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Editorial

Soil–Water Conservation, Erosion and Landslide

Su-Chin Chen 1,2

1 Department of Soil and Water Conservation, National Chung Hsing University, 145 Xingda Road,
Taichung 40227, Taiwan; scchen@nchu.edu.tw

2 Innovation and Development Centre of Sustainable Agriculture (IDCSA), National Chung Hsing University,
145 Xingda Road, Taichung 40227, Taiwan

In the wake of climate change, extreme storm events, catastrophic disasters (including
soil erosion, debris and landslide formation, loss of life, etc.) have surged. These disasters
are more common in mountainous regions, and could be a result of tectonic, climatic,
and/or human activities [1–3]. Over the past two decades, more than 300 natural disasters
occur annually around the globe, affecting over four billion and cost around USD 2.97 tril-
lion [4,5]. The 2021 state of the environment notes that disasters are continuing to take a
heavy toll on life and assets, severely affecting and rolling back the development gains
of countries [6]. In addition, Mohammed et al. [7] and the sixth Intergovernmental Panel
on Climate Change report [8] note with confidence that human-induced climate change
is the dominant driver in sediment related natural disasters. In assessing the influence of
climate change on soil erosion and sediment yield, Chen et al. [9] illustrate an increase in
these events under the A1B-climate change scenario. This study highlights the importance
of incorporating climate change in sediment-related disaster models. One of the most
important transboundary rivers in China, the Lancang-Mekong River has been shown to
cause major sediment loads in the last decade in Asian Rivers with a mean annual loss of
5350 t ha−1 year−1 [10].

In sight of this, this Special Issue aimed to contribute towards improving our knowl-
edge and understanding on the processes and mechanics of soil erosion and landslides, as
these are among the main natural disasters affecting the globe. This is crucial in developing
the right tools and models for soil and water conservation, disaster mitigation, and early
warning systems. Several novel tools and methodologies are presented in this Special Issue.

Several novel tools and methodologies are presented in this Special Issue, which
consists of 19 articles, covering a wide range of topics, including landslide prediction
models, soil erosion and sediment yield estimation, flood simulations, dam breach, and
rainfall-runoff models.

Wu and Yeh [11] developed an improved landslide probability model from existing
models by including long-term landslide inventory and rainfall factors, which can further
be used to predict landslides based on future changes in rainfall patterns. In addition
to the aforementioned landslide probability model, Wu et al. [12] argue that landslide
susceptibility assessments after extreme rainfall events is equally critical. Four methods are
evaluated based on 12 landslide related factors which formed the basis for the landslide
susceptibility assessment. The methods include Landslide ratio-based logistic regression
(LRBLR), Frequency Ration Method (FRM), Instability Index Method (IIM), and Weight
of Evidence Method (WEM). Among these, the LRBLR method is shown to be the best
in landslide susceptibility assessment. The article by Wu and Lin [13] presents a method
applying rainfall analysis, spatiotemporal landslide analysis, and comparison analysis of
rainfall induced landslide and earth quakes to evaluate how landslides would be active after
specific rainfall events. In classifying landslides, Wan et al. [14] presented a methodology
that applied hyperspectral data instead of solely relying on digital elevation models. The
model can differentiate bare land to landslides, which has often been a complex task.
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In addition to the application of complex models, some authors [15,16] argued that
the ability of vegetation in mitigating soil erosion and subsequent large sediment yield
under extreme rainfall events and runoff is not well investigated. Different vegetation
communities enacted at 1, 11, 15, 25, and 40 years were evaluated. Findings showed root
biomass can reach up to ~11 mg/cm3, which reduces slope runoff velocity by 48%, while
increasing runoff resistance by 35 times. The results suggest the importance of indigenous
knowledge in reducing the impacts of sediment related disasters. Chen, Guo, and Wang [16]
compared farmland with revegetated gullies and demonstrated that revegetating gullies
could lower soil erodibility by 31–78% and could further improve critical shear stress by
up to four times, and stable conditions were possible in approximately 18 years. The
importance of riparian vegetation in stabilizing river banks is illustrated by Zhu et al. [17].
The authors show that healthy native alpine swamp can enhance riverbank stability and
could further delay the development of tensile cracks.

The article by Liu et al. [18] describes a novel shallow water equation based method-
ology that could simulate flood routing in complex terrains. Hung et al. [19] used flume
tests to study dam breach and the resulting seismic signals induced. The authors conclude
overtopping discharge and lateral sliding masses are significant in influencing the evo-
lution of dam breach. The resulting dam breach model from the study is important for
dam breach warning, which could save lives in the event of a catastrophic dam breach
associated with floods.

Mosavi et al. [20] presents a novel machine learning model (Weighted sub-space
random forest) to map susceptibility of water erosion of the soil. In applying the model,
19 factors are applied (some of these are aspect, curvature, slope length, flow accumulation,
normalized vegetative index, soil texture, lithology, etc.). Such a tool is crucial in watershed
conservation, especially in a world generating enormous data that requires super-fast
models. In another instance, Lee et al. [21] evaluates seven machine learning models for
time-saving to estimate the rainfall-erosivity factor (R-factor) used in the Universal Soil
Loss Equation (USLE). Their findings show that deep neural networks are very efficient
estimating the R-factor given monthly precipitation, maximum daily precipitation, and
maximum hourly precipitation.

Finally, the article by Lee, Lu, and Huang [21] investigate the interaction between
overfall types and scour at bridges. When a bridge pier is in the maximum scour location,
it induces more scour due to disturbances caused by the water jet and the pier; hence,
more attention is required to protect the pier. This is especially important in areas prone to
earthquakes, which may cause the riverbed to uplift.

In conclusion, the Special Issue presents several articles. They are broadly categorized
into five themes: (i) those with emphasis on soil erosion and how climate change has
worsened natural disasters; (ii) those investigating and developing landslide related models;
(iii) articles regarding flood models and dam breach processes; (iv) articles focusing on the
application of recent technologies, such as machine learning in addressing sediment related
disasters; and (v) studies dedicated at the protection of riverine structures. These articles
have indeed contributed immensely towards understanding soil erosion and landslide
processes, and the corresponding necessary tools to foster resilience. This further aligns
with some of the post 2015 global frameworks, such as the Sendai Framework which
articulates the need for improved understanding of disasters in all its dimensions.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
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Abstract: Soil erosion is a serious threat to sustainable agriculture, food production, and environmental
security. The advancement of accurate models for soil erosion susceptibility and hazard assessment is
of utmost importance for enhancing mitigation policies and laws. This paper proposes novel machine
learning (ML) models for the susceptibility mapping of the water erosion of soil. The weighted
subspace random forest (WSRF), Gaussian process with a radial basis function kernel (Gaussprradial),
and naive Bayes (NB) ML methods were used in the prediction of the soil erosion susceptibility.
Data included 227 samples of erosion and non-erosion locations through field surveys to advance
models of the spatial distribution using predictive factors. In this study, 19 effective factors of
soil erosion were considered. The critical factors were selected using simulated annealing feature
selection (SAFS). The critical factors included aspect, curvature, slope length, flow accumulation,
rainfall erosivity factor, distance from the stream, drainage density, fault density, normalized difference
vegetation index (NDVI), hydrologic soil group, soil texture, and lithology. The dataset cells of
samples (70% for training and 30% for testing) were randomly prepared to assess the robustness
of the different models. The functional relevance between soil erosion and effective factors was
computed using the ML models. The ML models were evaluated using different metrics, including
accuracy, the kappa coefficient, and the probability of detection (POD). The accuracies of the WSRF,
Gaussprradial, and NB methods were 0.91, 0.88, and 0.85, respectively, for the testing data; 0.82,
0.76, and 0.71, respectively, for the kappa coefficient; and 0.94, 0.94, and 0.94, respectively, for POD.
However, the ML models, especially the WSRF, had an acceptable performance regarding producing
soil erosion susceptibility maps. Maps produced with the most robust models can be a useful tool for
sustainable management, watershed conservation, and the reduction of soil and water loss.

Keywords: water erosion; susceptibility; Gaussian process; climate change; radial basis function
kernel; weighted subspace random forest; extreme events; extreme weather; naive Bayes; feature
selection; machine learning; hydrologic model; simulated annealing; earth system science
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1. Introduction

Soil conservation is of utmost importance for sustainable development, food security,
and environmental protection [1]. Understanding soil erosion is considered to be an essential practice
for soil conservation programs around the world [2]. Currently, soil erosion has increasingly become
known as a severe concern for sustainable agriculture, water resource management, and modern
civilization [3]. Soil erosion is a significant menace for soil, ecology, and for humanity since the
long-term production of soil productive capacity is profoundly affected by the destruction and leaching
of soil’s organic and topsoil matters [4]. Soil erosion is an intricate process that depends on the
plant cover and land use, watershed topography, soil properties, climate, and land management
practices. In the last century, soil erosion has intensified due to human activity and is an environmental
problem [5]. Primary soil segregates when the rainfall or water flow power is greater than the soil’s
resistance to corrosion [6]. Generally, there are different types of water erosion, such as sheet, gully,
landslide, debris flow, streambank, etc. [7].

In semiarid regions, such as Iran, soil erosion is a significant crisis [8] and can be considered
to be one of the critical problems concerning agricultural development, natural resources, and the
environment [9]. In such regions, water is limited, and there are many sources of sediment [10].
The high input of sediment in upstream rivers increases the water turbidity, reduces the lifespan
of dams owing to reservoir siltation, and negatively affects water quality and biological activity [8].
According to scholars, the mean annual rate of soil erosion in Iran is about 25 tons/ha/year, which is
four times more than the mean yearly rate around the world [11,12]. Therefore, the susceptibility
mapping of soil erosion is necessary for controlling this critical problem.

Rather than using traditional and experimental models, such as the universal soil loss equation
(USLE) [13] and multi-criteria decision-making methods [14], that have been used in water erosion
assessments, machine learning (ML) models are known to be successful methods [15,16]. Different ML
methods, such as support vector machine (SVM), boosted regression trees (BRT), random forest
(RF), naive Bayes (NB), and artificial neural network (ANN), have been used for landslides [17–23],
debris flows [24–26], and gully erosion [27–30]. For instance, Angileri et al. [15] used the stochastic
gradient tree boost (SGT) for water erosion susceptibility mapping in central-northern Sicily, Italy.
The results indicated that the applied model had excellent reliability (accuracy from 0.87 to 0.92).
Recently, Garosi et al. [31] applied the RF, SVM, and NB models, along with the generalized additive
model (GAM), to predict the gully erosion susceptibility in the Ekbatan Dam drainage basin, Iran.
The results indicated that the RF model had the highest performance (accuracy = 92.4%) among the
models tested. Svoray et al. [16] used different ML models, namely, SVM, ANN, and decision trees
(DT), for predicting the gully erosion in a watershed scale in Israel and compared them with the results
from topographic threshold (TT) and analytic hierarchy process (AHP) methods. The results indicated
that the ML models produced better performances than the AHP and TT methods. Mao et al. [32]
evaluated the soil erosion in the Shiqiaopu catchment, Hubei province, China, using SVM and ANN
models. They optimized the parameters of the SVM using the particle swarm optimization (PSO)
algorithm. The results indicated that the SVM had higher accuracy in comparison with the ANN
model. Rahmati et al. [28] compared the ML models of SVM, ANN, RF, and BRT when predicting the
gully erosion susceptibility in the Kashkan watershed, Iran. The results indicated that the performance
of the RF and SVM models for predicting the gully occurrences in the watershed were better than the
other models.

Due to the advancement of ML models, applying and evaluating novel methods in water erosion
studies can help to accurately predict hazardous areas, especially in developing countries where soil
erosion data are incomplete. The current study tried to predict water erosion susceptibility using two
novel ML models, namely, a weighted subspace random forest (WSRF) and a Gaussian process with
a radial basis function kernel (Gaussprradial), for the first time and compared their results with the
NB model. Therefore, the primary purposes of this study were: (i) to identify the more significant
factors regarding soil erosion through feature selection, (ii) to compare the performance of the novel
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predictive models (i.e., WSRF and Gaussprradial) with a model previously used for this application
(i.e., NB), and (iii) the prediction of the spatial susceptibility of soil erosion induced by water.

2. Materials and Methods

2.1. Study Area

The Nur-Rood watershed is located in the southwest of the Haraz watershed, in the north of
Iran. The watershed lies within 51◦26′–52◦19′ E and 36◦01′–36◦16′ N (Figure 1). The elevation of
the watershed ranges from 732 to 4333 m. There are six rain gauge stations in the region provided
the long-term mean annual data from 1976 to 2016 that were were used in this study. The study
area is about 1297 km2 and is located upstream of the Haraz dam. The main application of this
dam is to provide drinking and agriculture water for five cities (i.e., Amol, Babol, Babolsar, Nur,
and Mahmoodabad) in the Mazandaran province. According to the literature, the watershed generates
water with a high sediment load such that it causes a reduction in the dam’s capacity [8,33]. Therefore,
identifying the hazardous areas can help to control the upstream erosion and aid with providing
sustainable watershed management in the Nur-Rood watershed.

 

′ ′ ′ ′

 

 

Figure 1. Location of the Nur-Rood watershed, Mazandaran province, Iran.

2.2. Methodology

The methodology consisted of several fundamental building blocks to ensure the accuracy of the
susceptibility prediction. Figure 2 presents the schematic of the methodology workflow from data
sampling to the susceptibility prediction. The method consisted of five sections: (i) preparation and
collection of the relevant factors for soil erosion modeling; (ii) extraction of the erosion and non-erosion
locations by the field observations; (iii) selection of the essential factors using the simulated annealing
feature selection (SAFS) algorithm; (iv) water erosion modeling using the Gaussprradial, NB, and WSRF
models in the Nur-Rood watershed; and (v) evaluating the models’ performance.
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Figure 2. Schematic representation of the proposed method.

2.2.1. Field Data

It was necessary to know the locations of eroded and non-eroded areas for susceptibility
mapping of the Nur-Rood watershed. Therefore, the locations (i.e., x and y coordinates) of 227 area
(116 erosion locations and 111 non-erosion locations) were sampled through field surveys to model
the water erosion susceptibility based on a binary scale (occurrence/non-occurrence). According to
Sajedi-Hosseini et al. [8], the recorded soil erosion areas include different kinds of water erosions (such
as sheet, rill, gully, and mass movements).

2.2.2. Predictive Variables

In this study, according to the literature review, 19 relevant factors regarding soil erosion were
collected and prepared, including the topographic, hydro-climatic, geological, and land cover factors.
The attributes of the factors are presented in Table 1. A brief description of each of the predictive
factors is presented afterward.

Table 1. Characteristics of the considered factors for susceptibility mapping of water erosion.

Factors Range/Class

Topographic factors:
Elevation 732 to 4333 (m)

Slope 0 to 473.8 (%)

Aspect
Flat, north, northeast, east, southeast, south, southwest,

west, northwest
Slope length (SL) 0 to 5613 (m)

Curvature −35 to 25

Hydro-climate factors:
Drainage density (DD) 0 to 3 (km/km2)

Distance from stream (DFS) 0 to 5135 (m)
Topographic wetness index (TWI) 6 to 21.3

Stream power index (SPI) 0 to 150,768
Flow accumulation (FA) 0 to 1,630,717 (pixel)

Precipitation (PCP) 0 to 768 (mm)
Rainfall erosivity factor (R) 272 to 2078

Hydrologic soil group (HSG) B 1, C 2, D 3
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Table 1. Cont.

Factors Range/Class

Geological factors 4:
Fault density (FD) 0 to 2.4 (km/km2)

Lithology
TRJs, Pr, Mm.s.l, Pd, Odi, Tre, PZ2bvt, Tre1, Qs.D, Ebv, Tra.bv, Jl,

Ek, K1bvt, Ktzl, Pldv, Jk, K2l2, Eksh
Soil texture Sandy loam, loamy sand, loam, clay loam, sandy clay loam, clay

Land-cover factors:
Normalized difference vegetation index (NDVI) −0.07 to 0.63

Land use Rangeland, residential, forest, agriculture, rock
Distance from road (DFR) 0 to 18,978 (m)

1 Silt loam types of soils with a moderate infiltration rate. 2 Sandy clay loam types of soils with low infiltration
rates. 3 Clay loam, silty clay loam, sandy clay, silty clay, or clay with the highest runoff potential. 4 Definition of
the geological factors include; TRJs: Dark grey shale and sandstone; Pr: Dark grey medium - bedded to massive
limestone; Mm.s.l: Marl, calcareous sandstone, sandy limestone and minor conglomerate; Pd: Red sandstone and
shale with subordinate sandy limestone: Odi: Diorite; Tre: Thick bedded grey o’olitic limestone; PZ2bvt: Basaltic
volcanic tuff; Tre1: Thin bedded, yellow to pinkish argillaceous limestone with worm tracks; Qs.D: Unconsolidated
wind-blown sand deposit including sand dunes; Ebv: Basaltic volcanic rocks; Tra.bv: Triassic, andesitic and basaltic
volcanics; Jl: Light grey, thin-bedded to massive limestone; Ek: Well bedded green tuff and tuffaceous shale; K1bvt:
Basaltic volcanic tuff; Ktzl: Thick bedded to massive, white to pinkish orbitolina bearing limestone; Pldv: Rhyolitic to
rhyodacitic volcanics; Jk: Conglomerate, sandstone and shale with plantremains and coal seams; K2l2: Thick-bedded
to massive limestone; Eksh: Greenish-black shale, partly tuffaceous with intercalations of tuff.

Topographic Parameters

The topographic parameters included the elevation, slope, aspect, slope length (SL), and curvature
(Figure 3). These factors are influential regarding soil erosion velocity [34]. The different elevations
(Figure 3a), aspects (Figure 3c), and curvature (Figure 3e) cause different conditions of evaporation,
soil temperature, soil moisture, and solar radiation, which have different effects on the soil erosion.
Furthermore, slope (Figure 3b) and SL (Figure 3d) affect the runoff velocity and volume, where a
steeper slope or a longer SL can increase the soil erosion by water [8].

The topographic factors were produced using a digital elevation model (DEM) with a cell size of
30 m in the ArcGIS 10 software (Environmental Systems Research Institute, Redlands, CA, USA).

Hydro-Climate Factors

The hydro-climate factors included the drainage density (DD), distance from the stream (DFS),
topographic wetness index (TWI), stream power index (SPI), flow accumulation (FA), precipitation
(PCP), rainfall erosivity factor (R), and hydrologic soil group (HSG) (Figure 4). The DD (Figure 4a) is
calculated from the sum of the length of all streams in the watershed area. The DD values depend
on the permeability and resistance of the surface and deeper soil layers that affect water erosion [8].
Regarding the DFS (Figure 4b), the regions near streams are more susceptible to soil erosion [35].
The DD and DFS layers were created using line density and Euclidian distance tools, respectively,
in geographic information system (GIS). TWI (Figure 4c) shows the soil moisture and water-saturated
area of the watershed. SPI (Figure 4d) indicates the potential for erosion due to the water flow, in which
higher values indicate a higher potential. TWI and SPI were produced using the SAGA GIS 2.0.7
software (SAGA User Group Association, Hamburg, Germany). The flow accumulation (FA) function
(Figure 4e) computes the sum of the weight of all accumulated pixels upstream [36], which is most
important for showing the water-accumulated pixels that affect the water erosion. The PCP (Figure 4f)
and R (Figure 4g) were the climate factors considered to affect soil erosion. Their effects depend on soil
attributes such as the soil texture, soil organic matter, and soil structure. The PCP map is produced by
the mean annual precipitation of the gauge stations in the study area. The R factor is directly related
to the soil erodibility. The best method for calculating it is a direct measurement of soil erosion in
plots [37]. However, in this study, according to Takal et al. [38], an empirical equation was used to
calculate this factor, as follows.

R = 0.0483P1.61, (1)
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where R is the precipitation erosivity index (MJ·mm·ha−1·hr−1) and P is the mean annual precipitation (mm).
The HSG (Figure 4h) indicates the infiltration and runoff generation rates that affect soil erosion.

This layer is extracted from the digital soil map of the world [39] and it includes three groups: B, C,
and D. Group B has moderately low runoff potential when completely humid. Soils in this group have
50 to 90% sand, 10 to 20% clay, and have sandy loam or loamy sand textures. Water transition across
the soil is unrestricted. Group C soils have moderately high runoff potential when completely humid.
They have less than 50% sand, 20 to 40% clay, and include sandy clay loam, silty clay loam, loam,
silt loam, and clay loam textures. Group D soils have high runoff potential and the infiltration across
the soil is very limited [40].

Geological Factors

Geological factors include the fault density (FD), lithology, and soil texture (Figure 5). The FD
affects infiltration and runoff, which can affect soil erosion. Furthermore, the existence of a fault
can accelerate the mass movements [41]. The layer of FD (Figure 5a) was produced in the ArcGIS
environment by using the line density tool on the fault layer. The lithology has the greatest effect on
erosion control. Erosion depends on the exposed material weathering attributes or the lithology [42,43].
The lithology map (Figure 5b) was taken from a geological survey done by the Iranian department
of environment and had a scale of 1:100,000. The other important factor is soil texture (Figure 5c).
Porosity and soil texture, along with the soil profile and surface, are the dominant soil attributes that
influence soil erosion. An increase in the clay value of the soil causes a decrease in soil erosion [44].
The soil textures of the study area were clay, clay loam, loam, loamy sand, sandy clay loam, and sandy
loam (Figure 5c).

Land Cover Factors

The land cover factors considered were the normalized difference vegetation index (NDVI),
land-use, and distance from road (DFR) (Figure 6). The NDVI (Figure 6a) was extracted from Landsat
satellite images for June 2018. The NDVI values range from −1 to 1 [45]. A watershed with a higher
NDVI provides higher resistance against soil erosion [9,46]. The land uses of the study area included
rangeland, residential, forest, agriculture, and rock (Figure 6b). The land-use map was received from
the Iranian Water Resources Management Company (IWRMC). Roads are one of the man-made features
that increase the availability of materials for transformation and increase the sediment yield in the
watershed. Moreover, roads increase the runoff speed through collecting and concentrating the surface
runoff in the given areas (such as near bridges); therefore, faster flows increase the erosion. The DFR
layer (Figure 6c) was calculated using the line density tool within the ArcGIS environment.
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Figure 3. Topographic factors: (a) elevation, (b) slope, (c) aspect, (d) slope length (SL), and (e) curvature.

 

 

Figure 4. Hydro-climate factors: (a) drainage density (DD), (b) distance from the stream (DFS),
(c) topographic wetness index (TWI), (d) stream power index (SPI), (e) flow accumulation (FA),
(f) precipitation (PCP), (g) rainfall erosivity factor (R), and (h) hydrologic soil group (HSG).

11



Water 2020, 12, 1995

 

 

Figure 5. Geological factors: (a) fault density (FD), (b) lithology, and (c) soil texture.

 

 

Figure 6. Land cover factors: (a) normalized difference vegetation index (NDVI), (b) land use, and (c)
distance from road (DFR).

2.2.3. Feature Selection

To select the most important factors in the water erosion of soil based on parsimonious objectives
from the large number of factors considered, the simulated annealing feature selection (SAFS) model
was used. The SAFS method is based on the minimum energy configuration theory, whereby a solid is
gradually cooled such that its structure is frozen [47]. Many studies have used this method for feature
selection in environmental fields, such as flash-flood hazard assessment [48], dust and air quality
evaluation [49], and earth fissure hazard prediction [50]; see Bertsimas and Tsitsiklis [47] for more
details of the SAFS method.

In the current research, the SAFS was conducted using the k-fold (k = 10) cross-validation
methodology and it was implemented in the Caret package [51] of the R software (4.0.2, R Core Team,
Vienna, Austria).

2.2.4. Weighted Subspace Random Forest (WSRF)

Xu et al. [52] suggested a new random forest, namely, the WSRF model, which involves weighting
the input variables and afterward opting for the variables that ensure each subspace always includes
informative attributes. The WSRF model is implemented as multi-thread processes. This algorithm
categorizes very high-dimensional data and sparse data with random forests made using small
subspaces. A new variable weighting manner is applied for the variable subspace choice rather than
the traditional random variable sampling in the random forest model [53]. More details of the WSRF
model are presented in Xu et al. [52] and Zhao et al. [53]. The WSRF model was implemented using
the “wsrf” package [53] in the R software using the k-fold (k = 10) cross-validation procedure.
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2.2.5. Naive Bayes (NB)

The NB classifiers are a set of assortment algorithms that use Bayes’ Theorem. This is a family of
algorithms, where every pair of features being categorized is independent of each other; on the other
hand, all of them share a common principle. The dataset is categorized into two sections:

• A response vector, which includes the value of the class variable.
• The feature matrix, which includes all the rows of the dataset and each row contains all the

dependent features.

According to the primary naive Bayes hypothesis, each element must be independent and
equal [54,55]; see Webb et al. [56] for more details of the NB model. The NB model was done using the
k-fold (k = 10) cross-validation method in the “klar” package [57,58] within the R software.

2.2.6. The Gaussian Process with a Radial Basis Function Kernel (Gaussprradial)

Gaussian process regression is a vigorous, non-parametric Bayesian method used for solving
regression problems and modeling unknown functions [59,60]. It can capture the different relationships
between inputs and output variables by applying a hypothetically infinite number of parameters and
allowing the dataset to determine the level of complexity via Bayesian inference [61]. The Gaussian
process is parametrized using a kernel. One of the benefits of Gaussian process regression is the
flexibility in choosing the kernel; furthermore, the different kernels can be combined to perform the
regression [59]. In this study, the radial basis function network (RBF) was used to perform the Gaussian
process. The Gaussprradial was performed in the R software using the “kernlab” package [62] using
the k-fold (k = 10) cross-validation approach.

2.2.7. Model Calibration and Validation

The database, including the predictand and predictors, was randomly divided into the training
(70%) and testing (30%) sets. A k-fold (k = 10) cross-validation methodology was used to calibrate the
models. The models were assessed using testing datasets after the calibration using the features selected
by the SAFS. Here, for the assessment of the models’ performances, three classification evaluation
metrics were used: accuracy, kappa, and the probability of detection (POD). The models’ performances
were represented as accuracy percentages. Kappa indicates the probability of agreement by chance
using the likelihood of the model classification [63]. The metrics are computed as follows:

Accuracy =
H + CN

H + FA + M + CN
, (2)

where H (the number of hits), FA (the number of false alarms), M (the number of misses), and CN (the
number of correct negatives) were computed from a contingency table.

Kappa =
Accuracy− Pe

1− Pe
, (3)

where Pe is the expected probability of chance agreement [64] that is computed using Equation (4):

Pe =
(H + FA)(H + M) + (M + CN)(FA + CN)

(H + FA + M + CN)2
(4)

The POD is a metric used to quantify the possibility of finding a specific detect. The POD is
significantly linked to the subject of risk evaluation and probabilistic analyses of the components’
integrity. The POD is the ratio of the correct predicted data to the total number observed occurrences.
It ranges from 0 to 1, where 1 indicates a perfect score [49,50]. The metric is calculated using Equation (5):

POD =
H

H + M
. (5)
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3. Results and Discussion

3.1. Feature Selection Results

A relatively large number of factors, such as elevation, slope, aspect, SL, curvature, DD, DFS,
TWI, SPI, FA, PCP, R, HSG, FD, lithology, soil texture, NDVI, land use, and DFR, were used in the
current study to predict water erosion. The results of the feature selection using the SAFS algorithm
are shown in Table 2. As can be seen, the minimum and maximum selected features were 8 and
14 variables, respectively, in the folds number of 8 (accuracy= 0.84, Kappa= 0.67) and 3 (accuracy= 0.92,
Kappa = 0.83). The fold number 6 provided the worst performance (accuracy = 0.74, Kappa = 0.48),
whereas the fold number 10 provided the best performance (accuracy = 0.93, Kappa = 0.87).

Table 2. Selected factors in each fold using the simulated annealing feature selection (SAFS) method.

Fold
Number of

Selected Features
Selected Features Accuracy Kappa

1 10
Aspect, elevation, DFR, FA, lithology, HSG,

NDVI, R, SL, soil texture
0.85 0.69

2 9
Aspect, DF, DFS, FA, lithology, NDVI, PCP,

slope, TWI
0.75 0.49

3 14
DD, DF, DFR, DFS, FA, lithology, HSG, NDVI,

R, PCP, slope, TWI, soil texture, SL
0.92 0.83

4 10
aspect, curvature, DD, DF, DFS, lithology,

NDVI, SL, SPI, soil texture
0.91 0.82

5 9
Curvature, elevation, DF, lithology, HSG,

NDVI, R, SL, SPI
0.86 0.72

6 9
Curvature, aspect, DD, DFR, FA, HSG, land

use, NDVI, R, SL, slope, soil texture
0.74 0.48

7 9
DFR, DFS, FA, lithology, HSG, land use, NDVI,

R, soil texture
0.90 0.81

8 8 DF, DFS, FA, NDVI, R, PCP, SL, TWI 0.84 0.67

9 13
aspect, curvature, DD, DF, DFS, lithology, land

use, NDVI, R, SL, slope, soil texture, TWI
0.89 0.78

10 11
Aspect, DD, DF, FA, lithology, land use, NDVI,

R, SL, SPI, soil texture
0.93 0.87

Average 10.2 - 0.86 0.72

According to the 10-fold results, the selected factors should be between the minimum and
maximum selected features and should be mostly equal to the mean selected factors across all folds.
However, the percentage of selected factors in all folds can be a good criterion for selecting the final
variables [48–50]. Figure 7 shows the percentage of selected factors in all folds. Twelve variables
had a frequency of at least 50% across all folds. As can be seen, the NDVI with a 100% frequency (F)
was selected in all folds. However, the important role of the vegetation and NDVI is obvious and
shown in previous studies [8,9,46]. Followed the NDVI (F = 100%), the variables of lithology (F = 80%),
R (F = 80%), SL (F = 80%), FD (F = 70%), FA (F = 70%), soil texture (F = 60%), DFS (F = 60%), aspect
(F = 50%), curvature (F = 50%), HSG (F = 50%), and DD (F = 50%) were selected.

Although the feature selection has largely not been done in studies on the water erosion of
soil, the importance of these selected variables in the water erosion of soil is demonstrated by
previous studies, such as those of De Baets et al. [46], Md. Rejaur et al. [9], Sajedi-Hosseini et al. [8],
Di Stefano et al. [42], Arabameri et al. [43], Lin et al. [37], Choubin et al. [41], Auzet et al. [44], and
Nekhay et al. [35].
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Figure 7. The percentage of selected factors in all folds.

3.2. Results of Water Erosion Modeling

The calibration of models was conducted using the “tunelength” function in the Caret R
package [51]. The performance results of the three models (WSRF, Gaussprradial, and NB) were
evaluated using the three statistics of accuracy, kappa, and the probability of detection (POD), which are
presented in Table 3.

Table 3. The performances of the models using the testing dataset.

Statistic WSRF Gaussprradial NB

Accuracy 0.91 0.88 0.85
Kappa 0.82 0.76 0.71
POD 0.94 0.94 0.94

WSRF: Weighted Subspace Random Forest, NB: Naive Bayes.

As can be seen from Table 3, the evaluation of the models’ performance indicated that the WSRF
model had a higher accuracy (accuracy = 0.91), followed by the Gaussprradial (accuracy = 0.88) and
NB (accuracy = 0.85) models. According to Monserud and Leemans [65], the kappa values indicated
that all three models were in the “very good” degree of agreement (i.e., 0.70 < Kappa < 0.85) (Table 3).
However, like the accuracy, the kappa statistic for the WSRF model (Kappa = 0.82) was more than
the Gaussprradial (Kappa = 0.76) and NB (Kappa = 0.71) models. Regarding the POD, the WSRF,
Gaussprradial, and NB models showed an equal performance (POD = 0.94) (Table 3).

Generally, the evaluation of the applied machine learning (ML) models in this study indicated an
acceptable performance for all the ML models. However, regarding the accuracy and kappa values,
the models’ performances were ranked as follows: WSRF > Gaussprradial > NB. A direct comparison
between the results of this study and previous ones is not possible because the application of the WSRF
and Gaussprradial models was undertaken for the water erosion of soil for the first time. However,
two novel ML models (WSRF and Gaussprradial) applied in this study indicated a better performance
than the NB model that has previously been used in this field. Previous studies have indicated the
accurate performance of the NB model in the assessment of soil erosion, such as Weihua et al. [66] and
Nhu et al. [67].
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3.3. Spatial Prediction of Water Erosion Susceptibility

After the calibration and validation of the models, the maps of the soil erosion probability were
predicted using the values of the pixels throughout the study area. Then, the probability maps were
classified into five susceptibility classes of very low, low, medium, high, and very high based on the
classification method of natural breaks through the ArcGIS software (Figure 8).

 

 

Figure 8. Spatial prediction of water erosion using various methods: (A) Gaussprradial, (B) NB, and
(C) WSRF.

The area of the susceptibility classes found using each model is presented in Table 4. As can
be seen, the Gaussprradial model predicted most of the area in the moderate class (about 450 km2,
34.69% of the study area). The sum of the areas for low and very low classes was less than 7% (about
85 km2) (Figure 8A). According to the NB model, more than 65% of the study area (about 850 km2) was
located in very high susceptibility zones (Figure 8B). Results of the WSRF model indicated that the
classes of the very low, low, moderate, high, and very high susceptibilities covered 11.91% (154.52 km2),
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9.76% (126.6 km2), 20.25% (262.64 km2), 28.66% (371.87 km2), and 29.42% (381.7 km2) of the study area,
respectively (Figure 8C).

Table 4. Area of the susceptibility classes found using each model.

Susceptibility
Class

Gaussprradial NB WSRF

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Very low 0.08 0.01 115.73 8.92 154.52 11.91
Low 84.87 6.54 75.49 5.82 126.60 9.76

Moderate 450.02 34.69 93.00 7.17 262.64 20.25
High 386.76 29.81 163.39 12.59 371.87 28.66

Very high 375.60 28.95 849.72 65.50 381.70 29.42

Although the predicted models indicated different areas for each class, there was something in
common for all predicted maps. By comparing the predicated maps (Figure 8) with the NDVI map
(Figure 5a), it was clear that the susceptibility maps were approximately matched with the NDVI and
lithology maps. For example, the green areas in the east of the region on the NDVI map (Figure 6a)
had higher values of NDVI, which correspond to lower values on the water erosion susceptibility
maps (Figure 7). Furthermore, the higher susceptibly values (Figure 8) corresponded to the TRJ
lithology (Figure 5b). TRJs include dark grey shale, claystone, siltstone, and sandstone of the Shemshak
formation. In this formation, various kinds of water erosion, such as rill, riverbank, gully, and badland
erosions can be seen. This agrees with the SAFS results, which indicated that the NDVI and lithology
were the most important variables during the feature selection.

4. Conclusions

This study focused on the probability of water erosion occurring in the Nur-Rood watershed.
Using the SAFS model, the most important factors were selected among nineteen parameters, namely,
NDVI, lithology, R, SL, FD, FA, soil texture, DFS, aspect, curvature, HSG, and DD. Based on the
performance analysis of the machine learning (ML) models, the two novel applied ML models of
WSRF (accuracy = 0.91, Kappa = 0.82) and Gaussprradial (accuracy = 0.88, Kappa = 0.76) displayed
better performances than the NB (accuracy = 0.85, Kappa= 0.71) model that has previously been used
in this field. The predicted maps created using the ML models indicated the different areas for each
susceptibility class but it was obvious that the susceptibility maps were approximately matched with
the NDVI and lithology maps (which were identified as the most important variables). One of the
main limitations in this study that also occurs in other spatial modeling studies is that different scales
are used for the input variables all over the world. Although all of the input variables were resampled
into the same spatial resolution, the data collection and sampling of them were not on the same scale;
this is an inevitable limitation for the time being. It may be the case that the data availability of the
NDVI (30 m resolution) helped this variable to be the most important variable during the soil erosion
modeling compared with the other variables (such as the soil dataset and lithology with scales of
1:100,000 or more). Despite these limitations, producing the water erosion susceptibility maps in
developing countries can be a useful tool for sustainable management, the conservation of watersheds,
the reduction of soil degradation, and alleviating water quality decline.
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Abstract: This study analyzed the influence of climate change on sediment yield variation, sediment
transport and erosion deposition distribution at the watershed scale. The study was based on Gaoping
River basin, which is among the largest basins in southern Taiwan. To carry out this analysis, the
Physiographic Soil Erosion Deposition (PSED) model was utilized. Model results showed a general
increase in soil erosion and deposition volume under the A1B-S climate change scenario. The situation
is even worsened with increasing return periods. Total erosion volume and total sediment yield in
the watershed were increased by 4–25% and 8–65%, respectively, and deposition volumes increased
by 2–23%. The study showed how climate change variability would influence the watershed through
increased sediment yields, which might even worsen the impacts of natural disasters. It has further
illustrated the importance of incorporating climate change into river management projects.

Keywords: climate change; soil erosion; sediment yield; PSED Model

1. Introduction

Due to the increasing severity of global warming and climate change effect in recent years, extreme
hydrographic phenomena have frequently been observed. Climate change has increased precipitation
concentration, volume and intensity, which has significantly impacted runoff and soil erosion in many
watersheds [1–3]. The sediments generated from watershed erosion are transported to rivers via
surface runoff, and they are the main composition of river sediments and a major source of reservoir or
river dam sediment deposition [4]. The degree of soil erosion has a significant impact on the evolution
of river channels, influencing river stability, flood prevention safety and river remediation planning.
Hence, the control of sediment yield is crucial in watershed management, especially since it usually
involves high costs. In a review of sediment management strategies in Taiwan and the barriers to their
implementation, Wang et al. [5] highlighted how technical barriers are driven primarily by engineering
and costs. This was in reference to methods such as construction of upstream sediment structures
and hydraulic and mechanical dredging. Moreover, in some regions, climate change is projected to
decrease the overall soil erosion potential due to decrease in rainfall [6].

Several studies have focused on the impacts of climate change on precipitation volume, runoff
volume, erosion volume and sediment yield. General Circulation Models (GCMs) have been applied
to analyze the impacts of climate change on precipitation characteristic [7–9] and river runoff [10,11].
The Soil and Water Assessment Tool (SWAT) model seems to be the most favored by researchers
when evaluating the impacts of climate change on flow rate, soil erosion and sediment yield in a
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watershed area [12,13]. Thodsen et al. [14] applied the High Resolution Limited Area Model (HIRHAM)
regional climate model to investigate the impact of climate change on suspended load transport
rate of Danish rivers. In modeling flow rate and sediment yield for high flow-rate rivers under
the A2 scenario in the rain season of 2050, Phan et al. [15] showed an increase of 11.4% and 15.3%,
respectively. Cousino et al. [16] utilized SWAT to provide hydrological insights for the Maumee River
watershed, showing a reduction by 10% in flow, while sediment yield increased by 11%. Most recently,
Zhou et al. [17] used the SWAT model to evaluate the impacts of climate change on flow and sediment
yield in northeast China. In northern Iran, Azari et al. [18] reported an annual increase of 5% in annual
streamflow and more than 35% in sediment yield. Zhang et al. [19] generated climatic conditions for
future periods 2020–2039, 2050–2069 and 2080–2099, and their results demonstrated an increase of 13%
in sediment yield.

The abovementioned methods do not couple the computations of slope erosion and river sediment
transport. Instead, watershed erosion is calculated first based on slope information, followed by
watershed sediment yield based on sediment delivery ratio, a river sediment transport model or
runoff volume with a flow rate-sediment transport rating curve. The estimation of slope erosion,
regardless of applying the Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation
(RUSLE) [20] or Modified Universal Soil Loss Equation (MUSLE), is carried out by empirical model.
Empirical models are established based on erosion data of the initial location via inductive analysis.
Therefore, they have application and location limitations. Moreover, the erosion volume estimated by
empirical models is the total erosion volume rather than the time-dependent or spatial-dependent
erosion volume. Furthermore, watersheds and river systems are complex and sediment boundary
conditions for carrying out river sediment transport simulations by the abovementioned models cannot
be obtained directly. Typically, sediment transport volume is estimated by the flow rate-sediment
transport rating curves established through hydrological observation stations. Nonetheless, sediment
transport rates estimated by rating curves have large uncertainties, especially with high discharge
values [21].

To understand the impacts of climate change on erosion volume, sediment yield and erosion
distribution for a watershed, this study utilized a Physiographic Soil Erosion-Deposition (PSED)
model proposed by Chen, Tsai and Tsai [4]. Unlike empirical models, the PSED model has physical
mechanisms that enable simultaneous computation of slope erosion and river sediment transport.
Additionally, this model does not require the flow rate-sediment rating curve as a boundary condition,
thus eliminating uncertainties that come with their adoption. Findings from this study will serve as a
useful reference for decision-making authorities in planning appropriate strategies and corresponding
measures to prevent water- and soil-related disasters.

2. Materials and Methods

2.1. Study Area

Gaoping River, which is the largest river in Taiwan, was used for the analysis. It is located in the
southwest of Taiwan and has a total length of 171 km, covering 3257 km2. It originates from west of the
Central Mountain Range near Yushan. The upstream end is connected to Laonong River, and its main
branches include Qishan, Ailiao and Zhuokou (Figure 1). The topographic height varies significantly,
descending along the direction from northeast to southwest, with a maximum difference of nearly
4000 m. The area above 1000 m accounts for 47.45% of the total drainage basin, that between 100 and
1000 m accounts for 32.38% and finally, the area below 100 m accounts for 20.17%. The average slope
of the river bed is approximately 1/150, with 1/15, 1/100 and 1/1000 for the upstream, midstream and
downstream sections, respectively. Additionally, the sections’ lengths are 37, 68 and 66 km for the
upstream, midstream and downstream sections, respectively.

Time- and location-based precipitation distribution in the basin varies widely. Near the Central
Mountain Range it is large (~3400 mm), whereas in the plain and coastal areas it is significantly smaller
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(~2000 mm). Precipitation is concentrated from May to October, which accounts for 90% of the annual
precipitation. Average annual runoff volume is ~8.45 billion m3, of which 7.69 billion m3 (91%) occur in
the wet season. The average annual sediment transport volume is 35.61 million tons, with 10,934 tons
of sediment transport per km2 of drainage basin area.

 

–

Figure 1. The drainage network in the Gaoping River basin.

The Gaoping River basin is among the worst basins in Taiwan in terms of sediment yield and
is highly vulnerable to sediment deposition. Statistical data from the Water Resources Agency of
Taiwan, MOEA, estimate a total dredging sediment volume of 94,780,000 m3 for Gaoping River basin
between 2009 to 2014 [22]. The major contributions to such high rates include the high-slope landform
and concentrated precipitation. The geological map in Figure 2 shows that the watershed mainly
constitutes sand gravel and sandstone, rendering it vulnerable to erosion. Stefanidis and Stathis [6],
in their assessment of soil erosion in a catchment, showed that vulnerable geological subsoil and the
steep slopes favor the development of erosion phenomena. At Gaoping, about 80% of the annual
precipitation is from an average of 3–4 typhoons per year [21], which fall between June and September
each year. Precipitation in these events is characterized by high intensity and short duration, leading
to enormous volumes of sediment yield. The situation is even worsened by additional factors, such as
climate change, which has caused drastic changes in precipitation [23].
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According to Taiwan’s hydrological data 

Figure 2. Geological map of Gaoping watershed [24].

2.2. Long Term Climate and Hydrological Changes

According to Taiwan’s hydrological data from the past 55 years, there has been a gradual increase
in precipitation and typhoon intensity. Both the frequencies of occurrence and the severity of flooding
are showing an increasing trend. Figures 3 and 4 show the long-term climate and hydrological data
from 1962 to 2016 recorded by the Kaohsiung weather station in the study area. From Figure 3,
the annual average temperature in the study area exhibited an increasing trend. Beginning in 1997,
the annual average temperature was higher than the average temperature in the past 55 years (24.8 ◦C)
and after 2000, the increase of annual average temperature was more significant. Precipitation after
1996 was more significant and most of the annual precipitation was higher than the long-term annual
average precipitation of 1770 mm. The deviation between high and low precipitation became larger
and the duration of high and low precipitation became shorter (Figure 4).
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–

–

Figure 3. Changes in annual average temperature recorded by the Kaohsiung weather station, 1960–2016.

–

–Figure 4. Changes in annual precipitation recorded by the Kaohsiung Weather Station, 1960–2016.

2.3. The Physiographic Soil Erosion-Deposition Model (PSED Model)

The PSED Model [4,25] is a physical mechanism-based model that was developed by integrating the
Geographic Information System (GIS) with a Physiographic Precipitation-Runoffmodel. It incorporates
the effects of slope and river channel erosion, entrainment and deposition on river bed erosion-deposition
for a watershed. Based on topography, landform, river system, land use and soil characteristics of
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the watershed, the PSED Model utilizes GIS to partition the watershed area into non-structural
computational cells. The computed cells are then classified into slope cells, river cells and special
cells. Esri ArcMap 10.7 was utilized to obtain hydrological and physiographical data within each cell.
In addition, the extension modules of ArcMap (spatial analysis, hydrologic model, 3D Analyst and
Network Analyst) and their object-oriented programming language were used.

The model consists mainly of two parts; a water flow simulation and a soil erosion-deposition
simulation. Water flow simulation calculates the transport of precipitation runoff in the watershed
area. The continuity equation of water flow is as follows:

Ai
∂hi

∂t
=

∑

k

Qi,k(hi, hk) + Pei(t) (1)

where: t is time; Ai is area of the i cell; hi and hk represent the water stage of the i and k cell, respectively;
Qi,k denotes the flow rate (discharge) from the k cell into its neighboring i cell; and Pei expresses the
effective rainfall volume per second in the i cell, which is equal to the effective rainfall per second in the
i cell multiplied by its area. Depending on the topography and landform information, the watershed
area can be divided into several computed cells and the water level change of each cell should then
satisfy the continuity equation of water flow and flow rate simulation, as expressed in Equation (1).

In the soil erosion-deposition simulation for the watershed, simulations for slope cells and river
cells were calculated separately. The sediment transport rate and river bed erosion profile of each cell
were simulated by using the suspended load equation (Equation (2)), the river bed variation continuity
equations (Equation (3)) [26], and the river bed load transport equation.

∂Vsi

∂t
=

∑

k

QSCi,k + Qsei −Qsdi + RDTi (2)

(1− λ)∂Vdi

∂t
=

∑

k

QSBi,k −Qsei + Qsdi −RDTi (3)

where: Vsi is the soil volume of water body in i cell (= Ai × Di × Ci); D is the cell water depth; C

is the suspended load volume concentration; λ is the porosity; Vdi is the alluvium volume of cell i;
QSCi,k and QSBi,k denote the suspended and the river bed load flow rates, respectively, from the k cell
into its neighboring i cell; Qsei represents the entrainment rate of ground surface soil or river bed
sediment of the i-th cell; Qsdi expresses the deposition rate of river bed sediment for i cell; and RDTi is
the precipitation separation rate of the i cell.

2.4. Computational Cells

Figures 5–7 show the Digital Elevation Model (DEM), soil map and land use maps of Gaoping
River Basin, respectively. The basin ranges from 0 m to more than 3000 m above sea level and is
dominated mostly by forest land at elevations higher than 500 m. Based on the DEM, land use,
soil maps, road system maps, and slope maps (Figure 8) the basin was divided by Esri ArcMap 10.7
into 17,635 computational cells for further analysis.
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Figure 5. Digital elevation model (DEM) of the Gaoping River watershed.

 

Figure 6. Soil map of the Gaoping River watershed [27].
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Figure 7. Digital land use map of the Gaoping River watershed [28].

 

Figure 8. Slope map of Gaoping River watershed.
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2.5. Input Data and Model Setup

In the basin, there are 28 precipitation monitoring stations established by the Central Weather
Bureau; however, they are not evenly distributed. In order to minimize computational errors, we applied
the Thiessen polygons method to determine the controlling area of each precipitation monitoring
station. The reader should note that the Thiessen polygons were not used to derive the weighted
precipitation. Instead, precipitation data for each station were used as the precipitation volume of
computed cells in the control area for the same precipitation monitoring station (Figure 9).

 

Figure 9. Effective area for precipitation gauging stations in the Gaoping River watershed.

PSED simulated sediment transport was validated by comparing the flow rate and sediment
transport data collected by sediment monitoring stations of the 7th River Management Office of Water
Resources Agency, MOEA, which are located at the downstream of the Gaoping River and its tributaries.
They include the Shanlin Bridge of Qishan River, Tachin Bridge of Laonong River, Sandimen Bridge of
Ailiao River, and Lilin Bridge of Gaoping River (Figure 10).

The future scenario in this study was set from 2020 to 2039 and the corresponding baseline was set
from 1980 to 1999. The Taiwan Climate Change Projection and Information Platform Project (TCCIP)
provided downscaled precipitation data at 5 km2 resolution. To process the data, TCCIP relies on
24 GCMs as described in the Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment
Report (AR4) [29]. Additionally, IPCC identifies A2, A1B and B1 as the most probable scenarios;
hence, this study adopted the A1B-S for analysis, which is regarded as a worse scenario and is similar
to the A1B scenario. The worst-case scenario is primarily obtained through subtracting or adding
one standard deviation between the estimated values of GCMs from the multi-model ensemble of
all GCMs [30]. Monthly precipitation scenario information was further combined with a weather
generator to evaluate the impact of climate change on daily precipitation volume.
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The baseline was defined by precipitation data from 1980 to 1999. Historical daily precipitation
data from the monitoring stations were used as input files for the climate derived models. These were
then applied to generate the daily precipitation data representing the future climate change scenario.
In addition, the daily precipitation data of the baseline scenario were combined with the precipitation
distribution in the watershed area to translate into precipitation profiles to be used by the PSED model.

 

–

Figure 10. Sediment monitoring stations on the Gaoping River and its tributaries.

2.6. Model Verification

Typhoon Morakot (2009), the most disastrous storm to have hit Taiwan in the last century, was used
to validate runoff and suspended load hydrographs from the PSED model. We further compared
actual discharge and sediment transport from each hydrological station to simulated data. Simulated
and observed flow hydrograph from Lilin Bridge is shown in Figure 11. The peak of the simulated
hydrograph coincided with that from the observed data, and the hydrograph shapes are similar.
This suggests that the model can be successfully applied.

Since the hydrological monitoring stations along the Gaoping River system do not have suspended
load concentration data hydrographs, the historical discharge and suspended load data from sediment
monitoring stations downstream of the main branch of the Gaoping River were used to establish the
correlation between discharge and sediment transport volume of each hydrological monitoring station.
These served as the basis for validating the suspended load concentration hydrograph obtained from
the numerical model. The simulated discharge and suspended load transport rate under Typhoon
Morakot in 2009 were plotted onto the correlation diagram between the observed discharge and
sediment transport rate for the Sanlin, Dajin, Sandimen and Lilin bridge Stations (Figures 12–15).
In these figures, points are actual historical measured data. The solid line represents the regression
relation between discharge and sediment transport rate for each hydrological monitoring station. It is
noted from the figures that the simulated correlation between discharge and sediment transport rate
was consistent with the correlation between discharge and sediment transport rate of the actually
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observed data for all monitoring stations except Lilin Bridge station, particularly under high discharge.
The model slightly overestimated data at this station (Figure 15). Nonetheless, the model also indicated
reasonable estimates on suspended load and suspended load transport.

 

Figure 11. Simulated and observed discharge during Typhoon Morakot in 2009 at Lilin Bridge station.

 

Figure 12. Simulated and observed correlation between flow discharge and sediment transport rate at
Sanlin Bridge station.
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Figure 13. Simulated and observed correlation between flow discharge and sediment transport rate at
Dajin Bridge station.

 

Figure 14. Simulated and observed relationship between flow discharge and sediment transport rate at
Sandimen Bridge station.
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Figure 15. Simulated and observed relationship between flow discharge and sediment transport rate at
Lilin Bridge station.

3. Results

3.1. Impacts of Climate Change on Erosion Volume and Sediment Yield

Different precipitation types, rainfall distribution, rainfall intensities and precipitation volume
will result in different runoff processes, leading to different erosion volumes and sediment yields in
a watershed. The precipitation volumes collected by each precipitation monitoring station in the
watershed area for each return period (2, 5, 10, 25, 50, 100 and 200 year return period) under the baseline
and A1B-S scenarios were used to calculate the average maximum rainfall intensity and average
rainfall for each return period via the controlled area weighted method. The above return periods
were selected as they are the standards used for most engineering designs in Taiwan. The precipitation
results for the baseline were then compared with the results of the A1B-S scenario. Table 1 shows
the comparison of average maximum rainfall intensity and average rainfall between the baseline and
selected scenarios of each return period. Average maximum rainfall intensity increased more than
average rainfall, suggesting that under the influence of climate change, not only did the precipitation
volume increase but also the precipitation intensity.

Table 1. Average maximum rainfall intensity and average rainfall increase rates under baseline and
A1B-S scenarios for various return periods.

Return
Period

Average Maximum Rainfall Intensity (mm/hr) Average Annual Rainfall (mm)

Baseline
(1980–1999)

A1B-S
(2020–2039)

Increase
Rate (%)

Baseline
(1980–1999)

A1B-S
(2020–2039)

Increase
Rate (%)

2 27.52 29.14 5.89 411.18 434.90 5.77
5 39.00 41.90 7.43 584.82 627.39 7.28

10 46.53 51.63 10.97 701.12 776.94 10.81
25 55.10 65.92 19.65 843.42 1004.26 19.07
50 61.12 78.24 27.99 957.97 1212.17 26.53

100 66.96 91.98 37.36 1094.72 1466.32 33.95
200 72.75 107.35 47.56 1280.60 1794.54 40.13
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Simulated erosion volume and sediment yield under the baseline and A1B-S scenarios for various
return periods are shown in Table 2. Total erosion volume and sediment yield under the A1B-S scenario
for various return periods are greater than under the baseline. The increase in the total sediment yield
rate was higher than that of the total erosion volume. The total erosion volume and total sediment yield
increases by 4–25% and 8–65%, respectively, when compared to the baseline. This implies that climate
change contributed to 15% and 36% increases in soil erosion volume and sediment yield, respectively,
when compared to the baseline average.

Table 2. Soil erosion and sediment yield increase rates under baseline and A1B-S scenarios for various
return periods.

Return
Period

Total Erosion (m3) Total Sediment Yield (m3)

Baseline
(1980–1999)

A1B-S
(2020–2039)

Increase
Rate (%)

Baseline
(1980–1999)

A1B-S
(2020–2039)

Increase
Rate (%)

2 25,025,101 26,158,002 4.53 3,610,538 3,919,368 8.55
5 33,683,874 35,566,538 5.59 6,312,775 7,083,252 12.21
10 38,589,952 41,576,563 7.74 8,280,890 9,711,170 17.27
25 43,557,305 49,077,034 12.67 10,631,451 13,811,304 29.91
50 46,687,318 54,601,150 16.95 12,325,453 17,496,549 41.95

100 49,482,826 59,940,637 21.13 14,010,777 21,564,822 53.92
200 52,023,499 65,223,943 25.37 15,708,576 25,927,062 65.05

3.2. Climate Change Effect on Erosion and Erosion Distribution

Soil erosion simulation results for the studied area were compiled and summarized in Table 3.
The least return period indicated a 0.54% increase in area, while for under 200 year return period there
was a 2.3% increase. The impacts of climate change on erosion were found to be lower when compared
to other areas within the Asian region. Pal and Chakrabortty [31] simulated the impacts of climate
change on soil erosion in a sub-tropical monsoon dominated watershed based on a RUSLE model,
and found erosion to increase by 33% under a 15 year return period.

Table 3. Comparison of the increase rate of soil erosion area increase under the baseline and A1B-S
scenarios for various return periods.

Return Period Area Increase (m2) Increase Rate (%)

2 11,888,256 0.54
5 16,749,128 0.7

10 29,890,573 1.22
25 42,155,931 1.67
50 47,859,021 1.92

100 50,239,407 1.97
200 58,921,624 2.3

Climate change was also shown to cause larger erosion depths (Figure 16). Except in a few selected
areas, a greater percentage indicates an increasing trend, and erosion depth increased with increasing
return period. This is in line with observations made by Giang et al. [32], who predicted that Asian
countries would be among the hardest hit regions globally.
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 16. Spatial distribution of erosion depth increase under the influence of climate change under
(a) 10 year, (b) 25 year, (c) 100 year and (d) 200 year return periods.

3.3. Climate Change Effects on Deposition Volume and the Deposition Distribution

Deposition distributions under baseline and climate change scenarios for 10 and 100 year return
periods are shown in Figures 17 and 18, respectively. High deposition was observed mainly at
the confluences; between Gaoping and Qishan River (zone A), Gaoping River and Laonong River
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(zone B), Ailiao River Gaoshu Bridge and Ailiao weir (zone C) and in the middle and downstream
of Gaoping River (zone D). Zone areas are shown in Figure 19. Large deposition at these areas is
attributed to widening of the cross sections, low river bed slopes and low flow rates. Deposition in each
computational cell was calculated by multiplying the deposition height of a cell by its area, and the
total deposition of all cells was simply the summation of the volumes in each cell. A summary of the
deposition under the different return periods is shown in Table 4.

Figure 20 shows the spatial distribution of deposition depth increase under the baseline and
climate change scenarios. Similar increase patterns were observed between the simulated cases, with a
larger deposition depth increase located in the middle and downstream of river channels. Deposition
depth increase was highest in the main channel as expected, and increased with increasing return
periods indicated by dark green areas in Figure 20.

Table 4. Increase in volume of estimated sediment deposition under baseline (1980–1999) and A1B-S
(2020–2039) scenarios for various return periods.

Return
Period

Baseline (m3)
(1980–1999)

A1B-S (m3)
(2020–2039)

Deposition Volume Increase for
Baseline and A1B-S Scenarios (m3)

Increase Rate
(%)

2 9,499,196 9,720,588 221,392 2.33
5 11,984,107 12,425,532 441,425 3.68
10 13,292,933 14,141,714 848,781 6.39
25 14,618,375 16,252,862 1,634,487 11.18
50 15,424,874 17,836,223 2,411,349 15.63

100 16,180,722 19,313,894 3,133,172 19.36
200 16,855,567 20,857,945 4,002,378 23.75

a) 

 

b) 

 

Figure 17. Deposition depth distribution under 10 year return period for (a) baseline and (b) climate
change scenarios.
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a) 

 

b) 

 

Figure 18. Deposition depth distribution under 100 year return period for (a) baseline and (b) climate
change scenarios.

 

Figure 19. Location of various river sections in the Gaoping River basin that are vulnerable to
soil deposition.
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 20. Spatial distribution of deposition depth increase under the influence of climate change for
(a) 10 year, (b) 25 year, (c) 100 year and (d) 200 year return periods.

Gaoping River basin exhibited high erosion volume and sediment yield. According to statistical
data reported by the Water Resources Agency [22], 76,870,000 m3 have been dredged between 2010
and 2013. Table 5 shows the dredged volume of each year, while Figure 21 indicates the location of the
dredged site. Dredged locations coincide with high deposition areas computed by the PSED model,
as illustrated by Figure 21.
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Table 5. The actual dredged sediment deposition amounts from 2010 to 2013 in each river [22].

River
Actual Dredged Amount (104 m3)

2010 2011 2012 2013

Laonong 947.26 1516.37 855.74 623.36
Zhuokou 27.68 75.00 6.49 44.60
Qishan 423.07 241.70 187.77 244.46
Ailiao 555.21 689.79 184.91 139.99

Gaoping 534.61 203.68 104.33 81.54
Total 2487.83 2726.54 1339.24 1133.95

 

–
–

– –

Figure 21. Dredged locations in Gaoping River basin from 2010 to 2013.

In each year, a huge amount of money is needed to carry out the dredging works at Gaoping
River. With climate change increasing the deposition rates, not only will there be more pressure
on financial resources, but flooding risk is also expected to increase. Hence, appropriate structures
and policies should be put in place in order to redress climate change impacts. Proposed strategies
include identifying and mapping areas more prone to soil erosion and implementing river management
and stability measures. Planning the overall river basin operations and management strategies can
effectively control the sediment yield in a watershed, hence reducing sediment deposition in river
channels due to soil erosion and eliminating flooding disasters due to limited water passage.
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4. Conclusions

This study applied a numerical model to investigate the impacts of climate change on erosion
volume, sediment yield and erosion deposition in a watershed. The results showed that precipitation
under the A1B-S climate change scenario would significantly increase soil erosion volume, sediment
yield and sediment transport rate. Total erosion volume and total sediment yield in the watershed
under the A1B-S scenario for various return periods increased by 4–25% and 8–65%, respectively,
from 2 year to 200 year return periods. Climate change further increased deposition volume by 2–23%
relative to the baseline and by 13% relative to the baseline average. Deposition was found to mostly
occur at the river confluences, river middle and at the downstream end of Gaoping River. The study
clearly revealed the adverse impacts climate change is likely to bring to this basin; hence, appropriate
conservation measures are suggested.
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Abstract: The effects of vegetation restoration on soil erosion resistance of gully head, along a
revegetation age gradient, remain poorly understood. Hence, we collected undisturbed soil samples
from a slope farmland and four grasslands with different revegetation ages (3, 10, 18, 25 years)
along gully heads. Then, these samples were used to obtain soil detachment rate of gully heads
by the hydraulic flume experiment under five unit width flow discharges (2–6 m3 h). The results
revealed that soil properties were significantly ameliorated and root density obviously increased in
response to restoration age. Compared with farmland, soil detachment rate of revegetated gully
heads decreased 35.5% to 66.5%, and the sensitivity of soil erosion of the gully heads to concentrated
flow decreased with revegetation age. The soil detachment rate of gully heads was significantly
related to the soil bulk density, soil disintegration rate, capillary porosity, saturated soil hydraulic
conductivity, organic matter content and water stable aggregate. The roots of 0–0.5 and 0.5–1.0 mm
had the highest benefit in reducing soil loss of gully head. After revegetation, soil erodibility of
gully heads decreased 31.0% to 78.6%, and critical shear stress was improved by 1.2 to 4.0 times.
The soil erodibility and critical shear stress would reach a stable state after an 18-years revegetation
age. These results allow us to better evaluate soil vulnerability of gully heads to concentrated flow
erosion and the efficiency of revegetation.

Keywords: soil erosion; gully erosion; vegetation restoration; soil erodibility; land use

1. Introduction

Soil erosion is recognized as a global environmental problem, which severely damages
infrastructure, causes land degradation and water pollution, and threatens the safety of human
production and life [1–3]. In the past few decades, many scholars have made many efforts to study the
process and mechanism of soil erosion, establish many soil erosion prediction models and try to control
soil erosion [4–7]. At present, a set of soil erosion control measures system integrating engineering
measures, agricultural measures, and biological measures has been formed [8–10], especially vegetation
measures play an extremely important role in soil erosion control [11,12].

Previous studies have shown that revegetation can effectively reduce soil erosion. For example,
Wang et al. [13] found that soil detachment capacity of abandoned farmland was 1.02 to 2.29 times greater
than four restored lands. Li et al. [14] reported that the ratios of the soil detachment capacity of cropland
to those of orchard, shrubland, woodland, grassland, and wasteland were 7.14, 12.29, 25.78, 28.45,
and 46.43, respectively. The improvement of soil erosion resistance by revegetation is mainly controlled
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by the combination of soil properties and root traits [15–18]. In terms of soil properties, many studies
have verified that the revegetation significantly affects soil erosion by changing the soil bulk density,
organic matter content, and water-stable aggregate [19–21]. Furthermore, the vegetation root zone is
the dynamic interface of soil–plant–atmosphere continuum in partitioning rain and irrigation water
into evaporation, transpiration, runoff, and deep drainage [22,23], but is also the home of “green water”
which is the source of plant nutrition [24]. Especially, the vegetation root systems also play a great
role in protecting soil against flow scouring by affecting soil water movement [25,26]. Root-permeated
soils exhibited lower erosion rates primarily through increasing the required shear stress before
detachment [27]. Moreover, root growth can bind and bond soil particles and aggregate, thus,
enhances soil resistance to erosion [28]. Some root parameters, for example root biomass, length density,
and surface area density, were used to estimate the effect of root on soil detachment [21,28–31]. De Baets
and Poesen [25] found that soil detachment rate reduced exponentially with increasing root biomass.
Some studies also showed that soil detachment was related to root architecture and fibrous root was
more effective than tap root in reducing soil loss [24,31]. However, the most of previous studies only
focus on the impact of revegetation on soil erosion resistance of hillslopes. In the watershed dominated
by gully erosion, the gully head is the main source of soil erosion, but the effect of revegetation on soil
erosion resistance of gully heads remains unclear. Therefore, there is a strong need to understand the
effect of revegetation on soil erosion of gully head by concentrated flow to develop a more reasonable
vegetation model.

Notably, in the gully region of the Loess Plateau, about 63% of total runoff is generated from the
loess tableland with a gentle slope of 1–5◦, which can initiate gully headcut erosion and contribute
86.3% of total sediment [32]. The gully headcut erosion by concentrated flow became the main sediment
resource. At present, the gully headcut erosion was controlled effectively due to the implementation
of a series of control measures (e.g., the “Three Protection Belts” and the “Green for Grain” project),
which, to some extent, was attributed to the fact that the revegetation improves the soil resistance of
gully heads to concentrated flow [21,33]. Since some ecological restoration projects were conducted,
land use has changed dramatically in the Loess Plateau [34]. Hence, the land use has changed,
and the natural succession of vegetation was promoted [35]. With progression in natural restoration
of grassland, soil physical and chemical properties and vegetation characteristics (e.g., coverage,
community structure, species composition and diversity, and root diameter, density, and diameter
distribution) varied greatly [36,37]. These changes would result in dynamic variations in soil erosion
resistance. However, the response of soil erosion resistance to vegetation succession process mainly
focused on the hillslope in the hilly-gully region of Loess Plateau [15,16], and few studies were
conducted to explore the response of soil resistance of gully heads by concentrated flow to vegetation
succession process.

Therefore, to evaluate the effect of revegetation process on soil erosion resistance of gully heads
and optimize revegetation measures for controlling gully headcut erosion in the gully region of the
Loess Plateau, we selected four grasslands with different revegetation ages (3, 10, 18, 25 years) along
gully heads with the slope farmland as the control. This study aimed to (1) quantify the effect of
revegetation age on soil detachment by concentrated flow, (2) clear the relationships between soil
detachment rate and soil and root properties, and (3) confirm the dynamic variation in soil erosion
resistance of gully head with revegetation age.

2. Material and Method

2.1. Study Area

The study was conducted in the Nanxiaohegou watershed in the Xifeng Research Station of Soil
and Water Conservation (35◦41′–35◦44′ N, 107◦30′–107◦37′ E). The watershed has an area of 36.3 km2

and altitudes ranging from 1050 to 1423 m above mean sea level (Figure 1) in the typical gully region
of the Loess Plateau. The climate is temperate continental semiarid. The mean temperature is 10 ◦C,
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and the frost-free period is 160–180 days. Annual precipitation is approximately 523 mm, which has
the characteristic of annual variation and uneven distribution during the year. In the form of short
heavy storms, 58.8% of the rainfall occurs from July to September. The soil type is yellow loamy
soil. The original vegetation has disappeared due to human activities. Gully headcut erosion is the
main resource of sediment yield in the watershed. Since the 1970s, some soil and water conservation
projects, for example the “three protection belts” project and the “Green for Grain” project and so on,
were implemented to control soil and water loss, and the vegetation cover of the Loess Plateau increased
to 59.6% in 2013. Additionally, the land use has undergone tremendous changes [38]. These efforts also
effectively stabilized the gully heads and thus contained the gully headcut erosion [33]. At present,
the annual soil erosion module is effectively controlled at the level of 2440 t km−2 a−1 in the study area,
and the vegetation communities comprise mainly planted forests and shrubs and native secondary
herbaceous plants [21].

projects, for example the “three protection belts” project and the “Green for Grain” project and so on, 

−2 −1
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Figure 1. Location of the study area on the Loess Plateau and the location of sampling sites in the
Nanxiaohegou watershed.

2.2. Sampling Sites Selection

During our investigation of gully heads, some cracks developed near gully heads. Kompani-Zare
et al. [39] and Guo et al. [21] stated that soil samples from 0 to 30 cm depth near the gully heads
(the distance was less than 5 m) can represent soil properties of the gully heads. Therefore, in consideration
of collapsibility and vertical joints development of loess, the sampling plots were established about 1.0 m
meters from gully heads to ensure safety. As a result, four natural restoration grasslands with different
ages (3, 10, 18, 25 years) were selected (Figure 1). The natural restoration age was confirmed by consulting
the village elders and scientists at the scientific experimental station. The slope aspect and gradient,
elevation, soil type, and previous farming practices of the selected sites were similar to minimize the
effects of these factors on the experimental results. For comparison, one corn-planted farmland site, with a
topography similar to that of the grasslands, was selected as a control. The basic information of the five
selected sites is listed in Table 1.

Table 1. Basic information of the selected five sampling sites.

Site Code
Restoration

Age (yr)
Slope (◦) Coverage (%) Altitude (m)

Dominant
Communities

Main Companion Species

SF 0 2.4 — 1420 Zea mays Setaria viridis
NR3 3 2.9 72.3 1405 Artemisia capillaris Artemisia sacrorum

NR10 10 2.4 80.8 1401 Artemisia sacrorum Artemisia capillaris
NR18 18 3.2 93.4 1390 Artemisia sacrorum Artemisia capillaris

NR25 25 3.1 91.2 1380 Bothriochloa ischaemum
Artemisia sacrorum +

Lespedeza daurica
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2.3. Sampling and Measurement of Soil and Root

In this study, seven soil and root property parameters including soil bulk density, capillary porosity,
soil disintegration rate, soil water-stable aggregate, soil saturated hydraulic conductivity, organic matter
content, and root mass density were measured. Firstly, three repeated sampling plots (5 m × 5 m) were
established in each of gully head sampling sites with the litter layer removed, and topsoil samples
(0–30 cm) were collected. Then, three cutting rings (200 cm3) were used to randomly collect soil samples
in each plot, and a total of nine samples were oven-dried at 105 ◦C for 24 h to determine the soil bulk
density of each gully head site. Similarly, the other 9 soil samples were also collected by cutting rings
of 200 cm3 to determine the soil saturated hydraulic conductivity by applying the constant water head
test method. Three cutting rings (100 cm3) were used to collect soil samples for the measurement of
soil capillary porosity [33]. Three man-made steel cubical boxes (5 cm in length) were used to collect
soil samples for measuring soil disintegration rate by using a disintegration box [14,40]. Lastly, the
other three samples were randomly collected in each plot to form a mixed sample. A total of 45 mixed
samples were obtained and used for laboratory analyses of organic matter content and water-stable
aggregate and its stability. These mixed soil samples were air-dried at room temperature, with large
roots and organic residues manually removed. Sieves with apertures (0.25, 0.5, 1.0, 2.5, and 5.0 mm)
were used to test the water-stable aggregate. The potassium dichromate external heating method was
used to measure the soil organic matter content.

2.4. Hydraulic Flume Experiments

A hydraulic flume experiment was conducted to determine the soil resistance to concentrated
flow upstream gully heads (Figure 2). The size of the flume was 2.0 m long and 0.15 m wide similar to
the one used by De Baets et al. [28,31], which was enough to make water flow along the slope soil.
An opening (0.5 m length and 0.1 m wide) was set at the bottom of the flume, and a metal sample
box with the same size was used to collect undisturbed soil samples so that the surface of the soil
sample was at the same level of the flume surface. The space between sampling box and flume edge
sealed with painter’s mastic to prevent boundary effects. According to the study of Guo et al. [40],
the flume experiment was carried out under five different unit width flow discharges of 2, 3, 4, 5, 6
m3 s−1, and thus, a total of 100 samples (5 sites × 5 flow discharges × 4 replications) were collected to
measure soil resistance of gully heads. To simulate real flow generation conditions, the soil should be
saturated by using a watering pot before experiment. During the experiment, a portable flow meter
instrument (LS300-A) with 1.5% accuracy was used to measure flow velocity which was regarded as
the flow velocity scoring soil area. Runoff and sediment samples were collected with sampling tanks,
and the sampling time was recorded. The measured flow velocity was modified according to flow
regime [41]. Sampled sediment was oven-dried at 105 ◦C for 24 h to determine the soil loss amount
(SLA, kg). Thus, the soil detachment rate (Dr, kg m−2 s−1) could be calculated as follows: please check
font size, please check all reference citation

Dr =
SLA

AT
(1)

where SLA is the oven-dry mass of every sediment sample (kg), T is the experimental period (s) and
A is the soil sample area (m2). In addition, the relative soil detachment rate (RDr) was calculated as
the ratio between Dr for the root-permeated soil samples and that for the farmland topsoil samples,
tested at the same condition [28].
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Figure 2. Skitch of scouring flume for determining soil erosion resistance of gully heads.

In addition, the flow depth (h, m) and shear stress (τ, Pa) were also calculated as follows:

h =
q

vw
(2)

τ = ρghS (3)

where h is flow depth (m), q is the flow discharge (m3 s−1), w is the width of the flume (m), v is the
mean flow velocity (m s−1). ρ is the water mass density (kg m−3), g is the gravity constant (m s−2),
and S is the slope steepness (m m−1).

After each scouring test, a steel cubical box (10 cm in length) was used to take soil sample in the
center of soil area of scouring flume, and the sample was soaked in tap water for about one hour to
increase the dispersion of soil and then were placed on a 0.25 mm sieve and washed with tap water
using low-pressure head. The living roots, plant debris and some pebbles were left on the sieve.
Only the living roots were picked out carefully using tweezers one by one [15]. The washed roots
were classified into 4 levels (0–0.5, 0.5–1.0, 1.0–2.0, and >2.0 mm) by vernier caliper and then were
oven-dried for 24 h at 65 ◦C and weighed to calculate root mass density (RBD, kg m−3).

2.5. Parameter Calculation after the Experiments

Soil particle is detached when flow shear stress exceeds the critical shear stress [6]. Soil erodibility
parameter (Kr) and critical shear stress (τc) were estimated for every natural restoration stage as the
slope coefficient and intercept on the abscissa axis of the regression line between soil detachment rate
and shear stress as described in the WEPP model as follow:

Dr = Kr(τ− τc) (4)

Generally, soil detachment rate can be considered as zero when root reached the infinity. To quantify
the relationship between detachment rate and root mass density, the Hill curve was selected to simulate
the relationship between them [21,31,42]. The Hill curve is expressed as follows [43]:

RDr =
KXr

a

Xr
a + b

, (K > 0, a < 0, b > 0) (5)

where RDr is relative soil detachment rate; Xr is root mass density; K, a and b are constants. The parameter
a determines the shape of the curve, b determines the steepness of the curve and K is the asymptote of
Dr for infinitesimal Xr values. Additionally, the Hill curve can be used to evaluate the ability of roots
to increase soil resistance against concentrated flow erosion. According to Li et al. [44], bˆ(1/a) is plant
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specific and can be used as an index to compare the effectiveness of different plant roots in reducing
soil erosion rates: the lower bˆ(1/a), the more effective the plant root. When the value of Xr is bˆ(1/a),
the soil detachment rates is reduced by 50%.

2.6. Statistical Analysis and Plotting

The analysis of one-way ANOVA followed by multiple comparisons with LSD was applied to
assess the differences of soil properties (Soil bulk density, soil capillary porosity, soil disintegration rate,
saturated hydraulic conductivity, organic matter content, and water-stable aggregate) and root mass
density among the five revegetation ages. All soil and root variables of each revegetation ages were
tested whether the data exhibited a normal distribution and variance homogeneity by Shapiro-Wilk
test and Levene test, respectively. If the data failed to meet the two conditions, the Kruskal–Wallis
test was performed for the above analysis. The interaction effect of flow discharge and revegetation
age was detected using a two-way ANOVA. Pearson’s correlation analysis was used to determine
linkages among soil properties, root mass density, and soil detachment rate. Relationships among soil
detachment rate, soil properties, flow shear stress and restoration age were analyzed by the regression
method. The data analyses were conducted in SPSS v. 16.0 statistical software (IBM Corp., Armonk,
NY, USA). The figure plotting was conducted by Origin v. 2020 (OriginLab Corp., Northampton,
MA, USA).

3. Results and Discussion

3.1. Effect of Revegetation on Soil and Root Properties of Gully Heads

Figure 3 illustrates that the six soil properties of gully heads exhibited a significant increase or
decrease with revegetation age. Compared with slope farmland, the soil bulk density (SBD) and
soil disintegration rate (SDR) of revegetated gully heads significantly decreased by 5.7–18.6% and
28.8–80.5%, respectively (p < 0.05, Figure 3a,c), while the soil capillary porosity (SCP), saturated soil
hydraulic conductivity (SHC), organic matter content (OMC) and water-stable aggregate (WSA)
significantly increased by 3.9–13.8%, 17.4–236.2%, 34.2–221.8%, and 27.7–64.4%, respectively (p < 0.05,
Figure 3b,d–f). Figure 4 illustrates that the roots of 1–2 mm in slope farmland had the relatively higher
root mass density (RMD, 0.20 kg m−3) and accounted for 39% of total RMD. Notably, after revegetation,
the RMD of >2.0 mm was significantly greater than those of the other three root diameters, and it
can account for 40–61% of total RMD. When revegetation age was greater than 3 years, there was a
significant difference in RMD among four root diameter levels (p < 0.05). In addition, we found that
the RMD of four root diameters (except for >2.0 mm) showed a non-significant increase in the first
three-years and then significantly increased.

These results were similar to previous findings regarding the effects of revegetation on soil
properties [45–47]. In fact, the improvement of soil properties of gully heads with revegetation age
can be attributed to the accumulation of fresh plant residues in surface soil as well as roots and
decomposed root residues in subsurface soil [48]. These materials can be directly transformed into soil
organic matter and thus provide energy/carbon sources and nutrients for soil microorganisms [49,50],
further promoting the development of soil aggregation and enhancing the cohesion of soil particles [51].
Hence, vegetation restoration would induce the formation of macroaggregates and increase the water
stability of aggregates [19,52].
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Figure 3. Variation in soil properties with revegetation age. Note: Bar means the 95% confidence interval
(95% CI). Different lowercase letters indicate significant difference among different revegetation ages
(p < 0.05). (a) Soil bulk density (SBD); (b) Soil capillary porosity (SCP); (c) Soil disintegration rate (SDR);
(d) Saturated soil hydraulic conductivity (SHC); (e) Organic matter content (OMC); (f) Water-stable
aggregate (WSA).

 

–

Figure 4. Changes in root mass density (a) and its proportion (b) of different root diameters with
revegetation age. Note: Bar means the 95% confidence interval (95% CI). SF refers to the slope farmland.
NR3, NR10, NR18, NR25 represents the 3, 10, 18, and 25 years of natural restoration time, respectively.
Different capital letters for the same restoration age indicate a significant difference among different
root diameters (p < 0.05), and different lowercase letters for the same root diameter level indicate a
significant difference among different revegetation ages (p < 0.05). (a) Root mass density; (b) Mass
accumulated percent.
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3.2. Effect of Revegetation Age on Soil Detachment of Gully Heads

As illustrated in Figure 5a, the Dr of gully heads showed a significant decrease during the 25-year
revegetation. This result was not agreed with the conclusion of Wang et al. [16] who stated that soil
detachment capacity of sloped lands fluctuated with abandonment time, and the soil detachment
capacity of the slope farmland was significantly greater than those of the abandoned farmlands.
The difference was mainly attributed to the great difference in erosion environment (e.g., plant type,
geomorphological feature, climate) significantly affecting the succession process [36,47]. The mean Dr

of slope farmland was 1.6 to 3.0 times greater than those of revegetated gully heads, which indicated
that the revegetation played a role in enhancing the soil resistance of gully heads to concentrated
flow erosion.
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Figure 5. Change in soil detachment rate of gully heads with restoration age (a), and its relationships
with flow discharge (b). Note: Bar means the 95% confidence interval (95% CI). SF refers to the slope
farmland. NR3, NR10, NR18, NR25 represents the 3, 10, 18 and 25 years of revegetation age, respectively.
The different lowercase letters indicate a significant difference among different revegetation ages
(p < 0.05). (a) Site code; (b) Unit width discharge.

Figure 5b shows the Dr of gully heads of slope farmland and four restored grasslands varied with
flow discharge. The optimal relationships between Dr and flow discharge were fitted, which can reflect
the response of Dr of gully heads to concentrated flow induced by rainstorms of different recurrence
intervals. It was found that the response of Dr of slope farmland to flow discharge could be expressed
as a power function (y = m × xn), and the n-value was greater than 1, indicating the soil loss of gully
heads increases at an increased speed with increasing flow. However, for the restored gully heads,
the optimal relationships between Dr and flow discharge could be described by a series of linear
functions (y = p × x + q), and the p-value decreased with revegetation age, indicating that the sensitivity
of Dr of the gully heads to concentrated flow erosion gradually decreased with increasing restoration
age. Besides, the interacted effect of revegetation age and unit width discharge significantly affected
Dr (p < 0.001) (Table 2).

Table 2. Summary of two-way ANOVAs tests.

Source SS Df MS F p-Value

Revegetation age 1.08 × 10−4 4 2.69 × 10−5 151.44 <0.001
Unit width discharge 1.75 × 10−4 4 4.38 × 10−5 246.48 <0.001

Revegetation age × Unit
width discharge 2.29 × 10−5 16 1.43 × 10−6 8.07 <0.001

Error 1.33 × 10−5 75 1.78 × 10−7

Total 0.0011 100
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3.3. Response of Soil Detachment to Soil Properties

Figure 6 showed that Dr was positively correlated with soil bulk density and soil disintegration
rate (p < 0.01), but negatively correlated with capillary porosity, saturated hydraulic conductivity,
organic matter and water-stable aggregate of >0.25 mm (p < 0.01). Regression analysis showed that Dr

increased with soil bulk density as a power function (Figure 7a), which showed an opposite trend with
the Wang et al. [13] and Yu et al. [15]. Lower soil bulk density was caused by greater root physical
and soil organisms’ activities, and thus a soil with lower bulk density was harder to be detached.
Additionally, Dr decreased with capillary porosity as a logarithmic function (Figure 7b), which was
caused by physically binding and chemically bonding effect of root improving soil structure and
porosity and hence increasing soil resistance to erosion [28,53]. Soil disintegration rate referred to
the dispersion speed of soil contacting with water, which is an important factor determining soil
resistance to erosion [14]. In this study, the soil disintegration rate decreased with the revegetation
time (Figure 3c) and Dr increased linearly with an increase in soil disintegration rate (Figure 7c). This is
attributed to root wedging mechanism preventing soil from detaching that roots can bind soil and
tie surface soil layer into strong and stable subsurface soil layer [14,54]. Saturated soil hydraulic
conductivity is an integrating parameter for several physical characteristics such as bulk density,
porosity, and mechanical composition. The conclusion that the Dr decreased with increasing soil
hydraulic conductivity by a power function is reasonable (Figure 7d) because this study and previous
research findings have also indicated that changes in soil bulk density and porosity influenced soil
detachment and also were affected by revegetation (e.g., Neves et al. [55]; Zhang et al. [56]). A negative
power function was found between Dr and soil organic matter content (Figure 7e). The accumulation
of soil organic matter in soil could promote the formation of aggregate and enhance the cohesion of soil
particles [57]. Hence, water-stable aggregate also was an indicator determining soil resistance to flow
erosion [19]. The Dr decreased as a linear function of water-stable aggregate of >0.25 mm (Figure 7f).
The results were in agreement with the findings of Li et al. [14]. However, in Wang et al. [13,16] studies,
no significant relationships were found between Dr and organic matter and water-stable aggregate of
>0.25 mm, probably caused by small variations of the two factors in their studies and difference in
land use between their studies and this study (Podwojewski et al. [58]).

 

– –

– –

Figure 6. Correlation matrix among soil detachment rate, soil properties, and root mass density.
Note: Dr, SBD, SCP, SDR, SHC, OMC, WAS, RMD < 0.5, RMD 0.5–1.0, RMD 1.0–2.0, and RMD > 2.0
refers to the soil detachment rate, soil bulk density, soil capillary porosity, soil disintegration rate,
saturated soil hydraulic conductivity, organic matter content, water-stable aggregate, root mass density
of <0.5 mm, root mass density of 0.5–1.0 mm, root mass density of 1.0–2.0 mm, and root mass density
of >2.0 mm, respectively.
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Figure 7. Relationships between soil detachment rate and soil properties. (a) Soil bulk density
(SBD); (b) Soil capillary porosity (SCP); (c) Soil disintegration rate (SDR); (d) Saturated soil hydraulic
conductivity (SHC); (e) Organic matter content (OMC); (f) Water-stable aggregate (WSA).

3.4. Response of Soil Loss of Gully-Head to Root Traits

Significant correlation was found between Dr and RMD of 0–0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm
and >2.0 mm (p < 0.01, Figure 6), of which the RMD of 0–0.5 mm had the highest correlation with
Dr, indicating that roots of each diameter level had the significant impact on soil erosion of gully
heads, especially the fibrous root of 0–0.5 mm. Furthermore, the Hill curve could well simulate the
relationships between Dr and RMD of different root diameters with R2 varying from 0.42 to 0.57
(Figure 8). As illustrated in Figure 8, the Dr showed a rapid decrease when RMD of 0–0.5, 0.5–1.0,
1.0–2.0 and >2.0 mm ranged from 0 to 0.25 kg m−3, 0 to 0.3 kg m−3, 0 to 0.5 kg m−3, and 0 to 1.0 kg m−3,
respectively, implying that soil erosion of gully heads could be controlled once vegetation restoration or
root growth in soil. Although the roots were limited in density and flexible in early revegetation stage,
whereas, roots can contribute to soil cohesion and additional strength, and be crucial in reduction
of soil erosion [28,59]. Additionally, root system can bind soil and tie surface soil layer into strong
and stable subsurface soil layer [54]. Well-developed root system had great physical binding and
chemical bonding effect that could well bind soil particles and soil aggregates together and enhance
soil resistance to erosion [16,28,42].

In addition, judged by fitted efficiency (R2), the optimal results were found in RMD of 0–0.5 mm
(Figure 8a), indicating that fibrous root of 0–0.5 mm is the optimal root system reducing soil loss of gully
heads. However, Li et al. [44] reported that the ability of plant roots to decrease soil erosion mainly
depended on the number of fibrous roots <1.0 mm. Shangguan et al. [53] also found a similar result but
recommended root surface area density as the root variable. The reason may be that plant species with
contrasting root architectures have a different erosion reduction effect [25]. Additionally, Amezketa [60]
and Gyssels et al. [61] reported that monocotyledonous plants are superior to dicotyledonous plants
and grasses are better than cereals in stabilizing soil aggregates.

According to Li et al. [44], bˆ(1/a) can be used as an indicator to compare the effectiveness of
different diameter roots in reducing soil erosion. The lower bˆ(1/a), the more effective the diameter root.
The relatively lower bˆ(1/a) values (0.132 and 0.131 kg m−3) were found in the roots of 0–0.5 mm and
0.5–1.0 mm than 1.0–2.0 mm and >2.0 mm (Figure 8), indicating that the 0–0.5 mm and 0.5–1.0 mm are
the most effective roots in reducing soil erosion of gully heads. However, De Baets et al. [25] study
the effect of the mixed community of four grasses [Lolium perenne (variety: tove), L. perenne (variety:
starlet), Festuca rubra (variety: echo), and F. arundinacea (variety: starlet)] on SDR and found the bˆ(1/a)
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value is 0.79 kg m−3 that is greater than that of our study. The result fully indicated that the different
plant communities had the markedly different influences on reducing soil erosion. The result also
suggested us reasonably choosing plant species with different root architectures and root diameters for
revegetation at gully heads.
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Figure 8. Relationships between relative soil detachment rate and root mass density of different root
diameters. (a) Root of 0–0.5 mm; (b) Root of 0.5–1.0 mm; (c) Root of 1.0–2.0 mm; (d) Root > 2.0 mm.

3.5. Effect of Revegetation Age on Soil Erosion Resistance of Gully Head

Rill soil erodibility parameter (Kr) and critical shear stress (τc) were employed to characterize the
soil erosion resistance of gully heads [13,21], and were determined by the WEPP model (Equation (4)).
The fitted linear function between Dr and shear stress was illustrated in Figure 9. The slope of the fitted
line is equal to the Kr, and the Kr of the restored grasslands were 31% to 78.6% less than that of slope
farmland. In addition, we found that the soil erodibility of 3-year restored grassland rapidly declined
by 31% compared with the slope farmland, indicating the short-term revegetation can rapidly reduce
soil erodibility of gully heads. The Kr of grasslands in this study ranged from 0.0009 to 0.0029 s m−1,
which were less than those reported by Li et al. [14]. Wang et al. [13] found that averaged Kr of restored
lands of abandoned farmland was 0.0024 s m−1 that was close to those of this study. The difference was
mainly caused by differences in land use, plant species and restoration time. The soil samples were
taken from different vegetation restoration models (korshinsk peashrub, black locust, Chinese pine
and mixed forest of amorpha and Chinese pine) in the study of Wang et al. [13], and the restoration age
(37 years) was greater than that of this study (3 to 25 years). Regression analysis found that the Kr

decreased with restoration time in an exponential function and showed a slight change when restored
age was greater than 18 years (Figure 10).
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Figure 9. Relationship between soil detachment rate and shear stress under different revegetation ages.
(a) SF; (b) NR3; (c) NR10; (d) NR18; (e) NR25.
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Figure 10. Relationships between soil erodibility and critical shear stress and revegetation age.

In addition, the τc increased with restoration age by a power function (Figure 10).
However, the result was inconsistent with the finding of Wang et al. [16] that critical shear stress
varied with restoration age in a nonlinear pattern, reaching the minimum at the restored age of 18.
The difference in the temporal change of critical shear stress between Wang et al. [13] and this study was
caused probably by differences in soil properties and vegetation characteristics of the sampling sites.
Compared with slope farmland, the τc of the grasslands was improved by 1.2 to 4.0 times, while τc of
restored land had a little decrease when restored time was more than 18 years (Figure 10). The result
further indicated that revegetation can effectively improve the soil erosion resistance of gully head to
concentrated flow, and the critical shear stress would reach a stable state after a 18-year revegetation.
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4. Conclusions

This study was carried out to explore the effect of revegetation age on soil erosion resistance of
gully heads in the gully region of the Loess Plateau. The results showed that revegetation significantly
improved soil properties and promoted root accumulation of gully heads. The mean Dr of slope
farmland was 1.6 to 3.0 times greater than those of revegetated gully heads. The revegetation can
effectively weaken the sensitivity of soil erosion of the gully heads to concentrated flow. The Dr of
gully heads was positively related to bulk density and disintegration rate and negatively related to
soil capillary porosity, saturated soil hydraulic conductivity, organic matter content, and water-stable
aggregate. Roots of 0–0.5 mm and 0.5–1.0 mm were the most effective roots in reducing soil erosion of
gully head, and the native plant species with rich root of 0.5–1.0 mm and 0–0.5 mm were recommended
as the first choice for revegetation to restrain gully headcut erosion. Revegetation can reduce soil
erodibility of gully heads by 31% to 78.6% and improve the critical shear stress by 1.2 to 4.0 times.
This study allows us to better evaluate soil vulnerability of gully head to concentrated flow erosion
during revegetation. Further studies are needed to quantify the effect of the different combinations of
vegetation types with different root architecture types on soil erosion resistance of gully heads.
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Abstract: The Lancang–Mekong River basin, as an important transboundary river in Southeast Asia,
is challenged by rapid socio-economic development, especially the construction of hydropower dams.
Furthermore, substantial factors, such as terrain, rainfall, soil properties and agricultural activity,
affect and are highly susceptible to soil erosion and sediment yield. This study aimed to estimate
average annual soil erosion in terms of spatial distribution and sediment deposition by using the
revised universal soil loss equation (RUSLE) and GIS techniques. This study also applied remote
sensing and available data sources for soil erosion analysis. Annual soil erosion in most parts of the
study area range from 700 to 10,000 t/km2/y with a mean value of 5350 t/km2/y. Approximately 45%
of the total area undergoes moderate erosion. Moreover, the assessments of sediment deposition and
erosion using the modified RUSLE and the GIS techniques indicate high sediment erosion along the
flow direction of the mainstream, from the upper Mekong River to the Mekong Delta. The northern
part of the upper Mekong River and the central and southern parts of the lower Mekong River are the
most vulnerable to the increase in soil erosion rates, indicating sediment deposition.

Keywords: soil erosion; sediment yield; RUSLE; Lancang–Mekong River basin

1. Introduction

Soil erosion affects and challenges the world’s environment and natural resources [1–7],
and economic and environmental dimensions with negative impacts can affect soil erosion, further
resulting in low agricultural productivity, ecological collapse and high sedimentation [6–10].
Approximately 84% of the degraded lands around the world are associated with the most relevant
issues about the environment with water and wind as the main agents of erosion [7,11–13]. The average
soil erosion by water is estimated to exceed 2000 t/km2/y with this type of erosion mainly occurring
on croplands in tropical areas [14,15]. Human activities and climate change can also be triggered at
a much higher rate thus simulating erosion [8,16–22]. Soil erosion by human activities is reportedly
10–15 times faster than any natural process [23]. For instance, approximately 80% of agricultural areas
around the world face high to extreme erosion, and the amount of generated sediments can worsen the
turbidity of rivers and increase further the concentration of pollutants [24–26]. Moreover, soil erosion
and sediment yield can affect humans and the environment severely if sediment quantity exceeds the
standard measurement value of aquatic organisms.

Soil erosion is the main part of the initial process of sediment delivery to rivers; in this initial
process, displaced soil particles are transformed into sediments due to the influence of an agent of
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erosion. The amount of sediments can decrease the potential storage capacity of reservoirs and the
performance of hydraulic structures [10,27–30]. According to Reference [31], approximately 0.5% to
1% of sediment depositions affect the annual loss of storage capacity of reservoirs around the world,
indicating that most dams will likely be left with only 50% of their corresponding volumes by the
2050s. Reference [32] affirms that sediments currently occupy 40% of the reservoir storages in Asia,
indicating high loss of storage capacity. These circumstances affect the long-term sustainability of
water sources for hydropower dams. The supposedly low sediment yield from the trapping of dams
may also cause shoreline erosion, bank erosion and loss of riparian vegetation [33–36].

Lancang–Mekong River basin, as an important transboundary river in Southeast Asia, is one
of the largest rivers causing high sediment loads in Asian rivers. According to Reference [37],
the average annual sediment load and the specific sediment yield in the Lancang–Mekong River
basin is approximately 160 Mt/y and 200 t/km2/y, respectively. The upper Mekong basin contributes
approximately 50% of the amount of sediments in the Lancang–Mekong River basin [37–39]. Moreover,
the Lancang–Mekong River basin is beset by soil erosion and sediment problems because of rapid
socio-economic development, population growth, land deterioration and deforestation in the last
50 years, and the problem is most especially caused by the development of hydropower dams in the
region [38,40–42]. Many areas are easily vulnerable to soil erosion due to the influence of rainfall,
runoff and human activities. In the last few years, the Lancang–Mekong River basin has eroded at an
average rate of 5000 t/km2/y [33] which is a moderate erosion level, and it tends to increase in intensity
continuously from climate change and land-use change. Conversely, sediment yield in the river basin
is decreasing from 250 t/km2/y to 209 t/km2/y, because the sediment quantity is trapped by hydropower
dams. Historical sediment load (1960–2013) from China to the lower Mekong River indicates clearly
that the amount of sediment loads heavily decreased from 84.7 Mt/y to 10.8 Mt/y and 147 Mt/y to
66 Mt/y at Chiang Saen and Pakse stations, respectively [43].

Previous research attempted to study emphatically the sediment issue in the Lancang–Mekong
River basin and some parts of the basin as a means to accumulate knowledge and information for
policymakers. The study of sediments in this river can be divided into two main groups. The first
group of previous research focused on the changes in sediment load from the construction and
operation of dams in the upper Mekong Basin. Reference [44] considered the changing sediment
load in the lower Mekong basin because of the possible effects of the cascade dams in the Lancang.
Reference [45] considered the effect of sediments from the Manwan Dam in both pre-dam and
post-dam stages. Reference [45] estimated the sediment load of the lower Mekong River basin by
classifying the rating curve of suspended sediment concentrations obtained from adjacent stations.
Reference [46] investigated the nature and magnitude of changing sediment load and their trends in
the Lancang–Mekong River basin using available sediment data from 1965 to 2003. Reference [34]
analysed the suspended sediment flux and the sediment supply in the lower Mekong River basin
using high-frequency measurements obtained from specific stations in Vietnam. Most research in
the first group reveals that the construction and operation of dams in the upper Mekong River
basin affect negatively the sediment load in this river due to the trapped sediments in the reservoirs.
Sediment load also appears with constantly decreasing trends. Meanwhile, the second group of
previous research focused on the sediment trapping efficiency of dams in the Lancang–Mekong River
basin. Reference [28] analysed and predicted the sediment trapping efficiency of reservoirs in the
mainstream of Lancang River. Reference [47] developed an estimation technique for the sediment
trapping efficiency of existing and planned reservoirs in the Mekong River using Brune’s method.
Reference [48] estimated sediment yield based on geomorphic characteristics, tectonic history and
available sediment data and, subsequently, considered the cumulative sediment trapping of dams.
Most research in the second group indicates that the majority of sediment loads are trapped in existing
dams in the upper Mekong River basin, and they will be further trapped if planned dams are operated
officially in the near future. However, most of the above studies concentrated only on sediment load
data and used the trapped sediment load data of dams obtained from observation stations. Conversely,
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studies on soil erosion in the Lancang–Mekong River basin requiring both field surveys and other
techniques are rare.

Some studies on soil erosion apply the universal soil loss equation (USLE) in combination with
GIS and remote sensing techniques to analyse the spatial distributions and patterns of soil erosion
in the Lancang–Mekong River basin. The method is convenient for soil erosion analysis, because it
can estimate long-term soil erosion. References [49,50] estimated soil erosion in the upper Mekong
River basin in Yunnan Province using USLE and analysed spatial patterns with environmental factors.
Reference [51] assessed the conserved water and soil ecosystems in Yunnan Province using remote
sensing techniques. Reference [52] analysed the spatial distribution of soil erosion in north-western
Yunnan (Lancang River) based on the revised universal soil loss equation (RULSE) and GIS techniques.
Reference [10] estimated the impact of soil erosion on the reservoirs in Yunnan Province using USLE.
Reference [53] conducted a soil loss vulnerability analysis of the Mekong River basin by applying
USLE. Nonetheless, the above studies identified the limitations of the USLE model, including the
development of input data for new areas to satisfy the long-term data requirements, difficulties in
assessing gully erosion and large-scale areas, estimation of soil loss only and insufficient computation
of sediment deposition. The RUSLE model was developed accordingly to improve the estimation of
potential soil erosion. The input factors in RULSE can be used by using values from the literature or
adapted for empirical and statistical data in combination with GIS software. In addition, the RUSLE
results are valid in terms of estimating the risks of water erosion.

Previous studies mostly investigated the changing sediment load and the sediment trapping
caused by dam construction and operation. Nonetheless, the understanding of soil erosion and soil
deposition is also highly important. Soil erosion, as the main part of the sediment process, can be used
to plan countermeasures for the Lancang–Mekong River basin. Previous studies also emphasized
that soil erosion research should focus on the simulation of sediment erosion, but they did not
consider sediment deposition. Hence, this research aimed to develop methods to calculate sediment
deposition and erosion based on the RUSLE model and GIS techniques and, subsequently, evaluate the
impact of soil erosion on hydropower dams in the Lancang–Mekong River basin. This study only
considered suspended sediment despite the limitation of the model. In addition, the factors that can
influence potential and actual soil erosion in the Lancang–Mekong River basin were also determined.
The simulation period of the study covered from 2000 to 2015 depending on the available data in
the analysis.

2. Study Area

The Lancang–Mekong River basin is a transboundary river in Southeast Asia (Figure 1). Originating
from China’s Qinghai–Tibet Plateau, the source of the river is located in Yushu of Qinghai Province.
By its name, Lancang River represents the upper Mekong River basin in China, while the downstream
part is located in Yunnan Province. Along with the river portions in Myanmar, Laos PDR, Thailand,
Cambodia, and Vietnam, the lower Mekong River basin has a length of 4909 km and a coverage area of
795,000 km2 [38,54,55]. The average annual water discharge is approximately 475 km3 [38,44,54,56].
Thus, approximately 24% of the total area comprises the upper Mekong River basin, with contribution
rates of 15% to 20% of the water flow to the Lancang–Mekong River basin. Most areas comprise
complex mountains and hills and deep valleys [10,38,53]. In addition, approximately 76% of the total
area is developed by major tributary systems from the lower Mekong Basin, especially Lao People’s
Democratic Republic (Laos PDR) [38,53]. The elevation of the basin varies from 0 to 6549 m above
sea level. The different elevations have varying distributed agriculture depending on climatic zones
and temperature. Moreover, various elevations of the river have water development projects, such as
cascade hydropower dams, in both the mainstream and the sub-basins. Furthermore, soil erosion in
the Lancang–Mekong River basin results in sediment deposition. The sediments affect the dams in all
statuses (i.e., operation, under construction, and planned). The dam system of the Lancang–Mekong
River basin comprises 133 dams [38,57,58] including those in the mainstream and the sub-basins.
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Figure 1. Location and elevation of the study area and location of dams in the mainstream river.

3. Materials and Methods

3.1. RUSLE

The RUSLE model, based on the USLE model, was developed by the US Department of Agriculture.
The RUSLE is an empirical soil erosion model and has been recognised as a standard method to calculate
the risk of average soil erosion on land. The RUSLE is also the most popular model for estimating
average soil erosion in water [59], and it is simple to integrate with GIS and remote sensing [10,60–62].
Furthermore, RUSLE can provide international applicability and comparability for the results and
methods, as the model can be adapted and applied in many regions globally. The RUSLE model can be
expressed as follows:

A = R × K × LS × C × P (1)

where:
A is the mean annual soil loss (t/ha·y);
R is the rainfall erosivity factor (MJ·mm/ha·hr·y);
K is the soil erodibility factor (t·hr/MJ·mm);
LS is the topographic factor (dimensionless);
C is the cropping management factor (dimensionless); and
P is the support practice factor (dimensionless).

The assessment of soil erosion in the Lancang–Mekong River basin can be classified into five
levels according to the Soil Erosion Standard Document–Technological Standard of Soil and Water
Conservation (SD238-87) of Reference [63].

64



Water 2020, 12, 135

3.1.1. Rainfall Erosivity Factor

Rainfall plays an important role in the process of soil erosion and sedimentation and leads to water
erosion, such as splash erosion, sheet erosion, rill erosion and gully erosion, caused by water flow. Soil
particles, which are transported away from a site by the flow, are those detached by rainfall impact [64].
Therefore, high-potential erosion can be determined by rainfall intensity and storm duration. Normally,
the relationship between total storm energy (E) and maximum 30 min intensity (I30) can be regarded
as the R factor, as reported by Reference [65]. Given the limitation of precipitation data about the river,
the R factor is derived from the Asian Precipitation Highly Resolved Observational Data Integration
Towards Evaluation of the Extreme Events (APHRODITE) for the period from 2000 to 2015 which also
correspond to the daily gridded precipitation data for Monsoon Asia [66]. This project is developed
from the daily rain gauge data for the Asia region and cover nearly 12,000 stations. This study has
selected the highest fine-gridded resolution (spatial resolution of 5 km) of available precipitation data.
For the conditions in the Lancang–Mekong River basin, this study chose the formula of the R factor
from References [41,67] which applied the assessment of the R factor in Southern China. Equation (2)
is appropriate, because the climate and area conditions in Southern China are almost uniform to those
in the Lancang–Mekong River basin.

R =
12
∑

i=1

(−1.15527 + 1.792Pi) (2)

where R is the rainfall erosivity factor (MJ·mm/ha·hr·y), and Pi is the monthly rainfall (mm).

3.1.2. Soil Erodibility Factor

The effect of soil characteristics and soil properties on soil erosion can be represented by the
soil erodibility factor (K), because this factor shows the physical and chemical properties of the soil
through the equations related to soil texture, soil organic matter and percentages of sand, silt, and
clay. Furthermore, the K factor is based on soil permeability and particle size distribution. The K

factor is strongly related with the R factor through the soil erosion rate per kinematic energy of rainfall
erosivity index. The observed data of the local soil properties in the Lancang–Mekong River basin
are extremely difficult to access. Thus, the soil data in this study were derived from the SoilGrids
map which is developed and maintained by ISRIC–World Soil Information. This study used the
available soil data grid with a spatial resolution of 1 km. The data on soil properties were analysed
using the methods in References [68,69], in which the percentages of silt, clay, sand and organic carbon
fraction were calculated by Equations (3)–(6). Soil erodibility was computed according to the method
in Reference [70] as shown in Equation (7). Then, the unit of the K factor was transferred to the
International System of Units (SI) [70]. This method is widely used for the analysis of the K factor for
soil properties such as soil structure and particle-size distribution [10,53,68,69,71,72].

fcsand =
{

0.2 + 0.3 exp
[

−0.256ms

(

1− msilt

100

)]}

(3)

fcl−si =

(

msilt

mc + msilt

)0.3

(4)

forgC =

{

1−
0.25orgC

orgC + exp[3.72− 2.95orgC]

}

(5)

fhisand =















1−
0.7

(

1− ms
100

)

(

1− ms
100

)

+ exp
[

−5.51 + 22.9
(

1− ms
100

)]















(6)

K = fcsand × fcl−si × forgC × fhisand (7)
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where K is the soil erodibility factor, fcsand is the function of high-coarse sand content in soil, fcl−si is
the function of clay and silt in soil, forgC is the function of organic carbon content in soil, fhisand is the
function of high sand content in soil, ms is the percentage of sand fraction content (particles with
diameters from 0.05 to 2 mm) (%), msilt is the percentage of silt fraction content (particles with diameters
from 0.002 to 0.05 mm) (%), mc is the percentage of clay fraction content (particles with diameters of
<0.002) (%), and orgC is the percentage of organic carbon content of the layer (%).

3.1.3. Topographic Factor

The topographic factor (LS) includes slope length (L) and slope steepness (S), which are the two
important influencing parameters of soil erosion. Both GIS and remote sensing techniques were applied
to access the LS factor in the RUSLE equation using the digital elevation model (DEM) [73]. For a large
area, grid resolution is important for soil erosion estimation [74]. Changes in grid size affect steepness
values, both directly and indirectly. The L factor depends on grid size and steepness, while the S factor
affects steepness only. Hence, if the DEM data have a high resolution, then the model output can
increase the accuracy of the LS factor in the RUSLE model [75,76]. Digital elevation model images with a
1 km resolution were downloaded from the US Geological Survey (https://earthexplorer.usgs.gov). Past
researchers applied high-resolution DEM images for soil erosion determination because of these images’
good accuracy and reliability [6,10,16,20,49–51,53,60,62,73,76–79]. The calculation of the LS factor can
be based on the RUSLE principle by using the GIS software as explained in References [20,73,78,80–82].
The S factor was calculated in two conditions (Equations (8) and (9)), and the L factor was computed
with Equation (10). Then, the LS factor in each grid cell was coupled in Equation (11).

Sfactor = 10.8sinθ + 0.03; slope gradients < 9% (8)

Sfactor = 16.8sinθ + 0.50; slope gradients ≥ 9% (9)
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(10)

LS = Lfactor × Sfactor (11)

where λ is the length of the slope, Lfactor denotes the slope length factors, and Sfactor is the slope
steepness factor.

3.1.4. Cropping Management Factor

Vegetation cover is one of the most important factors affecting the erosion process and the
development of rivers [64]. Moreover, vegetation cover can shield the soil surface from the impact of
falling rain and slow down the velocity and scouring power of runoffs. Normally, vegetation cover can
be depicted by the cropping and management practices in an area through the C factor. The range of
the C factor is between 1 and 0. If the C factor is equal to 1, then no vegetation cover (i.e., bare land)
exists in that area. If the C factor is close to 0, then strong vegetation cover exists, indicating protection
against soil erosion.

The product of remote sensing data from the Moderate Resolution Imaging Spectroradiometer
(MODIS), with a cell size of 250 m in spatial resolution, was applied. The MODIS is a good choice for
large-area coverages. The normalized difference vegetation index (NDVI) was used in this study to
estimate the C factor following the method of [83]. The detailed equations were given by Equations
(12) and (13). The MODIS’ remote sensing can investigate all months, from the historical period to the
present (2000–2015), to investigate the study area.

C =
(−NDVI + 1)

2
(12)
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NVDI =
(NIR−RED)

(RED + NIR)
(13)

where C is the cropping management factor, NDVI is the average of the normalized difference vegetation
index, NIR is surface spectral reflectance in the near-infrared band, and RED is the surface spectral
reflectance in the red band. Both NIR and RED were extracted from the MODIS images. In reflecting
the vegetation cover and the agricultural activities in the Lancang–Mekong River basin, the five months
of January, April, July, October and December [38] were selected from 2000 to 2015. The average NDVI

was calculated from these data covering 16 years.

3.1.5. Support Practice Factor

The support practice factor was used to express the effect of land use and land cover on soil erosion.
The P factor describes the change in potential erosion by flowing water through the effect of supporting
conservation practices such as contouring, buffer strips and terraced contour farming [6,53,65,77,84].
The maximum value of the P factor is usually set to 1.0 to mean no erosion control solution. A decreasing
value of the P factor means that flowing water is reduced in terms of both volume and velocity. Moreover,
a decreasing P also means reduced intensity of sediment deposition on the surface [85]. Given the
many limitations, the P factor was determined on the basis of the land cover type from the C factor
(Table 1) as suggested by [86]. Land-use type was obtained from the product of the MODIS’ remote
sensing with a cell size of 250 m for the spatial resolution.

Table 1. Land cover classification and the C and P factors [86].

Land Cover of the RUSLE C Factor P Factor

Urban area 0.1 1.0
Bare land 0.35 1.0

Dense forest 0.001 1.0
Sparse forest 0.01 1.0

Mixed forest and cropland 0.1 0.8
Cropland 0.5 0.5

Paddy field 0.1 0.5
Dense grassland 0.08 1.0
Sparse grassland 0.2 1.0

Mixed grassland and cropland 0.25 0.8
Wetland 0.05 1.0

Water body 0.01 1.0
Permanent ice and snow 0.001 1.0

3.1.6. Application of GIS Tools

The input data, such as rainfall, types of land use, and land cover, terrain and soil properties, in the
RUSLE model were imported and calculated using the functions in ArcGIS 10.5. The five factors were
analysed according to the spatial resolution and the coordinate system of their original data. The final
results of the quantitative output of soil erosion were generated as the maximum grid with 5 km of
spatial resolution depending on the original data. Soil erosion in the Lancang–Mekong River basin was
analysed using the results of two types of erosion (i.e., potential soil erosion and actual soil erosion),
as shown in Equation (1), in the spatial distribution. The R, K, L, and S factors were considered as
potential soil erosion, whereas the R, K, LS, C, and P factors were examined as actual soil erosion.

3.2. Descriptive Statistics in the RUSLE Model

Soil erosion can be identified in each factor of the RUSLE model, indicating the influence of soil
erosion on a specific area [6]. The RUSLE model is transformed into logarithmic form in Equation (15),
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and multiple linear regression must be applied to examine the relationships among all factors, as shown
in Equation (16), and the effects on the soil erosion rate.

ln(A) = ln(R × K × LS × C × P) (14)

ln(A) = ln(R) + ln(K) + ln(LS) + ln(C) + ln(P) (15)

ln(A) = β0 + βi(lnR) + βj(lnK) + βk(lnLS) + βl(lnC) + βh(lnP) (16)

where ln(A) is the logarithm of soil erosion rate, ln(R, K, LS, C, and P) denotes the logarithmic value of
the input factors in the RUSLE model, β0 is the intercept of soil erosion rate (constant term), and βi–h is
the estimated regression coefficient of each explanatory variable. Different units of the input factors are
reflected through the standard coefficient (β) in Equation (16). The factors of multiple linear regression
in logarithmic form can be explained as follows: if one of the factors in the RUSLE model increases by
1% in standard deviation, then βi–k percent of the standard deviation leads to an increased value of soil
erosion rate (A). This study sets the statistical significance level at 95% confidence in SPSS. Nonetheless,
given the differences in the spatial resolutions of the input factors, some factors (K, LS, C, and P) were
estimated as 5 km (A and R factors) in spatial resolution using the spatially averaged values assigned
in the function of ArcGIS.

3.3. Technique of Sediment Yield Estimation

References [20,87] proposed a new technique to estimate sediment yield or sediment deposition
in each sub-basin of Thailand by modifying the original RUSLE model. They regarded the suspended
sediment flow from one grid cell to the other grids as dependent on the sediment yield of the original
grid cell (Sy) and the average sediment yield capacity of sub-basin (Sc). If Sy is greater than Sc, then the
sediment moves to the next site. By contrast, if Sc is more than Sy, then the sediment is deposited.
Sy is calculated using the individual parameters in each grid cell (Equation (17)). In the same way,
Sc is calculated using the original RUSLE model with the area-averaged parameters (Equation (18)).
This technique was only developed for the assessment of suspended sediment. It is not appropriate for
analysing the total sediment form (i.e., bed load and suspended sediment).

Sy = f (I1, I2, . . . , I5) (17)
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(18)

Di if Sy < Sc (19)

Ti if Sy > Sc (20)

where Sy is sediment yield, Sc is sediment capacity, Ii represents the parameters in the RUSLE model
(R, K, LS, C, and P), Abasin is an area of the sub-basin, n is the number of data in each sub-basin, Di is
the sediment deposition in a cell i, and Ti is the sediment transportation in cell i. Sy is the result of
actual soil erosion by computing from the RUSLE input factors. Sc is calculated from the summation of
each parameter in the RUSLE model dividing an area of the sub-basin. The five outcomes then are
multiplied as Sc.

The above technique can show the spatial distribution of sediment yield and sediment deposition
in the Lancang–Mekong River basin, indicating an integrated consideration of the sediment issue
which is the main problem for water development projects in this river. Furthermore, the technique
is extremely useful in studying the influence of dam construction on sediment budget, because the
loss of storage capacity of dams and the reduced transport of sediments downstream are caused by
sedimentation which, in turn, is the result of soil erosion [32]. Dam design and sediment management
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in operations planning can be arranged properly if the sediment budget of the river is primarily
determined in dam construction.

3.4. Observed Sediment Data

The results from net sediment mapping or sediment deposition and erosion mapping are estimated
and compared with the observed sediment data from relevant organizations, such as MRC, and the
literature for verification [32,44,56,88,89]. The present study collected, from 15 stations, the average
sediment load and specific sediment yield (SSY) data for each sub-basin (Figure 2) from the years 1952
to 2011 (60 years) to cover the whole basin (see Supplementary Materials) which is the time period
of the data collection. Sediment loads were estimated from the suspended sediment concentration
(SSC) and water discharge using the sediment rating curve, and the SSY data in the Lancang–Mekong
River basin were estimated based on historical geological and geomorphological characteristics of each
sub-basin [48] and historical sediment load. The results of this study will be verified with SSY in each
sub-basin only. Each observational station is a representative of a sub-basin in the Lancang–Mekong
River basin for verification between observed SSY (1952–2011) and estimated SSY from the modified
RUSLE model (2000–2015) (see Table 4).

 

 

Figure 2. Location of sediment observational stations in the Lancang–Mekong River basin.
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4. Results

4.1. Soil Erosion Factors

4.1.1. Rainfall Erosivity Factor

The values of the R factor were analysed using Equation (2). Figure 3a shows the spatial
distribution of the R factor for the Lancang–Mekong River basin. The range of the R factor was
65.6–524.3 MJ·mm/(ha·hr·y) with a mean of 294.9 MJ·mm/(ha·hr·y). The standard deviation was 80.3.
The lowest values for the R factor were distributed mostly in the upper Mekong River basin or Lancang
River in China. Meanwhile, the highest values for the R factor were distributed primarily in the
sub-basins of Laos PDR and Cambodia and the Mekong Delta, because those areas are located along
the direction of monsoon storms from the South China Sea in seasonal cycles. According to the results,
the R factor increased from the lower basin to the upper basin, a scenario explaining the influence of
climate and temperature on the river.

 

 
Figure 3. (a) R factor and (b) K factor.

4.1.2. Soil Erodibility Factor

Major soil groups in the Lancang–Mekong River basin (Figure 3b) were determined using the
SoilGrids database of ISRIC–World Soil Information [90,91]. The K factor was calculated with Equations
(3)–(7). The range of the K factor was 0.012–0.0397 t/(hr·MJ·mm), with an average of 0.0258 t/(hr·MJ·mm).
The standard deviation was 0.0012. The spatial distribution in Figure 3b indicated that the K factor
decreased from the upper basin to the lower basin, but some areas of the Mun and Chi River basins in
Thailand had high K values. In the Lancang–Mekong River basin, the highest elevation areas were
identified by the highest K values, whereas the lowest elevation areas were identified by the lowest K

values. This result corresponded with the findings in Reference [10], in which the K values correlated
with the variation of the terrain; moreover, highly significant K values were found for high elevation
areas such as mountains. Orthic Acrisols (Ao), Lithosoils (I) and Ferric Acrisols (Af) are the largest
areas in the Lancang–Mekong River basin, and they accounted for approximately 59% of the total
basin, while the other soil groups accounted for 39%.
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4.1.3. Topographic Factor

Topographic factor was the most influential factor of soil erosion due to the flowing water from
rainfall and runoff. The LS factor was considered from the elevation map of the Lancang–Mekong River
basin (Figure 1) and the calculations of Equations (8)–(10). The range of elevation in the study area is
from 0 to 6549 m above sea level, and the elevation mean was 3274 m. The basin with high elevation is
mainly located in the upper Mekong River basin, and the elevation gradually decreases in the central
part of the basin. More than 65% of the natural area has a slope gradient of >9%, and this area is mainly
situated in the upper Mekong River basin. Slopes from 10◦ to 70◦ account for approximately 59%.
Thus, the results of the LS factor were in the range of 0–336 (Figure 4a), and its mean value was 168.
In addition, the areas represented by the LS values were below 60. The slope is steep, and the slope
length is short. The areas with relatively high LS values were located in the upper part of the river,
while the those with relatively low LS values were situated in the central part of the Mekong Delta.

 

 

 
Figure 4. (a) LS factor and (b) C factor.

4.1.4. Cropping Management Factor

The C factor was applied using the NDVI analysis from the MODIS satellite images and the
calculation in Equation (11). The C factor varied from 0 to 0.7 (Figure 4b). The C mean and the
standard deviation were 0.34 and 0.076, respectively. Most lands in the study area are forests in parts
of China, Laos PDR and Cambodia, and they were represented by relatively low values of the C factor.
Conversely, relatively high values for the C factor were shown in the upper Mekong River basin in
China, Thailand, and the Mekong Delta.

4.1.5. Support Practice Factor

The values for the P factor were determined following the suggestion in Reference [86] (Table 1).
The change in C values to P values was applied with the functions in ArcGIS. The P values were 0.5,
0.8, and 1 (Figure 5). Nearly 52% of the P values were between 0.8 and 1, and they represent the largest
portion. Thus, most areas in the basin are forests and lands with vegetation cover, indicating that soil
is protected from agents of erosion. The areas with relatively high and low P values corresponded to
similar areas for the C values (see Section 4.1.4).
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Figure 5. P factor.

4.2. Potential and Actual Soil Erosion

Soil erosion was divided into two types: potential and actual soil erosion. Potential erosion
(R, K, L, and S) was defined as a natural erosion process without cropping management (C) and
support practice (P) factors. If potential soil erosion is combined with the C and P factors, then it
can be considered actual soil erosion (R, K, LS, C, and P). Potential soil erosion was calculated on the
basis of four factors by using ArcGIS and GIS techniques. The range of potential soil erosion rate
was 5000–25,000 t/km2/y (Figure 6a). The average potential soil erosion was 15,000 t/km2/y, and the
standard deviation was 4623. The findings on spatial distribution demonstrates high-potential soil
erosion in most areas in the basin. Thus, all the factors were computed for actual soil erosion (Figure 6b)
which is the real-world soil erosion in the Lancang–Mekong River basin. Actual soil erosion was in
the range of 700–10,000 t/km2/y. The mean actual soil erosion was 5350 t/km2/y, and the standard
deviation was 1470. Most of the relatively high soil erosion rates were located in the north part of
upper Mekong River basin and Mekong Delta. Some parts of Thailand had values close to the mean
actual soil erosion. The results of the potential erosion and actual soil erosion manifested notable
differences. The potential soil erosion rate was differentiated by the C and P factors because of the
forest and agricultural areas. Hence, the C and the P factors play important roles in decreasing soil
erosion, and they can reduce the effect by 2.5–7 times in the basin. The C factor indicates the capability
to absorb the impact of raindrops, reduce the velocity and scouring power of runoff and reduce the
runoff volume by increasing percolation into soil. Meanwhile, the P factor indicates the capability to
decrease the amount and rate of water runoff and soil erosion with supporting cropland practices such
as cross-slope cultivation, contouring farming and strip cropping.

4.3. Soil Erosion Risk Mapping

The results of actual soil erosion can be classified into five categories (Figure 7) according to the Soil
Erosion Standard Document–Technological Standard of Soil and Water Conservation (SD238-87) [63].
Table 2 shows the soil erosion in the study area ranging from minimal erosion to extreme erosion.
Most of the soil erosion in the Lancang–Mekong River basin (45% of the total area) is moderate erosion.
However, the soil erosion rate is higher than 5000 t/km2/y hence their classification as high erosion and
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extreme erosion; the corresponding areas comprise 37% of the total area, including the high-elevation
areas in China, the plateau in Thailand, Tonle Sap, and the Mekong Delta. By contrast, a low erosion
rate was found mostly in Laos PDR and some parts of Cambodia because of their forest areas.

 

 

 

β

Figure 6. (a) Potential soil erosion; (b) Actual soil erosion.

Table 2. Soil erosion in the Lancang–Mekong River basin.

Level Soil Loss (t/km2/y) Area (km2) Percentage of Total Area

Minimal erosion <500 - -
Low erosion 500–2500 125,450 16

Moderate erosion 2500–5000 335,942 45
High erosion 5000–8000 253,342 34

Extreme erosion >8000 21,850 3
Water 13,416 2
Total 750,000 100

The analytical results on the correlation between soil erosion rate and all input factors in the
RUSLE model using SPSS are shown in Table 3. The hypotheses of all factors were determined on the
basis of a 95% confidence (i.e., level of statistical significance). The results were then used to build the
multiple linear regression in logarithmic form for the soil erosion rate and all the RUSLE factors of the
Lancang–Mekong River basin.

ln(A) = 0.168 × ln(R) + 0.364 × ln(K) + 0.898 × ln(LS) + 0.184 × ln(C) + 0.246 × ln(P) (21)

Equation (21) is given by the values of standardized coefficients that are strongly related with
all the RUSLE factors of the soil erosion rate. The strongest influencing factor for soil erosion in the
study area was the LS factor (β = 0.898). Therefore, slope length and slope steepness directly affect
soil erosion. In other words, soil erosion likely occurs because of gravity erosion and water erosion in
an area.
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Table 3. Standardized coefficients of factors in the RUSLE model.

Independent Variable Standardized Coefficient (β) Significance

ln(R) 0.168 0.000
ln(K) 0.364 0.000
ln(LS) 0.898 0.000
ln(C) 0.184 0.000
ln(P) 0.246 0.000

 

β

Figure 7. Soil erosion classification and location of dams in the Lancang–Mekong River basin.

4.4. Estimation of Sediment Deposition Areas

The assessment of sediment yield or sediment deposition areas in the Lancang–Mekong River
basin was computed by modifying the RUSLE model according to Equations (17) and (18). The RUSLE
model was determined using the spatially average parameters for the estimation of sediment yield
capacity in each sub-basin. The results of the sediment yield capacity for the study area are presented
in Figure 8a. Most of the sub-basins have high sediment yield capacities. Some sub-basins have low
sediment yield capacity in the central part and the north part of upper Mekong River basin. The size of
the sub-basin and the elevations directly result in sediment yield capacity. The average sediment yield
capacity (Sc) was compared with the estimation of sediment yield (Sy) to assess the sediment deposition
and sediment erosion in each grid. If the result of Sy was higher than Sc, then sediment erosion
appeared in each grid cell. Conversely, if Sy was lower than Sc, then sediment deposition appeared in
each grid cell. The results of sediment deposition and sediment erosion capacities in each grid cell are
shown in Figure 8b. Sediment erosion is presented as positive values, whereas sediment deposition is
presented in negative values. Potential sediment deposition and erosion are in the range from less than
−3000 to more than 6200 t/km2/y. The mean was 2105 t/km2/y, and the standard deviation was 2033.
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Relatively high sediment erosion occurs along the flow direction of the mainstream, including the
north part of upper Mekong River basin, Laos PDR, Tonle Sap and Mekong Delta. Meanwhile, most
areas in Yunnan Province, Thailand and Cambodia have high sediment depositions. The sediment
deposition and erosion results can be verified using the observed sediment data from the 15 stations
along the Lancang–Mekong River basin. The scatter plot of the whole basin, which was based on the
observed sediment data and the assessment data on sediment yield from the RUSLE model, shows
good results with a correlation higher than 0.9 (Figure 9). The RUSLE model and the technique used to
assess sediment deposition and erosion can be applied in the research and prediction of soil erosion
and SSY.

 

−

 

 
Figure 8. (a) Sediment capacity in each sub-basin, (b) Deposited and eroded sediments in each sub-basin.
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Figure 9. Comparative result of the whole basin based on observed data and the data of the modified
RUSLE model by using the sediment estimation technique.
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5. Discussion

5.1. Soil Erosion Rate in the Lancang–Mekong River Basin

This study focused on the assessment of soil erosion rate and sedimentation in the Lancang–Mekong
River basin using the RUSLE model and GIS techniques with related available data. The river as the
research object had many data limitations, and accessing input data to develop research on soil erosion,
sediment yield capacity and sediment transport was difficult. This study attempted to utilize previous
research on soil erosion in the Lancang–Mekong River basin [10,49,50,53,79], as no other evidence and
information exist on how much the soil erosion rate has changed in this basin. The average soil erosion
in the previous research ranges from 1400 to 8500 t/km2/y. Our results are in the range near the mean
values of the previous research. The spatial pattern of soil erosion occurrence in the north part of
upper Mekong River basin is generally consistent with the findings of [10,49,50,53,79], but some spatial
soil erosion results differ in other areas, especially in the lower part of Mekong River. Furthermore,
we presumed that the different results can be attributed to the computation of the R factor (the main
factor in soil erosion) which is influenced by differences in rainfall data. Each of the available rainfall
data were previously developed for the purpose of individual projects. Nonetheless, if the R factor
was developed from local rainfall stations in the six riparian countries, then the soil erosion rates
can be regarded accurate and be further improved. Meanwhile, the results of descriptive statics in
the RULSE model clearly showed that the LS factor is the most influential factor for soil erosion and
sediment yield in the Lancang–Mekong River basin, especially in the upper Mekong River. Most
studies on soil erosion and sedimentation claim that the geographical features of the Lancang–Mekong
River basin, such as its steep slopes and the slope length of its hills and mountains, are affected
directly by the occurrence of soil erosion in specific areas, and these sediments are transformed when
transported along the river [10,32,35,41,47,49–53,79]. Consequently, the mitigation measures currently
used to reduce soil erosion need to further consider solutions related with the LS factor such as the
implementation of check dams and the application of vegetation cover. In order to consider the
analytical results on the correlation between soil erosion rate and all input factors in the RUSLE
model using SPSS, the LS factor is the strongest influencing factor on soil erosion in the study area.
Nonetheless, the analytical results may not be quite effective, because the LS factor varies greatly in the
river basin against other factors. Therefore, this section should be considered by regarding the different
geological and geomorphological characteristics of the river basin such as mountains, piedmont and
lowland. Moreover, different altitudinal conditions are also important conditions that directly affect
the RUSLE input factors. This issue needs to be improved correctly for understanding the influencing
factor on soil erosion in each feature of the river basin. In addition, the case study on potential and
actual soil erosion verifies the ability of the C and the P factors to protect and reduce soil erosion.
Natural vegetation covers, such as the forests in Laos PDR and Cambodia, can decrease soil erosion
at rates greater than those of agricultural areas in Thailand. Hence, if forested areas are transformed
into agricultural activities, then the soil erosion rate will increase remarkably, especially in upstream
areas [20].

The Soil Erosion Standard Document–Technological Standard of Soil and Water Conservation
(SD238-87) [63] was applied in this study to classify the soil erosion rate in the Lancang–Mekong
River basin. One of the reasons is that the river has not been evaluated using the standard on soil
erosion classification. Previous research used the soil erosion classification in References [63,92].
However, the number of classifications in Reference [92] is lower than that in Reference [63] and, thus,
does not correspond with the results of our study. The highest value of severe erosion according
to Reference [92] is greater than 3300 t/km2/y, while extreme erosion according to Reference [63]
is greater than 8000 t/km2/y. The values differ considerably in terms of soil erosion classification.
We suppose that the soil erosion classification should depend on the researcher’s discretion and the
suitability of research results until a set of criteria is developed by relevant credible agencies such as
the Lancang–Mekong Cooperation (LMC) or the Mekong River Commission (MRC).
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5.2. Estimation of Sediment Yield Using the Modified RUSLE Model

Soil erosion is the initial process of the sedimentation process of a river channel. The Lancang–Mekong
River basin faces the challenge of sediment starvation due to the implementation of water development
projects, especially hydropower dams. Most studies confirm that sediments have started to decrease
continuously because of sediment trapping by hydropower dams [28,44,47,48,93]. Therefore, sediment
yield capacity and sediment deposition should be analysed by relevant organizations and the six
riparian country governments when drafting the needed solutions. However, the field measurement
of sediment aspects is very difficult due to the limitations of equipment and nations’ borders in
the Lancang–Mekong River basin. Hence, the modified RUSLE model was used for the estimation
of sediment yield. This method was also clearly applied to understand the sediment deposition
and erosion.

The developed RUSLE model and new technique used to assess sediment yield capacity and
sediment deposition areas were appropriate, and the observed sediment data and the sediment yield
results from the RUSLE simulation were well correlated despite the limitation of investigating a
large field survey area. The consistency between observed sediment data and the RUSLE results can
also improve the accuracy of soil erosion prediction and the analyses of sediment yield capacity and
sediment deposition. Nevertheless, the observed sediment data from the 15 stations were insufficient
for validation, especially for the upper part of the Mekong River and all the sub-basins. This study
could only access two stations (i.e., Jiuzhou and Gajiu) in the upper Mekong River basin. If other
sediment data regarding the upper Mekong River can be acquired for analysis, then the effectiveness of
the RUSLE model with the abovementioned technique can be effectively assessed. Besides, the results
of sediment yield in some of the sub-basins may have been overestimated. Problems may have also
been caused by the analysis of the RUSLE input factors which are also likely overestimated values.
Additionally, the assessment of sediment deposition and erosion using the modified RUSLE model
may have led to overestimated results for the sub-basins. A previous study [20] also showed the same
trend for Thailand after applying the modified RUSLE model. Therefore, in the application of the
method, the abovementioned limitations should be considered for model enhancement. The method
proposed in this study is useful in furthering the research and analysis of sediment load at reservoirs
and sediment transport in the Lancang–Mekong River basin. Furthermore, the results can be used as
basis to understand the physical process of sedimentation in each sub-basin.

The result in Table 4 shows a quite good comparability of the observed and estimated SSY from
the RUSLE model. Almost half of the sub-basins were in approximately 5–10% of the percentage
error, while the remaining sub-basins were estimated at more than 10% from the observed values.
The sub-basins have a high sediment quantity. The modified RUSLE model can be a well-known
simulation. Conversely, if sub-basins have a low sediment quantity, the model shows low performance
for sediment yield estimation. These causes may occur from two important factors including the
spatial resolution of the RUSLE input factors and the features of the river basins. For the spatial
resolution in the analysis, this study chose a rather coarse grid (5 km) resolution despite the limitations
of the input data sources. The model can be well-captured in some specific areas from the influence
of grid resolution. If this study can be applied to a spatial resolution of 1 km, the sediment yield
estimation may be improved efficiently [20]. Meanwhile, the features of the river basins directly affect
the sediment yield estimation, especially rainfall from changing climate and land-use change from
human activity. Most land in the sub-basins, which have greater values of percentage error (10–29%),
have changed from forest areas to agricultural areas (among other types), especially Nam Chi, Nam
Mun, Nam Songkhram, and Nam Ngum. This issue created inaccuracies in the analysis of the C and P

factors, because the C factor was considered from the MODIS satellite image using the remote sensing
techniques, and the P factor was also estimated from the C factor [86]. Furthermore, sub-basins, which
are overestimated values, have features without high slopes when comparing with other sub-basins.
Hence, the modified RUSLE model may be able to consider areas with better slopes which is quite
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consistent with Reference [20]. Totally, these factors may be the causes of the problem in the study of
sediment yield estimation in the Lancang–Mekong River basin.

Table 4. Comparative results between observed SSY and estimated SSY from model.

Sub-Basin Area (km2)
Observed SSY

(t/km2/y)

Estimated SSY
from Model

(t/km2/y)

Percentage Error
(%)

Qingshuilang 87,205 281 308 10%
Weiyuanjiang 120,000 382 412 8%

Nam Pho 184,845 489 525 7%
Nam Chi 43,100 18 22 22%

Nam Kam 2360 35 42 20%
Nam Khan 5800 113 122 8%

Nam Mae Ing 5700 38 45 18%
Nam Mun 116,000 27 34 26%

Nam Ngum 5220 36 44 22%
Nam Ou 19,700 237 258 9%

Nam Songkhram 4650 31 40 29%
Se Bang Fai 4520 80 98 23%

Se Bang Hieng 19,400 163 177 9%
Se Done 5760 206 218 6%
St. Sen 14,000 33 40 21%

5.3. Soil Erosion Impact on Dams

Soil erosion can negatively affect hydropower dams in the Lancang–Mekong River basin.
Sediments resulting from soil erosion can decrease the storage capacity of dams used to generate
electricity and for other purposes. The upper Mekong basin, especially in the northern area, is classified
as having extreme and high soil erosion, indicating increased vulnerability to soil erosion rate.
Dams under construction and planned dams may also face the risk of increased sedimentation once
they become operational. The dams located in the central and south parts of upper Mekong River
basin are relatively less risky than those in the north part, because soil erosion in those areas have
low and moderate erosion levels. Previous studies [10,53,79] obtained results that coincide with our
research for the analysis of soil erosion impact on dams in the upper Mekong River basin. Meanwhile,
soil erosion in the lower Mekong River basin, especially from the Khorat Plateau (Thailand) to the
Mekong Delta, can also generate sedimentation problems due to the high occurrences of soil loss.
The agricultural activities in these areas mainly cause the increase in the soil erosion rate. A dam under
construction (Don Sahong) and four planned dams (Ban Koum, Phu Ngoy, Stung Treng and Sambor)
may be threatened by soil erosion due to the impact of sub-basins in the Khorat Plateau in Thailand,
particularly the confluence with the Lancang–Mekong River’s mainstream. In addition, extreme soil
erosion occurs in the Mekong Delta. Many studies affirm that the Mekong Delta is the most vulnerable
area in terms of risk of soil loss [33–36].

The impact of soil erosion on dams in the Lancang–Mekong River’s mainstream can be analysed
in two parts based on the water sources of the river, namely, the upper Mekong River (with three
river areas from Lancang basin) and the lower Mekong River (composed of the northern highlands,
Khorat Plateau, Tonle Sap and Mekong Delta). The upper Mekong River basin covers 180,000 km2

or approximately 24% of the study area, while the lower Mekong River basin covers 570,000 km2

or approximately 76%. The soil erosion modulus of the upper Mekong River basin is 235.7 t/km2/y.
Its percentage relative to total soil erosion is approximately 36%, even if this area is smaller than the
lower Mekong River basin. The soil erosion modulus of the lower Mekong River basin is 198.2 t/km2/y
which represents approximately 64% of the total occurrence of soil erosion. The results of the soil
erosion modulus can be explained as that the reservoirs located in the upper Mekong River basin are
more vulnerable from soil erosion and increased sediment. Consequently, dams are likely to be at risk
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of decreasing storage capacity continually. Our results are consistent with the findings of past studies
on the impact of soil erosion on dams and sediment trapping. For instance, Reference [47] reported that
the sediment trapping rates of dams under construction and the planned dams in the Lancang–Mekong
River basin will increase from 51% to 69% due to the high heterogeneity of specific sediment yield in the
different parts of the basin, and much higher trapped sediment load is predicted because of soil erosion
resulting from socio-economic development. More than 50% of the sediment load (approximately
140 Mt) in the Lancang–Mekong River basin is expected to be trapped annually. Furthermore, more
than 60% of the sediment load originates from China’s end of the Lancang–Mekong River’s mainstream.
Existing dams, dams under construction and planned dams are expected to have the highest impact
on storage capacity due to the fact of sediment load. Reference [28] reported that the main dams
in the Lancang River, such as Manwan, Gongguoqiao, Dachaoshan and Jinghong, have sediment
trapping rates between 30% and 70% because of the high sediment yield in the Lancang–Mekong
River’s mainstream and sub-basins. The storage capacity of reservoirs will continuously decrease from
the sediment load due to the soil erosion in the reservoir upstream.

5.4. Delineating Sediment Form

This study endeavoured to estimate the sediment yield by considering factors such as soil erosion,
gully erosion and rill erosion. These erosions are not the only sources of sediment into the river
channel, because sediment yield is fundamentally controlled by climatic conditions, geomorphologic
characteristics and anthropogenic forcing [22,48]. Some sediments are formed by erosion in the river
channel. Our analysis did not take other factors into account in this study. This study could not
consider erosion in the river channel due to the limitation of the modified RUSLE model which solely
analyses erosion on land. For the study of channel deformations and changing river morphology,
a hydrodynamic model is needed. Besides, sediment data (suspended and bed load sediment) for the
Lancang–Mekong River basin are insufficient, because a number of measuring stations continue to be
unavailable. This is the main limitation for further study in the basin. The results in this research can
be considered together with erosion in the river channel using a hydrodynamic model; it would be
able to show the sediment process on both land and in the river.

6. Conclusions

The RUSLE model was integrated with GIS techniques in this study to assess soil erosion and
sediment yield in the Lancang–Mekong River basin. The impact of soil erosion on hydropower dams
was also considered. The findings indicate that soil erosion occurs in all areas of the Lancang–Mekong
River basin, accounting for 5350 t/km2/y of its average soil erosion rate or approximately 45% of the
basin. The north part of the upper Mekong River basin and some parts of Thailand have higher terrains
than the other areas, and they have good vegetation cover and support practice. Furthermore, the LS

factor showed that this factor was the strongest influencing factor for soil erosion in the study area.
The spatial distribution of soil erosion also indicated that the norther part of the upper Mekong River
basin and the central and southern parts of the lower Mekong River basin are the most vulnerable
areas in terms of increased soil erosion rates due to the movement of sediments to the river. Hence,
the dams in this river are highly threatened by sediment problems.

The value of pursuing research on the sediment capacity of each sub-basin of the Lancang–Mekong
River basin are summarized as follows. The size of the sub-basins and their elevation directly affect the
sediment capacity of the river. Moreover, the spatial distribution of sediment deposition and erosion
indicates that relatively high sediment erosion occurs along the flow direction of the mainstream, from
the northern part of upper Mekong River basin to the Mekong Delta. The findings on sediment yield
estimation from the modified RUSLE model and the observed sediment data were in good agreement
and had high correlation. The proposed technique can be applied in the assessment of sediment yield
capacity and sediment deposition in the Lancang–Mekong River basin.
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The modified RUSLE method was successfully applied to the assessment of the amount and
spatial distribution of soil erosion and sediment deposition in the Lancang–Mekong River basin.
The method can be applied not only to this river but also to other important areas. This study can
help policymakers and relevant organizations improve their decision making based on the provided
valuable information on soil erosion and sedimentation in this region.
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Abstract: Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural
ecosystems. However, they are adversely affected by water erosion processes after extreme land cover
modifications such as wildfires or intensive agricultural activities. The main goal of this research was
to clarify the dynamic interaction between erosion processes and different ecosystem components
(inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS.
Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss
and runoff were quantified in each experimental plot, considering different inclinations and land
uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss
varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the
cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2;
in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest
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amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and
0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination,
rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human
activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and
F. Therefore, the current study could be very useful to policymakers and planners for proposing
immediate conservation or restoration plans in a less studied area which has been shown to be
vulnerable to soil erosion processes.

Keywords: soil management; land cover changes; Syria; soil erosion; hillslopes

1. Introduction

Soils are vital components of environmental systems and supply livelihoods, services and goods
for humans and natural ecosystems [1,2]. Soils are formed by numerous factors such as parent
material, topography, climate, water, organisms, and time; however, it is well-known that this process
is slow and endangered by land degradation due to certain human activities [3–5]. Intensification
of anthropogenic effects has become a key factor that causes negative structural shifts in the soil
matrix and health; thus, there has been an acceleration of the erosional cycle from prehistoric times [6]
to today [7]. Current soil erosion rates, caused by water or wind, are high and can be considered
one of the most serious ecological threats to land sustainability globally [8], given that more than 75
billion tons per year of soil are lost due to soil erosion [9]. The problem associated with soil erosion
by water is the result of spatial integration of physical and human factors, which vary significantly
across scales (from pedon to watershed), and make any estimation difficult [10–12]. Soil erosion
irremediably reduces the quality of the physico-chemical and biological properties, soil fertility and
land productivity, which considerably affect cultivated areas [13,14]. Therefore, nature-based solutions
to achieve land degradation neutrality can be a key to conserving ecosystem services [15,16]. However,
for any ecological restoration, stakeholders and land managers must be fully motivated and convinced,
and this is still a current challenge [17,18].

Soil erosion is progressively limiting the availability of resources, threatening biodiversity,
and affecting food production, and is accelerated by specific drivers such as climate change, land
use/land cover changes, overgrazing, inappropriate farming procedures, or armed conflicts [19–23].
Consequently, soil erosion is defined as a physical and anthropological challenge [24]. During the 1980s,
statistics indicated that about two billion hectares of agricultural land had completely deteriorated since
1000 AD, and currently, the FAO estimates ~75 billion tons of agricultural soil loss, causing an annual
cost of USD 400 billion [25]. Consequently, an increasing interest in soil stability and conservation
is progressively evolving to deal with this worldwide environmental problem in the context of the
landscape changes which have occurred in the current century [9,26,27].

Soil erosion is the outcome of the dynamic interaction between different ecosystem components,
e.g., land use, inclination, rainfall intensity, and soil properties [28]. The mechanism of soil erosion
by water includes splashing and detachment of soil particles due to the kinetic energy of raindrops,
then the transportation of these particles by surface runoff [29]. However, due to its tremendous
impact, recent research has been directed more towards erosion control techniques in many parts of the
world, for example in Austria [30], Spain [31], China [32], Hungary [33], Germany [34], and France [35],
among others.

The components of the Mediterranean environment are considered one of the most fragile around
the world, especially as regards soils, which are exposed to severe degradation processes [36,37].
In several cases, rainfall and runoff have induced soil erosion, which is a well-known degradation
challenge in terms of ecological mismanagement [8,38]. Rugged and dissected terrains, steep slopes,
high rainfall intensities, shallow and skeletal soil thicknesses, receding and sparse vegetation, and
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chronic and severe drought stress in summer are among the most important physical factors which
drive soil erosion [39,40]. Several authors have reported that the annual rates of soil erosion have
reached dangerous levels, exceeding the allowable soil loss tolerance limits (2 to 12 Mg ha−1 year−1)
for agricultural and economic sustainability in the Mediterranean environment [41–45]; nevertheless,
these numbers can vary depending on the main goal of the research and the specific area [46]. For
example, Kouli et al. [47] determined that more than 1 Mg ha−1 year −1 may be irreversible within a
time dimension ranging from 50 to 100 years.

Syria is among the eastern Mediterranean countries which are seriously exposed to the problem
of water-related soil erosion, especially in the coastal region of the country (CRoS). This area represents
an appropriate terrestrial, structural, climatic, hydrological, and intense anthropological case of the
acceleration of soil erosion by water [23,48]. In the CRoS, soil erosion by water is the first threat to
agricultural activity, which is the pivot of economic life for 34.8% of the population [49]. Meanwhile,
CRoS is considered the first agricultural stability zone in Syria, receiving more than 600 mm of
rainfall and being used for rainfed agriculture, with a total agricultural land area of 2.7 million
ha [50]. Accordingly, the issue of soil erosion in CRoS has been assessed by many local scholars at the
administrative area or catchment area level, using different models such as the Revised Universal Soil
Loss Equation (RUSLE) [51,52], the Water Erosion Prediction Project (WEPP) model [48,53], and the
Coordination of Information on the Environment (CORINE) model [54]. On the other hand, a limited
number of studies have dealt with soil erosion after wildfires. Al-Ali and Kheder [55] stressed the
importance of monitoring soil erosion after wildfires, where the soil erosion from burnt forests reached
7.22 Mg ha−1 year−1.

In the CRoS, as well as in the Mediterranean region in general, different anthropogenic activities
(i.e., rapid changes in land use driven by intense population pressure or agricultural expansion) and
climate change have rapidly exacerbated soil water erosion. However, information about soil erosion
on the field-scale in the near-eastern Mediterranean remains limited compared to that in the western
and northern Mediterranean. Some representative examples can be found in the territories of border
countries, highlighting the importance of assessing land degradation processes from different points
of view, e.g., [55–58]. Within this perspective, the main aim of this research was to bridge the gap
in the common literature on soil water erosion in the coastal territories of Syria by measuring soil
water erosion and runoff under three different land uses (agricultural land (AG), burnt forest (BF),
forest/control plot (F)). Our hypotheses were the following: (i) agricultural areas are the main areas at
risk of soil loss; (ii) burnt forests are endangered by the increased runoff and severe soil loss; (iii) the
effect of inclination on erosion rates has a saturation curve, i.e., above a threshold inclination, the rate
of erosion does not increase relevantly; and (iv) slopes and land cover have a significant interactive
effect, thus, these two factors determine erosion hazard together.

2. Materials and Methods

2.1. Study Area

The study area is located in the western part of Syria (35◦49′ to 36◦31′ E; 34◦49′ to 36◦05′ N) within
an area of 5274 km2 (Figure 1). The elevation of the region ranges from 0 to 1700 m a.s.l. The Syrian
coast area consists of three basic geomorphological units: the plain (0–100 m), the plateau (100–400)
and the mountains (400–1700) [59]. The study area is characterized by narrow plains near the coast,
followed by dissected mountains. The degree of inclination generally ranges from 0◦ to more than 60◦.
The coastal strip was affected by recent tectonics, which caused a fluctuation in the sea level from the
Early Pleistocene to the recent “upper” Holocene. This is reflected in the diversity of rock formations
such as sandstones, sands and conglomerates, which were laid down as sedimentary deposits with
limestone and marls. Interestingly, these rocks were penetrated by basaltic rocks in the southern part
of the coastline [60].
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Figure 1. The coastal region of Syria and locations of the experimental plots.

According to the Köppen climate classification, the study area falls into two categories (Csa and
Csb) with the main group being C, which follows the Mediterranean climate. The rainy winter season
is mostly concentrated between November and March [61]. In general, the average rainfall ranges from
765 mm (near the coast) to 1250 mm (in the high mountains) [61]. The mean annual temperature in the
plain areas is about 19.3 ◦C and in the mountains, it is about 14.8 ◦C [61]. The common soil orders
are Inceptisols, Entisols, and Mollisols [62]. The study area includes the governorates of Tartous and
Lattakia, with a population of approximately three million [61]. Syria is divided into five agricultural
stability zones, according to distributed rainfall and the suitability for rainfed agriculture. The study
area is located in the first agricultural stability zone, where rainfall exceeds 600 mm [63].

Traditional agriculture is the most essential economic axis for rural inhabitants, and most fields are
cultivated with wheat, and olive and citrus orchards. Between 2010 and 2018, more than 800 wildfires
were recorded in the coastal region of Syria. Wildfires usually occur between June and late August
(summer season), and are typically induced by human activities. In this research, the experimental
burnt sites were selected based on fire time and intensity.

2.2. Experimental Design

Based on a field survey conducted in the study area, five different locations (SY1, SY2, SY3, SY4,
SY5) with different hillslope inclinations (38%, 45%, 15%, 29%, 10%) were chosen as representative
sites for measuring soil erosion (Table 1). Three different land uses were selected at each location:
(i) agricultural land (AG), where traditional cultivation, sowing, and harvesting occurs, with the
absence of any mechanization; the common crops in AG lands are wheat (SY1, SY2), olives (SY3, SY4),
and citrus orchards (SY5); (ii) burnt forest (BF), where soil cover varies from 30% to 55% with local
natural vegetation; and (iii) forest land (F), which is characterized by mixed forest, and is used as
a control plot without recently extensive human disturbance. The soil cover for all treatments was
sampled without any disturbance.
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Table 1. Experimental characteristics of the five locations studied.

Location Code X Y Slope (%) Rainfall (mm)

Drikiesh SY1 36◦07′ 34◦53′ 38% 965
Qadmous SY2 36◦09′ 35◦05′ 45% 936

Banias SY3 35◦56′ 35◦10′ 15% 914
Mqarmedh SY4 36◦10′ 35◦04′ 29% 890

Sabahia SY5 36◦00′ 35◦45′ 10% 765

Experimental plots of 2 × 1.6 m were installed with metal barriers of 0.5 m height (0.15 m into the
soil) to collect runoff and soil loss. This method was previously adopted in Syria by [64], and applied
by [61,65] and [61,66]. Nonetheless, the plots designed were similar to [61,67], but of a smaller size.

The amount of rainfall (mm) was measured on-site by placing a metal rainfall gauge at each
location. Meanwhile, runoff (L/m2) was recorded at each plot after each rainy event by recording the
volume in each sediment collector. Soil loss (kg/m2) was also determined by mixing the collected soil
detachment and a representative sample of 5 L each. Finally, the samples were transported to the
laboratory. In the laboratory, each sample was placed in a small container and dried in an oven (105 ◦C)
for 24 h.

In addition, soil samples were collected at the beginning of the monitoring period from the topsoil
(0–0.15 m) in each plot, and soil texture and soil erodibility factors were determined (Table 2). The
design and performance of the chosen experimental plot with the sampling strategy were tested
following [39] (Figure 2). Data were collected from October 2012 to December 2013 (i.e., the vegetation
period). A total of 26 rainy storms were observed during the monitoring period.

Table 2. Soil texture and K value in the studied locations (SY1-SY5) for three land uses (agricultural
land (AG), burnt forest (BF), and forest land (F)).

Code
Agricultural Land (AG) Burnt Forest (BF) Forest Land (F)

Sand Silt Clay K Sand Silt Clay K Sand Silt Clay K

SY1 31.5 27.0 41.5 0.154 30.5 32.5 37.0 0.128 32.5 35.5 32.0 0.074
SY2 23.0 35.0 42.0 0.236 23.0 35.0 42.0 0.215 24.0 36.0 40.0 0.161
SY3 27.0 31.0 42.0 0.172 25.0 33.0 42.0 0.155 29.0 33.0 38.0 0.124
SY4 22.0 30.5 47.5 0.186 21.0 32.0 47.0 0.173 23.0 31.0 46.0 0.119
SY5 20.5 39.5 40.0 0.257 27.5 42.0 30.5 0.224 17.5 51.0 31.5 0.151
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Figure 2. Sketch design for the experimental plot.

2.3. Data Analysis

Average, maximum, minimum, and median values were determined. Soil erosion and runoff data
were depicted in boxplots, together with the linear regression among them in each land cover class.
Normal distribution was checked by the Shapiro–Wilk test (S-W); as this failed, the non-parametric
Kruskal–Wallis test (K-W) [68] was applied as an alternative to the one-way ANOVA. The K–W test
aimed to detect the difference between the medians of the treatments with the following hypothesis:
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H0 was that the medians of the studied groups were from the same distribution, while H1 represented
the idea that the medians of the studied groups were different. As the K–W test did not show which
plot is statistically different from any other, the pairwise comparison among slopes was performed
with the Mann–Whitney test with Bonferroni correction. Pairwise analyses in the same hillslope but
for different land uses (i.e., AG-F; AG-BF, BF-F) were neglected as we focused on the differences caused
by inclination and did not analyze the obvious differences among land use types. Finally, to assess the
relationships between the studied variables, a correspondence analysis was carried out. We applied
a General Linear Model (GLM) to reveal the importance of rainfall, inclination and land use types.
The inclination type was included as ordinal data and land use as a categorical dummy variable. We
determined the model parameters, and the effect sizes expressed as partial η2p, which expressed the
contribution of each variable and the interaction of the factors as a standardized measure [69]. The
effect can be very small (η2p < 0.01), small (0.01> η2p > 0.06), medium (0.06 > η2p > 0.14), and large
(η2p > 0.14). Differences among inclination degrees were analyzed with the t-test and ANOVA using
the 1999 Monte-Carlo permutation. Statistical analyses were conducted with SPSS (v24; IBM, Chicago,
IL, USA), the EViews software package (v10; [70] New York, NY, USA), and R 3.6.3 [71] with the gamlj
package [72].

3. Results

3.1. Soil Water Erosion and Runoff

Observed runoff and soil erosion varied according to both inclination and land use, as can be
observed in Appendix A (Figure A1). The total rainfall in the study area exceeded 750 mm, divided into
26 events. The average soil loss ranged between 0.74 ± 0.33 and 0.14 ± 0.07 kg/m2, while runoff ranged
between 42.14 ± 15.27 and 12.77 ± 5.84 L/m2 in the AG (Table 3). Meanwhile, in the BF plots, mean soil
loss ranged between 0.24 ± 0.10 and 0.03 ± 0.01 kg/m2, and runoff from 22.95 ± 9.33 to 3.77 ± 1.62 L/m2.
The lowest amounts of soil loss and runoffwere recorded in the F lands, where the ranges were between
0.07 ± 0.03 and 0.1 ± 0.001 kg/m2, and 11.98 ± 4.73 and 1.78 ± 0.78 L/m2, respectively.

Table 3. Univariate statistics of observed soil loss and runoff in the studied locations (SY1-SY5) under
three land uses (AG: agricultural land, BF: burnt forest, F: forest).

System Code
Soil Loss (kg/m2) Runoff (L/m2)

Min. Max. Range Median Mean SD ϕ Min. Max. Range Median Mean SD ϕ

AG

SY1 0.07 1.34 1.27 0.71 0.74 0.33 0.07 15.20 72.50 57.30 39.75 42.14 15.27 3.05
SY2 0.23 1.17 0.94 0.66 0.69 0.29 0.06 13.00 72.50 59.50 41.75 41.42 16.88 3.38
SY3 0.09 0.47 0.38 0.22 0.24 0.11 0.02 6.50 33.00 26.50 17.10 18.66 8.19 1.64
SY4 0.01 0.94 0.93 0.45 0.50 0.25 0.05 5.20 50.00 44.80 25.25 28.07 12.61 2.52
SY5 0.04 0.29 0.25 0.11 0.14 0.07 0.01 3.90 22.50 18.60 10.75 12.77 5.48 1.10

BF

SY1 0.08 0.43 0.35 0.20 0.22 0.09 0.02 7.50 37.00 29.50 18.75 20.35 7.80 1.56
SY2 0.08 0.45 0.37 0.22 0.24 0.10 0.02 7.90 41.50 33.60 22.50 22.95 9.33 1.87
SY3 0.04 0.22 0.18 0.10 0.11 0.05 0.01 1.80 12.00 10.20 5.10 6.06 2.92 0.58
SY4 0.06 0.37 0.31 0.17 0.20 0.09 0.02 4.10 22.00 17.90 11.50 12.58 5.36 1.07
SY5 0.01 0.05 0.04 0.02 0.03 0.01 0.00 1.10 7.20 6.10 3.25 3.72 1.62 0.32

F

SY1 0.02 0.10 0.08 0.05 0.05 0.02 0.001 4.10 21.50 17.40 11.20 11.98 4.73 0.95
SY2 0.02 0.13 0.11 0.06 0.07 0.03 0.01 3.10 20.00 16.90 10.95 11.03 4.85 0.97
SY3 0.01 0.05 0.04 0.02 0.02 0.01 0.001 1.10 6.90 5.80 3.40 3.79 1.79 0.36
SY4 0.01 0.07 0.06 0.04 0.04 0.02 0.001 2.00 12.50 10.50 6.13 6.54 3.21 0.64
SY5 0.00 0.02 0.02 0.01 0.01 0.00 0.001 0.50 3.50 3.00 1.50 1.78 0.78 0.16

Min: Minimum; Max: Maximum; SD (n): Standard deviation (n); ϕ: Standard error of the mean.

The highest soil loss was 1.34 ± 0.33 kg/m2, registered in the AG lands with 38% inclination,
and the lowest was in the gentlest slope (10%), reaching 0.29 ± 0.07 kg/m2 (Figure 3a; Table 3). Soil
loss was the highest in both BF and F with a hillslope inclination of 45%, reaching 0.45 ± 0.10 and
0.13 ± 0.03 kg/m2, respectively (Figure 3b,c; Table 3).
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Figure 3. Box plots of soil erosion in each ecosystem (with respect to slope): (a) agricultural land;
(b) !burnt forest, and (c) forest (median (_____); mean (•); median 95% confidence (shaded).

Similarly, a maximum runoff was recorded in the AG lands with 72.5 L/m2 in the steepest slopes
(Figure 4a). In BF, the highest runoff was 41.51 L/m2 with 45% inclination; meanwhile, the lowest was
observed with the gentlest slopes, reaching 1.1 L/m2 (Figure 4b). In F lands, the highest runoff was
21.50 L/m2 (SY1) and the lowest was 3.50 L/m2 (SY5) (Figure 4c).
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Figure 4. Box plots of runoff in each ecosystem (with respect to slope): (a) agricultural land; (b) burnt
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In each studied land-use type, regression analysis detected a high correlation between the
generation of runoff and the activation of soil loss: R2 values were 0.91, 0.87, and 0.89 (p < 0.05) in AG,
BF, and F, respectively (Figure 5).
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3.2. Impact of Inclination on Soil Water Erosion

The Kruskal–Wallis test (K–W) showed that at least one of the studied plots was significantly
(p < 0.05) different from other treatments in each slope inclination (SY1, SY2, SY3, SY4, SY5), and land
use (AG, BF, F) (Table 4).

Table 4. Kruskal–Wallis analysis in each ecosystem for both soil water erosion and runoff (p < 0.05).

Kruskal–Wallis
Soil Loss Runoff

H (chi2) p H (chi2) p

SY1 63.41 0.00 48.99 0.00
SY2 62.47 0.00 45.69 0.00
SY3 59.44 0.00 43.81 0.00
SY4 55.52 0.00 40.89 0.00
SY5 65.83 0.00 59.14 0.00

Agricultural land 76.35 0.00 67.33 0.00
Burnt forest 78.57 0.00 92.08 0.00

Forest 83.09 0.00 86.17 0.00

The significance level is 0.05.

The pairwise comparison among the inclinations showed that there was a significant difference
(p < 0.05) among them in the agricultural lands, both in the case of soil loss and runoff under different
inclinations (Table 5). Differences were also significant (p < 0.05) between 15% (SY3) and 45% (SY2),
and between 15% (SY3) and 38% (SY1). However, non-significant differences were noticed among
the following plots: 10% vs 15%; 29% vs 45%; 29% vs 38%; and 45% vs 38% (Table 5). Just as with
the AG, the F plots showed similar values with one exception: in the 29% vs the 38% plots, where
the difference was significant regarding the runoff. In BF plots, significant differences were recorded
in soil loss data among the following pairs: 10% vs 29%; 10% vs 38%; and 10% vs 45%; meanwhile,
the pairwise analysis of runoff data showed identical results in the F plots.

Table 5. Pairwise comparisons between slopes for soil loss and runoff for three land uses (AG:
agricultural land, BF: burnt forest, F: forest).

Soil Loss Runoff

System Inclination Test Statistic Std. Error Std. Test Statistic Sig. Adj. Sig.a Test Statistic Std. Error Std. Test Statistic Sig. Adj. Sig.a

AG

10–15% 18.64 10.45 1.78 0.07 0.75 18.96 10.45 1.82 0.07 0.70
10–29% 52.89 10.45 5.06 0.00 0.00 42.44 10.45 4.06 0.00 0.00
10–45% 70.35 10.45 6.73 0.00 0.00 66.96 10.45 6.41 0.00 0.00
10–38% 72.65 10.45 6.95 0.00 0.00 70.00 10.45 6.70 0.00 0.00
15–29% −34.25 10.45 −3.28 0.00 0.01 −23.48 10.45 −2.25 0.03 0.25
15–45% 51.71 10.45 4.95 0.00 0.00 48.00 10.45 4.60 0.00 0.00
15–38% 54.02 10.45 5.17 0.00 0.00 51.04 10.45 4.89 0.00 0.00
29–45% 17.46 10.45 1.67 0.10 0.95 24.52 10.45 2.35 0.02 0.19
29–38% 19.77 10.45 1.89 0.06 0.59 27.56 10.45 2.64 0.01 0.08
45–38% 2.31 10.45 0.22 0.83 1.00 3.04 10.45 0.29 0.77 1.00

BF

10–15% 38.98 10.45 3.73 0.00 0.00 16.96 10.45 1.62 0.10 1.00
10–29% 67.44 10.45 6.46 0.00 0.00 50.56 10.45 4.84 0.00 0.00
10–38% 74.71 10.45 7.15 0.00 0.00 75.73 10.45 7.25 0.00 0.00
10–45% 77.71 10.45 7.44 0.00 0.00 80.21 10.45 7.68 0.00 0.00
15–29% −28.46 10.45 −2.72 0.01 0.06 −33.60 10.45 −3.22 0.00 0.01
15–38% 35.73 10.45 3.42 0.00 0.01 58.77 10.45 5.63 0.00 0.00
15–45% 38.73 10.45 3.71 0.00 0.00 63.25 10.45 6.05 0.00 0.00
29–38% 7.27 10.45 0.70 0.49 1.00 25.17 10.45 2.41 0.02 0.16
29–45% 10.27 10.45 0.98 0.33 1.00 29.65 10.45 2.84 0.01 0.05
38–45% −3.00 10.45 −0.29 0.77 1.00 −4.48 10.45 −0.43 0.67 1.00

F

10–15% 32.85 10.45 3.14 0.00 0.02 26.48 10.45 2.54 0.01 0.11
10–29% 61.79 10.45 5.91 0.00 0.00 50.35 10.45 4.82 0.00 0.00
10–38% 73.65 10.45 7.05 0.00 0.00 76.64 10.45 7.34 0.00 0.00
10–45% 82.29 10.45 7.88 0.00 0.00 82.02 10.45 7.85 0.00 0.00
15–29% −28.94 10.45 −2.77 0.01 0.06 −23.87 10.45 −2.29 0.02 0.22
15–38% 40.81 10.45 3.91 0.00 0.00 50.15 10.45 4.80 0.00 0.00
15–45% 49.44 10.45 4.73 0.00 0.00 55.54 10.45 5.32 0.00 0.00
29–38% 11.87 10.45 1.14 0.26 1.00 26.29 10.45 2.52 0.01 0.12
29–45% 20.50 10.45 1.96 0.05 0.50 31.67 10.45 3.03 0.00 0.02
38–45% −8.64 10.45 −0.83 0.41 1.00 5.39 10.45 0.52 0.61 1.00

Each row tests the null hypothesis that Sample 1 and Sample 2 distributions are the same. Asymptotic significances
(2-sided tests) are displayed. The significance level is 0.05. a Significance values have been adjusted by the Bonferroni
correction for multiple tests. The bold numbers and bold color express the significance (p < 0.05).
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The correspondence analysis revealed that erosion and runoff in the F plots can be discriminated
and highly differentiated from both AG and BF, as it was located in a position further from the
origin (x = 0, y = 0), whilst AG and BF were less distinct (Figure 6a). Similarly, erosion on 45%
hillslope inclination, followed by 38%, was differentiated from other hillslope inclinations, while the
10%, followed by 45%, and 38% were differentiated from other slope inclinations in terms of runoff
(Figure 6b).

 

 

a 

b 

Figure 6. Correspondence analysis per plot: (a) soil loss and (b) runoff.
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3.3. Multivariate Analysis of Factors and Covariates

The GLM revealed that all the factors involved (inclination and land use) and the covariate
(rainfall) had a significant (p < 0.001) effect on the soil loss, and the explained variance was 85.1%
(based on the adjusted R2 = 0.851). Furthermore, the statistical interaction also obtained a significant
(p < 0.001) effect (Table 6). Regarding the relevance of the predictors, land use registered the largest
effect, while the effect of rainfall was 40% smaller, and the inclination effect was about half. The effect
of the interaction of inclination and rainfall was similar to the rainfall effect.

Table 6. Summary of the General Linear Model (GLM) performed with soil erosion as the target
variable (SS: sum of squares, df: the degree of freedom, F: F-statistic, p: significance, η2p: effect size;
p < 0.001 is highlighted in bold).

GLM SS df F p η2p

Model 24.33 15 142.8 <0.001 0.851
Inclination 2.30 4 50.7 <0.001 0.352
Land use 12.38 2 544.7 <0.001 0.744
Rainfall 3.69 1 324.5 <0.001 0.465
Inclination × Land use 3.41 8 37.5 <0.001 0.445
Residuals 4.25 374
Total 28.58 389

Generally, the soil loss rate of the AG lands was the greatest in all hillslopes, while the control
areas (F) had the lowest rate. The erosion can be regarded as linear in these areas; locally estimated
scatterplot smoothing (LOESS) curves were almost linear in all possible combinations (Figure 7).
Visual evaluation of the data showed that inclination degrees can be divided into two different groups
based on the soil loss: (i) inclination of 10 and 15%, and (ii) 29, 38 and 45%. In the case of group (i),
the erosion rate was below 0.5 kg/m2, although the difference between the AG lands was significant
(mean difference: 0.096; pM-C < 0.0005). Larger differences were caused by the heaviest rainfalls in the
study area with 15% inclination. Erosion rates within group (ii) were similar regarding all the three
land cover types, and the soil loss in the 45% inclination area was not significantly different (p > 0.05)
from the 38% or 29% inclination degree areas according to the ANOVA test (F = 2.059, df = 2, p = 0.129).

 

 

Figure 7. Relation between erosion rates and rainfall by slope and land cover type (agricultural land:
AG; burnt forest: BF, and forest: F).
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4. Discussion

Soil erosion by water is considered one of the most important agricultural sustainability challenges
in the CRoS as a result of the following factors: heavy rainfall, severe inclinations, high erodibility,
massive gushes of runoff, land-use changes, and non-sustainable agricultural practices [48]. Therefore,
the assessment of water erosion derived from field analysis provides a detailed method of approaching
the relationship between erosion, runoff and soil properties.

4.1. Criteria to Assess Current Erosion

4.1.1. The Role of Physical Features in Erosion

The climate of the study area is characterized by a high-intensity precipitation pattern with the
intense kinetic energy of raindrops that hit the hillslopes with different land uses. Land use played an
influential role in determining the quantities of eroded material and discharged runoff, which varied
according to other physical features such as topography and soil properties [73]. Recently, forest lands
in the CRoS were badly affected by severe wildfires, which increase the susceptibility to soil loss in
the study area. In this regard, the importance of soil management was clear. In our research, soil loss
and runoffwere the highest in the AG and BF plots compared to the F plots. Within the study area,
the cultivated land (AG plots) and burnt plots remained bare and exposed directly to raindrops, which
could explain the high amount of soil erosion and runoff in comparison to the F plots, as other recent
investigations in cultivated or abandoned fields have demonstrated [14,74], or in areas after recent
wildfires [75].

4.1.2. The Role of Slope Steepness in Erosion

Of the five locations used for measuring soil loss and runoff, three of them were chosen with
an inclination higher than 25%, i.e., SY1, SY2, SY4. Our statistical analysis revealed that from 29%,
the critical limit was to be found above this value, similarly to a saturation curve, in that a greater slope
gradient did not cause a relevant increase in the erosion rate (Figure 8). These results agree with other
soil erosion and runoff reports presented by [76–79]. In the light of the high-intensity rainstorms in
the study area, inclination was also a driving factor in the occurrence of high-velocity runoff events
which enhance soil detachment. Additionally, this inclination could motivate both ponding depth
and depressional storage [80–82]. Under the same land use, inclination degree could accelerate the
erosion remarkably, as can be revealed from Table 3 and Figure 7. Land use had a relevant effect on
the soil erosion rate, with the highest values observed in the AG plots, and the lowest ones in the F
plots. In Syria, only a few studies have reported on soil erosion at the plot scale. Barneveld et al. [83]
claimed that soil erosion in the NW part of Syria rarely exceeded 5 kg/m2 in cultivated olive lands
with average slopes of 25%. However, this difference in measuring soil erosion could be explained
by the physiographic difference between each research location, especially the steepness of the slope,
the form and development of terrain, precipitation intensity, soil characteristics, and agricultural
practices. Notably, our results are higher than the erosion observed in Mediterranean mountains
by [84] (147.3 g m−2) and lower than results reported by [83] (5 kg/m2).

4.1.3. Role of Human Activities in Erosion

If the physical factors are compared to human activities, the latter is the main driver of erosion
through poor and unsustainable soil management and tampering with soil structure, and altering its
physical, chemical and biological properties, especially its organic matter content [85]. However, these
consequences should be considered as serious in fragile and vulnerable soils as in the Mediterranean
environment. Intensive tillage and bare soils play a key role in accelerating soil erosion [86,87]
by enhancing the separation of macro-aggregates, which negatively affects the soil aggregates’
stability [88–92]. Soils in forest plots are protected by more vegetation and we hypothesize that soil
aggregates are stronger and are not affected by the negative impacts of the kinetic energy of raindrops.
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Some authors have observed that the collapse of soil aggregates can minimize soil porosity by blocking
pores by fine particles (silt, clay) and can magnify soil sealing and crusting, and, subsequently, soil
erosion can be enhanced [93]. As a consequence, some authors have even reported that the soil
erodibility factor (K) is higher in AG plots for this reason, which indirectly indicates the susceptibility
of AG plots to soil erosion [94]. In this regard, organic matter (OM) is expected to be higher in the F
plots, which significantly enhances aggregate stability against rainy storms, while aggregates in AG
and BF plots would be more vulnerable [95–97]. Our results are consistent with [98], who indicated
that inappropriate agricultural practices in shallow topsoil can increase the susceptibility of runoff
and erosion. This is extensive in various agricultural activities in the Mediterranean belt [99,100]. The
relevance of OM content in mitigating erosion has been proved by several authors, i.e., soils with
<2% OM are highly susceptible to erosion and runoff [101,102]. In addition, [36,103–105] highlighted
the vital role of agricultural activities and the Mediterranean climate in accelerating soil erosion in
semi-arid regions, while other studies stressed the importance of ground soil cover for preventing
erosion and runoff [99,106–109]. As extensive fieldwork in the CRoS has revealed, in the AG plots
there is an absence of most of the agricultural practices that conserve soil, especially crop rotation,
maintaining tillage, contour and strip farming, grass water channels, and diversion structures.

 

−

 

Figure 8. Slope gradient and erosion rate (_____LOESS fit line with 95% confidence intervals).

4.2. Dimensions of the Current Evaluation

The CroS constitutes the first agricultural stability zone and the agricultural and economic
backbone of the local population, and therefore the protection of its natural resources, especially soils
from erosion, is a priority in the framework of agricultural sustainability. Thus, the implementation of
some conservation practices (CP) or even the establishment of a national action plan for soil conservation
to repair local ecosystems is a high priority. Some authors have recommended CP including soil
mulching [110,111], tillage reduction [112,113], buffer strips and minimum cultivation [114] or a correct
planification of soil terraces [115]. Nonetheless, field analysis of soil erosion is at the forefront of the
measures that will develop strategies for preserving farmland, especially during the ongoing war that
has negatively affected the agricultural and food system in the country. In the context of soil erosion,
cultivated hillslopes in the CRoS are subject to intensive use pressure which includes poor maintenance
technologies, and overuse of fertilizers. Consequently, soil aggregates are more dynamic once there are
other agents of erosion, especially high-intensity raindrops. In this regard, the orographic precipitation
model imposes high rainfall intensities, and consequently massive runoffwhich accelerates soil erosion.
Unfortunately, in this research, the intensity and duration of rainfall could not be measured. However,
further studies should address those elements instead of using the total rainfall amount per event. In
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addition, further research should be carried out to address appropriate measures for land conservation,
especially with hillslopes of over 29% inclination.

5. Conclusions

In this research, soil loss and runoff were measured in five different locations (hillslopes) with
three different land uses (AG, BF, F) in the coastal region of Syria. The main findings of this research are:

1. Observed soil loss and runoffwere higher in the AG lands, followed by BF and F.
2. In the CRoS, land use has the greatest effect on soil erosion, followed by rainfall amount and

hillslope inclination.
3. Concerning the inclination degree, SY1 (38%) and SY2 (45%) showed the greatest soil erosion and

runoff amounts per event, followed by SY4 (29%), SY3 (15%), and SY5 (10%).
4. Regardless of the land use type, our results show an absence of statistical differences (p < 0.05)

between 10 and 15% inclination, and between 38 and 45%.
5. Soil loss was 0.14 ± 0.07 kg/m2 in the AG plots, while it did not exceed 0.1 ± 0.001 kg/m2 in the

F plots. Meanwhile, the highest runoff was recorded in the AG plots, which ranged between
3.77 ± 1.62 and 22.95 ± 9.33 L/m2

6. In the CRoS, the pairwise comparison among the hillslopes revealed that 29% inclination can be
the maximum tolerable threshold to apply urgent soil erosion control measures.

Few studies have dealt with soil erosion in Syria, and to our knowledge none of these have
measured erosion per rainfall event at different hillslope positions comparing human disturbances
under three different land uses. The outcome of this research could play an important role in setting up
the first conservation plan in Syria. Moreover, the output of this research will contribute to bridging
the gap in the common literature on soil water erosion in the near-eastern Mediterranean, and could be
used for the improvement of erosion equations or soil protection policies not only in Syria, but all over
the Mediterranean belt.
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Figure A1. Dynamic interaction between erosion, runoff, and rainfall in each land use.

References

1. Baritz, R.; Wiese, L.; Verbeke, I.; Vargas, R. Voluntary guidelines for sustainable soil management: Global
action for healthy soils. In International Yearbook of Soil Law and Policy 2017; Springer: Berlin, Germany, 2018;
pp. 17–36.

2. Brevik, E.C.; Steffan, J.J.; Rodrigo-Comino, J.; Neubert, D.; Burgess, L.C.; Cerdà, A. Connecting the public
with soil to improve human health. Eur. J. Soil Sci. 2019, 70, 898–910. [CrossRef]

3. Fang, H.; Sun, L.; Tang, Z. Effects of rainfall and slope on runoff, soil erosion and rill development: An
experimental study using two loess soils. Hydrolog. Process. 2015, 29, 2649–2658. [CrossRef]

4. Alewell, C.; Egli, M.; Meusburger, K. An attempt to estimate tolerable soil erosion rates by matching soil
formation with denudation in Alpine grasslands. J. Soils Sedim. 2015, 15, 1383–1399. [CrossRef]

5. Wang, L.; Li, X.A.; Li, L.C.; Hong, B.; Liu, J. Experimental study on the physical modeling of loess
tunnel-erosion rate. Bull. Eng. Geol. Environ. 2019, 78, 5827–5840. [CrossRef]

99



Water 2020, 12, 2786

6. Dotterweich, M.; Ivester, A.H.; Hanson, P.R.; Larsen, D.; Dye, D.H. Natural and human-induced prehistoric
and historical soil erosion and landscape development in Southwestern Tennessee, USA. Anthropocene 2014,
8, 6–24. [CrossRef]

7. Romero-Díaz, A.; Ruiz-Sinoga, J.D.; Robledano-Aymerich, F.; Brevik, E.C.; Cerdà, A. Ecosystem responses to
land abandonment in Western Mediterranean Mountains. Catena 2017, 149, 824–835. [CrossRef]

8. Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.;
et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017,
7, 1–12. [CrossRef]

9. Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.;
Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion.
Nat. Commun. 2017, 8, 1–13. [CrossRef]

10. Gholami, V.; Booij, M.; Tehrani, E.N.; Hadian, M. Spatial soil erosion estimation using an artificial neural
network (ANN) and field plot data. Catena 2018, 163, 210–218. [CrossRef]

11. Prasannakumar, V.; Vijith, H.; Abinod, S.; Geetha, N. Estimation of soil erosion risk within a small mountainous
sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information
technology. Geosci. Front. 2012, 3, 209–215. [CrossRef]

12. Efthimiou, N.; Lykoudi, E.; Karavitis, C. Comparative analysis of sediment yield estimations using different
empirical soil erosion models. Hydrol. Sci. J. 2017, 62, 2674–2694. [CrossRef]

13. Ramos, M.; Martinez-Casasnovas, J. Soil moisture variability at different depths in land-levelled vineyards
and its influence on crop productivity. J. Hydrol. 2006, 321, 131–146. [CrossRef]

14. Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth Sci. Rev.

2018, 179, 436–447. [CrossRef]
15. Sannigrahi, S.; Joshi, P.K.; Keesstra, S.; Paul, S.K.; Sen, S.; Roy, P.; Chakraborti, S.; Bhatt, S. Evaluating

landscape capacity to provide spatially explicit valued ecosystem services for sustainable coastal resource
management. Ocean Coastal Manag. 2019, 182, 104918. [CrossRef]

16. Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.; Wang, Y.; Sutton, P.C.;
Chakraborti, S. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression
based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 137004. [CrossRef]

17. Norman, L.M. Ecosystem services of riparian restoration: A review of rock detention structures in the
madrean archipelago ecoregion. Air Soil Water Res. 2020, 13, 1178622120946337. [CrossRef]

18. Petrakis, R.E.; Norman, L.M.; Lysaght, O.; Sherrouse, B.C.; Semmens, D.; Bagstad, K.J.; Pritzlaff, R. Mapping
perceived social values to support a respondent-defined restoration economy: Case Study in Southeastern
Arizona, USA. Air Soil Water Res. 2020, 13, 1178622120913318. [CrossRef]

19. Cerdà, A.; Lavee, H.; Romero-Diaz, A.; Hooke, J.; Montanarella, L. Soil erosion and degradation in
Mediterranean-type ecosystems. Land Degrad. Dev. 2010, 21, 71–74. [CrossRef]

20. Kaiser, J. Wounding Earth’s Fragile Skin; American Association for the Advancement of Science: Washington,
DC, USA, 2004.

21. Boardman, J.; Poesen, J. Soil Erosion in Europe; John Wiley & Sons: Hoboken, NJ, USA, 2007.
22. Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [CrossRef]
23. Abdo, H.G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria.

Reg. Environ. Change 2018, 18, 1707–1719. [CrossRef]
24. Falcão, C.J.L.M.; de Araújo Duarte, S.M.; da Silva Veloso, A. Estimating potential soil sheet Erosion in a

Brazilian semiarid county using USLE, GIS, and remote sensing data. Environ. Monit. Assess. 2020, 192, 47.
[CrossRef] [PubMed]

25. FAO. Status of the world’s soil resources (SWSR)–main report. In Food and Agriculture Organization of the

United Nations and Intergovernmental Technical Panel on Soils; FAO, I: Rome, Italy, 2015; Volume 650.
26. Hatna, E.; Bakker, M.M. Abandonment and expansion of arable land in Europe. Ecosystems 2011, 14, 720–731.

[CrossRef]
27. Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on

hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [CrossRef]
28. Dutta, S. Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Syst. Environ.

2016, 2, 123. [CrossRef]

100



Water 2020, 12, 2786

29. Angulo-Martinez, M.; Beguería, S.; Navas, A.; Machin, J. Splash erosion under natural rainfall on three soil
types in NE Spain. Geomorphology 2012, 175, 38–44. [CrossRef]

30. Klik, A.; Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil
erosion processes. Soil Tillage Res. 2020, 203, 104669. [CrossRef]

31. Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; Franco, N.G.; Díaz-Pereira, E.;
Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control runoff,
soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems.
Catena 2020, 187, 104352. [CrossRef]

32. Chen, X.; Liang, Z.; Zhang, Z.; Zhang, L. Effects of soil and water conservation measures on runoff and
sediment yield in red soil slope farmland under natural rainfall. Sustainability 2020, 12, 3417. [CrossRef]

33. Madarász, B.; Bádonyi, K.; Csepinszky, B.; Mika, J.; Kertész, Á. Conservation tillage for rational water
management and soil conservation. Hung. Geograph. Bull. 2011, 60, 117–133.

34. Koch, H.J.; Stockfisch, N. Loss of soil organic matter upon ploughing under a loess soil after several years of
conservation tillage. Soil Tillage Res. 2006, 86, 73–83. [CrossRef]

35. Armand, R.; Bockstaller, C.; Auzet, A.V.; van Dijk, P. Runoff generation related to intra-field soil surface
characteristics variability: Application to conservation tillage context. Soil Tillage Res. 2009, 102, 27–37.
[CrossRef]

36. García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes:
Changes and future challenges. Geomorphology 2013, 198, 20–36. [CrossRef]

37. Raclot, D.; le Bissonnais, Y.; Annabi, M.; Sabir, M. Challenges for mitigating Mediterranean soil erosion under
global change. Mediterr. Reg. Under Clim. Change 2016, 311.

38. Amate, J.I.; de Molina, M.G.; Vanwalleghem, T.; Fernández, D.S.; Gómez, J.A. Erosion in the Mediterranean:
The case of olive groves in the south of Spain (1752–2000). Environ. Hist. 2013, 18, 360–382. [CrossRef]

39. Takken, I.; Govers, G.; Ciesiolka, C.; Silburn, D.; Loch, R. Factors Influencing the Velocity-Discharge Relationship

in Rills; IAHS Publication: Oxfordshire, UK, 1998; pp. 63–70.
40. Bradford, J.; Foster, G. Interrill soil erosion and slope steepness factors. Soil Sci. Soc. Am. J. 1996, 60, 909–915.

[CrossRef]
41. Nearing, M.; Deer-Ascough, L.; Laflen, J. Sensitivity analysis of the WEPP hillslope profile erosion model.

Trans. ASAE 1990, 33, 839–0849. [CrossRef]
42. Rojo, L. Plan nacional de restauración hidrológico-forestal y control de la erosión; Memoria, Tomo I: Mapas Tomo II;

ICONA: Madrid, Spain, 1990.
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Abstract: Slope vegetation restoration is known to influence erosion in the Loess Plateau region in
China. The ability of vegetation to mitigate soil erosion under extreme runoff, however, has not
been studied in great detail in this region. Here, we examine five typical vegetation communities in
the Loess Plateau region that originated from restoration efforts enacted at different times (1, 11, 15,
25, and 40 years). Water scouring experiments were carried out to monitor vegetation community
succession and its effects on erosion. These results indicate that the sum of plant importance values
increased from 260.72 to 283.06, species density increased from 2.5 to 4.5 per m2, and the amount of
litter and humus increased from 24.50 to 605.00 g/m2 during the 1 to 40 years of vegetation community
succession. Root biomass and root diameter reached a maximum of approximately 10.80 mg·cm−3

and 0.65 mm at 40 years of recovery. Slope runoff velocity decreased by 47.89% while runoff resistance
increased by 35.30 times. The runoff power decreased by 19.75%, the total runoff volume decreased
by 2.52 times, and the total sediment yield decreased by 11.60 times in the vegetation community.
Slope runoff velocity and power had the largest correlation with aboveground vegetation (0.76, 0.74),
total runoff had the largest correlation with underground roots (0.74), and runoff resistance was most
strongly correlated with soil structure (0.71). Studies have shown that the succession of vegetation
communities can enhance the aboveground ecological functions of plants, thereby significantly
reducing the runoff velocity and power. The development of plant root system significantly reduces
the runoff volume; the improved soil structure significantly increased the runoff resistance coefficient.

Keywords: vegetation community; vegetation importance value; root system; soil erosion; grey
correlation analysis

1. Introduction

In recent years, there has been a series of studies conducted on soil and water conservation
focusing on silt-dam gully engineering, terraced fields of slope engineering, and the Grain for Green
Project on the Loess Plateau [1–3]. These efforts play an important role in the ecological restoration of
Loess areas. The average annual sediment in the Yellow River has been reduced from an estimated
1530 million tons in the 1950s to 166 million tons in the 2010s [4]. About 40% to 50% of the reduction of
the average annual sediment in the Yellow River comes from soil and water conservation measures
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in the Loess Plateau [5]. Since 1999, the Chinese government has carried out the Grain for Green
Project, which has restored slope vegetation along the Loess Plateau. Observations from remote
sensing show that the vegetation coverage of the Loess Plateau increased from 31.6% in 1999 to 59.6%
in 2013 [6]. Restored forest and grassland areas accounted for about 56.7% of the total area of the Loess
Plateau [7]. Some have suggested that vegetation restoration on the Loess Plateau has resulted in
a 50% reduction in sedimentation along the Yellow River [8,9]. Ecological restoration of vegetation
thus plays an important role in reducing slope soil erosion in the region [10]. Rainfall, however, does
not automatically generate runoff. Erosion caused by a few short-duration heavy rainstorms can
account for more than 60% to 90% of the total annual erosion [11]. Loess slopes can be damaged by
slope runoffwhen extreme rainstorm events are frequent [12]. The slope is also the pioneer path of
sediment production, which has a great contribution to the total amount of sediment observed in the
outlet section of the watershed in the Loess hilly region [13]. As such, a better understanding of how
vegetation can mitigate slope runoff and sediment under the erosion action of high-intensity slope
runoff on the Loess Plateau is urgently required.

The Grain for Green Project facilitates a great change in landscape patterns in a certain sense,
with the vegetation changing from annual crops to perennial native plants on the Loess Plateau [1].
The vegetation community, in the process of recovery without intervention, began to take place as
species succession because of the extension of the years. Successional dynamics in the Loess Plateau
typically follow a pattern of Artemisia plants, giving way to perennial rhizome grasses, and finally to
perennial arbuscular herbs [14]. Gramineae, Legume, and Compositae occupy an important position
in the natural succession of plant communities [15]. Previous studies have found that leguminous
plants, such as Lespedeza davurica, can improve the soil organic matter, total nitrogen, total phosphorus,
and available nitrogen content [16]. The Legume plants gradually became the dominant species, and
soil organic carbon, in the 0–50 cm depth soil, gradually recovered after vegetation succession for
about 20 years on Loess Plateau [17]. The Asteraceae and Gramineae plants are mainly represented
by Artemisia capillaris, Artemisia sacrorum, and Bothriochloa ischaemum. They can grow naturally in the
early stage of vegetation restoration, and their root systems have a strong ability to retain surface
soil [18–20]. During succession, plant biomass, ground coverage, root structure, and function will
change. The soil physical and chemical properties undergo predictable dynamics as well [21–23].
The number of species and individuals increases rapidly from 1 to 10 years in disturbed vegetation
communities on the Loess Plateau [24]. The maximum root length density reached 31.04 mm/cm3 in
the 0–20 cm depth soil at 15 years after abandonment, and maximum root biomass density reached
3.35 mg/cm3 after 21 years. Likewise, the water absorption capacity and the turnover frequency of root
systems gradually increased in the process of vegetation restoration [17]. The slope is a basic unit of
erosion, and erosion is primarily driven by the hydrodynamic index of the runoff and the erodibility of
the topsoil [25]. The flow rate, flow velocity, and runoff depth are key factors directly affecting the
slope separation process, and are also the basic parameters used for calculating other hydrodynamic
indicators, such as runoff shear, runoff power, Reynolds number, and Froude number. These, in turn,
are affected by factors, such as the underlying surface and vegetation [26,27]. Therefore, studying
slope runoff hydrodynamics across vegetation communities in varying degrees of succession can help
to reveal the role that the successional status has on mitigating slope erosion.

To study this, we studied slope runoff and erosion in five areas that had vegetation in varying
degrees of succession (i.e., from 1 to 40 years after restoration) by the method of artificial simulation.
Our goal was to analyze the effects of the vegetation successional status on slope soil erosion under
water flushing conditions. We expect that results from this study will provide scientific guidance for
future research on water erosion dynamic mechanisms and vegetation regulation principles in the
Loess Plateau.
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2. Materials and Methods

2.1. Study Area

The study area is located in the Xindan watershed on the Loess Plateau in China (E 110◦15′–110◦20′,
N 37◦27′–37◦32′; 810–1120 m a.s.l.) (Figure 1). The soil type is to yellow loess soil, and the plough layer
is thin (20–30 cm). Xindian watershed is a national soil erosion control area, which has been banned for
about 60 years. The average annual temperature and precipitation in the study area is 9.7 ◦C and 486
mm, respectively. Precipitation does, however, vary widely across years and space. In recent years,
there has been a notable decrease in precipitation days, an increase in the frequency of heavy rains,
and an increase in both droughts and floods.

The successional sites included the Artemisia capillaris for 1 year since restoration, A. sacrorum

for 11 years, Bothriochloa ischaemum for 15 years, Lespedeza davurica for 25 years, and Ziziphus jujube

for 40 years. These species are dominant because of succession. It is also an inevitable sequence of
vegetation succession in the Loess Plateau. This method of selection can be regarded as a method of a
spatial sequence equivalent to a vegetation succession time series.

′
′ ′ ′

 
Figure 1. (a,b) Study area in Shaanxi Province, China; (c) Digital elevation model; (d) Digital image
and sampling sites.
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2.2. Experiments and Tests

The five experimental plot areas were 4 m × 0.5 m, and slope steepness ranged from 8 to 9◦.
In order to prevent lateral seepage of the slope flow during the test, plots were separated by a 2-mm
thick steel plate. We installed flow-stabilizing devices and jet grooves at either ends of the plots, and
dug a circular pit under the catchment groove where the sample collecting barrel was placed (Figure 2).
Each scouring experiment lasted for 30 min, and the observation sections were set at 1, 2, 3, and
4 m of the plots to observe the runoff in sections. According to the series of precipitation data of the
hydrological station in the past 30 years, the P–III frequency of rainstorms was calculated for each
duration (10, 20, and 60 min; 3, 6, 12, and 24 h; and 3 d). In the torrential rains of different durations,
the 20-year return period short-duration (60, 20, and 10 min) rainstorm intensities reached 0.9, 1.9, and
2.7 mm/min, respectively (Figure 3). As such, we used a flow rate of 4, 8, and 16 L/min for scouring,
which is similar to a rain intensity of 2, 4, and 8 mm/min according to the catchment area of the plot.

Runoff and sediment samples were collected every minute, and runoff data was measured every
2 min. Sediment samples were left to settle first, then dried, and measured for sediment yield. We cut
off the vegetation on the ground in each plot, retaining the stem of a certain height (5 cm) and the root
system (Figure 2). We used the potassium permanganate stain tracing method to measure the runoff
velocity on the slope. Runoff depth and width were measured using an artificial ruler. Runoff depth
was used as a reference, and the hydrodynamic calculation uses the formula derivation value. Each
experimental plot was scoured three times with different flow rates. A total of 45 experiments were
conducted in this study.

 

Figure 2. Device schematic diagram and field photos of the experimental process in the experimental
area. (a–e) Before soil erosion; (f–j) After soil erosion; (a,f) Artemisia capillaris for 1 year since restoration;
(b,g) A. sacrorum for 11 years; (c,h) Bothriochloa ischaemum for 15 years; (d,i) Lespedeza davurica for 25
years; (e,j) Ziziphus jujube for 40 years.
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Figure 3. Short-term rainstorm frequency P–III curve in the study area.

2.3. Vegetation Community Survey and Sample Collection

In addition to experimental plots, three 2 × 2 m vegetation survey plots were established at each
site. We sampled the vegetation by documenting the number of plants, estimating the percent ground
cover, vegetation height, and humus layer thickness (Table 1). We harvested all aboveground plant
tissue to measure aboveground vegetation biomass. We collected litter and humus layers for mass
calculation. Root samples were collected using a root drill that was 9 cm in diameter with a barrel
length of 10 cm from 0–20-, 20–40-, 40–60-, 60–80-, and 80–100-cm soil layers, based on previous reports
of the root systems of vegetation on the Loess Plateau [1,28]. We used an iron box with an area of
0.2 × 0.15 m buckled into the soil to obtain undisturbed soil for measuring soil aggregates. A soil
wreath knife with a volume of 100 cm3 was used to obtain undisturbed soil for measuring the saturated
hydraulic conductivity.
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Table 1. Status of the experimental plots.

Years after
Restoration/y

Dominant
Species

Vegetation
Type

Altitude/m
Slope

Aspect
Slope/(◦)

Vegetation
Coverage/%

Humus
Thickness/cm

Associated Species

1
Artemisia
capillaris

Semi-shrub,
herb

977 Shady slope 8 25 0.18 Artemisia atrovirens, Artemisia scoparia

11
Artemisia
sacrorum

Semi-shrub,
herb

965
Half-sunny

slope
9 73 0.58

Artemisia atrovirens, Artemisia scoparia,
Tripolium vulgare, Lespedeza davurica,

Ziziphus jujuba

15
Bothriochloa
ischaemum

Perennial
herb

961
Half-sunny

slope
8 86 0.73

Artemisia sacrorum, Lespedeza davurica,
Artemisia atrovirens, Taraxacum

mongolicum

25
Lespedeza
davurica

Herbaceous
subshrub

951
Half-shady

slope
8 67 0.57

Artemisia sacrorum, Lespedeza davurica,
Bothriochloa ischaemum, Setaria viridis,
Tripolium vulgare, Artemisia atrovirens,

Artemisia scoparia, Taraxacum mongolicum

40
Ziziphus

jujuba
Deciduous

arbors
963

Half-shady
slope

9 76 0.69

Artemisia sacrorum, Lespedeza davurica,
Bothriochloa ischaemum, Setaria viridis,

Tripolium vulgare, Clerodendrum
mandarinorum, Asparagus cochinchinensis,
Artemisia scoparia, Taraxacum mongolicum
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2.4. Sample Testing

All root samples were cleaned and scanned using a root scanner (EPSON, TWAIN PRO, Suwa City,
Japan). We used the root-system analysis program WinRHIZO (QC., Quebec City, Canada) to analyze
output from the root scanner. The program was used to estimate the root length, surface area, root
tips, and diameter. Root biomass was measured by weighing the dried roots. Soil aggregate samples
were air-dried naturally and then sifted into three grain classes to calculate the percentage, which
were 0–0.25, 0.25–2, and >2 mm, respectively. Soils extracted from the drill core were used to measure
the soil particle size using a laser particle size analyzer (Malvern, Mastersizer 2000, Birmingham,
Britain). We only utilized soil median diameter d50 data in the grey correlation analysis. The saturated
hydraulic conductivity of undisturbed soils collected with a wreath knife was measured by the constant
head method.

2.5. Data Analysis

2.5.1. Vegetation Community Index

We measured the root length density (RLD), root weight density (RWD), and root tip density
(RTD) for all samples according to Equations (1)–(3):

RLD =
L

Vs
, (1)

RWD =
M

Vs
, (2)

RTD =
N

Vs
, (3)

where L is the sum of all root lengths per unit soil volume (mm); M is the dry weight of all roots per
unit soil volume (mg); N is the sum of all the root tips per unit soil volume; and Vs is the volume per
unit of soil.

Next, we measured the soil saturated hydraulic conductivity as an indicator of soil permeability.
The higher the saturated hydraulic conductivity, the higher the soil permeability. Increases in soil
permeability can increase the infiltration of runoff and play a better role in soil and water conservation.
This was calculated according to Equation (4):

K =
10QL

A∆HT
, (4)

where K is the soil saturated hydraulic conductivity (mm/min); Q is the outflow (mL) in time T; L is the
linear distance (cm) of the water flow path; A is the cross-sectional area (cm2) through which the water
flows; ∆H is the total head difference (cm) of the start and end sections of the percolation path; and T is
the outflow time (min). We only used the soil saturated hydraulic conductivity as one of the factors of
the correlation analysis and did not analyze the results in this study.

We used the Shannon–Wiener index (H), Margalef index (R), and the vegetation importance value
(Z) as three ecological indicators that can reflect the aboveground structure of vegetation communities.
The Z reflects the ecological status of a certain plant in a vegetation community and can play a
normalization role for the study of more complex vegetation communities. Equations (5)–(7) were
as follows:

H = −
s

∑

i = 1

Ni

N

(

ln
Ni

N

)

, (5)

R =
S− 1
ln N

, (6)

Z = RD + RF + RC, (7)
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where N is the sum of the number of plots; Ni is the number of plants of the i-th species; S is
the total number of species per plot; and RD = (density of a species/total density of all species) ×
100%; RF = (frequency of a species/total frequency of all species) × 100%; RC= (cover of a species/total
coverage of all species) × 100%.

2.5.2. Calculation of Hydrodynamic Parameters

Hydrodynamic parameters included the Darcy–Weisbach (f ), runoff shear (τ), runoff power (P),
Reynolds number (Re), and Froude number (Fr) following Equations (8)–(15):

f = 8R·J·g/v2, (8)

J= [L· sinθ− (v2/2g)]/L, (9)

h =
Q

dv
, (10)

Re =
vR

γ
, (11)

γ =
0.01775

1 + 0.0337t + 0.000221t2
, (12)

Fr = v/
√

gh, (13)

τ = ρRJ, (14)

ω = τv, (15)

where R is the hydraulic radius in m; J is the hydraulic gradient in m/m; g is the gravitational
acceleration constant of 9.8 m/s2; v is the runoff velocity in m/s; θ is the slope in degrees; L is the slope
length in m; h is the depth of runoff in m; Q is the flow rate in m3/s; d is the runoff width in m; R is
the hydraulic radius in m, which is approximately equal to the runoff depth, h; t is the water flow
temperature in ◦C; and ρ is the water flow density in kg/m3.

2.5.3. Grey Correlation Analysis

The gray correlation analysis formula is as follows, Equations (16) and (17):

ξ0i =
minimink

∣

∣

∣x0
′(k) − xi

′(k)
∣

∣

∣+ ρmaximaxk

∣

∣

∣x0
′(k) − xi

′(k)
∣

∣

∣

x0
′(k) − xi

′(k) + ρmaximaxk

∣

∣

∣x0
′(k) − xi

′(k)
∣

∣

∣

, (16)

γ(x0, xi) =
1
n

n
∑

i=1

ξ0i, (17)

where ξ0i is the correlation coefficient, γ(x0, xi) is the correlation degree, x0
′(k) − xi

′(k) is the difference
sequence, maximaxk

∣

∣

∣x0
′(k) − xi

′(k)
∣

∣

∣ is the maximum difference, and minimink

∣

∣

∣x0
′(k) − xi

′(k)
∣

∣

∣ is the
minimum difference.

3. Results

3.1. Vegetation Succession Sequence and Structural Characteristics of Ground/Underground Parts

We showed the distribution of Z for each species (Figure 4). We also summed the Z of each species
in the five experimental plots. The rankings of the plant species in terms of Z across the experimental
plots was: Artemisia sacrorum (356.72) > Artemisia capillaris (214.36) > Bothriochloa ischaemum (189.31) >
Lespedeza davurica (177.97) > Artemisia atrovirens (123.67) > Ziziphus jujuba (100.74) > Artemisia scoparia

(81.39) > Tripolium vulgare (58.32) > Setaria viridis (36.34) > Taraxacum mongolicum (10.27) > Clerodendrum
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mandarinorum (9.66) > Asparagus cochinchinensis (5.36). The sum of Z of annual plants was 419.42,
mainly Artemisia capillaris, Artemisia scoparia, and Artemisia atrovirens. Perennial herbaceous plants had
a Z of 665.98, mainly Bothriochloa ischaemum, Artemisia sacrorum, and Tripolium vulgare. Small trees and
semi-shrub plants had a Z of 278.71, which was primarily driven by Lespedeza davurica and Ziziphus

jujuba. Therefore, it can be explained that perennial herbaceous plants are the main biological species
for the natural restoration of vegetation in the area.

The Z across all species increased from 260.72 to 283.06 during the 40 years of succession that
we analyzed. The Z of annual plants was 147.11, the perennial herbaceous plants was 93.12, and
semi-shrubs and small trees was 20.49 in the 1-year vegetation community. Thus, annual plants were
dominant in the 1-year vegetation community. Perennial herbaceous plants were dominant (153.23)
in the 11- and 15-year vegetation communities by the same calculation method. Semi-shrubs and
small trees were dominant (81.02) in the 25- and 40-year vegetation communities. It can be concluded
that annual plants are the dominant species in the early stage of vegetation community succession,
perennial grasses are the dominant species in the middle stage, and semi-shrubs and small trees are
the dominant species in the later stage.

 

Figure 4. Distribution characteristics of the vegetation importance value.

The species density gradually increased from 2.5 to 4.5/m2 from 1 to 40 years of succession
(Table 2). Plant density increased first and then decreased and then stabilized. Plants density peaked at
135.5/m2 at 15 years of succession, and then stabilized between 25 and 40 years (Table 2). Plant height
increased from 25.25 to 159.32 cm/m2 over the 40 years. Aboveground biomass increased from 28.83 to
753.33 g/m2. The amount of litter and humus increased from 24.50 to 605.00 g/m2.
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Table 2. The ecological structure development of vegetation community succession from 1 to 40 years.

Years after
Restoration/Year

Species
Density (n/m2)

Plants Density
(n/m2)

Plant Height
(cm/m2)

Aboveground Plant
Biomass (g/m2)

Litter and
Humus (g/m2)

1 2.5 14.33 25.25 28.83 24.50
11 3.5 44.5 58.33 195.83 115.33
15 3 135.5 54.17 165.55 151.33
25 4 34.67 54.67 195.33 220.5
40 4.5 34.35 159.32 753.33 605.00

Roots are highly sensitive to the soil environment and occupy an important position in the
succession of vegetation communities. The more closely the root system is integrated with the soil,
the more obvious its effect on the soil’s physical and chemical properties, and the stronger the soil
erosion resistance [29]. RWD and root diameter gradually increased from 1 to 40 years of succession
(Figure 5). At 40 years, the maximum RWD and root diameter were 10.80 mg/cm3 and 0.65 mm,
respectively. RLD and RTD increased from 1 to 15 years, then decreased from 15 to 25 years before
stabilizing. The average RLD and RTD reached a maximum of 7.72 mm/cm3 and 2.80/cm3 in the 15-year
successional community. According to the results above, it can be explained that slender and thin are
the main root morphology of the vegetation community in early succession. Perennial plants, however,
increased in dominance with increasing successional age. Specifically, we found an increase in the
dominance of semi-shrubs and small trees after 25 years. At this time, the RWD and root diameter was
bigger. The RWD, RLD, root diameter, and RTD decreased with soil depth at each successional stage,
and there were significant differences in the root index between some soil layers (p < 0.05) (Figure 5).

 

−

Figure 5. Distribution characteristics of root morphology in vegetation communities. Note: The same
letter (a,b,c) indicates that there was no significant difference in the indexes of root system among
groups, the significant level P = 0.05.
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3.2. Dynamic Characteristics of Slope Runoff in Different Vegetation Communities

Soil erosion of vegetation communities on slopes is primarily affected by the hydrodynamic
characteristics of runoff and by the composition of the underlying material. Runoff velocity ranged
from 0.078 to 0.266 m/s across the whole experiment (Table 3). The runoff velocity range was 0.203
to 0.266 m/s under different flow conditions during the 1 to 15 years of succession. Runoff velocity
ranged from 0.078 to 0.180 m·S−1 under different flow conditions during the 25 to 40 years of succession.
In the later stage of succession, the runoff velocity was 52.37%, 38.77%, and 52.52% lower under
the condition that the discharge rate was 4, 8, and 16 L/min, respectively. It can be concluded that
vegetation community succession is a vegetation self-restoration process that can effectively reduce
runoff velocity.

The Darcy–Weisbach (f ) metric is used to indicate the resistance of the underpad to runoff.
Generally, the larger the resistance coefficient, the more energy that is required for the water to
overcome the resistance, and the smaller the sediment yield. The resistance coefficients ranged from
0.462 to 21.792 in the whole experiment (Table 3). The average resistance coefficient under different
flow conditions was 0.827 in the 1 to 15 years of vegetation succession. The resistance coefficient was
11.223 during the 25 to 40 years of succession. The resistance coefficient of the slope runoff increased
from 0.458 to 16.166 during the 25 to 40 years of vegetation succession.

Generally, the greater the flow shear stress, the greater the effective shear stress acting on the
soil surface, and the greater the soil erosion intensity on the slope. The runoff shear stress increases
with the increase of the discharge flow. When the scouring flow increased by 2.00 times, the shear
stress increased by 1.63 times correspondingly in the whole experiment process. The runoff shear
stress, however, also showed an increasing trend with the increase of the vegetation community
succession years. The shear stress increased from 3.560 to 8.177 Pa during 1 to 40 years of vegetation
community succession.

The runoff power can reflect the comprehensive influence of hydrodynamic characteristics on
slope erosion. With the same trend of the shear stress, the runoff power of each vegetation community
increased with the increase of the scouring flow (Table 3). This change in runoff power was due to
the greater scouring force, faster runoff velocity, and greater shear stress, and the susceptibility to rill
erosion. The maximum runoff power was 0.788 to 1.327 N/(m/s) in the 1-year vegetation community,
and the minimum was 0.589 to 1.108 N/(m/s) in the 40-year vegetation community (Table 3).
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Table 3. Characteristics of the dynamic parameters of slope runoff in different vegetation communities.

Years after
Restoration/Year

Scouring
Flow

(L/min)

Water
Temperature

T (◦C)

Runoff
Depth
h (m)

Runoff
Width
d (m)

Runoff
Velocity
v (m/s)

Reynolds
Number

Re

Froude
Number

Fr

Darcy–
Weisbach

f

Runoff
Shear Stress
τ (Pa)

Runoff
Power

P (N/(m/s))

1
4 8 0.002 0.124 0.238 409.455 1.567 0.462 3.318 0.788
8 8 0.002 0.349 0.218 301.638 1.590 0.448 2.675 0.580
16 8 0.001 0.282 0.211 689.693 1.581 0.463 4.686 1.327

11
4 22 0.001 0.241 0.211 290.719 1.838 1.007 2.099 0.442
8 16 0.003 0.208 0.260 588.889 1.665 0.937 3.964 1.025
16 14 0.003 0.358 0.266 676.453 1.553 0.909 4.742 1.256

15
4 18 0.002 0.159 0.256 432.667 1.950 0.770 2.861 0.725
8 16 0.002 0.295 0.203 416.903 1.352 1.188 3.218 0.654
16 16 0.004 0.338 0.238 751.111 1.278 1.338 4.954 1.178

25
4 22 0.003 0.156 0.146 464.339 0.847 4.432 4.336 0.628
8 14 0.003 0.262 0.180 465.662 1.049 1.854 4.240 0.759
16 16 0.007 0.371 0.110 670.753 0.430 12.554 9.457 1.038

40
4 17 0.005 0.189 0.078 346.970 0.362 21.792 7.611 0.589
8 16 0.005 0.338 0.094 374.978 0.466 14.938 7.228 0.652
16 16 0.006 0.412 0.115 636.482 0.467 11.767 9.693 1.108
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3.3. Runoff and Sediment Yield under Different Vegetation Communities

The runoff volume and sediment yield on the slopes of the different vegetation communities
were significantly different. Both the runoff volume and sediment yield decreased significantly with
increasing successional age at a scouring flow of 4, 8, and 16 L/min (Table 4). Compared with the
early successional community, the total runoff volume at 40 years decreased 3.52, 2.74, and 2.29 times,
respectively, under the scouring flow of 4, 8, and 16 L·min−1. The total sediment yield decreased 16.83,
9.31 and 11.65 times on average. It can be seen from the multiple of reducing runoff and sediment
that the effect of vegetation restoration on reducing runoff and sediment decreases with the increase
of the erosion discharge. In addition, the total runoff volume and sediment yield under different
scouring flows were averaged and the following results were calculated: During 1 to 40 years of
vegetation succession, the runoff volume decreased by an average of 2.52 times and the sediment yield
decreased by an average of 11.60 times. Therefore, it can be concluded that the contribution of Loess
slope vegetation succession to sediment reduction during water erosion is much greater than that for
runoff reduction.

Table 4. Total runoff volume and sediment yield under different vegetation communities.

Scouring Flow/(L/min) Years after Restoration/Years Runoff Volume/L Sediment Yield/kg

4

1 109.59 2.02
11 41.93 0.36
15 93.96 0.56
25 73.39 0.09
40 31.12 0.12

8

1 202.8 2.7
11 147.29 0.58
15 194.07 0.73
25 171.72 0.15
40 73.97 0.29

16

1 459.57 10.83
11 363.73 1.38
15 407.5 0.99
25 399.53 0.31
40 200.78 0.93

The soil erosion rate of the 1-year vegetation community reached a maximum value of 1.35 g/(m2·s)
when the scouring flow rate was 16 L/min. The minimum soil erosion rate was 0.01 g/(m2·s) in
the 25-year vegetation community under a scouring flow rate of 4 L/min, followed by the 40-year
vegetation community at 0.02 g/(m2·s) (Figure 6). The soil erosion rate decreased by 25.36 times from 1
to 40 years of succession under the same scouring flow rate. This indicates that the successional status
of vegetation in the Loess Plateau has a significant effect on reducing the erosion rate of runoff.
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Figure 6. Average soil erosion and runoff rate under different vegetation communities.

3.4. Grey Correlation Analysis between Hydrodynamic Parameters and Ecological Factors of Vegetation
Communities

The correlation between these hydrodynamic parameters and soil erosion rate can be illustrated
(Table 5). The erosion rate was positively correlated with runoff velocity and power (p < 0.01).
In contrast, the erosion rate was negatively correlated with resistance (p < 0.01), and was not correlated
with shear force (p > 0.05).

The hydrodynamic parameters and the soil erosion rate showed a significant Pearson correlation,
but the correlation coefficient does not indicate which hydrodynamic factors are most relevant to the
erosion rate. Therefore, we identified the hydrodynamic factors most closely related to the erosion rate
by the grey correlation analysis method: Runoff power (Table 6).

Table 5. Correlations between the soil erosion rate and hydrodynamic factors.

Scouring
Flow/(L/min)

Sample Size
Runoff

Velocity
Runoff

Resistance
Runoff Power Shear Stress

4 50 0.456 * −0.319 * 0.412 ** −0.246
8 75 0.285 * −0.213 * 0.235 * −0.394 **
16 70 0.491 ** −0.367 ** 0.376 ** −0.388 **

Total 195 0.414 ** −0.217 ** 0.326 ** −0.112

* Indicates a significant correlation at p < 0.05; ** Indicates a significant correlation at p < 0.01.

Table 6. Correlation coefficient between the soil erosion rate and hydrodynamic factors and grey
correlation degree.

Characteristic
Indicators

Correlation
Coefficient

1
Year

11
Years

15
Years

25
Years

40
Years

Correlation
Degree γ (x0, xi)

Runoff velocity ξ1 0.37 0.65 0.67 0.72 1.00 0.68
Runoff resistance ξ2 0.38 0.99 1.00 0.70 0.43 0.70

Shear stress ξ3 0.39 1.00 0.99 0.67 0.62 0.73
Runoff power ξ4 0.48 0.96 1.00 0.86 0.99 0.86

In order to establish the relationship between the hydrodynamic parameters with the vegetation
characteristics, we chose the hydrodynamic parameters as the characteristic indicators, and selected
the vegetation community as the sequence index. The correlation degree of the total slope runoff
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volume and ecological factors of the vegetation community were ranked as follows: Underground part
(0.74) > aboveground part (0.69) = soil structure (0.69) (Table 7). From the grey correlation analysis
of the slope runoff power, it can be concluded that the aboveground part (0.74) > soil texture (0.73)
> underground part (0.69) (Table 8). The grey correlation analysis of the slope runoff velocity shows
that the aboveground part (0.76) > soil texture (0.70) > underground part (0.68) (Table 9). The grey
correlation analysis of the runoff resistance shows that soil texture (0.71) > underground part (0.70)
> aboveground part (0.65) (Table 10).

Table 7. Grey correlation between the total slope runoff volume and vegetation communities.

Sequence Index
Correlation
Coefficient

1
Year

11
Years

15
Years

25
Years

40
Years

Correlation
Degree

Mean

Underground
part

RWD ξ5 0.66 0.99 0.81 1.00 0.42 0.78

0.74
RLD ξ6 0.50 1.00 0.63 1.00 0.93 0.81

Root diameter ξ7 0.47 0.93 0.64 1.00 0.37 0.68
RTD ξ8 0.42 1.00 0.55 0.92 0.54 0.69

Aboveground
part

Vegetation important value ξ9 0.52 0.96 0.70 1.00 0.40 0.72

0.69

Number of species ξ10 0.46 0.97 0.63 1.00 0.38 0.69
Number of plants ξ11 0.46 1.00 0.37 0.70 0.94 0.69

Shannon–Wiener index ξ12 0.57 0.77 0.42 1.00 0.35 0.62
Margalef index ξ13 0.41 1.00 0.38 0.70 0.76 0.65
Plant biomass ξ14 0.58 1.00 0.79 0.90 0.39 0.73

Litter and humus ξ15 0.52 0.75 1.00 0.80 0.67 0.75

Soil structure

saturated hydraulic conductivity ξ16 0.52 0.79 1.00 0.56 0.33 0.64

0.69
d50 ξ17 0.36 0.66 0.68 1.00 0.36 0.61

Macro-aggregate ξ18 0.48 1.00 0.65 0.97 0.36 0.69
Micro-aggregate ξ19 0.69 0.99 0.88 1.00 0.52 0.82

Table 8. Grey correlation between the slope runoff power and vegetation communities.

Sequence Index
Correlation
Coefficient

1
Year

11
Years

15
Years

25
Years

40
Years

Correlation
Degree

Mean

Underground
part

RWD ξ20 0.63 0.82 0.79 1.00 0.40 0.73

0.69
RLD ξ21 0.43 0.94 0.40 0.94 1.00 0.74

Root diameter ξ22 0.43 1.00 0.60 0.91 0.34 0.66
RTD ξ23 0.39 0.64 0.36 1.00 0.70 0.62

Aboveground
part

Vegetation important value ξ24 0.52 0.67 1.00 0.61 0.48 0.66

0.74

Number of species ξ25 0.48 1.00 0.76 0.67 0.46 0.67
Number of plants ξ26 0.64 1.00 0.43 0.94 0.96 0.79

Shannon–Wiener index ξ27 0.72 1.00 0.38 0.79 0.37 0.65
Margalef index ξ28 0.58 0.93 0.41 0.94 1.00 0.77
Plant biomass ξ29 0.62 0.91 0.88 1.00 0.41 0.76

Litter and humus ξ30 0.62 0.90 0.91 0.96 1.00 0.88

Soil structure

saturated hydraulic conductivity ξ31 0.64 0.80 1.00 0.65 0.40 0.70

0.73
d50 ξ32 0.37 0.90 1.00 0.61 0.58 0.69

Macro-aggregate ξ33 1.00 0.57 0.86 0.60 0.67 0.74
Micro-aggregate ξ34 0.67 0.99 0.86 1.00 0.50 0.80

Table 9. Grey correlation between the slope runoff velocity and vegetation communities.

Sequence Index
Correlation
Coefficient

1
Year

11
Years

15
Years

25
Years

40
Years

Correlation
Degree

Mean

Underground
part

RWD ξ35 0.56 0.65 0.64 1.00 0.34 0.64

0.68
RLD ξ36 0.37 0.90 0.46 1.00 0.66 0.68

Root diameter ξ37 0.63 0.99 0.74 1.00 0.45 0.76
RTD ξ38 0.46 0.62 0.60 1.00 0.54 0.65

Aboveground
part

Vegetation important value ξ39 1.00 0.86 0.94 0.94 0.62 0.87

0.76

Number of species ξ40 0.81 1.00 0.91 0.91 0.59 0.84
Number of plants ξ41 0.50 0.69 0.39 1.00 0.96 0.71

Shannon–Wiener index ξ42 0.91 1.00 0.55 0.89 0.48 0.76
Margalef index ξ43 0.54 0.69 0.68 1.00 0.35 0.65
Plant biomass ξ44 0.54 0.69 0.68 1.00 0.35 0.65

Litter and humus ξ45 0.50 0.99 1.00 1.00 0.60 0.82

Soil structure

saturated hydraulic conductivity ξ46 0.58 0.65 1.00 0.69 0.35 0.66

0.70
d50 ξ47 0.71 1.00 0.98 0.85 0.59 0.82

Macro-aggregate ξ48 1.00 0.48 0.74 0.55 0.52 0.66
Micro-aggregate ξ49 0.50 1.00 0.55 0.96 0.34 0.67
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Table 10. Grey correlation between the slope runoff resistance and vegetation communities.

Sequence Index
Correlation
Coefficient

1
Year

11
Years

15
Years

25
Years

40
Years

Correlation
Degree

Mean

Underground
part

RWD ξ50 1.00 0.44 0.57 0.38 0.68 0.61

0.70
RLD ξ51 1.00 0.62 0.47 0.84 0.38 0.66

Root diameter ξ52 0.93 0.60 0.82 1.00 0.45 0.76
RTD ξ53 1.00 0.81 0.53 0.98 0.43 0.75

Aboveground
part

Vegetation important value ξ54 0.68 0.70 0.72 1.00 0.40 0.70

0.65

Number of species ξ55 0.68 0.61 0.68 1.00 0.37 0.67
Number of plants ξ56 1.00 0.76 0.40 0.78 0.38 0.66

Shannon–Wiener index ξ57 0.64 0.60 0.95 1.00 0.41 0.72
Margalef index ξ58 1.00 0.79 0.46 0.86 0.40 0.70
Plant biomass ξ59 1.00 0.35 0.43 0.36 0.41 0.51

Litter and humus ξ60 1.00 0.42 0.44 0.57 0.35 0.56

Soil structure

saturated hydraulic conductivity ξ61 1.00 0.75 0.49 0.45 0.68 0.67

0.71
d50 ξ62 0.72 0.64 0.68 1.00 0.39 0.69

Macro-aggregate ξ63 0.63 0.71 0.68 1.00 0.39 0.68
Micro-aggregate ξ64 1.00 0.62 0.97 0.91 0.52 0.80

4. Discussion

4.1. Effects of Vegetation Community Restoration on Soil Structure and Erosion

Vegetation construction is an important measure for soil erosion control on the Loess Plateau.
Specifically, it plays an important role in controlling soil erosion and reducing sediment along the
Yellow River. Vegetation restoration can effectively improve soil properties, affecting the relationship
between the plant–soil interface through various factors, such as stems, leaves, roots, and root
exudates [30]. Improving soil properties takes time, and there are differences in the degree and
efficiency of soil improvement between different succession development directions and different
vegetation types [31]. Therefore, the growth and decline of dominant species is the basic unit of
the succession and development of a vegetation community. The composition of the community
and the spatial distribution of individuals constitute the structural characteristics of the vegetation
community. Vegetation community structure includes diversity, species composition, community
floristic composition, and community age structure [32]. The natural restoration process of abandoned
farmland vegetation on the Loess Plateau can be roughly divided into the rapid recovery period,
primary succession period, advanced succession period, and stable period [33].

Vegetation communities have the ability to control soil erosion, in part because they increase soil
anti-erodibility [34]. The soil erodibility is affected by vegetation as they can increase soil organic
matter and soil aggregate stability. In this study, the shear stress increased from 3.560 to 8.177 Pa from
1 to 40 years of vegetation succession (Table 3). At the same time, the erosion rate decreased from
1.35 to 0.02 g/(m2·s) (Figure 5). This demonstrates that communities at later stages of succession have
better anti-erosion properties than younger communities. The effects of vegetation on soil erosion
reduction can be divided into three parts, namely, the aboveground interception of vegetation, the
fixation of underground roots, and the resistance of the soil interface [35]. The vegetation types and
cover on the Loess Plateau have changed dramatically over the past 30 years [36], and the regional
vegetation ecosystem has been significantly improved. These improvements have effectively alleviated
the serious effects of soil erosion in this area. Jiao et al. showed that the average soil erosion intensity
in the early stages of vegetation succession was between 3087.6 and 4408.4 t/km2/a, and the vegetation
succession period was between 1245.2 and 1827.8 t/km2/a [37]. This is consistent with the finding
that vegetation restoration can effectively reduce the rate of soil erosion (Figure 5). However, with
the occurrence of extreme rainstorm events or the increase of scouring intensity, places with better
vegetation coverage are more prone to small gravity erosion, such as landslides and collapses. [38].
It can be assumed that when the scouring flow rate is great enough, the vegetation will gradually lose
its effectiveness in reducing flow and reducing sediment, and can even induce extreme soil erosion
events, such as landslides and collapses. Previous studies have shown that when grasslands on slopes
scour under 5 L/min of discharge, the effect of sediment reduction on vegetated slopes is significantly
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greater than that on bare slopes while when the scouring flow increases to 8 L/min, the difference of
sediment reduction between different grasslands is small, which indicates that the ability of vegetation
to prevent and control runoff erosion on slopes is weakened with the increased discharge [39]. The total
runoff volume decreased by an average of 3.52, 2.74, and 2.29 times at 4, 8, and 16 L/min of the scouring
flow and the total sediment yield decreased by 16.83, 9.31, and 11.65 times on average in our data
report (Figure 5). It was also just starting from the scouring flow of 8 L/min, and the difference in the
control effect of vegetation communities on soil erosion became smaller. Therefore, the predecessors
and our research can at least prove that when the scouring flow is large enough, the soil and water
conservation of the vegetation gradually decreases. Whether it will aggravate slope erosion or induce
gravity erosion remains to be further studied.

4.2. Effects of Vegetation Community Restoration on the Hydrodynamics of Slope Runoff

Vegetation can effectively reduce water erosion on slopes. and some of the more important reasons
are the hydrodynamic parameters affecting the runoff, which will change the runoff velocity, flow
regime, and erosion energy of the slope, thus affecting the soil erosion process [25,40]. Vegetation can
increase the critical conditions of slope erosion by increasing runoff resistance, and reducing runoff
velocity and power to improve the critical conditions of slope erosion [41]. Their research shows that
among many hydrodynamic factors, the runoff power on the slope is the most closely related to the
average sediment transport rate of runoff, and the runoff power is the factor that can best reflect the soil
erosion rate. It is easier to analyze and simulate the soil erosion process by using runoff kinetic energy
and power theory [42,43]. Previous studies have shown that vegetation type, vegetation coverage,
vegetation litter, humus, and roots are important factors affecting soil erosion on slopes. Vegetation
communities regulate the runoff of slopes through the interaction of aboveground and underground
parts [44]. On the one hand, the ecological structure of aboveground plants and underground roots
in vegetation communities can increase runoff resistance and reduce runoff power [45]. On the
other hand, the correct succession of vegetation communities can improve the soil properties, greatly
enhance the soil anti-erodibility, so that the formation of rills cannot be fully developed, and the runoff
hydraulic energy slope always changes little [46,47]. In view of this problem, we continue to discuss the
correlation degree of slope runoff volume, velocity, resistance coefficient, power, and other factors that
affect the soil erosion rate. The average slope runoff volume decreased by 2.85 times with the succession
and development of the vegetation community (1–40 years) (Table 4). This contribution came primarily
from the root system of the vegetation community, and the average correlation degree was 0.74 (Table 7).
The RLD was the most effective indicator of the runoff volume for roots. Runoff power was reduced by
19.75% from 1 to 40 years of succession (Table 3). The contribution came primarily from aboveground
vegetation, with an average correlation degree of 0.74 (Table 8). The litter and humus quality were the
most effective factors affecting the aboveground part. Vegetation community succession reduced the
slope runoff velocity by 47.89%, and its deceleration effect came primarily from aboveground tissue,
with the average correlation degree reaching 0.76 (Table 9). The vegetation importance value (0.87),
species density (0.84), and Shannon–Wiener index (0.76) played key roles in the aboveground part.
Therefore, the vegetation community complicates the composition of species through the development
of succession, which is more effective in controlling soil erosion than the vegetation coverage of a
single species [44]. The succession and development of the vegetation community also increased the
content of soil aggregates, improved soil structure, and thus increased the resistance of surface soil to
slope runoff. The correlation degree of soil structure, a series of the sequence index, to runoff resistance
reached 0.71 (Table 10). Among them, the content of soil micro-aggregate was a key factor for the
increased runoff resistance, and the correlation degree reached 0.8.

4.3. Implications for the Relationship between Vegetation Community Restoration and Slope Erosion

Around 50 years ago, the main contradiction in China’s Loess Plateau was food production
and ecological restoration. Strong soil erosion conditions have not allowed humans to cultivate on
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slopes [48,49]. Therefore, the Chinese government has adopted a series of eco-economic compensation
measures in the hopes of resolving this important problem. However, after seeing significant increases
in vegetation cover, the global climate changed, and the Loess Plateau still experiences strong soil
erosion under extreme precipitation events [50]. Therefore, the new contradiction points to the benefit
and mechanism of vegetation in controlling soil erosion. There were differences in the development
direction of vegetation community succession, which leads to differences in the underlying surface.
In the future, the difference analysis and quantitative description of slope erosion patterns should
be examined more carefully. On the one hand, quantitative discussion of the effects of aboveground
parts, underground parts, and soil structure of vegetation communities on slope erosion is required,
and on the other hand, it is necessary to deeply analyze the relationship between the anti-erodibility
of plant communities and the improved soil anti-erodibility, and to establish an evaluation model.
This information will help us to understand the mechanism of a vegetation community regulating
runoff and sediment on a slope more comprehensively. At the same time, the coupling and feedback
between the slope hydrodynamic process and ecological vegetation processes can also be clarified from
a scientific point of view.

5. Conclusions

We comprehensively analyzed the successional development of vegetation community restoration
on the Loess Plateau in China. We found that vegetation communities in later stages of succession
have the ability to control runoff erosion on slopes. In the early stages of vegetation community
succession, communities were dominated by wormwood plants. Perennial grasses were dominant in
the middle stages of succession, and semi-shrub and small trees became dominant in the later stages.
The plant aboveground and underground parts, such as plant density, the number of species, root
length density, and root biomass, increased gradually with the development of vegetation succession.
After 40 years of natural succession of vegetation communities, the slope runoff velocity decreased
by 47.89%, the runoff resistance coefficient increased by approximately 35.30 times, the runoff power
decreased by approximately 19.75%, the total runoff volume decreased by approximately 2.52 times,
and the total sediment yield was reduced by approximately 11.60 times. On the one hand, the role of
vegetation in preventing and controlling slope water erosion indicated that the vegetation important
value, number of species, vegetation diversity (Shannon–Wiener index), and litter humus layer of the
aboveground part significantly reduced the runoff velocity and power. The total amount of runoff
was significantly reduced by the development of vegetation roots. On the other hand, vegetation
communities improved the soil structure, in which runoff resistance was significantly increased by
the restoration of soil micro-aggregate. Our results are important for vegetation restoration in the
Loess erosion slope. They provide a scientific basis for the study of the influence of the vegetation
community on the resistance and control of soil erosion and can be used to benefit an evaluation of
water and soil conservation in the “Grain for Green Project” on the Chinese Loess Plateau.
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Abstract: Rainfall erosivity factor (R-factor) is one of the Universal Soil Loss Equation (USLE) input
parameters that account for impacts of rainfall intensity in estimating soil loss. Although many
studies have calculated the R-factor using various empirical methods or the USLE method, these
methods are time-consuming and require specialized knowledge for the user. The purpose of this
study is to develop machine learning models to predict the R-factor faster and more accurately than
the previous methods. For this, this study calculated R-factor using 1-min interval rainfall data for
improved accuracy of the target value. First, the monthly R-factors were calculated using the USLE
calculation method to identify the characteristics of monthly rainfall-runoff induced erosion. In
turn, machine learning models were developed to predict the R-factor using the monthly R-factors
calculated at 50 sites in Korea as target values. The machine learning algorithms used for this study
were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random Forest, Gradient Boosting,
eXtreme Gradient Boost, and Deep Neural Network. As a result of the validation with 20% randomly
selected data, the Deep Neural Network (DNN), among seven models, showed the greatest prediction
accuracy results. The DNN developed in this study was tested for six sites in Korea to demonstrate
trained model performance with Nash–Sutcliffe Efficiency (NSE) and the coefficient of determination
(R2) of 0.87. This means that our findings show that DNN can be efficiently used to estimate monthly
R-factor at the desired site with much less effort and time with total monthly precipitation, maximum
daily precipitation, and maximum hourly precipitation data. It will be used not only to calculate soil
erosion risk but also to establish soil conservation plans and identify areas at risk of soil disasters by
calculating rainfall erosivity factors.

Keywords: rainfall erosivity factor; USLE R; machine learning; Deep Neural Network

1. Introduction

Climate change and global warming have been concerns for hydrologists and envi-
ronmentalists [1–3]. Hydrologic change is expected to be more aggressive as a result of
rising global temperature, that consequently results in a change in the current rainfall
patterns [4]. Moreover, the Intergovernmental Panel on Climate Change (IPCC) [5] report
showed that increasing rainfall events and rainfall intensity are expected to occur in the
coming years [6]. Due to the frequent occurrence of greater intensity rainfall events, rainfall
erosivity will increase, thus topsoil will become more vulnerable to soil erosion [7]. Soil ero-
sion by extreme intensive rainfall is a significant issue from agricultural and environmental
perspectives [8]. A decrease in soil fertility, the inflow of sediment into the river ecosystem,
reduction of crop yields, etc., will occur due to soil erosion [9,10]. Therefore, effective
best management practices should be implemented for better sustainable management
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of soil erosion. Furthermore, there is a need for a regional estimate of soil loss to proper
decision-making related to appropriate control practice, since erosion occurs diversely over
space and time [11].

During the last few decades, various empirical, physically based, and conceptual
computer models [12] such as Soil and Water Assessment Tool (SWAT) [13], European Soil
Erosion Model (EUROSEM) [14], Water Erosion Prediction Project (WEPP) [15], Sediment
Assessment Tool for Effective Erosion Control (SATEEC) [16], Agricultural Non-Point
Source Pollution Model (AGNPS) [17], Universal Soil Loss Equation (USLE) [18], Revised
Universal Soil Loss Equation (RUSLE) [19] have been developed. Among the models, the
USLE model is one of the most popular and widely used empirical erosion models to
predict soil erosion because of its easy application and simple structures [20,21]. The USLE
model [18] calculates the annual average amount of soil erosion by taking into account soil
erosion factors, such as rainfall erosivity factors, soil erodibility factor, slope and length,
crop and cover management factor, and conservation practice factor.

The Ministry of Environment of Korea has supported for use of USLE in planning
and managing sustainable land management in Korea. To these ends, the USLE has been
extensively used to predict soil erosion and evaluate various soil erosion best management
practices (BMPs) in Korea. Various efforts have been made for the development of site-
specific USLE parameters over the years [22]. Yu et al. [23] suggested monthly soil loss
prediction at Daecheong Dam basin in order to improve the limitation of annual soil loss
prediction. They found that over 50% of the annual soil loss occurs during July and August.
The rainfall erosivity factor (R-factor) is one of the factors to be parameterized in the
evaluation of soil loss in the USLE. The R-factor values are affected by the distribution of
rainfall amount and its intensity over time and space.

Rainfall erosivity has been widely investigated due to its impact on soil erosion studies
worldwide. Rainfall data at intervals of less than 30 min are required to calculate USLE
rainfall erosivity factors. The empirical equations related to R-factor based on rainfall data,
such as daily, monthly, or yearly, available in various spatial and temporal extents, have
been developed using numerous data [24,25].

Sholagberu et al. [26] proposed a regression equation based on annual precipitation
because it is difficult to collect sub-hourly rainfall data to calculate maximum 30-min
rainfall intensity. Risal et al. [27] proposed a regression equation that can calculate monthly
rainfall erosivity factors from 10-min interval rainfall data. In addition, the Web ERosivity
Module (WERM), web-based software that can calculate rainfall erosivity factor, was
developed and made available at http://www.envsys.co.kr/~werm. In the study by Risal
et al. [27] on the R-factor calculation for South Korea, 10-min interval rainfall data, which
cannot give the exact estimate of maximum 30-min rainfall intensity, was used. The Korea
Meteorological Administration (KMA) provides 1-min rainfall data for over 50 weather
stations in Korea. Estimation of R-factor values for South Korea using a recent rainfall
dataset is needed for present and future uses because climate change causes changes in
precipitation pattern and intensity to some degrees. However, the process of calculation
of R-factor from rainfall data is time-consuming, although the Web ERosivity Module
(WERM) software can calculate rainfall erosivity factor [27]. Furthermore, the radar rainfall
dataset can be used to calculate spatial USLE R raster values using Web Erosivity Model-
Spatial (WERM-S) [28]. These days, Machine Learning/Deep Learning (ML/DL) has been
suggested as an alternative to predict and simulate natural phenomena [29]. Thus, ML/DL
has been used for the prediction of flow, water quality, and ecosystem services [30–34].
These studies have implied that ML/DL is an efficient and effective way to calculate R
factor values using recent rainfall time-series data provided by the KMA.

The objective of this study is to develop machine learning models to predict the
monthly R-factor values, which are comparable with those calculated by the USLE method.
For this aim, we calculated R-factor using 1-min interval rainfall data to estimate the
maximum 30-min rainfall intensity of the target values, which is monthly R factor values
at 50 stations in S. Korea. In the previous study by Risal et al. [27], the R-factor values
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for South Korea were calculated using 10-min interval rainfall data, which cannot give an
exact estimate of maximum 30-min rainfall intensity. The procedure used in this study is
shown in Figure 1.

 

— —

Figure 1. Study procedures.

2. Methods

2.1. Study Area

Figure 2 shows the location of weather stations where 1-min rainfall data have been
observed over the years in South Korea. The fifty points marked in circles are observational
stations that provide data used for training and validation to create machine learning
models predicting rainfall erosivity factors, while six stations marked in green on the
right map—Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae—represent the
stations for the final evaluation of the results predicted by machine learning models selected
through validation. Thiessen network presented using red lines of the map on the right
shows a range of the weather environment around the weather stations.
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Figure 2. Weather stations in the study area.
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2.2. Monthly Rainfall Erosivity Calculation

Monthly rainfall erosivity (R-factor) was calculated for each of the 50 weather stations
in South Korea from 2013 to 2019. It was calculated based on the equation given in the
USLE users’ manual in order to calculate the R-factor value [18]. According to Wischmeier
and Smith [18], a rainfall interval of fewer than six hours is considered a single rainfall
event. In addition, the least amount of rainfall that could cause soil loss is at least 12.7 mm
or more as specified in the USLE users’ manual [35].

However, if the rainfall is 6.25 mm during 15 min, it is defined as a rainfall event that
can cause soil loss. The calculations for each rainfall event are as follows.

IF I ≤ 76 mm/hr → e = 0.119 + 0.0873log10 I (1)

IF I > 76 mm/hr → e = 0.283 (2)

E = Σ (e × P) (3)

R = E × I30max (4)

where I (mm h−1) is the intensity of rainfall, e (MJ mm ha−1) is unit rainfall energy, P
(mm) is the rainfall volume during a given time period, E (MJ ha−1) is the total storm
kinetic energy, I30max (mm h−1) is the maximum 30-min intensity in the erosive event, and
R (MJ mm ha−1 h−1) is the rainfall erosivity factor. In this study, the monthly R-factor
(MJ mm ha−1 h−1 month−1) was estimated by calculating monthly E and multiplying it by
I30max. In addition, the monthly rainfall erosivity factor was calculated using Equations
(1)–(4) [18] using the 1-min precipitation data provided on the Meteorological Data Open
Portal site of the KMA (Korea Meteorological Administration).

2.3. Machine Learning Models

Machine learning can be largely divided into supervised learning, unsupervised
learning, and reinforcement learning [36,37]. In this study, supervised learning algorithms
were used. A total of seven methods (Table 1) were used to build models to estimate
R-factor. Table 1 shows the information on machine learning models utilized in this study.

Table 1. Description of machine learning models.

Machine Learning Models Module Function Notation

Decision Tree Sklearn.tree DecisionTreeRegressor DT
Random Forest Sklearn.ensemble RandomForestRegressor RF

K-Nearest Neighbors Sklearn.neighbors KNeighborsRegressor KN
Gradient Boosting Sklearn.ensemble GradientBoostingRegressor GB

eXtreme Gradient Boost xgboost.xgb XGBRegressor XGB
Multilayer Perceptron Sklearn, neural_network MLPRegressor MLP
Deep Neural Network Keras.models.Sequential Dense, Dropout DNN

Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Multi-
layer Perceptron imported and used the related functions from the Scikit-learn module
(Version: 0.21.3), while eXtreme gradient boost was taken from the XGboost library (License:
Apache-2.0) and used the regression functions. Deep Neural Network is trained by taking
Dense and Dropout functions from “Keras.models.Sequential” module of TensorFlow
(Version: 2.0.0) and Keras (Version: 2.3.1) framework. In this study, the standardization
method was used during the pre-process for raw data. Moreover, the “StandardScaler”
function, a preprocessing library of Scikit-learn, was used.

2.3.1. Decision Tree

The Decision Tree (DT) model uses hierarchical structures to find structural patterns in
data for constructing decision-making rules to estimate both dependent and independent
variables [38]. It first learns by continuing the yes/no question to reach a decision [39]. In
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this study, the DT model in the Scikit-learn supports only the pre-pruning. Entropy was
based on classification and 2 for min_samples_split was given in Table 2.

Table 2. Critical hyperparameters in machine learning models.

Machine Learning Models Hyperparameter

Decision Tree criterion = “entropy”, min_samples_split = 2
Random Forest n_estimators = 52, min_samples_leaf = 1

K-Nearest Neighbors n_neighbors = 3, weights = ‘uniform’, metric = ‘minkowski’
Gradient Boosting learning_rate = 0.01, min_samples_split = 4

eXtreme Gradient Boost Booster = ‘gbtree’, max_depth = 10
Multilayer Perceptron hidden_layer_sizes = (50,50,50), activation = “relu”, solver = ‘adam’
Deep Neural Network kernel_initializer = ‘normal’, activation = “relu”

A model hyperparameter is a value that is set directly by the user when modeling.
Table 2 shows the hyperparameter settings of the regressors used in this study.

2.3.2. Random Forest

Random Forest (RF) is a decision tree algorithm developed by Breiman [40] that
applies the Bagging algorithm among the Classification and Registration Tree (CART)
algorithm and the ensemble technique. RF creates multiple training data from a single
dataset and performs multiple training. It generates several decision trees and improves
predictability by integrating the decision trees [41]. Detailed tuning of the hyperparameter
in RF is easier than an artificial neural network and support vector regression [42].

In this study, the hyperparameters in the RF are the following: 52 for n_estimators,
and 1 for min_samples_leaf.

2.3.3. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric method which can be used for
regression and classification [43]. In this study, KNN was used for regression. KNN is an
algorithm that finds the nearest “K” neighborhood from the new data in training data and
uses the most frequent class of these neighbors as a predicted value [44]. In this study,
the number of the nearest neighbors in KNN’s hyperparameter was set as 3. The weights
were calculated using a simple mean, and the distance was calculated by the Minkowski
method [45].

2.3.4. Gradient Boosting and eXtreme Gradient Boost

Gradient Boosting (GB) is an ensemble algorithm belonging to the boosting family
that can perform classification and regression analysis [46,47]. In GB, the gradient reveals
the weaknesses of the model that have been learned so far, whereas other machine learning
models (e.g., DT and RF) focus on it to boost performance [48]. In other words, the advan-
tage of gradient boosting is that the other loss functions can be used as much as possible.
Therefore, the parameters that minimize the loss function that quantifies errors in the pre-
dictive model can found for better R-factor prediction. In this study, the hyperparameters
in the GB are the following: 0.01 for learning_rate, 4 for min_samples_split.

The eXtreme Gradient Boost (XGB) model is faster in training and classifying data than
GB using parallel processing. It also has a regulatory function that prevents overfitting,
which results in better predictive performance [49]. XGB is trained only by important
features so that it calculates faster and performs better when compared to other algo-
rithms [50,51]. The hyperparameters in the XGB are the following: gbtree for booster, and
10 for max_depth.
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2.3.5. Multilayer Perceptron

Multilayer Perceptron (MLP) is a neural network that uses a back-propagation algo-
rithm to learn weights [52]. MLP network consists of an input layer, a hidden layer, and an
output layer (the R-factor). In this study, the hidden layer consisted of 50 nodes.

The hidden layers receive the signals from the nodes of the input layer and transform
them into signals that are sent to all output nodes, transforming them into the last layer of
outputs [53]. The output is used as input units in the subsequent layer. The connection
between units in subsequent layers has a weight. MLP learns its weights by using the
backpropagation algorithm [52].

2.3.6. Deep Neural Network

Deep Neural Network (DNN) is a predictive model that uses multiple layers of
computational nodes for extracting features of existing data and depending on patterns
learn to predict the outcome of some future input data [54]. The invention of the new
optimizers enables us to train a large number of hyperparameters more quickly. In addition,
the regularization and dropout allow us to avoid overfitting. The package used to build
DNN in this study was TensorFlow developed by Google. In this study, the DNN model
structure consisted of 7 dense layers and 1 dropout (Figure 3). Additional details about
DNN can be found in Hinton et al. [55].

 

Figure 3. Illustration of the proposed Deep Neural N
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Figure 3. Illustration of the proposed Deep Neural Network (DNN) for rainfall erosivity (R-factor) prediction.
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2.4. Input Data and Validation Method

Input data were compiled as shown in Table 3 to develop machine learning models to
assess the R factor. The corresponding month from Jan. to Dec. was altered to numerical
values, because rainfall patterns and their intensity may vary every month over space. Total
monthly precipitation, maximum daily precipitation, and maximum hourly precipitation
were calculated monthly and selected as the independent variables. The data can be easily
downloaded in the form of monthly and hourly data among the Automated Synoptic
Obstruction System (ASOS) data from the Korea Meteorological Administration (KMA)’s
weather data opening portal site and organized as input data.

Table 3. The input data for machine learning models.

Description Count Mean std Min 25% 50% 75% Max

Input variable

month month (1~12) 4087 6.49 3.45 1 3 6 9 12

m_sum_r the total amount of monthly precipitation 4087 96.45 97.01 0 30.90 66.20 126.15 1009.20

d_max_r maximum daily precipitation 4087 39.39 38.10 0 14.50 27.10 51.35 384.30

h_max_r maximum hourly precipitation 4087 11.84 12.69 0 4.00 7.50 15.50 197.50

Output variable R-factor R-factor 4087 419.10 1216.79 0 15.99 77.84 326.24 43,586.61

The monthly R-factors data in the manner presented in the USLE for the 50 selected
sites from 2013 to 2019 were designated as target values, and as the features are given
in Table 4, month (1–12), total monthly precipitation, maximum daily precipitation, and
maximum hourly precipitation were designated as the features. Among the data, 80% of
randomly selected data were trained, the model was created, and then the remaining 20%
of data were used for the validation of the trained model.

To assess the performance of each machine learning model, Nash–Sutcliffe efficiency
(NSE), Root Mean Squared Errors (RMSE), the Mean Absolute Error (MAE), and coefficient
of determination (R2) was used. Numerous studies indicated the appropriateness of these
measures to assess the accuracy of hydrological models [56–58]. NSE, RMSE, MAE, and R2

for evaluation of the model accuracy can be calculated from Equations (5)–(8).

NSE = 1 − ∑ (Ot − Mt)
2

∑ (Ot − Ot)
2 (5)

RMSE =

√

∑ (Ot − Mt)
2

n
(6)

MAE =
1
n ∑

∣

∣

∣

∣

Mt − Ot

∣

∣

∣

∣

(7)

R2 =

[

∑
(

Ot − Ot

)(

Mt − Mt

)]2

∑ (Ot − Ot)
2

∑ (Mt − Mt)
2 (8)

where Ot is the actual value of t, Ot is the mean of the actual value, Mt is the estimated
value of t, Mt is the mean of the estimated value, and n is the total number of data.
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Table 4. Monthly R-factor calculated by the Universal Soil Loss Equation (USLE).

Station
Number

Station
Name

R-Factor
(MJ mm ha−1 h−1 month−1)

R-Factor
(MJ mm ha−1 h−1

year−1)

January February March April May June July August September October November December Annual

90 Sokcho 21 29 32 95 47 159 1039 2860 368 494 507 44 5694
95 Cheolwon 2 37 30 119 257 235 5867 2769 403 239 65 24 10,046
98 Dongducheon 2 69 31 91 287 455 3031 1364 424 228 47 24 6053

100 Daegwallyeong 4 19 20 79 577 194 1472 1669 453 237 40 8 4772
106 Donghae 17 29 34 207 27 157 592 1317 469 1461 128 8 4447
108 Seoul 0 31 37 95 284 266 2813 988 191 90 50 16 4861
112 Incheon 3 50 69 83 224 192 2193 897 406 480 88 27 4712
114 Wonju 2 22 31 83 284 699 2654 999 303 65 40 8 5189
127 Chungju 4 36 22 79 171 270 2075 1240 909 117 38 17 4978
129 Seosan 7 72 50 135 147 562 747 635 330 146 127 42 3000
130 Uljin 86 16 47 292 24 227 590 470 360 2816 143 30 5100
133 Daejeon 8 47 50 182 72 602 1658 1293 494 181 96 24 4707
136 Andong 1 32 53 101 48 325 1142 808 368 176 33 14 3100
137 Sangju 6 18 67 105 45 361 1098 1143 420 273 51 19 3605
138 Pohang 7 46 106 139 40 233 417 1051 910 1478 51 23 4500
143 Daegu 1 8 57 80 67 313 548 1322 238 340 26 12 3013
152 Ulsan 15 36 122 141 154 287 751 1499 727 1709 77 74 5591
156 Gwangju 8 59 92 156 74 927 1249 2458 703 361 99 49 6236
165 Mokpo 15 112 117 227 177 630 1023 944 2094 493 85 127 6044
172 Gochang 12 24 137 151 77 399 1768 2235 614 273 77 21 5788
175 Jindo 18 43 231 559 511 598 738 1323 799 636 113 36 5606
201 Ganghwa 1 26 35 60 193 59 1922 1255 648 654 48 20 4921
203 Icheon 2 34 103 83 211 207 2284 1068 450 162 45 24 4673
212 Hongcheon 1 11 23 81 461 162 2220 934 223 51 29 8 4204
217 Jeongseon 1 20 18 75 117 126 2165 654 355 101 36 16 3686
221 Jecheon 3 26 21 90 158 265 1616 1162 405 80 43 12 3881
226 Boeun 8 19 42 106 62 482 2016 1102 583 163 77 15 4675
232 Cheonan 2 17 21 86 106 248 3408 1002 249 110 68 15 5333
235 Boryeong 5 73 47 142 127 322 878 849 1014 184 149 29 3820
238 Guemsan 5 17 52 154 48 483 1126 1059 447 148 37 17 3591
244 Imsil 3 9 83 106 67 369 2329 1416 632 224 44 16 5297
245 Jeongeup 11 18 106 160 265 318 1679 1930 521 207 46 27 5287
247 Namwon 8 19 78 159 52 704 2988 2304 479 586 88 49 7512
248 Jangsu 5 34 85 151 80 246 1997 1812 715 308 53 30 5516
251 Gochanggoon 7 14 127 191 69 352 1448 2066 521 175 37 23 5029
252 Younggwang 7 15 130 178 114 292 994 2008 596 491 63 39 4928
253 Ginhae 7 43 220 200 339 385 1036 1600 1216 734 44 48 5872
254 Soonchang 4 14 93 194 89 456 1724 1304 629 363 58 16 4945
259 Gangjin 10 34 204 344 425 666 1156 9781 903 444 187 18 14,170
261 Haenam 10 15 223 206 177 595 965 1142 650 1250 83 91 5406
263 Uiryoong 4 24 121 184 156 334 629 1961 805 643 39 36 4936
266 Gwangyang 8 76 120 218 591 686 827 2488 2195 555 86 73 7924
271 Bonghwa 0 9 36 86 95 415 1154 706 327 98 28 13 2968
273 Mungyeong 7 18 54 139 102 331 1724 742 529 180 61 21 3908
278 Uiseong 1 6 69 101 74 220 632 647 326 106 31 7 2220
279 Gumi 3 12 68 103 95 380 1296 1442 554 364 32 14 4363
281 Yeongcheon 2 11 81 162 52 316 1259 1082 409 230 28 12 3643
283 Gyeongju 3 11 53 101 55 125 573 759 681 686 21 13 3081
284 Geochang 3 17 54 105 60 434 1184 1491 619 2246 33 55 6299
285 Hapcheon 2 22 57 173 105 700 1114 1646 810 676 47 24 5378

3. Results and Discussion

3.1. USLE R-Factor

For the selected 50 sites, monthly rainfall erosivity factors for each year from 2013 to
2019 were calculated, and the average monthly rainfall erosivity factors for seven years
were obtained. Then, the seven-year average monthly rainfall erosivity, R-factor, was
generated and shown in Table 1. Moreover, to give a comprehensive look at the degree
of rainfall patterns by site, the average annual rainfall erosivity factor for each site is also
presented in Table 4.

In this study, rainfall erosivity factor maps were generated to examine patterns of
monthly R-factor calculated by USLE using rainfall data from 50 selected sites for evalua-
tion. The R-factor distributions were mapped reflecting the geographical characteristics in
South Korea (Figure 4). The high R-factor distribution in all regions during the summer
months of July and August can be confirmed.
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Figure 4. Spatial distribution of monthly R-factor calculated by USLE, using rainfall data from 50 weather stations for the
period 2013–2019.

The monthly R-factors for two months from July to August contribute more than 50%
of the total average annual R factor value of Korea. The rainfall occurs mainly in the wet
season and the likelihood of erosion is very high compared to the dry season. In such a
case, using the average annual R-factor value can give a misleading amount of soil erosion.
For these reasons, the monthly R-factor would be helpful in analyzing the impact of the
rainfall on soil erosion rather than the average annual R-factor.

3.2. Validation of Machine Learning Models

Table 5 shows the prediction accuracy results (NSE, RMSE, MAE, R2) of seven ma-
chine learning models, by comparing the predicted R-factor. The results from the Deep
Neural Network (DNN) showed the highest prediction accuracy with NSE 0.823, RMSE
398.623 MJ mm ha−1 h−1 month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840.

Table 5. Prediction accuracy results of seven machine learning models.

Machine Learning Models NSE
RMSE

(MJ mm ha-−1 h−1 month−1)
MAE

(MJ mm ha-−1 h−1 month−1)
R2

Decision Tree 0.518 657.672 217.408 0.626
Multilayer Perceptron 0.732 490.055 158.847 0.783
K-Nearest Neighbors 0.817 405.327 149.923 0.794

Random Forest 0.800 423.345 148.147 0.799
Gradient Boosting 0.702 516.956 161.259 0.722

eXtreme Gradient Boost 0.791 433.230 159.275 0.788
Deep Neural Network 0.823 398.623 144.442 0.840

When comparing the results of DNN and the other machine learning models (Decision
Tree, Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, and
eXtreme Gradient Boost), we can see that DNN provided more accurate prediction results
over other machine learning algorithms. Moreover, the highest value of NSE, RMSE, MAE,
and R2 was found when the DNN was employed for the prediction R-factor values.

135



Water 2021, 13, 382

DNN had been proven for its good performance in a number of studies about the
environment. In the study conducted by Liu et al. [59], the DNN showed better results,
compared with results obtained by other machine learning algorithms, in predicting
streamflow at Yangtze River. Nhu et al. [60] reported the DNN has the most impactful
method in machine learning for the prediction of landslide susceptibility compared to
other machine learning such as decision trees and logistic regression. In the study by Lee
et al. [61], a DNN-based model showed good performance as a result of evaluating the
heavy rain damage prediction compared to the recurrent neural network (RNN) in deep
learning. Sit et al. [62] reported the DNN can be helpful in time-series forecasting for flood
and support improving existing models. For these reasons, it has been shown that DNN
performs better in various studies.

In this study, the second best-predicted model is the K-Nearest Neighbors (KNN).
The result from the KNN model showed prediction accuracy with NSE 0.817, RMSE
405.327 MJ mm ha−1 h−1 month−1, MAE 149.923 MJ mm ha−1 h−1 month−1, and R2 0.794
which indicates that the KNN is the most effective, aside from DNN, in predicting R-factor.
According to Kim et al. [63], KNN has good performance results in predicting the influent
flow rate and four water qualities like chemical oxygen demand (COD), suspended solids
(SS), total nitrogen (TN), and total phosphorus (TP) at a wastewater treatment plant.

On the other hand, Decision Tree has prediction accuracy, with NSE 0.518, RMSE
657.672 MJ mm ha−1 h−1 month−1, MAE 217.408, MJ mm ha−1 month-−1, and R2 0.626.
This means that Decision Tree is less predictable than other machine learning models
(Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, eXtreme
Gradient Boost, and Deep Neural Network). Hong et al. [37] also reported Decision Tree has
less accuracy for the prediction of dam inflow compared to other machine learning models
(Decision tree, Multilayer perceptron, Random forest, Gradient boosting, Convolutional
neural network, and Recurrent neural network-long short-term memory).

Figure 5 shows the scattering graphs of the R-factors predicted by the seven machine
learning models and calculated by the USLE method. All machine learning results represent
a rather distracting correlation with less agreement. However, in Figure 5h, the Deep Neural
Network algorithms predicted USLE R values calculated using the method suggested by
USLE users’ manual with higher accuracy, NSE value of 0.823.

− − − − −

− − − − − −

gested by USLE users’ manual with higher accuracy, 
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Figure 5. Cont.
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Figure 5. Comparison of (a) Decision Tree, (b) Multilayer Perceptron, (c) K-Nearest Neighbor, (d) Random Forest, (e) Gradient Boosting,
(f) eXtreme Gradient Boost, and (g) Deep Neural Network calculated R-factor with validation data, and (h) comparison of machine
learning accuracy.

Among the data, 80% of randomly selected data were trained, the model was created,
and then the remaining 20% of data were used for the validation of the trained model.
To prevent overfitting, the K-fold cross-validation was implemented for R2 as shown in
Table 6. As a result of the five attempts of K-fold cross-validation, the DNN showed the
best results with an average R2 of 0.783.
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Table 6. K-fold cross validation results of seven machine learning models.

Fold

Coefficient of Determination (R2)

Decision
Tree

Multi-Layer
Perceptron

K-Nearest
Neighbors

Random
Forest

Gradient
Boosting

eXtreme
Gradient Boost

Deep Neural
Network

1 0.631 0.781 0.818 0.817 0.730 0.801 0.821
2 0.598 0.806 0.705 0.686 0.648 0.737 0.733
3 0.544 0.759 0.705 0.682 0.635 0.717 0.759
4 0.592 0.714 0.780 0.774 0.653 0.644 0.762
5 0.626 0.783 0.794 0.799 0.722 0.788 0.840

Average 0.598 0.769 0.760 0.752 0.678 0.737 0.783

Figure 6 shows the results of the prediction of the five machine learning models (i.e.,
Multilayer Perceptron, K-Nearest Neighbor, Random Forest, eXtreme Gradient Boost, and
Deep Neural Network) at six sites for the testing of the selected models, as well as the
time series comparison graph for 2013–2019 of the monthly R-factor values calculated
on the USLE basis. At most sites, it showed that the time series trend fits well with a
pattern similar to the USLE calculation value. In particular, looking at the distribution in
Figure 6b Gangneung, the value of 9303 MJ mm ha−1 h−1 month−1 in October 2019, which
represented the peak value of the rainfall erosivity factor, was generally well predicted by
all machine learning models. Among the models, the result of the Random Forest model
estimated a similar value with 8133 MJ mm ha−1 h−1 month−1.

On the other hand, among six sites, the time series distribution values of the model
prediction result in Busan showed a slightly different pattern from the USLE calculation
R-factor. In particular, the result was overestimated as the values of 8241 MJ mm ha−1 h−1

month−1 in August 2014, and Multilayer Perceptron was almost twice overestimated at
16,725 MJ mm ha−1 h−1 month−1.

However, the Random Forest (8188 MJ mm ha−1 h−1 month−1) and eXtreme Gradient
boost (8395 MJ mm ha−1 h−1 month−1) algorithms were predicting very similar values.
Therefore, the machine learning results could be seen as good at predicting the peak value.

A comparison of the machine learning model accuracies of NSE and R2 of the test
(validation) results at the six sites is shown in Figure 7. All five models had a coefficient of
determination of 0.69 or higher, and the simulated values of the USLE method calculation
and machine learning models showed high accuracy prediction. However, compared
to Deep Neural Network, the NSE results of the four models (Multilayer Perceptron, K-
Nearest Neighbor, Random Forest, eXtreme Gradient Boost) were less than 0.58, and the
Deep Neural Network model showed 0.87 in both NSE and R2. Therefore, the monthly
average value of the R-factor, predicted by the DNN would be a good candidate algorithm
for USLE R factor prediction (Table 5 and Figure 7).
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Figure 6. The comparisons of forecasting results of R-factor using machine learning in (a) Chuncheon, (b) Gangneung, (c) Suwon,
(d) Jeonju, (e) Busan, and (f) Namhae.
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Figure 7. Comparison of prediction accuracy results by machine learning models in test sites.

Table 7 shows average monthly rainfall erosivity factor values at the six sites for
testing, Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae, along with the USLE
calculation and Deep Neural Network (DNN) prediction.
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Table 7. Monthly R-factor calculated (C) by the previous method and predicted (M) by Deep Neural Network.

Station
Number

Station
Name

Method

R-Factor
(MJ mm ha−1 h−1 month−1)

R-Factor
(MJ mm ha−1 h−1 year−1)

NSE

January February March April May June July August September October November December Annual

101 Chuncheon
C 2 99 27 110 195 320 3466 1844 355 182 45 24 6670

0.814
M 5 59 26 84 166 356 3543 1608 323 154 31 16 6372

105 Gangneung C 25 36 31 138 150 113 742 2476 390 1598 325 16 6040
0.874

M 57 24 38 84 154 100 774 2189 287 1129 207 14 5055

119 Suwon
C 3 29 80 115 278 165 2944 1463 388 107 84 27 5683

0.981
M 5 36 56 88 210 156 2708 1352 312 85 52 19 5076

146 Jeonju C 7 17 104 105 108 526 1315 1511 311 240 67 21 4330
0.911

M 7 16 80 103 95 581 1086 1261 310 153 50 19 3760

159 Busan
C 32 79 199 408 472 781 1021 1729 1764 616 266 113 7479

0.883
M 22 56 148 243 317 639 860 2205 2514 458 184 91 7736

295 Namhae
C 19 407 366 946 892 1016 1608 1822 2169 1634 151 131 11,159

0.584
M 14 161 198 748 607 867 1201 1164 1633 1010 85 110 7798
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Among average annual vales, the results for Busan showed a good performance
with the Deep Neural Network (DNN) resulting in the average annual value of the rain-
fall erosivity factor of 257 MJ mm ha−1 h−1 year−1 difference over the USLE calculation
result. In the case of Chuncheon, DNN also showed a good performance with an aver-
age annual rainfall erosivity factor difference of 298 MJ mm ha−1 h−1 year−1 difference
over the USLE calculation result. On the other hand, the USLE calculation results for
Namhae showed an average annual value of the rainfall erosivity factor difference of
3361 MJ mm ha−1 h−1 year−1 greater than the DNN result.

This is because, in the case of Namhae, the rainfall tendency lasted for a long period in
the dry season from February to June compared to the other testing sites like Chuncheon,
Gangneung, Suwon, Jeonju, and Busan. Moreover, the monthly R-factor calculation of
Namhae in dry seasons was two to four times more than other testing sites. In particular,
the monthly R-factor for February in Namhae figure being about five times higher than the
monthly R-factor in Busan. This means that if the single set of learning data has a huge
deviation or variation from other sets, it may result in the uncertainty of the entire result
data. Therefore, the monthly R-factor of Namhae in the dry season from is containing
uncertainty. In the future study, when predicting the R-factor of the Namhae, DNN
model analysis will be implemented in consideration of rainfall trends by supplement the
historical rainfall data.

R-factor can be calculated by machine learning algorithms with high accuracy and
time benefit. The spatio-temporal calculation of the rainfall erosivity factor using machine
learning techniques can be utilized for the estimation of the soil erosion due to rainfall at
the target value. The DNN will be incorporated into the WERM website in the near future
after further validation.

4. Conclusions

The main objective of this study is to develop machine learning models to predict
monthly R-factor values which are comparable with those calculated by the USLE method.
For this, we calculated R-factor using 1-min interval rainfall data for improved accuracy
of the target value. The machine learning and deep learning models used in this study
were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random forest, Gradient
boosting, eXtreme Gradient boost, and Deep Neural Network. All of the models except
Decision Tress showed NSE and R2 values of 0.7 or more, which means that most of
the machine learning models showed high accuracy for predicting the R-factor. Among
these, the Deep Neural Network (DNN) showed the best performance. As a result of the
validation with 20% randomly selected data, DNN, among the seven models, showed
the greatest prediction accuracy results with NSE 0.823, RMSE 398.623 MJ mm ha−1 h−1

month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840. Furthermore, the DNN
developed in this study was tested for six sites (Chuncheon, Gangneung, Suwon, Jeonju,
Busan, and Namhae) in S. Korea to demonstrate a trained model performance with NSE
and R2 of both 0.87. As a result of the comparative analysis of R-factor prediction through
various models, the DNN was proven to be the best model for R-factor prediction in S.
Korea with readily available rainfall data. The model accuracy and simplicity of machine
learning and deep learning models insist that the models could replace traditional ways of
calculating/estimating USLE R-factor values.

We found that the maximum 30 min intensity derived from 1-min interval rainfall
data in this study is more accurate than that estimated from previous research. These
methods can provide more accurate monthly, yearly, and event-based USLE R-factor for
the entire period. Moreover, if the user has input data (month, the total amount of monthly
precipitation, maximum daily precipitation, maximum hourly precipitation) as described
in Table 3, the monthly R-factor can be easily calculated for the 50 specific stations in S.
Korea by using the machine and deep learning models. Since the updated R-factor in
this study reflected the recent rainfall data, which have high variability, it can improve
the accuracy of the usage of the previous R-factor proposed by the Korean Ministry of
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Environment [64] for future study. The results from this study can help the policymakers
to update their guideline (Korean Ministry of Environment) [64] regarding the updated
version of R-factors values for S. Korea.

It is expected that it will be used not only to calculate soil erosion risk but also to
establish soil conservation plans and identify areas at risk of soil disasters by calculating
rainfall erosivity factors at the desired temporal-spatial areas more easily and quickly.

However, this study evaluated the R-factor using machine learning models in S.
Korean territory, under the monsoon region. Although deep learning models such as
Deep Neural Network’s applicability in S. Korea has been confirmed in this study, few
studies have investigated and benchmarked the performances of a Deep Neural Network
model-based USLE R-factor prediction trained. Therefore, future studies should be carried
out for the diverse conditions of the other countries such as European countries, the United
States, and African countries to broaden the applicability of machine learning technology
in USLE R-factor (erosivity factor) analysis.
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Abstract: In the meandering riverbank of the Upper Yellow River (UYR), the native alpine swamp
meadow (AS) has continuously degenerated into an alpine meadow (AM) due to climate change
and intensified grazing. Its implication on river morphology is still not well known. This study
examined this effect by in situ measurings of (1) physical properties of roots and their distribution
in the soil-root mixture of the upper bank layer, and (2) the tensile strength in terms of excavating
tests for triggering cantilever collapses of AS and AM riverbanks. The results showed that the root
number in AS was significantly greater than that in AM, though the root distribution in both was
similar. Also, the average tensile strength of individual roots in AS was 31,310 kPa, while that in AM
was only 16,155 kPa. For the soil-root mixture, it decreased from 67.39 to 21.96 kPa. The weakened
mechanical property was mainly ascribed to the lessened root number and the simpler root structure
in the soil-root mixture of AM that reduces its ability to resist the external force. These findings
confirmed that healthy AS can enhance bank stability and delay the development of tensile cracks in
the riverbank of the meandering rivers in the UYR.

Keywords: alpine swamp meadow; alpine meadow; degradation of riparian vegetation; root
distribution; tensile strength; tensile crack

1. Introduction

Banks of meandering rivers are often composed of silts and sand that have significantly higher
compressive strength than tensile strength or cohesion [1–4]. There has been a consensus that riparian
vegetation can reinforce bank strength [5–9] and stability through the interaction between soil and
roots [10–16]. Mechanisms of riverbank failure are quite different from those found on hillslopes
because steeper and shorter riverbanks tend to have a more variable profile and relatively small size of
the failed block [17]. Accordingly, vegetation types and their root distributions throughout the bank
profile play a critical role in resisting riverbank failure. In addition, the lower soil layer of the composite
riverbank is subject to fluvial erosion, often resulting in a cantilever upper layer that includes the
mixture of cohesive soil and vegetation. Once the gravity moment generated by the upper cantilever
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layer exceeds its tensile moment, vertical cracks are developed and continuously extend through the
upper layer, causing cantilever bank failure [10,18]. The ability of the soil-root mixture to resist external
forces is a key factor in evaluating the bank stability.

Many studies have analyzed the tensile strength of fiber-reinforced soils and explored its
relationship with soil physical indices using laboratory experiments [19–23]. These studies found
that the benefits of natural or synthetic fiber reinforcement include (1) improved ductility in tension
compared with pure earth blocks and (2) inhibition of tensile crack propagation [21–24]. Since the root
system is intertwined in the soils, artificial soil blocks remolded in these laboratory experiments cannot
reflect the actual root branching structure and the complex interaction between roots and soils. It is
thus imperative to perform in situ tensile tests using naturally rooted soils for revealing the tensile
properties of riparian vegetation.

In recent decades, a series of studies have been carried out for examining the shear strength
of rooted soils using either in situ or indoor shear-test experiments. These studies helped better
understand the enhancement of the vertically extending root system through soils by revealing
that coarse roots tend to stabilize the soil-root mixture and fine roots may enhance its mechanical
strength [25–27]. Other studies have confirmed that the number of roots passing through the potential
shear plane, root system distribution and its strength [27,28], the initial water content of the soils [12,29],
and the soil-root friction [30], contribute to soil reinforcement. However, there is still a lack of studies
for quantifying the tensile strength of the rooted soil and the reinforced traction in the soil-root mixture.

The Upper Yellow River (UYR) watershed is located in the hinterland of the Qinghai-Tibet Plateau
and includes numerous rivers, lakes, and wetlands. It is an important source of fresh water but a
fragile ecosystem in the western region of China. When the UYR flows from the source into the open
terrain with low-lying hills and valleys on the eastern edge of the Qinghai-Tibet Plateau, it forms a
unique curved shape in plane form, commonly called the first bend of the UYR [31]. Meandering rivers
are widely developed in this area, accompanied by the vegetation cover of the alpine swamp meadow
and its degraded type, the alpine meadow. Because of global climate change and anthropogenic
disturbances, the alpine swamp meadow on the eastern Qinghai-Tibet Plateau has been undergoing
severe degradation [32–35]. The degradation succession of the alpine swamp meadow caused changes
in the composition of the plant community. Dicotyledonous plants with a straight root system replaced
sedges and gramineous plants with a dense clump root system, leading to changes in the underground
biomass of the plant community, reduction of the spatial distribution of the root system, and a
significant decrease of root activity and bulk density [35,36]. The biological degradation affects not
only the root distribution of riparian vegetation but also the tensile and shear strength of the vegetated
riverbanks. This means that degraded riparian vegetation could decrease bank stability and affect
lateral evolution trends of meandering rivers in the UYR. Therefore, quantifying the influence of alpine
swamp meadow degradation on the strength of riverbank soils in the UYR is an important issue that
needs to be addressed. Most previous studies have examined the shear strength of the vegetated
soils [8–13,16,25,26,37]. Little has been done on quantifying the effect of degraded riparian vegetation
on the tensile strength of the soil-vegetation mixture.

In this study, we addressed this issue by focusing on the riverbanks of a meandering reach that
has initially formed a cantilever arm under fluvial erosion. The vegetation community is featured by a
healthy alpine swamp meadow (AS) and moderately degraded alpine meadow (AM). We measured
root numbers and their vertical distributions in the soil-root mixture within a depth range of 0.3 m.
Furthermore, by excavating the sandy layer below the top soil-vegetation layer of the bank in situ for
artificially initiating cantilever bank collapse, we measured the tensile strength of individual roots
using in situ pullout tests and subsequently calculated that for the soil-root mixture of the collapsed
bank blocks. By comparing the differences of these results between AS and AM mixtures, we revealed
the effects of meadow degradation on bank tensile strength and the role of roots in slowing bank
crack development.
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2. Experiences at Field Scale and Procedure for Determining the Cantilanver Bank Collapse

2.1. Study Sites and Degradation of Alpine Swamp Meadow

The Upper Yellow River (UYR) watershed is within the Qinghai-Tibet Plateau located in western
China (Figure 1a). In its downstream reach, the main channel is joined by a relatively small tributary, the
Lanmucuo River (Figure 1b). Our study sites are in the upstream reach of this tributary (34◦26′N–35◦02′N;
101◦29′ E–101◦35′ E) (Figure 1c). This reach has elevations ranging between 3400 and 4200 m a.s.l. with a
mean channel gradient of 0.19%. The UYR region is subject to the alpine monsoon climate that features
a long, cold dry season from October to early May, and a short, warm wet season from middle May to
September. The annual mean precipitation is 560.5 mm [38], most of which is concentrated in the period
from June to September, accounting for more than 83% of the total. The annual mean evaporation and
temperature are 1278 mm and −0.16 ◦C, respectively [39]. Under this climate, the ground consists of
seasonally frozen soils.

 

′
′ ′ ′

−

Figure 1. (a) The geography of the Qinghai-Tibet Plateau and Upper Yellow River; (b) the location
of the study area in the Lanmucuo river; (c) the specific locations of the two selected sites; (d) the
spatially distributed AS and AM along the riparian zone of the Lanmucuo River; (e) illustration of
Blysmus sinocompressus, the dominant species of AS; (f) demonstration of the AM that is rich in species
composition (some degraded species are discernable).

Grassland is the major type of land cover in the region. It is dominated by alpine swamp meadow
(AS), which provides important ecosystem services to the regional environment. Affected by global
warming and intensified grazing, AS in the region has gradually degraded to alpine meadows (AM)
and alpine steppe meadows (ASM) [40]. Spatially, AS and AM are often seen along riverbanks,
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the Lanmucuo River, while ASM is mostly distributed on the upper sloping parts of the piedmonts
(Figure 1d). Because the area covered by ASM is far away from river banks, it is not a concern in
this study. Based on a set of qualitative and semi-qualitative indicators used for pasture degradation
classification [33,35], a survey for riparian vegetation along a 22 km reach of the upper Lanmucuo
River was conducted in the 2017–2019 period [16,41]. During the survey, the coverage and number of
species, dominant species, and underground biomass of AS and AM were determined within each
sampling plot with the size of 1 × 1 m. The underground biomass was represented by the root mass
within the soil layer that is 0.3 m in depth. The results (Table 1) showed that the values of all measured
metrics were different with statistical significance between AS and AM.

Table 1. Characteristics of the surveyed AS and AM communities in the study area.

Vegetation
Type

Coverage
(Mean ± SD *, %)

Number of Species
(Mean ± SD)

Under-Ground
Biomass (g m−2)

Dominant Species
Number of

Surveyed Sites

AS 96.3 ± 2.7 a 3.5 ± 2.7 b 378 ± 74 a Blysmus
sinocompressus

40

AM 74.5 ± 11.6 b 14.8 ± 5.1 a 193 ± 56 b
Kobresia pygmaea

44Elymus nutans
Potentilla saundersiana

* standard deviation; AS: alpine swamp meadow; AM: alpine meadow; Different superscripts of a and b denote
significant differences (p < 0.05) between different vegetation types.

In general, distributions of surficial plant species, coverage, and rooting depth and lateral
root spread in underground root systems are determined by the prevailing physical habitats [42].
In particular, AS tends to appear in areas with topographic lows and occupied by seasonally saturated
water (i.e., in swales), whereas AM is typically developed around the apex of river bends (Figure 1d).
Vegetation communities of AS are mainly composed of cold-tolerant hygrophytes and hydromesophytes,
which have a simple community structure. Blysmus sinocompressus is the dominant and healthy specie
(Figure 1e and Table 1) and its coverage reaches nearly 98%. The remaining 2% is contributed from
other species, such as Ranunculus nephelogenes and Pedicularis longiflora. The dominant species of AM
are Kobresia pygmaea, Elymus nutans, and Potentilla saundersiana, accounting for 30% of the coverage
(Table 1). Other herbaceous species, such as Poa annua, Nardostachys jatamansi, Saxifraga montana,
Aconitum tanguticum, and degraded species, such as Leontopodium pusillum, Oxytropis ochrocephala,
take up to 30% of the coverage. This means that AM only takes 60% of the habitat (Figure 1f).
Compared with AS, the number of species and the mesophytes in AM are significantly high (Table 1).
These surficial ecological differences between AS and AM must affect their underground properties
and the associated mechanical characteristics, which were investigated in this study.

2.2. Field Experiments and Measurements

Field experiments were conducted at the two selected sites that are about 200 m apart from each
other in the study area (Figure 1c). These sites have natural vegetation communities and are not
disturbed by livestock and human activities. Therefore, they are representative of the general vegetation
distribution in the study area. Site 1 is covered by AS, while site 2 is topped by AM. The height of the
riverbank to the water level of the channel flow at site 1 is about 0.2–0.4 m lower than that at site 2,
suggesting that the groundwater level at site 1 is higher than that at site 2. This ·difference is the main
factor that determines the spatial distribution of AS and AM in the study area. The riverbank at both
sites had been undercut by river flows, forming a cantilever arm with a width of about 0.2 m and
thickness of about 0.3 m at site 1, while 0.3 and 0.35 m, respectively at site 2 (Figure 2). Both cantilever
arms were stable with no tensile cracks developed on the top. They were underlined by a layer of silt
and sand with a thickness of approximately 0.3 to 0.6 m, whose bottoms were gradually intergraded
into fine gravels deposited at the toes of both banks (Figure 2). Field experiments were conducted
during an October storm event in 2018, such that the entire bank profiles were exposed, facilitating
subsequent bank excavation and measurements.
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Figure 2. Riverbanks and their vertical profiles at (a) site 1, which is covered by AS, and (b) site 2,
which is covered by AM (not to scale).

At each site, experiments were performed at the face of a bank profile stretched longitudinally for
8 m (Figure 3). An area of 1 m long on each side (i.e., E1 and E2 in Figure 3) was selected for extending
the existing cantilever arm by excavating the lower part of the bank profile. The two areas were selected
apart from each other by 3 m to ensure that the excavation of the first one would not affect the stability
of the second. During each experiment, excavation was executed gradually, such that the development
of tensile cracks on top of the cantilever arm could be observed. Their emergence indicated the status
of arm stability. Excavation ended when the cantilever arm reached the threshold that triggered
the failure of the cantilever arm. Three types of measurements were subsequently performed after
bank collapse, determining tensile strengths of individual roots, measuring root diameter, number,
and distribution, and sampling soil for both in situ and laboratory analyses.

The tensile strength of a single root for a given plant species (Tr, MPa) may be determined by [2],

Tr = 4F/(πd2) (1)

where F is the maximum pullout force of measured individual roots (N) and d is the diameter of the
corresponding single root (10−3 m). The value of F was measured using a HP-500 digital push-pull
meter with a maximum load of 500 N and an indication error of ±0.5% (Leqing Aidebao Instruments
Co. Ltd., Leqing, China). This measurement was taken at three plots within the experimental area;
two (i.e., R1 and R3) were on the new face of the upper soil-root layer after cantilever failure and
the other (i.e., R2) was at the face of the original upper bank (Figure 3). This design assured that
the measured tensile strength accounted for spatial variability. At each plot, vegetation roots were
separated from their surrounding soils by brushing soil particles away. Then, every single root was
connected to the tension meter by a clamp. The value of F was recorded after applying a horizontal
tensile force at a uniform speed until the root is broken or pulled out (Figure 4). The diameter of the

149



Water 2020, 12, 2348

same root was also measured using a Vernier caliper with an accuracy of 2 × 10−5 m. If the broken
position of the root was close to the clamp, then the recorded F value was biased and not counted.
There were more than 30 roots measured in each plot.

 

 

−

−

Figure 3. The design of bank excavation experiments and other measurements.

 

 

−

−

Figure 4. Measuring the maximum pullout force of individual roots using a tension meter.

Root diameters and numbers were measured within the front faces of the soil-root layer (0.3 m in
thickness) in the collapsed bank block at R1 and R3, and the face of the same layer in the original bank at
R2 (Figure 3). The surface of the face was washed by water to expose the root system and then divided
into 30 small zones by laying a grid whose cells had the size of 0.10 × 0.10 m on the top. Within each of
the 30 cells, root diameters were measured using the same Vernier caliper and the number of roots
was recorded. All the roots that passed through the soil-root layer were measured. These values were
classified into three groups based on the root diameter (i.e., <0.5, 0.5–1.0, and >1.0 × 10−3 m), and the
depths with the soil-root layer (i.e., 0–0.10, 0.11–0.20, and 0.21–0.30 m). The root area ratio (RAR),
defined as the ratio of the total area of all roots passing through the collapsed soil-root layer to the area
of the plot (i.e., 1 × 0.3 m), was then calculated using the measured values. The measurements were
repeated three times at each plot (i.e., R1, R2, and R3).

Soil samples were taken from two small plots in the soil-root layer around the depth of 0.10–0.20 m
beneath the ground surface (i.e., S1 and S3 in Figure 3) and from two plots in the lower layer between
0.3 and 0.5 m from the ground surface (i.e., S2 and S4 in Figure 3) at both sites. These samples were
carefully stored and transported back to the soil mechanics laboratory of Geological Engineering
Department, Qinghai University for further analysis. The oven-drying method [43] was used to
determine the soil moisture content, and the sieving method [43] was applied to determine the grain
size distribution. Each measurement was repeated three times for accuracy. Additionally, a cutting
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ring with a capacity volume of 6.0 × 10−5 m3 was used in situ to determine the soil bulk density at
each plot (Figure 3).

2.3. Calculation

In the process of cantilever bank collapse, the weight of the cantilever body is originally balanced
by the tensile strength from the soil-root mixture of the body. Extension of the cantilever arm (by
artificial excavation in this case or by fluvial erosion under the natural condition) will increase its
weight. Once the tensile strength is insufficient to balance the weight, tensile cracks develop from the
top of the cantilever body. At this time, both tensile stress and compressive stress exhibit a triangle
distribution, and the center axis of the failing cantilever block is located in the stress center of the
cantilever body below the crack [44] (Figure 5). Further extension of the cantilever arm catalyzes the
development of the tensile crack until the failure of the cantilever body occurs. Under the critical
condition of the failure, the external moment of the cantilever body is balanced by the resistance
moment of the soil-root mixture, which may lead to [44],

Wbc/2 =
l(d1 − dt)

2

3(1 + a)2
σt +

a2l(d1 − dt)
2

3(1 + a)2
σc (2)

where W = ρgbcd1l (N) is the weight of the cantilever body; ρ is the bulk density of the soil-root
mixture (kg m−3); bc is the critical width of the cantilever arm (m); d1 is the thickness of the cantilever
layer (m), dt is the depth of the crack from the top of the bank (m); l is the unit length of the cantilever
layer (m), that is 1 m; a = σt / σc, σt and σc are tensile and compressive stress of the soil-root mixture
(N m−2), following Ajaz’s results [45], a = 0.1. Substituting W = ρgbcd1l into Equation (2), the tensile
strength σt of the soil-root mixture of the cantilever body may be expressed as

σt = 3(1 + a)ρgbc
2d1/2(d1 − dt)

2 (3)
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Figure 5. Stress analysis of the upper root-soil layer of a cantilever riverbank (modified from Figure 7
in Xia et al. [44], (not to scale)).

Using the measured d1 and dt in our tested AS and AM bank blocks, we calculated their σt values.
The product of Tr and RAR also reflects the tensile strength of a soil-root mixture. We compared these
two types of calculations for the tensile strength.
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3. Results and Analysis

3.1. Characteristics of Soils and Root Distribution

Our results demonstrated that the composition and physical properties of the two layers in the
vertical profile of the riverbank are significantly different between the two sites (Table 2). Generally,
the upper soil-root layer was composed of silt, while the lower layer consisted of silty sand with some
poorly graded fine gravel. In the upper layer, the average bulk density and moisture content at the two
sites were 1260 kg·m−3 and 1560 kg·m−3; 39.36% and 41.72%, respectively. They were about 180 kg·m−3

and 405 kg·m−3; 17.12% and 31.42% higher than those in the lower layer. These two soil properties in
the soil-root layer of AS were 21.96% and 3.57% higher than those in that of AM. For the lower layer,
the average bulk density and moisture content at site 1 were greater than those at site 2 by 118.67% and
3.27%, respectively. It is obvious that the physical parameters (i.e., bulk density and moisture content)
of the soil-root mixture of AS and AM are disparate. These differences could have different influences
on the tensile strength of the root system in the soil [27], which lend the support for our analyses of
tensile strength for both single roots and the soil-root mixture in this study.

Table 2. The physical properties of the two vertical layers at both sites.

Tested Site
Sampling
Depth (m)

Soil Type
Bulk Density ρ

(kg·m−3)
Moisture

Content ω (%)
RAR (%)

1(AS)

0.10–0.20 Silt 1560 41.71 0.22
0.30–0.40 Silty sand 1730 10.29 -
0.10–0.20 Silt 1550 40.92 0.23
0.30–0.40 Silty sand 1740 10.97 -

2(AM)

0.10–0.20 Silt 1260 40.42 0.12
0.40–0.50 Silty sand 1710 24.25 -
0.10–0.20 Silt 1290 39.36 0.11
0.40–0.50 Silty sand 1650 22.24 -

Although the distribution of roots over different classes of root diameters is highly variable for
different species [46], it may still be characterized by vertical patterns of root number and diameters
along the depth of a riverbank. In this study, AS is mainly composed of Blysmus sinocompressus,
belonging to the Cyperaceous family. This species has a typical dense and fibrous root system that may
be up to 0.8 m long, and its rhizomes are typically about 0.25–0.60 m long. These roots mix with the
surrounding soil, forming a soil-root layer that extends from the bank surface to the depth of 0.30 m.
Our results showed that the total root number within the experimental block of this layer, which was
1.0 m long and 0.3 m deep (Figure 3), was 4345, with 2505, 1160, and 680 in the depth ranges of 0–0.10,
0.11–0.20, and 0.21–0.30 m, respectively. Among these roots, those with the root diameter <0.5, 0.5–1.0,
and >1.0 × 10−3 m took about 66%, 25%, and 9%, respectively. AS is dominated by finer roots, which
is evidenced by the fact that within each of the three depth ranges, they took 66%, 67%, and 76%,
respectively (Figure 6a). Roots with medium diameters (0.5–1.0 × 10−3 m) in all three depth ranges
took about 25%, while those with the diameters >1.0 × 10−3 m only existed in the depths of 0–0.10 and
0.11–0.20 m, taking merely 9% and 8%, respectively. More fine roots (<0.5 × 10−3 m) developed in the
shallow depth range rather than in the deep depth range, supported by their distributions of 56%, 26%,
and 18% in the depth ranges of 0–0.10, 0.11–0.20, and 0.21–0.30 m, respectively (Figure 6a). The roots
with the mean diameter (0.5–1.0 × 10−3 m) followed a similar vertical distribution, featured by 58%,
27%, and 15% in the three depth ranges, respectively. Roots with the diameters >1.0 × 10−3 m only
existed in the first two depth ranges with 71% and 29%, respectively.
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Figure 6. Root distributions in the three depth ranges of the experimental blocks for (a) AS and (b) AM.
The number within each color of the three columns represents the percentage of roots in each sub-layer
of the soil-root layer (i.e., the sum of the numbers in each color is 100%). The number outside of the
columns represents the percentages of three root diameters in each sub-layer (i.e., the sum of these
numbers along each column is 100%). The scaling of the y-axis is different between (a,b).

The AM is dominated by Kobresia pygmaea, Elymus nutans, and Potentilla saundersiana. Their root
number took about 93% of the total in AM. The first two plants have dense and fibrous roots that are
about 0.15–0.55 m long. Besides the three dominant plants, AM contains degraded species such as
Nardostachys chinensis, Oxytropis ochrocephala, Saxifraga montana, and Leontopodium pusillum, whose roots
are generally sparse and short. They have a typical tap root system with the length ranging between
0.04 and 0.13 m. The total number of roots in AS was only 2355 with 1420, 580, and 355 in the
three depth ranges downward, respectively. Similarly to those in the AS, roots with the diameters
<0.5 × 10−3 m dominated in each of the three depth ranges, taking 71%, 71%, and 76%, respectively
(Figure 6b). The remaining roots at each depth were those with the mean diameters (0.5–1.0 × 10−3 m).
They took roughly the same percentage of the total roots within each depth range, which was 20%,
22%, and 24%, respectively. Again, the coarse roots (i.e., diameter >1.0 × 10−3 m) only occupied the
first two depth ranges, taking a small portion of the total roots in each (i.e., 9% and 7%, respectively).
Along the vertical direction, roots with each diameter class demonstrated a similar distribution to their
AS peers. For example, the fine roots (diameter <0.5 × 10−3 m) took 60%, 24%, and 16% from the top to
the bottom depth ranges (Figure 6b). A similar vertical distribution appeared for the roots with the
mean diameter (i.e., diameters were between 0.1 and 1.0 × 10−3 m) with 57%, 26%, and 17% in the
three depth ranges, respectively. Also, the coarse roots only stayed in the first two depth ranges. Most
of them (75%) occupy in the 0–0.10 m depth range (Figure 6b).

Although roots in AS and AM showed similar spatial and diameter distributions, which led to
their similar average root diameters (i.e., 0.46 ± 0.31 ×10−3 m and 0.41 ± 0.39 ×10−3 m, respectively)
in the entire mixed layer of 0.30 m, their root numbers were greatly different, which can be proved
by a two-sample difference test (p < 0.05). The root number of AS was 46% higher than that of AM.
Consequently, the RAR of the AS experimental block was 0.225% on average, which was about twice
that of the AM block (Table 2). These results showed that the root number, which plays an important
role in resisting tensile force imposed to the experimental block, is reduced greatly when AS is degraded
to AM.

3.2. Tensile Trength of Individual Roots and Soil-Root Mixture

The effect of roots on soil strength of the riverbank does not only depend on the root number,
but also the tensile strength of a single root (Tr) (i.e., Equation (1)). The average Tr of the dominant
plant Blysmus sinocompressus, whose root diameters ranged between 0.20 and 1.76 × 10−3 m at site 1,
was 31,310 kPa, and the maximum value can reach up to 128,000 kPa. The Tr for roots with the
diameters ranging between 0.24 and 1.88 × 10−3 m at site 2 (i.e., AM) was 16,160 kPa. The average
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Tr of the AS block was 48.4% higher than that of the AM block. There existed a strong relationship
between the root diameter and Tr (Figure 7), which indicated that Tr decreases as the root diameter
increases for both AS and AM. This finding is consistent with those reported in earlier studies [11,46–49].
This relationship may be described by a power function, whose exponent was different between the
two sites (Figure 7). For the AS block, when the root diameter was less than 0.70 × 10−3 m, Tr decreased
sharply as the root diameter increased, nearly following a linear relationship. Specifically, the value
of Tr decreased drastically from 127,930 to 30,810 kPa, as the root diameter only increased from 0.20
to 0.70 × 10−3 m. As the root diameter continuously increased from 0.71 to 1.76 × 10−3 m, Tr only
decreased from 26,480 to 7050 kPa. The differences of Tr were 97,120 kPa and 19,430 kPa before and
after the threshold root diameter (i.e., 0.7 × 10−3 m). For the AM block, when the diameter was less
than 0.4 × 10−3 m, Tr decreased greatly as the root diameter increased, and its value decreased from
73,380 to 23,590 kPa with the average of 39,050 kPa. However, the difference of Tr was only 25,860 kPa
when the root diameter increased from 0.4 to 1.88 × 10−3 m. This change was much less than that
for root diameters less than 0.4 × 10−3 m (i.e., 49,790 kPa). Therefore, the root diameter of 0.7 and
0.4 × 10−3 m can be taken as a threshold of the AS and AM blocks, respectively. Values of Tr were more
sensitive to the changes of root diameters less than the threshold while remaining less variable for
coarse roots whose diameters are greater than the threshold.
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Figure 7. Root tensile strength vs. root diameters for the alpine swamp meadow (AS) and alpine
meadow (AM).

Because there were about 93% and 90% fine roots with diameters less than 1 × 10−3 m in the
mixed layer of AS and AM blocks, respectively, the difference in the root number should not be the
main cause for the different Tr values between AS and AM blocks. Rather, their difference represented
the true mechanical discrepancy between the two. In other words, the tensile strength of individual
roots in healthy meadow plants (i.e., AS) is generally higher than that in the degraded meadow plants
(i.e., AM).

The tensile strength of the soil-root mixture should be relevant to the physical properties
of the mixture. At site 1, the moisture content and volume of the two tested bank blocks were
different. They were 40.92% and 0.175 m3 for block 1, and 41.71% and 0.187 m3 fo block 2,
respectively (Tables 2 and 3). The tensile strength of the soil-root mixture (σt) between the two
tested sites was also slightly different. It was 66.86 kPa for Site 1 and 67.93 kPa for Site 2 (Table 3).
At site 2, the moisture content and volume of the two tested experimental blocks were different by
1.06% and 0.004 m3 (Tables 2 and 3), respectively. However, the variation of σt between the two was
still minor, merely 1.34 kPa (Table 3). This shows that for either AS or AM, repetitive measurements of
σt for different experimental blocks were consistent with each other, though the moisture content and
volume of the experimental blocks might be slightly different.
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Table 3. Physical and mechanical properties of the soil-root mixture at the two sites.

Tested
Site

Tensile Strength
of Root Tr (kPa)

Thickness of
Slump Block d1 (m)

Crack Depth dt

(m)
Width of Slump

Block bc (m)
Volume of Slump

Block V (m3)
Tensile Strength Based
on Formula (3) σt (kPa)

1
31,670 0.25 0.035 0.70 0.175 66.86
30,950 0.26 0.037 0.72 0.187 67.93

mean 31,310 0.255 0.036 0.71 0.181 67.395

2
15,420 0.35 0.048 0.52 0.182 21.29
16,890 0.35 0.050 0.53 0.186 22.63

mean 16,155 0.35 0.049 0.525 0.184 21.96

These results suggest that variation of the moisture content and volume of the experimental
blocks for the same type of plants has a negligible impact on σt. Nonetheless, between the AS and AM,
the mean tensile strength of the rooted soil was significantly different, which was 67.39 and 21.96 kPa,
respectively (Table 3). The value of σt for the AS at site 1 was about 3.07 times higher than that of
the AM at site 2 (Table 3). The dramatic difference clearly reflected the differences in the mechanical
characteristics of the root systems between the AS and AM blocks. It follows that the characteristics of
root distribution and tensile strength of individual roots are the important factors that influence the
tensile strength of the soil-root mixture.

The product of RAR and Tr is often used to evaluate the contribution of the root system to the
soil tensile strength [9,27,49–54]. For a soil-vegetation mixture, the tensile strength is often viewed as
that from the soil and root system, and the latter is much greater than the former [9,51]. In this study,
the product of RAR and Tr for the AS and AM was 70.45 and 18.58 kPa, respectively. Their ratio was
3.79, which was greater than that of σt for the AS and AM blocks (i.e., 3.07) (Table 3). This indicates
that conditions of the root system in a soil-root mixture are critical for determining the mechanical
characteristic of the mixture.

In the two excavation tests for AS, the depths of the developed cracks in the collapsed block were
0.035 and 0.037 m, respectively, with the average of 0.036 m (Table 3). However, for AM, these depths
were 0.048 and 0.050 m, respectively, giving rise to the average of 0.049 m (Table 3). The crack developed
in the AM collapsed block was deeper by about 27% than that in the AS block.

4. Discussion

4.1. Effect of Degraded Riparian Vegetation on Tensile Strength of Individual Roots and the Soil-Root Mixture

Continuous vegetation degradation has forced alpine meadow, dominated by members of the
Cyperaceae, to transform into bare land and subsequently Heitutan on the Qinghai-Tibet Plateau in
western China. Areas of severely degraded alpine meadow on the Qinghai-Tibet Plateau are referred
to as Heitutan and are characterized by increased proportions of bare land, reduced edible herbage,
and commensurate increases in the dominance of less palatable species [55]. Specifically, when AS
degenerates into AM, the distribution of dominant plants reduced significantly, from an original
coverage of 98% to only about 30%. This change of the surface vegetation communities has further
led to changes in the plant’s underground biomass. Our results showed that the root number of AM
block was 46% less than that of the AS block within the depth of 0–0.30 m (Figure 6). For plants of
AS, many roots were much longer than this depth, some of which may have a length of up to 0.80 m
(Figure 2a). For the plants of AM, however, the lengths of most of their roots are less than 0.30 m
(Figure 2b). Thus, transforming from AS to AM means that deep-rooted plants with dense root systems
are gradually replaced by plants with short and sparse root systems [35,55–58]. This change indicates
that the shallow-rooted plants of AM are more vulnerable to high evaporation, livestock trampling,
and human activities in the study area, resulting in further degradation [35].

In addition to their different densities and lengths, the two types of plants also have different
root structures. The dominant plant of AS (i.e., Blysmus sinocompressus) has developed rhizomes.
Roots derived from them often grow laterally (Figure 8a). Moreover, some roots have a wave
shape (Figure 8a). In AM, however, most roots of the dominant plant (i.e., Kobresia pygmaea) grow
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vertically with no rhizome (Figure 8b). The other two dominant plants (i.e., Elymus nutans and
Potentilla saundersiana) share a similar root structure. Compared with that of plant roots in AM,
the structure of the dominant plant in AS effectively enhances the tensile strength of the soil-root
mixture because (1) the laterally distributed roots may increase root density and (2) the wave-shaped
roots have greater contact area with the surrounding soils and may resist higher external force by
straightening its shape [59].

 

σ

 

Figure 8. (a) The laterally distributed and wave-shaped root system of Blysmus sinocompressus in AS;
(b) the distribution of straight roots in Kobresia pygmaea of AM.

The above-mentioned characteristics of root diameters and branching, and the tortuosity of plant
roots, mainly affected the mechanical behavior of individual roots [28]. Our study showed that the
influence of vegetation degradation is on not only the root number and structure but also on the
mechanical characteristics of roots. In the study area, effective roots (i.e., roots with diameters less than
1 × 10−3 m) account for about 93% in the layer of 0–0.30 m (Figure 6) below the surface, indicating
that most root systems mainly play the role of reinforcement [60]. When the cantilever arm of the
meandering riverbank is formed, the soil and root system is subjected to the external load from the
weight of the arm, giving rise to the deformation of the arm. The root system can convert part of
the external load into the tensile stress and dissipate it to the surrounding soil through the soil-root
interface. In this way, the root system and the surrounding soil particles can work together to balance
the load and enhance the soil-root tensile resistance [61].

The tensile strength of the root system is a critical factor that directly reflects the effect of rooted
soil consolidation. In our study, the average tensile strength of the root for the dominant plants in
the AS reached 31,310 kPa, which was 48% higher than that of the AM (16,155 kPa). Mattia et al. [47]
and Li et al. [62] measured the root tensile strength of Gramineae plants of Lygeum spartum, Stipa

purpurea and sedge plant of Kobresia pygmaea. They found that their tensile strength ranged from 36,260
to 45,670 kPa, close to that of the sedge plant, Blysmus sinocompressus (i.e., 31,310 kPa) in our study.
The tensile strength of the root for degraded plants of Potentilla bifurca, Ajania tenuifolia and Saussurea

salsa decreases significantly, from 5110 to 25,610 kPa [62]. In our study, this value for the degraded
meadow plants (i.e., the AM) was within this range. Evidently, the mechanical characteristics of roots
changed because of degeneration. The root tensile strength of healthy meadow plants (i.e., the AS) is
much higher than that of the degraded plants (i.e., the AM).

The contribution of the root system to the tensile strength of the rooted soil may be appropriately
evaluated using the product of RAR and Tr [9,27,49,51,52]. To further analyze the reduction of the
tensile strength in the soil-root mixture due to degradation, we compared our calculated values with
those from earlier studies [12,47,62]. All of the products of RAR and root tensile strength of the
four degraded herbaceous plants (i.e., 1, 2, 3, 5 in Figure 9) and the AM (i.e., 4) fell in the range of
2.04–38.4 kPa, which are lower than those of four healthy herbaceous plants (i.e., 7, 8, 9, 10 in Figure 9)
and the AS (i.e., 6), which are within the range of 72.01–118.74 kPa. Clearly, there is a discrepancy of
this product between healthy and degenerated plants, separated by the threshold of 50 kPa (Figure 9).
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Figure 9. The product of Tr and RAR for healthy and degraded grassland plants. 1. Saussurea salsa [62];
2. Ajania tenuifolia [62]; 3. Potentilla bifurca [62]; 4. AM; 5. eontopodium nanum [62]; 6. AS; 7. Stipa purpurea [62];
8. Lygeum spartum [47]; 9. Kobresia pygmaea [62]; 10. Helictotrichon filifolium [46]. The hollow circles
represent cited results, and the solid ones refer to the results in this study.

Because not all of the tensile strength of the roots is mobilized instantaneously at the moment of
bank failure [9,50,51,63], the product of RAR and Tr overestimates the true tensile strength (Table 3).
As more and more fiber materials have been used in engineering practices, their ability to improve
the tensile strength of the composite has been tested for natural fibers [24,64–67] and synthetic
fibers [18,24,58,68]. It is generally believed that fiber materials can reinforce tensile strength, and the
degree of reinforcement varies for different fiber materials. Tang et al. [3] proposed that the tensile
strength of soil-fiber composite (σcomposite) includes two parts, which are the tensile strength of natural
soils (σsoil) and the increase of the tensile strength due to the fiber (∆σfiber):

σcomposite = σsoil + △σ f iber (4)

According to Zhu et al. [69], the tensile strength of unsaturated clays is 0.7~0.8 times that of the
shear strength. In the current study, the ratio of tensile strength to the shear strength of soil without
root is taken as 0.75, and the shear strength is 9.29 kPa [70]. Using these values and Equation (4),
the reinforced tensile strengths of plant roots in AS and AM may be calculated as 60.43 and 15.0 kPa,
respectively. The reinforcement of the healthy plant root system of AS is about 4 times higher than that
of the AM. Also, they are less than the products of RAR and Tr by 11.58 and 4.36 kPa, respectively.

The relationship between the value of ∆σfiber for short (0.03 m) and long (0.05 m) fibers and
different fiber contents [24] (Figure 10) was established by setting the root content of AS and AM as
0.48% and 0.18%, respectively [70]. It demonstrated a positive correlation between ∆σfiber and the
fiber content [1,20,21,67], and showed that the longer the fiber length, the greater the strengthening
effect [3,24]. In Figure 10, the points representing AS and AM are in line with the established relationship
for the fiber lengths of 0.05 and 0.03 m, respectively. This consistency indicates that both the root
length and root content contribute to ∆σfiber, and both variables are higher for plants of AS than those
for plants of AM.

Furthermore, the tensile strength may also be affected by the initial water content and dry bulk
density. In the fiber-reinforced soils, it is negatively related to water content and positively related
to dry bulk density [3,24]. The average density of the natural soil-root mixture for AS is 18% higher
than that of AM (Table 2). This may be attributed to the decreased root number and the dramatically
increased pore volume of surface soil (i.e, soil in the 0–0.05 m layer) [58]. Higher bulk density should
increase not only bonding forces between particles, which enhances the tensile strength, but also the
interfacial contact area of the fiber-matrix structure, which improves the interfacial shear strength and
associated friction [24]. In theory, the bonding forces between particles and friction of the soil-root
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mixture for AS is stronger than that of AM. Because the difference in the moisture content of the upper
layer of soils between AS and AM is merely 1.43% (Table 2), its influence on the tensile strength of the
soil-root mixture is relatively small. In this study, the influence of plant degradation on the soil tensile
strength is mainly analyzed from a mechanical point of view, and the influences of soil properties
(e.g., bulk density, moisture content, porosity, and particle size) on tensile strength and the impacts of
degradation on hydraulic properties need to be further studied. It has been well known that the root
system can change the hydraulic characteristics of soil [71–74], because it occupies the pore spaces of
soil, thus reducing the porosity and increasing the water-holding capacity of soil [75]. In this study,
the root number of AM decreased by about 46% compared with that of AS in the depth of 0–30 cm on
the upper part of the riverbank, suggesting that the proportion of pores in the soil mass occupied by
roots was reduced, which is evidenced by the fact that the density of soil mass was relatively lower
than that of AS. Therefore, the water holding capacity of soil mass should be lower in AM than that in
AS, implying that its suction of soil mass should also be lower [76].

According to Equation (4), the contributions of the root systems of AS and AM to the tensile
strength of the soil-root mixture are 89.67% and 68.3%, respectively. This means that the influence of
degradation on the tensile strength of the riverbank is mainly derived from the roots. In our study,
when the AS degenerated to the AM, the rooted soil tensile strength decreased by 67.42% (Table 3).
Li et al. [58] showed that the shear strength of the root-soil mixture decreases by 36.0% and 52.3% from
severely degraded alpine meadows to moderately and slightly degraded alpine meadows, respectively.
Thus, degradation of alpine swamp meadows obviously reduces the mechanical properties of the soils
and weakens their ability to resist bank failure, wind and water erosion, and other external forces.

 

σ σ
Δσ

   

Δσ

Δσ

Δσ

 

Figure 10. The relationship between fiber (root) content and reinforced tensile strength. The letter l in the
diagram stands for the fiber length. The hollow circles and triangles are the data from Meriem et al. [24],
while the solid circle and triangle refer to the reinforced tensile strength of AS and AM in this
study, respectively.

4.2. The Role of Root System in Preventing Development of Riverbank Cracks

The development of cracks greatly destroys the integrity of the soil structure, weakens the
mechanical properties of soils, reduces stability, increases permeability, intensifies evaporation,
and increases soil erosion, resulting in a series of subsequent adverse effects on geotechnical engineering
and the environment [77–80]. The tensile strength of the soil is an important mechanical parameter
that controls the initiation and propagation of tensile cracks [3]. Therefore, enhancing the tensile
strength of the soil and preventing the occurrence or slowing the expansion of cracks are critical
for riverbank protection. Because plants in the AS have dense roots and strong single-root pullout
resistance, they may enhance the tensile ductility of the rooted soils and inhibit the initial formation of
tensile cracks. In our study, the expansion rate of tension cracks in cantilever arms due to weights
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of the AS blocks and the duration of block failure are generally slower than those for the AM blocks.
This indicates that types of riparian vegetation, fiber root number within the soils, and the root tensile
strength may considerably constrain the number of cracks and their propagation rates [81].

When a tested block of cantilever arms is about to fail, a penetrating crack forms from the surface
of AS or AM by following the path of least resistance (Figure 11). For the tested block of AS, the crack
had a zigzag shape, and its length was about 1.24 m, which is longer than the crack length of AM by
0.14 m. The crack propagated with a preference angle until it was interrupted by roots. This angle
seemed greater in the block with a higher root content. This property is consistent with the result of
Meriem et al. [24]. At the depth of 0–0.3 m, the root number of AS that passing through the collapsed
profile was 1.84 times that of the root number of AM (Figure 6). As a result, a crack in AS propagated in
a way that avoided most roots. Given that the length of the crack was longer than that of AM, the time
needed to penetrate through the soil-root mixture is longer. Nonetheless, the crack pattern is smoother
on the surface of the AM block because of its lower number of roots.

 

 

Figure 11. The planform crack pattern at the surface of the block in (a) AS and (b) AM.

Considering the impact of the degraded alpine swamp meadow on tensile strength of riverbank
in the UYR region, the grassland management should practice regional rotation grazing, rational
distribution of herds, and balanced use of the riparian alpine swamp meadow. In addition, anthropogenic
disturbances, in particular engineering construction, should be reduced as much as possible.

5. Conclusions

Under the influence of climate change and increased anthropogenic disturbances, the alpine
swamp meadow (AS), which is the main type of vegetation cover in the meandering riverbank of the
Upper Yellow River (UYR), is subject to severe degradation and typically has transformed into the
alpine meadow (AM). However, little is known about the tensile strength of the roots in soils and
the influence of riparian vegetation degradation on the tensile strength of riverbanks. To reflect the
actual interaction between soils and the roots with the natural root branching structure for AS and
AM and its effect on bank strength, we measured properties of root vertical distribution and number
and performed in situ root pullout and artificial excavation tests. Our results led to the following
conclusions. First, though spatial and size distributions of roots in the soil-root mixture of AS and
AM were similar, AS was characterized by a higher number of roots than AM. Second, the tensile
strength of individual roots decreased with the diameter of roots in both AS and AM. Yet, the former
always had higher tensile strength than the latter for any given root diameter. Similarly, the tensile
strength of the soil-root mixture in AS was about three times higher than that in AM. This difference
is mainly caused by the fact that the lateral extended and wave-shaped root structure in AS is more
effective in enhancing the resistance of the soil-root mixture to the external force than the simple
vertically distributed root structure in AM. Third, the tensile crack developed in the collapsed block
for AM was deeper than that for AS, indicating the reduced resistance to the external force as AS
gradually degraded to AM. The impact of the roots for the degraded vegetation (i.e., AM) was also
reflected by the relatively smooth and shorter crack route on the surface of the collapsed block for AM.
These findings call for better ecological management for preventing AS from being degraded to AM.

Although grassland degradation is a worldwide problem [82,83], how such degradation affects the
mechanical properties of riparian riverbanks in the alpine environment has not been fully understood.
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Our study provides firsthand evidence of weakened bank strength in the soil-root mixture due to
degradation of vegetation and will serve as a benchmark for future investigation of riverbank strength,
not only in the UYR, but also in other alpine regions in the world.
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Abstract: According to a previous geological investigation, high-speed and long-distance loess
landslides in the South Jingyang platform in Shaanxi Province are closely related to the static
liquefaction of loess. Considering the typical loess landslides in this area, isotropic consolidated
undrained (ICU) triaxial tests and scanning electron microscopy analyses were conducted in this
study. The main conclusions are as follows: (1) The stress-strain curves indicate strong strain softening
under different confining pressures. The pore water pressure increases significantly and then remains
at a high level; (2) The liquefaction potential index (LPI) shows an increasing trend followed by
stabilization; the larger the LPI is, the smaller the state parameter (ψ) is. The steady-state points
of the loess are in the instability region; however, the steady-state strength is not zero; (3) Based
on the ICU test results, the average pore diameter decreases; the shape ratio remains essentially
unchanged; and the fractal dimension and roundness show different trends. The proportions of the
macropore and mesopore decrease; that of the small pore increases slightly; and that of the micropore
increases significantly; (4) The compression deformation of the highly spaced pores causes rapid
strain hardening. A rapid strain softening results from the pore throat blockage at the beginning of
particle rearrangement and reorganization. A stable strain softening is related to the agglomeration
blocking of the reconstructed pore throat in the gradually stable stage of particle rearrangement
and reorganization.

Keywords: loess; ICU; static liquefaction; mechanical behavior; pore structure

1. Introduction

The phenomenon of static liquefaction was first discovered by Terzaghi and Peck [1] when they
performed an experiment on saturated silty fine sand. The phenomenon was described as follows:
saturated silty fine sand with uniform viscous liquid properties appears under a very small disturbance
action; this was termed “spontaneous liquefaction”. Subsequently, many scholars [2–4] have reported
this phenomenon. They proposed that this phenomenon should be distinguished from the liquefaction
of saturated sand under a dynamic load, and they studied it separately. Therefore, a more accurate
conceptual description of “static liquefaction” was gradually formed. In other words, the stress-strain
curve of the material element or the sample shows an obvious strain softening characteristic in the
static loading process. This indicates that the deviator stress can only maintain a very low shear
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strength after reaching the peak value. When the external load continues to act, the soil shows strong
instability. With the further cognition of the phenomenon of static liquefaction, many scholars [5–7]
began to understand the influence of static liquefaction on the loss of the soil resistance, and performed
detailed analysis of engineering disasters resulting from static liquefaction. Several laboratory tests
were also conducted, and their results have provided a clear understanding of the mechanism of
static liquefaction.

Due to the characteristics of loess, such as being porous, having weak cementation, and water
sensitivity, it is prone to cause slope instability due to static liquefaction under the saturated condition.
According to analyses of the characteristics of the loess landslides in the South Jingyang platform,
Shaanxi Province, the loess landslides are closely related to static liquefaction of the saturated loess.
Relevant scholars have carried out systematic research on the static liquefaction typical characteristics
of loess landslides in this region. Leng et al. [8] speculated that the movement mechanism of the
landslide was related to the liquefaction of loess, considering the water accumulation at the toe of
the slope and the unique properties of the slip soil after the occurrence of the landslide in this area.
In the process of shearing, the loess liquefaction led to a sharp decrease in the shear strength of the
displaced landslide materials. Through a field investigation of the Western Miaodian and Zhaitou
landslides and using a digital elevation model, Peng et al. [9] found that the static liquefaction of the
sliding surface was caused by the loss of shear resistance and bond strength. Xu [10] conducted scores
of field investigations and measurements of the loess landslides in the South Jingyang platform. It was
determined that the shear opening of the flow landslides was low, and most of the landslides were
in the loess saturated zone on the edge of the plateau and were caused by a rise in the groundwater
level. The mechanism for these kinds of loess landslides is related to the static liquefaction of the
saturated loess at the bottom. In addition, the slope of the flow slip (about 12◦) is much lower than the
internal friction angle of the saturated loess, which also preliminarily confirms loess liquefaction in the
process of flowing. According to Li et al. [11], the pore water pressure produced by the undrained
shear at the bottom of the sliding body in the loess tableland area is much higher than the pore water
pressure inside the sliding body. Therefore, shearing occurred at the bottom. The high pore water
pressure liquefied the bottom material, which resulted in a large difference between the driving force
and resistance.

The phenomenon and mechanism of loess static liquefaction depends on the systematic
experimental analysis. Therefore, relevant scholars have carried out laboratory experimental research
and analyzed the mechanism of loess static liquefaction. For example, Ma et al. [12] determined that
surface water infiltration led to water accumulation at the bottom of the loess layer through isotropic
consolidated undrained (ICU) and ring shear tests. The loess in this layer was highly liquefied: a high
pore water pressure was generated rapidly, and a deviatoric stress reached the maximum value under
low deformation. Zhuang et al. [13] conducted ring shear tests on saturated loess in this region and
determined that the pore water pressure and shear resistance immediately rose to the maximum value
after shearing. Thereafter, the pore water pressure was maintained near the maximum value; however,
half of the shear resistance was lost after a small shear displacement. The effective stress path showed
that the saturated loess was prone to liquefaction under the undrained shear action. This indicates
that the loess landslide had liquefied during the sliding process. Yan et al. [14] conducted ICU tests
on the loess in this area and determined that it was easy to form a saturated softening zone on the
top of the paleosol layer (relative aquiclude) at the toe of the slope. The relative sliding between the
loess particles at this location can increase the pore water pressure sharply and reduce the effective
stress. After reaching the steady state, the saturated loess was in a low-confining-pressure unstable
state and was prone to plastic flow. Li and Jin [15] used the global digital systems (GDS) triaxial
apparatus to conduct isotropic/anisotropic consolidated undrained (ICU/ACU) compression tests and
constant-shear-drained (CQD) triaxial tests of the undisturbed loess in the Dongfeng landslide for the
South Jingyang platform. The results showed that the stress-strain mode of the soil displayed a strong
strain softening type, and the starting friction angle of the soil failure was far less than the steady-state
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friction angle. When the stress path passed through the instability area, incomplete drainage shear
shrinkage failure occurred, which is a typical static liquefaction phenomenon. Liu et al. [16] carried out
undrained monotonic triaxial shear tests on saturated undisturbed loess samples taken from Heping
Town, Yuzhong County, Lanzhou City. They found that loess samples with confining pressure of
100 kPa and 150 kPa exhibited complete static liquefaction characterized by that the pore water pressure
reached the level of the initial confining pressure and the effective confining pressure decreased to zero.
Wang et al. [17] also determined that the final pore pressures in the undrained triaxial compression
tests were as great as 65% of the initial confining pressures. Besides, through effective stress path
passing through flow liquefaction line (FLL), it can be concluded that the loess is susceptible to flow
liquefaction failure. Pei et al. [18] conducted a series of consolidated undrained triaxial compression
tests on undisturbed loess obtained from the source area of Shibeiyuan landslide. The tests revealed
that although the confining pressures were different (≤200 kPa), the effective stress decreased with
the accumulation of excess pore pressure and the steady state strength decreased continuously to
zero. Xu et al. [19,20] carried out ICU tests on undisturbed loess retrieved from the backwall of a
loess landslide in Heifangtai plateau, Lanzhou City, Gansu Province. The loess reached peak shear
strength with an axial strain of <2%, accompanied by a sharp increase in pore pressure and followed
by monotonic strain softening. The results showed that the saturated loess had strong liquefaction
potential. Based on the study of the mechanical behavior of the static liquefaction of the saturated
loess, the mechanism of the static liquefaction of loess has been clearly summarized as follows: 1O the
explosion of the pore water pressure; 2O the effective stress drops sharply, even to zero; 3O and the
occurrence of flow plastic deformation. However, the internal mechanism is still unclear, such as: 1O an
unclear understanding of the mechanism of the explosion of the pore water pressure in the process
of static liquefaction; 2O incomplete cognition of the relationship between the occurrence of static
liquefaction and the change in the internal structure of the saturated loess; and 3O the essence of the
sudden drop in the strength of the saturated loess due to static liquefaction, which can result in a sharp
drop in the effective stress. However, the mechanism of the sudden drop in strength that is caused
by the loess structure is not clear. Therefore, analyzing the internal mechanism of loess liquefaction
and scientifically understanding the three typical characteristics of static liquefaction from multiple
perspectives are the key work in the next stage.

In view of the above shortcomings, we carried out the ICU tests under different confining pressures
for the saturated undisturbed loess. In addition, scanning electron microscopy was performed before
and after the ICU tests. The stress-strain characteristics of the saturated undisturbed loess were studied.
The variation trend of the pore water pressure and of the corresponding mechanical mechanism was also
analyzed. Finally, the evolution process and internal mechanism of static liquefaction were determined.

2. Development Characteristics of the Landslide and the Correlation Analysis with
Static Liquefaction

The South Jingyang platform is located in the South Bank of the Jinghe River, Jingyang County,
Shaanxi Province. The platform is 30–90 m higher than the Jinghe River, and the altitude is 450–500 m.
It is almost parallel to the flow direction of the Jinghe River and is distributed in a belt. The South
Jingyang platform presents the east–west extension trend as a whole; the total extension is 28 km; and it
mainly spans the Taiping, Jiangliu, and Gaozhuang administrative townships [21]. Under the influence
of the buried fault of the Jinghe River, the quaternary loess was uplifted and was deposited on the
south of the Jinghe River, and the loess platform was formed [22]. It has been affected by large-scale
agricultural irrigation since 1980. As of April 2018, there have been 92 loess landslides on the South
Jingyang platform. Among them, sliding had occurred multiple times for 17 landslides, which have
caused serious casualties and property losses [23]. Based on the triggering factors and landslide
movement characteristics, loess landslides in the study area can be classified into four types [22]:
irrigation flow landslides, irrigation slide landslides, erosion slide landslides, and engineering-induced
landslides (Figure 1). In previous studies, 92 landslides have been investigated, which include 35
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irrigation flow landslides, 37 irrigation slide landslides, 15 erosion slide landslides, and 5 engineering
induced landslides (artificial loading, cutting slope toe, engineering disturbance, etc.). The statistical
results show that the number of irrigation flow landslides and the irrigation slide landslides in the
study area is equivalent, which accounts for 38.04% and 40.22% respectively, which is far more than
erosion slide landslides and engineering induced landslides (only 21.73% in total). The irrigation flow
landslides largely slide out from the Middle Pleistocene (Q2) loess layer at the slope toe. Since the
water content of the slope toe and the silt (or sand gravel) layer at the terrace is large, the soil near
the sliding surface can produce high pore water pressures during movement. This makes the soil in
the sliding zone liquefy. Even if the terrace slide bed is gentle, it still presents significant high-speed
and long-distance characteristics. The plane shape of the sliding mass is primarily semicircular or
circular, and the sliding distance is generally 200–300 m. The volume is mostly between hundreds of
thousands of square meters to one million square meters, which indicates that these landslides are
a medium-sized landslide. The shear opening of irrigation slide landslides is relatively high and is
predominantly in the unsaturated loess layer. The irrigation slide landslides are associated with the
reduction of suction (shear strength) of the loess matrix caused by the infiltration of surface water
such as farmland irrigation. From the perspective of landslide evolution, sliding occurs mainly in the
second and third stages of the landslide, while some of the sliding, which results from the deep buried
groundwater level, occurs in the first stage.

 

Figure 1. The loess landslides distribution in the South Jingyang platform.

The geological structure of the loess slope exhibits different types of structural planes, including
joint fissures and weak planes. In the South Jingyang platform, the joint fissures are mainly the fissures
on the edge of the platform, and the weak planes are mainly the loess-paleosol interface. According to
a field geological structure survey, fissures within 7 m from the edge of the platform are intensively
developed; most of these are unloading fissures. The fissures appear along the top of the platform
or are near the steep slope, and they continue to extend and penetrate under the unloading effect.
However, due to the cutting action of the steep cliff, the extended length of these fissures is often small.
Fissures more than 15 m away from the edge of the platform are primarily collapsible fractures and
are predominantly at the top of the platform. Under the action of uneven collapsibility, they extend
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deeply [12,14]. Although the number of collapsible fissures is less than unloading fissures, the plane
extension length and joint opening are larger. Collapsible fissures are the dominant channel for the
surface water to infiltrate the loess slope [12,24,25], which can cause the surface water to quickly invade
the inside of the landslide body and to accelerate the rise of the groundwater level [21]. The South
Jingyang platform presents typical interbedded sequence characteristics of the loess-paleosol [14],
and the loess-paleosol contact interface is significant (Figure 2). However, because it is influenced
by the tension of the fissures on the edge of the platform, the S1–S5 paleosol layer often breaks,
which can easily cause water infiltration. Paleosol has a lower infiltration rate and water-holding
capacity than loess does [26] and can be regarded as a natural aquiclude in comparison with loess [14].
The accumulation of surface water near the interface of a certain loess-paleosol is enhanced by the
infiltration-promoting effect of the fissures on the edge of the platform. This causes the bottom of the
Lishi loess to be saturated, which produces the saturated softening layer. Therefore, liquefaction may
occur at the loess-paleosol interface, after which the saturated softening layer becomes the bottom
sliding surface of the landslide [27].

 

Figure 2. The profile of loess-paleosol contact interface in the South Jingyang platform.

At about 10:00 AM on 26 July 2014, a large-scale loess landslide occurred in Hetan village, Western
Miaodian. This can be regarded as the first large-scale landslide because of the long-time interval
from the Western Miaodian landslide in 1987. In fact, four landslides occurred on 26–28 May 2015
and 7–8 August 2015. However, with the increase in the sliding sequence, the volume in the landslide
decreased gradually [12]. This indicates that the landslide that occurred on July 26, 2014 had a
triggering effect. The main sliding direction of the landslide was NE61◦, which is slightly different
from that of the 1987 landslide (NE48◦). A giant sliding body with a sliding distance of 278 m and a
total volume of about 50 × 104 m3 was formed (Figure 3). The posterior wall of the landslide was about
40 m high and 222 m wide, and it was characterized by a typical concave ring chair. The top 10–15 m
was vertical and was controlled by the Late Pleistocene (Q3) and Q2 loess vertical joints. There were
five paleosol layers that were exposed, and the landslide started from the vicinity of the fifth paleosol
layer; moreover, the water retention effect of the paleosol layer was significant. In addition, the sliding
surface of the posterior wall was smooth, and the water content was high.
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Figure 3. Development characteristics of the “7.26” high-speed and long-distance landslide in Hetan
village, Western Miaodian.

3. Experimental Samples and Process

Based on the above investigation and analysis, the occurrence of landslides in this region is
closely related to static liquefaction. In order to further analyze the evolution process and the typical
characteristics of the static liquefaction of loess in this region, a static liquefaction test was conducted.
In addition, because the thickness of the Holocene (Q4) loess (generally ≤ 5 m), Late Pleistocene (Q3)
Malan loess (generally < 10 m), and other new loess were not large, these were mainly located at the
top of the loess slope. Their failure mode was mainly a tensile fracture, and shear liquefaction was
unlikely to occur. Although the Middle Pleistocene (Q2) Lishi loess (10–70 m) was the main component
of the loess slope in the study area, shear failure and sliding were the main failure modes in this layer.
Therefore, the Q2 loess was selected for the ICU tests.

3.1. Experimental Samples

The undisturbed loess samples were acquired from the Zhaitou (ZT) and Shutangwang (STW)
landslide. Among them, the ZT loess samples were obtained from the adit of the posterior wall of the
landslide. The sampling location is about 21 m away from the top of the platform, and the corresponding
stratum number is L2. The ZT loess samples were yellow-brown, slightly wet, and have slightly dense
uniform soil. The samples were mainly composed of silt particles. In addition, needle pores, a small
amount of snail shell fragments, and concretions were found in the samples. The STW loess samples
were obtained from the surface of the posterior wall of the landslide. The sampling location is about
17 m away from the top of the platform, and the corresponding stratum number is L2. The STW loess
samples were light yellow-brown and dry, and its other characteristics were like those of the ZT loess
samples. The ZT and STW loess consisted of Q2 Lishi loess.

The physical properties of the samples were determined by referring to the relevant provisions of
the standard for the soil test method (GB/T 50123-1999) [28]. The water content was measured using
the drying method; the density was measured using the round knife method; and the dry density
value was obtained via conversion. The specific gravity was measured using the pycnometer method,
and the liquid limit and plastic limit water content were determined using the combined liquid plastic
limit method. The basic physical properties of the two loesses are shown in Table 1.
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Table 1. Basic physical properties of the Zhaitou (ZT) and Shutangwang (STW) loess.

Samples
Water

Content
(%)

Dry
Density
(g/cm3)

Void
Ratio

Specific
Gravity
(g·cm−3)

Liquid
Limit
(%)

Plastic
Limit
(%)

Liquid
Index

Plastic
Index

ZT 17 1.44 0.88 2.71 25.3 19.61 −0.46 5.73
STW 9.8 1.43 0.89 2.72 24.4 20.35 −2.59 4.08

It can be observed from Table 1 that the physical properties of the ZT and STW Q2 loess were
close except for the water content. ZT loess samples were procured from the adit, while the STW loess
samples were procured from the surface of the slope. Due to the water evaporation at the surface loess,
the measured water content of the STW loess samples was relatively low. The liquid index of the two
loess was less than zero and the plasticity index was low. This indicates that their plasticity in the
natural state was low.

In addition, a laser particle size analyzer was used to analyze the grading of two Q2 loess
samples, and a semi quantitative analysis of their mineral compositions was performed using an X-ray
diffractometer. The selected diffraction angle was 0.5–30◦. The specific results are presented in Table 2.

Table 2. The particle and mineral composition of the ZT and STW loess.

Samples

Particle Size(%) Mineral Composition(%)

Clay
(≤5 µm)

Silt
(5–75 µm)

Fine Sand
(75–250 µm)

Quartz Carbonate Illite Kaolinite Chlorite Others

ZT 22.6 74.1 3.3 29 23 20 5 14 9
STW 10.6 82.2 7.2 31 20 19 3 17 10

As shown in Table 2, the particle composition of the ZT and STW Q2 loess were quite similar,
with the proportion of the silt being the most, clay being the second, and fine sand being the least.
Meanwhile, the corresponding mineral composition and content were highly similar. The highest
content was quartz and carbonate, which constituted the main components of the cement and the
skeleton of the loess. Clay minerals mainly consisted of illite, chlorite, and a relatively small amount of
kaolinite. The hydrophilic characteristics of illite and chlorite were obvious, which makes it easy for the
clay minerals to agglomerate and to form tuberculosis under water saturation conditions. The above
mineral composition objectively revealed the typical structural characteristics of the loess in the area.

3.2. Experimental Process

In view of the typical characteristics of the static liquefaction phenomenon of the South Jingyang
platform landslide: the pore water of the saturated loess caused by the groundwater immersion cannot
be discharged in time during the shear process, which caused the pore water pressure to continue
rising and to maintain a high level. Therefore, to accurately reflect the stress state of the saturated
loess during the sliding of the loess slope, isotropic consolidated undrained (ICU) triaxial tests were
conducted on ZT and STW loess. In addition, to further explore the internal mechanism of the static
liquefaction of loess in this area and finding the internal relationship between the static liquefaction
and the microstructure characteristics directly, it is necessary to observe and analyze the microstructure
of the ZT and STW loess before and after the ICU tests. The specific experimental process is as follows:

(1) The undisturbed loess samples were molded into Φ50 mm × 100 mm cylinders according to the
requirements of the standard for the soil test method (GB/T 50123-1999) [28]; and these cylinders
were placed in the load cell of the Wykeham Farrance (WF, Wykeham Farrance, Milan, Italy)
stress path triaxial apparatus (Figure 4). After connecting the pressure sensor, pore water pressure
sensor, cell pressure controller, and the back pressure controller with the corresponding port
of the load cell, the WF stress path triaxial apparatus was used to carry out the back pressure
saturation treatment on the undisturbed loess. 1O A 50 kPa cell pressure was applied to the
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samples, and the back pressure was set at 10 kPa lower than the cell pressure to prevent structural
damage of the samples caused by the pore water pressure, which is higher than the confining
pressure. After the back pressure inflow was stable, the back pressure was kept constant for 6–8 h
to make the water gradually infiltrate the samples. 2O Under the premise of ensuring that the
cell pressure was 10 kPa higher than the back pressure, the cell pressure and back pressure were
applied to the samples step by step. Each stage was increased by 50 kPa and it remained for 6–8 h
before conducting the next stage. 3OWhen the B value was higher than 0.95, the samples were
considered to be saturated. Multiple tests showed that the undisturbed loess samples generally
required an applied back pressure that ranged from 190 to 240 kPa, and in 1–2 days to ensure that
the soil sample reached the saturation state.

(2) To reflect the discrepancy in the static liquefaction characteristics of the undisturbed loess under
the different confining pressures (σc

′), four confining pressures (150 kPa, 250 kPa, 350 kPa,
and 450 kPa, corresponding to the numbers 1–4, respectively, for the ZT and STW loess) were
selected. After the saturation of the loess (B ≥ 0.95), the cell pressure and back pressure (the cell
pressures were 150 kPa, 250 kPa, 350 kPa, and 450 kPa higher than the back pressure) were set
appropriately to ensure that the sample would be isotropically consolidated under four confining
pressures. When the confining pressure attained the set value and remained stable, the drainage
valve was opened to start the consolidation. In the consolidation process, the pore water pressure
and volumetric strain changed rapidly at first and then it tended to be gradually stable. When the
pore water pressure dissipated to more than 95% and the volumetric strain remained stable,
the consolidation was completed.

(3) After the back pressure saturation and isotropic consolidation, undrained triaxial tests were
conducted with a 0.1 mm/min shear rate, according to the relevant provisions of the standard
for the soil test methods (GB/T 50123-1999) [28]. To observe the strength change characteristics
after the peak value more clearly, a 25% axial strain was taken as the termination condition of
these tests.

(4) For preparing the cylindrical samples for the ICU tests, cube samples with a side length of
1–2 cm had to be fabricated. Freeze-drying and section gold spraying treatments were performed
successively on the cube samples. Then, the samples were placed under a field emission scanning
electron microscope (JSM-7610F) and observed under different magnifications (500× and 2000×).
The 500×magnification was used for observing the overall pore structure of the section, and 2000×
magnification was used for observing of the occurrence and contact arrangement of the different
particles. Five areas were randomly scanned at each magnification.

 

Figure 4. Wykeham Farrance (WF) stress path triaxial apparatus.
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4. Results

4.1. Macroscopic Characteristics Analysis of the Shear Failure and Static Liquefaction

At first, the stress-strain characteristics under the different confining pressures were studied to
obtain the liquefaction potential index (LPI) evolution process of the undisturbed loess. Moreover,
the variation law of the pore water pressure and the influence of the confining pressures on the pore
water pressure were analyzed. Finally, the evolution process of the static liquefaction was determined.

4.1.1. Stress-Strain Characteristics Analysis

Based on the experimental data from the ICU tests, the stress-strain curves of the ZT and STW
undisturbed loess under the confining pressures of 150 kPa, 250 kPa, 350 kPa, and 450 kPa were
plotted (Figure 5).

  
(a) (b) 

Figure 5. Stress-strain curves of the ZT and STW loess. (a) ZT. (b) STW.

It can be observed from Figure 5 that the stress-strain curves of the ZT and STW loess under the
different confining pressures had a similar change in the trends, and all of them present obvious strain
softening characteristics [12]. The stress-strain curves can be divided into three stages.

(1) Rapid strain hardening stage: At the initial stage of loading, when the axial strain is very small
(εa < 3%), the deviator stress rises rapidly and reaches the peak value. The stress-strain curve of
this stage is close to the straight line. The larger the confining pressure is, the greater the deviator
stress peak value is. The stress-strain curves in this stage indicate that the internal spaced pore
structure is compressed under the action of the external load, and that the contact between the
particles is closer [29].

(2) Rapid strain softening stage: When the peak strength is reached, the deviator stress decreases
sharply, and the corresponding axial strain is about 1–3%. This indicates that the spaced pore
structure may be damaged after compression with the increase in strain, and the ability to resist
deformation is evidently weakened. There is a strain threshold (εap) between the compression
and the failure of the pore structure, which reflects that the structural loess requires a certain
compression deformation to undergo structural failure. The stress-strain curves of the ZT and STW
loess show that εap is always in a certain range (generally between 1 and 3%). The stress-strain
curves of the undisturbed loess in the South Jingyang platform provide similar results [9,12,15,30].

(3) Stable strain softening stage: When the axial strain reaches a certain value (εa = 10–15%), the stress
tends to be stable with an increase in the strain. This shows that the strength of the soil structure
softens after it has been destroyed. The clay aggregates, which are inlaid with the large framework
of the silt particles, may gradually fall into the pore throat channel; this results in the reorganization
of the loess structure [16]. With the continuous increase in the strain, the reorganization process
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of the loess structure tends to be stable, and its initial structure is completely destroyed under the
action of the shear stress. In addition, the new orientation arrangement has statistically reached a
stable state [31]. Therefore, in the ICU tests of the saturated undisturbed loess, when the axial
strain reaches 10–15%, the loess is considered to undergo steady-state deformation. When the loess
reaches a steady state, its shear resistance is known as the steady-state strength [32]. Compared
with its peak strength, the steady-state strength is about 0.4–0.6. Therefore, there is the possibility
of static liquefaction. The above structural changes can also find the corresponding intuitive
evidence in the later microstructure morphology analysis.

4.1.2. Variation Analysis of the Pore Water Pressure

Based on the ICU tests data, the pore water pressure-strain curves and effective confining
pressure-strain curves of the ZT and STW loess were plotted, as shown in Figures 6 and 7.

ε

ε

ε

ε

  

(a) (b) 

Figure 6. Pore water pressure-strain curves of the ZT and STW loess. (a) ZT. (b) STW.

ε

  

(a) (b) 

Figure 7. Effective confining pressure-strain curves of the ZT and STW loess. (a) ZT. (b) STW.

According to Figure 6, the pore water pressure curves of the ZT and STW loess exhibited almost
the same change trend and were mainly divided into two stages: (1) Sharp rise stage: at the beginning
of loading (the axial strain εa was less than 3%), the pore water pressure rose rapidly, close to the
confining pressure level. (2) Stable stage: after reaching the curve inflection point, the increment
of the pore pressure was very small with the increase in the strain, and it tended to be gradually
stable. The inflection point of the curve can be considered as the critical point of the pore water
pressure change and is closely associated with the structural yield stress being reached [33]. Under the
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undrained condition, the pore water pressure rose rapidly. Accompanied by the particle rearrangement,
the spaced pore structure collapses, structural failure of the loess structure begins, and the effective
stress gradually transfers to the pore water pressure [16]. When the collapse of the structure tended
to end, the clay aggregates slipped and squeezed into the pore throat, which seriously hindered the
discharge of the pore water. As a result, the pore water pressure remains at a relatively high level.
The variation trend is accurately captured through the microstructure morphology analysis.

It can be observed from Figure 7 that under the different confining pressures, the effective confining
pressure of the ZT and STW loess decreased sharply when the axial strain was less than 3%, and it
tended to be gradually stable with the increase in the axial strain. The effective confining pressure of
the ZT loess in the steady state increased with the increase in the initial confining pressure. Under the
confining pressure of 250 kPa, the pore pressure of the STW loess increased more; hence, the effective
confining pressure was the lowest in the steady state. Under the other confining pressure conditions,
the effective confining pressure of the STW loess in the steady state also increased with the increase
in the initial confining pressure. Combined with Figures 6 and 7, it is not difficult to determine that
when the axial strain was less than 3%, the effective confining pressure decreased with the increase
in the pore water pressure, and the pore water pressure and the effective confining pressure tend to
be stable with the increase in the axial strain. Although the effective confining pressure at the end of
the shear was a lower value (20–100 kPa), it did not reach zero. This means that the loess had not
reached complete static liquefaction; however, it had decreased significantly in comparison to the
initial confining pressure. At this point, the loess was in a very unstable state and had a strong flow
plastic characteristic [14].

4.2. Analysis of the Microstructure Characteristics before and after the ICU Tests

Based on the aforementioned analysis of the ICU test results for the loess under the different
confining pressures, the ZT and STW loess samples show prominent strain softening characteristics.
After reaching the peak value, the partial stress decreased significantly; the pore water pressure
increased sharply and remained high; and the effective confining pressure decreased rapidly. As a
result, the ZT and STW loess have the possibility of static liquefaction. In order to find the relationship
between the static liquefaction and the microstructure characteristics and to understand the internal
mechanism of the static liquefaction in this area more clearly, the scanning electron microscope (SEM)
images captured before and after the ICU tests were analyzed in this section.

In Figures 8 and 9(a1,a2) are SEM images of loess after the back pressure saturation treatment
on the triaxial apparatus. Therefore, according to the experimental process, the SEM images of (a1)
and (a2) reflect the micromorphology of loess before consolidated undrained triaxial tests. Moreover,
(b)–(e) in Figures 8 and 9 are the SEM images of loess after consolidated undrained triaxial tests
under different confining pressures. Through a comparative analysis of the microstructure changes
before and after the ICU tests under the different confining pressures (Figures 8 and 9), the following
results were determined. (1) Before the ICU tests, there were a large number of scattered spaced
pores between the loess particles, which was confirmed to the microstructure characteristics of the
loess [34]. After the ICU tests, the original pore throat channel of the spaced pores between the loess
coarse particles was filled by fine particles, which can be also observed in the previous study [9].
Therefore, the pore throat channel was blocked, the boundary shape of the pore throat channel tended
to be more complicated, and the intergranular pores were gradually dominated by mosaic pores.
(2) Before the ICU tests, the contact between the coarse particles was mainly point-point and point-face.
After the ICU tests, the appearance of fine particles, such as clay aggregates, in the contact position
of the particles destroyed the contact state between the coarse particles of the loess. This resulted
in the contact state between the coarse particles gradually transforming to face-face. The face-face
contact relation mentioned in here includes direct face-face contact and indirect face-face contact [35,36].
(3) Under the confining pressures of 350 kPa and 450 kPa, the edges of the coarse particles peeled off
from the fine particles. The same phenomenon was found in another study [37]. This indicates that the
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spaced framework formed by overlapping of the coarse particles becomes fully contacted under the
compression deformation; however, the framework structure cannot bear a greater load. At the contact
point of the coarse particles, the cracks would appear due to the stress concentration and they develop
towards the inside of the particles, which gradually produces fragmentation.
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Figure 8. Cont.
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Figure 8. SEM images (2000×) of the ZT and STW loess before and after the isotropic consolidated
undrained (ICU) tests. (a1) Saturated (ZT). (a2) Saturated (STW). (b1) 150 kPa (ZT). (b2) 150 kPa
(STW). (c1) 250 kPa (ZT). (c2) 250 kPa (STW). (d1) 350 kPa (ZT). (d2) 350 kPa (STW). (e1) 450 kPa (ZT).
(e2) 450 kPa (STW).
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Figure 9. SEM images (500×) of the ZT and STW loess before and after the ICU tests. (a1) Saturated (ZT). (a2) Saturated (STW). (b1) 150 kPa (ZT). (b2) 150 kPa (STW).
(c1) 250 kPa (ZT). (c2) 250 kPa (STW). (d1) 350 kPa (ZT). (d2) 350 kPa (STW). (e1) 450 kPa (ZT). (e2) 450 kPa (STW).
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5. Discussion

5.1. Analysis of Capacity of Static Liquefaction

The stress-strain curves, pore water pressure-strain curves, and the effective confining
pressure-strain curves of the ZT and STW loess under the different confining pressures were analyzed.
The loess under the different confining pressures shows prominent strain softening characteristics,
but the deviator stress at the end of the shear was not zero. In addition, the pore water pressure rose
rapidly under a small deformation (εa < 3%), and the effective confining pressure decreased with the
increase in the pore water pressure and it reached a lower value (20–100 kPa) at the end of the shear.
Therefore, the saturated undisturbed loess may undergo static liquefaction under the undrained shear
action; however, the possibility of static liquefaction still needs further discussion.

5.1.1. Analysis Change Characteristics of the LPI

To further understand the effect of the confining pressure on the liquefaction resistance of the
saturated undisturbed loess, the previous concept of the liquefaction potential index (LPI) was used
for the analysis. Ng. C [38] defined the LPI as follows:

LPI =
qmax − qmin

qmax
(1)

where qmax is the peak shear stress, and qmin is the quasi-steady shear stress. This parameter is similar
to the brittleness index (IB) proposed by Bishop (1967) [39] for the strain softening materials. It can be
used to characterize the degree of reduction in the deviatoric stress of the saturated undisturbed loess
under the different confining pressures; thus, it reflects more accurately the ability of the loess to resist
the static liquefaction. When the LPI = 1, this indicates that there is complete static liquefaction of the
soil. When the LPI = 0, this indicates that there is no static liquefaction of the soil. When 0 < LPI < 1,
this indicates that the soil has a certain static liquefaction potential and the ability to resist static
liquefaction weakens with the increase in the LPI. According to Formula (1), the LPI of the ZT and STW
loess under the confining pressures of 150 kPa, 250 kPa, 350 kPa, and 450 kPa is calculated, and the
results are shown in Figure 10a.

ψ ψ
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Figure 10. Measurement index of the liquefaction capacity. (a) liquefaction potential index (LPI). (b) ψ.

Been [40] defined the state parameter (ψ) as follows:

ψ = e0 − ess (2)
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where e0 and ess are the void ratios in the initial and steady states, respectively, for the same effective
mean normal stress. When ψ > 0, the soil is in a “loose” state, and the undrained shear can cause shear
shrinkage. The larger the state parameter ψ is, the more obvious the shear shrinkage behavior of soil is
and the stronger the liquefaction capacity is. According to Formula (2), the ψ of the ZT and STW loess
for the confining pressures of 150 kPa, 250 kPa, 350 kPa, and 450 kPa were calculated, and the results
are shown in Figure 10b.

It can be observed from Figure 10a that the LPIs of the ZT and STW loess were almost equal
under the different confining pressures and range between 0.4 and 0.6. In addition, with the increase
in the confining pressure, no clear monotonic change rule; this is similar to the results of previous
ICU tests on saturated undisturbed loess in the South Jingyang platform [9,12,30]. At first, with the
increase in the confining pressure from 150 to 250 kPa, the LPI shows an upward trend. At this point,
the LPIs of the ZT and STW loess were 0.61 and 0.59, respectively. Then, with the increase in the
confining pressure from 250 to 350 kPa, the LPI decreased to some extent. Finally, with the increase in
the confining pressure from 350 to 450 kPa, the LPI remained unchanged. It can be determined from
Figure 10b that ψ of the ZT and STW loess increased with the increase in the confining pressure from
250 to 450 kPa; however, it remained unchanged with the increase in the confining pressure from 150
to 250 kPa. Moreover, for a confining pressure of 150 kPa and 250 kPa, the LPI was larger; yet ψ was
smaller. When the confining pressure was 350 kPa and 450 kPa, the LPI was smaller, but ψ was larger.

Furthermore, the possibility of static liquefaction existed in different layers and the buried depth
of the undisturbed loess. In addition, there was no obvious relationship between static liquefaction
and confining pressure. In fact, according to the research on the buried depth of the sliding surface
of the loess landslides in the South Jingyang platform, it is determined that there is no clear loess
stratigraphic unit for the sliding of the high-speed and long-distance loess landslide; however, there is
a prominent sliding face for the conventional sand landslides [41,42]. Although no prominent sliding
face was observed in the loess landslides of the South Jingyang platform, the loess-paleosol of the
South Jingyang platform presents typical interbedded sequence characteristics. Therefore, an evident
water retention effect was easily produced at the paleosol interface. This is because the paleosol layer
was equivalent to a relatively dense aquiclude. Some landslides in this area do have the possibility of
sliding along the paleosol layer [12,24], but the specific formation was not regular.

5.1.2. Analysis of the Stress Path Evolution

The stress-strain curves and the pore pressure-strain curves of the ZT and STW loess indicate
that the loess exhibited strong strain softening, and the pore water pressure remained relatively high.
For the post peak state description and the steady-state evaluation of this kind of strain softening soil,
the potential liquefaction state can be well recognized. Based on previous studies [43–45], the stability
of the ZT and STW loess was evaluated by establishing a steady state line and an instability line.
The stress paths of the ZT and STW loess were plotted using the experimental data from the ICU tests;
the abscissa is the effective average stress p′ = 1/3(σ1

′ + 2σ3
′) (MPa), and the ordinate is the deviator

stress q′ = σ1
′ − σ3

′ (MPa), as shown in Figure 11.
Figure 11 shows that the ZT and STW loess under the different confining pressures all have shear

shrinkage phenomenon. With the increase in the confining pressure, the peak point of the effective
stress path gradually increased. In addition, after the effective stress path of the ZT and STW loess
reached the peak point, they all reached the steady state with an increase in the strain. The stress path
was divided into the stable region and instability regions by the instability and steady-state lines. If the
soil stress path entered the instability region between the instability line and the steady-state line,
the soil was very likely to undergo static liquefaction. If the soil stress path is in the stable region below
the instability line, static liquefaction of the soil is unlikely to occur [43,44,46]. Accordingly, it can
be concluded that static liquefaction of the ZT and STW loess is more likely to occur under different
confining pressures.
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Figure 11. The stress paths of the ZT and STW loess. (a) ZT. (b) STW.

For the purpose of making the steady-state line pass through the steady-state points of the loess
as much as possible, after trying to draw the steady-state lines, it was determined that this effect can be
achieved when the steady-state line is a straight line without passing through the origin. Based on the
stress path that from the ICU tests of the loess, some scholars [17,47] observed that the steady-state line
is a straight line that does not pass through the origin. Although the uniqueness of the steady-state
line of sand is controversial [48,49], most of it is a straight line that passes through the origin [43–45].
Loess still has cohesion in the steady-state stage [50], while the cohesion of sand is usually negligible.
In addition, the macroscopic mechanical behavior of loess is the result of the coupling effect of the
particle cementation strength and the friction strength. After overcoming the cementation strength
between the loess particles, the greater the friction strength between the particles, the weaker the strain
softening phenomenon [50]. The friction strength between the particles depends on the shape, size,
and the relative position of the particles after structural reorganization [51]. The difference in the
friction strength between the particles results in a different static liquefaction phenomenon after the
peak value for the loess and sand; however, both display shear shrinkage characteristics.

5.2. Correlation Analysis of the Macro and Micro Characteristics of Static Liquefaction

Through the analysis of the mechanical behavior of ICU tests and the structural evolution,
the following conclusions can be obtained. (1) The most obvious feature of the static liquefaction is
that the pore water pressure rises sharply and it remains high. (2) The stable-state points fall into the
instability region; however, the steady-state strength is not zero, which reflects that there is still a certain
residual strength, and it should belong to incomplete static liquefaction. Furthermore, the typical
characteristics of static liquefaction are all derived from the change in the loess internal structure [52,53].
As demonstrated from the comparison of the SEM images of the loess before and after the ICU tests
(Figure 8), significant changes had taken place in the internal morphology; however, a quantitative
analysis of the changes in the pore structure is still needed to accurately understand the relationship
between the changes in the macroscopic mechanical behavior and the changes in the microstructure.

To further analyze the changes in the pore structure of the loess before and after the ICU tests,
image analysis software (Image-pro Plus (IPP, Media Cybernetics Inc. Rockville, MD, USA)) was
used to process the SEM images at 500 times magnification (Figure 9). This software can effectively
distinguish the image from the background by threshold segmentation of the original SEM image,
and then it obtains the determined value by performing a statistical analysis of the corresponding
quantitative parameters. The specific operation flow is as follows. (1) Each of the original SEM images
is uniformly corrected (including improving the image brightness and contrast, using the median filter
to denoise the image to accurately define the pore boundary, using image binary processing technology
to accurately identify the pore structure, etc.). Among them, the median filter is a noise reduction
method that the middle value of the gray of the neighbor pixels replaces the gray value of the central
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pixel, and is mainly used to eliminate mutational noise points and improve image quality. The above
uniform corrections of SEM images are shown in Figure 12. (2) The quantitative parameters were
selected for the statistical analysis, among which, the quantitative parameters involved in this study
include the average pore diameter, shape ratio, roundness, and the pore contour fractal dimension.
The concepts related to the quantitative parameters are described as follows, and the conceptual graph
(Figure 12e) is shown for understanding adequately. (3) The quantitative characterization of the pore
structure is achieved through the above parameters, and the detailed results are illustrated in Figure 13.

(1) Average pore diameter (µm): it is the average length of diameters (brown lines in Figure 12)
measured at 2degree intervals and passing through the centroid of pore.

(2) Shape ratio: it is the ratio of the long axis to the short axis of ellipse equivalent to the pore, and
the long axis and short axis are showed in Figure 12. The larger the shape ratio is, the more the
pore shape resembles a long strip; the smaller the shape ratio, the more equiaxed the pore is.
When the shape ratio is 1, the pore is square-shaped or circular [54].

(3) Roundness: R = 4πA/P2, where P is the perimeter of the pore and A is the pore area. The perimeter
is the length of the red contour, and the pore area is the white area inside the red contour
(Figure 12). This index can better reflect the plane shape characteristics of the pore; the larger the
roundness value is, the closer the pore is to the circle [55].

(4) Fractal dimension: it is used to describe the fractal characteristics of the pores, and it reflects
the irregularity of the contact boundary between the pores and the solid particles in loess [56].
The calculation of the pore contour (blue contour in Figure 12) fractal dimension is based on the
“silt-island” method, proposed by Mandelbrot [57]: lgP = D/2 × lgA + C where P is the perimeter
of the pore; A is the pore area; and C is a constant. The pore contour fractal dimension can
be determined by plotting the scatter map in the lgP − lgA double logarithmic coordinate and
performing a linear regression analysis. The larger the pore contour fractal dimension, the more
complex the pore contour.

 

μ

π

Figure 12. SEM images correction process. (a) Original SEM images. (b) Improving brightness and contrast.
(c) Median filter. (d) Binary processing. (e) Quantitative parameters of different types pore structure.
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Figure 13. The quantitative parameters of the ZT and STW loess before and after the ICU tests.
(a) Average pore diameter. (b) Shape ratio. (c) Roundness. (d) Pore contour fractal dimension.

It can be observed from Figure 13 that after the ICU tests, the average pore diameter decreased and
the shape ratio was basically unchanged; however, the roundness and pore contour fractal dimension
shows two different trends: the roundness and the pore contour fractal dimension of the ZT loess
increased after the ICU tests. After the ICU tests, the roundness of the STW loess decreased, and the
pore contour fractal dimension increased or decreased. It can be inferred that a large deformation
(e.g., crushing, rotating, sliding, etc.) occurred in the aggregate spaced pore structure formed by
overlapping of the coarse particles inside the loess; this resulted in the sudden and interlocking initial
structural damage. The deformation of the pore structure essentially involves particle arrangement
and reorganization [46,58]. In addition, the differences in the shape ratio, roundness, and pore contour
fractal dimension before and after the ICU tests reflect the uncertainty rearrangement and reorganization
of the particles. However, the difference in the average pore diameter before and after the ICU tests
shows that the fine particle aggregates can enter the original pore throat in the process of rearrangement
and reorganization of the particles. This can be observed intuitively in Figure 8b–e and is also verified
by other studies [9,17,57]. At the beginning of the particles rearrangement and reorganization, the water
transport channel formed by spaced pores is blocked to a certain extent. Hence, the macroscopic
mechanical behavior is characterized by a rapid decrease in the deviatoric stress after the peak stress
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and a slow increase in the pore water pressure (rapid strain softening stage). Subsequently, the process
of particle rearrangement and reorganization tends to be stable, and the migration and agglomeration
of fine particles under the action of pore water pressure continue [26]. The synergistic effect of particle
rearrangement and reorganization and the pore water pressure causes the agglomeration blocking
of the reconstructed pore throat. Therefore, the macroscopic mechanical behavior shows that the
deviatoric stress gradually tended to shift to the steady-state stage, and the pore water pressure was
maintained at a high level (stable strain softening stage). In addition, the macroscopic mechanical
behavior of the loess before reaching the peak strength displayed a rapid increase in the deviatoric
stress and the pore water pressure (rapid strain hardening stage). It is reasonable to speculate that the
widespread spaced pore structure in loess often requires a certain compression deformation to ensure
full contact and the formation of a force chain [59]. This deformation process can also compress the
pore water transport channel.

Based on the different pore diameter ranges of the loess (macropore > 32 µm, mesopore 8–32 µm,
small pore 2–8 µm, and micropore < 2 µm) proposed by Lei [60], and the IPP was used to perform
a statistical analysis on the different pore proportion, the detailed results are presented in Figure 14.
As illustrated in Figure 14, after the ICU tests, the different pore proportion change characteristics
of the ZT and STW loess were as follows: the macropore and mesopore decreased, the small pore
increased slightly, and the micropore increased significantly. The micropores are mainly cement pores;
the small pores are mainly mosaic pores and a small amount of cement pores; the mesopores are mainly
spaced pores and some mosaic pores; and the macropores mainly includes root holes, wormholes,
and fractures [60]. This shows that during the particles reorganization, the intergranular pores are
gradually filled by fine particles such as clay aggregates; thus, resulting in an increase in the proportion
of the micropore and small pore, which is also illustrated by the decrease in the average pore diameter
and Figure 8b–e after the ICU tests. After the ICU tests, most of the above pore structure quantitative
parameters (e.g., average pore diameter, shape ratio, roundness, pore contour fractal dimension,
and the proportion of the different pores) did not show an obvious monotonic change law with the
increase in the confining pressure. The static liquefaction characteristics of the loess come from the
change in the internal structure of the loess, which again reflects that there was no clear relationship
between the confining pressure and the static liquefaction of the loess in the South Jingyang platform.
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Figure 14. Different pore proportion of the ZT and STW loess before and after the ICU tests. (a) ZT.
(b) STW.

The characteristics of the two grain phases (the gain composition was mainly silt and clay) of the
ZT and STW loess shown in Table 2 and the pore proportions shown in Figure 14 indicate that the
spaced structure formed by the accumulation and overlapping of silt constituted the entire structural
framework of the loess. As the particle size of clay was sufficiently small compared with that of silt,
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the van der Waals force and repulsive force between the clay counteracted the filling effect due to gravity
in the relatively loose silt skeleton structure. Therefore, the clay forms relatively closed agglomerates
through agglomeration [46]; however, the high content of clay rendered the clay aggregates inlaid or
resulted in the filling of the pores or contact areas in the spaced structure (Figures 8 and 9). Therefore,
the structure of the loess, which is composed of silt and is filled with clay aggregates, was similar to that
of sand, which is composed of coarse grains and is filled with fine grains such as silt [44]. According to
a hypothetical model of the interaction between fine grains and coarse grains proposed by Lade and
Yamamuro [44], when the fine grains occupy the pores between the coarse grains, they only increase the
material density and have negligible influence on the behavior of the soil. When the fine grains occupy
the location near the contact of the coarse particles, under the isotropic shear action, the fine grains
tend to slide into the pores between the coarse grains. This promotes the rearrangement of the coarse
particle structure, it increases the volume shrinkage of the soil, and it produces a greater liquefaction
potential under the undrained condition. Therefore, the structure characteristics of the loess provides
better structural conditions for the occurrence of static liquefaction phenomenon, which makes it
easy to have a structural reorganization under the action of an external load. Clay aggregates would
enter the spaced structure that is composed of overlapping silt and hinders the dissipation of pore
water [9,17,57].

6. Conclusions

According to the stress-strain curves, pore water pressure-strain curves, and the regions of the
stress path, the static liquefaction of the loess in the South Jingyang platform is incomplete. Through a
comparative analysis of the microstructure characteristics before and after the ICU tests, the evolution
process and internal mechanism of the static liquefaction were revealed. The main conclusions are
as follows:

(1) The stress-strain curves of the ZT and STW loess show the characteristics of the strong strain
softening under the different confining pressures, and there were stages of rapid strain hardening,
rapid strain softening, and stable strain softening. The pore water pressure under the different
confining pressures increased rapidly to the effective confining pressure level after a small axial
strain (εa < 3%). By having a continuous shear, it was always near this level; hence, its change
also presents phased characteristics: a sharp rise stage and a stable stage. The effective confining
pressure decreased with an increase in the pore water pressure and then it remained stable.
Afterwards, it reached a lower value (20–100 kPa) at the end of the shear.

(2) The LPI of the ZT and STW loess shows a trend of first increasing and then stabilizing with the
increase in the confining pressure. The larger LPI was, the smaller ψ was, which reflected that the
loess in different layers and buried depths had the ability of static liquefaction. The steady-state
points of the saturated loess were the instability region. However, the steady-state strength
was not zero, which indicates that there was a certain residual strength and it belonged to the
incomplete static liquefaction.

(3) After the ICU tests, the average pore diameter of the ZT and STW loess decreased, and the shape
ratio essentially remained unchanged. The pore contour fractal dimension and the roundness
show two different trends. The change in the proportion of the different pores is as follows:
the macropore and mesopore decreased, the small pore increased slightly, and the micropore
increased significantly. However, most of the above pore structure quantitative parameters did
not show a monotonous change rule with the increase in the confining pressures.

(4) When εa < 3%, the compression of the spaced pore structure in the loess resulted in full
contact and the formation of a force chain, and it compressed the pore water transport
channel. The macroscopic mechanical behavior shows rapid strain hardening. When εa = 1–3%,
the deformation of the spaced pore structure occurred significantly, that is, the process of particle
arrangement and recombination. At the beginning of this process, fine aggregates could enter the
original pore throat channel, which caused the water transport channel formed by the spaced
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pore to be blocked to a certain extent. The macroscopic mechanical behavior shows rapid strain
softening. When εa = 10–15%, the gradually stable rearrangement and reorganization of the
particles and the migration and agglomeration of finer grains under the effect of the pore water
pressure caused agglomeration blocking of the reconstructed pore throat. The macroscopic
mechanical behavior indicates stable strain softening.
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Abstract: On 8 August 2017, an Ms 7.0 earthquake struck Jiuzhaigou Valley, triggering abundant
landslides and providing a huge source of material for potential debris flows. After the earthquake
debris flows were triggered by heavy rainfall, causing traffic disruption and serious property losses.
This study aims to describe the debris flow events in Zechawa Gully, calculate the peak discharges
of the debris flows, characterize the debris flow disasters, propose mitigation countermeasures to
control these disasters and analyse the effectiveness of countermeasures that were implemented
in May 2019. The results showed the following: (1) The frequency of the debris flows in Zechawa
Gully with small- and medium-scale will increase due to the influence of the Ms 7.0 Jiuzhaigou
earthquake. (2) An accurate debris flow peak discharge can be obtained by comparing the calculated
results of four different methods. (3) The failure of a check dam in the channel had an amplification
effect on the peak discharge, resulting in a destructive debris flow event on 4 August 2016. Due to
the disaster risk posed by dam failure, both blocking and deposit stopping measures should be
adopted for debris flow mitigation. (4) Optimized engineering countermeasures with blocking and
deposit stopping measures were proposed and implemented in May 2019 based on the debris flow
disaster characteristics of Zechawa Gully, and the reconstructed engineering projects were effective in
controlling a post-earthquake debris flow disaster on 21 June 2019.

Keywords: debris flow; Zechawa Gully; mitigation countermeasures; Jiuzhaigou Valley

1. Introduction

A debris flow—a very to extremely rapid surging flow of saturated debris in a steep channel—is
a widespread hazardous phenomenon in mountainous areas [1–3]. Because of their characteristics of
high flow velocities, high impact forces and long run-out distances, debris flows pose a great threat
to the safety of people, can cause catastrophic damage to infrastructure elements (such as roads and
houses), and can even block rivers, leading to fatalities and property damage downstream [4–10].
In recent years, post-earthquake debris flow hazards have been widely investigated due to their long
activity duration, high occurrence frequency and catastrophic damage [11–14]. Numerous studies have
focused on rainfall thresholds and sediment supply to characterize the occurrence of post-earthquake
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debris flows. In the areas affected by the 1999 Chi-Chi earthquake and the 2008 Wenchuan earthquake,
the thresholds for rainfall triggering post-earthquake debris flows were analysed, and it was recognized
that the rainfall threshold in periods shortly after the earthquakes was markedly lower than that
before the earthquake and gradually recovered over time [14–20]. In fact, a devastating earthquake
generates a large sediment supply in the form of co-seismic collapses and landslides and changes the
grain size of the material and the watershed permeability characteristics, thereby indirectly reducing
the debris flow-triggering rainfall thresholds [18,21]. Because earthquakes tend to produce abundant
loose material, if sufficient rainfall occurs soon after an earthquake, a catastrophic debris flow can be
triggered. For example, influenced by the Wenchuan earthquake on 12 May 2008, a catastrophic debris
flow event was triggered on 14 August 2010 in Hongchun Gully, claiming the lives of 32 people [8].
Similarly, five debris flow events were triggered in Wenjia Gully in the three rainy seasons after the
Wenchuan earthquake, including a giant debris flow event on 13 August 2010 [9,13].

As an effective way to mitigate debris flow hazards, engineering countermeasures have attracted
widespread attention [22–33], and the mitigation of debris flows is usually carried out by stabilizing,
blocking, drainage and deposit stopping measures [11,23]. Check dams, which act to stabilize the
bed, consolidate hillslopes, decrease the slope, and retain and control the transport of sediment,
are commonly used engineering structures for controlling debris flows and can generally be divided
into solid-body dams and open dams [25,28,29]. Because solid-body dams are associated with
many drawbacks, such as the erosion of the dam foundation and changes in the hillslope-to-channel
connectivity [26,27], open dams are more efficient at controlling debris flows [28,29]. After the
Wenchuan earthquake, to protect people’s lives and property and ensure smooth traffic, a large
number of debris flow engineering structures, especially check dams, were built. However, due to the
insufficient realization on the characteristics and formation mechanisms of post-earthquake debris
flows, many newly-built engineering structures have failed to mitigate debris flows and have instead
caused catastrophic damage. For example, due to the failure of check dams in Sanyanyu Valley on
8 August 2010, more than 200 buildings were damaged, and approximately 1700 people died [34].
Similarly, during the “8.13” Wenjiagou debris flow event, engineering structures failed, causing seven
deaths and the burial of more than 497 houses [9,35]. Therefore, further research should be carried out
to propose appropriate mitigation countermeasures for post-earthquake debris flows.

Recently, an Ms 7.0 earthquake struck Jiuzhaigou Valley on 8 August 2017, triggering abundant
landslides and providing a vast source of material for debris flows. Due to the influence of heavy
rainfall, post-earthquake debris flows were triggered in Jiuzhaigou Valley and heavily damaged
infrastructure elements, such as pedestrian walkways and scenic roads, causing traffic disruption
and serious property losses [36–38]. It is necessary to evaluate the characteristics of post-earthquake
debris flows in Jiuzhaigou Valley, and to propose appropriate mitigation countermeasures to avoid
catastrophic events, but only a few studies related to post-earthquake debris flow mitigation in this
area have been published to date. In this paper, Zechawa Gully is taken as a case study to characterize
a debris flow disaster and then discuss mitigation countermeasures. To improve the accuracy of
parameter calculation, four different methods were used to calculate the debris flow peak discharge and
quantify the debris flow magnitude. According to the survey and analysis, the destructive debris flow
event in 2016 was caused by a dam breach. After the Ms 7.0 Jiuzhaigou earthquake on 8 August 2017,
abundant loose solid material was available for debris flow activity, and at least one post-earthquake
debris flow occurred in September 2017. The risk of dam breaches led to the implementation of
engineering countermeasures with blocking and deposit stopping measures. Such works were finished
on May 2019. On 21 June 2019, a post-earthquake debris flow was triggered by heavy rainfall, and the
engineering countermeasures played a useful role in controlling the debris flow disaster even though the
debris flow magnitude was greater than the design standard of the reconstruction engineering projects.
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2. Background

2.1. Formation Conditions of the Zechawa Gully Debris Flow

Zechawa Gully, with gully mouth coordinates of 103◦55′22.8” E, 33◦08′34.8” N, is located in
Jiuzhaigou Valley, Sichuan Province, China, and lies approximately 13.9 km from a scenic entrance
(Figure 1a,b). The outlet of the Zechawa Gully debris flow coincides with the location of the only scenic
road from Nuorilang Waterfall to Long Lake (Figure 1c). The study area is the transition zone from
the Qinghai-Tibet Plateau to the Sichuan Basin and belongs to the peripheral mountainous area of
the Sichuan Basin. The watershed covers an area of 1.96 km2 and features five tributaries; the main
channel is 2.57 km long and has a 61.1% longitudinal slope. The elevation difference of Zechawa Gully
is approximately 1601 m, with a maximum elevation of 4040 m in the southwest of the watershed
and a minimum elevation of 2439 m at the gully mouth near the scenic road. The topography of
Zechawa Gully is steep, with 86.9% of the total area of the watershed having a slope exceeding 25◦.
The flow path of debris flow along Zechawa Gully can be divided into a formation zone, transport
zone and deposition zone (Table 1). The formation zone is located in the upper reaches of Zechawa
Gully (elevation above 3620 m), with an area of 0.26 km2 and a channel length of 470 m. The transport
zone is situated in the middle reaches, with the elevations ranging from 3620 m to 2600 m. The area
of the transport zone is approximately 1.47 km2, and the channel length is approximately 1530 m.
The deposition zone, with an area of 0.23 km2 and a channel length of approximately 570 m, is located
in the area below an elevation of 2600 m.

Figure 1. Location of Zechawa Gully and its full view. (a) Location of Jiuzhaigou Valley in Sichuan
Province; (b) Location of Zechawa Gully in Jiuzhaigou Valley; (c) The full view of Zechawa Gully.
The flow direction of the debris flow is perpendicular to the pedestrian walkways and the scenic road
(from Nuorilang Waterfall to Long Lake).
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Table 1. Zone division of Zechawa Gully.

Zone Division Formation Zone Transport Zone Deposition Zone

Elevation (m) 4040–3620 3620–2600 2600–2439
Average gully gradient (‰) 708 415 244

Gully length (m) 470 1530 570

Gully characteristics

Steep slope (>50◦), bare
bedrock with severe frost

weathering, low vegetation
coverage and abundant

collapsed regions

Steep slopes, a large
number of landslides

and high abundance of
debris flow sediments on

the gully bed

Gentle topography
with no collapses or

landslides

Compared with the characteristics of the formation zone and transport zone, the topography
of the deposition zone is gentle, with no collapses and landslides, and debris flow material tends to
be deposited in this area, forming a large debris flow fan. Zechawa Gully is generally a “v”-shaped
channel with the characteristics of a narrow gully bed, steep lateral slopes and a high longitudinal
slope, providing favourable topographic conditions for the formation of debris flows.

The study area is located in the Songpan-Ganzi Block, and the outcropping strata are mainly
Quaternary and Mesozoic (Figure 2a). The lithology consists mainly of limestone and slate with a small
amount of sandstone, which were intensely deformed by folding and thrusting during the Late Triassic
and Early Jurassic [39,40]. In addition, since the Quaternary, the geological tectonic movement in this
area has been intense due to the influence of the Tazang fault (the eastern part of the East Kunlun Fault
Zone), Minjiang fault and Huya fault [41–45] (Figure 2b). Historically, seismicity has occurred on the
Minjiang fault and Huya fault, including the 1960 Zhangla Ms 6.7 earthquake, the 1973 Huanglong Ms
6.5 earthquake, and the 1976 Songpan-Pingwu earthquake swarm (Ms = 7.2, 6.7, and 7.2). A recent
earthquake was the Jiuzhaigou 7.0 earthquake, which occurred on 8 August 2017 on the north-western
extension of the Huya fault; the rupture was dominated by left-lateral strike-slip motion [41,46–48].
On the whole, seismicity is frequent in the study area due to the geological conditions of the region,
resulting in the fracture of the rock mass in the study area and triggering abundant collapses and
landslides, which provide a rich source of loose material for incorporation into debris flows.

Figure 2. Study area maps. (a) Geologic map of the study area; (b) Topographic map of the Tazang fault
(TZF), the Minjiang fault (MJF), the Huya fault (HYF) and the blind extension of the HYF (modified
from Zhao et al. [41]).
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The study area features a plateau cold temperate-subarctic monsoon climate. Due to the blocking
effect of the Longmen Mountains to the southeast of the study area, most of the warm and humid air
currents from the Pacific Ocean stay to the east of the Longmen Mountains. Therefore, the rainfall
in Jiuzhaigou Valley west of the Longmen Mountains is relatively low, and the annual average
precipitation is only 761.8 mm. The impact of cold air and high-pressure cold air currents from
Mongolia in the winter is greatly weakened by the blocking of the Qinling Mountains to the north of
the study area, causing this region to exhibit a mild climate, moderate precipitation and an annual
average temperature of 7.3 ◦C [49]. There are more than 150 rainfall days annually in the study area,
and the rainfall is concentrated mainly in May to September in the form of rainstorms. According
to the rainfall data from the Jiuzhaigou Administration Bureau, the maximum rainfall over 24 h in
Jiuzhaigou Valley is greater than 50 mm, and the precipitation increases with increasing elevation.
The lowest average annual precipitation, at 696.6 mm, is found at the outlet of Jiuzhaigou Valley at
an elevation of 1996 m. The highest annual average precipitation, at 957.5 mm, is found at Long Lake
at an elevation of 3100 m. The snowpack period is from October to April, and the largest recorded
snowpack depth exceeded 150 mm. The rainfall conditions of the study area are characterized by
concentrated heavy rainfall, which is favourable for the formation of debris flows.

2.2. Description of the Debris Flow Events in Zechawa Gully

Due to the steep topography, adequate supply of loose material and intense precipitation in the
study area, debris flows are active in Zechawa Gully. The earliest recorded debris flow event occurred
in August 2006 and buried pedestrian walkways. In July 2008, another debris flow occurred again and
blocked the scenic road. To prevent debris flows from causing further damage to the downstream
pedestrian walkways and the only scenic road and to ensure the safety of residents and tourists in
scenic areas, engineering countermeasures were taken in 2009. These countermeasures were designed
to resist a debris flow with a 20-year return period. One stone masonry check dam 34.7 m long and 8 m
high was constructed at the end of the transport zone of Zechawa Gully in 2009 (Figure 1c), and one
auxiliary dam was constructed close to the stone masonry check dam. The stone masonry check dam
was designed to be able to trap a volume of 2.24 × 104 m3 of debris flow material [50].

On 4 August 2016, another destructive debris flow was triggered in Zechawa Gully. The rainfall
data from the Zechawa precipitation station (103◦55′04.8” E, 33◦09′18.0” N, Figure 1b) showed that the
preceeding rainfall that accumulated from 26 July 2016 to 3 August 2016 was only 8.8 mm, and the
intraday rainfall was 6.7 mm on 4 August 2016. During this debris flow event, large amounts of
sediment were trapped in front of the stone masonry check dam, resulting in a deposited thickness
of 7 m and width of 30 m, and the length of the debris flow deposit behind the check dam was
44 m according to field measurements (Figure 3a). As sediments deposited, a breach formed in the
check dam. Ultimately, the average width of the breach was 20.5 m, and the residual height of the
check dam was 6 m (Figure 3b). The large kinetic energy of strong flow waves formed by the breach
of check dam caused a high erosion of the downstream gully bed. During the movement of the
debris flow material, the trees on both sides of the channel were impacted, leaving noticeable mud
marks (Figure 3c). According to the field investigation, the total volume of the debris flow material
transported downstream the failed check dam was approximately 1.39 × 104 m3. Some of the material
was deposited on the debris flow fan with a deposit area of 0.77 × 104 m2, a thickness of 0.8–1.5 m and
a volume of 0.89 × 104 m3. Additional material with a volume of 0.5 × 104 m3 was transported to the
scenic road. During this debris flow event, the pedestrian walkways were buried again, and the only
scenic road from Nuorilang Waterfall to Long Lake was blocked, causing traffic disruption and serious
property loss [37,51].
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Figure 3. Images of Zechawa Gully debris flow in different periods: (a)–(c) 6 August 2016, (d)–(f) 16 August 2017, (g)–(i) 23 October 2017; (j) large boulder transported
by the debris flow that occurred in September 2017.
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On 8 August 2017, the Ms 7.0 Jiuzhaigou earthquake struck the study area, and abundant
landslides were triggered (Figure 3d), providing a vast source of material for debris flows. However,
this earthquake had little influence on the breach shape of the check dam (Figure 3e) or the downstream
topography of the check dam (Figure 3f). Subsequently, heavy rainfall occurred in the study area in
September 2017. The rainfall data from Zechawa precipitation station showed that the total rainfall
in September 2017 was 243.2 mm, accounting for approximately 32% of the total annual rainfall
(Figure 4). Affected by the heavy rainfall in September 2017, a debris flow occurred, and the topography
changed significantly. At the upstream check dam, the erosion caused by the debris flow was intense.
An erosional trench approximately 1.0 m in depth was formed upstream of the dam (Figure 3g), and the
breach in the dam was detectably deepened due to the erosion induced by the debris flow (Figure 3h).
Due to the very high transport capacity of the debris flow, a large boulder with a long-axis length
of 1.3 m, an intermediate-axis length of 1.1 m and a short-axis length of 0.7 m was transported to
a point 20 m downstream of the check dam, and this boulder was composed of masonry (Figure 3j).
Downstream of the check dam, the debris flow material was deposited in the channel. Additionally,
trees on both sides of the channel were broken due to the very large destructive power of the debris
flow, and new mud marks were left on the trees (Figure 3i). Fortunately, pedestrian walkways and
scenic roads were not destroyed again. To reduce the disaster risk of the post-earthquake debris flow
in Zechawa Gully, one concrete check dam, one concrete auxiliary dam and one concrete retaining wall
were constructed in May 2019.

Figure 4. Rainfall distribution in September 2017 recorded by the Zechawa precipitation station.

A rainfall event started at 20:00 on 20 June 2019 and ended at approximately 08:00 on 21 June
2019 in Jiuzhaigou Valley. According to reports from patrol personnel, a post-earthquake debris flow
was triggered by this storm at approximately 03:00 on 21 June 2019, and the rainfall data from the
Zechawa precipitation station showed that the accumulated rainfall from 21:00 on 20 June 2019 to 02:00
on 21 June 2019 was 18.1 mm. According to the field investigation, the total volume of debris flow
material was approximately 2.3 × 104 m3. The debris flow material volume trapped by the concrete
check dam was approximately 0.48 × 104 m3 (Figure 5). Some of the other debris flow material was
trapped behind the retaining wall with a deposit area of 0.3 × 104 m2, a maximum deposit thickness of
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4 m at the middle of the retaining wall and a deposit volume of 0.66 × 104 m3 (Figure 6). The middle of
the retaining wall was partially damaged, resulting in a breach with a width of 8.5 m, due to the high
impact force of the debris flow. This breach allowed a portion of the debris flow material with a volume
of 1.16 × 104 m3 to be transported to the debris flow fan and scenic road (Figure 7). The material
volume deposited on the fan was approximately 0.93 × 104 m3 with a deposit area of 0.62 × 104 m2

and an average deposit thickness of 1.5 m. The volume of the material blocking the scenic road was
approximately 0.23 × 104 m3, with a deposit length of 180 m and an average deposit thickness of 1.8 m.

Figure 5. Overview of the reconstructed check dams in Zechawa Gully (taken on 25 June 2019).

Figure 6. Overview of the reconstructed retaining wall in Zechawa Gully (taken on 23 June 2019).
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Figure 7. The debris flow that occurred on 21 June 2019 buried pedestrian walkways and blocked the
scenic road (taken on 22 June 2019).

3. Calculation of the Debris Flow Peak Discharge

In the mountainous areas of China, due to the lack of observation data, the rain-flood method and
cross-section survey method have been widely used to calculate the debris flow peak discharge [52].
Under the assumption that the occurrence frequencies of rainstorms, floods and debris flows are the
same, the rain-flood method is widely employed to calculate the debris flow peak discharge under
different occurrence frequencies [53,54]. The cross-section survey method calculates the peak discharge
of a debris flow that has occurred based on the mud mark and cross-sectional morphology of the
channel [7,55].

For the debris flow event that occurred on 4 August 2016, two obvious typical cross-sections
downstream of the stone masonry check dam are available for the calculation of the debris flow
discharge through the cross-section survey method. Moreover, the pedestrian walkways were buried,
and the scenic roads were blocked, and the stone masonry check dam in the channel was broken
during this debris flow event. According to previous research, the amplification effect caused by dam
breakage can contribute to debris flow damage in downstream towns [9,56]. Therefore, to characterize
the relationship between dam failure and the occurrence of the debris flow on 4 August 2016,
the dam-breaking peak discharges were estimated through the dam-breaking calculation method.

During the debris flow event that occurred in September 2017, the cross-section survey method
was unavailable due to the lack of an available cross-section. A coarse boulder with dimensions of
1.3 m, 1.1 m and 0.7 m was transported 20 m downstream of the check dam by the debris flow in
September 2017. According to previous studies, the largest transported particle reflects the maximum
kinetic energy of flooding in mountain streams, and the maximum particle size parameters are widely
used to reconstruct the velocity, depth and peak discharge of floods [57]. Thus, in this study, based on
the assumption that the rainstorm, flood and debris flow frequencies were the same, the maximum
particle size parameters were used to calculate the flood peak discharge, and the peak discharge of the
debris flow in September 2017 was then estimated by using the methodology proposed by Lanzoni [58]
according to the calculated flood peak discharge.
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3.1. Rain-Flood Method

The debris flow peak discharges under different occurrence frequencies are computed by Ref. [54]:

Qd f = Dd f

(

1 +ψd f

)

Q f (1)

ψd f = (γd f − γw)/(γs − γd f ) (2)

where Ddf is the blockage coefficient, whose value varies with the degree of blockage, namely,
very serious blockage (Ddf = 3.0–2.6), serious blockage (Ddf = 2.5–2.0), normal blockage (Ddf = 1.9–1.5)
and minor blockage (Ddf = 1.4–1.1); ψdf is the amplification coefficient of the debris flow peak discharge;
γdf is the density of the debris flow (t/m3); γw is the density of water (t/m3), usually taken as 1.00 t/m3;
γs is the density of the solid material (t/m3), usually taken as 2.65 t/m3; and Qf is the flood peak
discharge under different return periods (m3/s), which is calculated by:

Q f = 0.278ϕ
S

tn
F (3)

where ϕ is the runoff coefficient of the flood peak, which is related to the convergence of runoff; S is the
rainfall intensity (mm); t is the runoff confluence time of the rainstorm (h); n is the attenuation index of
the rainstorm; and F is the watershed area (m2). Here, ϕ, S, t and n are calculated by the following
empirical equations:

ϕ = 1− 1.1
η

S
t0

n (4)

S = H1K1 (5)

t = t0ϕ
− 1

4−n (6)

n = 1 + 1.285(lg
H1K1

H6K6
) (7)

where H1 and H6 are the 1-hour average rainfall and 6-hour average rainfall, respectively (mm),
which are obtained from “The Rainstorm and Flood Calculation Manual of Medium and Small Basins in
Sichuan Province” (published in 2010, with rainfall data from 1978 to 2004); K1 and K6 are the modulus
coefficients corresponding to H1 and H6 under different return periods, respectively, which can be
obtained from a Pearson type III distribution table; η is the runoff yield parameter, which reflects the
average infiltration intensity (mm/h); t0 is the runoff confluence time of the rainstorm when ϕ equals 1,
which can be calculated by:

η = 3.6KPF−0.19 (8)

t0 = [
0.383

mS1/4/θ
]

4
4−n

(9)

where Kp is the modulus coefficient when the variation coefficient is equal to 0.23, which is obtained
from the Pearson type III distribution table; m is the runoff confluence parameter; and θ is the watershed
characteristic parameter, which is obtained from:

m = 0.221θ0.204 (10)

θ =
L

J1/3F1/4
(11)

where L is the main channel length and J is the longitudinal slope of the channel.

3.2. Cross-Section Survey Method

Because natural channels have irregular channel bottoms, information on the channel roughness
is not easy to obtain and measure. Therefore, an empirical formulation (Manning formula) was
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developed for turbulent flows in rough channels. It can be applied to calculate the discharge for fully
rough turbulent flows and water flows. Although it is an empirical relationship, it has been found
to be reasonably reliable [59,60]. Thus, the Manning formula was employed to obtain debris flow
peak discharge when computing by the cross-section survey method. Based on the mud marks and
cross-section morphology of the channel, the debris flow peak discharge Qdf (m3/s) can be obtained by
Ref. [54]:

Qd f = Ad f Vd f (12)

where Adf is the area of the cross-section (m2), and Vdf is the average velocity of the debris flow (m/s),
which can be calculated by:

Vd f =
1

nd f
Rd f

2/3Id f
1/2 (13)

where ndf is the roughness coefficient of the debris flow gully, Rdf is the hydraulic radius of the debris
flow (m), and Idf is the longitudinal slope gradient of the channel bed (m/m).

3.3. Dam-Breaking Calculation Method

Considering the scarcity of observational data in this study, three commonly used semi-empirical
methods are employed to obtain the dam-breaking peak discharge during the debris flow event on
4 August 2016. The semi-empirical method of the Ministry of Water Resources of the People’s Republic
of China (MWR) [61] estimates the debris flow peak discharge Qdf through:

Qd f =
8

27
√

g[B0h0/Bm]
0.28Bm(h0 − hd)

1.22 (14)

Qd f =
8

27
√

g(
B0

Bm
)

0.4
(

h0 + 10hd

h0
)

0.3
Bm(h0 − hd)

1.5 (15)

where g is acceleration due to gravity (9.8 m2/s); B0 is the debris flow width before breakage (m); h0 is
the debris flow depth before breakage (m); Bm is the breach width (m), and hd is the residual height of
the dam.

The semi-empirical method of Dai and Wang [62] calculates the debris flow peak discharge Qdf by:

Qd f = 0.27
√

g(Lb/B0)
1/10(B0/Bm)

1/3Bm(h0 − κhd)
3/2 (16)

where Lb is the deposit length of the debris flow material behind the check dam (m); κ is the influence
factor that accounts for residual height, which is obtained by:

κ =















1.4(Bmhd/B0h0)
1/3, Bmhd/B0h0 < 0.3

0.92, Bmhd/B0h0 > 0.3
(17)

3.4. Maximum Boulder Size Method

Based on the particle size parameters of the maximum-sized boulder, the debris flow peak
discharge can be obtained through Ref. [58]:

Qd f =
1

1−C
Q f (18)

C =
ρ f tan β

(ρs − ρ f )(tanφd f − tan β)
(19)

where C is the transported sediment concentration; ρf is the fluid density (kg/m3); ρs is the sediment
density; β is the bed slope angle (degrees), and the value of β is usually between 15◦ to 25◦ when using
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Equation (19) [63]; ϕdf is the quasi-static friction angle (degrees); and Qf is the flood peak discharge
(m3/s), which was estimated by the methods of Schoklitsch, Helley, Williams and Clarke.

3.4.1. Method of Schoklitsch

This method estimates the flood peak discharge Qf (m3/s) by computing the unit width flux by
Ref. [64,65]:

q f =
0.0194dI

(tan β)4/3
(20)

Q f = q f ∗ B f (21)

where qf is the unit width flux; dI is the diameter of the boulder intermediate axis (m), and Bf is the
channel width (m).

3.4.2. Method of Helley

This method computes the “bed velocity” for incipient motion (overturning) by equating the
turning moments for fluid, drag, and lift with the resisting moment of the submerged particle weight.
The critical velocity Vf (bed velocity) can be calculated by Ref. [66]:

V f = 3.276[
(ρb/1000− 1)dL(ds + dI)

2MRL

(C′DdSdLMRD + 0.178dIdLMRL)
]

0.5

(22)

MRL = dIcosα/4 +

√

3
16

dS
2 sinα (23)

MRD = 0.1dS cosα+

√

3
16

Sd
2 cosα− dI sinα/4 (24)

where ρb is the maximum boulder density (kg/m3); dL is the diameter of the boulder long axis (m); dS

is the diameter of the boulder short axis (m); C’D is the drag coefficient; MRD and MRL are the drag
turning arm and lift turning arm, respectively; and α is the original imbrication angle of the deposited
boulder. During the calculation process, Equation (22) uses English units of feet, and the units of
critical velocity calculated by Equation (22) need to be converted into metres per second.

The critical velocity Vf calculated by Equation (22) needs to be converted to the average velocity
Vavg [57]:

Vavg = 1.2V f (25)

The flood peak discharge Qf can then be calculated as the product of the average velocity,
mean depth and channel width by:

Q f = Vavgh f B f (26)

where hf is the mean flood depth (m). Given that the channel width was much larger than the mean
depth of flooding, the hydraulic radius obtained by the Manning formula can estimate the average
depth; thus, hf was obtained by the Manning formula:

h f = (
Vavgn f
√

tan β
)

1.5

(27)

where nf is the roughness coefficient of a mountain stream.

3.4.3. Method of Williams

This approach calculates either the bed shear stress or the stream power needed to entrain the
boulder. First, the intermediate axis diameter of the largest boulder dI is obtained through field
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investigation, and then the empirical relationship between the unit stream power w, bed shear stress τ,
average velocity Vavg and dI is established by Ref. [67]:

w = 0.079dI
1.3 (28)

τ = 0.17dI (29)

Vavg = 0.065dI
0.5 (30)

Vavg, hf and Qf based on the shear stress can be determined by Equations (30)–(32), respectively:

h f =
τ

ρbg tan β
(31)

Q f =
w ∗ B f

ρbg tan β
(32)

Vavg and hf based on the stream power can be obtained by:

Vavg =
Q fρbg tan β

B fτ
(33)

h f =
w

ρbg tan β ∗ 0.065
√

dI

(34)

The value of Qf in Equation (33) is obtained by Equation (32); then, Qf based on the stream
power can be obtained by inserting the calculated values of Vavg and hf from Equations (33) and (34),
respectively, into Equation (26).

3.4.4. Method of Clarke

This method assumes that the critical force (i.e., the minimum force needed to move the boulder)
is equal to the resisting force and that the critical force is equal to the sum of the lift force and drag
force. The critical velocity Vf (bed velocity) required to carry the maximum-sized boulder is solved by
the following formula [68]:

V f =
{

2[(FD/CD)/ρ f ]/AB

}0.5
(35)

where CD is the lift coefficient of the boulder, which is dependent on the shape of the largest boulder,
with CD = 1.18 for a cubic boulder and 0.20 for a spherical boulder; AB is the cross-sectional area of the
largest boulder; and FD is the drag force, which is obtained by:

FD = CDFC/(CL + CD) (36)

where CL is the lift drag coefficient, which is dependent on the shape of the largest boulder,
with CL = 0.178 for a cubic boulder and 0.20 for a spherical boulder; and FC is the critical force,
which is calculated by:

FC = FR (37)

FR = MB[(ρb − ρ f )/ρb]g(µcosβ− sinβ) (38)

where µ is the shape coefficient, which is dependent on the shape of the largest boulder, with µ = 0.675
for a cubic boulder and 0.225 for a spherical boulder; and MB is the boulder mass (kg). MB can be
obtained for a cubic boulder and a spherical boulder by Equations (39) and (40), respectively:

MB = ρbD3 (39)

MB = ρb[(π/6)D3] (40)
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where D is the nominal diameter of the boulder (m), which is solved by:

D = (dLdIdS)
0.33 (41)

The flood peak discharge Qf can be obtained by inserting the calculated value of Vf into
Equations (25)–(27).

4. Results

4.1. The Calculated Debris Flow Peak Discharge in 2016

With the data collected during the field investigation, the peak discharge of the debris flow that
occurred on 4 August 2016 was estimated by the cross-section survey method and dam-breaking
calculation method. Table 2 shows the calculation results for the debris flow peak discharge.
The permissible debris flow peak discharges at the two typical mud mark cross-sections estimated by
the cross-section survey method were 33.29 m3/s and 36.69 m3/s. The values of Adf, Rdf and Idf were
obtained through field investigation. The roughness coefficient of the debris flow gully (ndf) is related
to the properties of the debris flow fluid and channel characteristics, and the value in this case is 0.1
according to a field survey [54].

Table 2. Calculation results of the debris flow peak discharge by using the cross-section survey method
and dam-breaking calculation method.

Methods Parameters

cross-section survey method
Adf (m2) Rdf (m) Idf Vdf (m/s) ndf Qdf (m3/s)

6.45 0.75 0.391 5.16 0.1 33.29
9.58 0.85 0.182 3.83 0.1 36.69

B0 (m) h0 (m) Bm (m) hd (m) Lb (m) Qdf (m3/s)
dam-breaking

calculation
method

Equation (14) 30.0 7.0 20.5 6.0 / 36.5
Equation (15) 30.0 7.0 20.5 6.0 / 43.6
Equation (16) 30.0 7.0 20.5 6.0 44.0 36.8

According to the calculation results in Table 2, the permissible maximum debris flow peak
discharges resulting from the breach in the check dam varied from 36.5 m3/s to 43.6 m3/s. The calculation
result by Equation (14) was the lowest (36.5 m3/s), and the calculation result by Equation (15) was the
highest (43.6 m3/s). The values of B0, h0, Bm, hd, and Lb were obtained by field investigation. Since the
data inputs used in Equations (14)–(16) were the same, the differences among the results arose from
the different combinations of data used for a given technique. The calculated values are reasonable
and are similar to the debris flow peak discharge estimated by the cross-section survey method.

4.2. The Calculated Debris Flow Peak Discharge in 2017

With data collected during the field investigation, the peak discharge of the debris flow that
occurred in September 2017 was calculated by the maximum boulder size method. Table 3 shows the
calculation results. The calculated values of Qf vary from 0.58 m3/s to 6.05 m3/s, and the calculated
values of Qdf range from 1.76 m3/s and 18.33 m3/s. The minimum permissible debris flow peak
discharge of 1.76 m3/s is estimated through the method of Schoklitsch, and the maximum discharge of
18.33 m3/s is estimated through the method of Helley. ρf is usually taken as 1150 kg/m3 considering
the turbidity of the flood waters [68]. ρs is usually taken as 2650 kg/m3. Owing to the absence of
information, a value of 36.5◦ was given for ϕdf based on previous studies [58]. The values of dL, dI, dS,
ρb, Bf, β, and α were obtained through field investigation. The transported sediment concentration
(C) is 0.67 by inserting the values of ρf, ρs, β and ϕdf into Equation (19). The roughness coefficient
of a mountain stream (nf) is related to the channel characteristics, and a value of 0.05 was used here
according to a field survey [69].
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Table 3. Summary of the calculation results based on the maximum boulder size methods.

Basic parameters

dL (m) 1.3 Bf (m) 6.5 ρs (kg/m3) 2650
dI (m) 1.1 β (degrees) 19 ϕdf (degrees) 36.5
dS (m) 0.7 α (degrees) 6 C 0.67

ρb (kg/m3) 2250 nf 0.05

Parameters

Method Vavg(m/s) hf(m) Qf(m
3/s) Qdf(m

3/s)

Schoklitsch [64] / / 0.58 1.76
Helley [66] 4.26 0.22 6.05 18.33

Williams [67]
Shear stress 2.16 0.03 0.61 1.85

Stream power 3.80 0.04 1.07 3.24
Clarke [68] 2.49 0.10 1.59 4.82

4.3. The Calculated Debris Flow Peak Discharge under Different Occurrence Frequencies

According to the magnitude of the debris flow, hazard degree and importance of the protection
object, mitigation countermeasures in Zechawa Gully were required to resist a debris flow with
a return period of 20–50 years [70]. Thus, the debris flow peak discharges under 10-, 20- and 50-year
return periods were computed, and the calculated results of related parameters are listed in Table 4.
The possible debris flow peak discharges under 10-year, 20-year and 50-year return periods are
22.27 m3/s, 32.73 m3/s and 48.27 m3/s respectively. In the calculation sections, the values of F, L and J

are different, resulting in different debris flow peak discharges estimated by the rain-flood method.

Table 4. Calculation results of the debris flow peak discharge by using the rain-flood method.

Calculation Content Parameters Unit
Return Periods

10-Year 20-Year 50-Year

The flood peak discharge

θ // 2.14 2.14 2.14
m / 0.26 0.26 0.26
H1 mm 15 15 15
H6 mm 25 25 25
K1 / 1.72 2.10 2.58
K6 / 1.66 1.99 2.42
KP / 1.31 1.42 1.56
S mm 25.8 31.5 38.7
n / 0.73 0.74 0.8
η mm/h 4.26 4.62 5.07
t0 h 1.52 1.43 1.34
ϕ / 0.75 0.79 0.82
t h 1.66 1.54 1.43

Qf m3/s 6.37 8.58 11.55

The debris flow peak discharge

γdf t/m3 1.8 1.85 1.9
Ddf / 1.8 1.85 1.9
Qdf m3/s 22.27 32.73 48.27
Wdf m3 0.88 × 104 1.30 × 104 1.91 × 104

To better compare with the debris flow peak discharges calculated by the cross-section survey
method, dam-breaking calculation method and maximum boulder size method, the calculation section
located at the check dam site was selected to compute the debris flow peak discharges through the
rain-flood method. The values of F, L and J were obtained from a topographic map with a scale of
1:5000. According to the results of the querying specification table and spot investigation, the average
density of the debris flow was 1.8 t/m3. Under given conditions, the debris flow density is positively
related to the debris flow peak discharge [54,71], thus the densities of the debris flows γdf under the
three return periods (10-year, 20-year and 50-year) were 1.8 t/m3, 1.85 t/m3 and 1.9 t/m3, respectively.
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According to the site investigation, the blockage degree of the channel was normal, and the values of
Ddf were considered to be 1.8–1.9.

5. Discussion

5.1. The Applicability and Limitations of the Calculated Debris Flow Peak Discharge

The debris flow peak discharge is an important parameter for debris flow disaster prevention
and risk assessment. As debris flows occur in remote mountain areas, it is difficult to measure the
peak discharge and other parameters of debris flow under the conditions of severe weather and traffic
delays. At present, the debris flow peak discharge is usually calculated by the rain-flood method and
cross-section survey method based on certain assumptions, resulting in calculation results with low
credibility. In this study, under certain assumptions, the peak discharge of debris flow was estimated
by the rain-flood method, the cross-section survey method, the dam-breaking calculation method and
the maximum boulder size method, and comparative analysis of the calculation results was conducted
to obtain an accurate peak discharge. The limitations of the calculation results are explained as follows:

(1) Due to the complexity of debris flows and the measurement limitation, the values of relevant
parameters are usually obtained by field surveys and querying the specifications. In this study,
the roughness coefficient of the debris flow gully (ndf), the roughness coefficient of a mountain
stream (nf), the density of debris flow (γdf) and the blockage coefficient (Ddf) were obtained
through field investigations and querying specifications.

(2) Considering the complexity of the debris flow and the operability of the calculation method,
it is necessary to make certain assumptions and simplifications to obtain the peak discharge of
the debris flow in the calculation process. The rain-flood method assumes that the occurrence
frequencies of rainstorms, floods and debris flows are the same and that the calculated flood peak
discharge is completely converted into the peak discharge of the debris flow [54]. Under such
assumptions, important parameters such as debris flow peak discharge and total volume of debris
flow material under different occurrence frequencies can be obtained, which provide important
references for the design of engineering countermeasures. In addition, the breach in the check
dam was idealized as a trapezoidal shape, and the average width of the breach was taken as the
calculated value of Bm in the dam-breaking calculation.

(3) Four methods were used to estimate the peak discharge of the debris flow based on the maximum
particle size parameters (Table 3), and the related issues in the calculation are as follows: Both
Clarke and Helley solved for the critical velocity required to move the largest boulder, obtained the
flow depth through the Manning formula, and finally calculated the peak discharge. Differences
in the critical velocity result in differences in the flow depth and peak discharge. The method
of Clarke idealizes the largest boulder as either cubic or spherical for the shape-dependent
parameters, and the calculated velocities are averaged to provide the critical velocity. By setting
the critical force FC = 0, the downward gravitational component is balanced by the gravity-induced
friction, and the extreme use condition of this method can be obtained. The limit bed slope angle
(β) is equal to 34.1◦ for a cubic boulder and 12.7◦ for a spherical boulder when using the Clarke
method; therefore, a spherical boulder is easier to move than the cubic boulder under the same
conditions. According to the field investigation, β is equal to 19◦, which exceeds the limit bed
slope angle for a spherical boulder. Therefore, the selected boulder in this study was considered
a cubic boulder, resulting in a calculated critical velocity that is higher than the actual value.
Compared with the method of Clarke, the method of Helley neglects the bed slope, ignoring the
downstream gravitational component. Generally, the bed slope of a stream is small; even for
a stream with a channel longitudinal slope of 10%, the downstream gravitational component
is negligibly small compared to the fluid drag and lift, so this component can be ignored [57].
However, the bed slope is 19◦ in this study, and neglecting the gravitational component results in
a calculated critical velocity that is much higher than the actual value, ultimately resulting in
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a higher calculated peak discharge. The methods of Schoklitsch and Williams estimate the peak
discharge by establishing an empirical correlation based on boulder size parameters without
considering the influence of the boulder shape on the calculation results. In addition, the values
of w, τ and Vavg in the method of Williams represent the lowest values, and the actual values are
higher than the calculated value.

(4) In summary, certain assumptions and simplifications were made in the calculation process, causing
the peak discharge of the debris flow calculated by a single method to exhibit low accuracy.
Thus, multiple methods should be used to comprehensively obtain the peak discharge, further
quantifying the scale of debris flow disasters. It is worth noting that the method for calculating the
debris flow peak discharge proposed in this study is mainly based on the specifications in China,
especially the selection of some parameters. When calculating the debris flow peak discharge in
other countries, local specifications should be considered.

5.2. The Scales of the Debris Flow Disasters in 2016 and 2017

To identify the disaster characteristics and the occurrences of debris flow events, the peak
discharges of the debris flows occurring on 4 August 2016 and in September 2017 were estimated
based on field investigations, and the calculation results were compared with the debris flow peak
discharges under different occurrence frequencies to quantify the scale of the debris flow disasters.
The related explanations are as follows:

(1) The debris flow peak flow obtained by the cross-section survey method and dam-breaking
calculation method are essentially the same and are generally equivalent to the peak discharge of
the debris flow with a 20-year return period (Tables 2 and 4). In addition, the total volume of the
debris flow material Wdf is estimated by Ref. [54]:

Wd f = 0.264Qd f Td f (42)

where Tdf is the duration time of the debris flow (s), and its value is approximately 1500 s based
on the reports of patrol personnel. The value of Qdf is the average calculation result through the
cross-section survey method and dam-breaking calculation method, and its value is 37.38 m3/s.
The total volume of debris flow material from Equation (42) is 1.48 × 104 m3, which is consistent
with the value of 1.39 × 104 m3 based on the field investigation. Thus, it is reasonable that the
scale of the debris flow on 4 August 2016 is equivalent to that of a debris flow with a 20-year
return period. Moreover, based on the study above, the debris flow peak discharges calculated by
Equations (14)–(16) were similar to the values obtained by the cross-section survey method. Thus,
we conclude that the debris flow peak discharge on 4 August 2016 was amplified by the failure of
the check dam, causing widespread damage, and this aspect also explains why the magnitude of
the debris flow on 4 August 2016 was large even though the accumulated rainfall and rainfall
intensity were extremely low. Similarly, check dam failures have led to catastrophic disasters in
other regions, such as the “8.13” Wenjiagou debris flow event [72] and the “8.8” Zhouqu debris
flow event [73,74].

(2) Based on the above analysis, the flood peak discharge estimated by the method of Helley is
the largest, and is equivalent to that of a debris flow with a 10-year return period. Both of
the peak discharges calculated by the methods of Clarke and Helley are larger than the actual
value, while the value calculated by the method of Williams is smaller than the actual value.
In addition, compared with the extensive destruction of the 2016 debris flow event with a 20-year
return period, the destruction of the 2017 debris flow event was smaller, according to the field
investigation. Therefore, it is reasonable that the magnitude of the debris flow in September 2017
was less than that of a debris flow with a 10-year return period.

(3) In the remote mountain areas of China, rainfall data are difficult to obtain, and the rainfall
throughout a whole catchment usually cannot be recorded by precipitation stations due to the
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influence of terrain, resulting in inconsistencies between the triggering rainfall and the scale of
debris flow disasters. Thus, the relationships between the occurrence of debris flow disasters and
the triggering rainfall are not researched in this paper.

5.3. Mitigation Countermeasures in Zechawa Gully

More than 23 × 104 m3 of loose solid material was generated by the Ms 7.0 Jiuzhaigou earthquake
and remains available as material for debris flows in Zechawa Gully in the near future [37,75]. Therefore,
appropriate engineering countermeasures must be taken in a timely manner to mitigate post-earthquake
debris flow disasters. According to the field investigation and calculation results above, the stone
masonry check dam built in 2009 were broken, and the failure of the check dam amplified the debris
flow peak discharge, resulting in a very large amount of damage during the debris flow event on
4 August 2016. Thus, the potential failure of a check dam should be fully taken into account during
engineering design processes, and an integrated strategy including blocking measures and deposit
stopping measures should be adopted for debris flow mitigation. On the one hand, the construction of
deposit stopping structures (e.g., retaining walls) can increase the retention capacity of engineering
structures; on the other hand, the debris flow material can be trapped by the deposit stopping structures
even if the blocking structures (e.g., check dams) in the channel are damaged, thereby reducing the
disaster risk downstream.

The engineering countermeasure taken in 2009 were designed to resist a debris flow with a 20-year
return period but were damaged during the debris flow event in 2016. Considering the high-frequency
and large-scale characteristics of post-earthquake debris flows, engineering countermeasures were
designed to resist a debris flow with a 50-year return period after the Ms 7.0 Jiuzhaigou earthquake
based on the scale, damage degree and threatened objects threatened by the subsequent debris flows.
The total volume of debris flow material with a 50-year return period can be obtained by inserting
the calculated value of Qdf into Equation (42), and the resulting value is 1.91 × 104 m3 (Table 4). Thus,
the designed engineering structures are required to trap at least 1.91 × 104 m3 of debris flow material.
In addition, the control principles of prevention projects should not only control the debris flow
itself but also operate in harmony with the landscape and reduce the harm to landscape resources,
as required in Jiuzhaigou Valley [76]. Under the guidance of these principles, in conjunction with the
specific characteristics of the Zechawa debris flows, a concrete check dam and a concrete auxiliary
dam were constructed in the channel, and a concrete retaining wall was constructed on the debris
flow fan. The concrete check dam, 42.6 m long and 6 m high, was built close to but downstream of
the broken stone masonry check dam in order to reduce the peak discharge, stabilize the gully bed,
minimize scouring along the bottom and sides of the gully, and stabilize the debris flow material
trapped behind the broken check dam. The downstream concrete auxiliary dam, 38.1 m long and 3 m
high, was constructed close to the concrete check dam to protect the latter’s foundation (Figure 5).
Moreover, the reconstructed check dams were located somewhat upstream in the gully and were
satisfactorily concealed. The retaining wall with a total length of 95.6 m was built 93 m away from
the scenic road and is out of sight of tourists, and it can trap a volume of 2.27 × 104 m3 of debris flow
materials (Figure 6). In May 2019, new control works (the reconstructed check dam and the retaining
wall) were finished.

5.4. Effectiveness of Mitigation Countermeasures and Evaluation of Debris Flow Impact Force

On 21 June 2019, one post-earthquake debris flow was triggered by heavy rainfall, and a volume
of 2.3 × 104 m3 of debris flow material was transported; this value was greater than the calculated total
volume of debris flow material with a 50-year return period in Table 4. A volume of 0.48 × 104 m3

of debris flow sediment was trapped by the concrete check dam (Figure 5), which contributed to
stabilizing the gully bed and preventing entrainment of additional material. Moreover, a volume
of approximately 0.66 × 104 m3 debris flow sediment was trapped by the retaining wall (Figure 6),
and a portion of material with a volume of 1.16 × 104 m3 emerged from the breach in the middle of
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the retaining wall and was transported downstream. During the debris flow event on 21 June 2019,
the prevention projects played a satisfactory role in controlling the debris flow disaster even though
the flow magnitude exceeded the design standard.

In addition, studying the damage mechanism of mitigation structures is significant for effective
debris flow mitigation. According to previous studies, the huge impact force of a debris flow can
contribute significantly to the destruction of mitigation structures [34,77], and numerous impact models
have been established [77–80]. Through comprehensive analysis of the existing debris flow impact
models, a modified hydro-static model with a good prediction capability was proposed by Vagnon [77].
Therefore, the impact force of debris flow on the retaining wall was evaluated to study the damage
mechanism by Ref. [77]:

Ppeak = 2.07Fr
1.64γd f ghd f (43)

Fr = Vd f /
√

ghd f (44)

where Ppeak is the peak impact pressure (kN/m2); Fr is the Froude number; and hdf is the mean debris
flow depth (m). Considering the large scale of the debris flow disaster on 21 June 2019, γdf is taken as
1.9 t/m3 according to Table 4. Based on field investigation, the average velocity of the debris flow (Vdf)
near the retaining wall was calculated through Equation (13), and related parameters are shown in
Table 5.

Based on the related report, the designed resistance of the retaining wall is 51.34 KN/m2 [75],
which is far below the calculated value of the peak impact pressure (80.39 kN/m2) in Table 5. The debris
flow impact force was greater than the resistance of the retaining wall, causing partial failure of the
retaining wall on 21 June 2019. Thus, the resistance of the retaining wall should be increased during
the design processes. In general, considerable attention should be given to the post-earthquake debris
flow disaster in Zechawa Gully in the future, and it is necessary to repair the broken retaining wall
with a greater design resistance and remove the debris flow material deposited behind the retaining
wall to prepare for the next post-earthquake debris flow in the near future.

Table 5. Calculation results of the debris flow impact force on the retaining wall on 21 June 2019.

γdf (t/m3) hf (m) Rdf (m) Idf ndf Fr Ppeak (kN/m2)

1.9 1.55 1.11 0.19 0.1 1.20 80.39

6. Conclusions

This study is intended to describe the debris flow events in Zechawa Gully, characterize the
debris flow disaster, propose appropriate mitigation countermeasures and analyse the effectiveness
of mitigation countermeasures that were already implemented in May 2019. Field investigations
were conducted in a timely manner to determine the debris flow peak discharge, and the disaster
characteristics and occurrence of debris flows in 2016 were analysed. The following conclusions can be
drawn:

(1) In this study, the debris flow peak discharge was calculated using the rain-flood method,
cross-section survey method, dam-breaking calculation method and maximum boulder size
method. Based on our research, compared with previous results based on a single method,
an accurate debris flow peak discharge can be obtained by comparing the results of each
calculation method with each other, which increases the parameter accuracy for debris flow
disaster prevention and risk assessment.

(2) According to the classification criterion of the debris flow scale, the debris flows in Zechawa
Gully can be classified as small-scale events (with a total volume of debris flow material less than
1.0 × 104 m3) and medium-scale events (with a total volume of debris flow material between
1.0 × 104 m3 and 10 × 104 m3) [81]. The scale of the debris flow event on 4 August 2016 was
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equivalent to that of a debris flow with a 20-year return period. After the Ms 7.0 Jiuzhaigou
earthquake, at least one debris flow with a scale less than that of a debris flow with a 10-year
return period was triggered in September 2017, and a destructive debris flow with a scale greater
than that of a debris flow with a 50-year return period was triggered in June 2019.

(3) The debris flow peak discharge on 4 August 2016 was amplified by the failure of the stone
masonry check dam, causing widespread damage. Due to the disaster risk caused by dam breach
incidents, an integrated strategy including blocking measures and deposit stopping measures
should be adopted for debris flow mitigation.

(4) Based on the debris flow hazard characteristics of Zechawa Gully, optimized engineering
countermeasures (including blocking measures and deposit stopping measures) with a design
standard of a 50-year return period were proposed. Combined with the debris flow control
principles for national parks, one satisfactorily concealed concrete check dam and one retaining
wall out of view of tourists were constructed in Zechawa Gully in May 2019.

(5) On 21 June 2019, a post-earthquake debris flow was triggered by heavy rainfall, and the
engineering countermeasure, including blocking and deposit stopping measures, were effective
in mitigating the debris flow disaster even though the debris flow magnitude was greater than the
design standard of the reconstructed engineering projects. More attention should be paid to the
post-earthquake debris flow disaster in Zechawa Gully, and it is necessary to repair the broken
retaining wall with greater design resistance and to remove the debris flow material deposited
behind the retaining wall in a timely manner to prepare for upcoming post-earthquake debris
flows in the near future.

Notation

AB Cross-sectional area of the largest boulder
Adf Area of the cross-section
Bf Channel width
Bm Breach width
B0 Debris flow width before breakage
C Transported sediment concentration
CD Lift coefficient of the boulder, which is dependent on the shape of largest boulder
C’D Drag coefficient
CL Lift drag coefficient, which is dependent on the shape of the largest boulder
D Nominal diameter of the boulder
Ddf Blockage coefficient
dI Diameter of the boulder intermediate axis
dL Diameter of the boulder large axis
dS Diameter of the boulder short axis
F Watershed area
FC Critical force
FD Drag force
Fr Froude number
g Acceleration due to gravity
H1 1-hour average rainfall
H6 6-hour average rainfall
hd Residual height of check dam
hdf Mean debris flow depth
hf Mean flood depth
h0 Debris flow depth before breakage
Idf Longitudinal slope gradient of the channel bed
J Longitudinal slope of the channel
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K1 Modulus coefficients corresponding to H1 under different return periods
K6 Modulus coefficients corresponding to H6 under different return periods.
Kp Modulus coefficient when the variation coefficient is equal to 0.23
L Main channel length
Lb Deposit length of the debris flow material behind the check dam
MB Boulder mass
MRD Drag turning arm
MRL Lift turning arm
m Runoff confluence parameter
n Attenuation index of the rainstorm
ndf Roughness coefficient of the debris flow gully
nf Roughness coefficient of a mountain stream
Ppeak Peak impact pressure
Qdf Debris flow peak discharge
Qf Flood peak discharge
qf Unit width flux
Rdf Hydraulic radius of the debris flow
S Rainfall intensity
Tdf Duration time of the debris flow
t Runoff confluence time of the rainstorm
t0 Runoff confluence time of the rainstorm when φ equals 1.
Vavg Average velocity
Vdf Average velocity of the debris flow
Vf Critical velocity (bed velocity)
Wdf Total volume of the debris flow material
w Unit stream power
α Original imbrication angle of the deposited boulder
β Bed slope angle
γdf Density of the debris flow
γs Density of the solid material
γw Density of the water
θ Watershed characteristic parameter
µ Shape coefficient, which is dependent on the shape of the largest boulder
ρb Maximum boulder density
ρf Fluid density
ρs Sediment density
τ Bed shear stress
η Runoff yield parameter, which reflects the average infiltration intensity
φ Runoff coefficient of the flood peak, which is related to the convergence of runoff
ϕdf Quasi-static friction angle
ψdf Amplification coefficient of the debris flow peak discharge
κ Influence factor that accounts for residual height
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Abstract: River slopes can be changed due to an extreme event, e.g., a large-scale earthquake. This can
uplift a riverbed greatly and thereby change the behavior of the river flow into a free or submerged
overfall. Corresponding damage, including extreme erosion, on bridge piers located in the river
can take place due to the aforementioned flow conditions. A reconstructed bridge pier in the same
location would also experience a similar impact if the flow condition is not changed. It is important to
identify these phenomena and research the mechanism in the interaction between overfall types and
scour at bridge piers. Therefore, this paper is aimed at studying a mechanism of free and submerged
overfall flow impacts on bridge piers with different distances by a series of moving-bed experiments.
The experiment results showed clearly that bridge pier protection requires attention particularly
when the pier is located in the maximum scour hole induced by the submerged overfall due to the z
directional flow eddies. In many other cases, such as when the location of the bridge pier was at the
upstream slope of a scour hole induced by a flow drop, a deposition mound could be observed at the
back of the pier. This indicates that, while a pier is at this location, an additional protection takes
place on the bridge pier.

Keywords: bridge pier; overfall; scour; landform change impact on pier

1. Introduction

Unexpected free or submerged overfall conditions in a river flow can occur due to a
force within the earth that causes the riverbed to uplift. The changed condition of river flow
could have an impact on the safety of downstream river structures. A major earthquake
that occurred in 21 September 1999 dramatically changed many landforms in central
Taiwan, such as a local rise in the Da-Ja River inducing a flow drop in the riverbed. This
flow drop is very close to the Pai-Furn bridge pier and could induce additional erosion.
Figure 1a demonstrates a bridge that was damaged in the 921 Earthquake in 1999 in Taiwan
and the surrounding river bed was significantly affected. The newly constructed bridge
was completed in less than 2 years due to the importance for transportation (shown in
Figure 1b). However, it can be seen in Figure 1c that the bridge pier was again exposed to
river flow in six years due to significant nearby scour. Figure 1b,c display that the riverbed
level had been apparently lowered down 4.5 m deep near the pier with a diameter of 3.6 m.
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(a) (b) 

 
(c) 

Figure 1. (a) Changed river bed and damaged bridge due to the 921 Earthquake in 1999; (b) Newly constructed bridge in
the same location; (c) Water drop and local scour at the bridge piers.

Many researchers devoted themselves to studying local scour below drop structures
and at bridge piers (Dey 2014) [1]. Some researchers focused on the local scour below
drop structures; for example, Schoklitsch (1932) has been the pioneering researcher and
proposed an empirical relationship to estimate the equilibrium scour depth for flow-over
structures [2]. Moore (1943), Rand (1955), Akram (1979), and Little and Murphey (1982)
studied the energy change due to the drop [3–6]. Smith and Strang (1967) found that the
profile change of a riverbed was strongly affected by the size of the river bed materials [7].
Mason and Arumugam (1985) reviewed the empirical formulas of equilibrium scour depth
under a falling jet that started in 1932, and they proposed a modified formula that includes
the effect of tailwater depth [8]. Hoffmans (1998) derived relations to predict the maximum
scour depth in the equilibrium phase based on the Newton’s second law of motion [9].

Hoffmans (2009) introduced an index to represent the strength of loose material
and extended previous relations to predict the sum of the maximum scour depth and
the tailwater depth [10]. D’Agostino and Ferro (2004) proposed an empirical formula to
estimate the equilibrium scour depth of weir type drop structures based on the high crest of
the weir and the flow depth over a weir [11]. Yager et al. (2012) extrapolated an approach
to predict the scour depth and geometry of A-, U-, and W-shaped rock weirs from the case
of two-dimensional flow [12]. Melville (2014) used a small-scale experiment to investigate
the scour at a bridge foundation in the vicinity of a sluice gate and low wire [13].
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With the aforementioned research, the effect of different types of drop structures,
different conditions of approach flow, and different materials of sediment have been
investigated, and varied empirical formulas for the characteristic of local scour due to the
drop structure have been proposed. On the other hand, some researchers focused on the
local scour at bridge piers; for example, Breusers et al. (1977) reviewed a series of literature
regarding theory, model, and field data about the local scour around cylindrical piers
and suggested a set of designs for protection against scour [14]. Ahmed and Rajaratnam
(1998) reported that smooth, rough, and mobile beds impacted the flow features and
pier scour [15]. Graf and Istiarto (2002) experimented with the equilibrium scour depth
around a cylinder pier and investigated the vortex system around a cylinder pier based on
measurement of the acoustic Doppler velocity profiler (ADVP) [16].

Dey and Raikar (2007) experimented with the developing scour depth around a
cylinder pier and investigated the features of the vortex system in the intermediate and
equilibrium stages [17]. Ataie-Ashtiani and Aslani-Kordkandi (2013) experimented with
the developing scour depth around a single pier and two piers in tandem on a roughly flat
bed and investigated the difference of flow features in the implemented experiments [18].
Euler et al. (2014) investigated the local scour in the vicinity of pillar-like objects through
experimental studies and compared the results with field data [19].

These studies contribute to the flow feature impact on pier scour. Other studies
focused on scoring features. For example, Baker (1980) derived a formula to estimate the
equilibrium scour depth in front of a cylindrical bridge pier and compared the results
with the results of Baker (1979), Breusers et al. (1977), and Chabert and Engeldinger
(1956) [14,20–22]. Chiew and Melville (1987) proposed an empirical relationship that was
related to the equilibrium depth scour, particle size of sediment, and flow condition, and
compared their results with the findings of Chee (1982) and Melville (1984) [23–25]. Elliott
and Baker (1985) investigated the feature of scour depth under the effect of lateral spacing
between bridge piers [26]. Melville and Chiew (1999) indicated that the development of
the equilibrium scour depth can be related with the size of the pier, size of the sediment,
and approach flow velocity [27].

Sheppard et al. (2004) indicated that the wash load concentration impacts the scale
of the equilibrium scour depth under clear-water conditions [28]. Ataie-Ashtiani and
Beheshti (2006) derived an empirical relationship to estimate the maximum local scour
depth for the pile group and compared their results with the reports of Melville and
Coleman (2000) and Richardson and Davis (2001) [29–31]. Khosronejad et al. (2012)
investigated the features of clear-water scour around the geometry of cylindrical, square,
and diamond bridge piers through experiments and numerical simulation [32]. According
to the aforementioned research, the mechanism of local scour at bridge piers has been
investigated comprehensively by the theory, experiment, field data, and numerical model,
and empirical formulas for the equilibrium depth scour at bridge piers have been proposed.
However, there are few papers, to the authors’ knowledge, focusing on the interaction
between overfall types and scour at bridge piers.

This paper was focused on probing the mechanism of the scouring effect on piers
considering the different bridge locations and a flow-drop-induced scour hole. Two types of
overfall, which included the submerged type and free overfall type, were researched herein.
In the submerged type, the velocity component in the vertical direction was relatively
smaller and, therefore, gave a smaller effect on the riverbed scour. The free type of overfall,
on the other hand, produced a strong velocity component in the vertical direction and
induced a more dramatic riverbed change. It is necessary to discuss in detail the response
of piers suffering these two types of overfall and to take these responses into consideration
in engineering practice.
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2. Procedure of the Experimental Work

The configuration for the experiment flume equipped with a circulation flow system
is shown in Figure 2a. The total length of the flume was 15 m, the width was 1 m, and
slope of the flume bed was 1/1000. The wall of the flume was 0.8 m in height composed of
transparent tempered glass. A deeper part of the flume bed had 2 m length, 1 m width,
and 0.4 m depth located at 7 m upstream from the scour development. A flat flume bed
was provided with 4.4 m in length, which was 81 times the hydraulic radius of 5.4 cm for a
fully developed flow. H represents the difference in height from the water level upstream
of the lifted platform to the tailwater level. ds indicates the depth of scouring.
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Figure 2. (a) Configuration of experiment flume. (b) Schematic of free overfall condition. (c) Schematic of submerged
overfall condition.

For the sediment using in the experiment, we assumed that the river bed was com-
posed of medium sand. The median diameter (D50) of sediments in this experiment was
0.46 mm, and the standard deviation of the sediments (σg) was 1.69. Randkivi and Ettema
(1977) suggested that the σg should be smaller than 1.3 to avoid the armor layer in the
development of local scour [33]. The flume was paved using homogenous sediments at
a 2.5 cm depth in the zone out of the scour area to provide a similar roughness in the
alluvial bed.

This was a clear-water scour test. The experiment was designed so that the local scour
occurred only due to the influence of the drop structure and pier. In other words, the clear-
water flow could trigger scour in the moving-bed when there was no drop structure and
pier in the experiment flume. Accordingly, the ratio of the designed velocity of approach
flow (V) and the critical mean approach flow velocity of the using sediment (Vc) was given
as 0.5. Melville and Sutherland (1988) suggested that the critical mean approach flow
velocity (Vc) can be estimated using following equation:

Vc

V∗c
= 5.75 × log

[

5.53 × hd

D50

]

(1)

where hd is the depth of the downstream flow, and V*c is the shear velocity of the using
sediment [34]. Melville and Sutherland (1988) proposed a Shields chart for the thresh-
old condition of uniform sediment in water, and the shear velocity was suggested as
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0.018 m/sec for using sediment [34]. To satisfy the aforementioned conditions, in the
experiment, the boundary conditions of flow were: critical flow depth hc = 2.4 cm, up-
stream flow depth hu= 5.4 cm, upstream velocity 27.6 cm/sec, upstream Froude number
Fr = 0.38, downstream flow depth hd = 9.5 cm, downstream velocity (V) 15.9 cm/sec, and
downstream Froude Number Fr = 0.16.

The authors changed the difference in height between the river bed and the crest of
flow-control structure (Z) to produce two different conditions: free overfall and submerged
overfall, with the same boundary conditions upstream and downstream, to study the
interacting behaviors between the pier and overfall. The schematics of the free overfall
and submerged overfall are shown in Figure 2b,c. The values of Z were selected as 8
and 12 cm in which the submerged overfall took place at Z = 8 cm (H = 3.9 cm) with no
air vent occurrence and the free overfall took place at Z = 12 cm (H = 7.9 cm) with air
vent occurrence.

Melville and Chiew (1999) and Dey (2014) indicated that the approach flow can no
longer move the sediment from the scour hole when the scour is at equilibrium in the
clear-water condition [1,27]. Accordingly, the equilibrium time was selected based on the
development process of the scour hole in the free overfall test, in which 83.5% of the 24 h
erosion was reached in 5 h as shown in Figure 3. We also observed that the deposition
of the dune downstream was segregated after 4 h of erosion due to the lack of sediment
supplementation from upstream. This showed that the overfall energy was dispersed in
the scour hole so that the erosion was reduced. Therefore, the scouring behavior in the fifth
erosion hour was chosen for discussion in this paper.
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Figure 3. Development of the scouring process (the broken line was selected as the equilibrium hour).

A significant bed would be changed in the free overfall test; therefore, piers were
installed at five locations:

1. At half distance between the maximum scour depth and upstream, which was 16 cm
(La) to the flow-control structure, namely Case A.

2. At the maximum scour depth, which was 32 cm (Lb) to the flow-control structure,
namely Case B.

3. At half of the inclined slope of the scouring hole, which was 58.7 cm (Lc) to the
flow-control structure, namely Case C.

4. At the boundary between the scouring hole and original bed, which was 85.5 cm (Ld)
to the flow-control structure, namely Case D.
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5. At the deposition zone of the downstream, which was 130.8 cm (Le) to the flow-control
structure, namely Case E.

On the other hand, piers were installed at three different locations for the submerged
overfall test:

1. At upstream, which was 17.3 cm (Lf) to the flow-control structure, namely Case F.
2. At the scouring hole, which was 46.4 cm (Lg) to the flow-control structure, namely

Case G.
3. At the boundary between the scouring hole and original bed, which was 73.5 cm (Lh)

to the flow-control structure, namely Case H.

The above-mentioned cases are summarized in Table 1, and the schematic of the pier
locations for free overfall and submerged overfall is shown in Figure 4. In addition, the
free type and submerged type of overfall where no pier was installed in the experiment
flume were also carried out and named “free overfall w/o pier” and “submerged overfall
w/o pier”, respectively. Lastly, a pier in the experiment flume was implemented without
any type of overfall condition (Z = 0 cm) and named “Pure Bridge”.

Table 1. List of the locations of piers.

Type of Overfall Free Overfall
Submerged

Overfall

Case 1 A 2 B 3 C 4 D 5 E 6 F 2 G 3 H 4

Height of overfall (Z) 12 12 12 12 12 8 8 8

The distance from pier to
flow-control structure (Li)

16
(La)

32
(Lb)

58.7
(Lc)

85.5
(Ld)

130.8
(Le)

17.3
(Lf)

46.4
(Lg)

73.5
(Lh)

1 A–E: free overfall flow F–H: Submerged overfall flow. 2 A and F: Pier located at the upstream slope of the

flow-drop-induced scour hole. 3 B and G: Pier located at the maximum scour point of the flow-drop-induced

scour hole. 4 C and H: Pier located at the downstream slope of the flow-drop-induced scour hole. 5 D: Pier located

at the edge of the flow-drop-induced scour hole. 6 E: Pier located far from the scour hole.

 

 

 

 

 
 

 

Figure 4. Schematic graphs of the pier locations: (a) Free overfall condition. (b) Submerged overfall condition.
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3. Observations from the Experiment and Discussion

3.1. Profile of the Scouring Development of Free Overfall without the Effect of the Pier

In Figure 5, the time history of profile of scouring development in the case of free
overfall w/o a pier is shown.

–

32

31
50

α α α α

Figure 5. Development of the scouring process in the case of free overfall w/o a pier.

The horizontal axis represents the direction of flow, 0 is at the location of the flow-
control structure, the vertical axis is the scouring depth, and the broken red line in the
figure links the maximum scour depth at each observed time. We investigated that the
maximum scour depth moved deeper and more downstream. During the scouring process,
we also found that the slope of the scouring hole sometimes fell backward toward the
scouring hole. Two counter-rotation eddies that were produced by the overfall affected
the slope of the scouring hole where the slope at upstream was less steep than the slope at
downstream because the counter-rotating eddies downstream were stronger than the ones
that rotated upstream. The eddy provided the drag force along the slope surface, which
increased the resistance of the sediment fall due to gravity.

The mechanism of development of the scouring hole was that the two counter-rotating
eddies brought up the sediment to the slope at the downstream side, and gradually a small
dune was formed. Euler et al. (2014) investigated the mechanism using a tracer, which
allowed a visualization of the turbulent eddying and was similar to the observations in
our experiments [19]. While a deeper and wider scouring hole was dug by the overfall, the
dune was moved further downstream. On the other hand, the sediment of the slope of
the scouring hole upstream occasionally slid into the hole while the hole was being dug
wider and deeper. The sliding sediment was brought away downstream randomly. The
slope at the downstream of the scouring hole was steeper than the original at-rest angle of
the sediment deposits because the eddies provided a floating force along the slope surface
that supported the sediments to stay at the same location until slope instability due to the
occurrence of toe erosion induced by scour.

The maximum equilibrium scour depth was about 26.7 cm at 1440 min in the condition
of free overfall w/o pier as shown in Figure 5. Many researchers proposed different
empirical formulas for the maximum equilibrium scour depth under varied conditions
of structure, sediment material, and approach flow [2,8–11,21,24,29]. For the condition of
free overfall, Mason and Arumugam (1985) mentioned that the empirical formula for the
maximum equilibrium scour depth has general form.

ds = α1
Vα2 Hα3

Dα3
50

(2)
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in which α1, α2, α3, and α4 are all coefficients [8]. These coefficients were represented by
different values in individual studies, and our study lists some suggested values from
Mason and Arumugam (1985) in Table 2 [8]. In the procedure of the experiment work, the
approach velocity (V) was 15.9 cm/sec, the value of H was 7.9 cm in the condition of free
overfall, and the median diameter (D50) of sediments was 0.46 mm. The comparison of
the equilibrium scour depth in the experiment and with the empirical formulas of other
authors can be obtained in Table 2. These results illustrated that the scour depth had close
to an equilibrium state in the experiment.

Table 2. Coefficients for use in Equation (2) (Mason and Arumugam) [8].

Author (year) α1 α1 α1 α1 ds (m) Error (m)

Hartung (1959) 1.4 0.64 0.36 0.32 0.222 −0.045
Chee and Kung (1974) 1.663 0.6 0.2 0.1 0.359 0.092

Machado (1980) 1.35 0.5 0.3145 0.0645 0.255 −0.012
INCYTH (1981) 1.413 0.5 0.25 0 0.299 −0.032

3.2. Interaction between Piers and Overfall-Induced Erosion in Plain View

3.2.1. Free Overfall Impact on Pier at Different Location

Regarding free overfall, there were five locations in the experiment as shown in
Figure 6. Figure 6a shows the case where no pier was installed in the experiment, and we
observed that the geographic changes in the flume were mostly two-dimensional except
at the boundaries. The distance of the maximum scour depth was about 32 cm, and the
distance to the original bed level was about 80 cm.

  

  

Figure 6. Cont.
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Figure 6. Contour lines of the river bed in the free overfall condition: (a) Free overfall w/o pier; (b) Case A; (c) Case B;
(d) Case C; (e) Case D; (f) Case E.

Figure 6b shows the results of Case A where the location of the pier was upstream of
the scouring hole. In this case, the nappe directly impacted onto the pier instead of the river
bed. The neighborhood of the pier was influenced by the pier and, therefore, deformed
largely. Two sides of the pier were further eroded than in the previous case because the
circulating flow took place after the nappe hit on the pier and the flow increased the erosion.
However, the energy of the nappe reduced after hitting the pier, and thus less erosion
occurred to the downstream.

Figure 6c shows Case B where the pier was located at the location of the maximum
scour depth. A similar geography to the case without piers was observed, and therefore
we concluded that the erosion induced by the pier in this case was not influential.

Figure 6d or 6e demonstrate a slight change of the river bed near the pier (Case C and
D). Figure 6f shows that the erosion took place only at the neighborhood of the pier while
the pier was located at the deposition area (Case E).

Overall speaking, in the free overfall condition, when the pier location was upstream
of the scouring hole (La), significant erosion was found in the front of the pier along with a
significant deposition in the back. When the pier location was far from the local scour (Le),
some erosion and deposition took place in the front of the pier and in the back of the pier,
respectively. The localized scour in the vicinity of the pier was induced by the approaching
flow similar to classical local scour at the bridge (Dey 2014) [13]. When the pier location
was at the edge of the local scour (Ld), the erosion depth in the front was lower than the
original river bed, and the erosion took place in the back of the pier as well. However, the
eroded river bed level was still higher than the original bed.

As to the above discussions, while the pier location was at the downstream slope of
the scour hole (Lc), the erosion in the front of pier was similar to the case of free overfall
w/o pier. This indicates that the pier did not affect the characteristics of erosion. However,
significant deposition occurred in the back of the pier in this case, and this caused the total
erosion to be reduced. When the pier location was at the maximum scour point (Lb), greater
erosion took place compared with at the maximum scouring depth, and slight deposition
occurred in the back of the pier.

3.2.2. Submerged Overfall Impact on Piers at Different Locations

Figure 7a shows that, in the case of submerged overfall without pier installation,
the erosion was much less than in the case of free overfall, and the major scouring area
was moved downstream. In Case F with the pier located upstream of the scour hole (Lf),
Figure 7b shows that no significant geography changes of the river bed in the front of pier
were found when comparing with the previous cases. However, significant deposition was
observed at the back of the pier. When the pier location was at the maximum scouring
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depth (Case G, Lg), the erosion in the front of pier became much more significant compared
with the previous case, and it decreased in the back of pier in Figure 7c. In this case, the
maximum scour depth shows a significant increase. In Figure 7d, the overfall condition
shows a limited impact on the pier in Case H (Lh).
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Figure 7. Contour lines of the river bed in the submerged overfall condition: (a) Submerged overfall w/o pier; (b) Case F;
(c) Case G; (d) Case H.

Overall, in the submerged overfall condition, the scouring depth was clearly much
smaller than in the free overfall cases. The most significant result was in Case G.

3.3. Interaction between Piers and Overfall-Induced Erosion in Side View

The profile change of the center line of the river bed can be seen in Figure 8. This
demonstrates that there was no significant change of the landforms at the location in the
front of pier when the water drop induced scour located upstream (Case A). The situation
is similar to the case of the free overfall w/o pier. However, a relatively large deposition
was observed in the back of pier for the pure water drop scour condition (Case A). This
condition presented increased scour depth due to the pier when the pier was located at the
maximum erosion depth of the flow drop hole (Case B). A relatively larger scour to pure
water drop condition but no significant deposition was observed when the pier was located
at the downstream slope of the scour hole (Case C). When the pier was located far from the
scour hole, a localized scour was found in the front of the pier, and some deposition was
also observed in the back of the pier (Case E). Case D presented the pier located at the edge

224



Water 2021, 13, 152

of the scour hole scour hole, and the erosion occurrence in the front of pier became more
significant and lower than the initial bed level. On the other hand, erosion in the back of
pier took place as well. However, the river bed level was still higher than the initial river
bed level.

Figure 8. Comparisons of the center line of the vertical profile of the channel in the free type
overfall drop.

We concluded that, while the pier located at the upstream slope of the maximum scour
depth was induced by overfall, the scour that occurred in the front of pier was similar to
the pure water drop inducing scour, which indicates that the scouring characteristic was
not influenced by the pier. However, a significant deposition was observed in the back of
pier. This revealed that the total scouring was reduced. This implies that better protection
for the river bed can be found compared with the case of free overfall o/w pier when the
pier is located at the upstream slope of the scour hole.

When the pier was located at the downstream slope of the scour hole, an increased
scour depth was found in the front of pier when compared with the original scour hole,
and some deposition was observed at the back of pier. The experiments demonstrated that
the change in depth of the river bed was at the minimum when the pier was located at
the edge of the scour hole. When the pier was located far from the scour hole, a localized
scour in the vicinity of pier was induced by the approaching flow without the impact of
free overfall. These results imply that that the bridge pier was more secure when it was
located at the edge of the scour hole.

The scour depth in the submerged overfall condition was found to be smaller than in
the free overfall condition as shown in Figure 9. When the pier was located upstream of
the maximum scour point (Case F), a deeper scour was found in the front of pier compared
with the initial river bed, and there was a deposition at the back of pier. When the pier was
located at the point of maximum scour (Case G), a significant scour was observed in the
front and the back of the pier, and this was also deeper than for the initial river bed. When
the pier was located in the initial river bed (Case H), scour was found at the front and back
of the pier and was smaller than in Case G.
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Figure 9. Comparisons of the center line of the vertical profile of the channel in the submerged type
overfall drop.

We concluded that the scouring characteristics would be varied with the pier locations
at the scour hole and that the most significant scour was found at the point of the maximum
scour location induced by water drop. This implies that the bridge pier was a smaller
influence of the local scour when it was closer to the location of the submerged overfall.

The maximum scour depth and its location change due to the interaction between
overfall type and pier’s location can be investigated based on our experiments. The pier’s
location (Li), the maximum scour depth (ds), and its location (Lscour) in each experiment
were listed in Table 3. By comparing the conditions with and without pier, ds/do−s and
Lscour/Lo−scour, the effect of pier’s location on the maximum scour depth and its location
can be investigated. In the condition of free overfall, when Li > Lo−scour, the maximum
scour depth and its location due to drop structure were not affected by the pier. When
Li < Lo−scour, the location of maximum scour depth was changed according to Li, and
the maximum scour depth became smaller than in the case of w/o pier. In the condition
of submerged overfall, when Li > Lo−scour, the location of maximum scour depth was
changed based on Li, and the maximum scour depth was larger than in the case of w/o
pier obviously. This result implied that the empirical formulas for the characteristic of local
scour due to the drop structure, i.e., Mason and Arumugam (1985) [21], could be used
when the overfall condition is free type and Li > Lo−scour.

Table 3. Maximum scour depth and its location change due to the overfall type and pier’s location.

Experiments Li (cm) ds (cm) Lscour (cm) ds/do−s Lscour/Lo−scour

Free overfall w/o pier w/o pier −26.7 29.2 - -
Case A 16 −18.7 11.7 70.2% 40.0%
Case B 32 −28.8 28.2 107.9% 96.5%
Case C 58.7 −27.8 29.6 104.3% 101.2%
Case D 85.5 −27.2 28.2 101.8% 96.5%
Case E 130.8 −26.5 29.2 99.4% 100.0%

Submerged overfall w/o
pier

w/o pier −2.3 10.7 - -

Case F 17.3 −3.7 13.1 158.9% 122.6%
Case G 46.4 −8.3 41.8 355.9% 390.8%
Case H 73.5 −6.2 69.8 265.1% 652.4%
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3.4. Scour Conditions at Pier Surroundings Due to Overfall

In the condition that the flow drop depth (Z) was set at 12 cm, the model of the
pier was positioned at five different locations in the experiment facility. The centerline of
the vertical profile of the flow drop inducing scour was represented by Case A–E in this
paper. We used a camera in the hollow pier model to record the process of the experiment
tests over 5 h, and Figure 10 shows the scour depth of the surroundings of the pier in
the condition of free overfall. In the same way, a model of pier was positioned at three
different locations in the condition of submerged overfall and represented by Case F–H
in the centerline of the vertical profile of the flow drop inducing scour. Figure 11 depicts
the sour depth of the surroundings of the pier in the condition of submerged overfall. In
Figures 10 and 11, the position of the pier at 0 degrees is the location where the approaching
flow hits the pier.
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Figure 10. Scour depth distributions of the pier’s surroundings in the free type of overfall drop.
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3.4.1. Scour Conditions at the Pier Surroundings Due to Free Overfall

Figure 10 shows that, in Case A, although the location of the pier was at the upstream
slope of the scour hole, the bottom of the pier was scoured due to a reversed flow induced
by the flow drop. The maximum scour point of the surroundings of the pier was at the
position of 0 degrees. This reveals that a water jet along the river bed from upstream
dominated the scour characteristics. There was an unstable condition at 90 degrees and
270 degrees due to interactions from the reversed flows and water jet from upstream,
which led to an asymmetric scour at the surroundings of the pier. In Case B, when the pier
was located at the point of the maximum scour, the water jet lost most of its energy after
hitting the river bed; therefore, the scour depth located from 0 degrees to 45 degrees on the
upstream side was almost the same.

The deposition, found in the downstream, was out of 45 degrees, and it deposited
greater at around 60 degrees and scoured the least at 180 degrees. In Case C, we found
that the scour distribution curve of the pier’s surroundings appeared to be greatly affected
by the pier inducing scour. However, this was not true, in fact, as the occurrence of the
scour mostly occurred upstream of the scour hole. Cases D and E presented cases with the
location of the pier at the edge of the scour hole and far from the scour hole. We found
that Case D was affected by the sediment loaded flow from the bottom of the scour hole,
and therefore, the local scour in front of the pier was not apparent. The scour hole in front
of the pier in Case E, on the other hand, was mostly dominated by the pier itself, as the
location of the pier in this case was away from the flow drop induced scour hole.

3.4.2. Scour Conditions at the Pier Surroundings Due to the Submerged Overfall

Figure 11 shows that, in Case F, the pier was located in the deposited mound and
was hit by a submerged flow jet directly. The results show a full scour hole developed
right after the deposited mound was affected by the overfall surrounding the pier, and was
not found to be strongly affected by the water jet. In Case G, no significant landform was
found in the pier’s surrounding, we found in Figure 7c that scour holes developed with a
shape of mullet roe surrounding the pier. Both depths in the holes were found to be greater
than the ones in front of the pier. This indicates that the water jet caused by the submerged
overfall in the x direction was stronger than in the z direction. In Case H, the pier was
located downstream of the scour hole, and therefore a greater range of landforms could
be observed.

4. Conclusions

This paper focused on probing the mechanism of the scouring effect on piers consid-
ering different bridge locations and the flow drop induced scour hole through a series
of experiments. Two types of overfall, submerged and free overfall, were applied in the
experiment. This mechanism is expected to draw attention from both engineering and
academic specialists regarding protecting bridges in newly changed landforms.

Our concluding remarks can be drawn as follows:
Location of the pier vs. the free overfall:

1. The scour surrounding bridge pier in the free overfall condition was mainly controlled
by the overfall.

2. When the pier’s location was at the upstream slope of the scour hole, better protection
to the river bed was found compared with the case of the free overfall w/o pier.

3. When the pier’s location was at the maximum scouring point in the scour hole, this
deepened the scour depth in the front of pier in a limited manner. Reconstructed
bridge piers should not be located here.

4. When the pier’s location was at the downstream slope of the scour hole, the pier did
not clearly change the impact of the free overfall on the river bed. However, the depth
of scour at the vicinity of the bridge pier was still deep enough to expose the pillar in
the approaching flow.
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5. When the pier’s location was at the edge of the scour hole, the scour depth that
occurred in front of the pier was similar to the case of the submerged overfall w/o
pier. The depth of the localized scour at the vicinity of the bridge pier was the
minimum under the interaction between the free overfall and the scour at the bridge
pier. This implies that a reconstructed bridge pier would be more secure here.

6. When the pier’s location was far from the local hole, the localized scour surrounding
the bridge pier was induced by the approaching flow only and without the influence
of the free overfall.

Location of pier vs. submerged overfall:

1. Scour at the pier’s surroundings was dominated by the flow drop inducing jet, and
a relatively deeper scour was be developed due to water jets that were closer to the
river bed. This implies that a reconstructed bridge pier should not be located in the
area influenced by the submerged overfall.

2. The most significant scour depth at the front of pier was investigated in the condition
where the pier location was at the maximum scour point induced by the submerged
overfall. A reconstructed bridge pier should not be located here.

3. When the pier was at the maximum point of scour, it induced more scour hole
development due to the disturbances caused by the water jet and pier. The depth of
those scour holes would be even larger than the scour depth at the pier’s surrounding.
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Abstract: Landslide susceptibility assessment is crucial for mitigating and preventing landslide
disasters. Most landslide susceptibility studies have focused on creating landslide susceptibility
models for specific rainfall or earthquake events, but landslide susceptibility in the years after
specific events are also valuable for further discussion, especially after extreme rainfall events.
This research provides a new method to draw an annual landslide susceptibility map in the 5 years
after Typhoon Morakot (2009) in the Chishan River watershed in Taiwan. This research establishes
four landslide susceptibility models by using four methods and 12 landslide-related factors and
selects the model with the optimum performance. This research analyzes landslide evolution in
the 5 years after Typhoon Morakot and estimates the average landslide area different ratio (LAD)
in upstream, midstream, and downstream of the Chishan River watershed. We combine landslide
susceptibility with the model with the highest performance and average annual LAD to draw an
annual landslide susceptibility map, and its mean correct ratio ranges from 62.5% to 73.8%.

Keywords: extreme rainfall-induced landslide susceptibility model; landslide ratio-based logistic
regression; landslide evolution; Typhoon Morakot; Taiwan

1. Introduction

Deaths and economic losses due to natural disasters have drastically increased in Taiwan over the
past two decades, especially after the 1999 Chichi earthquake [1]. In Taiwan, landslides and debris
flows are the major causes of serious rainfall-induced disasters. The death toll due to Typhoon Morokot
in 2009 was around 703, and the death toil due to the associated landslides and debris flow disasters
was over 500, including 465 deaths caused by the Xiaolin deep landslide [2]. The number and intensity
of the heavy rainfall events are expected to increase in the future in Taiwan [3], and the occurrences of
landslides and debris flows over the next decade are expected to increase. Therefore, the assessment of
landslide susceptibility is an important consideration for disaster prevention or mitigation in Taiwan.

Landslide susceptibility assessment models can be created based on heuristic, deterministic, and
statistical approaches. Among these approaches, statistical methods are the most popular because of
the development of geographic information systems and remote sensing techniques. The processes
involved in evaluating landslide susceptibility by establishing a susceptibility model using statistical
approaches include selecting landslide-related factors, creating a database, acquiring the most suitable
fitting equations from the statistical model for landslide occurrence, and calibrating or validating
models. The prediction accuracy of most statistical landslide susceptibility models can exceed 70% [4–7].
Technological statistical methods for predicting landslide susceptibility have improved to involve
artificial neural networks [8], machine learning [9,10], empirical methods based on big data [11,12],
and artificial intelligence [13]; the prediction accuracy of landslide susceptibility models using these
technologies range from 80% to 90%.

231



Water 2019, 11, 2609

Several rainfall events with a return period of more than 100 years have occurred in Taiwan,
particularly in the Central and Southwestern regions, over the past two decades. Extreme rainfall
events in Taiwan typically occur when daily rainfall >800.0 mm (such as that in Southern Taiwan
during Typhoon Morakot in 2009 and Northern Taiwan during Typhoon Soudelor in 2015) or hourly
rainfall intensity >80.0 mm/h (such as that in Northeastern Taiwan during Typhoon Megi in 2010).
Extreme rainfall events also result in serious disasters. The accumulated rainfall and rainfall intensity
during Typhoon Morakot in Southern Taiwan is representative of extreme rainfall events. The 48-
and 72-h accumulated rainfall at most rainfall stations during Typhoon Morakot in Southwestern
Taiwan exceeded the accumulated rainfall record of the 200-year return period [2], and the average
rainfall intensity from 12:00 a.m. to 8:00 p.m. on 8 August 2009 in the midstream of the Chishan River
watershed was more than 80.0 mm/h. Some studies have started to emphasize the seriousness of
extreme rainfall-induced landslide or debris flow [8,9] or have created landslide susceptibility models
for regions with high annual and daily rainfall [10] because of the increasing occurrence frequency of
extreme rainfall events. Rainfall is widely used as a factor for building landslide susceptibility models,
but the pattern and extent of rainfall should be emphasized [14,15]. Therefore, the assessment of
landslide susceptibility is a crucial consideration for disaster prevention and mitigation in Taiwan [16].

The novelty of this research includes the applicability of landslide susceptibility models using
statistical modeling in areas with dense landslide distribution and the process of drawing annual
landslide susceptibility maps in the years after extreme rainfall events. The landslides induced by
Typhoon Morakot in the Chishan River watershed were densely distributed, and the landslide types
mainly included debris falls, translational landslides, riverbank landslides, and large-scale landslides.
Areas with dense landslide distributions induced by an extreme rainfall event are uncommon globally,
and discussing the performance of landslide susceptibility maps using statistical models in dense
landslide distribution areas is valuable. Another novelty in this research is that a large amount of
sediment was deposited downhill or transported into the river after numerous landslides occurred in
the area. The large amount of sediment deposited randomly in the river resulted in sinuous rivers
and subsequent riverbank landslides. Landslide susceptibility in some specific areas in the years
after extreme rainfall events did not decrease; they instead increased, because riverbank landslides
increased substantially. Numerous articles have focused on predicting landslide susceptibility for
specific rainfall or earthquake events, and this research suggests that annual landslide susceptibility
maps after specific rainfall or earthquake events should be emphasized as well.

This research compares and analyzes the applicability of landslide susceptibility assessment
models based on four methods by using the extreme rainfall-induced landslide inventory and suggests
a process of drawing landslide susceptibility maps in the years after extreme rainfall events. The four
methods used in the study include landslide ratio-based logistic regression (LRBLR) [17], frequency ratio
(FR), weights of evidence (WOE), and instability index (II) [18]. The landslide susceptibility model is
combined with 12 factors. The validation of the landslide susceptibility model in this research adopts
the area under receiver operating curves and confusion matrix methods. The research selected the
landslide susceptibility model with the best performance of the four as the basis for drawing landslide
susceptibility maps after Typhoon Morakot. Furthermore, this study analyzes the long-term landslide
evolution from 2008 to 2014 in the Chishan River watershed. The landslide evolution analysis from
2008 to 2009 identifies geomorphic characteristics of extreme rainfall-induced landslide-prone locations,
whereas the analysis from 2009 to 2014 analyzes the difference in landslide count and area induced
by Typhoon Morakot from 2010 to 2014 to understand the long-term evolution of landslides in the
Chishan River watershed. Finally, the study draws annual landslide susceptibility maps from 2010
to 2014 by combining the extreme rainfall-induced landslide susceptibility model and the statistical
data from landslide evolution from 2010 to 2014 in the Chishan River watershed. Figure 1 presents the
flowchart of this research.
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Figure 1. The flow chart of this research.

2. Materials and Methods

2.1. Research Area and Extreme Rainfall Event

2.1.1. Research Area: Chishan River Watershed in Southwestern Taiwan

The Chishan river watershed (Figure 2) is a tributary watershed of Kaoping river watershed
in Southwestern Taiwan. Kaoping river watershed ranks 11th in terms of suspended load in the
world [19,20]. The mean sediment yield (5.9 kg/m2/year) and physical denudation rate (655.8 g/m2/year)
of the Kaoping watershed are 1.96 and 4.37 times larger than that of mountainous rivers throughout
the world [21,22]. The high suspended sediment quantity show that Kaoping river watershed is a
soil erosion-, landslide-, and debris flow-prone watershed due to the fragile geology, steep terrain,
and heavy rainfall.

The area of the Chishan river watershed is around 819 km2 with the mean elevation and slope
of 838 m (Figure 2) and 22.4◦ (Table 1). The average annual precipitation is 4468 mm. The mean
precipitation in the rainy season, i.e., from May to October, occupies 83% to 89% of the mean annual
precipitation, and that in the dry seasons, from November to April, only occupies 11% to 17%. The land
use in the research area consists of forest (65.0%), agriculture (23.2%), development (4.2%), river (2.7%),
and bare land (5.0%) based on the land use investigation maps produced in 2008 by National Land
Surveying and Mapping Center in Taiwan. The main strata (Figure 3 and Table 2) in the research area
includes the Miocene Changchihkeng formation (26.2% of the watershed), the Holocene alluvium
(17.8% of the watershed), middle Miocene Nankang formation and equivalents (10.8% of the watershed),
and the Miocene Tangenshan sandstone (10.5% of the watershed) based on the 1/5000 basin geological
map in Taiwan [23].

233



Water 2019, 11, 2609

 

 

− −

− − −
− − −

− −

−

− −

Figure 2. The distribution of elevation, river, and landslide inventory induced by 2009 Typhoon
Morakot in the Chishan river watershed.

Table 1. The statistical data of twelve landslide-related factors in this research in the Chishan
river watershed.

Variable (Unit) Max Min Mean Median S.D. * Skewness Kurtosis

Geomorphological factors

Elevation (m) 3979.4 26.3 830.61 505.5 806.32 0.881 2.762
Slope (degrees) 79.2 0.0 22.32 25.5 15.34 0.065 2.111

Aspect (degrees) 360.0 −1.0 188.37 193.3 102.50 −0.188 1.934

Land use categorical variable

Plan curvature 200.4 −200.4 −0.77 0 3.01 −0.376 63.282
Profile curvature 201.0 −271.4 −0.89 0 4.63 −0.719 127.152

Geological factors

Geology categorical variable

Fault density (10−3 m−1) 2.4 0.0 0.07 0 0.28 4.213 21.591

Hydrological factors

Accumulated rainfall (mm) 2174.1 1083.3 1671.0 1705.4 263.15 −0.565 2.746
Proximity to the rivers (m) 5641.0 0 352.1 221.4 178.9 4.579 13.212
Topographic wetness index 41.2 6.9 12.6 12.3 2.31 1.549 7.361

Stream power index 24.2 −9.0 2.4 2.8 3.73 −0.409 4.343

* Note: The S.D. indicates the standard deviation.
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Table 2. The geological settings in the Chishan river watershed.

Ab. Times Strata Lithology Oc. (%)

a Holocene alluvium gravel, sand and clay 17.8

Al Pliocene Ailiaochiao formation thin alternation of siltstone and shale 7.6

Cc Miocene Changchihkeng formation alternations of sandstone and shale 26.2

Gt Pliocene-Pleistocene Gutingken formation mudstone with intercalated sandstone 1.3

Hh Miocene Hunghuatzu formation
thick-bedded siltstone, thick alteration of siltstone
and sandstone

2.9

ig none igneous rock igneous rock 0.0

Kz Miocene-Pliocene Kaitzuliao shale shale 0.6

Le Pleistocene Liukuei formation
conglomerate, sandstone, sandy shale and
mudstone

0.4

Lo Pleistocene Linkou conglomerate
conglomerate with mudstone interbeds,
intercalated with sheet or lenticular sandstone

0.9

M2 Middle Miocene
Nankang formation and

equivalents
augillite or slate 10.8

Nc Miocene
Nanchuang formation and

equivalents
sandstone and shale interbeded with igneous rock 3.6

Nl Pliocene Nanshihlun sandstone
thick sandstone, mudstone, alternations of
sandstone and shale, thick carbonaceous shale
with intercalated sandstone

0.5

Si Miocene Sanming shale shale intercalated with thin-bedded siltstone 2.3

Sp Eocene Shihpachungchi formation slate with mate-sandstone 1.1

t Pleistocene-Holocene Terrace gravel mud, sand, and gravel 5.9
Tc Eocene Tachien sandstone meta-sandstone with slate 1.3

Tn Miocene Tangenshan sandstone sandstone intercalated with shale 10.5

Wa Miocene-Pliocene Wushan formation thin alternation of sandstone and shale 0.5

Ya Eocene Yushanchushan formation meta-sandstone and slate interbeded 0.7

Ys Pliocene Yenshuikeng shale massive shale 4.9

Note: Ab. means abbreviation and Oc. refers to the occupied percentage of the strata in the Chishan river watershed.
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Figure 3. The geological settings of the Chishan river watershed.

2.1.2. Extreme Rainfall Event: 2009 Typhoon Morakot

Typhoon Morakot struck Southern Taiwan between 6 and 10 August 2009. The rainfall distribution
in the Chishan river watershed based on the rainfall records from 22 rainfall stations is shown in Figure 4.
The rainfall ranges from 1083 to 1990 mm with an average of 1528.0 mm. The 24-h, 48-h, and 72-h
accumulated rainfall exceeded the 200-year return-period accumulated rainfall [2]. The accumulated
rainfall during the most intense rainfall period, i.e., 1 pm to 12 pm on 8 August 2009, was 577.0 mm
to 786.5 mm, equal to a mean rainfall intensity of 48.1 mm/h to 65.5 mm/h in this period. The 2389
landslide cases (Figure 2) induced by 2009 Typhoon Morakot in the Chishan river watershed were
extracted from high resolution SPOT 5 images [24,25]. The area of each identified landslide polygons
ranges from 264 m2 to 3.5 km2. The total landslide area in the Chishan river watershed is around
33.5 km2 with the landslide ratio (LR) of 4.1%.
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Figure 4. The distribution of accumulated rainfall during the 2009 Typhoon Morakot and rainfall
stations in the Chishan river watershed.

2.2. Research Methodology for Landslide Susceptibility Mapping and Long-Term Landslide Evolution

2.2.1. Landslide-Related Factors

Based on the literature [18] and data availability, this research selects a total of 12 factors as the
basis for establishing the landslide susceptibility model and can be classified into geomorphological,
geological, and hydrological. Geomorphological factors include elevation, slope, aspect, land use,
plan curvature, and profile curvature. The elevation (Figure 2), slope, aspect, plan curvature, and
profile curvature factors are derived from a 5-m digital elevation model (DEM), whereas the land
use factor adopts the land use investigation map in Taiwan, which was produced in 2008 by the
National Land Surveying and Mapping Center. Because the Chishan River watershed is an erosion-
and landslide-prone watershed, we adopt plan and profile curvature factors to describe divergence
and convergence of water flow and runoff and infiltration mechanisms.

Geological factors include geology and fault density, and this study adopts a 1/50,000 geological
map of the Chishan River watershed [23] to draw the geological setting map and estimate fault density.
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Geological formations in the Chishan River watershed are fragile and landslide-prone, and six fault
lineaments pass through the Chishan River watershed, particularly in midstream. Hydrological
factors include the accumulated rainfall during Typhoon Morakot, proximity to the rivers, topographic
wetness index (TWI), and stream power index (SPI). This research uses the accumulated rainfall during
Typhoon Morakot (from 20:30 on 5 August to 05:30 on 10 August 2009) to describe the influence of
heavy rainfall on landslides. Rainfall records from 22 rainfall stations within or near the Chishan River
watershed were collected to draw the distribution of accumulated rainfall in the watershed (Figure 3).
Furthermore, headward erosion- and bank erosion-induced landslide cases occupy a considerable
portion of the landslide inventory. The area within 300 m of the rivers occupies approximately 43.9%
of the Chishan River watershed area, but the landslide area within 300 m of the rivers after Typhoon
Morakot occupies approximately 52.8% of the total landslide area. This research adopts the hydrology
module in ArcGIS to draw the river distribution and estimate the TWI and SPI. The TWI is defined as
the natural logarithm ratio of the local upslope area drainage per contour length to the local slope
angle and describes the water saturation in the surface soil layer. The SPI is defined as the product of
the natural logarithm of both slope and flow accumulation. The SPI describes the erosion strength of
river flow and is suitable for determining riverbank landslide locations.

2.2.2. Landslide Susceptibility Methodology: Landslide Ratio-Based Logistic Regression Method (LRBLR)

The purpose of logistic regression analysis is to find the best fitting equation (Equation (1)) to
describe the dependent variable (landslide or not landslide, Y in Equation (1)) and the independent
parameters (landslide-related factors, Xn in Equation (1)):

logit(Y) = β0 + β1X1 + β2X2 + . . . (1)

ln
p

1− p
= logit (Y) = β0 + β1X1 + β2X2 + . . .+ βnXn (2)

where β0 is a constant and βn is the nth regression coefficient. The landslide susceptibility P can be
written as Equation (2). Wu [17] suggested that the performance of landslide susceptibility model
using the logistic regression method with the LR index is better than that using the original logistic
regression method. Landslide ratio (LR) refers to the ratio of the landslide area in a specific area to that
in the total watershed area. This research follows the suggestions from Wu [17] and reclassifies the
categories of all variables according to LR. The number of landslide ratio classifications (LRC number)
in a specific category is marked as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 as the LR in a specific category
is <1.0%, 1.0–2.0%, 2.0–3.0%, 3.0–4.0%, 4.0–5.0%, 5.0–6.0%, 6.0–7.0%, 7.0–8.0%, 8.0–9.0%, 9.0–10.0%,
and >10.0%, respectively. All variables in the LRBLR analysis are categorical variables.

The total grid count in the Chishan river watershed is approximately 3.17 × 107 grids, including
3.14 × 107 non-landslide grids and 1,356,104 landslide grids. The non-landslide grid count is
approximately 23.2 times greater than the landslide grid count. In this study, all grid counts were
attempted to be placed into the statistical software for logistic regression analysis, which was difficult
to be analyzed in the statistical software, and the result was dominated by the non-landslide grid.
This research was based on the study conducted by Yesilnacar and Topcal [26], who performed a random
sampling analysis. Twenty random sampling datasets were picked, and each dataset included 1,356,104
and 1,356,104 landslide and non-landslide grids, respectively. The 20 random sampling datasets were
analyzed using the SPSS software to obtain the Cox-Snell R2 value and Nagelkerke R2 value. Only when
the Cox-Snell R2 and Nagelkerke R2 values from the logistic regression analysis were greater than 0.15,
the dataset was considered as useful and valid [26] in the research. In this research, datasets with
the highest Cox-Snell R2 and Nagelkerke R2 values were picked from 20 random sampling datasets,
and coefficients from logistic regression were used to develop the landslide susceptibility model.
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2.2.3. Landslide Susceptibility Methodology: Frequency Ratio Method (FR)

Lee and Talib [27] suggested that landslide susceptibility should be directly proportional to LR in
a specific area, i.e., the landslide susceptibility in an area with a dense landslide distribution should be
high. Frequency ratio value (FR) can be a useful index when establishing a landslide susceptibility
map. The FR value can be calculated as the ratio of the occupied percentage of landslide area in
specific category in specific landslide-related factor to the occupied percentage of area in specific
category in specific landslide-related factor. The FR value in each category of each factor is estimated
in Table 3. The FR value in each category of every landslide-related factor can be calculated, and the
sum of FRs can be used as the landslide susceptibility index (LSI, Equation (3)). FRn represents the
frequency ratio value of the nth landslide-related factor. If the FR value in a specific category of the
specific landslide-related factor >1, this means the landslide in the specific category of the specific
landslide-related factor has a high correlation to the landslide distribution, while a value of <1 indicates
a lower correlation.

LSI =
n

∑

1

FRn (3)

Table 3. Coefficient values of landslide-related factors based on four methods.

Factors
Area

(Km2)
Landslide Area

(Km2)
LR
(%)

LRC
Number

FR C Di

Elevation (m)

<250 285.2 0.3 0.1 1 0.03 −4.16 1.00
250–500 122.2 3.8 3.1 4 0.75 −0.35 3.26
500–750 64.3 6.7 10.4 11 2.51 1.13 8.74

750–1000 51.2 5.7 11.0 11 2.68 1.18 9.27
1000–1250 45.5 5.5 12.2 11 2.91 1.28 10.00
1250–1500 52.8 5.0 9.4 10 2.28 0.98 8.03
1500–1750 53.0 2.9 5.5 6 1.32 0.31 5.03
1750–2000 53.4 1.8 3.4 4 0.81 −0.23 3.45
2000–2250 39.7 0.9 2.4 3 0.55 −0.65 2.63
2250–2500 23.6 0.3 1.4 2 0.31 −1.24 1.88
2500–2750 14.2 0.2 1.1 2 0.34 −1.12 1.98
2750–3000 5.2 0.1 1.8 2 0.46 −0.80 2.37
>3000 7.9 0.8 10.2 11 2.44 0.97 8.52

Slope (◦)

<10 219.0 1.1 0.5 1 0.12 −2.44 1.00
10–20 102.5 2.8 2.8 3 0.66 −0.48 4.14
20–30 172.8 8.0 4.7 5 1.12 0.15 6.81
30–40 190.2 13.2 7.0 8 1.68 0.79 10.00
40–50 95.5 6.5 6.8 7 1.65 0.62 9.87
50–60 30.9 1.7 5.4 6 1.33 0.31 8.03
>60 7.4 0.5 6.7 7 1.64 0.53 9.80

Aspect

flat 20.7 0.0 0.0 1 0.00 −4.52 1.00
North 82.9 3.6 4.4 5 1.05 0.05 8.11

Northeast 73.0 4.0 5.5 6 1.32 0.33 10.00
East 86.0 4.1 4.7 5 1.15 0.17 8.80

Southeast 102.4 4.4 4.3 5 1.04 0.04 8.03
South 107.7 4.7 4.4 5 1.05 0.06 8.14

Southwest 116.0 4.7 4.1 5 0.98 −0.03 7.63
West 120.4 4.6 3.8 4 0.92 −0.10 7.25

Northwest 108.9 3.8 3.5 4 0.84 −0.20 6.71
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Table 3. Cont.

Factors
Area

(Km2)
Landslide Area

(Km2)
LR
(%)

LRC
Number

FR C Di

Land use

agriculture 189.5 1.1 0.6 1 0.14 −2.24 1.00
forest 547.7 28.5 5.2 6 1.26 0.99 2.86

development 43.1 0.4 1.0 2 0.22 −1.57 1.13
neighborhood

of river
22.3 0.3 1.1 2 0.32 −1.17 1.30

bare land 15.7 3.6 22.8 11 5.53 2.03 10.00

Accumulated rainfall (mm)

<1200 161.9 0.1 0.0 1 0.01 −4.48 1.00
1200–1400 97.9 0.1 0.1 1 0.02 −3.88 1.00
1400–1600 118.3 4.1 3.4 4 0.83 −0.22 3.88
1600–1800 336.5 18.7 5.5 6 1.34 0.58 5.68
>1800 103.6 11.0 10.6 11 2.56 1.27 10.00

Geology

a 145.8 0.2 0.1 1 0.03 −3.65 1.09
Al 61.8 0.9 1.5 2 0.35 −1.13 2.01
Cc 214.4 14.1 6.6 7 1.59 0.73 5.55
Gt 10.9 0.1 0.6 1 0.22 −1.55 1.64
Hh 24.1 2.6 10.6 11 2.60 1.08 8.47
ig 0.3 0.0 4.9 5 0.00 −0.26 1.00
Kz 5.0 0.0 0.0 1 0.00 −3.08 1.00
Le 3.3 0.0 0.0 1 0.00 −2.66 1.00
Lo 7.7 0.0 0.0 1 0.00 −3.51 1.00
M2 88.4 3.7 4.2 5 1.01 0.01 3.90
Nc 29.4 0.7 2.3 3 0.57 −0.59 2.65
Nl 3.9 0.0 0.0 1 0.00 −2.83 1.00
Si 18.8 1.0 5.3 6 1.28 0.27 4.68
Sp 8.7 0.4 4.2 5 1.11 0.11 4.18
t 48.4 0.4 0.9 1 0.20 −1.70 1.57

Tc 10.8 0.3 3.1 4 0.67 −0.42 2.92
Tn 86.3 7.0 8.1 9 1.96 0.84 6.62
Wa 4.3 0.0 0.0 1 0.00 −2.93 1.00
Ya 5.5 0.7 13.1 11 3.07 1.23 9.81
Ys 40.3 1.8 4.5 5 1.08 0.08 4.09

Fault density (10−3 m/km2)

<5 764.6 28.2 3.7 4 0.89 −1.11 1.00
10 22.8 2.1 9.4 10 2.23 0.89 4.57
15 23.8 2.6 11.1 11 2.64 1.10 5.68
20 5.3 0.6 11.2 11 2.74 1.10 5.93
>20 1.7 0.3 16.0 11 4.27 1.61 10.00

proximity to the river (m)

<250 320.9 15.1 4.7 5 1.14 0.23 10.00
250–500 192.0 8.1 4.2 5 1.02 0.02 7.83
500–750 123.4 4.9 4.0 4 0.96 −0.05 6.72

750–1000 78.4 3.0 3.8 4 0.92 −0.09 6.07
>1000 103.5 2.8 2.7 3 0.65 −0.49 1.00
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Table 3. Cont.

Factors
Area

(Km2)
Landslide Area

(Km2)
LR
(%)

LRC
Number

FR C Di

Plan curvature

<−0.6 182.3 11.3 6.2 7 1.50 0.58 10.00
−0.6 – −0.3 91.5 3.6 3.9 4 0.95 −0.06 4.84
−0.3 – 0 173.1 3.9 2.2 3 0.54 −0.75 1.00
0 – 0.3 81.9 3.5 4.3 5 1.03 0.04 5.61

0.3 – 0.6 93.9 3.2 3.5 4 0.82 −0.23 3.64
>0.6 195.5 8.4 4.3 5 1.04 0.05 5.66

Profile curvature

<−5 28.5 1.1 4.0 4 0.93 −0.07 1.63
−5–−3 22.4 0.9 4.0 4 0.97 −0.03 2.29
−3–−1 82.6 3.8 4.6 5 1.11 0.13 4.73
−1–1 552.0 20.5 3.7 4 0.90 −0.31 1.00
1–3 80.2 4.7 5.8 6 1.42 0.42 10.00
3–5 22.1 1.2 5.5 6 1.31 0.30 8.20
>5 30.4 1.6 5.3 6 1.27 0.27 7.50

Topographic Wetness index

<10 44.9 2.2 5.0 5 1.08 0.08 8.69
10–12 258.2 12.0 4.7 5 1.02 0.04 8.03
12–14 239.1 12.9 5.4 5 1.19 0.29 10.00
14–16 84.3 2.7 3.2 4 0.70 −0.41 4.25
16–18 40.9 0.8 2.0 2 0.43 −0.91 1.00
>18 21.0 0.7 3.2 4 0.73 −0.33 4.59

Stream Power Index

<−2 106.6 2.4 2.3 3 0.54 −0.70 2.08
−2–1 66.9 3.0 4.4 5 1.08 0.09 8.56
1–4 415.5 20.7 5.0 5 1.20 0.44 10.00
4–7 159.1 6.4 4.0 4 0.97 −0.04 7.22

7–10 53.1 1.0 1.8 2 0.45 −0.85 1.00
>10 16.9 0.4 2.4 3 0.57 −0.59 2.41

2.2.4. Landslide Susceptibility Methodology: Weight of Evidence Method (WOE)

The WOE method was proposed by Bonham-Carter (1994) [28], and the assessment equations in
WOE method can be written as Equations (4)–(6) [5]:

W+ = ln

[

A1/(A1 + A2)

A3/(A3 + A4)

]

(4)

W− = ln

[

A2/(A1 + A2)

A4/(A3 + A4)

]

(5)

C = W+ −W− (6)

where A1 (A3) is the landslide area (not-landslide) in a specific category of specific landslide-related
factor and A2 (A4) is the total landslide (not-landslide) area not in the specific category of specific
landslide-related factor. The W+ (W−) value represents the landslide-induced positive (negative)
weight of the specific category in the landslide-related factor. The weights contrast value (C) is the
difference between W+ and W− and represents the spatial association between the specific category in
the landslide-related factor and landslide occurrence [5]. The landslide susceptibility in a specific grid
can be calculated as the summation of C values in each landslide-related factor.
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2.2.5. Landslide Susceptibility Methodology: Instability Index Method (II)

The instability index (II) method was proposed by Jian [29] to assess the slope stability.
The calculation process for assessing the landslide susceptibility using the II method can be divided
into two parts: the normalized grades (D) of each category in each landslide-related factor and the
weighting value (We) of each landslide-related factor. The D and We values can be written as Equations
(7) and (8) [30]:

Di =
9(Xi −Xmin)

Xmax −Xmin
+ 1 (7)

Wei =
Vi

V1 + V2 + . . .+ Vn
(8)

landslide susceptibilty = D
We1
1 ×DWe2

2 × . . .DWen
n (9)

where Xi can be calculated as the ratio of LR in the ith category to the total LR in all categories in a
specific landslide-related factor, while Xmin (Xmax) represents the minimum (maximum) ratio value in
all categories of the landslide-related factor. Vn in Equation (9) is the coefficient of variation of the Xi

values in all categories for the nth landslide-related factor. The D value is a normalization value to
show the landslide-induced influence of a specific category in all categories.

2.2.6. Validation and Similarity of Landslide Susceptibility Models

The area under the receiver operating characteristic curve (AUC) and the confusion matrix are
the two methods to assess the model performance of landslide susceptibility models in this research.
The receiver operating characteristic curve is obtained by plotting the sensitivity value on the vertical
axis and the 1-specificity value on the horizontal axis, and the AUC value is adopted as an index to
assess the model performance. The model performance can be considered as failed, poor, fair, good,
and excellent with AUC values (the area under the receiver operating characteristic curve) ranges of
0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1.0, respectively.

This research uses the confusion matrix [18] concept to set four indexes. The PLCR (PLWR) is
the ratio of the predicted-landslide area within (not within) the range of landslide inventory to the
total landslide area, and the PNLCR (PNLWR) is the ratio of the predicted-non-landslide area outside
(not outside) the range of landslide inventory to the total non-landslide area. The mean correct ratio
(MCR) is the mean of PLCR and PNLCR, while the mean wrong ratio (MWR) is the mean of PLWR

and PNLWR.
This research adopts the correlation analysis to assess the similarities of four landslide susceptibility

models. The similarities between the two models is very weak, weak, moderate, strong, and very
strong when the correlation coefficient from the correlation analysis is 0.0–0.2, 0.2–0.4, 0.4–0.7, 0.7–0.9,
and 0.9–1.0, respectively.

2.2.7. Long-Term Landslide Evolution Analyses

The analysis of long-term landslide evolution includes the analysis of long-term rainfall records
and the difference analysis of the annual landslide distribution from 2008 to 2014 in the Chishan
river watershed. We collect the rainfall record in the Chishan river watershed from 2008 to 2014 to
analyze the long-term rainfall distribution. The Chishan river watershed can be classified into three
sun-watersheds, including upstream, midstream, and downstream watersheds (Figure 3). This research
selects a representative rainfall station in each watershed, including the Xingaokou station in the
upstream watershed, the Jiaxian station in the midstream watershed, and the Chishan station in
the downstream watershed (Figure 3), based on the rainfall station location and rainfall record data
availability. The research estimates the annual rainfall, the accumulated rainfall in the rainy seasons,
i.e., from May to October, and also estimates the counts of the accumulated rainfall of three days in a
row over 500 mm to understand the inducing strength from heavy rainfall in a specific year.
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The long-term landslide evolution analyses in this research means that we adopt the annual
landslide inventories from 2008 to 2014, and analyze the difference of annual landslide distribution
and expanding or contracting of the total landslide area in every year. The annual landslide inventory
used in this research was produced by the Forestry Bureau in Taiwan and the landslide inventory was
identified from the Formosat-2 images with the spatial resolution of 2 m shot during January to July
every year.

The landslide distribution of the Chishan river watershed after 2009 Typhoon Morakot was
strongly related to the landslide location and proximity to the river [27]. In this study, the landslide
distribution of the upstream, midstream, and downstream of the Chishan river watershed in 2008 to
2014 was analyzed. The areas of the upstream, midstream, and downstream river watershed were
210.0, 250.3, and 357.9 km2, respectively. Furthermore, areas within 300 m of the rivers were defined as
riverbank areas and areas 300 m outside the rivers were identified as non-riverbank areas. A landslide
located on the riverbank area was recognized as a riverbank landslide and a landslide that was not
located on the riverbank area was recognized as a non-riverbank landslide.

In this study, the count and area of the landslide and the new and old landslide ratio of each year
of the Chishan river watershed were estimated. A new landslide grid refers to when a landslide was
identified this year, but was not identified as a landslide in the previous year, whereas the old landslide
grid refers to when a landslide was identified both in this year and the previous year. The new and
old landslide ratio is the ratio of the sum of the new and old landslide area to the total landslide area
in a specific year. The purpose of the new or old landslide comparison from two annual landslide
inventories from 2008 to 2009 is different to that from 2009 to 2014. In this study, the definition of new
or old landslide from 2008 to 2009 is according to the aforementioned definition but that from 2009 to
2014 is the comparison of the landslide inventory in 2009 and the following year. For example, the old
landslide ratio of 62.9% in 2014 suggests that 62.9% of the landslide grid in 2014 was also identified as
a landslide grid in 2009.

3. Results

3.1. Extreme Rainfall-Induced Landslide Characteristics

The extreme rainfall-induced landslide characteristics in the Chishan river watershed can be
explained based on the statistical data in Table 3. If we consider the LR of >5.0% as an obvious
landslide-prone area, the top three obvious landslide-prone areas in all categories of 12 landslide-related
factors are the bare land category in land use factor (LR = 22.8%), the area with fault density
>20 × 10−3 m/km2 category in fault density factor (LR = 16.0%), and the Yushanchushan formation
(Yn) category in geology factor (LR = 13.1%). The three factors with the largest variance of LR are the
land use factor (154.71), accumulated rainfall factor (112.18), and the geology factor (108.52), while
those with the smallest variance of LR are the profile curvature factor (17.80), the proximity to the river
factor (19.06), and the plan curvature (32.05). The geological setting and rainfall distribution are key
factors for landslide distribution in the Chishan river watershed. The area of the strata with the LR >

5.0 occupies 42.6% of the total area in the Chishan river watershed, but the landslide area in the same
area occupies 75.0% of the total landside area. Lithology in the categories with the LR > 5.0 in the
geology factor is all about sandstone, shale, siltstone, and slate. The total area with accumulated rainfall
>1400 mm during the 2009 Typhoon Morakot occupies 68.2% of the watershed area, while the landslide
area with accumulated rainfall >1400 mm occupies 99.4% of the total landslide area in the watershed.

3.2. Landslide Susceptibility Models Usinf Four Methods

The landslide susceptibility mapping is followed by using four methods, and the research selects
the landslide susceptibility model with the best performance from four models for the following
research. In the process of establishing the landslide susceptibility model using the LRBLR method,
every category in each landslide-related factor is marked a LRC number based on LR (Table 3).
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The highest mean LRC number is 9.4 in the fault density factor, while the highest variation of LRC

number is 94.5% in the land use factor. The research picks 20 random sampling datasets for the logistic
regression analyses and selects the result for the random sampling dataset with the largest Cox &
Snell R2 value and Nagelkerke R2 value. Only if the two indexes, including Cox & Snell R2 value
and Nagelkerke R2 value, from the logistic regression analysis result using the random sampling
datasets are greater than 0.15, the dataset is useful and valid [7] in the research. This research picks the
dataset with the highest Cox & Snell R2 value (0.346) and Nagelkerke R2 value (0.461) from 20 random
sampling datasets, and uses the coefficients resulted from the logistic regression for developing the
landslide susceptibility model. The coefficient of each landslide-related factor from logistic regression
analysis is listed in Table 4.

Table 4. Coefficients of landslide-related factors in the landslide ratio-based logistic regression analyses.

LRC Number Coe* LRC Number Coe* LRC Number Coe*

elevation geology Plan curvature

1 —v 1 — 3 —
2 0.510 2 0.026 4 0.487
3 1.123 3 0.281 5 0.662
4 1.487 4 0.784 7 0.841

6 1.889 5 0.821 Profile curvature

10 2.327 6 0.892 4 —
11 2.483 7 0.978 5 0.065

slope 9 1.148 6 0.119

1 — 11 1.124 Topographic wetness index

3 0.632 Land use 2 —

5 0.725 1 — 4 0.981
6 1.142 2 0.657 5 1.123

7 1.168 6 0.742 Stream power index

8 1.392 11 1.183 2 —

aspect accumulated rainfall 3 0.221

1 — 1 — 4 1.103
4 16.623 4 2.032 5 1.123

5 17.145 6 2.685 Constant −21.652

6 17.862 11 3.112

fault density proximity to the river

4 — 3 —
10 −0.174 4 0.124
11 0.235 5 0.521

Note: Coe* means the coefficient of category in the twelve landslide-related factors from landslide ratio-based
logistic regression analysis.

The FR and C values in the process of establishing the landslide susceptibility map using FR and
WOE methods are listed in Table 3, while the D and W values using II method are also listed in Tables 3
and 5. The landslide susceptibility maps using four methods are shown in Figure 5. The mean landslide
susceptibility, standard deviation and variance of landslide susceptibility values using the LRBLR

method are 0.533%, 0.280%, and 52.5%, while those using the FR method are 0.387%, 0.185%, and 47.8%.
The mean landslide susceptibility, standard deviation and variance of landslide susceptibility values by
the WOE method are 0.549%, 0.222%, and 40.4%, while those using the II method are 0.325%, 0.199%,
and 61.2%. The accumulated percentages from 0 to 0.5 of landslide susceptibility using FR and II
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methods are 71.1% and 79.2%, while those from 0.5 to 1.0 of landslide susceptibility using LRBLR and
WOE methods are 65.6% and 65.8%.

 

 

Figure 5. The landslide susceptibility maps using four methods based on the landslide inventory after
2009 Typhoon Morakot in the Chishan river watershed.

245



Water 2019, 11, 2609

Table 5. Weights of landslide-related factors based on the II method.

Variables Elevation Slope Aspect Land Use Accumulated Rainfall Geology

S.D. 5.538 4.843 3.856 6.140 3.920 3.500
mean 4.430 2.430 1.552 9.499 4.397 3.798

variance 79.941 50.083 40.246 154.713 112.178 108.520
W.V. 0.109 0.069 0.055 0.212 0.153 0.148

Variables
Fault

Density
Proximity to

the Rivers
Plan

Curvature
Profile

Curvature
TWI SPI

S.D. 10.280 3.880 4.067 4.700 3.917 3.317
mean 4.425 0.740 1.303 0.837 1.318 1.315

variance 43.041 19.062 32.049 17.801 33.656 39.653
W.V. 0.059 0.026 0.044 0.024 0.046 0.054

Note: S.D. means the standard deviation, W.V. means the weighting value, TWI refers to the Topographic wetness
index, and SPI refers to stream power index.

The performance of landslide susceptibility models based on four methods is considered from
good to fair [28], because the AUC value of each method is LRBLR (0.803)>WOE (0.789)> FR (0.762)> II

(0.721). The confusion matrix of four landslide susceptibility models is shown in Table 6. This research
only explains the PLCR, PNLCR, and MCR data of landslide susceptibility models using four methods,
because the summation of MCR and MWR is 1.0. The PLCR value of the landslide susceptibility model
is 96.2% for LRBLR, 75.3% for FR, 92.3% for WOE, and 62.7% for II, while the PNLCR is 45.6% for
LRBLR, 60.3% for FR, 46.3% for WOE, and 62.2% for II. The MCR of landslide susceptibility model
is 70.9% for LRBLR, 67.8% for FR, 69.3% for WOE, and 64.0% for II. Based on the performance of
landslide susceptibility models, including the AUC and MCR values, this research considers that the
landslide susceptibility model using the LRBLR method is the most suitable model in four landslide
susceptibility models in the Chishan river watershed.

Table 6. Confusion matrix of landslide susceptibility models using the four methods and in 2010
to 2014.

Statistical Data between 4 Methods Statistical Data from 2010 to 2014

LRBLR FR WOE II 2010 2011 2012 2013 2014

PLCR 96.2 75.3 92.3 62.7 94.6 95.2 96.4 91.8 62.6
PNLCR 45.6 60.3 46.3 65.2 30.4 34.6 36.0 55.7 75.5

MCR 70.9 67.8 69.3 64.0 62.5 64.9 66.2 73.8 69.1
PLWR 3.8 24.7 7.7 37.3 5.4 4.8 3.6 8.2 37.4

PNLWR 54.4 39.7 53.7 34.8 69.6 65.4 64.0 44.3 24.5
MWR 29.1 32.2 30.7 36.1 37.5 35.1 33.8 26.3 31.0

Note: PLCR and PNLCR refer to the predicted landslide correct ratio and the predicted non-landslide correct ratio,
respectively, PLWR and PNLWR refer to the predicted landslide wrong ratio and predicted non-landslide wrong
ratio, respectively, and MCR and MWR refer to the mean correct ratio and mean wrong ratio, respectively.

3.3. Rainfall Records from 2008 to 2014 in the Chishan River Watershed

The rainfall records in the Chishan river watershed from 2008 to 2014 are shown in Figure 6 and
Table 7. The mean accumulated rainfall during the rainy seasons and annual rainfall from 2008 to
2014 are 2784 mm and 3488 mm in the upstream watershed, 2478 mm and 3168 mm in the midstream
watershed, and 2408 mm and 2595 mm in the downstream watershed. The accumulated rainfall during
the rainy seasons in the upstream watershed occupied 72.5% to 85.6% of the annual rainfall from 2008
to 2014, while those in the midstream and downstream watershed occupied over 87.0%.
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Figure 6. The annual rainfall (solid lines) and accumulated rainfall during the rainy season (dash lines)
from three representative rainfall stations, including Xingaokou station (red line), Jiaxian station
(blue line), and Chishan station (black line), in the Chishan river watershed from 2008 to 2014.

Table 7. The 3-day accumulated rainfall >500 mm records from 2008 to 2014 in the Chishan river watershed.

Year The Rainfall Events with the 3-Day Accumulated Rainfall > 500 mm

Chishan station in the downstream watershed

2008 572 mm from 17 to 19 July
2009 900 mm from 6 to 10 August
2010 No event
2011 No event
2012 577 mm from 10 to 12 June
2013 820 mm from 29 to 31 August
2014 No event

Jiaxian station in the midstream watershed

2008 1018 mm from 17 to 19 July and 618 mm from 13 to 15 September
2009 2142 mm from 6 to 10 August
2010 677 mm from 18 to 20 September
2011 No event
2012 706 mm from 10 to 12 June
2013 567 mm from 21 to 23 August and 852 mm from 29 to 31 August
2014 No event

Xingaokou station in the upstream watershed

2008
566 mm from 17 to 19 July, 883 mm from 13 to 15 September, and 601

mm from 28 to 30 September
2009 2076 mm from 6 to 10 August
2010 No event
2011 No event
2012 784.5 mm from 10 to 12 June
2013 No event
2014 501.5 mm on 23 July

The research collects the heavy rainfall or typhoon events with the 3-day accumulated rainfall
over 500 mm from 2008 to 2014 in the Chishan river watershed and lists in Table 7. The most
accumulated rainfall in 3 days were 1018 mm in 2008 and 2142 mm in 5 days in 2009 in the midstream
watershed, and 604 mm in 2008 and 2076 mm in 2009 in the upstream watershed. Furthermore,
the most accumulated rainfall was 572 mm in 3 days in 2008 and 900 mm in 5 days in 2009 in the
downstream watershed.
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The comparison of the rainfall concentration in 2008 and 2009 can explain why the landside ratio in
2009 is larger than that in 2008. The accumulated rainfall during the rainy season in 2008 ranges from
3012 mm to 4615 mm, and that in 2009 ranges from 1747 mm to 3173 mm. The concentrated rainfall
during 2009 Typhoon Morakot is the key factor for the dense landslide distribution in the Chishan river
watershed. The 3-day accumulated rainfall in 2008 in the Chishan river watershed ranges from 566 mm to
1018 mm, while that in 2009 ranges from 900 mm to 2142 mm. The rainfall concentration during specific
heavy rainfall or typhoon events is a key factor for inducing landslides in the Chishan river watershed.

3.4. Landslide Distribution from 2008 to 2014 in the Chishan River Watershed

The annual landslide distributions and statistical data from 2008 to 2014 are shown in Figure 7 and
Table 8. The landslide distributions from 2008 to 2014 in the Chishan river watershed are concentrated
in the midstream and upstream watersheds. The landslide counts and area in 2009 are 3.4 times and
7.4 times larger than those in 2008 due to 2009 Typhoon Morakot. The landslide area lowers gradually
from 2009 to 2012, and raises slight from 2012 to 2013, and lower again from 2013 to 2014. The landslide
counts and area in 2014 are only 69.8% and 53.4% of those in 2009. The landslide area from 2010
to 2014 shows that the landslide area in the following years after 2009 Typhoon Morakot gradually
decreases if without any heavy rainfall event with more accumulated rainfall than that during 2009
Typhoon Morakot.

 

 

Figure 7. The landslide distribution from 2008 to 2014.

Table 8. The statistical data of landslide distribution from 2008 to 2014.

Year 2008 2009 2010 2011 2012 2013 2014

N 710 2389 2750 1551 1501 1957 1667
A (km2) 4.6 33.9 26.2 19.0 14.8 18.3 18.1
OP (%) — 8.7 66.2 68.7 71.4 61.7 62.9
NP (%) — 91.3 33.8 31.3 28.6 38.3 37.1

Notes: N and A refer to the landslide count and landslide area (km2), respectively, and OP and NP refer to the old
and new landslide percentage (%), respectively.
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The new landslide ratio in 2009 rises to 91.3% due to the concentrated rainfall during 2009 Typhoon
Morakot. The new landslide occupied percentage from 2009 to 2014 is <38.3%. This means that the
landslide induced by 2009 Typhoon Morakot still plays an important role in the annual landslide
inventory from 2010 to 2014.

Table 9 lists the statistical data of landslide ratio, new and old landslide percentage in the upstream,
midstream, and downstream watershed of the Chishan river watershed from 2008 to 2014. Most of
landslide distribution from 2010 to 2014 still overlaps the landslide distribution induced by 2009
Typhoon Morakot. The mean old landslide percentage from 2010 to 2014 in the upstream, midstream,
and downstream watersheds are 60.1%, 76.1%, and 49.7%, respectively. The old landslide percentage
in the upstream, midstream, and downstream watersheds in 2014 are 56.7% and 76.0%, and 45.8%,
respectively, and this means that near or over 50% of landslide induced by Typhoon Morakot in 2009 is
still hard to recover in 2014.

Table 9. The landslide ratio, new and old landslide percentages in the upstream, midstream,
and downstream of the Chishan river watershed from 2008 to 2014.

Watershed 2008 2009 2010 2011 2012 2013 2014

Old and New landslide percentage in the upstream watershed (%)

Old — 18.4 60.6 61.4 67.4 54.5 56.7
New — 81.6 39.4 38.6 32.6 45.5 43.3

Old and New landslide percentage in the midstream watershed (%)

Old — 4.5 72.6 77.1 76.6 78.0 76.0
New — 95.5 27.4 22.9 23.4 22.0 24.0

Old and New landslide percentage in the downstream watershed (%)

Old — 8.8 39.8 62.0 52.8 47.9 45.8
New — 91.2 60.2 38.0 47.2 52.1 54.2

The statistical data of riverbank-landslide and non-riverbank-landslide from 2008 to 2014
in the Chishan river watershed is shown in Figure 8. The area of the riverbank-landslide and
non-riverbank-landslide in the downstream of the Chishan river watershed from 2008 to 2014 are still
smaller than 1.0 km2, and the downstream watershed can be considered as a non-landslide-prone
area. The area of riverbank-landslide and non-riverbank-landslide in the upstream watershed in 2009
are 3.3 and 3.5 times larger than those in 2008, while those in the midstream watershed are 13.5 and
17.9 times larger than those in 2008. The area of riverbank-landslide and non-riverbank-landslide in
the midstream watershed in 2014 are only 25.3% and 30.5%, respectively, of those in 2009, while those
in the upstream watershed are 122% and 112%, respectively, of those in 2009. This shows that most of
landslide induced by 2009 Typhoon Morakot in the midstream watershed has been gradually recovery
in 2014, but that in the upstream watershed was still hard to recover in 2014.
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Figure 8. Area of the riverbank-landslide (solid lines) and non-riverbank-landslide (dash lines) in the
upstream (black line), midstream (blue line), and downstream (red line) from 2008 to 2014.

3.5. Landslide Susceptibility in the Following 5 Years after the 2009 Typhoon Morakot in the Chishan River Watershed

The long-term landslide evolution analysis in this research has proved that the landslide
distribution in 2010 to 2014 has a high correlation to the landslide distribution induced by the
2009 Typhoon Morakot. We suggest that the annual landslide susceptibility maps of the Chishan river
watershed from 2010 to 2014 can be the combination of the landslide susceptibility map after the 2009
Typhoon Morakot and the average landslide area different ratio (LAD) to the power of the year interval
number between 2009 to the specific year in 2010–2014. The LAD ratio in this study can be defined as
the ratio of the total landslide area in a specific year from 2010 to 2014 to the total landslide area in 2009
of the watershed. For example, the annual landslide susceptibility map in 2012 is the production of the
landslide susceptibility model after the 2009 Typhoon Morakot and the LAD value to the power of 3.

The annual landslide susceptibility map in 2010 to 2014 of the Chishan river watershed was drawn
based on two assumptions. The first assumption was that no previous heavy rainfall event occurred
with more accumulated rainfall than that of the 2009 Typhoon Morakot. This assumption is valid for
the Chishan river watershed based on data shown in Figure 5 and Table 7. Second, the LAD ratio in a
specific area was considered to be constant in the 5 years following the 2009 Typhoon Morakot.

Given the difference in the landslide evolution in the upstream, midstream, and downstream
areas of the Chishan river watershed and for the riverbank and non-riverbank areas, the Chishan river
watershed was classified into six subareas, including the riverbank and non-riverbank areas in the
upstream, midstream, and downstream watersheds. The research uses the landslide area in 2009 and
2014 in the same subareas to calculate the LAD value. The average LAD values in the riverbank and
non-riverbank areas in the midstream watershed from 2010 to 2014 were 0.760 and 0.788, respectively,
whereas those in the downstream watershed were 0.732 and 0.789, respectively. The average LAD

values of the riverbank and non-riverbank areas in the upstream watershed from 2010 to 2014 were
1.04 and 1.02, respectively.

The annual landslide susceptibility of each subarea of the river watershed in a specific year from
2010 to 2014 is the production of landslide susceptibility in 2009 and the LAD ratio to the power of
the year interval. The annual landslide susceptibility distributions of the Chishan river watershed
from 2010 to 2014 are shown in Figure 9, and the statistical data of the annual landslide susceptibility
from 2010 to 2014 are shown in Table 6. The MCR value of the landslide susceptibility model using the
landslide ratio-based logistic regression (LRBLR) method in 2009 was 70.9%, and the MCR values of
the annual landslide susceptibility models from 2010 to 2014 ranged from 62.5% to 73.8%. The MCR

values of the annual landslide susceptibility maps from 2010 to 2014 are still acceptable.
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Figure 9. The annual landslide susceptibility from 2010 to 2014 in the Chishan river watershed.

4. Discussion

4.1. Applicability of Landslide Susceptibility Models to the Areas with Dense Landslide Distribution

The similarity and difference of landslide susceptibility models using four methods can help to
understand the applicability of each landslide susceptibility model to the areas with dense landslide
distribution induced by extreme rainfall events. The correlation analysis result of the four landslide
susceptibility models is listed in Table 10.

Table 10. The correlation coefficients of landslide susceptibility models based on four methods.

Landslide Susceptibility Models LRBLR FR WOE II

LRBLR 1.000 0.838 0.924 0.782
FR 0.838 1.000 0.807 0.886

WOE 0.924 0.807 1.000 0.763
II 0.782 0.886 0.763 1.000

The similarity between the landside susceptibility models based on LRBLR, FR, WOE, and II

methods is strong to very strong. The four landslide susceptibility models can be classified into two
groups based on the similarity, including the first group with the landslide susceptibility maps based
on LRBLR and WOE methods and the second group with the landslide susceptibility maps based on
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FR and II methods. The distribution of landslide susceptibility based on the methods in the first group
is somewhat different to that in the second group.

The difference of landslide susceptibility models based on four methods is the process how the
assessing grade of each category and weighting value of each landslide-related factor are decided in the
specific method. The concept of landslide ratio is used in the four methods, such as LRC classification
in LRBLR, FR value in FR, W+ value in WOE, and the D value in II. The landslide susceptibility value
by using FR or WOE methods is with equal weighting value, while using LBRLR or II methods gives a
different weighting value. The accumulated rainfall, geology distribution, and land use factors should
be the top three key factors for building the landslide susceptibility models based on the variance of
landslide ratio in each factor in the Chishan river watershed based on the above-mentioned analysis.
The factors used in building the extreme rainfall-induced landslide susceptibility model should be
with different weighting values, so the FR and WOE methods are not suitable methodologies to build
the landslide susceptibility model in the Chishan river watershed after the 2009 Typhoon Morakot.

The process of building the landslide susceptibility models by using LRBLR and II methods are
with LR ratio and weighting values, but the difference between the two methodologies is the method
by which landslide susceptibility values can be estimated. The landslide susceptibility value by using
the II method is the product of the landslide susceptibility value of each factor, and the landslide
susceptibility value in each factor was <1.0. The mean landslide susceptibility value by using the
II method was 0.325, which is only 60.9% of the mean landslide susceptibility value obtained using
the LBRLR method. Using the product to combine each landslide susceptibility value of each factor
by using the II method underestimates the landslide susceptibility. In this study, the II method is
considered suitable to develop the landslide susceptibility in the area with mild landslide distribution.
The landslide susceptibility value using the LRBLR method is the summation of the assessment value of
each category of each factor, and the assessment value of each category of each factor is determined by
the SPSS software. The LRBLR method was considered suitable to develop the landslide susceptibility
model for the extreme rainfall-induced landslide susceptibility model.

4.2. Evolution of Landslide Distribution in the Following 5 Years after the 2009 Typhoon Morakot

The landslide evolution in 2010 to 2014 is different in the upstream, midstream, and downstream
of the Chishan river watershed and must be discussed in detail. The landslide ratio in the upstream
watershed was 1.37% in 2008, 4.62% in 2009, and 5.40% in 2014. The landslide ratio in the upstream
watershed from 2010 to 2014 was larger than that in 2009, except 2012. On average, the landslide
inventory from 2010 to 2014 in the upstream watershed was composed of 60.1% old landslide that had
originated from the 2009 typhoon Morakot and 39.9% new landslide. This means that the landslide in
the upstream watershed following the 2009 typhoon Morakot is difficult to recover and easily induced
by the mild heavy rainfall events. The landslide distribution in the upstream watershed in 2009, 2010,
2012, and 2014 is shown in Figure 10 for detailed discussion. The river intersection area (red rectangles
in Figure 10) and the river source area (red circles in Figure 10) are the two main areas where the
landslide is problematic to recover and easily induced from 2010 to 2014.

The midstream watershed has the most landslide area after 2009 Typhoon Morakot in the Chishan
river watershed. The landslide ratio in the midstream reaches peak (9.19%) in 2009 and decreases
gradually to 2.56% in 2014. On average, the landslide inventory from 2010 to 2014 in the midstream
watershed is composed of 76.1% old landslide originating from 2009 Typhoon Morakot and 23.9%
new landslide. This means that the landside in the midstream watershed is easily induced only by
extreme rainfall events and recovers quickly in 5 years after extreme rainfall events. The composition
of strata should be among important factors for the different landslide recovery in the upstream and
midstream watersheds. The main strata in the upstream watershed include the Nankang formation,
Changchihkeng Formation, and Nanchuang formation. The accumulated occupied percentage of the
three strata in the upstream is around 87.9%. The composition of the three strata is slate, sandstone
and shale, i.e., three landslide-prone lithologies. The landslide occurred in the three strata in the
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upstream watershed in 2009 occupied 85.3% of the total landslide in the upstream, while that in 2014
still occupied 87.8% of the total landslide in the upstream.

 

 

Figure 10. The landslide distributions in 2009, 2010, 2012, and 2014 in the upstream of the Chishan
river watershed.

The recovery of riverbank landslide from 2010 to 2014 was different in the upstream and midstream
of the Chishan river watershed. Wu [31] mentioned that the riverbank landslide after the 2009 Typhoon
Morakot in Taiwan was difficult to recover because of the excessive sediment yield from numerous
landslides and debris flow that deposited randomly in the river and resulted in serious riverbank
landslide. The area of the riverbank landslide induced by the 2009 Typhoon Morakot in the midstream
watershed was recovered in 2014, whereas that in the upstream watershed increased in 2014. This is a
notable and valuable observation for further discussion.

The riverbank landslide areas from 2012 to 2013 in the upstream and midstream watersheds
are obvious comparisons for the difference in landslide recovery. The midstream watershed had
suffered two heavy rainfall events with a 3-day accumulated rainfall of over 500.0 mm in August 2013
(Table 7), but the riverbank landslide area still decreased from 2012 to 2013. Additionally, the upstream
watershed had suffered two heavy rainfall events on the same date, but the 3-day accumulated
rainfall of Xingaokou station on 21–23 August and 29–31 August were only 449.5 mm and 353.5
mm, respectively. The riverbank landslide area in the upstream watershed in 2013 increased by 1.63
times of that in 2012, and the non-riverbank landslide area also increased by 1.66 times. In this study,
the statistical data of landslide and rainfall in 2008 in the upstream watershed were adopted for obvious
comparison. The annual rainfall in 2008 and in 2013 in the upstream watershed were 4049 and 3846 mm,
respectively, and there were three heavy rainfall events with accumulated rainfall over 500.0 mm in
2008 and zero event in 2013 in the upstream watershed. The riverbank landslide ratio in the upstream
in 2008 was 1.5%, and that in 2013 was 6.5%. These data demonstrate that the landslide proneness
in the upstream watershed increased significantly after the 2009 Typhoon Morakot, whereas that in
the midstream and downstream watershed decreased gradually. The upstream watershed should be
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considered the most important area in the Chishan river watershed to implement further engineering
and disaster prevention based on the long-term landslide evolution analysis.

Another key consideration for future studies can be that the landslide distribution in a river
watershed in the following years after extreme rainfall events is mostly overlapped with that induced
by extreme rainfall events. The old landslide percentages in the upstream and midstream of the
Chishan river watershed were still over 60.0% from 2010 to 2014. The landslide susceptibility maps after
extreme rainfall events can be the basis for the annual landslide susceptibility in the years following
extreme rainfalls. We suggest that the landslide susceptibility model should be developed after extreme
rainfall or earthquake events, and the annual landslide maps in the years following extreme rainfall or
earthquake events can be the combination of the landslide susceptibility model and LAD values to
the power of the year interval. The LAD values should be estimated carefully in each of the subareas.
The annual landslide susceptibility maps from 2010 to 2014 in the Chishan river watershed in this
research also proves the aforementioned concept and can be used with acceptable accuracy.

5. Conclusions

This research draws annual landslide susceptibility maps in the years after specific extreme
rainfall events. Numerous landslides were induced by Typhoon Morakot in the Chishan River
watershed. Based on our analysis result, 61.7% of the landslide area from 2010 to 2014 upstream and
midstream of the Chishan River watershed overlapped with that induced by Typhoon Morakot in 2009.
This indicates that the landslide distribution following specific extreme rainfall events are strongly
related to that induced by the events. We suggest that annual landslide susceptibility maps in the years
after specific extreme rainfall events can be drawn on the basis of the landslide susceptibility maps
induced by specific extreme rainfall events. Most landslides in the years after specific extreme rainfall
events were riverbank landslides induced by sinuous rivers that resulted from the large amount of
sediment deposited in the river from the dense landslide after Typhoon Morakot. We emphasize the
importance of riverbank landslides and explain how to assess susceptibility to them in the 5 years after
Typhoon Morakot.

The research selects 12 landslide-related factors as the basis for establishing landslide susceptibility
models using four methods, and the highest-performing landslide susceptibility model of the four
methods is the LRBLR method. Accumulated rainfall, geology distribution, and land use are the top
three key factors for establishing the landslide susceptibility model based on the variance of landslide
ratios in each factor. Furthermore, we adopt the annual landslide inventories from 2008 to 2014 in
the Chishan River watershed to analyze the long-term landslide evolution. The mean old landslide
percentages from 2010 to 2014 upstream, midstream, and downstream of the Chishan River watershed
are 60.1%, 76.1%, and 49.7%, respectively. The study calculates the mean LAD in the riverbank
and non-riverbank areas upstream, midstream, and downstream of the Chishan River watershed.
We suggest that the annual landslide susceptibility maps of the Chishan River watershed from 2010
to 2014 can be the combination of the landslide susceptibility map after Typhoon Morakot and the
average LAD to the power of the year interval number between 2009 to the specific year from 2010 to
2014. We can roughly draw the annual landslide susceptibility map in the Chishan River watershed
from 2010 to 2014. We compare the annual landslide inventories and susceptibility map from 2010 to
2014 in the Chishan River watershed, and the mean correct ratios from 2010 to 2014 range from 62.5%
to 73.8%.
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Abstract: The N-Ohkawa landslide, and the southern section of the Ohkawa landslide, occurred
during the snow-melt seasons of 1999 and 2006, respectively, in the Shirakami Mountains, Japan. This
paper examines the response of trees in the Shirakami Mountains to landslides, and also investigates
the spatio-temporal occurrence patterns of landslide events in the area. Dendrogeomorphological
analysis was used to identify growth suppression and growth increase (GD) markers in tilted
deciduous broadleaved trees and also to reveal the timing of the establishment of shade-intolerant
tree species. Analysis of the GD markers detected in tree-ring width series revealed confirmatory
evidence of landslide events that occurred in 1999 and 2006 and were observed by eyewitnesses, as
well as signals from eight additional (previously unrecorded) landslide events during 1986–2005.
Furthermore, shade-intolerant species were found to have become established on the N-Ohkawa
and southern Ohkawa landslides, but with a lag of up to seven years following the landslide events
causing the canopy opening.

Keywords: tree ring; dendrogeomorphology; landslide; landslide activity; deciduous broadleaved
tree; Shirakami Mountains

1. Introduction

Landslides are common in mountainous regions, and can be driven by tectonic, cli-
matic, and/or human activities [1,2]. Landslides can create permanently unstable sites,
and as a result, can drastically alter landscape morphology, damage forest environments,
and even endanger life. Identifying the spatial and temporal patterns of landslide occur-
rence is vital for environmental management and minimizing the losses associated with
landslides. However, information regarding past landslide events is scarce and almost
always incomplete.

Dendrogeomorphology can be used as a proxy indicator of past landslide activity
at the scale of years [3–5]. This dating technique is based on the analysis of annual
growth rings in trees, with the mixed signals being filtered to isolate the signal indicative
of landslide events from non-landslide disturbances, such as climate variations, insect
epidemics, and human activity, encoded within the tree-ring chronologies [6,7]. Landslides
cause disturbances in tree growth that are preserved as variations within the tree-ring
width series. These growth disturbances (hereafter GD) can take several forms, namely,
abrupt growth release (wider annual rings), suppression (narrower annual rings), and the
formation of compression wood that results from the elimination of neighboring trees,
damage to the root, crown or stems, and stem tilting [5,8]. Dating of landslide reactivation
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by interpretation of these GD markers preserved within annual-ring-width series has been
performed using a moving-window approach to smooth out non-landslide fluctuations [9]
or evaluating the change rate of the annual ring width if it exceeds a certain threshold
value [10]. Additionally, other studies have dated landslides using different thresholds
(e.g., the event-response (It) index and number of GD markers) [10,11]. Although the
amount of research has increased in recent years, no systematic standard approach has
yet been proposed and the choice of an appropriate definition and threshold appears to
be site-specific.

Dendrogeomorphological studies of landslides have been performed using conifers
in the European Alps and Americas [5,8,12]. In North America, Carrara [13] identified
synchronous abrupt reductions in annual ring width in tree samples. He suggested that
these tree responses were the result of damage during a landslide and was thus able to
date the landslide event to 1693 or 1694 and infer that the trigger was an earthquake.
With a focus on abrupt reductions in annual ring width and the formation of compression
wood on the tilted side stem in the French Alps, Lopez-Saez et al. [10] assessed eight
different stages of landslide reactivation over the past 130 years and found that landslide
reactivation was associated with seasonal rainstorms. Recently, Lopez-Saez et al. [14]
added abrupt increases in annual ring width as another type of growth disturbance, and
this enabled reconstruction of 26 reactivation phases of landslides between 1859 and 2010
in the Swiss Alps. In the Orlické hory Mountains (Czech Republic), Šilhán [11] found that
landslide activity is particularly associated with slide and creep effects, and the consequent
growth disturbance can be identified in trees growing on the scarp and the landslide
block. In contrast, there have been few such studies in Asia [3,12,15]. Recent studies have
demonstrated that broadleaved trees are also useful for dating landslides and shown the
need for additional case studies that consider, for example, an adequate variety of species
and age classes [5,12].

Coherent landslides, which often move slowly (Jisuberi in Japanese), dominate in the
Shirakami Mountains [16], but historical records relevant to landslide activity are scarce.
In this study, we investigate the spatio-temporal patterns of landslide occurrence through
analysis of the dendrogeomorphological record of 90 deciduous broadleaved trees from
12 species growing on landslide scarps and landslide moving bodies, which we refer to
as the displaced blocks, on the right flank of the Ohakawa River, a tributary of the Iwaki
River, within the Shirakami Mountains. Our main aims are: (i) to identify and interpret
the GD markers (i.e., abrupt growth increase and growth suppression) preserved in the
tree-ring series of trees growing on the landslide slopes; (ii) to investigate how these trees
responded to landslides known to have occurred in the area; and (iii) to reconstruct the
spatial and temporal patterns of landslide occurrence over the past 70 years using our GD
data, as well as the timing of the establishment of shade-intolerant trees, and compare this
with the limited eyewitness reports of landslides.

2. Study Area

The coherent landslides studied here were located on the right bank, and on an outside
bend, of the meandering Ohkawa River, which originates from the eastern side of the Shi-
rakami Mountains, northern Honshu Island, Japan (Figure 1). These landslides are covered
by deciduous broadleaved trees dominated by Siebold’s beech (Fagus crenata). The forest
is a naturally regenerated, unmanaged secondary forest that developed after the original
forest was selectively felled until 1967 [17]. The study area has a cool-temperate climate,
with an average temperature of 8.1 ◦C and average annual rainfall of 2589 mm [18]. Each
year, from November to the following April, the area is covered by snow to a maximum
depth of about 2.2 m [18].
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Figure 1. Coherent landslides, topographic map, and aerial photographs from the study area. (a) Landslide topogr

–I’, II–II’, and III–III’) are shown in F

Figure 1. Coherent landslides, topographic map, and aerial photographs from the study area. (a) Landslide topography.
Aerial photographs are from (b) 1975 and (c) 2015. The topographic map was constructed from a 1-m digital elevation
model (DEM) based on LiDAR data provided by the Geospatial Information Authority of Japan (https://www.gsi.go.jp/,
accessed on 12 April 2020). The landslide topography was interpreted using the slope image and the results were checked
in the field. Topographic cross-sections (I–I’, II–II’, and III–III’) are shown in Figure 2.

Our study area contains two neighboring landslide slopes: the N-Ohkawa and
Ohkawa landslides, that are located along a 40-m-high terraced scarp, with the river
terrace top at elevations of 285 to 295 m (Figures 1a and 2). Terrace gravels were exposed at
the edge of the terrace after the landslides. The bedrock is formed from the mid-Miocene
Hayaguchigawa Formation, which consists primarily of acidic pyroclastic deposits, but also
contains andesitic pyroclastic deposits, sandstones, and conglomerates [19] (Figure 2). The
N-Ohkawa landslide comprises a single displaced block. In contrast, distinctive stair-like
features are evident on the displaced block of the Ohkawa landslide, which also comprises
two secondary scarps that separate the individual blocks within the larger block at its
northern and southern ends (Figure 2). Minor gully features are present in the landslide
slope. Based on its slope geometry, we divided the Ohkawa landslide into three sections;
i.e., the eastern, northern, and southern sections, for the following discussion. The timing
of these movements is not well constrained. However, limited information obtained from
several eyewitness accounts recorded during site visits suggests that the major movements
of the N-Ohkawa landslide and the southern section of the Ohkawa landslide occurred
in April 1999 and May 2006, respectively [20]; other slope movements of the Ohkawa
landslide occurred recently, as described in Section 4.3. In addition, the lower slope of the
N-Ohkawa landslide seems to have failed beforehand, as indicated by the bare area seen
on the aerial photograph from 1975 (Figure 1b). The N-Ohkawa landslide and the northern
and southern sections of the Ohkawa landslide are visible on the aerial photograph from
2015 (Figure 1c).
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Figure 2. Topography and geological cross-sections of the studied landslide slopes. (a) A photograph of the study area. (b)
Geological cross-sections of the N-Ohkawa landslide (III–III’), the eastern and northern sections of the Ohkawa landslide
(II–II’), and the southern section of the Ohkawa landslide (I–I’). The photograph was taken in 2017. The cross-sections are
based on the LiDAR DEM.

3. Methods

3.1. Sampling and Cross-Matching of Ring-Width Series

Increment cores were extracted from the upper side of the tilted stems of 90 living
broadleaved trees using a Pressler increment borer (maximum length of 40 cm and diameter
of 5.15 mm) between June and November 2019, on the main and secondary landslide scarps
and on landslide-displaced blocks (Figure 3). The trees were sampled at trunk heights of
20–120 cm. According to the standard methods of dendrochronological research, increment
core should be taken parallel to contour to avoid the development of reaction wood in
tilted trees [21]. Tension wood develops on the upper side of leaning hardwood trees and
typically has wider annual rings than on the lower side [3]. However, in the present study,
we obtained cores oriented in the slope direction, because the formation of tension wood is,
in itself, a good indicator of landslide movement [3]. Indeed, tension wood may not form
in all tilted trees; therefore, wider annual rings may also be the result of growth release
owing to, for example, the formation of canopy opening after landslide [5,8]. As such,
responses resulting from both tilting and gap formation after landslides are included in
our results.
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3. Locations of sampled trees and frequency distribution of tree species. (a) Locations of sampled trees at 
Figure 3. Locations of sampled trees and frequency distribution of tree species. (a) Locations of sampled trees at the N-
Ohkawa landslide. (b) Locations of sampled trees in the eastern and northern sections of the Ohkawa landslide. (c) Locations
of sampled trees in the southern section of the Ohkawa landslide. (d) Frequency distribution of tree species. The numbers
on the maps are sample ID numbers.

We selected 21 samples from four shade-intolerant species (Alnus hirsuta (Ah), Betula
maximowicziana (Bm), Salix bakko (Sb), and Salix sachalinensis (Ss)), 57 samples from three
shade-tolerant species (Acer pictum subsp. mono (Am), Fagus crenata (Fc), and Quercus crispula
(Qc)), and 12 samples from five intermediate shade-tolerant species (Aesculus turbinata
(At), Magnolia obovata (Mo), Prunus grayana (Pg), Prunus sargentii (Psa), and Sorbus commixta
(Sc); Figure 3). We collected 11 samples from the N-Ohkawa landslide and 79 samples
(including 39 from the southern (2006) section) from the Ohkawa landslide. The cores were
prepared and analyzed using standard procedures following Stokes and Smiley [22] and
Speer [21]. The sample cores were prepared using a razor blade to maximize the visual
resolution of the ring widths and were measured to the nearest 0.01 mm under a binocular
zoom microscope (Olympus SZ61) using a precision measurement stage (Chuo Seiki LTD.
LS-252D) attached to a digital output unit (Mitsutoyo Digimatic). After measurement,
all cores were visually cross-dated by matching well-defined wide or narrow rings. In
addition, longer chronologies (>60 years) of shade-tolerant species and several intermediate
species were cross-dated by using a simple list method [23].

3.2. Identification of Growth Disturbance by Landslides in Tree-Ring Width Series and Age
Determination of Shade-Intolerant Species

In this study, we considered two types of GD markers in the tree-ring width series:
abrupt growth increase and abrupt growth suppression. GD markers were identified using
the method described by Ishikawa et al. [7], in which a five year moving average of ring
width is used to identify periods of abrupt growth increase or suppression as follows. A
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growth increase is defined as a doubling of the five year moving average of the ring width
when compared with that of the previous five year period and a defined growth rate that
fluctuates continuously above 1 for at least 10 consecutive years. Conversely, a growth
suppression is defined as a halving of the five year average ring-width and a growth rate
fluctuating continuously below 1 for at least 10 consecutive years. In addition, because of
spatial irregularities in tree growth, the duration of the GD also depends on the sampling
position [4,13]. Therefore, we took into account moderate levels of GD in which the defined
growth rate persisted for less than 10, but more than five, consecutive years. In some cases,
there is a slight time lag from the casual disturbance event in the GD markers extracted
using the moving average method because of growth variation prior to and/or after the
event. To avoid this inaccuracy, we carefully checked the ring-width pattern around the
timing of the GD markers, and used the information to decide on the GD marker years
in the tree-ring width series. Figure 4a–d shows representative examples of how the GD
marker years were identified in the tree-ring series using the above method. No significant
changes in annual ring width were found in 30 of the cores from the sampled trees (33%)
and these cores were not considered for further analysis.

 

– –

Figure 4. Representative cases from the N-Ohkawa landslide. (a) A micro-section of Nu. 10 (Quercus crispula, Qc) on the
landslide scarp showing an abrupt increase in annual ring width in 1999. (b) A tree-ring width series and the 5 year moving
average of the tree-ring width series of Nu. 10. Light blue and black arrows indicate identified response years of GD, growth
suppression, and growth increase, respectively. (c) GD (i.e., growth suppression and growth increase) defined using growth
rate of the tree Nu. 10. Note that the defined growth rate of growth suppression was continuously below 1 for 6 consecutive
years, and that of growth increase was continuously above 1 for 7 consecutive years. (d) The tree-ring width series and
identified GD from Nu. 17 (Fagus crenata, Fc) on the displaced landslide block. The annual ring width increased abruptly in
1999, followed by successive decreases in 2000 and 2001, and then by an increasing trend. (e) The tree-ring width series
from Nu. 15 (Alnus hirsuta, Ah, the dominant shade-intolerant species in the study area). Open circle indicates the number
of years for the tree to grow to the sample height.
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The chronology of each of the previous landslides was expressed using the event-
response (It) index, following Shroder [24], as follows:

It(%) =
∑ GDt

∑ Nt
× 100 (1)

where GDt is the number of trees showing GD in their tree-ring record in year t, and Nt is
the number of sampled trees for each landslide alive in year t. Due to the limited number
of samples and detected GD markers available to identify landslide reactivation years,
thresholds of GDt ≥ 2 and It ≥ 15% were used. Additionally, the reported year of landslide
events and year of establishment of shade-intolerant tree species were also used to assist
our interpretation of the dendrochronological effects of landslide activity.

The establishment of shade-intolerant species is indicative of the development of
large gaps in the canopy at some point in the past, and these gaps were most probably
caused by landslides [25,26]. Consequently, the ages of individual younger trees from
shade-intolerant species were determined (Figure 4e) based on the number of rings counted
in the cores and the number of years required for seedlings to reach coring height estimated
using an age–height regression relationship. The age–height regression (age (years) =
0.025 × height (cm), R2 = 0.27) was established from 15 specimens of Ah (<2.5 m in height)
sampled at the Shirakami Natural Science Park of Hirosaki University, 4 km from the study
area, where the growth conditions are similar to those in our study area because of their
similar elevations. However, the ages for trees of shade-tolerant species and intermediate
shade-tolerant species to reach coring height were not estimated, and these trees were used
only to identify GD markers on tree-ring width series, as described above. The tree-ring
record of these samples were inspected between 1950 and 2019.

4. Results and Discussion

4.1. Spatial Distribution of Tree Ages and GD in Tree-Ring Width Series

The age of the trees sampled around the N-Ohkawa and Ohkawa landslides was
48.2 ± 22.4 years (average ± 1 SD), with a median of 56 years. The youngest tree was
6 years old and the oldest was 101 years old. Figure 5a shows the spatial distribution of the
tree ages of 60 trees used for landslide dating. Older ages tend to be concentrated near the
scarps, where the majority of trees were 51–70 years old. Trees of 51–90 years in age were
also sparsely distributed on the displaced block and many of these were back-tilted, which
suggests that the trees were moved down hillsides during landslide transport by rotation
along a circular feature of the sliding surface [11,27]. The younger trees (<20 years old)
on the scarps and displaced blocks were the shade-intolerant species Ah, Sb, and Ss. GD
markers were not detected in these younger trees (Figure 5).

 

–

–

–

Figure 5. Spatial distribution of tree ages and detected GD markers and trees with no GD markers. (a) Spatial distribution
of the ages of 60 trees sampled for dendrogeomorphological analysis. (b) Spatial distribution of detected GD markers for
individual trees.
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In total, 64 GD events (including 39 moderate GDs) were identified from 47 trees
(Figure 5b). Growth suppression (34 GDs, 53%) occurred in slightly more trees than growth
increase (30 GDs, 47%). This higher frequency of growth suppression has also been reported
in other similar works [14,28]. The highest frequency (45%) of first-detected GD within
the tree-ring width series occurred for trees aged between 16 and 30 years. Individual
trees with two GDs (e.g., growth suppression and increase or multiple growth-suppression
events) were detected mainly on the landslide scarps. Nevertheless, in a few cases, two GD
markers were also detected in trees on the landslide blocks.

4.2. Summary of GD in Tree-Ring Width Series

The GD markers associated with the N-Ohkawa landslide occurred mainly between
1998 and 2001 (Figure 6a). Samples Nu. 9 and 20 on the landslide scarp and the displaced
landslide block, respectively, showed wider annual rings in 1998, one year before the
landslide event that eyewitnesses reported as occurring in 1999. Two samples (Nu. 17 and
18) on the displaced landslide block showed wider annual rings in 1999 in response to the
landslide occurrence. Following the event in 1999, trees on the landslide scarp presented
wider annual rings in 2000 and 2001. Furthermore, narrow annual rings in 1970, 1982, and
1983 were detected in trees on the landslide scarp. In addition, shade-intolerant trees on the
displaced block appeared in the early 2000s, which is a lag of 3–5 years after the growing
season following the landslide in 1999 (Figure 6a).

Figure 6b–d summarizes the GD for the Ohkawa landslide. In the eastern area of the
landslide, a sample (Nu. 82) from the landslide scarp showed wider annual rings in 1956
as the earliest GD marker in the study area (Figure 6b). The majority of GD events appear
to be clustered after the 1980s, with six GDs on the landslide scarp and eight GDs on the
displaced block. In the northern section of the landslide, samples Nu. 95 and 96 on the
landslide scarp showed wider annual rings in 1973 and 1995, respectively. In addition, three
trees on the landslide scarp recorded GD markers in 2000 and narrow annual rings were
also identified for the same year in a sample (Nu. 78) from the displaced block (Figure 6c).
Furthermore, wider annual rings were detected in 2005 and 2006 in samples from the
displaced blocks. In the southern section of the landslide, 29 GDs were identified between
the 1960s and the 2010s (Figure 6d). GDs appear to be concentrated in the 1980s and the
late 2000s. In particular, GDs detected between 2006 and 2009 are considered to be the
consequence of the landslide event that occurred (based on eye-witness reports) in 2006.
Notably, shade-intolerant species appeared for the first time on the scarp and displaced
block between the late 2000s and the 2010s, a lag of 2–7 years behind the growing season
following the landslide event in 2006 (Figure 6d). The two major eye-witnessed landslide
events, the N-Ohkawa landslide in 1999 and the southern section of the Ohkawa landslide
in 2006, can be identified in the tree-ring records, which suggests that other GDs detected
in the study area may also be indicative of historical landslides that were large enough to
remove and damage the trees.
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Figure 6. Summary of GD markers identified in the trees and year of establishment of shade-intolerant species for the: (a)
N-Ohkawa landslide, (b) eastern section of the Ohkawa landslide, (c) northern section of the Ohkawa landslide, and (d)
southern section of the Ohkawa landslide. Black and red text indicates samples from the landslide scarp and the displaced
landslide block, respectively. Sample locations are shown in Figure 3.

4.3. Dendrochronological Investigations of Spatial and Temporal Patterns of Landslide Reactivation

The analysis of GD markers enabled the identification of landslide events on the
studied slopes (Figure 7). These previous slides are summarized in Figure 8 with reference
to the locations of trees with GD markers and field observations. For the N-Ohkawa
landslide, apart from the landslide reported in 1999, additional landslide activity was
detected in 1998 (Figure 7a). In addition, an event took place in 2000 that was detected using
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samples from the landslide scarp, implying an enlargement of the scarp (Figures 7a and 8).
In the eastern section of the Ohkawa landslide, for which there are no reported landslides,
we detected two landslide events that took place in 1993 and 2007 (Figure 7b). The
landslide events in 1993 and 2007 may suggest an episode of regressive enlargement of the
landslide scarp along the terrace scarp (Figure 8). This is supported by field observations
showing terrain below the landslide scarp with collapsed debris deposited on a pre-existing
landslide mass. The observations suggest that the present landslide unit may have grown
from gradual accumulation of landslide debris from repeated landslides, in combination
with retrogressive enlargement. For the northern section of the Ohkawa landslide, two
landslide events were identified in 2000 and 2005 (Figure 7c). These landslide events have
not been previously reported; however, the landslide aftermath can be observed on the
aerial photograph from 2015 (Figure 1c). Our analysis suggests that a large landslide
might have been initiated in 2000 (as three of the four GDs were identified on the scarp;
Figure 6c) and experienced further downward movement in 2005 (as GDs were detected
on the landslide block; Figures 6c and 8). Furthermore, ongoing movement is evident on
the downslope section, which is bounded by a secondary scarp up to 7 m in height in the
lower section. This section is cut by a minor gully, in which surface water is concentrated,
and which affected the area before and after a local failure in 2017 (Figure 9a). For the
southern section of the Ohkawa landslide, apart from the landslide in 2006, two additional
previously unknown events were dated to 1986 and 1987 (Figure 7d). Tension cracks were
observed on the crown of the Ohkawa landslide along a ridgeline (Figure 9b,c), from which
a crack developed into a lateral scarp of the southern section of the Ohkawa landslide in
2006 (Figure 9c).These observations suggest progressive movement prior to the catastrophic
failure in 2006 (Figure 8). In addition, in the middle portion of the southern section of the
Ohkawa landslide, a disrupted slide (5 m wide, 25 m long, and 20 m travel distance) was
also observed in 2009 [29] (Figure 9d). At the northeastern end of the disrupted slide, within
the landslide block of the southern section of the Ohkawa landslide, downward slope
movement of about 8 m occurred between 2009 and 2014 [29]. The foot of the downslope
section is undergoing river toe erosion, this may steepen the slope and facilitate further
movement [29,30]. The landslide activity in 1998, as indicated by the GD markers, might
also have progressed to become the major event in 1999 on the N-Ohkawa landslide block.

Our dendrochronological study using 60 deciduous broadleaved trees from 12 species
for landslide analysis is unique on global scale [12]. In this contribution, we illustrate that
the obtained chronology of landslide activity is in agreement with eyewitness reports of the
major landslide events in 1999 and 2006, which suggests the GD markers and index values
(where GDt ≥ 2 and It ≥ 15% are adjusted based on the number of disturbed trees available
for analysis) employed in this study may provide a critical assessment of past landslide
occurrence in the study area and in those areas with similar environmental conditions.
Shade-intolerant tree species are typically established between 2–7 years after landslides.
However, this lag may reflect the severe erosion that can continue for several years after a
landslide, thus limiting tree establishment [26].

266



Water 2021, 13, 1185

≥ 2 and ≥ 15% are adjusted based on the number of 

–

 
Figure 7. Dendrochronological investigations of past landslide events (dark red columns) expressed using the It index and
number of disturbed trees. (a) Chronology of the N-Ohkawa landslide. (b) Chronology of the eastern section of the Ohkawa
landslide. (c) Chronology of the northern section of the Ohkawa landslide. (d) Chronology of the southern section of the
Ohkawa landslide.

slide. 

 

Figure 8. Summary of past landslide events in the study area and distribution of detected GDs and 
Figure 8. Summary of past landslide events in the study area and distribution of detected GDs and trees established after
the landslide events.
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Figure 9. Representative examples of slope movements in the study area. 
Figure 9. Representative examples of slope movements in the study area. (a) Ongoing movement
on the downslope part of the northern section of the Ohkawa landslide. (b) Enlargement of about
2 m tension crack identified in the landslide scarp of the eastern section of the Ohkawa landslide.
(c) Close-up view of the tension crack. The crack became the lateral scarp of the southern section
of the Ohkawa landslide and had enlarged to about 20 m by July 2006. (d) A disrupted slide in the
downslope part of the southern section of the Ohkawa landslide. The month and year in which
photographs were taken are indicated at bottom-right in each panel. Locations of the photographs
are indicated in Figure 8.

5. Conclusions

The spatial and temporal development of the coherent N-Ohkawa and Ohkawa
(consisting of the eastern, northern, and southern sections) landslides were investigated
using tree-ring chronologies from tilted deciduous broadleaved trees in the Shirakami
Mountains, northern Honshu Island, Japan. In total, we identified 64 GD markers (i.e.,
periods of growth suppression or growth increase) from 47 trees, as well as the year of
establishment of 13 trees from shade-intolerant species over about 70 years.
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Our dendrogeomorphological analysis allowed us to identify the GD markers related
to two major eye-witnessed landslide events; i.e., the N-Ohkawa landslide in 1999 and the
southern section of the Ohkawa landslide in 2006. Shade-intolerant tree species became
established after a lag of 2–7 years after the events in response to canopy opening by
the landslides. Other GDs were used to reconstruct previously unknown events within
the local landslide chronology. The reconstruction of the N-Ohkawa landslide added
precursory landslide activity in 1998 and a local enlargement of the landslide scarp in 2000.
In addition, the reconstruction of the Ohkawa landslide indicated episodes of regressive
enlargement of the landslide scarp from 1993 to 2007 in the eastern section. In the northern
section of this landslide, the landslide slope might have been undergoing sliding to form
the current landslide scarp observed in 2000. The slope may have moved progressively
downwards in 2005 and its secondary scarp on the downslope locally expanded in 2017. In
addition, the reconstruction of the southern section of the Ohkawa landslide suggested that
progressive movements may have developed in 1986 and 1987; i.e., before the landslide
event in 2006.
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Abstract: Due to the development of the scale of tractor-ploughed terraces, terraces have been
increasing in number, while global climate change is causing frequent extreme rainfall events in the
Loess Plateau, resulting in many terrace landslides. To study the mechanism and process of shallow
landslides and deep slip surface of terraces induced by extreme rainfall in loess hill and gully area,
we conducted a laboratory model test of a terrace under artificial rainfall and used the Swedish arc
strip method. The research results are as follows. The mechanism of shallow landslides in terraces
is rill erosion accelerating rainfall infiltration, suspending the slope, and increasing its bulk density.
The destruction process of shallow landslides can be roughly divided into six processes, and the
earth volume of the landslide is 0.24 m3. The mechanism of the deep sliding surface in terraces
occurs under the combined action of water erosion and gravity erosion. The soil moisture content
increases, which decreases the anti-sliding moment and increases the sliding moment, and the safety
factor becomes less than the allowable limit for terraces. The deep sliding deformation area of the
terrace was 0~1.0 m below the slope surface, slip surface radius was 1.43 m, the slip surface angle
was 92

◦
, and the deep sliding surface began to form earlier than terraced shallow landslides. The

displacement of the characteristic points increased from the slope top, to the slope center, and to the
slope foot, with maximum displacements of 40.3, 15.5, and 6.0 mm, respectively.

Keywords: laboratory model test; extreme rainfall; rill erosion; shallow landslides; deep lip surface;
safety factor

1. Introduction

With the implementation and promotion of slope-to-terrace projects, large areas
of sloping fields have been built into terraced fields [1]. The construction of terraced
field projects has changed the minor features of sloping fields, reducing surface runoff
and increasing soil infiltration, thus effectively improving soil moisture content, which
plays a crucial role in reducing soil erosion and increasing grain yield in the surrounding
areas [2,3]. However, after the implementation of slope-to-terrace projects, back-slope
terraces in particular experience significantly increased rainfall infiltration, which also
leads to the reduction in soil shear strength, thus increasing the risk of landslides [4,5]. For
example, an extreme rainstorm event occurred in Yan’an China, which caused a large area
of terraces to collapse and landslide in July 2013, as shown in Figure 1.

In recent years, due to the large-scale development of tractor-ploughed terraces,
terraces have been constantly increasing in number, while global climate change has led
to frequent occurrences of extreme rainfall events in the Loess Plateau, resulting in many
terrace landslides [6]. Long-term production practice has proved that the outer edges
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of exposed terraces experience shallow landslides over time, which leads to the loss of
its water storage and soil conservation functions [7]. When extreme rainfall produces
runoff on a field’s surface, the terraces seriously erode. This kind of hillslope is featured by
collapsibility, strong water permeability, vulnerability, and so on, so rainfall conditions can
easily induce shallow landslides, which seriously affect agricultural production [8]. As a
consequence, an in-depth study of the process and mechanisms of shallow landslides and
deep slip surface of terraces under extreme rainfall is theoretically significant for disaster
prevention and mitigation and has practical value for agricultural production in Northern
Shaanxi [9–13].
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Figure 1. Shallow landslides of terraces in Yan’an China, in July 2013.

Research on the mechanisms of the rainfall-induced general slope instability of soil,
rock, and soil–rock mixture has mainly focused on field measurements, numerical simu-
lations and model tests [14–17]. The model test has favorable intuition and can compre-
hensively consider various factors, simulate complex boundary conditions, and reflect the
deep interaction of landslides under the condition of basically meeting the similarity prin-
ciple [18]. Using the model test of soil slope instability induced by rainfall, Lin et al. [19]
discussed the influence of the characteristics of precipitation on slope instability, and
thereby selecting appropriate rainfall warning parameters. Zuo et al. [20] studied the
laws of seepage, deformation, damage, and particle migration of accumulating soil slope
under rainfall conditions through a rain-triggered landslide model test of accumulation
bodies with different gradations; they also discussed the influence of particle size on the
stability of accumulation soil slope. Li et al. [21] constructed an artificial rainfall simulation
test of slopes with different angles and studied the changing laws of the front-end thrust,
moisture content and deformation of the slope. Jeong et al. [22] comprehensively analyzed
landslides caused by rainfall through laboratory tests, field tests and numerical analysis.
Their results showed that landslide activity is closely related primarily to rainfall, soil prop-
erties, slope geometry, and vegetation. Numerical analysis was also performed to confirm
the effect of these factors on landslide occurrence. Aleotti [23] identified the empirical
triggering thresholds for Piedmont and proposed an NI-NCR (where NI is normalized
intensity with respect to the annual precipitation, where NCR is the normalized cumulative
critical rainfall) diagram. Xu et al. [24], Wang et al. [25], Tohari et al. [26], and Huang
et al. [27] conducted rainfall landslide model tests and study the influence of compactness,
silt particle content, water level, and other factors on pore water pressure, water content,
landslide start-up and development, and failure mode.

The above studies considered the deformation of slope under the condition of rainfall
infiltration–seepage interaction, which is mainly concentrated on engineered and natural
slopes in China [28,29]. Current research on terraces has mostly focused on the benefits of
water and sediment reduction and the rill erosion of terraces [30–33]. However, research
on rainfall-induced shallow landslides of terraces is still lacking in China. A number of
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studies have performed some advantageous explorations. For instance, Jiang [34] discussed
the design of terrace sections in the Loess Plateau by considering the requirements for
small construction quantity, less land loss, good stability, convenience for cultivation,
and conduciveness for crop growth of the terrace ridge. Given the problem of the steep
or slow ridges in terrace construction in the sandy, mountainous area of Linqu County,
Ge [35] analyzed the stability of the ridge shear test, and the results showed that the
slope angle of fine gravel sand ought to be 37◦, and that of fine sand should be 34◦.
Zhang et al. [36] used the Green–Ampt model to study the slope stability of terraced fields
based on crop irrigation infiltration and discussed the position of the potential sliding
surface. Yang et al. [37] selected the terraced ridge in Southern Shaanxi province as the
research object and explored the failure forms and causes of the ridge through an indoor
conventional triaxial shear test. Liu [38] studied the changes in the failure time and safety
factor of a horizontal terrace, a separated slope terrace and an original slope (for contrast)
under a rainfall infiltration intensity of 28~38 mm/h and a side slope gradient of 15–30◦

using ABAQUS software. Derbyshire [39] discusses how terraces in the Loess Plateau can
maintain good stability under a natural state, but tend to be eroded and collapse under
rainfall infiltration.

In this study, we selected terraces as the research object, and indoor model tests and
the Swedish arc strip method were used to study the mechanism and mode of shallow
landslides and deep sliding surfaces in terraces under extreme rainfall conditions. The
following assumptions were made for the test. We ignore the influence of: (1) the model’s
side wall on the test results; (2) the internal sensors on the test results; and (3) the soil
disturbance on the test results. The research is important for the agricultural development
of the loess hilly and gully region as it provides: (1) a reliable theoretical basis and abundant
experimental data for slope collapse and instability prevention, and disaster mitigation,
monitoring, and forecasting of terraces; (2) parameters for the optimized design of terraces;
and (3) a method for studying multi-level terraces and terraced landslides in the basin.

2. Materials and Methods

2.1. Test Soil Properties

The soil used in this model test was obtained from Zhifanggou, Ansai County, Shaanxi
province, China; the depth of sediment deposition is 6~8 m, so it belongs to the category of
loessal deposits [40]. The basic parameters of the test soil are shown in Table 1. According
to the light compaction test, the maximum dry bulk was 1.703 g/cm3 and the optimal
moisture content was 19.3%. The particle size of the soil was measured by a Marven
laser hondrometer, with a measured range of 0~2 mm, and the characteristic values of
average grading in the Table 1 are as follows: clay particle (≤0.002 mm) content was
12.1%, silt particle (0.05–0.002 mm) content was 52.6%, and sand (2–0.05 mm) content was
35.4%, which showed that the soil sample contained fewer particle size series and that the
difference between coarse and fine particle sizes was small. The curvature coefficient (CC)
of the particle grading curve was 1.79, which is well-graded.

Table 1. Basic property indexes of soil.

Great Group
Natural
Density
(g.cm−3)

Natural
Water

Content (%)

Dry Density
(g.cm−3)

Cohesion
(Kpa)

Internal
Friction

Angle (◦)

Calcic
Cambisols

1.32 7.86 1.21 13.85 20.10

2.2. Test Device

The test equipment was divided into four major systems: test object, rain, data
monitoring, and image capture systems (Figure 2).
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Figure 2. Schematic diagram of model test device.

The test object system involved a terrace groove with a length of 2.8 m, a width of 1 m
and a height of 2.1 m. The height of the slope filled in the test was 1.2 m, with a gradient of
65◦. The front and back edges and one side of the model were surrounded by steel plates,
and the wall surface of which was smoothed by applying a layer of Vaseline to reduce the
influence of the model boundary effect on the test. On the remaining side, transparent
plexiglass with a thickness of 1 cm was used as a visual window to help observe the
movement of soil at any time in the process of the test. To facilitate the observation of soil
movement, a rectangular grid measuring 10 × 20 cm was drawn onto the transparent poly,
and steps were placed close to the steel plate to facilitate the measurement of the channel
shape parameters and flow velocity during the test. A catch basin was set up at the front
edge to collect runoff sediment.

The rain system device was developed by the Institute of Soil and Water Conservation,
Ministry of Water Resources, Chinese Academy of Sciences. The rainfall device’s height
is 16 m, which can measure the terminal speed of all raindrops. The range of rainfall
intensity was 40–260 mm/h, the rainfall uniformity was more than 80% and the maximum
duration of rainfall was 12 h. The rainfall area was composed of two independent rainfall
experimental areas. The effective rainfall area of a single experimental area was 4 × 9 m,
which can accurately simulate natural rainfall [41].

The data monitoring system was composed of a RR-7120 water content sensor, KPE-
200 kPa pore water pressure sensor, Campbell 257 soil suction sensor, and an LDS-S-200
displacement monitoring sensor. Each sensor was connected to the corresponding collection
system through a data line, and then the data in the system is exported and sorted through
a computer. The data collection frequency of the water content sensor was 1 min, (unit: %);
the data collection frequency of the pore water pressure sensor was 1 min (unit: Ka); the
acquisition frequency of the suction sensor data acquisition system was 1 min (unit: Ka);
the displacement monitoring sensor data acquisition system had an acquisition frequency
of 1 min (unit: mm).

For the image capture system, a Canon EOS M50 camera was set up on the side facing
the transparent plexiglass at a height of 0.85 m, to clearly capture the downward movement
of the wet front on the side of the soil.
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2.3. Soil-Filling and Sensor Embedding

A square sift iron was applied for screening to ensure the maximum particle size
of the model’s soil filling would be less than 1 cm. Then, the soil was evenly spread,
sprayed with an appropriate amount of water and evenly mixed to make the density and
moisture content of the soil close to that of the undisturbed soil. However, in the process
of model filling, the structure of the soil, the particle gradation, the stratum structure, the
soil cracks, and so on, will change to some extent, which is inevitable. For this test, we
adopted the method of layered compaction and filling: the soil prepared before the test was
evenly divided into 17 layers, each layer 10 cm thick, and the side wall of the terrace was
compacted with a discus. After the compaction of each layer was completed, samples were
taken from several different parts with a cutting ring. The wet density of each layer of soil
was 1.32~1.40 g/cm3, and the moisture content was around 7.5%. After the placement into
layers was complete, the geometric dimensions of a 65◦ slope in the model was obtained
by manual slope cutting after the stratified filling.

To ensure the accuracy of the monitoring data and minimize the impact of sensors
on the test results, we arranged the fewest sensors possible. Figure 3a provides a cross-
sectional view of terraced soil filling and sensor embedding, showing that two moisture
content sensors were arranged on the side close to the slope every 20 cm. Due to the large
soil width, one more was arranged on the bottom side, for a total of 13 sensors. To study the
mechanical properties of the slope, three pore water pressure sensors and suction sensors
were arranged on the top, middle and toe of the slope with a vertical distance of 20 cm from
the slope surface. To accurately determine the shape of the slip surface, 5 to 7 displacement
sensors were arranged every 20 cm, for a total of 36 displacement sensors. To reduce the
influence of the sensor on the test results, the sensor was arranged in the middle of the
whole soil, as shown in Figure 3b.
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Figure 3. Layout drawing of test sensors. (a) Left view of device, (b) top view of device. Note: Different letters indicate
soil layers; Numbers indicate soil columns; # indicates soil water content sensor; � indicates pore water pressure sensor;
△ indicates monitor point of displacement; N indicates soil water suction sensor.

2.4. Test Method

The experiment started at 10:00 a.m. on 11 November 2017 and ended at 8:00 a.m. on
the 12 November. It was carried out in Area II of the artificial rainfall hall of the Institute of
Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences.
According to the hydrological data for Yan’an in July 2013, and the actual situation of slope
movement, the data were divided into five periods of rainfall, each lasting for 1 hour, with
rainfall intervals of 1 h, a rainfall intensity of 2.5 mm/min and a total rainfall of 750 mm.
The test was repeated once on 20 November 2017, and the average of the data from the two
tests was used as the test result for analysis, and the standard deviation of each dataset
was found to be within 0.2, so the data were considered reasonable and reliable.
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To ensure the uniformity and stability of the rain intensity, the slope of the terraces
was covered with plastic sheeting before the test. The rain intensity was calibrated around
the model trough and the top. When the rain intensity stabilized, we quickly uncovered the
plastic sheet and started timing. When the water flow on the slope of the terraces was in a
laminar flow state and flowed from top to bottom to the water outlet, it was regarded as
the start of runoff. We recorded the runoff time, and then restarted the clock. After the trial
runoff, runoff and sediment samples were collected every 1 min. After rills appeared on the
slope, the time of rill appearance was recorded, and we measured the size with a measuring
tape with an accuracy of 1 mm every 2 min. When the rill length exceeded 10 cm, we
measured the width every 10 cm along the length of the rill. The average value was used
as the width of the rill. The measurement density was increased in locations where the
morphological mutation of the rill was obvious. Simultaneously the slope and wet front
morphology were recorded every 20 min with a digital camera, and the camera shooting
frequency was increased during the period of severe morphological changes. After the test
was over, the sediment samples were allowed to stand for 6 h and the supernatant liquid
was poured out, then the sediment samples were dried in an oven (105◦) and weighed by
electronic scale. The sensor data were imported into an Excel table for data preprocessing.

When calculating the moisture content data, the sensor data at the same time point of
each layer were averaged, and this average value was regarded as the soil moisture content
of this layer. Because the data collection frequency was very fast, a large amount of data
were generated. Therefore, we selected the representative data to draw figures under the
premise of not affecting the changing of the parameter curve.

3. Results and Discussion

3.1. Mechanism and Process of Shallow Landslides of Terraces

3.1.1. Mechanism of Shallow Landslides of Terraces

The results suggest that the shallow landslides of terraces were caused by rill erosion.
Most of the rills in the loessial soil were developed by a single drop sill, which was
mainly manifested by the headway erosion of the gully head and the collapse of the side
wall [42,43] (Figure 4a). By measuring the traceable erosion pattern of terraces, we found
that the maximum width of the gully head was 34.25 cm, the maximum depth was 21.32 cm,
and the maximum length was 75.86 cm. The total erosion amount was about 270.96 kg.
The sediment yield rate of five rainfalls was 181, 475.67, 1707.17, 1624.33, and 527.83 g/min.
The sediment yield rate showed a trend of increasing first and then decreasing. Before
the runoff, when the exposed slope surface was hit by large raindrops, the surface soil
structure was destroyed, and the soil particles splashed up and fell back to the slope surface,
forming raindrop splash erosion (Figure 4b). After the runoff, the erosion developed from
raindrop splash erosion to layered surface erosion. The time from splash erosion to surface
erosion was one hour (Figure 4c). The reason for this finding is that the runoff was low
at the initial stage of runoff generation and the runoff eroding force was less than the
anti-erosion ability of soil resistance. With the increasing runoff, runoff eroding force also
increased. Isolated and sporadic falling ridges were generated in the terrace ridge and
the vulnerable parts of the side slope’s soil. When the terrace ridge was filled with water,
the terrace ridge breached under the action of hydraulic erosion (Figure 4d) and the water
cut down along the breach to form obvious gullies, with an average width of 17.8 cm
(Figure 4e). Due to the erosion, transportation, and accumulation of overtopping flow, the
erosion gully continuously eroded and undercut longitudinally, eroding the gully bank
and widening the gravity collapse horizontally. The sediment carried by the slope flow was
fan-shaped deposition around the gully mouth at the toe of the slope, forming an alluvial
fan, covering an area of 176.64 cm2 (Figure 4f). The erosion gully further developed and
constantly degraded and widened. Due to the difference in the density of terraces and the
non-uniformity of the filling materials, the velocities of anti-erosion of the terraces differed.
The weak position started easily, and erosion occurred first, forming a scouring pit.
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Figure 4. Morphological characteristics of terraces at different rainfall times; (a) Headward erosion, (b) Splash erosion, (c)
Surface erosion, (d) Breach, (e) Gully, (f) Alluvial fan.

The above characteristics all indicate that many side wall collapses occur in the process
of rill formation, which is consistent with the phenomenon observed in the test process. It
is generally thought that the composition of soil particles is an important factor affecting
soil erosion resistance. The finer the particle composition, the stronger the cohesion. To
a certain extent, when the soil forms a mass structure, and its anti-erosion ability will be
higher. In particular, the clay content in the soil significantly enhances the anti-dispersion
ability of the wet soil layer. It can be seen from Table 1 shows that silt (0.002~0.2 mm) and
clay (<0.002 mm) only accounted for around 35% of the total particles in the model. The
overall stability of the soil was poor. In addition, the content of sand particles was high,
and the soil was loose and porous. Therefore, the rill side wall of the loessal soil easily lost
stability and collapsed under the action of runoff erosion and soil moisture. As such, the
main forms of the rill development process of loessal soil are wall collapse and traceable
erosion, and the randomness is significant [44]. Han et al. [45] and Acharya et al. [46] also
showed that traceable erosion is the most active sediment yield factor in rill development,
and the collapse of the ditch wall mainly occurred on steep slopes above 65◦. Both the rill
and cut trench in this experiment were similar in shape to the above research results, but
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the size was larger, because the rainfall intensity and total rainfall were higher than in the
above experimental conditions.

3.1.2. Process and Mode of Shallow Landslides of the Terraces

According to a series of deformation characteristics of the side slope during the
test, the mode of this kind of shallow landslide of terraces under rainfall conditions is
summarized in this section. The deformation mode is shown in Figures 5 and 6 and can
be described as follows: (i) The stage of water accumulation on terraced fields: As the
rainfall continued, the soil of the terraces gradually became saturated, which reduced the
infiltration capacity of the soil, while the rainfall gradually increased, resulting in water
accumulated on the terraces. The height of stagnant water was 3.5 cm. (ii) The formation
and development stage of the breach: After rainfall had been occurring for a period of time,
the loess on the terrace surface and its slope surface reached saturation. The ponding on
the field surface crossed the ridge, forming surface runoff and flowing down the slope.
When the water flows through the ridge, the erosion of the ridge formed a breach with
area of 706 cm2. With the continuous erosion of water and rainfall, the erosion degree of
the ridge increased and the breach expanded. (iii) The erosion of the waterfall nappe flow:
The ponding flowed along the breach and formed plumes. Under the combined action
of hydraulic forces and gravity, the discharge flow formed a multi-stage drop sill on the
slope surface. The maximum discharge and maximum velocity of the breach occurred at
this stage, and the ponding on the terrace surface dropped rapidly. (iv) The formation
and development stage of the erosion gully: With continuous rainfall, the multi-level drop
sill was connected by the water flow, forming an erosion ditch, and the width and depth
of the erosion ditch gradually increased along the slope shoulder to the slope toe, finally
forming the alluvial fan at the slope toe. The average erosion gully width was 17.8 cm.
(v) The stage of superficial-layer shallow landslides of the terraces: With increases in the
width and depth of the erosion gully, the soil on both sides of the slope was suspended. In
addition, the soil is constantly saturated with water, the gravity increased and the cohesion
decreased, resulting in superficial-layer shallow landslides of the terraces, and the soil
volume of the landslide was about 0.24 m3 (vi) The terraces tend to be stable: After the
superficial-layer shallow landslides of the terraces, the side slope grade of the residual
slope was very small; even if the soil was in a saturated state, it would not easily collapse.

The pattern of shallow landslides in terraces is similar to that in the earth dams.
Zhong et al. [47] used experimental methods to simulate the mechanism and mode of earth
dam failure, they proposed that the most important reasons for earth dam failure are the
overflow of water, the crest of the dam breaking, and the huge instantaneous downflow
washing the earth dam. The dam break test (dam height 6 m) funded by the EU IMPACT
project [48] and the dam break test (dam height 1.5 to 2.3 m) carried out by Hanson et al. [49]
of the United States Department of Agriculture both simulated the earth dam break mode,
which is similar to the landslide pattern of the terraces, but the mechanism is different.
The dam break mechanism of action of an earth dam is through the upstream water flow
forming an infiltration line inside the dam body due to the seepage effect, or the upstream
water flowing over the top to destroy the earth dam. The terrace landslides mechanism is
through the soil losing cohesion due to rainfall infiltration and the erosion ditch making
the terraces lose their integrity, leading to local shallow landslides. The results of this study
are different from those of Sun et al. [50] because there is a border dike on the loess slope in
the natural state. When the rainfall intensity is greater than the infiltration rate, the slope
will produce runoff. For terraced fields, the border dike plays a role in water storage and
soil conservation. Therefore, under the same rainfall conditions, terraces are more capable
of resisting catastrophic rainfall than sloping fields.
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Figure 5. Shallow landslide process in terraces. (a) First stage, (b) Second stage, (c) Third stage, (d) Fourth stage, (e) Fifth
stage, (f) Sixth stage.
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Figure 6. Three-dimensional diagram of shallow landslide process in terraces. (a) First stage, (b) Second stage, (c) Third
stage, (d) Fourth stage, (e) Fifth stage, (f) Sixth stage. 279
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3.2. The Factors of Deep Slip Surface of Terraces

3.2.1. Rainfall Infiltration

The curve in Figure 7 shows the relationship between average rainfall (infiltration),
infiltration percentage, and rainfall frequency. The infiltration rate was 79%, and the
infiltration rate gradually decreased with the increase in surface runoff. In the third rainfall
event, the infiltration rate decreased to 49.3% and then remained steady at approximately
26.14%. More than half of the rainfall turned into surface runoff, causing soil erosion and
rain erosion on the slope’s surface and formed rills. The infiltration of rainwater from the
slope surface to the slope was an unsaturated-to-saturated seepage process, and the change
in infiltration rate with time was related not only to the original humidity and matrix
suction of unsaturated soil, but also to the physical characteristics and structure of the
soil from the side slope. Generally, at the early stage of infiltration, infiltration capacity is
greater than rainfall intensity and the infiltration rate is higher, so infiltration is pressureless.
After a period of time, the soil begins to saturate, the gradient of soil moisture content
decreases, the matrix suction reduces, and the infiltration capacity lowers. When rainfall
intensity is greater than the soil’s infiltration capacity, slope runoff occurs, which is pressure
infiltration. Finally, with rainfall, the infiltration rate gradually decreases until it tends to
be constant, reaching the stable infiltration stage. Figure 8a shows the relationship curve
between infiltration rate and rainfall time for five rainfall events, and Figure 8b provides
partial enlarged view; the figure shows, the infiltration rate generally presents the same
decreasing trend. The steady infiltration rate ranged from 0.74 mm/min to 0.77 mm/min,
and the results are similar to those in the literature [51]. This is because with progressing
rainfall, the infiltrating rainwater continuously increased the soil moisture content, which
saturated the surface soil causing the infiltration rate to gradually decrease. However,
the infiltration rate of the topsoil was relatively low and stable after saturation, and the
infiltration rate of rainwater was further reduced due to the small amount of rainwater
infiltration inside. For the third and fourth rainfall events, the infiltration rate first increased
and then decreased. The reason for the increase in the third rainfall’s infiltration rate was
that cracks appeared on the terrace surface and the infiltrated rainwater could speedily
travel deep through the cracks; on the other hand, due to the water-retaining effect of
the ridge, ponding formed on the horizontal surface, which accelerated the infiltration
rate. The reason for the increase in the infiltration rate in the fourth rainfall was that the
superficial layer of the terrace collapsed and the rainwater rapidly entered into the soil
along the gully.
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Figure 8. Relationship between infiltration rate and rainfall time in five rainfalls; (a) The relationship
curve between infiltration rate and rainfall time for five rainfall events, (b) partial enlarged view of
the Figure 8a.

In this study, the rainfall infiltration law of terraces is similar to that of Liu et al. [52],
but the infiltration rate is lower than the latter, because Liu et al. considered the devel-
opment characteristics of the root system in vegetation and soil, which has strong water
storage and soil conservation capabilities and can intercept more rainfall and runoff. Com-
pared with Huang et al. [53], the infiltration rate of this result is relatively high because
of the different nature of the soil. The initial moisture content of the soil in Huang et al.’s
research was high, and the initial moisture content will shorten the saturation time of the
soil. The results of this test provide reference value for the study of terrace infiltration in
loess hilly and gully areas, especially for mechanically-repaired horizontal terraces.

With the continuous infiltration of rainwater, the color of the soil from the model’s
side slope gradually darkened with the increase of in moisture content, and the infiltration
peak appeared at the boundary between the dark- and light-colored soils. In this test, the
change in infiltration peak was recorded by a camera set up on the side of the transparent
poly to judge and calculate the infiltration depth and infiltration rate of rainwater.

Figure 9 depicts the wetting front from different rainfall time points: when the rainfall
duration was 10 min, the downward depth of the wet front was 9.7 cm; when the rainfall
duration was 60 min, the downward depth of the wet front was 28.8 cm; and when the
rainfall duration was 180 min, the downward depth of the wet front was 35.5 cm. The
wet front was basically linear with the rainfall time. The wetting front moved downward
with increasing duration of rainfall and the migration rate of the horizontal wetting front
was faster than that of the side slope surface. The reason for this finding is that the
horizontal plane could effectively intercepted the rainwater, and the ponding accelerated
the infiltration rate of the horizontal surface [54]. However, for the inclined slope, most
of the rainwater formed runoff along the side slope surface, and only a small part of the
rainwater infiltrated. Figure 10 shows that with continuous rainfall, a proportion of the
rainwater on the terrace surface infiltrated, another part formed slope runoff, and some of
it infiltrated along the back wall of the model box, where collapse deformation occurred.
Due to the different materials of the back wall and the soil, the infiltration speed was faster
than that of the soil; thus, the wetting front moved rapidly in the back wall.
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Figure 9. Infiltration peaks at different rainfall time; (a) T = 10 min, (b) T = 60 min, (c) T = 180 min,
(d) T = 300 min.

2021, , x FOR PEER REVIEW 13 of 22 
 

 

 

 

Figure 10. Collapsible deformation on the posterior wall.

The downward movement of the wet front was similar to the results reported by Tian
et al. [55], but the downward movement rate of the wet front was larger than that recorded
by them, because the terraced ridges have the capacity to store water, and the accumulated
water increases the water infiltration gradient and accelerates the rate of water downward
movement. This also proves that the measures of slope conversion can effectively intercept
rainfall, and the benefits of water and sediment reduction are obvious in the Loess Plateau.
This is also supported by the research results of Bai et al. [56].

3.2.2. Water Content

In accordance with the monitored data from the slope moisture sensor, the change in
slope moisture content in the whole process can be understood. Figure 11a shows that the
moisture content of each soil layer at different depths of slope varied with rainfall duration
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and post-rain duration. Within 0.5 h of the beginning of rainfall, the moisture content
of layers A, B, and C of the slope increased to 0.83%/h, and the change was obvious,
while the moisture content of soil in layers D, E, and F changed very little, due to the
infiltration of rainwater going from shallow to deep. With the increase in rainfall time,
rainwater infiltrated and the moisture content of the whole slope increased continuously.
The increased rate of moisture content of the upper soil was about 2~2.83%/h, which is
higher than the previous value of 0.83%/h, due to the continuous increase in soil moisture
content, the decrease in matrix suction, and the increase in the permeability coefficient. For
D, E, and F, there is an obvious break point in the curve, and the moisture content suddenly
increased at about 4:00 p.m., which indicated that there were violent activities in the soil;
deep cracks appeared in the soil, the soil began to lose stability and the sliding surface
formed. Thus, the change in moisture content strongly influenced soil failure. First, the
increase in moisture content led to an increase in pore water pressure and a decrease in
effective stress, thus resulting in a decrease in soil shear strength; second, the increase in
moisture content increased the permeability of the water, which led to a decrease in side
slope stability. The dual effect of rainfall infiltration leading to water content variation may
be an important reason for the side slope’s rainfall-induced instability. Figure 11b shows
that the moisture content at the top of the slope rose the fastest and had the largest change
range. At around 1:00 p.m. on 11 November, due to the shallow landslides of the slope
body, the moisture content of the slope rapidly dropped to 0%, followed by the toe of the
slope, with the smallest change and the smallest range in the middle of the slope.
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Figure 11. Variation of volumetric water content of soil layers and feature points with time; (a) The moisture content of each
soil layer at different depths of slope varied with rainfall duration, (b) The moisture content at the top, center, and foot of
the slope.

3.2.3. Pore Water Pressure and Suction

Figure 12 shows the variation in pore water pressure and suction with rainfall.
Figure 12a shows that the pore water pressure first increased and then tended to be stable
with the rainfall duration. The variation in pore water pressure at the top of the slope
ranged most before the shallow landslides of the slope, and the maximum value was
2.4 kPa. Since the sensor was exposed outside the slope after shallow landslides, it rapidly
dropped to 0 kPa. The change in pore water pressure at the measuring point at the toe of
slope was slightly later than that at the top of slope, with a maximum value of 3.6 kPa.
At the end of the rainfall event, the pore water pressure gradually decreased and finally
tended to be stable around 2.5 kPa. The change in pore water pressure at the measuring
point in the middle of the slope changed later than at the measuring points at the top
and toe of the slope, with the water infiltration reaching the measuring point at around
4:00 p.m., then increasing gradually, and finally tending to be about 2.8 kPa. As Figure 12b
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shows, the suction (negative pore water pressure) varied from 7.4 to 14.6 kPa, showing
a sharp decrease at first and then a stable trend. The reason for this finding is that with
rainfall infiltration, the moisture content of each measuring point increased, and the suc-
tion decreased sharply. After the rainfall, the moisture content of each measuring point
decreased slowly due to evaporation, so the suction increased slowly and finally tended to
be stable. Notably, the Campbell 257 soil suction sensor uses an indirect-method suction
sensor (with a measuring range of 200 kPa), but the air intake value of soil material is small,
so when the suction of the soil sample is lower than 10 kPa, the measurement accuracy of
the sensor is poor.
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Figure 12. Variation of pore water pressure and soil water suction of feature points with time; (a) Variation of pore water
pressure at top, center, and foot of slope, (b) soil water suction at top, center, and foot of slope.

3.3. Shape Characteristics and Mechanism of Deep Slip Surface

3.3.1. Shape Characteristics

The displacement of measuring points near the top of slope (A1, A2, A3, A4, and
A5) was 0.5–40 mm and the direction was 40–50◦ to the horizontal; the displacement of
measuring points near the slope surface (B5, C6, and D6) was 2.5–15.6 mm and the direction
was 60–70◦ to the horizontal; the displacement of measuring points (E7 and F7) near the
slope toe was 1.2–6.0 mm and the direction was 80–85◦ to the horizontal. The displacement
of the deepest measuring points (C1, D1, D2, E1, E2, E3, F1, F2, F3, F4, and F5) was almost
0 mm. Through analysis of the above measurements, we found that the movement of the
soil near the slope was the most intense; the displacement was the largest here, as was the
displacement change rate, as it was the main active area of soil. With increasing depth of
the measuring points, the displacement of the soil became increasingly small. When the
depth reached the deepest points, there was no displacement. With the increase in depth,
the angle between the displacement of each measuring point and the horizontal direction
was increasingly large, and some points were close to 90◦. This shows that both horizontal
and vertical movements occurred in the soil landslides, but with the increase in depth, the
horizontal movement transformed into vertical movement, and finally, at a certain depth,
the soil movement was close to vertical movement. The approximate depth of the deep slip
surface can be determined from the tracer point with no displacement. If the displacement
of B1, D2, and F5 points is 0 mm, the depth of the deep slip surface is approximately 0.35,
0.75, and 1.15 m, respectively. Combining the depth of the deep slip surface obtained by
each tracing point moving to 0 mm and the staggered fracture at the trailing edge of the
landslide, the position of the deep slip surface can be determined; the slip surface radius
was 1.43 m. The shape of the deep slip surface is shown in Figure 13.
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Figure 13. The deep shape of sliding surface. Different letters indicate soil layers; Numbers indi-
cate soil columns; # indicates soil water content sensor; � indicates pore water pressure sensor;
△ indicates monitor point of displacement; N indicates soil water suction sensor.

Rainfall is an important factor that causes landslides in terraces, it increases the sliding
moment and reduces the anti-skid moment, finally forming a slip surface similar to a
circular arc. This is similar to the results of studies by Zhang et al. [36] and Liu et al. [38].
However, the abovementioned studies used numerical simulation methods to study ter-
raced landslides, which are less convincing. Our test explains the mechanism and process
of terraced landslides and fully verifies the accuracy of the above-mentioned studies.
However, this test only studied a single terrace, and we did not consider landslides on
multi-level terraces, which will be the focus and direction of future research. Wu et al. [57]
studied the causes of landslides in terraced fields in the loess area caused by over-irrigation,
and the landslides at the Heifangtai can be classified into two different types based on
their composition: loess landslides and loess-bedrock landslides, characterized by high-
speed, long-distance sliding and low-speed, short-distance sliding respectively. Agnoletti
et al. [58], taking terraced fields as the research object, explained that the terraced field can
better reduce the possibility of shallow landslide disasters relative to slope field, and have
less impact on deep landslides under extreme rainfall conditions. This is also consistent
with the results of our experimental study, highlighting the guiding significance of this
study for terraced landslides in the whole loess hilly and gully area.

3.3.2. Mechanical Mechanism

To study the mechanism and process of deep sliding surfaces in terraces under extreme
rainfall, the safety factor of sliding surfaces in terraces was calculated using the Swedish
slice method. This method divides the soil above the slip surface into several strips to
analyze the force and moment equilibrium on each strip, and to obtain the safety factor
of soil stability under the limit equilibrium state [59]. In this experiment, the soil strips
above the sliding surface are divided into seven vertical strips according to the location of
the sensors. Before solving the safety factor, the following assumptions are made: (i) the
force between the strips has little effect on the overall stability, which can be ignored; (ii)
the moisture content of each soil strip is the average value of all moisture content sensors
on the soil strip; (iii) the cohesive force and internal friction angle of each soil block are
used form [60], namely, ci = αw

−β
i . As shown in Figure 14, according to the equilibrium

condition of radial force
Ni = Wicosαi
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Figure 14. Analysis of the forces of the Swedish slice method.

According to the limit equilibrium condition on the arc surface,

Ti =
cili + Nitanϕi

Fs

The anti-sliding moment generated on the sliding surface is,

∑ TiR = ∑
cili + Nitanϕi

Fs
× R

From the moment balance, we can finally obtain

Fs =
∑ αw

−β
i li + Wicosαitanϕi

∑ Wisinαi

here αi is the bottom slope angle of the strip i; Wi is the sum of the self-weight of strip i and
the upper load; Ni is the total normal force at the bottom of strip i; Ti is the total tangential
resistance of strip i at the bottom; Fs is the safety factor of the sliding arc; ci is the cohesion
of block i; li is the bottom length of the block i; ϕi is the internal friction angle of block i;
R is the arc radius of the sliding surface; wi is the soil water content, (×100) α and β can be
obtained by linear interpolation in Tables 2 and 3.

Table 2. Selection of cohesion parameters of unsaturated loess [61].

Soil Dry Density (g/cm−3) α β

1.2 37.67 1.602
1.3 42.3 1.615
1.4 79.33 1.782
1.5 108.901 1.795
1.6 56.687 1.503
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Table 3. Selection of internal friction angle of unsaturated loess [61].

Soil Dry Density (g/cm−3) 1.2 1.3 1.4 1.5 1.6

soil water content

7% 20.8 21 21.1 21.6 22.6
9% 20.4 20.7 20.9 21.5 22.5

11% 20.1 20.3 20.7 21.3 22.3
13% 19.8 20 20.5 21.2 22.1
15% 19.6 19.6 20.3 20.9 21.9
17% 19.3 19.4 20.1 20.8 21.6
19% 18.9 19.2 19.9 20.8 21.4
21% 18.6 19 19.7 20.5 21.2
23% 18.2 18.8 19.5 20.4 21.1
25% 17.9 18.6 19.3 20.2 21
27% 17.6 18.4 19.1 20.2 20.9
29% 17.2 18.2 18.9 20 20.8
31% 16.8 18 18.7 19.9 20.6
33% 16.5 17.8 18.5 19.8 20.5

Figure 15 shows the variation law of terraces’ safety factor with test time. The safety
factor first decreased, then increased, and finally slowly increased and tended to be stable.
From 10:00 a.m. to 3:00 p.m., with the continuous infiltration of rainfall, the self-weight of
the upper soil on the sliding surface increased, which increased the sliding torque. The
decrease in cohesion led to the decrease in anti-sliding torque, which was the reason for
the decrease in the safety factor. From 3:00 p.m. to 4:00 p.m., due to the sliding torque
being greater than the anti-sliding torque, the sliding surface gradually formed, and the
time of deep sliding surface began to form earlier than the terraced shallow landslides;
4:00 p.m. to 5:00 p.m., due to the terraces forming a new stable state; the slope was
slowed down and the safety factor was larger than the initial stage. From 5:00 p.m. to
9:00 p.m., the change law was similar to that of the initial rainfall, which also showed
that rainfall infiltration was the dominant factor leading to safety factor; after 9:00 p.m.,
the safety factor increased slowly and tended to be stable, because after the rainfall, the
soil inside the terraces slowly dried and evaporated naturally, so that the soil moisture
content decreased slowly and tended to be stable. The mechanical mechanism of deep
slip surfaces in terraces was that through the sliding moment of the sliding body being
greater than the anti-sliding moment. The formation of a deep sliding surface in a terraced
slope was mainly the result of the interaction of hydraulic erosion and gravity erosion, due
to rainfall infiltration, soil moisture content increase, pore water pressure increase, and
suction decrease. It increased the bulk density of the sliding body, thereby increasing the
sliding torque; however, rainfall infiltration reducing the cohesion and internal friction
angle of the sliding body, thereby reduced the anti-sliding torque. With the continuous
rainfall, the anti-sliding torque was equal to the sliding torque at a certain time, and the
terraced slope was in the limit equilibrium state. The sliding surface began to develop and
form from this moment, and the development of the erosion gully accelerated the formation
process of the sliding surface. In this study, the rainfall threshold for deep landslides in
terraces was 500 mm, which is similar to the results of Zhuang et al. [3], and provides data
support for landslides in loess hilly and gully areas.

3.3.3. Variation in Characteristic Points Displacement with Accumulated Rainfall

Figure 16 shows the relation curve between the displacement of three characteristic
monitoring points (A5, C6, and F7) and the accumulated rainfall. With the increase in accu-
mulated rainfall, the soil displacement gradually increased, with the largest displacement
occurring at the top of the slope, the second largest at the slope center, and the smallest at
the foot of the slope. At around 2:00 p.m. on 11 November, the displacement increased
sharply. After the collapse, the displacement increased slowly and remained unchanged at
8:00 a.m. on 12 November. The displacements of the top, center and foot of the slope were
40.3 mm, 15.6 mm, and 6.0 mm, respectively.
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The variation law of the slope top, the middle of the slope, and the characteristic points
of the slope foot was similar to that reported by Chen et al. [62], but the displacement
was generally larger than the above research because of the high rainfall intensity and the
long rainfall duration. In future studies, we must examine the impact of different rainfall
intensities and total rainfall on terraced landslides.

4. Summary and Conclusions

In this paper, where we selected newly built bare-land terraces as the research object,
the laboratory model test method was used to study the mechanism and process of shallow
landslides and deep slip surface in terraces under extreme rainfall conditions. The main
conclusions were as follows.

Shallow landslides in terraces are formed under the interaction of water erosion and
gravity erosion, and the main driving force is from headward erosion and rill erosion. The
superficial-layer shallow landslides of the terraces under the action of extreme rainfall can
be divided into six stages. The width of the erosion ditch on the terraced slope was 17.8 cm
and the volume of shallow landslides in terraces was 0.24 m3.

The mechanism of the slip surface in the terraces is rainfall infiltration, which increases
the water content of the soil, increases the pore water pressure, and decreases the suction
force, which leads to the anti-slip torque being less than the sliding torque, causing a slip
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surface to appear inside the terrace. Under extreme rainfall conditions, terraces formed
a circular sliding surface with a radius of 1.43 m and an angle of 92◦. The appearance of
this slip surface was earlier than the appearance of shallow landslides in terraces, and
rill erosion accelerated the formation of deep slip surfaces. The threshold of rainfall that
caused deep landslides in terraces was 500 mm.
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Abstract: The 2009 Typhoon Morakot triggered numerous landslides in southern Taiwan, and the
landslide ratios in the Ailiao and Tamali river watershed were 7.6% and 10.7%, respectively. The
sediment yields from the numerous landslides that were deposited in the gullies and narrow reaches
upstream of Ailiao and Tamali river watersheds dominated the landslide recovery and evolution
from 2010 to 2015. Rainfall records and annual landslide inventories from 2005 to 2015 were used to
analyze the landslide evolution and identify the landslide hotspots. The landslide recovery time in
the Ailiao and Tamali river watershed after 2009 Typhoon Morakot was estimated as 5 years after
2009 Typhoon Morakot. The landslide was easily induced, enlarged, or difficult to recover during
the oscillating period, particularly in the sub-watersheds, with a landslide ratio > 4.4%. The return
period threshold of rainfall-induced landslides during the landslide recovery period was <2 years,
and the landslide types of the new or enlarged landslide were the bank-erosion landslide, headwater
landslide, and the reoccurrence of old landslide. The landslide hotspot areas in the Ailiao and Tamali
river watershed were 2.67–2.88 times larger after the 2009 Typhoon Morakot using the emerging hot
spot analysis, and most of the new or enlarged landslide cases were identified into the oscillating or
sporadic or consecutive landslide hotspots. The results can contribute to developing strategies of
watershed management in watersheds with a dense landslide.

Keywords: landslide evolution; spatiotemporal cluster analysis; landslide hotspots

1. Introduction

Landslides induced by large earthquakes or extreme rainfall events have been the
main reason for disasters in the past two decades in Taiwan. Typhoon Morakot in 2009
dumped around 2000 mm of rainfall in 3 days in southern Taiwan [1], resulting in severe
landslide-related disasters, including the catastrophic deep-seated Xiaolin landslide [2] and
the following dam failure [3]. Over a decade since the 2009 Typhoon Morakot, sediment-
related disaster events still occurred in the Kaoping River watershed in southern Taiwan.
Although most landslides in southern Taiwan had been gradually recovered, the hillslope
was still under high landslide susceptibility.

The rate and location of landslide recovery after the large earthquake or extreme
rainfall events play essential roles in developing the watershed management strategies
for watersheds with a dense landslide. The landslide recovery in the watersheds with
dense landslides after large earthquake events is related to the earthquake magnitude,
geological settings, and fault distribution and characteristics [4–6], while recovery after
extreme rainfall events were mostly related to the distribution of drainage network [7].
The sediment yield from landslides or debris flow in the watersheds with dense landslides
is usually the dominant factor behind the geomorphologic evolution, particularly in the
upstream watershed. The randomly deposited sediment in narrow upstream reaches
usually results in rivers gradually becoming sinuous and inducing bank-erosion landslides.
Sediment from bank-erosion landslides usually increases the sinuosity of narrow reaches
and changes the geomorphology of the river in the upstream watershed.
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Long-term geomorphologic landslide evolution in watersheds is strongly related to
spatiotemporal landslide distribution [8], which can be observed using the spatiotemporal
cluster analysis with the high-resolution digital elevation model (DEM) and multi-annual
landslide inventories [4,6]. Several researchers have discussed the changes in the dis-
tribution and activeness of landslides after extreme rainfall-induced [7] or earthquake-
induced [5,8–11] events and found that the spatiotemporal distribution and activeness of
landslides were key factors behind the geomorphologic evolution of watersheds. Iden-
tifying landslide hotspots and cold spots using multi-annual landslide inventories can
help researchers analyze landslide activeness and recovery after large earthquake-induced
landslide disasters [12].

The space-time cluster analysis (abbreviated as spatiotemporal cluster analysis) in
ArcGIS Pro software [13] is a useful analysis tool that can describe data’s spatial and
temporal distribution patterns. This tool had been used to analyze the spread of the COVID-
19 virus [14], road traffic accident occurrences [15], and the spread of air pollution [4,16]
in recent years. Landslide disaster studies using the spatiotemporal cluster analysis have
focused on discussing the long-term spatiotemporal distribution of disasters [5,8] and
analyzing the relationship between disaster occurrence and related factors [6,9,17,18].
Spatiotemporal cluster analysis with multi-annual landslide inventories after extreme
rainfall events can contribute to determining landslide hotspots and cold spots, identify
locations where the landslide recovery was difficult, and analyze the reasons behind these
factors. The use of spatiotemporal cluster analysis to observe landslide evolution trends and
identify landslide clustering locations is more effective than only the spatial or temporal
analysis of landslides.

The 2009 Typhoon Morakot (from 6–10 August 2009) caused the most severe rainfall-
induced disaster event in the past two decades in Taiwan, and the return period accu-
mulated 24 and 48 h of rainfall during the 2009 Typhoon Morakot in southern Taiwan
exceeded 200 y [1]. The extreme rainfall event also caused numerous landslides and severe
debris flow in southern Taiwan, and the landslide ratio (i.e., the ratio of the landslide
area to watershed area) in the four sub-watersheds of the Kaoping River watershed after
the typhoon exceeded 6.5% [1]. The geomorphologic evolution and developing trends of
watersheds with dense landslides after 2009 Typhoon Morakot (abbreviated as after 2009)
in southern Taiwan are worthy of discussion. The Ailiao river watershed (abbreviated as
ARW) and Tamali river watershed (abbreviated as TRW) were the watersheds with the
highest landslide ratio in southeastern and southwestern Taiwan after 2009. The ARW and
TRW were selected to observe the landslide evolution from 2005 to 2015 and identify the
landslide hotspots and cold spots using the spatiotemporal cluster analysis. The evolution
characteristic of extreme rainfall-induced landslide events in Taiwan was also compared
with that of large earthquake-induced landslide events in the world, and the cluster lo-
cation and reason of new or enlarged landslides in the following years after 2009 were
analyzed in the study.

2. Research Areas

2.1. Ailiao River Watershed (ARW)

The Ailiao river watershed (abbreviated as ARW) is located in southwestern Taiwan
(Figures 1 and 2), and the area is 623.3 km2. The average elevation and average slope
in the ARW are 1006 m and 30.5◦. The average annual precipitation is 3716 mm based
on the records of six rainfall stations from 2005 to 2015 in the neighborhood of ARW
(Figure 2a). The average precipitation in the rainy seasons, i.e., from May to October,
occupies > 90% of the average annual precipitation. The land use distribution in the
ARW is dominated by forest, which occupies 80.8% of the total watershed area. The
main geological settings in the ARW consist of the Chaochou Formation, the Pilushan
Formation, the Alluvium, and the Kaoling Schist (Figure 2b). The total precipitation during
the 2009 Typhoon Morakot in the ARW was 2977 mm, i.e., around 80% of the average
annual precipitation. The 2995 landslide cases (Figure 2a) were induced by the 2009
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Typhoon Morakot in the ARW, and the landslide ratio, i.e., the ratio of the landslide area
to the watershed area, was estimated as 7.6%. The landslides after 2009 centralized in the
northeast ARW, especially in the A01 (8.2 km2), A02 (6.7 km2), A03 (2.5 km2), A07 (3.2 km2),
and A11 (9.5 km2) sub-watersheds (Figure 2b). The occupied percentage of the landslide
cases with area > 100,000 m2, 1000–100,000 m2, and <1000 m2 to all landslide cases in 2009
in the ARW were 3.5%, 73.0%, and 23.0%, respectively. The relation between the landslide
length to width ratio and the mean slope in the ARW is shown in Figure 3; 93.1% and
57.6% of the landslide cases in 2009 in the ARW were of the landslide length to width
ratio > 1.0 and ranged from 1.0 to 5.0. The rainfall-triggered slides, including the rotational
and translational slides and flows on the hillslope with the slope > 30 degree, were the
main landslide types in the ARW.

Figure 1. Location of Taiwan, Ailiao river watershed (abbreviated as ARW), and Taimali river
watershed (abbreviated as TRW).

Figure 2. The distribution of elevation, landslide after 2009 Typhoon Morakot, and sub-watersheds (a), geological settings
(b), in the ARW.
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Figure 3. Relationship between the ratio of landslide length to width and mean slope of the landslide
cases induced by 2009 Typhoon Morakot in the ARW and TRW.

2.2. Taimali River Watershed (TRW)

The Taimali River Watershed (abbreviated as TRW) is located in southeastern Taiwan
(Figures 1 and 4) and the area is 264.9 km2. The average elevation and slope in the TRW are
789.4 m and 30.4◦, respectively. The average annual precipitation is 2185 mm based on the
records of five rainfall stations from 2005 to 2015 in the neighborhood of TRW (Figure 4a).
The average precipitation in the rainy seasons, i.e., from May to October, occupies 76%
of the average annual precipitation. The land use distribution in the TRW consists of
forest (81.59%), agricultural land (9.12%), water conservancy (4.32%), and others. The
main geological settings in the TRW consist of three main strata, including the Chaochou
Formation, the Pilushan Formation, and the Alluvium (Figure 4b). The total precipitation
during the 2009 Typhoon Morakot in the TRW was 932.5 mm, i.e., around 42.7% of the
average annual precipitation. The 1283 landslide cases (Figure 4a) were induced by 2009.

Typhoon Morakot in the TRW, and the landslide ratio was estimated as 10.7%. The
landslide after 2009 centralized in the upstream TRW, especially in the T01 sub-watershed
(121.6 km2). The occupied percentage of the landslide cases with area > 100,000 m2,
1000–100,000 m2, and <1000 m2 to all landslide cases in 2009 in the TRW were 4.2%, 71.2%,
and 24.6%, respectively. The relation between the landslide length to width ratio and the
mean slope in the TRW is shown in Figure 3; 98.1% and 64.3% of the landslide cases in
2009 in the TRW were of the landslide length to width ratio > 1.0 and ranged from 1.0 to
5.0. These data show that the majority landslide type of the landslide cases induced by the
2009 Typhoon Morakot in the TRW were rainfall-triggered slides on the steep slope.
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Figure 4. The distribution of elevation, landslide after 2009 Typhoon Morakot, and sub-watersheds
(a), geological settings (b) in the TRW.

3. Data and Methods

3.1. Annual Landslide Inventories

The annual landslide inventories from 2005 to 2015 produced by the Forestry Bu-
reau in Taiwan were used in this study, and the minimum landslide area in the annual
landslide inventories was 100 m2. Based on Varnes’ classification [19], the majority of the
landslide cases induced by 2009 Typhoon Morakot in southern Taiwan were rotational
slides, translational slides, and flows [20–22].

3.2. Effective Accumulated Rainfall Index (EAR)

The EAR index (unit: mm) was used to assess the landslide-induced strength of rainfall
events. The EAR index, defined in Equation (1), is the summation of daily rainfall on the
assessment day (Rt) and the 7-day antecedent rainfall before the assessment day. The K
coefficient, representing the decay constant, was set to 0.7 based on Taiwanese landslide
research [23]. Equation (1) is calculated as follows:

EARt =
7

∑
i=0

Rt × Ki (1)

The rainfall records used to estimate the EAR index value were collected from the
representative rainfall stations at watersheds. For inclusion, the representative rainfall
stations had to be located within the watershed, and the rainfall records from 2005 to 2015
had to be available without any missing data. The representative rainfall stations in the
two watersheds are Ali station in the ARW and Jinfong station in the TRW. The annual
landslide inventories were used in this study. It is challenging to find data on the time and
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date of landslide occurrences and estimate the rainfall threshold to induce the landslide.
Rather than determining the precise time and date of landslide occurrences, the EAR values
used in this study serve as reference coefficients to understand the intensity of landslides
induced by typhoons and other heavy rainfall events each year from 2005 to 2015.

3.3. Landslide Topographic Position Analysis

The topographic position analysis method can be used to explain the main inducing
factors of landslides [24]. Three parameters of the landslide on the hillslope, including
the distance between the ridge and the crown of the landslide (DP), the distance between
the stream and the toe of the landslide (DB), and the distance between the ridge of the
hillslope and river (DH), are used to explain the relative location of the landslide in the
hillslope. The bubble plot is frequently used to draw the result of the topographic position
analysis using the normalized distance from a landslide to the ridge (DP/DH) as the X-axis,
the normalized distance from a landslide to the stream (DB/DH) as Y-axis, and the size of
the bubble as the landslide area. If the bubbles are located in the upper-left portion of the
bubble plot (DP/DH < 0.5 and DB/DH > 0.5), the landslide cases are located near the ridge
and possibly induced by earthquake events [24]. If the bubbles are located in the lower-left
portion of the bubble plot (DP/DH > 0.5 and DB/DH < 0.5), the landslide cases are located
near the stream and possibly induced by rainfall or flooding events [1,21].

3.4. Spatiotemporal Cluster Analysis Method

We used the emerging hot spot analysis in the space-time cluster analysis tool in the
ArcGIS Pro software to analyze the landslide evolution and identify the landslide hotspots
and cold spots from 2005 to 2015. The emerging hot spot analysis tool can detect eight
hotspot or cold spot trends, and the definition of the eight hot spot or cold spot trends had
been described in Table 1 (revised from [14]). The emerging hot spot analysis was widely
used in observing the evolution of the natural or artificial phenomenon but has still rarely
been used to analyze the landslide evolution. The analysis unit in the study is a 5 m × 5 m
grid, and the time step is a year. The clustering intensity of landslide in each analysis
unit was estimated using the Getis-Ord Gi statistic [25], which considered the clustering
intensity value for each analysis unit within the context of the values for the neighboring
analysis unit. In the study, the neighborhood distance of the analysis unit was set as 25 m.

Table 1. The classifications and definition of emerging landslide hot spot and cold spot in the study.

Classification Definition

Consecutive
(CHS or CCS)

A landslide location with a single uninterrupted run of statistically significant hot spot or cold spot
areas in the final year during the research time period. The landslide location has never been a

statistically significant hot spot or cold spot before the final hot spot or cold spot run.

Diminishing
(DHS or DCS)

A landslide location that has been a statistically significant hot spot or cold spot for 90% of the research
time period, including the final year. In addition, the clustering intensity of landslide in each year is

decreasing (increasing) overall and that decrease (increase) is statistically significant.

Historical
(HHS or HCS)

The most recent year is not hot spot or cold spot, but at least 90% of the research time period has been a
statistically significant hot spot or cold spot.

Intensifying
(IHS or ICS)

A landslide location that has been a statistically significant hot spot or cold spot for 90% of the research
time period. In addition, the clustering intensity of landslide for each year increased (decreased)

overall and that increase (decrease) was statistically significant.

New
(NHS or NCS)

A landslide location identified as a statistically significant hot spot or cold spot since the first year of the
research time period but was not previously identified as a statistically significant hot spot or cold spot.

Oscillating
(OHS or OCS)

A statistically significant hot spot or cold spot for the final year that has a history of also being a
statistically significant cold spot or hot spot during a prior year. Less than 90% of the research time

period have been statistically significant hot spot or cold spot.
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Table 1. Cont.

Classification Definition

Persistent
(PHS or PCS)

A landslide location that has been a statistically significant hot spot or cold spot for 90% of the research
time period with no discernible trend indicating an increase or decrease in the clustering intensity of

landslide over time.

Sporadic
(SHS or SCS)

A landslide location that is an on-again then off-again hotspot or cold spot. Less than 90% of the
research time period have been statistically significant hot spot or cold spot, and none of the time-step

intervals have been statistically significant colds pot or hot spot.

No pattern detected (No) The analysis area does not fit any definition of hot spot or cold spot classifications

Note: The CHS and CCS are the abbreviations of consecutive hot spot and consecutive cold spot. The regulation of abbreviation is applied
to each hot spot and cold spot in the study.

4. Decadal Analyses Results

4.1. Rainfall Distribution and Landslide Ratio

The EAR distributions from 2005 to 2015 in the two watersheds are shown in Figure 5
and Table 2. The average EAR value from 2005 to 2015 was 39.7 in the ARW and 29.7 in
the TRW. The highest EAR values (EARh) in the ARW and TRW were 1926.9 and 1123.5
on 8 August 2009. The EARh and EARa (the average of the three highest EAR values in
each year) from 2005 to 2008 in the two watersheds were larger than those from 2010 to
2015. The return periods of the top ten daily rainfall events from 2005 to 2008 in the two
watersheds were estimated to be 10–50 years, and those from 2010 to 2015 were estimated
to only be <2 year. The data demonstrated that the EAR value and the return periods of
rainfall events from 2005 to 2008 in the two watersheds were larger than those from 2010
to 2015.

Figure 5. The distribution of effective accumulated rainfall index (abbreviated as EAR) value (black
bar) and landslide ratio (dash line) from 2005 to 2015 in the ARW (up figure) and TRW (down figure).

The landslide ratios in 2009 in the ARW and TRW (Figure 5) were their historical peaks.
The average landslide ratios in the ARW and TRW from 2005 to 2008 were 1.6% and 2.2%,
respectively, and those from 2010 to 2015 were 4.3% and 5.9%, respectively. The trends
of the landslide ratios in the two watersheds after 2009 were oscillating instead of stably
decaying. The EARh and EARa in 2011 and 2013 in the ARW were smaller than those from
2005 to 2007, but the landslide ratio increased in 2011 and 2013. Other similar examples
are shown in comparing the EARh, EARa, and landslide ratios in 2011 and 2013 in the
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TRW. This data implied that landslides were more easily induced after the 2009 Typhoon
Morakot. The rainfall factor was possibly not the only landslide-inducing factor in the two
watersheds after 2009.

Table 2. The statistical data of the EAR values from 2005 to 2015 in the two watersheds.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

in the ARW

EARh 1481.7 784.8 707.2 631.9 1926.9 894.5 163.5 1104.4 658.5 438.5 609.9
EARa 1353.7 700.6 680.9 616.5 1755.8 697.8 150.1 943.6 587.4 340.7 551.1

in the TRW

EARh 997.0 663.4 723.1 485.2 1123.5 759.3 374.6 766.2 576.2 304.8 367.3
EARa 856.3 620.6 593.6 449.6 944.0 588.9 332.0 670.3 494.2 250.8 351.0

Note: The EARh means the highest EAR value, and the EARa means the average of the three highest EAR values in each year.

4.2. Landslide Statistical Data

The research period was divided into three periods (i.e., 2005–2008, 2009, and 2010–2015)
to analyze the changes in landslide distribution before and after 2009. The landslides’
statistical data from 2005 to 2015 in the two watersheds are shown in Figure 6 and Table 3.
The area and number of landslides from 2010 to 2015 in the two watersheds were larger
than those from 2005 to 2008. From 2005 to 2015, the year with the most landslides was
2009, but the year with the most landslide numbers was 2013. In the ARW, for example,
the landslide area in 2013 was 42% smaller than that in 2009, but the landslide number in
2013 was 31% higher than that in 2009. The same trend was observed in 2013 in the TRW.
This data implies that most of the landslides induced by 2009 Typhoon Morakot gradually
recovered, but some new landslides occurred in the two watersheds in 2013.

Figure 6. The area (solid line) and number (dash line) of landslide in the ARW (black) and TRW (red) from 2005 to 2015.

This study analyzed the landslide distribution at the sub-watershed scale to find the
sub-watersheds in which landslides were induced in the years following the 2009 Typhoon
Morakot. The landslide evolution trend index (abbreviated as LET) in this study was
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defined as the average change ratio of the landslide area from 2010 to 2015, and the LET was
estimated in each sub-watershed of the two watersheds (Figure 7). A negative LET value
indicates that the total landslide area in this sub-watershed gradually decreases, while a
positive LET value indicates that the total landslide area gradually increases. The average
LET value in the sub-watersheds was −0.022 and −0.072 km2/year in the ARW and TRW.

Table 3. The average area and number of landslides in the two watersheds.

Year 2005 to 2015 2005 to 2008 2009 2010 to 2015

ARW
Average landslide area (km2) 22.8 10.1 48.4 27.1

Average landslide number 1902.8 1132.3 2355 2341.2

TRW
Average landslide area (km2) 13.3 5.8 28.4 15.8

Average landslide number 766.3 482.0 1100 900.2

Figure 7. The average landslide density and landslide evolution trend index value from 2005 to 2015 in the ARW (A) and
TRW (B).
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The sub-watersheds with positive LET values were located upstream of ARW and
TRW. There were 13 and 2 sub-watersheds with the positive LET values in the ARW and
TRW, respectively, and the landslide ratio of the 15 sub-watersheds after 2009 was larger
than 4.4%. There were six sub-watersheds with the LET values > 0.05, including A01,
A02, A03, A07, and A11 in the ARW and T01 in the TRW, and the landslide ratio of the
six sub-watersheds after 2009 was greater than 12.1%. The watershed areas in the A01,
A02, A03, A07, A11, and T01 sub-watersheds were 8.2, 6.7, 24.7, 31.7, 9.5, and 121.6 km2,
respectively, and the landslide ratios after the 2009 Typhoon Morakot were 27.8%, 21.2%,
26.2%, 21.5%, 12.1%, and 20.7%, respectively. These results imply that the landslides in
the sub-watersheds with a landslide ratio of >4.4% after 2009 in the ARW and TRW were
difficult to recover and were easily induced or re-induced from 2010 to 2015.

4.3. Landslide Topographic Position Analysis

The study used the landslide topographic position analysis to examine the landslide
evolution before and after 2009 in the ARW and TRW. The A03 (LET = 0.32 km2/y), A31
(LET = −0.31 km2/y), and T01 (LET = 0.43 km2/y) sub-watersheds were selected for
comparison of landslide evolution before and after 2009 (Table 4 and Figures 8 and 9).
The area in the A31 sub-watershed was 33.9 km2, and the landslide area and landslide
ratio in 2009 in the A31 sub-watershed were 2.8 km2 and 8.3%. The ratio of landslide
area from 2009 to 2015 in the upslope, mid-slope, and downslope were 19.4%, 25.5%, and
38.2%, respectively, in the ARW and 27.6%, 29.8%, and 31.1% in the TRW, respectively. The
landslide located in the downslope was the most difficult to recover from 2009 to 2015 in
the slope.

Figure 8. The topographic position analysis of landslide in 2008 (a–d), 2009 (b–e), and 2015 (c–f) in the A03 (up figures) and
A31 (down figures) subwatersheds in the ARW.
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Table 4. The topographic position analysis results in the ARW and TRW.

Time B 2009 A 2015 B 2009 A 2015 B 2009 A 2015

ARW A03 sub-watershed A31 sub-watershed
UA 4.64 13.56 3.69 2.63 0.13 0.29 0.28 0.21 0.01 0.13 0.04 0.02
MA 0.81 2.39 2.20 0.61 0.76 5.27 2.88 1.92 0.15 1.31 0.48 0.21
DA 2.49 12.16 5.37 4.65 0.36 0.74 0.64 0.59 0.24 1.22 0.5 0.28

TRW T01 sub-watershed
UA 2.05 4.78 3.37 1.32 0.09 0.23 0.2 0.15
MA 0.38 3.19 1.09 0.95 0.45 4.76 0.03 0.01
DA 1.59 5.92 2.56 1.84 0.37 1.11 0.9 0.76

Note: “B” and “A” mean that the average landslide area before 2009, i.e., from 2005 to 2008 and after 2009, i.e., from 2010 to 2015. UA, MA,
and DA mean the upslope, mid-slope, and downslope landslide area (km2).

Figure 9. The topographic position analysis of landslide in 2008 (a), 2009 (b), and 2015 (c) in the T01 sub-watershed in
the TRW.

A similar trend was also found in the A03, A31, and T01 sub-watersheds. The ratio
of landslide area from 2009 to 2015 in the downslope was 79.7%, 23.0%, and 68.5% in the
A03, A31, and T01 sub-watersheds, respectively. Figures 8 and 9 show that a reduction
was observed in the number of upslope, mid-slope, and downslope landslides in the sub-
watersheds, but the landslides in 2015 were concentrated in the downslope area. From 2009
to 2015, a large cluster of small-area landslides occurred downslope in the sub-watersheds,
with poor recovery. Most of the landslides in the A03 and T01 sub-watersheds in 2015 were
centered in areas with a normalized distance to a ridge of >0.7, meaning that the inducing
factors should be related to the bank-erosion landslide, which was possibly induced by the
sinuous rivers with huge amounts of deposited sediment.

4.4. Spatiotemporal Landslide Hotspot Analysis

The landslide ratios in the ARW and TRW after 2009 were 7.6% and 10.7%, and those
were the top two highest landslide ratios in the watershed scale in Taiwan. It is interesting
to understand the evolution of numerous landslides and compare the characteristic of
landslide distribution before and after 2009 in the two watersheds. The evolutions of the
landslide from 2005 to 2015 in the ARW and TRW were observed from the spatiotemporal
landslide hotspot analyses (Table 5 and Figure 10) in the study.

The total areas from 2010 to 2015 in the two watersheds are 1.15–2.23 times larger than
those from 2005 to 2008, and the increases in the landslide hot spot areas from before to
after 2009 in the two watersheds were evident. The landslide hot spot areas from 2010 to
2015 in the two watersheds are 2.67–2.88 times larger than those from 2005 to 2008, and the
landslide cold spot area is 1.73–1.93 times larger. This result means that the total time of
areas identified as landslides from 2010 to 2015 is longer than that from 2005 to 2008. The
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landslide recovery was more difficult, and the landslide was easier to be clustered after
than before 2009 Typhoon Morakot.

Table 5. The statistical data of spatiotemporal landslide hot spots and cold spots in the ARW and TRW.

Watershed ARW TRW

year 05–15 05–08 10–15 05–15 05–08 10–15

HS (km2) 17.6 7.8 22.5 8.8 4.8 12.8
CS (km2) 13.5 10.3 20.3 6.8 5.5 9.5
No (km2) 35.1 4.6 8.1 20.3 2.3 4.9

Total (km2) 66.2 22.8 50.9 35.9 12.6 27.1
Note: The 05–15, 05–08, and 10–15 mean from 2005 to 2015, from 2005 to 2008, and from 2010 to 2015. The HS and
CS mean the total area of all hot spots and cold spots, and the NO means the no pattern detected area.

Figure 10. The occupied percentage of landslide hot spots and cold spots from 2005 to 2015 (black line), from 2005 to 2008
(blue line), from 2010 to 2015 (red line), and in the ARW (a) and TRW (b).

The no pattern detected area means that the time of area identified as a landslide
is shorter than 90% of the research period (Table 1). The occupied percentages of the no
pattern detected areas from 2005 to 2015 in the two watersheds are 53.0–56.5%, but those
from 2005 to 2008 and from 2010 to 2015 are only 15.9% to 20.2%. This data means that
36.3–37.1% of landslide areas in the two watersheds recovered to the non-landslide areas
in 4 to 9 years.

The landslide hot spots are centralized in OHS, SHS, and CHS in each research period,
while the landslide cold spots are centralized in OCS, CCS, and SCS. The landslide hot spots
and cold spots were reclassified into the main hot spots, the main cold spots, no pattern
detected, and others. The main hot spots included OHS, SHS, and CHS, the main cold spots
included OCS, CCS, and SCS, and the others included all the other hot spots and cold spots
except the main hot spots and cold spots. After 2009, the main hot spots constituted 34.0–41.9%
of all hot spots, whereas the main cold spots accounted for 31.6–37.8% of all cold spots.

Figures 11 and 12 present the main hot spots and cold spots from 2005 to 2015 in the
two watersheds. The upstream sub-watersheds with dense landslide distributions were
the main hot spot cluster areas in the two watersheds.

The main hot spots from 2005 to 2008 were discretely distributed in the upstream
sub-watersheds of ARW and TRW, and those from 2010 to 2015 were densely clustered in
the upstream of ARW and TRW, particularly in the A01 and T01 sub-watersheds.

Obvious increases in the average landslide ratios from after to before the 2009 Typhoon
Morakot in the two watersheds were noted. The CHS were the hot spots that exhibited the
largest area expansion from after to before the 2009 Typhoon Morakot, and the OCS were
the cold spots that exhibited the largest area reduction. The CHS percentage increased by
7.5% to 16.3% from after to before the 2009 Typhoon Morakot, and the OCS percentage
decreased from 11.4% to 21.8%. This means that the recovery of landslides induced by 2009
Typhoon Morakot was slower than that before 2009.
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Figure 11. The main landslide hot spot and cold spot from 2005 to 2015 (a), from 2005 to 2008 (b), and from 2010 to 2015
(c) in the ARW.

Figure 12. The main landslide hot spot and cold spot from 2005 to 2015 (a), from 2005 to 2008 (b),
and from 2010 to 2015 (c) in the TRW.
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The A01 sub-watershed was selected as the representative sub-watershed to explain
the distribution of the main hot spots and cold spots in the study. The strata in A01 comprise
the Pilushan and Chaochou formations (62.6% and 37.4%, respectively) from the Eocene
epoch and Middle Miocene sub-epoch, respectively. The lithology of the Pilushan formation
comprises slate with metasandstone and igneous rock, whereas that of the Chaochou
formation is argillite and slate with an alternation of metasandstone or argillite. The main
hot spots and main cold spots in the A01 sub-watershed increased substantially after
Typhoon Morakot. From 2005 to 2008, 2010 to 2015, and 2005 to 2015, the main hot spots in
the A01 sub-watershed constituted 3.0%, 17.0%, and 12.5%, respectively, and the main cold
spots constituted 3.8%, 5.9%, and 4.2%, respectively. The main hotspots from 2010 to 2015
in the A01 sub-watershed were concentrated in the headwater landslides, bank-erosion
landslides in sinuous reaches, and reoccurrence of older (from 2005 to 2008) landslides.

Mechanisms and triggering factors of landslide events, landslide areas with poor
recovery, and geomorphological evolution trends can be explained, located, and predicted
using the distributions of landslide hot spots and cold spots that were constructed through
spatiotemporal analysis. The results of the spatiotemporal analysis over the various periods
have different implications. Specifically, the hot spot and cold spot distributions from 2005
to 2015, from 2005 to 2008, and from 2010 to 2015 in the ARW and TRW represent the
long-term landslide evolution.

5. Discussion

The prediction of landslide recovery in watersheds with dense landslides could be the
key factor for watershed management. The characteristic of landslide recovery in the fol-
lowing years after the large earthquake or extreme rainfall events are worth comparing and
discussing. We explained the recovery characteristic of extreme rainfall-induced landslides
by comparing the landslide recovery conditions after the 2005 Kashmir earthquake [5], the
2008 Wenchuan earthquake [4,9], and the 2009 Typhoon Morakot in this study. The time,
location, and rate of landslide recovery after the large earthquake or extreme rainfall events
are the key discussion topics in this study.

The oscillating period was observed after the large earthquake or extreme rainfall
events based on the annual landslide area data. The oscillating period can be defined as
that the annual landslide area and landslide number in this period is an oscillating trend
instead of a stable decline trend. The oscillating period for the serious earthquake-induced
landslide events ranged from 3 to 5 years. The extreme rainfall-induced landslide events in
the study were estimated as 5 years (Figure 4 and Table 6, from 2010 to 2014). The landslide
in the watersheds in the oscillating period was active and easily induced, re-induced, or
enlarged. The average annual landslide area decline rates (abbreviated as LAD) after 2014
were larger than that during the oscillating period (from 2010 to 2014), and the average LAD
during or after the oscillating period in this study was also larger than those from the large
earthquake-induced landslide events. This means that the recovery rate of the extreme
rainfall-induced landslide was faster than that of large earthquake-induced landslide.

Table 6. Comparison of the average annual landslide area decline rate from the large earthquake
events and the extreme rainfall events.

Events Oscillating Period LADO (km2/Year) LADA (km2/Year)

2005 Kashimir Earthquake 2005–2010 0.32 0.99
2008 Wenchuan Earthauke 2008–2011 0.41 0.96

2009 Typhoon Morakot (ARW) 2009–2014 4.24 6.78
2009 Typhoon Morakot (TRW) 2009–2014 2.37 6.04

Note: LAD means the average annual landslide area decline rate (km2/year), and LADO and LADA mean the
LAD during the oscillating period and after the oscillating period.

The location and reason of new or enlarged landslides after the large earthquake or
extreme rainfall events are worth discussing and comparing. The new or enlarged land-

306



Water 2021, 13, 2090

slides in the following years after the 2005 Kashimir earthquake (including the active, very
active, and extremely active landslides in [5]) were mostly located along the Muzaffarabad
fault or in the high fractured and jointed rocks areas, or along with the drainage network,
or in the source of the river and large landslide. Moreover, the new or enlarged landslides
in the following years after the 2008 Wenchuan earthquake (the active landslides in [4])
were located in deep gullies, the source of debris flow and large landslides. Three factors,
including the geological setting, the drainage network, and the landslide area, dominate
the rate of landslide recovery after 2009 in the ARW and TRW in the study.

The statistical data and distribution of landslide evolution in the ARW and TRW
are shown in Table 7 and Figure 13. The new or enlarged landslide in the following
years after 2009 centralized in the northeast ARW and upstream TRW. The strata in the
northeast ARW comprise 62.6% Pilushan formation (metasandstone and igneous rock) and
37.4% Chaochou formations (argillite and slate with an alternation of metasandstone or
argillite), and three faults and anticlines also pass through the northeast ARW. The strata in
the upstream TRW comprise the Chaochou formations (sandstone), kaolinite schist, and
Pilushan formations (metasandstone and igneous rock), and three faults and anticlines
also pass through the northeast TRW. Fractured slate, sandstone, or argillite are the main
geological composition in the northeast ARW and upstream TRW, and also explain the
reasons for the centralization of new or enlarged landslides in this area.

Table 7. Statistical data of landslide evolution from 2009 to 2010, 2013, and 2015 in the ARW.

Landslide Types R Area NR Area
NE

Area Gully-Related River-Related Large-Related

2009–2010 24.8 23.5 4.3 2.41 0.02 1.34
2009–2013 26.1 22.2 5.7 3.07 0.05 1.84
2009–2015 28.1 20.2 7.2 4.04 0.08 2.54

Note: The unit of area in this table is km2. R, NR, and NE mean the recovered, not recovered, and new and enlarged landslide, and the
gully-related, river-related, and large-related mean the NE landslide located in the neighborhood of gully, river, and large landslide.

The landslide evolution results from the comparison of landslide inventories in two
different years can be classified into three types, including recovered landslides, not
recovered landslides, and new or enlarged landslides (Figure 13). The recovered landslide
area from the comparison between 2009 and 2010 (Table 7) was the area identified as
landslide in 2009 but not in 2010, and the not recovered landslide area were the areas
identified as landslide in 2009 and 2010. The new or enlarged landslide area was the area
identified as landslide in 2010 but not in 2009. The new or enlarged landslide in the ARW
and TRW also centralized along with the drainage network, particularly in the upstream
watersheds. Hugh sediment yield from the landslide in the upstream watershed with dense
landslide should be the main reason. The landslide volume was estimated the empirical
equations from Taiwan [26] for the landslide area < 106 m2 and Italy [27] for the landslide
area ≧ 106 m2]. The landslide volume induced by 2009 Typhoon Morakot was estimated
as 65.0 × 106 m3 and 224.5 × 106 m3 in the ARW and TRW. There were 848 landslide
cases after 2009 in the northeast upstream ARW, including A01, A02, A03, A07, and A11
sub-watersheds, and 1138 landslide cases in the upstream TRW, i.e., the T01 sub-watershed.
The landslide volume was estimated as 5.2 × 106 m3 in the northeast upstream of the ARW
and 223.9 × 106 m3 in the T01 sub-watershed. Huge sediment was yielded, deposited in
the narrow reaches, and dominated the evolution of landslide and river geomorphology in
the northeast ARW and upstream TRW.

Huge sediment in the upstream watershed was continuously transported into the
gullies and rivers and also resulted in the frequent occurrence of new or enlarged landslides
in the neighborhood of gullies and rivers from 2010 to 2015 in the ARW. Moreover, 51.3%,
54.0%, and 58.2% of the landslide areas after 2009 in the ARW had been recovered in
2010, 2013, and 2015, respectively. The new or enlarged landslide area from 2010 to
2015 in the ARW showed a continuously increasing trend. The occupied percentage of a
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new or enlarged landslides located in the neighborhood of gullies from 2010 to 2015 was
53.9–56.1%, and the area of a new or enlarged landslide located in the neighborhood of the
river from 2010 to 2015 also showed an increasing trend.

Figure 13. The landslide evolution from 2009 to 2010 (a), to 2013 (b), and to 2015 (c) in the ARW. The
left down plot in each figure is the landslide evolution in the northeast ARW, including the A01, A02,
A03, A07, and A11 sub-watersheds.
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The centralization of new or enlarged landslides in the neighborhood of large land-
slides was mentioned [4,5], and it was also observed in the study. The occupied percentage
of a new or enlarged landslide located in the neighborhood of large landslide cases from
2010 to 2015 in the ARW was 31.2–35.3%, particularly in the northeast ARW.

The dentification of landslide hot spots using the emerging hot spot analysis in this
study can show the clustering strength of old, new, and enlarged landslides in space
and time and provide a potential landslide location. The advantage of the identification
of landslide hot spots using the emerging hot spot analysis is that we can estimate the
maintenance time of landslides from the classification of landslide hot spots, and this
information also contributes to making the priority of watershed management measures
in the watersheds with dense landslides. The management strategy for the watersheds
with huge sediment yield should be implemented considering the landslide evolution
trend. The landslide evolution cases in the ARW and TRW in Taiwan demonstrated that
controlling the sediment in the drainage network and the landslide boundary should be
the priority after the extreme rainfall-induced landslide events.

6. Conclusions

This study used the rainfall analysis, spatiotemporal landslide hotspot analyses,
and comparison analysis of large earthquake- and extreme rainfall-induced landslide
evolution to understand the characteristic of rainfall-induced landslide evolution, which
was useful in assessing the landslide activeness after an extreme rainfall event. We used
the EAR to assess the landslide-induced strength of rainfall events from 2005–2015, and
the EAR values in the ARW and TRW were larger than before after the 2009 Typhoon
Morakot. The landslide evolution trend index (LET) was used to assess the recovery
ratio of landslide area after 2009, and the LET value in most of the sub-watersheds in the
ARW and TRW were ranged 0.022–0.072 km2/year. However, some sub-watersheds in the
ARW and TRW, particularly in the upstream watershed with the landslide ratio > 4.4%,
were still of LET value > 0.05 km2/year after 2009. The landslides downslope of sub-
watersheds with positive LET values in the ARW and TRW after 2009 were easily induced,
re-induced, or enlarged and difficult to recover based on the landslide topographic position
analysis. Most of the new or enlarged landslides in the ARW and TRW after 2009 were
classified into oscillating or sporadic or consecutive landslide hotspots and centralized
along with the drainage network or large landslide boundary. The watersheds with dense
landslides needed to spend 3–5 years, i.e., the oscillating period in the study, to achieve
the stable landslide recovery based on the comparison of landslide recovery after the large
earthquake or extreme rainfall events. The landslide area decline rates in the ARW and
TRW after 2009 were 1.6–2.5 times larger after than during the oscillating period. The
new or enlarged landslides after 2009 in the ARW and TRW was centralized in the huge
sediment-deposited, narrow, and sinuous reaches or the boundary of a large landslide in
the upstream watersheds with a geological composition of fractured slate, sandstone, or
argillite. The findings from the study point out that the watershed management strategies
in the watershed with dense landslides after the extreme rainfall-induced landslide events
should be emphasized to control the huge sediment yield from the numerous landslides,
particularly in the upstream watersheds.
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Abstract: Landslides of Taiwan occur frequently in high mountain areas. Soil disturbance causes
by the earthquake and heavy rainfall of the typhoon seasons often produced the earth and rock to
landslide in the upper reaches of the catchment area. Therefore, the landslide near the hillside has
an influence on the catchment area. The hyperspectral images are effectively used to monitor the
landslide area with the spectral analysis. However, it is rarely studied how to interpret it in the image
of the landslide. If there are no elevation data on the slope disaster, it is quite difficult to identify
the landslide zone and the bareland area. More specifically, this study used a series of spectrum
analysis to identify the difference between them. Therefore, this study conducted a spectrum analysis
for the classification of the landslide, bareland, and vegetation area in the mountain area of NanXi
District, Tainan City. On the other hand, this study used the following parallel study on Support
Vector Machine (SVM) for error matrix and thematic map for comparison. The study simultaneously
compared the differences between them. The spectral similarity analysis reaches 85% for testing data,
and the SVM approach has 98.3%.

Keywords: landslide; image classification; spectrum similarity analysis

1. Introduction

Landslides cause a great loss of human lives and properties. Landslides are frequent phenomena in
Taiwan in which a more effective solution to estimate landslide area is desired through considering the
remote sensing data [1–3]. Conventionally, monitoring of landslides for their locations and distributions
are generally used in situ or field geotechnical techniques through aerial photos by human-power
or unmanned aerial devices [4–6]. In the past, the investigation of landslide areas requires much
manpower, material resources, and funding, and is very time-consuming. Various modeling approaches
have been taken in the form of multivariate statistical analyses or Data Mining techniques of landslide
characteristics corresponding to past landslide records. Many researchers studied the landslide through
various evaluation/estimation through a Geographic Information System [7,8] with different techniques.
The usage of aerial images in large-scale land cover surveys is of great help to the problem [9–11].
Nowadays, spatial information technology is the most proper solution for spatial analysis, which is to
effectively and accurately judge the landslide through remotely-sensed images [12]. Hyperspectral
image data have been developed for more than 20 years. Hyperspectral image data combine the
spectrum shape and image data. In general, the wavelengths of spectrum are divided into visible,
near-infrared, and part-short-wave infrared—three different parts. Those instruments recorded the
spectral reflection information of the material to obtain complete geospatial information quickly and
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extensively [13]. Due to the high spectral resolution of hyperspectral images, it can provide rich
material details in landslide analysis [14,15].

Landslides cause lots of human life and economic losses every year. With the progressing
techniques of spatial data survey in geosciences, large amounts of data for observing the change in the
landslide area can easily be collected. Accordingly, the advancement and development of science and
technology have enabled remotely to obtain large-scale and high-resolution quantitative information
in a short period of time. To find the most valuable knowledge from the target, statistical classification
and data mining techniques are usually used to predict the results of the analysis [2,4,8]. The aim of
this research is to produce landslide susceptibility mapping by remote sensing data processing and GIS
spatial analysis. To identify the unknown species, the spectral reflection diagram of the ground object
could be used [16,17]. This action is like to discover the identification code of the ground object which
can help us identify different features of land cover. Hyperspectral Imaging has a large number of
bands and is almost continuous, which displays a relatively narrow on the spectral range of each band
is relatively narrow. The amount of data obtained is huge and it can completely show slight differences
in the spectrum of different features.

Due to the lack of accurate DEM (Digital Elevation Modeling) map/data in this study, only the
hyperspectral with multi-band data is used to identify landslide and bareland based on a series of
spectral intensities of the band reflection (see Figure 1). Therefore, the study aims to answer the question
on whether the hyperspectral data can substitute for DEM data or not. On the other hand, landslide
and bareland differentiation have drawn more attention to scientists and researchers. Landslide and
bareland both have the same ingredient of soil but are usually at different locations on the hill. If the
spectrum similarity analysis can be done to determine these two different categories, it could reduce a
great amount of time in generating the DEM data/Map.

 

 

Figure 1. Theory for different reflection of target category (bareland vs. landslide).

In parallel studies, this study intends to use data mining methods: Support Vector Machine
(SVM). A total of 72 spectral data of hyper-spectrum remote sensing images are distinguished from
the traditional high-resolution data of traditional R, G, B and IR images which can clearly resolve the
topography of the surface. If each category is carefully determined, it will be beneficial to compare
them by similarity analysis. Between the classification of landslide and bareland, various machine
learning classifiers may have different characteristics and solutions. The classification of the image can
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be conducted either in stage or in combination with each other. Therefore, the study intends to adopt
the following two approaches: (a) Spectrum analysis and (b) Support Vector Machine (SVM). These
two approaches are used to compare the outcomes in advantages and disadvantages, respectively.

2. Data Collection for Study Plan and Area

The study area is located in Zhuzizao Mountain, Nanxi District, Tainan City, Taiwan. It is located
at the northeastern end of Tainan City, north of Dongshan District and Taipu Township of Chiayi,
adjacent to Nanhua District in the east, Liujia District and Dazhong District in the west and the south
of Yujing District. Nanxi District is located at the tail edge of the Alishan Mountain. The central part is
the Dawu Ridge Basin. The hyperspectral image telemetry can reach a large area of the empirical area.
To achieve the control and prediction of the collapse disaster, this study used the image data from the
Chung-Hsing measurement Company in 2016. They purchased the UAV (Unmanned Aerial Vehicle),
which is used to capture the hyperspectral image of Zhuzishan Mountain in Nanxi District, Tainan
City for the study material.

2.1. Geomorphology

According to the plan of the Tainan City Landslide and Geostrophic Geological Sensitive Area
(2014), the Nanxi District belongs to the river valley zone. Owing to the river originating from
the Eastern Mountain, it shows a remarkable stream of excavation. At the same time, the cliff end
with erosion is produced. A series of river bank terraces are formed under the action of undercut
and side erosion; therefore, a small-scale vertical valley development is formed. The study area is
located in the east of Meiling Scenic Area with an elevation of 1110 m. To the west, overlooking the
Jianan Plain, the northwest side overlooks the Zengwen Reservoir, and the southeast is the Nanhua
Reservoir. The terrain of this area has a large height difference in elevation, which is mainly composed
of hilly terrain and plain terrain. The average elevation is between 800 and 1300 m. The geology is
mainly composed of accumulated soil, and there are faults on both sides—the east and west. The
earthquake-induced landslide caused this area soil condition to be very fragile.

2.2. Hydrographic System

The rivers in Tainan City include Bazhangxi, Jiushuixi, Zengwenxi, Yanxi, and Errenxi. The Ziwen
River Basin originates from the Alishan Mountains. The drainage area is 1176.6 square kilometers
and the longest is 138.5 km. The average slope of the riverbed is 1/200. The main tributaries are
Houtunxi, Caixixi, and Guantianxi. It flows through Dongshan, Liujia, Annan, Yujing, Nanhua,
Zuozhen, Shanshang, Dain, Guantian, Shanhua Madou, Anding, Xigang, and Qiqi on the Nanxi
District of the study area, respectively. The study area is located near Tainan County in which there is
Zengwen Reservoir (the largest reservoir in southern Taiwan). The mainstream originates from the
Alishan Mountains, flows south to Zengwenxi, and flows southwest through the mountainous area
to the Zengwen Reservoir. The strip has a total length of 138.5 km, an average slope of 1/57, and an
average annual rainfall of about 2726 mm.

2.3. Geological Structure

The Tainan City Regional Disaster Prevention Plan (2016) is based on the data released by the
Central Geological Survey of the Ministry of Economic Affairs in December 2016. It attributes to the
historical landslide and ground slide area of about 69.11 square kilometers with landslide or ground
slip conditions (with a sloping slope). The area is about 50.4 square kilometers with the buffer zone
of 5 m is about 21.99 square kilometers, and the demarcation range is about 0.62 square kilometers.
The total area is about 135.45 square kilometers (about 6.18% the total of area city).

In Figure 2, the location map of the landslide and geostrophic geological sensitive area in Tainan
City is a plan for the Tainan landslide and geostrophic geological sensitive area (2016). The figure
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shows that, to increase the terrain steepness and aspect, the base map is overlaid with topographic
shadow maps and the adjacent administrative boundaries.

 

 

 

 

Figure 2. Study area.

2.4. Research Material

The spectral application image used in this study is the hyperspectral image of the Compact
Airborne Spectrographic Imager (CASI) of the Bamboo-Waste Mountain in Nanxi District, Tainan City,
which was provided by Taiwan Chung-Hsing Measurement in January and April 2016 as shown in
Figure 3. The image scanning system CASI-1500 is manufactured by ITRES of Calgary, AB, Canada.
The CASI-1500 instrument has a series of spectral wavelengths between 365 nm and 1050 nm, which is
equivalent to the visible of near-infrared range. It can acquire 72 bands for this study with a spectral
resolution of 3 nm and a spatial resolution of 1 m. Each band has its range and attribute of color, which
is presented in Figure 3. Thus, the corresponding number of bands in the latter parts of this study is
the same number presented here.

 

 

 

 Figure 3. The hyperspectral corresponding image band of range.

3. Research Method

3.1. Spectrum Similarity Analysis

We carefully selected 240 sampling data for vegetation areas (trees, grass, etc), bareland area,
and landslide area, respectively. Spectrum similarity analysis becomes a well-accepted approach to
reduce the data dimensionality of hyperspectral imagery. It retrieves several bands of important
patterns in some sense by taking advantage of the all high spectral correlation. Verified by classification
accuracy, it was expected that, just using a part of original bands, the accuracy is obtained rationally,
whereas computational work is significantly reduced [18,19].
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Figure 4a shows the entire research step. It includes two parallel approaches. One of the
approaches is considering finding the similarity of the image bands width to attain the classification
outcomes [20]. Figure 4b shows the similarity of image bands. The vegetation index threshold is found
based on clustering analysis. The non-vegetation of the image is attained, which includes the bareland
and landslide. All this is part of data normalization. Then, the progress of the similarity spectrum
analysis is carried out. Two of the image layers are obtained (D1 and D2). The latter part of this paper
will introduce the details on how the similarity classification of each pixel is identified.
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Figure 4. (a) research steps; (b) the steps for similarity classification.
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Figure 5a presents the original investigation on the site for observing the location of landslide.
All the image data for similarity were carefully checked by in situ investigation and compared to
remote sensing data [21]. It was decided to extract serval samples as mentioned above for landslide and
bareland. Thus, Figure 5b shows the longitude and latitude of the position of study and the accurate
place of landslides. This area landslide belongs to block-slide. Bock slide is a kind of translational
slide. The moving mass of soil and rocks has serval related units that move downslope as a relatively
coherent mass. The largest size of the landslide is about 8 × 12 m2, which is roughly measured by
image data.
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Figure 5. (a) original inventory map: landslide location of in situ investigation; (b) location of training
sample, landslide: a, b, c, d, and e; bareland: aa, bb, cc, dd, ee, and ff.

The parallel study was used the SVM (Support Vector Machine) to access the classification on
bareland and landslide. The thematic map is compared and the error matrix is also calculated.

3.2. Brief on Support Vector Machine

Support vector machines (SVMs) are well-accepted supervised learning methods used for
classification [22]. The study considers the concept of improving statistical learning theory, generally
applied as an effective classifier to solve many practical problems [23]. A special feature of this classifiers
is to minimize the empirical classification error and maximize the geometric margin, simultaneously.
Therefore, it is also known as a maximum margin classifier [24,25].

Linearly separable classes are the simplest cases for the analysis of three various classes (vegetation,
landslide, and bareland). Assume the training data with k number of samples are presented as

{

xi, yi
}

,
where x ∈ RN with an n-dimensional space, and y ∈ {+1,−1} is the class label. These training patterns
are linearly separable if there exists a vector w (determining the orientation of a discriminating plane)
and a scalar b (determine the offset of the discriminating plane from the origin) such that

yi(w · xi + b) − 1 ≥ 0. (1)

The hypothesis space is defined by the set of functions given by:

fw,b = sign(w · x + b). (2)
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If the set of examples is linearly separable, the goal of the SVMs is to minimize the value ||wi||. It is
equivalent to finding the separating hyperplanes for which the distance between the classes of training
data. It also measured along a line perpendicular to the hyperplane.

This distance is called the margin. The data points that are closest to the hyperplane are used to
measure the margin. Thus, these data points are also called support vectors. Consequently, the number
of support vectors should be small.

The problem of minimizing ||wi|| is solved by applying standard quadratic programming (QP)
optimization techniques. It also trasforms the problem to a dual space by using Lagrangian multipliers.
The Lagrangian is presented by introducing positive Lagrange multipliers λi, i = 1, . . . k. The solution
of the optimization problem is attained by considering the saddle point of the Lagrange function

L(w, b,λ) =
1
2
‖w‖2 −

k
∑

i=1

λiyi(w · xi + b) +
k

∑

i=1

λi. (3)

The solution in Equation (5) needs L(w,b,λ) to be minimized with respect to w and b and maximized
with respect to λi ≥ 0. Therefore, for a two-class problem, the decision rule separates the two classes
that can be written as:

f (x) = sign















k
∑

i=1

λiyi(x · xi) + b















. (4)

A soft margin problem for the case of SVMs is to handle the linearly non-separable data by
Vapnik [22]. They concluded that the restriction of each training vector of a given class on the same
side of the optimal hyperplane that applies the value. In ξi ≥ 0, the SVM algorithm for the hyperplane
maximizes the margin. At the same time, it minimizes a quantity proportional to the number of
misclassification errors. This trade-off function between margin and misclassification error is also
governed by a positive constant C such that∞ > C > 0. Thus, for non-separable data, Label (6) can
be written as

L(w, b,λ, ξ,µ) =
1
2
‖w‖2 + C

∑

i

ξi−
∑

i

λi
{

yi(w · xi + b) − 1 + ξi
}−

∑

i

µiξi, (5)

where the µi are the Lagrange multipliers introduced to force the ξi to be positive. The solution of
(7) is determined by the saddle points of the Lagrangian, by minimizing with respect to w, x, and b,
and maximizing with respect to ξi ≥ 0 and µi ≥ 0.

4. Results

As aforementioned, we select 120 of sampling data for training the model of vegetation, bareland,
and landslide, respectively. The 40 pieces of data of each (vegetation, bareland, and landslide) categories
to build the model. The study also randomly selects 40 pieces of data to verify the model as testing data.
The study has been broken into two parts: spectral similarity analysis and support vector machine.
As previously mentioned in Figure 1, the landslide mostly occurred on the slope that has the different
responses of reflection on hyper-spectrum image data. Compared to the bareland, the ingredient of
soil is the same as the landslide; however, most of them are located in the flat area. Thus, the reflection
on hyper-spectrum image data must be different to a landslide. This is the objective to classify them by
applying the similarity of a spectrum [26].
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To introduce the overall accuracy, it can be formulated as

Ac =
TP + TN

All the samples
, (6)

where TP is the true positive and TN is the true negative.

4.1. Spectral Similarity Analysis

The spectrum analysis entire study is divided into the following two steps:

1. Classify the vegetated areas and non-vegetated areas (similar to [18]).
2. Use the clustering analysis to separate bareland areas and landslide areas from non-vegetated

areas (similar to [19]).

To achieve this task, the developed program scans all the bands to find the largest discrepancy of
vegetation and non-vegetation for discriminating between these two categories. The program calculates
and finds that the 34th band has the largest difference. The green lines in Figure 6a are rationally
extracted. Figure 6b is generated to extract out vegetation parts (green line). The r-value on the y-axis
is the response value of the reflection for various categories (vegetation, bareland, and landslide).

 

Ac = ்ା்ே ௧ ௦௦

 
 

 
(a) 

 
(b) 

Figure 6. Cont.
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(d) 

 
(e) 

 
(f) 

Figure 6. (a) three different categories for classification; (b) threshold of upper range for vegetation and
non-vegetation; (c) the lower range on the threshold for landslide; (d) the upper range on the threshold
for bareland; (e) intersection parts for training data of larger than threshold: landslide; (f) intersection
parts for training data of lower than threshold: bareland (green: vegetation; blue: landside; red:
bareland).
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To obtain the best classification outcomes, the 1–72 bands are scanned to find the best part to
distinguish the landslide and bareland. The developed program scans the data in Figure 6c to find the
maximum discrepancy for landslide and bareland. A single cannot clarify the mixup data for landslide
and bareland. Thus, a combination set of bands are requested to approach the goal. It is found that
38 to 42 bands are the best part in the spectrum analysis to attain the classification outcomes. First,
the program adds the 38–42 bands of each data as a single band data (transfer the five-dimensional
data to the one-dimensional data).

Then, the program generates a parametric r-value as an interval to attain three parts of the data:
(a) lower the threshold(landslide), (b) upper the threshold(bareland), and (c) intersection part (mix-up
part). Please refer to Figure 6b; Figure 6c; Figure 6d; and Figure 6e. The program gradually increases
the r value to approach the optimal classification outcomes for landslide and bareland. For example,
the program starts r = 80 and ∆r = 5 and finds the error rate between classification on landslide and
bareland. That is, the program gains r = 95, which is the best allowable value to cut the data into
these three parts. The strategy is to approach the largest number of lower the threshold and upper the
threshold. The minimal lowest number of intersection part is also requested. The program calculates
each data after the summation and sets them as less than 95 as one group and greater than 95 as another.
The strategy is the number of data of the largest group to the total number of data must be greater
than 40%. The number of data of the smallest group to the total number of data must be smaller than
40%. Because in Data Mining, the portion of the number of data for each decision should be as close as
possible. Applying these sets of data can be fairly and uniformly to develop the model.

Then, the program three parts for summing up band 38 to 42 is



















Lower than intersection ≤ 4105 . . . landlside

Greater than intersection ≥ 4828 . . . bareland

intersection > 4105 and < 4828 . . .mixup parts

. (7)

After screening the band data, it is found that the data density variety is not uniform. Hence,
different stepwise of a grouping data strategy is needed. In the mix-up parts, the program restarts
to find the discrepancy between landslide and bareland. The solution takes a set of band values and
uses the clustering technique to search the optimal set of possible outcomes. For instance, we found
that the band numbers from 45 to 52 has the largest discrepancy. Then, the program sieves out the 45,
46, 48, 50, and 51 bands are the most useful information. That is, 47, 49, and 52 bands are eliminated
from the data set. The program found that the band values in 45, 46, 48, 50, and 51 have the largest
discrepancy between landslide and bareland. Then, the intersection ranges of bands of each piece of
data are summed into a single value (five multi-band data into one-dimensional data). The summed
maximum and maximum values are calculated, and the binary classification is executed. It is found
that a finer value of 30 can be gradually increased as a stepwise to each line attribute for each categories
(landslide and bareland). Then, the accuracy of each segmentation value is step-by-step calculated
as the classification accuracy until the highest accuracy is approached. Each band of the data in the
intersection range is clustered based on the rule of a finer interval being less than 30; the other group is
greater than 30.

Determination value of 45, 46, 48, 50 and 51

{

sum r : ≥ 6995 . . . landslide

sum r : < 6995 . . . bareland
. (8)

The training data for generating this similarity model have 100% accuracy.
The thematic map (see Figure 7) is generated by inputting are the band data into the program.

Green presents the vegetation, red for landslide and white for bareland. The major landslide areas
(comparing in Figure 5) are almost found, and bareland is clearly found. The computational time is
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fast and a rough result is qualified. We also randomly picked 40 testing data to verify our spectrum
analysis model. The error matrix is presented in Table 1. The overall accuracy is about 85%.

 

 

tt − d = ௗି൫ሺ௫ିሻି.ହ൯∗ଶ

Figure 7. The thematic of spectrum analysis (green: vegetation, red: landslide and white: bareland).

Table 1. Error matrix for spectrum analysis.

Categories Vegetation Bareland Landslide User Accuracy Commission Error

Vegetation 40 0 0 100% 0%
Bareland 0 32 8 80% 20%
Landslide 0 10 30 75% 25%

Producer Accuracy 100% 76.19% 78.95% Overall accuracy = 85%
Omission error 0% 23.81% 21.05%

4.2. SVM

As part of the study, the Support Vector Machine is used as a parallel approach to examine the
spectrum analysis. The objective of the support vector machine algorithm is to generate a hyperplane in
n-dimensional space (n is the number of features) that accurately classifies the data points. The following
steps are:
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4.2.1. Step1: Normalization

The original data of the collected data sets (such as hyperspectral, multi-spectral, etc.) are
normalized, and the values of the attribute data are standardized within the same range. This study
converts all attribute values between −1 and 1, using the formula:

d =
d−mind

((maxd −mind) − 0.5) ∗ 2
. (9)

4.2.2. Step2: Cross-Validation

This study uses K-Fold Cross-Validation to first split the initial sample into K sub-samples (each
sub-sample is independent from each other). A single sub-sample is the data for the validation model
with the remaining K−1 samples. One of those sets of sub-samples is used for training. After repeating
the above procedure K times, the K group classification correct rate will be obtained. In final, the data
of the K group for the correct rate average value are estimated.

4.2.3. Step3: Model Selection for a Core Function

The functions of the support vector machine can be divided into four types: linear functions,
polynomial functions, radial basis functions, and S functions. The user should select the core function
based on different conditions. The parameters are adjusted for different kernel functions that are also
different. The user has to adjust the kernel function and parameters according to the situation, which
will have a significant impact on the prediction accuracy rate. In this study, the Radial Basis Function
kernel (RBF) is taken for consideration. To obtain better model parameters, the Grid Search method
repeats the test parameters C = 4.2 (penalty parameter) and g = 0.32 (gamma function) for possible
combination and calculate the correct rate of its parameters (C, g). If it meets its condition, end the
repeated test and output its best C and g parameters; otherwise, re-substitute with the new parameters
until the combination is found.

This step is to optimize the optimal classification model obtained in the previous step. The testing
data of the unknown result are substituted into the classification model construct by the previous
step, and the obtained result will be aggregated in which the overall classification accuracy rate is
calculated for performing the evaluation. It explores the effectiveness of machine learning under its
selection points and different attribute data. The accuracy assessment of this study is divided into two
parts: (1) the thematic map and (2) the error matrix. Figure 8 presents the thematic map for the overall
condition in three categories. Green presents the vegetation, red for landslide, and white for bareland.
Comparing Figure 8 to Figure 7, based on the image data in Figure 5, it presents a clearer and better
accurate rate for the thematic map. The error matrix is also calculated in Table 2. The overall accuracy
is 98.3%.

Comparing Figures 7 and 8 for the thematic map, the difference is clear. For instance, the blue
rectangle part in Figure 7 renders a better interpretation of detecting the bareland. In the inventory
map (Figure 5), this part presents as a bareland. The similarity analysis spectrum seems to provide a
better prediction. However, SVM has a better interpretation of the integrity on landslide and bareland.
The spatial information is a fundamental multi-temporal approach. The method can successfully be
applied to serval periods of this area or another area. Thus, if the based rule of similarity spectrum can
be developed successfully, the approximated location of landslide mapping can be rapidly generated.
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Figure 8. The thematic of support vector machine (green: vegetation, red: landslide and
white: bareland).

Table 2. Error matrix for SVM.

Categories Vegetation Bareland Bareland User Accuracy Commission

Vegetation 40 0 0 100% 0%
Bareland 0 38 0 100% 0%
Landslide 0 2 40 95.2% 4.8%
Producer 100% 95% 100% Overall accuracy = 98.3%

Omission error 0% 5% 0%

5. Conclusions

The landslide and bareland are the most interesting topics that draw great attention to scientists
and researchers. They both have the same soil ingredient but different locations on the hill. Landslides
mostly displayed on the hill, which may produce destructive disasters for human beings. Owing to the
lack of accurate DEM (Digital Elevation Modeling) map/data in this study, the hyperspectral data have
been proved to identify landslide and bareland according to spectral intensities of reflection. A parallel
study is designed to compare the spectral analysis approaches.

The study has three major contributions:

(a) The study proved that the hyperspectral image data can replace the DEM data by considering
different land cover categories.

(b) The spectral similarity analysis can classify 100% of the vegetation area. Most of the landslide
and bareland area is also being detected with a satisfactory level of the overall accuracy of 85%.

(c) The support vector machine is a superior classifier. However, the problem is that each of the
training sample data must be supervised data. That is, each piece of in situ sampling data must
be carefully labeled. The overall accuracy is 98.3%.
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Abstract: The prediction and advanced warning of landslide hazards in large-scale areas must deal
with a large amount of uncertainty, therefore a growing number of studies are using stochastic models
to analyze the probability of landslide occurrences. In this study, we used a modified Thiessen’s
polygon method to divide the research area into several rain gauge control areas, and divided the
control areas into slope units reflecting the topographic characteristics to enhance the spatial resolution
of a landslide probability model. We used a 2000–2015 long-term landslide inventory, daily rainfall,
and effective accumulated rainfall to estimate the rainfall threshold that can trigger landslides. We
then employed a Poisson probability model and historical rainfall data from 1987 to 2016 to calculate
the exceedance probability that rainfall events will exceed the threshold value. We calculated the
number of landslides occurring from the events when rainfall exceeds the threshold value in the slope
units to estimate the probability that a landslide will occur in this situation. Lastly, we employed the
concept of conditional probability by multiplying this probability with the exceedance probability
of rainfall events exceeding the threshold value, which yielded the probability that a landslide will
occur in each slope unit for one year. The results indicated the slope units with high probability that
at least one rainfall event will exceed the threshold value at the same time that one landslide will
occur within any one year are largely located in the southwestern part of the Taipei Water Source
Domain, and the highest probability is 0.26. These slope units are located in parts of the study area
with relatively weak lithology, high elevations, and steep slopes. Compared with probability models
based solely on landslide inventories, our proposed landslide probability model, combined with a
long-term landslide inventory and rainfall factors, can avoid problems resulting from an incomplete
landslide inventory, and can also be used to estimate landslide occurrence probability based on future
potential changes in rainfall.

Keywords: landslide; rainfall threshold; landslide probability model; Taiwan

1. Introduction

Taiwan is a relatively new island formed by plate movements. Due to its high mountains, steep
slopes, and relatively unstable geological conditions, as well as frequent typhoons and torrential
rains, slopeland disasters are common in mountainous areas. Thus, slopeland hazard prevention
and mitigation projects are necessary. In slopeland hazard prevention work, landslides have a high
level of unpredictability. In particular, estimating the likelihood of landslides in large watersheds
using deterministic models is difficult when no detailed geomorphological and hydrological data
have been collected for the whole area. Therefore, the use of a stochastic model to assess landslide
probability is more feasible. According to the definition, landslide hazard involves both spatial and
temporal probability [1]. The analysis of landslide spatial probability is generally seen as a landslide
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susceptibility analysis in the research [2–12]. The landslide temporal probability, normally expressed in
terms of frequency, return period, or exceedance probability [13], was analyzed in the research [14–21].

Methods of performing landslide temporal probability analysis can be classified as hydrological
models and approaches based on exceedance probability [22]. The hydrological models employ
infiltration models to determine the critical rainfall triggering landslides, which requires the estimation
and validation of soil parameters over large areas, and therefore makes these models impractical for
regional-scale applications. The approaches based on exceedance probability can be further subdivided
into two types, where the first type employs a landslide inventory induced by a single rainfall event
and rainfall data for that event to analyze the return period of the landslide event [8,23,24], and the
second type employs a long-term landslide inventory to calculate the exceedance probability for the
occurrence of landslides. Concerning the latter type, the Poisson probability model [17,25–29], binomial
probability model, and empirical model [20] are commonly used to analyze the recurrence probability
of landslide events. As a consequence, when a research area has a long-term landslide inventory,
the Poisson probability model can be employed to estimate the temporal probability of landslides
under the assumption that the frequency of future landslides occurring is the same as in the past.
However, due to the constraints of this assumption, the Poisson probability model cannot separate
the effect of geomorphological and hydrological factors on landslides, and therefore cannot be used
to infer how landslide probability will change when climate change causes changes in the frequency
of torrential rain and in the rainfall patterns. If the effects of geomorphological and hydrological
factors can be considered separately and the occurrence probability of torrential rain events can be
estimated independently, then the landslide temporal probability can be estimated correctly based
on the change trends of the estimated torrential rain occurrence probability [30]. One approach to
separate the effects of geomorphological and hydrological factors in landslide probability models is to
employ the concept of conditional probability to separately estimate rainfall probability and landslide
probability under these rainfall conditions. In this approach, a Poisson probability model is first used
to calculate the exceedance probability of rainfall events that may trigger landslides, the landslide
probability under these rainfall conditions is then calculated, and the two are multiplied to obtain the
temporal probability of landslides [26,28,29].

Before calculating the probability of rainfall events that may trigger landslides, the scale of rainfall
events that trigger landslides or the threshold rainfall events that must be exceeded to trigger landslides
must first be understood. The minimum amount of rainfall needed to trigger landslides was first
considered by Endo [31], and the rainfall thresholds triggering landslide events were quantified by
Onodera et al. [32]. Campbell [33] suggested that the combined effect of both antecedent rainfall
and rainfall intensity on the landslides needed to be considered, and a warning system could be
based on the relationship between antecedent rainfall and critical rainfall [34]. Caine [35] used rainfall
intensity and rainfall duration to establish global shallow landslide rainfall thresholds. Methods of
establishing rainfall thresholds were classified as physical models and empirical models [36], where
physical models employ detailed spatial information on hydrological, lithological, morphological, and
soil characteristics as a basis for modeling the relationship between rainfall, infiltration, and landslide
events. However, the information is hard to collect accurately over large areas. Empirical models
can be grouped as thresholds combining rainfall duration, total event rainfall, or rainfall intensity
parameters, thresholds considering antecedent rainfall, and thresholds combining other parameters,
where the first two groups can be further subdivided into the following three categories based on
the parameters used for determining rainfall thresholds [21]: the first category consists of intensity
and duration parameters [18,20,29,34,35,37–39], the second category consists of antecedent rainfall
conditions [26,28,29,40], and the third category consists of accumulative event rainfall and duration
parameters [41]. Although rainfall intensity–duration models have been most commonly used in
recent years [21], thresholds for rainfall-induced landslides may define the rainfall, soil moisture, or
hydrological conditions that, when reached or exceeded, are likely to trigger landslides [36]. Some
research has also suggested that groundwater and soil moisture are factors influencing the initiation of
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landslides [42,43], and antecedent rainfall can affect both of these factors. Accordingly, antecedent
rainfall can be used to determine when landslides may occur [36]. In research on rainfall thresholds
incorporating the antecedent rainfall conditions, large differences exist in the number of days of
antecedent rainfall that were employed in each study. For example, daily rainfall was employed
in conjunction with 15-day antecedent rainfall [39], both daily and 3-day cumulative rainfall were
used [44], and 3-day and 30-day antecedent rainfall were employed [45]. Guzzetti et al. [36] suggested
that the large variability in the antecedent rainfall may be attributed to three types of factors concerning
the research area: diversity in lithological, morphological, vegetation, and soil conditions; differences
in climatic regimes and meteorological circumstances; and the heterogeneity and incompleteness in
the rainfall and landslide data used to establish the rainfall thresholds. As a consequence, the local
conditions and availability of data in the research area must be assessed when choosing the number of
days of antecedent rainfall.

Since the rainfall threshold determined using a single rain gauge for a large area constitutes one
value for the entire area, as soon as rainfall reaches or exceeds the threshold, landslides may occur
anywhere in that area, and knowing their precise locations is impossible. As a consequence, a denser
array of rain gauges can be employed to acquire rainfall data with finer spatial resolution [21], and the
research areas can be subdivided into analytical units with a smaller area, which can better account for
the spatial variability of rainfall patterns in the analytical units and the spatial resolution of landslide
prediction. However, 19.1% of recent studies on this subject failed to subdivide their research areas,
and those studies that did subdivide their research areas had resulting analytical units with an average
area of 302.0 km2 [21]. For instance, a research area of 4660 km2 was subdivided into 12 analytical units
with an average area of 388.3 km2 [39], but excessively large analytical units make it impossible to
identify the precise possible locations of landslides. In addition, the subdivision approaches employed
in some studies run into the problem of incomplete coverage. For instance, although a 25 km2 research
area was subdivided into eight analytical units, the landslide prediction results only represented the
paths of roads in the subdivisions and not the entire subdivisions because most landslides (94%) in
the study occurred on roadside slopes [26]. Althuwaynee et al. [28] divided the research area into six
circular analytical units with their centers at rain gauges, but the analytical units did not cover the
entire research area and also overlapped. Although these studies subdivided their research areas into
different analytical units, the units could not provide a landslide probability distribution with a finer
spatial resolution because they were excessively large, or experienced problems such as incomplete
coverage and overlap. If the method of subdividing a research area into analytical units is improved
so that the units are smaller in area, the spatial resolution of the landslide probability estimation
results could be improved. There are seven types of analytical units subdivided in research areas: grid
cell, terrain unit, unique condition unit, slope unit, geo-hydrological unit, topographical unit, and
administrative unit [46,47]. The slope units are suitable for landslide probability analysis because they
express topographic features and slope characteristics. In this study, we consequently selected slope
units as our analytical unit.

2. Research Area and Materials

2.1. Environmental Setting of Taipei Water Source Domain

Taipei Water Source Domain is located in the northeast part of Taiwan and supplies tap water
for five million people in the greater Taipei area. The area is characterized by hilly and mountainous
topography, as well as the Xueshan Range extending to the northeast and a subrange of Mt. Qilan
extending to the northwest, both of which account for the area’s high terrain in the south and low
terrain in the north. Elevations in the area range from 12 to 2130 m (Figure 1).
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Figure 1. Distribution of elevation, lithology, and rain gauges in the Taipei Water Source Domain. 

Concerning the distribution of lithology, we followed the classification approach proposed by 
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sandstone and shale, hard sandstone and shale, and slate. Whereas alluvium found at the confluence 
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by slate had the highest number of landslides and the greatest landslide area. Wu et al. [49] 
indicated that the areas underlain by hard sandstone and shale as well as slate in the Kaoping River 
Watershed had the highest landslide ratios in 2008 and 2009. This indicates that the lithology 
condition of most areas is fragile. Typhoons and torrential rain events can readily wash away 
unconsolidated sand and gravel as well as trigger landslides, which deposit large loads of sediment 
in rivers and reservoirs.  
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Figure 1. Distribution of elevation, lithology, and rain gauges in the Taipei Water Source Domain.

Concerning the distribution of lithology, we followed the classification approach proposed by
Lin et al. [48] by dividing the Taipei Water Source Domain into areas underlain by alluvium, loose
sandstone and shale, hard sandstone and shale, and slate. Whereas alluvium found at the confluence
of rivers and in downstream areas covers only a small part of the research area, hard sandstone and
shale as well as slate underlay most of the research area. Of these types of lithology, areas underlain by
slate had the highest number of landslides and the greatest landslide area. Wu et al. [49] indicated that
the areas underlain by hard sandstone and shale as well as slate in the Kaoping River Watershed had
the highest landslide ratios in 2008 and 2009. This indicates that the lithology condition of most areas
is fragile. Typhoons and torrential rain events can readily wash away unconsolidated sand and gravel
as well as trigger landslides, which deposit large loads of sediment in rivers and reservoirs.

2.2. Rainfall Data

The rain gauges employed in this study were located as shown in Figure 1, and rainfall data
between 1987 to 2016 from these rain gauges were used. Average daily rainfall for the entire area
during the same period as the 2000–2015 landslide inventory is shown in Figure 2. Figure 2 shows
that apart from the eight typhoon events causing the corresponding landslide inventory, other events
of high daily rainfall occurred without a significant increase in landslides. As a consequence, apart
from calculating the exceedance probability that rainfall events will exceed the rainfall threshold, we
also calculated the probability of landslides when rainfall events exceed the threshold. In addition,
Figure 3 shows the average daily rainfall and standard deviation of the eight typhoon events during
the 2000–2015 period in each control area of a rain gauge divided by a modified Thiessen polygon
method, considering the morphology of the area, proposed by Salvaticic et al. [19].

2.3. Landslide Inventory

After selecting eight major typhoon events occurring in the research area during the 2000–2015
period—typhoons Xangsane (2000), Nari (2001), Aere (2004), Sinlaku (2008), Morakot (2009), Parma
(2009), Megi (2010), and Soudelor (2015)—we collected satellite images before and after each typhoon
event, calculated and classified the normalized difference vegetation index (NDVI) to find the possible
locations of landslide sites, and eliminated and revised unlikely landslide sites according to the slope,
drainage, and land use maps in the study area. In the process of mapping the source areas of landslides
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from the satellite images, we often found that human mapping errors affected interpretation quality.
We followed the recommended procedures proposed by Liu et al. [50] to map landslides in the research
area. Table 1 shows the dates of the eight landslide events and landslide statistical data. The size of
landslides ranged from 16 to 118,108 m2 and the average area was 2474 m2. The resulting distribution
of landslides caused by the eight typhoon events was shown in Figure 4, which revealed that landslide
sites were concentrated in the southwestern portion of the research area.Water 2020, 12, x FOR PEER REVIEW 5 of 17 

 

 
Figure 2. Average daily rainfall within the Taipei Water Source Domain, 2000–2015. The dots 
represent the eight typhoon events causing the corresponding landslide inventory. 

 
Figure 3. Average daily rainfall and standard deviation of the eight typhoon events in each control 
area of the rain gauge divided by the modified Thiessen polygon method. 

2.3. Landslide Inventory 

After selecting eight major typhoon events occurring in the research area during the 2000–2015 
period—typhoons Xangsane (2000), Nari (2001), Aere (2004), Sinlaku (2008), Morakot (2009), Parma 
(2009), Megi (2010), and Soudelor (2015)—we collected satellite images before and after each 
typhoon event, calculated and classified the normalized difference vegetation index (NDVI) to find 
the possible locations of landslide sites, and eliminated and revised unlikely landslide sites 
according to the slope, drainage, and land use maps in the study area. In the process of mapping the 
source areas of landslides from the satellite images, we often found that human mapping errors 

Figure 2. Average daily rainfall within the Taipei Water Source Domain, 2000–2015. The dots represent
the eight typhoon events causing the corresponding landslide inventory.

Water 2020, 12, x FOR PEER REVIEW 5 of 17 

 

 
Figure 2. Average daily rainfall within the Taipei Water Source Domain, 2000–2015. The dots 
represent the eight typhoon events causing the corresponding landslide inventory. 

 
Figure 3. Average daily rainfall and standard deviation of the eight typhoon events in each control 
area of the rain gauge divided by the modified Thiessen polygon method. 

2.3. Landslide Inventory 

After selecting eight major typhoon events occurring in the research area during the 2000–2015 
period—typhoons Xangsane (2000), Nari (2001), Aere (2004), Sinlaku (2008), Morakot (2009), Parma 
(2009), Megi (2010), and Soudelor (2015)—we collected satellite images before and after each 
typhoon event, calculated and classified the normalized difference vegetation index (NDVI) to find 
the possible locations of landslide sites, and eliminated and revised unlikely landslide sites 
according to the slope, drainage, and land use maps in the study area. In the process of mapping the 
source areas of landslides from the satellite images, we often found that human mapping errors 

Figure 3. Average daily rainfall and standard deviation of the eight typhoon events in each control
area of the rain gauge divided by the modified Thiessen polygon method.

331



Water 2020, 12, 937

Table 1. Landslide inventory for the eight typhoon events.

Typhoon Event
Date

(MM/DD/YYYY)
Average Rainfall at

the Date (mm)
Number of New
Landslide Sites

Smallest Landslide
Area (m2)

Largest Landslide
Area (m2)

Total Area of
Landslides (m2)

Average Area of
Landslides (m2)

Xangsane 11/01/2000 326.67 42 326 19,619 131,148 3123
Nari 09/16/2001 538.05 92 107 68,032 261,650 2844
Aere 08/24/2004 465.57 97 140 27,270 239,856 2473

Sinlaku 09/13/2008 348.18 32 475 21,101 71,111 2222
Morakot 08/07/2009 219.83 173 16 118,108 1,016,448 5875
Parma 10/05/2009 221.79 302 47 49,369 484,785 1605
Megi 10/21/2010 262.35 47 407 27,318 118,874 2529

Soudelor 08/08/2015 478.99 589 257 48,041 1,075,263 1826
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2.4. Analytical Units and Rain Gauge Control Areas

We employed slope units as analytical units due to their relatively well-defined topographic
boundaries, as well as topographic and geological meaning. We employed the subdivision method
used by Xie et al. [51] to divide the watershed into slope units. The original topography could be
divided into sub-watersheds, and the combination of sub-watershed units before and after reversal
yielded the slope units. We ensured that the smallest area of slope units was larger than the average
area of landslides [47], which minimized the chance that any specific landslide site would be a part of
different slope units, and thereby confuse the analysis results. We also divided the research area into
rain gauge control areas (Figure 3) based on rain gauge locations and using the modified Thiessen
polygon method. The rainfall measured by each rain gauge was taken as representative of the control
area in which that gauge was located, and we expected this approach to reflect the different rainfall
distribution characteristics within the research area.

3. Methods

3.1. Analysis of Discrete Rainfall Groups

The two rainfall parameters considered in this study consisted of daily rainfall (I) and effective
accumulated rainfall (Rt). After selecting rain gauges near the research area with rainfall data for recent
years, we obtained daily rainfall data for the 1987–2016 period from the Water Resources Agency and
Central Weather Bureau. This study calculated the effective accumulated rainfall based on rainfall for
that day and rainfall during the previous 7 days using the method proposed by Jan [52]; this calculation
was performed using Equation (1):

Rt = R0 +
7

∑

i=1

αiRi =
7

∑

i=0

αiRi (1)

where R0 is the rainfall amount on that day, R1 is the rainfall amount on the day before that day, and so
on, and the weighting coefficient α = 0.7 proposed by Jan [52].

Adopting the concept proposed by Tsai [53], after using daily rainfall data to calculate effective
accumulated rainfall (Rt), we obtained a group of daily rainfall and effective accumulated rainfall (I,
Rt) for each day. The daily rainfall and effective accumulated rainfall were continuous variables and
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would not facilitate subsequent calculation of a joint cumulative distribution function, therefore we
rounded off the daily rainfall and effective accumulated rainfall values to the 10th place and made
them discrete variables. The group of daily rainfall and effective accumulated rainfall (I, Rt) for each
day was termed as “discrete rainfall group” in this study.

We defined different rainfall events by the continuity of daily rainfall. Consecutive days of
non-zero daily rainfall were considered to be the same rainfall event, and the number of the consecutive
days varied from event to event. We then calculated the distance (d) from each discrete rainfall group
to the origin (0, 0), and assumed that the greater the value of d, the greater the likelihood of landslides.
The discrete rainfall group with the greatest d in each rainfall event was used to represent that rainfall
event in subsequent analysis.

3.2. Joint Cumulative Distribution Function

The joint cumulative distribution function was obtained from the joint probability mass function
of the foregoing discrete rainfall groups. The probability (PI,Rt (Ii, Rtj)) of each discrete rainfall group
(Ii, Rtj) was defined [54] as shown in Equation (2):

PI, Rt

(

Ii, Rt j

)

= P
(

I = Ii ∩ Rt = Rt j

)

(2)

where i = 0, 10, 20, 30, . . . ; j = 0, 10, 20, 30, . . . ; the joint probability mass function has a probability
value only when I and Rt are multiples of 10 and the probability values in other places are 0.

The foregoing joint probability mass function yielded a joint cumulative distribution function using:

FI, Rt

(

Ii, Rt j

)

=
i

∑

0

j
∑

0

PI, Rt

(

Ii, Rt j

)

. (3)

The joint cumulative distribution function was a monotonic increasing function with a range
between 0 and 1, and had the form of a three-dimensional curved surface when plotted on coordinate
axes. The farther the point (Ii, Rtj) from the origin, the greater its probability value. The probability of
a discrete rainfall group on the curved surface expressed the cumulative probability of all discrete
rainfall groups, which were nearer to the origin than this discrete rainfall group (Ii, Rtj).

3.3. Selection of a Rainfall Probability Threshold

After establishing a joint cumulative distribution function, taking each 0.05 as an interval, we set
20 rainfall probability thresholds ranging from 0.05 to 1.00, and employed the error matrix concept to
calculate the true positive rate (TPR), true negative rate (TNR), and positive predictive value (PPV) for
each rainfall probability threshold at each rain gauge control area. The rainfall probability threshold
was treated as the threshold of cumulative probability of the discrete rainfall groups which was used
to predict whether rainfall events could trigger landslides. Here, TPR expresses the ratio of discrete
rainfall groups that correctly predicted landslide occurrence to discrete rainfall groups triggering
landslides actually, TNR expresses the ratio of discrete rainfall groups that correctly predicted no
landslide occurrence to discrete rainfall groups triggering no landslides actually, and PPV expresses
the ratio of discrete rainfall groups that correctly predicted landslide occurrence to discrete rainfall
groups predicting landslides. To capture the performance of each threshold, PPV and Youden’s index
were used for comprehensive consideration. The higher the PPV and Youden’s index values, the more
accurate the rainfall probability threshold at classifying landslide occurrence and landslide occurrence
for discrete rainfall groups. The TPR, TNR, PPV, and Youden’s index calculations were performed
employing Equations (4)–(7).

TPR (%) =
Number of discrete rainfall groups predicting landslides when landslides actually occurred

Number of all discrete rainfall groups triggering landslides actually (4)
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TRN (%) =
Number of discrete rainfall groups predicting no landslides when no landslides occurred

Number of all discrete rainfall groups triggering no landslides actually (5)

PPV (%) =
Number of discrete rainfall groups predicting landslides when landslides actually occurred

Number of all discrete rainfall groups predicting landslides (6)

Youden′s index = TPR + TNR− 1 (7)

3.4. Poisson Probability Model

A Poisson probability model relies on the past frequency of events to predict their occurrence
probability in the future. The basic assumption underlying this type of model is that future events
will occur with the same frequency as past events. In this model, the probability of at least one event
occurring in the time interval (t) is given by Equation (8):

P(N(t) ≥ 1) = 1− e−λt (8)

where P(N(t) ≥ 1) indicates the probability of at least one event occurring within a period of t years;
this probability is known as the exceedance probability.

We calculated the number of discrete rainfall groups exceeding the threshold at each rain gauge
in the past using the optimal rainfall probability thresholds and then divided by the years of the
rainfall data to obtain the occurrence frequency (λ), which was used to calculate the exceedance
probability. The exceedance probability indicated the probability of at least one rainfall event exceeding
the threshold of discrete rainfall groups within any one year.

3.5. Conditional Probability

We employed the concept of conditional probability in the analysis. We first used the Poisson
probability model to calculate the exceedance probability of at least one rainfall event exceeding the
threshold of discrete rainfall groups within any one year at each rain gauge control area. We divided
the number of landslides occurring in each slope unit by the number of rainfall events exceeding
the threshold of discrete rainfall groups to estimate the probability that a landslide would occur in
that slope unit when the rainfall exceeded the threshold. Lastly, we multiplied the two probabilities
together to obtain the probability that a rainfall event would exceed the threshold of discrete rainfall
groups and at least one landslide would also occur in each slope unit within any one year, as shown in
Equation (9):

P(R ≥ RT ∩ L) = P (R ≥ RT) × P(L|R ≥ RT) (9)

where R ≥ RT indicates rainfall events exceed the threshold of the discrete rainfall group and L indicates
the occurrence of a landslide.

4. Results and Discussion

4.1. Joint Cumulative Distribution Functions of the Rain Gauges

In this study, we collected multi-year daily rainfall data from each rain gauge and calculated the
effective accumulated rainfall (Rt) by employing Equation (1), which yielded rainfall and effective
accumulated rainfall for each day. We then rounded off the daily rainfall and effective accumulated
rainfall values to the 10th place, which yielded discrete rainfall groups including both daily rainfall
and effective accumulated rainfall. The next step was establishing frequency tables for different
discrete rainfall groups, which we used to show the frequency of the discrete rainfall groups. Figure 5
shows the frequency of discrete rainfall groups at the Bihu rain gauge with daily rainfall and effective
accumulated rainfall (Rt) ranging from 0 to 100 mm. The depth axis represents daily rainfall, the
horizontal axis represents the effective accumulated rainfall (Rt), and the vertical axis represents the
frequency of a discrete rainfall group. We then calculated the cumulative frequency of each discrete
rainfall group on this basis, and this represented the frequency of all discrete rainfall groups with
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values lower than that of any designated discrete rainfall group. The cumulative frequency was then
divided by the total frequency of all discrete rainfall groups, which yielded the cumulative probability
of each discrete rainfall group.
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Figure 5. Frequency distribution of discrete rainfall groups at the Bihu rain gauge.

The joint cumulative distribution function of each rain gauge was then obtained from the
cumulative probability of the discrete rainfall groups, and this function was used to plot a joint
cumulative distribution chart. Figures 6 and 7 are joint cumulative distribution functions for the
Bihu and Fushan (3) rain gauges, and daily rainfall and effective accumulated rainfall (Rt) are shown
within a 0–300 mm range. The joint cumulative distribution functions have areas with gentler slopes
indicating fewer and more dispersed discrete rainfall groups within a certain interval, and areas with
steeper slopes indicating more and more concentrated discrete rainfall groups within a certain interval.
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4.2. Selection of Rainfall Probability Thresholds of the Rain Gauges

Following the analysis results of the joint cumulative distribution functions of the rain gauges,
we used rainfall data from the rain gauges during the eight rainfall events triggering landslides to
select rainfall probability thresholds. The rainfall probability threshold was treated as the threshold
of cumulative probability of the discrete rainfall groups which was used to predict whether rainfall
events could trigger landslides. Starting with a rainfall probability threshold value of 0.05, we set
a rainfall probability threshold at each interval of 0.05 until a value of 1.00 was reached, and then
calculated the TPR, TNR, PPV, and Youden’s index of each rainfall probability threshold. Here, the
number of landslide events predicted correctly divided by the number of rainfall events triggering
landslides actually equaled TPR, the number of no landslide events predicted correctly divided by the
number of rainfall events triggering no landslides actually equaled TNR, and the number of landslide
events predicted correctly divided by the number of rainfall events predicting landslides equaled PPV.
Table 2 shows the results of these calculations for the Bihu rain gauge. In the analysis results for the
individual rain gauges, the rainfall probability thresholds with the highest Youden’s index were within
the probability interval of 0.85–0.95, and the rainfall probability thresholds with the highest PPV were
at the probability of 0.95 in all cases. We consequently opted to use a rainfall probability threshold
value of 0.95 for the whole area. The TPR, TNR, PPV, and Youden’s index for all rain gauges when the
rainfall probability threshold was 0.95 are shown in Table 3.

Table 2. True positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), and
Youden’s index for Bihu rain gauge at different rainfall probability thresholds.

Rainfall Probability Threshold 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Number of landslide events predicted correctly 8 8 8 8 8 8 8 8 8 8
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8 8 8 8

TPR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Number of no landslide events predicted correctly 0 0 92 92 173 237 237 292 332 361

Number of rainfall events triggering no landslides actually 608 608 608 608 608 608 608 608 608 608
TNR 0% 0% 15% 15% 28% 39% 39% 48% 55% 59%
PPV 1.3% 1.3% 1.5% 1.5% 1.8% 2.1% 2.1% 2.5% 2.8% 3.1%

Youden’s index 0% 0% 15% 15% 28% 39% 39% 48% 55% 59%

Rainfall Probability Threshold 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Number of landslide events predicted correctly 8 8 8 8 8 8 8 8 7 0
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8 8 8 8

TPR 100% 100% 100% 100% 100% 100% 100% 100% 88% 0%
Number of no landslide events predicted correctly 407 431 469 494 526 549 575 588 602 608

Number of rainfall events triggering no landslides actually 608 608 608 608 608 608 608 608 608 608
TNR 67% 71% 77% 81% 87% 90% 95% 97% 99% 100%
PPV 3.8% 4.3% 5.4% 6.6% 8.9% 11.9% 19.5% 28.6% 53.8% -

Youden’s index 67% 71% 77% 81% 87% 90% 95% 97% 87% 0%

Table 3. TPR, TNR, PPV, and Youden’s index for all rain gauges at a rainfall probability threshold of 0.95.

Rainfall Gauge Bihu Fushan (3) Tatungshan Pinglin (4) Sihdu Taiping Quchi

Number of landslide events predicted correctly 7 4 8 5 8 7 7
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8

TPR 88% 50% 100% 63% 100% 88% 88%
Number of no landslide events predicted correctly 602 586 652 598 563 549 610

Number of rainfall events triggering no landslides actually 608 599 662 605 583 565 629
TNR 99% 98% 98% 99% 97% 97% 97%
PPV 53.8% 23.5% 44.4% 41.7% 28.6% 30.4% 26.9%

Youden’s index 87% 48% 98% 61% 97% 85% 84%

4.3. Landslide Probability Analysis Employing a Rainfall Probability Threshold and a Long-Term
Landslide Inventory

After determining a rainfall probability threshold for the rain gauges, we calculated the number
of discrete rainfall groups exceeding this threshold at each rain gauge during the 1987–2016 period.
We then divided these values by the years of statistics at each gauge, which yielded the λ values in
Equation (8). Substituting t = 1 year into Equation (8) allowed us to calculate the probability of at
least one rainfall event exceeding the threshold of discrete rainfall group within any one year (i.e., P(R
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≥ RT) in Equation (9)) under the assumption that future rainfall conditions will be the same as past
conditions. Figure 8 shows the exceedance probability value calculated for each rain gauge overlaid on
each rain gauge control area. The Quchi rain gauge control area had the highest probability of 0.76502
that at least one rainfall event will exceed the threshold of the discrete rainfall group within any one
year, whereas the Bihu rain gauge control area had the lowest probability of 0.43886.
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Figure 8. The exceedance probability that at least one rainfall event will exceed the threshold of discrete
rainfall group within any one year in each rain gauge control area.

In this study, we also divided the number of landslides occurring in each slope unit during the
2000–2015 period by the number of rainfall events exceeding the threshold of discrete rainfall group
at the rain gauges to which the slope units were assigned during the same period to estimate the
landslide probability in the slope units when the rainfall exceeded the threshold, which is P(L|R ≥
RT) in Equation (9). The resulting probability distribution is shown in Figure 9. Figure 9 shows that
the different slope units within a single rain gauge control area have different landslide probabilities,
and these differences should be attributed to different geomorphological conditions in the slope units.

Lastly, employing Equation (9), we multiplied the probability P(R ≥ RT) that at least one rainfall
event will exceed the threshold of discrete rainfall group within any one year in each rain gauge control
area by the landslide probability P(L|R ≥ RT) in each slope unit when rainfall exceeds the threshold,
which yielded the probability that at least one rainfall event exceeds the threshold of discrete rainfall
group at the same time that one landslide will occur in each slope unit during the future one-year
period (Figure 10). The two probability maps shown in Figures 9 and 10 were validated by the landslide
inventory data respectively. The landslides were mainly distributed in the slope units where the
landslide probability values were greater than 0.01. The top 2% of slope units ranked with landslide
probabilities included 50.40% of slope units where landslides occurred while the top 6% of slope
units ranked with landslide probabilities included 100.00% of slope units where landslides occurred
in Figure 10. The results indicated these maps had reasonable landslide probability distributions.
Figure 10 reveals that the Fushan (3) rain gauge control area, which is located in the southwest part
of the research area, contained relatively many slope units with high landslide probability, and the
highest probability value was 0.26. Apart from having fragile lithology consisting of hard sandstone
and shale as well as slate, this area has a higher elevation and steeper slopes than other control areas,
which suggests that elevation and slope have a definite correlation with landslide occurrence.
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Source Domain.

4.4. Discussion

In comparison with a landslide probability model based solely on the use of landslide inventories,
our landslide probability model based on the use of landslide inventories and rainfall factors reflect
different basic assumed conditions. The assumption of the landslide probability model incorporating
rainfall factors is that the frequency of future rainfall events exceeding the threshold and the frequency
of landslides occurring when the threshold has been exceeded are the same as in the past. In contrast,
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the assumption of a landslide probability model based solely on the use of landslide inventories is that
the frequency of future landslides occurring is the same as in the past. As a consequence, landslide
probability models incorporating rainfall factors possess the following advantages: (1) This model
can reflect the differences in landslide probability between the rain gauge control areas that have
different rainfall conditions. (2) When rainfall data were added in the analysis, the probability model
we obtained yielded more reliable results because the rainfall data were collected from a longer period
(29–45 years) than the landslide inventory (16 years). (3) If we know how the probability of at least one
rainfall event exceeding the threshold will change in the future, the incorporation of rainfall factors
in the landslide probability model will allow the effect of possible rainfall changes on the landslide
probability to be assessed.

However, several aspects connected to the application of this landslide probability model still
require further investigation: (1) The method of analyzing landslide probability proposed in this study
requires a long-term landslide inventory and rainfall data, therefore attention must be paid to the
completeness of rainfall data for the research area and handling methods when data are incomplete. (2)
Whereas the rainfall factors used in this study reflect daily rainfall and effective accumulated rainfall,
the use of different rainfall factors will yield different analysis results, which may be explored further
in future research. (3) Apart from the modified Thiessen polygon method, the division of rain gauge
control areas can be performed using other methods, such as the height–balance polygon method.
A finer division method should yield more precise results of a landslide probability distribution,
therefore future research can also compare the applicability of different methods of division into rain
gauge control areas. (4) We obtained a long-term landslide inventory consisting of only eight events,
therefore all events collected were used in the process of building the model. The landslide inventory
covering the period of other events may be collected to verify the predictive ability of this landslide
probability model.

5. Conclusions

In this study, we employed joint cumulative distribution functions to calculate the TPR, TNR, PPV,
and Youden’s index for different rainfall probability thresholds, selected a threshold of 0.95 as suitable
for the research area, and used this rainfall probability threshold to calculate the Poisson probability
of at least one rainfall event exceeding the threshold of discrete rainfall groups at each rain gauge
within the future one-year period. We then combined this probability with the landslide probability
in individual slope units when rainfall exceeded the threshold value, which allowed us to estimate
the probability that a landslide will occur in individual slope units during the future one-year period.
Many of the slope units with a high landslide probability are located in the Fushan (3) rain gauge
control area, and the highest probability is 0.26. Apart from fragile lithology, this area is characterized
by high elevations and steep slopes, which indicates that the elevation and slope have a significant
influence on the occurrence of landslides. This finding suggests that this area should be a focal area for
landslide prevention and mitigation efforts.

The landslide probability model established based on the use of a long-term landslide inventory
and rainfall factor had a finer spatial resolution and data for a longer period, which yielded more
reliable results and enabled the effect of possible rainfall changes on the landslide probability to be
assessed. The effects of the completeness of rainfall data for the research area, the use of different
rainfall factors, as well as the different methods of division into rain gauge control areas on the landslide
probability analysis results can be significant and still require further investigation.
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Abstract: When utilizing a finite volume method to predict outburst flood evolution in real geometry,
the processing of wet-dry front and dry cells is an important step. In this paper, we propose a
new approach to process wet-dry front and dry cells, including four steps: (1) estimating intercell
properties; (2) modifying interface elevation; (3) calculating dry cell elevations by averaging intercell
elevations; and (4) changing the value of the first term of slope limiter based on geometry in dry cells.
The Harten, Lax, and van Leer with the contact wave restored (HLLC) scheme was implemented to
calculate the flux. By combining the MUSCL (Monotone Upstream–centred Scheme for Conservation
Laws)-Hancock method with the minmod slope limiter, we achieved second-order accuracy in
space and time. This approach is able to keep the conservation property (C-property) and the mass
conservation of complex bed geometry. The results of numerical tests in this study are consistent
with experimental data, which verifies the effectiveness of the new approach. This method could
be applied to acquire wetting and drying processes during flood evolution on structured meshes.
Furthermore, a new settlement introduces few modification steps, so it could be easily applied to
matrix calculations. The new method proposed in this study can facilitate the simulation of flood
routing in real terrain.

Keywords: shallow water equations; wet-dry front; outburst flood; TVD-scheme; MUSCL-Hancock
method

1. Introduction

Glacier avalanche [1,2], debris flow [3–5], and landslide [6–8] in mountain areas
could trigger the occurrence of river blocking [9–12]. Some of this blocking produces
large-scale lakes, which leads to back flooding upstream and may inundate roads and
villages. Most dammed lakes breach in a short time after their formation, causing massive
water to be released catastrophically [9,13]. Yigong Lake was blocked by catastrophic
landslides in 1902 and 2000 [14] and formed outburst floods with peak discharges of
around 18.9 × 104 m3/s [15] and 12.4 × 104 m3/s [8], respectively; the Yarlung Tsangpo
gorge was blocked twice in 2018, with a peak discharge of 3.2 × 104 m3/s in the second
outburst flood [3,4].

345



Water 2021, 13, 221

This kind of dynamic process can impose catastrophic damage to downstream people
and infrastructure [16]. Outburst floods may also have significant geomorphic and geologic
impacts; they have substantial erosive and transport capacity that can rapidly transform
river channels and bedforms [17–19], and may even lead to climate change [20] and a
global sea level decrease [21]. Outburst floods and their impacts even appear in the myths
and stories of many civilizations, such as the Bible and the Koran [22].

Back analysis of outburst flood is an impressive method to determine risk, which has
been used to reconstruct large-scale geomorphological dynamic processes that occurred
ten thousand years ago. In general, the submerge area and related velocity determine the
risk of outburst floods, and a shallow water dynamic model is a widely used and reliable
method to predict it [23–26].

Shallow water equations are popular in long-wave hydrodynamic simulation [27] and
are an effective way to analyze outburst flood routing. The Godunov-type finite volume
method is an effective and convenient method to calculate flood evolution in complex
geometry and is widely used in structured cells and unstructured cells [27]. There are
two popular forms for shallow water equations: (1) not consider gravity source term in
advection terms [28] and (2) consider the geometry in advection terms [29,30].

A TVD (total variation diminishing) scheme is used to limit numerical oscillations near
discontinuity [31–33]. Slope limiters such as the minmod limiter, double limiter, and van-
Leer limiter are popularly used to keep the solving scheme that has a TVD property [33].
By using a slope limiter, a monotone upstream-centered scheme for conservation laws
(MUSCL) reconstruction in the cell center provides second-order accuracy in space [34,35].
The MUSCL method is one of the most successful high-resolution schemes for hyperbolic
conservation laws and is applied widely [24,29,33].

Wet-dry front treatment is a key problem when applying shallow water equations
to real geometry. Sharp slope geometry especially can over-predict flux and generate
negative flow depth [27,29]. Specific treatments during calculation have been applied to
limit flux and the gravity source term or to modify geometry [27,29,36], thus or avoiding
extremely high flux in intercells and velocity in the cell center. In the process of variable
modifications, the limiter’s value of the dry cell would equal zero after modifying the local
geometry [27,29,36,37].

Many traditional treatments to the wet-dry front change the elevation of the dry cell
equal to the wet cell’s free surface elevation as shown in Figure 1a [27,29]. If the dry cell is
surrounded by four wet cells with different free surface elevations, four elevation modifi-
cations are necessary to achieve a balanced flux in the surrounded four cells (Figure 1b,c),
and it is very hard to achieve a matrix calculation during simulation as well. A matrix
calculation and less cell modification save time because matrix operators are faster than cell
loops [38]. In order to apply shallow water equations to a river with a complex geometry
and avoid more elevation modifications, we propose processing dry cells by adopting
the first term of the slope limiter function in dry cells to solve the wet-dry front problem
and accomplish matrix simulation in the whole calculation area. This method can avoid
modifications in the dry cell’s elevation and achieve a matrix calculation. This method
was tested with many cases and is applicable to a complex geometry for outburst flood
analysis.
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Figure 1. The traditional elevation modification of wet-dry front. (a) Modify elevation to the same as wet cell; (b,c) Two
times elevation modification of one dry cell.

2. Governing Equations and Schemes

2.1. Governing Equations

Two-dimensional shallow water equations are integral forms of Reynolds-averaged
Navier–Stokes equations. This equation presumptively neglects vertical momentum ex-
change and sets the pressure distribution as hydrostatic [39]:

U,t + F,x + G,y = S, (1)

where t represents time direction, x and y are two Cartesian coordinates, U is a variable
with vector form, F and G are fluxes vectors at two directions, and S is a vector represents
source term. The equation is a conserved equation. For general use, the conserved equation
is written as:
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−τbx/ρ − gηZ,x
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, (2)

τbx = ρgn2u
√

u2 + v2h−1/3, (3)

τby = ρgn2v
√

u2 + v2h−1/3, (4)

where η = Z + h is the elevation of the flood free surface, where the specific treatment to
initial shallow water equations adds geometry information to the advections [29], Z is the
elevation of the river bed, h is the flow depth, u is the flow velocity in the x direction, v is
the flow velocity in the y direction, τbx and τby are the bottom shear stress in the x and y
directions, g is gravity acceleration, and n is the Manning coefficient.

2.2. Finite Volume Method

The finite volume method has been used in many areas to solve partial equations [40].
The method is implemented by integrating partial equations over the space area for an
arbitrary grid. In this study, shallow water equations are hyperbolic equations, which can
be integrated as follows:

∂

∂t

∫

ε

UdΩ +
∫

ε

(
∂F

∂x
+

∂G

∂y
)dΩ =

∫

ε

SdΩ. (5)
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By using Green’s formula, Equation (6) can be described as:

∂

∂t

∫

ε

UdΩ +
∫

L

(F + G)dL =
∫

ε

SdΩ, (6)

where L is the mesh boundary of the integral line, and ε is the integral area, which is a
rectangular grid here. By using the integral form equation at mesh (i, j), the second term
becomes:

∫

L

FidL +
∫

L

GjdL = (Fi+1/2 − Fi−1/2)∆y + (Gj+1/2 − Gj−1/2)∆x, (7)

Un+1
i,j = Un

i,j −
∆t

∆x

(

Fi+1/2,j − Fi−1/2,j

)

− ∆t

∆y

(

Gi,j+1/2 − Gi,j−1/2

)

+ ∆tSi, (8)

where n is the time, and i + 1/2 and j + 1/2 are the predicted flux at the interface, predicted
by two Riemann states.

2.3. HLLC Riemann Solver for Fluxes Prediction

In order to solve the Riemann problem approximately, Harten Lax and van Leer
proposed the famous HLL Riemann solver in 1983, which is widely used by researchers
to solve shallow water equations today. The scheme requires estimations for the fastest
signal velocities from the discontinuity at the interface, resulting in a two-wave model
including shock waves, rarefaction waves, and discontinuity. Toro modified the scheme to
a three-wave model [33], and the solver was suited to calculate cases involving a wet-dry
front, so the HLLC (Harten, Lax and van Leer) approximate Riemann solver by Toro is
used in this paper.

2.4. Slope Limiter

The face value of variables required for the MUSCL-Hancock reconstruction step and
for the time updating step is:

Ui+1/2 = Ui + r∇Ui, (9)

where r is the distance vector, and ∇Ui is the gradient vector of variable in space. In order
to avoid numerical oscillations, we adopt a single slope limiter in this study. The formula
becomes:

Ui+1/2 = Ui + ϕ(r)r∇Ui, (10)

where ϕ(r) is a limiter function. We adopted the Minmod limiter in case tests. Special
gradients of variables were predicted by:

ri,j =











ηi+Fn,j+Gn−ηi,j
ηi,j−ηi−Fn,j−Gn

hui+Fn,j+Gn−hui,j
hui,j−hui−Fn,j−Gn
hvi+Fn,j+Gn−hvi,j
hvi,j−hvi−Fn,j−Gn











, (11)

where ri,j is slope in mesh (i, j), which includes two directions’ values. If intercell interpola-
tion is in the x direction, Fn = 1 and Gn = 0; if intercell interpolation is in the y direction,
Fn = 0 and Gn = 1.

2.5. MUSCL-Hancock Method

In the MUSCL-Hancock reconstruction step, the calculation is limited in a single cell.
Thus, it does not use the HLLC Riemann solver to predict the flux at the intercell. The
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corrected value in the cell center is Un+1/2
i , and the flux is calculated based on cell face

reconstruction, which is predicted by the cell slope limiter:

UMn
i+1/2 = Un

i +
1
2

ϕ(r)
(

Un
i − Un

i−1
)

, (12)

where UMn
i+1/2 is the reconstructed cell boundary vector. The predicted cell center value

is calculated by:

Ut+1/2
i = Ut

i + kx

(

F
(

UMn
i+1/2

)

− Fi+1/2
(

UMn
i−1/2

))

+ ky

(

G
(

UMn
j+1/2

)

− G
(

UMn
j−1/2

))

+
∆t

2
Si (13)

kx =
∆t

2∆x
; ky =

∆t

2∆y
.

As for the Riemann flux calculation, we use results from the MUSCL-Hancock step to
reconstruct the value around the interface. The slope limiter is the same as the MUSCL-
Hancock reconstruction step. The formula is:

UL
i+1/2 = Un+1/2

i +
1
2

ϕ(r)
(

Un
i − Un

i−1
)

. (14)

Riemann states in another direction to use the same method.

2.6. Stability Criteria

The numerical scheme is explicit. The stability is defined by the Courant–Friedrichs–
Lewy (CFL) criterion. Since this is a two-dimensional calculation case, the time step is
limited by local real-time results:

∆t = min

(

C∆x

|ui|+
√

ghi

,
C∆y

|vi|+
√

ghi

, ∆T

)

, (15)

where C is the Courant number, ranging between 0 and 1. In some cases, a stable ∆T could
give a more stable result. If the export results include a specific time point, ∆T should be
modified to a smaller time step to match the predicted time point.

3. Intercell Bed Elevation and Dry Cell

Since the flux calculation should follow the real physics law in the real world, the
interface property determines the flux calculation during flow routing in real river geometry.
We classified the interface property into four types based on flow depth and surface
elevation (as shown in Figure 2): (1) Two cells’ flow depth is higher than 0, which would
generate flux in these specific two cells. (2) Two cells between the interface are dry cells
such that both flow depths are equal to zero. (3) One is a wet cell and another is a dry cell,
but the elevation of the wet cell is higher than the dry cell. (4) One is a wet cell and another
is a dry cell, but the dry cell is higher than the wet cell.

Based on the physical property, the interface in the first and third type should con-
sider mass and momentum exchanges between the two cells during calculation. It is not
necessary to consider this effect for the cell interface in Type B and Type D.
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Figure 2. Classification of interface property. (a) Type A: wet cells at the left and right side, hL > 0,
hR > 0, hL and hR are flow depth in the left and right side of intercell respectively; (b) Type B: dry
cells at the left and right side of the intercell face; (c) Type C: wet and dry cells are connected through
the intercell face, the free surface elevation of the wet cell is higher than the dry cell; (d) Type D: wet
and dry cells are connected between the intercell face, and the free surface elevation of the wet cell is
lower than the dry cell.

Local modification of Z at the intercell is adopted. The modification is used based on
the physical property of the real condition (as shown in Figure 3); e.g., (1) the reflection
boundary would stop the flow from moving forward; (2) the dry cell has no flux. The
intercell property in Types A, B and C do not need modifications, and the intercell bed
elevation is:

Zi+1/2 = (Zi + Zi+1)/2, (16)

where Zi+1/2 is the elevation at the intercell; Zi and Zi+1 are cell center elevations at the ith
and (i + 1)th cell. Type D of the intercell face’s elevation is modified as:

Zi+1/2 = min(ηi, ηi+1). (17)

Figure 3. Modification of the intercell elevation. (a,b) The intercell does not need modification, which
is related to Type A and Type B; (c) the intercell elevation is modified to the wet cell’s elevation,
which is related to Type D; (d) the sharp slope cell is modified to the dry cell’s bed elevation.

350



Water 2021, 13, 221

In the Type C intercell property, a sharp slope would produce an overpredicted flux in
the intercell. Based on the intercell property, the intercell bed elevation was modified as:

Zi+1/2 = max(Zi, Zi+1). (18)

Momentum needs to be modified while the intercell property is Type D. The velocity
component that is perpendicular and the limiter of the three variables of the shallow
water equations should be set to zero. For rectangular cell simulation, the calculation area
could be treated as a matrix. Many simulations are based on circulation to calculate the
whole simulated area, and they include a step that checks for cells that do not need flux
calculations. We want to skip this step due to the running circulation cost time. The specific
form of the shallow water equation includes η, and the unbalanced flux would be predicted
during our simulation which formed by a complex real geometry if the matrix is used
directly, for example (Figure 4):

Figure 4. The calculated parameters of a shallow water equation with no special treatment.

If the dry cell’s slope limiter function, Equation (11), is zero, the calculated flux would
be unbalanced:

(

g(η2 − 2ηZ)/2
)

,x
=

g
[(

ηi
2 − 2ηiZi−1/2

)

−
(

ηi
2 − 2ηiZi+1/2

)]

2∆x
6= gηiZ,x. (19)

In order to achieve a matrix calculation and an automatic flux balance during simula-
tion, we adopted the “zero” slope-limiter function and modified the first term based on the
geometry. The elevation of dry cell was modified to:

ηi =
(Zi+1/2 + Zi−1/2)

2
, (20)

and the slope of the surface elevation of the dry cell was calculated as:

ri,j(ηi)
=

(Zi+1/2 − Zi−1/2)

2∆x
, (21)

where ri,j(ηi)
is the value of the first term of the slope limiter function, and ∆x is the cell

length in the x direction.
If the flow depth in the dry cell is zero, ηi+1/2 = Zi+1/2 in the interface, and cell

center’s value is given by Equation (20). The specific treatment to the dry cell is shown
below (as shown in Figure 5):
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Figure 5. The dry cell’s center elevation is calculated by the average of two intercell elevations. Intercell elevations are
predicted from the latest two steps that are based on the intercell type and the real conditions. (a,c) One side is a wet-dry
front and the one side is dry-dry; (b) both sides are a wet-dry front; (d) both sides are sharp slopes; (e) both sides are dry
cells; (f) flow chart of the method.

The balance in the dry cell is automatically reached:

(

g(η2 − 2ηZ)/2
)

,x
=

g
(

Zi+1/2
2 − Zi−1/2

2
)

2∆x
=

g(Zi+1/2 + Zi−1/2)(Zi+1/2 − Zi−1/2)

2∆x
= gηiZ,x (22)

In the reflection boundary, where a higher left dry cell and a lower right wet cell
surround the intercell, ηi+1/2 = ηi−1/2 = ηi and ηi−1/2 = Zi−1/2. The flux balance is
reached automatically:

(

g(η2 − 2ηZ)/2
)

,x
=

g
(

−ηi−1/2
2 + ηi+1/2

2+2ηi+1/2Zi+1/2−2ηi−1/2Zi−1/2
)

2∆x
=

gηi+1/2(Zi−1/2 − Zi+1/2)

∆x
= gηiZ,x. (23)

If the flow velocity at all described cells is zero, the flux balance is controlled by
the wet-dry boundary and the dry cells. All the steps of this method are summarized in
Figure 5f.

4. Results and Discussion

4.1. Steady Condition Calculation of Flood

A test case was used to test the numerical scheme’s C-property. A static lake is kept
steady, and there is no disturbance. The calculation area is an 8000 m × 8000 m. In the dry
bed, there are two bumps:

Z(x, y) = max(0, ZB1, ZB2), (24)






ZB1 = 2000 − 0.00032
[

(x − 3000)2 + (y − 5000)2
]

ZB2 = 900 − 0.000144
[

(x − 5000)2 + (y − 3000)2
] . (25)

The lake elevation is 1000 m, and the lower bump is submerged by the lake. The mesh
size is a rectangular mesh of 1 m × 1 m. The calculation time step is 1 s. The finish time is
8000 s.

After 8000 s, the lake remained static, the results in Figure 6 show that this approach
follows a C-property, the static keep balance automatically.

352



Water 2021, 13, 221

Figure 6. C-property checking for a static lake. (a) Lake geometry; (b) results after 8000 s.

4.2. Two-Dimensional Smooth River Bed Test

A two-dimensional smooth bed test was adopted here. The case has an analytical so-
lution smooth bed. This test was adopted by many researchers to test their algorithm’s wet-
dry treatment and calculation accuracy [27,29,41,42]. The calculation area is a 4 m × 4 m,
and the origin of the coordinates is in the center of the calculation area. The mesh size is
0.1 m × 0.1 m. The bed is a parabola rotation:

Z(x, y) = h0

(

x2 + y2

a2 − 1
)

, (26)

where h0 is the initial flow depth of the origin of the coordinates, a is the distance between
the origin and the elevation equal to zero, and x and y are coordinate variables. Under
this condition, water flows on the smooth bed and cannot stop. The frequency of flow is
ω = 2π/T =

√

8gh0/a, in which T is the time of one cycle. In the analytical solution for
the process, the moving range is small:

η(x, y, t) = max

[

Z(x, y), h0

( √
1 − A2

1 − Acos(ωt)
− x2 + y2

a2

(

1 − A2

(1 − Acos(ωt))2 − 1

)

− 1

)]

, (27)

where A =
(

a4 − r4
0
)

/
(

a4 + r4
0
)

, and r0 is the farthest distance to the center. In the simula-
tion test, we consider the same parameter treatments as Song et al. [42], a = 1 m, h0 = 0.1 m,
and r0 = 0.8 m. We adopted a mesh size of 0.01 × 0.01 m. The initial condition is the same
as the analytical solutions in T/6, T/3, T/2 and T (Figure 7).

Figure 7. Cont.
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Figure 7. Simulated results compared with real analytical results. (a) Geometry of the calculation
area and the initial condition; (b–e) comparison between the simulated results and the analytical
solution at T/6, T/3, T/2, T.

4.3. Dam Breach over a Thump

This test case is a dam break flow over a thump. The experiment was carried at the
University of Brussels, Belgium [43]. Many researchers have used this case to test their
model on complex geometries [44,45].

The test simulated a sudden dam breach of flood flowing over a triangular hump.
The calculation area is a 38 × 1.75 m flume. A hump was set at 15.5 m, and a barrier lake
was formed upstream (as shown in Figure 8). The static lake’s flow depth is 0.75 m. The
peak of the triangular thump is at 28.5 m, with a height and bottom width of 0.4 and 6 m,
respectively. In the tail of the obstacle, there is a 0.15 m high gate, where flow depth is
also 0.15 m. Downstream, the first gate is the dry bed. Roughness of the calculation area
is n = 0.0125 s × m−1/3. Four downstream monitoring locations were set, named G1, G2,
G3, and G4, and the measured data is the flow depth, located at 19.5, 25.5, 26.5, and 28.5 m
respectively. The mesh size for the calculation is 0.1 m × 0.1 m.

Figure 8. Flume test setup of the experiment.
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Figure 9 shows four representative moments of simulation. After 1 s, the flood front
arrives at the 19 m point. At 8 s, the flood flows over the obstacle, which causes backwater
and imposes disturbance on the tail lake. At 16 s, a higher run-up upstream lake formed
at the front of the obstacle, with waves upstream of the hump. A distinct hydraulic jump
develops at the tail lake. At 40 s, the water surface before the obstacle is dominated by
strong waves, while the tail lake becomes static. The flow upstream cannot flow over the
obstacle.

Figure 9. Free surface elevation during the flood evolution in the experiment. (a) At 1 s, flood flows
at the dry bed; (b) at 8 s, the flood flows up to the obstacle and has an influence downstream; (c) at
16 s, all the upstream water flows to the obstacle and a run-up forms; (d) at 40 s, the flow downstream
remains static, with waves at the upstream lake.

We extracted surface elevation data from the simulation results for comparison. Sim-
ulated results at G4 and G13 fit the monitored data very well, but the predicted water
surface at G10 and G11 is slightly lower than the monitored data, G20 is slightly higher
than measured data, which has been captured in many cases [44]. At the lower stage, the
simulated results were similar to simulated results later. The short-term-simulated higher
flow depth did not influence the real flood evolution at a later stage. Compared with the
same simulated work did by Tomas and Liao [44,45], our simulated results show similar
result in G10, G11, and G20. In G4 and G13, our result is closer to measured data compared
with their results, which shows better results (as shown in Figure 10).
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Figure 10. Monitored data compared with the simulated results at the four locations. (a) The
simulated result is similar to the measured data at G4; (b) initially, the simulated results at G10 is
lower but did not influence successive results; (c) the same higher simulated flow depth at G11 is
similar to G10, a short-term lower elevation; (d) the simulated results fit well with the measured data
at G13; (e) the simulated results fit well with the measured data at G20.

4.4. Dam Break Wave Propagating over Three Humps

The three humps test is a very famous test case proposed by Kawahara in 1986 [46,47].
Initially, the case was adopted to test the finite element model, which is wildly used. The
calculation area in this study is a 75 × 30 m flume, which has three humps. The boundary
is a fixed reflection boundary. The centers of the humps are A (30 m, 6 m), B (30 m, 24 m),
and C (47.5 m, 15 m). The maximum height of the humps is 1, 1, and 3 m, respectively. In
the upstream of x = 16 m, there is a lake with a depth of 1.875 m. The bed roughness is
n = 0.018 sm−1/3. The calculation geometry was calculated from the formulas below:



























a = 1 − 1
8

√

(x − 30)2 + (y − 6)2

b = 1 − 1
8

√

(x − 30)2 + (y − 24)2

c = 3 − 3
10

√

(x − 47.5)2 + (y − 15)2

Z(x, y) = max(0, a, b, c)

, (28)
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where a and b are geometric functions of the two lower humps, c is the geometry function
of the higher humps, and the elevation of the bed bottom is the maximum value of a, b,
and c. The mesh size is 0.5 m × 0.5 m.

Figure 11 shows the simulated results of six important moments. At 2 s, the water
reached two lower humps and started to flow over them. At 6 s, the flood flowed over the
two lower humps and started to reached the higher hump. At 12 s, the flood bypassed the
higher hump because it could not completely inundate the higher hump. At 30 s, the flood
occupied the calculation area. The formed higher flow depth downstream caused backflow.
At 100 s, there was still weak flow in the tank. At 300 s, the flow almost stopped and
formed a static lake in the tank, and the peaks of all three humps did not submerge. The
numerical model properly simulated complex wetting and drying processes and produced
similar results to those of other researchers [29,48].

Figure 11. Cont.

357



Water 2021, 13, 221

Figure 11. Simulated flood evolution on a complex three-hump condition. (a) The flood starts to reach the first two low
humps at 2 s; (b) the flood flows over the two low humps at 6 s; (c) the flood flows downstream of the high humps at 12 s;
(d) the flood forms a higher flow depth downstream at 30 s; (e) there is some weak flow in the tank at 100 s; (f) the tank
maintains a static condition at 300 s.

5. Conclusions

We propose a new approach to process dry cells and wet-dry front cells via a Godunov-
type finite volume prediction method of flood evolution. Shallow water equations automat-
ically balance the gravity source term. The modification includes four steps: (1) identify
four types of intercells based on flow depth and surface elevation difference; (2) based
on the physical properties of the intercells, modify the bed elevation of the intercell, so
as to avoid non-physical flux predictions and gravity balance; (3) modify the dry cell’s
center elevation to equal the averaged elevation of the two surrounding intercell eleva-
tions; (4) change the first term of the slope limiter at the dry cell equal to the ratio of the
elevation difference between two intercell bed elevations dividing two times of mesh size.
This method was applied to a second-order MUSCL-Hancock-HLLC scheme in time and
space for flux and variable prediction in a real geometry. The intercell flux predicted by
the reconstructed method remained balanced with the gravity source term automatically,
which was proved by mathematical derivations. Four simulated cases showed that the
method has a C-property in a complex geometry and achieves the same results as those of
many other researchers. Results in the analytical case and the experiment monitoring cases
fit each other very well. During all the processing steps, modification could be finished in
one step, such that cells did not need to be checked through circulation. This new method
can increase the convenience and efficiency of matrix calculations and has a potential for
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faster GPU (Graphics Processing Unit) simulation and parallel computing. It could be used
in real world outburst flood simulation with high efficiency.
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Abstract: Dam models were constructed in an indoor flume to test dam breach failure processes
to study the seismic signals induced. A simple dam breach model was also proposed to estimate
hydrographs for dam breach floods. The test results showed that when the retrogressive erosion due
to seepage of the dam continues, it will eventually reach the crest at the upstream side of the dam,
and then trigger overtopping and breaching. The seismic signals corresponding to the failure events
during retrogressive erosion and overtopping of the dam models were evaluated. Characteristics of
the seismic signals were analyzed by Hilbert–Huang transform. Based on the characteristics of the
seismic signals, we found four types of mass movement during the retrogressive erosion process, i.e.,
the single, intermittent, and successive slides and fall. There were precursor seismic signals found
caused by cracking immediately before the sliding events of the dam. Furthermore, the dam breach
modeling results coincided well with the test results and the field observations. From the test and
modeling results, we confirmed that the overtopping discharge and the lateral sliding masses of the
dam are also among the important factors influencing the evolution of the breach. In addition, the
widening rate of the breach decreases with decreased discharge. The proposed dam breach model
can be a useful tool for dam breach warning and hazard reduction.

Keywords: dam breach; seepage; overtopping; seismic signal; flume test; breach model

1. Introduction

Large landslides induced by rainfall or earthquakes may form landslide dams and
inundate upstream areas. If the dam breaches, it will pose a serious threat to the area
downstream. Nearly 89% of landslide dam failures are caused by overtopping [1,2]. The
large-scale landslide caused by Typhoon Morakot in 2009 in Xiaolin village in southern
Taiwan caused over 400 fatalities. It also formed a landslide dam [3–5]. Feng (2012) [6]
indicated that the dam breached 1 h and 24 min after its formation according to the seismic
signal recorded and the time–frequency spectrum. They estimated the velocity of flood
propagation downstream to be 8.3 m/s. The dam breach produced large turbulent flows
downstream in a short period of time, causing flooding downstream and the failure of
many bridges.

In 1951, heavy rainfall caused a large-scale landslide in Tsaoling, Yunlin County, Tai-
wan, and a large landslide dam was formed. As a result, 137 army engineers unfortunately
sacrificed their lives during the installation of an emergency spillway due to the sudden
overtopping failure of the dam [7]. In 1999, a large landslide occurred in Tsaoling again
due to the 1999 Chichi earthquake [8]. Five landslide-dammed lakes were subsequently
formed, of which three were cleared soon after the landslide. However, the other two were
not easily cleared, so were strengthened to improve the stability of the dam and emergency
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spillways were setup to prevent overtopping erosion [9]. Due to the establishment of
emergency spillways that controlled the maximum water storage capacity of the landslide
dam, the impacts of four typhoons (Typhoon Bilis in 2000, Torajiin 2001, Nari and Mindulle
in 2004) were reduced [10]. Cui et al. (2013) [11] and Zhou et al. (2015) [12] reported
that on 8 August 2010, the intense rainfall and cascading failure of landslide dams along
two gullies induced a fatal debris flows to Zhouqu County, China, that claimed the lives of
1765 people and damaged infrastructure and many homes. Their preliminary field and
experimental studies showed that landslide dam cluster modes (i.e., different dam types
and their combination) in upstream gullies accounted for the amplification of the scale of
Zhouqu debris flows downstream. Cai et al. (2019) [13] analyzed the cascade dam system
using a dam breach analysis model (DB-IWHR) for continuous breaking failure paths. They
also created a Bayesian network model to determine the failure probability of the cascade
dam system. Říha et al. (2020) [14] also modeled cascade dams and indicated that the peak
discharge of a dam cascade system may be underestimated by up to 10% when applying
an empirical formula derived for a single dam breach. Shrestha and Nakagawa (2016) [15]
studied the large-scale landslide in Nepal that resulted from heavy rainfall on 2 August
2014 and the landslide dam on the Sunkoshi River. The retained water overflowed 36 days
after the landslide. However, there was no serious damage downstream and no casualties
because an emergency spillway was setup before the overflow and the spillway controlled
the overflowing water. From these reviews, it is clear that landslides and dam breaches
can cause a large number of casualties and property destruction. Therefore, research on
the failure processes of landslide dams and hazard prevention of landslide dams is very
important.

Hazard prevention and monitoring of landslide dams are always compulsory. Many
scholars have used seismic signals recorded from geophones and/or accelerometers for
analyses for the creation of warning systems [16–20]. Because both landslide and dam
breach events generate seismic signals, the signals can be faithfully recorded by seismome-
ters, and so can be used for interpreting the processes of landslides and dam breach events.
However, the seismic signals of landslide and dam breach events cannot always be suc-
cessfully recorded due to limitations. Additionally, because natural phenomena cannot
be repeated, a series of event data cannot be obtained for analysis. Therefore, researchers
have often adopted numerical simulations, outdoor large-scale experiments, and indoor
small-scale experiments to conduct research on seismic signals induced by landslide dam
failure.

Yan et al. (2020) [21] reconstructed the dynamic behavior of the 2017 landslide event
in Xinmo village, China, by using the seismic signal characteristics and discrete element
method. They categorized the landslide processes into five stages: stationary, slipping,
transition, entrainment–transportation, and deposition stages, according to the characteris-
tics of the seismic signals and time–frequency spectra. They identified the transition stage,
which is caused by ancient colluvial materials hindering sliding from upslope. However,
as the sliding materials continued to accumulate and produce more downward dragging
forces, another larger landslide was triggered. This can be observed from the seismic
signal as the amplitude first decreases and then increases at the transition stage. Feng
et al. (2017) [22] used PFC coupled with FLAC to simulate the 2009 Xiaolin Village land-
slide process and compared the results with the seismic signal recorded by a broadband
seismometer. They found that the types of movement and terrain significantly affect the
seismic signal. Although a numerical simulation can readily reconstruct the failure process
and influence zones of a landslide, sometimes it is not easy to select accurate physical
parameters; thus, the simulation results may be different from the actual landslide.

Some researchers also choose large-scale outdoor experiments. Yan et al. (2017) [23]
monitored the seismic signals generated during an outdoor dam-breach test. According
to their results based on time–frequency analysis, the low-frequency band (0–1.5 Hz) was
mainly due to dam collapse events; the intermediate-frequency band (1.5–10 Hz) was due
to rock slide events; the high-frequency band (10–45 Hz) was a result of water flow and
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sediment transport. Feng et al. (2020a) [24] conducted a large-scale dam breach test at
Huisun Forest Station in Nantou, Taiwan. They discussed the characteristics of seismic
signals during the dam breach processes and flooding. The flood speed of the test was also
estimated from the seismic signals. They indicated that seismic signals can be applied as a
basis for early warnings for floods. As we know, a large-scale outdoor test better reflects
natural dam breach behavior than the numerical simulation and the small-scale indoor
flume test. However, due to the limitations of outdoor large-scale tests that require a large
area, long preparation time, and are relatively more expensive, they are less widely used
than indoor flume tests.

Many researchers use small indoor flumes to perform tests for landslide dam
breaches [25–28]. Most of the tests explored the erosion of the dam body, including
the effects of different flume slopes, dam geometry, and material properties. However,
the seismic signals caused by the destruction of the dam are less discussed. Hu et al.
(2018) [29] used a small flume to test the seismic signals of internal dam erosions. They
found a precursor seismic signal prior to the sliding of dam materials. Seismic signals
caused by internal erosion due to seepage were mainly high-frequency. If the dam materials
were loosely packed, there were more high-frequency seismic signals induced due to the
internal erosion. However, they only discussed the seismic signals of dam failure due to
seepage and did not discuss the overtopping dam breach and subsequent flooding. There
are seismic precursors detected prior to landslides reported in the literatures, e.g., Poli
(2017) [30] and Butler (2019) [31]. Feng et al. (2020b) [32] used an indoor flume to study
the seismic signals of landslides caused by riverbank erosion. They also found precursor
seismic signals before the riverbank sliding. They classified the river bank sliding into
three types: single, intermittent, and successive. The three types correspond to the three
different characteristics of seismic signals. They also pointed out that the higher frequency
seismic signal decays faster than the lower frequency signal. However, this research did not
perform tests for retrogressive erosion of a dam due to seepage and overtopping failure.

This research performed tests for retrogressive erosion of a dam due to seepage and
the subsequent overtopping failure of dam models. A theoretical dam breach model was
proposed and used to compare the flooding process of the test. The experimental setup was
a modified version of the test used by Feng et al. (2020b) [32]. In the tests, accelerometers
were installed inside the dam to monitor the seismic signals during the dam failure and to
understand the correspondence between the failure processes and characteristics of the
seismic signals. Hilbert–Huang transform [33] was used for time–frequency analysis for
the seismic signals recorded. The setting of the test conditions in this study is not a simple
overtopping failure but is similar to the progressive (retrogressive) failure of an outdoor
dam breach test by Takayama et al. (2021) [34]. The progressive failure was mainly induced
when the dam body was retrogressively eroded towards the upstream crest by seepage.
Initially, only small slides and erosions occurred at the toe of the slope, and then as the
phreatic surface of the seeping water gradually rose, an increasing number of slides and
erosions occurred from the toe towards the crest. At this point, overtopping occurs and
the dam starts to breach with vertical downcutting and lateral erosion. The overtopping
flood gradually expands the width of the breach, and then a larger amount of floodwater is
discharged downstream.

During overtopping, the breach is widened and deepened by the overflowing water.
To model the dam breach process, Wu (2011) [35] listed different model approaches and
pointed out that modeling can be classified as: (1) parametric breach models and (2) phys-
ically based breach models. Parametric breach models usually use statistical regression
equations based on laboratory experiments or field dam failure cases. Physically based
breach models were highly developed during the past decades and can simulate the dam
breach process in a more complete and detailed way. However, the models require heavy
numerical calculation requiring extensive calculation time. In addition, these detailed sim-
ulation models can be limited due to a lack of understanding of sediment transport under
the flow conditions and require multiple runs to calibrate. Unlike the detailed simulation,
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Alhasan et al. (2015) [36] proposed a conceptual model, simplified the three-dimensional
problem to a one-dimensional problem, and successfully compared the results with field
observations. To simulate the horizontal expansion of the dam breach, Tian et al. (2021) [37]
proposed a model to combine a theory of sediment transport for vertical incision and
a horizontal expansion model based on geotechnical theory. Similarly, the framework
proposed in this research is based on the simplified analytical dam breach model by Capart
(2013) [38]. We considered the sediment mass conservation Exner equation [39] and a
simple sediment transport law [40] to describe the changing of the dam and channel bed
profile. We then use this proposed dam breach model to predict the discharge, the height
of the crest, and width of the breach for our test. Comparison and analyses were made
between the dam breach model calculations and the test results to verify the feasibility of
the model.

The major purposes of this study are to discuss (1) the seismic signal precursors prior
to the sliding of the dam, (2) the types of movement of the sliding mass of the dam during
the retrogressive erosion due to seepage, and (3) the dam breach model proposed and its
comparison with the test results.

In this study, only the most representative test result was chosen for presentation;
however, many tests were performed and similar results were obtained.

2. Materials and Methods

2.1. Test Configuration

The laboratory flume is shown in Figure 1, which is the same equipment used in Feng
et al. (2020b) [32]. The size of the flume is 15 × 0.6 × 0.6 m and the slope of the channel bed
is 0.1%. The pump is mainly used to pump water from the underground storage tank to
the headwater. Water is introduced from the headwater into the water tank and controlled
by a sluice (a valve). The inflow is regulated by a screening device before flowing into the
flume channel to enable stable flow conditions. The design of the water supply setup is
similar to that of Alhasan et al. (2016) [41] in that the water was stilled/regulated before
entering the flume channel. Dimensions of the dam model are listed in Table 1. The slope
of the dam is 1:1 (45◦) before water impounding. After the construction of the dam model,
it was left to sit for 1 h before the test. This study assumes that the right side of the flume
is an axis of symmetry; therefore, an overflow notch of 0.05 m depth was set on the right
side of the flume. The material used to construct the dam model was sieved uniform sand
with a median particle diameter of D50 = 1.5 mm, D10 = 0.9 mm, and D90 = 12.1 mm. The
unit weight of the dam material averaged 13.93 kN/m3 and the density of solid particles
ρs = 2583 kg/m3. The void ratio was 0.816 and porosity 45%. The initial moisture content
of the dam materials was measured as 5–8%. The initial internal friction angle of the dam
material was estimated to be 38–40◦. A sand bed with a length of 3.8 m and a thickness of
0.05 m was placed downstream of the dam (Figure 1). Figure 2 shows the side and front
view of the dam model.

The dam model was instrumented with sensors including 4 accelerometers, 4 piezome-
ters, and 2 moisture sensors. Figure 3 shows the configuration of the sensors in the dam
model and are numbered for identification. The locations of the sensors were selected so
that they are not washed out during the tests. Therefore, they were mostly installed on the
left side of the dam, with the exception of PP-3 and PP-4. The piezometers were installed
close to the bottom of the dam to reflect pore pressure. Moisture sensors 1 and 2 were in-
stalled higher, at 0.2 and 0.3 m above the bottom to detect when the seepage water reached
those levels. The accelerometers were of the Type 731A produced by Wilcoxon Sensing
Technologies with a response frequency between 0.1 and 450 Hz and sensitivity of 10 V/g.
The sampling rate was set at 5.12 kHz for the accelerometers to record seismic signals.
The piezometers were of the Type KPE-200KPB made by Tokyo Measuring Instruments
Laboratory Co, Ltd., and were installed 3 cm above the bottom of the dam model to trace
pore pressure (PP) variation during the test. The moisture sensors were of the Type EC-5
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produced by METER Group, Inc., and were installed at two different levels to monitor
variation in volumetric water content (VWC).

Three cameras were set up at the right side, front, and top of the dam model to record
the test process. Because the shooting angle of the sideview file was skewed, for subsequent
analyses we used a projection to estimate the water level changes and dam dimensions
during the breach.

Brief test process: When water was released, the upstream water level gradually
increased until the maximum water level was reached. The maximum water level was
controlled by the sluice and maintained at 0.3 m until overtopping. The pump was turned
off at 116 s for better seismic signal quality. At 130 s, a tapping was made to leave a time
marker, which was used to match the time axis between seismic signals and the test videos.
After water seeped into the dam and outflowed at the downstream toe, retrogressive
erosion and landslides then started. When the retrogressive erosion reached the upstream
crest of the dam, overtopping occurred. A breach was then formed, down cut, and widened.
The detailed test process and results are discussed in Section 3.

Table 1. The dimensions of the dam model.

Slope (◦) Height (m) Crest Width (m) Bottom Length (m) Channel Width (m) Maximum Water Level (m)

45 0.4 0.35 1.15 0.6 0.3

Figure 1. Layout of the test flume and the dam model.

Figure 2. (a) The side view of the dam model and (b) front view of the dam model.
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Figure 3. Sensor configuration in the dam model (the numbering of the sensors is marked near each
sensor).

2.2. Seismic Signal Processing by Hilbert–Huang Transform (HHT)

The seismic signals recorded during the tests were processed using Hilbert–Huang
transform (HHT, Huang et al. 1998) [33]. HHT includes empirical mode decomposition
(EMD) to calculate the intrinsic mode functions (IMFs) and a Hilbert transform (HT) to
obtain the corresponding time–frequency spectra from the IMFs. HHT can process unsteady
and nonlinear signals and analyze the relationship between time, seismic frequency, and
energy distribution of signals. The HHT analyses in this study were performed by Visual
Signal Ver. 1.6 software (AnCad, Inc. (2018) [42]). The characteristics of the seismic signals
due to various sliding events can be identified more easily with the help of time–frequency
spectra. The HHT was also applied in Feng et al. (2020b) [32] and Feng et al. (2020a) [24] to
successfully interpret flood and landslide events.

2.3. Dam Breach Model—Overtopping

As we described in the previous section, the test can be separated into two stages. In
the first stage, the seepage water flows out of the downstream surface of the dam, causing
retrogressive erosion. Due to the retrogressive erosion, the shape of the dam deforms from
a trapezoid to triangle and the breach process leads to the second stage. In the second stage,
the water overtops the crest and begins the overtopping process. In the second stage, the
outflow from the crest dominates the breach process and reduces the water level in the
lake.

To simulate the overtopping incision process and compare it with the test results, we
propose a simplified dam breach model based on Capart (2013) [38]. In this model, we
neglect the discharge due to seepage and simulate the breaching as a continuous process.
As illustrated in Figure 4, we assumed a triangular-shaped dam with upstream slope RD,
downstream slope SD, and initial elevation of the dam zD; zC(t) is the crest level and

366



Water 2021, 13, 2757

zL(t) is the lake level. The initial crest level zC(t = 0) is equal to zD. The initial lake level
zL(t = 0) before overtopping is assumed to be maintained at a steady level.

Figure 4. Schematic and parameters of the proposed dam breach model.

The Exner equation governs the breach process based on the sediment mass balance
(Paola and Voller 2005) [43].

b
∂z

∂t
+

∂J

∂x
= 0 (1)

where b is the channel width, z is the bottom elevation of the breach channel, x is the
streamwise direction, and J is the sediment transport rate. In this equation, Paola and
Voller (2005) [43] simply demonstrated the mass of bedload balancing in a controlled
volume; when sediment influx J(x) is larger than outflux J(x + ∆x) the elevation of the
sediment in the control volume increases. For the sediment transport rate, Visser (1995) [44],
Alhasan et al. (2016) [41], and Haddadchi et al. (2013) [45] collected different empirical
sediment transport formulas used in sand–dike breach erosion. The formulas were verified
with experimental results or field cases. However, the formulas contained too many
detailed variables and coefficients (e.g., internal friction coefficient, bed shear velocity),
which increases the complexity of the model [46]. In the 1950s, Lane (1955) [40] presented
a qualitative law of sediment transport rate, which demonstrated J can be generally scaled
by the water flux and the channel gradient as:

J = KQS = −KQ
∂z

∂x
(2)

where K is a dimensionless transport coefficient; Q is the local discharge (the discharge
through the breach); S is the channel gradient, which can be written as the derivative
of channel elevation in the streamwise direction. By substituting (2) into (1), a variable
rate diffusion equation can be obtained. Next, we assumed the outflow channel at the
toe of the dam converges to the initial shape of the dam, and the level of the crest level
evolves along with the water level of the lake. A zero-sediment flux is assumed at the
crest (J(xC(t), t) = 0) as the second upstream boundary condition [47,48]. By defining
operational time dτ(t) = KQ(t)/b, the varying rate diffusion equation can be reduced to
a standard diffusion equation:

∂z

∂τ
− ∂2z

∂x2 = 0 (3)
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For this dam breach problem (triangle dam with moving upstream boundary condi-
tion), a similar structure of the solution can be found in Capart et al. (2007) [47], Voller
et al. (2004) [49], and Lai and Capart (2007, 2009) [50,51], and the detailed derivation can
be found in Capart (2013) [38]. By using the boundary conditions, the profile of the dam
was solved as:

z(x, τ) = zD − SDx − (RD + SD)λs

ierfc(−0.5λs)

√
τ ierfc

(

−1
2

x/
√

τ

)

(4)

where SD and RD represent the downstream slope and upstream slope of the dam, and
ierfc(ξ) is a special function introduced by Carslaw and Jaeger (1959) [52]:

ierfc(ξ) =
∫ ∞

ξ
erfc(x)dx =

1√
π

exp
(

−ξ2
)

− ξer f c(ξ) (5)

where erfc(ξ) is the complementary error function and λs is a constant related to the shape
of the dam. By taking the upstream sediment flux boundary condition at the dam crest
position, λs can be solved numerically in Equation (6):

0.5λs er f c(−0.5λs)

ier f c(−0.5λs)
− SD

SD + RD
= 0 (6)

Following the profile of the dam, focusing on the dam crest, the drop of crest δ(τ) can
also be written as:

δ(τ) = zD − z(xC(τ), τ) = RDλs

√
τ (7)

We replaced the operational time τ with the real time, and the time evolution of the
breach drop can be given by the ODE:

dδ(t)

dt
=

1
2

KQ

b

R2
Dλ2

s

δ(t)
(8)

VE indicates the erosion volume at the crest during the overtopping process. Here,
we find that VE can be scaled as the drop of the crest and the width of the width δ2b. To
include the widening effect and simplify the governing equation, we rewrite the equation
as:

dVE(t)

dt
=

d

dt

(

δ2b
)

= KTQ = (KV + KL)Q (9)

where KT is the scaled coefficient of the total sediment transport coefficient; KL and KV

represent the coefficients of the erosion rate of the dam in lateral and vertical directions, re-
spectively. To separate the process of vertical incision and lateral erosion, we applied chain
rules to simplify the partial differential equation (PDE) (Equation (9)) into two ordinary
differential equations (ODEs):

dδ(t)

dt
=

KV Q(t)

2b(t)δ(t)

db(t)

dt
=

KLQ(t)

δ(t)2 (10)

To simulate the lake drainage, the level-pool routing equation [53] is adopted:

AL
dzL

dt
= −Q (11)

where AL is the lake area, which we assume constant during breaching. For the outflow
discharge Q, the broad-crested discharge equation is used:

Q =

√

8g

27
bη(t)3/2 (12)
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where η(t) = zL(t)− zC(t) represents flow depth at the crest. By substituting the broad-
crested-weir discharge equation (Equation (12)) into the level-pooling routing equation,
Equation (11) can be rewritten as:

dη(t)

dt
=

dδ(t)

dt
− 1

AL

√

8g

27
bη(t)3/2 (13)

Now, the three ODEs (the two ODEs from Equation (10) and the ODE of Equation (13))
with the three variables, η(t), δ(t), and b(t), were successfully derived. The forward Euler
method, a first-order numerical procedure for solving ODEs, was applied to calculate the
solution of the dam breach model with the following initial conditions:

δ(0) = 0, η(0) = 0, b(0) = b0 (14)

The water level of the lake is assumed to be the same height of the crest as the initial
condition at t = 0, and b0 is the initial channel width.

The proposed dam breach model is then successfully derived and can be solved
numerically. This model is simple because we only have to solve the simpler ODEs instead
of the PDEs. The model results were compared with the field observations from the
literature and test result in Section 3.

3. Results and Discussions

3.1. Measurements of the Test

In the discussion of the test results hereafter, the term “tank” was used instead of
“lake”. They both represent the water level at the upstream side of the dam in this study.
The test processes included tank level raising, water seeping into the dam, sliding of the
dam due to retrogressive erosion, overtopping, breach downcutting, and widening and
lateral sliding of the dam. Table 2 lists the timing, test stages, selected important events,
and variation of the seismic signals of the test processes. We defined T0 = 76 s as the time
when the upstream water reached the toe of the dam. Sliding Events 1–6 occurred between
180.6 and 231.9 s, of which Events 1–3 occurred during the rising of the tank level and
Events 4–6 occurred when the tank level was maintained at 0.3 m. Events 1–6 are discussed
in detail later in Section 3.2. There were also many slides of different magnitudes that
occurred during 260–592 s, but they were not discussed in this study. T6 = 592 s is defined
as the timing of overtopping and thus the breach downcutting and widening processes
started as Event 7. There are six lateral slides of the dam detected during Event 7. We
monitored the test until 930 s.
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Table 2. Test processes and the selected important events.

Time, s Event Variation of the Seismic Signals

0–116
The flow pump was opened and the sluice

was opened.
Frequency of the flow pump: 106 Hz, 227 Hz

76
T0 = 76 s when water reached the upstream

toe of the dam model; the water continued to
fill the tank up to 0.3 cm.

-

116
The flow pump was closed; the sluice

remained opened.
Frequency of the environment: 101 Hz;

130 A tapping was made to leave a time marker. Amplitudes of the signals at 130 s were very high.

180.6–183.5

T1 =180.6 s; Event 1 and 2 precursor signals;
one smaller crack and one larger crack

developed prior to a slide (see
Supplementary Materials Video S1)

Two precursor seismic signals occurred prior to a
slide; the 1st with lower energy; the 2nd with higher

energy.

184–185.6
T2 = 184 s; a single slide (Event 3) occurred

(see Supplementary Materials Video S2)
Seismic signals significantly increased

189–207
T3 = 189 s; an intermittent slide (Event 4)
occurred (see Supplementary Materials

Video S3); retrogressive erosion

Seismic signals significantly increased nearly
periodically in about 2 to 5 s.

221–251
T4 = 221 s; a successive slide (Event 5)

occurred (see Supplementary Materials
Video S4); retrogressive erosion

Seismic signals significantly increased aperiodically.

309.5–310
T5 = 309.5 s; a fall (or collapse) (Event 6)
occurred (see Supplementary Materials

Video S5)

Seismic signals suddenly increased and the duration
was very short.

412–510
Many single slides with different magnitudes

occurred; retrogressive erosion
Seismic signals significantly increased with different

corresponding amplitudes

592–930

T6 = 592 s; Overtopping process (Event 7)
(see Supplementary Materials Videos S6 and

S7); the sluice was then closed; six lateral
slides occurred.

Seismic signals significantly increased when the six
lateral slides occurred. Strong spectral traces appear
around 220–420 Hz in the time–frequency spectrum

due to the overtopping water flow.

930 The end of the test

Figure 5 shows the tank water level, the signals measured by the accelerometers,
piezometers, and water content sensors. The tank level gradually increased from T0 = 76 s
(Figure 5a). When the water reached the dam slope, some shallow surface sands started to
slide down after 150 s as the water level rose. The slope of the upstream face of the dam
was slightly reduced to about 40◦, but no serious deep sliding occurred. During the test,
the upstream face of the dam was still stable. The pore pressure of PP-1 started to increase
at about T = 100 s (Figure 5d). The volumetric water content measured by VWC-2 began to
increase at T = 176 s (Figure 5c) because the seepage water had reached the level of VWC-2
at 0.2 m. The elevation (0.3 m) of VWC-1 was higher than that of VWC-2 so that there
was about 10 s lag at T = 166 s for VWC-1 to detect the seepage water. When overtopping
occurred at T6 = 592 s, the pore pressures and volumetric water contents began to gradually
decrease simultaneously. Therefore, we confirmed that the piezometers and the moisture
sensors can accurately reflect the rising and falling of the water inside the dam.
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Figure 5. Test measurements: (a) water level of the tank, (b) seismic signal of Acc. 2, (c) volumetric water content, (d) pore
pressure.

Referring to Figure 6, six side-view images were captured to show the overall test
processes: (a) at 72 s (T0), the water reached the toe of the dam. The tank level was still zero.
(b) At 150 s, the tank level had increased and water seeped into the dam. Once the water
seeped out of the downstream surface of the dam, retrogressive erosion commenced and
induced slides that gradually eroded the dam towards the upstream crest until overtopping.
(c) At 300 s, the tank level was controlled at 0.3 m. Retrogressive erosion continued with
many slides at the downstream slope of the dam. (d) At 592 s (T6), overtopping occurred
and the dam became a triangular shape. (e) At 650s, the tank level was reduced to 0.24 m
and the breach was downcut and widened due to overtopping flow. Lateral slides also
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occurred. (f) At 930 s, the test was ended. Overtopping flow stopped. The tank level was
the same as the crest level.

Figure 6. Side-view images at different test stages.

3.2. Seismic Signals Due to Retrogressive Erosion before Overtopping

While the dam experienced retrogressive erosion, many slides occurred with different
types of movements. Based on the seismic signals and with the help of the test videos
(Supplementary Materials Videos S1–S5), we identified four types of movements from the
test result. In addition, precursor seismic signals were found prior to a slide. These can
be useful in categorizing landslide types and prewarning based on the seismic signals
in hazard prevention work. There were many slides that occurred during retrogressive
erosion; however, we only chose six typical events, Events 1–6 for illustration.

Figure 7 shows two seismic signals (Events 1 and 2) induced by two cracks, Cracks
1 and 2, the corresponding time–frequency spectrum, and the top view of Cracks 1 and
2. The occurrence time of the two signals was 180.6 s (T1) to 181.3 s and 182.8 to 183.5 s,
respectively. The two signals are recognized as precursor signals prior to a slide, because
a large slide, Event 3, occurred immediately after these two signals. The major seismic
frequency of Event 1 and 2 was analyzed as 374 Hz, as shown in Figure 7b, and heavier
energy traces in dark red can be observed near 374 Hz. This very high frequency is
likely due to the particulate sands sliding on or colliding with each other during the crack
development. The duration of Event 1 is about 0.5 s corresponding to the shorter crack
length of Crack 1, while the duration of Event 2 is longer at 0.7 s corresponding to the
longer Crack 2. From these results, we know that seismic signals induced by precursor
events can be properly recorded and very useful for application to landslide prewarning.
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Figure 7. Events 1 and 2, the precursors prior to the Event 3 slide: (a) seismic signal, (b) time–frequency spectrum, (c) top
view of the Crack 1 in red dashed line and Crack 2 in orange dashed line.

From the results of the retrogressive erosion process, we categorized four types of
mass movements: (1) single slide, (2) intermittent slide, (3) successive slide, and (4) fall.
Events 3–6 correspond to these four types of movements, respectively.

(1) A single slide—Event 3: A single slide is defined as a rapid one-time sliding that
displaces a large volume of mass [54]. Strong seismic energy is often released. Event 3
was a single slide that occurred immediately after the precursor Events 1 and 2 during
184 s (T2) to 185.6 s. The seismic signal, time–frequency spectrum, and the front and
top view of Event 3 are shown in Figure 8. The amplitudes and spectral traces were
larger and stronger than other events in this test due to a larger displaced mass and
displacement. The duration of Event 3 was also longer than other events. It is noted
that the average frequency of the seismic signal of Event 3 was 375 Hz.

(2) An intermittent slide—Event 4: An intermittent slide is defined as the same mass
sliding down multiple times on the same rupture surface [54]. An intermittent
slide usually generates nearly periodic seismic signals. Event 4, an intermittent
slide, occurred during 189 s (T3) ~ 207 s, which was about 3 s after Event 3. The
displaced mass of the first two movements was the same mass in Event 3 and moved
short distances on the same rupture surface, while another deeper rupture surface
developed and part of the displaced mass of the third–fifth movements slid on it (see
Supplementary Materials Video S3 for Event 4). The corresponding seismic signal,
spectrum, and images of Event 4 are presented in Figure 9. For every 2–5 s there was
a movement in this event. The nearly periodic seismic signals and spectral traces can
easily be identified.

(3) A successive slide—Event 5: A successive slide is defined as the many irregularly
and randomly occurrences of sliding on multiple rupture surfaces and the displaced
masses are from many different locations [54]. A successive slide usually generates
aperiodic or random seismic signals. Event 5, a successive slide, occurred during
221 s (T4) ~ 251 s. In Figure 10, the signal shown was induced by random sliding
of many different masses from place to place. The seismic signal was much more
irregular without a pattern and the intervals between slides were random.
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(4) A fall—Event 6: A fall is that mass falls down through the air and falls almost
vertically. Figure 11 shows the fall, Event 6, which occurred at 309.5 s (T5). The
duration of Event 6 was short. The amplitudes of the signal were small and the energy
traces in the spectrum were also weak owing to the fact that only a small mass fell in
Event 6.

The movement types of single, intermittent, and successive slides identified in this
study also occurred in the riverbank erosion tests performed by Feng et al. (2020b) [32] and
the landslide tests by Feng and Chen (2021) [54]. Their failure types and failure mechanism
are consistent with the results found in this study. Besides these three types of movement,
we presented the fourth type, fall, which should also be helpful when correlating seismic
signals to landslide events. All four types of movements are very common in retrogressive
erosion due to seepage out of a dam and can be easily and correspondingly identified from
induced seismic signals.

Figure 8. Event 3, the single slide: (a) seismic signal, (b) time–frequency spectrum, (c) front and top view of the single slide.

Figure 9. Event 4, the intermittent slide: (a) seismic signal, (b) time–frequency spectrum, (c) series of front views the
intermittent slide.
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Figure 10. Event 5, the successive slide: (a) seismic signal, (b) time–frequency spectrum, (c) series of front views of the
successive slide.

Figure 11. Event 6—the fall (a) seismic signal, (b) time–frequency spectrum, (c) front view images of the fall.

3.3. Comparison of the Dam Breach Model Result with the Breach Events from Literature

The model-predicted discharge was first verified with field measurements from lit-
erature and the test results. We reviewed four field dam breach cases: (1) Tangjiashan
landslide dam breach in China [55], (2) Lake Ha! Ha! breakout flood in Canada [56], and
(3) two lahar dam breaches from Mapanuepe Lake in the Philippines [57]. The essential
information is shown in Table 3.
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Table 3. Information on dam breach events from literature [38].

Dam/Lake Date AL (106 m2) b (m) Qp (103 m3/s) Source

Mapanuepe 25–27 August 1991 6.7 70 0.65
Umbal and Rodolfo (1996) [57]

12–16 October 1991 6.7 70 0.39

Ha!Ha! 19–22 July 1996 6 90 0.85 Capart et al. (2007) [56]

Tangjiashan 10–11 June 2008 6.4 110 6.5 Liu et al. (2010) [55]

To compare the model-predicted results with the field measurements, it is convenient
to present the data in dimensionless form. Since it is difficult to identify the point in
time when the overtopping reached peak discharge (TP) from the field, we adopted the
approximate equation from Capart (2013) [38] as Equation (8):

TP =
3AL

(gb2QP)
1/3 (15)

where QP is the field observed peak discharge, AL is the dammed lake area, and b is the
breach channel width. The dimensionless hydrographs recorded are shown in Figure 12.
The hydrographs from these different field measurements are reasonably close.

For the breach model, there are three critical parameters to control the shape and the
magnitude of the hydrograph: λ, KV , and KL. To eliminate the complexity of the model,
we used dimensionless hydrographs to compare with that of the test result. In that case,
the hydrograph is only controlled by the ratio between the coefficients of lateral erosion
(KL) and the vertical erosion (KV). We varied the ratio (KL/KV) between 0 and 1. When
the ratio was zero, only vertical erosion was considered. When equal erodibility in lateral
and vertical directions is considered equal, i.e., their ratio is 1 (unity). The model-predicted
results are shown in Figure 12 with different grayscale lines for the different coefficient
ratios of erosion KL/KV . The field observation cases of Table 3 are plotted with lines and
symbols for comparison. Two hydrographs are shown for the Tangjiashan event based on
the data shown by Liu et al. (2010) [55], in which they used two approaches to estimate the
hydrographs. The hydrography estimated from the test is represented by the blue solid
curve.

In Figure 12, the predicted hydrograph becomes narrower when the ratio of KL/KV is
gradually increased. The narrower curve represents the stronger lateral erosion strength.
By comparing the field measurement data, most of the hydrographs showed agreement
with the model prediction when the KL/KV ratio ranged from 0.5 to 1. Therefore, we
can say that the lateral erosion of the dam should be considered in modeling; the lateral
expansion could affect the shape of the hydrograph.

Figure 12. Dimensionless discharge hydrographs of the field-observation cases (the lines with symbols) and model-predicted
hydrographs with different coefficient ratio of KL/KV (grayscale lines).

376



Water 2021, 13, 2757

3.4. Comparision of the Dam Breach Model Result with the Test Result after Overtopping (Event 7)

To further verify the performance of the proposed dam breach model, the model result
was compared with the test results. Table 4 lists the parameters used in the breach model
to simulate the breach morphology of the test. To calibrate the coefficients in the model, we
simply assigned the initial values of the channel width, tank level, and crest height, and
then used the model to compute the values in the final stage. According to the differences
between the model predictions and the test measurements, we adjusted the coefficients
that showed the minimum difference. Although the calibration of the coefficients is simple
in this study, the predictability of the model on breach evolution is still satisfactory.

Table 4. Parameters for the proposed dam breach model for the test dam.

Parameters/Unit Value Source

zD0 [m] 0.3

Measured from the initial
dimensions of the test dam

zC0 [m] 0.3
zL0 [m] 0.3
b0 [m] 0.015

AL [m2] 2.22

dt [s] 0.005 Numerical calculation time step

KV 1.875
Calibrated from the test result

KL/KV 0.1375

The modeled result is presented in Figure 13 alongside Event 7 of the test result. The
videos of Event 7 can be seen in Supplementary Materials Videos S6 and S7. Figure 13a,b
displays the seismic signal and its time–frequency spectrum, respectively, after the overtop-
ping (T6 = 592 s) for the test result. Figure 13c shows the spectral magnitude cross-sectional
profile of 366 Hz from the spectrum in Figure 13b. The dominant seismic frequency of the
signals during 592~930 s was 366 Hz. There were six noticeable amplitude and magnitude
peaks, and they are marked by S1–S6 at 607, 616, 632, 651, 670, and 677 s in Figure 13a–c.
They were induced by the six lateral slides of the dam during the breach. Note that the
magnitude peaks in Figure 13c are more easily identified than the amplitude peaks in
Figure 13a,b when corresponded to the six slides. Figure 14 shows the before-and-after
photos of the six lateral slides of the dam.

In the early stages of the breach before 651 s, we can observe that the magnitudes
of the lateral slides S1 to S4 gradually increased (Figure 13c) with increasing discharge.
This indicates that the magnitudes of these lateral slides of the dam became increasingly
larger (Figure 14a–d). As a result, vertical downcutting of the breach was more significant
than lateral erosion in the early stage of the test such that the toe of the dam in the lateral
direction was lowered and induced the subsequent larger lateral slides.

Figure 13d shows changes in lake level zL(t) and crest level zC (t). Figure 13e shows
the variation of the width of the breach b(t). From the test results in Figure 13d,e, we know
that the tank level did not greatly decrease until 630 s, and the lowering of the tank level
became prominent after 630 s. However, the lowering rate of the crest level and widening
rate of the width were relatively high before 630 s, indicating that vertical downcutting
and lateral erosion were quite strong.

The materials of the lateral slides (S1–S6) of the dam had an influence on the width
of the breach. The width of the breach was reduced by 4.1, 2, 2.9, 0.8, 0.45, and 0.1 cm,
correspondingly. When the slides occurred, the sliding materials partially blocked the
breach, causing a reduction in the width of the beach. The breach was gradually opened
wider again while the slid materials were taken by the overtopping flow downstream.
Based on the test result (Figure 13d,e), the width evolution gradually becomes stable after
the final sliding S6 at 677 s. However, the vertical downcutting of the crest was still active
and caused the crest level zC to decrease until 750 s. After 750 s, the crest level became
stable.
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Generally, if the volume of a lateral slide is larger, the reduction in the width of the
breach should be more observable. However, as a result of the test, the reduction of the
width of the breach did not necessarily become larger when the volume of the lateral slides
became larger. For example, when slide S1 occurred (Figure 14a), although the volume of
the slide was not large, the width of the breach was significantly reduced. This is because
the overtopping flow was small at that time and the transport of the slid materials was
small, resulting in more slid material accumulating in the breach. When slide S3 occurred
(Figure 14c), the slid volume was large, but the width change of the breach was not obvious,
due to the large discharge and because the transport of the slid materials was significant
such that the accumulation of slid materials in the breach was greatly reduced. Therefore,
there is no obvious correlation between the change in the width of the breach and the
volume of the slid materials in the test. This is mainly because larger discharges will
transport more slid materials. Therefore, it may not be accurate to use the width of the
breach to estimate the overtopping discharge when many lateral slides of the dam occur.
In addition, we can find that after about 645 s, the lowering rate of tank level and crest
level gradually decreased. The rate of change in the width of the breach from 651 to 677 s
gradually decreased. Additionally, as the volume of the lateral slides gradually decreased,
the influence on the width of the breach was also less; e.g., slide S5 caused marginal changes
in breach width. After slide S6, the width of the breach was stable and no longer changed,
and furthermore, sliding events no longer occurred.

We then compared the morphological evolutions of the breach between the model
and test results. From Figure 13d, the lake level and the crest level results of the model
and test results are in generally good agreement, with the exception of a slight difference
at the early stage before 645 s. The difference is due to the test starting from retrogressive
erosion due to seepage and then overtopping. The test dam’s strength was weaker than
that of the breach model. In other words, many parts of the materials of the test dam model
were formed from the very loose slid materials of the retrogressive slides. This situation is
not considered in the model. In the model, we only considered the overtopping process.
Therefore, the downcutting erosion rate in the test was higher during the early stage than
those set in the model.

In Figure 13e, the evolution of the breach channel width of the model results shows
a smoothly increasing curve. In contrast, from the test result, the evolution of the breach
width was not smooth and the breach width was reduced when the four lateral slides S1–S4
occurred. These discrepancies were caused by the masses of lateral sliding materials not
being considered in the model; i.e., the lateral sediment influx was not considered in the
model equations. However, the model result fits the trends of the test result qualitatively
well with the exception of the breach width reduction kinks in the curves. Additionally,
the small pulses from the lateral slides did not affect the continuous evolution of the crest
and the tank level. Therefore, to estimate the dam breach discharge, we could use the
lateral erosion (or width expansion) to represent the lateral slides, especially for the loose
materials.

In this study, due to the complexity of the test measurement, we did not measure
the discharge directly but estimated the discharge during the breach by two different
approaches. In the first approach, we considered the mass balance in the lake and assumed
the lake area was maintained at a constant size during the breach and thus the discharge
can be simply estimated using Equation (16) by differentiating the lake level with respect
to time and multiplying by the lake area.

QTest(t) = −AL
dzL(t)

dt
(16)

The estimated discharge hydrograph of the test is shown with the thin red curve
in Figure 13f. The curve is obviously zigzag in shape. This is because the discharge is
estimated by the differential of the lake level. Small changes in the tank level cause large
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changes in the discharge; for example, the significant change in the hydrograph during
t = 700~716 s, as shown in Figure 13f.

Therefore, we developed the second approach to estimate the discharge hydrograph
for the test. Similar to the model derivation in Section 3, we applied the broad-crested-
weir discharge equation again to estimate the discharge hydrograph of the test using
Equation (17):

QTest(t) = cD

√

8g

27
b(t)η(t)3/2 (17)

where cD is a discharge coefficient to be determined. In previous research, Pařílková et al.
(2012) [58] and Imanian et al. (2021) [59] both pointed out the choice of cD could be highly
affected by the roughness of the crest and different hydraulic head ratios. However, it
is difficult to measure the roughness of the crest in the dam breach experiments, and
the coefficients in our dam breach tests were not comparable with those dams without
breach in the literature [58,59]. To calibrate the coefficients, we considered the tank level
becoming stable in the late stage of the test, and thus used the estimated hydrograph
of the late stage derived from Equation (16) to calibrate cD; cD was set as 0.75, with b(t)
and η(t) from the test measurement. The resultant hydrograph is shown in Figure 13f as
the thin blue curve. To discuss in further detail, we also considered the moving average
of the early stage of the test and estimate cD as 0.5. The result is shown as the dashed
blue curve. However, we found that the peak discharge of the hydrograph obtained
by the second approach (Equation (17)) with cD = 0.75 was close to the peak discharge
obtained by the first approach (Equation (16)), i.e., the thin blue curve and thin red curve
in Figure 13f, respectively. In contrast, the peak discharge of the hydrograph using cD = 0.5
was smaller than that obtained by Equation (16) (dashed blue curve and thin red curve,
respectively). The hydrograph estimated with a lower coefficient may underestimate the
real peak discharge due to the moving averaging process. Overall, the two hydrographs
are smoother and more stable than those obtained by Equation (16). To more accurately
estimate the discharge, the second approach that applied the broad-crested-weir discharge
equation with cD = 0.75 is preferred.

In Figure 13f, the three hydrographs estimated for the test using the two approaches
show an increase in the discharge, maintain at a fairly ”stable” discharge, and then a de-
crease with time, which resembles a trapezoidal shape. In contrast, the modeled discharge
hydrograph (thick blue line in Figure 13f) shows a higher peak discharge at about 645 s,
and this curve is similar to a bell shape without a stable discharge. The rise and decline
of the hydrographs match the general trends of the estimated hydrographs from the test
result.

From the perspective of disaster prevention, we hope to determine the timing of the
peak discharge as preparation for early warning. Therefore, it is important to know when
the peak discharge of a dam breach occurs. The timing of the peak discharge of this model
is at around 645 s, which approximately matches the result of the test result. The dam
breach model we proposed is simple and its estimation of hydrographs, lake and crest
levels, and widths of the breach are equivalent to the test results. Therefore, it has the
potential to be extended and applied to dam-breach assessment and early warning in actual
situations.

From the perspective of dam breach warning and hazard reduction, the timing and
magnitude of peak discharge arrival are both very important factors. From the test results,
we found that when the timing of peak discharge was approaching, the lateral slides
occurred more frequently and the slid masses increased. If we apply this finding to
the real world, the frequency of lateral slides and their magnitudes can be indicated by
seismometers and cameras to give early warning on the timing of peak discharge of a dam
breach. In addition, the peak discharge and hydrograph can be calculated through the
proposed dam breach model with variations of the breach width and flow depth at the
crest. This model shows consistency in comparison with the field observation data and test
results, and the model can be a useful tool in dam breach warning and hazard reduction.
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Figure 13. Test and model results of breaching: (a) seismic signal of Acc. 2, (b) time–frequency spectrum of the seismic
signal of Acc. 2, (c) spectral magnitude profile of 366 Hz cross-section shown in Figure 13b, (d) lake (tank) and crest levels of
the model and test results, (e) breach width (crest channel width), (f) discharge hydrographs of the test and model.
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Figure 14. Before-and-after photos of the six lateral slides (S1–S6) of the dam at 607, 616, 632, 651,
670, and 677 s. The red dashed lines indicate the slid areas.

4. Conclusions

This study constructed test dam models in an indoor flume to examine dam failure
processes with seismic signal monitoring. A simple dam breach model was proposed and
used to compare the flood process of the test. We explored the seismic signals corresponding
to the sliding events during retrogressive erosion due to seepage and breaching. The
monitored seismic signals corresponded clearly to the sliding events. As retrogressive
erosion continued, the erosion eventually reached the crest at the upstream side of the dam,
and then triggering overtopping and breaching. We verified satisfactorily this simple dam
breach model by using our test result together with field observations from the literature.

Precursor seismic signals generated by cracking prior to the sliding events of the dam
model were detected. Further research is strongly recommended on how to extend this
observation for dam safety monitoring and prewarning to the real world. Based on the
characteristics of the seismic signals, we found four types of mass movements during the
retrogressive erosion process, i.e., single, intermittent, and successive slides, and fall. This
result is also very useful when categorizing landslide types using seismic signals.

Overtopping discharge and lateral sliding masses of the dam are also among the
important factors influencing the evolution of the breach. The masses of the lateral slides
will suddenly reduce the width of the breach, but the overtopping flow will transport
the masses downstream, making the width of the breach wider again. Two approaches
that apply the lake level data or the broad-crested-weir discharge equation were used to
estimate the hydrograph for the test. The hydrographs, obtained by the approach using
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the broad-crested-weir discharge equation, showed smoother and more stable hydrograph
curves than those obtained by the other approach using lake level data.

The proposed simple dam breach model satisfactorily simulated the hydrograph of
dam breaching and successfully assessed the vertical and lateral variations of the breach.
The model can be a useful tool to help explain the dam breach process and dam breach
prewarning. However, in future study, the mass input from the lateral slides can be further
considered in the model.

Supplementary Materials: The following are available online at https://zenodo.org/record/522055
8#.YR5PwdMzZTY, Video S1: Event 1 and 2, Video S2: Event 3, Video S3: Event 4, Video S4: Event 5,
Video S5: Event 6, Video S6: Event 7 side view, Video S7: Event 7 front view.
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List of symbols

z elevation of the breach channel (m)
x streamwise direction (m)
b breach channel width (m)

b0 initial breach channel width (m)
t time (s)
J sediment flux (m3/s)
zL water level (elevation) of the lake (m)
zD dam initial elevation (before overtopping) (m)

zC dam breach crest elevation (m)
xC streamwise position of dam breach crest (m)
AL lake area (m2)
VE erosion volume of breach crest (m3)
δ drop of the dam elevation to the breach crest elevation:zD − zC (m)
η flow depth of the breach crest: zL − zC (m)
SD downstream slope of the dam (initial) (-)
RD upstream slope of the dam (initial) (-)
K dimensionless sediment transport coefficient (-)
S breach channel local gradient (-)
KT scaled dimensionless sediment transport coefficient (-)
KV scaled dimensionless sediment transport coefficient in vertical direction (-)
KL scaled dimensionless sediment transport coefficient in lateral direction (-)
Q local discharge (m3/s)
Qp peak discharge (m3/s)

QTest estimated test discharge (m3/s)
cD dimensionless discharge coefficient (-)
τ defined operation time (accumulated discharge) (m2)
λs dimensionless scaling constant, related to the shape of the dam (-)
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