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Editorial

Recent Trends in Computational Biomedical Research

Md. Altaf-Ul-Amin *, Shigehiko Kanaya, Naoaki Ono and Ming Huang

Division of Information Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan;
skanaya@gtc.naist.jp (S.K.); nono@is.naist.jp (N.O.); alex-mhuang@is.naist.jp (M.H.)
* Correspondence: amin-m@is.naist.jp

Recent advances in information technology have brought forth a paradigm shift in
science, especially in the biology and medical fields. Statistical methodologies based on
high-performance computing and big data analysis are now indispensable for qualitative
and quantitative understanding of experimental results. In fact, the last few decades have
witnessed drastic improvements in high-throughput experiments in health science, for
example, mass spectrometry, DNA microarray, and next-generation sequencing. Those
methods have been providing massive data involving four major branches of omics (ge-
nomics, transcriptomics, proteomics, and metabolomics). On the other hand, cell imaging,
clinical imaging, and personal healthcare devices are also providing important data concern-
ing the human body and disease. In parallel, various methods of mathematical modeling
such as machine learning have also developed rapidly. All of the types of these data can be
utilized in computational approaches for biomedical research such as on understanding
disease mechanisms, diagnosis, prognosis, drug discovery, drug repositioning, disease
biomarkers, driver mutations, copy number variations, disease pathways, and much more.
Therefore, the range of topics under “Recent Trends in Computational Biomedical Research”
is extensive, and the present Special Issue is not a comprehensive representation of the
subject. Nonetheless, the articles selected for this Special Issue represent a variety of topics
relating to the title, and we are sharing with the readers with pleasure.

In this Special Issue, we published a total of eight good papers. Overall, four papers
are in cardiovascular-related topics, two are linked to drug development, and the other two
are on finding associations between genome sequence aberrations and diseases.

The paper titled “SMCKAT, a Sequential Multi-Dimensional CNV Kernel-Based As-
sociation Test” is on copy number variants (CNVs) [1]. Associations between CNVs and
various diseases have been well studied before, and the current paper proposes a method
called SMCKAT to test the association between the sequential order of CNVs and diseases.
SMCKAT was evaluated by applying on CNV data sets, demonstrating its ability to exhibit
rare or common CNVs by detecting specific biologically relevant chromosomal regions
supported by the biomedical literature.

The paper with the title “The Genome-Wide Scanning of Potential Hotspots for Adeno-
sine Methylation: A Potential Path to Neuronal Development” is about the methylation
of adenosines at the N6 position (m6A) [2]. This methylation is the most frequent type
of internal modification in mRNAs and is attributable to diverse roles in physiological
developments and pathophysiological processes. This work applied a sliding window tech-
nique to identify the consensus site and annotated all m6A hotspots in the human genome.
Most of the hotspots were found to be located in the non-coding regions, suggesting that
methylation occurs before splicing. The role of this methylation in neuron physiology was
also elaborated

An automatic ECG quality assessment method has been presented in the paper titled
“Electrocardiogram Quality Assessment with a Generalized Deep Learning Model Assisted
by Conditional Generative Adversarial Networks” [3]. This automatic method can help car-
diologists perform diagnosis much faster. The proposed system first trained a conditional
generative adversarial network model for data augmentation and then developed a deep
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quality assessment model based on a training dataset composed of real and generated ECG.
The proposed system demonstrated improved performance in the ECG quality assessment
and has the potential to be utilized in clinical practice.

The paper titled “A Maximum Flow-Based Approach to Prioritize Drugs for Drug
Repurposing of Chronic Diseases” is on drug repurposing, i.e., using existing drugs to treat
new/other diseases [4]. The work proposes a maximum-flow-based approach using protein–
protein interactions (PPIs) of drug targets (proteins) and risk genes corresponding to chronic
diseases such as breast cancer, inflammatory bowel disease (IBD), and chronic obstructive
pulmonary disease (COPD). The top candidate drugs identified by the maximum flow-
based approach were found to be experimentally validated by other independent studies.

Models and results of in silico prediction of the interactions between compounds of
Jamu herbs and human proteins have been presented in the paper titled “Identification
of Targeted Proteins by Jamu Formulas for Different Efficacies Using Machine Learning
Approach” [5]. Verifying the proteins that are targeted by natural compounds is helpful
to select natural herb-based drug candidates and to explain the scientific mechanisms of
traditional medicines.

The paper titled “Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy
and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach”
is about finding molecular mechanisms of hypertrophic cardiomyopathy (HCM), which
is the most common inherited cardiovascular disease [6]. Molecular mechanisms were
extracted from abstracts and open access full articles by multiple machine-reading systems.
Shared molecular mechanisms of HCM and its clinical presentations were represented as
networks, and the most important elements in the networks were found based on node
centrality measures.

The paper with the title “Impact of Water Temperature on Heart Rate Variability during
Bathing” aims to explore the impact of water temperature (WT) on Heart Rate Variability
(HRV) by collecting five electrocardiogram (ECG) recordings of each of 10 subjects at
different preset bathtub WT conditions during bathing [7]. Based on statistical analysis, it
has been shown that the WT has an important impact on HRV during bathing.

The accuracy of several methods has been compared and assessed in the paper with
the title “Discussion of Cuffless blood pressure prediction using plethysmograph based on
a longitudinal experiment: Is individual model necessary?” [8]. Estimating blood pressure
using the Plethysmograph (PPG) signal is convenient and makes continuous measurement
feasible, but some doubt exists on its accuracy and robustness. By comparing the regression
models, this paper shows that an individual Gaussian Process model attains the best results.
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Discussion of Cuffless Blood Pressure Prediction Using
Plethysmograph Based on a Longitudinal Experiment: Is the
Individual Model Necessary?

Koshiro Kido 1, Zheng Chen 1, Ming Huang 1,*, Toshiyo Tamura 2, Wei Chen 3, Naoaki Ono 1,4, Masachika Takeuchi
5, Md. Altaf-Ul-Amin 1 and Shigehiko Kanaya 1,4
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2 Institute for Healthcare Robotics, Waseda University, Tokyo 162-0041, Japan; t.tamura3@kurenai.waseda.jp
3 Department of Electronic Engineering, School of Information Science and Technology, Fudan University,

Shanghai 201203, China; w_chen@fudan.edu.cn
4 Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
5 San-Ei Medisys Co., Ltd., Kyoto 607-8116, Japan; takeuchi@san-ei.com
* Correspondence: alex-mhuang@is.naist.jp; Tel.: +81-743-72-5321

Abstract: Using the Plethysmograph (PPG) signal to estimate blood pressure (BP) is attractive given
the convenience and possibility of continuous measurement. However, due to the personal differences
and the insufficiency of data, the dilemma between the accuracy for a small dataset and the robustness
as a general method remains. To this end, we scrutinized the whole pipeline from the feature selection
to regression model construction based on a one-month experiment with 11 subjects. By constructing
the explanatory features consisting of five general PPG waveform features that do not require the
identification of dicrotic notch and diastolic peak and the heart rate, three regression models, which
are partial least square, local weighted partial least square, and Gaussian Process model, were built
to reflect the underlying assumption about the nature of the fitting problem. By comparing the
regression models, it can be confirmed that an individual Gaussian Process model attains the best
results with 5.1 mmHg and 4.6 mmHg mean absolute error for SBP and DBP and 6.2 mmHg and
5.4 mmHg standard deviation for SBP and DBP. Moreover, the results of the individual models are
significantly better than the generalized model built with the data of all subjects.

Keywords: blood pressure; cuffless measurement; longitudinal experiment; plethysmograph;
nonlinear regression

1. Introduction

Ambulatory blood pressure (BP) monitoring provides abundant cardiovascular in-
formation, and we have seen numerous studies focusing on replacing the conventional
auscultatory/oscillometric measurement that requires the occlusion of arterial blood flow
cuffless by using the cardiovascular biosignals with state-of-the-art machine learning methods.

The cuffless methods can be roughly categorized into three groups. The first one is
based on the pulse arrival time (PAT) [1,2], the second one is based on photoplethysmograph
(PPG) signal, which has attracted more and more attention in recent years [3–6], and the
third one is based on other methods [7,8].

The PAT is the period that includes the pulse transition time and the pre-ejection
period of the heart. Because the PAT needs the ECG signal and distal PPG signal to be
determined, it is a modality that is suitable for intermittent measurement.

The second group utilizes only one biosignal—the PPG, which is a signal that reflects
the change of blood volume. The pulsatile component of PPG reflects the change in
blood volume and the stable component is related to the basic blood volume and other
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physiological indices such as respiration and body temperature [9]. Since the PPG signal
depends on the blood volume in its optical path, which typically covers the arterial and
venous capillaries [10], it can be related to the cardiovascular indices such as the blood
oxygen saturation and arterial compliance [11,12]. It is generally accepted that the PPG
waveform comprises the arterial pulse wave from the left ventricle to the distal sites
and the reflected wave from the sites of impedance mismatch [13]. With these physiological
understandings, research interest has been shifting to BP estimation based on PPG signal
recently. Xing et al. carried out a mass experiment (1249 subjects, 2358 measurements),
and by using the PPG waveform features and biometrics in a bagged regression tree
model, they got a 9.5 mmHg, 2.2 mmHg, and 17.4 mmHg mean absolute error (MAE) for
hypotensive, normotensive, and hypertensive subjects [3]. Chowdhury et al. used an open
dataset obtained in a hospital with 219 subjects and 657 measurements to extract the PPG
waveform features and biometrics, which were then inputted into the Gaussian Process
Regression model. By using a further Bayesian optimization, they claimed 3.02 mmHg and
1.74 mmHg MAE for SBP and DBP estimation, respectively [6].

There are two main criteria for the cuffless method. The first one is that the method/system
should meet the requirement on accuracy determined by IEEE Std 1708-2014. In the mean
time, when used as a healthcare device, the convenience for personal use should also be
taken into account. Therefore, the final goal of development should be an appropriate
computation model with high accuracy and long-term stability.

These preliminary studies show the prospect of cuffless BP estimation with PPG signal;
however, fundamental issues remain. The first one is the dilemma between the generaliza-
tion of the regression model and the individual difference of the limited data. This kind of
difference is pervasive in biomedical engineering and the method of making a balance is re-
flected in the modeling assumption and the choice of machine learning model. Data-driven
approach resorts to the accumulation of samples to find the relation between explanatory
and dependent variables. A globally nonlinear regression model that severely twists the
fitting hyperplane to fit the data on hand may not be well applicable for an individual
outside the dataset, especially when the size of the dataset is small. It is not uncommon to
see the difficulty in getting a reproducible relation between the waveform features and the
blood pressure learned from a small dataset in a large population test. The relation may be
altered substantially by the demographic factors and physiological/pathological factors.
For example, Allen has confirmed the PPG contour triangulation with aging [14]. This
means that a robust method should not rely on the identification of dicrotic notch and/or
diastolic peak in the PPG waveform.

Moreover, the cardiovascular functions including BP are regularized by biorhythms
modulated by the baroreflex and the autonomic nervous system [15,16], which implies the
necessity of re-calibration for long-term use.

Based on the discussion above, a through discussion is necessary before the large scale
validation experiment. In this study, we tried to contribute to this topic by answering the
following two fundamental questions: (Q1) When compared with the individual model, is
the generalized model good enough? (Q2) Is it necessary to calibrate in a relatively long-
term scenario? Special attention is also paid to the following aspects of lift performance
(corresponding to A1) and robustness (corresponding to A2) of the model: (A1) to decide the
best model for BP regression by comparing the linear, local linear, and Bayesian models; (A2)
to examine the feasibility of using the general waveform features solely in the regression
models, which means that the identification of the dicrotic notch and diastolic peak is
unnecessary to address the deterioration of the dicrotic notch and the diastolic peak with
aging and hypertension.

2. Materials and Methods

To the best knowledge of the authors, there are very few open datasets dedicated to
the study of cuffless BP estimation. For example, the MIMIC database is well used in blood
pressure estimation, whose protocol is not optimized for the BP study. The Non-invasive
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Blood Pressure Estimation dataset [17], collected data right after running, which would
change the behavior of the baroreflex [18].

In view of the situation that none of the open dataset can be used to answer the
questions Q1 and Q2, a one-month experiment, from mid-May to mid-June, dedicated to the
development and validation of cuffless BP measurement was conducted. The experiment
used a PPG-sensor with 940 nm LED (infrared) of a medical device (Checkme Pro B, San-ei
Medisys) for 30 s PPG measurement and a clinical Blood Pressure Monitor (A&D, Model
UA-1200BLE) as the reference [19]. Eleven subjects, whose basic information can be found
in Table 1, participated in the experiment, during which they were required to measure
the PPG signal and BP values multiple times (typically 4 times/day) a day in different
periods. Subjects were guided to rest for three minutes before taking the measurements in
a sitting position. The study was approved by the Ethics Review Committee of the San-ei
Medisys Company (#2019002SA). All methods were performed in accordance with the
relevant guidelines and regulations. Informed consent was obtained from all the subjects.

Table 1. Individual fitting results based on GPR_set1 model coupled with intermittent calibration.

Sub. Ag Gender Ref. BP Range MAE RMSE

No. Yrs. F/M SBP DBP SBP DBP SBP DBP

1 45 F 119–90 87–63 5.01 6.13 6.29 7.23

2 43 M 131–100 98–66 4.60 4.60 5.70 5.91

3 27 M 141–101 88–65 6.23 4.60 7.62 5.57

4 50 M 173–129 125–97 6.20 4.31 7.84 5.34

5 46 F 110–92 79–61 3.36 4.01 4.28 4.13

6 50 M 127–94 89–69 5.63 6.83 7.30 8.95

7 44 M 138–108 110–78 5.23 4.64 6.43 5.49

8 25 F 119–93 81–56 4.49 3.92 5.53 4.98

9 46 M 136–91 99–72 5.70 5.37 7.77 6.84

10 47 F 141–111 97–78 4.30 3.35 5.14 4.16

11 29 F 144–88 93–56 6.22 4.06 8.24 4.78

2.1. Preprocessing

This research differentiates itself from the previous studies that tried to extract the
morphological features of PPG waveforms as many as possible and then used the features
selection methods to pick up the important ones to input into the regression models.
We argue that the whole pipeline should take serious account of the problem that the
deterioration of the dicrotic notch and the diastolic peak with aging and hypertension will
bring uncertainty to the relevant features. This is also the reason why we highlight the A2
aspect in our study.

On this account, the explanatory features set X consists of (1) the heart rate reading
(HR) during the experiment; and (2) the general PPG waveform features, which are de-
scribed as follows. Firstly, 6th order Butterworth IIR low pass zero-phase filter ( fc = 10 Hz)
and a linear detrend process were applied to the PPG signals before the following procedure:

Firstly, the skewness values, which is a well-used index for the signal quality index
(SQI) of PPG signal [20], of beat-by-beat PPG waveforms in each sample was calculated
and the waveform with the maximum skewness values was picked, thereafter the sample
with the maximum SQI less than 0.1 will be removed.

Secondly, the following features (Figure 1) of the waveform were calculated:

• PPG intensive ratio (PIR): PIR = PPGpeak/PPGroot, which is an index to reflect
changes in the arterial diameter [21];
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• Diastole time ratio (DTR): DTR = tsys/T, where the tsys is the time from the systole
peak to the end of a PPG waveform, and T is the time length of the corresponding
PPG waveform;

• ri: ri = PPGpeak/PPGin f , where the PPGin f is the inflection point of the PPG wave-
form between the dicrotic notch and the diastolic peak. This parameter is introduced
given the disappearance of the diastolic peak, while the inflection point can be found.
Given the fact that the PPG amplitudes of inflection point and the diastolic peak are
similar, the ri is used as the alternative of the Reflection index [22];

• A02: Area of the 0–2 Hz band of the PPG waveform [6];
• A25: Area of the 2–5 Hz band of the PPG waveform [6].

PPGroot

PPGpeak

PPGinf

T

Tsys

Figure 1. Illustration of PPG features. Inflection point of the PPG waveform between the dicrotic
notch and the diastolic peak is used given that the disappearance of the diastolic peak may appear.

The five features above, which have been validated in the previous studies [4,6,21],
were selected based on the underlying consideration that potential PPG features should
avoid the identification of the dicrotic north and the diastole peak. Meanwhile, the HR,
which has been proved to be informative in BP estimation [16,23], is used as another
explanatory variable.

2.2. Regression Models

To respond to the A1, three regression models were used in this research. While the
PLS corresponds to the linear assumption of the features (X) and the BP (y), the LWPLS
corresponds to the assumption of local linearity defined by the close samples in the features
space. The Gaussian Process Regression can be viewed as a nonlinear regression by using a
Radial Basis kernel.

2.2.1. Partial Least Squares (PLS)

By projecting the input into new spaces, PLS can handle the problem with visible
collinearity in the explanatory variables. In a problem with X ∈ �N×P as the explanatory
variables (N: the number of samples; P the number of the explanatory variables) and
y ∈ �N as the dependent variable, the normalized X and y are expressed alternatively
as follows:

X = TPT + E, (1)

y = Tq + f , (2)

where the T ∈ �N×D is the matrix that contains latent components in each column,
and P ∈ �P×D is the matrix that contains the loading of each variable for the components
in each row. q ∈ �D is the regression coefficient vector from latent variables to the output.
E and f are the residuals.

8
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The projection of X and y is done iteratively by maximizing the covariance of the yTti,
where ti is the ith column of the T , taking the first two latent components as an example.

t1 = Xw1, (3)

where the w1 is the weight vector for the first component with the regularization that
‖w1‖ = 1. By using the Largrange multiplier and least squares method, the w1, the t1,
and the corresponding p1 and q1, which is the first row of P and the first element of
q respectively, can be calculated. Similarly, the second component can be derived by
subtracting the projection in the first component from the X and y,

X2 = X − t1 pT
1 , (4)

y2 = y − t1q1, (5)

and calculate the parameters by

w2 =
XT

2 y2∥∥XT
2 y2

∥∥ , (6)

P2 =
XT

2 t2

tT
2 t2

, (7)

q2 =
yT

2 t2

tT
2 t2

. (8)

The procedure is repeated when the i reaches the number D, whose value can be
determined by using the cross-validated coefficient of determination (R2

cv).

r2
cv = 1 − ∑N

i=1(y
i − yi

cv)
2

∑N
i=1(yi − yA)2

, (9)

where the yi and the yi
CV are the true value and the estimate of the ith sample in the cross

validation, respectively; the yA is the mean of y. The i is set as 2 after the confirmation
with r2

cv.

2.2.2. LW-PLS

As a just-in-time method, the LW-PLS is conceptually different from the PLS. It sepa-
rates the samples to a training dataset with X t ∈ �M×Pand yt ∈ �M and the new request
xr ∈ �P, whose similarity will be compared with the training dataset and used to generate
the diagonal similarity matrix.

U =

⎡⎢⎣u1
r · · · 0
...

. . .
...

0 · · · uM
r

⎤⎥⎦ (10)

where the ui
q is the similarity between the ith sample in X t and the xr. The X t and yt are

adjusted based on the U.
X0 = X t − Xw, (11)

y0 = yt − yw. (12)

The Xw and yw are generated as follows.

Xw =

⎡⎢⎢⎣
1
1
· · ·
1

⎤⎥⎥⎦[xw,1, xw,2, · · · , xw,P
]
, (13)

9
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and

yw =
∑M

i=1 ui
ryi

∑N
i=1 ui

r
, (14)

where,

xw,j =
∑M

i=1 ui
rxi

j

∑N
i=1 ui

r
. (15)

With all this preparation the first component can be calculated.

w1 =
XT

0 Uy0∥∥XT
0 Uy0

∥∥ , (16)

t1 = X0w1, (17)

p1 =
XT

0 Ut1

tT
1 Ut1

, (18)

q1 =
yT

0 Ut1

tT
1 Ut1

, (19)

The p1 and q1 represent the loading vector and coefficient of the first component,
respectively. The parameters are determined iteratively when the predefined component
number is met. The estimate for the request xr is the summation of the ŷa = ∑D

i=1 ta,iqa,i + yw.
The distance index is crucial to the LW-PLS. Therefore, special care should be paid

to its choice. In this research, it is considered that the Mahalanobis distance, which is the
improved Euclidian distance to amend the problems of different scales and correlation
between explanatory features with the definition below

dm =
√
(xi − xj)TS−1(xi − xj), (xi and xj: the samples; S: covariance matrix) (20)

is suitable for this heterogeneous set of explanatory features consisting of continuous ones
of different scales.

2.2.3. Gaussian Process Regression

Gaussian Process Regression is fundamentally a kernel method, which defines the
similarity of explanatory variables in terms of a kernel function. Instead of the explicit
definition of the basic functions φi(x), (i = 1, 2, . . . , l) and determination of the optimized
weights vector w, where y(x, w) = wTφ(x), the Gaussian Process defines a prior probability
distribution over the basic functions. For a dataset with N samples, the equation becomes

y = Φw, where Φ is the design matrix, Φnk = φk(xn). (21)

By letting the prior distribution of the weights vector to be Gaussian, p(w) ∼ N (w|0, α−1I)
and then defining the kernel function k(x, x′), where

k(x, x′) = 1
α

φ(x)Tφ(x′), (22)

The Gaussian Process can be defined by the kernel function, since E[y] = ΦE[w] = 0

E(y(xn)y(xm)) = k(xn, xm), (23)

In this research, the kernel is the Radial Basis Function (scale = 1) contaminated with
white noise (noise level = 1) for the standardized explanatory variables.

10
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2.3. Calibration Schemes

The personality is reflected by incorporating the personal samples into the training
dataset. Two kinds of calibration schemes were used. The first scheme (scheme_1) used the first
20% (typically 23 samples) of the samples in the training process; whereas the second scheme
(scheme_2) used the first 4% and the 15th–18th, 35th–38th, 55th–58th, 75th–78th, and 95th–98th
in the training process, which were roughly 20% of the individual samples as well. Of
note, to prevent the leaking of future information, the BP values are predicted by using the
previous calibration readings. That is, for example, the 19th-34th BP values are predicted
by using the initial and the 15–18th calibration readings. These two schemes were used to
examine the necessity of re-calibration in a relatively long-term scenario (Q2). Specifically,
if the best results come from the the scheme_2, it is reasonable to conclude that the model
should take the biorhythm, such as seasonality, into account and the re-calibration should
be considered.

2.4. Generalized and Individual Models

To answer the question Q1, two training strategies were used in model construction.
A generalized model trains the model as a generalized one by using the individual cali-
bration samples as well as the samples from the other subjects. The other strategy is to
construct an individual model, which was trained by using individual calibration samples
solely. The two calibration schemes above were used in both models. The mean absolute
error (MAE), as well as the mean and standard deviation of the regression error, were used
as the main metrics; particularly, the MAE was used to determine the best model.

3. Results

By summarizing the one-month experiment, all of the 1287 samples collected from the
11 subjects, whose information is shown in Table 1, were used in the following modeling.
The numbers of samples for the subjects are even, from 114 to 118.

3.1. Results of Generalized Models

In this study, the linear partial least square model (PLS), the local linear local-weighted
partial least square model (LWPLS), and the Gaussian Process Regression model (GPR)
were used to reflect different assumptions about this regression problem. The generalized
model is trained in the manner of leave-one-out validation, by taking in all samples in
the training dataset (10 subjects) merging the individual calibration samples (calibration
scheme_1 and scheme_2, more detail in Methods). By summarizing the regression results
of the testing samples, the mean absolute error (MAE) of systolic and diastolic BP is shown
in Figure 2, from which it can be seen that none of the models can fit the personal well with
MAE larger than 9 mmHg. Therefore, no further comparison of features was conducted for
the generalized models.
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Figure 2. The mean absolute error (MAE) of systolic and diastolic BP of the three generalized models.
The bar plot on the left corresponds to the results with scheme_1 and the bar plot on the right to the
results with scheme_2. Sticks show the standard errors.
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3.2. Comparison of Different Individual Models

Individual models were constructed by taking the calibration samples from the same
subject for model construction and testing the samples remaining, whose results are summa-
rized in Figure 3. As introduced in the Methods section, two calibration schemes were used.
The left column corresponds to the calibration using the initial 20% samples (scheme_1),
while the right column corresponds to the situation of re-calibrating every 20 samples
(scheme_2).
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Figure 3. Comparison of three individual models using scheme_1 (left column) and scheme_2 (right
column). Sticks show the standard errors.The setx means the combination of PPG features, where the
set1 is {hr, a02, a25, ri}, set2 is {pir, dtr, hr, a02, a25, ri}, set3 is {hr, ri}. * means the p < 0.05 and, ** means
the p < 0.001. setx_h corresponds to the scheme_1 calibration.

By comparison with the generalized models, each model significantly outperforms
its counterpart (p < 0.001). This suggests that the individual model is more appropriate in
building the BP regression model in the current stage.

The three models with two calibration schemes were examined by altering the combi-
nation of explanatory features. Therefore, there are three trials for each model, as shown in
Figure 3. Inside each scheme, we only compare the model having the lowest MAE with
others that have close MAEs by pair-wise student t-test and the models with lowest MAE
from each scheme. For SBP, the best models are PLS_set1 for shceme_1 and GPR_set1
for scheme_2. Moreover, the GPR_set1 (scheme_2) is significantly smaller than PLS_set1
(shceme_1) and smaller than GPR_set2 (scheme_2); it is considered as the best model
for SBP.

For DBP, being consistent with the situation of SBP, the best models are PLS_set1
(shceme_1) and GPR_set1 (scheme_2). However, no significant difference can be found
from these two models (p = 0.41). Of note, regarding the individual model that uses the
scheme_2 calibration, linear interpolation that used two consecutive calibration windows
has also been conducted to confirm the advantage of nonlinear regression using PPG
features. For example, the averaged BP values of the two calibration windows of the
15th–18th samples and the 35th–38th samples are used to interpolate the 19th–34th BP
values. The MAEs of SBP and DBP are 5.96 and 4.72 mmHg, respectively. The accuracy of
SBP is significantly lower than GRP_set1; whereas no significant difference can be seen in
DBP. Combining these pieces of result, the feature combination set 1 is consistently the best.
Moreover, the GPR coupled with the re-calibration scheme (scheme_2) has a significantly
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low MAE for SBP (5.16 mmHg) and similar MAE for DBP (4.63 mmHg); it is considered as
the best method for BP estimation.

3.3. Regression Model

Based on the results above, the GPR model with explanatory features of hr, a02, a25,
and ri is used for both SBP and DBP regression. The results of the regression model are
shown in Figure 4, from which it can be seen that the overall trend of the BP can be captured
(Figure 4a,b). The decreasing trend of both the SBP and DBP may be attributed to the
seasonal influence and can be observed from most of the subjects [24,25]. The mean and
standard deviation of the fitting are

• SBP: −2.2 ± 6.2 mmHg; DBP: −2.0 ± 5.4 mmHg.

The individual fitting results are tabulated in Table 1, from which it can be confirmed
that most of the subjects have SBP MAE values less than 6 mmHg, except for No. 3, 4,
and 11, whose BP ranges were relatively wide.
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Figure 4. The results of the GPR_set1 (scheme_2) model. The fitting of the one-month samples of two
randomly selected subjects can be seen in (a,b). The BA plot for and linear correlation can be found
in (c,d).

4. Discussion

The observation that the generalized models are significantly inferior to individual
models is consistent with the finding of Gašper et al. [26] based on the MIMIC data. This
reconfirmation suggests that the samples (features and BP values) from different individuals
follow different distributions. It also suggests that the generalizability of a BP model should
be validated on a dataset within a certain period.

Although the ISO81060-2 uses the mean as a major criterion in model evaluation, MSE,
which is more sensitive to the variance of the error, is often used in model selection [6,23].
In this study, the Mean errors of SBP and DBP with the PLS_set1 model are −1.46 and
−1.53 mmHg, respectively. However, the correlation values are evidently lower as 0.82 and
0.89, respectively. Figure 5 shows the distributions of the predicting errors of PLS_set1 (left
column) and GPR_set1 (right column). It can be confirmed in Figure 5 that the bias values
of the PLS_set1 model are less; however, variances are higher than the GPR_set1 model.
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The MAE also stands out in its insensitivity to the outliers compared with the mean square
error, which is used pervasively in machine learning. Therefore, the MAE is used in model
comparison in this study.

Figure 5. Distribution of predicting errors of the PLS_set1 (left column) adn GPR_set1 models (right

column). Red curves show the approximation of probability density using Gaussian distribution.

The fact that the re-calibration scheme (scheme_2) surpasses the initial-calibration
scheme (scheme_1) in systolic BP suggests that the model may only capture the fluctuation
of the systolic BP within a couple of days and there is a component, periodically or not,
with a longer period in the systolic BP change. On the other hand, the two schemes showed
little difference in diastolic BP (lower row of Figure 4). This observation suggests that the
diastolic BP is more stable than the systolic BP.

The necessary number of samples in a calibration window and the length of calibration-
free interval between windows are important in planning a subsequent experiment with a
larger population and longer duration. By setting the target accuracy as 5 mmHg for both
SBP and DBP, other settings of the scheme_2 have been tried, for example, two times of re-
calibration at the 30th–40th, and the 70–80th samples result in significantly lower accuracy
(MAE: 6.28 and 5.02 mmHg for SBP and DBP, respectively). Given that re-calibration too
often may cause stress, an interval of 17–20 samples (4 to 5 days typically), and four samples
of a calibration window (1 day typically), is suitable.

Another advantage of the re-calibration scheme is the swift initialization, which
requires five measurements typically, whereas the initial-calibration scheme requires a long
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period, 23 measurements typically, for initialization to have acceptable accuracy. Please
note that the granularity of this conclusion is the number of days based on the setting of
the experiments. Whether repeating the calibrating measurements in a shorter interval,
e.g., several minutes, can get similar accuracy could be validated subsequently.

The necessity of an individual model could be explained partially by further plotting
the distribution of similarity based on Mahalanobis distance (Figure 6). The intra-similarity of
the explanatory variables from the same subject is higher than the inter-similarity but with
partial overlapping. Since in kernel-based regression, the LWPLS and the GPR will take
close samples in the explanatory variables space to predict the new sample, the overlapping
samples may be detrimental for the prediction by deviating the predicting hyperplane.

Regarding the choice of the regression model, this insight is especially significant in
the era of deep learning, which is fundamentally the data-driven approach. A shallow
network model can give an accurate estimation for the dataset on hand given the extraordi-
nary capability in twisting the hyperplane to fit the samples. However, given the strong
personality underlying this problem, a few-shot learning scheme that relates the same PPG
and relevant features from the same subject with the change of BP fluctuation may be a
method worth trying at the present stage. Although the application of the fully data-driven
approach, e.g., the end-to-end deep learning pipeline, onto this topic is still difficult for
the lack of individual longitudinal data, the information hidden in the sequence of EEG
waveforms could be used by recurrent neural network or attention structure in the near
future with further accumulation of data. In this regard, the construction of long term
individual datasets should be the next key work.

An interesting study that significantly increases the training samples by extending
the measurement duration (30 min) and then uses the BiLSTM model to predict the BP
values hints that the deep learning structures should be carefully used for this topic.
The main conclusion of the leave-one-subject-out validation that the model pretrained
with population samples and fine-tuned with individual data attains the best performance
may be partially attributed to a more informative feature space constructed by ECG, PPG,
and BCG signal than using the PPG sensor solely. That is, the general relation between the
features extracted from multiple sensors and the BP values could be captured and used
in transfer learning. Although the physiological measurement is complicated, given that
the simultaneous measurement of ECG, PPG, and BCG is feasible nowadays, researchers
and developers are therefore recommended to decide on the sources of signal based on
the target application. However, if the validation duration extended to multiple days,
the significant decrease in predicting error suggests the influence of biorhythm [27].

The results of this paper are consistent with the results of Chowdhury et al. [6] by
showing that Gaussian Process Regression can attain accurate BP estimation. Additionally,
this research distinguishes itself by using the features that do not require the identification
of the dicrotic notch and the diastolic peak and validating using a long-term dataset to
highlight the necessity of the individual model.

This research emphasizes the importance of feature selection. There is no reason to
replace the features which have been validated in previous studies with the automatically
generated features using deep learning models in such a data-insufficient problem. At least,
at the current stage, the domain knowledge is as important as the improvement of machine
learning models.

This research shows the possibility of building an accurate BP estimation model by
using the general features of PPG signal and HR. Moreover, given that the disappearance of
diastolic peak is inevitable in aged people, who are the targeted population of the cuffless
method, the general features could be a good alternative in modeling.
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Figure 6. Distribution of similarity. Each subfigure corresponds to one subject. In each subfigure, the
histogram in red shows the distribution of similarity of samples from the same subject; whereas the
one in blue shows the distribution of similarity with other subjects.

5. Conclusions

This paper, from the perspectives of data science and biomedical engineering, provides
insightful results that are important for successive cuffless blood pressure studies. The main
results of this research are (1) in the current stage of data insufficiency, an individual
nonlinear regression model with intermittent calibration scheme is an ideal alternative
for long-term use; (2) the general waveform features are used given the disappearance of
morphological features caused by aging. Given the good fitting results of the nonlinear
regression model, the general waveform features are informative in this regression problem
and therefore can be used in the future studies.
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Abstract: Copy number variants (CNVs) are the most common form of structural genetic variation,
reflecting the gain or loss of DNA segments compared with a reference genome. Studies have
identified CNV association with different diseases. However, the association between the sequential
order of CNVs and disease-related traits has not been studied, to our knowledge, and it is still unclear
that CNVs function individually or whether they work in coordination with other CNVs to manifest
a disease or trait. Consequently, we propose the first such method to test the association between
the sequential order of CNVs and diseases. Our sequential multi-dimensional CNV kernel-based
association test (SMCKAT) consists of three parts: (1) a single CNV group kernel measuring the
similarity between two groups of CNVs; (2) a whole genome group kernel that aggregates several
single group kernels to summarize the similarity between CNV groups in a single chromosome or
the whole genome; and (3) an association test between the CNV sequential order and disease-related
traits using a random effect model. We evaluate SMCKAT on CNV data sets exhibiting rare or
common CNVs, demonstrating that it can detect specific biologically relevant chromosomal regions
supported by the biomedical literature. We compare the performance of SMCKAT with MCKAT, a
multi-dimensional kernel association test. Based on the results, SMCKAT can detect more specific
chromosomal regions compared with MCKAT that not only have CNV characteristics, but the CNV
order on them are significantly associated with the disease-related trait.

Keywords: genetic variation; copy number variants; disease-related traits; sequential order;
association test

1. Introduction

Genetically speaking, all humans are 99.9 percent the same and the 0.1 percent that
makes us all unique is called genetic variation [1]. Genetic variation has two main forms:
structural alteration and sequence variation. Copy number variant (CNV) and DNA se-
quence variation are the most common form of structural alteration and sequence variation
in the human genome, respectively [2].

A sequence variation or single nucleotide polymorphism (SNP) represents a difference
in a single nucleotide. For example, a SNP may replace the nucleotide cytosine with the
nucleotide thymine in a certain stretch of DNA. SNPs are classified into two major types
based on the gene region they fall within: coding region and non-coding region. SNPs
within a coding sequence do not necessarily change the amino acid sequence of the protein
that is produced, due to the degeneracy of the genetic code. SNPs in the coding region are
of two types: nonsynonymous and synonymous SNPs. Nonsynonymous SNPs change the
amino acid sequence of the protein, while synonymous SNPs do not affect the amino acid
sequence of the protein. SNPs do not usually function individually, rather, they work in
coordination with other SNPs to manifest a disease or trait [3]. Therefore, many sequence
studies have been done to test the association between SNPs and disease or traits.
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A copy number variant is the gain or loss of DNA segments in the genome ranging in
size from one kilobase to several megabases. CNVs are described by three characteristics:
type, chromosomal position, and dosage [4]. The type of CNV is either amplification or
deletion. The chromosomal position of the CNV is described by the start and end position of
the CNV in the chromosome. The dosage represents the total number of copies of the CNV,
with a value less than two relating to deletion and greater than two indicating amplification.
Besides, CNVs have phenotypic heterogeneity effects. This means that different CNV types
and dosages at the same position in the chromosome can have a different impact. It is
reported in biological studies that CNVs are distributed non-randomly in the genomes, in
particular they tend to be located close to telomeres and centromeres [5]. However, it is
still unclear if there is any specific pattern in the sequential order of CNVs that may lead to
a disease or trait.

Association studies have determined that genetic variations, both CNVs and SNPs,
are associated with diseases or traits. So, understanding the relationship between genetic
variation and disease may provide important insights into genetic causes, leading to effec-
tive means in preventing and treating the diseases. While there are lots of computational
association studies that have investigated the association between SNPs and diseases or
traits, methods for studying CNVs are underdeveloped due to the multi-dimensional
characteristics of the CNVs.

The CNV kernel association test (CKAT) [6], copy number profile curve-based associa-
tion test (CONCUR) [7] and multi-dimensional copy number variant kernel association test
(MCKAT) [8] are a few existing computational kernel based methods that have studied the
association between CNVs and diseases. In these studies, different kernels are proposed to
measure the similarity between CNV profiles with respect to CNV characteristics. Then,
the similarity between CNV profiles is compared with those in disease-related trait status
to identify any potential association between CNVs and the disease. Among them, our
previous method, the MCKAT, is the only method that has incorporated all multidimen-
sional characteristics of CNVs in testing the association between CNVs and disease or trait.
The MCKAT calculates the p-value of the association test analytically, which is compu-
tationally efficient and flexible for CNV association analysis for both rare and common
CNV types, as demonstrated in numerical studies. However, neither MCKAT nor other
methods consider the CNV sequential order in testing the association between CNVs and
disease-related traits.

Starting from MCKAT, we propose a sequential multi-dimensional CNV kernel-based
association test (SMCKAT) for investigating the association between CNVs and disease
or traits. SMCKAT is not only utilizing all multi-dimensional characteristics of CNVs but
also the sequential order of CNVs in testing the association between CNVs and disease or
traits. Based on the results, SMCKAT is applicable on both rare and common datasets and
capable of identifying hot-spots on the genome where both CNV characteristics and the
CNV sequential order are significantly associated with disease or traits.

The rest of this paper is as follows. Section 2 presents the method and materials.
Section 3 contains simulation studies. Section 4 shows the results of the real data application.
Section 5 presents the discussion, and finally Section 6 concludes the work.

2. Method and Materials

We design a sequential multi-dimensional kernel framework capable of measuring the
similarity between CNV profiles utilizing all CNV characteristics and the CNV sequential
order. It contains two kernels. The first kernel, the pair group kernel, measures the
similarity between two groups of CNVs at the same ordinal position of two CNV profiles.
It contains three sub-kernels. Each sub-kernel is responsible for measuring the similarity
between two CNVs with respect to one of the three CNV characteristics. The second kernel,
the whole genome group kernel, aggregates the similarity between every possible CNV
pair group to measure the total similarity between the CNV profiles of the subjects. Finally,
the association between CNV sequential order across a chromosome and disease-related
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traits is tested by comparing the similarity in CNV profiles to that in the trait using an
association test.

2.1. Pair CNV Group Kernel

Let X denote a single CNV which is defined by four characteristics as X = (X(1), X(2),
X(3), X(4)) where X(1) and X(2) are the CNV starting and ending position on the chromo-
some, X(3) is the CNV type, and X(4) is the CNV dosage. First, we generate the CNV
profile R for subject i with l CNVs as Ri = (Xi

1, Xi
2, . . . , Xi

li
) where CNVs are sorted based

on their chromosomal position. Secondly, we extract a CNV group of size n out of the CNV
profile as Gi = (Xi

m, Xi
m+1, . . . , Xi

m+n) where n is the group size that can take any value
between 1 and l, the number of existing CNVs in a CNV profile as is shown in Figure 1.

Figure 1. Generating CNV profile Ri where CNVs are sorted with respect to their chromosomal position. A, B,. . . , and F are
arbitrary CNVs at mth, mth+1, . . . , and mth+n positions and Gi is a group of CNVs of size n.

We propose a pair CNV group kernel, KPG, to measure the similarity between two
CNV groups of size n, Gi and Gj, in two CNV profiles. First, KPG aligns each CNV in the
Gi with its relevant CNV in the Gj with respect to their position to generate n CNV pairs as
is shown in Figure 2.

Figure 2. Aligning CNVs within two CNV groups of size n, Gi and Gj, to generate n CNV pairs.

Then, KPG measures the similarity between each CNV pair using the single pair
CNV kernel, KS, we proposed in [8]. KS measures the similarity between a CNV pair by
three sub-kernels considering all CNV features including chromosomal position, type and
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dosage. Finally, KPG averages the similarities calculated by KS between all generated CNV
pairs to measure the similarity between two CNV groups, Gi and Gj, as

KPG(Gi, Gj) =
n

∑
m=1

Ks(Xi
m, Xj

m)

n
(1)

where Ks is defined as

Ks

(
Xi

m, Xj
m

)
=

⎡⎣ Intersection
((

Xi(1)
m , Xi(2)

m

)
,
(

Xj(1)
m , Xj(2)

m

))
Union

((
Xi(1)

m , Xi(2)
m

)
,
(

Xj(1)
m , Xj(2)

m

))
⎤⎦×

⎡⎣
(

Xi(3)
m == Xj(3)

m

)
+ 1

2

⎤⎦×
[

1

2
∣∣∣DR

(
Xi(4)

m

)
−DR

(
Xj(4)

m

)∣∣∣
] (2)

and the first term measures the mutual presence of a CNV with a specific start and end
position by dividing the size of the intersection of two CNVs to their union size. The
intersection function calculates the length of the chromosomal region that belongs to both
CNVs. Similarly, the union function calculates the length of the chromosomal region
that consists of both regions that belong to the first CNV and to the second CNV. The
second term compares the CNV type of two CNVs to calculate the similarity between
them. The third term measures the similarity between two CNVs with respect to their
dosage. The DR is the difference from the reference function we proposed in [8] as
DR(dosage) = |dosage − 2|. DR measures the difference between a CNV dosage and the
reference dosage value 2.

2.2. Whole Genome CNV Group Kernel

First, we create a window of size n. We slide this window across the CNV profile Ri
as is shown in Figure 3 to extract all possible CNV groups of size n as Pi = (Gi

1, . . . , Gi
pi
)

where CNV groups are sorted based on their position and pi is the number of extracted
CNV groups for the CNV profile Ri. Similarly, we have another CNV group series
Pj = (Gj

1, . . . , Gj
qj) for CNV profile Rj.

Figure 3. Sliding window of size n across CNV profile to extract CNV groups of size n.

Then, we propose the whole genome CNV group kernel, KWG, to measure the similar-
ity between two CNV group series Pi and Pj as

KWG(Pi, Pj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if pi × qi = 0

∑
Max(pi ,qi)
z=1 Max(KPG(Gi

z, Gj
z−1),

KPG(Gi
z, Gj

z), KPG(Gi
z, Gj

z+1)) if pi × qi �= 0

(3)

where KPG(., .) is the pair CNV group kernel from (1). KWG measures the similarity between
the pair CNV groups of the same position and aggregates these similarities to calculate the

22



Life 2021, 11, 1302

similarity in two CNV group series. The second maximum operation in the definition of
KWG searches for the best group-to-group correspondence of the highest similarity to align
CNV groups in two CNV group series as is shown in Figure 4.

The kernel-based association test described in the following section, requires a kernel
similarity matrix K. K is a d × d matrix, where Kij = KWG(Pi, Pj) and d is the number of
existing CNV profiles. Kij expresses the similarity between CNV profile i and j measured
by KWG.

Figure 4. Aligning Gi
z to the best group-to-group correspondence of the highest similarity among Gj

z−1, Gj
z and Gj

z+1.

2.3. Kernel-Based Association Test

We use the following logistic regression model to test the association between CNV
sequential order and a disease related trait

logit[Pr(yi = 1)] = β0 + Zβ + f (Pi) (4)

where yi is the status of the disease related trait with yi = 1 denoting the existence of the
trait and yi = 0 denoting otherwise, and i = 1, 2, . . . , d indexing the CNV profiles, and
Z is the covariate matrix including information such as age and gender. Pi is the CNV
group series of the profile Ri as explained previously. f (·) is a function spanned by the
whole genome CNV group kernel KWG(·, ·). According to equation (4), the hypothesis of
no association between the CNV sequential order and the existence of a disease related
trait can be tested as H0 : f (·) = 0. To test this, one way is to treat the f (·) as a random
effect vector which is distributed as N(0, τK), where τ ≥ 0 and K is the d × d similarity
matrix, treated as covariance matrix of the random effect, generated by KWG as defined
in [6]. Liu et al. [9] has shown that testing H0 : f (·) is equivalent to testing H0 : τ = 0 in the
logistic mixed effect model. Moreover, τ is a variance component parameter in the logistic
mixed effect model, which can be tested using a restricted maximum likelihood-based
score test [9,10].

We use the following score test statistic where ŷ is estimated under the null model
logit[Pr(yi = 1)] = β0 + Zβ and K is the similarity matrix explained in the previous section.

Q = (y − ŷ)′K(y − ŷ) (5)

Then, we used the Davies method [11] as implemented in the CKAT R package [6] to
calculate the p-value of the proposed kernel based association test. The SMCKAT workflow
is summarized in Figure 5
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Figure 5. SMCKAT workflow diagram.

2.4. Common and Rare CNV Data

Biologists generally assign CNVs to one of two major types, depending on the length of
the affected chromosomal region and occurrence frequency: copy number polymorphisms
(CNPs) and rare variants [4]. CNPs are widespread in the general population, with an
average occurrence frequency greater than one percent while rare variants are much
longer than CNPs, ranging from hundreds of thousands of base pairs to over one million
base pairs.

We apply SMCKAT on both rare and common CNV public domain genome sequencing
data sets to evaluate the performance on both CNV types. The two CNV data sets used
in this study are from individuals with rhabdomyosarcoma (RMS) cancer and autism
spectrum disorder (ASD). The RMS data set [12] contains the common CNVs for 44 subjects,
while the ASD data set [13] has the rare CNVs of 588 subjects. In both data sets, each CNV
is presented by chromosomal position, type, and dosage.

3. Simulation Studies

We conducted simulations to evaluate the performance of SMCKAT and ensure that
it can properly handle type I and II errors, as well as having relatively high power in
detecting existing associations. Besides SMCKAT, the MCKAT and CKAT are also studied.
We conduct our simulation studies under two main scenarios. In the first scenario, we
evaluate the performance of the SMCAKT on the rare CNV data. In the second scenario,
we evaluate the performance of the SMCKAT on the common CNV data.

We use the ASD dataset and the RMS dataset in the first and second simulation
scenarios, respectively. These datasets are studied in the real data analysis and further
details regarding them are shared in the Section 4. We simulated 105 datasets for each
simulation scenario.

The ASD dataset has the same dosage value for all deletions and similarly the same
dosage value for all amplifications. Therefore, we randomly generate other values for
the CNV dosage to conduct our simulation studies and investigate the dosage effect in
identifying existing associations. The simulated dosage value can take 0 or 1 for deletion
types and 3, 4, . . . , 7 for amplification types. We use equal probabilities when generating
random dosage values for deletion and amplification, 0.5 and 0.2, respectively.

A case-control phenotype is generated for both SMCKAT and MCKAT from the
following logistic model that we proposed in [8],
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logit(Pr(Yi = 1)) = β0 +
mi

∑
j=1

βLen
j (X(2)

ij − X(1)
ij ) +

mi

∑
j=1

(βDel
j I[X(3)

ij = 1] + β
Amp
j I[X(3)

ij = 3])

+
mi

∑
j=1

β
Dsg
j |X(4)

ij − 2|+
mi

∑
j=1

β
Len∗Del∗Dsg
j (X(2)

ij − X(1)
ij )× I[X(3)

ij = 1]× X(4)
ij

+
mi

∑
j=1

β
Len∗Amp∗Dsg
j (X(2)

ij − X(1)
ij )× I[X(3)

ij = 3]× X(4)
ij

(6)

where Xij = (X(1)
ij , X(2)

ij , X(3)
ij , X(4)

ij ) is the jth CNV of the ith individual as defined previ-

ously. β0 corresponds to a baseline disease rate. βLen
j controls the effect of chromosomal

position, and βDel
j and β

Dup
j are the log ratio of a CNV j for being deletion versus amplifica-

tion and vice versa. βDel
j and β

Dup
j share the same values but different signs. β

Len∗Amp∗Dsg
j

and β
Len∗Del∗Dsg
j allow the effect of the chromosomal position and CNV type to differ by

dosage in CNV j.
After generating phenotypes for SMCKAT and MCKAT, we use following logistic

model that is proposed in [6] to generate the phenotypes under CKAT method:

logit(πi) = β0 +
mi

∑
j=1

(βDel
j I[X(2)

ij = 1] + β
Dup
j I[X(2)

ij = 3])X(1)
ij (7)

where Xij = (X(1)
ij , X(2)

ij ) is the jth CNV of ith subject, πi = Pr(Yi = 1), β0 is the prevalence

rate of the disease, and β
Dup
j , βDel

j are the log of the odd ratio of CNV j for duplication and
deletion respectively.

Simulation Results

The QQ-plots of p-values of SMCKAT, MCKAT and CKAT under both simulation
scenarios are presented in Figure 6.

Figure 6. p-value based QQ-plots of MCKAT and CKAT under first (a) and second (b) simulation
scenario.

Based on the QQ-plot (a), SMCKAT and MCKAT are on the 45 degree line under the
first simulation scenario. This indicates that both SMCKAT and MCKAT can properly
handle the type I and II error rate under different nominal significance levels even as low
as 10−5 when dealing with the rare CNV dataset. However, CKAT is showing a higher
chance of committing the type II error in detecting existing associations between the rare
CNVs and phenotype.
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As is shown in QQ-plot (b), both SMCKAT and MCKAT can protect the correct type I
and II error rate at different nominal significance levels in dealing with the common CNV
data. We observe that SMCKAT is a little conservative when the significance level is small.
However, CKAT shows a weak performance in handling the type I error and detecting
existing associations between the common CNVs and phenotype.

The empirical powers of SMCKAT, MCKAT and CKAT under the first and second
scenarios are presented in Figures 7 and 8, respectively. As is shown is Figure 7, SMCKAT
and MCKAT have almost similar powers when dealing with rare CNVs. However, CKAT
shows lower power compared with SMCKAT and MCKAT. The reason might be that the
CKAT is not considering the CNV dosage information when testing the association.

Similarly, in the second simulation scenario, SMCKAT and MCKAT have similar
powers. However, CKAT is showing low power when dealing with common CNV data.
This might be due to the CKAT scanning algorithm for aligning CNVs in the CNV profiles.
The CKAT shift-by-one scanning algorithm can capture similarity between limited number
of CNVs, which may result in low performance when dealing with common CNVs.

Figure 7. Empirical power of SMCKAT, MCKAT and CKAT under first simulation scenario, rare
CNV data.

Figure 8. Empirical power of SMCKAT, MCKAT and CKAT under second simulation scenario,
common CNV data.
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4. Real Data Application Results

We conducted SMCKAT analysis, for different CNV group sizes, on single chromo-
somes and the whole genome to test the association between CNV sequential order and
disease-related traits. The disease-related traits studied in this paper are cancer subtype for
the RMS data set and disease status for the ASD data set. We compared SMCKAT results
with those obtained from MCKAT and CKAT to evaluate SMCKAT performance on real
CNV data.

4.1. CNV Analysis on Rhabdomyosarcoma Data Set

First, we conducted the experiment on the RMS data. The RMS occurs as two major
histological subtypes, embryonal (ERMS) and alveolar (ARMS). The classification of the
RMS subtype has a direct effect on the patient treatment options. The RMS data includes a
total of 59,131 CNVs for 25 alveolar and 19 embryonal cancers. We apply SMCKAT to each
of 23 chromosome pairs, with different CNV group sizes, to test the association between
CNV sequential order and RMS subtype. Bonferroni correction is used for adjusting
the multiple testing to control the family-wise error rate (FWER) of α = 0.05. Since
22 chromosomes and a sex chromosome are being tested, the p-value threshold for a whole-
chromosome significance is calculated as 0.05/23 = 2.2 × 10−3. SMCKAT identifies four
chromosomes out of the existing 23 chromosomes that have a CNV sequential order that is
significantly associated with the RMS sub-type. The p-values of SMCKAT for these four
chromosomes are reported in Table 1.

Table 1. p-values of testing the association between CNV sequential order and RMS subtype trying different CNV group
sizes. n is the group size and (#) denotes the total number of CNVs on the chromosome.

Chr. #CNV n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

2 5584 2.45 × 10−2 5.10 × 10−2 8.31 × 10−2 3.49 × 10−3 4.25 × 10−3 3.21 × 10−2

8 5365 2.61 × 10−5 7.37 × 10−6 1.13 × 10−6 7.63 × 10−7 4.99 × 10−8 0
11 3449 2.03 × 10−2 8.26 × 10−3 2.93 × 10−3 1.54 × 10−3 5.82 × 10−4 1.20 × 10−4

13 2462 1.80 × 10−3 3.56 × 10−3 4.86 × 10−3 6.06 × 10−3 7.89 × 10−3 6.23 × 10−2

Based on the results, SMCKAT identifies CNV sequential order in chromosomes 2, 8,
11, and 13, significantly associated with distinguishing RMS subtype at FWER= 2.2 × 10−3.
These results are consistent with the existing biological knowledge, which shows the ability
of the SMCKAT to identify the CNV sequential order significantly associated with specific
disease-related traits.

For example, ref. [14] shows that RMS is associated with specific chromosomal ab-
normalities that differentiate ARMS and ERMS. Based on their study, approximately 80%
of ARMS tumors display a translocation between the FOXO1 transcription factor gene
located on chromosome 13 and the PAX3 transcription factor gene on chromosome 2, and
ERMS tumors show a higher frequency of specific genetic mutation on chromosome 11
than ARMS. Ref. [15] has revealed the same earlier. Furthermore, ref. [16] has found that
the ARMS subtype is significantly associated with amplifications on chromosome 8. Our
findings show another mechanism like CNVs can play a significant role in causing any
disease-related traits besides gene mutations and chromosomal translocations.

We tested different CNV group sizes when applying SMCKAT to the RMS data set.
Based on the results reported in Table 1, SMCKAT shows the strongest evidence and
smallest p-value for the chromosome 8 for all CNV group sizes. It means subjects with the
same RMS subtype may have a similar CNV sequential order on their chromosome 8.

We tested SMCKAT on the RMS data set for group sizes greater than six. We observed
an increasing trend in p-values by increasing the group size, which shows a decline in the
significance level of the CNV sequential order associated with the RMS subtype.
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4.2. CNV Analysis on Cytogenetic Bands in RMS

Based on the result reported in Table 1, there is strong statistical evidence, as supported
by a p-value near to zero, that the CNV sequential order of chromosome 8 with group size
of six is significantly associated with the RMS subtype. Therefore, we picked chromosome 8
with a CNV group size of six for further analysis. We partitioned chromosome 8 into smaller
regions based on the cytogenetic bands. We applied SMCKAT on each cytogenetic band to
check if SMCKAT is capable of detecting more specific regions rather than chromosomes.
Then, we compared the results with of MCKAT and CKAT. Table 2 contains the p-values
of the association test in each cytogenetic band in chromosome 8. Since 40 cytogenetic
bands are being tested in chromosome 8, the p-value threshold for a band significance is
calculated as 0.05/40 = 1.2 × 10−3.

Table 2. p-values of the testing association between RMS subtype and CNVs in the chromosome 8 cytogenetic bands by
SMCKAT, MCKAT and CKAT. (*) denotes significant association between RMS subtype and CNVs, (#) denotes the number
of total CNVs on the band.

Arm Band Start Stop #CNVs SMCKAT MCKAT CKAT

p 23 3 1 2, 300, 000 113 9 6 × 10−2 3 4 × 10−4 * 4 917 × 10−1

p 23 2 2, 300, 001 6, 300, 000 85 3 0 × 10−2 2 0 × 10−2 3 939 × 10−1

p 23 1 6, 300, 001 12, 800, 000 304 1 8 × 10−4 * 4 7 × 10−8 * 4 755 × 10−1

p 22 0 12, 800, 001 19, 200, 000 101 2 8 × 10−2 8 2 × 10−3 4 327 × 10−1

p 21 3 19, 200, 001 23, 500, 000 102 1 1 × 10−1 2 5 × 10−2 4 237 × 10−1

p 21 2 23, 500, 001 27, 500, 000 82 3 4 × 10−2 3 6 × 10−2 4 717 × 10−1

p 21 1 27, 500, 001 29, 000, 000 50 2 5 × 10−2 1 6 × 10−2 4 948 × 10−1

p 12 0 29, 000, 001 36, 700, 000 190 1 3 × 10−6 * 3 7 × 10−5 * 4 658 × 10−1

p 11 23 36, 700, 001 38, 500, 000 48 1 0 3 7 × 10−3 3 916 × 10−1

p 11 22 38, 500, 001 39, 900, 000 57 9 3 × 10−2 8 4 × 10−3 4 613 × 10−1

p 11 21 39, 900, 001 43, 200, 000 147 4 4 × 10−3 1 0 × 10−4 * 3 655 × 10−1

p 11 1 43, 200, 001 45, 200, 000 72 8 8 × 10−2 2 8 × 10−2 4 584 × 10−1

q 11 1 45, 200, 001 47, 200, 000 41 1 0 2 1 × 10−2 4 436 × 10−1

q 11 21 47, 200, 001 51, 300, 000 200 4 4 × 10−3 8 4 × 10−5 * 4 064 × 10−1

q 11 22 51, 300, 001 51, 700, 000 6 9 3 × 10−1 4 7 × 10−2 4 200 × 10−1

q 11 23 51, 700, 001 54, 600, 000 61 1 0 6 1 × 10−2 4 657 × 10−1

q 12 1 54, 600, 001 60, 600, 000 177 9 1 × 10−3 7 0 × 10−4 * 4 505 × 10−1

q 12 2 60, 600, 001 61, 300, 000 18 1 0 3 3 × 10−2 4 502 × 10−1

q 12 3 61, 300, 001 65, 100, 000 134 4 9 × 10−2 1 1 × 10−2 4 110 × 10−1

q 13 1 65, 100, 001 67, 100, 000 71 4 4 × 10−2 5 8 × 10−3 4 427 × 10−1

q 13 2 67, 100, 001 69, 600, 000 54 5 8 × 10−2 4 3 × 10−3 4 659 × 10−1

q 13 3 69, 600, 001 72, 000, 000 62 1 4 × 10−2 1 8 × 10−3 3 762 × 10−1

q 21 11 72, 000, 001 74, 600, 000 144 4 8 × 10−1 8 4 × 10−3 3 325 × 10−1

q 21 12 74, 600, 001 74, 700, 000 1 1 0 1 0 1 0
q 21 13 74, 700, 001 83, 500, 000 308 1 0 × 10−2 2 6 × 10−3 4 927 × 10−1

q 21 2 83, 500, 001 85, 900, 000 56 4 8 × 10−2 2 9 × 10−2 4 189 × 10−1

q 21 3 85, 900, 001 92, 300, 000 185 4 7 × 10−3 1 0 × 10−4 * 4 215 × 10−1

q 22 1 92, 300, 001 97, 900, 000 182 1 7 × 10−2 1 0 × 10−2 3 072 × 10−1

q 22 2 97, 900, 001 100, 500, 000 103 4 5 × 10−2 3 9 × 10−3 4 395 × 10−1

q 22 3 100, 500, 001 105, 100, 000 162 1 2 × 10−2 4 6 × 10−3 4 458 × 10−1

q 23 1 105, 100, 001 109, 500, 000 135 2 8 × 10−3 2 5 × 10−3 4 017 × 10−1

q 23 2 109, 500, 001 111, 100, 000 33 9 8 × 10−1 8 0 × 10−1 3 005 × 10−1

q 23 3 111, 100, 001 116, 700, 000 185 1 1 × 10−2 2 3 × 10−3 4 419 × 10−1

q 24 11 116, 700, 001 118, 300, 000 53 4 6 × 10−2 2 6 × 10−2 4 705 × 10−1

q 24 12 118, 300, 001 121, 500, 000 109 2 5 × 10−3 2 2 × 10−3 4 068 × 10−1

q 24 13 121, 500, 001 126, 300, 000 151 2 2 × 10−2 6 0 × 10−3 4 856 × 10−1

q 24 21 126, 300, 001 130, 400, 000 208 5 0 × 10−2 1 9 × 10−2 3 922 × 10−1

q 24 22 130, 400, 001 135, 400, 000 155 5 5 × 10−2 1 5 × 10−2 4 638 × 10−1

q 24 23 135, 400, 001 138, 900, 000 162 2 8 × 10−1 7 7 × 10−3 4 512 × 10−1

q 24 3 138, 900, 001 145, 138, 636 354 8 8 × 10−3 2 5 × 10−8* 4 277 × 10−1

As shown in Table 2, both SMCKAT and MCKAT detect significantly associated
cytogenetic bands with the RMS subtype while CKAT does not identify any significant
regions. MCKAT has identified 8 cytogenetic bands that CNVs on them are significantly
associated with RMS sub type. Two out of these eight cytogenetic bands, 8p23.1 and 8p12.0,
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are identified by SMCKAT as well. It means not only the CNV characteristics but also the
CNV sequential order in these two bands are significantly associated with the RMS sub
type. Based on the results, SMCKAT has the potential to provide us with more specific
CNV regions when we are testing the association between CNVs and disease-related traits
compared with MCKAT.

4.3. CNV Analysis on Autism Data Set

We applied SMCKAT on the ASD data set to evaluate its performance on the rare
CNV type. We aimed to test if there was any association between the sequential order
of CNVs and ASD status. The ASD data set contains 1285 rare CNVs on 310 individuals
with ASD and 1074 rare CNVs on 278 healthy individuals. Since the ASD data set contains
only rare and large CNVs, an arbitrary CNV profile may have no or few CNVs on some
chromosomes. Therefore, instead of applying SMCKAT to every 23 chromosomes, we
applied it to the whole genome. Then, we tested if there is any association between the
whole genome CNV sequential order and the ASD status. We considered 0.05 as the
p-value threshold for the whole-chromosome significance. As is reported in Table 3, there
is strong statistical evidence, up to a CNV group size of five, that subjects with the same
disease status have similar CNV ordesr in their CNV profiles. We tested SMCKAT on the
ASD data for the larger group sizes as well. We observed an increasing trend in p-values
by increasing the group size, which shows a decline in the significance level of the CNV
sequential order associated with the ASD status.

Table 3. p-values of testing the association between CNV sequential order and ASD status trying
different CNV group sizes.

n 1 2 3 4 5 6

p-value 0 7.91× 10−9 3.09× 10−6 3.62× 10−4 4.89× 10−3 1.03× 10−1

5. Discussion

SMCKAT tests the association between CNVs and disease-related traits. It checks
if CNVs are randomly distributed on the chromosomes or if their sequential orders are
significant and have associations with disease-related traits. Our approach has several
advantages over the existing methods. First, it measures the similarity between CNV
profiles by considering not only all CNV characteristics but also the CNV sequential order.
To our knowledge, it is the first approach to study the association between CNV sequential
order and disease related traits. Secondly, it is applicable to both rare and common CNV
data sets, while previous methods like CKAT can not deal with common CNV data sets.
Thirdly, SMCKAT is more stringent when compared with the state-of-the-art approach
MCKAT in detecting significant CNV regions. Finally, SMCKAT can help biologists detect
significantly associated CNV regions with any disease-related trait across a patient group
instead of examining the CNVs case by case in each subject.

Although our experimental results are promising and more specific compared with
the state-of-the-art kernel approach, this study has limitations. There are not many publicly
available CNV data sets. Besides, most available ones do not contain all CNV features
together, in particular the dosage information. Consequently, our method is tested only on
one data set, an RMS data set, that includes all multi-dimensional CNV characteristics. For
the ASD data set, we considered a dosage less than two for all deletions and greater than
two for all amplifications to make the most of the proposed method’s capability. Applying
SMCKAT to more data sets containing all CNV characteristics can help to determine
its strengths and weaknesses. In addition, there is no existing study, neither biological
nor computational, that has studied the CNV sequential order to be able to validate our
experimental results with it.
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Our study shows that CNV sequential order has the potential to play a significant role
in causing disease-related traits, but more new findings can be revealed by conducting
more comprehensive analysis upon the availability of data.

6. Conclusions

This paper presents a sequential multi-dimensional CNV association test identifying
associations between CNVs and disease-rated traits using all multi-dimensional CNV
characteristics and CNV sequential order. Our method, SMCKAT, uses different kernels
to measure the similarity between CNV profiles with respect to both CNV orders and
characteristics. Then, the similarity in CNV profiles is compared to the similarity in disease-
related traits to test for an association.

The evaluation was conducted on two types of CNV data sets, a rare CNV data set
and a common CNV data set. Results indicate that our method provides statistically strong
evidence that there is an association between the sequential order of CNVs and disease
related traits. Currently, SMCKAT is capable of testing the association between CNVs
and qualitative disease-rated traits. In our future work, we will expand the SMCKAT
framework to be applicable to both qualitative and quantitative traits.
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Abstract: Methylation of adenosines at N6 position (m6A) is the most frequent internal modification
in mRNAs of the human genome and attributable to diverse roles in physiological development, and
pathophysiological processes. However, studies on the role of m6A in neuronal development are
sparse and not well-documented. The m6A detection remains challenging due to its inconsistent
pattern and less sensitivity by the current detection techniques. Therefore, we applied a sliding
window technique to identify the consensus site (5′-GGACT-3′) n ≥ 2 and annotated all m6A hotspots
in the human genome. Over 6.78 × 107 hotspots were identified and 96.4% were found to be located
in the non-coding regions, suggesting that methylation occurs before splicing. Several genes, RPS6K,
NRP1, NRXN, EGFR, YTHDF2, have been involved in various stages of neuron development and
their functioning. However, the contribution of m6A in these genes needs further validation in the
experimental model. Thus, the present study elaborates the location of m6A in the human genome
and its function in neuron physiology.

Keywords: adenosine methylation; m6A; RNA modification; neuronal development

1. Introduction

Among the 150 reported RNA modifications to date, methylation at N6 position of
adenosine (m6A) is the post-transcriptional RNA modification with a high physiological
relevance [1]. This reversible modification of RNA regulates the expression of several
genes and affects human physiology [2]. Over 7000 genes have been reported to carry this
modification in humans, and aberrant RNA modification contributes to the pathogenesis of
various human diseases. Notably, the abnormal modification of human tRNA may lead to
mental retardation and intellectual disability [3]. Among all different RNA modifications,
m6A modification is most abundant in mRNAs of eukaryotic cells. Altered m6A modifi-
cations have been linked with several diseases, such as obesity, cancer, diabetes mellitus,
stress-related psychiatric disorders, neuronal development, and functions [4,5]. Several
analytical tools have revealed that 5′-GGACU-3′ is the most common structural signature
for m6A modification [6,7].
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Recent reports demonstrate that not all the adenines in RNA are methylated; the
probability of methylation is random, and some RNAs are even entirely devoid of this
modification. Moreover, no consensus has been reached for the methylation pattern; nu-
cleotides flanking to “methylable adenines” impact the possibility of their methylation.
Cumulatively, these factors cause difficulties in the analysis during in vitro validation of
m6A in RNA. In addition, there are several limitations in the current technologies, which
are being used for identification of m6A sites. The resolution of methyl-RNA immune-
precipitation and sequencing (MeRIP-Seq) covers around 200 nucleotides; therefore, it
cannot be used to pinpoint the precise location of the m6A modification [8]. Another tech-
nique called site-specific cleavage and radioactive-labeling followed by ligation-assisted
extraction and thin-layer chromatography (SCARLET) is time-consuming and expensive
and not feasible for high-throughput applications [9,10]. Most existing methods are entirely
ineffective in identifying m6A sites due to a biassing and unpredictability of chemicals
toward a specific RNA modification, and failure to produce single-nucleotide sequencing
data [11–13]. Intrinsic features, such as fragility, multiple open reading frames, alternative
splicing, and short RNA half-lives contribute to these m6A analysis flaws. Thus, generating
all potential m6A sites in a single transcriptome analysis within a predefined time frame is
challenging with these currently available tools. Alternatively, tagging the target sequence
in the genome itself can unveil the distribution of all potential m6A sites, which display
methylation possibilities, and perhaps aiding in the understanding of m6A’s function in
physiological processes. Here, we present the sliding window-based technique to identify
all adenines in the human genome, considering each one as a potential methylation site.
Furthermore, we have also delineated the role of m6A modification in the neurological
milieu, contrasting the physiological and pathological conditions.

2. Methodology

2.1. Definition of m6A Methylation Sites

The consensus sequence (5′-GGACT-3′)n, n = 2 in tandem was searched throughout
the human genome (version GRCh37 patch 8). If methylated, the two consensus sequences
in tandem are considered as more effective in generating physiological effects. Following
the strict criteria, no mismatch in the m6A sites was allowed.

2.2. PatternRepeatAnnotator: A Home-Made PERL Script

To locate m6A sites in the human genome, a home made PERL script, named “Pattern-
RepeatAnnotator” based on the sliding window technique or window shift algorithm was
used [14,15]. The ”PatternRepeatAnnotator” was developed to explore the user-defined
patterns in the genome sequence (Figure 1). The sliding window technique is a method
for finding a subarray (e.g., consensus sequence) in the genome that satisfies the given
conditions (e.g., tandem). The search was carried out by maintaining a subset of items (e.g.,
nucleotides) as a window, and rearranged accordingly and shifted them within the more ex-
tensive list until the subarray is precisely matched. The “PatternRepeatAnnotator” scanned
the consensus sequences through each chromosome (in Fasta format) to locate them with
a particular length (n) defined by the user. Consequently, it provided chromosome-wise
coordinates for all the identified sites.
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Figure 1. Schematic algorithm used to develop the “PatternRepeatAnnotator”.

2.3. Annotation of m6A Sites

To annotate the identified m6A sites, the GRCh37 genome annotation file was utilized
(https://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Homo_sapiens/ARCHIVE/
BUILD.37.3/GFF/ref_GRCh37.p5_top_level.gff3.gz, accessed on 26 September 2021). The
identified coordinates of m6A sites were further mapped to the annotation file. After
the processing, all information was transported to a comma-separated value (.csv) file,
where the running task was conducted. The promoter and downstream regulatory regions
(DRR) were considered as 100 nucleotides upstream and 500 nucleotides downstream
of all identified genes, respectively. The genes containing recognition sequences in the
coding (plus/sense) DNA strand were selected for further analysis only. A single gene was
counted as one entry, even if it had the target sequence at multiple locations.
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2.4. Gene Ontology (GO) Analysis

To assess the mechanistic biological insight into the genes of interest, Gene Ontology
(GO) analysis was performed using gprofiler [16]. Enrichment maps were generated using
ShinyGo, a gene ontology enrichment analysis software (South Dakota State University,
Bioinformatics Research group). The distribution of target sequences (n ≥ 2) in protein-
coding genes with their frequencies and enrichment score per Mb of respective chromosome
were analyzed.

3. Results

A total of 6.78 × 107 target sequences GGACT (n ≥ 2) were found throughout the
human genome using the homemade script. Chromosome 2, having 242 million base
pairs (Mbps) nucleotides were found to carry the highest number of target sequences in
total (n = 1014.79 × 104). Out of these, the target sequences of 31.76 × 104, 541.56 × 104,
1.45 × 104, 433.77 × 104,and 6.23 × 104 Mbps were found in exonic, intronic, promoter,
genomic, and downstream regulatory regions (DRR), respectively (Table 1, Figure 2a).
The enrichment (copy number of target sequence per Mbps of the chromosome) of target
sequence was also found to be highest (4.19 × 104 sequences/Mbps) in chromosome 2
(Figure 2b). Chromosome 24 was found to carry the lowest number of target sequence,
in total 41.2 × 104 Mbps with an enrichment score of 0.72 × 104. Out of these, the target
sequences 0.07 × 104, 0.31 × 104, 0.67 × 104, 10.31 × 104, and 29.93 × 104 Mbps were
identified in promoter, DRR, exonic, intronic, and genomic regions, respectively (Table 1).

Table 1. Distribution of target sequence (n ≥ 2) found in different regions of human genome.

Chromosome
Number

Number of Target Sequence ×104

Promoter DRR Exon Intron Genomic Total

1 1.00 4.17 22.08 289.36 202.29 518.90
2 1.46 6.23 31.76 541.57 433.78 1014.80
3 0.51 2.13 11.55 229.46 142.93 386.58
4 0.90 3.92 18.34 368.27 391.23 782.67
5 0.14 0.13 2.95 60.49 79.17 142.89
6 0.63 0.54 11.49 131.76 108.23 252.65
7 0.38 0.33 7.74 127.44 108.97 244.86
8 0.32 0.27 6.31 103.02 79.42 189.34
9 0.11 0.10 2.29 56.21 50.51 109.22

10 0.23 0.20 4.89 91.10 69.49 165.92
11 1.16 4.89 23.13 293.85 238.57 561.61
12 0.27 0.23 5.90 82.65 55.61 144.66
13 0.52 0.45 9.64 183.52 205.59 399.72
14 0.80 0.68 13.88 194.32 168.73 378.41
15 0.71 0.59 15.63 208.53 129.65 355.11
16 0.42 0.32 8.76 88.48 59.10 157.08
17 0.30 0.24 6.60 57.25 34.28 98.67
18 0.10 0.09 2.06 34.53 27.32 64.10
19 0.44 0.37 9.38 61.79 37.57 109.54
20 0.19 0.16 3.66 56.90 50.03 110.93
21 0.24 0.21 4.74 64.69 79.52 149.41
22 0.47 0.39 9.70 93.20 54.50 158.26
23 0.31 0.28 6.19 105.08 135.69 247.54
24 0.07 0.31 0.67 10.31 29.93 41.29

Total 11.68 27.23 239.34 3533.78 2972.11 6784.16

Percentage of Total 0.172 0.401 3.528 52.089 43.810 100.000

DRR—Downstream Regulatory Regions.
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Figure 2. Distribution and enrichment score of m6A sites (a). The potential m6A sites (×104) in different parts of human
genome, such as promoters, DRR, exons, and genomic (intergenic) regions. (b) Enrichment score of target sequences
according to chromosome size (in million bases pair). DRR: Downstream regulatory regions.

Subsequently, we also looked up the protein-coding genes per chromosome, which
carry the target sequence (n ≥ 2). Here, chromosome 2 had the highest number of genes
(n = 1448) with the target sequence followed by chromosome 11 (n = 982) (Table 2). Interest-
ingly, a notable highest frequency of the target sequence (n = 163) was observed in MCF2
Transforming Sequence-Like (MCF2L) gene located on chromosome 13. Additionally, the
highest number of protein-coding genes were also found on chromosome 13 (81%; 266/327),
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followed by chromosome 4 (76%; 572/752), whilst chromosome 9 had the lowest number
of protein-coding genes with the target sequence (8%; 64/786). Notably, the chromosome 1,
containing the highest number of protein-coding genes (n = 2058), was found to carry the
target sequence only in 27% of genes (Table 2).

Table 2. Distribution of target sequences (n ≥ 2) in protein-coding genes with their frequencies and enrichment score per
Mb of respective chromosomes.

Chromosome
Chromosome

Size (Mb)
Total No. Protein

Coding Genes Present

Number of Protein
Coding Genes

Carrying Target
Sequence (%)

Highest Frequency
of Target Sequence

in Any Gene
# Enrichment Score × 104

1 249 2058 967 (27) 63 2.08
2 242 1309 1448 (67) 58 4.19
3 198 1078 522 (30) 62 1.95
4 190 752 932 (76) 55 4.11
5 182 876 135 (10) 64 0.79
6 171 1048 497 (26) 32 1.48
7 159 989 352 (21) 51 1.54
8 145 677 286 (25) 73 1.30
9 138 786 99 (8) 88 0.79

10 134 733 226 (18) 43 1.24
11 135 1298 982 (42) 73 4.16
12 133 1034 265 (14) 36 1.09
13 114 327 432 (81) 163 3.50
14 107 830 587 (40) 74 3.54
15 102 613 641 (64) 40 3.48
16 90 873 343 (19) 108 1.74
17 83 1197 261 (12) 21 1.19
18 80 270 92 (18) 35 0.80
19 59 1472 361 (13) 12 1.87
20 64 544 169 (20) 69 1.72
21 47 234 212 (56) 47 3.20
22 51 488 39 (44) 34 3.11
23 156 842 238 (17) 80 1.59
24 57 71 42 (24) 14 0.72

# Enrichment score was calculated as copy number of target sequence per Mbps of chromosome.

Here, the consensus site (5′-GGACT-3′) n ≥ 2 was utilized to locate and annotate all
m6A hotspots. We identified several genes associated to cancer, diabetes, stress-related
mental illnesses, and neuronal development, among other diseases. Especially, GO analysis
revealed the crucial genes related to neuronal development.

m6A RNA modification is one of the most prevalent reversible internal modifications,
regulated by methyltransferases (“writers”) and demethylases (“erasers”) [17]. The pres-
ence of complementary seed sequences in micro-RNAs (miRNAs) indicated that miRNAs
targeted m6A peak regions in both mouse and human experimental studies.Furthermore,
m6A has also been reported in the transcriptome of neurons [9,18]. Brain development is a
highly specific and coordinated genetic event andany abnormalities can act as a doorway
to different anomalies, such as autistic spectrum and schizophrenia-like disorders [19–21].
In our GO analysis data, we selected 1729 genesbased on frequency of target sequence
(GGACT) more than 2.Of them, only 27 were scrutinized. The enrichment analysis of the
biological process for m6A hotspot genes revealedits association with embryonic brain
development, locomotion, neuronal projection, neuronal differentiation, axonal guidance,
synaptic assembly, synaptic plasticity, and transmission (Figure 3a,b).
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Figure 3. GO analysis of m6A target sites. (a) The networking analysis of m6A hotspot genes in different physiological
processes. (b) Enrichment analysis of m6A hotspot genes for neurological processes, such as neuronal development,
neurogenesis, differentiation and projection.

4. Discussion

The human genome sequence was explored for all possible m6A sites with two or
more target sequences (5′-GGACT-3′) in tandem, which might have a high probability
for methylation. The human genome may include some m6A-containing motifs, that still
remain unidentified due to their less abundance or beyond the range of advanced detection
techniques; hence, surveying the human genome for target sites could be an alternative
tool to identify them.

Using the tool “PatternRepeatAnnotator”, a total of 6.78 × 107 target sequences were
recognized on the plus strand of the human genome. We observed over representation of
the target sequences in non-coding DNA (96.4% in introns, DRR, promoters and genomic
regions), whereas a small quantity of 3.5% was located in coding (exonic) regions (Supple-
mentary Figure S1). This internal modification has been reported in nascent pre-mRNAs,
suggesting that the addition of methylation group occurs before splicing [22], which is
supported by our current findings with 52% target sequences in intronic regions. The m6A
modification exhibits spatio-temporal specific expression patterns; therefore, despite many
target sequences, only a few undergo methylation [23]. The high density of m6A sites
present in 95.8% of intron in non-coding genomic regions, were primarily involved in pro-
ducing miRNAs. It has been reported that miRNAs influence the fundamental biological
processes from cell division to cell death and may undergo m6A modification [24]. For
example, m6A modifications in primary miRNA enhance their recognition and processing
by DGCR8, a miRNA microprocessor complex protein [25]. Therefore, identified m6A
sites may provide deep insight into the mRNA–miRNA interaction pathways involved
in the pathogenesis of various diseases. Ribosomal protein S6 kinase genes RPS6K have
been predicted as a potential candidate for the pathogenesis of hepatocellular carcinoma
by the miRNA–mRNA network analysis [26]. This is in line with our enrichment analysis
(Supplementary Table S1) identifying RPS6KA3 and RPS6KA5 ribosomal genes, which are
associated with regulation of axonogenesis and cellular morphogenesis in the course of
neuronal differentiation. Any alteration of m6A methylation of RPS6KA3 and RPS6KA5
may affect the normal neurite outgrowth and arborization [27].
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Neurexin performs distinct regulatory functions in different classes of neurons, and
any mutation or deletion of Neurexin (NRXN1 and NRXN2) genes have been associated
with autism-associated behavioral changes in experimental mice [28]. Neurexin also plays a
key role in the trafficking of presynaptic vesicles and their deletion resulted in the reduction
of synaptic current. To our knowledge, no report exists on the direct link between neurexins
and m6A. However, our enrichment analysis data have shown that m6A may regulate
NRXN1, NRXN2 and NRXN3 genes.

In a synaptic epi-transcriptomic study, 4469 enriched m6A sites have been reported
selectively in 2921 genes in the forebrain of adult mice and imply that chemically modified
mRNA could significantly promote synaptic function [29]. The knockdown of the m6A
reader has shown a dramatic change in the spine morphology and dampened the synaptic
transmission, there by suggesting its role in synaptic function. Epidermal Growth Factor
Receptor (EGFR) belongs to the tyrosine kinase family and is expressed by neuronal and
glial cells in different brain regions [30]. During the early development, EGFR is highly
expressed in the midbrain and hippocampus, and its increased expression has been also
reported in many pathophysiologies, including Alzheimer’s, Huntington’s, Parkinson’s
disease, amyotrophic lateral sclerosis, and traumatic brain injury associated with reactive
gliosis [31]. Our data have also shown that m6A is enriched with EGFR, which is consistent
with previous findings [32]. YT521-B homology domain family 2 (YTHDF2) is a m6A
reader and directly binds the m6A modification site of EGFR 3′UTR of mRNA and impedes
cell proliferation and growth by modulating the downstream ERK/MAPK pathway [32].
The functions of EGFR could also be modulated by other proteins such as METTL3 and
FTO [33,34]. Collectively, these data indicated that m6A modification of mRNA is a
requisite for the proper physiological functions of EGFR. Further, the MAPK is a key
regulator of neurogenesis, which consists of four distinct cascades, ERK1/2, JNK1/2/3,
p38, and ERK5. It has been shown that m6A enriched with MAPK and METTL played
a tumour-suppressive role via the p38/ERK pathway. Since, elevated levels of p-38 and
pERK in colorectal cancer have displayed the inhibition of cell migration and proliferation
after knockdown of METTL [35]. Likewise, EGFR, YTHDF2 also regulate the MAPK and
NF-kB signalling in systemic lupus erythematosus (SLE). YTHDF2 knockdown has been
demonstrated to activate MAPK and NF-kB and resulted in a significant increase in pro-
inflammatory events in SLE [7,36]. Additionally, the neurological involvement appears in
the early stage in SLE, with cognitive impairment being the most prevalent symptom that
correlates with disease activity [37].

The identification and quantification of m6A in the transcriptome are tedious, expen-
sive, and associated with many significant systematic errors. To date, well established
in vitro methods have encountered several obstacles, including single-nucleotide resolu-
tion, a lack of selective chemical reactivities for a specific RNA modification, and lengthy
protocols for m6A identification. These challenges are exacerbated by the stability of
RNA and the random frequency of methylation. As a result, finding m6A signatures
throughout the whole transcriptome is an extremely difficult task. To address these issues,
several webtools and algorithms have been developed, which either investigate various
databases of m6A sequences or utilize statistical techniques to more precisely locate m6A
sites [36,38–42]. Other tools, such as iRNA-AI, iMethyl-PseAAC, iDNA-Methyl, iRNA-
Methyl, and iRNA-PseU have been generated also for the identification and annotation of
specific sites for adenosine to inosine editing, protein methylation, DNA methylation, N6-
methyl adenosine, using pseudo-nucleotide, and RNA pseudouridine, respectively [42–45].
These tools need a sequence of interest in which the intended modification is sought, and
they offer information on whether or not the desired change is feasible in that sequence.
The method created in this work scanned the whole human genome for identification of a
specific set of nucleotides (target sequence) and generated well-annotated information as
output. This tool fundamentally differs in the origin of the hypothesis, concept of algorithm,
and the final results compared with all other available techniques.
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The Perl-script-based tool “PatternRepeatAnnotator”employed in our study can be
customized in several ways: (i) it can be used to search any repeat type (e.g., CAG triplet
repeats of Huntington’s disease, GAA repeats of Friedreich’s ataxia, etc.), (ii) the num-
ber of such repeats (1 or more) in tandem can be chosen by the user, (iii) range of pro-
moter/downstream regions (in nucleotide length) can be given at user’s choice, (iv) more
importantly, the tool is futuristic, and the latest human genome version (>GRCh37 patch 8)
can be provided as a template for target sequence search. The results are stored in a specified
folder name after the input sequence, where numerous statistical tools can be applied to an-
alyze data easily. The output file contains well-annotated information, such as (i) identified
target sequence viz gene ID, (ii) its symbol, (iii) strand (plus/minus), (iv) location in chro-
mosome (exon/intron/genomic/promoter/downstreamregions), (v) the position of repeat
(start to end), (vi) its total length (nucleotides long) and (vi) the sequence itself. Using this
robust annotated information, the analysis becomes easier, and the genes of interest can be
directly picked up from the desired chromosome for further analysis. This, in turn, reduces
the cost, time, and manpower required to evaluate the whole transcriptome for m6A modi-
fication. The ability to analyze databases in future depicts long-lived applicability, highly
customizable interface, making it user-friendly and robust with rich annotated data.

5. Conclusions

The m6A is a conservative phenomenon and has been involved in modulating trans-
lation efficiency, mRNA turnover, RNA splicing, miRNA and other non-coding RNA
biogenesis. As demonstrated in our study, “PatternRepeatAnnotator”could identify and
annotate all “methylable adenosines” in the genome, however, their regulation in vivo
needs to be verified as not all m6A sites are modified in the human genome. Annotation of
these identified m6A sites revealed that over 96% m6A were found in non-coding regions,
which corroborates their roles in downstream regulatory processes. Several essential genes
in neuronal development harbor extensive m6A sites. More in vivo investigations are
required to correlate these identified m6A sites, their modification pattern, and mechanistic
approach in cellular processes and various human diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11111185/s1, Figure S1: Percentage distribution of target sequences in different regions of
human genome. Table S1: Enrichment Analysis of genes for their biological functions.
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Abstract: The discovery of new drugs is required in the time of global aging and increasing pop-
ulations. Traditional drug development strategies are expensive, time-consuming, and have high
risks. Thus, drug repurposing, which treats new/other diseases using existing drugs, has become
a very admired tactic. It can also be referred to as the re-investigation of the existing drugs that
failed to indicate the usefulness for the new diseases. Previously published literature used maximum
flow approaches to identify new drug targets for drug-resistant infectious diseases but not for drug
repurposing. Therefore, we are proposing a maximum flow-based protein–protein interactions (PPIs)
network analysis approach to identify new drug targets (proteins) from the targets of the FDA (Food
and Drug Administration) drugs and their associated drugs for chronic diseases (such as breast
cancer, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD))
treatment. Experimental results showed that we have successfully turned the drug repurposing
into a maximum flow problem. Our top candidates of drug repurposing, Guanidine, Dasatinib, and
Phenethyl Isothiocyanate for breast cancer, IBD, and COPD were experimentally validated by other
independent research as the potential candidate drugs for these diseases, respectively. This shows
the usefulness of the proposed maximum flow approach for drug repurposing.

Keywords: drug–target interactions; protein–protein interactions; chronic diseases; drug repurposing;
maximum flow

1. Introduction

Chronic diseases are usually defined as the diseases that are persistent or long-lasting
and require ongoing medical attention. There are many different types of chronic diseases.
For example, breast cancer starts from the breast cancer cells. However, it can also spread
to other parts of the body. Breast cancer is referred to as the most frequently identified
cancer in women. This is the second prominent reason for cancer death among women [1].
Of note, cancer is a multistage disease [2], increasing the mortality rate among people
worldwide [3]. Several breast cancer treatment techniques are available, such as surgery,
chemotherapy, radiation, and hormone therapy. Often a combination of these treatments
is used in practice [4]. Other chronic diseases, such as inflammatory bowel disease (IBD)
and chronic obstructive pulmonary disease (COPD), are usually consequences of many
environmental and genomic factors. IBD is a chronic disease that includes both ulcerative
colitis and Crohn’s disease, and it lasts for a very long time. IBD results in a significant
burden to our society and families. IBD triggers segments of the bowel to get red and
swollen. IBD treatment involves medicines, diet modifications, and occasionally surgery [5].
The goal of such treatment options is to reduce the inflammation associated with IBD. In
the long term, existing treatments may achieve reduced risks of IBD complications. COPD
is a chronic lung disease that causes breathing problems. COPD is the main reason for
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respiratory mortality worldwide [6]. Current treatment options include lung transplants,
quitting smoking, and inhalers. However, these strategies can only assist in lessening the
progression of COPD. The fundamental cause of COPD is smoking [7]. Patients may not
know about the disease initially, but the condition worsens over time, such as with severe
breathing problems during simple tasks, e.g., walking.

There is a pressing need to identify potential drug targets and their drugs for devel-
oping personalized treatments for chronic diseases. However, new drug development
takes a very long time and is extremely expensive. Usually, this type of approach takes
10–15 years and $1 billion [8]. Nevertheless, we can save time and money using old drugs
for new usages called drug repurposing or repositioning. This is a helpful technique to find
different indications for current medications. For example, in 2020, COVID-19 infections
from the novel coronavirus became a primary worldwide public health concern [9]. As a
result, it was declared as a global pandemic in 2020 [10]. The pandemic created an emer-
gency to develop vaccines or therapeutic treatment for COVID-19 infections. However,
there were no available confirmed drugs to treat COVID-19 infections. Therefore, the drug
repurposing technique was used to obtain a new drug from the existing FDA-approved
drugs [11,12].

There are different types of approaches to identify new indications of an FDA-
approved drug, such as network-based [13,14], and machine learning (ML)-based [15,16]
approaches.

A biological network consists of a massive number of nodes and interactions among
them. A gene can easily make a subnetwork including drug targets, and these drug targets
act as the bridge between this subnetwork and the original network. We can identify the
risk genes of a given disease and the associated drug targets in a biological network to
remove the bridge connection between the subnetwork containing the risk genes and the
original network. Therefore, we can potentially treat the disease using drugs associated
with the drug targets responsible for the disease’s risk genes in the network.

A network-based approach tries to find a subnetwork that provides an insight into
the relationship between drugs and disease genes. For example, Cheng et al. [17] proposed
a network-based system to list the drug targets using three different inference algorithms,
which are drug resemblance in any network, protein correspondence in any network, and
recognized drug target within a bipartite network.

Yeh et al. [18] first proposed a maximum flow approach to predict a set of drugs as new
effective drug targets for the treatment of prostate cancer. The idea is that the candidate
proteins for a drug target with a higher flow value to the risk genes have more influence on
risk genes than other candidates for the drug targets. They used microarray data [19] and
an interactome (PPI) network [20] of prostate cancer to build their prediction model. Next,
they used the shortest path algorithm [21] to perform a maximum flow method within
their network and successfully identified 20 drug targets to reuse. These drug targets
were validated using other available literature that published these same drug targets for
prostate cancer.

Melak et al. [22] also used the idea of the maximum flow approach to prioritize a set
of drug targets to reduce the expression of tuberculosis disease from a list of known drug
targets. Yeh et al. [18] used the Pearson correlation coefficient and gene expression changes
between genes to calculate the weight of the edges of their PPI network. However, Melak
et al. [22] used a PPI network from STRING which includes the associated weights for the
edges. Thus, Yeh et al. [18] and Melak et al. [22] showed that proteins with the maximum
flow to the risk genes in the PPI network could be used as targets for developing drugs to
treat diseases.

This study aims to apply the maximum flow technique to a PPI network with a
set of breast cancer, IBD, and COPD risk genes to identify new breast cancer, IBD, and
COPD drugs, respectively, from a list of FDA-approved medications. We hypothesize
that identifying new drugs from the existing drugs (i.e., drug repurposing) for breast
cancer, IBD, and COPD can be converted into a maximum flow problem using a human
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interactome network (i.e., a PPI network). Furthermore, it is believed that drug targets
X (proteins) connected with risk genes through a higher flow value have more impact
on these risk genes than other drug targets. Therefore, these Xs can be used as potential
targets for drug development for the disease’s treatment. Furthermore, deletion of these Xs
from the PPI network will disrupt the communication among the risk genes and proteins.
Therefore, this study aims to identify a set of strongly correlated proteins with the disease
risk genes from a PPI network using a maximum flow approach. Later, we can identify
new candidate drugs for repurposing to treat breast cancer, IBD, and COPD associated
with these targets using a drug-target interaction network.

2. Materials and Methods

2.1. Datasets
2.1.1. Protein–Protein Interaction (PPI) Network

We collected a comprehensive biological network [23] which includes 140,899 interac-
tions among the 13,365 human proteins (genes). We used this biological network (Figure 1)
to conduct our experiments.

 
Figure 1. An example of our PPI network. The network shows the interactions among the
FDA-approved drug targets (i.e., proteins), potential drug targets, and disease-associated risk pro-
teins/genes.

2.1.2. Drug-Target Interactions (DTIs) Network

We extracted 2390 FDA-approved drug targets (DTs) in human from DrugBank [24].
However, the PPIs network described in Section 2.1.1 contains only 1926 DTs among these
2390 FDA-approved DTs. We also collected the DTIs network, which has ~13,000 DTIs
among 5049 unique drugs and 3099 unique targets from the DrugBank.

2.1.3. Risk Genes

In this study, we focused our drug repurposing on the above-mentioned three diseases
(breast cancer, IBD, and COPD) since they have a relatively large number of disease-specific
risk genes identified from genome-wide association studies (GWAS) as described below.
These risk genes make the application of the maximum flow technique to drug repurposing
possible in this study. GWAS have already discovered more than 200 breast cancer risk loci.
For example, Baxter et al. [25] were able to mark 63 loci and identified 110 known target
genes at 33 loci. In addition, Wu et al. [26] identified 179 significant genes associated with
breast cancer risk. Thus, we have collected in total 289 breast cancer risk genes from these
two studies.

Previously published genomic studies identified 215 risk loci to explain the fundamen-
tal molecular biology of IBD [27]. In addition, Katrina et al. [27] marked three additional
loci which have therapeutic targets in IBD. They have also prioritized 811 IBD risk genes
from 240 risk variants.

A GWAS in the United Kingdom by Sakornsakolpat et al. [6] identified 82 loci asso-
ciated with COPD or function. Among them, 47 loci were already known as risk loci of
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COPD. Of note, Sakornsakolpat et al. [6] have identified 156 COPD risk genes from these
82 loci.

Hence, we have collected 289, 811, and 156 risk genes responsible for breast cancer,
IBD, and COPD, respectively, from the earlier studies to validate the usefulness of our
proposed drug repurposing method.

2.2. The Maximum Flow Algorithm for Drug Repurposing

The analysis pipeline for drug repurposing includes multiple steps, as shown in
Figure 2 (taking breast cancer as an example). Below we explain the steps in more detail.

 

Figure 2. Analysis pipeline for the maximum flow approach to prioritize drugs for drug repurposing (taking breast cancer
as an example). (A) Shows the types of data we collected for our experiments. (B) We mapped each target protein in the PPI
network to be either a risk gene, FDA-approved drug target, or potential candidate target. (C) Shows the construction of
maximum flow network from the collected PPI network to apply the Push-Relable maximum flow algorithm. (D) Shows
the steps to repurpose existing drugs based on the maximum flow values of each target protein.

2.2.1. Constructing the Maximum Flow Network

Mapping drug targets and risk genes to the PPIs network: We first mapped the 1926
FDA-approved DTs (FDA_DT) and risk genes (RGs) of a specific disease to the unweighted
PPIs network (refers to a graph where edges do not have weights, and there is only one
edge between any two nodes).

Constructing weighted PPIs network: We used TOMSimilarity (topological over-
lap matrix similarity) [19] to calculate the weight of edges between genes, and we used
Equation (1) to get TOMSimilarity between two nodes in our network.

TOMSimilarity (x, y) =

∣∣∣Nneighbor(x) ∩ Nneighbor(y)
∣∣∣+ Axy

min
(∣∣∣Nneighbor(x)

∣∣∣, ∣∣∣Nneighbor(y)
∣∣∣ )+ 1 − Axy

(1)
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where Nneighbor(x) is the neighbors of x,
Nneighbor(y) is the neighbors of y,
Axy is the value of the adjacency matrix (i.e., one if nodes x and y are connected and

zero otherwise),
TOMSimilarity (x, y) is the Topological Overlap Matrix Similarity between the nodes

x and y.
Drug repurposing as a maximum flow problem: After the mapping of the drug

targets and risk genes, we specified the drug repurposing problem into a maximum flow
problem, we (1) created a dummy node SDN (i.e., the source of the network) which was
connected with all the FDA_DT; (2) created another dummy node DDN (i.e., the destination
of the network) which was connected with all the risk genes; (3) assigned a flow capacity
(i.e., weight) using Equation (1) for each of the connections in the network. Flows in the
maximum flow network follow the below rules: (1) The input flow is equal to the output
flow for any node except the source and destination nodes; (2) for any edge (e) in the
network, 0 ≤ flow(e) ≤ Capacity(e); (3) total flow out of the source node is equal to total
flow into the destination node.

However, the connections from the dummy source to the candidate drug targets will
have a dummy capacity. Each incoming edge from the dummy source node to a protein
(drug target) has a capacity equal to the sum of the capacities of the outgoing edges from
that protein (drug targets). Similarly, the connections from the risk genes to the dummy sink
node have dummy capacities. Each outgoing edge from a risk gene to the sink node has a
capacity equal to the sum of the capacities of the incoming edges to that risk gene. At this
point, we had the network named MaxNet (Figure 3) to run the maximum flow algorithm.

 

Figure 3. An example of our MaxNet.

2.2.2. Push-Relabel Maximum Flow Algorithm

We used the Push-Relabel maximum flow algorithm [28] in the MaxNet (Figure 3) to
maximize the flow amount passed from the FDA-approved drug targets to the risk genes.
Algorithm 1 (revised from [29]) shows the Push-Relabel maximum flow algorithm. In
addition, this algorithm works with one vertex at a time. Every vertex is associated with
two variables: height and excess flow. A vertex can send flows to a lower-height vertex
only. The extra flow of a vertex represents the difference between the total in-flow and
out-flow of that vertex. Furthermore, each edge is associated with two variables: flow (i.e.,
current flow through this edge) and capacity (i.e., the maximum flow we can send through
this edge). This algorithm sends flows (i.e., PUSH operation) from a node (S) to its adjacent
node (D) when the excess flow of D is not equal to zero and the height of D is less than the
height of S. If there is no adjacent node of S with lesser height than this algorithm increases
the height of S (i.e., RELABEL operation) by the minimum height of the adjacent nodes of
S plus 1.
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Algorithm 1 Push-Relabel_MaximumFlow_Algorithm [28].

Input: PPI, Capacity = C, N = unique nodes of PPI, start_node = SDN, destination_node = DDN.
Output: Maximum flow between SDN and DDN

(1) FOR i = 1 to length [N]:
a. HeightV [i] = 0//HeightV is height of every vertex
b. FlowV [i] = 0//FlowV is the flow of every vertex

(2) HeightV [start_node] = length [N]
(3) FOR i = 1 to length [PPI]:

a. FlowE [i] = 0//FlowE is the flow of every edge in the PPI
(4) V = adjacentVetex[start_node]
(5) FOR i = 1 to length [V]:

a. FlowV [V[i]] = Capacity [V[i]]
b. excessFlow [V[i]] = Capacity [V[i]]

(6) PUSH: FOR i = 1 to length [N]:
If excessFlow [N[i]] �= 0: (in the residual graph)

tmpV = adjacentVetex[N[i]]
if HeightV [N[i]] > lowest_height[tmpV]

Push_flow from N[i] to lower height vertices
(7) RELABEL: FOR i = 1 to length [N]:
If excessFlow [N[i]] �= 0: (in the residual graph)

tmpV = adjacentVetex[N[i]]
if HeightV [N[i]] ≤ lowest_height[tmpV]

HeightV [N[i]] = minimumHeight[tmp]

2.2.3. Drug Repurposing from Maximum Flow Values

After applying the Push-Relabel maximum flow algorithm in our MaxNet network,
we sorted all the FDA drug targets into a list LDTs according to their flow value to the
risk genes (descending order). Then, we used this sorted list LDTs of the DTs to sort the
FDA-approved drugs into a list Ldrugs using ~13,000 DTIs collected from DrugBank [29].
Hence, according to our hypothesis, the top drugs in L are the most prominent drugs that
can be reused to treat the given disease associated with its risk genes.

The whole analysis pipeline of the maximum flow-based drug repurposing is summa-
rized in Algorithm 2.

Algorithm 2 Pipeline of the maximum flow-based drug repurposing.

Input: PPI = all the PPIs, FDA_DT = all the FDA approved DTs in PPIs network, DTI = DTIs for
FDA_DT, RG = risk genes, W = flow capacity of edges.
Output: CD = candidate drugs for repurposing for the treatment of breast cancer.

1. FOR i = 1 to length [PPI]:
a. Calculate flow capacity of the edge using Equation (1):

C[i] = TOMSimilarity (PPI[i])
2. CREATE two dummy nodes:

a. source dummy node = SDN and destination dummy node = DDN
3. FOR i = 1 to length [FDA_DT]:

a. Index = length [PPI] + 1
b. CONNECT SDN to FDA_DT[i] and add this interaction in PPI[index]
c. W[index] = sum of the capacities of the outgoing edges from PPI[index]

4. FOR i = 1 to the length of RG:
a. Index = length of PPI + 1
b. CONNECT RG[i] to DDN and add this interaction in PPI[index]
c. C[index] = sum of the capacities of the incoming edges from PPI[index]

5. The nodes in PPIs and their associated outgoing flow value = Push-Relabel_
MaximumFlow_Algorithm (PPI, C, SDN, DDN)

6. prioritized_DTs = sort the nodes in PPI in decreasing order of their outgoing flows
7. CD = sort drugs in DTI using prioritized_DTs
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3. Experimental Results

3.1. Mapping Drug Targets and Disease-Specific Risk Genes to the PPIs Network

First, we collected the PPI network. This is an unweighted network. So, we calculated
topological overlap similarity (TOMSimilarity) to assign weights on the edges. These
weights were used as the capacities of the flow through the edges. In this PPI network,
we had 1926 FDA-approved DTs. Next, we mapped disease-specific risk genes to this PPI
network. The PPIs network contained 155 breast cancer RGs from the 289 breast cancer
RGs identified by Baxter et al. [25] and Wu et al. [26]. It also had 565 IBD risk genes among
the 811 prioritized IBD risk genes by Katrina et al. [27]. This PPI network also contained
118 COPD risk genes among the 156 COPD risk genes identified by Sakornsakolpa et al. [6].
Table 1 shows several statistical properties of the PPI network. In Table 1, transitivity refers
to the probability of adjacent nodes being interconnected. It provides an intuition about the
clusters in the network. Of note, in a graph, total triangles represent the total number of
triangles formed by any three nodes. In addition, we also showed the PPI network’s degree
distribution in Figure 4. Figure 4 indicates that only a few nodes in the PPIs network have
a high number of neighbors. This means the PPI network has a small number of hubs.

Table 1. Statistical properties of the PPIs network.

Properties Values

Number of nodes 13,368
Number of edges 140,899

Transitivity 0.292
Average clustering coefficient 0.173

Edge density 0.002
Average degree 21.08
Total triangles 4,105,272

Figure 4. Degree distribution of the PPIs network.

3.2. Weights of the Interactions in PPIs Network

We calculated topological overlap similarity (TOMSimilarity) to assign weights on the
edges of the unweighted PPI network. The values of these edge weights ranged from 0 to
1. We used these edge weights as flow capacity for each connection during maximum flow
implementation with Algorithm 1.

3.3. Formulating Drug Repurposing as a Maximum Flow Network

FDA-approved drug targets are the network sources, while risk genes are the desti-
nations of the network. Hence, we needed to convert this multiple sources and multiple
destinations network into a single source and single destination network. To do this, we
created a dummy source node and connected this node with 1926 DTs. Similarly, we created
a dummy destination node and only connected this sink node with the disease-specific risk
genes. As a result, there were no incoming arcs to the source node and no outgoing arcs
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from the destination node. We calculated the sum of the capacities of the outgoing arcs
from a drug target node and put this sum as the capacities on the arcs from the dummy
source node to the drug target node. Likewise, we calculated the sum of the capacities of
the incoming arcs to a risk gene node and put this sum as the capacities to the arc from the
risk gene node to the dummy destination node. We called this network the MaxNet.

3.4. Drug Repurposing for Breast Cancer, IBD, and COPD

We created three MaxNets (MaxNet_BC, MaxNet_IBD, and MaxNet_COPD) for breast
cancer, IBD, and COPD RGs, respectively. For all three MaxNets, the dummy source node
was connected with the 1926 FDA-approved DTS. However, our PPIs network contained
only 155 breast cancer RGs, 565 IBD RGs, and 118 COPD RGs. Therefore, we connected the
155 breast cancer RGs with the dummy destination node in the MaxNet_BC, the 565 IBD
RGs with the dummy destination node in the MaxNet_IBD, and the 118 COPD RGs with
the dummy destination node in the MaxNet_COPD.

We ran the Push-Relabel maximum flow algorithm in all three MaxNets to get the
maximum flow values for each node from the dummy source to the dummy destination.
First, we extracted three sorted lists of the targets (FDA-approved) based on their outgoing
flows from the MaxNet_BC, MaxNet_IBD, and MaxNet_COPD in descending order. Then,
we used these sorted lists of targets to sort the drug list using a drug-target interaction
network for breast cancer, IBD, and COPD. According to our hypothesis, the top drug in
each of these sorted drug lists has the maximum potential to be used as a candidate drug
for the treatment of breast cancer, IBD, and COPD, respectively.

3.5. Performance Evaluation

We performed a comprehensive literature review to validate our top five repurposed
candidates for breast cancer, IBD, and COPD as shown in Tables 2–4, respectively.

Table 2. The top five repurposed drugs for breast cancer.

Drug Name Target Protein Target Gene Flow Value Status Reference

Guanidine P78352 DLG4 0.0489 Confirmed [30]
Phenethyl Isothiocyanate P31946 YWHAB 0.0389 Confirmed [31]

Caffeine P78527 PRKDC 0.0363 Confirmed [32]
Tamoxifen Q05655 PRKCD 0.0363 Confirmed [33]

(2S)-2-({6-[(3-Amino-5-
chlorophenyl)amino]-9-
isopropyl-9H-purin-2-
yl}amino)-3-methyl-1-

butanol

Q00534 CDK6 0.03319202

Table 3. The top five repurposed drugs for IBD.

Drug Name Target Protein Target Gene Flow Value Status Reference

Dasatinib P12931 SRC 0.08292133 Confirmed [34]
Phenethyl

Isothiocyanate P31946 YWHAB 0.06112281 Confirmed [35]

Adenosine-5′ P00558 PGK1 0.04545455 Confirmed [36]
Acetylsalicylic acid P54646 PRKAA2 0.03627599

Glutamic Acid P07814 EPRS 0.03527291 Confirmed [37]
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Table 4. The top five repurposed drugs for COPD.

Drug Name Target Protein Target Gene Flow Value Status Reference

Phenethyl Isothiocyanate P31946 YWHAB 0.05054656 Confirmed [38]
Minocycline P42574 CASP3 0.03767546 Confirmed [39]

Pseudoephedrine P15336 ATF2 0.03201844 Confirmed [38]
Methyl 4,6-O-[(1R)-1-

carboxyethylidene]-beta-D-
galactopyranoside

P02743 APCS 0.03150388

NADH O43920 NDUFS5 0.02409639 Confirmed [40]

In addition, we have shown the top 10 prioritized repurposed drugs in the
Supplementary Tables S1–S3 for each of these diseases.

3.6. Performance Comparison with Other Methods

We used the same datasets to compare the performance of our maximum flow-based
drug prioritization with the baseline methods, such as degree, betweenness centrality,
closeness centrality, random walk, and page rank (Table 5). Degree centrality refers to
the number of incoming links to a node and ranks the risk genes by their degree value.
Closeness centrality is defined as the geodesic distance (normalized) for any node to any
other node in the network. Finally, the betweenness centrality of a node denotes the number
of shortest paths that include this node. First, we used MATLAB functions to calculate
degree centrality, closeness centrality, and betweenness centrality from the PPI network
for each disease of interest (breast cancer, IBD, and COPD). Then, we sorted each of these
lists of targets in descending order. Furthermore, we obtained a sorted list of candidate
drugs using these sorted targets and a drug-target interaction dataset. Then we used the
python functions of random walk [41] and page rank [42] to calculate the importance of
each target associated with breast cancer, IBD, and COPD in the PPI network. Finally, we
used sorted random walk [41] and page rank [42] (descending order) lists of targets to
identify potential drug repurposing candidates from the drug-target interaction network
we collected from the DrugBank database.

Table 5. Number of confirmed disease-specific candidates by the baseline approaches for drug repurposing in the list of top
five candidate drugs.

Method
Number of Confirmed Candidates in Top 5 Candidate Drug List

Breast Cancer IBD COPD

Degree centrality 0 0 1
Closeness centrality 2 1 0

Betweenness centrality 0 0 2
Random walk [41] 0 2 2

Page rank [42] 2 2 2
Our proposed framework 4 4 4

4. Discussion

Traditional machine learning methods, such as naive Bayesian, support vector ma-
chines, and the latest deep neural networks, reveal their effectiveness for drug discovery.
Zhao et al. proposed a method that uses drug-induced expression profiles to predict the
sign of a disease in psychiatry [43]. Saberian et al. [44] introduced a framework that takes
anti-similarity between drugs and a disease as input to train a model. Their model can
predict new usage apart from the primary indications of a drug. However, researchers
have concerns about using conventional machine learning techniques for this purpose
because of the background noisiness and the high-dimensionality nature of the biological
data [45]. Hence, Cheng et al. [17] used a chemical structure with the genome sequence to
perform the drug and protein resemblance checking. At the same time, they anticipated
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related drugs might share identical drug targets for a disease. However, they did not find
any helpful result from these similarities checking among the drugs. Nevertheless, they
concluded that the chemical structure could not be represented as a parameter to identify
similar drugs or proteins. Estrada et al. [46] also used a biological network’s global measure
such as closeness/betweenness centrality to identify drug targets. They considered a node
in the network as the drug target if it has a higher closeness/betweenness centrality value
than the other nodes. These measures are based on the shortest paths in the network. In
addition, random walk [41] and page rank (the algorithm that Google uses for their search
engine) [42] can be used to extract such global measures to identify potential new drug
targets. In this study, we adopted a maximum flow-based approach similar to Yeh et al. [18]
and Melak et al. [22] to prioritize FDA-approved drugs repurposed for breast cancer, IBD,
and COPD.

We used a PPI network [23] to conduct our experiments. The investigators mentioned
that these interactions do not contain any interactions estimated from gene expression data.
These interactions fall into the following categories: protein–protein interactions (most
of the interactions fall into this category), regulatory interactions, protein database, and
signaling interactions [47]. However, this PPI network is not weighted. Therefore, we
converted our PPI network to a weighted network using TOMSimilarity. We used TOM-
Similarity because Langfelder et al. [48] showed its effectiveness as a highly robust measure
of network interconnectedness (proximity) for the hierarchical clustering of biological data.
TOMSimilarity calculates the topological similarity between two connected proteins (i.e.,
genes) using an adjacency matrix. Then, we applied the Push-Relabel algorithm to obtain
the node importance based on its outflow. This algorithm works locally rather than looking
into the entire residual graph (this graph indicates if it is possible to send flows from the
source to the destination of the network) to find an augmenting path to send flows.

The primary usage of our most promising candidate drug, “Guanidine” (Table 2), is
to treat muscle weakness caused by Eaton-Lambert syndrome. In 2009, Meruling et al. [30]
showed that at 0.5 microM, dextran aminoguanidine conjugate killed more than 95% of the
breast cancer cells compared to 25% for Adriamycin. The second candidate, “Phenethyl
Isothiocyanate” (PEITC) (Table 2), with unique specificity, has promising results for HER2
breast cancer patients. “Caffeine” (Table 2) is primarily used to restore mental alertness
when fatigue or drowsiness are present and for the treatment of post-dural lumbar puncture
headaches. However, Pantziarka et al. [32] confirmed that caffeine could be used to treat
breast cancer. The fourth candidate, “Tamoxifen,” is primarily used for breast cancer.
Hence, we showed the top five candidate drugs using our proposed framework in Table 2.

According to our proposed framework, the most promising candidate drug used as the
IBD repurposed drug is “Dasatinib” (Table 3). It has been shown that Dasatinib is helpful
to decrease the inflammation in a rodent model of colitis [34] for ulcerative colitis type IBD.
Therefore, the study concluded that Dasatinib could be a potential candidate for ulcerative
colitis treatment. Our second IBD repurposed drug candidate is “Phenethyl Isothiocyanate”
(PEITC) (Table 3). PEITC Essential Oil contains more than 95% of PEITC. Therefore, Dey
et al. [35] confirmed PEITC essential oil as a potential treatment for ulcerative colitis patients.
The third candidate, “Adenosine” (Table 3), is working as a modulator for inflammation
(including Crohn’s disease and ulcerative colitis) both in humans and animals [36]. Our
last candidate, “Glutamic Acid” (Table 3), was confirmed by [37] as an amino acid is an
adjuvant ulcerative colitis type of IBD treatment. Furthermore, the investigators showed
that microinjection of this amino acid into the paraventricular nucleus on ulcerative colitis
in rats significantly improved anti-oxidation levels. This outcome suggests that glutamic
acid is a potential candidate for a therapeutic application of paraventricular nucleus
regulation in ulcerative colitis. However, the doses of glutamic acid may change for the
naturally-occurring IBD.

The primary usage of Phenethyl Isothiocyanate (PEITC) is the treatment of lung
cancer [38]. Nonetheless, our proposed framework considers this drug the most favorable
contender in our top five candidate drugs list (Table 4) for COPD. Our next candidate,
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“Minocycline” (Table 4), is effective as an addition to treatment with cyclophosphamide
in reducing the number of lung cancer [39]. The third candidate, “Pseudoephedrine”
(Table 4) can also be used for COPD-related diseases such as the treatment of nasal and
sinus congestion that is caused by a breathing illness (e.g., bronchitis) [49,50]. Finally, the
last candidate, “NADH” (Table 4), improves trial COPD [40], emphasizing a probable
helpful treatment for COPD.

From Table 5, it is self-evident that our proposed framework outperformed baseline
methods (degree centrality, betweenness and closeness centrality, random walk [15], and
page rank [42]) in prioritizing drug candidates for disease-specific drug repurposing.
A literature review-based validation confirmed that our proposed framework correctly
prioritized four out of the top five candidate drugs for drug repurposing for breast cancer,
IBD, and COPD, respectively. On the other hand, degree and betweenness centrality
methods have only one and two confirmed drug candidates, respectively, to be used as
repurposed drugs for COPD only. Closeness centrality has two and one confirmed drug
candidates as repurposed drugs for breast cancer and IBD, respectively. The random walk
has zero, two, and two confirmed drugs in the predicted top five drugs to treat breast
cancer, IBD, and COPD diseases, respectively. However, the page rank approach listed two
confirmed drugs for each disease in the top five predicted lists of drugs.

The above literature review-based comparison suggests that our proposed framework
can be used for novel drug discovery and drug repurposing. Therefore, it may be promising
to use the proposed drug repurposing framework to prioritize candidate disease-specific
repurposed drugs and disease-specific primary drugs.

5. Conclusions

This study aims to formulate drug repurposing for a specific disease as a maximum
flow problem. We used a human interactome network and a set of FDA-approved drug
targets along with different disease-specific (breast cancer, IBD, and COPD) risk genes to
perform our experiments. We hypothesized that our proposed framework would identify
a set of FDA-approved drugs that can be repurposed to treat breast cancer, IBD, and COPD.
Experimental results showed that we had identified a prioritized list of drug targets and
associated drugs that can be reused to treat these diseases. Furthermore, our proposed
framework identified the natural flow to strongly influence the disease genes without any
prior knowledge. Finally, we performed a comprehensive literature review to validate our
proposed framework’s performance. This validation shows that our proposed framework
outperformed other baseline methods regarding the total number of confirmed repurposed
drugs. The validation also suggests that our drug repurposing approach can also be used
for novel drug discovery.

Future works of this study include experiments and clinical trials with our prioritized
lists of candidate drugs. These approaches will confirm whether our candidate drugs have
the potential to treat breast cancer, IBD, and COPD, respectively.
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Abstract: The electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis and daily
health monitoring. Before ECG analysis, ECG quality screening is an essential but time-consuming
and experience-dependent work for technicians. An automatic ECG quality assessment method can
reduce unnecessary time loss to help cardiologists perform diagnosis. This study aims to develop
an automatic quality assessment system to search qualified ECGs for interpretation. The proposed
system consists of data augmentation and quality assessment parts. For data augmentation, we
train a conditional generative adversarial networks model to get an ECG segment generator, and
thus to increase the number of training data. Then, we pre-train a deep quality assessment model
based on a training dataset composed of real and generated ECG. Finally, we fine-tune the proposed
model using real ECG and validate it on two different datasets composed of real ECG. The proposed
system has a generalized performance on the two validation datasets. The model’s accuracy is 97.1%
and 96.4%, respectively for the two datasets. The proposed method outperforms a shallow neural
network model, and also a deep neural network models without being pre-trained by generated
ECG. The proposed system demonstrates improved performance in the ECG quality assessment, and
it has the potential to be an initial ECG quality screening tool in clinical practice.

Keywords: data augmentation; deep learning; ECG quality assessment

1. Introduction

Electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis, treat-
ment, and daily personal health monitoring via wearable devices [1,2]. ECG signals are
expected to have sufficient signal quality to extract temporal and morphological infor-
mation for further analysis, such as heart rate variability (HRV) analysis and arrhythmia
classification [3,4]. Low-quality ECG signals owing to baseline wander, muscle artifacts,
and power-line interferences may cause false ECG arrhythmia alarms [5]. Additionally,
ECG collected by wearable devices may include severe electrode motion artifacts, plain
lines, and huge impulses due to lead-off. In particular, electrode motion artifacts may be
treated as ectopic beats and cannot be removed by simple filters. This is one of the major fac-
tors that cause alarm fatigue [6–8]. In clinical practice, before disease diagnosis, low-quality
ECG signals are expected to be removed through manual screening by technicians. How-
ever, manual quality screening is time-consuming, laborious, and experience-dependent.
Therefore, a reliable automatic ECG signal quality assessment system is significant for ECG
technicians and cardiologists.

To date, many studies have been conducted on ECG quality assessment. PhysioNet
organized a challenge in cardiology in 2011 to classify 12-lead ECG signals as acceptable
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or unacceptable [6,9]. Quesnel et al. evaluated the quality of ECG signals contaminated
with various levels of motion artifacts. They segmented PQRST complexes, which were
aligned and averaged to form an estimate of true PQRST complexes. Then, a signal-to-
noise ratio (SNR) was estimated by comparing each PQRST complex to the average PQRST
complex. In this way, they got a 0.89 Pearson correlation coefficient between estimated
and real SNRs [10]. The machine learning technique was also implemented in the ECG
quality assessment. Redmond et al. used a Parzen window classifier to classify noisy and
clean ECG, and got 82% and 78.7% accuracies using human and automatic annotation
features, respectively [11]. Shahriari et al. obtained ECG signals from an ECG alarm
study at the University of California, San Francisco (UCSF) and PhysioNet Computing
in Cardiology Challenge 2011. They developed an image-based ECG quality assessment
method. They computed a structural similarity measure (SSIM) at first, and then selected
representative ECG images from the training dataset as templates. The SSIM between each
ECG image and all the templates were used to build the features and input them into a
linear discriminant analysis classifier. The classifier achieved 93.1% and 82.5% accuracies in
the UCSF and Cardiology Challenge 2011 database, respectively [12]. Zhao et al. manually
extracted six features, such as R peaks, the power spectrum distribution of QRS complexes,
and so forth to build fuzzy vectors. They used the fuzzy comprehensive evaluation
method as a feature analysis module. Their model demonstrated a 94.67% accuracy,
90.33% recall, and 93.00% specificity, training and testing on data from the PhysioNet
computing in Cardiology Challenge 2011 and 2017 [13]. In 2019, Moeyersons et al. used
data from a sleep study collected by the University Hospital Leuven, PhysioNet Computing
in Cardiology Challenge 2017 and MIT-BIH Noise Stress Test Database with manual
labels. They segmented the ECG signal into 5 s episodes after filtering. Each episode was
characterized by an autocorrelation function, and then three features were extracted and
fed to a RUSBoot classifier. For Challenge 2017 and Sleep Study Datasets, they obtained
a recall of 79.4% and 96.6%, specificity of 78.7% and 84.8%, and area under the curve of
0.928 and 0.970, respectively [14]. More recently, Fu et al. assessed the quality of wearable
ECG signals collected via Lenovo H3 Devices. They compared three machine learning
algorithms: the support vector machine (SVM), least-squares SVM (LS-SVM), and long
short-term memory (LSTM) with manually extracted features. The LSTM models achieved
the best performance with 95.5% accuracy [15].

The above studies usually follow three procedures. The first procedure is signal
prepossessing, such as filtering. Then, feature extraction is the most important step, and di-
rectly affects the model’s performance. However, no gold standard exists to identify
necessary, effective, or redundant features. As a result, feature extraction usually depends
on the experiences of researchers. The final step is model development using machine
learning techniques or designing decision rules via setting thresholds or computing related
statistical values based on extracted features. However, feature extraction, decision rules,
or threshold-making are experience-dependent, and it is hard to cover or find out all signif-
icant features, such as QRS-related information [11,13], R-peak-related information [13],
or autocorrelation function-related features [14]. In addition, significant features may vary
with decision strategies and models. Furthermore, features manually extracted from a
certain dataset may not be generalized on other datasets. For example, Shahriari et al.
manually extracted the same features on two datasets: the UCSF and Cardiology Chal-
lenge 2011 database, but their model had a considerable difference of performance on
another two datasets (UCSF vs. Cardiology Challenge 2011: accuracy: 93.1% vs. 82.5%,
sensitivity: 96.3% vs. 83.9%, specificity: 90.0% vs. 77.7%) [12]. Manually extracted features
generalized for different datasets are usually impractical in view of the costly and limited
medical databases.

In this study, the proposed ECG quality assessment system consists of two stages:data
augmentation using adversarial networks, and quality assessment using deep neural
networks. The goal of data augmentation is to generate versatile ECG to improve the
training efficiency. The proposed system can automatically extract features from raw
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ECG signals and make final decisions. In this case, the system can avoid relying on
experience- and database-specific manual features for model development, and thresholds
or rules for decision-making; therefore, they may have better generalization ability. The
system demonstrates improved performance on two different datasets, and outperforms
the shallow neuronal networks model and deep neural networks model without data
augmentation. All the experiments were conducted using MATLAB R2019b [16] and
TensorFlow 2.3.0. [17].

2. Materials and Methods

2.1. Datasets Introduction and Construction

This study uses data from PhysioNet Computing in the Cardiology Challenge 2017
(PCCC2017) database [18], TELE ECG database [19], MIT-BIH arrhythmia database (MIT-
BIHA) [20], and MIT-BIH normal sinus rhythm database (MIT-BIHNSR) [21].

PCCC2017 aims to classify single-lead ECG recordings to the sinus rhythm, atrial
fibrillation (AF), alternative rhythm, or as too noisy. All the recordings last for 9 to 60 s,
sampled at 300 Hz. Then, each recording was resampled to 500 Hz and segmented into
segments of 10 s duration with 2 s and 4 s overlap, respectively, to increase the number
of unacceptable segments (in the noisy category). In total, there are 555 unacceptable and
select 2618 acceptable ECG segments from this dataset, each with 10 s duration.

The TELE ECG database was initially recorded by Redmond et al. [11] from 288 home-
dwelling patients. Each ECG recording was collected with single-lead and sampled at
500 Hz. Khamis et al. regarded this database as poor-quality telehealth ECG [22]. In this
study, all the recordings are marked as noisy ECG signals as well. After signal segmentation,
there are 734 unacceptable 10 s ECG segments.

The PCCC2017 and TELE ECG database officially provided specific quality labels
for ECG segments, and then the two databases are combined to a new dataset named as
COMD. COMD consists of 1289 unacceptable and 2618 acceptable ECG segments in total.

MIT-BIHA contains 48 two-channel ECG recordings, each with a duration of 30 min,
sampled at 360 Hz. MIT-BIHNSR includes 18 long-term ECG recordings, and all the record-
ings are sampled at 128 Hz. The MIT-BIH noise stress test database (MIT-BIHNST) was
created by using two clean ECG recordings (118 and 119) from the MIT-BIHA and adding
noise recordings on them [7]. The noise recordings are available in MIT-BIHNST, including
baseline wander (bm), muscle artifact (ma), and electrode motion artifact (em). Inspired
by the construction method of MIT-BIHNST, the original ECG recordings in MIT-BIHA
and MIT-BIHNSR as regarded clean signals (acceptable recordings) as well in this study,
and then the same noise-added rules as MIT-BIHNST are followed to recreate a new noise-
included dataset (RECD for short) using a WFDB software package [23]. The recreated ECG
recordings will include severe “ma”, “bm”, or “em” noises provided by MIT-BIHNST or a
Gaussian noise and power interference simulated by MATLAB. The detailed noise-added
rule is listed in Table 1, where “g” means Gaussian noise generated by a MATLAB function
“awgn” in the WFDB software package, and “p” means a power interference simulated
by a sine function, with 60 Hz frequency. To increase data diversity, RECD is created by
complying with different noise combinations. Then, all the ECG recordings in RECD are
resampled at 500 Hz. After that, there were 7557 unacceptable and 20114 acceptable ECG
segments available.

ECG segments in COMD were used to train a conditional generative adversarial net-
works (CGANs) model for ECG segment generation at first. Then, generated unacceptable
and real acceptable ECG data were used to pre-train a quality assessment model. Finally,
training sets in COMD and RECD were both used for fine-tuning the assessment model,
and testing sets were used to test the model. The detailed usage of data is illustrated in
Table 2.
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Table 1. The noise-add rules of dataset recreation.

Noise Type MIT-BIHA MIT-BIHNSR

bw - “19093”, “19140”, “19830”
em - All 17 recordings

ma
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

All 17 recordings

bw, g - Recordings expect “19093”, “19140”, “19830”
(Total 14 recordings)

bw, p - Recordings expect “19093”, “19140”, “19830”
(Total 14 recordings)

em, g
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

-

ma, bw “112”, “113”, “114”, “115”, “116”, “117”, “118”, “119”,
“121”, “122”, “123”

-

ma, em “124”, “200”, “201”, “202”, “203”, “205”, “207”, “208”,
“209”, “210”, “213”, “214”, “215”

All 17 recordings

bw, g, p
“101_V1”, “106_V1”, “112_V1”, “113_V1”, “114_V5”,
“115_V1”, “122_V1”, “200_V1”, “205_V1”, “209_V1”,
“215_V1”, “220_V1”, “221_V1”, “222_MLII”

-

em, bw, g “212”, “217”, “219”, “220”, “221”, “228”, “230”, “231”,
“232”, “233”, “234”

-

ma, em, bw “100”, “101”, “102”, “103”, “104”, “105”, “106”, “107”,
“108”, “109”, “111”

-

g first 5 min of each recording first 5 min of each recording
p first 5 min of each recording first 5 min of each recording

Table 2. Usage of datasets.

Usage
COMD Generated

Unacceptable
ECG

RECD

Training Set Testing Set Parts of
Acceptable ECG

Training Set Testing Set

Train CGANs
√

- -
Pretrain Assessment
Model -

√ √
-

Finetune Assessment
Model

√
- - -

√
-

Test Assessment Model -
√

- - -
√

2.2. Methods
2.2.1. Data Augmentation

Insufficient and imbalanced data may reduce the performance of deep learning mod-
els [24,25]. Thus, the first procedure of the work was to automatically generate unac-
ceptable ECG segments to solve data imbalance issues and perform data augmentation.
Although traditional mathematical modeling methods can generate realistic heartbeats,
the synthetic heartbeat’s morphology lacks diversity or is even almost the same as those
of training data [26]. Recently, several studies have confirmed that the generative adver-
sarial networks (GANs) model has the ability to generate real-like ECG segments and
arrhythmia [26–31]. The proposed system is shown in Figure 1, a GANs model [32] is
developed and trained based on COMD to obtain an ECG generator (G’), and G’ is used
to generate unacceptable ECG segments with 10 s duration (G’(z|y = 1)). The generator
and discriminator are abbreviated as G and D, respectively. Figure 2(a) shows the structure
of the proposed CGANs model. The label information is used as the condition, and each
label (“0” for acceptable and “1” for unacceptable) is assembled to an M1-element vector
representation, one input of G. The other input of G is a random M2-element noise signal,
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and following the uniform distribution, their amplitude is limited in –1 to 1. Here, M1 and
M2 are determined to be 20 and 700, respectively, by trials and errors. G mainly consists
of two LSTM layers with 200 and 600 units, respectively. The main layers of D are two
convolutional neural network (CNN) layers, with 128 and 64 units, respectively. Their
kernel sizes are set to 10 and 5, respectively, and the alpha of the “LeakyReLU” activation
layer is set to 0.2. The dropout rate is 0.3. The Dense layer has 32 units and uses “ReLu” as
the activation function. For the output layer, we use “sigmoid” as its activation function.
The Adam optimizer with a 0.0002 learning rate and binary crossentropy loss function are
applied to train the CGANs model. By trials and errors, D is updated three times, and G is
then updated once to train the model. After that, an ECG generator (G’) is obtained from
the CGANs model for unacceptable ECG segment generation.

Figure 1. The proposed ECG quality assessment system. It consists of two parts: data augmentation by CGANs and a
quality assessment model.

2.2.2. Quality Assessment

The generated unacceptable ECG segments and parts of real acceptable segments
in RECD (5000 unacceptable and 5000 acceptable ECG segments in total) were used to
pre-train the quality assessment model. The structure of the model is shown in Figure 2b,
and consists of three branches: two CNN branches (branch1: left; branch2: middle) and an
LSTM branch (branch3: right). For branch1, the number of filters in the two CNN layers
is 128 and 32 with a kernel size of 50 and 10, respectively. A dropout rate was set to 0.3,
and the pooling size to 10. Branch2 has the same structure as branch1, where its two CNN
layers use 64 and 16 filters and the kernel size of each is 25 and 2, respectively. The dropout
rate and pooling size are the same as branch1. The number of units in the two LSTM
layers of branch3 are 200 and 100, respectively. The Dense layer has 32 units with a “ReLu”
activation function. A batch size of 64, an Adam optimizer with a 0.0002 learning rate, and
binary crossentropy loss function were applied for training. For model fine-tuning, the
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three branches were frozen and only parameters in the final two layers (Dense and Output
layers) were updated with real data.

(a) (b)

Figure 2. Structures of the proposed models. (a) The structure of CGANs; (b) the structure of the assessment model.

Considering the limited number of data in COMD, each 10 s ECG segment was further
segmented into 10 examples with 1 s duration to increase the number of input examples
for the training of the assessment model. Because our aim was to assess the quality of
each 10 s ECG segment, we conducted a post-processing procedure as shown in Figure 3.
The threshold was set to 3 for the quality assessment of ECG segment by trial an error.
After model pre-training, the COMD and RECD datasets were randomly split 10 times
to obtain training sets, which were used for model fine-tuning, and testing sets, which
were used for testing the average performance of the model. For fair comparison, the
same number of ECG segments in COMD and RECD datasets was used for fine-tuning
(3000 segments with 1000 unacceptable and 2000 acceptable)), and the rest were used
for testing.

Figure 3. Post-processing for quality assessment of ECG segment.
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3. Results

3.1. Data Augmentation

Figure 4 illustrates the training curves of CGANs and confirms their convergence.
In Figure 4a, for the “Loss” figure, the blue line “d_real” means the loss of D when it is
updated by real ECG segments, the orange line “d_fake” is the loss of D when it is updated
by generated segments, and the green line “g” represents the loss of G. T-distributed
stochastic neighbor embedding (tSNE) [33] was used to map real and generated segments
to a three-dimensional space for visualization, as shown in Figure 4b. tSNE maps the
similar segments to close points, and dissimilar segments were mapped to distant points.
Figure 5 visualizes several real segments and generated segments by G’.

(a) (b)

Figure 4. Training process of CGANs (a) and visualization of ECG segment distribution (b).

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Samples of real and generated ECG segments. (a,b) The generated unacceptable ECG segments; (c,d) the real
unacceptable ECG segments from the derivation dataset.

3.2. Quality Assessment

The performance of the proposed quality assessment model was measured by three
indexes: accuracy, sensitivity, and specificity, which were calculated based on true positive
(TP), true negative (TN), false positive (FP), and false negative (FN), as shown as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Sensitivity =
TP

TP + FN
, (2)

Speci f icity =
TN

TN + FP
. (3)

Figure 6a,b shows the average performance of the assessment model. The specificities
are 96.4% and 95.0%, sensitivities are 98.6% and 99.1%, and accuracies are 97.1% and 96.4%,
respectively for COMD and RECD.

For comparison, some additional experiments were conducted as listed in Table 3.
A CGANs model for 1 s example generation was developed. The quality assessment
model performs 95.5% accuracy (acc), 94.5% sensitivity (sen), and 96.0% specificity (spe) on
COMD, all lower than the performance of the proposed system. In addition to CGANs, a
GANs model was also developed for data augmentation. The model failed in convergence
when trained for 10 s ECG segments generation, but it was possible to generate 1 s ECG
examples. Using the data generated by the GANs model, the quality assessment model
shows an accuracy of 95.4%, sensitivity of 99.3% and specificity of 93.4% on COMD, which
are not as good as the performance of the proposed method.

Moreover, to prove the necessity of training the quality assessment model using
examples with a duration of 1 s, the quality assessment model was pre-trained directly
using ECG segments with 10 s duration, and adding L2 regularization in CNN, LSTM,
and Dense layers to alleviate overfitting; however, the model still performed differently
between the training and testing sets. For COMD, the training accuracy of the model
was 95.8%, the sensitivity was 91.2%, and the specificity was 98.0%, while the testing
accuracy, sensitivity, and specificity were 84.4%, 75.8%, and 88.2%, respectively. This may
indicate that training by segments with 1 s may improve the generalization of the quality
assessment model.
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(a) (b)

Figure 6. Performances of the proposed quality assessment model on COMD (a) and RECD (b).

Without data augmentation and pre-training the assessment model by generated ECG
data, each 10 s ECG segment was segmented to 10 examples with 1 s duration to directly
increase the number of examples and then use them to directly develop the assessment
model. Its performance declined on both COMD and RECD compared with the proposed
system, as listed in Table 3.

In addition to data generation, downsampling is a possible way to assist to train a deep
learning model [34]. Thus, a comparison with a previous quality assessment method [35]
was conducted. The previous study downsampled ECG segments from 500 Hz to 50 Hz
and developed a shallow neural networks model to avoid overfitting. The accuracy of the
proposed system increased by 1.3% and 2.6%, respectively, on COMD and RECD.

Table 3. Performance of models for quality assessment.

Data Augmentation Performance of Quality Assessment

Remark
Model

Duration of
Generated ECG

COMD RECD

CGANs 10 s
acc: 97.1%;
sen: 98.6%;
spe: 96.4%

acc: 96.4%;
sen: 99.1%;
spe: 95.0%

Proposed method

CGANs 1 s
acc: 95.5%;
sen: 94.5%;
spe: 96.0%

- -

GANs 10 s - - GANs: convergence failed

GANs 1 s
acc: 95.4%;
sen: 99.3%;
spe: 93.4%

- -
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Table 3. Cont.

Data Augmentation Performance of Quality Assessment

Remark
Model

Duration of
Generated ECG

COMD RECD

CGANs 10 s
acc: 84.1%;
sen: 75.8%;
spe: 88.2%

-

Directly using 10 s ECG segments for
assessment model development, and
adding L2 regularization in CNN, LSTM,
and Dense layers, but the model still
performs overfitting;
acc: 95.8% vs. 84.1%
(trainng set vs. testing set);
sen: 91.2% vs. 75.8%;
spe: 98.0% vs. 88.2%

- -
acc: 94.1%;
sen: 96.5%;
spe: 92.9%

acc: 94.0%;
sen: 98.1%;
spe: 91.9%

Without data augmentation, but segment
each 10 s ECG segment to 10 examples
with 1 s duration to naturally
increase the number of examples.

- -
acc: 95.8%;
sen: 96.5%;
spe: 95.5%

acc: 93.8%;
sen: 89.0%;
spe: 96.2%

Using shallow model and downsampled
ECG segments, which is similar to the
previous work [35], to avoid overfitting.

4. Discussion

In this study, ECG generated by CGANs benefited the ECG quality assessment task.
Although downsampling is a way to assist to train deep learning models with a small
training dataset, it may limit the complexity of deep neural network models and thus
reduce the final performance. In this work, with the same training dataset, after pre-
training with generated ECG data, the developed deep neural networks model obtained a
better performance (on COMD, data augmentation by CGANs vs. downsampling: 97.1%
vs. 95.8% for accuracy, 98.6% vs. 96.5% for sensitivity and 96.4% vs. 95.5% for specificity;
on RECD, data augmentation by CGANs vs. downsampling: 96.4% vs. 94.0% for accuracy,
99.1% vs. 89.0% for sensitivity and 95.0% vs. 96.2% for specificity). Finally, it just needed to
retrain two layers in the whole deep model; in this way, the size of the required training
set may be greatly reduced compared with training from scratch. This indicates that the
GANs technique may be effective to assist the training of deep neural network models for
ECG-related decision-making, such as arrhythmia detection [28].

Traditional mathematical modeling methods are limited to synthesize a normal real-
istic heartbeat or ECG signals generally with the same morphology [36,37]. To generate
ECG signals with arrhythmia, the traditional method needs to manually control position
parameters of P, Q, R, S, or T waves [36] to enrich the morphology of heartbeats. On the
contrary, the GANs method can instinctively generate ECG signals with a larger diversity,
which better matches with real ones [26]. The ECG signal is made up of temporal sequences,
and thus, generating longer durations of ECG segments is preferred. In this work, CGANs
demonstrated a reliable convergence when they were trained for generating a 10 s ECG
segment, but GANs failed to converge. It may be attributed to how the discriminator
in CGANs is required to not only identify generated or real ECG segments, but to also
provide a correct label to each real segment. This gives a stronger constraint for model
training than GANs.

In this study, the proposed system assessed the quality of each 10 s ECG segment
by consecutively analyzing the quality of 10 examples, each 1 s in length. This improved
the reliability of the system. For example, for a 10 s ECG segment, a threshold of 3 was
set in post-processing, as shown in Figure 3; that is, if there were more than 3 out of the
10 consecutive 1 s examples which were determined as “unacceptable” by the model,
the corresponding 10 s ECG segment was classified as “unacceptable”. In this case, despite
the quality of the rest of the seven consecutive examples, the final result did not change
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and the sensitivity was assured. This characteristic is confirmed in the results, as shown in
Figure 6; that is, the sensitivity of the model validated by COMD and RECD is higher than
both the specificity and accuracy.

This work has some limitations, as follows.
(1) The proposed system is suitable for an initial ECG quality assessment, without con-

sidering specific applications. The quality requirement may vary for different purposes.
For better explanation, several ECG segments that were labeled as “noisy” in PCCC2017 are
shown in Figure 7. For example, for a task of AF detection, one of the characteristics for the
detection of AF is that there are irregular heartbeats and no regular P waves in ECG. How-
ever, P waves in Figure 7a,b (Figure 7a: recording “A07/A07983”, time: 10:10:15–10:10:25;
Figure 7b: recording “A01/A01938”, time: 05:05:40–05:05:50) were hardly observed because
of severe noise; thus, the quality of ECG segments in Figure 7a,b is unacceptable because
they cannot be used for further AF detection using P waves. In contrast, the segment in
Figure 7a can be used for HRV time-domain analysis since it has obvious R peaks (green
circle), and thus, the heart rate can be accurately calculated. In this case, it should be
regarded as acceptable. Moreover, it can identify premature ventricular contraction (PVC)
rhythms in Figure 7b (purple rectangle) and normal beats (green rectangles); thus, it is
acceptable when used for PVC detection. In Figure 7c (recording “A00/A00445”, time:
09:09:09–09:09:19), the ECG segment can be partly regarded as acceptable (green rectangle)
or unacceptable (two sides). The ECG segment in Figure 7d (recording “A01/A01116”,
time: 04:02:47–04:02:57) should be totally unacceptable because the signal is completely
contaminated by noise.

(2) In this study, the system only considered a quality assessment for single-lead
ECG; therefore, the proposed method cannot be directly applied to 12-lead ECG quality
assessments. The system is suitable for the quality assessment of ECGs collected by bedside
monitors or wearable devices, but should be improved for the diagnosis of cardiovascular
diseases using 12-lead ECG, such as acute myocardial infarction.

(3) In this study, the proposed system was unable to provide specific signal-to-noise
ratio information for acceptable and unacceptable ECG signals; thus, it may be hard to
quantize the quality of ECG signals.

In future, it is expected that we develop a multi-hierarchical and meticulous ECG
quality assessment system. The system will identify low-quality ECG signals and perform
task-specific quality assessments.

(a)

(b)

Figure 7. Cont.
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(a)

(b)

Figure 7. Samples of noisy ECG signals in PCCC2017 (a): recording “A07/A07983”, time: 10:10:15–10:10:25; (b): recording
“A01/A01938”, time: 05:05:40–05:05:50; (c) recording “A00/A00445”, time: 09:09:09–09:09:19, (d) recording “A01/A01116”,
time: 04:02:47–04:02:57 [18].

5. Conclusions

The CGANs technique is a possible method for ECG generation, and the generated
data will help to improve the results of ECG quality assessments. The proposed system
is expected to be applied for the accurate initial screening of ECG quality. In particular,
for patients with wearable ECG recording devices, the system may assist inexperienced
users to collect ECG signals with a quality that meets diagnostic requirements. For clinical
technicians, the proposed system is expected to relieve them from tedious and time-
consuming quality screening work.
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Abstract: Background: We performed in silico prediction of the interactions between compounds of
Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods.
Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural
herb-based drug candidates. Methods: Initially, data related to compounds, target proteins, and
interactions between them were collected from open access databases. Compounds are represented
by molecular fingerprints, whereas amino acid sequences are represented by numerical protein
descriptors. Then, prediction models that predict the interactions between compounds and target
proteins were constructed using support vector machine and random forest. Results: A random
forest model constructed based on MACCS fingerprint and amino acid composition obtained the
highest accuracy. We used the best model to predict target proteins for 94 important Jamu compounds
and assessed the results by supporting evidence from published literature and other sources. There
are 27 compounds that can be validated by professional doctors, and those compounds belong to
seven efficacy groups. Conclusion: By comparing the efficacy of predicted compounds and the
relations of the targeted proteins with diseases, we found that some compounds might be considered
as drug candidates.

Keywords: compound–protein interaction; Jamu; machine learning; drug discovery; herbal medicine

1. Introduction

Identification of compounds derived from herbal medicines and natural products has
shown potential in drug discovery and drug development [1,2]. Many useful compounds
have been found and utilized from herbal medicines and natural products to treat various
diseases, such as oseltamivir [3] and roscovitine [4]. Oseltamivir is a neuraminidase
inhibitor used in the treatment and prophylaxis of both influenza A and influenza B,
whereas roscovitine is known as an anticancer drug. However, the process of identification
of compound and target protein interactions in vivo and in vitro requires enormous effort.
Therefore, efficient in silico screening methods are needed to predict the interaction between
compounds and target proteins. In this light, in silico prediction of the interactions between
compounds and target proteins can help in making the efforts easier.

As a country with the largest medicinal plant species in the world, Indonesians utilize
medicinal plants as a constituent of herbal medicines [5–7]. These are known as Indonesian
Jamu. Currently, Jamu is produced commercially on an industrial scale under the super-
vision of the National Agency of Drug and Food Control (NADFC) of Indonesia. Jamu,
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like the other herbal medicine systems, i.e., traditional Chinese medicine, Japanese Kampo,
Ayurveda, and Unani, can be considered as a new resource for compound screening. The
molecules might be from a specific part of a plant used as a Jamu ingredient, such as
rhizome of Java ginger (Curcuma xanthorrhiza), leaf of kecibeling (Strobilanthes crispus), or
fruit of tamarind (Tamarindus indica). The utilization of herbal medicines in drug screening
is very promising because of the lack of side effects [8,9]. In addition, the high biodiversity
in Indonesia has great advantages in the process of finding potential compounds in Jamu.
Furthermore, the systematization of Jamu medicine might help not only to obtain infor-
mation about the major ingredient plants in Jamu medicines, but also to find compound
and protein interactions to explain formulation of Jamu. The information on interactions
between Jamu compounds and human target proteins will allow understanding the mech-
anisms of how Jamu medicines work against diseases and will be helpful for finding new
drugs based on a scientific basis.

Various screening approaches have been developed to determine candidate com-
pounds from herbal medicines and natural products in drug discovery. One category of the
popular approaches is machine learning techniques. This approach can learn from the data,
and the resulting model can be applied to make a prediction. Support vector machine (SVM)
and random forest are machine learning methods for supervised learning, and they have
been used in many research fields with success [10–12]. In order to obtain a good model,
the machine learning method requires a great number of data samples. Nowadays, there
are many open access databases that can be used to support the prediction of compound
and protein interactions, such as KEGG [13], DrugBank [14], KNApSAcK [15], UniProt [16],
and Online Mendelian Inheritance in Man (OMIM) [17]. Prediction of compound–protein
interactions can exploit these databases to identify candidate compounds. In terms of
Indonesian Jamu, IJAH Analytics can be considered as a good reference for Jamu because
it has information about plant species used in Jamu formulas. In addition, plant species
information can be associated with information regarding compounds, target proteins,
diseases, and interactions between entities. It is hoped that the more efficient and effective
application of natural products will improve the drug discovery process.

Many studies on the prediction of interactions between compounds and target proteins
have been reported. Yamanishi et al. implemented a systematic study on the prediction
of compound–target protein interactions by utilizing supervised learning using a bipar-
tite graph [18]. The interactions were predicted by utilizing the structural similarity of
compounds and the similarity of amino acid sequences. They computed the structural
similarities between compounds using SIMCOMP and the sequence similarities between
proteins using normalized Smith–Waterman scores [19,20]. In the prediction methods, they
applied the bipartite local model (BLM) and SVM to predict compound–target protein
interactions [21,22]. BLM predicts target proteins of a given compound using the structural
similarity of compounds, proteomic similarity, and information of interactions between
compounds and target proteins, whereas SVM was used as the classifier for the BLM.

In this study, we applied machine learning techniques to predict the interaction
between compound and protein. SVM and random forest have been chosen as classifiers,
and compound and protein are represented by fingerprint and numerical representation
of amino acid, respectively. The accuracy, sensitivity, and specificity were used in the
evaluation of the models. After we confirmed the best model obtained in the prediction of
compound–protein interactions, we determine targeted proteins for candidate compounds
obtained from plants used in the Jamu formulas for different efficacies [11]. The objective
was not only to identify targeted proteins for developing new drugs, but also to give a
comprehensive understanding of Jamu medicines on the molecular level.

2. Materials and Methods

Jamu medicines consist of a combination of medicinal plants and are used to treat
various diseases. In this work, we exploit information about compound and protein
interactions from open access databases to predict compound–protein interactions in the
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context of Jamu formulas. The concept of the proposed method is depicted in Figure 1,
which mainly consists of three processes: (a) data transformation, (b) model generation
and evaluation, and (c) prediction of targeted proteins by Jamu formulas.

 

 

 

  

  

Figure 1. Concept of the methodology.

Initially, we collected the required data for this study from open access databases such
as DrugBank, PubChem [23], KNApSAcK, UniProt, KEGG, OMIM, Matador [24], and In-
donesian Jamu Herbs (IJAH Analytics, http://ijah.apps.cs.ipb.ac.id, accessed on 20 August
2021). The acquisition of data for generating the prediction model includes compounds,
target proteins, and interactions between them. The chemical structures of the compounds
were represented by Simplified Molecular Input Line Entry Specification (SMILES) codes.
Many databases, such as DrugBank, provide SMILES of each compound [25]. We elimi-
nated some compounds that have ambiguous SMILES or do not have SMILES information.
Compounds with known SMILES codes were used in the training process to generate a
model for predicting compound–protein interactions. In addition, the information about
target proteins was also collected from public databases, especially the IJAH database, and
these data were represented by amino acid sequences using FASTA format. In the case of
interactions, we gathered that information from IJAH, Matador, and KEGG databases. We
also collected the candidate compounds of Jamu formulas associated with efficacy groups
from a previous study [11] and used those as test data.

2.1. Data Transformation

We transformed information about compounds and amino acid sequences into finger-
prints and numerical representations of amino acids, respectively. In the case of compounds,
we examined two different fingerprint representations, namely the binary representation
of the Molecular Access System (MACCS) and PubChem fingerprints [12,26,27]. Therefore,
each compound was represented as 166 and 881 binary vectors, respectively. In the case of
proteins, we transformed amino acid sequences into the amino acid composition (AAC)
and dipeptide composition descriptors [28]. The AAC represents an amino acid sequence
as a fraction of each amino acid type within a protein, and it will produce 20-dimensional
AAC vectors. The fractions of all 20 natural amino acids are calculated as:

f (r) = Nr/N, r = 1, 2, . . . , 20 (1)

where Nr is the number of the amino acid type r and N is the length of the sequence. In
addition, dipeptide composition will produce 400-dimensional descriptors, defined as:

f (r, s) =
Nrs

N − 1
, r, s = 1, 2, . . . , 20 (2)

where Nrs is the number of dipeptides represented by amino acid type r and type s.
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After we transformed compounds and proteins into fingerprints and numerical de-
scriptors, we created four datasets consisting of all combinations of compound and protein
vectors for generating the model as follows: a combination of MACCS fingerprint and
AACs (called dataset 1), a combination of MACCS fingerprint and dipeptide descriptor
(called dataset 2), a combination of PubChem fingerprint and AACs (called dataset 3), and
a combination of PubChem fingerprint and dipeptide descriptor (called dataset 4). Figure 2
illustrates the data representation of compounds, proteins, and interactions between them.
In the case of testing data, we built combinations of candidate compounds from medicinal
plants in Jamu and proteins.

 
Figure 2. Data representation. Each data sample DTk is composed of molecular fingerprints (CD1,
CD2, CD3, . . . , CDm) and numerical protein descriptors (PD1, PD2, PD3, . . . , PDn).

2.2. Model Generation and Evaluation

We applied SVM and random forest in the model generation step. SVM is a binary
classifier based on constructing an optimal linear model, which has the largest margin
between two classes. The linear separator is constructed by simultaneous minimization of
the empirical classification error and maximization of the geometric margin [29]. If we have
n training data pairs, T = {(xi, yi)}, i = 1, . . . , n, where xi(∈ R

p) is a vector representing
compound and protein and yi is the class of xi. The decision function of SVM is defined as
f (x) = wTx + b, where w =

[
w1, w2, . . . , wp

]T is the weight vector and b is a scalar. The
optimization problem that SVMs aim to minimize is shown in Equation (3):

min
w∈Rp ,ξi∈R+

1
2
‖w‖2 + C

n

∑
i

ξi (3)

subject to yi
(
wTxi + b

) ≥ 1− ξi, where C is a trade-off between the width of the margin and
the number of misclassifications, and ξi is a slack variable. SVM can be extended to classify
data that are not linearly separable by utilizing a kernel technique. There are two kernel
functions that we applied in this study, namely the linear kernel

(
K
(

xi, xj
)
= xT

i , xj
)

and

radial basis function (RBF) kernel (K
(

xi, xj
)
= e−γ‖xi−xj‖2

, γ > 0), where γ is the inverse
of the radius of influence of samples selected by the model as support vectors [10,30].

In addition, random forest is an ensemble method composed of many decision trees.
For each classification tree, a bootstrap sample of the data is generated, and at each split,
the candidate set of variables is a random subset of the variables [31–33]. Given a set
of training samples L = {(xi, yi)}, i = 1, . . . , n, where xi(∈ R

p) is a vector of predictor
variables representing compound–protein data i and yi is the class label. Random forest
targets generating a number of ntree decision trees from these samples. The same number
of n samples is randomly selected with replacement (bootstrap resampling) for each tree to
form a new training set, and the samples not selected are called out-of-bag (OOB) samples.
Using this new training set, a decision tree is grown to the largest extent possible without
any pruning according to the classification and regression tree (CART) methodology [34].
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The Gini index is used during the development process of a decision tree. The Gini index
at node v, Gini(v), is shown in Equation (4).

Gini(v) =
C

∑
c=1

p̂v
c (1 − p̂v

c ) (4)

where p̂v
c is the proportion of class c observations at node v [35]. Then, the Gini information

gain of xi for splitting node v into two child nodes, Gain(xi, v), is shown in Equation (5):

Gain(xi, v) = Gini(xi, v)− wLGini(xL
i , vL)− wRGini(xR

i , vR) (5)

where vL and vR are the left and right child nodes of v, wL and wR are the proportions of
instances assigned to the left and right child nodes, and xL

i and xR
i are the instances in the

left and right child nodes. At each node, a random set of mtry features out of p is evaluated,
and the feature with the maximum Gain(xi, v) is used for splitting the node v. The OOB
error is estimated in the process of constructing the forest. After constructing the entire
forest, OOB classification results for each sample are used to determine a decision for this
sample via a majority-voting rule.

We defined and compared the performance of the resulting models by using accuracy,
sensitivity, and specificity [36,37]. The higher the accuracy is, the better the performance
of the classifier is. We measured the accuracies of SVM with two different kernels and
random forest using four data representations (datasets 1–4). In order to estimate the
performance of random forest and SVM with two different kernels, 10-fold cross-validation
was used [21]. Each of the datasets was divided into 10 subsamples. Then, nine samples
were used as a training dataset to make a classification model, and the remaining sample
was used as a validation dataset for testing the model. In the model evaluation step, we
selected the best classifier and data representation of compounds and amino acid sequences
for which we obtained the best result and used that for the prediction of target proteins.

2.3. Prediction of the Target Protein by Jamu Formulas

The best model with the highest accuracy was applied for the prediction of compound–
protein interactions concerning Jamu formulas used as the testing dataset. In this case, we
accepted compound–protein interactions as true interactions when the probability was
greater than a threshold. Figure 3 illustrates the relations among different entities involving
comprehensive Jamu research, where a dotted rectangle indicates the focus of the present
work. Figure 3 also shows how we validate our results by comparing efficacy–compound
and protein–disease relations. We validated the results by comparing the therapeutic
usage of predicted compounds and the relations of the targeted proteins with diseases. We
assessed and discussed the results with supporting evidence from published literature and
comments from professional doctors.
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Figure 3. The process of prediction and identification of targeted proteins. Initially, we developed a
prediction model of compound–protein interactions by utilizing compound–protein data. Then, the
best model was used to predict interaction between compounds of Jamu formulas and their targeted
proteins (in the dotted rectangle).

3. Results and Discussion

The summary of data used in this study is shown in Table 1. We utilized compounds
that are reported to be available in the herbs used as Jamu ingredients. There are 17.227
compounds belonging to 4.984 Indonesian herbs collected from KNApSAcK, IJAH, Pub-
Chem, and KEGG databases. In addition, the number of target proteins collected from
UniProt and IJAH databases is 3.334, and the number of interactions collected from UniProt,
IJAH, Matador, and KEGG databases is 7.989. Initially, we removed the data that do not
have necessary properties, such as the SMILES in the case of the compounds and the
amino sequence in the case of target proteins. Furthermore, we removed the compounds
and proteins that are not included in the compound–protein interactions data. We also
considered only those compounds that target human proteins. Therefore, the numbers
of compounds, proteins, and interactions used in this experiment are 2.146, 3.334, and
7.216, respectively.

3.1. Preprocessing of Compound and Protein Data

The transformation of compounds from SMILES to fingerprints was done by uti-
lizing ChemDes web-based software and PaDEL descriptor [27,38]. Compounds were
transformed to MACCS and PubChem fingerprints. Moreover, we used the protr pack-
age in R to generate AAC and dipeptide as numerical representation schemes of pro-
tein sequences [28]. We eliminated two amino acid sequences in the preliminary study,
i.e., Q9NZV5 and P36969, because they showed unrecognized amino acid type when
transforming amino acid sequences to AAC. Therefore, there were 3.332 proteins left for
further processes.

After data transformation finished, we created datasets for compound–protein predic-
tion using both compound and protein space information. Each sample vector is composed
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of a fingerprint and numerical descriptor of compound and protein. Therefore, for two
different compound fingerprints and two protein numerical descriptors, we constructed
four matrices with dimensions (2.146 × 3.332) by (166 + 20) for MACCS + AAC, (166 + 400)
for MACCS + dipeptide, (881 + 20) for PubChem + AAC, and (881 + 400) for PubChem +
dipeptide. The information of interactions between compounds and proteins is considered
as a positive class, whereas unknown interactions are considered as a negative class. As
the number of samples in the negative class is significantly large (number of compounds
multiplies the number of proteins), we randomly selected 7.216 samples for the negative
class, the same as the number of positive samples. We determined positive and negative
class interactions as classes 1 and 0, respectively.

Wijaya et al. [11] identified 94 significant compounds associated with twelve efficacy
groups, and 28 of them were validated by published literature. In this case, the efficacy
refers to broad disease classes which are as follows: blood and lymph diseases (E1), cancers
(E2), the digestive system (E3), female-specific diseases (E4), the heart and blood vessels
(E5), male-specific diseases (E6), muscle and bone (E7), nutritional and metabolic diseases
(E8), respiratory diseases (E9), skin and connective tissue (E10), the urinary system (E11),
and mental and behavioral disorders (E12). We considered those 94 compounds as test
data in this study. Table 2 shows the number of candidate compounds for each efficacy. We
transformed the compounds into fingerprints according to the best results we obtained.

Table 1. The distribution of compound, protein, and interaction between them as training and
testing data.

Description Number of Data Identifier References

Protein 3.334 UniProtID UniProt, IJAH

Compound 17.277 CAS_ID, PubChem ID,
KEGG ID

KNApSAcK, PubChem,
KEGG, IJAH

Compound of Jamu 94 Compound ID Wijaya et al. [11]

Compound–protein
interactions

149 KEGG
4.144 Matador
3.696 UniProt, IJAH

Amino acid sequences 3.334 UniProtID UniProt

Table 2. The number of compounds for predicting target proteins. All data are classified by efficacies,
and some compounds are related to one or more efficacy groups.

ID Efficacy Groups Number of Compounds

E1 Blood and Lymph Diseases 15
E2 Cancers 5
E3 The Digestive System 17
E4 Female-Specific Diseases 16
E5 The Heart and Blood Vessels 4
E6 Male-Specific Diseases 5
E7 Muscle and Bone 18
E8 Nutritional and Metabolic Diseases 7
E9 Respiratory Diseases 32

E10 Skin and Connective Tissue 4
E11 The Urinary System 14
E12 Mental and Behavioral Disorders 8

3.2. Prediction Performance

We applied the R packages named e1071 ver. 1.7–4 to implement the SVM method [39]
and randomForest ver.4.6–14 to implement random forest (https://cran.r-project.org/web/
packages/randomForest/, accessed on 9 August 2020). The optimal parameters used in
the model generations were obtained by utilizing best.tune and tuneRF functions for SVM
and random forest, respectively. In the SVM, the regulation parameter C depends on
numerical protein descriptors. In the case of AACs, C is equal to 1, whereas C is equal to
1000 in dipeptide. The γ values of datasets 1–4 are 0.00763, 0.00177, 0.00437 and 0.00078,

79



Life 2021, 11, 866

respectively. In random forest, the appropriate number of trees ntree for datasets 1 and
3 is the same, 1000. Additionally, the ntree values for datasets 2 and 4 are 2000 and 500,
respectively. The mtry values for dataset 2 and 4 are the same, i.e., 10, whereas those for
datasets 1 and 2 are 6 and 15, respectively.

Table 3 shows the prediction performance for each type of dataset and each model.
Representation of amino acid sequences using AAC descriptor in datasets 1 and dataset 3
obtains better accuracy compared to dipeptide descriptor on both classifiers and com-
pound fingerprints. Furthermore, if we compare the performance of random forest and
support vector machine classifiers, the classification accuracy of random forest using AAC
descriptor is better than SVM with both kernels. In the case of fingerprints that are used to
represent the compounds, MACCS obtains slightly better classification results than Pub-
Chem features. One of the reasons for the poor classification results on the dataset using
the dipeptide descriptor is the number of features produced by the method. Dipeptide
makes 400 features, causing the number of compound–protein features representing the
input data to increase. Many features have zero values and affect the resulting model. It
is very challenging to determine the most appropriate features because machine learning
methods generally rely on feature engineering [40]. This can also be observed in datasets 2
and 4 between MACCS and PubChem fingerprints; when the number of features increases,
this also reduces the resulting accuracy. Since this represents sufficiently high perfor-
mance, the model can be applied to predict interactions between the Jamu compounds and
target proteins.

Table 3. The evaluation of generated models.

Datasets Classifiers Accuracy Sensitivity Specificity

MACCS_AAC
SVM Linear 69.16%± 1.07% 71.52%± 1.84% 66.77%± 1.87%

SVM RBF 81.71%± 1.52% 82.79%± 2.27% 80.62%± 1.27%
Random Forest 89.30%± 0.69% 87.86%± 1.20% 90.74%± 1.05%

MACCS_Dipeptide
SVM Linear 61.68%± 0.77% 63.49%± 1.61% 61.27%± 0.88%

SVM RBF 72.71%± 0.86% 71.81%± 1.81% 73.15%± 1.15%
Random Forest 60.79%± 1.20% 59.14%± 1.56% 61.17%± 1.30%

PubChem_AAC
SVM Linear 70.77%± 0.90% 73.08%± 1.86% 68.49%± 1.87%

SVM RBF 80.01%± 1.35% 80.52%± 1.80% 79.51%± 1.82%
Random Forest 89.28%± 0.40% 87.96%± 0.88% 90.63%± 0.58%

PubChem_Dipeptide
SVM Linear 50.49%± 1.08% 54.15%± 1.38% 50.47%± 1.01%

SVM RBF 49.55%± 1.28% 54.83%± 5.44% 49.56%± 1.19%
Random Forest 50.28%± 0.72% 50.12%± 1.60% 50.28%± 0.71%

3.3. Prediction Results

In order to predict interactions between compounds and target proteins, the clas-
sification model was taken from the models that obtained the best classification results.
Additionally, a testing dataset was constructed to match the dataset that achieved the
best classification result. In this case, we utilized MACCS fingerprint to represent Jamu
compounds, AAC descriptor to represent amino acid sequences, and random forest as a
classifier. Since we focused on whether compounds bind to target proteins, we created a
matrix containing all combinations of candidate compounds of Jamu formulas and target
proteins as shown in Figure 2. Then, the prediction model was applied to predict whether
compound and protein have an interaction or not. We accepted compound–protein interac-
tions as true interactions when their classification probability was greater than 0.85. Not
all candidate compounds identified in the work of Wijaya et al. have interactions with
one or more proteins that were utilized in the current experiment. Here, we predicted
168 compound–protein interactions of Jamu formulas, involving 68 candidate compounds.
Moreover, the professional doctors validated the predicted compound–protein interactions
by comparing the efficacy of predicted compounds and the relations of the targeted proteins
with diseases, as shown in Figure 3. Based on the current results, interactions involving
27 compounds can be validated, and those compounds belong to seven efficacy groups.
Table 4 summarizes predicted compound–protein interactions by Jamu formulas that have
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been validated by professional doctors, and all of them are presented under respective
efficacies. We also discovered a protein is targeted by many compounds and a compound
has interaction with many target proteins. For instance, P02768, known as human serum
albumin (HSA), is targeted by caffeic acid, diacetoxy-6-gingerdiol, gallic acid, luteolin,
quercitrin, tricin, and ursolic acid. In addition, ursolic acid targets Q92887, Q9NPD5,
Q9Y6L6, P08185, and P02768. Further investigation of the predicted compound–protein
interactions was also done by finding supporting evidence from published literature, such
as HSA being targeted by luteolin [41]. This result indicates that there are some compounds
that might be considered as drugs in herbs. This also implies that the prediction model
performs well and proteins that are not confirmed yet by any evidence can be candidates
to have a relation with the corresponding efficacy group.

Table 4. Predicted compound–protein interactions by Jamu formulas. Compound ID is an identifier taken from Pub-
Chem CID (https://pubchem.ncbi.nlm.nih.gov, accessed on 20 August 2021) and KNApSAcK ID (http://kanaya.naist.jp/
KNApSAcK_Family/, accessed on 20 August 2021). If the Compound ID cannot be found in PubChem or KNApSAcK
databases, we assigned N/A.

No Compound ID Compound Name Molecular Formula UniProt ID Targeted Protein OMIM ID Disease Description

E1 Blood and Lymph Diseases

1 N/A (4Z)-1-(2,3,5-Trihydroxy-4-
methylphenyl)dec-4-en-1-one C17H24O4

P02768 Serum albumin 615999; 616000
Hyperthyroxinemia, familial

dysalbuminemic; analbuminemia

2 689043, C00000615 Caffeic acid C9H8O4
3 5317587, Diacetoxy-[6]-gingerdiol C21H32O6
4 370, C00002647 Gallic acid C7H6O5
5 5280445, C00000674 Luteolin C15H10O6
6 5280459, C00005373 Quercitrin C21H20O11
7 5281702, C00013329 Tricin C17H14O7

8 64945, C00003558 Ursolic acid C30H48O3

Q92887 Canalicular multispecific
organic anion transporter 1 237500 Dubin–Johnson syndrome

Q9NPD5
Solute carrier organic

anion transporter family
member 1B3 237450

Hyperbilirubinemia, rotor type

Q9Y6L6
Solute carrier organic

anion transporter family
member 1B1

Hyperbilirubinemia, rotor type

P08185 Corticosteroid-binding
globulin 611489 Corticosteroid-binding globulin

deficiency

P02768 Serum albumin 615999; 616000 Hyperthyroxinemia, familial
dysalbuminemic; analbuminemia

9 73145, C00003738 beta-Amyrin C30H50O Q92887
Canalicular multispecific

organic anion transporter 1 237500
Dubin–Johnson syndrome

10 222284, C00003672 beta-Sitosterol C29H50O Dubin–Johnson syndrome
E3 The Digestive System

1 519857, C00020146 1-epi-Cubenol C15H26O

P08183
Multidrug resistance

protein 1 612244 Inflammatory bowel disease 13

2 N/A Anisucumarin A C20H20O8
3 240, C00034452 Benzaldehyde C7H6O
4 6448, C00029844 Bornyl acetate C12H20O2
5 3314, C00000619 Eugenol C10H12O2
6 289151, C00003162 Longifolene C15H24
7 N/A Morin-3-O-lyxoside C20H18O11
8 985, C00001233 Palmitic acid C16H32O2
9 442402, C00003194 Thujopsene C15H24
10 12306047, C00029671 alpha-Muurolene C15H24
11 7460, C00003051 alpha-Phellandrene C10H16
12 111037, C00035043 alpha-Terpinyl acetate C12H20O2
13 12313020, C00020130 gamma-Muurolene C15H24

E4 Female-Specific Diseases

1 5280794, C00003674 Stigmasterol C29H48O
P11511 Aromatase 139300; 613546 Aromatase excess syndrome;

aromatase deficiency
P03372 Estrogen receptor 615363 Estrogen resistance

E7 Muscle and Bone

1 10131321, C00055009 Coumaperine C16H19NO2 P20309 Muscarinic acetylcholine
receptor M3 100100 Prune belly syndrome

E8 Nutritional and Metabolic Diseases

1 3084331, C00020154 T-Muurolol C15H26O
Q92887 Canalicular multispecific

organic anion transporter 1 237500 Dubin–Johnson syndrome

Q02318 Sterol 26-hydroxylase,
mitochondrial 213700 Cerebrotendinous xanthomatosis

P11473 Vitamin D3 receptor 277440 Rickets vitamin D-dependent 2A
E10 Skin and Connective Tissue

1 222284, C00003672 beta-Sitosterol C29H50O Q02318 Sterol 26-hydroxylase,
mitochondrial 213700 Cerebrotendinous xanthomatosis

E12 Mental and Behavioral Disorders

1 6989, C00000155 Thymol C10H14O
P08172 Muscarinic acetylcholine

receptor M2 608516 Major depressive disorder

Q13002 Glutamate receptor
ionotropic, kainate 2 611092 Mental retardation, autosomal

recessive 6

4. Conclusions and Future Works

We constructed classification–prediction models that predict the interactions between
compounds and target proteins using a machine learning approach. The model was created
by utilizing compound–protein interaction data obtained from open access databases, and
the data were represented by a combination of fingerprint and amino acid sequences. The
results showed very good prediction performances, around 90% when the compounds
were transformed to MACCS fingerprint, amino acid sequences were transformed to AAC
descriptor, and random forest was chosen as a classifier. In addition, some target proteins
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were predicted from potential compounds of Jamu formulas using the best model obtained
in the previous step. By comparing the efficacy of predicted compounds and the relations
of the targeted proteins with diseases, we found that some compounds might be considered
as drug candidates. There are 27 compounds that can be validated by professional doctors,
and those compounds belong to seven efficacy groups. This study is not only determines
candidate drugs but also gives a better understanding of Jamu medicine at the omics level.
Moreover, further validation of the results of this study can be performed by docking
simulation between predicted compound–protein interactions or through in vivo and
in vitro validation studies in the laboratory. We can also explore the supporting chemical
or biological characteristics in predicted interactions, such as the similarity between the
target compound and the known ligands of the predicted protein.
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Abstract: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular
disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is
much research on HCM, underlying molecular mechanisms are poorly understood, and research
on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore
the molecular mechanisms shared by HCM and its clinical presentations through the automated
extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the
INDRA database, which aggregates knowledge from pathway databases and combines it with
molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-
reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and
19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of
HCM and its clinical presentations were represented as networks; the most important elements in
the intersections’ networks were found, centrality scores for each element of each network calculated,
networks with reduced level of noise generated, and cooperatively working elements detected in each
intersection network. The identified shared molecular mechanisms represent possible mechanisms
underlying different HCM clinical presentations. Applied methodology produced results consistent
with the information in the scientific literature.

Keywords: hypertrophic cardiomyopathy; data mining; automated curation; molecular mechanisms;
atrial fibrillation; sudden cardiac death; heart failure; left ventricular outflow tract obstruction;
cardiac fibrosis; myocardial ischemia

1. Introduction

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular
disease [1–3], with an estimated prevalence of 1 in 500 people worldwide [1,3–5] and recent
investigations suggesting an even greater prevalence [5,6]. It is characterized by increased
left ventricular wall thickness that cannot be explained by abnormal loading conditions
(e.g., hypertension) [1,2,7].

Mutations in genes that encode sarcomeric proteins are the primary molecular cause
of HCM [3,8,9]. However, the genetic basis for HCM has proven to be more complex
than originally postulated: 40–60% of HCM patients show mutations in one or more of
the genes known to be associated with the disease, whereas for others, the cause remains
unknown [10–12].

The clinical presentation of HCM varies widely [1,3,7,8]: some patients are asymp-
tomatic [1,7,13], while others manifest symptomatic left ventricular outflow tract obstruc-
tion (LVOTO) [7,8], atrial fibrillation (AF) [3,8], sudden cardiac death (SCD) [3,7,13,14], or
heart failure (HF) [1,3,10,11]. Pathophysiologic features of HCM include cardiomyocyte
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hypertrophy [15,16], cardiomyocyte disarray [16,17], myocardial remodeling [18,19], fibro-
sis [3,20,21], myocardial hypercontractility [22,23], impaired myocardial relaxation [20,24],
myocardial stiffness [17,20], diastolic dysfunction [13,14,17], coronary microvascular dys-
function [25,26], and myocardial ischemia [25,27], but the underlying molecular mecha-
nisms are poorly understood. Molecular determinants of the disease presentations are also
still not known. Phenotypic expression of HCM may vary even within the same family [1].
Despite active research, the consistent genotype-phenotype associations are still not known.
All these stress the importance of finding additional mechanisms and factors that direct the
course and presentations of HCM, and propose all the molecular mechanisms standing
between genetic basis and clinical presentations as crucial.

INDRA database [28] aggregates knowledge from pathway databases and combines
it with information on molecular mechanisms extracted from abstracts and open-access
full articles by multiple machine-reading systems. PubMed is one of the most important
platforms for medical journal literature. To be indexed in PubMed, journals must meet
certain review or selection criteria [29].

Our aim was to explore the shared molecular mechanisms of HCM and its clinical
presentations through the automated extraction of molecular mechanisms.

2. Materials and Methods

2.1. Molecular Mechanisms Extraction

Molecular mechanisms were congregated using the INDRA database [28]. Molecu-
lar mechanisms from all PubMed articles published starting from 1 January 2010 were
separately extracted in the form of INDRA statements [30] for HCM, cardiomyocyte hy-
pertrophy, myofibrillar disarray, cardiomyocyte disarray, myocardial remodeling, cardiac
remodeling, myocardial fibrosis, LVOTO, myocardial hypercontractility, impaired myocar-
dial relaxation, impaired cardiac relaxation, myocardial stiffness, diastolic dysfunction, AF,
SCD, coronary microvascular dysfunction, myocardial ischemia, HF, MACE, and rehospi-
talization. INDRA statements were found in the INDRA database by PubMed Identifiers
(PMIDs), using REST Client API. PMIDs were collected through the INDRA PubMed
client [30] (which searches for articles on PubMed) using the following search terms: hyper-
trophic cardiomyopathy, cardiomyocyte hypertrophy, myofibrillar disarray, cardiomyocyte
disarray, myocardial remodeling, cardiac remodeling, myocardial fibrosis, left ventricular
outflow tract obstruction, myocardial hypercontractility, impaired myocardial relaxation,
impaired cardiac relaxation, myocardial stiffness, diastolic dysfunction, atrial fibrillation,
sudden cardiac death, coronary microvascular dysfunction, myocardial ischemia, heart
failure, major adverse cardiovascular events, and rehospitalization (use_text_word = True,
major_topic = True).

Subsequently, intersections of the sets consisting of INDRA statements for HCM and
its clinical presentations were found.

2.2. Networks Generation

Each of the intersections (consisting of sets of INDRA statements) was transcribed to a
network table, imported to Cytoscape version 3.8.2 [31] for further analysis, and uploaded
to NDEx v 2.5.0 [32–34].

2.3. Network Analysis

The most important nodes in intersections’ networks were found using Cytoscape
application Wk shell decomposition version 1.1.0 [35]. Rank and k-shell were calculated
for every node of each network. The reliability of interactions was determined using
Cytoscape PE-measure application version 1.0 [36]. Models with a reduced level of noise
were generated and uploaded to NDEx. The nodes’ centrality scores were determined
using Cytoscape CytoHubba app version 0.1. [37]. Top elements for each centrality measure
of each network were uploaded to NDEx. Cooperatively working elements (functional
modules) were found using NCMine Cytoscape plugin version 1.3.0 [38]. All networks
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were analyzed as directed (with applied cliqueness threshold = 0.6, merge threshold = 0.6,
dcliqueness threshold = 0.2, and cluster size threshold = 3).

3. Results

Molecular mechanisms in the form of 182,167 INDRA statements (representations of
molecular mechanisms consisting molecular subject, object, and their interaction) were
extracted from 230,072 articles on HCM and 19 HCM clinical presentations (Table 1).

Table 1. The number of articles on hypertrophic cardiomyopathy and its clinical presentations read
automatically and the number of INDRA statements extracted.

Pathophysiologic Entity
Number of Articles Read

Automatically
Number of INDRA

Statements Extracted

hypertrophic cardiomyopathy 8111 7559

cardiomyocyte hypertrophy 1337 2500

myofibrillar disarray 51 356

cardiomyocyte disarray 11 22

myocardial remodeling 967 1500

cardiac remodeling 4572 5432

myocardial fibrosis 3634 4978

left ventricular outflow tract
obstruction 1023 177

myocardial hypercontractility 3 3

impaired myocardial relaxation 31 33

impaired cardiac relaxation 12 28

myocardial stiffness 257 500

diastolic dysfunction 6342 6101

atrial fibrillation 54,117 25,842

sudden cardiac death 10,060 6770

coronary microvascular dysfunction 569 522

myocardial ischemia 19,637 19,078

heart failure 111,565 98,397

major adverse cardiovascular events 4700 1713

rehospitalization 3073 656

3.1. Network Analysis
3.1.1. Networks

Shared molecular mechanisms of HCM and its clinical presentations are represented
as networks (Table 2). The networks differ notably in terms of the number of elements they
contain.

The intersection of molecular interactions representing HCM and impaired cardiac
relaxation contains only phosphorylation of SMAD Family Member 2 (SMAD2) and could
not be displayed as a network. The intersection of HCM and myocardial hypercontractility
contains no molecular interactions.
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Table 2. Shared molecular mechanisms of hypertrophic cardiomyopathy and its clinical presentations.

Pathophysiologic Entities
Link to the Network Representing

Shared Molecular Mechanisms

hypertrophic cardiomyopathy,
cardiomyocyte hypertrophy

https://bit.ly/39Yn90x
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myofibrillar disarray

https://bit.ly/2PRnPOz
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
cardiomyocyte disarray

https://bit.ly/3wJsmmy
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial remodeling

https://bit.ly/2Q8dDkD
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, cardiac remodeling https://bit.ly/31ZG3Qh
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial fibrosis https://bit.ly/3fZX3hC
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, left ventricular
outflow tract obstruction

https://bit.ly/3dN8G8R
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, impaired
myocardial relaxation

https://bit.ly/322sU94
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial stiffness https://bit.ly/3mxmecq
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
diastolic dysfunction

https://bit.ly/3wHxRCn
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/3d31kyT
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, sudden
cardiac death

https://bit.ly/3wIN5ao
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, coronary
microvascular dysfunction

https://bit.ly/31Xh2VN
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial ischemia

https://bit.ly/31YlC6a
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, heart failure https://bit.ly/322UjI9
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, major adverse
cardiovascular events

https://bit.ly/3mvZZE1
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, rehospitalization https://bit.ly/3myyx8t
(accessed on 1 August 2021)

3.1.2. The Most Important Nodes

The most important nodes for all networks are found (Supplementary Table S1). All
networks were presented as packed concentric rings sorted by the most important nodes
(Supplementary Figure S1).

3.1.3. Nodes’ Centrality Scores

Centrality scores for each node of each network were calculated, and the top elements
for each centrality measure of each network were visualized (Table 3).
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Table 3. Top nodes of each network ranked by centrality scores.

Network Top Nodes Ranked by Centrality Scores

hypertrophic cardiomyopathy,
cardiomyocyte hypertrophy

https://bit.ly/3fCs1Mq
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myofibrillar disarray

https://bit.ly/2OgKHpM
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
cardiomyocyte disarray

https://bit.ly/31LLUsi
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial remodeling

https://bit.ly/3uj130t
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
cardiac remodeling

https://bit.ly/39CYWgj
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial fibrosis

https://bit.ly/3dc8HUA
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, left ventricular
outflow tract obstruction

https://bit.ly/3cJRWzY
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, impaired
myocardial relaxation

https://bit.ly/3dubAz7
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial stiffness

https://bit.ly/2PpsZRM
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
diastolic dysfunction

https://bit.ly/2PQuwju
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/2OhvNzE
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, sudden
cardiac death

https://bit.ly/3ugy2CI
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, coronary
microvascular dysfunction

https://bit.ly/3wiA5YR
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
myocardial ischemia

https://bit.ly/39Hexvk
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, heart failure https://bit.ly/3uwQiYP
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, major adverse
cardiovascular events

https://bit.ly/3fHsE7w
(accessed on 1 August 2021)

hypertrophic cardiomyopathy,
rehospitalization

https://bit.ly/3dzxLUy
(accessed on 1 August 2021)

3.1.4. Reliability of Interactions

Networks with a reduced level of noise were generated (Table 4).

3.1.5. Cooperatively Working Elements

In each intersection network, cooperatively working elements (functional modules)
were detected (Supplementary Table S2).
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Table 4. Networks with different PE-values applied. PE-measure (the measure for interaction reliability)
removes spurious interactions (below the value applied) and, thus, the level of noise in networks.

Network
Link to Networks with Different

PE-Values Applied

hypertrophic cardiomyopathy, cardiomyocyte hypertrophy https://bit.ly/3sMXLm1
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myofibrillar disarray https://bit.ly/39Ebt2N
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, cardiomyocyte disarray https://bit.ly/3cMpoGd
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial remodeling https://bit.ly/3duSh8V
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, cardiac remodeling https://bit.ly/3dBWPdU
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial fibrosis https://bit.ly/324nVoj
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, left ventricular outflow
tract obstruction

https://bit.ly/31GacUC
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, impaired
myocardial relaxation

https://bit.ly/31MjKxv
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial stiffness https://bit.ly/3sMZnfz
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, diastolic dysfunction https://bit.ly/3cNFNu8
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, atrial fibrillation https://bit.ly/3mhXtRv
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, sudden cardiac death https://bit.ly/3wxjGzZ
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, coronary
microvascular dysfunction

https://bit.ly/3uhQQ4l
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, myocardial ischemia https://bit.ly/31GmOLu
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, heart failure https://bit.ly/3mi5i9U
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, major adverse
cardiovascular events

https://bit.ly/2QZt66N
(accessed on 1 August 2021)

hypertrophic cardiomyopathy, rehospitalization https://bit.ly/2QYjedr
(accessed on 1 August 2021)

3.2. Shared Molecular Elements and Pathways
3.2.1. Hypertrophic Cardiomyopathy and Structural Changes

The most important shared elements for cardiomyocyte hypertrophy and HCM were
as follows: calcium; Ca2+/calmodulin-dependent protein kinase II (CaMKII); PLN gene
encoding phospholamban; protein kinase A (PKA), which is a master regulator of most
cAMP-dependent processes; protein kinase B (PKB), also known as AKT, which regu-
lates cellular survival and metabolism; AMP-activated protein kinase (AMPK), which
is involved in cellular energy homeostasis as a “cellular energy sensor”; and sirtuin 1
encoded by SIRT1 gene; nuclear factor of activated T-cells (NFAT), which is important
for immune response and is involved in the development of the cardiac system; EDN1
gene encoding endothelin 1 (ET-1), which is a potent vasoconstrictor; AGT gene, which
encodes angiotensinogen; collagen; multifunctional cytokine transforming growth factor-
β (TGF-β); signal transduction protein extracellular signal-regulated kinase (ERK); cell
population proliferation; and apoptosis.

The most important shared elements for myofibrillar disarray and HCM are actin,
myosin complex, MYL12A gene, MYBPC3 gene, ATP, mitogen-activated protein kinase
7 (MAPK7) encoded by the MAPK7 gene (MAP kinases are involved in many cellular
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processes), RAF proto-oncogene serine/threonine-protein kinase (RAF1)—a part of the
ERK1/2 pathway as a MAP kinase encoded by RAF1 gene, ERK, and EDN1 gene encoding
endothelin 1. The effects of immunosuppressant and calcineurin inhibitor cyclosporin A as
well as MAP kinase cascade inhibitor PD98059 are also indicated.

In their pathophysiology, cardiomyocyte disarray and HCM share the mechanisms of
contractile machinery components (actin, myosin complex, and enzyme ATPase); apoptosis-
inhibiting mechanisms (B-cell lymphoma 2 gene, BCL2); the protein tyrosine phosphatase
non-receptor type 11 (PTPN11), which inhibits the growth regulator—the mechanistic
target of rapamycin, mTOR; and Src homology 2 domain-containing phosphatase 2 (Shp2),
which is involved in cell growth and survival. The importance of the myosin heavy chain 7
gene, MYH7, is shown.

The common molecular elements of myocardial remodeling and HCM were as follows:
calcium, CaMKII, AGT gene, which encodes angiotensinogen, angiotensin II, collagen,
TGF-β, tumor necrosis factor (TNF), inflammatory response, cell population proliferation,
and apoptosis.

Cardiac remodeling and HCM in their pathophysiology share calcium, AMPK (a “cel-
lular energy sensor”), AGT gene encoding angiotensinogen, AKT (regulates cellular survival
and metabolism), TGF-β (multifunctional cytokine), SIRT1 gene encoding sirtuin 1 (SIRT1),
collagen, actin, reactive oxygen species, cell population proliferation, and apoptosis.

By the most important nodes and ranked by centrality scores, the most important
shared elements for myocardial fibrosis and HCM were calcium, TGF-β, collagen, AGT en-
coding angiotensinogen, angiotensin II, AMPK, cell population proliferation, inflammatory
response, and apoptosis.

3.2.2. Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction

LVOTO and HCM share calcium, TGF-β, POSTN gene encoding periostin (extra-
cellular matrix protein with multiple functions), collagen, PIMREG gene and PIMREG
protein (involved in metaphase-to-anaphase transition during mitosis), SNCG gene encod-
ing gamma-synuclein (a member of the synuclein family of proteins, which were believed
to be involved in the pathogenesis of neurodegenerative diseases and certain tumors),
verapamil (calcium channel blocker), dobutamine (β1-agonist), mavacamten (MYK-461,
inhibitor of cardiac myosin ATPase), systolic anterior motion, and death.

3.2.3. Hypertrophic Cardiomyopathy and Contractile Dysfunction

Impaired myocardial relaxation and HCM in their pathophysiology share nitric oxide
(NO) and constitutive nitric oxide synthase (also known as nitic oxide synthase 3 (NOS3)
or endothelial NOS) encoded by the NOS3 gene as well as N, N-dimethylarginine, a
direct endogenous inhibitor of NO synthases; interaction of phospholamban and ATP2A2
intracellular calcium pump; and collagen induction by TGF-β and PKA.

Molecules shared by myocardial stiffness and HCM were the TTN gene encoding titin,
RBM20 gene encoding RNA-binding protein that acts as a regulator of mRNA splicing of a
subset of genes involved in cardiac development (regulates splicing of TTN), actin, TGF-β,
PRKCA gene encoding protein kinase C-alpha (PKC-α), which was involved in diverse
cellular signaling pathways, cyclic GMP-dependent protein kinase (PRKG), which involved
in muscle relaxation, RING1 gene encoding ring finger protein 1 (RING1), and TRIM63
gene encoding tripartite motif-containing protein 63, which regulates the proteasomal
degradation of muscle proteins.

Diastolic dysfunction and HCM share calcium, sodium, actin, troponin I, TTN gene
encoding titin, PLN gene encoding phospholamban, cardiac myosin binding protein-C
(cMyBP-C), CaMKII, TGF-β, PKA, AMPK, and apoptosis.

3.2.4. Hypertrophic Cardiomyopathy and Arrhythmia

Based on the most important nodes and centrality score ranks, the following elements
were the most important shared elements for AF and HCM: sodium and calcium; CaMKII,
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which is important for calcium homeostasis in cardiomyocytes; PLN gene encoding phos-
pholamban that inhibits the activity of ATPase sarcoplasmic/endoplasmic reticulum Ca2+

transporting 2 (ATP2A2—encodes one of the intracellular pumps that return calcium from
the cytosol to the sarcoplasmic reticulum); RYR2 gene encoding ryanodine receptor 2
(RyR2) (major mediator in calcium-induced calcium release from sarcoplasmic reticulum);
AGT gene which encodes angiotensinogen, a precursor of angiotensin; junctophilin 2
(JPH2) gene which encodes a component of junctional complexes (it also plays a key role
in calcium-induced calcium release); T-cell leukemia homeobox protein 2 (TLX2) gene;
PSMD4 gene which encodes component of the 26S proteasome, with its main role being
the removal of misfolded or damaged proteins as well as proteins whose functions are no
longer required. Both diseases share inflammatory response, apoptotic process, and death
in their pathophysiology.

SCD and HCM share the following elements: sodium, calcium, RYR2 gene encoding
RyR2, CaMKII, actin, MYL12A gene, myosin complex, TNNT1 gene encoding troponin
T, troponin C, TNNI3 gene encoding troponin I, ATP, PKA, GJA1 gene encoding gap
junction protein alpha 1 (connexin-43), PLN gene encoding phospholamban, GSTK1 gene
encoding glutathione S-transferase kappa 1, which belongs to a superfamily of enzymes for
cellular detoxification, and death. The effect of the non-selective β adrenoceptor agonist
isoprenaline is also indicated.

3.2.5. Hypertrophic Cardiomyopathy and Ischemia

The important common molecular mechanisms of coronary microvascular dysfunc-
tion and HCM are the serin/threonine-specific protein kinase Akt (also known as protein
kinase B or PKB, this plays an important role in glucose metabolism, cell proliferation,
and apoptosis) and its activating phosphorylation site S473, structural sarcomeric protein
titin, components of the phosphagen energy system (ATP decreased by creatine), glucose
increased by insulin, calcium increased by sodium, and calcium increased by calcium. The
effects of a few exogenous elements, such as antioxidant resveratrol (which activates the
sirtuin 1 gene, SIRT1, regulator of whole-body lipid homeostasis), antimineralocorticoid
spironolactone (inhibiting expression of mineralocorticoid receptor, encoded by nuclear re-
ceptor subfamily 3 group C member 2 gene, NR3C2), and insecticide pyraclofos (increasing
calcium) are also indicated.

Myocardial ischemia and HCM share the following elements: calcium, ATP, AMPK,
PKA, AKT cross-talking with ERK, glucose, INS, SIRT1 gene encoding sirtuin 1, NF-κB,
TNF, reactive oxygen species, inflammatory response, and apoptosis.

3.2.6. Hypertrophic Cardiomyopathy and Endpoints

In their pathogenesis, HF and HCM share calcium, sodium, RYR2, components of
contractile machinery and related genes actin, myosin complex, myosin light chain 12A
(MYL12A) gene, troponin C, troponin T, TNNI3 gene encoding troponin I, tropomyosin,
myosin binding protein C3 (MYBPC3) gene, cMyBP-C, glucose, INS gene encoding insulin,
reactive oxygen species, ATP, 3’,5’-cyclic AMP (cAMP), ATPase, AMPK, sirtuin 1, TGF-β,
collagen, AGT gene encoding angiotensinogen, EDN1 gene encoding endothelin-1, ERK,
GATA4 encoding transcription factor GATA-4, PKA, PKB (AKT), protein kinase C (PKC),
p38 MAP kinase, beta adrenergic receptor genes (ADRBs), mechanistic target of rapamycin
(mTOR), NF-κB, calmodulin, CaMKII, CaMKII-delta, PLN gene encoding phospholamban,
TTN gene encoding titin, CLEC3B gene encoding tetranectin, E2F1, PSMD4, and SMARCA4
genes, NFAT, β adrenoceptor agonist isoprenaline, inflammatory response, autophagy, cell
population proliferation, apoptosis, and death.

Major adverse cardiovascular events (MACE) and HCM in their pathophysiology
share calcium, (R)-lipoic acid (the most active isomer of a versatile antioxidant, alpha-lipoic
acid), NR3C2 gene encoding mineralocorticoid receptor, and ATPase (a class of enzymes
that catalyze the hydrolysis of ATP to ADP). Apart from this, interesting elements found
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in the intersection and ranked as top nodes for some centrality measures are insulin, PLN
gene encoding phospholamban, PSMD4 gene, and TGF-β.

Rehospitalization and HCM share the following aspects: insulin receptor, glucose
decrease mediated by insulin; ryanodine receptor; PSMD4 gene related to increased death;
NLRP3 gene encoding regulator of immunity and inflammation cryopyrin (also known as
angiotensin/vasopressin receptor AII/AVP-like), promoting proinflammatory cytokine
interleukin 1 beta (IL-1B).

3.2.7. The Most Important Shared Elements and Pathways

The most important putative molecular elements and pathways are illustrated with
corresponding HCM presentations (Figures 1 and 2).

Figure 1. The most important putative molecular elements (left) and corresponding HCM presentations (right).
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Figure 2. The most important putative pathways (left) and corresponding HCM presentations (right).

4. Discussion

To the best of our knowledge, this is the first study of shared molecular mechanisms
of HCM and its clinical presentations.

Although there is much research about molecular mechanisms of HCM, research
about molecular mechanisms in its specific clinical presentations is scarce. In the following
literature review, we compared our results with evidence from preclinical and clinical
literature.

4.1. Shared Molecular Elements and Pathways
4.1.1. Hypertrophic Cardiomyopathy and Structural Changes

The most important shared mechanisms of cardiomyocyte hypertrophy and HCM
are those involved in fibrosis, calcium, and energy homeostasis. ET-1 strongly induces car-
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diomyocyte hypertrophy in HCM-induced pluripotent stem-cells-derived cardiomyocytes,
with ET-1 stimulation specifically inducing NFAT nuclear accumulation [39]. Angiotensin
II induces cardiomyocyte hypertrophy [40–43].

The most important shared molecular mechanisms of myofibrillar disarray and
HCM are contractile machinery components and those involved in ATP homeostasis,
MAPK/ERK, and calcineurin/NFAT signaling. Frustaci et al. (2018) showed that in hu-
mans, mutation of sarcomeric α-actin is followed by fibrils disarray and hypertrophy
with a disarray of cardiomyocytes, while dysfunction of cytoplasmic α-actin causes a
disanchorage of myofibrils from the sarcolemmal membrane, followed by myofibrillolysis.
The authors proposed that intercalated discs are particularly involved in this mutation,
appearing irregular and fragmented, favoring cell disconnection [44]. Tanaka et al. (2014)
showed that endothelin-1 induces myofibrillar disarray in HCM-induced pluripotent
stem-cell-derived cardiomyocytes [39].

Our results indicate that the contractile machinery components and mechanisms in-
volved in cell growth and survival are the most prominent mutual molecules and processes
involved in cardiomyocyte disarray and HCM. Kraft et al. (2019) suggested that mutations
in MYH7 in heterozygous human HCM contribute to the development of cardiomyocyte
disarray by burst-like heterogeneous expressions of both MYH7 alleles (switched on and off
in an independent and stochastic manner), which causes an imbalanced force generation
going from cell to cell that disrupts the cardiac syncytium over time (stronger cells over-
stretch weaker cells) [45]. Schramm et al. (2012) showed that the PTPN11 loss-of-function
mutation Q510E-Shp2 causes cardiomyocyte disarray in HCM, with mTOR activation
playing a critical role in the underlying mechanism [46]. James et al. (2000) demonstrated
that one of the manifestations of cTnI146Gly mutation in mice is cardiomyocyte disarray [47].

Our results indicate that calcium homeostasis, fibrosis, and inflammation mechanisms
are the most important at the intersection of myocardial remodeling and HCM.

The most important shared elements of cardiac remodeling and HCM are implicated
in fibrosis, calcium, and energy homeostasis. Freeman et al. (2001) showed that a high
overexpression of β2-adrenergic receptor increases remodeling in HCM hearts and that
inhibition of β-adrenergic receptor kinase (βARK) reverses hypertrophic remodeling in the
HCM hearts [48]. Martins et al. (2015) suggested that the TNNC1-A8V mutant increases
the calcium-binding affinity of the thin filament and elicits cellular remodeling [49]. Bi et al.
(2021) showed that collagen cross-linking plays an important role in heart remodeling in
human hypertrophic obstructive cardiomyopathy, which might be regulated mainly by
lysyl oxidase (LOX) [50]. Roldán et al. (2008) suggested that the matrix metalloproteinases
have an important role in cardiac remodeling in human HCM [51].

Shared molecules of myocardial fibrosis and HCM are those entangled in calcium
and energy homeostasis, fibrosis, cell survival, proliferation, and inflammation. Ho et al.
(2010) suggested that, in human HCM, sarcomere mutations trigger an early increase in
collagen synthesis; this is initially balanced by degradation, but it exceeds degradation in
overt HCM synthesis, resulting in myocardial fibrosis (i.e., collagen accumulation in HCM
increases as the disease develops) [52]. Kawano et al. (2005) showed that valsartan (an
angiotensin II type 1 receptor blocker) suppresses the synthesis of type I collagen in patients
with HCM [53]. Arteaga et al. (2009) showed that myocardial fibrosis is prospectively
associated with a worse prognosis in patients with HCM [54]. Further, Lim et al. (2001)
showed that the blockade of angiotensin II (a known cardiotrophic factor) by losartan
reverses myocardial fibrosis in a transgenic mouse model of human HCM [55].

4.1.2. Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction

Scarce molecular mechanisms found at the intersection of LVOTO and HCM are in-
dicative of an important role in calcium homeostasis and fibrosis. Bolca et al. (2002) showed
that dobutamine induces dynamic LVOTO in patients with hypertrophic non-obstructive
cardiomyopathy, proving that dobutamine stress echocardiography is a reliable tool for
the diagnosis of dynamic left ventricular obstruction in patients with hypertrophic non-
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obstructive cardiomyopathy [56]. Mavacamten (a first-in-class cardiac myosin inhibitor)
has been evaluated as a promising new therapy in several clinical studies [57–59].

4.1.3. Hypertrophic Cardiomyopathy and Contractile Dysfunction

Although the molecular mechanisms found at the intersection of impaired myocardial
relaxation and HCM are scarce, they indicate the leading role of NO homeostasis and a
contribution of calcium homeostasis and collagen induction in their common pathogenesis.
Cordts et al. (2019) suggested that higher N, N-dimethylarginine (also known as asym-
metric dimethylarginine, ADMA) plasma concentrations might lead to a decreased NO
production and an impaired myocardial relaxation in HCM patients [24].

Titin and titin-related molecules were found to be important in the intersection of
myocardial stiffness and HCM. Higashikuse et al. (2019) suggested that titin mutations
in HCM families can be incorporated into the sarcomere and impair TRIM63 (MURF1)
binding, resulting in abnormal sarcomere stiffness [60].

Our results indicate that the contractile machinery components and mechanisms
involved in calcium, sodium, and cellular energy homeostasis are the most prominent
common molecules of diastolic dysfunction and HCM. Diastolic dysfunction in animal
and human HCM is characterized by elevated myocardial activation at low diastolic
calcium concentrations, i.e., high myofilament calcium-sensitivity [61–64]. In the majority
of cases, the high basal (diastolic) myofilament activation is sufficient to slow the onset
of ventricular relaxation and limit proper filling [62]. Sequeira et al. (2015) showed that
tropomyosin’s ability to block myosin-binding sites on actin is reduced in human HCM
with thin-filament mutations, and the effect is exacerbated in human HCM samples by the
low PKA phosphorylation of myofilament proteins. They also suggested that cMyBP-C
HCM-causing mutations reduce the accessibility of myosin for actin [65]. Teekakirikul et al.
(2010) suggested that TGF-β signaling is implicated in progressive diastolic dysfunction
in HCM [66]. Dweck et al. (2014) suggested that the inability to enhance myofilament
relaxation through cardiac troponin I phosphorylation predisposes the heart to abnormal
diastolic function [67]. Alves et al. (2015) proposed that troponin I may be an important
target for the development of myofilament calcium desensitizers [68]. Further, Granzier
et al. (2009) showed that the absence of PEVK region (one of the two major elastic elements
of cardiac titin molecule) results in diastolic dysfunction [69].

4.1.4. Hypertrophic Cardiomyopathy and Arrhythmia

Our results suggest that the most important common mechanisms of AF and HCM
are calcium and sodium homeostasis in cardiomyocytes. Bongini et al. (2016) suggested
that RyR2 malfunction (probably by spontaneous sarcoplasmic reticulum calcium leakage)
might represent a general pathophysiologic mechanism for AF initiation and maintenance
in human HCM [70]. Nagai et al. (2007) found a significant association between the
prevalence of AF and ACE polymorphism in patients with HCM [71].

Our results suggest that the most important shared molecular elements of SCD and
HCM are contractile machinery components as well as sodium, calcium, and energy home-
ostasis mechanisms. Okuda et al. (2018) proved that CaMKII-mediated phosphorylation
of RyR2 plays a crucial role in aberrant calcium release as a potent substrate of lethal
arrhythmia in HCM-linked Troponin T-mutated hearts [72]. Alterations in calcium cy-
cling are triggers for cardiac arrhythmias—a serious clinical complication of HCM due
to the potential to induce SCD [73]. On the other hand, calcium may be involved in the
development of cardiac fibrosis, a potential substrate for cardiac arrhythmias and sudden
death. In humans, mutations of calcium-related genes (RyR2 and calsequestrin 2) have
been identified in families with a history of SCD [74]. Studies with HCM cardiomyocytes
differentiated from patient-specific-induced pluripotent stem cells have confirmed that
alterations of intracellular calcium handling are associated with arrhythmic events [75].
Coppini et al. (2020) suggested that increased late sodium current (INaL) plays a central role
in cellular arrhythmogenicity in HCM (which is confirmed by the antiarrhythmic efficacy
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of ranolazine) [76]. Parvatiyar et al. (2012) showed that TNNC1 mutation A31S, which
alters calcium handling, is associated with verified episodes of ventricular fibrillation and
aborted SCD, probably due to altered calcium handling and electrophysiologic remodeling
of the cardiomyocyte [77]. Additionally, Chung et al. (2011) found that frameshift mutation
(c.363dupG) in Troponin C is associated with HCM and SCD [78]. Further, Fahed et al.
(2020) showed that p.Arg21Cys mutation in TNNI3 impairs calcium handling and results
in a malignant HCM phenotype characterized by early-onset SCD [79]. HCM caused by
mutations in the cardiac troponin T gene (TNNT2) has been associated with a high risk of
SCD [80]. R58Q mutation of myosin regulatory light chain (RLC) is associated with SCD in
HCM [81].

4.1.5. Hypertrophic Cardiomyopathy and Ischemia

We found only several common mechanisms in both coronary microvascular dys-
function and HCM. However, they showed the greatest importance of energy, calcium,
and sodium homeostasis in the intersection of these two pathologies. We suggest that ex-
tracted interaction “glucose is increased/activated by insulin” refers to insulin-dependent
glucose transport into cells, and “calcium increased/activated by calcium” is related to
calcium-induced calcium release [82].

The most important elements of the intersection of molecular mechanisms of my-
ocardial ischemia and HCM take part in calcium, sodium, and energy homeostasis, ERK
signaling, inflammation, and cell survival.

4.1.6. Hypertrophic Cardiomyopathy and Endpoints

The most important shared molecular elements of HF and HCM are calcium, sodium,
and energy homeostasis mechanisms, contractile machinery components, ERK signaling,
β-adrenergic receptor mechanisms, and those entangled in fibrosis, cell proliferation, and
survival. Mutations of MYBPC3 gene are a major cause of human cardiomyopathy and
associated HF [83]. MYBPC3 mutations present a high risk for HF [84]. Kissopoulou
et al. (2018) showed that homozygous missense MYBPC3 Pro873His mutation in human
HCM is associated with an increased risk of HF development [85]. Chronic administration
of β-adrenergic agonists, such as isoproterenol, has been shown to aggravate HCM and
induce HF in HCM models of disease [86].

We could not abstract the essence of the intersections of MACE and HCM or rehospi-
talization and HCM from the corresponding heterogeneous results, probably on account of
the diverse pathologies underlying both MACE and rehospitalization.

4.1.7. Calcium in Hypertrophic Cardiomyopathy Presentations

Our results suggest that calcium is among the most important elements in almost all
intersections of molecular pathways of HCM and its clinical presentations. Calcium is a
key signaling molecule in the cardiac myocyte [74], and imbalances in calcium homeostasis
have been described as key characteristics of HCM in numerous reports [73].

4.1.8. The Most Important Shared Elements and Pathways

As expected, at a high level, our results show that cardiomyocyte hypertrophy, myocar-
dial and cardiac remodeling, and myocardial fibrosis; AF and SCD; coronary microvascular
dysfunction and myocardial ischemia; myocardial ischemia and HF share similar molecular
mechanisms, which is in line with clinical literature findings on HCM progression [87,88],
arrhythmic nature and association between AF and SCD [89–91], ischemic nature and asso-
ciation between coronary microvascular dysfunction and myocardial ischemia [25,92,93],
and association between myocardial ischemia and HF in HCM [94,95]. The results suggest
a more isolated (distinctive) nature of myofibrillar and cardiomyocyte disarray, impaired
myocardial relaxation, and myocardial stiffness, which might be, to some extent, a conse-
quence of the relatively low number of articles available and statements extracted, which
then reduce the ability to identify the most important molecular elements.
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4.2. Non-Molecular Factors That Affect Clinical Presentations of HCM

Phenotypes of HCM are the consequences of complex interactions among a large
number of determinants [96]. In addition to molecular mechanisms (including genetic
factors), other factors can affect the clinical course and presentations of HCM. Environ-
mental and lifestyle factors, most probably via epigenetic mechanisms, influence HCM
phenotype [97–99]. These factors and their interaction in HCM have yet to be fully defined
but might include microbial infection, diet [97], or exercise [96–98]. A study by Repetti
et al. suggested that epigenetic and environmental factors, rather than background genetic
variation, play a major role in hypertrophic remodeling [97].

Incomplete penetrance [96] and haploinsufficiency [84,99] also complicate interpreta-
tions of genotype-phenotype associations [96] and the prediction of clinical presentations.
Phenotypic effects in cases of incomplete penetrance are even more responsive to the pres-
ence of other genetic and environmental factors. Cell-to-cell variability in gene expression
and function also affect the HCM phenotype [96].

Physical factors like pressure changes, stretching, and changes in the generation of
contraction force also influence the clinical course of HCM [96].

Other known and unknown factors might contribute to the development of different
HCM clinical presentations as well.

By that means, this research, in its broad scope, is interesting for providing the
potential of identification of molecular targets for environmental factors or lifestyle choices
that could delay or change HCM progression.

4.3. General

All patients with HCM defined according to ESC guidelines [92] were included. No
uniform exclusion criteria were applied.

Many molecular elements recognized as important in this research are non-specific and
take part in different cardiac processes and diseases. Some of them might be compensatory
mechanisms.

With the approach undertaken in the present study, we were able to detect shared
mechanisms that might otherwise remain unnoticed. Although we cannot state that shared
mechanisms determine or underlie the clinical presentation of HCM, these shared mech-
anisms have the potential to direct HCM processes or modify the nature of each disease
state. Some of them might be novel therapeutic targets or contribute to the development
of innovative strategies for treatment. This research also provides the potential to iden-
tify patients with specific or non-specific HCM molecular milieu patterns and with that
preventability of certain complications or predisposition to side effects.

In silico studies of molecular interactions rarely provide final answers to questions.
Nevertheless, very often, they produce a foundation for further research and initialize the
generation of new questions and hypotheses. This work represents only the first step in the
dissection of HCM pathogenesis, which could inspire and intensify future research. These
results should be used after careful interpretation and critical evaluation of each element of
interest in a particular use case.

Thus far, INDRA and the automated extraction of molecular mechanisms have been
used in modeling p53 dynamics in response to DNA damage, adaptive drug resistance in
BRAF-V600E-mutant melanomas, and the RAS signaling pathway [27].

Based on the literature review, the method applied has the potential to be beneficial
in similar use cases. However, there is space for improvement of the technology and its
implementation.

4.4. Limitations

The number of elements in networks (and sets) reflects the quantum of knowledge pub-
lished on the topic rather than the complexity or granularity of the mechanisms themselves.
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The automatic molecular mechanisms extraction approach is not specific (it extracts
all molecular interactions from the article with the particular main topic), which is why
each interaction should be considered critically.

The automatic extraction of molecular mechanisms sometimes extracts gene products
with the name of the corresponding genes. Therefore, when evaluating an element with a
gene name, it must be interpreted as the gene itself and/or its product.

Although automated extraction of molecular mechanisms creates a lot of clutter
(e.g., elements not representing molecular mechanisms), we suppose that the nature of
intersection removes most of the clutter (i.e., a piece of clutter should be present in two
intersected sets to appear in results).

Both preclinical and clinical articles were included in the automatic molecular mecha-
nisms extraction. Animal models do not fully replicate human HCM [100]. Our research
lacks overall comorbidity information (it is source-article-specific).

4.5. Significance and Implications

This work collects and represents a quantum of knowledge about shared molecular
mechanisms of HCM and its clinical presentations available today. Our results do not
represent the final nor perfect dissection of HCM pathogenesis, yet they offer a transitional
solution towards the next step in the research on HCM and its clinical presentations.
It represents a wide foundation for further research, where new starting points could
be found.

All pathways are presented in visual, and by that more intuitive, form, in one place.
This work can be seen as a detailed review on the topic in the form of networks (instead of in
the form of text) generated automatically (instead of by systematic literature inspection and
writing). The pathways in the form of networks enable further analysis, for example, for in
silico screening of new biomarkers and drug targets, as well as for predicting additional
missing links and elements.

Shared pathways are commonly researched using different approaches [101–114]. The
novelty in shared pathways research is the application of the new technology, automated
molecular mechanisms extraction, to that task. In this research, we were also examining
the reach of the technology used for automated extraction of molecular mechanisms from
scientific medical literature. This approach is new in deciphering molecular mechanisms of
HCM. Some parts of the methodology are taken over from the big data analysis field [14],
and this research is one of the first attempts to analyze such massive data in the domain of
this specific clinical entity.

This research also confirms that the results of usage of the technology are consistent
with the information present in the scientific literature at a higher level, but also that there
is a space for improvement of the technology and its implementation.

5. Conclusions

The most important molecular mechanisms that HCM shares with its clinical presenta-
tions are as follows: fibrosis, calcium and energy homeostasis (shared with cardiomyocyte
hypertrophy and cardiac remodeling); contractile machinery components, ATP home-
ostasis, MAPK/ERK, and calcineurin/NFAT signaling (myofibrillar disarray); contractile
machinery components and mechanisms involved in cell growth and survival (cardiomy-
ocyte disarray); calcium homeostasis, fibrosis and inflammation mechanisms (myocardial
remodeling); calcium and energy homeostasis, fibrosis, cell survival, proliferation and
inflammation (myocardial fibrosis); calcium homeostasis and fibrosis (LVOTO); NO and
calcium homeostasis, collagen induction (impaired myocardial relaxation); titin and titin-
related molecules (myocardial stiffness); calcium and sodium homeostasis in cardiomy-
ocytes (AF); contractile machinery components and mechanisms involved in calcium,
sodium, and energy homeostasis (SCD and diastolic dysfunction); energy, calcium and
sodium homeostasis mechanisms (coronary microvascular dysfunction); calcium, sodium
and energy homeostasis; ERK signaling, inflammation and cell survival mechanisms (my-
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ocardial ischemia); calcium, sodium, and energy homeostasis mechanisms; contractile
machinery components; ERK signaling; β-adrenergic receptor mechanisms; mechanisms
entangled in fibrosis, cell proliferation and survival (HF). These mechanisms represent
possible processes underlying different HCM clinical presentations, and some of them
might be novel therapeutic targets.

This work collects and represents a quantum of knowledge about shared molecular
mechanisms of HCM and its clinical presentations available today.

Applied methodology produced results consistent with the information in the scientific
literature at a higher level, but there is a space for improvement of the technology and its
implementation.
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Abstract: Background: Heart rate variability (HRV) is affected by many factors. This paper aims
to explore the impact of water temperature (WT) on HRV during bathing. Methods: The bathtub
WT was preset at three conditions: i.e., low WT (36–38 °C), medium WT (38–40 °C), and high WT
(40–42 °C), respectively. Ten subjects participated in the data collection. Each subject collected five
electrocardiogram (ECG) recordings at each preset bathtub WT condition. Each recording was 18 min
long with a sampling rate of 200 Hz. In total, 150 ECG recordings and 150 WT recordings were
collected. Twenty HRV features were calculated using 1-min ECG segments each time. The k-means
clustering analysis method was used to analyze the rough trends based on the preset WT. Analyses
of the significant differences were performed using the multivariate analysis of variance of t-tests,
and the mean and standard deviation (SD) of each HRV feature based on the WT were calculated.
Results: The statistics show that with increasing WT, 11 HRV features are significantly (p < 0.05) and
monotonously reduced, four HRV features are significantly (p < 0.05) and monotonously rising, two
HRV features are rising first and then reduced, two HRV features (fuzzy and approximate entropy)
are almost unchanged, and vLF power is rising. Conclusion: The WT has an important impact on
HRV during bathing. The findings in the present work reveal an important physiological factor that
affects the dynamic changes of HRV and contribute to better quantitative analyses of HRV in future
research works.

Keywords: water temperature; bathing; ECG; heart rate variability; quantitative analysis; t-test

1. Introduction

Heart rate variability (HRV) is an important indicator of physical and mental health.
The instantaneous HRV rhythm represents a dynamic balance between the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) branches of the auto-
nomic nervous system (ANS) [1]. Therefore, the quantitative analysis of HRV is considered
an effective method for the diagnosis of many cardiac diseases in clinical applications.
However, many internal and external factors affect HRV. The internal factors include men-
tal stress, gender, age, and disease, while the external factors include sleep, drugs, alcohol,
smoking, and diet.

1.1. HRV and Stress

The SNS branch of the ANS was more activated during states of mental stress [2];
therefore, some literature evaluated mental stress using HRV analyses based on differ-
ent stressors [3–12]. Some papers confirmed that the HR was significantly increasing
during stress states [5,7,13–20], while some papers found that the mean R-R intervals
(RRIs) [5,7–10,12,14–16,21] and the square root of the mean of the squares of the successive
differences (RMSSD) between adjacent normal to normal intervals (NNs) [8,10,22–29] were
significantly reduced during stress states. Kofman et al. discovered that the percentage of
low frequency power in total power, pLF, was significantly higher while the percentage of
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high frequency power in total power, pHF, was significantly reduced during an examina-
tion stress state [4]. Melillo et al. found that the LF/HF ratio was significantly higher in
the normal estimated glomerular filtration rate [30], while Hjortskov et al. proved that the
LF/HF ratio was significantly higher during computer work stress states [3].

1.2. HRV and Gender and Age

The HRV dynamically changes with aging and gender. Ramaekers et al. and
Schwartz et al. discovered that some HRV parameters decreased with aging, while Ra-
maekers et al. confirmed that the gender differences in the HRV parameters only exist
in subjects younger than 40 years old [31,32]. Lochner et al. found that women’s HRV
was significantly lower than men’s HRV [33]. Davy et al. observed that physically active
women had higher levels of cardiac baroreflex sensitivity and HRV compared with seden-
tary women regardless of age [34]. Nagy et al. proved that gender differences determined
HRV differences from birth, while boys’ HR baseline was significantly lower than that
for girls [35]. Bonnemeier et al. noted that gender differences in HRV were significantly
reduced with aging [36]. Yamasaki et al. discovered that LF was highly determined by
aging and the pLF of men was significantly higher than that of women [37].

1.3. HRV and Disease

The HRV differs between healthy people and patients. Wilkowska et al. found
that the HRV of depressed patients was significantly lower than that of nondepressed
patients [38]. Lutfi and Sukkar showed that lower HRV was associated with higher BP
values, putting subjects with such trends at a higher risk of developing hypertension [39].
T. Tombul et al. confirmed that lower HRV in multiple sclerosis patients than that in
healthy [40]. D. Gurses et al. observed that some time domain parameters (mean RRIs,
SDNN, RMSSD, and PNN50) were significantly lower in the thalassaemic patients then that
of the healthy subjects [41]. M. Lan et al. found that the mean RRIs significantly increased,
while LF% and LF/HF significantly decreased in the patients with allergic rhinitis in the
sitting position [42]. DelRosso et al. investigated obstructive sleep apnea and found that it
resulted in increased sympathetic activation during sleep in children [43].

1.4. HRV and Sleep

The sleep has an important impact on the HRV. Herzig et al. discovered that the HR
was higher during REM sleep than during slow wave sleep (deep sleep) [44]. Padole and
Ingale found that the HRV was distinguishable among the normal, sleeping, and medi-
tation states [45]. Arslan et al. confirmed that the sleep deprivation resulted in a signifi-
cant decreased in HF, TP, standard deviation (SD) of NN intervals (SDNN), and pNN50,
with concomitant increased in the LF/HF ratio [46]. ÁR. Sűdy et al. confirmed that the
HRV during sleep on workdays and free days was significantly different in young healthy
men with social jetlag [47].

1.5. HRV and Other Factors

Many other factors also affect HRV. Hynynen et al. proved that the HRV of healthy
men was significantly decreased, and the HR was significantly increased at night after
marathon or moderate exercise sessions [48]. James et al. learned that the level of HRV
significantly changed after severe intensity exercise [49]. Zuanetti et al. discovered that
HRV significantly varied after patients took antiarrhythmic drugs [50]. Murgia et al.
confirmed that HRV significantly increased after smoking cessation [51]. Young et al.
learned that diet played an important role in the link between mood and HRV [52].
Latha et al. learned that classical music had a beneficial effect on HRV and reduced medical
students’ stress levels [53]. Sollers et al. investigated the varying ambient temperature and
found it had an important impact on the HRV [54]. Shin proved that ambient temperature
induced a significant difference in pulse rate variability compared to HRV, and that the
difference became greater at a higher ambient temperature [55].
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Some previous studies explored the impact of water temperature (WT) on HRV.
Mourot et al. and HC. Choo et al. found that immersion in different WT had an important
impact on the HRV [56,57]. Y. Kataoka et al. studied the impact of WT on HRV during
bathing, but only 38 °C and 41 °C were included, and a few HRV measures were evalu-
ated [58]. F Edelhäuser et al. investigated the effects of whole-body immersion on HRV at
three different WTs (33 °C, 36 °C, and 39 °C) [59].

The main purpose of this paper aims to explore the impact of different WTs on HRV
during bathing. The experiment was carried out based on the most commonly used WTs
in the daily family life, twenty HRV features (included time domain, frequency domain,
and non-linear domain) were calculate.

2. Method

2.1. ECG Collection System

The electrocardiogram (ECG) collection system in this study includes four rectangular
stainless steel noncontact electrodes, all of them placed on the bathtub wall. When the
subject is in the bathtub during bathing, the four noncontact electrodes are near the right
foot, right arm, left foot, and left arm, respectively.

The electricity on the skin surface, which is produced by the electrical activity of the
heart, arrives in the four noncontact electrodes through the water and three-lead ECG are
recorded. The lead I ECG is the potential difference between the left arm (positive) and right
arm (negative), the lead II ECG is the potential difference between the left foot (positive)
and right arm (negative), and the lead III ECG is the potential difference between the left
foot (positive) and left arm (negative). Four shielded wires are, respectively, welded onto
the four noncontact electrodes. The three-lead ECG arrives in the ECG collection monitor
(Open Brain Computer Interface Biosensing Ganglion Board-OpenBCI Ganglion; OpenBCI,
USA) through the shielded wires, and the ECG monitor and the laptop (a MacBook Pro) are
connected using a standard Bluetooth 4.n, and all the collected ECG recordings are stored
on the laptop. The designed ECG collection system in this study is shown in Figure 1 [60].

Figure 1. ECG collection system.

2.2. Subjects and ECG Recordings

The ECG recording procedures were approved by the Public University Corporation,
the University of Aizu Research Ethics Committee. Written informed consent was obtained
from each participant before the experiment.

Ten subjects (seven men and three women) aged 23 to 40 years old (mean ± SD:
28.5 ± 4.78 years) who were students from the University of Aizu participated in the data
collection. The BP, body temperature, and body weight were recorded before and after
the ECG collection, and the temperature profile for WT change and room temperature
were recorded every second during the ECG collection using a temperature monitor (TR-
71wb/nw; T&D Corporation, 817-1, Shimadachi, Matsumoto, Nagano, Japan, 390-0852).
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The preset bathtub WT includes three conditions: low WT (36–38 °C), medium WT
(38–40 °C), and high WT (40–42 °C), respectively. Each subject collected 5 ECG recordings
at each preset bathtub WT condition and each recording was 18 min long with a sampling
rate of 200 Hz. In total, 150 ECG recordings and 150 temperature recordings were collected
during bathing.

2.3. ECG processing

The flowchart for the ECG processing, HRV feature calculation, and statistical analysis
is shown in Figure 2.

Figure 2. Flowchart for the ECG processing, HRV feature calculation, and statistical analysis.

All data processing and analyses were performed using MATLAB (R2019a). Baseline
wandering is obvious in the raw ECG signal due to motion artifacts and respiration from
the subjects; therefore, the wandering baseline was removed using the one-dimensional
(1-D) wavelet decomposition and reconstruction methods. The Daubechies wavelet at level
10 was used to decompose the raw ECG signal and the baseline wandering approximation
coefficient was subtracted from the raw ECG signal after reconstructing at level 8.

Obvious hum noise was also observed in the raw ECG signal; therefore, we performed
a spectrum analysis on the raw ECG signal. The spectrum analysis results show that the
main frequency component of the hum noise was 50 Hz, which is mainly produced by
the electromagnetic interference between the power supply network and equipment [61].
A second-order infinite impulse response digital notch filter was used to remove the 50 Hz
hum noise. The numerator and denominator coefficients of the digital notch filter with the
notch located at ω and the bandwidth at 0.0071 at the −3 dB level were calculated and the
ω must meet the condition of 0.0 < ω < 1.0. The difference equation of the digital notch
filter is shown in Equation (1).

y[n] =
N

∑
i=0

bix[n − i]−
M

∑
i=1

aiy[n − i], n ≥ 0 (1)

where x[n] is the filter input, y[n] is the filter output, and ai and bi are the numerator and
denominator coefficients, respectively, of the digital notch filter.
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Next, the 5-point moving average method was used to smoothen the ECG signal.
The mathematical formula for the moving average is shown in Equation (2):

y[n] =
1
M

M−1

∑
j=0

x[n − j] (2)

where x[n] is the input signal, y[n] is the output signal, and M is 5.
Then the ECG was normalized into the range of 0 to 1 using the “mapminmax” func-

tion, the R peaks were detected using the “findpeaks” function, the RRI were calculated,
and the RRI outliers removed using the 1D 11th order median filter because of its outstand-
ing capability in suppressing the isolated outlier noise without blurring sharp changes in
the original signal.

The mathematical formula of the 1D 11th order median filter is shown in Equation (3):

y[i] = median{x[i], i ∈ w} (3)

where x[i] is the input signal, y[i] is the output signal, and w is the moving window length.
The results for each ECG processing step are shown in Figure 3.
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Figure 3. Output of the ECG processing steps.

2.4. HRV Analysis

HRV analysis methods include linear and nonlinear domain analysis methods, where
the linear domain includes time and frequency domain methods. The HRV features in the
time domain include HR, mean RRI, SDNN, RMSSD between adjacent NNs, SD of the
successive differences between adjacent NNs (SDSD), and area under RRI (AURRI). The
HRV features in the frequency domain include very LF (VLF) power (0.003–0.04 Hz), LF
power (0.04–0.15 Hz), HF power (0.15–0.4 Hz), total power (0–0.4 Hz), pLF, pHF, and the
LF/HF ratio. The HRV features in the nonlinear domain include the correlation dimension
(D2), the SD of the Poincare plot perpendicular to the line of identity (SD1), the SD of the
Poincare plot along to the line of identity (SD2), the SD1/SD2 ratio, and the sample (SE),
fuzzy (FE), and approximate entropies (AE).

Before the frequency features are calculated, a RRI resample is necessary. According
to Nyquist’s sampling theorem, the sample rate must be more than two times the highest
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frequency in the original signal. The highest frequency of the HRV is 0.4 Hz; therefore,
the new resampling rate for RRI was set at 2 Hz. Then, a discrete Fourier transform (DFT)
was used to calculate the power spectral density (PSD) of the resampled RRI for a N points
sequence. Its DFT is shown in Equation (4):

X[k] =
N−1

∑
n=0

x[n]e−i 2π
N nk. (4)

where k = 0, 1, 2, ... , N−1, and i2 = −1.

2.5. Statistical Analysis of the HRV Features

Each ECG recording was 18 min in length and segmented into 18 equal parts. A
1-min ECG was used to calculate the HRV features each time. Based on the bathtub WT,
the mean and the SD of each HRV feature were calculated, and the t-test was used to test
for significance. The summary statistic results of each HRV feature are visualized in the
clustering results and box plot.

3. Results

The variations of the HRV features based on different WTs are shown in Figure 4. The
smaller dots with blue, yellow, and green colors represent the HRV features calculated
based on each preset WT, while the bigger black dots are the average values of the HRV
features based on each preset WT calculated by the K-means clustering analysis method.
For the areas of the dots of HR, the blue area is smallest, the yellow area is biggest, and the
green area is medium sized. The low WT condition is very close to the average temperature
(about 36.5 °C) of the normal human body, therefore, the WT stimulation was not strong
to the subjects, with a small variation in HR and the SD of HR was 3.38. The higher WT
has a stronger stimulation to the subjects during bathing. Although the instantaneous HR
was very fast at this WT condition, the HRV was not the biggest with a SD of HR 4.17.
The stimulation for the medium WT condition was bigger than the stimulation for the low
WT condition, but was smaller than the high WT condition. The HRV is obvious with a SD
of HR 4.65; therefore, the area of the yellow dots was the biggest.

Figure 4 shows that the controlled condition of WT was not serious or uniform. In
fact, the low WT was not strictly and evenly distributed in the range of (36–38 °C) and
was far below the ambient temperature during bathing. The WT of 42 °C was far beyond
the ambient temperature during bathing; thus, the WT decreased quickly during the data
collection and the WT data at about 42 °C were not as concentrated. It is obvious that the
D2, HF power, total power, pHF, mean RRI, SDNN, RMSSD, SDSD, AURRI, SD1, and SD2
were monotonously reduced with increasing WT, and the pLF, LF/HF, HR, and SD1/SD2
were monotonously rising with increasing WT. A significant difference (p < 0.05) was found
among the above HRV features.

The results of significant difference analyses for the 20 HRV features in three analysis
domains under three WT conditions are visualized in Figure 5. There are some outliers for
each HRV feature. For the HR, the higher of the WT, the more outliers because the subjects
experienced stronger stimulation from the higher WT and it is more difficult to adapt the
WT environment during bathing. The changes in the mean of VLF, LF, SE, FE, and AE were
not obvious, and significant differences were not found in these five HRV features.

The details of the statistic results of the 20 HRV features in the time, frequency, and non-
linear domains are shown in Table 1, where the mean values and SD are listed, and the
pairwise statistically significant differences between each WT condition are calculated.
The significant difference analysis was performed via the multivariate analysis using the
t-test variance method, where p1 represents the significant difference between low and
medium WT conditions, p2 represents the significant difference between medium and high
WT conditions, and p3 represents the significant difference between low and high WT
conditions. With the increasing WT, the SD of the HR, mean RRI, AURRI, pLF, pHF, LF/HF
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ratio, and SD1/SD2 are first rising and then reduced, and the SD of LF, HF, TP are first
reduced and then rising.
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Figure 4. Feature trends for 20 HRV features in three analysis domains under three WT conditions.
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Figure 5. Analysis of significant differences for 20 HRV features in three analysis domains under three WT conditions:
A = (36–38) °C, B = (38–40) °C, and C = (40–42) °C.
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Table 1. The statistic results of the HRV features based on different bathtub WT.

HRV Features Features (36 38] °C (38 40] °C (40 42] °C p Value

Trend Mean SD Mean SD Mean SD p1 p2 p3

Time HR (bpm) ↑↑ 85.55 3.38 94.07 4.65 101.30 4.17 0 0 0
Domain Mean RRI (ms) ↓↓ 699.93 27.53 637.04 30.67 591.15 22.42 0 0 0

SDNN (ms) ↓↓ 17.99 2.94 15.48 2.48 13.70 1.87 0 0 0
RMSSD (ms) ↓↓ 4.54 0.74 3.69 0.57 3.03 0.42 0 0 0
SDSD (ms) ↓↓ 4.11 0.65 3.32 0.50 2.72 0.35 0 0 0
AURRI (s2) ↓↓ 41.51 1.62 37.82 1.80 35.12 1.32 0 0 0

Frequency VLF Power (ms2) ↑ 1561.77 78.82 1567.90 87.13 1573.03 80.22 0.07 0.14 0
Domain LF Power (ms2) ∧ 1631.05 182.50 1646.35 159.13 1633.92 175.79 0.04 0.11 0.74

HF Power (ms2) ↓↓ 922.03 97.45 859.79 68.12 826.23 86.79 0 0 0
Total Power (ms2) ↓↓ 4157.74 199.76 4114.04 158.49 4065.92 159.75 0 0 0
pLF (%) ↑↑ 63.53 2.37 64.75 2.58 65.91 2.29 0 0 0
pHF (%) ↓↓ 36.36 2.37 35.13 2.45 33.97 2.20 0 0 0
LF/HF (-) ↑↑ 1.75 0.18 1.85 0.20 1.95 0.19 0 0 0

Non-linear D2 (ms) ↓↓ 0.52 0.04 0.51 0.04 0.47 0.04 0 0 0
Domain SD1 (ms) ↓↓ 24.94 4.10 21.51 3.48 19.11 2.62 0 0 0

SD2 (ms) ↓↓ 3.21 0.53 2.61 0.40 2.14 0.30 0 0 0
SD1/SD2 (-) ↑↑ 7.63 0.82 8.03 0.86 8.65 0.85 0 0 0
SE (-) ∧ 0.29 0.04 0.30 0.03 0.27 0.03 0.15 0 0
FE (-) ∼ 0.11 0.01 0.11 0.01 0.11 0.01 0.21 0.04 0.43
AE (-) ∼ 0.36 0.02 0.37 0.02 0.37 0.02 0 0.14 0

� (�): Significantly reduced (increase) with increasing WT p < 0.05; ↓ (↑): Reduced (increase) with increasing WT
p > 0.05; ∧: Increased first and then reduced with increasing WT; ∼: Unobvious change; p1= between (36–38) °C and
(38–40) °C; p2= between (38–40) °C and (40–42)°C; p3= between (36–38) °C and (40–42) °C. (36–38)°C: 36 < WT ≤ 38 °C;
(38–40) °C: 38 < WT ≤ 40 °C; (40–42) °C: 40 < WT ≤ 42 °C;

4. Discussion

As a noninvasive, rapid, and accurate tool in the evaluation of the cardiac autonomic
balance modulation activity, heart rate variety (HRV) has been a hot research topic in
recent years. This study explored the impact of different water temperature (WT) on
HRV during bathing. With the rises of WT, the HR in medium and high WT increased by
6.53% and 15.78%, respectively, compared with the low WT, which reflects a decreased
vagal modulation. The significantly and monotonously reduced SDNN with increasing
WT shows a significantly reduced whole HRV fluctuation, which is highly consistent
with the significantly and monotonously reduced total spectral power (0–0.4 Hz). The
LF power (0.04–0.15 Hz) in the PSD reflects both SNS and PNS activities, while the HF
power (0.15–0.4 Hz) in the PSD reflects the PNS activity, and the LF/HF ratio represents
the balance between the SNS and PNS activities. With the increasing WT, the LF and HF
are significantly and monotonously reduced, which reflects that SNS and PNS activities
are enhanced significantly. The increased LF/HF ratio shows that the ratio of the cardiac
sympathetic to parasympathetic tones (i.e., the sympathovagal balance) was enhanced
significantly, which shows that the stimulation of high WT on the subject was also en-
hanced significantly. The stimulation on the subject under high WT increased by 6.43%
and 5.20% over the low and medium WT, as shown in Table 1. Furthermore, the HRV
feature of AURRI was newly defined in this paper and its unit is s2. The AURRI reflects the
fluctuation of HRV signal over time: i.e., with the increasing WT, the mean RRI and AURRI
are reduced. In lower WT condition, the parasympathetic activity is dominant. With the
WT increasing, our findings show decreased HRV complexity, which induce obvious shift
of ANS balance towards the sympathetic activation associated with vagal withdrawal.
Therefore, the higher WT can induce a stronger response of physiological allostatic regula-
tory, which is often accompanied by an enhanced cardiac sympathoexcitation associated
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with a vagal withdrawal. From the healthcare perspective, to reduce the sudden onset
possibility of cardiac and cardiovascular complications or diseases during bathing, it is
more dangerous to choose a higher WT condition for the patients.

The same WTs which belonging to different WT change processes induce different
impacts on HRV. For example, if the WT drops from 40 °C to 38 °C during the data collection
process, the subject will feel very uncomfortable in the first minute and need a longer time
to adapt to the WT environment. However, if the WT increases from 38 °C to 40 °C during
the data collection process, the subject will adapt to the WT environment easily. Even if the
WT reaches 40 °C, the subjects will not feel very uncomfortable because they have adapted
to this WT environment. The WT of 40 °C appeared during two different processes, but had
very different instantaneous effects on the HRV and their physiological meanings were
also different in these processes. Therefore, some outliers appear in the box plot as shown
in Figure 5.

According to experiment records, the difference from other subjects was that Subjects 4,
7, and 8 did not feel very uncomfortable even in the higher WT (40–42 °C).The slopes of
the variety of HR are smaller than that of the other seven subjects, as shown in Table 2.
Specifically, Subject 7 preferred the higher WT and the change in their HR was not as
obvious as in the other subjects, as shown in Figure 6. The questionnaire showed that
Subject 7 often participated regular physical activities. Regular exercise could make the
sympathetic-adrenal system more easily excited, thus enhancing cardiovascular, hormonal
and metabolic responses, further affecting body temperature regulation, water-electrolyte
interface, muscle contraction performance, etc., thus ensuring blood perfusion, oxygen, and
nutrient supply and elimination of metabolites in organs and tissues throughout the body.
There was evidence that exercise could reduce the sympatho-excitation and sympathetic
outflow, and the baroreflex-mediated was also suppressed. Therefore, compared with other
subjects, Subject 7 demonstrated higher HRV, and their reaction to higher WT indicated a
great adaptability of the ANS.

Table 2. The slope of the variety of HR with increasing WT.

Subject 1 2 3 4 5 6 7 8 9 10
Slope 10.71 4.59 6.72 4.34 6.36 7.48 -0.41 3.46 8.91 6.83

Subjects 1, 6, and 9 were very sensitive to changes in WT and especially could not
tolerate the high bathtub WT (40–42 °C). They felt more comfortable during 4th–11th min
on the data collection process. The first 3 min are the adaptation phase. During this stage,
their foreheads quickly began to sweat a lot. For the other seven subjects, their adaptation
phases were the first 1 min and they began to sweat more after the first 10 min in the same
high WT environment. The body weights of these three subjects were reduced more after
data collection than in the other seven subjects. From this finding, we speculate that people
who are more sensitive to temperature changes are less able to withstand water and WT
pressures, and they are more likely to suffer from higher mental and physical stress during
the higher WT condition.

Subjects 2, 3, 5, and 10 felt a little uncomfortable, but could tolerate the high WT
(40–42 °C). All ten subjects could quickly adapt to the low WT (36–38 °C) and they felt
more relaxed and comfortable in the medium WT (38–40 °C). Except for three subjects who
were very sensitive to the WT changes, the other seven subjects did not feel uncomfortable.

Although some discoveries were revealed in this paper, there are also some limitations.
First, the set-up of the experiment is stressful itself, and therefore may create an additional
bias. Although informed consent was obtained and the data collection process was told
in detail to each subject, as well as let each subject had a five-minute rest before the data
collection, some subjects were still a little nervous at the beginning of data collection.
Furthermore, the sensitivity to external stimuli of each subject was different, the water
pressure on the chest and thermal stimulus on hemodynamics also induced different stress
to each subject, which would induce some additional biases to the results. Therefore,

115



Life 2021, 11, 378

the mental stress factor should be also taken into consideration at the same time to evaluate
the impact of WT on HRV. Second, the number of subjects is too small and the subjects
should include older people and children, in addition to healthy and unhealthy individuals
and different ethnicities. Third, the change ranges for WT during the data collection were
too big. Due to poor insulation measures, the WT was relatively divergent during the
data collection process. Thus, the HRV analysis should be performed based on several
smaller ranges of WT. Fourth, the data collection environment was inconsistent for all
the subjects. For example, when the WT is between 40 °C to 42 °C, some subjects could
endure the high WT environment, while other subjects felt too uncomfortable to endure
the high WT environment. Therefore, to be safe, we must give these subjects a fan to blow
a refreshing cool breeze on themselves in this situation. Fifth, during the data-processing
stage, the median filter was used three times to remove the outliers of the RRI signal.
The skin surface electricity is very weak, in the millivolts. The gentle movement of the four
limbs will induce relatively large fluctuations in the ECG amplitude. Therefore, the raw
ECG signal includes some noise and there are some outliers in the R peaks detection and
RRI signal results. If the median filter is only used once to remove the RRI outliers, then
either only the outliers with big amplitude can be removed or there is a gross distortion
in the RRI signal after the outliers are removed. Therefore, the median filter was used to
remove the outliers with big, median, and small amplitudes, respectively.
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Figure 6. The variety of HR and its fitted curve at one degree for each subject under three WT conditions.

5. Conclusions and Future Work

This paper explores the impact of different WTs on HRV during bathing. With the
WTs increasing, some HRV features are significantly and monotonously reduced or rising,
which induces the change of dynamic balance between the SNS and PNS branches of the
ANS. The findings in the present study provide important reference significance in many
practical aspects which need to evaluate the amount of disturbance of homeostasis induced
by WTs. For example, we can affect the HRV by changing the WTs to set an optimal
environment during bathing. Only when the SNS and PNS activities are controlled at a
certain range can the people feel relaxed and comfortable.
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In future research works, we will further explore the HRV levels of healthy subjects
and patients, especially the patients with cardiac diseases (such as arrhythmia, myocardial
ischemia, and coronary heart disease), and then design an automated and accurate WTs
control system to affect the HRV by changing the WTs so that the HRV level is indirectly con-
trolled in a safe and comfortable range based on individual health condition, which would
appropriately reduce the possibility of sudden onset of cardiac disease during bathing.
Moreover, in order to achieve the purpose of lifelong healthcare, we will also explore how
to apply the cutting-edge blockchain technology in the long-term tracking of ECG data
during bathing for the big data collection and analysis [62,63]. Another particularly crucial
research topic is the physiological signal encryption and secure transmission related to the
privacy protection, some emerging technologies provide a valuable reference [64,65].
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