segmented
objects of different sizes. In mathematics, the dilated convolution calculation under two-dimensional
signals is shown as follows:

y[i] = ∑
k

x[i + rk]w[k] (3)

Among them, x is the input feature map, w is the filter, and r is the expansion rate,
which determines the stride of sampling the input signal. It is equivalent to convoluting input x
with upsampled filters produced by inserting r − 1 zeros between two consecutive flter values along
each spatial dimension. The schematic diagram of the dilated convolution is shown in Figure 7.

Figure 7. Schematic diagram of dilated convolution.

Context semantic information is mainly determined by the size of the receiving domain. If the
receiving domain can provide more abundant information, then more context information can be used.
Pooling operations are usually used to increase the receptive field to extract image features at different
scales, but the pooling operation also brings loss of image semantic information. In order to overcome
this shortcoming and to effectively extract image features of different dimensions, we have adopted the
dilated convolution operation mentioned above. Dilated convolution can expand the receptive field
arbitrarily without the need to introduce additional parameters and can use the context information of
the image, so it is very suitable for multi-scale image segmentation tasks.

Our proposed multi-scale feature fusion module is shown in Figure 8. Generally, the convolution
of a larger receptive domain can extract more abstract features of a large object, while the convolution
of a small receptive domain is better for small objects. We use three branches to receive the semantic
information in the encoder module. Firstly, the dilated rate in the dilated convolution is set to 1,
2, and 3 to expand the receptive field, thereby extracting feature information of different scales in
the encoder module; then, the image semantic features extracted from different dilated rates are
combined; and finally, in order to reduce the parameters and computational complexity, the Conv
(1 × 1) convolution operation is used to reduce the channel dimension of the feature map to 1/3 of the
original dimension.

2.2.3. Res-Dilated Block

One of the main features of the U-Net model is the addition of a skip connection structure between
the encoder and decoder. Decoding is a process of recovering coding sampling, in which there will
inevitably be loss of information. The addition of a skip connection structure can supplement the
original information in the coding structure to the decoding structure, which helps to supplement the
lost semantic information.

Because the U-Net model is a deep structure, as the depth of the model increases, the extraction
of image feature information will become more abstract. Ibtehaz et al. [19] have shown that, if skip
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connection is directly used to merge low-dimensional image information and high-dimensional
image information, a semantic gap may be generated due to the large difference between image
features, which will affect the segmentation effect. Based on this, in the skip connection, we add
the Res-Dilated module that combines the residual network and dilated convolution. On the one
hand, the high-dimensional representation information of the image is extracted, and on the other
hand, the detailed representation information in the receptive field extraction image is increased.
The Res-Dilated structure is shown in Figure 9.

Figure 8. Feature fusion: first, different dilated convolution rates are used for feature extraction,
and then, a 1 × 1 convolution operation is used to reduce the feature map, thereby reducing
computational complexity.

Figure 9. Res-Dilated block: adding an dilated convolution structure to Resnet.

2.2.4. Loss Function

In U-Net model training, the loss function we use is a binary cross-entropy loss function.
The formula of the loss function is designed as follows:

L = − 1
n

n

∑
i=1

ŷi logyi + (1 − ŷi)log(1 − yi) (4)

Among them, ŷi is the expected output, that is, the real data label, and the value is ŷi ∈ {0, 1};
yi is the actual output, and the value is yi ∈ [0, 1]. In the U-Net network training process, in order to
improve its training performance and to obtain better segmentation results, we use Adaptive Moment
Estimation (Adam) with the Nesterov momentum term as the optimization algorithm of the model
training process. Compared with traditional optimization algorithms, the Adam optimizer has the
advantages of high computing efficiency, small memory consumption, and adaptive adjustment of the
learning rate. It can also better process noise samples and has a natural annealing effect.
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3. Experiment

We used DRIVE and STARE as datasets, where DRIVE contained 40 images (20 training and
20 test images) and STARE contained 20 images (10 training and 10 test images). We extracted the
training image with 48 × 48 pixels, and DRIVE randomly extracts about 190,000 image blocks while
STARE randomly extracts about 181,500 image blocks. The extracted image blocks were used as the
input of the model, 90% of them were used for training data, and 10% of them were used as validation
data. In the test set, the image blocks with pixel values of 48 × 48 were moved with the height and
width of 5 pixels to extract the image blocks in the test set. The number of training epochs was 20,
and the batch size was 64. The environment of this experiment was set up on a Linux system. Network
construction and experimental tests were implemented based on Keras and TensorFlow. The GPU
configuration was GTX 1080Ti. In the experiment, the parameter quantity of the model was 942,020,
and the parameter size was about 3.59 M. The training time of each epoch was about 47 s, the total
training time was about 15.6 min, and the total test time was about 53 s.

3.1. Evaluation Indicators

For retinal blood vessel image segmentation, the pixels in the image were actually divided into
a blood vessel image and a background image. In order to make a qualitative evaluation of the
experimental results of this article, we used several general retinal vessel segmentation performance
evaluation indicators:

• Sensitivity (SE): The ratio of the total number of correctly segmented blood vessel pixels to the
total number of manually segmented blood vessel pixels.

• Accuracy (ACC): The ratio of the total number of correctly segmented blood vessels and
background pixels to the pixels of the entire image.

• precision: The ratio of the actual blood vessel pixels in the segmented blood vessel pixels.
• F1 value: The result of combining sensitivity and precision. When the F1 value is high, the method

is more effective.
• Area Under Curve (AUC): The area under the receiver operating characteristic (ROC) curve.

The larger the value, the better the segmentation effect.

Sensitivity =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 = 2 × Precision × Sensitivity
Precision + Sensitivity

(8)

Among them, TP, TN , FP, and FN respectively represent true positive, true negative, false positive,
and false negative.

Jaccard =
| G ∩ P |
| G ∪ P | (9)

where G is the set of ground truth pixels and P is the set of predicted pixels.

3.2. Experimental Results

3.2.1. Subjective Assessment Results

We performed experiments on two databases: DRIVE and STARE. Several sets of images were
randomly selected from the test results of the two databases. Figures 10 and 11 show the intuitive
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effects of the method in this paper. In the figure, the DRIVE data image and the STARE data image
are respectively from top to bottom. Among them are (a) preprocessed images, (b) gold standard
images manually segmented by experts, (c) images obtained by segmentation using U-Net models,
and (d) images segmented by our proposed method.

DRIVE analysis: the first and third lines in Figure 10 are two normal retinal images. On the
whole, our proposed method achieves better results than the U-Net model, especially in some details,
our method has better segmentation results. The first line in the figure marks some details of the
differences. It can be seen that the result of U-Net model segmentation has a problem of blood vessel
rupture, and our proposed method solves this problem well; as can be seen from the third line of
the figure, compared with the U-Net model, our method has a better effect on the segmentation of
microvessels and the small vessels have been completely retained. The images in the second and
fourth rows of the figure have noise caused by the lesion. The U-Net model is sensitive to noisy data,
resulting in a poor segmentation effect. The segmentation effect proposed in this paper also has a more
effective segmentation effect in the face of noisy data.

Figure 10. Comparison of DRIVE segmentation results: (a) original image, (b) ground-truth, (c) U-Net
segmentation results, and (d) MRU-Net segmentation results.

STARE analysis: the three lines of image data in Figure 11 indicate the comparison of the
segmentation effects of the U-Net model and the method in this paper. In the first and third rows,
U-Net has segmentation breakage and missing vessel segmentation problems; the second line of the
retinal blood vessel image is more complicated, and there are many microvessels. Our proposed
method also has good results in the face of complex blood vessel images. From this, we can see that
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our proposed method have a better solution to the problem of microvessel and blood vessel rupture
and can perform more coherent and effective segmentation of microvessel.

Figure 11. Comparison of STARE segmentation results: (a) original image, (b) ground-truth, (c) U-Net
segmentation results, and (d) MRU-Net segmentation results.

In order to show the effect of our proposed method more intuitively, the ROC curves of the
two data sets shown in Figure 12 are given. From the ROC curve, it can be intuitively seen that the
algorithm in this paper has a higher true positive rate and a lower false positive rate and that the blood
vessel segmentation error is smaller.

(a) DRIVE ROC results (b) STARE ROC results

Figure 12. ROC curve: (a) DRIVE ROC results and (b) STARE ROC results.

3.2.2. Indicator Evalution Results

We conducted two comparative experiments, including (a) model structure comparison and
(b) comparison of methods.

In order to explore the improvement effect of the model, the experimental results of different
model structures were compared and analyzed, aiming to explore the influence of the improvement
of each module on the experimental model. As shown in Figures 13 and 14, Non-FF indicates the
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experimental results without feature fusion, Non-RD refers to the experimental effect without the
Res-Dilated module, and Non-R refers to the experimental results without the Resnet module for
encoder and decoder. Through the comparison of experimental results, it can be found that adding
feature fusion module can effectively improve the sensitivity (SE) of model segmentation and that the
fundus image can be more detailed and effective segmentation; the addition of the Res-Dilated module
and Resnet module can reduce the semantic gap between encoder and decoder and effectively improve
the transmission of features and reduce the loss of features, so that the overall evaluation index of the
model is also improved. On the other hand, although the Resnet and Res-Dilated methods can improve
the model, the most significant improvement is the addition of the feature fusion method. Because the
size of blood vessels in fundus retinal images is different, the motivation of multi-scale information
fusion design is to use different expansion rates to capture multi-scale features, so it can effectively
retain the information of microvessels, thus improving the detection accuracy of vascular edges and
microvessels. From the data point of view, the value of sensitivity (SE) has been significantly improved,
which also reflects that the feature fusion method designed by us improves the segmentation accuracy
of more blood vessels.

Figure 13. Comparison of DRIVE results: comparison of the indexes of different model structures in
our proposed method.

Figure 14. Comparison of STARE results: comparison of the indexes of different model structures in
our proposed method.
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In addition, in order to evaluate the effectiveness of our method, the AUC value, F1 value,
sensitivity, and accuracy of this method and other methods are compared. Tables 1 and 2 show
the comparison results of this method and other methods. In the DRIVE dataset, the AUC, F1,
sensitivity, and accuracy of the proposed method segmentation results reached 0.9837, 0.8444, 0.8618,
and 0.9611, respectively. Among them, the AUC, F1, and SE achieved the best results. Compared
with other methods, the accuracy rate also has a higher improvement effect, which is only slightly
lower than that in [20]. In the STARE dataset, the AUC value, F1 value, sensitivity, and accuracy of
the proposed method segmentation results reached 0.9856, 0.8143, 0.7887, and 0.9662, respectively.
Among them, the AUC and F1 reached the optimums, ACC was slightly lower than Xiao et al. [20],
SE was slightly lower than Lu et al. [21], and good segmentation results are obtained in general.
In addition, the confidence ranges of the accuracy of DRIVE and STARE are [0.9604, 0.9625] and
[0.9647, 0.9671], respectively.

Table 1. Evaluation of DRIVE Results.

Method Year AUC F1 ACC SE Jaccard

U-Net - 0.9740 0.8203 0.9517 0.7978 -
Gao et al.[22] 2017 0.9772 - 0.9636 0.7802 -
Hu et al. [23] 2018 0.9759 - 0.9533 0.7772 -

Xiao et al. [20] 2018 - - 0.9655 0.7715 -
Feng et al. [24] 2019 0.9678 - 0.9528 0.7625 -
Jin et al. [25] 2019 - 0.8237 0.9566 0.7963 -

Guo et al. [26] 2019 0.9806 0.8249 0.9561 0.7891 -
Gu et al. [6] 2019 0.9779 - 0.9545 0.8309 -

Pan et al. [13] 2019 0.9811 - 0.9650 0.8310 -
Sekou et al. [27] 2019 0.9874 0.8252 0.9690 0.8398 0.7026
Cheng et al. [11] 2020 0.9793 - 0.9559 0.7672 -
Orujov et al. [28] 2020 - 0.5500 0.9390 - 0.3800

Our 2020 0.9837 0.8444 0.9611 0.8618 0.7291

Table 2. Evaluation of STARE Results.

Method Year AUC F1 ACC SE Jaccard

U-Net - 0.9827 0.7917 0.9648 0.7128 -
Dasgupta et al. [29] 2017 - 0.8133 - 0.7872 -

Hu et al. [23] 2018 0.9751 - 0.9632 0.7543 -
Xiao et al. [20] 2018 - - 0.9693 0.7469 -
Lu et al. [21] 2018 0.9801 - 0.9628 0.8090 -

Feng et al. [24] 2019 0.9700 - 0.9633 0.7709 -
Jin et al. [25] 2019 0.9832 0.8143 0.9641 0.7595 -

Sekou et al. [27] 2019 0.9849 0.7929 0.9705 0.7695 0.6682
Tamim et al. [10] 2020 - 0.7717 0.9632 0.7806 -
Orujov et al. [28] 2020 - 0.5335 0.8650 - 0.3677

Our 2020 0.9856 0.8143 0.9662 0.7887 0.6864

We performed t-tests for each performance index, and the experimental results are shown in
Table 3. From the results of the t-test, we can see that, compared with other methods, our method has
significant differences in the performance of AUC, F1, and SE. In addition, we compare the operation
time of the model, and the results are shown in Table 4. Our method takes about 15.6 min to train the
model and 2.3 s to segment an image in the test set, which is totally acceptable in the medical field.
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Table 3. t-test result of each index (p < 0.05 significant).

Data Set AUC F1 ACC SE

DRIVE 0.0060 0.0002 0.0956 5.14 × 10−6

STARE 0.0216 0.0454 0.1787 0.0173

Table 4. Computation time for processing one image.

Methods Time GPU

[30] 92 s Tesla K20c
[31] 0.64 s -
[32] 1.3 s Tesla K40
[33] 0.5 s -
[24] 0.063 GTX1070
[34] 70 s -
Our 2.2 s GTX 1080Ti

4. Discussion

In this paper, the application of a full convolution neural network in fundus blood vessel
segmentation is studied. Traditional machine learning methods cannot effectively segment low-contrast
microvessels, and there are problems of low segmentation accuracy and sensitivity. Based on
this, an improved U-Net model is proposed, which not only realizes the information fusion of
high-dimensional features and low-dimensional features but also improves the efficiency of feature
use. In this study, experiments were conducted on DRIVE and STARE fundus image databases,
and image blocks were randomly extracted to increase the amount of network training data to avoid
network overfitting.

In terms of network structure design and parameter setting, based on the traditional U-shaped
network, the network is defined as a structure block connected by upsampling or downsampling
operations. According to the characteristics of small amount of experimental data, this study randomly
extracts image blocks to reduce the dimension of image data, so as to reduce the complexity of the
network model. Only three downsampling and three upsampling operations are used. In order to
make full use of the feature information extracted from the network and to minimize the loss of feature
information, the convolution operation with step size of 2 is used to replace the traditional pooling
operation and each structural block is changed to Res-Block. In order to enhance the generalization
ability of the network and to better identify the small vessel structure, dropout, batch normalization
layer, and relu activation function were added before each convolution layer. Then, in order to
better extract the context semantic information of the image and to effectively segment the vascular
structure of different scales, we propose a multi-scale dilation convolution fusion method based
on dilation convolution. In addition, in order to solve the semantic gap between the encoder and
decoder, we propose a Res-Dilated block to replace the skip connection in the traditional U-Net model.
As shown in Figures 10–13, the traditional U-shaped network can be improved to better segment the
blood vessels with central line reflection and the microvessels with low contrast, so that the sensitivity,
F1 value, accuracy, and area under ROC curve (AUC) index of this research algorithm are improved.

In order to more intuitively compare the improvement effect of the U-Net model and the
segmentation performance of blood vessels, this study compared a variety of deep learning methods
including U-Net model. In general, compared with the original U-Net model, the MRU-Net model
has less noise points in the vessel probability map. From the details, the results of this study can
better segment the small vessels and retain the integrity of the vessels, and the continuity of the
vessels is better. In order to observe the influence of lesions on vascular segmentation more intuitively,
by comparing with the experimental results of the original U-Net model, it can be seen from Figure 10
that the MRU-Net network proposed in this study can better segment blood vessels and is less affected
by the lesion area. Compared with other methods, it can be seen from the detection indicators that our
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method achieves an optimal effect in three indicators of F1, SE, and Jaccard in the DRIVE dataset and
that the AUC index is only slightly lower than that in the literature [27]. Although the ACC index is
better than most methods, it needs to be improved. In the STARE dataset, our method achieves the
best results in AUC, F1, and Jaccard; the ACC index is only slightly lower than in the literature [20,27];
and SE is slightly lower than in the literature [20].

Our main contribution is to propose a simple and effective multi-scale information fusion module,
which uses the parallel convolution layer with different dilated rates to sample the feature map and to
get the feature information of different scales, which improves the detection performance of vessel
edges and microvasculature. In order to visually show the contribution of this paper, we compare and
analyze the effect of feature fusion and Resnet. The results on the DRIVE dataset are shown in Table 5.
It can be seen from Table 5 that feature fusion has a good effect on model improvement.

Table 5. Comparative analysis of feature fusion and Resnet.

DRIVE FF Resnet

AUC 0.9825 0.9773
F1 0.8420 0.8167

ACC 0.9618 0.9548
SE 0.8310 0.7905

It can be seen from the intuitive results and indicator evaluation results that our proposed
method has excellent effects on retinal vessel image segmentation. For complex blood vessel images,
standards close to manual segmentation by experts can be obtained. In addition, we invited five
experts with medical image processing background to evaluate the subjective results. Among them,
four experts think our method is effective for the segmentation of fundus images, and another expert
points out that some of our segmentation results are excessive segmentations hoping to be improved
in future research.

5. Conclusions

Using artificial intelligence to assist doctors in segmenting retinal blood vessel images is helpful
to doctors quickly diagnosing the disease and has important practical significance. We propose
an improved U-Net model structure for the current fundus vessel image segmentation with poor
segmentation effect and difficult microvessel segmentation. The model structure adds a residual
learning unit to the encoder structure and decoder structure of the traditional U-Net model, which is
more conducive to the transmission and retention of information; a feature fusion module is added in
the transition phase of the model’s encoding structure and decoding structure, which aims to extract
feature information of different granularities in the original image, which is more conducive to retaining
fine-grained image features, so that tiny blood vessels can be better segmented; the Res-Dilated module
is introduced in the skip connection, which can make the decoding structure network supplement
the original information while reducing the semantic gap between the encoding and decoding stages.
Through experimental verification analysis on two datasets of DRIVE and STARE, our proposed
method has an excellent segmentation effect. This proposed method achieved 0.9611, 0.8618, and 0.9837
in DRIVE and 0.9662, 0.7887, and 0.9856 on STARE for respectable accuracy, sensitivity, and AUC
performance metrics. Compared with the current methods, our method has better performance on
the whole.

Although our method has good performance, it still needs further improvement. Our method can
effectively segment microvessels, but some of them may still be discontinuous. In addition, based on
the current experimental conditions, we only tested on DRIVE and STARE datasets, and more clinical
data are needed for verification in the future. Our future work is to continue to optimize the effect
of retinal microvascular segmentation. On the one hand, contrast between the blood vessel and the
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background is increased by optimizing the preprocessing steps; on the other hand, the segmentation
effect is improved by continuously improving the model.
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Abstract: Brain hemorrhage is a severe threat to human life, and its timely and correct diagnosis
and treatment are of great importance. Multiple types of brain hemorrhage are distinguished
depending on the location and character of bleeding. The main division covers five subtypes:
subdural, epidural, intraventricular, intraparenchymal, and subarachnoid hemorrhage. This paper
presents an approach to detect these intracranial hemorrhage types in computed tomography
images of the head. The model trained for each hemorrhage subtype is based on a double-branch
convolutional neural network of ResNet-50 architecture. It extracts features from two chromatic
representations of the input data: a concatenation of the image normalized in different intensity
windows and a stack of three consecutive slices creating a 3D spatial context. The joint feature
vector is passed to the classifier to produce the final decision. We tested two tools: the support
vector machine and the random forest. The experiments involved 372,556 images from 11,454 CT
series of 9997 patients, with each image annotated with labels related to the hemorrhage subtypes.
We validated deep networks from both branches of our framework and the model with either of two
classifiers under consideration. The obtained results justify the use of a combination of double-source
features with the random forest classifier. The system outperforms state-of-the-art methods in
terms of F1 score. The highest detection accuracy was obtained in intraventricular (96.7%) and
intraparenchymal hemorrhages (93.3%).

Keywords: intracranial hemorrhage; computer-aided diagnosis; computed tomography; deep
learning; random forest

1. Introduction

Intracranial hemorrhage (ICH) relates to bleeding occurring within the intracranial vault.
Possible reasons include, i.a., vascular abnormalities, venous infarction, tumor, trauma effects,
therapeutic anticoagulation, and cerebral aneurysm [1–4]. Regardless of the actual cause, a hemorrhage
constitutes a major threat. Therefore, an accurate and rapid diagnosis is crucial for the treatment process
and its success. ICH diagnosis relies on patient medical history, physical examination, and non-contrast
computed tomography (CT) examination of the brain region. CT examination enables bleeding
localization and can indicate the primary causes of ICH [5]. There are several challenges related
to the ICH diagnosis and treatment: the urgency of the procedure, a complex and time-consuming
decision-making process, an insufficient level of experience in the case of novice radiologists, and the
fact that most emergencies occur at nighttime. Thus, there is a significant need for a computer-aided
diagnosis tool to assist the specialist. Nevertheless, the accuracy of automated hemorrhage detection
should be sufficiently high for medical purposes.
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Depending on the brain’s anatomic site of bleeding, several ICH subtypes can be distinguished
(Figure 1). Subdural hemorrhage (SDH) refers to bleeding between the dura and the arachnoid,
whereas the epidural subtype (EDH) involves bleeding between the dura and the bone. Both frequently
result from traumatic injuries. Intraparenchymal hemorrhage (IPH) is bleeding within the area of brain
parenchyma. A hemorrhage inside the ventricular system is known as intraventricular (IVH). Finally,
blood within the subarachnoid space indicates subarachnoid hemorrhage (SAH) [1,5]. One of the
leading causes of SAH is a ruptured cerebral aneurysm [3,4]. Hemorrhage detection and classification
are challenging due to similarities between the various ICH subtypes (e.g., SDH vs. EDH) and subtle
differences between healthy and bleeding tissues. These are barely noticeable to the inexperienced
observer. Figure 1 presents examples of selected CT slices featuring the physiological brain appearance
and ICH subtypes under consideration.

(a) Healthy brain (b) SDH (c) EDH (d) IPH (e) IVH (f) SAH

(g) IPH, SAH,
SDH

(h) IPH, IVH,
SAH

(i) IPH, IVH (j) IPH, SAH,
SDH

(k) SAH, EDH (l) SDH

Figure 1. Sample non-contrast computed tomography (CT) slices with various intracranial hemorrhage
(ICH) subtypes in the top row (a–f). Yellow arrows indicate the areas of hemorrhage. Complex cases
are shown in the bottom row: combinations of multiple ICH subtypes simultaneously (g–k) or barely
visible ICH symptoms (l).

In recent years, we have observed increasing interest among researchers in deep learning methods
for image classification and segmentation. Convolutional neural networks (CNNs) have gained
popularity due to their reliability and efficiency, becoming significant factors in medical diagnosis
support [6,7]. In general, CT scans are 3D structures composed of a stack of 2D slices. Thus, operating
on image voxels is possible, but may require large computational complexity. A technique to avoid the
latter is to either process slices individually or employ the 3D context in a less complex way. Several
deep learning approaches to intracranial hemorrhage detection and classification have been proposed,
most of them in the last three or four years. Different studies address either one-class detection related
to a single class of ICH present in a CT scan [8–10], multi-class classification distinguishing ICH
subtypes [11–15], or ICH pixel area detection within individual images [7,16,17]. The popularity of
pre-trained CNN models can be observed, for example for VGG [8], MobileNet [15], AlexNet [18],
and ResNet-18 [14].

Nguyen et al. [11] reported the results of a combination of a convolutional neural network and
a long short-term memory (LSTM) for hemorrhage classification. The slice-wise pre-trained CNN
(ResNet-50 and SE-ResNeXt-5 architectures) extracted features from every image, while the LSTM
linked them across slices. Arbabshirani et al. [9] proposed a CNN architecture, employing two fully
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connected layers and 37,084 training images to achieve ICH presence detection. The achieved accuracy
was equal to 95%. Danilov et al. [19] designed a ResNexT CNN model for classification between five
ICH subtypes, using the Adam optimizer and a dataset of 674,258 CT slices. The accuracies were
equal to 82.8%, 81.8%, 82.0%, 89.3%, and 83.5% for EDH, SDH, SAH, IVH, and IPH, respectively.
Ye et al. [12] employed a joint 3D CNN and recurrent neural network (RNN) to detect ICH and
recognize its five subtypes. The accuracy of detecting any bleeding exceeded 98%, yet in individual
subtypes it varied between 75% and 96%. Ker et al. [20] proposed a 3D CNN for various IPH subtype
classification: healthy brain, SAH, IPH, acute subdural hemorrhage (ASDH), and brain polytrauma
hemorrhage (BPH). The dataset included 399 volumetric CT scans (approx. 12,000 images). Two types
of classification were performed: two-class (normal vs. a specific ICH) and four-class (normal vs.
all considered ICH subtypes). The authors employed the F1 score to assess their approaches and
obtained 70.6–95.2% for the two-class cases and 68.4% for the multiclass analysis. Toğaçar et al. [18]
proposed a combination of a CNN, autoencoder network, and a heat map method. The dataset
was processed using an autoencoder network with heatmaps generated based on every image.
The outcome subjected to the augmentation process constituted the input to the pre-trained CNN
(AlexNet architecture). The classification employed a support vector machine (SVM). The authors
reported 98.6% accuracy, 98.1% sensitivity, and 99.0% specificity for detecting any hemorrhage
using a dataset consisting of 2101 images with augmentation. Dawud et al. [21] compared the
results of the AlexNet CNN-SVM combination and two conventional CNN architectures (CNN
and pre-trained AlexNet model). The first one produced evaluation metrics better than traditional
architectures: 93% accuracy, 95% sensitivity, and 90% specificity for the ICH presence detection over a
database containing 12,635 images. Burduja et al. [22] proposed an integration of two neural network
architectures to perform ICH subtype classification: ResNeXt-101 and bidirectional long short-term
memory (BiLSTM). They compared model performance with evaluation metrics calculated based on
annotations collected from three radiologists. The obtained accuracy exceeded 96% in ICH subtypes
with a weighted mean log loss equal to 0.04989 in the test dataset. However, reduced sensitivity
over highly imbalanced data suggests that the F1 score would reflect the system’s performance
more realistically.

In this study, we propose a method for detecting various subtypes of intracranial hemorrhage
(SDH, EDH, IPH, IVH, and SAH) in the brain CT scans based on a double-branch CNN for feature
extraction and two different classifiers. According to the literature reports, binary detectors of
individual subtypes frequently feature higher precision than multiclass approaches [8,10,12,15,23].
Moreover, a definitive decision from the multiclass framework is often partially wrong since a single
slice can present more than one subtype of the ICH. Thus, we use individually trained instances
of the proposed architecture to detect each ICH subtype separately. Before feature extraction and
classification, preprocessing is applied, including a skull removal algorithm. Three intensity windows
are employed to transform the original CT slice. We concatenate the resulting grayscale images to set
up inputs for the double-branch CNN. In the first branch, the method considers different-window
images to gain more information from a single input. The second branch analyzes the slice in a local
3D context using the neighboring slices. A ResNet-50 architecture is implemented and trained in both
paths to extract features subjected to the classification automatically. The classification itself involves
two tools: the SVM and the random forest (RF). We compare the results of both classifiers in the
detection of each ICH subtype. We also verify the efficiency of individual ResNet-50 networks from
both branches. For the training and assessment, we employ a public database containing 372,556 head
CT slices with the corresponding ground-truth labels indicating the presence of either SDH, EDH, IPH,
IVH, or SAH. Finally, we compare our approach to the state-of-the-art reference methods described in
the introduction. The employment of two various representations of data and the use of an external
classifier constitute the main contributions of our study. Both spatial and intensity-related features
feed a classifier through a joint vector. Approaches incorporating spatial information can be found in
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the ICH detection domain; however, to the best of our knowledge, none of them have used a hybrid
technique similar to the one proposed in this study.

The remainder of the paper is structured as follows: Section 2 describes the materials and
methods, including preprocessing, double-branch feature extraction, and the classification process.
In Section 3, we present the results of intracranial hemorrhage classification using the proposed tool
with different settings and compare them to the state-of-the-art methods. Section 3 also discusses the
results, whereas Section 4 concludes the paper.

2. Materials and Methods

2.1. Materials

The database employed in this study includes 372,556 head CT slices acquired from 9997 patients
and 11,454 complete CT series. The data are a part of the public Radiological Society of North
America (RSNA) database used for the intracranial hemorrhage detection competition [24,25].
The database contains images presenting various types of bleeding: subdural, epidural, intraventricular,
intraparenchymal, and subarachnoid. Many CT slices are not assigned to any of those types;
some contain more than one hemorrhage. A ground-truth label determining the presence of every
ICH subtype is attached to each case. The class distribution within the database is given in Table 1.
The number of slices per scan varies among patients, although most of the CT studies present the
whole brain area, not only its middle section. We prepared the data for the analysis by sorting the
patient ID, CT study, and series, based on standard DICOM (Digital Imaging and Communications in
Medicine)attributes.

Table 1. Class distribution within the database.

Subdural Epidural Intraparen- Intraventri- Subarachnoid
None(SDH) (EDH) Chymal (IPH) Cular (IVH) (SAH)

24,912 1482 13,666 19,026 18,353 316,082

2.2. Methods

The proposed framework involves three stages of data processing (Figure 2): (1) preprocessing
and preparing the input data for deep learning, (2) automated extraction of features using two
CNN branches, and (3) two-class classification based on the joint feature vector. As shown in
Figure 2, an individual deep learning and classification model is dedicated to each ICH subtype,
so the preprocessing is the only step common for all five models.

2.2.1. Preprocessing

The data preprocessing starts with applying dedicated intensity windows to the CT image,
followed by the skull removal algorithm. We use three intensity windows (in Hounsfield
units—HU): L = 100, W = 200 (subdural window), L = 600, W = 2800 (bone window), and L = 40,
W = 80 (brain window). Images after the intensity windowing are normalized to the 0–1 range.
Then, we determine the region of interest (ROI) embracing the cranial area as a bounding box framing
the largest binary object in the subdural image after binarization using the Otsu method [26]. The skull
removal process is performed on the subdural-window image by extracting pixels with the highest
intensities corresponding to the bone regions and replacing them with zero-valued pixels. Due to soft
tissue outside the skull, the morphological opening is applied to extract the intracranial area.

After the skull removal, the data preparation splits into two branches related to the architecture
of the following CNNs. In either branch, preprocessing concludes with preparing RGB images for
the feature extraction part of the CNNs. In the left branch in Figure 2, the 3D image structure is
composed of three windowed slices with skull pixels replaced with zeros. The right branch employs
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spatial information by combining three subsequent CT slices from the current scan, all in the subdural
window and with a removed skull. The i-th slice under consideration is put into the green (G) channel,
while the red (R) and blue (B) channels contain slices preceding and following the i-th one, respectively.
Figure 3 shows the results of subsequent preprocessing stages for three sample CT slices.

Figure 2. General scheme of a proposed hemorrhage detection model. The same architecture applies
for each classification task (five ICH subtypes vs. healthy brain). The preprocessing is a common step
for all five models.

2.2.2. Double-Branch-CNN Feature Extraction

To automatically extract features from the prepared RGB images, we use a double-branch
convolutional neural network. Both paths employ similar pre-trained ResNet-50 architecture consisting
of a set of convolutional and identity blocks (Figure 4) [27]. ResNet is a representative deep CNN
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yielding efficient results in the image classification domain. As a deeper network, it allows the
extraction of more advanced features. However, a large number of layers might cause vanishing
gradients and accuracy to decrease. The skip-connections in ResNet architecture minimize that
risk [27]. The network accepts input data of a 224 × 224 × 3 size, so the images prepared during
preprocessing are resized to match the required format.

(a)

(b)

(c)

Figure 3. Illustration of the results of subsequent preprocessing stages in three sample CT slices (a–c).
Columns (left to right): raw CT slice before region of interest (ROI) extraction, subdural-window image,
brain-window image, bone-window image (first three before and next three after skull removal), a stack
of three CT-windowed images (Branch #1), a stack of three neighboring slices (Branch #2).

We trained both ResNet networks separately using our training data. As mentioned in Section 1,
we tested both ResNets to assess their performance (note Experiment #1 described in Section 3).
However, in our model, we have taken the features extracted by either branch after the average pooling
layer and concatenated them to set up a joint feature vector for classification.

The training of either network was performed using the adaptive moment estimation optimizer
(Adam). We applied image augmentation, including data rotation (±15◦), scaling (0.8–1.25),
shear (0◦–45◦ horizontally and vertically), and translation (±25 pixels horizontally and vertically).
Due to the dominance of non-hemorrhage slices within the database, we performed class distribution
weighting in each ICH subtype, leading to different numbers of images for classification into categories
(this concerned both the balancing of class sizes and the application of weighted cross-entropy
loss during training). In each experiment, we randomly partitioned the database into the training,
validation, and test subsets with a 80%:10%:10% ratio in a patient-wise manner. The patient-wise
assigning of datasets secures the presence of data from each patient in a single subset only. That makes
the framework robust against the impact of a subject’s slice-to-slice similarity on the classification
accuracy. The network parameters, including the mini-batch size (8) and the number of epochs (60),
were chosen experimentally. The training was terminated automatically if the validation loss did not
decrease for ten epochs.

After the training, features from the last block preceding the ResNet-50’s fully connected layer
were taken from either branch and concatenated. The joint feature vector containing 4096 elements
was subjected to the classification process.
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(a)

(b) (c)

Figure 4. Illustration of the double-branch convolutional neural network (CNN) based on the ResNet-50
architecture (a). The feature extraction CNN is covered by a gray background. Dashed frames surround
the full ResNet-50 structures. Rightmost blocks refer to the classification stage. Convolutional and
identity blocks from ResNet-50 are presented in detail in (b,c), respectively

2.2.3. Classification

For classification purposes, we involved and compared two classifiers: the support vector machine
and random forest.

SVM [28] is a well-recognized tool that is efficient in regression and classification, especially in
two-class tasks. It aims to separate samples from different classes in the feature space with a surface
that maximizes the margin between them using optimization methods. We used the SVM classifier
with a linear kernel [29] due to its superior performance compared to other kernels under consideration,
including Gaussian and RBF. As a result, the tool provides probabilities of a given ICH subtype’s
presence in the image. Hemorrhage is confirmed if the probability exceeds 50%.
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RF [30] is an ensemble classifier that parallelly uses multiple models of decision trees (DTs).
RF takes the decision of the majority of the trained DTs as its final choice. Single trees are trained
in parallel using various subsets of a given dataset (bootstrapping) followed by an aggregation,
together known as bagging. The training data are divided into bootstrap sample data and out-of-bag
(OOB) data that allow RF for cross-validation. RF is considered more complex in interpretation than
DTs, yet more convenient in respect of hyperparameter adjustment. We set the maximum number of
splits to n − 1, where n is the number of observations in the training sample with the number of trees
equal to 200.

3. Results and Discussion

3.1. Evaluation Metrics

We performed several experiments to train and evaluate our models. In each case, the classification
performance was assessed using the following metrics:

• accuracy:

ACC =
TP + TN

TP + FP + TN + FN
· 100%, (1)

• sensitivity (recall, true positive rate):

TPR =
TP

TP + FN
· 100%, (2)

• specificity (true negative rate):

TNR =
TN

TN + FP
· 100%, (3)

• F1 score (Dice index):

F1 =
2 · TP

2 · TP + FP + FN
· 100%, (4)

where TP, TN, FP, and FN denote the number of true positive, true negative, false positive, and false
negative classifications, respectively.

3.2. Experimental Results

In Experiment #1, we tested both full ResNet-50 architectures (corresponding to two branches of
the feature extraction stage) separately. The concatenation of features and SVM or RF classification
were omitted. The results of Experiment #1 are presented in Table 2. The best results were achieved for
the intraventricular hemorrhage, whereas the worst performance was observed in the case of epidural
hemorrhage. Neither branch outperformed the other in all cases.

In Experiment #2, the model described in Section 2.2 was prepared and validated with the
concatenation of double-branch features and classification employing both the SVM and RF. Table 3
shows the obtained metrics for each ICH subtype and classifier. Similarly to Experiment #1, the best
performance was observed in intraventricular hemorrhage, whereas the poorest outcomes were
noted in epidural hemorrhage. RF produced higher quality measures in most categories except EDH.
Moreover, in terms of accuracy and F1 score, the RF classifier outperformed any ResNet model from
Experiment #1.
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Table 2. Summary of evaluation metrics obtained in Experiment #1 for individual ICH subtypes and
ResNet models.

ICH Subtype Feature-Extraction Branch ACC (%) TPR (%) TNR (%) F1 (%)

Subdural (SDH) Branch #1 88.7 87.6 89.9 88.9
Branch #2 86.9 86.3 87.6 87.2

Epidural (EDH) Branch #1 58.6 56.2 61.0 57.5
Branch #2 66.4 47.7 85.1 58.6

Intraparenchymal (IPH) Branch #1 92.4 91.7 93.1 92.2
Branch #2 92.1 91.7 92.5 92.0

Intraventricular (IVH) Branch #1 95.5 94.9 96.0 95.1
Branch #2 95.7 96.0 95.4 95.6

Subarachnoid (SAH) Branch #1 88.0 87.3 88.8 87.8
Branch #2 88.2 91.0 85.4 88.7

Table 3. Summary of evaluation metrics obtained in Experiment #2 for individual ICH subtypes
and classifiers.

ICH subtype Classifier ACC (%) TPR (%) TNR (%) F1 (%)

Subdural (SDH) SVM 87.1 83.7 90.7 87.0
RF 89.1 86.7 91.7 89.1

Epidural (EDH) SVM 76.9 73.4 80.1 75.3
RF 74.3 68.6 79.9 72.7

Intraparenchymal (IPH) SVM 91.9 93.1 90.7 91.7
RF 93.3 93.9 92.6 93.1

Intraventricular (IVH) SVM 96.0 97.1 94.9 95.9
RF 96.7 96.7 96.7 96.6

Subarachnoid (SAH) SVM 86.8 86.1 87.6 87.6
RF 89.7 90.0 89.4 89.9

3.3. Discussion

The proposed classification tool works efficiently either as individual ResNet-50 networks
or a double-branch deep learning architecture. There is a balance in the results produced by
standalone single-branch ResNets with mostly slight differences. That suggests that both input
data representations contribute almost equally to the proper hemorrhage classification. The IVH is the
best-classified subtype featuring accuracy and F1 scores exceeding 95% in both branches. The worst
performance can be observed in the EDH (accuracy below 70%, F1 score below 60%).

In a double-branch CNN architecture supported by SVM and RF classifiers, IVH and EDH
classification performs most and least efficiently, respectively. The random forest has a slight advantage
over the support vector machine except for the EDH. However, keep in mind that the EDH produces
classification results significantly lower than the other subtypes. The subtype-classification-assessment
ranking reflects the order yielded by individual ResNets. Nonetheless, double-branch architecture
improves classification in each subtype. The gains in accuracy and F1 score differ between
subtypes—from ca. 1–2% in SDH, IPH, IVH, and SAH to over 10% in EDH, where the room for
growth is the largest. The consistency of improvement throughout various ICHs leads us to conclude
that the employment of an external machine learning classifier taking advantage of the double-source
deep features is profitable in ICH detection.

Improved performance of the proposed double-branch architecture can be associated with
the use of multi-source features for classification. The fusion of features extracted by networks
addressing specific image data representations provides a broader range of information. A slice-to-slice
neighborhood context appears to be particularly relevant. Considering the entire CT study arranged in
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the correct order, hemorrhage should be observed in subsequent slices. Thus, such spatial information
improves the cognitive capabilities of the automated system.

Slice-wise brain hemorrhage detection frameworks generally operate on the entire CT slices
or, like our approach, perform some primary ROI extraction to prepare the data for the analysis.
The central part of processing is left to the deep learning tool with a limited impact of the operator
on the feature extraction. Some targeted localization of selected portions of the image could likely
improve the detection and classification scores. Differences between various hemorrhage subtypes are
associated with their location and shape. Taking the above into account in more specifically dedicated
procedures might benefit classification accuracy improvement. Hemorrhages are frequently caused by
mechanical head injuries. Thus, the skull’s external area could be examined as well, apart from the
deep learning analysis.

The lowest metrics obtained in EDH classification raise a question on the imbalance between
classes in a single classification task. The number of epidural cases is an order smaller than the other
subtypes. That is probably the case in this particular bleeding, and the class weighing employed
during training is not sufficient to resolve this problem. However, there is no such correlation
throughout all subtypes. The IVH with the top classification accuracy (correctly detecting 29 out of
each 30 cases) is not the best-represented hemorrhage; second-best IPH (14 out of 15 correct) is the
second-worst-represented subtype of ICH. Thus, the character of a particular hemorrhage appearance
in CT has a crucial influence on the detection capabilities. Similarities between different bleeding
symptoms and features are also possible (recall that the dataset of negative samples in each subtype
classification also contains images with all other hemorrhages). Some complex cases represent a
combination of multiple subtypes simultaneously. Therefore, correct classification is undoubtedly a
challenging task.

To put our study in context, we gathered the F1 score results from corresponding state-of-the-art
ICH detection methods [12,16,19,22] along with our double-branch RF model (DB-RF) in Table 4.
The F1 score is a reliable measure in highly imbalanced datasets since it ignores the true negatives.
The selected methods addressed the detection of at least a half of our hemorrhage subtype set
(Chang et al. [16] operate on a joint SDH+EDH class and omit the IVH) and were published from
2018 to 2020. Most importantly, similarly to our approach, they detected hemorrhages in CT slices,
not in the entire 3D series. Danilov et al. [19] and Burduja et al. [22] used the RSNA competition
database. We used provided data and assessment results to determine the F1 score wherever it was
not given explicitly.

Table 4. Comparison of classification F1 scores obtained using state-of-the-art methods [12,16,19,22]
and our double-branch random forest (DB-RF) model. All values in (%).

Method Dataset Size (No. of Slices) SDH EDH IPH IVH SAH

Chang et al., 2018 [16] 536,266 {86.3} 93.1 — 77.2
Ye et al., 2019 [12] 76,621 84.0 72.0 93.0 87.0 78.0
Danilov et al., 2020 [19] 401 series × 32–64 slices 54.1 62.3 81.3 82.2 61.8
Burduja et al., 2020 [22] 870,301 slices 71.8 48.9 83.8 88.4 73.2
Our approach (DB-RF) 372,556 89.1 72.7 93.1 96.6 89.9

4. Conclusions

In this paper we addressed the detection of various intracranial hemorrhage types by employing
double-branch deep feature extraction and machine learning classifiers. The results justify the
idea of searching for relevant features in different representations of the data (normalized image
in multiple intensity windows and 3D spatial context) and their concatenation for classification
using random forest. The system offers the highest detection efficiency in intraventricular and
intraparenchymal hemorrhage.
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Abstract: Electronic Medical Records (EMRs) can be used to create alerts for clinicians to identify
patients at risk and to provide useful information for clinical decision-making support. In this
study, we proposed a novel approach for predicting Amyotrophic Lateral Sclerosis (ALS) based on
comorbidities and associated indicators using EMRs. The medical histories of ALS patients were
analyzed and compared with those of subjects without ALS, and the associated comorbidities were
selected as features for constructing the machine learning and prediction model. We proposed a
novel weighted Jaccard index (WJI) that incorporates four different machine learning techniques to
construct prediction systems. Alternative prediction models were constructed based on two different
levels of comorbidity: single disease codes and clustered disease codes. With an accuracy of 83.7%,
sensitivity of 78.8%, specificity of 85.7%, and area under the receiver operating characteristic curve
(AUC) value of 0.907 for the single disease code level, the proposed WJI outperformed the traditional
Jaccard index (JI) and scoring methods. Incorporating the proposed WJI into EMRs enabled the
construction of a prediction system for analyzing the risk of suffering a specific disease based on
comorbidity combinatorial patterns, which could provide a fast, low-cost, and noninvasive evaluation
approach for early diagnosis of a specific disease.

Keywords: Electronic Medical Record (EMR); disease prediction; Amyotrophic Lateral Sclero-
sis (ALS); weighted Jaccard index (WJI)

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a multi-syndrome and fatal neurodegenerative
disorder that results in progressive loss of bulbar and limb function [1]. The prevalence of
ALS is uniformly distributed across most countries [2]. According to the ALS Association,
the incidence rate of ALS is approximately between 1.8 and 2 per 100,000 person-years.
Death from ALS occurs from respiratory failure, generally within 2–3 years from the onset
of the bulbar symptom and 3–5 years after the limb onset [3]. For the majority of patients
with ALS, it usually takes 9 to 15 months from symptom onset to definitive diagnosis by two
or three specialists [1]. The diagnostic processes for ALS are very complicated compared
to other diseases. Several steps are required to ensure that all medical evaluation items
are completely performed. These processes include neurological examination and a series
of diagnostic tests such as electromyography (EMG), magnetic resonance imaging (MRI),
blood and urine tests, etc. However, there is yet no definitive diagnostic testing standard
for ALS. Different medical evaluations are always performed after disease progression in
different combinations of suggestive clinical signs of pathologies. Currently, the etiology
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of sporadic ALS is unclear, and there is no cure for ALS. Treatment is mainly aimed at
delaying the progression of the disease and not at eliminating the symptoms [4,5]. Hence, if
at-risk subjects of ALS can be identified during the early stages, they can be advised to focus
on strengthening their immune system and on improving the environmental conditions in
which they live. Early prognosis may slow the progressive deterioration of ALS symptoms.
Since there is a near two-year lead-time interval prior to definitive diagnosis of ALS, the
symptoms and comorbidities could provide important clues for ALS prediction. Hence, we
consider Electronic Medical Records (EMRs) as useful for discriminating ALS and non-ALS
patients in the early stages, and the developed classifier could serve as an alternative
diagnostic approach or an early warning signal for doctors and ALS patients.

This study was aimed at identifying high-risk Amyotrophic Lateral Sclerosis (ALS)
subjects in the early stage using a novel detection mechanism solely based on EMRs. The
novel prediction index used in this study is a modified version of the Jaccard index (JI). The
traditional JI is a statistical value for comparing the similarity and diversity between two
different sample sets. It measures the similarity between two limited sample groups. The
value is directly proportional to the similarity between the two groups [6]. Studies have
demonstrated that it is more effective to consider the weighted coefficients on similarity
analysis for specific problems [7].

To enhance the traditional JI indicator and the evidence of different populations
with an identical disease possessing high comorbidity similarities, we proposed a novel
weighted JI (WJI) that can effectively reflect the comorbidity distribution of EMRs, instead
of using the binary status of comorbidity; further, compared with traditional approaches,
we formulated indices to provide accurate prediction results. The details and experimental
results are described in the following sections.

Electronic Medical Records

EMRs are medical history of patients systematically collected by hospitals and/or
insurance institutions; they contain general information on clinical practices, such as
medical diagnoses and associated treatments. Wide usage of EMRs can reduce healthcare
expenses and medical errors and can improve patients’ health [8]. An EMR system has the
potential to improve healthcare delivery and to reduce medical costs by enhancing data
management capabilities and by mining valuable information from the comprehensive
clinical practice database [9]. According to research reports, EMRs play an important role
in medical services, such as clinical decision-making support, medical quality monitoring,
disease prediction model construction, clinical trial analysis, and treatment personalization.

There are many reports on the different applications of EMRs. Several studies have
focused on expanding the clinical contexts of genomic diversities based on EMR-linked
genetic data. Denny et al. revealed the associations among rare diseases and genetic effects
in relation to prognosis, treatments, drug responses, and comorbidity risk [10]. Based on
EMRs, other studies have identified patterns among multiple comorbidities and defined
non-random associations between diseases; using different methodologies for feature
analysis and similarity detection among these patterns, they found various comorbidity
modes [11]. Freund et al. proposed predictive models based on historical insurance claim
data to identify and explore patterns of multimorbidity in new customers to detect the
high risk of future hospitalizations for constructing intervention management for primary
care [12]. Kirchberger et al. identified patterns of comorbidity and multimorbidity by ana-
lyzing prevalence figures, logistic regression models, and exploratory factor analysis [13].
The objective of this study was to explore patterns of comorbidity and multimorbidity in
the elderly population using different analytical approaches. The report confirmed the
existence of certain co-occurring diseases in elderly persons that were not caused by chance.
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In some studies, a prediction model featuring patient similarities based on a large
amount of medical data was constructed. Different approaches are used for evaluating
patient similarities and clustering patient groups, such as analyzing the similarities or
distinguishing characteristics among a variety of feature components from patient data.
The commonly used Euclidean vector adopts the cosine angle, also known as the cosine
similarity measure, between two patients’ feature vectors to define the associated patient
similarity metric [14]. For example, Tashkandi et al. and Lee et al. evaluated the patient sim-
ilarities in the ICU dataset (MIMIC-III) using the cosine-similarity-based patient similarity
measure (PSM) [15,16].

Taiwan has an internationally well-known National Health Insurance Research Data-
base (NHIRD) [17] that maintains general information of clinical practices in all hospital
clinics and integrates the medical records of all Taiwanese citizens. Using this database,
researchers can integrate, extract, and convert long-term historical longitudinal medical
records from multi-aspect and multi-function databases into a required specification format
according to a patient’s diagnosis records, medication, and hospitalization information for
specific medical applications. In this study, the similarities between the disease records of
the control and experimental groups were calculated to identify those with high-risk factors
through EMRs. In the following sections, we describe the construction of the prediction
model using the proposed WJI and verify the effectiveness of the novel proposed indicator.

2. Materials and Methods

2.1. Source of Materials

The data used in this study were anonymous medical data authorized by the NHIRD
(Taiwan), consisting of one million insured people collected between 1996 and 2013 (IRB:
104-5430B). The disease classification code followed the international disease classification
standard ICD-9-CM, which contains 17 chapters and 2 supplementary categories. The
17 major chapters can be further labeled and classified into 143 mid-level classification and
999 individual disease classes. The information used in this study was mainly based on
an analysis of the disease codes at the individual- and the mid-levels. According to the
definition of the disease group, the individual-level classification was represented by a
three-digit code for a single disease, and each mid-level classification represented a disease
group. Hence, 999 disease categories were defined based on individual-level classification;
these individual disease categories were grouped into 143 disease groups, which were
defined as mid-level classification groups.

2.2. Medical Histories and Feature Extraction Analysis

Firstly, positive and negative data groups were defined. The positive and negative
data groups were composed of subjects with and without ALS, respectively. The positive
subjects were obtained directly from the one million NHIRD medical database, and the
relatively larger number of negative subjects were retrieved from the same database based
on matching gender and age attributes according to the positive subjects.

The experimental data obtained from the NHIRD database underwent data cleaning
and data integration to yield two complete sets of medical diagnosis records for both groups.
Furthermore, the subjects for the different disease codes for each group were counted.
Statistical analysis was performed on the different disease codes to select associated disease
comorbidities for both the experimental and control groups for constructing the prediction
systems.

Figure 1a,b are simple schematic diagrams of the disease set corresponding to the ex-
perimental and control groups. These two diagrams were designed for illustration; they do
not represent actual medical data contents. The data represent the comprehensive disease
records of the positive subjects (diagnosed with the ALS disease) within two years before
diagnosis. The total number of subjects suffering from a specific disease in the experimental
or control group was noted, and the comorbidity codes were preliminarily screened by
evaluating a minimum support threshold setting. A minimum support threshold value
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represents the minimum number of subjects or the minimum percentage of total subjects
within the experimental group. In other words, comorbidities which were present in less
than a certain percentage of subjects within the experimental group were discarded from
the feature set in this study.

  

(a) (b) 

Figure 1. Illustration of the disease set from (a) the experimental group and (b) the control group: on the right part of the two
tables are disease records of each subject, and each disease is displayed within the defined interval binary representation of
0 and 1. The left side is the disease set of the experimental/control group and the total number of subjects suffering various
diseases. DiseaseEG and DiseaseCG refer to disease classification codes in the experimental and control groups, respectively.
NumberEG and NumberCG refer to the total number of subjects in the experimental and control groups suffering from a
certain disease. DEGi and DCGi refer to the ith disease classification code in the experimental and control groups, respectively.
NEGi and NCGi refer to the total number of subjects in the experimental/control group suffering from the ith disease under a
classification code. EGSj and CGSj refer to the jth subject in the experimental and control groups, respectively.

Figure 2 is a schematic diagram of the comorbidity feature set. For the disease code
sets from both the experimental and control groups, the same lead-time interval and an
identical minimum support threshold setting were applied to define the associated disease
records for comorbidity analysis. To identify highly associated comorbidities with ALS,
the classification codes of all the comorbidities were further analyzed by evaluating the
corresponding odds ratios (ORs) for ALS. In other words, the OR of each comorbidity was
calculated to evaluate the chances of a comorbidity associated with ALS. A set of comorbid-
ity codes with ORs > 2 was constructed and defined as an associated comorbidity feature
set for ALS. Since the associated comorbidity set of ALS was retrieved from the disease
set of the original experimental group, after the OR analysis, the selected comorbidities
must be a subset from the disease set of the experimental group. Therefore, the number
of subjects for the filtered associated diseases in the associated comorbidity feature set
should be the same as that of the subjects within the original experimental group. This
process may remove background noise (unassociated comorbidities) from the constructed
prediction model. For example, the disease code sets of both the experimental and control
groups may simultaneously contain a seasonal cold; hence, a small OR could be obtained
and no specific correlation was detected between seasonal cold and ALS. Thus, following
the statistical significance analysis of all comorbidities, the system defined a comorbidity
feature set with strong association with ALS, which can explain the strong relationship
between the comorbidity codes and ALS.
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Figure 2. Illustration of the comorbidity feature set: DiseaseFS refers to comorbidity classification
codes with odds ratios > 2. NumberEG refers to the total number of subjects in the experimental group
suffering from a specific disease. The number of subjects suffering from a specific disease in the
comorbidity feature set is the same as the number of subjects in the disease set in the experimental
group (NumberEG).

2.3. Proposed Patient Prediction Module

The proposed diagnostic model is mainly based on the similarity measurement of
comorbidity patterns between testing subjects and known ALS patients. From the experi-
mental and control data groups, we initially calculated the odds ratios for each comorbidity
(within a two-year interval) for measuring the association between comorbidities and ALS
disease. Based on odds ratio analysis, comorbidities with strong associations were selected
and constructed as an important comorbidity feature set, and the proposed WJI similarity
measurements were further calculated for the experimental group vs. the comorbidity
feature set and for the control group vs. the comorbidity feature set. A binary outcome
prediction model for supporting clinical decision making was trained on the calculated
WJI indicators of the experimental (ALS) and control (non-ALS) groups versus the ALS-
associated comorbidity feature set. Once the WJI indicators of the experimental and control
data groups were trained and constructed as a prediction model, only the selected asso-
ciated comorbidities of testing subjects were considered and evaluated according to the
WJI similarity measurement and compared to the previously trained thresholding value.
The ALS prediction module was constructed and described as the following. Obtaining the
comorbidities for each subject in the experimental or control groups, and its corresponding
WJI similarity was calculated with respect to the defined associated comorbidity feature
set. Subsequently, a Z-score standardization procedure was performed for similarity mea-
surement and for training and construction of the probability prediction model. Excluding
the subjects in the experimental and control data groups, for which the data were utilized
as the training dataset (80% of samples), the data of the remaining subjects were applied as
the testing data (20% of samples).

In this study, four different machine learning models were utilized for data training:
Logistic Regression (LR) [18], Support Vector Classifier (SVC) [19,20], random forest [21],
and eXtreme Gradient Boosting (XGBoost) [22]; five-fold cross validation was adopted to
verify the accuracy and prediction stability of the trained models. All four machine learning
techniques are discrimination supervised learning models that learn from the training
dataset and build a model to make predictions for unseen data in different classification
applications. Both the LR and SVC are prediction models commonly used in traditional
medical applications. The random forest and XGBoost, which are the most popular machine
learning models in recent years, are both ensemble learning approaches designed by
integrating a variety of learning algorithms to achieve better prediction capabilities.
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2.4. Jaccard Index

The traditional Jaccard index (JI) defines the similarity between two different sample
sets, A and B. The index is shown in Equation (1):

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (1)

where |A ∩ B| represents the number of overlapped items and |A ∪ B| represents the
number of union items. Regardless of the occurrence frequency of each item (such as disease
classification code), “1” and “0” denote existing and nonexisting conditions, respectively.
This similarity indicator confers equal importance of co-occurring items.

However, to predict a target disease through the comorbidity analysis, the co-occurrence
frequencies of different comorbidities should possess different weights for disease eval-
uation. For example, pregnant women with high blood pressure-related diseases would
have a relatively higher probability of premature delivery than those who suffer from skin
diseases. However, the traditional JI can only mark different comorbidity codes as “1” or
“0,” ignoring the incidence of certain important comorbidities.

To strengthen the occurrence frequency of various comorbidities from the EMRs of
known patients, we proposed an improved WJI to replace the traditional JI for better
evaluation of the similarities between two comorbidity sets. This novel index utilizes
the proportional incident rate for corresponding weight calculation and enhances the
accuracy of the similarity measurement between positive and negative training datasets.
The WJI-related terminologies are defined in Table 1; several examples are illustrated in the
supplementary document I.

Table 1. Number of patients and corresponding weights for AG∗ and BG∗.

AG∗
DiseaseA dA1 dA2 . . . dAi−1 dAi

NumberA NA1 NA2 . . . NAi−1 NAi

WeightA
NA1

∑ NAi

NA2
∑ NAi

. . . NAi−1
∑ NAi−1

NAi
∑ NAi

BG∗
DiseaseB dB1 dB2 . . . dBj−1 dBj

NumberB NB1 NB2 . . . NBj−1 NBj

WeightB
NB1

∑ NBj

NB2
∑ NBj

. . . NBj−1

∑ NBj−1

NBj

∑ NBj

AG: set of comorbidities for patient group A within the defined interval before the patient is diagnosed with
specific target disease. AG∗: top i frequently co-occurring diseases content set of AG. DiseaseA: comorbidities
in patient group A. dAi : ith comorbidity in group A. NumberA: number of patients with a specific comorbidity
in group A. NAi : number of patients with the ith comorbidity in group A. WeightA: corresponding weights of
specific comorbidities in group A. NAi

∑ NA : the corresponding weight of the ith specific comorbidity in group A. BG:
the comorbidity records for group B within the same interval as AG. BG∗: top j frequently co-occurring diseases
content set of BG. DiseaseB: comorbidities in patient group B. dBj: jth comorbidity in group B. NumberB: number
of patients with a specific comorbidity in group B. NBj: number of patients with the jth comorbidity in group

B. WeightB: corresponding weights of specific comorbidities in group B.
NBj

∑ NB : corresponding weight of the jth

specific comorbidity in group B.

There are two different types of comorbidities, and different methods are used to
calculate the corresponding WJIs. For the first type, the comorbidity classification codes
appeared exclusively in either set AG∗ or BG∗. When a comorbidity occurred only in
AG∗, the corresponding weighting coefficient for the specific disease code was obtained by
dividing the number of patients with such a comorbidity within AG∗ by the total number
of patients with each type of comorbidity in AG∗. Similarly, the weighting coefficient
algorithm can be applied to any single comorbidity occurring in BG∗ exclusively.

In contrast, the second type of comorbidity code occurred within AG∗ and BG∗
simultaneously. In this case, the corresponding weights of the co-occurring comorbidity
codes were calculated by taking proportional measurements in each patient group as the
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first type and then by taking an average from both AG∗ or BG∗ as the final corresponding
weights for the common comorbidities. The formula is denoted as Equation (2):

Weight =

⎧⎨
⎩

NAi
∑ NAi

or NBi
∑ NBi

, i f dAi �= dBj
NAi

∑ NAi
+

NBj
∑ NBj

2 , i f dAi = dBj

(2)

The WJI was then obtained by summing up all the weighting coefficients correspond-
ing to AG∗ and BG∗ of the commonly occurring comorbidity codes and then by dividing
by the sum of all the weights of the disease classification codes within AG∗ and BG∗. A
few examples are given in the Supplementary Materials.

2.5. Scoring Methods

To evaluate the proposed WJI similarity-based ALS prediction system, two different
approaches including the traditional JI similarity (without weighting concern) and the
scoring mechanism (score) were constructed for comparison. The scoring method is similar
to the symptom indexing chart used in the past for the initial diagnosis of a specific disease.
Different approaches were used for estimating the risk of suffering a target disease. A
common approach was to design a score sheet for evaluating disease symptoms. Another
common approach was to administer questionnaires. For example, the International
Prostate Symptom Score, the Edinburgh Postnatal Depression Scale, and kidney disease
include scores sheet to evaluate associated symptoms [23–25]

In the following experimental analysis, the scoring index was defined by taking
the comorbidity classification codes as the symptom feature set; subsequently, a related
weighted proportional score was given according to the historical number of patients.
Finally, the weighted scores of the comorbidity records of the test subject within a specific
duration were summed up, and the score for the test subject was obtained. The score acts
as a preliminary prediction of the possibility of the subject suffering the disease in the near
future. The simple illustration in Table 2 shows the conception of the intuitive scoring
mechanism defined in this study.

Table 2. Simple illustration of scoring mechanism.

DiseaseFS NumberFS Weight Patient Score

dA1 4 4
20 = 0.20 V

dA2 6 6
20 = 0.30

dA3 10 10
20 = 0.50 V

Total 20 1 0.20 + 0.50 = 0.70

The left side is the disease classification codes and the total number of subjects in the
comorbidity feature set; the related weighted proportional score was given according to the
historical number of patients. The right side is the final score of the test subject, which is
the sum of the weighted scores of comorbidity records of a subject within a specific period.
DiseaseFS is the disease classification codes in the comorbidity feature set. NumberFS is the
total number of subjects in the comorbidity feature set suffering from a certain disease.
Weight is the corresponding weights of specific comorbidities. Patient Score is the final score
of a test subject.

2.6. Amyotrophic Lateral Sclerosis (ALS)

In this study, a total of 162 ALS patients were identified, and their corresponding
EMRs were retrieved from the selected governmental medical database composed of one
million data (IRB: 104-5430B). To confirm that the initial subjects were indeed ALS patients
(excluding suspected cases), we only considered patients who were hospitalized due to the
disease. Hence, only 71 subjects were selected for this study (male–female ratio = 45:26).
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Among them, 41 were hospitalized directly upon diagnosis; the remaining 30 subjects were
hospitalized after some time following the diagnosis. The average period of hospitalization
for ALS following the first diagnosis was 2 years.

The 71 confirmed subjects were considered the experimental group, and their historical
disease records within 2 years of diagnosis were defined as ALS_EG. The total number of
subjects suffering from each disease was recorded as the disease set of the experimental
group, and the comorbidity classification codes were preliminarily screened and defined
as ALS_EG_FEA. To further analyze and compare the different parameter settings, the
comorbidity classification code of ALS_EG_FEA that was found among more than 10% of
the total number of patients (71) was extracted and defined as ALS_EG_FEA0.1.

The subjects of the control group were retrieved from the database based on the age
and ratio of each gender. A total number of 399 subjects without the ALS disease were
selected as the control group (male–female ratio = 249:150). According to the governmental
database in Taiwan, the average onset age of the retrieved ALS subjects is 51 years old.
Therefore, the historical medical records between 49 and 51 years old were retrieved for
each control group subject and defined as ALS_CG. All the various disease records for the
control group were enumerated and counted, and the corresponding comorbidity codes
were preliminarily screened and defined as ALS_CG_FEA. To analyze and compare the
different parameter settings, a comorbidity code occurring among more than 10% of the
399 subjects was additionally extracted and defined as ALS_CG_FEA0.1.

Finally, we calculated the odds for each comorbidity code within both ALS_EG_FEA
and ALS_CG_FEA and divided them to obtain an OR for explaining the strength of specific
comorbidities associated with ALS. In other words, the OR identifying a specific comorbid-
ity was calculated. When OR > 2, the associated disease code was selected and defined
as an important feature for subsequent identification; the comorbidity set collected was
defined as ALS_SELECT_FEA. These associated comorbidities were defined as the feature
set of the ALS comorbidities that were used to explain the important correlation between
certain comorbidities and ALS diseases. Further, to select a feature disease set with stronger
representation, a screening condition based on a proportion greater than 10% of the total
subjects was established and defined as ALS_EG_FEA0.1 and ALS_CG_FEA0.1. Similar
procedures for calculating the ORs for each disease code from ALS_EG_FEA0.1 and for
selecting comorbidities with ORs > 2 were performed for subsequent identification, and
the comorbidity set was defined as ALS_SELECT_FEA0.1.

Because there were two different comorbidity feature sets, it was necessary to construct
two different ALS prediction models for at-risk patient recognition. The first prediction
system focused on each subject within ALS_EG and ALS_CG and adopted the WJI similarity
analysis, with respect to ALS_SELECT_FEA. The similarity between each subject within
the comorbidity feature set was calculated and normalized, following which a probability
prediction model was constructed. Subsequently, the model was used to predict the
probability of a subject suffering from ALS. Finally, five-fold cross validation was adopted
to verify the accuracy and prediction stability of the trained model. In contrast, the second
prediction system used a disease occurrence rate >10%, that is, ALS_SELECT_FEA0.1, which
was obtained using ALS_EG_FEA0.1 and ALS_CG_FEA0.1 for significance analysis. The
final prediction results were obtained by analyzing each subject of ALS_EG and ALS_CG
using ALS_SELECT_FEA0.1.

2.7. Model Evaluation Index

The model score, precision, sensitivity, specificity, accuracy, F1 score, and area under
the receiver operating characteristic curve (AUC) were utilized as the evaluation indicators
for comparing different predictive models [26]. A true positive (TP) is the number of
subjects in the positive class correctly predicted as belonging to the positive class; a true
negative (TN) is the number of subjects in the negative class correctly predicted as belonging
to the negative class; a false positive (FP) is the number of subjects in the negative class
incorrectly predicted as belonging to the positive class; and a false negative (FN) is the
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number of subjects in the positive class incorrectly predicted as belonging to the negative
class.

Precision is defined as TP/(TP+FP).
Sensitivity, also referred to as the recall rate, is defined as TP/(TP+FN).
Specificity is defined as TN/(FP+TN);
Accuracy was the accuracy rate of prediction based on the testing data; it is defined as

(TP+TN)/(TP+FP+TN+FN); the model score is the accuracy rate of prediction obtained
from the training data itself.

F1 score refers to the harmonic average of the precision and the recall rate.
AUC refers to the area under the receiver operating characteristic curve, which rep-

resents a statistical value of the predictive ability of the classifier; the larger its value, the
better the performance of the prediction model.

3. Results and Discussion

We analyzed comorbidities of ALS disease with a strong association through odds
ratio analysis. The selected comorbidities were categorized into the individual level and
mid-level. Both selected comorbidities with strong associations in different levels are
shown in the Supplementary Materials. We also compared pair similarities among the
disease set of the experimental group vs. control group and thee comorbidity feature set
vs. control group. The value of JI similarity between the disease set of the experimental
group and control group is always larger than the JI similarity between the comorbidity
feature set and control group. It is due to the comorbidity feature set removing a lot of
unassociated diseases by statistical analytics. Hence, several common diseases such as
the seasonal flu and common cold were removed and the similarity indicator decreased.
Similarly, the similarity measurement for the WJI indicator possesses the same decreasing
trend. From Table 3, it can be observed that the differentiation value of JI indicator (0.22) is
less than the WJI indicator (0.43). It is mainly due to each disease code in the feature set
weighted in the WJI indicator according to the disease population, and the difference was
enlarged due to unevenly distributed subjects. Therefore, the WJI indicator provided a
better differentiating factor than the JI indicator in general. It is an important property to
provide a better prediction performance for discriminating ALS patients and health subjects.
The similarities in the individual disease and mid-level clustered disease code levels among
ALS_EG_FEA, ALS_CG_FEA, and ALS_SELECT_FEA are shown in Tables 3 and 4. For
different disease code levels (either individual or mid-level codes), the differentiation
values also preserved an identical trend between the WJI and JI indicators.

Table 3. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA, ALS_CG_FEA,
and ALS_SELECT_FEA (individual-level classification).

Individual-Level
Classification

Jaccard Index Weighted Jaccard Index

Disease Set from
Control Group 2

Disease Set from
Control Group 2

Disease Set from
Experimental Group 1 0.55 0.87

Comorbidity Feature Set 3 0.33 0.44

Differentiation 0.22 0.43
1 Disease set from the experimental group: ALS_EG_FEA; 2 Disease set from the control group: ALS_CG_FEA;
3 Comorbidity feature set: ALS_SELECT_FEA.

155



Appl. Sci. 2021, 11, 1289

Table 4. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA, ALS_CG_FEA,
and ALS_SELECT_FEA (mid-level classification).

Mid-Level Classification Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.75 0.98

Comorbidity Feature Set 3 0.43 0.53

Differentiation 0.32 0.45
1 Disease set from experimental group: ALS_EG_FEA; 2 Disease set from control group: ALS_CG_FEA; 3 Comor-
bidity feature set: ALS_SELECT_FEA.

Tables 5 and 6 show the pair similarities of the individual disease code level and middle-
clustered disease code level among constrained disease feature groups (ALS_EG_FEA0.1 vs.
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 vs. ALS_CG_FEA0.1). From Tables 3–6, the
differences in the WJI between the disease set of the experimental and control groups are
higher than those of the JI. Again, the main reason for this is that the WJI involves weight
coefficient calculations and possesses more detailed associations than the JI. When the
number of subjects suffering from an identical disease between the two sets was large,
the relative weight coefficient for the specific comorbidity and the degree of influence
became associated. However, when the number of subjects suffering from diseases under
various classification codes was large but the number of subjects was small, the relative
weight coefficient for the specific comorbidity was reduced and the corresponding impact
decreased. The traditional JI similarity is based solely on the presence or absence of a
disease classification code; it does not consider the difference in the prevalence of the
associated comorbidity codes. The binary counting of 0 and 1 was used to analyze the
comorbidity relationship. Therefore, the value of the WJI provides better distinguishability
than that using JI.

Table 5. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA0.1,
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 (individual-level classification).

Individual-Level
Classification

Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.48 0.65

Comorbidity Feature Set 3 0.19 0.23

Differentiation 0.29 0.42
1 Disease set from the experimental group: ALS_EG_FEA0.1; 2 Disease set from control group: ALS_CG_FEA0.1;
3 Comorbidity feature set: ALS_SELECT_FEA0.1.

A high similarity between the comorbidity set of the experimental and control groups
implies a small difference between the two sets. This might be due to too many common
comorbidity codes within the similarity analysis. For example, seasonal flu is a common
disease in both groups; therefore, this disease code has no association in distinguishing
between both two groups. Hence, we used statistical verification to eliminate disease
codes that failed to satisfy the significance analysis. A new feature set with the associated
disease codes was constructed for comparison, which showed a larger difference between
the associated feature set and the original disease code set of the control group. The
tables show that the difference in the similarities according to the WJI was larger than
that using the JI. Therefore, through our proposed method, two original feature sets with
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no discriminative attributes could be improved by constructing the associated feature
set to realize a better prediction model. The similarity measurement according to the
middle-clustered classification codes was generally higher than that of the individual-level
classification; this is mainly because the individual-level classification representing each
disease code was a specific disease, and the mid-level clustered classification implied
that each code represents a group of similar diseases. A disease group contains many
individual disease codes, which increase the similarity measurement in relation to the
middle-clustered classification models.

Table 6. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA0.1,
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 (mid-level classification).

Mid-Level Classification Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.61 0.73

Comorbidity Feature Set 3 0.27 0.34

Differentiation 0.34 0.39
1 Disease set from the experimental group: ALS_EG_FEA0.1; 2 Disease set from the control group: ALS_CG_FEA0.1;
3 Comorbidity feature set: ALS_SELECT_FEA0.1.

According to the individual-level and middle-clustered classification of disease codes
and different parameter settings, to construct the training data and prediction system,
each subject of ALS_EG and ALS_CG was analyzed based on the similarities between two
different comorbidities. The verification of the prediction results is shown in Tables 7–10.

Tables 7 and 8 show the prediction results obtained by training ALS_EG, ALS_CG,
and ALS_SELECT_FEA. In addition to the XGBoost, compared with the JI and traditional
scoring analysis, the WJI improved the performance of the training models and prediction
results. Table 7 shows the prediction results obtained using individual disease code-level
classification for model training. Excluding the XGBoost, the prediction results of the
other three machine learning models based on the WJI was higher than that of the JI and
traditional scoring analysis in terms of sensitivity, accuracy, F1 score, and AUC value. The
results obtained by applying the middle-clustered classification for model training are
shown in Table 8. In addition to the XGBoost, all the training and prediction results of the
other three machine learning models based on the WJI outperformed the JI and traditional
scoring in terms of model score, precision, sensitivity, specificity, accuracy, F1 score, and
AUC value.

According to the WJI training verification results shown in Tables 7 and 8, the per-
formance of the XGBoost based on the individual disease code-level classification was
generally worse than that of the mid-level clustered classification, unlike the other three
machine learning models. The comparisons between the individual- and mid-level clus-
tered disease codes for the three machine learning models were analyzed as follows. In
the mid-level clustered classification, the models trained using the SVC and random forest
approach could achieve a high accuracy of 0.808, sensitivity of 0.729, specificity of 0.886,
and AUC value of 0.844. However, the individual-level classification outperformed the
mid-level clustered classification. The SVC and random forest models achieved an accuracy
of 0.837, sensitivity of 0.788, specificity of 0.857, and AUC values of 0.907.
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Tables 9 and 10 show the various verification results for ALS_EG, ALS_CG, and
ALS_SELECT_FEA0.1. It can be observed that the four machine learning models based
on the WJI generally outperformed the JI and traditional scoring analysis. Table 9 is the
prediction result obtained from using the individual disease codes for model training. For
model training, the four different machine learning models incorporating the WJI yielded
scores better in terms of precision, accuracy, and AUC values compared with the JI and
traditional scoring analysis. Table 10 shows the results obtained using the middle-clustered-
level classification for model training. The SVC and random forest learning models based
on the WJI, rather than the JI and traditional scoring indicator, achieved better performance.

The comparison of the performance of the WJI-based training models for the individ-
ual disease code and the middle clustered-level classification for the four different machine
learning models are shown in Tables 9 and 10. For the mid-level clustered classification,
the SVC learning model achieved a high accuracy of 0.765, sensitivity of 0.702, specificity
of 0.829, and AUC value of 0.807. However, the individual-level classification was more
effective than the middle-clustered-level classification. Among the four different learning
models, the LR and random forest achieved an accuracy of 0.781, sensitivity of 0.759,
specificity of 0.788, and AUC value of 0.832.

Tables 7–10 show that the learning models based on the WJI generally outperformed
the ones based on the JI and traditional scoring analysis. Specifically, Tables 7 and 8 show
that the prediction results for each subject in ALS_EG and ALS_CG against ALS_SELECT_FEA
were better than that in ALS_SELECT_FEA0.1. In addition, the results obtained at the
individual disease code level (shown in Table 7) were better than those of the mid-level
clustered classification (Table 8). Because each mid-level clustered code represented a group
of similar diseases, the corresponding weighted coefficients might be diluted during feature
training, resulting in reduced effectiveness in distinguishing the various comorbidity
features. This leads to poor performance during model training and cross-verification
prediction.

In this study, ALS was applied as the target disease for validating the proposed
method. As a matter of fact, different multivariate models were considered initially, but
the performance was not good and not reported in this study. It is believed that the many
comorbidities and few ALS subjects were the main reasons causing unsatisfactory results.
Therefore, we proposed the novel similarity-based approach instead of the statistical mod-
eling approach. To validate the proposed efficient and effective prediction systems, four
different machine learning models were adopted. To further analyze the prediction models
with different parameter settings, two different levels of comorbidity, namely individual
disease codes and mid-level clustered disease codes, were applied for constructing the pre-
diction model and for comparing the system performance. To enhance the effectiveness of
the proposed model, in addition to the proposed WJI similarity, the traditional JI similarity
and a scoring mechanism were applied.

According to our survey results, our proposed machine learning method using WJI
indicators is the first approach based on Electronic Medical Records for ALS prediction.
Previous ALS diagnosis mainly focused on clinical biomarkers, biological biomarkers, ge-
netic/proteomics biomarkers, and neuroimaging indicators [27]. Several machine learning
techniques have been extensively applied to assist ALS diagnosis using the mentioned
biomarkers. Among all different biomarker usages, using a neuroimaging approach
achieved the best performance of higher than 80% sensitivity in general [28,29]. How-
ever, these diagnostic approaches often occurred after serious symptom onset and led to
diagnostic delay. How to apply noninvasive approaches with outstanding sensitivities
and specificities at an early stage has become an important issue for ALS patients, and
such a diagnostic model could help at-risk ALS patients to be recruited into earlier clinical
trials. One advantage of our proposed method is that using individual EMRs as features to
compare with comorbidity patterns of ALS patients is a noninvasive, cost-free, and efficient
approach for early detection. However, no single test could provide a definitive diagnosis
of ALS so far. Several diseases such as multiple sclerosis and Parkinson’s disease hold simi-
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lar symptoms to ALS, and these symptoms may be initially neglected by non-ALS-trained
physicians. Hence, the proposed approach only provides an early alert for physicians.
Complete neurologic examinations for muscle weakness, spasticity, and atrophy are still
required for precise diagnosis of ALS.

Through historical disease records, each subject in the experimental and the control
groups was analyzed, and training was performed using two different sets of comorbidity
features for constructing the prediction model. We proposed the novel WJI with four
different machine learning techniques to construct an ALS prediction system. Since there is
no diagnostic model adopting EMRs for ALS prediction, we applied both the traditional
JI indicator and scoring mechanism for comparison. Furthermore, two different levels of
comorbidity, individual-level disease codes and mid-level clustered disease codes, were
applied for model construction and comparison of system performance.

For the ALS prediction model, the new WJI indicator-based system performed better
than the traditional JI indicator and scoring mechanism-based methods. Predicting ALS
disease using the WJI indicator and individual-level disease codes could yield a high
accuracy of 83.7%, sensitivity of 78.8%, specificity of 85.7%, and AUC value of 0.907. When
the mid-level clustered disease codes were used, the performance was slightly degraded,
showing an accuracy of 80.8%, sensitivity of 72.9%, specificity of 88.6%, and AUC value
of 0.844.

From these results, it can be observed that the learning models were more effective
when the individual-level disease codes rather than the mid-level clustered classification
were used. Thus, the WJI is more effective for model construction based on individual-
level disease codes. This is because the mid-level clustered disease codes can dilute the
weighted relationship and can reduce the effectiveness of the comorbidity features. The
difference between the WJI and JI is that the former enhances the uneven relationship of
comorbidities. When a large proportion of subjects in both the experimental and control
groups suffer from an identical disease, the relative weighting coefficients and degrees of
influence increase. In contrast, when the number of disease codes for various diseases is
large but only a small number of subjects suffer from diseases under the same codes, the
relative weighting coefficient and corresponding impact are reduced. The traditional JI
similarity indicator is based on either the presence or absence of a disease code. It does not
consider the different proportions and prevalence of the selected comorbidities. As only
the binary conditions of 0 and 1 can be applied to evaluate comorbidities, the value of WJI
could yield better distinguishability than the JI indicator.

4. Conclusions

In this study, the original feature sets without discriminative attributes can be im-
proved by the novel proposed indicator and the newly modified feature sets can be trained
effectively to realize a good prediction system. Although the data size is small in this
study, the prediction performance with accuracy rates higher than 80% was comparable
to traditional neuroimaging-based approaches. The proposed ALS prediction model is a
time-saving and convenient noninvasive way to detect and evaluate at-risk ALS subjects.
However, many mimicking diseases holding similar symptoms are likely to cause similar
historical EMRs, and this would increase the false positive rate in general. Nevertheless,
early alerts for physicians to identify at-risk ALS patients is one of the main goals of this
study, and the proposed WJI indicators can be applied to construct a prediction model
for a defined disease with specific comorbidities. Based on the prediction results of the
personal disease records, detecting and treating potential patients in the early stages can
be achieved. Therefore, the model can strengthen the prevention of specific diseases, can
prolong survival years, and can improve the quality of life. It can be used to obtain an
efficient in silico analytical tool to effectively aid medical applications for detecting or
evaluating difficult diseases. By exploring a large number of medical records to improve
the preventive medical applications, we hope that the proposed method can enable doctors
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to make good decisions in terms of medical treatment and risk assessment for precise
diagnosis in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
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3 Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland;
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Abstract: The paper describes a computer tool dedicated to the comprehensive analysis of lung
changes in computed tomography (CT) images. The correlation between the dose delivered during
radiotherapy and pulmonary fibrosis is offered as an example analysis. The input data, in DICOM
(Digital Imaging and Communications in Medicine) format, is provided from CT images and dose
distribution models of patients. The CT images are processed using convolution neural networks,
and next, the selected slices go through the segmentation and registration algorithms. The results of
the analysis are visualized in graphical format and also in numerical parameters calculated based on
the images analysis.

Keywords: lung cancer; CT images; CNN; pulmonary fibrosis; radiotherapy

1. Introduction

Lung cancer remains one of the most critical oncology challenges, with more than
2.2 million new cases diagnosed and almost 1.8 million deaths in 2020. As the five year
survival rate hardly reaches 20% even in well-developed countries, screening, diagnostic,
and treatment improvement is needed. The use of IT tools in lung cancer diagnostics
has been an important research topic for many years [1]. With growing computational
power and artificial intelligence (AI) solutions, developing large-scale screening programs
using computed tomography (CT) is possible. Early detection of lung cancer increases
patients’ chances to obtain an effective, radical treatment like surgery, systemic chemo-
and immuno-therapy, or radiotherapy (RT). Radiation oncology itself uses sophisticated
IT technologies to plan and deliver the treatment most safely and assess the early and
late toxicity.

Radical radiotherapy is an essential part of lung cancer treatment in all patients not
eligible for radical surgery because of disease extent or medical comorbidities. It is also a
necessary post-surgical adjuvant in some cases (positive surgical margins or lymph nodes)
and plays a crucial role in palliative treatment. Despite the clinical scenario, the aim is to
deliver a high radiation dose to the tumor cells, sparing normal tissue nearby (so-called
OARs (organs at risk). Modern delivery techniques like IMRT (intensity modulated radia-
tion therapy), VMAT (volumetric arc technique), or SBRT (stereotactic body radiotherapy),
sophisticated particle modalities (protons or heavy-ions), and positioning accuracy (cone
beam-CT imaging, respiratory motion gating) let us precisely conform the radiation beam
and meet the OARs’ dose constraints’ criteria. However, there is still an issue of late and
acute toxicity, especially concerning the lung tissue. Ten to 30% of patients develop a
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subacute radiation-induced pneumonitis (RIP) observed within six months post-treatment
or radiation-induced lung fibrosis (RILF) as late toxicity (6–12 months after conventional
RT) [2,3]. In clinical practice, the assessment of RILF is based on various grading scales
including the Common Terminology Criteria for Adverse Events (CTCAE), Radiation
Therapy Oncology Group (RTOG) criteria, or LENT-SOMA(EORTC) scoring. They mainly
focus on clinical presentation, partially supported by imaging finding [4]. Some other
semi-quantitative fibrosis scoring methods like the Warrick score [5] are commonly used
in connective tissue diseases. Nevertheless, in oligosymptomatic patients, the presented
scales do not meet radiation oncologists needs, and it seems necessary to use precise,
numeric assessment of CT changes based on density values. This approach confirms the
time evolution and the impact of mid- and high-radiation doses on RILF [6]. However,
in the era of modern dynamic RT delivery methods, it is important to focus on the impact
of the lowest doses (0–5 Gy), which is not clear yet.

This study aims to develop a software tool that unifies the workflow of state-of-the-art
solutions for an automatic, fast, large-scale radiomic comparison of lung cancer patients’
CT images after radiotherapy. The future clinical application is to observe subtle tissue
density changes (represented by Hounsfield unit values) in anatomically corresponding
parts of lungs in time. Our elaborated system supports the analysis of the association
between the tissue changes and the dose delivered to the patient and other dosimetric
and clinical factors. The analysis of many real patient cases can help define more precise
dose and dose-volume constraints for future RT to prevent affecting lung morphology and
function. Initially, the proposed tool was dedicated to analyzing the RILF only. However,
currently, during the COVID-19 pandemic, the system can be used to measure post-COVID-
19 pulmonary fibrosis.

The paper is organized in the following way. After the Introduction, the next section
presents the general structure of the proposed system. Section 3 describes the preprocessing
module, which utilizes a CNN to select CT slices, which contain lungs and can be used
for further processing. Segmentation and registration modules are presented in Section 4.
Next, implementation remarks are provided in Section 5. The last sections presents the
conclusion and the possible application in COVID related problems.

2. Structure of the System

Analyzing CT slices provides information about the tissue density. It is expressed in
different shades of grey in relation to its X-ray absorption. The full scale is in the range
of (−1000, +3095). The example values of the Hounsfield scale for different matter are
presented in Table 1.

Table 1. Hounsfield scale.

Matter Hounsfield Scale Range

Bone +400 → +1000
Soft tissue +40 → +80

Water 0
Fat −60 → −100

Lung −400 → −600
Air −1000

Having information about the Hounsfield value of a given pixel, we can decide
about the item located at this point according to the scale presented in Table 1, and the
classification of pulmonary fibrosis can be quantified.

The proposed system consist of several main blocks:

• The import of DICOM (Digital Imaging and Communications in Medicine) files
(including radiation doses),

• The election of CT slices containing lungs,
• The reduction of the number of slices in the moving set (after radiation series),
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• Lung segmentation,
• Affine lung registration,
• Elastic lung registration,
• Calculations on preprocessed images,
• The export of results to a CSV file.

The following sections present the most important modules, and finally, some imple-
mentation details will be described. The data flow of the proposed system is presented
in Figure 1. The input is a set of CT examinations of a patient in the DICOM format.
First, this set of CT images is fed into the preprocessing CNN module in order to select
slices with lung images. Next, the selected images are transferred for further processing,
i.e., lung segmentation and registration. Finally, such prepared lung images are used in the
calculation module, and the results are presented in a chosen form.

Figure 1. The general dataflow of the proposed system.
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3. CT Images’ Preprocessing Using CNN

The application of AI and deep learning (DL) in the field of diagnosis from CT scans
was proposed in several research works. Mahmud et al. in [7] presented a comprehensive
survey on the application of DL, reinforcement learning (RL), and deep RL techniques in
mining biomedical data, including medical images. Song et al. [8] analyzed three types of
artificial neural networks, i.e., non-convolutional deep neural networks (DNNs), CNNs,
and sparse autoencoders (SAEs), and the CNN model was chosen as the most accurate
in this type application. The CNN was also successfully used by Gonzales et al. [9] to
analyze CT scans of smokers to identify those having chronic obstructive pulmonary
disease. CT-based examination was proven to be an important diagnostic procedure for
COVID-19 and has been applied as a major diagnostic modality in confirming positive
COVID-19 cases [10–13].

An important task to be completed before starting the lung images’ analysis is the
selection of the CT slices, which include lungs, out of all the set of slices obtained from
the multi-slice CT. In our system, for this purpose, we decided to use two of the neural
network tested in [14], i.e., VGG16 and VGG19.The structure of the VGG16 network is
presented in Figure 2.

Figure 2. The structure of the VGG network used in our system.

The data flow of the implemented procedure is presented in Figure 3.
The input data required for CNN training, validation, and testing were downloaded

from the Cancer Imaging Archive website [15]. The selection filter was set to the follow-
ing values:

• Collections: NSCLC-radiomics
• Image modality: CT
• Anatomical site: lung

The structure of the training, validation and testing data is described in Table 2.
After reading the slices given in DICOM, the necessary scaling was applied. First the

read slices were converted to the Hounsfield scale. The minimum threshold was set to
−1024 (−1000 is the air level). This operation reset the PixelPaddingValue parameter, which
was present in some DICOM files. The next operation moved the scale to include only
positive values (simply a minimum value in each slice was added). Next, the maximum
threshold was set. All values above X were changed to X (X = 2000, 2500). The resulting
range was rescaled to real numbers in the range <0.0, 1.0>. Since the VGG network was
designed for RGB input images, we tripled the one input channel. It was also necessary
to change the slice image size to 224 × 224. We used a sigmoid activation function for the
last layer in the VGG networks and the ReLU (rectified linear unit) function for the other
layers. The padding parameter was set to same value, and the training process was set for
32 epochs.

As mentioned above, we tested two sets of input data with different maximum
thresholds X (X = 2000, 2500) and two CNN configurations: VGG16 and VGG19. We also
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set the threshold imposed on the CNN’s output to 0.5 in order to obtain two responses:
not lung and lung. The confusion matrices for the validation set are presented in Table 3.
In order to be able to compare the performance of the tested networks, sensitivity and
specificity were calculated on the same data; they are presented in Table 4.

Figure 3. CNN selection procedure. HU, Hounsfield unit.

Table 2. Number of CT slices used as the input data for the CNN.

Number of CT Slices

Not Lungs Lungs Total

Training data 2409
(50 patients)

3293
(45 patients) 5702

Validation data 567
(10 patients)

887
(12 patients) 1454

Testing data 655
(13 patients)

946
(13 patients) 1601
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Table 3. Confusion matrices for the validation set.

Notation

Real: Lung False negative (FN) True positive (TP)
Real: Not lung True negative (TN) False positive (FP)

Predicted: Not lung Predicted: Lung

VGG16-2000

Real: Lung 23 864
Real: Not lung 558 9

Predicted: Not lung Predicted: Lung

VGG16-2500

Real: Lung 11 876
Real: Not lung 544 23

Predicted: Not lung Predicted: Lung

VGG19-2000

Real: Lung 27 860
Real: Not lung 555 12

Predicted: Not lung Predicted: Lung

VGG19-2500

Real: Lung 25 862
Real: Not lung 554 13

Predicted: Not lung Predicted: Lung

Table 4. Accuracy, sensitivity, and specificity for the validation set.

VGG19-2000 VGG19-2500 VGG16-2000 VGG16-2500

Accuracy = (TP + TN)/All 0.9732 0.9739 0.9780 0.9766

Sensitivity = TP/(TP + FN) 0.9696 0.9718 0.9741 0.9876

Specificity = TN/(TN + FP) 0.9788 0.9771 0.9841 0.9594

VGG16-2500 was discarded because of not lung images being classified as lung. These
mistakes did not appear for the other networks, which in fact were similar in accuracy. We
noticed a difference for 1–2 images; however, in these cases, the expert’s decisions for the
validation sets were also not clear. Figure 4 illustrates the set of images that were classified
by all tested networks as FN, which means the image was classified as not lung, whereas it
contained a lung.

Figure 4. Example of images classified as false negativeby all tested networks.
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Figure 5 illustrates the set of images that were classified by all tested networks as FP,
which means the image was classified as lung, whereas during labeling, a clinician decided
there was no lung. It can be seen that in that case, the clinician made a mistake, because we
can find a small part of a lung in each image.

Figure 5. Example of images classified as false positive by all tested networks.

Finally, VGG16-2000 was chosen because of the slightly better results. The achieved
results on the testing set are presented in Table 5.

Table 5. Results for VGG16-2000 applied to the testing data.

Real: Lung 33 913 Accuracy 0.9763

Real: Not lung 650 5 Sensitivity 0.9651

Predicted: Not lung Predicted: Lung Specificity 0.9924

4. Lung Images’ Segmentation and Registration

4.1. Segmentation Process

In order to extract the examined region of interest (ROI) areas from whole images,
the segmentation process is necessary. According to [16], lung segmentation may be
challenging, because there are differences in pulmonary inflation, which can lead to large
variability in volumes and margins when trying to implement automatic algorithms. There
is still no universal segmentation method that will properly work for all lung pathological
conditions. The amount of unique lung disease cases makes accurate segmentation without
human verification very difficult. We can group traditional segmentation methods into
fourmain categories: thresholding-based, region-based, shape-based, and neighboring
anatomy-guided [16]. We will focus on the first two approaches, i.e., thresholding-based
and region-based, which were used in our system. It is important to note that usually to
achieve a properly segmented image, multiple techniques are combined.

4.1.1. Thresholding-Based Segmentation

The most basic and easy to implement is a thresholding-based method. We can
set a certain global threshold value for the whole gray-scale image. The picture will be
transformed into a binary region map, with ones where pixel values are above or equal
to the threshold level and zeroes where they are below. Although the algorithm is simple,
the most difficult step is to automatically find the threshold level for a specific image.
Having lung CT images taken by different machines, the values of pixels representing lungs
may differ. Generating a histogram from an image can help to choose the threshold values.

Unfortunately, even choosing a proper threshold does not guarantee that the desired
object will be acceptably segmented. Sometimes, images have different lightning in differ-
ent areas, and applying a simple threshold would give unacceptable results. That is why
an adaptive threshold algorithm was introduced. It calculates the threshold “adaptively”
for each region of an image. Thanks to this solution, the output is more accurate. It takes
into consideration the different brightness of the pixels of the same object, which may
be caused by lightning or a faulty camera [17]. The main advantages of this method are
the calculation speed and simplicity of implementation. However, it works efficiently
only when there is a large contrast between separated objects (which usually is not true in
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the case of lung CT images). It is very difficult to obtain a satisfying result if there is no
significant value difference in the gray levels [18,19].

4.1.2. Region-Based Segmentation

Another approach to lung segmentation includes region-based methods. The most
popular from this group is a region-growing algorithm. In general, it compares each pixel
to its neighbors, and if a certain condition is met, it is added to the chosen region. One of
the main algorithms representing this technique is region-growing. It uses the technique of
pixel connectivity as described in [19]. This method segments the whole image into smaller
regions, based on the growing (manually or automatically) of the chosen initial pixels
(seeds) [17]. The algorithm begins at the initial pixel and checks whether its neighbors
are within the threshold range given as an input parameter. If yes and the pixel does not
belong to any other region, it is marked as visited, and all pixels from the neighborhood
are recurrently checked. When a region is labeled (there are no pixels within the threshold
in the neighborhood), a new starting point is chosen, and the algorithm begins to search
for another connected region [20]. The main idea is to have pixels with similar properties
located together within a region. Compared to simple thresholding, the computational
cost of this solution is greater [18]. However, due to taking into consideration the spacial
information and region criteria, these methods can conduct lung segmentation much more
efficiently and with higher accuracy than the thresholding-based ones.

Another region-based algorithm is split-and-merge. At the beginning, the whole
image is treated as a single region. Next, it is iteratively split into smaller sub-regions,
until no further splitting is necessary. After that, similar regions are merged together, and a
new one is created [17]. The stopping condition of the algorithm is reaching the expected
number of regions given as the input or region uniformity. The split-and-merge algorithms
are often implemented employing a quadtree data structure [21]. This approach overcomes
the need for choosing initial seed points. Unfortunately, it is computationally expensive,
because it requires building a pyramidal grid structure of the image [22].

The solution that was a starting point in the approach used in our system is called
the watershed transform. The whole image can be treated as a surface. High insensitivity
pixels correspond to peaks and low to craters. An intuitive example with a description can
be found in [23]. The main goal is to identify the center of each crater—the local minimum
called the marker. They give us an approximate idea of where different objects can be
possibly located. Each marker is at the bottom of a unique basin, and the algorithm starts
filling these basins with different colors, until reaching the boundary (the watershed line)
of the adjacent marker [17]. This algorithm was implemented and tested in our system for
lung segmentation.

A possible problem of this approach is a lung oversegmentation. This occurs be-
cause each regional minimum forms its own small basin, which will be later filled while
applying the transform. To overcome this problem, in [24], an extended version of the
watershed transform was proposed. Region minima are decreased and next bounded
within the region of interest in order to prevent oversegmentation. Choosing internal
markers is the key step of this approach. In the described solution, these markers are
connected components of pixels that have similar intensity values (in Hounsfield units
(HUs)) and whose external boundary pixel values are above a certain gray level. According
to [25], the lung region is in the range from −600 HU to −400 HU. That is why to specify
internal markers, only pixels with a value lower than −400 are chosen. After eliminating
the background, applying morphological transforms, imposing regional minima, applying
the watershed transform, and filling the cavities, the segmented lung regions are obtained
(Figure 6).
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(a) Original CT image. (b) Lung segmentation result.

Figure 6. Lung segmentation results.

4.2. Registration Process

Image registration is used to overlay multiple images of the same object or scene
taken at different times with the use of the same or different devices [26]. It is used in
different fields such as medicine, remote sensing (e.g., environmental monitoring, weather
forecasting), cartography, and computer vision. Usually, some preprocessing steps like
noise removal, normalizing image sizes, or smoothing filters are applied. As described
in [27], medical image registration is an integration process applied in order to bring images
acquired from different modalities into spatial alignment. An example of registration usage
is radiotherapy treatment planning. Doctors can merge images from different devices
and/or different times and prepare a proper dosing plan.

A survey of pulmonary image registration methods was given in [28], and it discussed
the following approaches:

• Intensity based—registration relies on statistical criteria for matching different intensi-
ties between fixed and moving images.

• Feature based—registration is based on different geometrical structures, i.e., points or
curves, very useful while registering pathological lungs.

• Segmentation based—in rigid registration, the same structures from both images
are extracted; after that, they become the input parameters for the main registra-
tion method; unfortunately, registration accuracy is connected with the segmenta-
tion quality.

• Mass-preserving—registration relies on detecting density changes on CT images,
which are related to different inhalation volumes (air volume in lungs).

5. System Implementation

Python was chosen as the programming language for this project. An important factor
for this choice was the availability of many well-documented image processing libraries
(e.g., scikit-image, SimpleITK, OpenCV). The syntax and simplicity of writing the code
were additional arguments.

Our input data were two CT images series. The first one was taken before radiotherapy
(RT), and the second one was acquired during the follow-up. Different CT devices were
used during the examinations, and the obtained CT series had different size parameters.
Images that were taken before RT had a slice thickness equal to 3 mm, whereas the later
images had this value at the level of 1.25 mm. For further processing steps (segmentation,
registration, calculations), we had to equalize the number of slices in both series, trying
to choose the closest corresponding slices. The first tested approach was based on the
slice thickness. We assumed that the first slices from both series were corresponding ones.
This could be done because we selected the corresponding beginning and ending slices in
both series. Next, we prepared a table where each slice (from both series) had its relative
distance to the beginning one. Finally, we iterated over each slice from the “before” series,
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taking its relative distance and finding corresponding slice from the “after” series, where
the difference between those relative distances was minimal. Having selected slices with
lung images (this was done using the CNN network described in Section 3), the next
implemented block was responsible for the segmentation.

5.1. Segmentation
5.1.1. Watershed Segmentation

The watershed lung segmentation algorithm was based on the solution described
in [24], but in order to achieve a satisfying result, many additional operations were added.
Finally, our watershed transform segmentation had the following structure:

1. The first step was aimed at finding internal labels. The threshold filter at the level
of −360 HU was applied in order to distinguish lungs. Obviously, as presented in
Figure 7a, after thresholding, we obtained not only lungs, but also other elements, e.g.,
the background, pixel intensity of which was at the level of −1000 HU. In order to
remove the background, a clear_borderfunction from the skiimage.segmentation

module was used. Thanks to that, only lung pixels were left, as shown in Figure 7b.

(a) Simple threshold. (b) After background removal.

Figure 7. First steps of segmentation.

Afterwards a labeling function from the scikit.measure package was used, in order
to mark pixels that belonged to the same groups with unique labels. Unfortunately,
this solution worked well only for the slices from the middle part of the series.
The first ones contained organs like trachea or other significant airways, which were
also detected using the threshold (due to the air inside them; a similar Hounsfield
value), as shown in Figure 8. In further steps, these areas could be mistakenly treated
as internal markers.

(a) Simple threshold. (b) After background removal.

Figure 8. First steps of segmentation with trachea.

To solve this problem for the first 9% of the slices (which very likely contained trachea),
additional steps were implemented in order to properly detect only lungs.

• All regions with areas smaller than 0.00012 of the whole image size were removed.
This was necessary in order to get rid of noise and very small insignificant objects,
but at the same time, this value cannot be too high, because it would reject regions
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with small sections of lungs (beginning slices). As a result of this step, we were
able obtain two or three segmented regions.

• If only two regions were left, that meant that one of them was lung, and the other
was trachea. We could assume that due to the fact that in all images containing
lungs, lungs were bigger than trachea. We found the minimum y value of pixels
in both areas (located at the top of each area) and removed this region, which
had the smaller value (trachea is above lungs on the first slices). This analysis is
illustrated in Figure 9.

Figure 9. Minimum y values of trachea and one lung.

• If in one of the first slices, three regions were detected, that meant that two of
them were lungs, and one was trachea. Unfortunately, we could not simply
preserve the two largest ones, because we were not able to ensure that lungs
were bigger than trachea (usually, it is the opposite). That is why for this purpose,
we detected the centroids of each region (they had x and y coordinates). Next,
we made a list of all possible pairs of centroids and calculated the Euclidean
distance between each pair. As a result, we obtained a list of three distances,
sorted them, and kept the two regions between which the distance was largest.
A simple visualization is shown in Figure 10.

Figure 10. Distances between centroids calculations.

2. The next step was finding external labels. This was done by dilating the internal
marker, creating two temporary matrices, and taking regions where they were differ-
ent from each other (XOR operation). By changing the dilation iterations, we were
able to control the distance between those two markers. The external marker looked
like a wide border surrounding the internal one. The border had to be wide enough
to cover all minima, which could be located in the neighborhood. The final watershed
marker containing internal and external ones is presented in Figure 11.

3. Afterwards, the Sobel filter along both axes (x and y) was applied in order to detect
edges on the input image (Figure 11).
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(a) Final watershed marker. (b) Sobel gradient filter.

Figure 11. Sobel filter application in the watershed algorithm.

4. The watershed algorithm was executed with the sobel_gradient and watershed_

markers as inputs. In order to find the border of the result of the watershed algorithm,
morphological_gradient was applied (with the difference between the dilation and
erosion of the watershed as the input). In order to re-include significant nodules near
the border, a black-hat operation was applied. Thanks to that, the areas that might
carry significant information about the treatment were still in the segmented lungs.
We decided that it was better to include an area that normally would not be treated as
lung in the segmentation process. If we wanted to omit it during the calculations, we
would just contour it with an ROI and exclude it from the calculation area. Removing it
during segmentation would lead to a loss of the significant information that it carried.

5. Finally, binary opening, closing, and then, small erosion operations were applied in
order to remove noise and fill the holes, which were inside lungs after thresholding.
Examples of segmented lungs are presented in Figure 12.

(a) Overlayed over original slice. (b) Separated.

Figure 12. Example of segmented lungs.

The total time of segmenting both series was 50.7 s.
Obviously, in order to make this algorithm more universal and able to segment a larger

amount of different lung series, we would probably omit the step of detecting trachea on
the first slices and simply remove objects that have a larger ratio. Unfortunately, small lung
areas on the beginning slices would not be detected, but if we conducted the calculations
on a big amount of patients (100–150), then this would become less significant.

5.1.2. Segmentation Using the SITK Library

The watershed algorithm segmented lungs quite properly, although sometimes, espe-
cially for the first or last slices, the resulting masks were too sharp. Lung borders should be
smooth in order to properly reflect the reality. At the same time, such segmented lungs
would be easier to register. The second approach was implemented using the SimpleITK
(SITK) library and based on the example described in [29]. Below, we give the steps of the
SITK segmentation algorithm:

1. In order to denoise and smooth the image, we used a CurvatureFlow image filter.
Smoothed images are better for further processing.
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2. In order to separate lungs from the background and other organs, a threshold value
at −280 HU was set. It does not strictly correspond to the theoretical Hounsfield
range of lungs (form −400 to −600 HU), but the acquired images came from different
modalities, so we wanted to cover all lung areas, with pixels in a close neighborhood.

3. The next challenge was to remove the background. We decided to use a
NeighborhoodConneted function. It labeled pixels connected to an initially selected
seed and checked if all pixel neighbors were within the threshold range. The initial
seed was chosen as point (10, 10), which was located near the upper left image corner.
Pixels with a value equal to zero in the thresholded image (background) were set to
one. In the thresholded image, pixels containing body parts other than lungs were
also set to one. Adding a thresholded image to the neighborhood connected one gave
us a result with segmented lungs and some noise. In Figure 13, the first segmentation
steps are depicted.

4. After detecting lungs, a ConnectedComponents filter was applied to label the object
on the input binary image. Pixels equal to zero were labeled as background, whereas
those equal to one were treated as objects. Different groups of connected pixels were
labeled with unique labels.

5. In the next step, the area of detected objects was calculated, and the largest one or
two, whose size was larger than 0.002 of the whole image, were chosen. Due to this
condition, right lung in the third slice was not detected by this algorithm, but it was in
the watershed. In order to fix this issue, additional restrictions for the extreme slices
should be added.

6. On such a segmented lung binary image, opening and closing were applied. Binary
opening was responsible for removing small structures (smaller than the radius)
from the image. It consisted of two functions executed on the output of each other:
Dilatation(Erosion(image)). On the other hand, binary closing removed small
holes present in the image.

7. Sometimes, after applying those filters, still, some large holes were left inside the
images. Usually, they should stay there, because the area did not match the conditions.
However, in our lung segmentation approach, there should not be any holes left inside
the lung area. In order to satisfy this requirement, a VotingBinaryHoleFilling filter
was applied. It also filled in holes and other cavities. The voting operation on each
pixel was applied. If the result was positive, it was set to one. We chose a large radius
for this operation (16) in order to ensure that no holes would be left inside.

8. Finally, we applied a small erosion filter with the radius set to one. We excluded the
lung border from the segmented image. Tissue located in that area was irrelevant for
the analysis and could even falsify the results.

Although this approach gave slightly better results, when it came to the final lung
segmented shapes, still, some additional filters or methods should be added in order to
make this algorithm more universal. Some of the last slices (Figure 14) were segmented
more accurately, but the time of calculations—218.6 s for both series—were much longer
than for the watershed algorithm—50.7 s.

(a) Thresholded image. (b) Neighborhood connected background. (c) Sum of those two images—initially
segmented lungs.

Figure 13. Example of the segmentation steps using the SimpleITK library.
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(a) SITK approach. (b) Watershed algorithm.

Figure 14. Segmented lungs in Slice No. 66 (end of the series).

5.2. Registration

The registration process started with an affine registration where transformations like
rotation, scaling, and translation were used. The results of the affine registration were
supposed to give a better initial step for further elastic registration.

5.2.1. Affine Slice Registration

Firstly, we analyzed the whole previously segmented images not as solid 3D figures,
but as individual slices. Each pair of corresponding slices was registered, where the image
from the after series was treated as moving_image and the one from the before series as
fixed_image. For this task, we also used the SITK library [30]. Before executing the
registration algorithm, many parameters had to be specified:

1. Initial transformation: In this step, we used CenteredTransformInitializer in order
to align the centers of both slices. At the same time, the AffineTransform transforma-
tion type was chosen. Transformations like Euler2DTransform would not be proper
in this case, because both series were acquired by different devices, which means
they had various scales. Euler transformation is specified as rotation and transla-
tion, but without scaling. As seen in Figure 15, lungs on the “before” series were
much smaller those on the “after” series, so scaling was one of the most significant
needed transformations.

2. Measure metric: We used MattesMutualInformation. The metric sampling strategy
was set to REGULAR, and the metric sampling percent was set to 100%. That means that
to calculate the current measure, all pixels were taken into consideration. Due to the
fact that lung segmentation was performed before registration, we could not compute
the metric using a small percent of random points, as was proposed in [31]. If only
black points (outside the lungs) had been randomly chosen from both images, then
the cost function would have been very low, but it would not mean that the lungs
were properly registered.

3. Interpolator: We set it as Linear. In most cases, linear interpolation is the default
setting. It gives a weighted average of surrounding voxels with the usage of distances
as weights.

4. Optimizer: The gradient descent optimizer was chosen for affine registration. It has
many parameters to be set, and we used the following:

• learningRate = 1,
• numberOfIterations = 255.

5. Multi-resolution framework: The last set parameters were associated with the multi-
resolution framework, which the SITK library provides. Due to this strategy, we
were able to improve the robustness and the capture range of the registration pro-
cess. The input image was firstly significantly smoothed and had a low resolu-
tion. Then, during the next iterations, it became less smoothed, and the resolu-
tion increased. This additional multi-resolution utility was realized with two func-
tions: SetShrinkFactorsPerLevel (shrink factors applied at the change of level)
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and SetSmoothingSigmasPerLevel (smoothing sigmas applied also at the change
of level—in voxels or physical units). In affine registration, where the images dif-
fered significantly from each other, we decided to set four multi-resolution levels.
The chosen parameters were as follows:

• shrinkFactors = [6,4,2,1],
• smoothingSigmas = [3,2,1,0].

(a) Original before series slice. (b) Before and after overlayed slices. (c) Original after series slice.

Figure 15. Illustration of the size difference in before and after slices.

We executed this algorithm for each pair of corresponding slices. An example of an
image before and after affine transformation is shown in Figure 16. The time of affine
registration for one slice was 2.5 s, and the total time of affine registration for the whole
series was 168.1 s.

Table 6 presents the SimpleITK “one slice” affine registration results.

Table 6. Result of one slice affine registration using SimpleITK.

Parameter Value

Transformation “Affine”
Final metric value −0.4329

Total registration time 2.5 s

(a) Overlayed images before SITK registration. (b) Overlayed images after SITK registration.

Figure 16. Illustration of the registration results using the SimpleITK library.
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5.2.2. SimpleITK 3D Affine Registration

Affine registration of the whole segmented and raw 3D images was also tested. We
wanted to compare how the registration results and times of calculations depended on
the input 3D image and chosen samplers (for the segmented image, we had to sample
all points, not only those randomly chosen). In order to test how the SimpleITK library
handles 3D image registration, we implemented two short programs. The first one was
prepared for registering raw CT images, and the second one was responsible for registering
lungs segmented from those images. As expected, it took longer to register 3D images
with previously segmented lungs than the raw ones. Table 7 compares the results of the
3D affine registration using SimpleITK. In Figure 17, overlayed raw slices, before (a) and
after (b) affine registration, are depicted. In order to visualize the differences in registration
between raw and segmented images, Figure 18 presents overlayed segmented slices also
before (a) and after (b) affine registration. As seen when it comes to 3D registration, the
slices, from the middle of the series, are transformed properly.

(a) Overlayed images before registration. (b) Overlayed images after registration.

Figure 17. Illustration of the affine 3D registration with raw input slices.

(a) Overlayed images before registration. (b) Overlayed images after registration.

Figure 18. Illustration of the affine 3D registration with segmented input slices.
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Table 7. Result of 3D affine registration using SimpleITK.

Raw Images Segmented Images

Transformation “Affine” “Affine”
Sampler ‘Random’ “Regular”

Final metric value −0.72 −0.201
Total registration time 59.5 s 157.4 s

5.2.3. Elastic Lung Registration

Another approach to the registration, implemented in our system, was the elastic
registration. This algorithm was implemented using two libraries: SimpleITK and SimpleE-
lastix. It needs to be noted that elastic registration is much slower and more sophisticated
than affine. As seen in Figure 16, the first registration step gives quite satisfying results, so
the elastic registration will not need to start the process from scratch. Many parameters are
similar to those from the affine registration process, so below, we present only the chosen
ones, which are different:

1. Initial transformation: In this step, we chose the BSplineTransformation type.
2. Measure metric: It is analogous to the affine one.
3. Interpolator: It was also set as Linear.
4. Optimizer: The gradient descent optimizer was also chosen for elastic registration;

however, its parameters slightly changed:

• learningRate = 1,
• numberOfIterations = 255.

5. Multi-resolution framework: The parameters of the multi-resolution framework were
also changed:

• shrinkFactors = [2,1],
• smoothingSigmas = [1,0].

The elastic registration algorithm was also executed for each pair of corresponding
slices, where the moving slice was the one after affine registration, and the fixed one was
invariably the segmented slice from the “before” series. An example of an image before
and after elastic transformation is shown in Figure 19. The time of elastic registration
for the whole series was 2103.4 s. Table 8 presents the SimpleITK “one slice” elastic
registration results.

(a) Segmented slice from before series. (b) Corresponding segmented slice from after se-
ries, after applying elastic registration.

Figure 19. Illustration of the elastic registration using the SimpleITK library.
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Table 8. Result of one slice elastic registration using SimpleITK.

Parameter Value

Transformation “Bspline”
Final metric value −0.3012

Total registration time 21.0 s

In order to compare different implementations, the registration using the SimpleElastix
library was also applied. It was also run for a pair of corresponding slices, where the moving
slice was the one from the “after” series and the fixed one was the segmented slice from the
“before” series. An example of an image before and after registration is shown in Figure 20.

(a) Segmented slice from before series. (b) Corresponding segmented slice from after se-
ries, after applying elastic registration.

Figure 20. Illustration of the elastic registration using the SimpleElastix library.

Additionally, in order to evaluate the registration process, the SimpleElastix library
gives the possibility to display the final metric (the AdvancedMattesMutualInformation

metric was used) value. Table 9 presents the SimpleElastix “one slice” registration results.

Table 9. Result of one slice registration using SimpleElastix.

Parameter Value

Transformation 1 “Affine”
Transformation 2 “Bspline”
Final metric value −0.5657

Total registration time 144.9 s

Comparing these results with those presented in Figure 19, we can observe that
these solutions differed from each other. Registering using SimpleITK did not change
the lung structure significantly; however, at the same time, it did not make the images
fully equivalent in terms of shape. The SimpleElastix approach preserved the shape better.
Although SimpleElastix had a very good metric value (Table 9), we are not sure if the
internal lung structure should be changed to such a large extent. Obviously, the parameters
of the SimpleITK methods can also be changed in order to achieve results similar to those
produced by SimpleElastix, but the calculation time increases dramatically.

5.3. Data Presentation Module

All aforementioned processing steps such as slice choosing, segmentation, and reg-
istration were conducted in order to finally obtain paired images of lungs with a similar
shape so that “before” and “after” series can be compared slice-by-slice. Thanks to that,
various statistics could be calculated on the corresponding images from the before and
after series, including: the maximum, minimum, median, and mean of the pixels (in HU).
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This is necessary to compare subtle density changes that appear in different parts of lungs
after radiotherapy and could be correlated with the delivered radiation dose and to assess
the impact on healthy lung tissue. Some visualization functions were developed. The
calculation methods were implemented based partly on the solutions presented in [29].

The main window of the system interface, presented in Figure 21, consists of three areas:

1. Current CT slice (displayed for three directions) (red area—1): The slice can be selected
by setting its number or by using a mouse scroll wheel. By moving the mouse over
the upper left slice, we can read the pointed pixel’s Hounsfield scale value and the
dose density value in gray units. The small console at the bottom of the screen is used
to display messages to the user (errors, warnings, etc.).

2. Input settings (blue area—2): Check boxes allow the selection of all contours loaded
from the active files. Radio buttons are used to set the visible range of the radiation
dose. There are three possible options:

• Show radiation as a heat map (a “warmer” color corresponds to a higher radia-
tion dose)

• Show radiation in a given range (the range is set by the sliders located below)
• No radiation (the CT slice is displayed without the radiation scheme).

3. Calculation parameters (green area—3): The first set of radio buttons specifies whether
the results are calculated for the whole body (all slices) or just for the current slice.
The second set of radio buttons decides whether the calculations are applied for all
pixels or just for pixels within the chosen contour. The last three radio buttons are
used to select the settings related to the radiation. Calculation can be done for the
chosen radiation range (the scope is set by sliders), for all the matrix of radiation
(for all pixels included in the radiation area), or for pixels where the radiation is
above zero.

Figure 21. The main window of the system.
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Clicking on the calculatebutton starts the calculations and generates the resulting
window, presented in Figure 22. The reported results include:

• The image of the current slice with marked pixels selected for calculation,
• The number (indexes) of slices for which the calculation was done,
• The calculation parameters (radiation range, contour type),
• Min, max, median, mode, and average values in HU,
• The volume and area of the selected pixels.

Figure 22. The result window with the calculation results.

When the whole body option is chosen, it is possible to scroll through CT slices.
Then, the calculation results are updated on-the-fly. Finally, the results can be visualized
(Figure 23) and stored in a file. The first picture, shown in Figure 23a, shows the CT
slice with marked lung, esophagus, and spinal cord, which is an input slice for further
calculation. Next, Figure 23b presents a CT slice with the dose density scheme, Figure 23c
the lung contour with the selected dose range, and Figure 23d the region of calculation,
which is a cross-section of the segmented lung and the area of the selected dose range.
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(a) CT slice with marked lung, esophagus,
and spinal cord.

(b) CT slice with the dose density scheme.

(c) Lung contour selected with the dose range. (d) Calculation results for a given range and
selected contour. The area of interest us colored
in pink.

Figure 23. The possible visualization of the CT slices.

6. Conclusions and Future Works

The paper presents a software tool that will be used for large-scale CT-based radiomics
for radiation oncology specialists. This particular application is designed to analyze the
correlation between the delivered dose and the density changes in pulmonary tissue,
representing radiation-induced fibrosis. Currently, the tool is used for analyzing a big
set of patients’ results, together with the clinical data, focusing on the impact of “low
doses”—between 0 and 5 Gy. We presume that even these lowest doses affect the lung
function and morphology over time as fibrosis develops even if it is not visible with the
naked eye. As an example, in Figure 24, you can see the initial pretreatment image of the
tumor and the 18 month follow-up scan with complete remission achieved. There is also
an easily noticeable area of RILF that corresponds to the high doses delivered (40–66 Gy).
However, it is difficult to see any density changes in other areas. Analyzing the precise
density using our software, we find that mean HU values of the lung tissue where the
1–5 Gy dose was delivered during RT increased from −821 HU to −772 HU (Figure 25).
Thanks to this, we hope to prove the statistically significant impact of low doses on a large
number of patients.

The results can be important in the era of modern conformal radiotherapy methods,
which decrease high dose levels in patient’s OARs at the cost of the, so-called, “low dose
bath”. We aim to assess clinically useful dose constraints for conventional lung RT.

Apart from a numerical measurement of density changes, we will work on using
AI solutions to analyze and predict the patterns and evolution of fibrotic changes over
time. We also want to develop radiobiological concerns on hypofractionated regimens and
new modalities like particle therapy. There is also a novel ultra-high dose rate FLASH-
RTtechnique [32] that can decrease the lung toxicity [33]; however, this method is still
in early pre-clinical studies. What is more, precise fibrosis analysis is also crucial for
patients treated with modern immunotherapy, especially combined with conventional
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chemotherapy and radiotherapy being one of the most common toxicities. We should also
remember COVID-19 patients and distinguish different CT abnormalities.

(a) CT scan before RT (tumor outlined). (b) CT scan 18 months after RT (fibrosis outlined).

Figure 24. CT images before and after radical radiotherapy (RT) of left lung cancer.

(a) Pre-RT CT scan; 1–5 Gy dose level covered
in green.

(b) Segmented lungs
from the pre-RT scan
with 1–5 Gy dose cov-
ered in yellow.

(c) Corresponding
lung scan 18 months
after RT.

Figure 25. CT images before and after radical RT of left lung cancer.
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