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Editorial

Advanced Control and Estimation Concepts and New Hardware
Topologies for Future Mobility

Francis F. Assadian

Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA;
fassadian@ucdavis.edu

Current transportation and, in general, mobility have a negative impact on our envi-
ronment. It is well known that our transportation makes up a large portion of the GHG
emissions around the world. In California alone, transportation is the largest energy-
consuming and greenhouse-gas-emitting sector, making up slightly over 40% of the state’s
GHG emissions.

The three technology pillars for tackling this issue with cost-effective solutions are
(a) Electrification, (b) Advanced Control and Optimization, and (c) Virtual sensing. This
Special Issue presents the latest research and work of various world-renowned academic
institutions, through 10 papers, on the impact of these aforementioned pillars on Future
Mobility.

Wang et al. [1] investigated the impact of differential drive assist steering (DDAS) on
the steering assistance and the driver steering effort. In this paper, the authors proposed a
unique control strategy to account for the tire nonlinear characteristics and hence, results
in improved tracking accuracy and subjective steering feel.

Topić et al. [2] developed a simulation tool to support decision-making processes
for planning city bus transport electrification. The simulation tool is designed to use real
driving cycles and techno-economic data to compute the optimal powertrain type, number
of e-buses and required charging stations, and predict the total cost of ownership, including
investment and return on investment cost/benefit analysis.

Nazari et al. [3] focused their research work on an innovative low-voltage hybrid
device that enables engine boosting and downsizing in addition to mild hybrid function-
alities. The proposed configuration uses a planetary gear set and a brake to permit the
power split supercharger (PSS) to share a 9 kW motor between supercharging the engine
and direct torque supply to the crankshaft. Utilizing an adaptive equivalent consumption
minimization energy management strategy, the proposed combined system shows a fuel
consumption reduction of 18.4% over the standard FTP75 cycle.

Jang et al. [4] designed an algorithm for a shuttle bus with four in-wheel electric
motors to optimize the front and rear axle tractions. In addition to optimizing traction,
they have considered the input terminal voltage changes during the driving cycle. They
showed that the proposed algorithm could improve the energy consumption by 6%, using
‘Manhattan Bus Driving Cycle’, when compared to the conventional vehicle.

Zhang et al. [5] investigated optimal power management of a fuel cell hybrid small
UAV for the maximization of flight time in an uncertain (stochastic) environment. The
power management accounts for the limits on the rate of change of fuel cell power output
while maximizing the flight time duration. The simulation results indicate the capability of
up to 2.7 h of flight time.

Filipozzi et al. [6] formulated the estimation of tire normal force as an input estimation.
Then, two observers are proposed to solve this problem by using a standard quarter-car
suspension model. The first observer is based on a newly developed concept called YCOO
(Youla Controller Output Observer). The second observer is the Kalman filter approach
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utilizing an Unbiased Minimum Variance filter. A detailed comparative analysis between
these two approaches is presented in this work.

Anselma [7] utilized a multi-objective offline optimal control approach as a speed tar-
get generator for the following vehicle adaptive cruise control (ACC). This offline approach
is based on dynamic programming. The intent of this offline optimal control approach
is to minimize energy consumption while enhancing passenger comfort. The approach
is flexible enough to be implemented in a wide range of powertrain configurations from
conventional to power-split HEV.

Li et al. [8] studied road traffic flow models, and speed prediction methods for New
Energy Vehicle are provided. Furthermore, the influence of vehicle lateral dynamics,
including correlation control methods, for vehicle speed prediction is reviewed. The authors
provide a potential application of the aforementioned concepts for the next generation of
intelligent transportation systems.

Arasteh et al. [9] investigated a comparative analysis of three different smart brake-
by-wire actuators. These three actuators consisted of Electro-Hydraulic Brakes, Electro-
Mechanical Brakes, and Electronic Wedge Brakes. The authors proposed an objective metric
based on energy usage, maximum power requirement, and dynamic responsiveness. They
modeled the plants using an energetic modeling method and designed robust controllers
utilizing Youla parameterization technique. The authors then performed both linear and
nonlinear optimization on the controlled plants and compared the actuator performances
based on the specified objective function.

Mallon et al. [10] explored the modeling and control of a lithium-ion battery and ultra-
capacitor hybrid energy storage system for an electric vehicle for improved battery lifespan
and energy consumption. They developed an optimal aging-aware energy management
strategy that controls both battery and ultra-capacitor aging and compared these results
to strategies that control only battery aging, strategies with no aging, and non-optimal
strategies. A case study on an electric bus showed a 28.2% improvement in battery lifespan
while requiring only a 7.0% decrease in fuel economy.

The contributions from the research works included in this Special Issue offer new data,
information, and findings to continue the R&D effort in the field of Future Mobility, with
the aim of stimulating the research community to further contribute to the development of
the field.

I wish to thank the authors for their contributions to this Special Issue.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Forecasting future driving conditions such as acceleration, velocity, and driver behaviors
can greatly contribute to safety, mobility, and sustainability issues in the development of new
energy vehicles (NEVs). In this brief, a review of existing velocity prediction techniques is studied
from the perspective of traffic flow and vehicle lateral dynamics for the first time. A classification
framework for velocity prediction in NEVs is presented where various state-of-the-art approaches
are put forward. Firstly, we investigate road traffic flow models, under which a driving-scenario-
based assessment is introduced. Secondly, vehicle speed prediction methods for NEVs are given
where an extensive discussion on traffic flow model classification based on traffic big data and
artificial intelligence is carried out. Thirdly, the influence of vehicle lateral dynamics and correlation
control methods for vehicle speed prediction are reviewed. Suitable applications of each approach
are presented according to their characteristics. Future trends and questions in the development
of NEVs from different angles are discussed. Finally, different from existing review papers, we
introduce application examples, demonstrating the potential applications of the highlighted concepts
in next-generation intelligent transportation systems. To sum up, this review not only gives the first
comprehensive analysis and review of road traffic network, vehicle handling stability, and velocity
prediction strategies, but also indicates possible applications of each method to prospective designers,
where researchers and scholars can better choose the right method on velocity prediction in the
development of NEVs.

Keywords: new energy vehicles; speed prediction; macroscopic traffic model; traffic big-data; deep
learning; vehicle lateral dynamic and control; unresolved issues; application of speed prediction

1. Introduction

Today’s world is undergoing unprecedented changes in the 21th century. A new
round of technological revolution and industrial transformation is in the ascendant, and
intelligent networked new energy vehicles (NEVs) have become the strategic direction
of global industrial development [1]. In February 2020, China’s 11 national ministries
and commissions, including the National Development and Reform Commission, the
Ministry of Industry and Information Technology, the Ministry of Public Security, and
the Ministry of Transport, jointly issued the Smart Vehicle Innovation and Development
Strategy in its “Strategic Vision”, which points out that: “Looking forward from 2035
to 2050, China’s standard intelligent vehicle system will be fully completed and more
complete. The vision of a safe, efficient, green, and civilized intelligent vehicle system has
been gradually realized, and the intelligent vehicle can fully meet the people’s growing
needs for a better life.”

Energies 2021, 14, 3431. https://doi.org/10.3390/en14123431 https://www.mdpi.com/journal/energies
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The application of traffic information in the design of hybrid electric vehicles (HEVs)
energy management is one of the important objects, wherein the adjustment of power
distribution ratio based on traffic information is achieved by predicting the change of
vehicle speed [2,3]. In order to achieve the goals of “safe”, “efficient”, and “green” for
future intelligent networked NEVs, it is of great significance to predict and plan their future
speed [4,5], because the above three goals are closely related to the speed, as shown in
Figure 1. “Efficient” means that the vehicles in the traffic flow move at high speeds, which
makes the roads more efficient. A vehicle driving at a higher speed increases the probability
of road traffic accidents, so in order to drive “safely”, the vehicle often slows down in
advance in the condition of high traffic risk. This process leads to the change of vehicle
speed and the problem of optimal vehicle speed planning. Accurate speed prediction is
the key to energy management, reduce emissions, and improved energy-saving control
of NEVs [6,7], that is, “green” driving. Therefore, it is of great significance to accurately
predict and reasonably plan vehicle speed for balancing the relationship among “safe”,
“efficient”, and “green” of vehicles in the future traffic system.

Forecast of 
longitudinal 

speed

Machine learning modeling 
of historical speed data

Predictive control based 
on real-time data of the 

vehicle ahead

Taffic flow speed 
prediction by the traffic 

flow model

Change in 
longitudinal 

speed

The relationship 
between safety, 
green, efficiency 
and vehicle speed

The correspondence between 
traffic accidents and speed

Slow down when approaching and 
passing corners

Accelerate to overtake and 
change lanes

Lateral 
stability of 
the vehicle

NEV energy 
management

Traffic Speed 
and traffic 
density

Traffic 
efficiency

Formation driving for increasing 
the traffic density

Speed up, overtake and change 
lanes

Increase traffic flow and 
improve traffic efficiency

Accurate speed 
prediction

Reasonable 
speed planning

Do not use the brake to save 
energy and ensure driving safety

Figure 1. The relationship between “safety”, “efficiency”, “green”, and speed of intelligent networked vehicles.

The automobile industry is now undergoing an electrification revolution. Take China
as an example, in 2018, the production and sales of NEVs reached 1.27 million and 1.256 mil-
lion units, respectively. In 2019, the production and sales of NEVs reached 1.242 million
units and 1.206 million units, respectively. From January to December in 2020, the pro-
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duction of NEVs reached 1.366 million units, and the sales volume reached 1.367 million
units [8].

The above data is briefly described in Figure 2. On the whole, China’s new energy
vehicle production and sales are greatly affected by government policy. In 2019, due to the
retreat of subsidy policies, the production and sales of NEVs decreased compared with
2018. Due to the impact of the epidemic, China restored the subsidy policy of NEVs in
2020, and the production and sales increased accordingly.

January 2018-
December 2018

January 2019-
December 2019

January 2020-
December 2020

production 1.27 1.24 1.37
sales 1.26 1.21 1.37

1.27 
1.24 

1.37 

1.10

1.15

1.20

1.25

1.30

1.35

1.40

M
ill

io
ns

Figure 2. Comparison of production and sales volume of new energy vehicles in China in recent
three years.

1.1. The Relationship among Velocity Prediction, Traffic Environment, and Vehicle
Handling Dynamics

In order to achieve the goals of “fast”, “safe”, and “energy savings” for future intel-
ligent networked NEVs, a basic challenge is to model the road traffic environment and
accurately predict the evolution of traffic flow [9]. Accurate speed prediction is the key
to energy management and energy-saving control of NEVs, and the driving condition
determines the energy consumption and driving safety simultaneously. Therefore, it is
very important to predict and select working conditions. Drivers control vehicles’ speed,
and in fact interfere with the prediction of the speed. The level of human driving skills
plays a key role in the prediction error of longitudinal and lateral speed. In the context
of intelligent connected vehicles, a vehicle can automatically perceive the surrounding
environment and drive themselves. The vehicle will have a clear understanding of its
future traffic environment and its handling stability, which will increase the accuracy of
speed prediction. Therefore, the velocity prediction method is based on vehicle dynamics
concerned for intelligent and connected NEVs in this paper.

The road traffic network has temporal and spatial, self-organization, and random
characteristics. Analyzing the dynamic evolution law of the road traffic network and
the traffic operation situation is helpful to fully understand the complex characteristics
of the road network, and one can grasp the mechanism of traffic bottlenecks and traffic
accidents [10]. The traffic dynamic evolution law model under the mixed traffic network
is constructed to realize the rapid identification of traffic behavior characteristics, which
provides technical support for further prediction and evaluation of vehicle speed and road
traffic network security risks.

Speed prediction is not only related to the inherent characteristics of traffic flow but
also related to the judgment of drivers or intelligent vehicles for traffic risks. Combined with
intelligent networked vehicles, the road network abstract model and traffic risk prediction
and evaluation model with low computational resource occupancy and more flexibility
will lay a foundation for vehicle velocity/routing planning technology under multiple
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constraints and more effective traffic management methods. Therefore, the establishment
of a traffic risk prediction and assessment model based on real-time information is of great
importance for improving the safety of vehicles driving in bad weather conditions such
as rain and snow. How to effectively integrate the existing traffic information collection
methods to analyze the evolution law and operating situation of the road traffic network
in real-time, and to accurately assess and predict traffic network security risks is a key
research topic in the field of road traffic safety [10]. The framework of road traffic network
security risk identification is shown in Figure 3.

Safety risk identification of road traffic network

Multi-source 
heterogeneous 

traffic information 
collection and 

processing

Identification and 
situation analysis of 
road traffic network 

dynamic evolution law

Safety risk assessment 
and early warning of 
road traffic network

Identificatio
n of dynamic 

evolution 
law of road 

traffic 
network

Situation 
analysis 
of road 
traffic 

network

Safety risk 
assessment 

of road 
traffic 

network

Road 
traffic 

network 
security 

risk early 
warning

Data support Mixed traffic flow model Traffic risk assessment 
model

Multi-
sensor 

collection 
of road 
traffic 

informati
on

Data 
processin

g and 
fusion

Figure 3. Research framework of road traffic network security risk identification.

The safety and reliability of traffic have an important influence on users’ speed
choices [11]. Road traffic network safety risk prediction and assessment is a process
of accurate identification, effective assessment, and early warning of risks in road network,
which is the core link of road traffic network risk identification [10]. Previous studies of
road network safety risk assessment are mostly based on traffic accident simulation or
later on the basis of traffic accident data analysis and the qualitative assessment, such as
road network risk impact factor assessment, road network vulnerability assessment, and
vehicle collision risk factor prediction in case of emergency or extreme weather, but it is
difficult to find the safety risk impact factors before the accident on time [10]. Traffic hazard
identification and risk quantitative assessment before accidents are the key technologies to
break through the risk identification of road transportation network [10].

Under bad weather conditions such as rainy and snowy, research on road traffic
risk prediction and assessment has a practical significance for vehicle speed forecast and
planning. In order to predict traffic risk, it is necessary to explore the evolution law of road
traffic system, which is quantified by the traffic flow model. The evaluation of traffic risk
needs to be established with the lateral dynamic model and stability controller model of
the vehicle. Vehicles with different handling characteristics need a personalized vehicle
traffic risk prediction and assessment. Therefore, we will review the influence of various
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stability control methods on speed prediction. Next, we will introduce the current research
progress of macroscopic traffic flow model and artificial intelligence big data model. At
the same time, we will explore the tendency of these two-model combined with lateral
traffic risk assessment model on the prediction and assessment of traffic risk. It will give
a direction of the solution for basic theoretical problems of real-time accurate prediction
and assessment of traffic risk before the accident, with the goal of improving vehicle safety
and saving energy for the application of safe path and energy-saving speed planning of
intelligent networked vehicles.

1.2. Contributions and Paper Structure

Although there are many studies on energy management strategies (EMSs) for HEVs [12–14],
there is almost no work that has focused on velocity prediction methods combined with traf-
fic risk prediction and assessment of HEVs. In the literature, studies on driving prediction
of predictive energy management of plug-in hybrid electric vehicles are put forward [15]
without introducing traffic risk prediction and assessment of HEVs.

Thus, the inspiration behind this article is to conduct a brief review on vehicle speed
prediction based on traffic environment and vehicle lateral risk assessment. Prospective
designers of NEVs will benefit from a number of approaches in the field where they can
better establish their solutions. In response to the above analysis, the contributions of this
paper are as follows:

(1) Firstly, we reviewed the macroscopic-traffic-flow-model-based prediction method,
which could help improve vehicle speed prediction. This mathematical model has
a quick solving speed, and it is easy to integrate the advantages of the information
from various traffic sensors and communication systems. This makes the amount of
interference quickly back the forecast results in real-time traffic.

(2) Secondly, we reviewed forecasting method based on traffic data, helping to facilitate
the possible integration of multiple prediction algorithms. On combining model-
based forecasting methods and data-based forecasting methods, the hybrid prediction
method has high computing efficiency, covering more data, and updating online at
the same time. This paper can help improve the prediction method’s instantaneity,
accuracy, and robustness.

(3) Thirdly, different from available studies, since the vehicle lateral dynamics and corre-
lation control methods are emerging techniques for velocity prediction, we provide a
list of studies for potential applications in velocity prediction in NEVs.

(4) Fourthly, a questionnaire section about the influence of various traffic flow models
and vehicle lateral dynamics is given, and the application field of speed prediction
algorithms along with missing points provides deep insight for prospective designers.

(5) Lastly, a set of application examples are given, wherein three applications are intro-
duced considering various traffic flow models, vehicle lateral dynamics, and speed
prediction methods.

This survey is structured as follows. A review of vehicle speed prediction methods
for NEVs, with an emphasis on macroscopic traffic flow models, data-based traffic flow
models, and influence of vehicle lateral dynamic on speed prediction is introduced in
Section 2. In Section 3, research status and analysis of the development of vehicle speed
prediction methods for NEVs are established. The application field of speed prediction is
discussed in Section 4. Lastly, conclusions and future trends are summarized in Section 5.

2. Review of Vehicle Speed Prediction Methods for NEVs

The velocity of a vehicle is closely related to its traffic environment. Therefore, it is
important to accurately predict the change of traffic flow parameters for improving the
accuracy of vehicle speed prediction. We now introduce macroscopic traffic flow models,
data-based traffic flow models, and the influence of vehicle lateral dynamics on speed
prediction in this sequel.

9
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2.1. Macroscopic Traffic Flow Model and Vehicle Velocity Prediction

Macroscopic traffic flow models use a mathematical model to describe traffic dynamics.
The mathematical model evaluates the unmeasured area based on real-time input data.
This model is usually based on empirical relationship, in which the parameters to be
evaluated are either obtained from external calculation of historical data or generated from
internal evaluation of an algorithm. The macroscopic traffic flow model method has been
widely used in traffic state assessment.

Literature [16,17] introduces in detail the current developments and trends of the
above macro traffic flow model, as well as traffic modeling, evaluation, and control methods
based on intelligent networked vehicles. The macroscopic traffic flow model method has
the following advantages: First, this method explains the mechanism of traffic, expands the
observation data, and provides additional information. Therefore, this method can use less
data to predict accurate traffic conditions. Second, it has higher interpretability. This means
that even if the prediction is not accurate, the reason may be found in a certain confidence
interval. Third, it can be directly integrated with traffic control practices, such as using
model predictive control. The macroscopic traffic flow model method also has the following
shortcomings: First, inaccurate or uncalibrated models will lead to poor performance of
traffic state assessment results. Therefore, in actual application, the macroscopic traffic flow
model traffic state assessment method must be carefully selected and calibrated. In this
case, checking the validity of a model or calibrating a model requires a big set of data [18].
Second, since the macro-traffic flow model cannot be adjusted adaptively, it cannot reflect
the changes in traffic flow brought by random traffic interference alone. Therefore, in the
absence of real-time traffic information, it is more suitable for the prediction of traffic flow
that does not change rapidly, such as the prediction of traffic parameters in expressways
and urban loops.

Traffic flow (simulation) models are used to characterize complex traffic flow systems
in order to understand, describe, and predict traffic flow [19]. It is a basic tool for analysis
and experimental research of transportation systems. The traffic flow model is not only
used in the traditional fields of traffic system design, testing, management, and personnel
training. With hot research direction on intelligent vehicles and intelligent transportation
systems, it has also been used to evaluate and predict the state of the transportation
system [18]. Macroscopic traffic flow models can be classified according to the degree
of detail they represent in traffic systems. This classification can be implemented by
considering different levels of traffic entities in their respective flow models. Literature [20]
classifies the traffic flow model as follows:

1. Submicroscopic models (describing in detail the equations of vehicle subunits and
their interactions with surrounding vehicles).

2. Micro model (describing the distinction and tracking of individual entities in detail).
3. Mesoscopic model (medium detail description).
4. Macro model (less description of individuals).

The microscopic traffic flow model not only describes the time and space behavior of
system entities (vehicles, drivers, etc.), but also describes the interaction between them in
detail. For example, a lane change behavior of each vehicle in the flow is described as a
series of driver decisions.

Similar to the microscopic model, the submicroscopic model describes the characteris-
tics of a single vehicle in the traffic flow. However, in addition to the detailed description of
the driving behavior, the control behaviors (transmission shifting, ESP, etc.) of the vehicle
in response to the surrounding conditions are also modeled. Moreover, the sub-modules of
the vehicle are also modeled by mathematical equations.

The mesoscopic traffic flow model neither identifies nor tracks individual vehicles,
but it lists the behavior of individual vehicles (for example, in the form of probability).
In view of this, traffic is represented by small groups of traffic entities. The model does
not describe the behavior and interaction of these groups in detail. For example, the lane
change of a single-vehicle is described as a transient event. The decision to change lanes
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is based on parameters such as the relative density of the lane and the speed difference.
Some mesoscopic models analogous to the theory of gas motion have been pushed out.
These gas motion models describe the dynamic distribution of model velocity.

The macroscopic traffic flow model describes the traffic flow at an overall level without
identifying its constituent details. For example, traffic flow is aggregated (represented by
flow, density, and speed). The behavior of individual vehicles (lane changes, etc.) is usually
not displayed. A macroscopic traffic flow model assumes that it is appropriately allocated
to the road lanes and uses approximate methods to achieve it. Macroscopic traffic flow
models are usually classified based on the number of their partial differential equations.
Usually, one side of the equation is the model representation, and the other side is the order
of the equation. Here are some typical traffic flow models and their extended models [18].

2.1.1. One-Dimensional Flow Model

The Lighthill-Whitham-Richards (LWR) model [21] is a famous innovation in the
mesoscopic traffic flow model. It uses a conservation law of vehicles in the traffic flow
and assumes that the traffic parameters (traffic speed and density) follow a fundamental
diagram (FD) in equilibrium. This traffic model has the ability to identify traffic congestion
and distinguish between traffic congestion and free flow. Moreover, because of its relatively
simple equations, it can be quickly calculated and solved. However, due to the limitations
of the model, it cannot reproduce some complicated phenomena, for example: unstable
flow and the stop-and-go phenomenon.

After the LWR model, higher-order models were developed in order to show phe-
nomena different from equilibrium traffic state (usually referred to as micro disturbance
and non-equilibrium state), higher-order models usually use another momentum equation
to describe the evolutionary relationship of traffic speed instead of the FD. The Payne-
Whitham (PW) model [22] is the first well-known high-order modeling attempt. The PW
model and its extension [23] successfully reproduce some well-known traffic phenomena,
such as hysteresis, reduced capacity. However, it still has some shortcomings, such as
negative speed [17].

The Aw-Rascle-Zhang (ARZ) model [24] is another high-order model. It allows the
equilibrium state of traffic to be transformed into other states. It also overcomes the
limitations of the PW model. It can be derived from the LWR model. The ARZ model is
further developed and extended to the following models: general second-order model [25],
phase change model [26], and generalized ARZ (GARZ) model [27].

Recently, the theory of explaining the traffic flow model has made new progress.
Some models can be represented using Hamilton-Jacobi partial differential equations (HJ-
PDE). HJ-PDE has been studied in detail in the field of partial differential equations and
physics [28], and its theory can effectively solve this kind of model [29]. For example,
the traffic density state variable ρ(t, x) of the traditional LWR model can be transformed
into the state variable N(t, x) of the accumulation flow. In addition, due to the nature
of the accumulated flow, this model can implicitly express vehicle trajectory and travel
time. The relationship between macro and micro can be shown. Then, a Lagrangian
coordinate system was proposed and used accumulated flow and vehicle trajectories in the
mesoscopic traffic flow model [30]. Similar topics have also been discussed in other traffic
flow models [31].

2.1.2. Multi-Lane Models, Multi-Class Models, and Random Models

Actual traffic often has multiple lanes and multiple categories, different from the
model introduced in Section 2.1.1. The studies [32,33] proposed some models that consider
multi-lane and multi-category traffic behavior. For these extended models, modeling lane
change behavior is one of their main challenges. Regarding lane changes, human behavior
is quite important.

For the random properties of the traffic and the uncertainty of input/output data, a
stochastic model [34] based on the LWR model is proposed. In the references [35,36], the
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source of randomness in dynamics explains the heterogeneity of vehicles, which means
the relationship between multi-class models and random models. Moreover, the work [37]
developed an LWR stochastic model based on HJ PDE.

2.1.3. Development Trend

The traffic flow model is not only used in the traditional fields of traffic system design,
testing, management, and personnel training [20]. As the research on intelligent vehicles
and intelligent transportation systems is a hotspot, it is also used to evaluate and predict
the state of the transportation system [18]. It extends from ensuring the stability and energy
efficiency optimization of a single vehicle to the safety and efficiency of the entire system.

The main principle of the prediction algorithm is to combine numerical simulation,
traffic model, real-time data, and historical data to predict the evolution of future traffic
conditions. Designing a fast, scalable, and accurate road traffic forecasting tool is the key
to overcome the lack of forecasting ability of the existing traffic management information
system [18], and it can be applied to the prediction and planning of vehicle path and
speed in the future. At present, there is no hybrid traffic flow model that combines the
advantages of macro traffic flow model and data-based traffic flow model. The hybrid
traffic flow model is of great significance to improve the accuracy, robustness, and real-time
performance of prediction. In the future, the traffic flow model will not be used individually,
but a multi-layered hybrid model, as well as possible complementary and combined use of
model-based traffic flow models and data-based learning models.

2.2. Data-Based Traffic Flow Model and Vehicle Velocity Prediction

Traffic parameter prediction method based on big data and machine learning has
attracted the research interest of many scholars in recent years [38,39]. The traffic manage-
ment department realizes the prediction of traffic flow by collecting and analysising the
current and historical traffic data. Big data analysis can effectively predict the occurrence
of traffic accidents. Big data analysis mainly solves the following three problems: data
storage, data analysis, and data management [40]. The collected traffic big data is trained
into a prediction model by machine learning method to analyze the evolution trend of
traffic. Machine learning models can be divided into: supervised learning, unsupervised
learning, reinforcement learning, deep learning and entity-based algorithms [40]. The la-
beled training data is used for supervised learning algorithms. Linear regression, decision
tree, neural network and support vector machine are typical supervised learning methods.

The data-based traffic flow model can be divided into historical data-based traffic flow
model and real-time big data-based traffic flow model. Among them, the traffic condition
assessment method that widely relies on historical data uses a statistical method or machine
learning method to find the relationship between historical data. Traffic conditions are
evaluated based on this correlation and real-time data, meaning that it does not require
prior knowledge of explicit modeling in the macroscopic traffic flow model. This method
usually requires a big amount of historical data.

The traffic flow model based on historical data has the following advantage: less
time for model selection and calibration. The disadvantages are: first, based on historical
data means that the model may fail when unexpected events occur or when a relatively
long trend is predicted. Second, the computational consumption required for training and
learning will be very high. Third, the method can be regarded as a “black box”, which
means it is unable to properly explain the model decisions [18]. Fourth, if the information
from real traffic flow is greatly different from that stored in the data used for the training
model, the prediction accuracy will not be guaranteed.

Compared with the macro traffic flow model and the traffic flow model method based
on historical data, the method based on real-time big data is defined as a method that
does not rely on the empirical relationship that appears in the macro traffic flow model
but depends on real-time data flow. This means that this method relies less on the prior
knowledge of transportation. Its advantage is that it is robust to uncertain phenomena or
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unpredictable accidents. In an era of ubiquitous sensors (smart phones) and the emergence
of a large number of intelligent networked vehicles, methods based on real-time big data
streams may become popular in the future [41,42]. This method is more suitable for the
prediction of urban road network traffic flow.

2.2.1. Research Status of Traffic Flow Evolution Using History Traffic Data and Artificial
Intelligence Methods

It has become a hot research direction using deep learning method to predict the
change of traffic parameters, for example in [43–47]. The unsupervised incremental ma-
chine learning, deep learning, and deep reinforcement learning was adopted by Dinithi
Nallaperuma et al. to structure an expansive smart traffic management platform [43]. It
can successfully model traffic flow with fluctuation; however, the method proposed in the
literature is not effective for predicting traffic flow with high frequency fluctuation. An im-
provement to this problem is to increase the amount of data used to train the deep learning
model. The restricted Boltzmann Machine method was used to predict traffic [44]. This
method has a better nonlinear fitting ability and high prediction accuracy for typical chaotic
time series. Di Zang et al. [45] solved the task of long-term traffic speed prediction for
elevated highways by coupling convolutional long-short-term memory and convolutional
neural network (CNN) into a single framework.

For the problem of uncertain data used in the training model, a common solution is to
combine fuzzy rules with deep learning [48] and neural network [49]. By introducing the
fuzzy representation into the deep learning model to lessen the impact of data uncertainty,
a deep convolutional network model was established to explore the spatiotemporal con-
nection of traffic flow to promote traffic flow prediction in [48]. The experimental results
show that the combination of deep learning and fuzzy theory can improve the prediction
accuracy, compared with other methods, such as autoregressive integrated moving average
(ARIMA), deep learning-based prediction model for Spatial-Temporal data, CNN, fully
convolutional neutral network, and fatigue detection convolutional network. The Takagi-
Sugeno system was used for fuzzy reasoning, and two learning processes were proposed
to update the membership function of the fuzzy system [49]. The proposed method has
advantages over the six traditional models, such as artificial neural network, support vector
machine, ARIMA model, and vector autoregressive model.

In addition to representing uncertainty with fuzzy rules, another approach is to point
out exactly what the uncertainties are and then label those uncertainties with contextual
factors. The relationship between traffic flow values in a time interval is investigated based
on a combination of contextual factors from historical data [50]. From the analysis results,
forecasting accuracy can be better improved by the proposed new method. On the other
hand, the design is slightly inferior to the conventional method due to inconsistent points.
This can be interpreted to the high volatility degree associated with low-traffic-flow periods.

There are several ways to improve the prediction accuracy of deep learning methods:
training data are screened [51,52] or training parameters are optimized [53]. A deep belief
network (DBN) model and a kernel extreme learning machine classifier is combined as
a prediction model, wherein the important features of the traffic flow data are extracted
through DBN at the bottom of the network. To predict the traffic flow, the extracted results
are inputted into the kernel extreme learning machine classifier [52]. Automatically use
those highly correlated spatiotemporal points to train the deep learning network, and
reduce the use of less correlated data [51]. This explains the interaction between past and
future data to some extent. Traffic flow theory and its application on urban transportation
networks with more efficient deep learning architectures is a promising study field [51].
This is the valuable research direction recommended by this paper.

2.2.2. Research Status of Velocity Prediction Using Real-Time Traffic Data

Real-time prediction model of vehicle travel speed is helpful to improve vehicle safety,
maneuverability, and fuel economy. In order to achieve these effects, an accurate velocity
prediction model needs to be established and can be successfully implemented in the real
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system. There are two main types of vehicle speed prediction models: the prediction model
based on Markov chain and the prediction model based on recursive neural network.
Markov chains are stochastic data-driven models that predict future states from state
transition matrices and current states. Transient probabilities are aggregated into state
transition matrices. The structure of measurement based on transfer conditions is intuitive
and easy to implement. There are three kinds of Markov chain models: interval coding,
fuzzy coding, and velocity constraint model [54]. The speed prediction models are based on
recurrent neutral network (RNN) including standard RNN, long short-term memory, and
gated recurrent unit (GRU) models [54]. Among the three models based on Markov chain,
the model combining the fuzzy coding method and the constraint model has the highest
prediction accuracy. Of the three RNN-based models, GRU has the highest prediction
accuracy due to the appropriate structure of long-term dependent learning by combining
the amount of previously determined state data [54].

2.2.3. Development Trend

More research study needs to be performed in the following aspects for future data-
based vehicle speed prediction methods [15]:

• Multiple prediction algorithms integration.
• Online correction and update technique.
• Balance between running online and computing burdens.
• Driver model and driving style recognition.
• Multi-source information integration.

2.3. Influence of Vehicle Lateral Dynamic on Speed Prediction

The influence of vehicle lateral dynamics on vehicle speed prediction is based on the
traffic risk assessment from drivers or intelligent vehicles. Traffic risk assessment models
can be divided into two types: longitudinal and lateral models. The longitudinal traffic
risk assessment model mainly evaluates vehicle collision accidents caused by untimely
braking or insufficient braking force. It includes a risk assessment model based on traffic
accident data or simulation data [55,56] and a model-based risk assessment model [57–59].
Model-based work often requires parameters and empirical assumptions, while data-based
methods only focus on extracting the relationship between images and road safety without
considering other influencing factors such as drivers; thus, it has certain limitations.

Lateral traffic risk assessment models often build lane change risk models based
on road traffic environment and lane change path factors, such as building a highway
exit lane change risk model based on a proportional advantage model [60]. The existing
literature rarely considers the impact of the traffic environment and vehicle lateral handling
characteristics [61]. How to dynamically and accurately analyze the impact of traffic
conditions on the prediction of vehicle velocity change and intermittent road safety (vehicle
lateral stability) is a huge challenge for road safety analysis in practical application [60].

In order to study the stability characteristics of different vehicles and generate their
stability criteria (lateral traffic risk assessment model), it is necessary to study the structural
characteristics of vehicles and their handling stability control methods. For example,
distributed drive control (also known as torque vector control) enhances the vehicle’s
dynamic performance [62], so its traffic risk assessment should be different from that of
ordinary front-wheel steering vehicles. In a similar work, Kun jiang et al. [63] presented a
method to estimate and predict individual tire forces based on a vehicle dynamics model
and observer with low-cost sensors and driver assistance map, which is in close relation
to the speed of the vehicle. Yu-Chen Lin et al. [64] developed an ecological cruise control
based on an adaptive prediction-based control strategy. The design guarantees the safety
of driving, riding comfort, as well as fuel efficiency simultaneously when running on roads
with curves and up-down slopes. However, the above two literature did not involve the
personalized assessment of vehicle traffic risk, nor did they pay attention to the relationship
between traffic risk and predicted speed.
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Some researches combine vehicle lateral safety with longitudinal speed prediction.
To this end, a three-degree-of-freedom vehicle lateral dynamics model with lateral load
transfer ratio index is derived for a rollover speed prediction model in [65]; similarly [66,67].
Lin Li et al. [68] combined the energy management of HEVs with vehicle speed prediction
and planning before entering the corner. Pan Song et al. [69] demonstrated an improved
optimal speed adjusting method based on the vehicle handling stability and path following
performance. Med Krid et al. [70] presented a model predictive control (MPC) strategy
for an active anti-roll system, which aims to minimize the load transfer during corner-
ing and the consumed energy by the actuators. Hongbin Ren et al. [71] formulated a
quadratic optimization problem for an integrated control of longitudinal speed and lateral
motion control based on longitudinal progression maximization and lateral path tracking
error minimization.

2.3.1. Influence of Vehicle Stability Control Methods on Speed Prediction

In order to reach the destination faster, the driver or the intelligently connected
vehicles will choose a higher speed, which means that the vehicle’s speed is greater than
the speed of the surrounding vehicles (traffic), so it needs to overtake and change lanes
frequently. In bad weather conditions such as rain and snow, this can bring the risk of
accidents such as vehicle skidding. Moreover, in a cold region’s road traffic environment,
traffic accidents caused by overtaking and lane change on snow and ice slippery road
surface are common. In addition, vehicle steering characteristics, driving characteristics,
control methods, mass, the height of center of mass, wheelbase, tire lateral stiffness, and
other factors affect vehicle handling characteristics in a road traffic environment. Therefore,
in order to assess the traffic risk caused by sideslipping and predict the speed variation
of the vehicle, a method of lateral traffic risk assessment and speed prediction based on
vehicle handling characteristics should be established. This lies in the connection between
personalized lateral traffic risk assessment demand and vehicle speed prediction demand.
Analyzing the mechanism of mutual coupling between the two demands is beneficial to
improve the accuracy of risk assessment prediction and vehicle speed prediction at the
same time, so as to achieve the goal of improving road traffic safety and energy saving.

Modern vehicles are equipped with advanced vehicle lateral control strategies, such as
active front steering (AFS) and direct yaw moment control (DYC) to enhance vehicle lateral
motion control. In recent years, there have been continuous publications on vehicle lateral
dynamics control, such as [72–74]. At present, the research literature on distributed electric
drive is limited, and it mainly focuses on the theme of four wheel independently actuated
electric vehicle. The research content mainly focused on the innovation and application of
control methods, such as [75–77]. The uncertainty of tire-road friction factor and vehicle
load distribution affect the lateral stability and handling performance of the vehicle. The
vehicle dynamics solution for this problem is through a combination of active rear wheel
steering (ARS) (also known as “four-wheel steering”) and DYC, or through AFS combined
with DYC. The study [78] proposed a cooperative control method of AFS and DYC based
on optimal guaranteed performance to achieve stability and better vehicle maneuverability.
Literature [79] considered the lateral dynamics stability of the vehicle under the condition
of time-varying vehicle longitudinal speed. In the work [80], an augmented linear variable
parameter model based on combined proportional integral control rate and a robust gain-
scheduling state-feedback controller is proposed. It minimizes the energy-to-peak control
performance of the AFS/DYC system. Other researchers have proposed the combination
of front-wheel active steering and direct yaw moment control to promote vehicle handling
and stability in the literature [81]. The innovation of the above control methods focuses
on the vehicle, closely following the reference path in the interference environment, but
the speed prediction problem is not studied. Studies that combine speed prediction with
vehicle lateral dynamics are usually found in driving decision problems, such as [82]. A
receding horizon method based on mixed logic dynamics constraints with the objectives
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of the steering wheel of the driver, longitudinal speed control, and lateral lane tracking
performance is established through a safety-guaranteed optimization model.

2.3.2. Development Trend

There is no control strategy to restore the stability of a vehicle after the tire forces on
all four wheels are saturated, because there are no more controllable external forces acting
on the vehicle. In this case, the way to avoid danger is to anticipate the danger in advance
and take actions to avoid it. This is reflected in advance during the deceleration of vehicles,
that is, the “speed prediction and planning” mentioned above. Therefore, it can be said
that accurate prediction and planning of vehicle speed is very important for both vehicle
energy efficiency and vehicle handling stability.

The existing distributed drive control theory research mainly focuses on the four-
wheel independent control of electric vehicles. As the degree of vehicle electrification
increases, there will be more and more research on the comprehensive consideration of
distributed drive control and energy management of hybrid vehicles [65].

The advantages, disadvantages, and applications of the above traffic velocity and
vehicle speed forecasting methods are shown in Table 1.

2.4. The Relationship between Energy Management and Velocity Prediction of HEVs

The United States Energy Information Administration forecasts that oil and other
liquid fuels will continue to dominate the transportation industry from 2010 to 2040
although it is noted that their share will decrease significantly (for example, from 98% to
80%) [83]. In other words, fossil energy will still be the main energy resource under the
current situation that diesel vehicles account for the majority. Carbon dioxide emissions
produced by the transportation industry account for 22% of all emissions, which leads to
climate change issues such as global warming [84]. To address air pollution, climate change,
and energy shortages, vehicle engineering researchers and policymakers are looking for
sustainable alternatives that are less dependent on oil and cause less pollution. HEVs is
one of the most promising alternatives.

The main purpose of energy management is to allocate energy demand among dif-
ferent energy sources in order to maintain battery state-of-charge (SoC), optimize energy
efficiency, and reduce fuel consumption and emissions, among other related purposes.
Huang, Y. et al. [85] divides energy management strategies into two categories: offline
and online. The benchmark for this classification is whether the algorithm can operate
in real-time, because energy management is designed to be applied in real-time, or as a
benchmark to prove the effectiveness of other approaches. Online energy management
algorithms can be divided into rule-based energy management and optimization-based
energy management [85], as shown in Figure 4.
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Figure 4. Online classification of energy management algorithms.

Velocity prediction and the quality of prediction results have great impacts on the
performance of corresponding predictive energy management strategies (PEMSs) [15].
Velocity prediction should pay attention not only to the accuracy of the prediction, but also
the length of the forecast time.

2.4.1. The Accuracy of Velocity Prediction in the Effectiveness of Energy Management

It is common to study an improved velocity prediction in the existing energy manage-
ment methods of HEVs. Velocity prediction is usually associated with hybrid systems to
achieve the objectives of minimum energy consumption, increasing battery life, improving
driving safety, etc. Typical examples are given below:

A driver-oriented velocity prediction is created by a deep fuzzy predictor utilizing
fuzzy granulation technology, and vehicle speed and acceleration are learned by transition
probabilities of a finite-state Markov chain. A chaos-enhanced accelerated swarm optimiza-
tion is presented with the dual-loop online intelligent algorithm to optimally determine
power distribution between two power sources [86]. Markov chain and fuzzy C-means
clustering are proposed for cooperative velocity forecasting that is composed of predictive
sub-models to deal with various driving patterns. Forecasted velocity profiles are blended
via the entire sub-models using quantified fuzzy membership degrees to obtain the final
prediction results [87].

Under different short-term velocity horizons, i.e., 5 s, 10 s, and 15 s horizons, a deep
neural network is utilized. At the same time, to calculate the optimal power-split at
each MPC decision step, the dynamic programming method is applied [88]. Another
strategy to speed forecast is introduced via a multi-stage neural network in [89]. ARIMA
(autoregressive integrated moving average)-based data-driven strategy to predict short-
term speed and road gradient in real-time is demonstrated [90].

Based on the driving power distribution under different driving cycles, a reinforce-
ment learning controller (RLC) trained by the Q-learning algorithm is studied. A multi-step
Markov speed prediction model-based RLC is embedded into a stochastic MPC to find opti-
mal battery power in the predicted time [91]. To achieve the cross-type knowledge transfer
between deep learning-based EMSs, a transfer-learning-based method is designed [92].

Another method is the pattern sequence-based speed predictor for accurate short-term
speed prediction [93]. It is important to highlight that there are numerous speed prediction
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strategies based on the driver model. The main idea is that the speed prediction is obtained
with optimization of the engine torque, the brake force, and the gearshift schedule, taking
into account safe driving distance and traffic speed limits [94].

Through literature research, it can be concluded that accurate speed prediction can
improve the above-mentioned objectives. The objective of speed planning and energy
management is generally conflicted with driving safety cost, energy consumption cost, and
battery life loss when the EMS is defined as a co-optimization problem over the moving
horizon [95]. To better understand the influence of horizon length in speed prediction, the
following section is introduced.

2.4.2. The Time Length of Velocity Prediction

For the prediction length of traffic parameters, it is relatively easy to accurately predict
the change of traffic parameters within a short period of time, because the existing literature
assumes that the traffic parameters remain unchanged within a short period of time [15].
However, short-term prediction of traffic parameters has limitations in practical application.
For example, when short speed prediction is applied to the energy management of HEVs,
it will lead to suboptimality of the solution [15]. In addition, short-term traffic parameter
prediction cannot adequately provide the information required for vehicle path planning,
and incorrect path planning will lead to the complete loss of fuel economy improved by
predicted energy management [15].

These are the current challenges in accurately predicting traffic parameters: (1) The
contradiction between prediction accuracy and computation burden (for example, the
number of parameters to identify past traffic flow segments); (2) How to choose the duration
of data collection and traffic parameter prediction so as to balance the contradiction between
prediction accuracy and application requirements?

2.4.3. Development Trends

The goals of energy management for hybrid vehicles are as follows [65]:

1. The engine operates in an efficient range.
2. Making the vehicle friction process (between the tire and the road, and friction

braking) as little as possible.
3. Increasing battery life. Battery SoC is not too high or too low (usually between

40% and 90%), and corresponds to saturated (90% to 100%) and insufficient (0% to
40%) states.

The second goal is the core issue of vehicle energy management, that is the “speed
forecast and planning” that should be as accurate as possible in the future. The goal
of “speed forecast and planning” is not limited to individual vehicles, but should be
extended to the entire transportation system. In future, vehicular communication networks
(vehicle-to-everything (V2X)), i.e., internet of vehicles and traffic infrastructure (mainly
referring to traffic sensors, communication network, and big data analysis and prediction),
should be established, and improvements should be made in vehicle intelligence vehicle
electrification—braking should be mainly completed by regenerative braking of the motor.
One goal of NEVs is to focus on braking without the frequent use of brakes, that is, to
pursue accurate prediction and planning speed. Braking is only used in case of emergency.

3. Questions Raised

From the above research status and development analysis, the following key issues
need to be resolved urgently: (1) Establishing a mixed traffic flow model to measure the
overall operation of the comprehensive transportation network. The mixed traffic flow
model is a complex transportation system model that breaks through the traditional single
road network level and integrates multiple types of road networks. (2) Most safety risk
assessments are based on accident data analysis, and the identification and quantitative
assessment of risk points before accidents need to be improved. At the same time, the
vehicle speed prediction method based on vehicle lateral dynamics needs to be studied
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carefully. Therefore, it is an interesting research direction to study the vehicle speed
prediction method, which integrates vehicle handling stability and mixed traffic flow
model with its mechanism and implementation method for improving vehicle safety
and energy savings. It will have an important impact on improving traffic efficiency,
reducing traffic risks, and improving energy utilization on a theoretical basis, revealing the
dynamic evolution law and traffic operation situation of road traffic network, mastering the
formation mechanism of traffic bottlenecks and traffic accidents. Further, the safety risk of
road traffic network needs to be evaluated, so as to lay the foundation for early prediction
and avoidance of accidents under adverse weather conditions such as rain and snow. In
terms of practical engineering applications, the results provide personalized traffic risk
assessment for vehicles with dynamic and handling characteristics, which can improve
vehicle safety (safe path planning method) and energy utilization efficiency (energy-saving
speed planning method), and promote the application and market-oriented development
of intelligent vehicles and intelligent transportation systems.

3.1. Traffic Flow Model (Both Macro and Data-Based)

The macroscopic traffic flow model has experienced a relatively long period of devel-
opment, and it is still continuing. In recent years, machine learning methods have been
used to study and predict traffic parameters. Both model-based and data-based traffic
flow models have their own advantages. Their comparison and possible combination and
complementarity will be a research direction in the future.

For macroscopic traffic flow models, the following questions need to be answered:

1. What causes errors in the macro traffic flow model?
2. What determines the magnitude of the error?
3. How to improve the model to reduce the error?
4. What is the cause of the error in the prediction delay in the time axis?

For data-based traffic flow models, we have the following questions:

1. How does the macroscopic traffic flow model and the data-based model affect the
error of prediction results?

2. How can combining the above two methods reduce prediction error?
3. How can neural networks correct the prediction delay of macroscopic traffic flow models?

3.2. Influence of Vehicle Lateral Dynamic on Speed Prediction

For the influence of vehicle lateral dynamic on speed prediction, we have the follow-
ing questions:

1. What are the vehicle handling stability factors causing the speed prediction error?
2. How do traffic velocity and traffic density affect drivers’ decision-making with differ-

ent handling characteristics?
3. Energy, time, and safety are often conflicted. Their weights vary depending on the

driver. What is the mechanism by which we get optimal path and speed?
4. Planning the longitudinal speed of intelligent vehicles to improve traffic efficiency,

traffic safety, and energy utilization efficiency is a key scientific problem.

4. The Application Field of Speed Prediction

The development of modern intelligent vehicles and intelligent transportation systems
requires that different research directions in the past be integrated and comprehensively
considered to meet the requirements of simultaneous realization of multiple goals in
vehicle design and transportation fields. The comprehensive consideration of vehicle
“lateral handling stability” and “optimal energy efficiency” is becoming a trend. The
power and steering structures of the existing NEVs are shown as Figures 5–7. The existing
literature mainly focuses on the optimal multi-objective control problem of the handling
stability and energy efficiency of pure electric vehicles [96,97], and its structure is shown in
Figure 5. Energy management studies are common in the design of HEVs, for example: [98].
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The stability control of HEV is usually obtained from a series hybrid vehicle similar to
the four-wheel independent drive pure electric vehicle, for example: [99]. However, the
optimal multi-objective control problem of handling stability and energy efficiency of
parallel HEVs and Split HEVs is lacking. In Figure 7, the feature of this arrangement is that
the front and rear wheels can be steered separately, and the two front wheels are driven
by a wheel motor separately. “Lateral vehicle dynamics” is concerned with the handling
stability of the vehicle, namely vehicle “safety”.

Front 
Wheel

Rear 
Wheel

Electric 
motor

Electric 
motor

Reducer Reducer

Electric 
motor

Electric 
motor

Reducer Reducer

Electric 
motor

Electric 
motor

Reducer Reducer

Figure 5. Power system layout structure of a four-wheel independent control electric vehicle.

Front 
Wheel

Rear 
Wheel

Electric or  
Hybrid drive 

system

Differential

Figure 6. The layout structure of the power system of an ordinary front-wheel steering HEV bus.

Traffic flow parameters such as traffic velocity and traffic density have a direct impact
on the speed prediction of vehicles. As shown in Figure 8, traffic parameters are collected
by roadside sensors (such as millimeter-wave radar, cameras, etc.) and high-altitude
unmanned aerial vehicles. Accurate traffic historical data and real-time data are very
important for the accurate prediction of traffic velocity. The data collected by the sensors is
applied to macroscopic traffic flow models and learning models to predict traffic velocity
in short and relatively long horizons.
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Figure 7. The layout structure of the power system of an all-wheel-steer distributed-drive new
energy vehicle.

 

Figure 8. Use traffic sensors to collect changes in traffic parameters.

Once we understand the evolution of traffic flow and can predict changes in traffic
parameters, we then need to understand the dynamics of the vehicles we are riding in.
In order to improve traffic efficiency, we assume that the minimum speed of the vehicle
is the traffic velocity at this time. However, to get to their destination earlier, passengers
sometimes need to travel faster than the traffic speed. At this time, vehicle dynamics plays
a key role in the decision-making and speed prediction of intelligent vehicles. Because at
this time, whether in the curve or during an overtaking lane change condition, vehicle tire
force is closer to its adhesion limit. As shown in Figure 9, when the host vehicle (HV3) is in
these conditions, it needs to comprehensively consider the distance (s13 means the relative
distance between HV3 and SV1, s23 means the relative distance between HV3 and SV2, s12
means the relative distance between SV1 and SV2), relative speed (V1, V2, V3 indicate the
speed of the SV1, SV2, and HV3, respectively) with surrounding vehicles, and the speed
limit on the curve. The vehicle needs to assess traffic risks and predict changes in its speed
before performing these actions. At this time, the speed prediction is no longer passive,
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but an active planning process. Thus, one gets a more accurate prediction of speed when
traffic flow and vehicle dynamics are taken into account.

 

Figure 9. An example of the influence of vehicle lateral dynamics on lane change decisions and
speed prediction.

For the problem of vehicle routing, most of the existing literature adopt the optimiza-
tion of single objective as the criterion. This paper proposes a multi-objective optimization
method for hybrid vehicle path planning as follows:

4.1. Vehicle Handling Stability Criterion Model by Neural Network

The vehicle handling stability criterion model is investigated with test data in this
part. In this approach, previous measurements of traffic flow velocity and traffic density
are mainly considered. An artificial neural network is represented in Figure 10. As the
figure depicts, the inputs of the network include traffic flow speed and traffic density in
Equation (1).

δTFSC = f [ρ(1), ρ(2), ρ(3) . . . ρ(n); V(ρ(1)), V(ρ(2)), V(ρ(3)) . . . V(ρ(n))], . (1)

where ρ(1), ρ(2), ρ(3), . . . , ρ(n) are traffic density,V(ρ(1)), V(ρ(2)), V(ρ(3)), . . . , V(ρ(n))
are traffic speed. The δTFSC is the tire force saturation coefficient represented by Equations
(2) and (3):

δTFSCb = (
Fxk

μFzk
)

2
+ (

Fyk

Fymaxk
)

2

, . (2)

δTFSCmax = max((
Fxk

μFzk
)

2
+ (

Fyk

Fymaxk
)

2

), . (3)

where: Fxk, Fyk, Fzk are the longitudinal, lateral, and vertical tire forces of the vehicle tires,
respectively; μ is the friction factor between the tire and the road; k is the number of the
tire (specifically refers to four different tires); Fymaxk is the maximum lateral force of the
kth tire.
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Figure 10. Artificial neural network structure.

The idea of stability criteria model is that we first build the lateral dynamics model
of the vehicle (please refer to our previous work [68]), and then we build the traffic
environment shown in Figure 11. A driver-in-the-loop simulation environment for the
presented scenario is shown in Figure 12. The traffic environment in the figure mainly
shows two main traffic parameters: Distance and speed of SV and HV. Distance represents
traffic density; at the same time, the speed of the SV indicates the speed of the traffic.
We use this simulation environment to simulate the change in the saturation coefficient
of the vehicle’s tires when the driver faces different traffic conditions and makes a lane
change. For a front-wheel-drive ordinary vehicle, Figure 13 shows the change in the tire’s
tire saturation coefficient as a function of traffic flow speed and density. As can be seen
from Figure 13, the δTFSC increases as the vehicle speed and density increase when the
driver performs a lane change.

 

Figure 11. One of the working conditions for collecting driver data.

 

Figure 12. Driver-in-the-loop experiment to collect drivers’ reactions to different working conditions.
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Figure 13. Neural network fitting results of TFSC for traffic speed and density.

4.2. Multi-Objective Optimization Path Planning for Hybrid Vehicles

In this article, the speed prediction method based on the traffic flow model, speed
prediction method based on traffic historical data and real-time data, and speed prediction
method based on the vehicle lateral dynamics are reviewed. The relationship between the
energy management method and speed prediction of HEVs is briefly summarized. The
existing problems of speed prediction methods are presented and a new system structure
of a hybrid electric vehicle is constructed. Based on the new system structure of the hybrid
electric vehicle and the proposed stability criterion model, a vehicle path planning method
and its application case based on the vehicle speed prediction method and vehicle lateral
risk assessment are given below. According to the various traffic flow prediction methods
reviewed above, this paper assumes that future traffic flow parameters, such as traffic
density ρ and traffic velocity V, can be accurately predicted. Furthermore, the vehicle tire
force saturation factor δTFSC corresponding to each traffic density ρ and traffic velocity V
was calculated by the vehicle stability criterion model established above. The constructed
vehicle stability criterion model based on the use of tire force saturation factors can reflect
the result of vehicle safety during driving. Next, the stability criterion model shown in
Figure 13 will be used as the basis of the multi-objective optimization path planning to
make the vehicle reach its destination safely, quickly, and efficiently. Driving safety, driving
time, and energy consumption are trade-offs to achieve the best overall performance. The
problem of vehicle path planning and selection is described as an optimization problem.
The optimized performance indicators are described below.

4.2.1. Composite Index

The composite index {Jcom} is used to evaluate the overall performance of vehicle
driving safety, time, and energy consumption, and the composite index is represented by
Equation (4):

minJcom = λJsi + βJti + γJei , (4)

where λ, β, γ represent the weighting factors of vehicle safety, travel time, and energy
consumption, respectively.

4.2.2. Driving Safety Index

Using the steering stability criterion of the vehicle, the tire force saturation factor can
be used to evaluate this basis, and the driving safety index can be represented by {Jsi }.
Driving safety is often the most important factor when the driver is driving a vehicle on
the road. The larger the driving safety index {Jsi }, the greater the influence of path security
on the planning result.

Jsi = eδTFSC(i) , (5)
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4.2.3. Travel Time Index

The driver expects that the driving time of the vehicle be as short as possible. However,
most of the time, we have an expected period of time to arrive at our destination, and
the weight function should reflect penalties that are greater than the expected time and
rewards that are less than the expected time. The travel time index of the vehicle path can
be represented by {Jti }:

Jti =

⎧⎨
⎩

0.8 + (ti − tlb) ti < tlb

0.8 tlb ≤ ti ≤ tub

0.8 + (ti − tub) ti > tub
, (6)

where {ti} is the travel time of the vehicle on the ith path, and tlb and tub are the lower and
upper bounds of the expected vehicle travel time, respectively.

4.2.4. Energy Expenditure Index

According to the longitudinal vehicle dynamics model, it can be seen that the vehicle
is driving on a flat road, which means that there is no up and down gradient during the
driving process [65]. At this time, the longitudinal dynamics model is expressed from
Equations (7)–(10). The energy consumed is represented by Equation (11):

Fω = Fair + Froll + Finertia, (7)

Fair =
CD A f

21.15
V2, (8)

Froll = mg f , (9)

Finertia = σm
du
dt

, (10)

Jei = VtFω, (11)

where CD is the coefficient of air resistance; A f is the front area of the vehicle; m is the
vehicle quality; g is the acceleration of gravity; f is the rolling resistance coefficient; t is
the time interval; σ is the rotating mass correction coefficient; Fω is the total resistance of
the wheel when driving; Fair is the air resistance; Froll is the rolling resistance; Finertia is the
acceleration resistance; Jei is the energy consumed by the vehicle.

4.2.5. Determination of Weighting Factors

To compare the above three indexes, there is a need to weigh each of them by a
coefficient. For driving safety index {Jsi }, the weight factor {λ} is determined as follows
(Equation (12)):

λ =

{
1, nomally
η, other characteristics

, (12)

where η is adjusted according to the driver’s aggressiveness level, road friction coefficient,
vehicle stability characteristics, etc. The travel time weighting factor β is determined as
follows (Equation (13)):

β =

{
1, nomally
κ, other characteristics

, (13)

where κ is determined according to the driver anxious degree, the congestion of the road
network, rush hour, etc. Note that κ is used to avoid excessively congested roads.

Generally, we can find the shortest path from the starting point to the destination. Be-
cause the driver expects that the vehicle consumes as little energy as possible, we choose the
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energy consumed by the vehicle in the shortest route under a smooth traffic environment
as a reference. The energy weight factor {γ} is determined as follows (Equation (14)):

γ =
1

Jnormal
, . (14)

where Jnormal is the normally expended energy or the average value of energy consumption
from the beginning to the end.

The control framework proposed in this section aims to find a trade-off between
driving safety, driving time, and energy consumption during the vehicle driving process
under the premise of ensuring the safety of the vehicle, so as to help the vehicle rationally
plan and select the path. As shown in Figure 14, consider there are i paths available for
vehicles to choose, and it is assumed that the parameters of traffic flow can be accurately
predicted. Then, the vehicle stability criterion model is used to evaluate the stability of the
future parameters of each path, and the saturation factor of the tire force δTFSC is obtained
when the vehicle is traveling at a predicted traffic density and speed in the future. To
evaluate the tire force saturation factor of each path, if the tire force saturation factor of each
path δTFSCi < 1, vehicles can adopt driving behavior strategies such as lateral overtaking
and changing lanes, at this time, calculate the driving safety index of each path Jsi . Then we
calculate travel time index Jti and energy consumption index Jei of each path, respectively,
by substituting the driving index of each path and the weighting factor corresponding to
each index into the comprehensive index model to obtain the best path. If the tire force
saturation factor of each path is δTFSCi > 1, drivers on such roads should avoid overtaking
and changing lanes, and choose conservative driving behaviors, such as following the car
in front. Under the premise of ensuring the safety of the vehicle, we then get the travel time
index Jti and energy consumption index Jei of each path, and obtain the comprehensive
index of each path and the weighting factor corresponding to each index. We then analyze
the weight function “composite index” to get the best path. If some sections of a path have
a criterion δTFSCi < 1 and others sections have δTFSCi > 1, then it needs to be discussed
separately. For the sections of δTFSCi < 1, vehicles are free to make overtaking lane changes.
In the sections of δTFSCi > 1, in order to ensure the stability of the vehicle, the driver
needs to follow the traffic flow instead of lane-changing and overtaking. At this time, we
recalculate the driving safety index Jsi , the travel time index Jti , and energy consumption
index Jei of each path, and obtain the weighting factor corresponding to each index, using
the composite index model to finally obtain the best choice path.

4.3. Path Planning Application

The process of achieving the path planning goals can be expressed as follows: The
traffic parameter set P(x, t) (vehicle velocity, traffic density, etc.) is predicted for each
sub-path, and it is provided to the vehicles in the traffic system so as to arrange the journey
according to their respective characteristics. Then, through machine learning, the stability
criterion model S(ρ, u) of all-wheel-drive (AWD) vehicles and front-wheel-drive (FWD)
vehicles is established facing different traffic parameter sets P(x, t). Then the optimal path
is chosen according to S(ρ, u). In the end, the optimal path for the current vehicle, among
multiple paths, is obtained by using the multi-objective optimal path planning method
J(ρ, u) proposed in this paper.

When the expected vehicle speed is higher than the traffic flow speed, it means that
the vehicle needs to change lanes frequently. At a certain vehicle flow speed and density,
the maximum front-wheel angle of a successful lane change can be predicted. Furthermore,
we can calculate the lateral tire force of the vehicle through the vehicle lateral dynamics
model. Similar to energy and time, the vehicle’s tire force saturation coefficient δTFSC can
be used as a basis for the vehicle’s path selection. Finally, depending on the travel time,
energy consumption, environment (road friction coefficient), and vehicle characteristics
(vehicle handling stability), one can choose a safe, efficient, and fast road for the driver.

27



Energies 2021, 14, 3431

i  paths

Prediction of future traffic flow speed and 
density of each route 

Forecast speed
traffic density

Evaluation of tire force 
saturation factor of vehicles on 

different paths by vehicle 
stability criterion model

No Yes

Both

For the path with                   , obtain the 
driving safety index           For the 

path with                       , the vehicle will 
follow the road traffic trend and 

ensure                     then obtain the 
driving safety index

Get driving safety 
index      

Get travel time 
index        and 

energy 
consumption 

index

       Get

Choose the best path

The vehicles follow the 
popular road traffic

Get travel time 
index        and 

energy 
consumption 

index

       Get

Choose the best path

Get travel time 
index        and 

energy 
consumption 

index

       Get

Choose the best path

Figure 14. Path planning/selection logic diagram based on multi-objective optimization.

We consider route planning of a traffic system using traffic flow model and vehicle
stability criterion as an example in Figure 15. Assume that Elbert intends to drive his
vehicle from point A, seen on the left side of the figure, to point B, shown on the right side
of the figure. There are three routes for Elbert to choose, namely Route 1, Route 2, and
Route 3. Route 1 is closer, but the traffic flow is dense and the speed is slow. The distance
of Route 2 is longer, but the traffic density is small and vehicle speed can be fast while
traveling. The length and traffic flow of Route 3 are moderate, between Route 1 and Route
2, but road friction is poor. At this time, the predicted traffic flow parameters, the stability
criterion model, and the multi-objective optimization route planning method can help
Elbert select a safe, efficient, and fast road that matches the characteristics of his vehicle.
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Figure 15. Example of route planning for a traffic system using traffic flow model and vehicle stability criterion.

In addition, for the problem shown in Figure 15, we consider that Elbert encounters a
rainy and snowy day (Route 1’s and Route 2’s tire-road friction coefficient is 0.4, Route 3’s
friction coefficient is 0.1 due to road icing). According to the statement above, he will have
different options to drive All-Wheel-Drive (AWD) and Front-Wheel-Drive (FWD) vehicles.
Figure 11 shows a lane change and overtaking condition when the driver is close to the
preceding vehicle, the target vehicle (HV)’s speed is large, and the front vehicle (SV)’s
speed is small. Furthermore, Figure 16 shows the variation in δTFSC for AWD and FWD
vehicles at the same steering input in an overtaking and lane change condition from Route
1 [100]. We can observe that the FWD vehicle has been destabilized, but the AWD vehicle
can keep the vehicle stable under such extreme conditions. For Route 3, where the road is
icy, both AWD and FWD cannot stabilize the vehicle during a lane change and overtaking
condition. Therefore, although the path 1 traffic flow speed is slow, when the driver drives
the AWD vehicle, the destination can be reached faster by continuously overtaking and
changing lanes. However, when driving a FWD vehicle, Path 2 would be a better choice.

Figure 16. TFSC comparison results between an AWD vehicle with stability control and a FWD
vehicle without stability control for the same steering input.
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5. Conclusions

Energy management strategies of new energy vehicles (NEVs) highly depend on
accurate prediction of future velocity. In this paper, we present a review study on various
vehicle speed prediction methods for NEVs. In this regard, various macroscopic traffic
flow models, data-based traffic flow models, and the influence of vehicle lateral dynamics
are introduced.

Through a detailed review and comparison of each method, it is clear that each
approach is suitable for different application scenarios. Macroscopic and data-based traffic
flow models are introduced and compared in terms of their pros and cons, potentially
leading to better identification of development trends for prospective designers. Questions
regarding the error in the macro traffic flow model, the magnitude of the error, and how
to reduce the error with delay are to be answered. Moreover, prediction error between
data-based and macro traffic models as well as how to combine these to reduce error
remains an open headline.

Since the core issue of vehicle energy management is accurate speed forecast and
planning, an emerging field, namely, vehicle stability control methods on speed prediction
are investigated. Key questions on establishing a mixed traffic flow model and safety risk
assessments are investigated from a traffic flow model and influence on vehicle lateral
dynamics viewpoints.

The link between vehicle stability and energy efficiency is demonstrated by the applica-
tion field of speed prediction methods. Benefitting from the fast development of vehicular
technologies; software developers in the field of artificial intelligence; and sensors, cameras,
and radars, potential future developments for velocity prediction methods could guide
and inspire prospective researchers.

Lastly, examples of driving safety, traffic efficiency, and energy management are used
to demonstrate the applications of speed prediction method based on vehicle handling
dynamics and driving environment in path planning.
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Abstract: The differential drive assist steering (DDAS) system makes full use of the advantages of
independent control of wheel torque of electric vehicle driven by front in-wheel motors to achieve
steering assistance and reduce the steering effort of the driver, as the electric power steering (EPS)
system does. However, as an indirect steering assist technology that applies steering system assistance
via differential drive, its linear control algorithm, like existing proportion integration differentiation
(PID) controllers, cannot take the nonlinear characteristics of the tires’ dynamics into account which
results in poor performance in road feeling and tracking accuracy. This paper introduces an active
disturbance rejection control (ADRC) method into the control issue of the DDAS. First, the third-order
ADRC controller of the DDAS is designed, and the simulated annealing algorithm is used to optimize
the parameters of ADRC controller offline considering that the parameters of ADRC controller are
too many and the parameter tuning is complex. Finally, the 11-DOF model of the electric vehicle
driven by in-wheel motors is built, and the standard working conditions are selected for simulation
and experimental verification. The results show that the ADRC controller designed in this paper can
not only obviously reduce the steering wheel effort of the driver like PID controller, but also have
better nonlinear control performance in tracking accuracy and smooth road feeling of the driver than
the traditional PID controller.

Keywords: independent-wheel drive; steering assistance; nonlinear system; active disturbance
rejection control; smooth road feeling

1. Introduction

With the intensification of interest in environmental protection and energy issues, electric vehicles
have ushered in significant development opportunities. Compared with traditional centralized drive
electric vehicles, the torque of each wheel of an electric vehicle driven by several in-wheel motors, also
commonly called independent-wheel-drive electric vehicle (IWDEV), can be independently controlled.
Differential drive assist steering (DDAS) is a novel power steering technology based on the unique
advantages of independent-drive of the electric vehicle driven by several in-wheel motors [1]. It
uses the different driving force of two-side front wheels to generate steering assistance, which can
substitute the traditional power steering system, such as hydraulic power steering (HPS) system or
electric power steering (EPS) system. The reason is that the DDAS technology has the advantages
of more compact structure and lower cost. Specifically, on the one hand, the DDAS system does not
need an add-on actuator, like the steering motor of the EPS system. On the other hand, due to having
the same actuators, the in-wheel motors, with the driving system the controller of the DDAS system
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can be integrated into the vehicle driving controller. Hence, the DDAS technology appeals to many
researchers’ attention and interest.

Although the concept of DDAS has only been proposed in recent years, many scholars have
conducted much research and achieved some progress. Wang [1] first proposed the concept of DDAS
technology, conducted a theoretical analysis and proposed a steering-wheel-torque direct control
strategy based on an anti-windup PID algorithm. The steering assist feasibility, steering return
ability and driving torque coordination of the DDAS were studied in depth and verified by software
simulations and real vehicle tests. Zhao [2] further studied a coupling control strategy of force and
displacement for a DDAS system to improve the steering maneuverability and handling stability of
EVs with motorized wheels. By analyzing the key factors that affect the interaction between vehicle
and driver, the optimum hand wheel torque of a DDAS system is designed and achieved by the torque
difference between two front wheels based on H2/ H∞ control method, and its effectiveness was
verified by a MatLab/Simulink software (MathWorks, Natick, Massachusetts, USA) simulation. Hu [3]
studied the lane keeping control for four-wheel independently actuated autonomous vehicles only
when the active-steering motor entirely fails and designed an adaptive multivariable super-twisting
control strategy and verified its effectiveness by CarSim (Mechanical Simulation Corporation, Ann
Arbor, Michigan, USA) and Simulink co-simulations. Kuslits [4] proposed a full state feedback control
system for scenarios at higher speeds, whereas a simple angle tracking controller can be used for a
DDAS system in scenarios at lower speed. The effectiveness of the strategy was verified through
simulations. Peng [5] developed a coordinated steering control strategy with a hierarchical structure
for a multi-axle independent-drive electric vehicle, which is steered simultaneously by traditional
mechanical steering and differential drive steering and verified the effectiveness of the strategy through
simulations. Wang [6] also designed a hierarchical coordinated controller for the DDAS and vehicle
stability control based on the phase plane theory. Various typical simulations on roads with different
adhesion characteristics showed the effects on expanding the working range of DDAS systems and
simultaneously mitigating the additional influence of the DDAS on vehicle stability. Römer [7] studied
the potential of independent-wheel-drive influencing the driver’s steering torque using a control
technique based on classical EPS control plans, and compared the energy saving potential of DDAS
system with the conventional EPS system. The energy saving potential was proved through realistic
driving cycles experiments which included the Karlsruhe motorway, the Herzogenaurach highway
and a trip through the city of Karlsruhe. It was concluded that the DDAS system can save up to
121.93 Wh/100 km of energy, or approximately 0.95% in lateral acceleration ranges below 4.5 m/s2, and
about 0.43% (55.2 Wh/100 km) in mean value compared to a conventional EPS system. Interestingly, if
the tractive energy of an independent-wheel-drive electric vehicle is considered, the comprehensive
energy conservation generated by the optimization of the two-side differential drive torque, as DDAS
does, can reach up to 4% without any loss of vehicle stability [8].

A review of these references shows that a DDAS system can be used to substitute for a traditional
power steering system, such as EPS and as a result, the energy consumption of these traditional add-on
assistance steering systems is removed. Although the aspect of energy conservation is not the core
purpose of our research, it can be concluded that the existing studies of DDAS system have proved
the apparent engineering application value of this novel technology and its feasibility for providing
steering assistance and the coordination issue with other chassis control system have been well studied
in the above existing literature. However, other important aspects, such as the steering assistance
quality issue of DDAS system, are also important factors determining whether this technology can
be finally applied in practice. Unfortunately, the steering assistance quality of the DDAS system,
which reflects smooth steering hand force with less interference and good tracking performance with
ideal steering force characteristic, has not been widely studied until now. To better understand this
requirement of the technology, the basic principles and assistance characteristics of a DDAS system
and some previous experimental results have to be reviewed and discussed first. Figure 1 shows the
working principle diagram of a DDAS system.
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Figure 1. Working principle diagram of a differential drive assist steering (DDAS) system.

As shown in Figure 1, the DDAS system maintains the traditional mechanical steering mechanism
but removes the power assist steering actuators, such as a hydraulic cylinder or an electric motor. Since
the longitudinal driving force of the left and right steering wheels of the IWDEV is independent and
controllable, the torque generated by the front wheels around the respective kingpin can be unequal.
Here we define this torque as the driving steering torque. At the same time, because the two steering
wheels are connected by the steering trapezium and have a fixed geometric motion relationship,
therefore, the driving steering torque will drive the two steering wheels to turn to the side with a
small driving force. In theory, the controller of the DDAS system controls the outer steering wheel
to increase the driving torque properly and the inner steering wheel to reduce the driving torque
equally, which can ensure that the driving steering torque generated by the inner steering wheel and
the outer steering wheel on the steering rack are exactly equal to the required steering power torque. It
is obvious that the DDAS system can realize the power steering function without changing the total
driving torque. Compared with a traditional EPS system, the DDAS system can achieve the same
power steering effect without needing a power assist steering actuator. The DDAS system saves the
part of energy used to drive the power assist steering actuator, so the DDAS system must be more
energy-saving compared with a traditional EPS system. Since the energy consumption of the power
assist steering actuator is small, the energy saving of the DDAS system is limited, but it still plays an
important role in improving the driving range of pure electric vehicles. DDAS system has the same
actuator, two front in-wheel motors, as the driving system of IWDEV, and the DDAS electric control
unit (ECU) is also integrated into the driving controller. Consequently, a DDAS system has advantages
over other power assist steering systems in layout and cost.

However, it should be noted that the DDAS system is an indirect power steering system, that
is, the steering assistance provided by the system is achieved by indirectly acting on the mechanical
steering rack through changing the tire forces of two-side steerable driving wheels. The steering
assistance generated by DDAS system can be expressed as follows:

Fast = (T1 − T3)
rσ
rw

NL + Iw

(dω1

dt
− dω3

dt

) rσ
rw

NL (1)

where T1 and T3 are the driving torques of the left and right front wheels, rσ is the scrub radius, rw

the tire rolling radius, NL is the transmission ratio of the rack translation to the knuckle arm angular
displacement, Iw is the moment of inertia of the wheel about its central axis, ω1 andω3 are the rotational
velocity of left and right front wheels. According to Equation (1), it can be seen that the assistance
provided by the DDAS system is related to the wheel rotational dynamic characteristics and suspension
parameters. During the operation of the vehicle, tires may work in a nonlinear range, and the scrub
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radius of the wheels is also constantly changing. In addition, the steering wheel torque/angle sensor
noise may also have a great impact on the control of a DDAS system.

Based on the review of the characteristics of DDAS technology, its control issue has also been
studied in many published references. Most of the researchers applied conventional control algorithms,
such as classical open-loop look-up table control plan [7] like EPS does, anti-windup PID control
plan [6] and fuzzy adaptive PID control plan [1] to the control issue of DDAS system and the their
control effects on steering assistance and returnability performance look good in the corresponding
simulations, but the control effects of these classic linear control methods on the steering assistance
qualities, such as road feeling, the steering wheel torque control stability and robustness against
system parameters variation and sensor noise in real applications, are considered to be unacceptable.
To better understand the lack of competence of the traditional linear PID control plan with fixed
control parameters, Figure 2 shows a real world double-lane-change road test result of the steering
wheel torque of an IWDEV that is controlled by a conventional anti-windup PID controller based on
a DDAS system published in reference [1]. It can be seen that the PID controller has poor tracking
performance to the reference steering wheel torque though the steering assistance function is achieved.
This means the smooth road feeling and accurate hand force feedback cannot be fully achieved in the
real application of PID controllers for DDAS system. In addition, because the nonlinear mathematical
models of tire dynamics, steering system and suspension system are difficult to establish accurately,
the changing laws of these interferences are difficult to identify. Thus, despite having better robustness
and optimality, some advanced controllers that depend on the accurate model of the controlled system
with interference observer or estimator, such as H infinite control, linear quadratic regulator (LQR)
control, etc. may be not easy or suitable to apply to the DDAS system, too.

Figure 2. Steering wheel torque.

In summary, though the driver’s steering effort can be obviously reduced by the DDAS system, it
can be seen from the above analysis that the selected control strategies and control algorithms may
highly impact its effect on steering assistance quality. This performance will ultimately decide whether
this novel power assistance steering technology can be actually applied in a real car. In this paper,
having good robustness in nonlinear control issues, the use of the active disturbance rejection control
(ADRC) method is attempted for this purpose. As an improved form of PID controller, the ADRC
approach combines the advantages of the PID controller and some robust algorithms. It is relatively
easy to implement, robust against possible system interferences and one does not need to know an
accurate controlled system model [9].

Compared with the existing literature, the main purpose or main contribution of this paper is
that we try to pay more attention on the improvement of the steering assistance quality of the DDAS
system before its real application, and firstly attempt to apply the ADRC control approach to improve
the steering assistance quality of the DDAS system, in order to make the driver have a better road
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feeling, and achieve a smooth steering force with less interference caused by possible sensor noise and
model parameter changes.

The structure of this paper is as follows: Firstly, the independent-wheel-drive electric vehicle
model with four degrees of freedom mechanical steering system is established, and then the ADRC
controller model of DDAS is designed for the steering-wheel-torque direct control strategy. Secondly,
aiming at solving the problem that the parameters of the ADRC controller are numerous and difficult to
set, a simulated annealing algorithm is used to optimize the parameters offline. Finally, typical driving
conditions are selected for simulation and experimental verification, which verify the effectiveness of
the control method proposed in this paper.

2. Independent-Wheel-Drive Electric Vehicle Dynamic Model

Figure 3 shows the overall framework of the independent-wheel-drive electric vehicle model,
which is composed of a vehicle body model, mechanical steering system model, DDAS controller
model, wheel rotation dynamics model, tire model and in-wheel-motor model, etc. The specific
modelling processes of the core parts are shown in the following subsections, the DDAS controller
model is introduced in Section 3, and for the others readers may refer to [1,10]. The descriptions of all
the symbols of the variables can be found in the nomenclature section.
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controller
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Figure 3. The whole block diagram of independent-wheel-drive electric vehicle model.

2.1. Vehicle Body Dynamic Model

The vehicle body dynamic model established in this paper includes three degrees of freedom:
longitudinal motion, lateral motion and yaw motion [1,10]. As shown in Figure 4, the following
equations can be established:

m(
.
u− vωr) = Fx1 cos δ f l + Fx2 cos δ f r + Fx3 + Fx4 − Fy1 sin δ f l − Fy2 sin δ f r − 1

2
CDρAu2 (2)

m(
.
v + uωr) = Fy1 cos δ f l + Fy2 cos δ f r + Fy3 + Fy4 + Fx1 sin δ f l + Fx2 sin δ f r (3)

Iz
.
ωr = (Fx2 cos δ f r − Fy2 sin δ f r − Fx1 cos δ f l + Fy1 sin δ f l)

B
2 + (Fx4 − Fx3)

B
2

+ (Fx2 sin δ f r + Fy2 cos δ f r + Fx1 sin δ f l + Fy1 cos δ f l)L f − (Fy4 + Fy3)Lr
(4)

where Fxi and Fyi(i = 1, 2, 3, 4) are the longitudinal and lateral forces of the left front wheel, the right
front wheel, the left rear wheel, and the right rear wheel respectively; m is the mass of the whole
vehicle, u and v are the longitudinal and lateral speed of the body centroid respectively, ωr is the yaw
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rate of the vehicle body, Iz is the inertia of the body around the vertical axis, CD is the air resistance
coefficient, ρ is the air density, A is the frontal area, δ f l and δ f r are the steering angles of the left front
wheel and the right front wheel, L f is the distance from the body centroid to the front axle, Lr is the
distance from the body centroid to the rear axle, B is the wheelbase.

 
Figure 4. Vehicle body dynamic model.

2.2. Four-DoF Mechanical Steering System Sub-Model

As mentioned above, the DDAS system maintains the mechanical steering system. The four
degrees of freedom model of the steering system is shown in Figure 5. The corresponding dynamic
equations of the steering system are shown as follows [11,12]:

JC
..
δsw + BC

.
δsw + KC

(
δsw − YR

rP

)
= Tsw (5)

MR
..
YR + BR

.
YR + ηF

KC
rP

(YR

rP
− δsw

)
+ CFR + ηB

(
TKL1

NL1
+

TKL2

NL2

)
= 0 (6)

JFW1
..
δFW1 + BFW1

.
δFW1 + CFFW1 + AT1 = TKL1 (7)

JFW2
..
δFW2 + BFW2

.
δFW2 + CFFW2 + AT2 = TKL2 (8)

TKL1 = KSL1

(
YR

NL1
− δFW1

)
(9)

TKL2 = KSL2

( YR

NL2
− δFW2

)
(10)

TSC = KC

(
δsw − YR

rP

)
(11)

where Tsw is the steering wheel torque, BC and JC are the damping of the steering column and equivalent
inertia of steering wheel and column, δsw is the steering wheel angle, MR and BR are the mass and
damping of the rack, YR is the displacement of the rack, rp is the radius of the pinion, η f and ηB are the
forward transmitting efficiency and backward transmitting efficiency of the steering gear respectively,
KC is the torsional stiffness of the torsion bar, CFR is the Coulomb friction of the gear and rack [13], NLi
is the ratio of the rack transfer displacement to knuckle angular displacement, JFWi and BFWi(i = 1, 2)
are the inertia of the road wheels round their kingpin and damping of kingpin, CFFWi is the coulomb
friction caused by the left front wheel and the right front wheel rotating the kingpin, and the specific
calculation formula is shown in the literature [14], TKLi is the total torque from the kingpins of the left
front wheel and the right front wheel, δFWi is the steering angle of front wheels, KSLi is the torsional
stiffness of the kingpin of the front wheels.
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Figure 5. 4-DoF mechanical steering system model.

ATi represents the alignment torque of each front wheel around the kingpin, which is mainly
composed of the following four parts [15,16]:

Msy = Fy·rw sin τ cos σ (12)

Msx = Fx·rσ cos τ cos σ (13)

Mzz = Mtz· cos τ cos σ (14)

Msz = Fz· cos τ sin σ sin δFW cos σ(rσ + rw tan σ) (15)

where Msy is the alignment torque generated by the lateral force of the tire, Msx is the alignment torque
generated by the longitudinal force of the tire, Mzz is the component of the self-alignment torque
around the kingpin, Msz is the alignment torque generated by the normal force of the front axle, Mtz is
the self-alignment torque of the tire, Fx is the longitudinal force of the wheels, Fy is the lateral force
of the wheels, Fz is the normal force of the wheels, τ is the kingpin caster angle, σ is the kingpin
inclination angle.

2.3. Wheel Rotation Dynamic Sub-Model

The wheel rotation dynamic model is shown in Figure 6.

Figure 6. Wheel rotation dynamic model.

The rotation dynamic equation of each driving wheel can be established as follows:

Iw
.
ωi = Ti − Fxirw (16)
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where Iw is the moment of inertia of the wheels, ωi(i = 1, 2, 3, 4) is the angular velocity of the wheels,
Ti(i = 1, 2, 3, 4) is the driving torque of the wheels.

2.4. Tire Sub-Model

The tire model is an important part of the vehicle dynamic model. This paper selects the magic
formula tire model which is widely used in the study of handling dynamics. The specific definition
and parameters of the model are detailed in the literature [17].

3. Design of DDAS Controller

3.1. Steering-Wheel-Torque Direct Control Strategy

The existing DDAS controller mostly adopts an open-loop strategy based on an assist characteristic
curve look-up table inherited from the EPS control plan [7,18]. Different from the working principle of
an EPS system, the steering assistance generated by a DDAS system through the ground traction force
difference is indirectly applied on the steering system. Given the complexity of real road conditions and
nonlinear characteristics of vehicle tires as well as inconstant scrub radius, acquiring the actual ground
traction force accurately is difficult. Hence, a traditional control strategy like EPS which generates
the steering assistance torque command directly based on a look-up table of control current of the
steering electric motor is hard to implement. In another words, it is difficult to directly determine the
torque commands of the two front in-wheel motors, since we do not know the accurate law that defines
how much torque difference can generate required steering assistance torque for the steering system.
Therefore, a reference steering wheel torque following control law called as steering-wheel-torque
direct control strategy has to be proposed to avoid the embarrassment that the steering assistance torque
is hard to know in DDAS system. It is proved that this control strategy is suitable to solve this problem
and it is not hard to be carried out in real applications. The architecture of the steering-wheel-torque
direct control strategy is shown in Figure 7.
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Figure 7. Steering-wheel-torque direct control strategy.

As Figure 7 shows, the actual steering wheel torque Tsw is measured through a steering wheel
torque sensor and the steering wheel angle δsw is measured through a steering wheel angle sensor,
and the vehicle speed signal V is obtained from the CAN bus. Then δsw and V are delivered to the
ideal steering wheel torque map to obtain the target steering wheel torque Tswd. The difference of the
ideal steering wheel torque Tswd and the actual steering wheel torque Tsw is delivered to the DDAS
controller to obtain the front wheels torque difference ΔTz. The front wheels torque difference ΔTz

is distributed by the torque vectoring block, as shown in the Equation (17), which distributes half of
the torque difference to the two side wheels with equal absolute value but opposite sign. Then the
differential of ground traction force of the front wheels generated by torque vectoring makes the actual

42



Energies 2020, 13, 2647

steering wheel torque track the ideal steering wheel torque, which consequently reduces the steering
wheel hand force of the driver: ⎧⎪⎪⎨⎪⎪⎩

T1, T2 =
Tdre

4 ± ΔTz
2

T3, T4 =
Tdre

4
(17)

where Tdre is the total demand driving torque determined by the longitudinal driver model, which can
be calculated by the following formula:

Tdre = kp(Vd −V) + ki

∫ t

0
(Vd −V)dt + kd

d(Vd −V)

dt
(18)

where Vd is the target speed, kp is the proportional coefficient of the PID controller, ki is the integral
coefficient of the PID controller, kd is the differential coefficient of the PID controller.

As for the driver’s ideal steering wheel torque, many research institutes have conducted a lot of
researches very early, mainly through real vehicle test or driving simulator measurement. According to
the previous research conclusion, the preference steering wheel torque characteristic of many drivers
is closely related to the vehicle speed and the steering wheel angle [19–22]. Hence, as an example, a
kind of driver’s preference steering wheel torque map derived from other’s experimental results is
illustrated in Figure 8.

Figure 8. The ideal steering wheel torque map.

3.2. Design of the ADRC Controller of DDAS System

As discussed in Section 1, on one hand, the control effect of a conventional controller may be
influenced by several interferences, such as inevitable steering wheel torque sensor noise and frequently
changing suspension parameters as well as continuous road unevenness, while on the other hand, the
change laws of these interferences are hardy to identify and accurately model. Therefore, PID control
plans, especially the ones with fixed control parameters, as well as some robust and optimization
control plan may not be competent for the DDAS control problem. As a result, the ADRC control
method which has good robustness against inner parameter changes and outer sensor noise without
knowing the accurate mathematical model of the controlled system in advance is proposed for the
DDAS control system. Actually, as an improved PID controller, the ADRC controller treats the inner
and outer interferences as a whole interference and the influence of the interference on the control
effect is compensated by the disturbance estimation compensator. Therefore, compared with a PID
controller, the ADRC controller has better anti-interference ability.

The ADRC controller is mainly composed of four parts: tracking differentiator, extended state
observer, nonlinear state error feedback law and disturbance estimation compensator [23]. ADRC
controller solves the problem that the differential signal of the error is difficult to extract in the
traditional PID controller by using the tracking differentiator and the extended state observer. The
extended state observer of ADRC controller obtains the state of the system, the differential signal of the
state and the disturbance acting on the system by observing the input and output of the system. The
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nonlinear state error feedback of ADRC makes the controller more adaptive to nonlinear system by
introducing nonlinear function fal. The disturbance estimation compensator of the ADRC controller can
compensate the control result of nonlinear state error feedback by choosing appropriate compensation
coefficient, so as to effectively reduce the influence of disturbance on control effect.

According to the characteristics of the DDAS system, the specific structure of the third-order
ADRC controller of DDAS system designed in this paper is shown in Figure 9.

Figure 9. The structure of ADRC controller of DDAS system.

The specific design process of the ADRC controller of DDAS system is introduced as follows:
(a) Tracking differentiator.
In classical control theory, the differential value of a given signal is solved by the following

equation:

y = w(s)v =
s

Ts + 1
v =

1
T
(1− 1

Ts + 1
)v (19)

where T is the time constant of the controlled system. The smaller the time constant T is, the closer
the output of the system is to the real differential value of the signal. Therefore, the time constant is
usually a small value [9]. The structure which tracks the dynamic characteristics of the signal as fast as
possible through the first order inertia link and obtains the approximate differential signal by solving
the differential equation is called a tracking differentiator.

To track the dynamics of the input signal fast, generally, the following nonlinear tracking
differentiator can be selected: { .

x1 = x2
.
x2 = −Rsign(x1 − v0 +

x2 |x2 |
2R )

(20)

where v0 is the ideal steering wheel torque Tswd, R is the speed factor. The tracking performance is better
when the R is bigger, which means that x1 and x2 are closer to v0 and the differential of v0, respectively.

Although the nonlinear tracking differentiator can track the target steering wheel torque Tswd
well, it is easy to generate high frequency oscillation due to the bang-bang characteristic of the selected
sign function in Equation (20). In order to prevent the occurrence of high frequency oscillations when
the system comes into a steady state, this paper uses the time-optimal control synthesis function
f han(x1, x2, R, h) to design the tracking differentiator. The specific formula of this function is as
follows [24]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d = R·h
d0 = h·d
y = x1 + hx2

a0 =
√

d2 + 8r
∣∣∣y∣∣∣

a =

{
x2 + 0.5(a0 − d)sign(y),

∣∣∣y∣∣∣ > d0

x2 +
y
h ,
∣∣∣y∣∣∣ ≤ d0

f han = −
{

Rsign(a), |a| > d
R a

d , |a| ≤ d

(21)

where h is the tracking step and R is the speed factor.
Therefore, the final designed tracking differentiator in this paper is as follows:

{ .
x1 = x2
.
x2 = f han(x1 − Tswd, x2, R, h)

(22)

(b) Extended state observer.
In the running process of the system, signal interaction with the external environment is constantly

carried out. Therefore, the internal state information of the system can be determined by monitoring
the system input and output. The device for determining the internal state information of the system is
called the state observer [9].

For a general nonlinear system as shown in the following equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
x1 = x2
.
x2 = f (x1, x2) + bu
y = x1

(23)

Then the state observer of this system can be established as follows by selecting a nonlinear
feedback form: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e = z1 − y
.
z1 = z2 − γ01g1(e)
.
z2 = −γ02g2(e) + bu

(24)

where γ01, γ02 are control parameters, e is the error term, u is the external input, gi(e) is nonlinear
function that satisfies the following conditions:

egi(e) ≥ 0 (25)

As long as the appropriate γ01, γ02 and nonlinear function gi(e) are chosen for the state observer,
the state variables can be well estimated in a wide range of system. Let x3(t) = f (x1(t), x2(t)), and
denote

.
x3(t) = wt. Then, the system can be expanded into a new linear control system as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x1 = x2
.
x2 = f (x1, x2) + bu
.
x3 = w(t)
y = x1

(26)

The state observer established for this new expanded control system is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e = z1 − y
.
z1 = z2 − γ01g1(e)
.
z2 = z3 − γ02g2(e)
.
z3 = −γ03g3(e) + bu

(27)
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This new state observer is known as the extended state observer of the new system. Among
them, x3(t) is called the expanded state. According to the research needs of this paper, the third-order
extended state observer established in this paper is rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e = z1 − Tsw
.
z1 = z2 − γ01e
.
z2 = z3 − γ02|e|α1sign(e) + bΔTz
.
z3 = −γ03|e|α2sign(e)

(28)

In order to prevent the phenomenon of high frequency flutter in the control process, the function
|e|αsign(e) in the extended state observer is replaced by the power function with linear segment at the
origin as follows:

f al(e,α,φ) =

⎧⎪⎪⎨⎪⎪⎩
e
φα−1 |e| ≤ φ
|e|αsign(e) |e| > φ (29)

where φ is the length of the linear segment and is an important parameter. The final third-order
extended state observer is as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e = z1 − Tsw
.
z1 = z2 − γ01e
.
z2 = z3 − γ02 f al(e,α1,φ1) + b0ΔTz
.
z3 = −γ03 f al(e,α2,φ2)

(30)

where α1, α2 are the nonlinear factors in the f al function, z1 tracks the target value of the actual steering
wheel torque Tsw, z2 tracks the target signal of the changing speed of steering wheel torque, and z3

tracks the total disturbance term of the system.
(c) Nonlinear state error feedback.
The nonlinear state error feedback is an important part of the ADRC controller. This part can

quickly adjust the deviation and make the system balance between response fastness and overshoot.
Hence, the following nonlinear state error feedback is chosen:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e1 = x1 − z1

e2 = x2 − z2

u0 = γ1 f al(e1,α3,φ3) + γ2 f al(e2,α4,φ4)

(31)

where e1 is the steering wheel torque error term, e2 is the steering wheel torque change rate error
term, γ1 and γ2 are nonlinear combination coefficients, u0 is the control output of the nonlinear state
error feedback.

After completing the design of above three parts, the final control value can be obtained based on
the nonlinear state error feedback control value plus the compensation of the disturbance estimation
value. This part is called disturbance estimation compensator mentioned above, which is expressed as
follows:

ΔTz = u0 − z3/b0 (32)

where ΔTz is the front wheels torque difference required by the final decision of the ADRC controller,
b0 is the compensation factor, which determines the strength of the compensation and is an important
parameter of the ADRC controller, directly affecting the ADRC controller performance [25].

4. Controller Parameter Optimization Based on Simulated Annealing Algorithm

Compared with the PID controller, though the ADRC controller has the advantages of better
robustness, simple structure and easy implementation without knowing the accurate mathematical
model of the controlled system, it also has the disadvantages of needing more control parameters and
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complicated parameter tuning [26], which severely limits its further industrial application. At the
same time, these parameters have a great impact on the performance of the controller, so appropriate
method selection to set the values of each parameter has to be done first.

According to the theory of ADRC, some of the parameters are determined empirically, and once
these parameters are determined, no correction is needed. For example, α1, α2, α3, α4 and φ1, φ2, φ3,
φ4 are the parameters of the nonlinear function fal, which affect the change trend of the nonlinear
function, but they usually do not change with the change of the controlled system. Therefore, the
ranges of α3 and α4 in the nonlinear state error feedback are generally 0 < α3 < 1, α4 > 1, so in this
paper, α3 and α4 are chosen as fixed values, 0.95 and 1.25, respectively, α1 and α2 in the third-order
extended state observer are chosen as fixed values, 0.5 and 0.25, respectively. The values of φ1, φ2, φ3

and φ4 have a great influence on the nonlinearity of the controller. After multiple simulations, the
value of φ1, φ2, φ3 and φ4 are chosen as 0.01 which is ten times of the sampling step. The value of
speed factor R in this paper is 10.

In summary, in addition to the empirically determined parameters, the other parameters which
need to be specifically set are the following six parameters γ01, γ02, γ03, γ1, γ2 and b0. Generally,
there is no relationship between the six parameters γ01, γ02, γ03, γ1, γ2, b0 and the parameters α1,
α2, α3, α4, φ1, φ2, φ3, φ4 mentioned above. At the same time, γ01, γ02 and γ03 in the extended state
observer are mainly related to sampling step size [23], which can be designed separately. In addition,
γ1 and γ2 in nonlinear state error feedback are also important parameters of the controller and b0 is an
important parameter to characterize the difference of different systems. Due to the fact that there is a
certain mutual influence between these parameters, and manual adjustment is too complicated, offline
optimization to set the values of these six parameters is implemented. In this optimization process,
three parameters γ01, γ02, γ03 are optimized first, and then the rest three parameters are optimized.

There are many existing optimization algorithms, such as genetic algorithm, simulated
annealing algorithm and particle swarm optimization, etc. Among them, the simulated annealing
algorithm has the advantages of simple description, flexible use, high operational efficiency and less
constraint on initial conditions [27]. Therefore, the simulated annealing algorithm is chosen as the
optimization algorithm.

In order to implement the optimization, the objective function of the optimization problem
according to the needs of this paper should be determined first. The target of this paper is to design a
better DDAS controller, which is to control the actual steering wheel torque to follow the ideal steering
wheel torque in real time by controlling the front wheels driving torque difference. Therefore, the
objective function is defined as follows:

J =

∞∫
0

|Tswd − Tsw|dt (33)

In order to speed up the optimization process, the initial values of each parameter are determined
at first by multiple simulations as shown in Table 1. Then the relevant optimization program is coded
in MatLab software, in which the sim function is used to call the simulation model. The simulation
condition selects the sinusoidal steering angle input at 30 km/h vehicle speed, and the road surface
adhesion coefficient is high adhesion, which is 0.8. As an example, the iterative optimization process
of the three parameters γ01, γ02 and γ03 in extended state observer is shown in Figure 10.
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Figure 10. Optimization process.

As shown in Figure 10, after around 870 generations, the fitness function basically reaches the
optimal value. The final six optimized parameters are shown in Table 1 below:

Table 1. ADRC controller parameter optimization

Parameters γ01 γ02 γ03 γ1 γ2 b0

Initial value 450 600 1000 −350 30 1
Optimal value 700.955 997.714 903.922 −425.893 0.372 2.801

5. Simulation Analysis

5.1. Sinusoidal Steering Wheel Angle Input Simulation

The simulation condition is selected as the sinusoidal steering wheel angle input without the
driver’s steering model. First the vehicle gradually accelerates to 50 km/h and maintains this speed.
As shown in Figure 11a, the vehicle is input a sinusoidal steering wheel angle at the 5th second and its
amplitude and the frequency are 45 degrees and 0.2 Hz, respectively, and the road adhesion coefficient
is set to 0.8. In order to verify the anti-interference performance of the proposed DDAS controller, the
white noise model is used to imitate the sensor noise of the steering wheel torque, of which power and
frequency are 0.01 and 27.5 Hz, respectively. During this procedure, two different controllers—one a
PID controller, and the other the proposed ADRC controller—are used as two comparison simulation
cases to control the DDAS system to assist the driver to steer the car. For better comparing their
performance, the three parameters in the PID controller are also repeatedly calibrated after multiple
groups of simulations with same sinusoidal steering angle input. Figure 11 shows all the comparison
simulation results.
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Figure 11. Sinusoidal input simulation: (a) Steering wheel angle; (b) Steering wheel torque; (c) Steering
wheel torque with white noise; (d) Cross-plot of steering wheel angle and torque; (e) Wheel torque of
ADRC controller; (f) Yaw rate; (g) Side slip angle.

It can be seen from Figure 11b that both PID controller and ADRC controller have achieved good
performance in power assistance. The maximum torque of the steering wheel dropped from 6.3 Nm
to about 2.7 Nm, a reduction by 56%, so the effect is remarkable. Moreover, it is obvious that the
steering wheel torque not only has a certain leading response, but also has a little big peak value
with respect to the ideal steering wheel torque when the PID controller is adopted. The trend looks
good, but the tracking accuracy of PID controller is a little poor. However, as a contrast, when the
ADRC controller is used, the steering wheel torque can better track the ideal steering wheel torque,
and almost has no difference in peak value with respect to the ideal value. In addition, Figure 11c
shows the actual steering wheel torque curve after adding white noise to the steering system. It can
be seen from Figure 11c that the chatter of the actual steering wheel torque when the PID controller
and ADRC controller are adopted, respectively, is similar during straight line driving conditions,
while during steering conditions, it is obvious that the chatter of the actual steering wheel torque
controlled by the ADRC controller is smaller than with the PID controller. During the steering stage,
the function of the ADRC controller of the DDAS system is to generate steering assistance for the
driver and simultaneously mitigate the system noise interference on the steering wheel torque control
performance. In contrast, the linear PID controller shows difficulties in dealing with the interference.
The result proves that the ADRC controller has better anti-interference ability than the PID controller.

Besides that, it can be seen from the relationship between the steering angle and the torque of the
steering wheel shown in Figure 11d that the DDAS system using the PID controller and the ADRC
controller can effectively reduce the steering efforts of the driver. However, the ADRC controller
shows better assistance performance with smaller fluctuation and more stable steering wheel torque,
indicating that the ADRC controller is significantly better than the PID controller. In addition, the
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wheel torque curves of the ADRC controller in Figure 11e clearly show that the right and left front
wheels begin to generate differential torque, and the maximum and minimum values are 190 Nm and
−180 Nm, respectively, which are within the normal range. There is almost no difference between the
two controllers in yaw rate and side slip angle of center of mass as shown in Figure 11f,g.

Table 2 summarizes the root mean square (RMS) values of the steering wheel torque tracking error
of these control methods. It is obvious that the tracking error RMS of the ADRC controller is much
smaller than that of the PID controller, which proves that the assistance performance of the ADRC
controller is significantly better than that of the PID controller.

Table 2. The RMS comparison of the steering wheel torque following error in sinusoidal input simulation.

Performance Uncontrolled PID ADRC

Tsw − Tswd(Nm) 1.674 0.2795 0.0867

5.2. Closed-Loop Lemniscate Simulation

A driver-vehicle-road closed-loop simulation is also conducted to verify the control effect of
the DDAS control strategy designed in this paper. The closed-loop simulation condition selects the
standard lemniscate trajectory driving condition. The trajectory function is established according to
the relevant standard, and the minimum curvature radius is set to R0 = 6 m. In order to have a smooth
steering process during the whole simulation, the standard lemniscate is rotated by 45 degrees, and a
straight line segment is set before entering and after exiting the standard lemniscate road. The vehicle
speed is chosen to be 10.8 km/h, and the road adhesion coefficient is 0.8. The white noise model with
same amplitude and frequency as above simulation condition is also embedded into the comparing
simulation. The simulation results are shown in Figure 12.

As seen in Figure 12a, the vehicle in each case with different controller can track the target
trajectory better. As shown in Figure 12b, DDAS has achieved good power assisting effect with PID
controller and ADRC controller, and the maximum torque of the steering wheel dropped from about
11.5 Nm to about 5.1 Nm, reduced by 50%. The effect of DDAS system on steering hand force reduction
is remarkable. Furthermore, comparing to the case of PID controller, the steering wheel torque in the
case of the ADRC controller can better track the ideal steering wheel torque with no advance response
phenomenon, and has smaller chatter while reaching the peak value. In addition, Figure 12c shows
the actual steering wheel torque result after adding white noise to the steering system. It also can
be seen from Figure 12c that when the car is cornering, the influence of the sensor noise to the road
feeling of the driver is greater than the car is in the straight line driving condition, especially for the
case of the PID controller. Moreover, when the vehicle enters into the steering condition, the chatter
of the actual steering wheel torque when using the PID controller is significantly greater than that
when using the ADRC controller. The result fully proves that when the interference of the steering
wheel torque sensor noise or other external or internal interference comes out, such as the changing
suspension parameters as well as the nonlinear characteristics of the tires, the anti-interference ability
of ADRC controller is significantly better than that of PID controller. Both Figures 12b and 12c prove
that the ADRC controller shows better assistance performance with smaller fluctuations and smoother
steering wheel torque when compared with the PID controller. Similar results can also be seen from
the cross-plot of the steering wheel angle versus steering wheel torque as in Figure 12e. By observing
the time history of yaw rate shown in Figure 12f and side slip angle shown in Figure 12g, so it also can
be concluded that the DDAS system does not obviously influence the stability of the vehicle which is
driving all the time at constant speed on a high-adhesion road.
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Figure 12. Closed-loop lemniscate simulation: (a) Vehicle trajectory; (b) Steering wheel torque; (c)
Steering wheel torque with white noise; (d) Steering wheel angle; (e) Cross-plot of steering wheel angle
and torque; (f) Yaw rate; (g) Side slip angle.

Table 3 is the RMS value of the steering wheel torque tracking error with respect to the ideal value
of each method under lemniscate simulation. It can be concluded that both the PID controller and the
ADRC controller can make the RMS of the deviation of the steering wheel torque from ideal value be
much smaller compared to without control, indicating that DDAS system has a good power- assisting
effect. When the ADRC controller is adopted, the RMS of the deviation of the steering wheel torque
from the ideal value is 69% smaller than that of the PID controller, indicating that the power assisting
effect of the ADRC controller is significantly better than that of the PID controller.

Table 3. The RMS comparison of the steering wheel torque tracking errors in lemniscate simulation.

Performance Uncontrolled PID ADRC

Tsw − Tswd(Nm) 2.176 0.2106 0.07809

6. Hardware-in-the-Loop Experimental Validation

Taking the need for more facilities, time requirements and test yard support into account as well as
the risk of losing stability while carrying out the double-lane-change test in actual vehicle experiments,
a hardware-in-the-loop simulation experiment is selected to replace real vehicle testing and validate
the control effect of the DDAS control strategy proposed in this paper. The testing platform of the
driving simulator as shown in Figure 13 is composed of a host computer, G29 driving simulator with
steering wheel angle/torque sensor and dSPACE 1103 hardware running the vehicle model.
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Figure 13. Testing simulator platform based on dSPACE hardware.

The driver-in-the-loop experiment selects a double-lane-change test case, with a target
constant-speed 40 km/h and a uniform road adhesion coefficient 0.85. The experimental results
are shown in Figure 14.

 
(a) (b) 

 
(c) (d) 

Figure 14. Simulator experiment results: (a) Steering wheel angle; (b) Steering wheel torque; (c) Wheel
torque of ADRC controller; (d) Yaw rate.

It can be seen from Figure 14a that the steering wheel angle input of the drivers in three
experimental cases with different controller of DDAS system or without any power steering control
are similar. Figure 14b shows that DDAS has achieved very good power steering assistance effect
using both the PID controller and the ADRC controller. The peak value of the steering wheel torque is
reduced from 7 Nm in the case of having no any power steering to 4 Nm in the case of having the
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DDAS system, a reduction rate of about 43%, and the assistance effect is obvious. Moreover, when the
ADRC controller is used, the steering wheel torque fluctuation is much smaller and smoother. The
disturbance estimation compensator of the ADRC controller provides a compensation function for the
possible disturbance from inside or outside of the steering system, thereby effectively improving the
control effect of the differential drive assist steering system. The comparison result indicates that the
ADRC controller is more robust when facing possible steering wheel torque or angular sensor noise,
thus achieving a better road feeling for the driver than the PID controller. As shown in Figure 14d,
when DDAS is applied, it is interesting that the yaw rate of the vehicle is increased, but the steering
wheel angle input of the driver in this process also increases.

7. Conclusions

In this paper, a DDAS control strategy based on the steering-wheel-torque direct control is
developed for the first time. Considering the disadvantages of the traditional PID controller and the
particularities of the DDAS system, the ADRC technology is introduced to design the DDAS controller
to reduce the steering effort of the driver and improve the driver’s road feeling simultaneously. As for
the problem that the parameters of the ADRC controller are difficult to set, the simulated annealing
algorithm is used to optimize the controller parameters offline. Finally, a variety of working conditions
are selected to verify the developed strategy by using the vehicle model established in this paper. All
the simulation and experiment results show that compared with the PID controller commonly used
in DDAS, the proposed ADRC controller developed in this paper can not only reduce the steering
effort of the driver obviously like previous conventional control method, but also have better control
performance in tracking accuracy and smooth road feeling of the driver.
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Nomenclature

rσ scrub radius
rw tire rolling radius
NL transmission ratio of the rack translation to the knuckle arm angular displacement
Iw moment of inertia of the wheel about its central axis

Fxi, Fyi(i = 1, 2, 3, 4)
the longitudinal and lateral forces of the left front wheel, the right front wheel, the
left rear wheel, and the right rear wheel respectively

m the mass of the whole vehicle
u the longitudinal speed of the body centroid
v the longitudinal speed of the body centroid
ωr the yaw rate of the vehicle body
Iz the inertia of the body around the Z axis
CD the air resistance coefficient
ρ the air density
A the frontal area
δ f l, δ f r steering angles of the left front wheel and the right front wheel
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L f the distance from the body centroid to the front axle
Lr the distance from the body centroid to the rear axle
B the wheelbase
Tsw the steering wheel torque
BC the damping of the steering column
JC equivalent inertia of steering wheel and column
δsw steering wheel angle
MR the mass of the rack
BR the damping of the rack
YR the displacement of the rack
rp the radius of the pinion
η f the forward transmitting efficiency of the steering gear
ηB the backward transmitting efficiency of the steering gear
KC the torsional stiffness of the torsion bar
CFR the coulomb friction of the gear and rack
JFWi the inertia of the road wheel round their kingpin
BFWi the damping of kingpin
CFFWi the coulomb friction caused by the steerable wheels rotating the kingpin
TKLi the total torque from the kingpins of the left front wheel and the right front wheels
δFWi the steering angle of front wheels
KSLi the torsional stiffness of the kingpin of the front wheels
Msy the alignment torque generated by the lateral force of the tire
Msx the alignment torque generated by the longitudinal force of the tire
Mzz the component of the tire self-alignment torque about the kingpin
Msz the alignment torque generated by the normal force of the front axle
Mtz the self-alignment torque of the tire
Fz the normal force of the wheels
τ the kingpin caster angle
σ the kingpin inclination angle
ωi(i = 1, 2, 3, 4) the angular velocity of the wheels
Ti(i = 1, 2, 3, 4) the driving torque of the wheels
T∗m the target electromagnetic torque
ξ the motor characteristic parameter
Tswd the target steering wheel torque
ΔTz the front wheels torque difference
Tdre the total demand driving torque determined by the longitudinal driver model
Vd the target speed
kp the proportional coefficient of the PID controller
ki the integral coefficient of the PID controller
kd the differential coefficient of the PID controller
R the speed factor
h the tracking step
γ0i(i = 1, 2, 3) the control parameters
e the error term
φ the length of the linear segment
α1,α2 the nonlinear factor in the fal function
e1 the steering wheel torque error term
e2 the steering wheel torque change rate error term
γ1,γ2 the nonlinear combination coefficients
u0 the control output of the nonlinear state error feedback
R0 the minimum curvature radius
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Abstract: City bus transport electrification has a strong potential of improving city air quality,
reducing noise pollution and increasing passenger satisfaction. Since the city bus operation is rather
deterministic and intermittent, the driving range- and charging-related concerns may be effectively
overcome by means of fast charging at end stations and/or slow charging in depot. In order to support
decision making processes, a simulation tool for planning of city bus transport electrification has
been developed and it is presented in this paper. The tool is designed to use real/recorded driving
cycles and techno-economic data, in order to calculate the optimal type and number of e-buses
and chargers, and predict the total cost of ownership including investment and exploitation cost.
The paper focuses on computationally efficient e-bus fleet simulation including powertrain control
and charging management aspects, which is illustrated through main results of a pilot study of bus
transport electrification planning for the city of Dubrovnik.

Keywords: city bus transport; electric vehicles; electrification; software tool; planning; control;
charging management; simulation; analysis

1. Introduction

Due to environmental concerns, there is a strong tendency of electrifying road transport
systems by means of introducing different types of electric vehicles [1]. Apart from reducing
pollutant and CO2 emissions, electric vehicles (EV) are characterised by substantially reduced noise
pollution, lower operating cost (including energy and maintenance cost) and generally better driving
characteristics. On the other hand, higher investment cost, slow battery charging and limited driving
range inhibit their faster proliferation [2]. This is why the transition to fully electric vehicles (FEV or
BEV) is characterised by application of hybrid electric vehicles (HEV) and plug-in hybrid electric
vehicles (PHEV) [3].

City bus transport is a natural candidate for electrification, aiming at improvement in city air
quality and reduction of noise. Since the city bus routes are known in advance and the operation
is intermittent, the range- and charging-related issues are of lesser significance than with passenger
cars. These issues can be tackled by the following two basic approaches [4]: (i) the buses are equipped
with large enough battery packs to sustain half a day or even full day of operation, and the buses are
efficiently recharged by using slow charging (typically overnight); and (ii) the battery size is minimised
and superfast charging is employed at bus stops (typically end stations). Therefore, it is generally of
interest to find optimal locations of charging stations, as considered in [5–11] with a focus on passenger
cars and urban areas.

In [12], e-buses and corresponding charging systems are analysed from the total cost perspective
by using data related to route specifications, timetables and other local conditions. Additionally,
the authors have developed a user-friendly tool which enables the user to investigate and quantify
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trade-offs between EV battery size, charging infrastructure cost and vehicle fleet operational costs.
However, all routes are modelled as straight lines between the bus stops and elevation is collected
only at stops, thus hiding some relevant topographical features along the routes and affecting the
analysis accuracy. In [13], a stochastic integer program was developed to jointly optimise charging
station locations and bus fleet size, while considering stochastic bus charging demand and time-of-use
electricity tariffs for the case of real-world network in Melbourne. However, this study does not consider
charging scheduling for individual buses. The aforementioned city bus transport optimisation study [4]
relies on an artificial urban bus driving cycle when conducting bus fleet simulations, thus neglecting
influential effects of city traffic congestion, road slopes, often stops and so on. The authors of [14]
indicated that lowering the fuel cost for electric buses can balance the high investment costs related
to building charging infrastructure, while additionally achieving a significant reduction in pollutant
emissions. To that extent, detailed techno-economic analyses comparing the total cost of ownership
(TCO) of conventional and EV fleets should be conducted [15].

To the best of the authors’ knowledge, studies dealing with extensive virtual simulations of
different e-bus-type fleets based on real-life driving cycles and concerning spatially-distributed charging
management and related TCO analyses have not been considered in the literature thus far. To fill
the gap, a unique simulation tool for planning of city bus transport electrification, which contains
all of the above functionalities, has been developed, which is described in this paper, including its
application to a pilot study for the City of Dubrovnik. The tool consists of four modules aimed at
(i) post-processing and statistical analysis of a large set of recorded driving cycles, (ii) simulation of
conventional (CONV) and different types of e-buses (HEV, PHEV and BEV), (iii) virtual simulation of
e-bus fleets over recorded driving cycles including user-defined setting of charging station locations
and charging management itself and (iv) techno-economic analyses. The main contributions of the
paper include: (i) creating a unique and flexible/transferable simulation tool resulting in realistic,
data-driven transport electrification analyses; (ii) building a static map-based form of HEV/PHEV-type
bus model including its control strategy, which drastically boost computational efficiency of large-scale
fleet simulations; (iii) performing a detailed techno-economic analysis based on realistic virtual bus
fleet simulation and actual technical data provided by city bus transport companies.

The paper is organised as follows. Section 2 describes the methodology of recording driving
cycle data and overviews the structure of developed simulation tool. Section 3 outlines the Data
Post-Processing Module (DPPM) and presents corresponding results of conventional city-bus transport
system characterisation. Section 4 deals with E-Bus Simulation Module (EBSM) and discusses belonging
simulation results for the four considered types of city buses. Section 5 describes the Charging
Optimisation Module (COM) and overviews the results related to obtaining near-optimal charging
infrastructure configuration for the cases of PHEV- and BEV-type bus fleets. The Techno-Economic
Analysis Module (TEAM) is briefly described in Section 6, and the corresponding TCO results are
discussed for various e-bus fleet scenarios. Concluding remarks are given in Section 7.

2. Pilot Data and Simulation Tool Structure

2.1. Recording of Driving Cycle Data

The driving cycle data have been collected on a sub-fleet of 10 MAN Lyon’s City NL323 buses
operating in the city of Dubrovnik. They are considered a good representative of the overall fleet,
as they cover all major bus routes (Figure 1) and represent around 1/3 of regularly used city buses.
The driving data recording was performed by utilising a commercial GPS/GPRS vehicle tracking device
installed in the selected buses for the purpose of this study. The data, collected from a built-in GPS
device and vehicle CAN bus, are summarised in Table 1. Recording was conducted continuously for a
period of five months, and the data sampling time was 1 second.
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Figure 1. City bus routes in Dubrovnik along with end-station and depot locations.

Table 1. List of available city bus tracking data.

Measured Data Resolution

GPS coordinates (latitude, longitude), (◦) 1.0 × 10−7

Elevation height (altitude), (m) 0.1

Vehicle speed, (km/h) 0.1

Travelled distance (from odometer), (km) 1.0

Accelerator pedal position, (%) 1.0

Cumulative fuel consumption, (L) 0.5

Fuel level in reservoir, (%) 1.0

Engine speed, (rpm) 1.0

Engine load, (%) 1.0

2.2. Organisational Structure of Simulation Tool

Figure 2 illustrates the structure of the developed tool, including the connections between the main
modules. The tool is driven by recorded driving cycle data, and as the main output, it delivers the TCO
over the projected fleet operational period (12 years, herein). The DPPM transforms the recorded driving
data into individual driving cycles, and it also calculates various statistical features characterising the
conventional city bus transport behaviours. The EBSM provides computer simulations of different types
of city buses (CONV, HEV, PHEV, BEV) over the driving cycles extracted by the DPPM. The module
outputs include the individual bus energy consumption (fuel and/or electricity) and various features
of powertrain response (e.g., engine/e-motor operating points, gear ratio trajectories, etc.). The COM
utilises the outputs of DPPM and EBSM to simulate the overall city bus fleet over the recorded
driving cycles and optimise the PHEV- and BEV-type bus charging configuration and management.
This module provides the number, location and type of chargers, the bus battery capacity and the
number of reserve buses in the BEV case, which are required to fulfil the driving routes with sufficient
battery charge. The COM also outputs the total fuel and/or electricity consumption over the considered
period of operation. The TEAM uses the output data from the COM module, as well as the data on bus
transport investment and exploitation/maintenance cost, in order to calculate the TCO.
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Figure 2. Organisational structure of simulation tool.

The simulation tool is written in Python object-oriented programming language, with computationally
demanded routines coded in C language. The Python language has been selected because it is available
in open-source domain, it supports multiple platforms, has a vast number of available libraries, and is
dynamically typed language (i.e., does not require declaring of data type of a variable) convenient for
rapid prototyping. The simulation tool is designed in a user-friendly way (based on a graphical user
interface (GUI) including windows, tabs, I/O data interfaces, etc.) and has in mind the transferability
to other cities using a common/shared database. The database serves as a main storage for recorded
driving cycle data, and plays the role of an intermediary between the main tool modules. In addition,
the simulation tool includes the Data Management Module (DMM), which provides greater flexibility and
adaptability to different cities’ transport system configurations. DMM enables the user to define all static
data (system parameters) required by the simulation tool, e.g., those related to vehicle model parameters,
end-station and depot locations, charging station parameters and techno-economic data.

3. Data Post-Processing Module (DPPM)

3.1. General Description

According to the DPPM flowchart shown in Figure 3, the recorded driving data are first processed
and stored in a database. Next, the driving cycles are extracted by using the DMM-based data related
to geographical coordinates of end stations and depot (Section 3.2). At the same time, the fleet statistics
are calculated for the entire fleet and individual buses (Section 3.3). Finally, the module outputs
including driving cycles and statistical features can be plotted in different formats, and they are saved
into the database.

3.2. Extraction of Driving Cycles

A single driving cycle is defined by the velocity vs. time and road slope vs. travelled distance
profiles between two consecutive end stations, including depot (see Figure 1). The corresponding time
profiles of cumulative fuel consumption are also extracted.
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Figure 3. Flowchart of Data Post-Processing Module (DPPM).

The driving cycle segmentation process resulted in a total of 122,727 extracted driving cycles.
An example of recorded driving cycle is shown in Figure 4. Note that the vehicle velocity is directly
measured, while the road grade is reconstructed from the rate of change of altitude when expressed
with respect to the travelled distance. In order to reduce the noise in the reconstructed road slope
profile, the altitude signal is pre-filtered by a low-pass double-sided Butterworth filter [16].

 
Figure 4. Sample of reconstructed driving cycle for city bus route Hotel Palace–Pile and afternoon
hours: velocity vs. time profile (a) and road slope vs. distance travelled given along altitude source
profile (b).

3.3. Calculation of Vehicle Fleet Statistics

A rich set of statistically significant driving features is calculated for the purpose of
actual/conventional city-bus transport system characterisation and in support of transport electrification
(e.g., locating charging stations, Section 5). The features related to individual buses, all given
per-day-basis, include: the total fuel consumption and distance travelled; average fuel consumption in
L/100 km; the total time the bus is dwelling at depot, individual end stations or any other locations
(typically bus stops); total driving time; mean velocity; number of bus stops per kilometre; number of
bus visits to depot and end stations. The results are stored in a two-dimensional (2D) matrix (one per
bus), whose rows and columns represent individual days and the statistical features, respectively.

Once the individual statistics are stored, they are further used to calculate the same features for
the entire fleet on the basis of individual day, week, month or year. The results can be presented in
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different ways, e.g., instead of individual dwelling times, one can get the information about percentage
share of time the buses or entire fleet are resting at depot, end stations and other locations (see Figure 5).
Specific fleet features requiring denser sampling (30 min, herein) are also calculated. An example of the
daily average fleet velocity profile is shown in Figure 6. Other features related to entire fleet include:
average number of buses being parked at depot on 24-hour time basis (Figure 6), clusters of buses
parking durations in relation to geographical coordinates, count of transitions between individual end
stations/depot, etc.

Figure 5. Percentage time share of buses being operated and parked in depot, end stations and
other locations.

Figure 6. Time profiles of fleet average velocity and average number of buses resting at the depot,
both given on daily basis and averaged over the considered five-month period.

Figure 6 indicates that the average bus velocity when operating is around 30 km/h and it is higher
in early morning and night hours, as well as over weekends. The low-velocity gap between 2 a.m. and
5 a.m. corresponds to the interval when most of the buses are parked in the depot. The buses rarely
visit the depot in other time intervals, particularly over the work days (when the average number of
buses is lower than 1).

Figure 5 confirms that the share of total time of buses being parked in the depot is relatively small
(approx. 30%) and comparable to the share of end-station parking time (approx. 25%). The rest of the
time the buses spend in driving (40%), while only for a small portion of time (approx. 5%), they rest
elsewhere, typically at bus stops.

Figure 7a indicates that there are significant differences in bus resting time at different end
stations. The average resting durations for most pronounced end stations are between 10 and 20 min,
thus making them good candidates for installation of fast chargers. When selecting the best candidates,
a charging station utilisation factor should also be considered (Figure 7b). The final end stations targeted
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for electrification are then obtained by taking the cross-section of these two criteria (end stations
underlined in red in Figure 7).

 

Figure 7. Boxplots of time duration of buses being parked at different end stations (a) and end stations
charging utilisation (b).

4. E-Bus Simulation Module (EBSM)

4.1. General Description

As illustrated in flowchart in Figure 8, the EBSM simulates different types of city buses (CONV, HEV,
PHEV and BEV) over the recorded driving cycles extracted by the DPPM (Section 3). The simulation
first involves loading of vehicle-related parameters from the database, which need to be previously
defined in the DMM. Next, the vehicle is simulated over the selected driving cycles by using the
numerically-efficient backward-looking model (Section 4.2). Note that the vehicle model includes a
control strategy that manages the gear ratio in the CONV and BEV cases, and the internal combustion
engine (ICE) torque in the HEV and PHEV cases (Section 4.3). The emphasis has been on transforming
the previously developed control strategy [17,18] to a form of off-line optimised maps, instead of using
an on-line optimisation algorithm. The EBSM outputs time responses of key powertrain variables,
such as cumulative fuel and electricity consumption, CO2 emissions and transmission gear ratio.

 

Figure 8. Flowchart of E-Bus Simulation Module (EBSM).
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4.2. Vehicle Modelling

4.2.1. Considered City Buses

The MAN Lion’s City buses with the length of 12 m and the capacity of up to 126 passengers are
represented in virtual simulation by the Volvo 7900 bus model. The Volvo 7900 platform was chosen
because it includes all three e-bus variants considered (HEV, PHEV and BEV; Table 2).

Table 2. Basic parameters of modelled 12 m city buses [19].

Parameter CONV HEV PHEV BEV

Model label Volvo 7900
(Diesel) Volvo 7900 Hybrid Volvo 7900 Electric Hybrid Volvo 7900 Electric

Maximum ICE power 228 kW 161 kW 173 kW N/A

Maximum e-motor power N/A 120 kW 150 kW 160 kW

Battery capacity N/A 4.8 kWh 19 kWh 76 kWh

Transmission model (type) ZF 6AP 400B
(AT)

Volvo AT2412 I-Shift
(AMT)

Volvo 2-speed
(AMT)

Number of gears 6 12 2

Maximum fast charging
power N/A N/A 150 kW 300 kW

Volvo e-buses use lithium iron phosphate (LFP) battery due to its high specific power required for
propulsion and fast charging. The battery packs of Volvo 7900 HEV, PHEV and BEV bus variants have
energy capacities of 4.8 kWh, 19 kWh and 76 kWh, respectively (Table 2).

4.2.2. Modelling

In the backward-looking models, the powertrain variables are calculated in the direction from
the wheels towards the engine and/or e-motor, starting from the wheel speed and torque being
defined by the driving cycles [20]. In order to boost the computational efficiency, the powertrain
dynamics is neglected, except for the battery state-of-charge (SoC) dynamics that are represented by a
first-order model.

The considered parallel configuration of a HEV/PHEV-type bus is illustrated in Figure 9a [17].
The battery is represented by the equivalent battery circuit model shown in Figure 9b, which is
described by the following state equation [20,21]:

S
.
oC(t) = − Ibatt(t)

Qmax
=

√
U2

oc(SoC) − 4R(SoC)Pbatt(t) −Uoc(SoC)

2QmaxR(SoC)
, (1)

where Uoc is the open-circuit voltage, R is the internal resistance, Ibatt is the battery current, Qmax is
the maximal battery charge capacity and the SoC is defined as SoC = Q/Qmax, with Q denoting the
actual charge.

Figure 9. Functional scheme of considered parallel HEV/PHEV powertrain (a) and battery equivalent
circuit model (b).
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The model input Pbatt represents the battery output power defined as:

Pbatt = η
k
MG·τMG·ωMG , (2)

where τMG and ωMG are the motor/generator (M/G) torque and speed, respectively, ηMG is the M/G
machine efficiency (represented by ηMG(ωMG,τMG) map; see Figure 10c and [17]) and the coefficient k is
equal to 1 or −1 depending on whether the M/G machine operates as a generator or motor, respectively.
The M/G machine speed and torque are given by the following kinematic equations:

ωMG = iohωw = ioh
vv

rw
, (3)

τMG =

τw
ηtr(τw)

+
P0(ωw)
ωw

ioh
− τe , (4)

where vv is the vehicle velocity, rw is the tire effective radius, h and i0 are the transmission and final
drive ratios, respectively, τw and ww are the total wheels torque and speed, respectively, ηtr(τw) and
P0(ωw) are drivetrain efficiency and idle power loss maps [17] and τe is the engine torque considered as
a control variable (in addition to h). The wheel torque is determined according to vehicle longitudinal
dynamics equation covering the vehicle acceleration torque and aerodynamic, road grade and rolling
resistances [20].

 
Figure 10. Simulation results for PHEV bus over the driving cycle given in Figure 4 repeated 15 times,
including: cumulative fuel consumption time response (a), battery SoC vs. distance travelled (b),
M/G machine operating points (c), and engine operating points (d).

The fuel consumption at the driving cycle end time tf is determined as:

V f =
1
ρ f uel

∫ t f

0

.
m f dt =

1
ρ f uel

∫ t f

0

(
Aek(τe,ωe)

τeωe

3.6·106

)
dt , (5)

where Aek is the engine specific fuel consumption given by the map shown in Figure 11, ρfuel is the
diesel fuel density (ρfuel = 845 g/L) and ωe equals ωMG or 0 when the engine is switched on or off,
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respectively. Note that the integral Equation (5) is realised by using the Euler integration method with
the common sample time of the backward model equal to 1 s.

Figure 11. Engine specific fuel consumption map including illustration of ECMS-based operating
point search.

In the case of a conventional (CONV) bus, the battery and M/G machine are omitted from the
functional scheme in Figure 9, while the AMT is replaced by a torque converter AT. The torque converter
is represented by a backward-looking map ωι (ωt,τt) derived offline from the well-known static torque
converter model (see [22] and references therein) and the map τ i = τ t / Rτ (ω t/ω i), where the subscripts
i and t denote impeller/engine and turbine/transmission input variables, and Rτ (.) is the static model
torque ratio map. For the BEV-type bus, the engine is omitted and a two-speed AMT is used.

Vehicle auxiliary devices (HVAC system, servo steering, air compressor, engine cooling fan and
alternator) are modelled based on the nominal power of each device and a binary power-modulating
signal, whose duty cycle is made dependent on the driving and atmospheric conditions (urban driving
conditions and ambient temperature dependence are assumed) [23].

4.3. Control Strategy

In the BEV case, the aim of control strategy is to find an optimal gear ratio h* in each sampling
instant, which minimises the battery discharging power and maximises the battery recharging/
regenerative power:

h∗ = argmin
h

{
ηk

battPbatt(Pd,ωw, h), for Pbatt < 0 (charging)
ηk

battPbatt(Pd,ωw, h), for Pbatt ≥ 0 (discharging)
, (6)

where ηbatt is the battery efficiency and Pd is the transmission input power demand calculated from vv

and τw as shown in Figure 12. The optimal gear ratio h* is calculated offline and mapped as h* (Pd, ωw).
The SoC dependence of Pbatt has a minor effect on h* and is neglected in Equation (6), and further on.

Similarly, in the CONV case, the control strategy finds an optimal gear ratio h* that minimises the
fuel mass flow ṁf:

h∗ = argmin
h

.
m f (Pd,ωw, h) . (7)

The off-line obtained optimal solutions are mapped as h*(Pd, ωw).
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Figure 12. Block diagram map-based RB+ECMS control strategy.

The HEV and PHEV control strategy determines the transmission gear ratio h and the
engine torque τe based on combining a rule-based (RB) controller and an equivalent consumption
minimisation strategy (ECMS) [17,24]. The original RB+ECMS strategy is modified here to allow for
computationally-efficient map-based realization, which is shown in Figure 12. A proportional-like
battery SoC controller commands the battery recharging power—Pbatt, which is added to the
transmission input power demand Pd to obtain the engine power demand P*

e. The demanded
engine power P*

e is compared with engine on and off thresholds Pon and Poff < Pon, respectively, in order
to determine the engine on/off state ENst. The engine is exceptionally kept switched on in the case P*

e

< Poff when the speed-dependent M/G machine power limit is not high enough to satisfy the driver
power demand Pd in the fully electric driving mode. If the engine is switched on, the signal P*

e is fed
to the ECMS to find the optimal values of h and τe. Otherwise, the electric driving mode is activated
and the gear ratio is determined according to Equation (6).

In the original RB+ECMS strategy [17], the equivalent fuel consumption ṁeq(Pe, Pd, ωw, h, SoC) is
minimised instantaneously and on-line with respect to both control variables h and τe. In the simplified
map-based RB+ECMS version considered here, the equivalent fuel consumption is minimised in two
stages. In the first stage, the ECMS is applied to discrete operating points along the constant power
curve P*

e (denoted in Figure 11 by blue circles) to determine the optimal gear ratio:

h∗ = argmin
h

.
meq(P∗e, Pd,ωw, h) , (8)

where ṁeq is the equivalent fuel consumption rate containing the actual fuel consumption rate ṁf and a
battery power-equivalent fuel rate (see [17,24] for details). The off-line obtained optimal solutions are
stored in a three-dimensional (3D) map h*(P*

e, Pd, ωw) representing the RB+1D-ECMS control map.
In the second stage, the ECMS is applied along the engine torque axis (see green arrows in Figure 11):

τ∗e,2D = argmin
τe

.
meq(Pd,ωe, τe) . (9)

The off-line optimisation results are stored in a 2D map τ*
e,2D(Pd, ωe) representing the 2D-ECMS

control map. Finally, the engine torque obtained by the RB+1D-ECMS (as τ*
e,RB = P*

e/(h*ioωw))
and the one obtained by the 2D-ECMS are combined/blended on-line using the SoC control error
(eSoC)-dependent weighting factor W(eSoC) [17,24]:

τ∗e = τ∗e,RBW(eSoC) + τ
∗
e,2D(1−W(eSoC)) , (10)
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where W(.) is an SoC control error-dependent weighting function illustrated in Figure 12. For small
SoC control errors, the 2D-ECMS is dominant, while for large SoC control errors, the RB+1D-ECMS is
preferred to satisfy the engine power demand P*

e (and, thus, the battery power demand P*
batt).

Finally, gear shift delay logic is implemented to prevent frequent gear switching [17]. The goal is
to prevent gear shift occurrence in kth time step, i.e., rather use the gear ratio from the previous (k−1)th

step, hk−1, if the time elapsed since the last gear shift tsh is lower than an arbitrarily set shift delay
threshold tth and if hk−1 gives feasible set uk of engine and M/G machine operating points in the kth

step (denoted by Π):

h∗k =
⎧⎪⎪⎨⎪⎪⎩

h∗k−1, for tsh < tth and uk
(
P∗e, Pd,k,ωw,k, h∗k−1

)
∈ Π

h∗
(
P∗e,k, Pd,k,ωw,k

)
, otherwise

(11)

The same gear shifting delay logic is applied in the CONV and BEV cases. The shift delay
threshold is set here to tth = 2 s.

The above described simplified, map-based control strategy has been found to result in a negligible
model response deviation when compared to the use of original strategy, which was proven to be close
to the dynamic programming-based global optimum [17]. On the other hand, the execution time is
reduced by around 200 times. The achieved execution time, expressed as the amount of microseconds
needed to simulate one second of real time (for a workstation having 16 GB RAM and Intel® Xeon®

Processor E5-1620 v3 @ 3.50GHz) falls in the range from 50 to 87 μs/s depending on vehicle type.
This results in approximate yearly 10-bus fleet simulation time ranging from approximately 4.5 h to
7.5 h, which is deemed acceptable for such a large-scale fleet simulation. Note that the execution time
could further be reduced by using parallel computing.

The PHEV can operate in two characteristic modes [20]: (i) charge depleting (CD) followed by
charge sustaining (CS), where the former involves the engine only when absolutely needed and the
latter correspond to hybrid operation at the target SoC of 30%; (ii) blended mode where engine is
regularly used all over the driving cycle for additional energy savings. For the sake of simplicity,
the CD/CS mode is considered in this paper.

4.4. Simulation Results

The results related to relative fuel and/or electricity consumptions for different city bus types are
given in Table 3 for the full recording period. The relative difference between the simulated (Sim)
and recorded (Rec) fuel consumptions for the CONV bus is equal to only 1.4%. Therefore, the CONV
simulation model used as a basis for e-bus modelling can be considered accurate. Note that although
the real and simulated buses are different (MAN Lion City and Volvo 7900), the validation is considered
fair, as the two buses are rather comparable in terms of size, mass, engine power, number of passengers
and other similar factors.

The simulated electricity consumptions of PHEV- and BEV-type buses are close to recorded ones
documented in the ZeEUS project report [25] for Volvo 7900 bus series (Table 3). In the PHEV case,
the simulated fuel consumption is by 30% higher than the ZeEUS recorded one, but this discrepancy is
compensated for by 26% higher recorded electricity consumption when compared to the simulated
one. In the BEV case, the relative difference in electricity consumption equals 6%. The simulated
HEV fuel consumption is reduced by 50% when compared to CONV simulation results, while the
manufacturer states the fuel consumption reduction from 39% to 45% reported by operators [19].
The observed, relatively modest discrepancies in fuel/electricity consumption may be related to
difference in considered bus weights (passenger weight is fixed to 1250 kg), road slope and traffic
congestion conditions, as well as regenerative braking capacity (set to the maximum amount of 100%
in simulation).
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Table 3. Recorded and simulated relative fuel and electricity consumptions for different bus types and
full recording period.

CONV HEV PHEV BEV

Rec * Sim Est ** Sim Rec * Sim Rec * Sim

Fuel consumption, (L/100 km) 42.9 43.5 24.8 21.6 10.2 13.3 N/A

Electricity consumption,
(kWh/100 km) N/A N/A 53 42.4 83 77.9

* Recorded PHEV and BEV fuel and electricity consumptions are taken from the ZeEUS project report [25]. **
Estimated based on information on fuel consumption reduction from 39% to 45% for Volvo 7900 Hybrid vs. Volvo
7900 according to [19].

Figure 10 shows the PHEV-case simulation results for the recorded driving cycle shown in Figure 4
repeated 15 times and the initial battery SoC equal to 90%. When the CD mode is active, the engine
is used only when needed and the cumulative fuel consumption is often constant (a stepwise-like
response, Figure 10a). After entering the CS mode, the engine is more active to sustain the battery
SoC (Figure 10b). The control strategy deploys the operating points of engine (when switched on) and
M/G machine in the high efficiency areas of corresponding maps (Figure 10c–d), thus minimising the
energy consumption.

5. Charging Optimisation Module (COM)

5.1. General Description

A generic framework for virtual simulation of an e-bus fleet over the recorded driving cycles
is represented by the flowchart shown in Figure 13. The model of city bus of any type (Section 4)
is initialised based on the data stored in DMM and virtually run over the recorded driving cycles
for the specified period of time, thus resulting in fuel and/or electricity consumption output data.
In the case of a PHEV- or BEV-type bus the user needs to specify locations and types of charging
stations, the nominal vehicle battery capacity and grid power constraints to execute the simulation.
The simulation is repeatedly run for a peak day or peak week for different charging infrastructure
and battery capacity specifications, in order to find a nearly-optimal configuration, which would
be finally re-run for a given, longer period of time to calculate the fuel/electricity consumption and
charging station utilisation statistics. In the case of BEV-type bus, the COM automatically adds
reserve bus(es) if needed, and calculate their final number and related statistics. The bus intervening
algorithm monitors each BEV’s battery SoC, and when it drops below a predefined minimum value
(0.3, herein), the immediate replacement with reserve e-bus is conducted. At the same time, it is taken
into account that the depleted bus needs some constant time to reach the nearest charging station,
where it is to be charged (as any other bus), and once it is fully charged, it will be waiting for the next
replacement/intervention.

5.2. Charging Management Algorithm

Charging management is described by the flowchart shown in Figure 14. First, it is checked if a
PHEV- or BEV-type bus has arrived to an end station/depot and if that station has a charger installed.
If the charger is not occupied or if the bus has a lower battery SoC of any of the buses already being
charged, the bus is put on charge; otherwise, it remains in the charging queue. Note that each station
can be set to have an arbitrary number of chargers, as described with Figure 13.
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Figure 13. Flowchart of Charging Optimisation Module (COM) with embedded EBSM functionality.

 

Figure 14. Flowchart of rule-based charging management algorithm (applied to PHEV- and BEV-type
buses).

The charging process is managed by taking into account the requirements on satisfying the
departure schedule, minimising battery power loss and respecting the grid power constraints.
According to [26,27], the battery energy loss is minimised by demanding a linear change of SoC
all over the remaining charging interval ΔTch = t f − tk. Therefore, the SoC rate is updated in each
sampling instant k according to:

dSoC
dt

=
SoC f − SoCk

t f − tk
, (12)

where SoCk is the current SoC and SoCf is the target SoC at departure. Inserting Equation (12) into the
battery state Equation (1) yields the charging power Pbatt < 0 to be applied in the kth sampling instant:

Pbatt =
U2

OC(SoCk) −
[
2QmaxRint(SoCk)

SoC f−SoCk
t f−tk

+ UOC(SoCk)
]2

4Rint(SoCk)
. (13)

If the charging power−Pbatt calculated from Equation (13) is greater/less than the maximum/minimum
allowable power (defined by the charger selected), the charging power is limited to the maximum/minimum
power, respectively. Note that ΔTch = t f − tk is saturated in Equation (13) to its lower limit of 30 s to avoid
division by zero.
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Once the charging power profile is obtained for each sampling step k and for ith vehicle from the
total number of Nv vehicles connected to chargers at the same grid sections (e.g., depot), it is checked if
the total charging power is greater than the maximum grid power Pgrid,max. If this applies, the charging
power is scaled down to satisfy the grid power constraint:

Pbatt,k,i,corr =
Pgrid, max∑Nv
i=1 Pbatt,k,i

Pbatt,k,i, if
Nv∑
i=1

Pbatt,k,i > Pgrid, max . (14)

5.3. Obtaining of Near-Optimal Charging System Configurations

According to the city bus transport characterisation results from Figure 7, there is a number of
end stations with relatively long bus resting durations and potentially high utilization of charger
units. Additionally, the end station resting time share approaches that of depot (Figure 5), and there
are no other emphasised stop locations. Therefore, fast charging stations and belonging transformer
substations can be installed at end stations to provide bus recharging, while otherwise the available
power can be utilised to supply city e-mobility hubs built around the end stations. High-power
off-board chargers with built-in pantograph are considered (150 or 300 kW, see Table 2) [19]. In addition,
the slow-to-modestly fast plug-in charging solutions can be considered for a depot, where the charging
time can be long in night (Figure 6).

5.3.1. PHEV Fleet Case

Figure 15 shows the PHEV fleet simulation results for different number of end stations equipped
with a single fast charger per station (150 kW) and a five work day period. Charging in depot was
not considered because the small-capacity PHEV battery (Table 2) can quickly be recharged at the
end stations, where the buses rest for a relatively long time (Figures 6 and 7). The results shown in
Figure 15 point out that the fuel consumption saving converges to −41% as the number of end station
charging spots approaches six. Of course, as the fuel consumption reduces, the electricity consumption
grows, but the overall energy cost is reduced by 17% due to cheaper electricity. By conducting PHEV
fleet simulations over the five-month period, it has been found that the optimal number of charging
stations should be incremented to seven.

 

Figure 15. Pareto frontier-like plot showing PHEV bus fleet electricity vs. fuel consumption costs for
different number of end stations equipped with a fast charger per station.

5.3.2. Case of BEV Fleet

The BEV fleet simulation results are shown in Table 4. The full five-month period is considered to
cover a larger number of “critical” days when reserve buses may be needed. Only scenarios with the
number of end-station charging spots being in the vicinity of the optimal one found for the PHEV fleet
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is examined (around six stations plus depot, each considering a single fast charger). The maximum
charging power is set to the levels of 150 kW or 300 kW. Finally, various battery capacities are considered
(76, 150 and 250 kWh, as the capacities available for the considered bus [19]).

Table 4. BEV fleet simulation results for different number of charging spots (located at end stations and
depot) and reserve buses, and different battery capacities (full five-month period).

Case
Battery

Capacity

Charging Power
(Number of

Charging Stations)

Percentage of Total
Electricity

Consumed by
Reserve Buses

Number of
Reserve Buses

Required

Number of Bus
Swaps Required
(Number of Days
when Swapping

Occurs Out of 152)

BEV 1 76 kWh 300 kW (6) 9.2% 2 558 (106)

BEV 2 76 kWh 300 kW (7) 1.8% 2 94 (54)

BEV 3 76 kWh 300 kW (8) 1.7% 2 90 (52)

BEV 4 150 kWh 150 kW (8) 0.6% 2 4 (3)

BEV 5 250 kWh 150 kW (7) 0.00% 0 0 (0)

The results shown in Table 4 point out that by increasing the number of charging stations,
the percentage of total electricity consumed by reserve buses drops from 9.2% (case BEV 1) to 1.8%
(case BEV 2). Likewise, the number of bus swaps (concerning reserve bus) drops from 558 in 106
(out of 152) days (BEV 1) to 94 in 54 days (BEV 2). Figure 16 indicates that in the case BEV 2 notable
bus swaps occurs only in several days, which are characterised by peak traffic load (typically due to
specific needs such as moving tourists from cruising ships to the old city). Similar trends apply to the
case of increasing the battery capacity from 76 kWh to 150 kWh and further to 250 kWh (cases BEV 4
and BEV 5, respectively), where the reserve buses are marginally needed in the former case, and not
needed in the latter case.

 
Figure 16. Number of daily bus swaps with reserve buses for BEV 2 case.

Based on the above results, the case BEV 5 might be considered as optimal. However,
since increasing of the battery capacity of each bus in a fleet is rather expensive and the need
for reserve buses in case BEV 2 is minor (only 1.8%), the case BEV 2 has been adopted as an optimal for
final simulations discussed in Section 5.4.

5.4. Comparative Energy Consumption Results

Table 5 gives the energy consumption simulation results for the PHEV and BEV fleets configured
in the previous two sections, as well as HEV and CONV fleets, all simulated over the full recording
period. The HEV fleet can reduce the fuel consumption by around 50% compared to CONV fleet,
owing to regenerative braking, switching the engine off in low speed conditions and placing the engine
operating points in the high-efficiency region (Section 4; see also Table 3). Using the PHEV buses
provides additional fuel savings, i.e., the fuel consumption reduction compared to CONV case is
around 70%. This is due to the use of electricity coming from grid by means of fast charging at end
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stations. The PHEV fleet electricity consumption equals almost 50% of what is consumed by BEV fleet,
which is owing to a relatively low portion of operation in the CS mode (25.5%).

Table 5. Fuel and electricity consumption per fleet type for full five-month period.

Fleet Type (Total of 10 Buses)

CONV HEV PHEV BEV

Fuel
Consumption, L 145,295 (* Ref)

73,625
(−49.3%)

45,120
(−68.9%) N/A

Electricity
Consumption, kWh N/A N/A 145,054 (−45.9%) 268,035 (* Ref)

* Ref stands for referent case, and values in brackets represent relative differences with respect to referent case.

The COM also calculates the well-to-wheel CO2 emissions taking into account the data on CO2

emissions of power plants, as used in [28] for the cases considering coal, natural gas and renewable
energy production. The HEV vs. CONV fleet CO2 emissions reduction is around 50%, while in the
cases of PHEV and BEV fleets, the reduction is from 30% to 65% and from 30% to 93%, respectively,
where the lower and higher margins correspond to coal and renewable energy production scenarios.

6. Techno-Economic Analysis Module (TEAM)

6.1. General Description and TCO Model

According to Figure 2, the TEAM uses the simulation data outputted by the COM, as well as
the fleet loan payment, insurance, registration, maintenance and similar costs provided by DMM,
in order to calculate the fleet TCO (Figure 17). The TCO corresponds to what is in financial terminology
called Net Present Value (NPV) of an investment, which is an index that valorises the investment
while considering the time value of money. Rates at which the money value decreases or increases
over time are in this case modelled by the inflation and discount rates, respectively (where the latter
corresponds to the profit that today’s money can generate in the future through investments or bank
savings). Calculation of future value of money is called compounding, while the opposite approach,
in which the NPV of future money is calculated, is referred as discounting. The TCO is calculated
by discounting all future expenses, which the investment is expected to generate, to the present time,
as shown in Figure 17.

The TCO model components (Figure 17) are divided into three groups depending on the time
basis on which the input expenses data are sampled [29], and the corresponding individual costs are
given in Table 6 (with no VAT included). The bus service life is considered to be 12 years, the inflation
rate 3% and the discount rate 7%. The annually sampled data include registration, maintenance
and insurance (RMI) cost, which have been determined for the CONV fleet based on the (past) data
provided by the city bus transport operator, and discounted to prices in 2019 according to inflation
data [30]. The RMI cost for the HEV, PHEV and BEV fleets are assumed to be 15%, 20% and 40% lower,
respectively, when compared to the CONV fleet, because of the significantly reduced CO2 emissions
and simplified maintenance of e-buses [31–33].

The monthly expenses relate to loan payment for purchase of new vehicles and charging
infrastructure, including the cost of replacing the e-bus batteries. A general-purpose bank loan is
assumed, which is taken over a period of seven years, with a continuous interest rate of 5% and equal
monthly annuities. The daily sampled data relate to operating cost, i.e., the fuel and electricity expenses,
which are calculated by multiplying fuel and/or electricity consumptions obtained by COM simulations
with fuel and/or electricity prices. As in the case of the annually sampled data, the operational cost is
adjusted for inflation. Irregular maintenance cost is modelled by a fixed rate occurring every two years.
The TEAM also provides the possibility of sensitivity analysis, which allows for the investigation of
to what extent variations of a particular parameter affect the TCO. This helps to determine the TCO
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model reliability, e.g., parameters that cause higher TCO sensitivity should be more reliably estimated.
The sensitivity analysis is not considered in this paper.

 

Figure 17. Flowchart of Techno-Economic Analysis Module (TEAM).

Table 6. Input parameters used for TCO calculation for different bus types (no VAT is included).

Purchase Cost 1 of Single Bus (Off-Board Charger)

Conventional (CONV) 240,000 EUR

Hybrid Electric (HEV) 400,000 EUR

Plug-In Hybrid Electric (PHEV) 420,000 EUR

Battery Electric (BEV) 495,000 EUR

Infrastructural Cost 2

Fast charging station (150 kW; PHEV case) 45,000 EUR (TS) + 80,000 EUR (CS) = 125,000 EUR

Fast charging station (300 kW; BEV case) 45,000 EUR (TS) + 120,000 EUR (CS) = 165,000 EUR

Battery Replacement Cost 3

Hybrid Electric (HEV), 4.8 kWh 15,000 EUR

Plug-In Hybrid Electric (PHEV), 19 kWh 25,000 EUR

Battery Electric (BEV), 76 kWh 80,000 EUR

Other Parameters

Bus service life 12 years

Loan period (buses + charging stations) 7 years

Battery lifetime 6 years

Fuel price (mean) 1.0243 EUR/L

Electricity prices (mean)4 High tariff (HT): 0.1215 EUR/kWhLow tariff (LT): 0.1084 EUR/kWh

Inflation / Discount / Loan rates 3% 7% 5%
1 Includes incentives (1000 EUR for HEV, 2500 EUR for PHEV and 5000 EUR for BEV) estimated based on [34].
2 Costs for transformer substation (TS) and charging station (CS) are estimated based on the data provided by local
electric utility company and [35], respectively. 3 The battery replacement costs are estimated based on [35] and the
replacement is assumed to occur every 6 years because the average bus battery life is 5−12 years [36]. 4 Winter time:
7 a.m. to 9 p.m. (HT), 9 p.m. to 7 a.m. (LT); Daylight saving time: 8 a.m. to 10 p.m. (HT), 10 p.m. to 8 a.m. (LT).
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6.2. Simulation Results

The TCO results are given in Figure 18 for different types of city bus fleets and charging
configurations selected in Section 5. Different charging scenarios are considered, starting from
optimistic Scenario 1 to conservative Scenario 6. In the basic case (Scenario 1), all the e-bus fleets turn
out to be competitive with the CONV fleet, which is explained by the influence of high share of fuel
cost (see Figure 19) for the particular case of relatively large fleet utilisation (250 km/bus/day in average;
see also Figure 5). For the same reason, the e-bus fleets have relatively comparable TCO values. Similar
results are obtained if the fuel and electricity prices are randomly sampled (Scenario 2), rather than
being constant as given in Table 6. Scenario 3 accounts for the need to use reserve buses in the case of
BEV fleet, as found by COM simulations (Section 5). Since in the considered case, BEV 2, the use of two
reserve buses results in a marginal increase of electricity consumption (Table 4) and a low number of
bus swaps, the use of second reserve bus is very marginal, and is thus excluded from the TCO analysis.
Due to the cost of reserve bus, the BEV fleet TCO increases above that of PHEV fleet, but it is still
competitive to CONV fleet. When accounting for the e-buses’ battery replacement cost (Scenario 4),
the TCO of BEV fleet, which has the largest and costliest battery, becomes around 10% higher than that
of CONV fleet. If the PHEV- and BEV-type bus electricity consumption is increased by the factor of
40% (Scenario 5) or 100% (Scenario 6) to account for modelling errors (e.g., those related to heating
system in winter), the PHEV fleet becomes marginally competitive or uncompetitive, respectively,
while the BEV vs. CONV fleet TCO excess tops 23%. This TCO excess in the ultimate BEV case may
be compensated for by larger incentives, higher ticket prices (which would reflect better passenger
experience), future increase in fuel prices, future decrease of battery prices and similar factors.

 

Figure 18. Comparative TCO values for different bus fleet types and electrification scenarios.

The comparative TCO time profiles for different types of bus fleet are shown in Figure 20 for
Scenario 4, which is deemed to be most realistic scenario involving the battery replacement and reserve
bus cost. The corresponding time profiles of individual TCO costs are shown in Figure 21. For the
PHEV, and particularly the BEV fleet, the TCO rapidly rises during the first 7 years due to loan expenses
related to the purchase of these expensive buses and corresponding charging infrastructure (Figure 20).
Once the loan is paid off, the energy cost becomes dominant, where the efficiency of e-buses and low
cost of electricity become beneficial and bring significant savings, as opposed to the CONV case, where
the fuel expenses dominate (Figure 21).
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Figure 19. Cost shares for different type of bus fleets and Scenario 4 from Figure 18.

Figure 20. TCO time profile for different bus fleet types and Scenario 4 from Figure 18.

Figure 21. Time profiles of individual TCO costs for different type of bus fleets and Scenario 4 from
Figure 18.

Figure 19 shows the percentage shares of individual costs for different types of bus fleets. As the
electrification evolves from HEV, via PHEV to BEV buses, the energy (fuel and electricity) cost share
monotonically and significantly reduces, but the bus and charging infrastructure cost share increases
with similar trends. The PHEV and particularly BEV fleets have lower RMI cost, but this saving is not
large enough to compensate for the battery replacement cost.
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7. Conclusions

A unique city bus transport electrification tool has been presented, which relies on virtual
simulation of conventional and e-bus fleets over recorded driving cycles, including charging
management. The tool allows for arbitrary setting of charging station locations, number and parameters
of chargers per each station, grid constraints, e-bus battery capacity and similar factors. A special
emphasis was on providing a computationally efficient, multiple-maps-based backward looking e-bus
model including the vehicle control strategy and heuristic charging management algorithm. In support
of electrification planning and decision making, the tool finally provides the total cost of ownership
(TCO) of city bus fleets with conventional (CONV) buses and different types of e-buses (HEV, PHEV and
BEV). It has been demonstrated through a pilot study related to city bus transport in Dubrovnik, based
on which the following main conclusions are drawn.

(1) The considered city bus transport system is such that the city buses are resting in the depot during
a relatively short period over the night (typically 3 h), while they are dwelling at end stations
for rather significant time (from 10 to 20 min per stay). Therefore, fast charging at end stations
(and also in depot for BEV-type buses) relying on stationary chargers equipped with pantograph
has been found to be a favourable solution.

(2) The use of a specific, map-based structure of the e-bus model allowed for simulating the bus
fleets 20,000 times faster than real time, thus, reducing the full-year 10-bus fleet simulation to a
couple of hours on a standard computer workstation.

(3) The comparative virtual simulation results have shown that the use of HEV- and PHEV-type city
buses results in reduction of fuel consumption of up to 50% and 70%, respectively, when compared
to CONV buses, while BEV buses do not consume fuel at all. The charging system optimisation
has shown that the optimal number of end stations equipped with fast chargers is seven (out of
10), where a single reserve bus is marginally needed in the BEV case. The BEV battery capacity can
be relatively small (76 kWh) due to the effective opportunity charging and relatively short routes.

(4) The TCO analysis has pointed out that the BEV fleet cannot be competitive to CONV fleet
(8.6% higher TCO for BEV vs. CONV), while the HEV fleet is competitive (12.8% lower TCO vs.
CONV) and the PHEV fleet is marginally competitive (3.8% lower TCO vs. CONV) in a realistic
scenario involving the battery replacement and single reserve bus in the BEV case (Scenario 4).
Although the HEV fleet is competitive to the CONV fleet and can reduce the fuel consumption
and emissions by up to 50%, it still shares the basic disadvantages of CONV fleet (noisy, no e-drive
option in low emission zones, significant emissions).

The future work could be directed to the following tool improvements: (i) optimisation of charging
system configuration (e.g., by using genetic algorithm) instead of using the expert knowledge when
repeating the virtual simulations for different configurations; (ii) using parallel computing to further
increase the numerical efficiency of virtual simulations, particularly when optimisation loop is added;
(iii) off-line route rescheduling to avoid or mitigate the use of reserve buses in the BEV case or to
redirect the e-buses to designated location for daily recharging; (iv) performing city bus transport
electrification analyses using limited set of standard GPS/GPRS tracking data while relying more on
the bus schedules; (v) considering other economic models when conducting techno-economic analyses
to determine the TCO.
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AMT
Automated Manual
Transmission

ECMS Equivalent Consumption Minimisation Strategy

AT Automatic Transmission EV Electric Vehicle
BEV Battery Electric Vehicle GPRS General Packet Radio Service
CAN Controller Area Network GPS Global Positioning System
COM Charging Optimisation Module M/G Motor/Generator
CONV Conventional (Diesel) Vehicle PHEV Plug-In Hybrid Electric Vehicle
CS Charge Sustaining (mode) RB Rule-Based (controller)
CD Charge Depleting (mode) RMI Registration, Maintenance and Insurance
DMM Data Management Module SoC State of Charge
DPPM Data Post-Processing Module TCO Total Cost of Ownership
EBSM E-Bus Simulation Module TEAM Techno-Economic Analysis Module
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24. Škugor, B.; Deur, J.; Cipek, M.; Pavković, D. Design of a Power-split Hybrid Electric Vehicle Control System
Utilizing a Rule-based Controller and an Equivalent Consumption Minimization Strategy. Proc. Inst. Mech.
Eng. Part D J. Automob. Eng. 2014, 228, 631–648.

25. ZeEUS. Available online: https://zeeus.eu/publications (accessed on 14 May 2020).
26. Soldo, J.; Škugor, B.; Deur, J. Synthesis of Optimal Battery State-of-Charge Trajectory for Blended Regime of

Plug-in Hybrid Electric Vehicles in the Presence of Low-Emission Zones and Varying Road Grades. Energies
2019, 12, 4296. [CrossRef]

27. Škugor, B.; Soldo, J.; Deur, J. Analysis of Optimal Battery State-of-Charge Trajectory for Blended Regime of
Plug-in Hybrid Electric Vehicle. World Electr. Veh. J. 2019, 10, 75. [CrossRef]

28. Besselink, I.; Oorschot, P.F.; Meinders, E.; Nijmeijer, H. Design of an efficient, low weight battery electric
vehicle based on a VW Lupo 3L. In Proceedings of the 25th World Battery, Hybrid and Fuel Cell Electric
Vehicle Symposium & Exhibition, Shenzhen, China, 5–9 November 2010; pp. 32–41.

29. Al-Alawi, B.M.; Bradley, T.H. Total cost of ownership, payback, and consumer preference modeling of plug
in HEVs. Appl. Energy 2013, 103, 488–506. [CrossRef]

30. Inflation Calculator. Available online: https://fxtop.com/en/inflation-calculator.php (accessed on 14 May 2020).
31. Aber, J. Electric Bus Analysis for NYC Transit; Columbia University: New York, NY, USA, 2016.
32. Potkany, M.; Hlatka, M.; Debnar, M.; Hanzl, J. Comparison of the Lifecycle Cost Structure of Electric and

Diesel Buses. Int. J. Marit. Sci. Technol. 2018, 65, 270–275. [CrossRef]
33. Logtenberg, R.; Pawley, J.; Saxifrage, B. Comparing Fuel and Maintenance Costs of Electric and Gas Powered

Vehicles in Canada; 2◦ Institute: Sechelt, BC, Canada, 2018.
34. Elin, K. Charging Infrastructure for Electric City Buses. Master’s Thesis, KTH Royal Institute of Technology

in Stockholm, Stockholm, Sweden, June 2016.
35. Statista. Available online: https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs

(accessed on 14 May 2020).
36. Ranta, M.; Anttila, J.; Pihlatie, M.; Hentunen, A. Optimization of opportunity charged bus operation—A

case study. In Proceedings of the 32nd International Electric Vehicle Symposium & Exhibition (EVS32),
Lyon, France, 19–22 May 2019.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

79





energies

Article

Power Split Supercharging: A Mild Hybrid Approach
to Boost Fuel Economy †

Shima Nazari 1,*, Jason Siegel 2, Robert Middleton 2 and Anna Stefanopoulou 2

1 Department of Mechanical Engineering, Universiy of California Davis, Davis, CA 95616, USA
2 Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;

siegeljb@umich.edu (J.S.); rjmidd@umich.edu (R.M.); annastef@umich.edu (A.S.)
* Correspondence: snazari@ucdavis.edu; Tel.: +1-530-752-5801
† This paper is an extended version of our paper published in 2019 WCX World Congress Experience,

Detroit, MI, USA, 9–11 April 2019; No. 2019-01-1207.

Received: 17 November 2020; Accepted: 9 December 2020; Published: 14 December 2020

Abstract: This work investigates an innovative low-voltage (<60 V) hybrid device that enables
engine boosting and downsizing in addition to mild hybrid functionalities such as regenerative
braking, start-stop, and torque assist. A planetary gear set and a brake permit the power split
supercharger (PSS) to share a 9 kW motor between supercharging the engine and direct torque
supply to the crankshaft. In contrast, most e-boosting schemes use two separate motors for these two
functionalities. This single motor structure restricts the PSS operation to only one of the supercharging
or parallel hybrid modes; therefore, an optimized decision making strategy is necessary to select
both the device mode and its power split ratio. An adaptive equivalent consumption minimization
strategy (A-ECMS), which uses the battery state of charge (SoC) history to adjust the equivalence
factor, is developed for energy management of the PSS. The A-ECMS effectiveness is compared against
a dynamic programming (DP) solution with full drive cycle preview through hardware-in-the-loop
experiments on an engine dynamometer testbed. The experiments show that the PSS with A-ECMS
reduces vehicle fuel consumption by 18.4% over standard FTP75 cycle, compared to a baseline
turbocharged engine, while global optimal DP solution decreases the fuel consumption by 22.8%
compared to the baseline.

Keywords: energy management; hybrid electric vehicle; powertrain electrification; equivalent
consumption minimization; supercharging; hardware-in-the-loop experiments

1. Introduction

Hybrid electric vehicles (HEVs) are one of the promising solutions for reducing carbon emissions
in the transportation sector. During the past two decades, many different architectures for hybridized
powertrains have emerged [1]. Unfortunately, despite their relative technology maturity and
their proven effectiveness in reducing fuel consumption, the market penetration of HEVs is still
poor [2]. The main factor for low sales rates is the higher initial cost of these vehicles compared to
traditional vehicles with only internal combustion engines (ICEs). In contrast to expensive full HEVs,
which use high-voltage/-power electric machines and electronics, this work investigates an economical
low-voltage hybrid system, called a power split supercharger (PSS), as shown in Figure 1.

The PSS, configured with a 9 kW 48 V motor, can drive a supercharger to pressurize the intake air
of the engine or it can operate as a regular parallel hybrid system and supply/draw torque directly
to/from the crankshaft when the supercharger is locked and bypassed. The inadequate torque of
a small naturally aspirated (NA) ICE requires conventional mild hybrid systems to employ larger
NA or boosted ICEs for full performance. However, the PSS can provide sufficient boost to a small
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engine to provide good acceleration while taking advantage of engine downsizing and hybridization
to improve efficiency.

Motor

SC

Power Split Supercharger Battery

Engine

Gearbox
Brake

Bypass

Planetary Set

Figure 1. Powertrain schematic with a power split supercharger.

The planetary gear set and the electric motor speed control capability decouple the boost pressure
generated by the PSS from the crankshaft speed, resulting in a fast torque response and improved
vehicle drive-ability compared to traditional boosting devices, such as turbochargers or mechanical
superchargers. Flexible supercharging can also be achieved with an electric supercharger such as
the HyBoost system from Valeo [3]. However, powering the supercharger solely with electricity
necessitates a larger battery and motor, leading to a higher system cost. Figure 2a shows the required
supercharger mechanical power in a 1.6 L gasoline engine studied here, while Figure 2b shows the
corresponding motor power in the PSS system for different engine speeds and torques. While for the
range of operating points shown the supercharger power is as high as 15 kW, most of this power is
supplied by the engine crankshaft. In every operating condition either a small portion of the power
comes from the motor or the motor is slightly generating. This characteristic is especially useful for
scenarios such as hill climbing, shown in Figure 3, where the supercharger has to provide a continuous
boost pressure due to the high requested torque. For the simulated example shown in Figure 3, vehicle
cruising at 110 km/h with a road grade of 5◦ for 20 min, a small SUV with the PSS would slightly
charge a 2.5 kW.h battery, while a purely electric supercharger (eSC) would completely deplete the
battery, as demonstrated in Figure 3b. The modeled vehicle and engine are explained in further detail
in the following sections.

This electric power and energy accessibility problem has pushed vehicle manufacturers to use
electric superchargers in combination with a turbocharger, examples of which are Volvo T6 and
T8 engines [4]. In these powertrains, the turbocharger can be used during steady state, and the
supercharger can make the transients faster. The PSS system, however, can be used as a stand-alone
boosting device reducing the system cost in addition to enabling hybrid functionalities such as
regenerative braking and start-stop. This work develops an online energy management system for
an engine equipped with a PSS and experimentally verifies the fuel economy benefits of the device
when it replaces a conventional turbocharger.

While in traditional vehicles the driver’s entire requested torque is supplied by an ICE, HEVs need
an effective energy management system to determine the power split ratio between the engine and
the battery at each time instant. Energy management methods for HEVs are extensively investigated
in literature. These methods are often classified as optimization-based methods and rule-based
methods [5,6]. Rule-based approaches are usually a set of conditional statements based on simple
principles and heuristics; hence, they are easily implementable. As an example, thermostatic control,
which is developed for a series HEV [7], turns the engine on or off depending on the battery SoC.
Although some rules are derived from optimization results, these methods do not fully exploit the
powertrain flexibility and do not guarantee optimal performance. Furthermore, the generated rules
are not reusable for a different powertrain configuration or control objective.

82



Energies 2020, 13, 6580

1000 2000 3000 4000

50

100

150

200

250

0.10.1
0.5

0.5 1

1
1.5

1.5

2

2

3

3

4

4

5

5 6 7 8 9
11 12

(a) supercharger.

1000 2000 3000 4000

50

100

150

200

250

-1.2

-1

-0.7

-0.7

-0.4

-0
.4

-0.4

-0.1

-0.1

-0.1 -0.1

0.1

0.1

0.5

(b) motor.

Figure 2. (a) Supercharger mechanical power, (b) corresponding motor power in the power split
supercharger (PSS) system, both for a 1.6 L gasoline engine.
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Figure 3. (a) Vehicle climbing a 5◦ hill at 110 km/h , (b) a 2.5 kWh battery state of charge (SoC) variation
for the vehicle with PSS compared to the same vehicle with an electric supercharger (eSC).

Optimization-based approaches can more effectively identify optimum solutions at the price
of complexity as they minimize a cost function subject to the system physics and constraints.
Various performance metrics such as fuel consumption or emissions can be included in the
optimization cost function to achieve different performance goals. The optimization horizon can
vary from a single time step, as in equivalent consumption minimization strategy (ECMS) [8], to
multiple time steps, such as with model predictive control (MPC) [9], or over the entire drive
cycle, as in dynamic programming (DP) [10,11]. Note that only the methods that minimize fuel
consumption over the full drive cycle give the global optimum solution; however, these methods are
prohibitively computationally expensive while also requiring knowledge of future driver demands.
Nevertheless, they provide a criterion for evaluating other energy management algorithms in addition
to giving insight into optimal policies.

The charge-sustaining global optimal energy management strategy for a vehicle with the PSS was
formulated and solved using DP in a prior work [12], and a simple online energy management system
based on ECMS was also previously presented and tested in simulation [13]. This work extends our
previous efforts by developing an Adaptive-ECMS (A-ECMS) and documenting the fuel economy
benefits of the PSS through advanced hardware-in-the-loop (HIL) experiments. The main contributions
of this work are as follows: first, an Adaptive-ECMS energy management system is introduced to
select the PSS mode and its power split ratio. Second, the implementation of the hardware-in-the-loop
experiments is described in detail, and some practical challenges are explained. Third, the operation
of the PSS is demonstrated experimentally, and finally, the effectiveness of the PSS hardware and
the developed controllers in fuel consumption reduction of a vehicle is quantified over the standard
FTP75 cycle.

After introducing the utilized hardware and models, the global fuel consumption minimization
problem is described briefly. An ECMS is formulated for selecting the PSS mode and its power
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split ratio in Section 3.2 and the Adaptive-ECMS is described in Section 3.3. Section 4 presents the
engine dynamometer experimental testbed and the details of HIL implementation. The experimental
demonstration of fuel economy results and PSS operation are shown in Section 5, and the paper
concludes with the main findings of the work.

2. Experimental Hardware and Model Framework

The baseline engine is a 1.6 L Ford EcoBoost engine, which is a 4 cylinder spark ignition (SI)
turbocharged engine. The turbocharger is replaced by the PSS in the alternative powertrain studied
in this work. Figure 1 shows a schematic view of the engine with the PSS and other powertrain
components. The PSS is configured with a planetary gear set, a roots supercharger, a motor, a bypass
valve, and a brake. The sun gear is attached to the supercharger, the ring is connected to the motor,
and the carrier is coupled with the engine crankshaft through a set of belt and pulleys. The PSS can
enable two distinct operating modes by controlling the motor, bypass, and the brake. In boosting
mode, the bypass is closed, the brake is released, and the motor can control the supercharger speed
and resulting boost pressure independently of the crankshaft speed. In torque assist mode, the brake
locks the sun gear and the supercharger is bypassed. In this mode the planetary gear set acts as
a regular gear set, which enables the motor to supply/draw torque to the crankshaft for start-stop,
regenerative braking, or assisting the crankshaft. The engine fuel consumption map, shown in Figure 4,
is produced using a high-fidelity GT-Power model, which is described in detail and validated against
engine dynamometer experiments elsewhere [14]. In Figure 4, τmax

e,NA is the maximum torque that
the NA engine can produce, τmax

e,B is the maximum engine torque when the PSS is in boosting mode,
and (τe,NA + τTA)

max is the powertrain maximum torque in torque assist mode (maximum motor
torque added to the crankshaft).
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Figure 4. Brake specific fuel consumption (BSFC) map for the engine with the power split supercharger
(PSS). The naturally aspirated engine maximum torque, τmax

e,NA, the powertrain maximum torque in
torque assist mode, (τe,NA + τTA)

max, and the maximum engine torque during boosting mode, τmax
e,B ,

are also represented.

The modeled vehicle is a MY2015 Ford Escape crossover SUV. The drivetrain model includes
the crankshaft dynamics, a friction clutch, a torque converter, and a 6-speed automatic transmission.
The model details and control strategy are described in a prior work [14]. The driver model is
a gain-scheduled proportional + integral (PI) controller and uses a 1 s preview of the tracking error
and vehicle acceleration. A 1.2 kWh lithium-ion battery is assumed for the rest of this study. An open
circuit voltage with a resistance (OCV-R) is used to model the battery and compute its state of charge
dynamics, detailed in [12].
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3. Energy Management System

3.1. Global Fuel Consumption Minimization

The optimal energy management problem for a vehicle with a PSS and with the full driving profile
preview was formulated and solved using DP elsewhere [12,15]. In this work the DP solution was
used as a benchmark to evaluate the effectiveness of the online energy management algorithm; thus,
only a summary of the DP formulation is presented. The cost function for the global fuel consumption
minimization problem is given in Equation (1). Different terms from left penalize the fuel flow rate,
the gear shifts, the engine cranking (for start-stop), and the PSS mode, respectively,

min

{
N

∑
k=1

(
ṁ f (k)Ts + α|ng(k)− ng(k − 1)|+ β

(
max(xe(k)− xe(k − 1), 0)

)
+ λ

(
1 − ubr(k)

))}
(1)

where k refers to the kth step time, N is the problem horizon, which is the full drive cycle, Ts is the
sampling time equal to 1 s, ṁ f is the fuel flow rate, ng represents the gear number, xe stands for the
engine on/off state, and ubr is the PSS brake position used to indicate the PSS mode, where ubr = 0
is the boosting mode and ubr = 1 the torque assist mode. The coefficient α controls the gear shift
frequency, β is the engine cranking fuel penalty, and λ has a very small value to enforce the brake
locked as the default mode. The full detail of the problem constraints are presented in the original
work [15]. The battery state of charge, the engine on/off state, and the gear number are the modeled
states. The latter two had to be modeled as states to be penalized in the objective function. The control
inputs for this problem are the PSS mode, the commanded torque assist from the electric motor,
the engine on/off command, and the gear shift command. A MATLAB-based dynamic programming
function [16] was used to solve this problem.

In the prior work the manufacturer map for the electric motor was used to estimate the fuel
economy, and no loss was assumed for the planetary gear set and pulleys. However, the experiments
showed that both the motor efficiency and its torque limits are different from the manufacturer map.
Hence, new experimentally validated maps were produced to update the results in this work. Figure 5
shows the measured efficiency from/to the electric power, measured by an AVL battery emulator,
to/from the engine-dynamometer crankshaft, measured using a torque meter. The maximum and
minimum motor torque limits are also presented. Compared to the prior maps, the losses were up to
15% more, especially at low speed and negative torques. The minimum motor torque was also slightly
higher at lower engine speeds. Both of these reduced the recuperated power from regenerative braking
during a cycle. The DP results presented later in Table 1 are updated with the new map.

Table 1. Drive cycle fuel consumption results for Ford Escape MY2015.

Powertrain Result Type Energy Management FC ΔFC ΔSoC

[L/100 km] [%] [%]
Turbocharged Simulation DP 6.76 -
Engine + PSS Simulation DP 5.22 22.8 0.0
Turbocharged Experiment - 7.29 - -
Engine + PSS Experiment A-ECMS 5.95 18.4 1.1
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Figure 5. Experimentally generated motor and gear set map.

3.2. Equivalent Consumption Minimization Strategy

The equivalent consumption minimization strategy assigns an equivalent fuel flow rate to the
electric energy consumption by using an equivalence factor and minimizes the sum of the engine and
motor fuel flow rate at only the current time step [8,17]. As this strategy does not need any preview
information it can be implemented online. The motor torque, τm, is calculated as

τm = argmin
τm

(
ṁ f (τe, ωe) + αeqPm(τm, ωm)

)
(2)

in which τe and ωe represent the engine torque and speed respectively, ωm is the motor speed, and αeq

is the equivalence factor. The energy management system (EMS) of a vehicle with a PSS has to select
the PSS mode first. Only if the torque assist mode is selected will the optimum motor torque need
to be determined in the next step to minimize the powertrain fuel consumption. When the boosting
mode is selected the motor torque is not an optimization parameter but is instead used to control the
boost pressure and, hence, the engine torque.

Boosting is only justified when the requested crankshaft torque, τd
crk, is larger than the torque

limit that the naturally aspirated engine can produce, τmax
e,NA (above the blue area in Figure 4),

because simultaneous boosting and throttling is not an efficient policy [18]. Therefore, it is fuel
efficient to lock and bypass the supercharger when τd

crk < τmax
e,NA. On the other hand, due to the small

motor size, the NA engine with direct torque assist from the motor cannot produce a torque higher
than (τe,NA + τTA)

max, shown in Figure 4; thus, when a high torque in the yellow area of Figure 4 is
requested, the PSS has to work in boosting mode. Finally, when the requested torque is smaller than
the maximum powertrain torque in torque assist mode and larger than the NA engine torque limit
(green area in Figure 4), the requested torque can be achieved through either mode. A consumption
minimization rule is introduced to determine the PSS mode that produces the minimum equivalent
fuel consumption as follows:

ubr =

⎧⎪⎪⎨
⎪⎪⎩

0 if τd
crk > (τTA + τe,NA)

max

1 if τd
crk ≤ τmax

e,NA
argmin
ubr=0,1

(ṁ f ,eq) otherwise
(3)

in which ubr is the PSS brake position used to represent the PSS mode, and ṁ f ,eq is the equivalent fuel
flow rate of the engine and motor, computed for each mode as

• Torque assist mode (ubr = 1):
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ṁ f ,eq = min
τd

m

(
ṁ f (τ

d
e , ωe) + αeqPm(τ

d
m, ωm)

)
(4)

τd
e = τd

crk − τd
TA (5)

τd
m =

gR
nimnri(gS + gR)

τd
TA (6)

where the superscript d refers to the desired or commanded values, gR is the ring gear teeth number,
gS is the sun gear teeth number, nri is the ring-to-idler gear ratio, and nim is the idler-to-motor gear
ratio. The variable τTA represents the torque assist from the motor on the crankshaft and is related to
the motor torque through (6).

• Boosting mode (ubr = 0):

ṁ f ,eq = ṁ f (τ
d
e , ωe) + αeqPm(τ

d
e , ωe) (7)

τd
e = τd

crk (8)

Equation (8) indicates that during boosting mode the entire crankshaft requested torque has to be
supplied by the engine. In this mode the supercharger pressure ratio is decoupled from the engine
operating speed. Keeping the throttle valve open in the boosted condition reduces the engine losses
and increases the efficiency. Adopting this strategy, the steady-state motor power for driving the
supercharger can be mapped into engine operating points shown in Figure 2b. This map is used to
calculate the equivalent fuel flow rate of the motor in boosting mode.

The solution to Equations (2) and (3) is computed for various values of the equivalence factor αeq.
Figure 6a–c shows the solution to Equation (3) for equivalence factors of 0.13, 0.18, and 0.23 kg/kWh,
respectively. The green color in these plots indicates boosting mode, while the red color shows torque
assist mode. Figure 7a–c presents the optimum motor torque during torque assist mode generated
from (2) for the same equivalence factors.

The equivalence factor represents the relative value of the electric power. A smaller equivalence
factor uses the torque assist mode more often and uses the motor to assist the crankshaft over a larger
operating region (more red color in Figures 6a and 7a). A higher equivalence factor increases the
penalty for electric power, which causes the ECMS controller to use the boosting mode more often in
Figure 6b,c while also using the motor to generate more energy, often at low loads (more green color in
Figure 7b,c).
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(a) αeq = 0.13 kg/kWh.
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(c) αeq = 0.23 kg/kWh.

Figure 6. Equivalent consumption minimization strategy (ECMS)-generated PSS mode for different
equivalence factors. The green color represents boosting mode, and the red color indicates torque assist
mode. (a) αeq = 0.13 kg/kWh, (b) αeq = 0.18 kg/kWh, and (c) αeq = 0.23 kg/kWh. Increasing the
equivalence factor shifts the optimal strategy from torque assist to favor boosting mode.
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Figure 7. ECMS generated motor torque during torque assist mode for different values of equivalence
factor (a) αeq = 0.13 kg/kWh, (b) αeq = 0.18 kg/kWh, and (c) αeq = 0.23 kg/kWh.

3.3. Adaptive-ECMS

The traditional ECMS method requires tuning the equivalence factor offline for every driving
profile to ensure that the battery state of charge remains within the desired/operational limit.
However, in real-world applications the future velocity profile is not known. Therefore, it is necessary
to tune the ECMS factor in real time to ensure acceptable operation of the energy management system,
especially when starting from an unfavorable initial condition. A-ECMS adjusts the equivalence factor
based on drive cycle prediction, driving pattern recognition, or feedback from the battery state of
charge [19]. In this work a modification of the approach that uses the SoC feedback [20] is adopted.
The equivalence factor is adjusted as

αeq(k) =

⎧⎪⎪⎨
⎪⎪⎩

0.25 if SoC < 40%
0.10 if SoC > 60%

max
(

min
(

αeq(k − 1) + q
(
SoC(k)− SoC(k − 1)

)
, 0.25

)
, 0.10

)
otherwise

(9)

where q is a constant coefficient. The suitable sampling time for Equation (9) depends on the relative
size of the energy storage and energy consumption. Simulations showed that a sampling time of less
than 1 min can keep the SoC in 40–60% range for the tested drive cycle. However, a sampling time
of 15 s was selected for the experiments for a tighter control over SoC, without adding a significant
computational effort. Further investigations into sampling time dependence on drive cycle and
vehicle parameters are left for future development. Figure 8 shows the A-ECMS implementation for
hardware-in-the-loop experiments presented in the next section. Pb represents the battery power.

Figure 8. A-ECMS implementation for hardware-in-the-loop experiments.

4. Experimental Setup

4.1. Testbed

Figure 9 shows a picture of the engine-dynamometer experimental testbed, which includes
an AVL AC transient dynamometer, an instrumented 1.6 L Ford EcoBoost engine, and the power split
supercharger by EATON. An AVL SESAM-FTIR emission measurement bench is used to measure
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exhaust gas species and calculate fuel flow rate along with a hot wire air flow rate meter. An AVL
battery simulator is used to power the PSS and measure the motor current and voltage. A rapid
prototyping electronic control system (RPECSTM) from Southwest Research Institute (SwRI) was used
to integrate all engine controllers, the online energy management system, and implement real-time
vehicle and driver models.

Figure 9. Engine-dynamometer experimental testbed.

4.2. Implementing A-ECMS and Hardware-in-the-Loop Experiments

In the hardware-in-the-loop experiments the engine and the PSS are the physical hardware, and
the vehicle, the driver, and the battery are models coded in RPECSTM. The AC dynamometer is
programmed to play the role of the vehicle body and follow a drive cycle speed profile. In these
experiments the driver model issues an accelerator or brake pedal based on the vehicle velocity tracking
error. From this command the energy management system and the low-level controllers compute
the actuator positions for the engine, dynamometer, and the PSS, including the throttle position (ud

θ ),
motor torque (τd

m), the PSS brake command (ud
br), the supercharger bypass command (ud

bp), and the

engine speed (ωd
e ). The produced crankshaft torque (τ̂crk) is measured and fed back into the vehicle

longitudinal dynamics to calculate the next vehicle speed. This feedback system, presented also in
Figure 10, permits velocity tracking and an accurate drive cycle fuel economy measurement. Note that
the AC dynamometer can track either a desired speed or a desired torque profile. The torque tracking
mode is not always safe because, in this case, the crankshaft speed is determined by the torque balance
between the engine and the dynamometer. Operating in this mode in case of a subsystem failure,
communication delay, or software bug can result in over speeding the engine, damage, or complete
destruction. Therefore, in this work the dynamometer was always used in the speed control mode,
and as shown later in the experimental results, the dynamometer controller did an impeccable job in
tracking the engine speed set point. The following sections present HIL implementation for the two
propulsion modes, locked and unlocked torque converter. All models and the energy management
system are implemented in a 5 ms loop in RPECSTM.

Battery

Gearbox

A-ECMS + Control

Hardware

PSS
Engine Dynamometer

Figure 10. Hardware-in-the-loop (HIL) implementation.
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4.2.1. Hardware-in-the-Loop Implementation for Locked Torque Converter

When the torque converter (TC) is locked, the vehicle speed is computed from the longitudinal
vehicle dynamics and the measured crankshaft torque as follows:

M
d
dt

v = Ft − Fb − Fl (10)

Ft =
1

Rw
(igτ̂crk − τloss) (11)

ωd
e =

v
igRw

(12)

where M is the vehicle mass, v is the vehicle velocity, Ft is the traction force, Fb is the braking force,
Fl is the road load, ig is the gear ratio, τloss is torque loss in the transmission, Rw is the wheel radius,
and ωd

e is the engine speed computed from the vehicle speed and fed back into the dynamometer.
The details of the vehicle and transmission models are presented elsewhere [14].

The requested tractive torque, τd
trc, when the accelerator pedal is active is linearly mapped to the

pedal position, uacc:

τd
trc = uacc(τ

max
e,B − τmin

e ) + τmin
e (13)

where τmin
e is the minimum engine torque, and τmax

e,B is from Figure 4. The requested braking torque
on the gearbox inlet shaft, τd

brk, is computed from the brake pedal position, ubrk produced by the
driver model:

τd
brk =

ubrkτmax
brk

ig
(14)

where τmax
brk is the maximum braking torque on the wheels.

The PSS optimal mode, ud
br, during traction (which is τd

crk > 0) and the optimum motor torque in
torque assist mode, τd,TA

m , are computed offline and stored in look up tables based on the requested
crank torque, the measured engine speed, and the equivalence factor:

ud
br = Γ(τd

crk, ω̂e, αeq) (15)

τd,TA
m = Λ(τd

crk, ω̂e, αeq) (16)

The desired engine torque is

τd
e =

{
τd

crk if ud
br = 0

τd
crk − τd,TA

m
(gR+gS)nimnri

gR
if ud

br = 1.
(17)

Finally, the desired intake manifold pressure is computed from the engine speed and the desired
engine torque:

pd
im = Ξ(τd

e , ωe). (18)

When the desired manifold pressure is less than the ambient pressure the supercharger is bypassed
(ud

bp = 1) and the intake throttle is used to control the intake manifold pressure, while when the
desired intake manifold pressure is higher than the ambient pressure the throttle is wide open and
the supercharger speed is controlled by the motor to achieve the desired intake manifold pressure.
Both the throttle controller and the supercharger speed controller are feedforward PI controllers.
The supercharger speed controller has an inner PI controller to manipulate the motor torque to achieve
the desired supercharger speed. The details of the low-level controllers are presented elsewhere [14].
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The motor torque during regenerative braking, τ
d,Reg
m , is computed by

τ
d,Reg
m = max(τd

crk
gR

(gR + gS)nimnri
, τmin

m ) (19)

where τmin
m is the minimum motor torque shown in Figure 5. The PSS mode is set to torque assist mode

during braking. Note that Equation (19) is the solution to Optimization (2) since simultaneous
generation from the engine and regenerative braking is prohibited in here (τe = τmin

e during
braking). Finally, the commanded motor torque, τd

m, comes from either the PI controller (τd,PI
m ),

regenerative braking, or the torque assist (from A-ECMS) depending the PSS mode and the requested
tractive torque sign:

τd
m =

⎧⎪⎨
⎪⎩

τd,PI
m if ud

br = 0
τd,TA

m if ud
br = 1, τd

trc ≥ 0
τd,Gen

m if ud
br = 1, τd

trc < 0
(20)

4.2.2. Hardware-in-the-Loop Implementation for Unlocked Torque Converter

When the torque converter is unlocked, there is no mechanical coupling between the engine and
the wheels. However, in order to use the dynamometer in the speed control mode with an unlocked
torque converter, it is assumed that the engine speed is equal to its idling speed when the TC unlocks
(ωd

e = ωe,idle). The minimum engine torque to hold the idle speed is calculated from the torque
converter K-factor (K) and torque ratio (TR), which are functions of turbine to pump speed ratio (SR):

SR =
ωtct

ωtcp
(21)

τtcp =
(ωtcp

K
)2 (22)

τtct = τtcp × TR (23)

where ωtct is the torque converter turbine speed, τtct is the turbine torque, τtcp is the pump
torque, and ωtcp is the pump speed. Given that ωtcp is equal to the engine idling speed when
the torque converter unlocks, the minimum torque on the crankshaft when the turbine speed
drops to less than engine idling speed can be computed as a function of turbine speed, τ∗

tcp(ωtct).
Accordingly, the minimum torque on the crankshaft, τmin

crk , is computed by

τmin
crk =

{
τ∗

tcp(ωtct) if ωtct ≤ ωe,idle

−∞ otherwise.
(24)

The requested torque on the crankshaft is

τd
crk = max(τd

trc, τd
brk, τmin

crk ). (25)

Equation (25) imposes some positive torque demand on the crankshaft at low vehicle speed
to maintain the engine idling speed, and it disables regenerative braking under these conditions.
Similar to the locked torque converter case, Equations (15)–(18) and (20) are used to determine ud

θ ,
τd

m, ud
bp, and ud

br in this mode. The engine speed is set equal to the idling speed, ωd
e = ωe,idle, and (11)

has to be corrected to include the torque converter torque ratio,

Ft =
1

Rw
(igτ̂crk × TR − τloss). (26)
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4.2.3. Engine Start-Stop

In a vehicle the engine is connected to the transmission, and the transmission clutch is open during
engine starts. On the engine dynamometer the engine is permanently connected to the dynamometer
with a large inertia. Therefore, it is not possible to mimic the engine start-stops with a dynamometer.
To emulate the start-stop behavior, the stopped portions of the drive cycle, where the engine is turned
off, are removed from the velocity profile for the vehicle with the PSS, and a fuel penalty is added
for each start-stop event. The next section shows the resulted velocity profiles in addition to other
experimental results.

5. Experimental Results

Figure 11 shows the velocity tracking for FTP75 drive cycle from the HIL experiments for the
baseline turbocharged engine and the engine when the PSS replaces the turbocharger. In addition to the
vehicle speed and reference speed, vref, the standard minimum velocity threshold , vmin, is also plotted,
showing that both engines successfully follow the cycle profile. The following sections document the
fuel consumption and PSS operation details during the HIL experiments.

(a) Turbocharged baseline.
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(b) Engine with PSS.

Figure 11. Velocity tracking during hardware-in-the-loop experiments, (a) vehicle with turbocharged
engine, (b) vehicle with the PSS, stopped portions of the cycle removed to emulate start-stop.

5.1. Fuel Consumption Reduction with PSS

Table 1 summarizes the experimental fuel consumption (FC) results along with the predicted
global minimum fuel consumption, produced with DP and a simplified vehicle model. The gearshifts
of the baseline turbocharged engine are also optimized by DP in results shown in the first row of
Table 1. The same gearshift strategy is used for the turbocharged engine and the engine with PSS
during experiments. DP predicts that the engine with the PSS consumes 22.8% less fuel compared
to the turbocharged engine. The HIL experiments were repeated three times for the PSS and two
times for the baseline turbocharged engine, and the mean FC values are reported in the table. The FC
values varied from 5.92 to 5.99 l/100 km for the engine with PSS and from 7.20 to 7.37 l/100 km
for the turbocharged engine. The HIL experiments show that the engine with the PSS consumed
18.4% less fuel compared to the baseline turbocharged engine on average, which is only 4.4% higher
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than the global minimum FC from DP. This result substantiates the effectiveness of the implemented
energy management system considering that A-ECMS does not use any preview information and only
minimizes its cost function at a current time step. There is some offset between the absolute values
of FC in simulations versus experiments. The reason is that the simulations use a fuel consumption
map produced by GT-Power simulations, which is shown to accurately predict the fuel consumption
variation with load and speed and between different engine configurations, but has a constant offset
compared to the experimentally measured fuel consumption [14].

Figure 12a shows the battery state of charge (SoC) variation during the HIL experiment. Starting
from 50% SoC, the battery SoC maintained between 44% to 51% during the experiment, showing the
possibility of further battery size and system cost reduction. Figure 12b shows the equivalence factor.
The adaptation rule (9) can keep the SoC between 40% and 60%, but still the initial value of αeq(0) was
tuned to get a final SoC value close to 50%. Finally, the fuel mass was corrected as follows to account
for the small ΔSoC between the start and end of the cycle,

Wcor
f = Wf + UCnᾱeqΔSoC (27)

where Wf is the fuel mass, Wcor
f is the corrected fuel mass, U is the battery open circuit voltage, Cn is

the battery capacity, and ᾱeff is the average equivalence factor during the experiment from Figure 12b.
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Figure 12. The battery state of charge and A-ECMS equivalence factor variation during experiments,
(a) state of charge, (b) equivalence factor.

5.2. Power Split Supercharger Operation during a Transient Drive Cycle

This section presents the details of the hardware and energy management system operation
during the HIL experiments. Figure 13 shows the intake manifold pressure, pim. Figure 13a shows pim

over the entire cycle along with the PSS brake position. The intake manifold pressure increased to more
than the ambient pressure (around 100 kpa) only during few instances, which correspond to vehicle
accelerations where the PSS switches to boosting mode (ubr = 0). Figure 13b shows pim variation
during a portion of the cycle in more detail (marked with blue square in Figures 11b and 13a) on top
of the desired signal value, pdes

im , and the supercharger bypass valve position. As mentioned before,
when pdes

im is less than the ambient pressure, the supercharger is bypassed and the throttle controls
pim. When pdes

im increases to more than the ambient pressure, the throttle opens wide, the bypass valve
closes, and the supercharger controls pim. With the current controller gains, the 0→90% response time
to achieve full boost is around 1 s, but it can be reduced to around 0.7 s with more rigorous calibration
and gain scheduling.

Figure 14 shows the engine speed, the motor speed, and the supercharger brake position for the
same portion of drive cycle. The motor speed is multiplied by R

nimnri(gR+gS)
, which corresponds to the

gear ratio between the motor and crankshaft when the supercharger is locked. During the boosting
mode the supercharger speed, ωsc, is related to the motor and crankshaft speed by

ωe =
gS

(gS + gR)
ωsc +

R
nimnri(gR + gS)

ωm (28)
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when the PSS switches to boosting mode the brake opens and the motor has to decrease its own speed
by applying some negative torque to increase the supercharger speed. The motor torque and power
during the selected interval are shown in Figure 15. The motor torque is the reported value by the
motor control unit, and the motor power, Pm, is measured by the AVL battery simulator. The time gap
corresponds to a vehicle acceleration; hence, the motor is assisting the crankshaft when PSS is in torque
assist mode (positive motor torque). When switching to boosting mode the motor initially applies
some negative torque to speed up the supercharger, and then the motor torque is controlled to track
the desired intake manifold pressure. Finally, when boosting is not required, the motor speed increases
by applying a positive torque, and when the motor speed is high enough (supercharger speed close to
zero) the supercharger is locked again. The brake position is also shown on these plots to distinguish
between boosting and torque assist modes. Note that the motor power sign depends on both its torque
and speed signs because the PSS motor can rotate in both directions.

0 500 1000 1500
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200 0

1

(a) Intake manifold pressure during the entire cycle.

130 140 150 160 170 180 190
0

100

200
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50

100

(b) Intake manifold pressure during selected acceleration.

Figure 13. Intake manifold pressure during FTP75 cycle, (a) intake manifold pressure and PSS mode
over the entire cycle, (b) intake manifold pressure, desired intake manifold pressure, and supercharger
bypass during t = 130 s to t = 190 s.

The final piece of the HIL experiments is controlling the desired engine speed. Figure 16
shows the commanded engine speed and its actual value controlled by the dynamometer. As seen,
the dynamometer can perfectly track the desired engine speed.

Figure 14. Engine and motor speed for the hardware-in-the-loop experiments during t = 130 s to
t = 190 s.

(a) Motor torque

Figure 15. Motor operation for the hardware-in-the-loop experiments during t = 130 s to t = 190 s
(a) motor torque, (b) motor power.
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Figure 16. Engine speed and its desired value for the hardware-in-the-loop experiments during
t = 130 s to t = 190 s.

6. Conclusions

This work presented optimal energy management and hardware-in-the loop experiments for
a novel low-voltage hybrid system that can be used either as a flexible supercharger or as a parallel
hybrid system, enabling start-stop, regenerative braking, and torque assist. An adaptive equivalent
consumption minimization strategy from the literature was modified and customized to the PSS
system for selecting both the device mode and the power split ratio in hybrid mode. It was shown that
when the relative cost of the electric power is higher, the algorithm chooses to use the supercharger
across a wider range of operating points, while when the electric power is relatively cheaper the energy
management system supplies the motor torque directly to the engine crankshaft. The implementation
of drive cycle hardware-in-the loop experiments on an engine dynamometer testbed was discussed
in detail, and some of practical aspects were explained. It was shown that the new device with the
developed energy management system decreased Ford Escape fuel consumption by 18.4% compared
to a baseline turbocharged engine over the FTP75 standard cycle, which is only 4.4% less than the
global optimal solution from dynamic programming. Finally, the details of the PSS operation and mode
transitions during experiments were shown and discussed in detail. Possible future research directions
would be further analysis of the A-ECMS adaptation law and testing the PSS and the developed
A-ECMS algorithm in a vehicle.
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Abbreviations

The following abbreviations are used in this manuscript:

A-ECMS adaptive equivalent consumption minimization strategy
DP dynamic programming
ECMS equivalent consumption minimization strategy
EMS energy management system
eSC electric supercharger
FC fuel consumption
HEV hybrid electric vehicle
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HIL hardware-in-the-loop
ICE internal combustion engine
MPC model predictive control
NA naturally aspirated
PI proportional+integral
PSS power split supercharger
RPECS rapid prototyping electronic control system
SC supercharger
SI spark ignition
SoC state of charge
TC torque converter
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Abstract: In a battery-electric vehicle, a representative electric vehicle, there is a growing demand for
performance and one-charge mileage improvement. As an alternative to such improvements, the
capacity of the battery has been increased; however, due to the corresponding increase in the weight
of the battery and the limited space in the vehicle, increasing the capacity of the battery also has
limitations. Therefore, researches are being actively conducted to improve system operation efficiency
to overcome such limitations. This paper proposes a distributing method of the driving forces to a
battery-powered electric shuttle bus for last-mile mobility equipped with the decentralized driving
system while taking into account voltage changes of the input terminals due to changes in the battery
charge. The system operation efficiency changes were compared and evaluated by performing energy
consumption analysis using ‘Manhattan Bus Driving Cycle’ at low voltage condition (SOC 20%).
Various analyzes were performed and compared, such as the uniform distribution method of driving
forces of the front and rear wheels (Uniform), the optimization method without considering the input
terminal voltage change (Vnorm = 90 V), and the optimization method considering the input terminal
voltage change (Vdclink). As a result, it shows that the proposed algorithm can improve 6.0% compared
to the conventional uniform driving force distribution method (Uniform). Moreover, it shows that
the real-time optimization method without considering the input voltage change (Vnorm = 90 V) can
improve 5.3% compared to the uniform distribution method. The proposed method can obtain an
additional 0.7% increase in total cost compared to the existing optimization method, which shows
that the vehicle system has cost-effectiveness by reducing the battery capacity required to achieve the
same mileage.

Keywords: driving force distribution; decentralized traction system; 4WD electric vehicle; energy
efficiency; traction control; efficiency optimization

1. Introduction

Due to their high energy density and convenience, fossil fuels have been exploited
for vehicles for a long time. However, this exploitation has been accompanied by global
problems of air pollution in the form of fine particulates resulting from vehicle exhausts, in-
cluding NOx, as well as global warming, which is attributable to carbon dioxide emissions.

Therefore, countries worldwide have strengthened regulations on the fuel efficiency
and emissions of vehicles. Additionally, some countries and cities have even prohibited
the driving and sale of vehicles equipped with internal combustion engines [1]. To cope
with these regulations, the global automobile industry has developed and released various
kinds of eco-friendly vehicles, denoted as ‘xEV’. Among them, electric vehicles have been
spotlighted as alternatives that can help reducing air pollution due to their zero emission.
There has also been a rapid increase in the number of electric vehicle models that have
been released into the market, as well as the sales [2]. The market outlooks estimate that
the share of electric vehicles could reach approximately 28% of all motor vehicles in the
motor vehicle industry by 2030 [3].
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The charging time and driving distance per battery charge still remain as issues that
can be further improved. In case of the charging time issue, the charging time for 400 km
driving range of electric vehicle equipped with 400 V system is 29 min, but, the charging
time can be reduced to less than 15 min for the same driving range by changing the voltage
level from 400 V to 800 V [4]. In case of driving distance, the driving distance between 80 km
and 200 km for a battery-powered electric shuttle bus equipped with 30.7 kWh and 33 kWh,
respectively, has been presented [5,6]. To extend the driving distance provided by a single
charge of an electric vehicle battery, various methods have been introduced, including one
that developed a high-power-density battery (solid state battery) to increase the energy
capacity [7], as well as another study that installed two different driving systems on the
front and rear wheels and optimized the power distribution of the front and rear wheels [8].
Furthermore, Xibo et al. proposed the traction force distribution method to minimize
power losses for permanent magnet (PM)-type traction motors for a front and rear wheel
driven electric vehicle [9]. Studies on independent four-wheel driving systems intending to
increase the performance efficiency of electric vehicles have also shown promising results.
For example, Park et al. conducted a study on the optimization of the driving energy
and systematic stability of an electric vehicle equipped with a four-wheel drive system
by employing fuzzy logic [10]. The efficiency of the driving system of an electric vehicle
depends substantially on the temperature and input voltage of the driving system [11],
and the input voltage is also dependent on the voltage level at the terminal of the battery
because of the wire connection between the terminal of the battery and the input terminal
of the driving system. The voltage level at the terminal and capacity of the battery vary
according to the elapsed driving hours, and changes in the input voltage affect the output
of the driving system. However, the studies mentioned above [8–10] did not account for
changes in the system state.

This paper presents methods to increase the energy efficiency of a battery-powered
electric shuttle bus equipped with a decentralized four-wheel drive system. First, the
specification of a battery-powered electric shuttle bus will be derived. Then, the analysis
of the input voltage effects on the driving system efficiency will be conducted, and an
algorithm to obtain the optimal distribution of driving torque to the front and rear wheels
by accounting for the varying input voltages will be proposed. The effects and gain of the
algorithm on the driving efficiency of a battery-powered electric shuttle bus will be verified
by Matlab/Simulink simulation.

This paper is organized as follows: The specifications for a driving system and re-
quirements for a battery-powered electric shuttle bus are defined in Section 2, in Section 3,
design results for the drive system are described. The efficiency changes are also examined
with the input voltage changes in Section 3. The algorithm used to allocate the driving
torque to the front and rear wheels while securing optimal system efficiency is explained
in Section 4. In Section 5, the simulation model for a battery-powered electric shuttle bus
is built and the effects on the system efficiency in low voltage condition is analyzed by
comparing with uniform distribution method and also with a fixed voltage optimization
method through simulation according to ‘Manhattan Bus cycle’. Finally, an effectiveness of
proposed algorithm is analyzed for a battery-powered electric shuttle bus.

2. Electric Vehicle System Design

In this section, the requirement of the target vehicle is defined and then, the require-
ment for propulsion system is specified by using longitudinal dynamics.

2.1. Vehicle Requirements

The target vehicle selected for the simulation is a battery-powered electric shuttle bus.
This bus drives according to a predetermined interval to connect key places to respective
final destinations as a means of last-mile transportation. The driving route for the target
vehicle has a one-way interval of 3.7 km, wherein the simulation design included an average
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driving speed of 15 km/h, a driving time of approximately 15 min, a daily operation of 8 h,
and up to 15 passengers. The specifications of the target vehicle are summarized in Table 1.

Table 1. Specifications of the target vehicle.

Attribute Unit Value Attribute Unit Value

Passengers people 12–15 Dimension m L 4.94, W 2.10,
H 2.65

Gross/Curve
Vehicle Weight kg 3500/2400 Frontal Area m2 4.73

Air Drag
Coefficient − 0.4 Tire − 225 50 R18

Battery − 15 kWh
(73–108 V) No. of Motors EA 4

Table 2 presents the performance requirements of the target vehicle. By considering
the fact that the vehicle drives at a low speed along the last-mile interval in the downtown
regions of cities, the following performance requirements were set for the vehicle: a
maximum driving speed of 45 km/h [5,6], an autonomous driving speed of 25 km/h [5,6],
a maximum climbing capacity enabling propulsion on a road with a maximum gradient of
28%, continuous driving at 5 km/h on a road with an identical gradient, and a maximum
acceleration or deceleration capability of 3 m/s2.

Table 2. Performance requirements of the target vehicle.

Attribute Unit Value Attribute Unit Value

Maximum Speed km/h 45

Gradeability

Take-off

%

28

Operating Speed km/h 25 5 km/h 25

Acceleration m/s2 3 25 km/h 12

Deceleration m/s2 3 - - - -

The electric shuttle bus has an independent four-wheel drive system with the following
power transmission architecture. Figure 1 shows the configuration of the power system of
the target autonomous electric vehicle.

Figure 1. System architecture of the target electric shuttle bus. VCU: Vehicle Control Unit; M1 to M4:
In-wheel Motor; I1 to I4: Inverter; PRA: Power Relay Assembly; DCDC: DCDC Converter; HV: High
Voltage.
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2.2. Propulsion System Sizing

To fulfill the power requirements for the desired performance of the target vehicle, it
is necessary to set the design objectives of the power system. Thus, according to the power
performance requirements of the target vehicle, the correlation thereof with the attributes
of the power system needs to be identified. As shown in Figure 2, the correlations between
the indicators of the power performance of the target vehicle and the attributes of the
power system are defined.

 

Figure 2. Assignment of vehicle performance requirements to propulsion system requirements.

The maximum speed signifies the maximum continuous driving speed of the target
vehicle on a flat road (gradient 0%) corresponding to the continuous output of its power
system. As an attribute of a vehicle that corresponds to the continuous output of its
power system, the performance of that vehicle continuously driving along a gradient road
(gradeability) could be taken into account. In addition, the performance in terms of the
maximum acceleration and deceleration, along with the maximum gradeability (gradient),
correspond to the instantaneous output of the power system.

The forces (Fx) acting on the driving vehicle can be differentiated as the driving force
of the vehicle (Ft) and the forces of air resistance (Faero), rolling resistance (Frolling), and
climbing resistance (Fgrade). These are illustrated in Equations (1)–(5). The balance relation-
ship between forces, corresponding to the power performance objectives of the vehicle
in question, can be represented in terms of longitudinal vehicle dynamics (illustrated in
Equation (1)), from which the forces required for each wheel can be determined [12]:

∑ Fx = M
..
x (1)

Fx = Ft − Faero − Frolling − Fgrade (2)

Faero =
1
2

ρCd A f
.
x2 (3)

Frolling = Cr Mg cos∅ (4)

Fgrade = Mg sin∅ (5)

Here, ρ represents the air density of 1.293 kg/m3; Cd is a coefficient of air resistance;
A f and

.
x represent the front area and velocity of the vehicle, respectively; Cr denotes the

coefficient of rolling resistance, which is 0.01; and M, g, and ∅ represent the mass of a
vehicle, gravitational acceleration, and longitudinal gradient of the road, respectively. The
other specifications were borrowed from the vehicle specifications presented in Table 1.

Table 3 and Figure 3 present the results of the power output and torque required for the
vehicle, which were obtained using Equations (1)–(5) and Equations (6) and (7), respectively.
By accounting for changes in the loading condition, air pressure, and tire diameter of the
vehicle, a speed of 2 km/h and a 1% margin for the gradient angle were added:
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Tt = FtRt (6)

P = Ttωt = Ft
.
x (7)

Here, Tt and Rt represent the wheel torque and tire radius, respectively.

Table 3. Propulsion system requirements corresponding to vehicle performance.

Vehicle
Performance

Unit Value Allocation
Propulsion

Requirement
Unit Value

Maximum Speed km/h 45 C 1

Power kW 7.2

Torque Nm 183

Speed rpm 377

Gradeability

Take-off

%

28 P 2 Torque Nm 3275

5 km/h 25 C
Power kW 12.5

Torque Nm 2971

25 km/h 12 C
Power kW 33.5

Torque Nm 1598

Peak Acceleration m/s2 3 P Torque Nm 2533

Peak Deceleration m/s2 3 P Torque Nm 2533
1 C: Continuous; 2 P: P signifies the ‘Peak’.

   
(a) (b) 

Figure 3. Sizing results of (a) power-gradient-speed and (b) torque-speed chart with the requirement point.

An operating speed of 25 km/h was selected to satisfy the requirement that the maxi-
mum speed remain below 45 km. Based on the above results, the largest value among the
values corresponding to the continuous output was selected by using Equations (8) and (9),
by which the continuous maximum torque of 2971 Nm and the continuous maximum
output of 33.5 kW were derived. Additionally, a base speed of 108 rpm was determined
by Equation (7), which is the TN characteristic expression of the driving system. Here,
the instantaneous maximum torque and instantaneous maximum output are dependent
upon the cooling mechanism of the motor. For example, in the case of water cooling,
these are approximately 1.8 to 2 times the continuous peak torque and continuous output,
respectively. In this paper, the value of 1.8 was used, resulting in a maximum torque of
5348 N and an instantaneous maximum output of 60.4 kW:

Tt = FtRt (8)
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Tmax = max(Tmax_speed, Tgrade_25%, Tgrade_12%

)
(9)

As shown in Figure 1, four driving motors are mounted on the vehicle. Furthermore,
the required performance of each driving motor in the single driving system was derived
by dividing the entire torque and output of the vehicle into four shares, as presented
in Table 4.

Table 4. Unit propulsion system requirements.

Propulsion Requirement Unit Value

Peak Torque Nm 1337

Power kW 15.1

Continuous Torque Nm 743

Power kW 8.4

Speed
Maximum rpm 377

Base rpm 108

2.3. Propulsion System Design

This section describes the specifications of the driving motor that is capable of sat-
isfying the requirements of the output characteristics in the drive system derived from
Section 2.2. The correlation between the Vdclink value and the efficiency map of the motor is
analyzed.

Table 5 lists the specifications of the motor used in this study. Figure 4 illustrates
the dimensions and shapes for the cross-sectional view of the motor. Figure 5 shows the
efficiency map of the motor corresponding to Vdclink values of 105 V and 75 V, respectively.
To develop the efficiency map of the motor, the finite element method (FEM) was used
to obtain the inductance Ld and Lq on the dq-axis, as well as the magnetic flux ψa for a
permanent magnet.

Table 5. Design specifications of the in-wheel motor.

Classification Unit Value Classification Unit Value

Type - IPMSM Rotor diameter mm 200

Phase/Pole/Slot - 3/12/18 Rotor length mm 34

Stator outer
diameter mm 260 Magnet

thickness mm 5

Stator inner
diameter mm 201.6 Magnet Br T 1.37

Slot opening width mm 3 Magnet μr - 1.05

Slot opening depth mm 2 Rated torque Nm 125

Based on the FEM results, the information needed for the efficiency map of the motor is
derived through the following Equation of torque (10) and Equations of voltage (11)–(13) [13],
by using the equivalent circuit (Figure 6) on the dq-axis of the motor [14]:

T = 3
4 Np

{
ψa ioq +

(
Ld − Lq

)
iod ioq

}
= 3

4 Np

{
ψa ia cos β + 1

2
(

Lq − Ld
)

i2a sin 2β
}

(10)

vod = − ωe Lq Ioq, voq = ωe Ld Iod + ωe ψa, vo =
√

v2
od + v2

oq (11)

vd = Ra Iod +

(
1 +

Ra

Rc

)
vod, vq = Ra Ioq +

(
1 +

Ra

Rc

)
Voq (12)

Vlimit = Vdclink × ηinv ≥
√

v2
d + v2

q (13)
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Figure 4. In-wheel motor model.

 
(a) (b) 

Nm Nm

Figure 5. Efficiency map according to Vdclink: (a) Vdclink = 105 V and (b) Vdclink = 75 V.

  

(a) (b) 

Figure 6. Equivalent circuit: (a) d-axis and (b) q-axis [14].

The meanings of the symbols expressed in Equations (10)–(13) are as follows:
Np: Number of poles; ψa: Magnetic flux of a permanent magnet; Ld and Lq: Inductance

on the dq-axis;
iod and ioq: Current on the dq-axis; icd and icq: Current for the core resistance Rc on the

dq-axis;
id and iq: Input current on the dq-axis; ia: Input current; β: Current angle;
ωe: Electric angular velocity; ωm: Mechanical angular velocity; vod and voq: Voltage on

the dq-axis;
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Ra: Phase resistance for the winding; Rc: Core loss resistance; and ηinv: Inverter
efficiency.

Equation (10) for torque T can be derived using Faraday’s law [15]. In order to meet
the voltage limit by considering the maximum speed of the vehicle, the given voltage limit
Vlimit is required to satisfy equation (13). In Equation (13), Vdclink denotes the peak voltage
in the terminal of the inverter input for the battery. The inverter efficiency is assumed as
ηinv = 0.95 to derive Vlimit [13]

The motor efficiency ηm is derived by the maximum torque per ampere (MTPA) control
methodology to generate the maximized efficiency. The efficiency of the motor is reduced
by the losses generated from the motor. These losses can be distinguished into the copper
loss, iron loss, and mechanical loss. The copper loss Pcu is due to the input current of the
stator coil. The iron loss for the electrical core of the stator and rotor Piron results from the
eddy current of the core, which is proportional to the rotating speed of the motor. Pcu is
calculated using Equation (14), and Piron is calculated using Equation (15) by deriving the
iron loss resistance Rc after conducting finite element analysis by using the loss information
of the electrical core (15). The mechanical loss is excluded in this study due to the fact
that the measurements are indispensable. Therefore, the efficiency of the motor can be
expressed as shown in Equation (16) [13]:

Pcu = i2a Ra (14)

Piron =
v2

o
Rc

(15)

ηm =
P

P + Ploss
=

Tωm

Tωm + Pcu + Piron
(16)

3. Analysis of the Propulsion System Efficiency

As illustrated in Figure 5, an analysis of the efficiency and output for a torque of
25 Nm over the entire speed interval for the whole efficiency map was conducted to
identify changes in the efficiency for the two Vdclink models. By using Equations (10)–(16),
the causes of the changes in efficiency according to Vdclink were analyzed. Figure 7 shows
the analyzed results. The efficiency of the Vdclink = 75 V model decreased compared to
that of the Vdclink = 105 V model, in accordance with the increase of speed after exceeding
the base speed. In the drive region for the torque of 25 Nm as shown in Figure 5, the
mechanical output at each speed was identical.

 
 

(a) (b) (c) 

Figure 7. Efficiency and power according to Vdclink: (a) efficiency, (b) power, and (c) voltage.

The difference in the loss characteristics, which caused the difference in the efficiency
of the two Vdclink models, is described by using Figure 8. The phase resistance Ra of the two
Vdclink models is identical, since the two models use the same motor. However, the phase
currents used to generate the torque of 25 Nm are different for different Vdclink values, as
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shown in Figure 8a. The requirement of the two models is to meet the identical power
condition, as shown in Figure 7b. In the case of Vdclink = 105 V, the voltage limit is reached
at the base speed of 1450 rpm. However, in the case of Vdclink = 75 V, the voltage limit
is reached at the base speed of 1000 rpm. Considering the voltage limit condition after
reaching the base speed of the two models, the Vdclink = 75 V model requires more current
Ia than the Vdclink = 105 V model in order to satisfy the identical power output condition
P = Vdclink Ia.

  

(a) (b) (c) 

Figure 8. Current and loss according to Vdclink: (a) current, (b) copper loss, and (c) iron loss.

In this paper, the power factor was assumed to be 1. Therefore, in the case of
Vdclink = 75 V, a higher input current is required than in Vdclink = 105 V, as shown in
Figure 8a. For this reason, the copper loss increased significantly compared to that of
Vdclink = 105 V, as shown Figure 8b. In terms of the iron loss, the magnitude is significantly
smaller than that of the copper loss, as shown in Figure 8c. Therefore, in the case of
Vdclink = 75 V, the main cause of the reduced efficiency is that the increased copper loss due
to the phase current is dominant.

4. Control Strategy

As illustrated in Figure 9, the real-time optimization algorithm for the power distribu-
tion to the front and rear wheels, which showed the lowest energy consumption to create
the required driving torque under a given speed, is presented. The ‘Virtual Driver’ creates
the required driving torque (Td) in order to follow the given speed (Vr), and the ‘Energy
Optimization’ creates the ‘set-point’ of the driving torque of each system divided into four
wheels with minimum energy consumption while satisfying the required driving torque.
Here, Vr, Td, Tm1–Tm4, Ttot, γopt, PM, Pdcdc, Pbatt, Vm, Vdclink, and

.
SOC signify the required

speed, required torque by the driver, target torque of the driving system, total driving
torque, ratio of the optimal energy distribution for the front and rear driving torques,
required electric driving torque of the driving system, electric power consumption of the
12 V power system, total power consumption of the battery, vehicle speed, input voltage of
the driving system, and rate of change in the electric energy of the battery, respectively.

The real-time optimization method presented in this paper is explained concretely
below, and the effects of changing Vdclink were verified by comparing two cases of power
consumption, where the changes in Vdclink were taken into account or not taken into account
for the specified point (speed, required torque).
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Figure 9. Energy optimization concept diagram.

4.1. Optimal Front/Rear Torque Distribution Concept

The real-time optimization of the driving energy can be modeled using
Equations (17)–(23), shown below. The system state variable SOC and the controlled
input of the ratio γ of the driving torques to the front and rear wheels are used for model-
ing. Here, the required torque (Td, f ) for the front and rear wheel drive of the system varies
according to the distribution ratio to the front and rear wheels.

Thus, the operating point varies accordingly, resulting in changes in the efficiencies
(η f , ηr) of the front and rear wheel drive systems. Additionally, the electric power (PM)
used by the drive system varies in accordance with the changing distribution ratio of the
driving torque. Here, as examined in Section 3, the efficiency (η) of drive system as a map
can be modeled with speed and torque. In this study, the efficiency (η) map of the drive
system is modeled with Equation (22) by taking the change of the input voltage (Vdclink)
into account. The input voltage (Vdclink) modeled by internal resistance circuit of the battery
is as a function of SOC and the rate of SOC (23) [16]; in this way, the input voltage (Vdclink)
of the given state is considered. In addition, the braking stability based on the ideal braking
torque distribution was designed. Then, the regenerative braking torques distributed to the
front and rear axles were limited by the maximum generated torque of the corresponding
traction system.

By employing Equation (18), which represents the cost function, the total consumption
of energy can be minimized by minimizing the consumption of electric power (

.
E) required

at each moment by the driving system in every time interval 10 ms, as expressed in
Equation (19):

.
SOC = f (SOC(t), Pd(t), γ(t)) (17)

J∗ = min
γ(t), t0≤t≤t f

∫ t f

t0

.
E(Pd(t), γ(t), t)dt (18)

.
E(Pd(t), γ(t), t) = PM(t) + Pdcdc(t) (19)

PM(t) = PM, f (t) + PM,r(t) (20)

PM, f (t) =
Pd(t)γ(t)

η f (t)
, PM,r(t) =

Pd(t)(1 − γ(t))
ηr(t)

(21)
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η f (t) = g
(

Td, f (t), ω f (t), Vdclink(t)
)

, ηr(t) = g(Td,r(t), ωr(t), Vdclink(t)) (22)

Vdclink(t) = h
(

SOC(t),
.

SOC
)

(23)

subject to:
SOC(t) ∈ {SOCmin, SOCmax}

γ(t) ∈ {γmin, γmax}
PM, f ∈ {0, Pmax}, PM,r ∈ {0, Pmax}

Pdcdc(t) = Constant

Figure 10 illustrates the method of distribution of the driving torque to optimize the
real-time energy consumption. When the torque (Td) required by a driver is given at a
certain speed (Vm), then the combination of the available driving torques of Td, f and Td,r
are created by the array (γ) of the driving torque distribution ratio. By exploiting the
efficiency map reflecting the voltage of the input terminal, the efficiency vectors of the front
and rear wheel corresponding to each created combination of the driving torque can be
generated. Consequently, the energy consumption PM at each element in the array of the
distribution ratio of the driving torque can be calculated. Additionally, as expressed in
Equation (24), the array of the minimum consumption of energy (

.
E) can be extracted to

derive the distribution ratio (γopt) of the distribution driving torque to the front and rear
wheels with minimized energy consumption:

γopt(t) = argmin
{ .

E(Pbatt(t), γ(t), t)
}

(24)

(Front:Rear

(Front:Rear=0:1)

Figure 10. Concept of energy optimization.

4.2. Analysis of Optimal Front/Rear Torque Distribution

In this section, the effectiveness of the algorithm presented in this study will be
analyzed by comparing two cases: one in which the input voltage changes are taken into
account and one in which they are not. Figure 11 illustrates the results of the optimal
distribution ratios of driving torques to the front and rear wheels corresponding to each
voltage at the input terminal according to the respective motor speed and driving torque
required by the driver.
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As illustrated in Figure 5, when a driver requires a driving torque that is below that of
peak efficiency at the rotating speed of driving, the optimal distribution ratio (γopt) of the
driving torque to the front and rear wheels becomes zero. In contrast, when the required
driving torque exceeds the peak efficiency, the ratio becomes γopt = 0.5. As a result, the
driving torque is distributed uniformly to the front and rear wheels. However, since the
driving torque required by a driver is limited to four times the maximum torque of the unit
driving system, the optimal distribution ratio of the driving torque to the front and rear
wheels will be limited to γopt = 0.5 when the driving torque required by a driver exceeds
50% of the available maximum torque, due to the limit set for the system. As illustrated
in the map showing the efficiency characteristics of the unit driving system (Figure 5),
this phenomenon is attributed to the rapid decrease in the efficiency characteristics in the
low-torque domain, resulting in minimized driving in that domain.

  

(a) (b) (c) 

(Front:Rear=0.5:0.5)

(Front:Rear=0:1)

Figure 11. Optimal front/rear distribution ratios with regard to the speed and desired torque: (a) at Vdclink = 75 V, (b) at
Vdclink = 90 V (Vnorm), and (c) at Vdclink = 105 V.

The effects of the voltage variation at an input terminal on the optimal distribution of
the driving torque to the front and rear wheels were verified at a system input terminal
voltage of Vdclink = 75 V. The driving situation is assumed that motor speed is 2000 rpm
(approx. 23 km/h) and the torque required by the driver is 40% of the entire driving
torque. The operating point of the front and rear wheels and the power consumption for
the optimal distribution ratio of the driving torque to the front and rear wheels derived at
Vdclink = 90 V (Vnorm), with a system input terminal voltage of Vdclink = 75 V, are illustrated
in Figure 12.

When applying the optimal driving torque distribution to both the front and rear
wheels, derived at the input terminal voltage of Vdclink = 90 V (Vnorm), approximately 76 [W]
more power was used, as compared to what was when applying the optimal driving torque
distribution derived from the case when the input terminal voltage was Vdclink = 75 V.
This result shows that consideration of the input terminal voltage is necessary to optimize
system efficiency.

110



Energies 2021, 14, 594

 

  

(a) 

 
(b) (c) 

Figure 12. The difference of power consumption on optimal distribution with Vdclink; (a) The desired electric power of front
and rear traction motor with respect to the distribution ratio, (b) Total electric power with respect to the distribution ratio,
(c) Operating points of front and rear traction motor.

5. Simulation Results

To verify the algorithm presented in this paper, simulation model for a battery-
powered electric shuttle bus in the longitudinal direction and driving simulation of the
vehicle were carried out according to the Manhattan Bus Cycle as shown in Figure 13.
The Manhattan Bus Cycle uses a maximum driving speed of 40.9 km/h, peak accelera-
tion/deceleration of 0.2 g, and driving time of 1089 s with an average driving speed of
11 km/h; these are similar to the operating conditions and specifications of the target
vehicle [17]. The simulation model built with Matlab/Simulnk is shown in Figure 14. All
parameters used in the simulation are described as Tables 1 and 2 in Section 2. The battery
model based on the internal resistance of the battery, Equation (25), is used to calculate the
Vdclink of the driving system. The Vdclink of the driving system can be derived by Kirchhoff’s
current law [16]. Here, no voltage drop and losses between the battery output terminal
and the input terminal of the driving system is assumed. And the state of charge (SOC)
can be calculated by Equation (26) which is the ratio of the charged current over the full
charged capacity.

Vdclink = Voc − IbRi, Pbatt = Vdclink Ib (25)

SOCk = SOCk−1 +
ΔIbk

Q0
(26)

111



Energies 2021, 14, 594

Figure 13. Manhattan Bus Cycle [17].

Figure 14. Simulation model: M1 to M4: In-wheel Motor.

Here, Voc, Ib, Ri, SOCk, SOCk−1, ΔIbk
and Q0 represent open circuit voltage of the

battery, current of the circuit, internal resistance of the battery, state of charge at time interval
k, state of charge at time interval k − 1, variation of the current at time interval k − 1 and
nominal battery capacity of the battery, respectively.

In total, three simulations corresponding to each case were carried out. All simulation
was conducted with time interval of 10 ms. To compare the performance of the presented
algorithm for varying input terminal voltages, a low–voltage condition (instead of the nominal
voltage of 90 V) and an initial condition where the battery SOC was 20% were used. As
described in Section 2, the target vehicle is a battery-powered electric vehicle for last-mile
mobility. Once the target vehicle is charged, the mission of the target vehicle is to drive the
predefined for root without additional charge of the battery. So, the simulation condition
assumes that the battery of the vehicle is depleted to 20% of SOC. Here, the initial value
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of the input terminal voltage of the driving system was 82 V. The conditions employed for
the simulation are as follows: a case with an uniform distribution, a case with an optimal
distribution of the driving torque based on a nominal voltage of 90 V, and a case with the
optimal distribution of the driving torque reflecting the real-time voltage of the input terminal.
The following additional conditions were assumed for the simulation: inverter and decelerator
efficiencies of 95% and an average electric component load of 400 W.

Table 6 presents the analysis results. The designed vehicle was considered in the
driving simulation carried out based on the Manhattan Bus Cycle. In the case of uni-
form distribution of the required driving torque by the driver to both the front and rear
wheels, the energy efficiency was 4.58 km/kWh, whereas the energy efficiency for the
case where the optimal driving torque distribution was applied to both the front and rear
wheels without considering the effect of the input terminal voltage was 4.83 km/kWh.
This indicates an increase in efficiency of approximately 5.3%, compared to the uniform
distribution. Furthermore, for the final case of applying the optimal distribution of the
driving torque to both the front and rear wheels while considering the input terminal
voltage (as presented in this study), the energy efficiency was found to be 4.86 km/kWh,
indicating an improvement of approximately 6.0% compared to the case with uniform
distribution. This shows that an additional 0.7% improvement in the energy efficiency was
achieved by taking the input terminal voltage into account.

Table 6. Simulation results.

Test Case SOCstart [%] Vdclink,start [V] J [kJ]
Energy Efficiency

[km/kWh]
Benefit [%]

Uniform distribution 20 82 2609.60 4.58 -

Optimization@Vnorm 20 82 2477.60 4.83 +5.3

Optimization@Vdclink 20 82 2380.60 4.86 +6.0

Figure 15 shows the operating points of the front and rear wheels under the conditions
of the three simulations listed in Table 6. Due to the uniform distribution of the driving
torque to the left and right single-axle torque, the left and right sides thereof represent the
operating points of the front-right (FR) and rear-right (RR) wheels. In addition, the operating
points were marked on the efficiency map of the 90 V condition to generalize the marking
of operating points on the efficiency map, despite the fact that the efficiency map varied
with changes in the input terminal voltage. Figure 15a illustrates the uniform distribution of
the driving torque, wherein the operating points of FR and RR are identical. The operating
point in (b) represents the results of allocating the driving torque to the front and rear wheels
according to the driving speed of the vehicle and the driving torque required by the driver
by following (b) presented in Figure 11. Meanwhile, (c) represents the results of applying
the driving torque derived by applying the method presented in Figure 10, according to
varying the input terminal voltage between (a) and (b) in Figure 11, to both the front and
rear wheels. Altogether, the operating points of (b) and (c) in Figure 15 appear to be similar
to each other. As illustrated in Figure 15c, the operating point varied with the application of
the optimal distribution ratio of the driving torque as the input terminal voltage varied. Due
to the accumulation of changes in the operating points, an additional 0.7% improvement in
efficiency was secured.

Figure 16 represents the results of the simulations corresponding to (a)–(c) in
Figure 15. In terms of the distribution ratio, when the input voltage is taken into account, it
is operated at a better efficiency point than the nominal voltage of Vdclink = 90 V (Vnorm) by
delaying transition to the uniform distribution. As a result, the accumulated consumption
of energy decreased, ultimately resulting in an increased final energy efficiency.
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(a) (b) (c) 

Figure 15. Operating points: (a) Uniform distribution, (b) Optimization@Vnorm (90 V), and (c) Optimization@Vdclink.

 
Figure 16. Simulation results.
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6. Conclusions

In this paper, a method for improving the energy efficiency was presented by con-
sidering the input terminal voltage of the driving system of a battery-powered electric
shuttle bus equipped with a decentralized driving system according to the battery’s SOC.
The proposed algorithm was verified by conducting simulations of the vehicle driving
efficiency according to the Manhattan Bus Cycle. The conclusions are as follows:

• After presenting the correlation between the requirements of the power performance
and the driving system’s attributes of a battery-powered electric shuttle bus designed
for last-mile mobility, the performance requirements of the driving system were
specified.

• Furthermore, the design results of the driving motor with the aim of satisfying the
specification of the driving system was presented, and the changes in the efficiency
characteristics according to the varying input voltages were examined by analyzing
the loss characteristics according to the input terminal voltage for the designed driving
motor. The analyses showed that more electricity consumption was needed to generate
an identical output power with a reduced input voltage, indicating the simultaneous
increase in copper loss and decrease in the efficiency of the driving motor.

• To improve the energy efficiency of a battery-powered electric shuttle bus equipped
with a decentralized driving system, an algorithm an algorithm that can allocate the
driving torque in real-time considering the input terminal voltage was proposed. By
applying the proposed algorithm, the effect on efficiency was verified by performing
a driving simulation of the vehicle along the Manhattan Bus Cycle at low voltage
condition (SOC 20%). When the proposed algorithm is applied, the fuel economy
is 4.86 km/kWh, and the efficiency of +6.0% is improved compared to the value of
4.58 km/kWh obtained by uniformly distributing the driving torque to the front and
rear wheels (Uniform). Furthermore, an additional efficiency gain of +0.7% was shown
compared to the value of 4.83 km/h obtained with the algorithm that allocates the
driving torque based on the nominal voltage level (Vnorm = 90 V) without taking the
input terminal voltage into account. This indicates the opportunity for an additional
improvement in efficiency by exploiting the software approach for a battery-powered
electric shuttle bus equipped with an identical driving system on each wheel. It
makes sense because our approach of extending mileage using software, taking into
account the actual voltage conditions of a battery-powered electric shuttle, can be
widely implemented. This concept will be implemented to the real target electronic
control unit based on the 32-bit micro-processor and verified with vehicle test in the
future study.
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Abstract: This paper investigates optimal power management of a fuel cell hybrid small unmanned
aerial vehicle (sUAV) from the perspective of endurance (time of flight) maximization in a stochastic
environment. Stochastic drift counteraction optimal control is exploited to obtain an optimal policy
for power management that coordinates the operation of the fuel cell and battery to maximize the
expected flight time while accounting for the limits on the rate of change of fuel cell power output
and the orientation dependence of fuel cell efficiency. The proposed power management strategy
accounts for known statistics in transitions of propeller power and climb angle during the mission,
but does not require the exact preview of their time histories. The optimal control policy is generated
offline using value iterations implemented in Cython, demonstrating an order of magnitude speedup
as compared to MATLAB. It is also shown that the value iterations can be further sped up using a
discount factor, but at the cost of decreased performance. Simulation results for a 1.5 kg sUAV are
reported that illustrate the optimal coordination between the fuel cell and the battery during aircraft
maneuvers, including a turnpike in the battery state of charge (SOC) trajectory. As the fuel cell is not
able to support fast changes in power output, the optimal policy is shown to charge the battery to the
turnpike value if starting from a low initial SOC value. If starting from a high SOC value, the battery
energy is used till a turnpike value of the SOC is reached with further discharge delayed to later in
the flight. For the specific scenarios and simulated sUAV parameters considered, the results indicate
the capability of up to 2.7 h of flight time.

Keywords: air mobility; fuel cell hybrid aircraft; stochastic optimal control; energy management;
drift counteraction optimal control

1. Introduction

With the growing market for unmanned aerial vehicles (UAVs), a wide range of
industries and organizations, including military, government, industrial, and recreational
users, deploy this technology across the globe [1–3]. Among different types of UAVs,
small unmanned aerial vehicles (sUAVs) [4] are attractive for military, aerial photography,
and environmental monitoring applications due to their small size and flexible operation [5].
Considering the (i) hardware and weight constraints, (ii) limited onboard energy storage,
and (iii) performance requirements for sUAVs, improving their endurance (maximizing
their flight time) is of great importance for extending the duration of their missions, which
could involve surveillance, search and rescue, disaster relief, traffic control, and precision
agriculture, thereby motivating the development of novel propulsion systems and the
implementation of optimal control policies for power and energy management. Among
different propulsion systems for such sUAVs, a hybrid propulsion system consisting of
a polymer electrolyte membrane fuel cell (PEMFC) and a battery has been proposed for
long duration missions, e.g., in [6–9]. Other propulsion systems may incorporate energy
harvesters, such as in [10]. In this paper we focus on novel approaches to the energy
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management of sUAVs through optimal coordination between the PEMFC and battery for
the previously proposed fuel cell hybrid propulsion system.

Rule-based (e.g., thermostat-like on-off control [11]), dynamic programming-based [12],
and model predictive control (MPC) [13] methods have been considered for the energy
management of hybrid aircraft. As in automotive energy management applications [14],
the use of simple rule-based strategies may not provide optimal performance, while the
conventional formulations of MPC and dynamic programming do not directly address
the flight time maximization objective. Furthermore, deterministic variants of MPC and
dynamic programming may require an accurate preview of the propeller power and climb
angle over a long horizon and are computationally demanding if optimization has to be
performed online. Similarly, the Pontryagin maximum principle (PMP)-based guidance
solutions [15] need accurate characterization of the flight environment.

In this paper, we consider a different approach to the problem of endurance maximiza-
tion for a hybrid UAV with a polymer electrolyte membrane fuel cell (PEMFC) based on an
application of stochastic drift counteraction optimal control (SDCOC) [16], which directly
addresses the problem of maximizing the time to constraint violation in a stochastic envi-
ronment. In our case, the objective is to maintain the vehicle flying for a maximum amount
of time by coordinating the fuel cell and the battery to provide the requested propeller
power subject to the limited amount of fuel and battery state of charge (SOC) onboard the
vehicle. The transitions in aircraft climb angle and propeller power are modeled stochasti-
cally by a Markov chain with the transition probabilities determined from historical data
representing typical missions of an sUAV. Then, a control policy that minimizes a cost
functional reflective of expected time-to-violate constraints is determined offline through
value iterations; this control policy is then deployed onboard for the online coordination of
the fuel cell and the battery in the sUAV.

In a preliminary conference paper [17] by the second author of this paper, the applica-
tion of SDCOC for power management of a hybrid sUAV with a direct methanol fuel cell
(DMFC) was considered. While the DMFC is often considered as a suitable power source
for ground vehicles [18] and has certain advantages, PEMFCs are more appealing for air
mobility applications [6,7] due to their relatively lower operating temperature, allowing for
a quick start-up [19], higher efficiency (up to 60% [18,20]) and power density, and higher
safety due to the use of the solid electrolyte [18].

Different from [17], in this paper, we consider the application of SDCOC to the power
management of a hybrid sUAV with a PEMFC rather than a DMFC. To accommodate a
different fuel cell and an sUAV, the fuel cell model is changed and improvements are made
to the models used to compute the propeller power and thrust, as well as the evolution of
the SOC.

More importantly, the lack of the ability of the PEMFC to rapidly change its power
output imposes a stringent operating constraint (rate limit on PEMFC power output),
which was not treated in [17], but is treated in this paper. This rate limit increases the
complexity of the problem as an extra state needs to be introduced in the model and
handled in SDCOC, and it also changes the optimal policies and the optimal response of
the system. For instance, as the fuel cell is not able to support fast changes in power output,
the optimal policy is shown to charge the battery to a turnpike value if starting from a low
initial state of charge value. If starting from a high SOC, the battery energy is used till a
turnpike value of the state of charge is reached with further discharge delayed to a later
phase of the flight. In either case, the high frequency chattering of fuel cell load demand
power in [17], which cannot be supported by the PEMFC, is eliminated.

Additionally, in this paper, the value iterations are implemented in Cython rather
than MATLAB, with an order of magnitude speedup as compared to the MATLAB implemen-
tation. As value iterations are frequently used to solve dynamic programming problems
in different applications and Python is becoming increasingly popular, our results on the
ten-fold speedup with Cython without a substantive increase of the code complexity are
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of reference value to other researchers considering the computational implementation of
dynamic programming.

Furthermore, a discount factor is introduced into the cost function of SDCOC, and its
impact on the convergence speed of the value iterations is illustrated. It is shown that this
discount factor results in the faster convergence of value iterations, but the performance of
the control policy (in terms of exit time) is decreased.

While the SDCOC theory was developed in [16], that reference did not address
the fuel cell or sUAV application studied in this paper. Our approach to representing
motor power demand and climb angle by a Markov chain with a finite number of states
follows [21], which is the first (to the authors’ knowledge) paper proposing the use of
stochastic dynamic programming for automotive powertrain control applications; that
paper also did not address the fuel cell or sUAV application studied in the present paper,
nor the drift counteraction problem formulation.

The remainder of this paper is organized as follows: Section 2 describes the sUAV
sub-systems and their models. Section 3 presents an integrated model of the hybrid system
and defines the problem in a form suitable for SDCOC. Section 4 summarizes SDCOC, and
Section 5 reports the results. Finally, Section 6 presents concluding remarks.

2. Physical Description of the Systems and Model

An sUAV with a series hybrid propulsion system, shown in Figure 1, was chosen
in which the power supplied by the battery and the power supplied by the PEMFC are
combined to meet the propeller motor power demand. The PEMFC uses hydrogen as the
fuel, which is stored in the tank, and air from the atmosphere. A fraction of the energy
generated by the PEMFC can be used to charge the battery. The fuel cell pack and battery
pack are sized large enough so that they are able to meet the sUAV’s mean power demand
individually, should either one not be operating properly.

Figure 1. A diagram of a fuel cell-powered series hybrid small UAV (sUAV).

The model used in this paper for generating the SDCOC policies captures the battery’s
SOC dynamics, the fuel cell’s hydrogen rate dynamics, and the fuel cell load power
dynamics. Thus, the states of this model are the SOC, the mass of hydrogen remaining in
the gas tank, and the fuel cell load demand power. The motor power of the sUAV and climb
angle are treated as operating variables, and the SDCOC controller determines changes
in the fuel cell load demand power. This system level model has been implemented by
combining component submodels and characterizations available from the literature; our
methodology is generic and can accommodate changes in these component models.

2.1. sUAV Dynamics

A control-oriented dynamic model of the sUAV is used for SDCOC law development.
The sUAV is constrained to a longitudinal flight path in a vertical plane [22]. Table 1
defines the notations for the variables used in the model. Table A1 in Appendix A lists
the model parameter values, partly based on [23–25]. The development of lightweight
electric components (batteries, fuel cells, motors) for sUAVs is an active area of research;
see, e.g., [26,27]. In our model, we assumed that such lightweight components are available
to be consistent with the assumed sUAV’s weight.
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Table 1. List of variables used in the sUAV model.

Variable Description Unit

v Velocity of the sUAV m/s
γ Climb angle deg
T Thrust force N
α Angle of attack deg
L Lift force N
D Drag force N
CL sUAV coefficient of lift \
CD sUAV coefficient of drag \
ρair Air density kg/m3

PsUAV Power required by the sUAV W
N Angular speed of the electric motor RPM
PP Power generated by the propeller W

PP,ideal Ideal propeller power W
ηP Propulsive efficiency \

UM Electric motor driver’s input voltage V
IM Electric motor driver’s input current A
PM Elector motor driver’s input power W
ηM Motor efficiency \

PFC,total Total power of the fuel cell W
PFC,load Load demand power of the fuel cell W

Paux Power required by the auxiliaries W
UFC Single cell voltage V
IFC Single cell current A
iFC Single cell current density A/cm2

Uact Activation polarization V
Uohm Ohmic losses V
Uconc Concentration polarization V
UOC Equivalent open circuit voltage of a single fuel cell V
R′

FC Modified single fuel cell resistance Ω
R̃′

FC Variable defined in Equation (18) Ω · cm2

UB,OC Open circuit voltage of the battery V
SOC Battery’s state of charge \
PB Power of the battery W

SOC0 Initial SOC \
S f Split fraction \
u Control input \

ΔPFC Defined in Equation (25) W
mFR Mass of fuel remaining kg

Using a flat Earth coordinate system, the longitudinal equations of motion of the sUAV
are given by:

v̇ =
Tcos(α)− D

m
− gsin(γ), (1)

γ̇ =
Tsin(α) + L

mv
− gcos(γ)

v
, (2)

where v is the velocity of the sUAV and γ is the climb angle. The lift L and drag force D are
characterized as:

L =
1
2

ρairv2Sre f CL, D =
1
2

ρairv2Sre f CD, (3)

where CL = CL0 + CL,αα, CD = CD0 + KCL
2. Neglecting vertical acceleration (i.e.,

with L = mg), solving Equations (1) and (2) yields the thrust required by the sUAV,

T =

[(
mv̇ + mgsin(γ) +

1
2

ρairv2Sre f CD0 +
2Km2g2

ρairv2Sre f

)2

+ (mvγ̇ + mgcos(γ)− mg)2

] 1
2

. (4)
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Here, ρair is a function of altitude. The power required by the sUAV is then given by:

PsUAV = Tv. (5)

2.2. Propeller Model

The propeller model is used to relate the torque and angular velocity generated
by the electric motor to the power required by the sUAV and the velocity of the sUAV,
respectively [22]. With the propulsive efficiency given by ηP, the power required to drive
the propeller is:

PP =
PsUAV

ηP
. (6)

According to the disk actuator theory, the ideal propeller power is:

PP,ideal =
1
2

Tv

(
1 +

√
1 +

8T
πρairv2dP

2

)
.

In general, the actual power required would be about 15% greater than this [28], which
means PP = 1.15PP,ideal . Thus, ηP can be calculated as:

ηP =
PsUAV

1.15PP,ideal
=

2

1.15 + 1.15
√

1 + 8T
πρairv2dP

2

. (7)

Combing Equation (7) with (5) and (6) yields:

PP =
1.15PsUAV

2
+

1.15PsUAV
2

√
1 +

8PsUAV

πρairv3dP
2 .

2.3. Electric Motor Model

Electric motors used in sUAV applications exhibit high speed and high torque, as well
as high power-to-weight ratios [29]. Assuming the power factor is equal to unity and the
magnetic losses can be neglected, the output power of the motor is given by:

PP = (UM − IMRM)(IM − IM,0). (8)

The angular velocity of the motor in revolutions per minute (RPM) can be expressed as:

N = (UM − RM IM)KV , (9)

which should be equal to the RPM of propeller N = v
JdP

. From Equations (8) and (9),
the motor current, IM, is:

IM =
PPKV

N
+ IM,0.

The motor power and motor efficiency are given by, respectively,

PM = UM IM, ηM =
PP
PM

.

2.4. Fuel Cell Model

A PEMFC system is the primary power source for the sUAV. The total power generated
by the fuel cell stack is calculated as:

PFC,total = nFCUFC IFC. (10)
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This power must cover the load demand PFC,load and the power required for auxil-
iaries [18], Paux,

PFC,total = PFC,load + Paux, (11)

where Paux is the total power required for the compressor motor, the hydrogen circulation
pump, the humidifier water circulation pump, the coolant pump, the cooling fan motor,
and the bias power, P0. After simplifications, Paux could be written as a function of the fuel
cell current [30],

Paux = P0 + nFCκFC IFC. (12)

The fuel cell current is a function of the current density and the fuel cell area,

IFC = iFC AFC,

where iFC could be obtained by solving the equation,

UFC = Urev − Uact − Uohm − Uconc. (13)

The reversible cell potential Urev is related to the molar specific Gibbs free energy Δg f
and the number of ions passed in the reaction ne [24],

Urev =
Δg f

neF
.

The activation polarization Uact is a result of the energy required to initiate the reaction,
which can be described by the semi-empirical Tafel equation [31–33],

Uact = c0 + c1ln(iFC),

where c0 and c1 depend on temperature. When the current density is small, this equation
can be modified [34] as:

Uact = c0(1 − e−c1iFC ), (14)

where c0 = −5.8 × 10−4T̄ + 0.5736 and c1 = RT̄
neαFC F .

The ohmic losses Uohm are due to the resistance to the flow of (i) ions in the membrane
and in the catalyst layers and (ii) electrons through the electrodes [18],

Uohm = iFCR̃FC, (15)

where R̃FC = RFC AFC.
The concentration polarization Uconc, is given by

Uconc = d0ed1iFC . (16)

With the parameters given in Appendix A, the polarization curve of a single cell is
plotted in Figure 2. In reality, the current density could be controlled within a certain
range. After excluding the very low current densities (iFC < 0.1 A/cm2), (13) could be
linearized [34,35] as:

UFC = UOC − R̃FCiFC, (17)

where UOC is the voltage at which the linearized curve crosses the y-axis, which should
not be confused with Urev.
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Figure 2. Polarization curve for a given PEMFC.

Unlike ground vehicles, the sUAV changes its orientation during the flight, which
would change the inner resistance of the fuel cell by about five times [36] from horizontal
to vertical. To this end, (17) is modified to account for this effect as:

UFC = UOC − R̃′
FCiFC, (18)

where R̃′
FC = R̃FC(1 + k0sin(k1|γ|)). Combining Equation (18) with Equations (10)–(12)

yields:
nFCR′

FC I2
FC − (nFCUOC − nFCκaux)IFC + PFC,load + P0 = 0, (19)

where R′
FC = R̃′

FC/AFC. Overall, IFC can be expressed as:

IFC =
nFC(UOC − κaux)−

[
n2

FC(UOC − κaux)2 − 4nFCR′
FC(PFC,load + P0)

] 1
2

2nFCR′
FC

. (20)

2.5. Battery Model

The battery model represents a pack of Model 21700 lithium polymer battery cells.
The battery pack is assembled in such a way that the cells are connected in series. Accord-
ing to [37], the open-circuit voltage of the battery can be estimated as:

UB,OC = SOC(UB,max − UB,min) + UB,min. (21)

The battery power and the fuel cell load demand power sum up to provide the
electrical power to the motor such that:

PM = PB + PFC,load. (22)

Further, the current drawn from the battery set is obtained by solving:

PB = nB(UB,OC IB − I2
BRB,int), (23)

which should not exceed its maximum discharge current IB,max.
The battery Coulombic efficiency in the battery model is assumed to be 100%. Thus,

the SOC is satisfied as:

SOC(t) = SOC0 −
∫ t

t0

IB(t)
CB

dt. (24)

where t, t0, and SOC0 are the current time, initial time, and initial SOC, respectively.
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3. Hybrid System Model and Problem Formulation

3.1. Hybrid System

The fuel cell load demand power, which will be indicated as PFC in the following
section, is the only variable under control. Due to the output characteristic of the PEMFC,
the change of PFC is chosen to be 5% of its maximum power, which depends on γ according
to (18). The fuel cell load demand power dynamics are then:

PFC(tn+1)− PFC(tn) = u · ΔPFC, (25)

where u ∈ {−1, 0, 1}, ΔPFC = 5%PFC,max, and PFC(tn) is the fuel cell load demand power at
t = tn. Here, three different values of u correspond to decreasing, sustaining, or increasing
PFC. According to Equation (19), the maximum load cell power can be calculated as:

PFC,max =
4nFCR′

FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′
FC

. (26)

Using Equations (25) and (26), the final expression representing the fuel cell load
demand power dynamics is given by:

dPFC
dt

= u · 5%
4nFCR′

FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′
FC

. (27)

The SOC dynamics are obtained by differentiating both sides of (24) with respect to time,

dSOC
dt

= − IB
CB

. (28)

Combing (28) with (21) and (23) yields,

dSOC
dt

=
−nBUB,OC +

√
(nBUB,OC)2 − 4nBRB,intPB

2nBRB,intCB
, (29)

where UB,OC = SOC(UB,max − UB,min) + UB,min.
The motor power and battery power are related by:

PB = S f PM, (30)

where S f is referred to as the split fraction, which could be calculated from (22) as:

S f =
PM − PFC

PM
.

Using Equations (29) and (30), the final expression representing the SOC dynamics is
given by:

dSOC
dt

=
−UB,OC +

√
(UB,OC)2 − 4RB,intS f PM

nB

2RB,intCB
, (31)

where the internal resistance RB,int and the battery capacity CB are assumed to be con-
stant [38].

The mass of remaining fuel dynamics is obtained from Faraday’s law as:

dmFR
dt

= −nFC IFC
neF

Mh, (32)

where IFC is calculated from PFC as shown in (20).
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Equations (25), (29), and (32) are the final form of the state equations used in this
study, where the states of the system are x = [SOC, MFR, PFC], the control is u ∈ {−1, 0, 1},
the outputs of the system are y = [S f , PB], and the operating variables are w = [PM, γ].
These operating variables are treated as measured disturbances in the model.

Based on the above modeling assumptions and parameters in Table A1, the maximum
fuel cell output power is 795 W at γ = 0 deg, 496.14 W at γ = ±10 deg, and 335.71 W at
γ = ±20 deg. The theoretical maximum power for the battery series (of eight batteries) is
2940 W, due to the limitation of the discharge current (35 A); the maximum power of the
battery is 1176 W at any climb angle.

3.2. Problem Formulation

The forward Euler method is used in this paper to approximate the time derivatives.
During each time segment Δt, the motor power of the sUAV is w1 and the climb angle is
w2.

The following updated equations approximately model the sUAV hybrid propul-
sion system:

SOC(tn+1) = SOC(tn) +
dSOC

dt
(tn)Δt,

MFR(tn+1) = MFR(tn) +
dMFR

dt
(tn)Δt,

where SOC(tn) and MFR(tn) are the state of charge and the mass of hydrogen remaining
at t = tn.

The system is controlled by the change of the fuel cell load demand power ΔPFC at
each discrete time instant. Thus, the fuel cell power is modeled as:

PFC(tn+1) = PFC(tn) + uΔPFC(tn).

The motor power and climb angle are typically unknown a priori. In this paper,
a Markov chain model is used to describe the evolution of w1 and w2 with the transition
probabilities identified from the historical data. Once particular w1 and w2 values are
encountered, a prediction of their probability distribution over the next time segment will
be made using the Markov chain model.

The objective of the stochastic endurance maximization problem is to determine a
control law that maximizes the time the sUAV can travel before the system states exit a
prescribed set,

G =
{
(SOC, MFR, PFC) : SOCmin ≤ SOC ≤ SOCmax,

MFR,min ≤ MFR ≤ MFR,max, 0 ≤ PFC ≤ PFC,max

}
. (33)

The constraints on the SOC and MFR in Equation (33) reflect the minimum and maxi-
mum values of the battery state of charge and the mass of fuel, respectively. The constraints
on PFC are reflective of the fact that the fuel cell load demand power cannot (i) exceed the
maximum power of the fuel cell and (ii) be negative.

The optimal control policy developed in this paper through the application of DCOC
specifies the change in fuel cell load power over one step, ΔPFC(t) = PFC(t + 1)− PFC(t),
as a function of SOC(t), the mass of hydrogen fuel left, MFR(t), and the current fuel cell
load power, PFC(t). The battery power complements fuel cell power in matching propeller
requested power.

125



Energies 2021, 14, 1304

3.3. Markov Chain Modeling

A Markov chain model [39] is used to represent the evolution of w (in our case,
w = [w1, w2]). The transition probabilities of the Markov chain are defined as:

pij = prob{w(tn+1) ∈ Wj |w(tn) ∈ Wi}, (34)

where Wi and Wj (i, j = 1, · · · , N) are cells partitioning the feasible range of the operating
conditions. The state dependence of the transition probabilities adds flexibility in reflecting
the typical motor power and climb angle profiles of an sUAV.

The pij’s can be obtained from the statistical analysis of the historical flight data,

pij =
Mij

Mi
, (35)

where Mij is the total number of transitions from the cell Wi to the cell Wj (i.e., w(tn) ∈
Wi, w(tn+1) ∈ Wj), while Mi is the total number of transitions from Wi to any other cell,
including Wi [21].

4. Control Law Construction

Here, we adopt the SDCOC framework from [16], which is applied to a discrete-time
model with the following form,

x(tn+1) = f (x(tn), u(tn), w(tn)), (36)

where x(tn) is the state vector, u(tn) is the control vector, and w(tn) is the vector of
operating variables, which is not known until the time instant tn. The system has both
control constraints and state constraints imposed as u(tn) ∈ U and {x(tn), w(tn)} ∈ G,
respectively, where U and G are specified sets. A Markov chain with a finite number of
states is used to represent transitions in w(tn) ∈ W = {wp : p ∈ P}. Here, P is the size
of the grid for w. The transition probability from w(tn) = wi ∈ W to w(tn+1) = wj ∈ W
is denoted by pij, expressed in (34). In a discounted variant of SDCOC, the objective is
to determine a control function u(x, w) such that, with u(tn) = u(x(tn), w(tn)), a cost
functional of the form,

Jx0,w0,u = Ex0,w0

[
τx0,w0,u(G)−1

∑
t=0

δt · 1

]
, (37)

is maximized. Here, τx0,w0,u(G) ∈ Z
+ represents the first time instant when the trajectories

of x(tn) and w(tn), which are denoted by {xu, wu} and result from applying the control
u(tn) = u(x(tn), w(tn)) with values in the set U, exit the prescribed compact set G. δ is a
discount factor [40]. For δ = 1, (37) maximizes the exit time, i.e., the time till the prescribed
constraints become violated. The use of the discount factor 0 < δ < 1 facilitates faster
convergence of the value iterations. Note that {xu, wu} is a random process, τx0,w0,u(G)
is a random variable, and Ex0,w0 [·] denotes the conditional expectation given the initial
values of x and w.

To solve (37), the value iterations approach is used, which produces a sequence of
value function approximations, Vn, at specified grid-points x ∈ {xk : k ∈ K},

V0(xk, wi) ≡ 0,

Vn(xk, wi) = max
um ,m∈M

{
∑
j∈J

Fn−1( f (xk, um, wi), wj) · pij · δt + 1

}
,

where u ∈ {um : m ∈ M} is a specified grid for u. Here, K and M are the size of
the grid for x and u, respectively. In each iteration, once the values of Vn−1 at the
grid-points have been determined, linear or cubic interpolation is employed to approx-
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imate Vn−1( f (xk, um, wi), wj) as Fn−1(x, wi) = Interpolate[Vn−1](x, wi), if (x, wi) ∈ G,
and Fn−1(x, wi) = 0, if (x, wi) /∈ G. A termination criterion of the form |Vn(x, wi) −
Vn−1(x, wi)| ≤ ε for all x ∈ {xk : k ∈ K} and i ∈ P, where ε > 0 is sufficiently small,
is used.

Once an approximation of the value function, V∗, is available, an optimal control law
is determined as:

u∗(x, wi) ∈
{

u : V∗(x, wi)− ∑
j∈J

V∗( f (x, u, wi), wj) · pij · δ − 1 ≤ ε

}
.

5. Control Law Computations and Results

5.1. sUAV Configuration and Model Parameters

The model was parameterized for a 1.5 kg sUAV [23] that can be used for aerial
photography and environmental monitoring applications. The minimum and maximum
SOC values were set to SOCmin = 0.2 and SOCmax = 0.8. The minimum and maximum
values of MFR were set as MFRmin = 2 g and MFRmax = 9 g. For the value iterations,
the SOC grid was chosen with a step size of 0.05, and the MFR grid was chosen with a step
size of 0.5 g. The grid for the control variable u was set as {−1, 0, 1}.

The transition probabilities for the operating variables (motor power and climb angle)
were obtained from the time histories of the sUAV motor power and climb angle using (35)
and assuming a time step Δt = 1 s. These time histories were based on a scenario in which
an sUAV follows a moving ground vehicle that sUAV operators are interested in monitoring.
In this scenario, the ground vehicle, and consequently the sUAV, is assumed to be traveling
with the velocity profile defined by concatenating the EPA Highway Cycle [41] nine times.
For the sUAV, the speed profile is modified to remain above the stall speed while avoiding
extreme acceleration values.

The climb angle time history, shown in Figure 3, was obtained from the Google Earth
elevation profile for a path from Monroe, West Virginia, to Princeton, West Virginia, with
the help of GPS visualizing software [42]. See [43] for the assessment of the accuracy of
such extracted profiles.

Figure 3. Time histories of the sUAV climb angle.

Figure 4 provides the time histories of the sUAV motor power calculated based on
the equations in Section 2.3. The trajectories in Figures 3 and 4 were used to compute the
transition probabilities.
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Figure 4. Time histories of the sUAV motor power.

5.2. Control Law Computation

Cython was used for control law computations as it is more efficient than MATLAB in
handling nested for loops and two-dimensional interpolation. In our numerical experi-
ments with dynamic programming, Cython was about 10 times faster than MATLAB.

To further speed up the value iterations, a discount factor was introduced. When
testing the effect of the discount factor on the optimal policy, a zero climb angle (γ = 0)
was assumed, which means that the only operating variable was the motor power. Table 2
shows the average exit time based on 100 random simulations for discount factors from 0.91
to 0.99. The stopping criterion was chosen with ε = 10−10 for all δ. Computations were
performed on a Hasee K780G-i7 laptop with a CORE i7-4710MQ (2.5–3.5 GHz) processor
and 24 GB of RAM.Note that the number of iterations and the computing time decrease
as the discount factor decreases, but so does the exit time. The discount factor δ = 0.95
was ultimately chosen as a compromise between value iteration convergence speed and
solution accuracy. Figure 5 shows that the value iterations with a discount factor of δ = 0.95
converge much faster than those with δ = 1.

Table 2. Average exit time for different discount factor.

δ Number of Iteration Computing Time
(min)

Exit Time with 20% Initial
SOC (s)

Exit Time with 80% Initial
SOC (s)

0.99 2258 830.02 6358.44 9742.99
0.97 753 100.69 6276.18 9716.86
0.95 448 58.27 6221.37 9640.24
0.93 317 39.22 6186.50 9610.22
0.91 244 30.55 6159.65 9602.55

Figure 5. The effect of the discount factor in the value iteration approach.
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5.3. Endurance Maximization Results

We used ε = 10−10 in the stopping criterion for the value iterations. Figure 6 illustrates
the resulting control policy. Note that when SOC is low, the control policy calls for an
increase in PFC to charge the battery. This is reasonable given that the fuel cell cannot alone
respond rapidly to fast changes in motor power request, and hence, the battery has to be
charged to do so.

Figure 6. A cross-section of the control policy in the endurance maximization problem for
PM = 132.52 W and with (a) γ = 0 deg, PFC = 0 W, (b) γ = 0 deg, PFC = 302.1 W, (c) γ = 20 deg,
PFC = 0 W, and (d) γ = 20 deg, PFC = 302.1 W.

The simulation results are given for three cases in Figures 7–18. The first case (Sce-
nario I) corresponds to a higher initial SOC, and the second case (Scenario II) considers a
lower initial SOC. The third scenario is for a mid-range initial SOC and is used to confirm
the SOC behavior observed in the first two scenarios. In all cases, the initial fuel mass
and initial fuel cell power are the same: MFR,0 = 6 g and PFC,0 = 0 W. The dashed lines in
Figures 8, 12, and 16 indicate the constraints mentioned in Section 5.1. The spikes of power
in Figures 7, 11, and 15 correspond to the time instants when the sUAV starts to accelerate
while the positive and negative spikes of climb angle represent the time when the sUAV
starts to climb or descend.

Figure 7. sUAV PM and γ versus time, Simulation Scenario I.
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Figure 8. SOC and remaining MFR versus time, Simulation Scenario I; dashed lines show constraints.

Figure 9. Fuel cell load demand power and split fraction versus time, Simulation Scenario I.
The dashed and dashed-dotted lines in the top sub-figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.

Figure 10. Battery power, Simulation Scenario I.
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Figure 11. sUAV PM and γ versus time, Simulation Scenario II.

Figure 12. SOC and remaining MFR versus time, Simulation Scenario II; dashed lines show constraints.

Figure 13. Fuel cell load demand power and split fraction versus time, Simulation Scenario II.
The dashed and dashed-dotted lines in the top figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.
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Figure 14. Battery power, Simulation Scenario II.

Figure 15. sUAV PM and γ versus time, Simulation Scenario III.

Figure 16. SOC and remaining MFR versus time, Simulation Scenario III; dashed lines show constraints.
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Figure 17. Fuel cell load demand power and split fraction versus time, Simulation Scenario III.
The dashed and dashed-dotted lines in the top figure indicate the maximum PFC with |γ| = 0 deg
and |γ| = 20 deg, respectively.

Figure 18. Battery power, Simulation Scenario III.

Figures 7–10 illustrate the closed-loop response for the first simulation scenario.
The initial SOC is 0.8, and it decreases rapidly until it reaches a value of about 0.5. Then, it
stays near this value between 2000 and 5000 s. Finally, when the mass of hydrogen reaches
a relatively low value, the SOC starts to decrease and continues to decrease until the con-
straints are violated. The fuel cell load demand power keeps a relatively low value during
the whole flight, and the mean value of the split fraction is negative during the 2000 to
5000 s time interval, which is the period when the SOC is kept at about 0.5.

Figures 11–13 illustrate the closed-loop response for the second simulation scenario.
The initial SOC is 0.2. The battery is charged until it reaches a value of about 0.5 to enable
the battery to sustain rapid propeller power fluctuations. Then, the SOC stays near that
value of 0.5 between 500 and 1500 s. Finally, when the mass of hydrogen reaches a relatively
low value, the SOC starts to decrease and continues to decrease until the constraints are
violated. The fuel cell load demand power increases rapidly at first to charge the battery,
then it keeps a relatively low value during the rest of the flight. The mean value of the
split fraction is negative from the beginning to about 1500 s, which is the period when the
battery is charged from SOC = 0.2 to about 0.5.

According to the results from Scenarios I and II, a turnpike behavior of the battery
SOC is observed, with the SOC converging to about 0.5 and staying at that value for a
while before decaying. To confirm this turnpike behavior, we additionally considered
the responses with the developed policy to the initial SOC of 0.6. These are shown in
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Figures 15–18. The exit times for Scenarios I, II, and III were, respectively, 9890 s, 6019 s,
and 8478 s.

6. Conclusions

This paper considers an endurance maximization problem for a small unmanned aerial
vehicle (sUAV) with a hybrid propulsion system consisting of a polymer electrolyte fuel
cell and a battery, both driving an electric motor connected to a propeller. A stochastic drift
counteraction optimal control (SDCOC) approach is employed to develop control policies
for optimally coordinating the fuel cell and the battery while enforcing the constraints on
the fuel cell power output rate of change. Cython is used to implement value iterations
and demonstrated an order of magnitude speedup versus MATLAB without increasing the
code complexity, due to its efficiency in handling nested for-loops. Additionally, the use
of a discount factor is shown to significantly speed up the value iterations at the price of
decreased performance. The results illustrate the effectiveness of the SDCOC strategy in
regulating the charging behavior of the battery by the fuel cell to provide the capability to
respond to rapidly varying motor power demand.

The proposed approach based on SDCOC is particularly suitable for handling stochas-
tic disturbances and can be applied to sUAVs exposed to headwinds with the headwind
modeled as a stochastic disturbance. Accounting for such wind disturbances, extensions to
include thermal dynamics, systematic and comprehensive comparison with other energy
management approaches and propulsion system choices, the systematic study of the ro-
bustness to model uncertainties, as well as actual flight experiments represent directions
for continuing research. In particular, our study of the discount factor impact on the
computation time and exit time suggests that the flight time is sensitive to the choice of the
energy management strategy; our approach based on SDCOC is optimal in the sense of
maximizing expected flight time within a stochastically modeled environment.
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MPC Model predictive control
PEMFC Polymer electrolyte membrane fuel cell
RPM Rotations per minute
UAV Unmanned aerial vehicle
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Appendix A

The parameters of the sUAV model described in the paper are listed in Table A1.

Table A1. Parameters used in the sUAV model.

Variable Description Value Unit

m Mass of the sUAV 1.5 kg
g Gravitational acceleration 9.81 m/s2

Sre f Wing area 0.09 m2

CD0 sUAV coefficient of drag at α = 0 0.1038 \
K Coefficient in Equation (3) 0.0637 \
dP Diameter of the propeller 0.24 m
J Advance ratio 0.37 \
RM Motor resistance 0.105 Ω
IM,0 Motor current at zero load 1.3 A
KV Motor speed constant 1490 RPM/V
nFC Number of single cells in series 12 \
P0 Bias power of the fuel cell 5 W
κaux Coefficient in Equation (12) 0.05 V
AFC Fuel cell area 200 cm2

Δg f Molar specific Gibbs free energy 237.3 kJ/mol
ne Number of ions passed in reaction 2 \
F Faraday constant 96,485 C/mol
T̄ Temperature of the reaction 333.15 K
αFC Charge transfer coefficient 0.5 \
R Universal gas constant 8.314 J/(mol · K)

RFC Ohmic resistance defined in Equation (15) 0.0024 Ω
d0 Coefficient in Equation (16) 3e-5 V
d1 Coefficient in Equation (16) 8 cm2/A
k0 Coefficient in Equation (18) 4 \
k1 Coefficient in Equation (18) 1 \
Mh Molecular weight of H2 2 g/mol
nB Number of batteries in series 8 \
UB,min Open circuit voltage when SOC = 0 2.5 V
UB,max Open circuit voltage when SOC = 1 4.2 V
RB,int Battery internal resistance 0.012 Ω
CB Standard discharge capacity 14400 C
IB,max Maximum discharge current 35 A
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Abstract: Tire normal forces are difficult to measure, but information on the vehicle normal force can
be used in many automotive engineering applications, e.g., rollover detection and vehicle and wheel
stability. Previous papers use algebraic equations to estimate the tire normal force. In this article,
the estimation of tire normal force is formulated as an input estimation problem. Two observers are
proposed to solve this problem by using a quarter-car suspension model. First, the Youla Controller
Output Observer framework is presented. It converts the estimation problem into a control problem
and produces a Youla parameterized controller as observer. Second, a Kalman filter approach is
taken and the input estimation problem is addressed with an Unbiased Minimum Variance Filter.
Both methods use accelerometer and suspension deflection sensors to determine the vehicle normal
force. The design of the observers is validated in simulation and a sensitivity analysis is performed
to evaluate their robustness.

Keywords: normal force estimation; unbiased minimum variance estimation; controller output
observer; youla parameterization

1. Introduction

The automotive industry has made significant improvements in vehicle safety and
driving performance in the last decades thanks to active control systems. These control
systems rely on the measurement and estimation of several parameters and signals such as
the wheel slip, sideslip angle. Tire normal forces can also be used to improve the vehicle
safety and performance. Indeed, the longitudinal and lateral tire forces are coupled with
the wheel loads [1]. Cho [2] showed that the estimate of tire forces, including tire loads,
can be used to implement Global Chassis Control (GCC) systems and to further improve
vehicle stability. Another practical application of tire normal force estimation is roll-over
avoidance and understeering or oversteering prevention [3].

Tire loads are permanently changing when the vehicle is moving. Loads are transferred
between wheels during accelerating, braking, and cornering. The position of the center
of gravity, the road grade and irregularities on the road also impact the distribution of
wheel normal forces making the estimation task a complex problem [4]. Due to the lack of
low-cost sensors to measure the vehicle vertical force, a common approach is to consider
the normal forces as constant parameters or to use an algebraic expression based on the
vehicle longitudinal and lateral accelerations [5]. These open-loop estimation schemes,
albeit simple, are not able to give a precise representation of the normal forces.

Doumiati et al. [6,7] provided a cascaded observer to estimate the tire normal forces.
The first step of the algorithm estimates the lateral load transfer using a linear Kalman filter
from the suspension deflection and accelerometer measurements and an estimate of the
vehicle mass. A second observer is then used to infer the normal tire force from the lateral
load transfer and a formulation of the normal force algebraic expression with coupling
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between longitudinal and lateral acceleration. This yields an Extended Kalman Filter.
Jiang [8] extended the application of this estimation framework by adding the vehicle pitch
dynamics to take in account the road angle and the road irregularities.

Ozkan [9] used a Controller Output Observer (COO) to estimate lateral and normal tire
forces. The estimation model is a half-car model which includes the vehicle lateral, heave,
roll, and yaw motion. The model does not include pitch dynamics. Moreover, it assumes a
constant vehicle velocity and a perfectly flat road. The COO has been successfully used
in other automotive applications, e.g., to estimate the vehicle states [10] or to estimate
longitudinal tire forces [11].

The goal of the paper is to provide a framework capable of delivering a reliable
estimate of the wheel normal forces using low-calibration estimation methods. Contrary
to previous work, the estimation of the wheel force will not be derived from algebraic
expressions which estimate the normal forces from the vehicle acceleration. Instead, we
intend to integrate the suspension dynamics in the normal force estimator to truly capture
the tire force generation using suspension deflection sensors and accelerometers. This
manuscript also illustrates the application of a recently developed estimation methodology
called Youla Controller Output Observer (YCOO). This new approach is compared to the
established method for signal estimation: Kalman filtering. Since the estimation problem
is not formulated as a state estimation but an input estimation problem, the Unbiased
Minimum Variance Filter (UMVF) is used in place of the standard state-estimation Kalman
Filter. The comparison between the two estimation methods is based on several criteria:
estimation performance, robustness to uncertainties, and ease of design. The performance
is evaluated based on simulation results. In these simulations, we cover the major ways
normal force can be generated (load transfer, disturbance from the road profile, and inclined
road). The robustness is analyzed by conducting a sensitivity study of the suspension
parameters, by introducing discrepancies between the estimation model and the simulation
model, and by introducing noise in the measurements. Finally, by considering the different
requirements to implement the YCOO and UMVF and the different approaches used by
each observer (the UMVF uses a stochastic approach in the time domain while the YCOO
relies on a deterministic approach in the frequency domain), we aim to highlight that the
YCOO estimation framework is easily implementable with a low-calibration burden to
guarantee robustness.

The following section analyzes a vehicle model and provides a model that can be used
for closed-loop estimation. Sections 3 and 4 introduce the YCOO and UMVF estimation
frameworks. As the normal force estimation is dependent on the vehicle mass estimation
problem, Section 5 explains the computation of the vehicle mass estimate, which is used by
the two frameworks. Finally, both the YCOO and UMVF are tested in simulation.

2. System Modeling

The generation of vertical forces of a rigid vehicle is linked with the compliance of the
suspensions [12]. To develop the estimation frameworks and evaluate the effectiveness,
a vehicle model with realistic heave, roll, and pitch dynamics is indispensable. Fortunately,
the literature is filled with such vehicle models. Shim [13] described a 14 degrees of
freedom vehicle model and validated it against the commercial vehicle models Carsim and
ADAMS/Car. Figure 1 shows a schematic of the vehicle model. The degrees of freedom
are the longitudinal, lateral, heave, roll, pitch, and yaw motion of the chassis, the vertical
dynamics of each unsprung masses, and the wheels spin. The model assumes rigid bodies
for the sprung and unsprung masses and neglects the compliance between the chassis and
the unsprung mass in the vehicle longitudinal and lateral directions.

The model described in Figure 1 gives an accurate representation of the vehicle.
However, it is highly complex which limits its usage to implement vehicle observers.
Before beginning the observer development, a linear system analysis of the vehicle is
performed. Its purpose is to determine the cross-coupling effects between the input–output
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pairs to facilitate the observer design. The inputs of the model are the tire loads and the
outputs are the suspension deflections.

kt

ksbs

kt

ksbs kt

ksbs

kt

ksbs

xy
zlr

l fwl

wr

Figure 1. Fourteen degrees of freedom vehicle model. The x, y, and z axes indicate, respectively,
the longitudinal, lateral, and vertical directions of the vehicle. Parameters ks, bs, and kt denote the
suspension stiffness, damping, and the tire stiffness.

The coupling between input-output pairs of the plant G is analyzed using the Relative
Gain Array (RGA) Λ = (G(0)−1)T × G(0) where G(0) is the plant gain [14]. Since
RGA is a linear analysis tool, the model mapping the tire loads fFLz, fFRz, and fRLz,
fRRz to the suspension deflections qFLs, qFRs, qRLs, and qRRs must first be linearized. The
operating point is chosen to be a steady-state cornering such that the vehicle velocity is
vx = 90 km h−1 and the vehicle lateral acceleration is ay = 0.4 g (i.e., the vehicle lateral
velocity is vy = 0.2 m s−1; the heave velocity is vz = 0 m s−1; and the roll, pitch, and roll
angular velocities are wx = wy = 0 rad s−1 and wz = 0.15 rad s−1). The matrices Λ1 and
Λ2 correspond, respectively, to the RGA of a vehicle without an anti-roll bar and with an
anti-roll bar on the rear axle. The inputs are uT =

[
fFLz fFRz fRLz fRRz

]
.

Λ1 =

0.9560 −0.0527 0.0474 0.0493
−0.0527 0.9604 0.0452 0.0471
0.0474 0.0452 0.9497 −0.0423
0.0493 0.0471 −0.0423 0.9459

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦, Λ2 =

0.9560 −0.0527 0.0474 0.0493
−0.0527 0.9604 0.0452 0.0471
0.0478 0.0457 1.2118 −0.3053
0.0488 0.0466 −0.3043 1.2089

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (1)

The matrix Λ1 is almost equivalent to an identity matrix which indicates that there is
almost no coupling between the four corners of the vehicle without anti-roll bar. Concerning
the vehicle equipped with anti-roll bar, the two axles decoupled as the bottom left and
upper right 2 × 2 submatrices of Λ2 are almost zero. However, the anti-roll bar introduces
a coupling between the left and right rear normal loads fRLz and fRRz, as can be seen in the
bottom right corner of Λ2.

We assume that the vehicle is not equipped with an anti-roll bar. Thus, the wheel load
of each corner of the vehicle can be estimated individually. A simpler model (Figure 2) is
introduced to model the suspension of each wheel of the vehicle. The estimation model is
a quarter-car model [15] with two inputs: a force applied on the sprung mass to represent
the load transfer and another force which represents the tire load. In practice, the anti-roll
bar of the vehicle should be considered and the coupling between the left and right normal
forces should not be ignored. This coupling would appear as a load transfer from one side
to the other when the two wheel loads are not equal, e.g., during cornering. The anti-roll
bar would prevent the use of a quarter-car model and require a half-car model.

141



Energies 2021, 14, 2378

ms

mu

ks bs

Δ fz

fz

1

Se: Δ fz + msg

I: mu

0 1

C:
1
ks

R: bs1I: ms

Se: fz − mug

ṗs
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Figure 2. Quarter-car model of the suspension with wheel normal force and load transfer as inputs.

The bond graph of the model in Figure 2 yields the equation of motion of the quarter-
car model

ṗs = ksqs + bsq̇s − msg − Δ fz (2)

ṗu = −ksqs − bsq̇s − mug + fz (3)

q̇s =
pu

mu
− ps

ms
(4)

where ps and pu are the sprung mass and unsprung mass momentum, qs is the suspension
deflection, fz is the wheel normal load, Δ fz represents the load transfer applied to the
wheel, ks is the suspension stiffness, bs is the damper coefficient, and ms and mu are the
sprung and unsprung masses of the corner of the vehicle. The states of the model are xT =[

ps pu qs
]
. It is assumed that the vehicle is equipped with suspension deflection sensors

and accelerometers on the sprung mass, hence the measurements are yT =
[

ṗs
ms

qs

]
. The

model inputs are uT =
[

fz Δ fz
]
.

The equation of motions of the quarter-car model (Equations (2)–(4)) are not linear but
affine. The constant term due to gravity can be eliminated by translating the states, inputs,
and outputs of the system as follows

x̃T =
[

ps pu qs − msg
ks

]
, ũT =

[
fz − (ms + mu)g Δ fz

]
, and ỹT =

[
ṗs
ms

− g qs − msg
ks

]
(5)

3. Controller Output Observer

The Youla Controller Output Observer, based on the COO framework [9], is a model-
based estimation technique that uses a controller to minimize the error between the mea-
surement and the virtual measured signals of an estimation model. Contrary to the
Luenberger observer, the YCOO does not assume that all system inputs are known; it
is therefore well suited for an input estimation problem. Instead of designing a static
gain controller via pole placement similarly to the Luenberger observer, the YCOO uses
a dynamic controller designed with Youla parameterization [16]. This technique allows
including information about the sensor dynamics and its noise content in the frequency
domain to ensure good robustness and performance. A block diagram of the estimation
concept is given in Figure 3. Measurements y are fed to the YCOO to provide an estimate û
of the signal u. The YCOO is decomposed into two components: an estimation model Ĝp
that maps the estimated signal û to the virtual measurement ŷ and a controller Gc that is
responsible to follow those measurements [17].

The transfer function from the the true signal u and the estimated signal û is given by
(I + Lu)−1GcGp where Lu = GcĜp is the return ratio. If there is no discrepancy between
the estimated plant and the actual one (Gp = Ĝp), then this transfer function corresponds
to the closed-loop transfer function Tu. If the plant has multiplicative uncertainty such
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that Gp = Ĝp(I + Δ), the relation becomes û = (Tu + YΔ)u where Y is the Youla transfer
function. This shows that the YCOO relies on an accurate model of the system. Indeed, to
guarantee good tracking of the measured quantities, Tu ≈ I is needed at low frequencies.
This condition on Tu also constrains the gain of Y to the inverse of the plant gain at low
frequencies since Tu = YGp. If the model is not correct, however, the term YΔ introduces
a steady-state error that cannot be compensated by the observer unless the plant gain
is very high at low-frequency. Moreover, for the nominal system Gp = Ĝp, the transfer
function mapping the sensor noise to the estimation error is also given by Y. Thanks to its
loop shaping approach, the YCOO directly addresses the trade-off between noise rejection,
bandwidth, and robustness to high-frequency multiplicative uncertainties. Indeed, a higher
bandwidth would increase the gain of Y at higher frequency, making the estimation more
sensitive to noise and less robust to multiplicative uncertainties.

Plant Gp

Estimation
model Ĝp

Controller Gc

u

−
ŷ

y

û

Figure 3. Block diagram of the YCOO estimation concept.

The quarter-car model described in the last section is used as the estimation model
Ĝp. The Youla parameterization technique is applied to design the controller Gc from the
estimation model. The plant model can be written as a transfer function Ĝp = P

δ mapping
the signals û to ŷ.

Ĝp =

[ ṗs
fz

ṗs
Δ fzqs

fz

qs
Δ fz

]
=

1
msmus2 + (ms + mu)bss + (ms + mu)ks

[
ks + bss −(mus2 + bss + ks)

ms mu

]
(6)

The first step in deriving a controller using the Youla parameterization technique
is to find the Smith–McMillan form MP of the plant Gp such that MP = ULGpUR. The
Smith–McMillan form [18] is useful in multi-variable control as it gives a realization of the
plant in a basis where the plant is decoupled (i.e., its transfer function matrix is a diagonal
matrix). The poles and transmission zeros of the Smith–McMillan form correspond to the
poles and zero of the original system and the unimodular matrices UL and UR describe the
transformation from the original basis to the basis used by the Smith–McMillan form. The
Smith–McMillan form of the plant and its unimodular matrices UL and UR are

MP =

[
1

msmus2+(ms+mu)bss+(ms+mu)ks
0

0 1
msmu

]
, UL =

[
0 1

mu mus2 + bss + ks

]
, UR =

[
0 1

msmu
1

mu
− 1

m2
u

]
(7)

The controller is designed such that the decoupled system is a second-order Butter-
worth filter of unit gain with additional poles to make the controller proper, see Equation (8).
The damping ratio ζ is set to 1√

2
as it offer good trade-off between fast transient and small

oscillations. A large enough bandwidth is necessary for the wheel load estimate to be used
by the control system. Moreover, the frequency response of a suspension mapping the road
disturbance to tire force is shaped as a band-pass filter [12] whose high cutoff frequency
is the wheelhop frequency (typically located at 10 Hz). Thus, to capture the tire force
response, the closed-loop bandwidth should be faster than the wheelhop frequency. The
controller is designed such that ζ = 1/

√
2 and the bandwidth of the closed-loop system is

30 Hz. Singular values of the closed-loop transfer function and of the controller are given
in Figure 4. At frequencies below the bandwidth, Tu is 0 dB and Su has low gain, ensuring
a good tracking. At higher frequencies, the gain of Tu decreases to reject sensor noise and
make the estimate robust against high-frequencies model mismatch.
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MT =
ω2

0
s2 + 2ζω0s + ω2

0

1
(τs + 1)2 (8)

Let MY such that MT = MY MP, the closed-loop transfer function and the controller
transfer function matrix is obtained from the following equations which are derived
from [17]

Tu = UR MTU−1
R (9)

Su = I − Tu (10)

Y = UR MYUL (11)

Gc = S−1
u Y (12)

This yields the controller

Gc =
ω2

0
(s2 + 2ζω0s + ω2

0)(τs + 1)2 − ω2
0

[
mu mus2 + bss + ks
−ms ks + bss

]
(13)

Figure 4. Singular values of the closed-loop transfer function Tu, Su, and Y and of the return ratio Lu,
Gc, and Gp.

The transfer function from the measured signal y to the estimated input û is given

Y =
ω2

0
(τs + 1)2(s2 + 2ζω0s + ω2

0)

[
mu mus2 + bss + ks
−ms bss + ks

]
(14)

Hence, the estimate of the normal force given by the YCOO is

f̂z(s) =
[
mus ×

( ps(s)
ms

+ sqs(s)
)
+ bssqs(s) + ksqs(s)

] ω2
0

(s2 + 2ζω0s + ω2
0)(τs + 1)2

(15)

The same equation can be obtained by combining (3) and (4) and by adding a filter
with unit gain. Moschuk et al. [19] patented a concept to estimate wheel normal force using
only suspension deflection sensors. The invention uses derivative filters to compute the
suspension deflection velocity and the unsprung mass velocity (assuming the sprung mass
vertical acceleration is null). It then uses damper and spring force maps to compute the tire
normal force. Writing the derivative filter as Fd, the estimation in Reference [19] is

f̂z(s) = muFd
(

Fd(qs)
)
+ bs

(
Fd(qs)

)
+ ks(qs) (16)

This is similar to the estimate of the wheel normal force given by the YCOO in (15).
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4. Unbiased Minimum Variance Filtering

The Unbiased Minimum Variance Filter is a variation of the Kalman filter for systems
with unknown inputs. It gives an unbiased (zero-mean error) estimate of the model states
and unknown inputs [20] with the assumption that the system is strongly observable.
Consider the discrete Linear Time-Invariant (LTI) system

xk+1 = Axk + Buk + Hek

yk = Cxk + Duk + Gek
(17)

where xk are the model states, uk the known inputs, and ek the unknown inputs. The
states and inputs of the estimation model are xT

k =
[

ps pu qs − msg
ks

]
, uT

k = ∅, and eT
k =[

fz − (ms + mu)g Δ fz
]
. The LTI system (17) is strongly observable if the matrix Ψ has full

column rank [21] (Gd is the G matrix considering only feedthrough unknown inputs, i.e.,
with all zero-columns removed).

Ψ =

⎡
⎢⎢⎢⎢⎣

C G

CA CH
. . .

...
...

. . . G
CAn−1 CAn−2H . . . CH Gd

⎤
⎥⎥⎥⎥⎦ (18)

Since the first column of Ψ corresponds to the observability matrix, observability is
a necessary condition for strong observability. Unfortunately, the system representing
the quarter-car model with unknown force inputs (Equations (2)–(4)) is not observable.
Indeed, similarity transformation shows that the state associated to the direction (ms p̃s +
mu p̃u) does not produce any observable output. The system is reduced to eliminate
the unobservable states. Moreover, it is necessary to use additional measurements to
make the system strongly observable. The measured signals used by the UMVF is ỹT =[

ṗs
ms

− g qs − msg/ks q̇s

]
. Note that suspension deflection sensors such as linear variable

transformers which defines an electrical signal based on the position of an objected it is
connected to can only measure deflection [22]. The measurement of the suspension relative
velocity q̇s needed by the UMVF requires differentiating the signal qs, which requires
additional signal processing.

Similar to the Kalman filter, the estimated states is computed in two steps. First, the
estimated signals are computed based on the plant model.

x̂k+1|k = Ax̂k|k + Buk (19)

Pk+1|k = APk|k AT + Qk (20)

Second, the gain Lk+1 is computed to guarantee an unbiased estimate of the model states.

R̃k+1 = CPk+1|kCT + Rk+1 (21)

Φk+1 =
[−G CH

]
(22)

Ωk+1 =
[
0n×p H

]− Pk+1|kCT R̃−1
k+1Φk+1 (23)

Lk+1 = Pk+1|kCT R̃−1
k+1 − Ωk+1(Φ

T
k+1R̃−1

k+1Φk+1)
−1ΦT

k+1R̃−1
k+1 (24)

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − Cx̂k+1|k − Duk+1) (25)

Pk+1|k+1 = Lk+1R̃k+1LT
k+1 − Pk+1|kCT LT

k+1 − Lk+1CPT
k+1|k + Pk+1|k (26)

with n the number of states and p the number of unknown input ek. Given an unbiased
estimate x̂k|, Palanthandalam-Madapusi [23] showed that an unbiased estimate of unknown
inputs can be obtained from the following equations
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êk = H†Lk+1(yk+1 − Cx̂k+1|k − Duk+1) (27)

êk = G†(yk − Cx̂k|k − Duk) (28)

where † denotes the Moore–Penrose pseudo-inverse. Computing the unknown inputs
using Equations (27) and (28) guarantees that E[êk] = G†GE[ek] and E[êk] = H† HE[ek],
respectively. If H or G have full column rank, then this translates to E[êk] = E[ek]. In the
general case where both H and G are not full column rank, it is necessary to combine
Equations (27) and (28) to compute an unbiased estimate êk. In this article, we propose to
compute the unknown input by solving a linear system. Let VT

H and VT
G be the matrices of

left eigenvectors associated to non-zero eigenvalues of H† H and G†G. The unknown input
is the solution of:

[
VT

H
VT

G

]
êk =

[
VT

H H†Lk+1(yk+1 − Cx̂k+1|k − Duk+1)

VT
G G†(yk − Cx̂k|k − Duk)

]
(29)

Without loss of generality, we can assume that rank
[
HT GT] = p, and it is possible

to obtain at least p left eigenvectors of H† H and G†G associated to non-zero eigenvalues.

Therefore, the matrix
[

VT
H

VT
G

]
has full column rank. Taking the mean of (29) yields

[
VT

H
VT

G

]
E[êk] =

[
VT

H
VT

G

]
E[ek] (30)

Since the matrix has full column rank, this guarantee that E[êk] = E[ek], i.e., êk is an
unbiased estimate of ek.

5. Vehicle Mass Estimation

Both observers require knowledge of the vehicle mass and the location of the center
of gravity. Indeed, the estimate of signals ũ from the observer, as given in (5), directly
depends on the vehicle mass. The static wheel load must be added to this estimate to
compute the wheel load. This section presents a simple algorithm to obtain the static load
of each wheel. More elaborate algorithms could be applied [24].

Algebraic expressions can be used to describe the wheel load distribution in quasi-
steady-state.

fijz = f 0
ijz ± Δ f x

j ax ± Δ f y
i ay, (i, j) ∈ {F, L} × {L, R} (31)

where the static load and the load transfer terms are

f 0
ijz =

mg(L − lj)(W − wi)

LW
(32)

Δ f x
j =

mh(W − wj)

LW
(33)

Δ f y
i =

mh(L − li)
LW

(34)

Variables wL and wR denote the distance from the center of gravity of the vehicle to
the left and ride sides; W = wL + wR is the track width; lF and lR denote the distance from
the center of mass to the front and rear axles; L = lF + lR is the wheelbase; m is the total
vehicle mass; g is the acceleration of gravity; h is the height of the center of mass; and ax
and ay are the longitudinal and lateral acceleration due to vehicle acceleration, which also
include the gravity component on the vehicle longitudinal and lateral axes.

The vehicle mass estimation algorithm is run when the vehicle is not moving. The
wheel load fijz corresponds to the force produced by the suspension deflection ignoring

146



Energies 2021, 14, 2378

the weight of the unsprung mass. Hence, at steady-state, the wheel load in Equation (31) is
replaced by fijz = ksqijs. This yields

ksqijz = f 0
ijz ± Δ f x

j ax ± Δ f y
i ay (35)

where ax and ay are the longitudinal and lateral accelerations measured by the sensors
and correspond to the acceleration of gravity in those directions if the vehicle is parked on
a slope.

This corresponds to a system of four equations with four unknowns, m, lF , wL, and
h (replacing lR and wR by l − lF and w − wL with l the vehicle wheelbase and w the axle
track width). Thus, the position of the center of mass and the vehicle mass can be obtained
when the vehicle is not moving.

6. Simulation Results

In this section, the YCOO and UMVF observers developed in Section 3 and 4 are tested
in simulation. The full-car model shown in Figure 1 is assumed to represent the actual
vehicle dynamics and the measured ground-truth signals are extracted from the 14 degrees
of freedom vehicle model. The driving scenarios presented aim to cover all possible ways
to redistribute tire loads, i.e., longitudinal or lateral load transfer, road irregularities, and
sloped road. The results are also compared to the algebraic expression for normal force.

Figure 5a shows the estimates during a braking step of 3000 N m at 1 s from an initial
velocity of 90 km h−1. The two observers provide better estimates than the algebraic expres-
sion which suffers from a steady-state error. Moreover, the two observers are intentionally
not initialized; both observers converge in approximately 0.1 s. Figure 5b shows the estimate
during a double lane change maneuver with a constant velocity of 90 km/h and with
maximum lateral acceleration of 0.6 g. Both estimators provide a good estimate of the
tire vertical force, whereas the estimation from algebraic expression does not capture the
transient response. Figure 5a,b validates the two estimators for situations where the load
transfer is due to longitudinal or lateral acceleration.

(a) Braking step of 3000 N m. (b) Double lane change maneuver with 0.6 g maximum
lateral acceleration.

Figure 5. Vertical tire force estimation on maneuver with longitudinal and lateral only acceleration.

Figure 6 shows the estimate during a bounce sine sweep test. The vehicle velocity
is maintained at 20%. The road profile corresponds to sinusoidal bumps of decreasing
wavelength with decreasing amplitude. The minimum wavelength is 1.6 m. Thus, the road
excites the suspension over the frequency range 0 Hz to 3.5 Hz. The YCOO and the UMVF
are able to estimate the wheel loads. Both observers reproduce the frequency response of
the suspension: the wheel load amplitude increases when the road excitation get closer
to the the suspension frequency (1 Hz obtained when t ≈ 13 s) and remains constant at
frequencies between the suspension and wheelhop frequencies. Since the longitudinal and
lateral accelerations during this maneuver are almost zero, the algebraic expression is not
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able to provide an accurate estimation of the wheel loads. The effect of road slope on the
estimation scheme is investigated in Figure 7. The vehicle is driven from a flat road to a
slope of 20% gradient. The YCOO and the UMVF capture the load transfer due to the road
gradient and provide a good estimate during transient.

Figure 6. Vertical tire force estimation during a bounce sine sweep test. Vehicle speed is constant at
20 km h−1. The minimum wavelength is 1.6 m at t = 20%. The bottom figure shows the road profile.

Figure 7. Vertical tire force estimation when driving on a 20 % slope.

It is not practical to assume that the estimation model is a perfect representation of the
actual suspension. Figure 8 evaluates the sensitivity of the wheel load estimation against
the suspension stiffness. Uncertainties over this parameter result in an offset between the
real and estimated wheel load. This is due to the wrong calibration of the mass estimation
strategy. The load transfer estimate also suffers from uncertainties in the suspension
stiffness. Indeed, without any uncertainty, both observers yield a correct load transfer
of 700 N, but with a 50% stiffer suspension the load transfer estimate is only 450 N. The
robustness against the damping coefficient bs is investigated in Figure 9a. The YCOO and
the UMVF provide the same estimate, thus only the estimate given by the UMVF is shown
in Figure 9a. The estimation is not robust against the damping coefficient in the transient
but it does not affect the steady-state estimation. Similarly, nonlinearities in the damper
map affect the transient of the wheel load estimate when the suspension operates in the
region approximated by the linear damper map. The linear and nonlinear damper maps
are given in Figure 9b.
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Figure 8. Robustness against suspension stiffness during a braking maneuver. Solid lines show the
ground-truth signals and dashed lines show the estimated ones.

(a) Robustness against damping coefficient (top) and
damping map (bottom).

(b) Suspension linear and nonlinear damper
map.

Figure 9. Robustness against uncertainties in the damping map during a braking maneuver. Solid
lines show the ground-truth signals and dashed lines show the estimated ones.

Finally, Figure 10 shows the estimated signals obtained with the YCOO and the
UMVF when Gaussian white noise of time correlation 10 ms and of power spectral density
10−4 and 10−9 is, respectively, added to the sprung mass vertical acceleration and to
the suspension deflection measurements. The YCOO offers better noise rejection than
the UMVF.

Figure 10. Estimation with noisy measurements.
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7. Conclusions

The estimation of the wheel loads is formulated as an input estimation problem.
A quarter-car model with load transfer and tire normal force is used as the estimation
model. Two observers are designed. A Youla controller is designed to minimize the error
between the measurement and the estimated model output in the Youla Controller Output
Observer framework. Similarly, unobservable states of the quarter-car model are removed
to use the Unbiased Minimum Variance Filter. Since the design of the YCOO is based
on the frequency domain and the closed-loop transfer functions Tu, Su, and Y, it directly
addresses the trade-off among noise rejection, high bandwidth, and good robustness when
tuning the observer.

Both observers were tested in simulation and provide good estimates as long as
the model possesses a good enough representation of the suspension. Moreover, the
anti-roll bar introduces coupling between the two wheels of the same axle. In this case,
the quarter-car estimation model cannot be used and should be replaced by a half-car
model. Despite using different approaches to solve the input estimation problem and
different design methods, both controllers give similar performance and robustness, but
the proposed YCOO provides better noise rejection than the UMVF. The YCOO provides
a much simpler structure and observer tuning than the UMVF as it does not require the
system to be observable and requires only two measurement when the UMVF needs a third
measurement with additional signal processing.
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Abstract: Assessing the potential of advanced driver assistance systems requires developing dedi-
cated control algorithms for controlling the longitudinal speed of automated vehicles over time. In
this paper, a multiobjective off-line optimal control approach for planning the speed of the following
vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on
the principle of global optimality fostered by dynamic programming (DP) and aims to minimize
propelling energy consumption and enhance passenger comfort. The powertrain model and on-
board control system are integrated within the proposed car-following optimization framework.
The retained ACC approach ensures that the distance between the following vehicle and the pre-
ceding vehicle is always maintained within allowed limits. The flexibility of the proposed method
is demonstrated here through ease of implementation on a wide range of powertrain categories,
including a conventional vehicle propelled by an internal combustion engine solely, a pure electric
vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different
driving conditions are considered to prove the effectiveness of the proposed optimization-driven
ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger
comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding
vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt
the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal
powertrain design solutions for ACC driving.

Keywords: adaptive cruise control; automated driving; energy-saving; fuel-saving; optimal control;
passenger comfort

1. Introduction

Automated and connected mobility is currently forecasted reshaping public and pri-
vate transportation over the next few decades [1–4]. Remarkable benefits could be achieved
in general through implementing automated mobility, including enhancing passenger
comfort, reducing energy consumption for propulsion, enhancing traffic management,
and improving road safety, among others [5]. This technological advance demands de-
veloping effective and flexible numerical tools for controlling and designing automated
vehicles [6–11].

Automated driving, as fostered by the different communication technologies (e.g.,
vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-pedestrian, vehicle-to-grid, vehicle-
to-device), represents an extension of advanced driver assistance systems (ADASs). Ex-
amples for ADASs currently implemented in road vehicles include cruise control (CC),
where the vehicle is controlled to travel at constant longitudinal speed over time, and
adaptive cruise control (ACC), where the longitudinal speed of the vehicle is controlled
to vary over time according to the measured distance from the vehicle ahead. In an ACC
driving scenario, the following vehicle (named hereafter as the following vehicle) typically
exploits data from the preceding vehicle (named hereafter as the preceding vehicle), which
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can be either human-operated or automated. ACC systems use sensors, such as radar,
Light Detection and Ranging (LIDAR) or cameras to identify and monitor the preceding
vehicle for measuring its current distance and speed difference [12]. Current ACC systems
are calibrated to regulate the longitudinal speed of the vehicle to maintain a constant
headway from the preceding vehicle [13,14]. Avoidance of front-end collision between
the preceding vehicle and the following vehicle can be ensured in this way. However,
when propulsion and brake systems are controlled with the exclusive aim of maintaining a
constant time-headway (or distance) from the preceding vehicle, it cannot be guaranteed
that the ACC-enabled vehicle achieves improved performance in terms of energy economy
or passenger comfort as an example [15]. New possibilities and challenges open up in
this framework concerning the development of ACC approaches that can vary both the
following vehicle’s longitudinal speed and distance from the preceding vehicle over time
regardless of the longitudinal speed of the preceding vehicle. Improving various prede-
fined performance metrics for the preceding vehicle can be set as a control target for such
an enhanced ACC system.

Literature regarding control approaches for the following vehicle’s speed exploiting
information coming from the preceding vehicle in automated driving can be divided
between single-powertrain-based approaches and multiple-powertrain-based approaches.
Single-powertrain-based ACC approaches can focus either on conventional vehicles (CVs),
hybrid electric vehicles (HEVs) or battery electric vehicles (BEVs) as examples. Concerning
CVs powered solely by an internal combustion engine (ICE), Lang et al. [16] in 2013
discussed a control logic aiming to minimize fuel consumption while neglecting gear
shifting. He and Orosz [17] in 2017 compared feedback-based and rolling horizon optimal
control-based as cooperative cruise control approaches minimizing fuel consumption.
The same authors extended a fuel-optimal longitudinal speed controller to the case of
heavy-duty trucks exploiting information coming from multiple vehicles ahead through
vehicle-to-vehicle (V2V) communication [18]. As concerns HEVs, a recurrent research
topic involves developing velocity predictors that can improve the energy management
strategy of the following vehicle through the information coming from the preceding
vehicle. Different categories of longitudinal speed regulation logics have been developed
in the literature (e.g., heuristic, instantaneous optimization, machine learning), and various
HEV powertrain layouts have been considered, such as power-split [19], parallel P0 [20],
parallel P2 [21] and series-parallel P1P4 [22] as an example. Regarding BEVs, the author of
this paper proposed an optimal off-line velocity controller based on dynamic programming
(DP) capable of minimizing the energy consumption of the following vehicle [23]. Recently,
Koch et al. [24] focused on battery-electric buses and implemented DP while assuming
ideal V2I communication and a dedicated traveling road lane to generate energy-efficient
driving profiles. The same authors recently proposed an algorithm validated using DP
that allows the simultaneous optimization of speed profile and powertrain operation to
compare different BEV powertrain architectures [25].

Regarding multiple-powertrain-based control approaches for the following vehicle in
car-following scenarios, in 2018, Tate et al. [26] considered different automated driving sce-
narios by generating the related vehicle speed profiles with a heuristic approach according
to engineering experience. Both a CV and a BEV layout were retained, and considerable re-
ductions in greenhouse gas emissions were suggested, especially in the BEV case, thanks to
implementing car-following automated driving. Plum et al. [27] in 2018 investigated a CV,
an HEV and a BEV powertrain layout while considering a model predictive acceleration
controller that exploited information coming from traffic light schedules and the preceding
vehicle. The HEV powertrain layout was demonstrated, achieving a greater portion of
up to 27.7% energy savings. Nevertheless, the controller was specifically calibrated for
a limited number of predefined inner-city driving conditions. Recently, Spano et al. [28]
considered a CV and an HEV and estimated the fuel consumption reduction capability at
different levels of automated driving using a heuristic approach.
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In general, reviewed ACC approaches for enhancing energy-saving of automated
road vehicles in car-following scenarios are usually developed and calibrated ad hoc for
specific powertrain configurations in terms of architecture and component sizes. Extend-
ing the reviewed approaches to reduce the energy consumption of vehicles embedding
different powertrain types and component sizes might, in turn, require thorough and
time-consuming re-calibration procedures. To the best of the author’s knowledge, develop-
ing a control approach for the longitudinal speed of automated vehicles in car-following
scenarios that can easily adapt to foster energy-saving of different powertrain layouts and
component sizes still represents an open research question. To overcome the highlighted
research gap, this paper aims to present a new multiobjective optimization-driven ACC
algorithm that can easily estimate energy savings and passenger comfort improvements
for various powertrain categories when traveling as a following vehicle in car-following
scenarios. The proposed ACC approach relies on DP as a widely employed off-line control
algorithm capable of identifying the optimal global solution for the considered control
problem [29]. Energy consumption minimization and passenger comfort enhancement are
considered as conflicting optimization targets for the proposed car-following controller.
The ease of adaptability of the discussed approach is suggested through its efficient im-
plementation retaining a CV powertrain, a BEV powertrain, a single-motor parallel HEV
powertrain and a dual-motor power-split HEV powertrain. In all the presented cases, only
the objective function considered in DP needs to be adapted to the given powertrain cate-
gory, yet the proposed workflows can be straightforwardly applied considering different
component sizes for each propulsion system category. Our results demonstrate the poten-
tial of the proposed approach for effectively and easily determining optimization-driven
speed profiles over time for the following vehicle in car-following scenarios. Engineers
may adopt the proposed optimization-driven ACC approach to evaluate the performance
of corresponding real-time ACC approaches and to improve powertrain design method-
ologies considering enhanced ACC driving. The remainder of this paper is as follows:
the considered vehicle powertrain layouts and the related modeling approach are first
illustrated. The mathematical formulation of the car-following driving problem is then
discussed, and the proposed algorithm is presented. Results are presented over different
driving conditions, and conclusions are given.

2. Vehicle Powertrains

This section aims at describing the considered vehicle powertrain architectures. The
adopted numerical modeling approaches find discussion as well. In this paper, a CV
powertrain layout, a BEV powertrain layout, a parallel P2 HEV (P2 HEV) powertrain
layout and a power-split HEV (PS HEV) powertrain layout are retained. The correspond-
ing schematic diagrams are illustrated in Figure 1, while detailed discussion for each
powertrain architecture is reported in the follow-up of this section.

2.1. CV Powertrain

For the CV powertrain layout illustrated in Figure 1a, the vehicle is propelled by an
ICE alone. An automated manual transmission (AMT) is embedded capable of shifting
gear according to the ICE speed and the torque request coming from the driver following
a dedicated control logic. In general, a quasi-static modeling approach is implemented
here in deriving speeds and torques of power components directly from the vehicle speed
profile over time for the considered drive cycle [30]. The torque requested by the driver at
the driven wheels Twheels can particularly be evaluated following Equation (1) [31]:

Twheels =
(

Froll + Fmisc + Faero + mveheq ·
..
x
)
·rdyn (1)

where Faero, Fmisc and Froll represent resistive load elements corresponding to the aerody-
namic drag, miscellaneous elements, such as road slope and side forces as an example,
and rolling resistance, respectively.

..
x is the vehicle acceleration, while rdyn and mveheq ,
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respectively represent the wheel’s dynamic radius and the vehicle mass, including the
equivalent mass of the rotational elements. Subsequently, the rotational speed ωICE and the
requested ICE torque TICE can be computed as a function of the gear engaged j following
Equations (2) and (3), respectively [32]:

ωICE =

.
x

rdyn
·τdi f f ·τAMT(j) (2)

TICE =
Twheels

τdi f f ·τAMT(j)·ηsign(Twheels)
TR

(3)

where
.
x is the vehicle speed in meters per second, τdi f f and τAMT represent gear ratios

for the differential and the instantaneous gear j engaged in the AMT, respectively. ηTR is
the efficiency of the transmission system, and it is powered to the sign of the torque at the
wheels to account for both vehicle accelerating and braking cases.

Figure 1. Schematic diagrams of the retained vehicle powertrain architectures, including (a) conventional vehicle (CV)
powertrain; (b) battery electric vehicle (BEV) powertrain; (c) parallel P2 hybrid electric vehicle (P2 HEV) powertrain;
(d) power-split hybrid electric vehicle (PS HEV) powertrain.

Once ωICE and TICE are determined, the instantaneous rate of fuel consumption can
be determined by interpolating in a two-dimensional lookup table with speed and torque
of the ICE as independent variables. As concerns selecting the gear in the AMT, a common
approach implemented here refers to determining the engaged gear number according to a
pre-calibrated two-dimensional lookup table with vehicle speed and driver torque demand
as an independent variable [33].

2.2. BEV Powertrain

In the BEV powertrain layout illustrated in Figure 1b, the fuel tank, ICE and AMT of
the CV powertrain are replaced with a high-voltage battery, an electric motor (EM) and
a direct drive, respectively. Finally, power electronics enable the proper operation of the
electric powertrain components. In this framework, speed ωEM and torque TEM of the EM
can be evaluated at each time step following the same procedure illustrated for the CV case
in Equations (1)–(3). A gear shift logic does not need implementation in this case, given the
embedment of a direct drive. The EM electrical losses lossEM, including inverter losses as
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well, can be evaluated in this case by interpolating in a two-dimensional lookup table with
ωEM and TEM as independent variables. Finally, the battery state-of-charge (SOC) over
time can be evaluated as a function of the requested battery power Pbatt by adopting an
equivalent circuit approach and following Equations (4)–(6) [34].

SOC(t) =
∫ tend

t0

.
SOC[Pbatt(t), SOC(t)] dt (4)

with:
Pbatt(t) = ωEM(t)·TEM(t) + lossEM[ωEM(t), TEM(t)] + lossaux(t) (5)

.
SOC[Pbatt(t), SOC(t)]

= VOC [SOC(t)]−
√

{VOC [SOC(t)]}2−4·RIN [SOC(t)]·Pbatt(t)
2·RIN [SOC(t)] · nP

Ahbatt ·3600

(6)

where
.

SOC, t0 and tend are the instantaneous rate of SOC, the initial time instant and the
final time instant of the drive cycle, respectively. lossaux is the power requested by the
accessories (e.g., air conditioning, lubrication), and it is modeled as having a constant
value in this work. RIN and VOC represent the internal resistance and the open-circuit
voltage of the battery pack, as obtained by interpolating in 1D lookup tables with SOC
ad independent variables. nP is the number of cells in parallel according to the battery
pack layout, while Ahbatt represents the battery pack energy capacity in ampere-hours. The
factor of 3600 is considered here to convert energy units in ampere-seconds.

2.3. P2 HEV Powertrain

The parallel P2 HEV powertrain illustrated in Figure 1c represents a combination
of the CV and the BEV architectures discussed above. In a parallel P2, the EM is placed
downstream of the ICE output shaft before the AMT input shaft. A gear ratio between
the EM and the AMT input shaft is considered in this case, while a clutch connection
is included between the ICE and the EM to allow disengaging the ICE and avoiding its
dragging effect in pure electric operation. Notably, P2 represents one of the potentially
most efficient options among the parallel HEV powertrain architectures [35].

In a P2 HEV powertrain, the torques of ICE and EM are additive and follow
Equation (7) [32]:

Twheels = (TICE + TEM·τGR)·τdi f f ·τAMT(j)·ηsign(Twheels)
TR (7)

where τGR is the gear ratio between EM output shaft and AMT input shaft. In a quasi-static
modeling approach, controlling either TICE or TEM allows automatically determining the
value of the other variable.

Hybrid electric or pure electric operation are distinguished in this case by the value of
TICE being positive or equal to zero, respectively. As a typical approach, a rule-based energy
management strategy (EMS) is implemented here for the P2 HEV powertrain involving
two decision steps, as reported in Figure 2 [36,37]. The first step relates to determining the
ICE status (i.e., on or off), while the second step involves deciding the power split between
ICE and EM in case the hybrid operation is selected.

For determining the ICE status, a set of rules is retained considering the current value
of vehicle speed, the current value of battery SOC, the required output power and the
current ICE status [38]. The rules constituting the control logic for the ICE status are
reported in Table 1. Particularly, the ICE is controlled to be activated in the case at least
one of the following criteria are met: (1) the vehicle speed exceeds a predefined threshold
.
xthre, (2) the power demand is above a certain limit POUTthre, or (3) the battery SOC falls
below a certain value SOCthre. On the other hand, if none of the three conditions is met,
the ICE is controlled to be deactivated. To reduce the frequency of ICE activation and
de-activation events, different values for the discussed threshold variables are considered
according to the current ICE status following

.
xthreOFF <

.
xthreON , POUTthreOFF

< POUTthreON
and SOCthreOFF > SOCthreON , respectively.
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Figure 2. Flowchart of the rule-based hybrid supervisory controller implemented in the parallel P2 HEV and the power-split HEV.

Table 1. Control logic for determining the ICE status.

Controlled ICE Status: ON Controlled ICE Status: OFF

Current ICE
status: ON

(
.
x ≥ .

xthreOFF ) | (POUT ≥ POUTthreOFF
)

|
(
SOC ≤ SOCthreOFF

) (
.
x <

.
xthreOFF ) && (POUT < POUTthreOFF

)

&& (SOC > SOCthreOFF
)

Current ICE
status: OFF

(
.
x ≥ .

xthreON
) | (POUT ≥ POUTthreON

)

|
(
SOC ≤ SOCthreON

) (
.
x <

.
xthreON

) && (POUT < POUTthreON
)

&& (SOC > SOCthreON
)

When the hybrid operation is selected, the controlled ICE mechanical power PICEcontrol
can then be determined through interpolation in a one-dimensional lookup table having
battery SOC as the independent variable. A tuning process for this table was carried
out beforehand to simultaneously prevent excessive charge depletion of the battery and
guarantee enhanced HEV fuel economy capability. Since the speeds of both the ICE and the
EM are determined by the current vehicle speed and the gear engaged, the corresponding
torques can be computed from PICEcontrol and the resulting value of EM power.

2.4. Power-Split HEV Powertrain

The PS HEV powertrain architecture shown in Figure 1d comes from the industrial
state-of-the-art, and it characterizes the embedment of two EMs [39]. EM2 represents
the main traction motor, and it operates either to propel the HEV or to recover electrical
energy in braking events. On the other hand, ICE, EM1 and the differential input shaft are
mechanically connected to the carrier, the sun gear and the ring gear of a planetary gearset
(PG). This mechanical device allows decoupling the ICE speed from the current vehicle
speed, allowing the HEV powertrain to operate as an electrically variable transmission
(eVT) [40]. In this framework, EM1 mainly operates as an electrical generator while
ensuring reaction torque for the ICE torque being delivered to the wheels.

For the illustrated PS HEV, the same workflow as Figure 2 is implemented in the
supervisory control logic as the one illustrated in Section 2.3 for the P2 HEV. However,
other than determining the ICE status and the ICE mechanical power, a third control action
needs achievement in this case related to controlling ωICE and TICE. To this end, once the
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value of PICEcontrol has been determined at the previous step of the logic, ωICE and TICE may
be selected as the solution of the optimization process linked to the optimal operating line
(OOL) of the ICE as reported in Equations (8) and (9) [41]:

OOL(ωICE, TICE) = argmin
[ .
m f uel(ωICE, TICE)

]
(8)

subject to:
ωICE·TICE = PICEcontrol (9)

The resulting values of speed and torque for the ICE should particularly guarantee to
deliver the requested value of ICE mechanical power and minimize the fuel consumption
rate at the same time. The illustrated approach thus fosters efficient ICE operation. Once
ωICE and TICE are determined, speeds and torques of both the EMs can be found following
the kinematic and dynamic relationships for the PG-based PS HEV powertrain that are
reported in Equations (10) and (11), respectively [34]:

[
ωEM1
ωEM2

]
=

[ −iPG iPG + 1
τGR 0

][
ωINFD
ωICE

]
(10)

[
TEM1
TEM2

]
=

[
0 − 1

iPG+1
1

τGR
−
(

iPG
iPG+1

)
· 1

τGR

]⎡⎣ TINFD

η
sign(Twheels)
TR

TICE

⎤
⎦ (11)

ωINFD and TINFD represent the rotational speed and the torque at the input shaft of the
final drive, respectively. iPG and τGR are the gear ratios of the PG and the transfer gearset
between EM2 and the input shaft of the final drive, respectively.

3. Multiobjective Optimal Car-Following Driving Problem

In this section, the multiobjective optimal car-following driving problem under con-
sideration is discussed. This relates to effectively plan the following vehicle’s speed profile
over time in the car-following driving scenario illustrated in Figure 3. In the highlighted
scenario, the following vehicle receives at each time instant information from the preceding
vehicle, including its position xprec, velocity

.
xprec, and acceleration

..
xprec, respectively. The

flow of information between the two vehicles is supposed ideal and instantaneous, and
a given value of inter-vehicular distance (IVD) results from the positions, speeds and
accelerations of both the preceding vehicle and the following vehicle at each time instant.
Two optimization targets are considered here for the following vehicle, respectively, related
to the propelling energy minimization and the passenger comfort enhancement. The math-
ematical formulation corresponding to the optimal car-following driving problem under
analysis was derived, and it is reported in Equations (12)–(16):

argminJ f ollow

( ..
x f ollow, t

)
=
∫ tend

t0

αenergy·Ptraction− f ollow(t) +
(
1 − αenergy

)·∣∣∣ ..
x f ollow(t)

∣∣∣ dt (12)

subject to:

Figure 3. Schematic of the retained car-following driving scenario highlighting the information flow
from the preceding vehicle to the following vehicle.
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IVD constraints: [
xprec(t)− x f ollow(t)

]
≤ IVDMAX(t) (13)[

xprec(t)− x f ollow(t)
]
≥ IVDsa f ety(t) (14)

Powertrain constraints:

Ptraction− f ollow(t) = LHVf uel ·
[ .
m f uel(t) + m f uelcrank

·startICE(t)
]
− (VOC·Ahbatt·3600)·

.
SOC (15)

Ptraction− f ollow(t) ≤ Ptraction− f ollow−MAX

(
t,

.
x f ollow(t)

)
(16)

where J f ollow represents the following vehicle’s cost function that needs to be minimized in
the considered optimization problem. Its value represents an integration of the instanta-
neous cost terms throughout the entire drive cycle from the initial time instant t0 to the
final time instant tend.

..
x f ollow is the following vehicle’s longitudinal acceleration, and it

represents the only control variable affecting the overall cost function J f ollow over time.
The following vehicle’s longitudinal speed trajectory can be obtained by integrating

..
x f ollow

over time. Ptraction− f ollow is the tractive power used for propelling the following vehicle,
related to fuel or electricity or both of them depending on the given powertrain technology.
Other than propelling energy reduction, enhancement of the ride’s comfort represents a
crucial potential of automated driving. To foster this aspect, several motions, path, and
velocity planners proposed in the literature integrate as objective reducing variables related
to vehicle longitudinal acceleration, lateral acceleration and yaw rate as an example [42,43].
Following a similar approach, reducing the following vehicle’s longitudinal acceleration
over the entire simulated drive cycle is considered here as an optimization target in J f ollow
to enhance the passenger comfort. In most cases, reducing the overall energy used for
propulsion and improving the passenger comfort may represent contrasting objectives.
For example, in electrified vehicles, several fluctuations can be observed in the longitudi-
nal speed when optimizing for energy consumption solely [23]. A trade-off between the
two optimization targets retained might, therefore, be implied. In this framework, αenergy
represents a weighting coefficient that can be tuned to give more emphasis either on the
fuel economy enhancement or on the passenger comfort improvement. Two categories
of constraints are considered for the optimal car-following driving optimization problem
illustrated in Equation (12). They, respectively, relate to IVD and the following vehicle’s
powertrain, and they find illustration in the follow-up of this section.

3.1. Constraints on the IVD

Looking at Equations (13) and (14), the IVD is defined according to xprec and x f ollow,
which represent the preceding vehicle’s position and the following vehicle’s position,
respectively. The instantaneous value of IVD is thus set in Equations (13) and (14) to be
always below IVDMAX and above IVDsa f ety over time. IVDMAX represents the maximum
distance that the following vehicle can attain from the preceding vehicle. Here, the value
of IVDMAX is made varying over time depending on the current road type. As a general
consideration, the IVD might be limited in urban areas to ease traffic flow and to reduce
general road occupancy. This correlates well with reduced values of vehicle speed generally
associated with urban driving. Contrarily, enhanced road surface availability and generally
higher values of vehicle speed might lead to allow a higher value of IVDMAX in extra-
urban and highway driving conditions. In light of these considerations, when extra-
urban and highway driving conditions are encountered, the maximum achievable value
of IVD is assumed here to be 300 m. This hypothesis stems from the current approximate
range of V2V communication, which might contribute to long-distance preceding-vehicle
detection [44]. On the other hand, the allowed value of IVDMAX is assumed to be reduced
to 100 m in urban driving conditions to limit road occupancy.

In Equation (14), IVDsa f ety stands for the minimum safety IVD. Its value is obtained
by interpolating in a two-dimensional lookup table with the following vehicle’s speed
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and relative vehicle speed between the preceding vehicle and the following vehicle as
independent variables. The lookup table is shown in Figure 4, and it is derived from
a time-headway numerical braking model proposed in [45]. The interested reader can
consult [23] for further information regarding this procedure.

Figure 4. Minimum safety IVD as a function of the following vehicle’s speed and the relative vehicle
speed between the preceding vehicle and the following vehicle.

3.2. Constraints on the Following Vehicle Powertrain

The following vehicle’s powertrain constraints are considered in the optimal car-
following driving problem illustrated in Equations (15) and (16). These allow identifying
energy-saving oriented

..
x f ollow control solutions that are tailored according to the given

powertrain layout and control logic for the following vehicle. First, the instantaneous
following vehicle’s tractive power Ptraction− f ollow, expressed in watts, is evaluated as a
function of fuel and electrical energy consumption. In Equation (15),

.
m f uel and m f uelcrank

represent the instantaneous fuel rate (as obtained by interpolating in the empirical lookup
table as a function of ICE speed and torque) and the mass of fuel needed to crank the ICE
in grams, respectively. startICE represents a binary variable detecting ICE activations over
time, and its value is set to 1 in those time instants in which the sign of the fuel consumption
is positive, while it was zero in the previous time instant. LHVf uel is the lower heating
value of the fuel and corresponds to 43,700 J/g here.

.
m f uel and m f uelcrank

are considered only when the powertrain layout includes an ICE,
i.e., for CVs and HEVs. On the other hand, the battery power term is retained only when a
high-voltage battery is embedded in the powertrain layout, i.e., for HEVs and BEVs. In
Equation (15), the battery power term includes the SOC rate

.
SOC as given by Equation (6)

and the term (VOC·Ahbatt·3600) that represents the battery energy in watt-seconds. The
negative sign of the battery SOC variation relates to negative values of

.
SOC corresponding

to battery charge depletion. Especially for HEVs, this formulation for the first powertrain
constraint allows obtaining the same unit of measure (i.e., watts) between the fuel chemical
power term and the battery electrical power term. A proper balance between the usage
of the two energy sources can be achieved in this way. At each time instant, both

.
m f uel ,

startICE and
.

SOC related to the following vehicle can be evaluated within the control
optimization process according to numerical models of powertrain layout and related
onboard control logic as it has been detailed in the previous section for each retained
powertrain category. Tailoring the propelling energy consumption minimization according
to the specific powertrain layout of the following vehicle can be achieved in this way.

The final powertrain constraint reported in Equation (16) involves limiting the tractive
power of the following vehicle within the instantaneous maximum limit represented
by Ptraction− f ollow−MAX. This term is given as a function of the instantaneous maximum
tractive power of each power component embedded in the retained following vehicle’s
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powertrain layout, and it typically depends on the current value of the following vehicle’s
speed

.
x f ollow.

4. Solving the Optimal Car-Following Driving Problem

A flexible and effective approach is presented in this section for solving the mul-
tiobjective optimal car-following driving problem illustrated in the previous section.
Here, the considered control problem is solved off-line, i.e., exploiting the knowledge
of the speed profile over time for the entire drive cycle of the preceding vehicle a priori. Dy-
namic programming (DP) is considered in this framework as a widely known optimization
algorithm capable of returning the optimal global solution for the control problem under
analysis [46–50]. The operating principle of DP involves exhaustively sweeping discretized
values of control variables and state variables at each time instant of the retained control
problem. Thus, the optimal sequence of control actions is identified by minimizing the
overall value of a predefined cost function [51–53]. To find the global optimal control
trajectory, the DP workflow is iterated at each time instant backwardly in the retained
drive cycle from tend to t0. The DP adaption presented by Sundstrom and Guzzella [54] is
retained here as a control workflow for all the considered powertrains. The state-space X
and the control space U considered here are reported in Equation (17), and they relate to the
DP algorithm implemented to solve the optimal car-following driving problem illustrated
in Equation (12) [23].

X =

{
xprec − x f ollow.

x f ollow

}
, U =

{ ..
x f ollow

}
(17)

The state-space includes the IVD and the following vehicle’s speed
.
x f ollow. The IVD is

particularly considered to ensure compliance over time with the corresponding optimiza-
tion constraints reported in Equations (13) and (14). The following vehicle’s longitudinal
speed is retained to evaluate its trajectory over time by integrating the following vehicle’s
longitudinal acceleration, representing the only control variable included in U.

In the follow-up of this section, the workflow for assessing the capability of the
introduced DP as ACC algorithm for car-following scenarios is discussed for all the four
vehicle powertrain architectures illustrated in Section 2. As introduced earlier, energy-
saving and passenger comfort improvement compared with the preceding vehicle are
retained as evaluation metrics for the following vehicle’s performance. Passenger comfort
is particularly measured here in terms of the root-mean-square (RMS) of the longitudinal
vehicle acceleration throughout the given driving mission. The value of RMS for vehicle
acceleration indeed represents a common index for evaluating the quality of passengers’
ride perception [55,56].

4.1. CV Powertrain

The flowchart for validating the proposed ACC algorithm for the CV powertrain is
illustrated in Figure 5a, together with the corresponding flowchart considering the BEV
powertrain in Figure 5b. Once the vehicle data, control logic and the drive cycle under anal-
ysis are defined, an online simulation is performed first for the preceding vehicle, following
the exact speed profile over time for the given input cycle. Focusing on the CV flowchart
reported in Figure 5a, the gear engaged is determined at each time instant according to the
considered shift logic, while the fuel consumption can be computed according to values for
speed and torque of the ICE following Equations (1)–(3). Then, the following vehicle’s case
is retained while sweeping different values of αenergy ranging from 0 to 1. The following
vehicle’s longitudinal velocity is planned off-line following the illustrated DP approach
and integrating the controlled value of longitudinal acceleration

..
x f ollow over time. An

online simulation is subsequently performed to double-check the fuel consumption and
the passenger comfort resulting from the following vehicle’s driving solution obtained
from DP. Evaluating the multiobjective optimal Pareto front when minimizing both the fuel
consumption and the RMS of the vehicle acceleration for the following vehicle is allowed
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in this way. Moreover, the performance of the preceding vehicle that follows the drive
cycle speed profile under analysis can be benchmarked with the correspondingly obtained
following-vehicle control solutions.

Figure 5. Flowchart of the validation methodology for the proposed optimal V2V vehicle velocity planner considering a CV
powertrain (a) and a BEV powertrain (b).

4.2. BEV Powertrain

As regards the BEV powertrain, it should be noted that the SOC variation modeled as
in Equation (6) and embedded in the car-following optimal driving problem illustrated in
Equation (12) depends on the current value of SOC. Accounting for the current value of
SOC over time when solving the optimal car-following driving problem with DP would, in
turn, require an additional state variable. Nevertheless, DP is notably affected by the curse
of dimensionality depending on the size of both control and state sets. In this framework,
not only is the DP typically associated with a remarkable computational cost but this
latter has been demonstrated exponentially increasing as a function of the number of
control variables and state variables considered [32]. To avoid this drawback, an alternative
approach is proposed here. Once the preceding vehicle has been simulated online in the
retained drive cycle, the obtained SOC trajectory over time is used as information when
running the DP for the following vehicle’s velocity planning in Figure 5b. Assuming an
equal SOC value for both the preceding vehicle and following vehicle at the beginning
of the drive cycle, this approach provides to the DP an estimation of the punctual SOC
value for the following BEV at each time instant. The forecasted SOC value is used in
turn to evaluate the SOC variation of the following vehicle as a function of its controlled
acceleration. It is true that at each time instant, the following vehicle’s SOC may be slightly
higher than the corresponding preceding vehicle’s SOC as a result of the energy savings
achieved thanks to the optimal velocity planner. However, this small difference between
SOC values is usually observed having little impact on the final solution of the optimization
process. To answer this concern anyway, step 3 of the discussed validation methodology
in Figure 5b involves performing an online simulation of the following BEV operation
the following the longitudinal velocity planned earlier by DP. Evaluating the exact SOC
variation over time for the following vehicle’s performance of the given drive cycle in a
car-following scenario is achieved in this way. Results obtained for the following vehicle
by varying αenergy can be benchmarked with the corresponding the preceding vehicle’s
performance for the BEV layout as well.

4.3. P2 HEV and PS HEV Powertrains

The flowchart of the validation methodology for the proposed ACC optimization-
driven approach is illustrated in Figure 6 for the P2 HEV and the PS HEV powertrains.
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The first step aims at assessing the operation of the preceding vehicle in the retained drive
cycle using an online simulation, which accounts for the HEV onboard control logic. For
the P2 HEV, control variables at each time step include the gear engaged and the torque
split between ICE and EM. On the other hand, ICE speed and ICE torque represent the
variables to be controlled at each time instant for the PS HEV. In both cases, the fuel
consumption and the battery SOC trajectory can be evaluated, and this latter is used as
input to the following vehicle’s DP-based velocity planner for estimating the punctual SOC
value at each time instant of the optimization process as it was described above for the
BEV powertrain. In this case, the estimated value of SOC allows not only calculating the
SOC variation, but it also impacts at each time instant on the HEV control logic influencing
the power split between ICE and EMs as it has been described in Sections 2.3 and 2.4. DP
is subsequently executed in the second step of Figure 6 to identify the optimal control
pattern according to the drive cycle, the HEV powertrain, the related control logic and the
weighted objective function under analysis. The third step then aims at online simulating
the following vehicle’s operation according to the longitudinal velocity profile over time
identified at the previous step. Furthermore, the flowchart illustrated in Figure 6 can be
repeated several times by varying the value of αenergy and benchmarking obtained results
with the corresponding the preceding vehicle’s performance.

5. Results

This section aims at presenting obtained results for the proposed optimization-driven
ACC approach. The performance of the implemented algorithm is particularly evaluated
for all the retained powertrain categories in a different drive cycle, such as the urban
dynamometer driving schedule (UDDS), the worldwide harmonized light vehicle test
procedure (WLTP), the highway federal test procedure (HWFET) and the US06 supple-
mental procedure (US06). Energy savings and comfort improvement are quantified for the
ACC-enabled following vehicle by benchmarking with the performance of the preceding
vehicle that embeds the same powertrain. The preceding vehicle reproduces the vehicle
speed profile provided over time for the given driving mission, while the following vehicle
reproduces the longitudinal speed profile provided off-line using DP and solving the
car-following optimal driving problem illustrated in Section 3.

Table 2 reports the vehicle and powertrain data considered in all performed simula-
tions and related to each retained powertrain category. The vehicle body is the same for all
cases, and it was retained from [57]. The same ICE is embedded in CV, P2 HEV and PS HEV
powertrain layouts, and it refers to a 1.2-L spark-ignition engine. ICE data, including an
efficiency map, were generated according to the methodology implemented in Amesim®

software (version 2020.1, Siemens PLM, Camberley, UK) and discussed in [58]. A 6-gear
AMT layout is considered for the CV, and the P2 HEV, with corresponding gear-shift logic,
developed the following approach illustrated in [33]. Efficiency maps and operational
data of interior permanent magnet synchronous machines were generated for the EMs
according to the corresponding methodology implemented in Amesim® software and
described in [59]. Battery SOC dependent parameters (i.e., voltage and resistance) related
to 42 kWh and 2 kWh high-voltage battery packs were derived for the BEV and the HEV
layouts, respectively. To this end, the electrical storage system sizing tool implemented
in Amesim® described in [60] was used. The HEV control logics were developed taking
inspiration from [38], and they were tuned following a trial-and-error procedure to achieve
charge-sustained operation while reducing fuel consumption. Finally, a constant auxiliary
loss power of 500 W is considered for BEV, P2 HEV and PS HEV powertrains.

The effectiveness of the proposed optimization-driven ACC approach for the following
vehicle is assessed here by performing several simulations of the following methodologies
illustrated in Figures 5 and 6. Each described powertrain category was simulated in
all the considered drive cycles. In this case, six values are retained for αenergy in each
performed evaluation corresponding to (0.01 0.2 0.4 0.6 0.8 0.99) to assess a wide range
of optimization targets obtained as a combination of energy minimization objective and
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comfort improvement objective. The simulation time step is set to 1 s. The initial IVD
between the preceding vehicle and the following vehicle is set to be 50 m, and the final
value is constrained to be below 50 m to ensure that the two vehicles travel the same
mileage. The initial battery SOC is assumed to be 95% and 70% for the BEV powertrain
and the two HEV powertrains, respectively.

Figure 6. Flowchart of the validation methodology for the proposed optimal V2V vehicle velocity
planner considering P2 HEV and PS HEV powertrains.

Table 2. Vehicle and powertrain parameters.

Component Parameter CV BEV P2 HEV PS HEV

Vehicle body Mass (kg) 1248 1248 1248 1248
RLA (N) 143 143 143 143

RLB (N/(m/s)) 0.9 0.9 0.9 0.9
RLC (N/(m/s2)) 0.44 0.44 0.44 0.44
Wheel dynamic

radius (m) 0.273 0.273 0.273 0.273

Transmission AMT gear ratios (-) (3.58; 2.06; 1.40;
1; 0.71; 0.58) - (3.58; 2.06; 1.40;

1; 0.71; 0.58) -

PG ratio (-) - - - 2.6
EM to FD ratio (-) - 2.3 2 1.26

FD ratio (-) 4.1 3.4 4.1 3.27
Efficiency (-) 0.9 0.9 0.9 0.85

ICE Displacement (l) 1.2 - 1.2 1.2
Max power 89 kW @ 4000 rpm - 89 kW @ 4000 rpm 89 kW @ 4000 rpm
Max torque 230 Nm @ 2000 rpm - 230 Nm @ 2000 rpm 230 Nm @ 2000 rpm

EM1 Max power - 95 kW @ 14,500 rpm 26 kW @ 9000 rpm 26 kW @ 9000 rpm
Max torque - 147 Nm @ (0–4800 rpm) 118 Nm @ (0–2000 rpm) 118 Nm @ (0–2000 rpm)

EM2 Max power - - - 45 kW @ 9000 rpm
Max torque - - - 204 Nm @ (0–2000 rpm)

Battery pack Nominal capacity
(Ah) - 115.5 6.5 6.5

Voltage (V) - 364 310 310

The Pareto fronts for the obtained results in terms of energy consumption and RMS of
the vehicle acceleration are shown in Appendix A from Figures A1–A4 for each retained
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powertrain category in all the considered drive cycles. Both preceding vehicle and fol-
lowing vehicle’s simulation cases are illustrated. Particularly for the following vehicle,
different control solutions are obtained by sweeping various values of αenergy, i.e., the
weighting coefficient between energy economy target and passenger comfort target. The
fuel consumption and the battery energy consumption are reported as energy economy
metrics in the x-axis for the CV and the BEV powertrain layouts, respectively. On the other
hand, to achieve a fair comparison for the HEV powertrains, the amount of fuel needed to
recharge the battery up to the initial SOC value (70% in this case) needs to be calculated
and added to the previously calculated fuel consumption. A method to evaluate this
additional fuel consumption was retained from literature and applied to the specific HEV
architectures under analysis [61]. A parameter named equivalent fuel consumption (EFC)
can be obtained in this way that accounts for both the fuel consumed by the ICE throughout
the simulation of the considered drive cycle and for the amount of fuel representative of
the net battery SOC increase or decrease throughout the simulated drive cycle. The EFC
is thus used as an evaluation metric for the HEV energy economy assessed in the x-axis
of the Pareto fronts reported in Figures A3 and A4. On the other hand, the RMS of the
following vehicle’s acceleration is reported in the y-axis of all Pareto fronts displayed from
Figures A1–A4 as an indicator of the level of passenger comfort. In general, both lower
values for both propelling energy consumption and RMS of the vehicle acceleration can
be obtained for the following vehicle compared with the preceding vehicle in all Pareto
fronts displayed in Figures A1–A4. The capability of the proposed optimization-driven
ACC approach to effectively improve the following vehicle’s performance both in terms of
energy consumption and passenger comfort may be suggested in this way.

For each evaluation case, corresponding to a given powertrain architecture and a
predefined drive cycle, two suboptimal control solutions for the following vehicle were
identified corresponding to energy-saving maximization (i.e., “Opt_energy”) and pas-
senger comfort improvement maximization (i.e., “Opt_comfort”). “Opt_energy” and
“Opt_comfort” control solutions for the following vehicle relate to maximum and min-
imum set values for αenergy, i.e., 0.99 and 0.01, respectively. The Pareto fronts for the
following-vehicle control solutions embedding the CV powertrain layout displayed in
Figure A1 are characterized by a regular trend for all the four drive cycles under consid-
eration. In particular, progressive reduction in fuel consumption can be achieved at the
expense of increasing the RMS of the vehicle acceleration when gradually increasing the
value of αenergy. Similar behavior can be observed for the BEV layout and the P2 HEV
layout in Figures A2 and A3, respectively, even with different slopes for the Pareto fronts.
For example, a Pareto front characterized by large steepness can be observed for the BEV
layout in HWFET in Figure A2c, suggesting that only marginal improvement can be ob-
tained in the overall battery energy consumption by increasing αenergy for the retained
highway driving conditions. As concerns passenger comfort, larger improvement can
be achieved within the following-vehicle control solutions of the BEV layout in HWFET.
This relates to the corresponding RMS of the following vehicle’s acceleration decreasing
from 0.30 m/s2 to 0.27 m/s2 when decreasing the value of αenergy. On the other hand, the
Pareto front for the P2 HEV layout in UDDS shown in Figure A3b characterizes for its
reduced steepness. In this case, a larger variation in EFC can be observed when varying the
value of αenergy among the following-vehicle control solutions, while narrower variation
is obtained in the RMS value of the following vehicle’s acceleration. As a result, urban
driving conditions are found promising for potentially reducing the EFC of the retained P2
HEV layout, shifting from 4.59 L/100 km to 4.33 L/100 km as the value of αenergy gradually
increases. As regards the PS HEV layout, the corresponding Pareto fronts are shown in
Figure A4 are characterized by a less conventional trend than the remaining three pow-
ertrain layouts. Indeed, only a few following-vehicle control solutions are located on the
dual-objective optimal front for EFC and RMS of vehicle acceleration, while the remaining
ones are located in non-optimal regions. This effect is particularly emphasized for WLTP,
and US06 drive cycles in Figure A4a,d since the optimized Pareto front is represented
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by only “Opt_energy” and “Opt_comfort” control solutions. For both WLTP and US06,
increasing the value of αenergy from 0.01 to 0.8 for the PS HEV following-vehicle control
appears to bring overall improvements both in terms of energy consumption and passenger
comfort. As a consequence, the “Opt_energy” control solution in both Figure A4a,d corre-
sponds to a value of 0.8 for αenergy instead of 0.01 as for the remaining cases under analysis.
A possible explanation for this behavior of the following-vehicle control performance for
the retained PS HEV powertrain layout may relate to the proposed optimization-drive
ACC approach being capable of further improving the passenger comfort as well when
focusing on EFC improvement. The opposite behavior can be observed for UDDS and
HWFET in Figure A4b,c, respectively, since the related “Opt_comfort” control solution
corresponds to a value of 0.6 for αenergy instead of 0.99 as for the remaining considered
cases. For these drive cycles, further optimizing the following PS HEV control solution
for EFC reduction may indeed bring to excessively irregular trends of following-vehicle
velocity solutions, thus in turn involving increased values for the EFC.

Results displayed in Figures A1–A4 in Appendix A demonstrate how the proposed
optimization-driven ACC approach preserves the engineer’s freedom when selecting the
control solution being oriented either to energy-saving, comfort improvement or a blend-
ing of the two objectives. Energy consumption and the RMS of vehicle acceleration are
reported in Table 3 for each suboptimal control solution identified (both “Opt_energy” and
“Opt_comfort”), together with the corresponding percentage of improvement compared
with the related preceding vehicle’s case. In general, obtained results suggest how enhanc-
ing energy-saving and improving passenger comfort can be achieved for the following
vehicle in car-following automated driving conditions implementing the proposed control
approach. Particularly, energy savings vary depending on the drive cycle and on the
powertrain type from 1.8% to even 22.1% for the PS HEV in US06. On the other hand, the
RMS of the vehicle acceleration can be reduced from 0.4% up to even 48.2% for the BEV
powertrain in UDDS.

The energy-saving potential and the passenger comfort improvement potential, re-
spectively related to “Opt_energy” and “Opt_comfort” control solutions, are highlighted
in Figure 7 for each drive cycle and for each retained powertrain category. As shown in
Figure 7a, the PS HEV powertrain is suggested to achieve the best energy-saving potential
in most driving conditions. This relates to the effectiveness of the proposed optimization-
driven ACC approach and in part to the considered PS HEV generally exhibiting a slightly
larger EFC compared with both CV and P2 HEV, thus increasing the energy-saving poten-
tial achievable using the ACC technology. On the other hand, the BEV powertrain exhibits
the lowest energy-saving capability in WLTP, HWFET and US06. As regards the remaining
powertrain categories, Figure 7a suggests how their ranking in terms of energy-saving capa-
bility varies across different driving conditions, making it impractical to establish a general
hierarchy for the retained powertrains. As a common trend, the energy-saving potential
might be considerably reduced when only highway driving conditions are encountered,
such as in HWFET. The reduced speed variation over time in highway driving conditions
might reduce the energy-saving opportunity achievable by the optimization-driven ACC
approach in this framework.

Focusing on the passenger comfort enhancement displayed in Figure 7b, urban driving
conditions, such as in UDDS, are suggested to offer the highest potential for improvement
by implementing the proposed optimization-driven ACC approach. This relates to ur-
ban driving generally distinguishing for frequent vehicle start–stop events and sudden
acceleration and deceleration events. In this framework, it was possible to reduce the
RMS of the vehicle acceleration from 38.7% for the P2 HEV to 48.2% for the BEV for the
optimal control solution provided by DP. On the other hand, as has been observed for
energy-saving, highway driving conditions are suggested to exhibit the lowest potential
for comfort improvement. A clear trend cannot be observed for the rank of powertrain
categories even considering passenger comfort improvement, thus opening up the need
for a dedicated evaluation of each given case.
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Time-series of the results for the suboptimal control solutions obtained in WLTP
both as the preceding vehicle and following vehicle are reported in Appendix B from
Figures A5–A12. The trend of vehicle speed, gear engaged, IVD, fuel consumption and
battery SOC is particularly displayed over time when applicable. Regarding the IVD, the
reader can see how the proposed optimization-driven following vehicle’s ACC approach
always respects the upper and lower limits retained. Vehicle operations associated with
the “Opt_Energy” suboptimal control solutions in Figures A5–A8 are distinguished by
considerable savings in fuel and electrical energy for the following vehicle. On the other
hand, improved uniformity in the following vehicle’s speed trend over time can be observed
for the “Opt_Comfort” suboptimal control solutions in Figures A9–A12.

Figure 7. Overall energy-saving (a) and comfort improvement (b) potential for the following vehicle compared with
the preceding vehicle when being controlled by the proposed V2V optimal velocity planner for all retained powertrain
categories.

6. Conclusions

This paper proposes a multiobjective off-line optimization-driven ACC approach
for car-following automated driving scenarios that can flexibly adapt to different pow-
ertrain categories. A CV powertrain, a BEV powertrain, a parallel P2 HEV powertrain
and a PS HEV powertrain are considered as test cases, and their numerical model was
presented along with the related onboard control strategies. The optimal problem for
car-following driving has then been outlined. Propelling energy-saving and passenger
comfort improvement were selected as the two optimization targets when controlling the
following vehicle’s longitudinal acceleration throughout a given drive cycle. Dedicated
constraints were integrated for the maximum and minimum achievable values of IVD,
along with specific powertrain-related constraints. An optimization-driven control solu-
tion for the presented car-following driving problem can be obtained by implementing a
DP technique. Simulation results obtained in different driving conditions highlight the
potential of the proposed ACC approach in identifying improved control solutions for the
following vehicle in terms of energy-saving and passenger comfort considering a wide
range of powertrain categories. Up to 22.1% energy-saving and up to 48.2% reduction in
the RMS of the vehicle acceleration were demonstrated by the following-vehicle led using
the proposed approach compared with the preceding vehicle, depending on the tuning
performed for the two optimization targets.

In general, the illustrated approach preserves the engineer’s freedom to select the
weights for energy-saving and passenger comfort improvement for the following vehi-
cle’s operation. The obtained optimization-driven results might be used to benchmark
different ACC approaches in this way. Moreover, the proposed approach could pave
the way for developing real-time-capable control algorithms for the following vehicle in
car-following scenarios that mimic optimal control actions forecasted by the introduced
off-line optimization-driven approach. Furthermore, improving the fidelity level for the
modeling approach might be achieved in terms of powertrain, vehicle dynamics, and
ACC sensing using radar, LIDAR or cameras. For example, adaptations in the onboard
control logic for gear-shifting, ICE activation and power split could be examined to further
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enhance the powertrain efficiency when traveling as a following vehicle in car-following
driving. Finally, the optimization-drive approach could be extended considering multiple
ACC-enabled vehicles traveling behind the preceding vehicle.

Table 3. Results for the preceding and following vehicles.

Drive
Cycle

Vehicle Parameter CV BEV P2 HEV PS HEV

WLTP Preceding Fuel consumption/battery
energy consumption/EFC 4.27 L/100 km 15.39 kWh/100 km 4.74 L/100 km 5.45 L/100 km

RMS (acceleration) (m/s2) 0.53 0.53 0.53 0.53
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.87 L/100 km
(−9.2%)

14.54 kWh/100 km
(−5.5%)

4.27 L/100 km
(−9.8%)

4.70 L/100 km
(−13.7%)

RMS (acceleration) (m/s2)
0.47

(−10.9%)
0.52

(−2.5%)
0.51

(−4.5%)
0.33

(−38.7%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

4.12 L/100 km
(−3.5%)

14.59 kWh/100 km
(−5.2%)

4.35 L/100 km
(−8.2%)

4.71 L/100 km
(−13.6%)

RMS (acceleration) (m/s2)
0.33

(−38.6%)
0.31

(−41.6%)
0.38

(−28.7%)
0.32

(−40.2%)

UDDS Preceding Fuel consumption/battery
energy consumption/EFC 7.50 L/100 km 10.80 kWh/100 km 4.65 L/100 km 4.46 L/100 km

RMS (acceleration) (m/s2) 0.62 0.62 0.62 0.62
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

6.67 L/100 km
(−11.1%)

9.91 kWh/100 km
(−8.2%)

4.33 L/100 km
(−6.8%)

4.03 L/100 km
(−9.6%)

RMS (acceleration) (m/s2)
0.61

(−2.7%)
0.58

(−7.9%)
0.55

(−11.3%)
0.46

(−27.0%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

7.15 L/100 km
(−4.6%)

9.98 kWh/100 km
(−7.6%)

4.59 L/100 km
(−1.2%)

4.11 L/100 km
(−7.8%)

RMS (acceleration) (m/s2)
0.33

(−47.5%)
0.32

(−48.2%)
0.38

(−38.7%)
0.36

(−43.1%)

HWFET Preceding Fuel consumption/battery
energy consumption/EFC 3.82 L/100 km 15.22 kWh/100 km 4.11 L/100 km 4.55 L/100 km

RMS (acceleration) (m/s2) 0.30 0.30 0.30 0.30
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.71 L/100 km
(−3.0%)

14.95 kWh/100 km
(−1.8%)

3.95 L/100 km
(−3.8%)

4.37 L/100 km
(−4.0%)

RMS (acceleration) (m/s2)
0.28

(−6.2%)
0.30

(−0.4%)
0.29

(−2.5%)
0.29

(−3.2%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

3.76 L/100 km
(−1.8%)

14.95 kWh/100 km
(−1.8%)

3.95 L/100 km
(−3.7%)

4.37 L/100 km
(−4.0%)

RMS (acceleration) (m/s2)
0.27

(−9.5%)
0.27

(−11.3%)
0.29

(−3.3%)
0.28

(−4.8%)

US06 Preceding Fuel consumption/battery
energy consumption/EFC 4.54 L/100 km 19.23 kWh/100 km 4.78 L/100 km 7.30 L/100 km

RMS (acceleration) (m/s2) 0.99 0.99 0.99 0.98
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.97 L/100 km
(−12.7%)

18.26 kWh/100 km
(−5.0%)

4.46 L/100 km
(−6.6%)

5.69 L/100 km
(−22.1%)

RMS (acceleration) (m/s2)
0.84

(−14.4%)
0.94

(−4.2%)
0.94

(−4.3%)
0.58

(−40.4%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

4.08 L/100 km
(−10.3%)

18.30 kWh/100 km
(−4.9%)

4.51 L/100 km
(−5.6%)

5.70 L/100 km
(−21.9%)

RMS (acceleration) (m/s2)
0.60

(−39.3%)
0.61

(−38.4%)
0.59

(−40.4%)
0.58

(−40.7%)
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Abbreviations

ACC Adaptive cruise control
AMT Automated manual transmission
BEV Battery electric vehicle
CACC Cooperative adaptive cruise control
CC Cruise control
CV Conventional vehicle
DP Dynamic programming
EFC Equivalent fuel consumption
EM Electric motor
eVT Electrically variable transmission
HEV Hybrid electric vehicle
HWFET Highway federal test procedure
ICE Internal combustion engine
IVD Inter-vehicular distance
LIDAR Light Detection and Ranging
OOL Optimal operating line
P2 HEV Parallel P2 hybrid electric vehicle
PG Planetary gearset
PS HEV Power-split hybrid electric vehicle
SOC State-of-charge
UDDS Urban dynamometer driving schedule
US06 US06 supplemental procedure
V2V Vehicle-to-vehicle
WLTP Worldwide harmonized light-vehicle test procedure

Appendix A. Optimal V2V Driving Pareto Fronts

Figure A1. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—CV powertrain.
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Figure A2. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—BEV powertrain.

Figure A3. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—P2 HEV powertrain.
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Figure A4. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—PS HEV powertrain.

Appendix B. Time-Series of Suboptimal Control Solutions in WLTP

Figure A5. Time-series for the simulation results of the CV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A6. Time-series for the simulation results of the CV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.

Figure A7. Time-series for the simulation results of the BEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A8. Time-series for the simulation results of the BEV powertrain in WLTP both as the
preceding vehicle and the following vehicle for the “Opt_Comfort” suboptimal control solution.

Figure A9. Time-series for the simulation results of the P2 HEV powertrain in WLTP both as the
preceding vehicle and the following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A10. Time-series for the simulation results of the P2 HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.
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Figure A11. Time-series for the simulation results of the PS HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A12. Time-series for the simulation results of the PS HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.
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Abstract: Hybrid and electric vehicle batteries deteriorate from use due to irreversible internal
chemical and mechanical changes, resulting in decreased capacity and efficiency of the energy
storage system. This article investigates the modeling and control of a lithium-ion battery and
ultracapacitor hybrid energy storage system for an electric vehicle for improved battery lifespan
and energy consumption. By developing a control-oriented aging model for the energy storage
components and integrating the aging models into an energy management system, the trade-off
between battery degradation and energy consumption can be minimized. This article produces an
optimal aging-aware energy management strategy that controls both battery and ultracapacitor aging
and compares these results to strategies that control only battery aging, strategies that control battery
aging factors but not aging itself, and non-optimal benchmark strategies. A case study on an electric
bus with variously-sized hybrid energy storage systems shows that a strategy designed to control
battery aging, ultracapacitor aging, and energy losses simultaneously can achieve a 28.2% increase to
battery lifespan while requiring only a 7.0% decrease in fuel economy.

Keywords: electric vehicle; hybrid vehicle; energy management; lithium ion; ultracapacitor;
battery aging

1. Introduction

Due to their low operating speeds and frequent stopping and starting, buses are a
prime candidate for hybridization or electrification in the goal of reducing transportation
sector emissions. The stop-and-go behavior, in particular, means that regenerative braking
can recover a large portion of expended power. However, for handling bus loads and
ranges, the lithium ion batteries needed for electric vehicles (EVs) and hybrid-electric
vehicles (HEVs) can be prohibitively expensive and heavy [1]. Additionally, the large
current spikes from acceleration and deceleration can degrade the battery, reducing range,
increasing energy consumption [2,3], and, in general, adding new operational costs to
such vehicles.

One possible solution to this is to use a Hybrid Energy Storage System (HESS)—a
combination of lithium ion energy storage with an ultracapacitor (UC) sized to handle large
charge and discharge currents—in place of standard battery energy storage. In general,
lithium ion batteries have a high energy density but low power density: they can store
a large amount of charge, but cannot access it quickly without degrading. Specifically,
large currents to and from the battery cause its capacity to fade and internal resistance
to grow. High temperatures and deep discharges also contribute to battery aging. On
the contrary, ultracapacitors have a low energy density and high power density [4]. A
HESS, then, allows one to obtain the efficient storage of lithium batteries while allowing
an ultracapacitor to handle the large currents [4,5]. The aging of UCs does not depend on
current magnitude or discharge depth, rather on time, temperature, and cell voltage [6–8];
therefore, there is not necessarily a tradeoff between battery aging and UC aging in HESSs.
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Current research on HESSs considers HEV, EV, and fuel cell vehicle applications.
The bulk of the literature, for instance [9–14], is concerned with the optimal sizing of the
HESS so as to maximize the cost-effectiveness of such a system. However, battery aging
is often not considered directly in this optimization; instead, battery aging factors such
as high temperatures and currents are minimized, rather than battery aging directly, and
the benefits to overall aging are only assumed [14]. Some related works that does directly
address aging are described here. In reference [15], for instance, an optimal control policy
is developed to control UC behavior. This policy demonstrated clear aging improvements
over an uncontrolled system using passive energy management. Reference [16] used
multi-objective optimization while directly incorporating an aging model and using a
rule-based control system to govern energy management for a study on HESS sizing in
EVs. Reference [17], likewise, carried out a parametric study on battery degradation versus
UC size in EVs, using a control system based on fuzzy logic. Reference [18] considered
a HESS that used lead-acid batteries rather than lithium ion, and developed an HEV
energy management strategy that tuned for battery life extension. Notably, they found
that, for the HESS to be cost-effective, a 50% increase in battery cycle life was required.
Reference [19] compared the aging benefits of an optimally-sized HESS to the theoretical
maximum benefits—battery aging reductions with an infinitely large HESS. These benefits
were experimentally verified, with the developed approach decreasing battery power
fade and temperature rise in lithium-ion batteries on a vehicle load profile. Most notably,
references [20–22] demonstrate an optimal control strategy to directly minimize battery
aging in a HESS for a plug-in HEV.

However, the literature is lacking in direct aging control for EVs, in the impact of
ultracapacitor aging in the HESS, and in methods to assess the economic benefit of the
HESS given UC aging. Although studies on direct aging control for HEVs do exist, for
instance [2,3,23,24], EVs pose a unique control problem due to the fewer controlled vari-
ables and different component sizes. This research fills these gaps in knowledge: new
energy management strategies to control battery aging and to jointly control battery aging,
ultracapacitor aging, and energy losses are developed and compared to existing methods.
Then, the cost/benefit analysis of a HESS that considers ultracapacitor aging is performed,
and the drawbacks of overusing the ultracapacitor are discussed.

This paper begins by developing the aging models for an electric vehicle hybrid energy
storage system, with an aside showing why there must necessarily be a trade-off between
battery aging and energy consumption for this vehicle configuration. Next, energy man-
agement systems (EMS) for aging control are developed, including Deterministic Dynamic
Programming (DDP), Stochastic Dynamic Programming (SDP), and Load-Leveling (LL).
The vehicle model and aging-aware controllers are then applied to a case study of an
electric bus with a HESS, simulated for the lifespan of the battery. Finally, these simulation
results are analyzed, and conclusions are drawn regarding the benefits of optimal control
and aging-aware control for vehicle energy management.

2. Modeling

This section develops a model for an electric vehicle with a hybrid energy storage
system. Specifically, the model is of a HESS-equipped electric bus using lithium-ion
batteries for energy storage and ultracapacitor modules for handling large currents, as
depicted in Figures 1 and 2. The first subsection presents the overall vehicle model,
including vehicle dynamics, motor efficiencies, battery dynamics, and so on. The next
two subsections deal with the battery aging and ultracapacitor aging models. The final
subsection discusses why, based on the provided models, aging control can have a negative
impact on fuel economy.
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Figure 1. Powertrain of an EV with a UC.

Figure 2. Block diagram for energy management of an EV with a UC.

2.1. Vehicle Modeling
2.1.1. Vehicle Dynamics

For this study, a backwards-facing quasi-static vehicle model [25] is used to represent
the vehicle dynamics. In this model, it is assumed that the driver accurately follows the
velocity of a given drive cycle, eliminating the need for a driver model and allowing the
time-history of the electrical power demand to be calculated in advance.

This research uses a backwards-facing quasi-static vehicle model [25] to simulate the
vehicle dynamics. This method assumes that the model accurately follows a specified
velocity profile, which allows for calculating the acceleration and, therefore, the electrical
power request can be computed in advance, eliminating the need for a driver model.

The vehicle body is affected by inertial forces, aerodynamic drag, and rolling resistance,
while gravitational forces (such as those due to driving on inclines) are neglected. The drag
force is given by

Fdrag =
1
2

ρA f CD(vv)
2 (1)

where ρ, A f , CD, and vv are the air density, frontal area, drag coefficient, and vehicle
velocity, respectively. Rolling resistance is given by

Froll = MvgCR (2)

where Mv, g, and CR are the vehicle’s total mass (including components such as the
engine and generator), acceleration due to gravity, and rolling resistance coefficient. In a
backwards-facing model, the acceleration and the vehicle mass determine the inertial force
on the vehicle as

Finertial = Meq
dvv

dt
. (3)

Meq is the combined bus mass and equivalent mass due to the rotational inertia of the
motor and wheels

Meq = Mv + 4Jw

(
1

Rw

)2
+ Jm

(Nf dNgb

Rw

)2

, (4)

where Jw, Rw, Jm, Nf d, and Ngb are the rotational inertia of a single wheel, the wheel
radius, the rotational inertia of the motor, the final drive ratio, and the gearbox ratio for
a single-speed gearbox, respectively. The acceleration term in (3) is approximated from a
given velocity profile according to

dvv

dt
(t) ≈ vv(t + Δt)− vv(t − Δt)

2Δt
. (5)
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These three forces sum together to give the tractive force on the bus.

Ftraction = Finertial + Fdrag + Froll (6)

Parameter values for the vehicle model can be found in Table 1. The bus is assumed to
be fully loaded and at its maximum allowable weight. The bus’s physical parameters are
based on the existing literature on bus simulation [26–28].

Table 1. Vehicle model physical parameters.

Parameter Variable Value

Vehicle Mass Mv 18,181 kg
Frontal Area A f 8.02 m2

Drag Coefficient CD 0.55
Roll Resistance Coefficient CR 0.008

Wheel Inertia Jw 20.52 kg-m2

Motor Inertia Jm 0.277 kg-m2

Wheel Radius Rw 0.48 m
Final Drive Ratio Nf d 5.1:1

Gearbox Ratio Ngb 5:1
Transmission Efficiency ηtrans 96%

2.1.2. Transmission

Next, the vehicle velocity and tractive force are equated to motor torque and angular
velocity. The motor torque is given by

τm =

⎧⎨
⎩

(
Rw

Nf d Ngb
Ftraction

)
/ηtrans, Ftraction ≥ 0(

Rw
Nf d Ngb

Ftraction

)
· ηtrans, Ftraction < 0

(7)

ηtrans is the transmission efficiency, represented as torque losses. The motor speed is then
given by

ωm =
Nf dNgb

Rw
vv (8)

The mechanical power Pmech needed to drive the vehicle is expressed in terms of the
above torque and angular velocity.

Pmech = τm · ωm (9)

In this formulation, Pmech is positive during acceleration. Parameter values for the
transmission can be found in Table 1.

2.1.3. Motor and Power Electronics

The motor torque and angular velocity are used to find the motor efficiency ηmotor,
which is constrained to 0 < ηmotor < 1. The motor efficiency is determined from a
static efficiency map from the National Renewable Energy Laboratory’s Advanced Vehicle
Simulator (ADVISOR) data library [29]. This efficiency includes both the motor itself as
well as the associated power electronics. The bus model in this research uses a 250 kW AC
induction motor.

Once the motor efficiency is found, it can be used to evaluate the driver’s electrical
power request, Preq.

Preq =

{
Pmech/ηmotor τm ≥ 0
Pmech · ηmotor τm < 0

(10)
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The electrical power request is met with power from the battery Pbatt and ultracapacitor
Puc. Given that this is a backwards-facing simulation, the power request must always
be met.

Preq = Pbatt + Puc (11)

In later sections, the ultracapacitor power is developed as the energy management
system’s controlled variable. Then, Pbatt is dependent on Preq and Puc, and Equation (11) is
rewritten as

Pbatt = Preq − Puc (12)

2.1.4. Battery

The EV’s lithium-ion battery cells are modeled with the simple equivalent circuit
shown in Figure 3, where Vcell is the single-cell open-circuit voltage (OCV) and Rcell is the
single-cell equivalent series resistance [4]. The individual cells are then combined into a
larger battery pack. Only one state variable is required for this model, the state of charge
(SOC). The OCV and internal resistance are variable parameters dependent on SOC. The
formulas for these parameters are given in [30], which develops a lithium-iron-phosphate
battery from experimental data.

Figure 3. Battery pack equivalent circuit.

The battery pack equivalent resistance Req is given by

Req = Rcell · Nser

Npar
(13)

where Nser and Npar are the number of cells in series and in parallel, respectively. The
battery pack OCV is likewise given by

Vocv = Nser · Vcell (14)

The battery pack’s terminal voltage is found from the OCV and battery power Pbatt
using the equivalent circuit in Figure 3.

Ibatt = Pbatt/VT (15)

VT = Vocv − Ibatt · Req (16)

Then, substituting the current equation into the voltage equation and solving yields

V2
T = Vocv · VT − Pbatt · Req (17)

VT = 1/2
(

Vocv +
√

V2
ocv − 4 · Pbatt · Req

)
(18)
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Substituting VT into Equation (15) allows the battery current to be found explicitly.
Then, integrating the battery current yields the state of charge.

SOC(k + 1) = SOC(k) + Δt · Ibatt
Qbatt

, (19)

where Qbatt is the battery pack’s charge capacity in coulombs and Δt is the integration
time step.

The battery model parameters are given in Table 2. The number of cells in series
ensures that the battery pack, the OCV, is in line with the requirements of [31]. The number
of parallel cells was chosen so that the bus can meet the power requirements in [31,32] to
drive continuously on an urban bus velocity profile for four hours. Note that Table 2 only
gives the nominal values for Rcell and Vcell—in reality, these parameters vary with SOC
and other operating conditions [30].

Table 2. Battery model parameters.

Parameter Variable Value

Battery Cells in Parallel Npar 400 cells
Parallel Sets in Series Nser 100 sets
Total Charge Capacity Qbatt 340 Ah

Nominal Open Circuit Voltage Vcell 3.8 v
Nominal Equivalent Resistance Rcell 7.5 mΩ

2.1.5. Ultracapacitor

The ultracapacitor modules are modeled as the first-order equivalent circuit shown
in Figure 4. The model itself is based on the 100F ultracapacitor model derived in [33].
Ultracapacitor model parameters are given in Table 3. The ultracapacitor pack, similar
to the battery pack, consists of ultracapacitors arranged in Npc modules in a parallel set
and Nsc sets in series. The number of modules is variable so that the effectiveness and
cost-benefit of the HESS can be considered across a range of designs.

Figure 4. Ultracapacitor pack equivalent circuit.

Table 3. Ultracapacitor model parameters.

Parameter Variable Value

UC modules in Parallel Npc variable
UC Parallel Sets in Series Nsc 100 sets

Resistance Ruc 44.3 mΩ
Capacitance Cuc 105.9 F

The UC pack is connected to the DC bus through a converter, as shown in Figure 1.
The converter allows the UC pack to operate independently of the DC bus voltage. The
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ultracapacitor pack power is indicated by Puc, where Puc is positive while discharging and
negative while charging. Then, each individual module has power Puc,module given by

Puc,module =
Puc

NpcNsc
(20)

For capacitor charge quc at some given power Puc,module, the current and terminal
voltage Iuc and VT,uc are found similarly to Equations (15)–(18).

Iuc = Puc,module/VT,uc (21)

VT,uc = quc/Cuc − IucRuc (22)

Substituting Equation (21) into Equation (22) and solving yields

V2
T,uc = quc/Cuc · VT,uc − Puc,moduleRuc (23)

VT,uc =
1
2

(
quc

Cuc
+

√
quc

Cuc
− 4Puc,moduleRuc

)
(24)

VT,uc can then be substituted back into Equation (21) to obtain the ultracapacitor current.
Then, the state equation for the capacitor is

q̇uc = Iuc − quc

RucCuc
(25)

Then, for the complete ultracapacitor pack,

Iuc,pack = Iuc · Npc (26)

VT,uc,pack = VT,uc · Nsc (27)

Ruc,pack = Ruc · Nsc

Npc
(28)

where Iuc,pack is the total current going to or from the UC pack, VT,uc is the terminal voltage
of the overall UC pack, and Ruc,pack is the equivalent series resistance of the entire pack.

2.2. Battery Aging Model

This research uses the cycle-life aging model presented in Reference [34], and develops
it here into an aging model that can be used in dynamic control of the energy storage
systems. Reference [34] models the cycle life of a battery as a function of depth of discharge
DoD, charging current Ic, discharging current Id, and temperature T.

CL = g(DoD, Ic, Id, T) (29)

This model starts as a simple curve fit of cycle life to depth-of-discharge at a reference
point of Ic = 1 C, Id = 1 C, T = 25 ◦C . This baseline cycle life is denoted as CLDoD. Then,

CLDoD = a1ea2·DoD + a3ea4·DoD (30)

where the ai terms are curve fit parameters. The cycle life is then obtained by modifying
CLDoD based on the actual operating Ic, Id, and T.

CL = CLDoD · AId · AIc · AT (31)

where

AId =
a5ea6·Id + a7ea8·Id

a5ea6 + a7ea8
(32)
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AIc =
a9ea10·Ic + a11ea12·Ic

a9ea10 + a11ea12
(33)

AT =
a13T3 + a14T2 + a15T + a16

253a13 + 252a14 + 25a15 + a16
(34)

where the ai terms are, again, curve fit parameters. The a5–a8 parameters are found from
a curve fit of cycle life to varying Id for Ic = 1 C, T = 25◦, and DoD = 100%. The a9–a12
parameters are found from a curve fit of cycle life to varying Ic for Id = 1 C, T = 25◦, and
DoD = 100%. The a13–a16 parameters are found from a curve fit of cycle life to varying T
for Id = 1C, Ic = 1 C, and DoD = 100%.

The cycle life model in [34] assumes uniform charge and discharge cycles over the life
of the battery. The Palmgren–Miner (PM) rule can be used, then, to handle the non-uniform
cycles of vehicle operation. This method, originally developed for analyzing material
fatigue life, has been shown to effectively approximate the battery health over non-uniform
charge and discharge cycles [35–37]. Under the assumptions of this method, each charge
and discharge cycle damages the battery an amount equal to the inverse of the cycle life
at that cycle’s operating conditions. In other words, if we assume a cycle k with depth
of discharge DoDk, charge current magnitude Ic,k, discharge current magnitude Id,k, and
temperature Tk, then the cycle life for these operating conditions is CLk. Under the PM
rule, this cycle damages the battery an amount Dk given by

Dk = 1/CLk (35)

Damage accumulates linearly for each charge and discharge cycle. Therefore, the
damage from each individual cycle can be summed to find the total damage. The total
damage Dtot through the k-th cycle is therefore

Dtot(k) =
k

∑
i=1

Di (36)

where each Di represents the damage from a single cycle with operating conditions DoDi,
Ic,i, Id,i, and Ti. In this way, the damage of individual cycles with unique operating
conditions is summed to obtain a total measure of battery health. Zero total damage
indicates that the battery is at its beginning of life, while total damage of one indicates the
battery’s end of life. Battery end-of-life corresponds to a 20% capacity fade, therefore the
capacity fade CF can be put in terms of the damage as

CF(k) = 0.2 · Dtot(k) (37)

The above method requires full knowledge of the charge and discharge time histories,
which is not practical for use in energy management; the EMS must act at a much faster
rate than the pace at which these cycles develop. It is possible, however, that the EMS
could determine how a control decision might cause the damage from the current cycle to
lessen or grow. For instance, imagine a battery operating at conditions of DoDj, Ic,j, Id,j, Tj.
Then, let the energy management system make some decision that produces new operating
conditions of DoDk, Ic,k, Id,k, Tk. Using Equations (29) and (35), the change in damage ΔD
due to the EMS’s decision can be computed as

ΔD = Dk − Dj =
1

g(DoDk, Ic,k, Id,k, Tk)
− 1

g(DoDj, Ic,j, Id,j, Tj)
(38)

Then, an energy management strategy could incorporate Equation (38) for a measure
of potential battery damage. In this way, the strategy would try to minimize the damage
from the control decision made at each time step. Note that, when controlling aging in this
manner, the EMS can only be aware of the DoD up until the current point in time and can
only assess damage relative to the current DoD, while the “true” aging depends on the size
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of the completed cycle. Despite this discrepancy, this method still proves an effective way
to control battery aging, as will be shown in later sections.

The resistance growth model in Reference [34] can be treated in an identical manner
to Equations (29)–(38). The capacity fade and resistance growth models both use rainflow
counting, as in [38], to determine the aging from the irregular cycling operations experi-
enced while a vehicle is in operation. For simplicity, it is assumed that the battery operates
at a constant internal temperature of 35 ◦C.

2.3. Ultracapacitor Aging

A novel aspect of this research is that ultracapacitor aging is considered in addition to
battery aging. Reference [6] provides the following model for ultracapacitor aging. This
model is based on Eyring’s Law, a chemical rate equation which gives an ultracapacitor
lifespan based on the operating voltage and internal temperature where aging increases
exponentially as the voltage and temperature increase. Then, the aging rate at an instance
in time is based on the inverse of the lifespan at the given operating conditions. In this
model, SoA is the state of aging that characterizes both capacitance fade and resistance
growth, where a SoA of 0 indicates start-of-life and of 1 indicates end-of-life.

dSoA
dt

=
1

Tre f
li f e

· exp

(
ln(2)

θc − θ
re f
c

θ0

)
·
(

exp

(
ln(2)

V − Vre f

V0

)
+ K

)
(39)

where θc and V are the UC temperature and voltage, respectively, and the remaining
variables (Tre f

li f e, θ
re f
c , θ0, Vre f , V0, and K) are parameters fitted to experimental data. Then,

from [6], the instantaneous capacitance Cuc and internal resistance Ruc are given by

Cuc = Cuc,0 × (0.95 − 0.15 · SoA) (40)

Ruc = Ruc,0 × (1 − 0.3 · SoA)−1 (41)

where Cuc,0 and Ruc,0 are the initial values of Cuc and Ruc.
This model can be used in control without modification. The standard end-of-life

conditions for ultracapacitors are defined similarly to batteries: when the UC capacitance
has faded by 20% [6]. It is assumed that the ultracapacitor operates at a constant internal
temperature of 55 ◦C, estimated from the operating conditions found in [39].

2.4. Aging and Fuel Economy Trade-Off

This paper analyzes the trade-off between battery aging and energy consumption in
an electric vehicle with a HESS. This section briefly touches on why there must necessarily
be a trade-off.

Consider the two paths in which power can flow through the HESS, shown in Figure 5.
Consider the first case, where power flows primarily or entirely along the upper path,
directly between the battery and the electric motor. In this case, the ultracapacitor is used
marginally or not at all, meaning there is little to no change in either energy consumption or
battery aging compared to a conventional EV that does not include an ultracapacitor. Next,
consider a case where power flows primarily on the lower path, such that the ultracapacitor
is heavily used and acts as a buffer between the battery and the electric motor. On one
hand, the power flowing to or from the battery can be controlled to reduce aging factors
such as large currents. On the other hand, the ultracapacitor introduces new resistances to
the energy storage system as well as converter inefficiencies, resulting in increased losses.
Therefore, any use of the ultracapacitor to reduce battery aging necessarily incurs new
energy losses from the internal resistance of the ultracapacitor. In short, battery lifespan
cannot be extended without an increase in energy consumption.
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Figure 5. HESS power paths. Power on the direct path between battery and motor experiences
minimal losses, while power on the path through the UC experience additional losses from the UC
internal resistance.

3. Control

In order to fully investigate the benefits of aging-aware control, seven different types
of energy management systems are considered:

1. DDP with Battery Aging Penalty, denoted DDP-B;
2. DDP with Energy Loss Penalty and Battery and Capacitor Aging Penalties, denoted

DDP-EC;
3. DDP with Battery Power Penalty, denoted DDP-P;
4. SDP with Battery Aging Penalty, denoted SDP-B;
5. SDP with Energy Loss Penalty and Battery and Capacitor Aging Penalties, denoted

SDP-EC;
6. SDP with Battery Power Penalty, denoted SDP-P;
7. Load Leveling, denoted LL.

3.1. Dynamic Programming

The first six strategies use DP to generate an optimal controller, with the first set of
three using DDP and the second set of three using SDP. The development of DP for HEV
energy management has been covered by a variety of literature, such as [40–43]. For both
DDP and SDP, the optimization problem considers a discrete-time dynamic system

x(k + 1) = f (x(k), u(k), w(k)) (42)

where x(k) is the state vector at time k, u(k) is the control vector, and w(k) is a vector of
any inputs or disturbances. x, u, and w are assumed to exist in finite ranges x ∈ X, u ∈ U,
and w ∈ W.

DDP uses exact knowledge of the driver behavior, including knowledge of future
behavior, to minimize a given cost function over the complete driving trajectory.

J =
N

∑
k=0

L(x(k), u(k), w(k)) (43)

where L(x, u, w) is an instantaneous cost function, and x, u, and w are the state variables,
controlled variables, and system inputs, respectively. Equation (43) is minimized by solving
a recursive cost-to-go function

V(x, N) = min
u∈U

{L(x, u, w(N))} (44)

V(x, k) = min
u∈U

{L(x, u, w(k)) + V( f (x, u, w(k)), k + 1)} (45)

for k = N − 1, . . . , 0

starting at k = N and working backward through time to k = 0. The key point of the DDP
method is that, at each optimization step, the entire cost from the current time k to the final
time N is minimized, not just the instantaneous cost. V(x, k) is evaluated for each x ∈ X, so
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that V( f (x, u, w(k)), k + 1) can be interpolated from the prior update. The optimal control
is found by a direct search of u ∈ U. Then, the optimal control u∗ is given by

u∗(x, k) = arg min
u∈U

{
L(x, u, w(k))+ (46)

V( f (x, u, w(k)), k + 1)
}

Meanwhile, SDP uses a stochastic model of driver behavior to anticipate the future
driver power or torque requests and minimize the expected value of a given cost function

J = E

[
N

∑
k=0

γkL(x(k), u(k), w(k))

]
(47)

where the function E[· · · ] denotes an expected value, and γ is a discount factor 0 < γ < 1
that allows the cost function to converge as k → ∞. Equation (47) is again minimized with
a recursive cost-to-go function

V(x, w, N) = min
u∈U

{L(x, u, w)} (48)

V(x, w, k) = min
u∈U

{L(x, u, w) + γ · E[V( f (x, u, w), w, k + 1)]} (49)

for k = N − 1, . . . , 0

where, this time, the expected future costs are considered, rather than the exact future costs.
The SDP problem can be treated as a finite horizon problem, where N is a fixed

number of updates. Alternatively, it can be treated as an infinite horizon problem, where
N is arbitrarily large and the updates to the cost-to-go function are carried out until the
control policy converges, in other words

V(x, w, k) = V(x, w, k + 1) ∀ x ∈ X and u ∈ U. (50)

As noted earlier, a value of 0 < γ < 1 ensures convergence of the number as N → ∞ [44].
Then, the optimal control u∗ is given by

u∗(x, w) = arg min
u∈U

{L(x, u, w) + γ · E[V( f (x, u, w), w, 1)]}. (51)

That is, the control optimizes the final update of the cost-to-go function. Although
the SDP problem is solved backwards in time like the DDP problem, the resulting control
policy is both time-invariant and causal. This is because the SDP problem does not require
future knowledge of w; instead, it relies on the time-invariant stochastic model.

For this research, the state variables are the ultracapacitor state of charge SOCc and the
battery depth of discharge for the current cycle DoD. The controlled variable is the power
allotted to ultracapacitor Puc. The driver power request Preq is an input to the controller.
For DDP, it is a precisely known function of time, while, for SDP, the future power request
is estimated from the current driver power request and the current vehicle wheel speed
ωwh, based on a stochastic model as described in [40].

It should be noted that, in general, dynamic programming control strategies are
considered too computationally expensive to run in real time on a vehicle [5]. Instead,
the control policy must be computed off-line and be implemented on the vehicle using a
lookup table. This approach requires quantizing the variables into discrete grids of points;
linear interpolation can then be used to find the optimal control at any given operating
point. The implementation of such lookups tables has been shown to operate well in real
time [45].

The three strategies employed by DDP and SDP in this research have a component
of their respective instantaneous cost functions L(x, u, w) to penalize battery aging and a
component to penalize deviation of the UC SOC from a target value SOCc,tgt = 60%. The
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SOC deviation penalty serves two purposes: first, it helps to maintain the UC’s readiness
to handle large currents. If the UC is near its maximum charge, it may be unable to accept
a large charging power request, and if the UC is near its minimum, it will be unable to
accept a large discharging power request, both of which can strain the battery. Keeping the
charge near a central value combats this problem. Second, by varying the penalty on the
deviation from the target value, the extent to which the ultracapacitor is used for aging
control can be tuned, allowing for a better comparison of lifespan improvements between
simulation cases. The manner in which the instantaneous cost functions penalize aging
varies, as described below.

The first strategy, employed by DDP-B and SDP-B, directly penalizes battery aging
according to

L(x, u, w) = (SOCc − SOCc,tgt)
2 + Q1,ΔD · ΔD (52)

where ΔD is the damage to the battery as a result of a given control decision, as given in
Equation (38), and Q1,ΔD is a tuned weighting parameter. This strategy is denoted as DP-B
when referring to the DDP-B and SDP-B types together.

The second, used for DDP-EC and SDP-EC, penalizes a combination of battery aging,
ultracapacitor aging rate, and electrical energy losses according to

L(x, u, w) = Q2,SOC(SOCc − SOCc,tgt)
2 + Q2,ΔD · ΔD + Q2,SOA · dSoA

dt
+ Q2,lossEloss (53)

where Eloss is the energy losses from the battery and ultracapacitor, obtained from

Eloss = Req I2
batt + Ruc,pack I2

uc,pack (54)

where Req is the battery pack series resistance, Ibatt is the current through the battery,
Ruc,pack is the ultracapacitor pack series resistance, and Iuc,pack is the current through the
ultracapacitor pack, per the models presented in Section 2.1. Returning to Equation (53),
the Q2,i terms are weighting parameters for their respective elements in the cost function.
The three weighting parameters Q2,ΔD, Q2,SOA, and Q2,loss are set according to industrial
average prices for lithium-ion batteries, ultracapacitors, and energy from the electrical
grid [46,47], such that the battery aging, ultracapacitor aging, and energy loss terms are
all equally weighted based on their real-world values. Then, the remaining term Q2,SOC is
used to tune the strategy. This strategy is denoted as DP-EC when referring to the DDP-EC
and SDP-EC types together.

The third and final strategy does not directly penalize aging but rather penalizes large
power going to or from the battery

L(x, u, w) = (SOCc − SOCc,tgt)
2 + Q3,P · P2

Batt (55)

where Q3,P is a tuned weighting parameter and Pbatt is the power going to or from the bat-
tery, per Equation (12). In this way, we limit battery damage using only simple knowledge
of how the battery ages—that large currents to and from the battery degrade it. Thus, we
can distinguish the benefits of direct aging control in the DDP,-B, SDP-B, DDP-EC, and
SDP-EC strategies from the benefits of DP control generally. This strategy is denoted as
DP-P when referring to the DDP-P and SDP-P types together.

In this research, DDP is used to obtain the global-optimal control strategy for a
given cost function and represents the best-case scenario for a controller type. SDP, on
the other hand, represents a causal, implementable controller and offers a more realistic
understanding of the capabilities of a given cost function design. Because it is causal, it
is also a better comparison to the Load Leveling controller. It should be noted that it is
possible to adapt the results of DDP optimization into a causal rule base; however, this
method is not used in this research.
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3.2. Load-Leveling

The final strategy considered is a simple method called “Load-Leveling.” In this
method, the battery is assigned a maximum allowable current for charging and discharging,
Ib,max, which corresponds to minimum and maximum battery powers Pb,min and Pb,max.
Pb,min provides the limit on power going into the battery while charging (negative values
of Pbatt) and Pb,max provide the limit on discharging. Any power request from the driver
that exceeds the allowable amount is handled by the ultracapacitor.

Puc =

⎧⎨
⎩

Preq − Pb,max, Preq > Pb,max
Preq − Pb,min, Preq < Pb,min
Preset, otherwise

(56)

where Preset is a small amount of power from the battery used to return the ultracapacitor
SOC to a target value of SOCc,tgt = 60%.

Preset =

⎧⎨
⎩

13 kW, SOCc > SOCc,tgt
−13 kW, SOCc < SOCc,tgt
0 otherwise

(57)

The 13 kW value corresponds approximately to a 0.1 C battery charge or discharge
rate, considered sufficiently low to not majorly affect the battery aging. The particular
value of Ib,max is varied to tune the response of the controller.

This controller serves as a lower bound for EMS performance, as it has neither an
aging model nor any form of optimal control.

4. Case Study

The model and developed controllers are, in this section, used for a case-study analysis
of aging-aware energy management: simulation is used to determine how the various
strategies perform relative to each other.

Each strategy is simulated on the Manhattan Bus Cycle (MBC) drive cycle [48] for an
array of different controller tunings.

1. DDP-B and SDP-B had the Q1,ΔD parameter varied from 104 to 1010;
2. DDP-EC and SDP-EC had the Q2,SOC parameter varied from 10−4 to 102;
3. DDP-P and SDP-P had the Q3,P parameter varied from 10−14 to 10−11;
4. LL has the Ib,max parameter varied from 2 C to 0.8 C.

The range of weights is determined by looking at orders of magnitude of the element
of the cost functions. For instance, for Equation (55), the (SOCc − SOCc,tgt)2 term has an
order of magnitude of, at most, 10−2, while the P2

batt term can have an order of magnitude
of up to 1010. Thus, tuning of Q3,P begins at Q3,P = 10−12 and is varied from that point.

Additionally, a single baseline case that does not use the ultracapacitor is simulated.
This corresponds to Q1,ΔD = 0, Q2,SOC → ∞, Q3,P = 0, or Pmax → ∞.

Simulations begin with both the battery and ultracapacitor at the beginning of their life.
After each full discharge cycle, the aging of the battery and ultracapacitor are measured,
and the capacity, capacitances, and resistances of the HESS are updated. For the purpose
of measuring aging, the battery is assumed to recharge at a rate of 0.5 C. Simulations are
then repeated until the battery reaches the end of its life, at which point the cycle life,
ultracapacitor state-of-aging, and average energy consumption are measured and recorded.

The above is repeated for three HESS designs: a small ultracapacitor unit Npc = 10, a
middle-sized ultracapacitor unit Npc = 40, and a large ultracapacitor unit Npc = 100. Both
DDP and SDP simulations are performed for the Npc = 100 case, in order to establish that
the SDP controllers will closely follow the DDP results. For the Npc = 10 and Npc = 40,
only the causal controllers (SDP-B, SDP-EC, SDP-P, and LL) are simulated.

Energy consumption is measured in equivalent miles per gallon (MPGe), while battery
aging is measured in capacity loss per mile. For ease of interpretation, the battery cycle life
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is converted to an approximate lifespan using an estimate of the average number of miles
driven per year, Davg-year = 34,000 [49].

Finally, the cost-benefit of the HESS is determined. First, the value of the HESS is
determined based on the industrial average price per kWh of $300/kWH for lithium
ion batteries and $15, 000/kWh ultracapacitors from [46] and on the battery and ultra-
capacitor size given in Section 2.1. This gives a battery value of Vbatt = $38,760 and an
ultracapacitor value of Vuc = $13,021. Additionally, an average electrical energy price of
Vnrg = $0.1065/kWh for the U.S. is obtained from [47]. Costs and benefits are normalized
by mile driven for a fair comparison between configurations. Then, the battery cost per
mile (BCPM) is determined from the miles driven over the life of the battery, denoted as
“battery lifetime miles driven” (BLMD).

BCPM =
Vbatt

BLMD
(58)

The ultracapacitor cost per mile (UCCPM) is similarly determined, this time including
a term for the ultracapacitor state of aging at the battery end-of-life (BEOL), SoABEOL.

UCCPM = SoABEOL × Vuc

BLMD
(59)

Finally, the energy costs per mile (ECPM) are given as

ECPM =
Vnrg × GGE

MPGe
(60)

where GGE is the gasoline gallon equivalent to convert from gallons of gasoline to kWh,
GGE = 33.41 kWh/gal. gasoline.

Then, the cost or benefit of the HESS can be determined by comparing the result to
the nominal case where no UC is present. Letting the subscript nom denote the nominal
case and (k) denote any particular simulation, the benefit per mile (BPM) is given by

BPM(k) = (BCPMnom − BCPM(k))− UCCPM(k) + (ECPMnom − ECPM(k)) (61)

where a positive benefit per mile indicates that value is being added to the system, while a
negative value indicates that the cost of the UC outweighs the benefit it adds.

Finally, the payback time Tpayback (in years) for the HESS can be estimated from the
UC value, average miles driven per year, and the benefit per mile.

Tpayback = Vuc × 1
BPM(k)

× 1
Davg-year

(62)

Payback time assumes a positive benefit per mile. If the BPM is zero or negative, then
a payback time does not exist.

5. Results

The simulation results are analyzed as follows: first, it is verified that the SDP con-
trollers closely follow the DDP controllers. Next, the impact of aging-aware control on the
causal controllers is assessed. Then, the effect of overuse of the ultracapacitor is discussed.
Finally, the cost-benefit of the HESS is analyzed and discussed.

5.1. Verification of DP Controllers

First, the DDP and SDP methods are compared for the Npc = 100 case for each of
the three DP cost functions, as given in Equations (52)–(55). These simulation results are
shown in Figure 6. In the case of the DP methods with an incorporated aging model, the
SDP controller closely tracks the global optimal DDP controller. For the cases that use a
battery aging model, the lifespan of the SDP-controlled battery is typically within 1% of
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the DDP result for a given MPGe, while the difference is greater for the controller that only
limits battery power, especially near the peak. These results demonstrate that the causal
SDP controllers are able to closely match the DDP global optima and indicate that the SDP
controllers behave as intended.
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Figure 6. Energy consumption and battery aging for the DP-based methods for Npc = 100.

The DP results are summarized in Table 4. Note that the value for “Mean Life Dif-
ference” is the average difference in lifespan of an SDP controller compared to a DDP
controller at any given operating MPGe value between the nominal point and the DDP
peak. Again, the key result of these data is that the SDP controllers follow the DDP con-
trollers within 1.7%, and within 1.0% for the aging-aware control specifically. Comparisons
of the different cost functions are discussed next.

Table 4. Comparison of DP Controllers for Npc = 100.

Type
DDP Max MPGe at SDP Lifespan Difference Mean Life
Lifespan DDP Peak at DDP Peak at Peak Difference
(Years) (MPGe) (Years) (%) (%)

DP-B 5.47 9.54 5.46 −0.27 −0.45
DP-EC 5.76 9.65 5.73 −0.51 −0.95
DP-P 5.20 9.49 5.04 −3.11 −1.67

5.2. Effect of Aging-Aware Control

Next, all four causal strategies (SDP-B, SDP-EC, SDP-P, and Load Leveling) are com-
pared. The Npc = 10 case is shown in Figure 7, the Npc = 40 case is shown in Figure 8, and
the Npc = 100 case is shown in Figure 9.

First, it can be seen that a larger HESS allows for greater improvements to battery
lifespan. This is expected—the Npc = 10 UC can only reduce current to or from the battery
by approximately 0.5 C, while the largest power request from the driver corresponds to
2.5 C. On the other hand, the Npc = 100 case can handle much larger power requests and
can do much more to limit large battery current. However, these additional improvements
come with a monetary cost, which is discussed more at the end of this section.

It is found across all three HESS sizing cases that the SDP-EC does the most
to improve battery lifespan, offering a peak lifespan of 4.69 years at 10.15 MPGe,
5.16 years at 9.81 MPGe, and 5.72 years at 9.72 MPGe for the Npc = 10, Npc = 40, and
Npc = 100 cases, respectively.
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Figure 7. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 10.
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Figure 8. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 40.

The SDP-B offers substantial lifespan improvements as well, however, not to the
degree of SDP-EC. SDP-B exceeds the performance of the the two non-SDP strategies but
does not improve lifespan as well as the SDP strategies that include direct aging control.
Although SDP-P does substantially increase battery lifespan, it does not “understand” the
aging mechanics—such as the different effect of charging and discharging currents, or
how damage from large currents is multiplied at high DoD—resulting in smaller lifespan
increases than the strategies that control aging directly. The performances of SDP-EC and
SDP-B relative to SDP-P clearly indicate the power of aging-aware energy management.

Not only does SDP-EC offer the best increase in battery lifespan, it offers the best
improvements to the overall energy consumption/battery aging trade-off. That is, for
all three HESS sizes and for any given rate of energy consumption, the SDP-EC strategy
offers the largest improvements to battery lifespan; further increases to lifespan incur the
smallest increases to energy consumption. Not only is the peak lifespan improvements for
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the SDP-EC method higher than SDP-B and SDP-P, it reaches that peak at a lower MPGe
than the peaks of the SDP-B and SDP-P curves. The performance of SDP-EC compared to
SDP-B indicates the value of controlling ultracapacitor aging and energy losses in addition
to battery aging.
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Figure 9. Comparison of energy consumption and battery aging for the four causal control methods,
Npc = 100.

The baseline case, Load Leveling, does not perform well: in the Npc = 10 and
Npc = 40 cases, it offers virtually no lifespan improvement at all. With the large HESS,
although it is able to match the SDP performance at low levels of UC usage, it quickly
reaches its peak before dropping off. In this case, Load Leveling offers a peak lifespan of
only 4.58 years.

The average change in ultracapacitor state of aging, measured at the end of battery
life, is plotted in Figure 10 for Npc = 40 as a representative case. Nominal aging—the
aging of an ultracapacitor that is stored at the target SOC and at the temperature given
in Section 2.3, and is otherwise unused—is found to be ΔSoA per year = 4.064%. At low
degrees of UC usage, all three SDP methods are shown to have UC aging near the nominal.
However, as UC usage increases, the SDP-B and SDP-P methods are seen to have the UC
aging rate grow—SDP-B, in fact, reaches a peak UC aging rate of 4.415% at 9.19 MPGe. On
the other hand, SDP-EC is shown to have measurably less UC aging at high levels of UC
usage. This is expected, as SDP-EC seeks to limit UC aging while SDP-B does not.

The Npc = 10 and Npc = 100 cases are not presented here; however, similar trends in
UC aging per controller type are observed.

Taken together, these results indicate a clear benefit to using strategies with predictive
power, and that predictive power combined with energy storage aging models incorporated
into the control strategy offers the best way to increase battery lifespan. The results of
the four causal strategies are summarized in Table 5 for the Npc = 10 case, Table 6 for the
Npc = 40 case, and Table 7 for the Npc = 100 case.
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Figure 10. Comparison of energy consumption and UC aging for the four causal control methods,
Npc = 40.

Table 5. Comparison of Causal Controllers, small HESS (Npc = 10).

Type
Peak MPGe Lifespan MPGe vs. UC ΔSoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 4.68 9.81 4.7 –5.9 6.633

SDP-EC 4.69 10.14 5.1 –2.8 4.587
SDP-P 4.58 10.18 2.5 –2.4 4.105

LL 4.47 10.43 – – 4.064

Table 6. Comparison of Causal Controllers, mid-sized HESS (Npc = 40).

Type
Peak MPGe Lifespan MPGe vs. UC ΔSoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 5.12 9.62 14.7 –7.8 4.138

SDP-EC 5.16 9.81 15.6 –6.0 4.091
SDP-P 4.87 9.71 9.0 –6.9 4.093

LL 4.48 10.40 0.4 –0.3 4.063

Table 7. Comparison of Causal Controllers, large HESS (Npc = 100).

Type
Peak MPGe Lifespan MPGe vs. UC ΔSoA

Lifespan at Peak vs. Nominal Nominal Per Year
(Years) (MPGe) (%) (%) at Peak

Nominal 4.47 10.43 – – 4.064
SDP-B 5.48 9.51 22.6 –8.9 4.100

SDP-EC 5.73 9.71 28.2 –7.0 4.060
SDP-P 5.07 9.32 13.4 –10.7 4.057

LL 4.58 10.09 2.6 –3.3 4.046
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5.3. Ultracapacitor Overuse

In Section 2.4, it was established that there is necessarily a trade-off between battery
aging and energy consumption when using a HESS to limit battery aging. A consequence of
this is seen in every simulated controller, shown in Figures 6–9, at the tail end of each curve:
as the ultracapacitor is used more and more extensively, energy consumption increases as
more energy is lost from the ultracapacitor internal resistance. These losses must be made
up for by discharging the battery more deeply—depth of discharge being a key aging factor,
per the model presented in Section 2.2. At some point, increases to the DoD aging factor
outweigh the impact of decreases in the other aging factors, and battery lifespan eventually
begins to decrease rather than increase. Thus, in cases where the ultracapacitor is used
very heavily, attempts to control battery aging can have the opposite of the intended effect.

The Npc = 100 SDP-P results for energy losses are shown in Figure 11 as a represen-
tative example. Energy losses increase with increasing ultracapacitor usage, eventually
leading to a decreased lifespan. This behavior emphasized the importance of tuning the
energy management strategy properly. With poor tuning, it is possible for the HESS to do
more harm than good. Similar trends are seen with the other control methods and other
HESS sizes, but are not shown here.
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Figure 11. Comparison of energy losses (left axis) to battery lifespan (right axis) versus the Q3,P

weighting parameter, where increasing Q3,P increases ultracapacitor usage.

5.4. Cost-Benefit Analysis

The cost–benefit of each simulated point is computed per Equations (58)–(61) and
plotted versus MPGe in Figure 12 for the Npc = 10 case, in Figure 13 for the Npc = 40 case,
and in Figure 14 for the Npc = 100 case. Positive values indicate that value is added to the
system, while negative values indicate a cost.

In general, it is observed that the SDP-EC method offers clear value over the other
methods: for any HESS sizing and for any given MPGe, the SDP-EC method offers the
highest benefit per mile. In the Npc = 10 case, it was shown to be the only method that
offered a positive return on investment. In the Npc = 40 case, the SDP-P and SDP-B
methods did offer a positive return: the SDP-EC’s maximum benefit per mile was over
50% greater than SDP-B and over 120% greater than SDP-P. The Npc = 100 case is similar
to the Npc = 10 case in terms of relative performance: only the SDP-EC offers notable
benefit. Although the SDP-B does offer a small positive return for some tunings, the
maximum benefit of the SDP-B method is less than a quarter of the maximum benefit of
the SDP-EC method.
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Figure 12. Cost–benefit analysis for the four causal control methods, Npc = 10.
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Figure 13. Cost–benefit analysis for the four causal control methods, Npc = 40.

Another takeaway from Figure 12 is that the peak economic benefit occurs at a higher
MPGe (lower ultracapacitor utilization) than the peak lifespan increase. This makes
intuitive sense: lifespan improvements level off near the peak while energy consumption
continues to grow. Therefore, near the lifespan peak, the marginal improvement battery-
cost-per-mile is less than the marginal decrease in fuel economy. For the Npc = 100 SDP-EC
method, there is not much difference between the peak lifespan increase (occurring at
9.71 MPGe) and the peak benefit (occurring at 9.80 MPGe); however, for a smaller HESS or
for weaker strategies, the difference can be substantial: in the Npc = 100 case, the SDP-B
peak lifespan increase is at 9.51 MPGe, which is effectively break-even in terms of value,
while the peak benefit occurs at 9.75 MPGe. SDP-P has its peak benefit at 10.06 MPGe and
peak lifespan at 9.32 MPGe; looking at the the SDP-EC method in the Npc = 10 case, the
benefit at the peak lifespan increase is approximately half of the maximum possible benefit.
Clearly, the economic factors should be considered when deciding on the controller tuning.
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Figure 14. Cost-benefit analysis for the four causal control methods, Npc = 100.

Finally, the estimated payback time is computed for the maximum benefit of the
SDP-EC method for all three cases using Equation (62). It is found that, for the given UC,
battery, and energy costs, the small HESS (Npc = 10) has a payback time of 11.3 years,
the mid-sized HESS (Npc = 10) has a payback time of 15.6 years, and the large HESS
(Npc = 100) has a payback time of 21.6 years.

In order to observe the full trend of the payback period for different ultracapacitor
sizes, additional simulations are run for Npc equal to 2, 5, and all increments of 10 between
10 and 100. The optimal EMS and optimal Q2,SOC are recomputed and the vehicle is
simulated again for the new EMS and new UC size. The payback time and battery lifespan
at the most cost-effective tuning for each Npc are then plotted in Figure 15. This shows that,
although increasing the HESS does does improve the battery lifespan, the cost of the extra
UCs exceeds the savings of that extra lifespan.
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Figure 15. Estimated payback time for optimal SDP-EC controller with varying HESS size.

Finally, the authors note the sensitivity of the benefit per mile and the payback time
period to assumptions about component pricing, energy pricing, and aging mechanisms.
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For instance: this research assumes that energy is priced at the US average across all
sectors, Vnrg = $0.1067/kWh [47]. If, instead, energy was priced at the transportation
sector average for the state of Illinois (such as for a Chicago Transit Authority bus), the
energy price of Vnrg = $0.0632/kWh, also from [47], would reduce the payback time by
approximately 30%. On the other hand, the California price Vnrg = $0.1280/kWh would
increase the payback time by 30%.

Alternatively, we can consider that battery and UC components use the pricing of
reference [50] rather than [46] while maintaining Vnrg = $0.1067/kWh; the increased
battery and ultracapacitor prices from [50] result in a payback time of 6.9 years for the
Npc = 10 UC and 13.7 years for the Npc = 100 UC. On the other hand, the component
prices of [51] would indicate that the HESS is not beneficial under any circumstance.

A different battery aging model in the literature [52], used in an array of battery and
HESS control literature such as [12,15,19,23,53,54], models lithium ion phosphate batteries
as aging at up to 3× the rate of the model used in this research. If the battery ages even 1.5×
the modeled rate, then we would see a payback period of 4.8 and 8.8 years for Npc = 10
and Npc = 100, respectively.

Finally, although battery end-of-life can be considered a hard limit for battery use
based on range constraints, the ultracapacitor, on the other hand, can continue to be used
beyond 80% capacitance fade. This would not be unreasonable, considering how Figure 15
shows that the effectiveness of the proposed control method is maintained as the number of
cells (and over UC pack capacitance) is decreased. Therefore, if, for instance, the UCs were
used until 70% capacitance fade, then we would see a payback period of 7 and 12 years
for Npc = 10 and Npc = 100, respectively. One could, alternatively, assume that the UC
does not need to be replaced at all (setting UCCPM to 0), as UC life exceeds the 12 year
lifespan of an individual transit bus [55]. However, there is still value to considering these
replacement costs from the perspective of an entire vehicle fleet.

All this is to say: an engineer must take caution that a HESS is economically appropri-
ate for a given application; there may be circumstances where a HESS is highly beneficial,
and others where it may be impractical. With that said, this research has demonstrated
that, for any HESS sizing and for any given MPGe, the SDP-EC method offers a larger
increase to battery lifespan and a higher benefit per mile than the other considered methods.
The important takeaway of this analysis is how proper control of the HESS is critical for
maximizing both battery lifespan and HESS value, and that joint control of battery aging,
UC aging, and energy losses is the most effective method to manage the HESS.

6. Conclusions

This paper develops controllable battery and ultracapacitor aging models for a HESS.
Various energy management strategies are developed for the purpose of minimizing battery
aging. As a case study, these models and control strategies are applied to a simulated
electric bus to determine the battery lifespan and energy consumption of each strategy. An
array of different HESS sizes and controller tunings are simulated in order to determine the
trade-off between battery aging and energy consumption for each strategy. Additionally,
the cost–benefit of the HESS is analyzed to determine the relative economic benefit of the
proposed control strategies.

Simulation results showed that the SDP-EC method, which controls a weighted com-
bination of battery aging, ultracapacitor aging, and energy losses, offers the biggest im-
provement to the aging–energy consumption trade-off across all considered HESS sizes.
At its peak, this strategy offered a 28.2% increase in battery lifespan and required only
a 7.0% decrease in MPGe. The SDP-B method, which controls battery aging but neither
ultracapacitor aging nor energy losses, was the next most effective controller, indicating
the importance of including an aging model directly in the control.

Simulation results also demonstrated that excessive use of the ultracapacitor can, in
fact, be detrimental to the lifespan of the battery. Ultracapacitor use incurs additional
energy losses and, if the ultracapacitor is heavily used, then these losses can result in
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additional battery aging. Furthermore, the cost–benefit analysis showed that only the
strategies that included direct aging control would reliably add value to the system; the
SDP-EC method was the most proven manner of adding economic value to the HESS. These
points, taken together, indicate the importance of control strategy selection and design.

Future work for this research includes the optimization of component sizing, given
the proposed new methods of energy management. Additionally, work is ongoing to
investigate the robustness of the control strategies for uncertainty in the battery and
ultracapacitor models. Finally, other energy management strategies should be considered
and compared to the methods here, such as DDP formed into a rule base or the Equivalent
Consumption Minimization Strategy applied to aging control.

Author Contributions: K.M. and F.A. conceived and designed the experiments; K.M. developed the
bus model performed the numerical experiments; K.M. and F.A. analyzed the data; K.M. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was supported by the University of California, Davis, Department of
Mechanical and Aerospace Engineering.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

APV Alternative Powertrain Vehicle
EV Electric Vehicle
HEV Hybrid Electric Vehicle
UC Ultracapacitor
HESS Hybrid Energy Storage System
EMS Energy Management Strategy
DP Dynamic Programming
DDP Deterministic Dynamic Programming
SDP Stochastic Dynamic Programming
SOC State of Charge
DOD Depth of Discharge
SOA State of Aging
PM Palmgren-Miner
MPGe Miles per Gallon Equivalent
BCPM Battery Cost per Mile
UCCPM Ultracapacitor Cost per Mile
ECPM Energy Cost per Mile
GGE Gasoline Gallon Equivalent
BPM Benefit per Mile
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Abstract: Since the automotive industry is shifting towards electrification, brake-by-wire technolo-
gies are becoming more prevalent. However, there has been little research comparing and optimizing
brake-by-wire actuators in terms of their energy expenditure and response time. This paper inves-
tigates the comparison of three different smart brake-by-wire actuators, Electro-Hydraulic Brakes
(EHB), Electro-Mechanical Brakes (EMB), and Electronic Wedge Brakes (EWB), first by defining
an objective metric and then using both linear and nonlinear optimization techniques. Modeling
of the actuators is performed using the bond graph method. Then, the controllers are designed
using a robust control strategy, Youla parameterization. After designing the controllers, two types
of optimization are performed on the actuators. Optimizations are performed in two ways: 1. by
linearizing the plants and optimizing using their transfer functions and 2. by nonlinear optimization
of the plants in the closed-loop following a specific clamp force target. The objective metrics or the
cost functions for these optimizations are chosen to be the energy usage of the plants during the
closed-loop operation, maximum power requirement, and their dynamic responsiveness. Using this
optimization framework, we can show a significant improvement in the energy usage of the actuators
and slight improvements in their responsiveness. In the end, the actuators are compared in terms of
their energy usage for sets of initial and optimized physical parameters.

Keywords: EHB; EMB; EWB; system modeling; bond graph; optimization; control design; Youla
parameterization; robust control; nonlinear optimization; brake-by-wire; actuator; electro-mechanical
brake; electronic wedge brake; electro-hydraulic brake

1. Introduction

By-wire technologies are becoming more in demand because of their contribution
to the vehicle’s fuel efficiency and electrification. They are well suited for autonomous
vehicles, Electric Vehicles (EVs), and Hybrid Electric Vehicles (HEVs) due to their electronic
interface and architectures. Between all these by-wire technologies, brake-by-wires are
essential since they play a critical role in the vehicle’s safety [1–3].

Brake-by-wire systems can reduce the overall component weight due to the reduction
in the number of parts and integrated packaging. They also improve energy consumption
because they would only use energy when required. The reduction of energy usage by
different components is an essential aspect of reducing the CO2 emissions of vehicles.
This type of reduction is significant in reducing fleet CO2 emissions. When the brake
pedal is released, the brake pad may not release entirely, causing caliper drag. Brake-
by-wire is even more energy-efficient by eliminating caliper drag through sensors and
control methods. To enhance vehicle safety, individual wheel braking and faster activation
times of BBW actuators can be utilized by the vehicle’s Electronic Stability Control (ESC)
system. The biggest barriers to brake-by-wire systems gaining popularity in the automotive
industry are the reliability of new actuators, as well as the risk and cost of deploying new
braking technology [4].
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1.1. Brake-by-Wire Actuators

Wet and dry brakes are the two types of braking systems. Dry brakes are simply
mechanical systems that rely on electric motors, whereas wet brakes employ fluids to
produce pressure on the piston and the caliper. A type of wet brake is electro-hydraulic
brakes, which include solenoid valves that can be operated with an electronic signal to
vary the braking pressure. These types of brakes require an accumulator and a pump,
and usually a vacuum booster to maintain their high pressure throughout the braking
operation. There are also a few different types of dry brakes. In a pure electro-mechanical
brake, a small electric motor, planetary gear set, and roller screw energizes the brake
pad [5–8]. For this type of brake, however, a 42 volt motor is needed, which is energy
intensive [4]. On the other hand, a wedge mechanism is used in electronic wedge brakes
to create a brake caliper, which is drawn into the brake and uses less energy because it
utilizes the wheel’s rotation. They usually need a 14 V supply as opposed to the 42 V of the
electro-mechanical brake. However, this comes at the cost of more complicated mechanics
and control [5,8–16]. Vienna Engineering has created a brake system based on a crank-shaft
mechanism that reduces the complexity of dealing with the reduction gears and roller
screws [17].

Purely dry brakes are expensive compared to conventional electro-hydraulic brakes
since they are new technologies and need more testing and research before they can be
reliable enough to go into production. The reliability of purely dry brakes is a challenge
since they have more electronic components, and these components need to work reliably
in an environment where vibration, shock, and temperature can significantly affect their
nominal performance [4].

On the other hand, EHBs have been used by manufacturers for a while. For example,
an integrated electro-hydraulic brake system utilizes an electro-mechanical actuator (similar
to an electro-mechanical brake) as a modulator of a master cylinder. This electro-mechanical
actuator uses a motor to rotate a gear mechanism and a ball-screw that pushes the piston.
This axial force pressurizes the brake fluid inside the master cylinder. The pressurized brake
fluid is then transferred to the wheel chamber using a high-pressure pipeline, where this
pressure displaces the caliper (similar to an EHB). This integrated electro-hydraulic brake
uses most of the EHB parts that the automotive manufacturers are already familiar with and
removes the need for a pump, vacuum booster, and accumulator [18,19]. It also seems that
this type of brake actuator is gaining popularity among car manufacturers. Bosch GmbH
developed the iBooster and ESP hev (electronic stability program for hybrid and electric
vehicles), which are integrated electro-hydraulic and Hydraulic Control Units (HCU) in
2013. In 2017, Continental AG introduced MK C1, which is an integrated EHB with fast
actuation and without any vacuum booster or accumulator along with emergency brake
functionalities [20]. ZF TRW (with the IBC) and Hyundai Mobis (with iMEB) are among
the more recent suppliers who developed and manufactured integrated electro-hydraulic
brake actuators.

1.2. Objective Metrics for Brake-by-Wire Systems

Objective metrics are required for performing a comparative analysis of the systems
under consideration. These metrics are utilized to measure each system’s performance, ro-
bustness, and safety correctly. Similar metrics have already been used in other automotive
applications to optimize or compare different topologies (different configurations). For ex-
ample, Shankar et al. use several criteria for optimization and component sizing of plug-in
hybrid electric vehicles. The objective functions in their optimization include all-electric
range (AER), the CO2 emission from the drive-cycle, and the cost of components [21].

Gombert et al. provide some basic metrics for brake-by-wire actuators and their
vehicle configurations [4]. They provide some background for the objective metrics that
need to be considered for Brake-By-Wire (BBW) actuators. Yao et al. consider a multi-
objective optimization with a few constraints for their combined electromagnetic and
electronic wedge brake-by-wire actuator. The objective comprises a time to braking at
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an acceptable slew rate, maximum initial braking torque, and electric power of the DC
motor. Their constraints include the maximum power of the DC motor, brake slew rate,
and maximum braking torque (maximum ground friction coefficient) [22,23]. Kwon et al.
use a multi-objective formulation to optimize a caliper for the wedge brake. Their objective
function includes the minimization of weight and the maximization of caliper stiffness.
They then use the response surface model to optimize and find the best possible set of
caliper parameters [24].

Metrics and metric-based optimization have also been used in the control architecture
of brake-by-wire systems. Fengjiao et al. use multi-objective optimization for their control
strategy of an electro-hydraulic brake system in an EV. Their objectives include 1. braking
stability, which can be expressed as a quadratic function of friction adhesion on the rear
and front wheels and the brake input, and 2. regenerative energy recovery. The constraints
include battery charging power, motor peak torque, and the relationship between vehicle
stability while braking and road surface friction [23]. Hielinger et al. used parameter
optimization for an autonomous emergency braking system. Their cost function includes
safety performance and customer acceptance. Safety performance is measured as the
reduction of the impact speed (the speed at which the vehicle might collide to the nearest
obstacle; if there is no collision, the cost becomes zero). Customer acceptance includes a
sub-cost function for the brake profile (the deceleration of the vehicle summed over time)
and braking the distance (minimum distance between the vehicle and the obstacle) [25].
Kelling et al. studied a distributed electronic and control architecture design for brake-
by-wire systems and compared a conventional centralized architecture with a proposed
fault-tolerant and distributed system in terms of safety and cost advantages [26].

1.3. Control Strategies for Brake-by-Wire Systems

Many researchers have used the sliding mode method to control the wheel slip for
Anti-Lock Braking (ABS). Sliding Mode Controller (SMC) is a nonlinear control technique
and an inherently non-continuous control law, which requires additional filtering to suitably
smooth out this discontinuous control law, to force the system to operate on a sliding surface
which defines the system’s closed-loop dynamic. Compared to bang-bang control, SMC
has the benefits of smaller actuation and added robustness. Anwar utilized a sliding mode
controller to control slip in a hybrid BBW system that resulted in a good slip regulation
in low friction surfaces and a smooth operation of the ABS, and reduced noise, vibration,
and harshness (NVH) in EHB systems [27]. Tanelli et al. use pseudo-sliding mode control
combining slip-deceleration (MSD), which continuously controls slip and deceleration
while avoiding chattering and is robust against measurement noise and low sampling
frequency [28]. However, SMC is not widely used in the automotive industry due to
its design complexity, calibration difficulties, proper consideration of actuator delays,
and difficulties with addressing robustness. Actuators have delays that can make the sliding
mode lead to chatter, energy loss, and the excitation of unmodeled dynamics. However,
this is not as much of a problem in the continuous control design [29]. Soltani et al. use a
linearized model of EHB and synthesize closed-loop shaping Youla parameterization for
the wheel slip control. The stability and performance of the controller were tested on an
HiL (hardware in the loop) setup [30].

1.4. Contribution and Paper Structure

This paper discusses a novel approach to optimize three different brake-by-wire
actuators. The novelty of this paper is as follows:

1. To the best of the authors’ knowledge, this is the first paper on the optimization and
comparison of brake-by-wire actuators’ energy usage and responsiveness;

2. Use of transfer functions as a way to optimize a nonlinear plant;
3. The optimization of the brake-by-wire actuators operating in closed-loop (and follow-

ing a target) has not been investigated before;
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4. The use of a robust control method (Youla parameterization) to control an EHB brake
with build and dump valves (the use of Youla parameterization for EMB and EWB
has already been investigated in another paper by the authors [31]);.

The structure of this paper is as follows: In the materials and methods section, the pro-
cedures used to achieve the results are discussed. The actuator modeling subsection
discusses how each actuator has been mathematically modeled. The model-based control
synthesis subsection discusses the robust control design. The optimization section dis-
cusses the transfer function and nonlinear plant optimization. In the section results and
discussion, the optimization results are presented and discussed. Moreover, in the final
section, the conclusions, the final conclusion is drawn, and the benefits and the pitfalls of
the optimization framework are discussed.

2. Materials and Methods

2.1. Actuator Modeling

The schematics of EHB, EMB, and EWB brakes are shown in Figure 1a–c.
EHB model consists of a high-pressure source (master cylinder), hydraulic lines, build

and dump valves, a brake cylinder chamber, and brake pads. The master cylinder provides
pressure into the high-pressure line, controlled by the build and dump valves. Build and
dump valves are considered to have varying states between their fully open and fully
closed states. This is as opposed to the valves that can either be fully open or fully closed
at a given time. In practice, these are solenoid valves that can be controlled with pulse
width modulation. For the sake of initial comparison between these smart brake actuators,
a vehicle model containing only one-wheel is utilized. When the pressure increases in
the brake cylinder chamber, this pressure will move the brake pad forward. This forward
movement of the braking pad stops the brake disk as a result. Upon stopping, the dump
valve opens, decreases the pressure, and releases the brake pads, bringing them back to
their original position.

The EMB comprises a small electric motor, planetary gear set, ball-screw mechanism,
brake pad, and caliper. A planetary gear set and a ball screw mechanism move the brake
pad when the motor rotates. This movement will result in a clamp force that is denoted by
Fcl as illustrated in Figure 1b.

The EWB actuator converts the motor’s rotation to a linear force on the wedge by
using a planetary gear set (not depicted in the schematic) and a roller screw. The motor
shaft’s axial stiffness and resistance are also considered in modeling this actuator. Kcal
represents the combined caliper stiffness and the stiffness between the wedge and the disk.
This is similar to the EMB configuration, except that the caliper is shaped like a wedge,
which, by inserting it inside the brake casing, creates a self-reinforcing mechanism.

Bond graph is a graphical modeling approach for dynamical systems based on the
flow/exchange of power, and therefore, energy. Among the many benefits of bond graphs,
they are suitable for the systems with multiple energy domains such as mechatronic
systems that usually include various electronic, electrical, mechanical, and hydraulic
components [32]. Bond graphs are multi-energy domain and open architecture, which
means one can easily add and expand the models with minimum effort compared to other
modeling techniques. Furthermore, the monitoring and processing power and energy
consumption of various components and parts are conducted with ease when using bond
graphs. Given the mentioned benefits of this modeling technique, this method is adopted
here to study and model BBW systems.
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(a)

(b)

(c)

Figure 1. Schematics of brake-by-wire actuators. (a) Electro-Hydraulic Brake [33]; (b) Electro-
Mechanical Brake; (c) Electronic Wedge Brake [9].

Figure 2a–c show the bond graph of EHB, EMB, and EWB, respectively. A one-wheel
vehicle model is included in all the actuator bond graph models. The wheel has rotational
inertia and is connected to a point mass. For the preliminary studies of brake actuators and
their algorithms (for example, the Anti-Lock Braking System, ABS, and Traction Control
System, TCS), this simple one-wheel model can be used and is easy to implement later on
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a hardware-in-the-loop test. Models such as this can be used for studying longitudinal
dynamics in the vehicle. Since it focuses only on the longitudinal dynamics of the vehicle,
it is perfectly suited for studying brake-by-wire actuators and ABS technologies [34].
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Figure 2. Bond graphs of brake-by-wire actuators.

Based on the bond graphs in Figure 2a–c, the equations of motion for EHB, EMB, and
EWB can be written. Equations (1)–(4) represent the equations of motion for the EHB. qcyl ,
pp, xcal , Pin, ub, and ud are the volumetric displacement of the cylinder fluid, momentum
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of the caliper, caliper displacement, pressure of the master-cylinder (high pressure input),
duty ratio of build valve, and duty ratio of dump valve (between 0 and 1), respectively.

Cd, Sb, Sd, ρ, βh f , Vcyl , Sp, bp ,mp, x0, and kcal are the maximum flow coefficient of
the valve, cross-sectional area of the build valve when fully open, cross-sectional area
of the dump valve when fully open, density of the brake fluid, bulk modulus of the
brake fluid, cylinder’s volume, cylinder’s cross-section surface, damping coefficient, brake
pad’s mass, brake clearance, and caliper stiffness, respectively [33]. Since these equations
are highly nonlinear because of the valves, a linearized version, for the purpose of con-
trol development, is given in Equations (5)–(7). In this linearization, it is assumed that
ud = 1 − ub, and this means that when one valve is open, the other is closed.

EHB equations of motion are as follows:

q̇cyl = CdSbub

√
2
ρ
(Pin − βh f

Vcyl
qcyl)− CdSdud

√
2
ρ
(

βh f

Vcyl
qcyl)−

Sp

mp
pp (1)

ṗp = Sp
βh f

Vcyl
qcyl − bp

pp

mp
− kcal max(xcal − x0, 0) (2)

ẋcal =
1

mp
pp (3)

Pcyl =
βh f

Vcyl
qcyl (4)

Linearized EHB equations are as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

CdSbu0

√
1

2ρ

− βh f
Vcyl√

(Pin−
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√
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−Sp
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0 1
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(5)

B =

[
CdSb

√
2
ρ (Pin − βh f

Vcyl
qc0) + CdSd

√
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ρ (

βh f
Vcyl

qc0) 0 0
]

(6)

⎡
⎣q̇cyl

ṗp
ẋcal

⎤
⎦ = A

⎡
⎣qcyl

pp
xcal

⎤
⎦+ B ub (7)

Similarly, equations of motion for the EMB can be written using Equations (8a)–(8d).
Note that the same nonlinear friction model has been used for the EMB and EWB models.
Im, Vin, and ωm are current, voltage input, and angular velocity of the shaft, respectively. Lm,
Rm, Kt, Jm, Dm, Ns, Np, and Kcal are the inductance of the electric motor, electrical resistance,
electromotive force constant, total moment of inertia of the rotational parts (including the
shaft and gears), axial viscous friction, planetary gear reduction ratio, ball-screw gear
reduction ratio, and caliper stiffness, respectively.

EMB equations of motion are as follows:

İm =
1

Lm
× (Vin − Rm × Im − Kt × ωm) (8a)

ω̇m =
1
Jm

× (Kt × Im − Dm × ωm − τf − Np × Ns × Kcal × max(Xcal − x0, 0)) (8b)

Ẋcal = Ns × Np × ωm (8c)

FCal =

{
Kcal(Xcal − x0), if Xcal ≥ x0
0, otherwise

(8d)
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Equations (9a)–(9h) show the equations of motion for the EWB, where N, qax, Kax, Dax,
Xw, Vw, Fm, α, and μcal are combined gear reduction, shaft axial displacement, shaft axial
stiffness, shaft axial viscous resistance, wedge displacement, wedge velocity, motor force
exerted to the wedge, wedge angle, and friction coefficient between the pad and the wheel,
respectively.

EWB equations of motion are as follows:

İm =
1

Lm
× (Vin − im × Rm − Km × ωm) (9a)

q̇ax = LNω − Vw

cos(α)
(9b)

Fm = Kaxqax + Daxq̇ax (9c)

ω̇ =
1
Jm

{Km Im − Dm × ω − τf − L × N × Fm} (9d)

V̇w =
1

mw(1 + tan2(α))
× { Fm

cos(α)
+ (Kcal × Xw × tan(α)× (μcal − tan(α))} (9e)

Ẋw = Vw (9f)

FB = μcalKcalXw tan(α) (9g)

FCal =

{
Kcal(Xcal − x0), if Xw ≥ x0
0, otherwise

(9h)

τf is the lumped nonlinear frictions present in the shaft, planetary gears, and worm
gear. The Lugre friction model has been used to model this nonlinear friction. The Lugre
model is used for modeling the frictions in actuators since it offers a dynamical model which
captures the dynamics very well while needing a lower number of parameters. Other types
of friction models can be used as well to represent the frictions. Equation (10a) represents
the Lugre friction model [35] where σ0, σ1, σ2, ωs, j, τc, and τs are the contact (bristle)
stiffness, damping coefficient of the bristle, viscous friction coefficient, Stribeck velocity,
shape factor, Coulomb friction, and static friction, respectively. Equation (10d) shows that
there is a linear relationship between the Coulomb friction and the clamping force, which is
usually derived through experiment. As clamping force increases, the normal forces inside
the gears increase as well, which results in increasing the friction torque [6].

Lugre dynamic friction model for EMB and EWB is as follows:

g(v) = τc + (τs − τc)× e−| ω
ωs |j (10a)

ż = ω − σ0 × ω × Z
g(v)

(10b)

τf = σ0 × z + σ1 × ż + σ2 × ω (10c)

τc = C + G × FCal (10d)

2.2. Model-Based Control Synthesis

Youla parameterization is a robust control method that leverages closed-loop frequency
shaping to attain the desired closed-loop behavior. These closed-loop transfer functions
consist of (Ty), known as a complementary sensitivity transfer function, sensitivity transfer
function Sy, and Youla Y transfer function (explained below). This method shapes closed-
loop transfer functions while ensuring internal stability along with disturbance rejection at
low frequencies and sensor noise and unmodeled disturbance rejections at high frequencies.
This method was selected because of its ease of control design using the model-based
approach for designing appropriate low-level controllers based on the developed bond
graph models [36].
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The central notion in this method is to form a closed-loop transfer function (Ty) with
a transfer function named Youla (Y(s)). Multiply Youla by the plant transfer function
(Gp) to create the desired closed-loop transfer function (Equation (11)). For good tracking
performance in steady-state, the magnitude of Ty(s) should be set to one at low frequencies.
To ensure high-frequency noise rejection, Ty(s) should be small at high frequencies:

Ty(s) = Y(s)× Gp(s) (11)

As a result, we can shape the closed-loop transfer function using Equation (11) (given
we meet all the interpolation conditions for ensuring internal stability mentioned below). It
should be noted that the Youla transfer function maps the desired reference signal to the
actuator effort. With good target following, such as |Ty(s)| = 1 at low frequency, the Youla
transfer function is approximately equal to the inverse of the plant transfer function at
low frequency and equal to the controller Gc(s) transfer function at high frequency. Thus,
keeping Youla’s magnitude small at high frequencies would reduce actuator effort and
minimize the impact of sensor noise on the actuator.

The closed-loop transfer function (Ty(s)) and the sensitivity transfer function (Sy(s))
are complementary to each other, as shown by (Equation (12)). Due to this algebraic
constraint, the sensitivity transfer function should be small at low frequencies (to reject
low-frequency disturbances) and equal to one in magnitude at high frequencies:

Sy(s) = 1 − Ty(s) (12)

If Gp is stable, the feedback loop would be internally stable if and only if Y(s) is
selected to be a stable transfer function. In this regard, Yy(s), Sy(s), Ty(s), and Gp × Sy
should all be stable to make the feedback loop internally stable. Consequently, to meet
these conditions in case of an unstable pole (αp) which is repeated n-times in the plant
(Gp), Equations (13) and (14) define rational interpolation conditions, which must be met to
enforce internal stability. If it is a single unstable pole (not repeated), Equation (13) is the
only interpolation condition that needs to be satisfied:

Ty(αp) = 1, Sy(αp) = 0 (13)

dkTy

dsk (αp) = 0,
dkSy

dsk (αp) = 0, ∀k ∈ �1, n� (14)

If there is a repeated non-minimum phase zero (αz), zeros in the RHP (Right Half
Plane), the interpolation conditions are met by Equations (15) and (16). If the unstable
zero is only repeated once, Equation (15) is the only interpolation condition that must be
satisfied [36]:

S(αz) = 1, T(αz) = 0 (15)

dkSy

dsk (αz) = 0,
dkTy

dsk (αz) = 0, ∀k ∈ �1, n� (16)

Once we ensure that the conditions in the Equations (13)–(16) are met, we can acquire
the controller using Equation (17):

Gc(s) = Y(s)× Sy(s)−1 (17)

Cascaded Control

Since the brake-by-wire smart actuators are Single Input Multiple Output (SIMO)
problems, we consider the cascaded control scheme. Cascaded control enables systems
with relatively more nonlinearities to perform better and be more robust. Therefore,
the controllers were designed using cascaded control to mitigate different nonlinearities in
the brake actuators (e.g., mechanical friction, pressure nonlinearities). Each inner closed-
loop is an open-loop for their outer loop controller design. The controller design of each
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plant is conducted through the Youla parameterization approach, as discussed in the
previous section. Figure 3 shows this cascaded control design for EMB and EWB actuators.
In the EMB and EWB, for the first loop, motor voltage is input, and motor current is the
output. In the second loop, the motor’s desired current is input, and the motor’s angular
velocity is output. Finally, for the outermost loop, the input is the desired motor angular
velocity, and the clamping force is the output (the normal force of the brake pad on the
wheel). The shaft’s current and angular velocity can be measured directly and is readily
available, but the clamping force must be estimated or measured with a force sensor.

One important part of the EMB/EWB plant, which is not shown in Figure 3, is the
current and voltage saturation. Current is saturated at ±25 A, and voltage is set to saturate
at ±42 Volts. Because of these, the controllers might saturate and, therefore, make the plant
unstable. A simple gain anti-windup was used to address the current saturation and to
mitigate this issue (Figure 4). There could also be another anti-windup for the voltage
saturation; however, normally, the voltage does not reach saturation levels if the current
saturation has been addressed. Furthermore, adding an extra anti-windup may result in
limiting the bandwidth of the closed-loop system. In addition, other anti-windup strategies
such as the one in [37] or [38], which is specifically for cascaded controllers, could have
been utilized.

In the EHB control design, a SISO controller was designed based on the linearized
equations mentioned in Equations (5)–(7). The operating points taken for this linearization
are u0 = 0.3 and qc0 = 0.3 × q0. q0 is the steady-state value of qcyl . In addition, as
mentioned before, it is assumed that ud = 1 − ub. This continuous control law works
well when building and dumping the pressure in the cylinder chamber. However, in the
case of keeping constant pressure during the steady-state, we might run into the issue of
having both build and dump valves open partially at the same time and therefore losing
some of the master cylinder’s pressure which wastes energy. For example, ud = 0.7 and
ub = 0.3 would hold the constant cylinder pressure, but this is not energy efficient as
the pumps keep running. For this reason, a switching logic was added to the continuous
Youla controller. This switching statement changes the values of ub and ud to zero once the
clamping force error is within the desired threshold. Otherwise, it passes the same values
from the controller to the plant as shown in Figure 5.

Figure 3. Cascaded control scheme for the EMB/EWB (a); The bottom Figure shows the decomposed
system for control design (b).

Figure 4. Anti-windup gain used to compensate for the current saturation.
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Figure 5. Control scheme for the EHB.

2.3. Optimization
2.3.1. Linear Optimization: Using Transfer Functions

In this section, a multi-objective optimization scheme for brake-by-wire actuators
based on their transfer functions is considered. This optimization considers dynamic
responsiveness and the actuator’s effort as objective metrics.

After linearizing the plants, we can obtain their transfer functions. We then synthesize
the controllers using the Youla parameterization technique discussed in Section 2.2. There
are a few assumptions made when designing the controllers during the optimization
process. Controllers are designed to create closed-loop transfer functions to be in a certain
form. Equations (18), (19), (20), (21a), (21b), (22), (23a) and (23b) describe the form of Plant
transfer function (Gp), Youla transfer function (Y), and closed-loop transfer function (T)
for the first, second, and the third loop of EMB (EWB follows a similar control design
pattern, and EHB follows the same pattern, but it only has one control loop, and therefore,
the design choice is similar to the one in Equation (19)). The goal here is to design a closed-
loop transfer function with the frequency shape of a second-order Butterworth filter and
add extra first-order filters whenever necessary. For example, in Equation (21a), the second
open-loop transfer function has an integrator that should not be canceled by the Youla
transfer function. Hence, a high pass filter was added to the Youla transfer function ( 1

s+W1
).

W1 is the pole for the filter that is added to the Youla transfer function. This can be chosen in
such a way that it does not affect the bandwidth of the closed-loop system.. In this equation,
G′

p2
represents the plant transfer function of the second loop without the s in the numerator.

Moreover, in the case of Equation (23a), a repeated first-order transfer function was added
to the Youla transfer function to make this transfer function proper (Gp3 is a fourth-order
transfer function; for simplicity, we choose to use first-order poles. N-th order Butterworth
filter could also be used in this case). More details on the design of these controllers are
provided in [31]. It should be noted that ωn1 , ωn2 , and ωn3 are chosen for each loop to have
a specific bandwidth (ωn1 , ωn2 , and ωn3 are the Butterworth filter’s cut-off frequencies for
the different added Butterworth filter to Youla transfer functions). In the case of EMB, this
is 200 Hz, 10 Hz, and 2 Hz for the first, second, and last loop, respectively. For the EWB,
they are chosen to be 500 Hz, 400 Hz, and 2 Hz. Finally, for EHB, it is chosen to be 2 Hz.
Therefore, all of the brake-by-wire actuators have the same final closed-loop of 2 Hz for the
clamp force loop. This is a deliberate choice to make sure all the brake-by-wire actuators
have the same bandwidth (for the clamping force) for the final comparison in terms of
energy and responsiveness metrics. The chosen control parameters mentioned here (such
as ωn and ξ) will remain the same over the course of all optimizations. This is performed
to have fixed control design for the optimization procedure, and the only change will be
the physical parameters of the system. Figure 6 shows the Bode magnitude plots of T, S,
and Y for this type of control design.

GpI =
Jms2 + Dms + (NsNp)2Kcal

(Lm Jm)× s3 + (Rm Jm + LmDm)× s2 + (RmDm + Lm(NsNp)2Kcal + K2
t )× s + Rm(NsNp)2Kcal

(18)

Y1 =
1

GpI

× ω2
n1

s2 + 2 × ξ × ωn1 × s + ω2
n1

, T1 =
ω2

n1

s2 + 2 × ξ × ωn × s + ω2
n1

(19)
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Gp2 = T1 × Gpω =
ω2

n1

s2 + 2 × ξ × ωn × s + ω2
n1

× Kt × s
Jms2 + Dms + (NsNp)2Kcal

(20)

Y2 =
1

G′
p2

× ω2
n2

s2 + 2 × ξ × ωn2 × s + ω2
n2

× 1
s + W1

× (
W2

s + W2
)2 (21a)

T2 =
ω2

n2

s2 + 2 × ξ × ωn2 × s + ω2
n2

× s
s + W1

× (
W2

s + W2
)2 (21b)

Gp3 = T2 × GpF =
ω2

n2

s2 + 2 × ξ × ωn2 × s + ω2
n2

× s
s + W1

× (
W2

s + W2
)2 × Kcal NsNp

s
(22)

Y3 =
1

Gp3

× ω2
n3

s2 + 2 × ξ × ωn3 × s + ω2
n3

× (
W3

s + W3
)4 (23a)

T3 =
ω2

n3

s2 + 2 × ξ × ωn3 × s + ω2
n3

× (
W3

s + W3
)4 (23b)
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Figure 6. An example design of cascaded controllers for the EMB/EWB.

After designing the controllers, we then utilized the aforementioned transfer functions
to optimize actuator response and actuator usage. The process of optimization starts with
designing the controllers based on the physical parameters of the system and deriving these
transfer functions as a function of the physical system parameters (since the parameters
change, the Gps change, and therefore, these transfer functions will be different for each set
of physical parameters).
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The bandwidth of a plant is related to its dynamic response, and therefore, increasing
the bandwidth would result in faster system response. The bandwidth of a system/plant
is defined as the frequency range where the magnitude of the system gain does not drop
below −3 dB. For EMB/EWB, the plant transfer function, which is chosen (denoted as Gp
here) for calculating the system bandwidth, is from voltage input to the clamping force
output. For EHB, the plant transfer function maps ub to the clamping force. The bandwidth
of the plant is denoted as Bandwidth{Gp}.

Another factor to consider is the actuator’s power usage which is related to the
actuator’s effort, and hence, it is related to the Youla transfer function, denoted as Y(s).
The Youla transfer function for the overall system in case of cascaded control design would
become Ysys = Y1 × Y2 × Y3. In here, Ysys stands for the Youla transfer function from the
clamping force reference to the voltage input (or to the ub for the EHB), which is the Youla
transfer function of the overall control system. It can be shown if the magnitude of Ty(s)
or the gain of closed-loop transfer function is one at low frequencies, the Youla transfer
function at low frequencies is inversely related to the plant transfer function Gp(s) (From
Equation (11), if Ty = 1, then Y = 1

Gp ). By increasing the plant gain at low frequency
(approximately its DC gain, denoted as DC{Gp} in this section), Y(s) will decrease at
low frequencies.

Furthermore, we need to lower the overall values of the Youla transfer function
magnitude at other important frequencies, especially around the plant bandwidth. This
will ensure the reduction of the actuator effort in all possible frequencies. To this end, we
can use an H2 norm of this transfer function. H2 norm is related to the output signal energy
when the system input is an impulse [36]. Since we are interested in a specific frequency
region of the Youla transfer function, a band-pass filter, see Figure 7, is used to emphasize
the frequency region of interest. ωL and ωH are chosen to be 0.1 × Bandwidth{Gp} and
1e4 × Bandwidth{Gp}. This will ensure that the Youla transfer function magnitudes at
low and mid-range frequencies stay low. The optimization problem is then formulated by
combining all these costs as given in Equation (24):

minimize
x

& f (x) = α1 × ||Ysys × WY||2 + α2 × 1
DC{Gp} + α3 × 1

Bandwidth{Gp}
subject to &x ∈ [xmin, xmax],

(24)

where α1, α2, and α3 are tuning parameters, and x is the vector of physical parameters
of the system that can be changed during the design process (e.g., gear ratios, moments
of inertia, and motor’s inductance). xmin and xmax denote the minimum and maximum
of the parameter set, respectively. WY is the frequency weighting function for H2 norm
optimization. It should be noted that each cost in Equation (24) is normalized by its nominal
value to ensure the minimization of the three costs is done without bias. A choice of physical
parameters for each actuator, their initial and optimized value are given in Table 1.

Figure 7. Band-pass filter, WY , is used to emphasize specific frequency region of Youla transfer
function in the H2 norm optimization.
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Table 1. Initial and optimized physical parameter values of EMB, EWB, and EHB and the range of
the parameters.

Parameter Units
Lower
Bound

Upper
Bound

Initial
TF-Based

Opt.
Nonlinear

Opt.

Lm H 4.48 × 10−5 5 × 10−3 5.6 × 10−5 6.36 × 10−5 2.8 × 10−3

Rm Ω 2.50 × 10−2 1 × 10−1 5 × 10−2 2.5 × 10−2 3.76 × 10−2

Jm kg m2 s−2 6.0 × 10−5 5.8 × 10−4 2.9 × 10−4 7.19 × 10−5 1.03 × 10−4

Dm N m s 2.0 × 10−4 1.5 × 10−2 9 × 10−3 2.02 × 10−4 9.0 × 10−4

Ns - 7.96 × 10−5 1.3 × 10−3 6.37 × 10−4 1.3 × 10−3 1.2 × 10−3

Np - 6/266 18/266 4.14 × 10−2 6.74 × 10−2 6.26 × 10−2

Kcal N m−1 2.3 × 107 4.3 × 107 3.35 × 107 4.3 × 107 4.19 × 107

EMB

Kt N m A−1 5.0 × 10−2 5.2 × 10−1 6.97 × 10−2 1.59 × 10−1 4.3 × 10−1

Lm H 4.48 × 10−5 5 × 10−3 5.6 × 10−5 4.7 × 10−3 4.48 × 10−5

Rm Ω 2.50 × 10−2 1 × 10−1 5 × 10−2 2.5 × 10−2 2.6 × 10−2

Jm kg m2 s−2 6.0 × 10−5 5.8 × 10−4 2.9 × 10−4 5.8 × 10−4 9.26 × 10−5

Dm N m s 2.0 × 10−4 1.5 × 10−2 9 × 10−3 2.0 × 10−4 2.1 × 10−4

Ns - 7.96 × 10−5 7.96 × 10−4 4.77 × 10−4 7.96 × 10−4 7.89 × 10−4

Np - 6/266 18/266 4.17 × 10−2 6.77 × 10−2 6.76 × 10−2

Kcal N m−1 2.3 × 107 4.3 × 107 3.35 × 107 4.3 × 107 4.29 × 107

Kt N m A−1 5.0 × 10−2 5.2 × 10−1 6.97 × 10−2 5.0 × 10−2 5.88 × 10−2

α degrees 10 24.5 10 24.5 24

EWB

mw kg 0.1 0.5 0.3 2.9 × 10−1 3.15 × 10−1

Vcyl m3 1.6 × 10−5 1.28 × 10−4 1.6 × 10−5 1.6 × 10−5 7.93 × 10−5

Sb m2 1 × 10−7 4 × 10−7 4.0 × 10−7 4.0 × 10−7 2.16 × 10−7

Sp m2 6.38 × 10−4 1.02 × 10−2 1.6 × 10−3 1.7 × 10−3 3.7 × 10−3

mp kg 5 × 10−1 2 1.973 1.967 1.25
EHB

Kcal N m−1 2.3 × 107 4.3 × 107 4.3 × 107 4.3 × 107 3.69 × 107

2.3.2. Nonlinear Optimization

Using linear transfer functions to optimize the plants provide us with an optimized
initial parameter set. Although this set might be good enough for primarily linear plants;
most brake actuators are nonlinear due to different factors such as friction, plant saturation,
and dead-zone. Therefore, to further optimize the plants, we should perform optimization
with the nonlinear plants to consider all the nonlinear effects. Since all the plants are going
to run in the feedback control environment in practice, the nonlinear optimization is done
on the closed-loop systems. A 10 kN step clamp force reference target is chosen for the
brake’s closed-loop system. The controllers are designed in the same way explained in the
Sections 2.2 and 2.3.1. The control parameters are fixed in the same way as the transfer
function optimization while the physical parameters of the systems change. Since the
physical parameters of the system are changed, we need to recalculate the controllers at
each step of function evaluation in the optimization (Gp changes, and so does Y and Gc).
Since the optimization is performed on nonlinear plants, a different objective function
should be used. The objective function for the nonlinear optimization consists of four
parts: energy usage, maximum power, settling time, and overshoot percentage. Energy
usage (Eusage) is the total amount of energy used by the actuator to follow the target in
two seconds (enough for the actuators to reach and hold the target). Maximum power
(maxPusage) is the maximum power used by the actuator during the 2 s that the actuator
follows the 10 kN step reference. Settling time (Ts) is the time that it takes for the caliper
force to build up to near ±2% of the steady-state value. Overshoot percentage (OS%) is the
percentage that the maximum value of the caliper force deviates from the 10 kN reference
target. Power usage for the EMB and EWB is defined as current multiplied by the voltage.
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For the EHB, we are adding up the amount of power loss (denoted as Pbuild and Pdump) to
be equal to the power usage (Figure 2a):

Pbuild = ebuild × fbuild = (Pin −
βh f

VCyl
× qcyl)× {CdSbub

√
2
ρ
(Pin − βh f

Vcyl
qcyl)} (25a)

Pdump = edump × fdump = (
βh f

VCyl
× qcyl)× {CdSdud

√
2
ρ
(

βh f

Vcyl
qcyl)} (25b)

Taking all of these into account, the cost function for nonlinear optimization is given
in Equation (Section 2.3.2). Note that each cost is normalized by its nominal value:

minimize
x

f (x) = α1 × Eusage + α2 × maxPusage + α3 × Ts + α4 × OS%

subject to x ∈ [xmin, xmax]
(26)

3. Results and Discussion

Figures 8–10 show the results of a 10 kN clamp force step response and the linear
and non-linear optimization of brake-by-wire actuators. These simulations are performed
using the nonlinear plant of the actuators. The nonlinearities that exist in the EMB and
EWB include motor current and voltage saturation, brake caliper saturation, and the Lugre
friction model. The nonlinearities in the EHB include the valve nonlinearities and the
dead-zone. The “Initial” represents the initial set of parameters of the plant before the
optimization. The initial setting for each actuator is compared with a similar setting in the
literature to make sure the results are sound and follow other researchers’ results. However,
for the optimized plants’ results, since this is the first study that discusses optimization
on these physical parameters, there are no other papers to compare the results with. The
“TF-based Opt.” represents the linear transfer function optimization, and “Nonlinear Opt.”
represents the results for the set of plant parameters after the optimization is performed
using the nonlinear plants as discussed in Section 2.3.

For the EHB, Figure 8 shows that the transfer function-based and the nonlinear opti-
mization both have reduced the cylinder pressure. It must be noted that the results for the
initial set of parameters are consistent with [33]. The cylinder’s pressure in the Zhao et al.
reaches steady-state around 0.3 s, similar to the results for this study. This shows that
robust control along with the linearization is working for this EHB actuator. The readers
have to note that the difference between the EHB model studied here is that the valves
are considered to change continuously, and therefore, a continuous Youla control scheme
is used to control the valves; however, in reality, this needs to be taken care of using a
digital controller and pulse width modulation technique. The clamping force response
time for the optimized simulation has also decreased from 0.5 s to around 0.3 s and 0.2 s
for TF-based and nonlinear optimization, respectively. The power usage plot shows that,
in all the cases, the power consumption stops once the actuators reach the steady-state
target. This is because of the switching logic that closes both valves once they reach the
steady-state value of the clamping force. Since the optimized plants reach the steady-state
faster, and they use less actuation to do so, their energy and power usage is reduced (see
Table 2).
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Table 2. Comparison of the amount of energy used in the 10 kN step response for 2 seconds (the
amounts are in Joules).

EMB EWB EHB

Initial set 15.5 60.13 109.73
TF-Based optimized set 2.73 1.91 44.36
Nonlinear optimized set 1.69 2.14 29.70

Figure 8. Comparison of the initial parameter sets vs. optimized in an EHB for a 10 kN step input.
The clamp force plot for the initial parameter setting was consistent with Zhao et al. [33]. The
optimized results are the novelty of this paper.

For the EMB, Figure 9 illustrates that the clamping force step response is about the
same for all plants. This is because the controllers are set to have the same bandwidth;
they all have the same response. In this case, the nonlinearities are mitigated by robust
controllers, and the current/voltage saturation is taken care of by the anti-windup compen-
sator. As shown, the current reaches its saturation level for the initial EMB plant, and the
gain anti-windup is shown to be working. However, the difference between the plants
manifests itself in the power consumption plot. The initial plant uses a lot more power and
energy to perform the same task as the optimized plants. Tf-based and nonlinear optimized
plants both have a significantly smaller power usage, with the nonlinear optimized plant
consuming a slightly lower amount of power. The overall energy consumption for these
plants is summarized in Table 2. Comparing to Line et al., for the initial parameter setting,
the clamping force also reaches the steady-state around 0.2 s [6]. The current is higher than
the results shown in Line et al.; however, the voltage is not plotted for their results. One
explanation is that a higher amount of current would result in lower voltage and vice versa.

Figure 9. Comparison of the initial parameter sets vs. optimized in an EMB for a 10 kN step input.
The clamp force plot for the initial parameter setting was consistent with Line et al. [6]. The optimized
results are the novelty of this paper.
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For the EWB, Figure 10 shows the step response for all the plants. For the initial
parameter setting, the clamping force reaches to steady-state in around 0.5 s. Compared to
Che Hasan et al., which uses a PID controller, this is around 0.2 s faster [12]. Additionally,
using the Youla parameterization along with cascaded control, the overshoot is also smaller.
The voltage peak for both are around the same, although the voltage for this paper is
slightly higher. The nonlinear optimized plant is showing a faster response than the transfer
function optimized and the initial plant. The overshoot in the nonlinear optimization of
the plant has also slightly decreased when compared with the Tf-based optimization plant.
As shown, the current once again saturates for the initial plant. For this plant, the current
was saturated for around 0.3 s, and the anti-windup compensation has taken care of
this; however, this has negatively impacted the closed-loop response and made it slower.
Looking at the power consumption, it is clear that the Tf-based opt. has used a slightly
lower amount of power, and the nonlinear opt. has used a significantly lesser amount of
actuation power. It should be noted that the voltage and current have undershot in all
the plants, which comes from the fact that overshoots in the clamping force, as shown in
Figure 10, are being compensated by these undershoots.

Figure 10. Comparison of the initial parameter sets vs. optimized in an EWB for a 10 kN step input.
The clamp force plot for the initial parameter setting was consistent with Che Hassan et al. [12]. The
optimized results are the novelty of this paper.

Similar to the step response, we have performed a ramp response of 10 kN/s with the
saturation of 10 kN for the given plants. Figures 11–13 show similar results to the ones of
the step response as discussed previously. It should be noted that the ramp response is
only discussed in this paper, and the cited papers above did not mention performing this
test on the actuators.

Table 3 shows the amount of energy usage by each plant with a different set of
parameters. Comparing the energy usage of brake-by-wire actuators in Tables 2 and 3, we
can conclude that EMB and EWB use significantly lower amounts of energy. However,
looking once again at the Figures 8–10, we can see that EHB has at least a 0.1–0.2 s faster
response than the dry brake-by-wire actuators such as EMB and EWB.

Table 3. Comparison of the amount of energy used in the ramp response for 2 seconds (the amounts
are in Joules).

EMB EWB EHB

Initial set 5.14 18.06 174.42
TF-Based optimized set 2.17 0.83 128.67
Nonlinear optimized set 1.41 0.82 89.72
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Figure 11. Comparison of the initial parameter sets vs. optimized in an EHB for a ramp input.

Figure 12. Comparison of the initial parameter sets vs. optimized in an EMB for a ramp input.

Figure 13. Comparison of the initial parameter sets vs. optimized in an EWB for a ramp input.

4. Conclusions

In this paper, we presented the modeling and a new control strategy for three different
brake-by-wire actuators. The physical optimization of these plants using linear transfer
functions, and nonlinear plants were discussed, and the results were presented. The op-
timized results show a promising energy reduction when compared with the nominal
parameters. EHB’s, EMB’s, and EWB’s energy consumption were reduced to around 10%,
3%, and 20% of their original sets of parameters, respectively. This method can be effec-
tively utilized for other brake-by-wire actuators to reduce their energy consumption while
increasing their dynamic response. It should be noted that in practice, other criteria such
as structural, electrical, and heat transfer measures should be added to the optimization
method. This can result in more constraints for the optimization problem, which in turn
will alter the final results. However, the optimization framework and the objectives will
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stay the same. Usually, having more constraints will result in a lesser deviation from the
initial results. However, as shown in the results, the gains in energy consumption and
dynamic responsiveness are high enough to be considered even with added constraints to
the optimization problem. This calls for more future studies.

This paper aims to create a framework for optimizing brake-by-wire actuators by
considering the problem from the perspective of energy consumption and actuator dynamic
response. This framework can be further expanded to add other measures such as cost,
weight, and reliability.
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Abbreviations

The following abbreviations are used in this manuscript:

Notation Definition
Fcl Clamping force
qcyl Volumetric displacement of the cylinder fluid
pp Momentum of the caliper
xcal Caliper displacement
Pin Pressure input
ub Duty ratio of the build valve
ud Duty ratio of the dump valve
Cd Maximum flow coefficient of valve
Sb Cross-sectional area of the build valve when fully open
Sd Cross-sectional area of the dump valve when fully open
ρ Density of the brake fluid
βh f Bulk modulus of the brake fluid
Vcyl Cylinder’s volume
Sp Cylinder’s cross-section surface
bp Damping coefficient
mp Brake pad’s mass
x0 Brake clearance
kcal Caliper stiffness
Im Electric current
Vin Voltage input
ωm Angular velocity of the shaft
Lm Inductance of the electric motor
Rm Electrical resistance in the electric motor
Kt Electromotive force constant
Jm Total moment of inertia of the rotational parts
Dm Axial viscous friction
Ns Planetary gear reduction ratio
Np Ball-screw gear reduction ratio
N Combined gear reduction (Ns × Np)
qax Shaft axial displacement
Kax Shaft axial stiffness
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Dax Shaft axial viscous resistance
Xw Wedge displacement
Vw Wedge velocity
Fm Motor force exerted to the wedge
α Wedge angle
μcal Friction coefficient between the pad and the wheel
τf Lumped nonlinear frictions present in the actuator
σ0 Contact (bristle) stiffness (Lugre friction model)
σ1 Damping coefficient of the bristle (Lugre friction model)
σ2 Viscous friction coefficient (Lugre friction model)
ωs Stribeck velocity (Lugre friction model)
j Shape factor (Lugre friction model)
τc Coulomb friction (Lugre friction model)
τs Static friction (Lugre friction model)
Ty(s) Complementary sensitivity transfer function
Gp(s) Plant transfer function
Sy(s) Sensitivity transfer function
Y(s) Youla transfer function
αp Unstable pole
αz Non-minimum phase zero
Gc Controller transfer function
qc0 The operating point of qcyl (for the purpose of linearization)
u0 The operating point of u (for the purpose of linearization)
GpI Plant transfer function for the current loop ( Im

Vin
)

Gpω Plant transfer function for the omega loop ( ω
Im

)
GpF Plant transfer function for the Force loop ( Fcl

ω )
G′

p2
Plant transfer function of the second loop without the s in the numerator

Yi Youla transfer function for the i-th loop
Ti Closed-Loop transfer function of the i-th loop
Wi Constants of the first order transfer functions added to Youla
ωni Butterworth filters’ cut-off frequency
ξ Damping ratio of Butterworth filter
Ysys Youla transfer function of the system (Y1 × Y2 × Y3)
WY Filter used to emphasize specific frequency region of Ysys in the H2 norm
DC(Gp) DC gain of plant tranfer function (Gp)
Bandwidth{Gp} Bandwidth of plant transfer function (Gp)
xmin Minimum of the parameter set
xmax Maximum of the parameter set
Pbuild Amount of power loss in the build valve
Pdump Amount of power loss in the dump valve
ebuild Effort in the build valve (refers to Figure 2a)
fbuild Flow in the build valve (refers to Figure 2a)
edump Effort in the dump valve (refers to Figure 2a)
fdump Effort in the dump valve (refers to Figure 2a)
Pusage Power usage of the actuator
OS% Overshoot percentage
Ts Settling time
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