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About the Editors

In recent years, connected and automated vehicles (CAV) have been a transformative
technology that is expected to reduce emissions and change and improve the safety and
efficiency of the mobilities. As the main functional components of CAVs, advanced sensing
technologies and control algorithms, which gather environmental information, process
data, and control vehicle motion, are of great importance. The development of novel
sensing technologies for CAVs has become a hot spot in recent years. Thanks to the
improved sensing technologies, CAVs are able to interpret sensory information to further
detect obstacles, localize their positions, and navigate themselves and interact with other
surrounding vehicles in the dynamic environment. Furthermore, leveraging computer
vision and other sensing methods, in-cabin human body activities, facial emotions, and
even mental states can also be recognized.

This Special Issue of Sensors aims at reporting on some of the recent research efforts
on this increasingly important topic. The 12 accepted papers in this Issue cover vehicle
position estimation [1], vehicle dynamic parameters estimation [2], cooperative collision
warning systems [3], small object detection [4], impact identification of the driver’s driving
performance on executive control function [5], hybrid path planning for autonomous driv-
ing [6], trajectory tracking for autonomous driving [7], vehicle stability control [8], vehicle
stability and ride comfort control [9], urban platooning protocol design for platoon [10],
path planning algorithm for platooning [11], and self-driving architecture design for CAV
platoon [12].

In the next paragraphs, a brief description of the content of each contribution forming
the Special Issue is provided.

In [1], a data-driven object vehicle estimation scheme to solve measurement uncer-
tainty and latency problems in radar systems is proposed. An accuracy model considers
the different error characteristics depending on the zone. The accuracy model was used to
solve the measurement uncertainty of radar. The authors also develop latency coordination
for the radar system by analyzing the position error depending on the relative velocity. The
authors claimed that proposed estimation method produces improved performance over
the conventional radar estimation and previous methods.

In [2], a two-stage estimation method, consisting of multiple-models and the Un-
scented Kalman Filter, is proposed to estimate vehicle dynamic parameters. During the

Sensors 2022, 22, 1538. https://doi.org/10.3390/s22041538 https://www.mdpi.com/journal/sensors
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first stage, the longitudinal vehicle dynamics model is used. Through vehicle accelera-
tion/deceleration, this model can be used to estimate the distance between the vehicle
centroid and vehicle front, the height of vehicle centroid, and tire longitudinal stiffness.
The estimated parameter can be used in the second stage. During the second stage, a
single-track vehicle model with roll dynamics is adopted. By making the vehicle have
continuous steering, this vehicle model can be used to estimate tire cornering stiffness,
the vehicle moment of inertia around the yaw axis, and the moment of inertia around the
longitudinal axis. The results in [2] show that the proposed method is effective and vehicle
dynamic parameters can be well estimated.

A vehicle-to-vehicle (V2V) cooperative collision warning system (CCWS) consisting
of an ultra-wideband (UWB) relative positioning/directing module and a dead reckoning
(DR) module with wheel-speed sensors is proposed in [3]. An over-constrained localization
method is proposed to calculate the relative position and orientation with the UWB data
more accurately. Vehicle velocities and yaw rates are measured by wheel-speed sensors.
An extended Kalman filter (EKF) is applied based on the relative kinematic model to
combine the UWB and DR data. Finally, the time to collision (TTC) is estimated based on
the predicted vehicle collision position. The authors of [3] concluded that the proposed
method significantly improves the positioning and directing, and the proposed system can
efficiently provide collision warning.

As small object detection is very important for the understanding of traffic scene
environments, [4] proposes a small object detection method in traffic scenes based on
attention feature fusion. First, a multi-scale channel attention block (MS-CAB) is designed,
which uses local and global scales to aggregate the effective information of the feature
maps. Based on this block, an attention feature fusion block (AFFB) is proposed, which
can better integrate contextual information from different layers. Finally, the AFFB is used
to replace the linear fusion module in the object detection network and obtain the final
network structure. The authors in [4] conclude that the proposed approach increases the
mAP of all objects by 0.9 percentage points on the validation set of the traffic scene dataset
BDD100K, and at the same time, increases the mAP of small objects by 3.5%.

To explore the relationship between the driver’s driving performance and executive
control function, the authors of [5] invite a total of 35 healthy subjects to take part in a
simulated driving experiment and a task-cuing experiment. The subjects were divided
into three groups according to their driving performance (aberrant driving behaviors,
including lapses and errors) by the clustering method. Then, the performance efficiency and
electroencephalogram (EEG) data acquired in the task-cueing experiment were compared
among the three groups. The authors concluded that this research presented evidence of
the close relationship between executive control functions and driving performance.

In [6], a hybrid path planning is proposed to avoid unsatisfying path generation and to
improve the performance of autonomous driving by combining the potential field with the
sigmoid curve. The repulsive and attractive potential fields are redesigned by considering
the safety and the feasibility. Based on the objective of the shortest path generation, the
optimized trajectory is obtained to improve the vehicle stability and driving safety by
considering the constraints of collision avoidance and vehicle dynamics. The effectiveness
is examined by simulations in multiobstacle dynamic and static scenarios. The authors
claimed that the proposed method shows better performance on vehicle stability and ride
comfortability than that of the traditional potential field-based method in all the examined
scenarios during autonomous driving.

Trajectory tracking is a key technology for precisely controlling autonomous vehicles.
A trajectory-tracking method based on model predictive control is proposed in [7]. Instead
of using the forward Euler integration method, the backward Euler integration method is
used to establish the predictive model. To meet the real-time requirement, a constraint is
imposed on the control law, and the warm-start technique is employed. The authors of [7]
concluded that the proposed the tracking performance of the proposed controller is much
better than that of controllers using the forward Euler method.
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In [8], studies on comprehensive three-dimensional vehicle dynamics modelling and
stability control strategies in the event of a sudden tire blow-out are conducted. An
integrated control framework for a combined yaw plane and roll-plane stability control is
presented. The authors of [8] concluded that the proposed lower-level MPC can successfully
improve the roll stability in the challenging scenario of a tire blow-out during a fishhook
maneuver when the vehicle has a big load transfer.

A Unified Chassis Control (UCC) strategy for enhancing vehicle stability and ride
comfort by the coordination of four In-Wheel Drive (IWD), Four-Wheel Independent
Steering (4WIS), and Active Suspension Systems (ASS) is designed in [9]. A hierarchical
control structure was adopted to realize the UCC, including high-level sliding mode control,
fixed point CA, and a normal tire force robust tracking controller. The authors claimed that
the proposed method can effectively realize the tire force distribution to control the vehicle
body attitude and driving stability even in high-demanding scenarios.

When an existing vehicle platoon is applied to urban roads, many challenges are more
complicated to address than highways. They include complex topology, various routes,
traffic signals, intersections, frequent lane changes, and communication interference de-
pending on a higher vehicle density. To address these challenges, [10] propose a distributed
urban platooning protocol (DUPP) that enables high mobility and maximizes flexibility for
driving vehicles to conduct urban platooning in a decentralized manner. DUPP performs
forwarder selection using an analytic hierarchy process. The performance of the proposed
DUPP is compared with that of ENSEMBLE, which is the latest European platooning
project. The authors of [10] concluded that the proposed DUPP is well suited to dynamic
urban environments by maintaining a vehicle platoon as stable as possible.

In [11], a path planning algorithm for the platooning of articulated cargo trucks has
been developed. Using the Kalman filter, V2V communication, and a novel update-and-
conversion method, each following vehicle can accurately compute the trajectory of the
leading vehicle’s front part for using it as a target path. The authors claimed that on
severe driving scenarios, the proposed algorithm could provide lateral string stability and
robustness for truck platooning.

A self-driving architecture combining the sensing, planning, and control for CAV
platoons in an end-to-end fashion is proposed in [12]. This multi-task model can switch
between two tasks to drive either the leading or following vehicle in the platoon. The
architecture is based on an end-to-end deep learning approach and predicts the control
commands, i.e., steering and throttle/brake, with a single neural network. The inputs for
this network are images from a front-facing camera, enhanced by information transmitted
via V2V communication. The authors claimed that the approach eliminates casual confusion
for the following vehicle, which is a known limitation of end-to-end self-driving.

In summary, there is a huge potential for CAV in collision avoidance, safety im-
provement and driving stability improvement. The papers gathered in this Special Issue
contributed by proposing solutions to the general problem of state and/or parameter
estimation [1–3], obstacle detection [4], driver behavior estimation [5], and/or classical
academic problems such as path planning [6], path tracking [7], and stability control for
autonomous driving [8,9] and/or by suggesting applications of the combined use of sensors
and advanced algorithms to platooning [10–12], thus showing the theoretical challenges
and practical interest of this research topic. Finally, we wish to thank the authors, reviewers,
and journal staff for their commitment and effort, which made it possible to complete this
Special Issue on time.

Funding: This work received funding from the PolyU (UGC), via grant A0040253 associated with
grant A0039179.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A tyre blow-out can greatly affect vehicle stability and cause serious accidents. In the
literature, however, studies on comprehensive three-dimensional vehicle dynamics modelling and
stability control strategies in the event of a sudden tyre blow-out are seriously lacking. In this study,
a comprehensive 14 degrees-of-freedom (DOF) vehicle dynamics model is first proposed to describe
the vehicle yaw-plane and roll-plane dynamics performance after a tyre blow-out. Then, based
on the proposed 14 DOF dynamics model, an integrated control framework for a combined yaw
plane and roll-plane stability control is presented. This integrated control framework consists of
a vehicle state predictor, an upper-level control mode supervisor and a lower-level 14 DOF model
predictive controller (MPC). The state predictor is designed to predict the vehicle’s future states,
and the upper-level control mode supervisor can use these future states to determine a suitable
control mode. After that, based on the selected control mode, the lower-level MPC can control the
individual driving actuator to achieve the combined yaw plane and roll plane control. Finally, a
series of simulation tests are conducted to verify the effectiveness of the proposed control strategy.

Keywords: tyre blow-out; yaw stability; roll stability; vehicle dynamics model; model predictive
control

1. Introduction

A sudden vehicle tyre blow-out may cause significant problems to vehicle stability and
road safety. In the United States (US), the published statistical data shows ‘tyre blow-out’
caused more than 300,000 road accidents in the years 1992 to 1996 [1]. Based on the data
from the report by the National Highway Traffic Safety Administration (NHTSA) in the US,
tyre blow-outs caused 414 fatalities, 10,275 nonfatal injuries, and 78,392 crashes in 2003 [2].
In addition, tyre blow-outs also cause serious stability issues in electric industrial vehicles,
such as forklift trucks [3,4].

The blow-out of one specific tyre makes the tyre pressure significantly decrease and
causes a significant change to the vehicle’s dynamic response. Various studies have proved
that a tyre blow-out can be completed within 0.1 s and the tyre parameter change can
be considered as a step change [5,6]. It is argued that the tyre deflation greatly affects
cornering stiffness, radial tyre stiffness and rolling resistance [5,7]. In [8], actual experiments
on 26 vehicles were carried out to study the vehicles’ dynamic response to tyre blow-outs.
The experiment results suggested that the increased rolling resistance of deflated tyres could
generate longitudinal drag force and cause additional yaw moment to pull the vehicle away
from the original path. The studies [6,9] also pointed out that the tyre cornering stiffness and
radial stiffness decreased significantly after tyre blow-out. The assumption of the tenfold
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drop of radial stiffness after tyre blow-out was verified by the tests on a 165SR13 D90 tyre,
and the decreased tyre radial stiffness caused the tyre’s instantaneous radius reduction and
significantly increased the load transfer effect. It is suggested in [5] that tyre cornering stiffness
and radial stiffness reduces by 25–40% after tyre deflation. Similarly, Wang et al. proposed
a non-linear coordinate motion controller for the vehicle after tyre deflation by assuming
the rolling resistance increased 30 times and the cornering stiffness reduced to 28% of the
original value [9]. In addition, when a tyre blow-out happens, at the steering wheel more
steering input is required to compensate for the increased total alignment moment caused by
the deflated tyre [8], and the steering controller needs to be redesigned, for instance, with the
human-machine adaptive shared control [10]. However, the steering control system design is
not focused on in this study. Based on the review of the above studies, it can be summarised
that the tyre blow-out mainly affects vehicle dynamics performance in three aspects: (1) the
additional yaw moment is induced by the increased rolling resistance of the deflated tyre;
(2) the changed tyre lateral force is caused by the decreased tyre cornering stiffness; (3) the
decreased radial stiffness will cause a significant decrease of the wheel’s instantaneous radius
and induce a big load transfer effect.

In current literature, a number of studies have proposed different kinds of vehicle
dynamics models to present the dynamics performance after tyre blow-out. In [6,7], the
three-dimensional Engineering Dynamics Vehicle Simulation Model (EDVSM) is used to
describe tyre blow-out behaviour. This comprehensive vehicle model has 15 degrees of
freedom (DOF): 6 DOF for the vehicle body, 4 DOF for the suspension system, 4 DOF for the
wheel rotation and one DOF for the steering wheel. Similarly, the high-order comprehensive
commercial vehicle dynamics model veDYNA is applied in [5,11] to present the vehicle
dynamics performance after tyre blow-out. However, the EDVSM and veDYNA vehicle
models are all commercial products and the detailed mathematical equations of these
models are not presented, so it is hard to carry out the theoretical study on the tyre blow-
out modelling. The stability controller design after a tyre blow-out in studies [5,9,11] is
only based on the yaw plane dynamics equation (only considering the changed rolling
resistance and cornering stiffness after tyre blow-out), and the suspension motion and
vertical dynamics have been neglected. When one specific tyre blows out, the suddenly
decreased tyre radial stiffness will cause the reduction of the instantaneous tyre radius.
This reduction will transfer to the suspension system and cause a big suspension deflection,
load transfer and increase of the roll angle. This will cause a strong coupling effect on
the yaw plane dynamics and should be considered in the controller design. Therefore, a
three-dimensional full-vehicle dynamics model, which considers all six degrees of freedom
of the vehicle body (longitudinal motion, lateral motion, vertical motion, yaw motion,
roll motion and pitch motion) and integrating the suspension system and vehicle body
dynamics system, is required to comprehensively present the dynamics response of a
vehicle after one specific tyre blow-out for the stability controller design.

In the current vehicle industry, the tyre pressure monitoring system (TPMS) based
on new in-tyre sensors and electronics is widely used to monitor the tyre pressure in
real-time and detect tyre blow-out early [2,12]. Although some studies have proposed
fault diagnosis and estimation approaches in the literature [13], we can simply assume
the location of tyre blow-out is already known. After the blow-out of a specific tyre
has been detected, various vehicle stability control systems are designed to improve the
vehicle handling and stability. The control algorithms in the literature can be classified
into three types: the steering-only control, the braking-only control and the integrated
control. In [14], a steering-only control approach is presented, and the control system is
triggered by an alarm generated by the TPMS. Chen et al. proposes the control strategy for
an emergency automatic braking system when a tyre blows out [15]. Wang et al. developed
a control optimization strategy for the yaw-plane motion by coordinating both the steering
and braking based on a triple-step control method: steady-state controller, feedforward
controller and feedback controller [9,11]. In [9,11], the longitudinal vehicle dynamics are
neglected and the longitudinal velocity is assumed to be available from the estimation
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algorithm. However, the time-varying longitudinal velocity will greatly affect the vehicle
handling and stability after a tyre blow-out and the effect of the changing longitudinal
velocity on the controller design should not be neglected. In [5], the gain scheduling
robust controller with respect to time-varying longitudinal velocity after tyre blow-out is
proposed. The feedback control gain of a high-level controller can be real-time adjusted by
the changing scaling factors determined by different values of current longitudinal velocity
value and maximum and minimum velocity values.

The above studies [5,9–11] focus on the yaw-plane stability control during tyre blow-
out and the main control targets are the side-slip angle and yaw rate. However, a tyre
blow-out strongly affects the vehicle roll dynamics and the roll plane control targets should
be also included in the controller design. Currently, a rollover can be mitigated by using
the brakes [16–18], steering [19,20], antiroll bars [21] or a combination of different actu-
ators [22,23]. Some of the current studies have discussed the combined control of yaw
stability and roll stability. For example, Rajamani et al. carried on a study to explore
the vehicle yaw and roll dynamics response in the steady-state turning manoeuvre [24].
It is concluded that in steady-state cornering, the roll angle and rollover index remain
unchanged unless the longitudinal velocity or the cornering trajectory is changed. Al-
berding et al. propose a non-linear hierarchical control allocation algorithm for vehicle
yaw stabilisation and rollover prevention by using differential braking, and this controller
eliminates the roll controller by introducing the rollover prevention as a constraint in the
control algorithm [25].

Model predictive control (MPC) can predict the vehicle’s future state and is greatly
advantageous in rollover prevention. In addition, MPC is suitable for dealing with mul-
tiple control targets within defined constraints. Yin et al. propose a non-linear MPC to
achieve the path-tracking control by utilising the prediction horizon of MPC [26]. Similarly,
Chen et al. also design an LQR lateral control method based on the optimal front tyre
lateral force [27].

A recent study proposes a combined yaw and roll-stability control framework based on
the MPC method [28]. In [28], however, only the control actuator of differential braking is
utilised to achieve various control targets, which limits the control performance. In [29], an
MPC control system is proposed by integrating lateral stability control, rollover prevention
and longitudinal slip control. Furthermore, an integrated control system based on fuzzy
differential braking is developed to improve the yaw and rollover stability of off-road
vehicles [30]. The new emerging technology of electric vehicles with in-wheel motors can
achieve four-wheel-independent-driving (4WID) and the driving or braking torque can
be optimally controlled and allocated to the individual wheel and the control envelope is
substantially enlarged. A number of studies have proposed utilising the 4WID function to
achieve better dynamic stability control performance [31,32].

In this study, first a 14 DOF vehicle dynamics model including the yaw-plane motion,
roll-plane motion, pitch-plane motion and suspension dynamics is proposed, which is
utilised to present the impact of abruptly changed tyre rolling resistance, cornering stiff-
ness and vertical stiffness after a tyre blow-out on vehicle dynamics performance. Then,
based on the comprehensive dynamics model, a three-dimensional MPC control allocation
framework for integrated yaw-plane stability and roll-stability control after tyre blow-out
is proposed. Based on a 4WID electric vehicle, this control framework can optimally dis-
tribute the driving and braking torque of individual wheels and achieve cruise control,
yaw-plane stability control and roll-stability control simultaneously. The proposed control
framework has a two-layer control structure and has three control modes: cruise control
mode, yaw stability control mode and roll-stability control mode. In the upper-level control
strategy, a model predictor is proposed to predict the vehicle’s future states, and a control
mode supervisor can determine the suitable control mode based on the predicted states. In
the lower level, a MPC controller is applied to allocate the control actuators based on the
selected control mode.

The major contribution of our study can be summarised as follows:
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(1) A comprehensive 14 DOF dynamic model is applied to describe the vehicle dy-
namics performance during tyre blow-out, which is less focused on in the literature.

(2) A new integrated yaw- and roll-stability MPC controller based on the 14 DOF
model is proposed specifically for the tyre blow-out scenario.

The rest of this paper is organised as follows. First, a 14 DOF vehicle dynamics model
is presented in Section 2 to describe the dynamics performance of a tyre blow-out. Then, in
Section 3, the simulation results of the dynamics performance of the 14 DOF model and
the 8 DOF model after tyre blow-out are compared with the EDVSM model which has
been validated by actual experimental results. Section 4 describes the proposed integrated
yaw-stability and roll-stability control framework based on MPC. Finally, the simulation
results of vehicle control performance during tyre blow-out are presented to validate the
proposed control framework.

2. Vehicle Dynamics Model Considering the Tyre Blow-Out Effect

2.1. Vehicle Body Dynamics Model

In this section, the comprehensive 14 DOF vehicle dynamics model is proposed to
present the actual vehicle dynamics performance after tyre blow-out [33] and the detailed
diagram description is shown in Figure 1.

(a) 

Figure 1. Cont.
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(b) 

Figure 1. Schematic of 14 DOF vehicle dynamics model (a) yaw plane (b) roll plane.

The equations of motion of the vehicle sprung mass can be presented as following the
six DOF model:

ms
( .
vx − ωyvz − ωzvy

)
= ∑(Fxsi) + msg sin θ (1a)

ms
( .
vy + ωzvx − ωxvz

)
= ∑

(
Fysi

)− msg sin φ cos θ (1b)

ms
( .
vz + ωxvy − ωyvx

)
= ∑ Fzsij − msg cos φ cos θ (1c)

Jx
.

ωx +
(

Jz − Jy
)
ωyωz = ∑(Mxi) + msgHroll sin φ +

c(Fzs1 − Fzs2 + Fzs3 − Fzs4)

2
(1d)

Jy
.

ωy + (Jx − Jz)ωzωx = ∑
(

Myi
)
+ lr(Fzs3 + Fzs4)− l f (Fzs1 + Fzs2) (1e)

Jz
.

ωz +
(

Jy − Jx
)
ωxωy = l f

(
Fys1 + Fys2

)− lr
(

Fys3 + Fys4
)
+

c(−Fxs1 + Fxs2 − Fxs3 + Fxs4)

2
(1f)

where ms is the vehicle sprung mass and g is the acceleration gravity. Jx, Jy, Jz are
inertial moments of pitch, roll and yaw, respectively. vx, vy, vz are longitudinal velocity,
lateral velocity and vertical velocity, respectively. ωx, ωy, ωz are pitch rate, roll rate and
yaw rate, respectively. Fxsi, Fysi, Fzsi represent the longitudinal force, lateral force and
vertical force transferred to C.G. in the coordinate system attached to C.G. i = 1, 2, 3, 4,
which presents the front left, front right, rear left and rear right wheel. Fdzij shows the load
transfer force of each wheel. l f is the front wheelbase and lr is the rear wheelbase. c is the
track width. h f and hr represent the distance between front and rear roll centres and C.G.
Mxi and Myi are roll moment and pitch moment transmitted to the sprung mass. Hroll is
the distance between C.G. and vehicle roll centre of the sprung mass.

The roll angle φ, pitch angle θ and yaw angle ψ can be determined as the following
equations:

.
θ = ωy cos φ − ωz sin φ (2a)

.
ψ =

ωy sin φ

cos θ
+

ωz cos φ

cos θ
(2b)

.
φ = ωx + ωy sin φ tan θ + ωz cos φ tan θ (2c)
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The tyre force Fxsi and Fysi can be determined by subtracting the unsprung mass
weight and inertial force from the corresponding forces acting on the tyre contact patch:

Fxsi = Fxgsi + muig sin θ − mui
.
vxui + muiωzvyui − muiωyvzui (3a)

Fysi = Fygsi − muig sin φ cos θ − mui
.
vyui + muiωxvzui − muiωzvxui (3b)

where mui is the unsprung mass of an individual corner. vxui, vyui, vzui are unsprung mass
longitudinal velocity/lateral velocity/vertical velocity in a coordinate system attached
to C.G. Fxgsi, Fygsi, Fzgsi are tyre–road contact forces in the body-fixed coordinate system,
which can be projected from the Fxgi, Fygi, Fzgi (tyre force in the coordinate system fixed at
the tyre contact patch) as:⎡⎣ Fxgsi

Fygsi
Fzgsi

⎤⎦ =

⎡⎣ 1 0 0
0 cos φ sin φ
0 − sin φ cos φ

⎤⎦⎡⎣ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤⎦⎡⎣ Fxgi
Fygi
Fzgi

⎤⎦ (4)

The roll moment Mxi and pitch moment Myi can be determined by the following
equations:

Mx1 = Fys1Hroll (5a)

Mx2 = Fys2Hroll (5b)

Mx3 = Fys3Hroll (5c)

Mx4 = Fys4Hroll (5d)

Myi = −(
FxsgiRi + Fxsilsi

)
(5e)

where Ri is the instantaneous length of tyre radius and lsi is the instantaneous length of strut.
The vertical tyre force Fzsi can be determined according to the following equation:

Fzs1 = ks f xs1 + bs f
.
xs1 − MARB_F

c
(6a)

Fzs2 = ks f xs2 + bs f
.
xs2 +

MARB_F
c

(6b)

Fzs3 = ksrxs3 + bsr
.
xs3 − MARB_R

c
(6c)

Fzs4 = ksrxs4 + bsr
.
xs4 +

MARB_R
c

(6d)

where xsi is the suspension spring compression. ks f , ksr are suspension stiffness and bs f , bsr
are suspension damping coefficient. The anti-roll moment from the anti-roll bar can be
determined by:

MARB_F = 0.5kARB, f (xs1 − xs2) + 0.5bARB, f
( .
xs1 − .

xs2
)

(7a)

MARB_R = 0.5kARB,r(xs3 − xs4) + 0.5bARB,r
( .
xs3 − .

xs4
)

(7b)

where kARB, f , kARB,r are the stiffness of anti-roll bar and bARB, f , bARB,r are the damping
coefficient of the anti-roll bar.

The jacking force Fdzi transmitted to the sprung mass through the struts can be calcu-
lated as:

Fdz2 = −Fdz1 =
Fygs1R1 + Fygs2R2 + Fys1ls1 + Fys2ls2 −

(
Fys1 + Fys2

)
Hroll

c
(8a)

Fdz4 = −Fdz3 =
Fygs3R3 + Fygs4R4 + Fys3ls3 + Fys4ls4 −

(
Fys3 + Fys4

)
Hroll

c
(8b)
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2.2. Tyre Model

The non-linear Dugoff tyre model is used in this paper to present the tyre’s non-linear
characteristics and determine the tyre longitudinal force Fxti and lateral force Fyti [34,35],
and is described by:

λi =
μFzgi

[
1 − εrvsi

√
s2

i + tan2 αi

]
(1 − si)

2
√

C2
s s2

i + C2
αi tan2 αi

(9a)

f (λi) =

{
λi(2 − λi) (λi < 1)

1 (λi > 1)
(9b)

Fyti =
Cα tan αi

1 − si
f (λi) (9c)

Fxti =
Cssi

1 − si
f (λi) (9d)

where μ is the tyre–road friction coefficient. Cs is the longitudinal cornering stiffness and
Cαi is the lateral cornering stiffness of each wheel. εr is a constant value. The side-slip angle
αi and slip ratio si of the individual tyres can be calculated as the following:

α1 = δ1 − tan−1

(
vyg1

vxg1

)
(10a)

α2 = δ2 − tan−1
(

vyg2

vxg2

)
(10b)

α3 = δ3 − tan−1
(

vyg3

vxg3

)
(10c)

α4 = δ4 − tan−1

(
vyg4

vxg4

)
(10d)

vs f l = cos δ f l
(
vxg1

)
+ sin δ f l

(
vyg1

)
(11a)

vs f r = cos δ f r
(
vxg2

)
+ sin δ f r

(
vyg2

)
(11b)

vsrl = cos δrl
(
vxg3

)
+ sin δrl

(
vyg3

)
(11c)

vsrr = cos δrr
(
vxg4

)
+ sin δrr

(
vyg4

)
(11d)

si =
ωiRi − vsi

max(ωiRi, vsi)
(12)

Longitudinal velocity and lateral velocity at tyre contact patch vxgi and vygi can be
presented as the following equations:

vxgi = cos θ
(
vxui − ωyRi

)
+ sin θ

(
vzui cos φ + sin φ

(
ωxRi + vyui

))
(13a)

vygi = cos φ
(
vyui + ωxRi

)− vzui sin φ (13b)

Fzgi is the vertical force acting on the tyre–ground contact patch, which can be calcu-
lated by the following equation:

Fzgi = ktixti (14)

kti is the tyre vertical stiffness. xti is the tyre spring compression and the initial tyre
compression:

xt0 =

mlr
2(l f +lr)

+ mui

kt
(15)

11
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The velocity of the tyre’s instantaneous deflection can be calculated as the following:

.
xti = vxui sin θ − cos θ

(
vzui cos φ + vyui sin φ

)
(16)

The instantaneous tyre radius can be calculated as:

Ri =
R0 − xti

cos θ cos φ
(17)

where R0 is the nominal tyre radius.
The wheel dynamics equations can be presented as follows:

Iω
.

ωi = −RiFxti + Ti − Myi (18)

where Iω is the wheel rotational inertia. ωi is the wheel angular speed and Ti is the
traction/brake torque of the individual wheel. Myi is the rolling resistance moment, which
can be presented by the following equation:

Myi = Fzgi

(
K f i + K f vivxgi

2
)

Ri (19)

where K f i, K f vi are the tyre rolling resistance coefficients of the individual tyre.

2.3. Suspension System

The instantaneous compression of the suspension spring xsi can be calculated by the
following equation:

.
xsi = −vzsi + vzui (20)

where vzsi is the vertical velocity of the strut mounting point of each wheel, which can be
calculated as the following equation:

vzs1 = vz +
cωx

2
− l f ωy (21a)

vzs2 = vz − cωx

2
− l f ωy (21b)

vzs3 = vz − cωx

2
+ lrωy (21c)

vzs4 = vz +
cωx

2
+ lrωy (21d)

The unsprung mass vertical velocity vzui can be calculated as:

mu
.
vzui = cos φ

(
cos θ

(
Fzgi − muig

)
+ sin θFxgi

)− sin φFygi − Fdzi − xsiksi − .
xsibsi−

mui
(
vzuiωx − vxuiωy

) (22)

Forces Fxgi and Fygi can be obtained by the following equation:

Fxgi = Fxti cos δi − Fyti sin δi (23a)

Fygi = Fyti cos δi + Fxti sin δi (23b)

The longitudinal and lateral velocities vxui, vyui of unsprung mass can be calculated as:

vxui = vxsi − lsiωy (24a)

vyui = vysi + lsiωx (24b)

12
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where longitudinal and lateral velocity of the strut mounting point of each wheel (vxsi and
vysi) can be calculated as the following equation:

vxs2 = vxs4 = vx +
c
2

ωz (25a)

vxs1 = vxs3 = vx − c
2

ωz (25b)

vys1 = vys2 = vy + l f ωz (25c)

vys3 = vys4 = vy − lrωz (25d)

The instantaneous length of the strut lsi can be calculated as:

lsi = ls0 − (xsi − xs0) (26)

where the initial strut length ls0 = h − (R0 − xt0) and the initial suspension deflection

xs0 =
mlr

2
(

l f + lr
)

ks

(27)

2.4. The Effectiveness of Tyre Blow-Out

The tyre blow-out will cause the sudden increase of the rolling resistance of the
deflated tyre and induce an additional yaw moment Tb. Based on [36], the yaw moment Tb
caused by a tyre blow-out can be determined by the following equation:

Tb = 0.5c
(

Fc f l − Fc f r

)
(28a)

where c is the tracking width of the vehicle, the location of the blow-out tyre is at the front
axle or

Tb = 0.5c(Fcrl − Fcrr) (28b)

where the location of the blow-out tyre is at the rear axle. Fci presents the tyre rolling
resistance force, which can be calculated as the following equation:

Fci = K f iFzgi (29)

It is suggested that the typical rolling resistance stiffness for the light vehicle is around
0.012 and 0.015 [36] and it is argued in [7] that this value increases thirty times after a tyre
blow-out. Thus, in this study, the rolling resistance coefficient when the tyre is in a healthy
condition is chosen as 0.014 and this value increases to 0.42 after tyre blow-out.

In addition, a tyre blow-out causes a sudden decrease of tyre vertical stiffness kti and
a decrease of the tyre’s instantaneous radius Ri. The following equation shows the effect of
the changed tyre’s vertical stiffness on the vehicle vertical tyre load and suspension system:

Fzgi = k1ktixti (30)

where k1 is the ratio of the changed vertical stiffness related to the tyre deflation. When
the tyre is in a healthy condition, k1 = 1; when the tyre has a blow-out, k1 = 0.28 [5]. The
changed vertical tyre force Fzgi caused by the tyre blow-out can induce a significant load
transfer effect.

The tyre cornering stiffness also reduces to 28% of the original value [5], which will
greatly affect the tyre cornering force:

By = k2By (31)

where k2 is the ratio of changed cornering stiffness related to the tyre deflation.

13
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3. Simulation Performance of the Vehicle after Tyre Blow-Out

In this section, the simulation test is carried out to present the vehicle dynamics perfor-
mance after tyre blow-out based on the suggested 14 DOF comprehensive vehicle dynamics
model. For comparison purposes, the dynamics performance of the widely applied 8 DOF
vehicle model which neglects the pitch dynamics motion, vertical dynamics motion and
suspension dynamics motion of the four wheels is also presented [34]. Furthermore, the
above simulation results are validated against the simulation results from the EDVSM tyre
blow-out model proposed in a study [7], where the EDVSM model has been verified by the
experimental results of tyre blow-out. The simulation test applies the same straight-line
manoeuvre in [7], where the vehicle speed is 101 km/h at the time of a rear right tyre
blow-out, and the driver steers and brakes to maintain vehicle control. The tyre–road
friction coefficient is assumed as 1. The tyre blow-out happens at 3.8 s and the duration is
0.1 s. The vehicle model parameters applied in the simulation are the same as the values
in [7], which is shown in Table 1.

Table 1. Vehicle parameters of 8 DOF model and 14 DOF model (same as [7]).

Vehicle Mass m 1440 kg

Distance between front axle and C.G. l f 1.016 m

Distance between rear axle and C.G. lr 1.524 m

Track width b 1.5 m

Pitch moment of inertia Jx 900 kg.m2

Roll moment of inertia Jy 900 kg.m2

Yaw moment of inertia Jz 2000 kg.m2

Height of C.G. h 0.75 m

Front suspension stiffness ks f 35,000 N/m

Rear suspension stiffness ksr 35,000 N/m

Front suspension damping ratio bs f 2500 N.s/m

Rear suspension damping ratio bsr 2500 N.s/m

Vertical front tyre stiffness kt f 200,000 N/m

Vertical rear tyre stiffness ktr 200,000 N/m

Tyre cornering stiffness Cα 30,000 N/m

In Figure 2a–d, the longitudinal velocity, yaw rate, longitudinal acceleration and
lateral acceleration responses of the 14 DOF model and the 8 DOF model are compared
with the results from EDVSM model. After the rear right tyre deflation at 3.8 s, there is a
sudden change of the longitudinal velocity, yaw rate, longitudinal and lateral acceleration
in both the 8 DOF model and 14 DOF model due to the generated additional yaw moment
caused by the sudden increase of the wheel rolling coefficient. It can also be noted that
the 14 DOF model shows very similar responses in longitudinal velocity and longitudinal
acceleration as the EDVSM model response. The 8 DOF model has a smaller negative
longitudinal acceleration response and consequently, the longitudinal velocity is much
larger than EDVSM. There are some mismatches of vehicle dynamics responses, such as
the yaw rate and lateral acceleration between the 14 DOF model EDVSM model, which
required further investigation. The 8 DOF model shows a larger yaw rate and lateral
acceleration responses compared with EDVSM model.
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Figure 2. The vehicle state dynamics responses of 8 DOF model and 14 DOF model after tyre deflation
(a) longitudinal velocity (b) yaw rate (c) longitudinal acceleration (d) lateral acceleration (e) roll angle.

Figure 3 also suggests that the instantaneous tyre radius of the deflated rear right tyre
of the 14 DOF model at the beginning is smaller than the 8 DOF model due to the tyre
compression. The 14 DOF model considers the sudden decrease of tyre vertical stiffness
when the tyre blows out, which will induce the significant tyre instantaneous radius
reduction. However, the 8 DOF model neglects the tyre vertical dynamics and suspension
system and considers the tyre radius as a constant value, which cannot accurately present
the tyre blow-out effect.

Figure 3. The tyre’s instantaneous radius responses of 8 DOF model and 14 DOF model.

Figure 4 presents the load transfer effect of 8 DOF model and 14 DOF model after a
rear right tyre blow-out. The initial vertical load of 8 DOF model is smaller than 14 DOF
model since the 8 DOF model neglects the weight of unsprung mass including the wheel
hub, wheel mass and suspension system. For the 8 DOF model, there is no obvious load
transfer before and after tyre blow-out happens although the vertical load response of each
wheel has a small oscillation during the tyre deflation. On the other hand, the 14 DOF
model shows obvious load transfer effect after a front left tyre blow-out: at the beginning
of the tyre blow-out, the tyre’s vertical load of the rear right wheel decreases sharply and
then a brief spike occurs, which is shown in Figure 4d and is very close to the simulation
results from EDVSM model. After that, due to vehicle roll and pitch motion, the tyre’s
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vertical loads of the front right and rear left wheel are increased and the tyre’s vertical load
of the front left is decreased as shown in Figure 4a–c. This vertical load transient response
after a rear right tyre blow-out is very similar to the response described in [7].

Figure 4. The vertical load responses of 8 DOF model and 14 DOF model (a) front left wheel (b) front
right wheel (c) rear left wheel (d) rear right wheel.

Figures 5 and 6 compare the yaw-plane stability region of the14 DOF model and the
8 DOF model in different longitudinal velocity conditions. In this study, the yaw-plane
stability is determined by the value λi in the Dugoff tyre model: if λi of an individual tyre
is larger than 1, the vehicle is in a stable condition; if λi of the individual tyre is equal
or smaller than 1, the vehicle is moving in an unstable condition. A group of simulation
tests have been carried out to determine the stability transition point when λi = 1 and
consequently the stability boundary can be determined. According to Figures 5 and 6, the
stability region of 14 DOF model is generally smaller than 8 DOF model. This is mainly
because the 14 DOF model considers the coupling effect of the vehicle roll and pitch motion
on the yaw motion and the yaw-plane stability is compromised.

Figure 5. Compares the yaw-plane stability region of 14 DOF model and 8 DOF model (vx = 20, μ = 1).
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Figure 6. Compares the yaw-plane stability region of 14 DOF model and 8 DOF model (vx = 40, μ = 1).

In this section, the proposed 14 DOF model has been validated in the simulation to
accurately present the dynamics performance of a tyre blow-out. The value λi in the Dugoff
tyre model can be utilised to determine the stability region of the 14 DOF model in the yaw
plane. The determined stability region is a very useful tool to select a suitable control mode
for the integrated controller design in the following section.

4. Three-Dimensional Integrated Yaw-Plane Stability and Roll-Plane Stability 14 DOF
MPC Control Framework

In this section, a three-dimensional non-linear coordinate control framework is de-
signed to achieve the integrated control of yaw-plane stability and roll-plane stability
when tyre blow-out. Based on 14 DOF model, The hierarchy of the whole 14 DOF MPC
control framework consists of the vehicle states predictor, upper-level control supervisor
and lower-level 4 DOF MPC controller. Based on predicted vehicle states from a model
predictor, the upper-level control mode supervisor selects the most suitable control mode
from the options of cruise control mode, yaw-plane stability control mode and roll-stability
control mode. Then according to the selected control mode, the lower-level 4 DOF MPC
algorithm is applied to allocate the desired control value to the individual actuator. The
whole structure of the control framework is shown in Figure 7.

4.1. Vehicle States Predictor

A vehicle model predictor based on the model predictive algorithm is presented to
determine the vehicle’s future states. Based on some the vehicle’s critical future states, such
as the longitudinal velocity, lateral velocity and roll angle, the vehicle control mode can be
selected in the upper-level control supervisor.

The major difficulty in implementing the 14 DOF model-based MPC control allocation
is the complex model structure of 14 DOF model and the significant increase in computa-
tional time. In order to deal with this issue, the 14 DOF model in MPC can be simplified as
4 DOF by assuming some vehicle states are already known or can be directly measured.
Therefore, in this section, the vehicle state predictor can be utilised to estimate the vehicle
states which cannot be measured directly. Then, the estimated and measured vehicle states
can be directly used as input information in the simplified 4 DOF MPC in the lower-level
controller.
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Figure 7. The structure diagram of proposed three-dimensional integrated stability control framework.

Assumption 1. It is assumed that velocity longitudinal velocity vx, lateral velocity vy and vertical
velocity vz in C.G. can be easily estimated [37,38]. Vehicle roll angle φ, roll rate ωx, pitch angle
θ, pitch rate ωy, yaw rate ωz of C.G. and wheel angular velocity of each wheel ωi are all easy to
measure with various sensors. In addition, the tyre cornering stiffness change, tyre vertical stiffness
change and rolling resistance change after tyre blow-out are all assumed to be known.

The model predictive estimator algorithm can be presented in discrete time in this section.
The vehicle states which are hard to measure and intended to be estimated are tyre compression
xti, suspension spring compression xsi and vertical velocity of unsprung mass vzui.

First, the velocity of suspension mounting points in the current time step can be
calculated based on Equations (21) and (25) in discrete time:

vxs1(k) = vxs3(k) = vx(k)− 0.5cωz(k) (32a)

vxs2(k) = vxs4(k) = vx(k) + 0.5cωz(k) (32b)

vys1(k) = vys2(k) = vy + l f ωz(k) (33a)

vys3(k) = vys4(k) = vy − lrωz(k) (33b)

vzs1(k) = vz(k) + 0.5cωx(k)− l f ωy(k) (34a)

vzs2(k) = vz(k)− 0.5cωx(k)− l f ωy(k) (34b)

vzs3(k) = vz(k)− 0.5cωx(k) + lrωy(k) (34c)

vzs4(k) = vz(k) + 0.5cωx(k) + lrωy(k) (34d)

The length of suspension strut in the current time step can be presented based on
Equation (26):

lsi(k) = ls0 − (x̂si(k)− xs0) (35)

The instance tyre radius in the current time step can be calculated based on Equation (17):

Ri(k) =
R0 − x̂ti(k)

cos θ(k) cos φ(k)
(36)

18



Sensors 2021, 21, 8328

It is noted in Equations (30)–(32), vx(k), vy(k), vz(k), ωx(k), ωy(k) and ωz(k) are
measured vehicle state values in current time step. x̂si(k) and x̂ti(k) are the estimated
suspension spring compression and tyre compression in the current time step. The initial
conditions xt0 and xs0 can be determined by Equations (14) and (26).

The longitudinal and lateral velocity of the unsprung mass in the current time step
can be determined based on Equation (24):

vxui(k) = vxsi(k)− lsiωy(k) (37a)

vyui(k) = vysi(k) + lsiωx(k) (37b)

The velocity on the tyre contact patch in the current time step can be calculated based
on Equation (13):

vxgi(k) = cos θ(k)
(
vxui(k)− ωy(k)Ri(k)

)
+

sin θ(k)
(
v̂zui(k) cos φ(k) + sin φ(k)

(
ωx(k)Ri(k) + vyui(k)

)) (38a)

vygi(k) = cos φ(k)
(
vyui(k) + ωx(k)Ri(k)

)− v̂zui(k) sin φ(k) (38b)

where vzui(k) is hard to measure and can be updated and estimated in every discrete-time
iteration with the initial conditions of vzui(0) = 0.

The lateral side-slip angle and longitudinal slip ratio of each wheel in discrete time
can be determined based on Equations (10)–(12). The lateral tyre force of each wheel Fyti
can be calculated based on Equation (9). The longitudinal tyre force Fxti at the current time
step can be directly determined by:

Fxti(k) =
Ti(k)
Ri(k)

(39)

The tyre forces applied on the wheel Fxgi and Fygi can be determined by Equation (23).
The tyre force transmitted to vehicle C.G. Fxgsi and Fygsi can be determined based on
Equation (4). The unsprung mass should be subtracted from forces Fxgsi and Fygsi:

Fxsi(k) = Fxgsi(k) + mug sin θ(k) (40a)

Fysi(k) = Fygsi(k)− mug sin φ(k) cos θ(k) (40b)

Vehicle load transfer of each wheel Fdzi(k) can be obtained from Equation (8). The
vertical tyre force Fzgi(k) can be determined based on Equation (14).

The estimated velocity of vehicle suspension in the current time step can be calculated as:

.̂
xsi(k) = −vzsi(k) + v̂zui(k) (41)

The estimated velocity of wheel radius change in the current time step can be deter-
mined according to Equation (15):

.̂
xti(k) = vxui(k) sin θ(k)− cos θ(k)

(
v̂zui(k) cos φ(k) + vyui(k) sin φ(k)

)
(42)

The vertical acceleration of unsprung mass in the current time step can be determined
according to Equation (22):

mu
.̂
vzui(k) = cos φ(k)

(
cos θ(k)

(
Fzgi(k)− mug

)
+ sin θ(k)Fxgi(k)

)− sin φ(k)Fygi(k)
−Fdzi(k)− xsi(k)ks − .

xsi(k)bs − mu
(
v̂zui(k)ωx(k)− vxui(k)ωy(k)

) (43)

Finally, the estimated values of x̂si, x̂ti and v̂zui in the next time step can be estimated by:

x̂si(k + 1) = x̂si(k) +
.
xsi(k)(t(k + 1)− t(k)) (44a)

x̂ti(k + 1) = x̂ti(k) +
.
xti(k)(t(k + 1)− t(k)) (44b)

v̂zui(k + 1) = v̂zui(k) +
.
vzui(k)(t(k + 1)− t(k)) (44c)
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The predicted vehicle state values of vx, vy, ωz, φ in the next n time steps can be
determined by following equations:

v̂x(k + n) = vx(k + n − 1) +
.
vx(k)(t(k + n)− t(k + n − 1)) (45a)

v̂y(k + n) = vy(k + n − 1) +
.
vy(k)(t(k + n)− t(k + n − 1)) (45b)

ω̂z(k + n) = ωz(k + n − 1) +
.

ωz(k)(t(k + n)− t(k + n − 1)) (45c)

φ̂(k + n) = φ(k + n − 1)
+
(
ωx(k) + ωy(k) sin(φ(k + n − 1)) tan(θ(k))

+ωz(k) cos(φ(k + n − 1)) tan(θ(k)))
(45d)

where n = 1, 2, . . . , np, np presents the predicted horizontal of the state predictor. It is
noted that in a relatively short prediction time, the acceleration values

.
vx,

.
vy,

.
ωz can be

assumed as constant values and the vehicle states estimated by Equation (45) within a
small, predicted horizontal can have acceptable prediction performance.

4.2. The Upper-Level Control Mode Supervisor

Based on the predicted vehicle states from the vehicle’s future state predictor and
the diagram of the vehicle stability region determined in Figures 5 and 6, the upper-level
control supervisor can determine the best suitable control mode from cruise control mode,
yaw-plane stability control mode and roll-stability control mode.

The cruise control mode only aims to maintain the desired longitudinal velocity. In
the yaw-plane stability control mode, the desired yaw rate and body side-slip angle can be
achieved. In the roll-stability control mode, the vehicle roll stability can be improved and
rollover can be prevented.

The control mode selection rules can be presented as follows, and are also illustrated
in Figure 8:

Figure 8. The diagram of the proposed control mode selection rules.
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(1) Determine the predicted state values of lateral velocity v̂y(k + n), yaw rate r̂(k + n)
and the predicted load transfer ratio R̂(k + n). The load transfer ratio can be presented
by the following equation, according to [25]:

R̂(k + n) =
2Kφφ(k + n) + 2Cφ

.
φ(k + n)

cmg
(46)

(2) According to the predicted vehicle lateral velocity v̂y(k + n), yaw rate r̂(k + n) and
diagram of yaw stability region (as in Figures 6 and 7), if the vehicle is moving outside
the yaw stability region, the vehicle’s yaw-plane stability control mode is selected.

(3) According to the predicted value of load transfer ratio (LTR) R̂(k + n), if R̂(k + n) < 0.2,
the rollover is unlikely to happen and the roll-stability control mode is disabled; if
0.2 ≤ R̂(k + n) ≤ 0.6, the vehicle is likely to rollover and the roll-stability control
mode is selected. These threshold values are determined according to [28].

(4) If the driver wants to maintain the desired longitudinal velocity, the cruise control
mode is selected with full longitudinal velocity control. It is noted the yaw-plane sta-
bility control mode, the roll-stability control mode and the cruise control mode could
be activated at the same time when their active threshold conditions are satisfied.

(5) When R̂(k + n) > 0.6 and the vehicle is in the critical roll-stability mode, the cruise
control and yaw-plane stability control is disabled and the vehicle is in a full brake.
According to [28], during the critical roll-stability mode, the inside wheels of the
vehicle may have already lifted off and the vehicle may roll over immediately. Rollover
prevention is far more important than yaw stability. Therefore, the full brake strategy
is selected for critical roll-stability mode by neglecting other control targets.

4.3. The Lower-Level 4 DOF MPC Algorithm

Assumption 2. It is assumed that the vehicle states xsi(k), xti(k) and vzui(k) are all assumed to
be successfully estimated by the proposed state estimator. The vehicle longitudinal velocity, lateral
velocity, vertical velocity, yaw angle, roll angle, pitch angle, yaw rate, roll rate and pitch rate are
assumed to be easily measured or estimated. In addition, the sideslip angle and slip ratio of the
individual wheels are assumed to be known.

The cost function of the proposed 4 DOF MPC can be presented as the following equation:
min

Tj(healthy wheels)
J

= ∑N
i=1[a1(v̂x(k + i)− vxd(k + i))2 + a2

(
β̂(k + i)− βd(k + i)

)2

+a3(ω̂z(k + i)− ωzd(k + i))2 + a4R̂(k + i)2]

+[a1(v̂x(k + N + 1)− vxd(k + N + 1))2 + a2
(

β̂(k + N + 1)− βd(k + N + 1)
)2

+a3(ω̂z(k + N + 1)− ωzd(k + N + 1))2 + a4R̂(k + N + 1)2]

(47)

where vxd is the desired longitudinal velocity. It is noted that after the tyre deflation, the
allocated braking or traction torque on the deflated tyre will further deteriorate the vehicle
stability. Therefore, the optimization algorithm (47) only allocates the individual wheel
torque Ti to healthy wheels.

βd and ωzd are desired side-slip angle of C.G. and desired yaw rate, which are deter-
mined by a 2 DOF desired vehicle model:

.
βd =

⎧⎨⎩(Cα + Cα)δ − 2βd(Cα + Cα)−
⎡⎣mvdωzd +

2
(

l f Cα − lrCα

)
ωzd

vd

⎤⎦⎫⎬⎭ 1
mvd

(48a)

.
ωzd =

⎧⎨⎩2l f Cαδ − 2
(

l f Cα − lrCα

)
βd −

2ωzd

(
l2

f Cα + l2
r Cα

)
vd

⎫⎬⎭ 1
Jz

(48b)
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It is noted that the desired yaw rate cannot exceed the maximum yaw rate:

ωzd = min
(

ωzd,
μg
vxd

)
(49)

The scaling factors a1, a2, a3, a4 can be adjusted to reflect different control modes:
(1) when it is required to disable the cruise control mode, a1 = 0; (2) when it is required
to disable the yaw stability control mode, a2 = a3 = 0; (3) when it is required to disable
the roll-stability control, a4 = 0. It is noted that in order to progressively disable different
modes, the function tanhx is applied.

a1 = tanhx1b1 (50a)

a2 = tanhx2b2 (50b)

a3 = tanhx3b3 (50c)

a4 = tanhx4b4 (50d)

When x → +∞ , tanhx → 1 ; When x → 0 , tanhx → 0 . x1−4 is related to the evaluation
criteria of the different mode selections. b1−4 is the weighting factors of each individual term.

In optimization cost function (47), the longitudinal velocity vx, side-slip angle in C.G.,
yaw rate ωz and roll angle φ can be predicted by the following equations:

v̂x(k + 1) = vx(k) +
.
vx(k)Δt (51a)

v̂y(k + 1) = vy(k) +
.
vy(k)Δt (51b)

ω̂z(k + 1) = ωz(k) +
.

ωz(k)Δt (51c)

φ̂(k + 1) = φ(k) + (ωx + ωz(k)θ)Δt (51d)

β̂(k + 1) = tan−1 v̂y(k + 1)
vx(k + 1)

(51e)

where
.
vx(k),

.
vy(k),

.
ωz(k) can be determined based on Equation (1):

.
vx(k) = ωyvz + ωzvy(k) +

∑i=1,2,3,4 Fxsi

m
+ g sin θ (52a)

.
vy(k) = ωz(k)vz − ωz(k)vx(k) +

∑i=1,2,3,4 Fysi

m
− g sin φ cos θ (52b)

.
ωz(k) =

l f
(

Fys1 + Fys2
)− lr

(
Fys3 + Fys4

)
Jz

+
c(−Fxs1 + Fxs2 − Fxs3 + Fxs4)

2Jz
(52c)

where Fxsi and Fysi can be determined by Equations (32)–(40) and estimated vehicle states
x̂si(k), x̂ti(k) and v̂zui(k).

Therefore, according to Equations (51) and (52), the cost function (47) of MPC can be
clearly rewritten as the equation below:
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min
Tj(healthy wheels)

J = ∑N
i=1

⎧⎨⎩a1

[
vx(k + i) +

((
∑

i=1,2,3,4
cos θ

Ti(k+i−1)
Rim

)
+ A1

)
Δt − vxd(k + i)

]2

+a2

[
tan−1 vy(k+i)+

((
∑i=1,2,3,4 sin θ sin φ

Ti(k+i−1)
Rim

)
+A2

)
Δt

vx(k+i)+
((

∑i=1,2,3,4 cos θ
Ti(k+i−1)

Rim

)
+A1

)
Δt

− βd(k + i)

]2

+a3

[
ωz(k + i) +

((
c cos θ

2Jz
(T2 − T1 + T4 − T3)

)
+ A3

)
Δt − ωzd(k + i)

]2

+a4

[
2kφ(φ(k+i)+(ωx+ωz(k+i))Δt)+cφ(ωx+ωz(k+i))

cmg

]2
}

+[a1

[
vx(k + N + 1) +

((
∑

i=1,2,3,4
cos θ

Ti(k+N)
Rim

)
+ A1

)
Δt − vxd(k + N + 1)

]2

+a2

[
tan−1 vy(k+N+1)+

((
∑i=1,2,3,4 sin θ sin φ

Ti(k+N)
Rim

)
+A2

)
Δt

vx(k+N+1)+
((

∑i=1,2,3,4 cos θ
Ti(k+N)

Rim

)
+A1

)
Δt

− βd(k + N + 1)

]2

+a3

[
ωz(k + N + 1) +

((
c cos θ

2Jz
(T2 − T1 + T4 − T3)

)
+ A3

)
Δt − ωzd(k + N + 1)

]2

+a4

[
2kφ(φ(k+N+1)+(ωx+ωz(k+N+1))Δt)+cφ(ωx+ωz(k+N+1))

cmg

]2
]

(53)

where A1 = ωyvz + ωz(k)vy(k) + g sin θ + ∑
i=1,2,3,4

− sin θFzgi+mug sin θ

m , A2 = ωz(k)vz −

ωz(k)vx − g sin φ cos θ + ∑
i=1,2,3,4

cos φFygi+sin φ cos θFzgi−mug sin φ cos θ

m ,

A3 =
l f (Fys1+Fys2)−lr(Fys3+Fys4)

Jz
+

c sin θ(Fzg1−Fzg2+Fzg3−Fzg4)
2Jz

.
The stability proof of the proposed MPC controller is presented in the Appendix A.

5. Simulation Results

In this section, the proposed 14 DOF MPC is implemented on the simulation platform
of Matlab Simulink to present the combined yaw-plane stability and roll-stability control
performance. Furthermore, in order to do the comparative study and show the advantages
of the proposed 14 DOF MPC, the control performance of the traditional 8 DOF MPC
is also presented. This 8 DOF model considers the longitudinal motion, lateral motion,
yaw motion, roll motion and rotational motion of four wheels and includes the yaw-plane
stability control mode and roll-stability control mode. If R < 0.6, the combined yaw-plane
stability control mode and roll-stability control mode is enabled; if R ≥ 0.6, only the
roll-stability control mode is enabled, and the vehicle has the full brake.

Three sets of simulation results are presented in the following paragraphs: in the first
set of simulations, the proposed MPC is working under the normal driving mode and the
yaw-plane stability is the focus; in the second and third sets of simulations, the proposed
MPC is under the yaw and roll-stability control mode and the roll stability is the focus.
The sampling time of the proposed 14 DOF MPC and 8 DOF MPC was 0.005 s and the
prediction horizon was five steps. Due to the large computational effort, the MPC sampling
time was chosen as 0.005 s, which is the same as the sampling time constant of vehicle
plant dynamics model. The control horizon is also five steps.

In the first set of simulations, the vehicle is assumed to move along the straight line
with an initial longitudinal velocity of 40 m/s. The tyre–road friction coefficient is assumed
as 0.9. Tyre blow-out happens at the front left wheel after 2 s and the changing of the
front-left tyre parameter after tyre blow-out is shown in Figure 9. Figure 10 compares the
vehicle dynamics responses when the proposed 14 DOF MPC and traditional 8 DOF MPC
are applied. Figure 10f presents the changed real-time scaling factors of the optimization
cost function of 14 DOF MPC determined by the upper-level control mode supervisor,
which shows that 14 DOF MPC only chooses the cruise control mode 2 s before, when all
the tyres are in a healthy condition. After 2 s, the 14 DOF MPC switches into combined
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cruise control mode and yaw stability control mode. Figure 10a shows the similar control
performances of longitudinal velocity for both of the two methods. Figure 10b,c prove
that the proposed 14 DOF MPC has a better yaw rate and body side-slip angle control
performance than 8 DOF MPC. The 8 DOF MPC has a larger over-shoot of yaw rate and
body side-slip angle response after tyre blow-out at 2 s than the no controller applied
condition. According to Figure 10d,e, since the LTR is less than the roll-stability control
threshold value of 0.2, the roll-stability control is disabled and the proposed 14 DOF MPC
cannot control the roll angle and the value of LTR. The motor control torques of the different
controllers are shown in Figure 11.

 
(a) (b) 

Figure 9. The changing of front-left tyre parameter after tyre blow-out (a) rolling resistance coefficient (b) tyre stiffness.

Figure 10. Vehicle dynamics performance when proposed controller applied in the first set of
simulations (a) longitudinal velocity, (b) yaw rate, (c) body side-slip angle, (d) roll angle, (e) LTR, (f)
scaling factors of 14 DOF MPC.
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Figure 11. Vehicle motor control inputs in the first set of simulations (a) front left wheel, (b) front
right wheel, (c) rear left wheel, (d) rear right wheel.

Figure 12 shows the sensitivity analysis of the proposed 14 DOF MPC under different
tyre–road friction coefficient conditions and different rolling resistance coefficients after a tyre
blow-out. The proposed 14 DOF MPC controller shows a quite robust control performance.

Figure 12. Sensitivity analysis of the dynamics performance of 14 DOF MPC in the first set of
simulations (a) longitudinal velocity, (b) yaw rate, (c) body side-slip angle, (d) roll angle, (e) LTR.

In the second set of simulations, the vehicle started to have the J-turn motion after
2 s (the input steering angle is shown in Figure 13). The initial longitudinal velocity was
40 m/s and tyre–road friction coefficient was 0.9. After 5 s, the front left tyre blows out
and the changed tyre parameters are shown in Figure 14. Figure 15 presents and compares
the vehicle dynamics responses of the proposed 14 DOF MPC and traditional 8 DOF MPC.
Figure 15f shows that 14 DOF MPC switches from the pure cruise control mode into the
combined cruise control and yaw stability control mode after the beginning of the J-turn in
2 s, then switches into combined cruise control mode, roll-stability and yaw-stability control
mode after 7 s. Figure 15a–c all prove that the proposed 14 DOF MPC can significantly
improve the longitudinal velocity, yaw rate and body side-slip angle response after a tyre
blow-out compared with 8 DOF MPC. According to Figure 15d,e, after 5 s, the dynamics
responses of LTR and roll angle of 14 DOF MPC are improved because the roll-stability

25



Sensors 2021, 21, 8328

control mode is enabled according to Figure 15f. The motor control torques of the different
controllers are shown in Figure 16. Figure 17 suggests the control performance of 14 DOF
MPC when considering the measurement noise (measured yaw rate with white noise
variance of 0.02 rad/s) and shows good robustness on measurement noise.

Figure 13. Driver’s input steering angle in the second set of simulations.

 
(a) (b) 

Figure 14. The changing of front-left tyre parameters after tyre blow-out in the second set of simulations (a) rolling resistance,
(b) tyre vertical and cornering stiffness.

In the third set of simulations, the fishhook steering manoeuvre (shown in Figure 18)
was applied to test the control performance of the proposed method. The initial longitudinal
velocity and tyre–road friction coefficient were the same as the second set of simulations.
After 5 s, the front left tyre blows out and the changed tyre parameters are the same as in
Figure 14. Figure 19 presents and compares the dynamics performance of the proposed
14 DOF MPC and traditional 8 DOF MPC. Figure 19f shows that after 3 s, the control
mode of 14 DOF MPC switches from pure cruise control mode into the combined cruise
control, yaw stability and roll-stability control mode. Figure 19b,c shows that the proposed
14 DOF MPC and 8 DOF MPC cannot achieve the desired yaw rate and side-slip angle.
Figure 19d,e prove that the proposed 14 DOF MPC has much better roll-stability control
performance than 8 DOF MPC. In all three sets of simulations, the yaw-stability and roll-
stability dynamics control performance of 8 DOF MPC was significantly compromised.
This is mainly because the 8 DOF MPC is based on the 8 DOF vehicle dynamics model
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which cannot accurately present the vehicle dynamics performance during tyre blow-out.
The motor control torques of different controllers are shown in Figure 20.

Figure 15. Vehicle dynamics performance when proposed controller applied in the second set of
simulations (a) longitudinal velocity, (b) yaw rate, (c) body side-slip angle, (d) LTR, (e) roll angle, (f)
scaling factors of 14 DOF MPC.

Figure 16. Vehicle motor control inputs in the second set of simulations (a) front left wheel, (b) front
right wheel, (c) rear left wheel, (d) rear right wheel.

Figure 17. Vehicle dynamics performance when considering the measurement noise in the second set
of simulations (a) longitudinal velocity, (b) yaw rate, (c) body side-slip angle, (d) LTR, (e) roll angle.
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Figure 18. Input steering angle in the third set of simulations.

Figure 19. Vehicle dynamics performance when proposed controller applied in the third set of
simulations (a) longitudinal velocity, (b) yaw rate, (c) body side-slip angle, (d) roll angle, (e) LTR, (f)
scaling factors of 14 DOF MPC.

Figure 20. Vehicle motor control inputs in the third set of simulations (a) front left wheel, (b) front
right wheel, (c) rear left wheel, (d) rear right wheel.
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6. Conclusions

This study first proposes a comprehensive 14 DOF vehicle dynamics model to describe
the vehicle dynamics performance after a tyre blow-out. Then, based on the proposed
14 DOF model, a non-linear coordinate control framework based on MPC is proposed. The
simulation results can be summarised as follows:

(1) The proposed 14 DOF vehicle dynamics model can successfully describe the effect of
the changed tyre vertical stiffness, cornering stiffness and rolling resistance after a
tyre blow-out on the vehicle dynamics performance.

(2) The proposed vehicle state predictor can successfully predict the vehicle’s future
states and the proposed upper-level control mode supervisor can use the predicted
vehicle states to select the suitable control mode.

(3) The proposed lower-level MPC based on the 14 DOF model can successfully improve
the vehicle yaw-dynamics performance including the yaw rate and side-slip angle in
the scenarios of tyre blow-out during straight line moving and J-turn manoeuvre.

(4) The proposed lower-level MPC based on the 14 DOF model can successfully improve
the roll stability in the challenging scenario of a tyre blow-out during a fishhook
manoeuvre when the vehicle has a big load transfer.

(5) The traditional MPC based on the 8 DOF model cannot successfully improve the
vehicle yaw stability and roll stability of the vehicle after tyre blow-out.

In the future, the effect of tyre blow-out on the autonomous steering system of au-
tonomous vehicles will be investigated and the design of a fault-tolerant steering control
strategy to overcome the issue of tyre blow-out will be focused on.
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Nomenclature

Vehicle body:
l f /lr Distance of C.G. from front axle/rear axle (m)
c Track width (m)
h Height of C.G. (m)
Hroll Distance between and C.G. and sprung mass roll centre (m)
Jx/Jy/Jz Pitch inertia/roll inertia/yaw inertia (kg.m2)
ms/mu Vehicle sprung mass/unsprung mass (kg)

vx/vy/vz
Longitudinal velocity/lateral velocity/vertical velocity of C.G. in fixed-
bodycoordinate system (m/s)

θ/φ/ψ Pitch angle/roll angle/yaw angle (rad)
ωx/ωy/ωz Pitch rate/roll rate/yaw rate (rad/s)
g Acceleration of gravity (m/s2)
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Suspension and tyre:
Fxti/Fyti/Fzti Tyre longitudinal force/lateral force/vertical force (N)
i = 1, 2, 3, 4 Front left wheel, front right wheel, rear left wheel, rear right wheel

Fxgi/Fygi/Fzgi
Longitudinal force/lateral force/vertical force at tyre contact patch in
coordinate system attached to tyre contact patch (N)

Fxgsi/Fygsi/Fzgsi
Longitudinal force/lateral force/vertical force at tyre contact patch in
coordinate system attached to C.G. (N)

Fxsi/Fysi/Fzsi
Longitudinal force/lateral force/vertical force transferred to C.G. in the
coordinate system attached to C.G. (N)

Fdzi Load transfer of each wheel (N)
Mxi/Myi Roll moment and pitch moment transmitted to the sprung mass (N.m)
Iω Wheel moment of inertia (kg.m2)
ksi/kti Suspension stiffness/tyre vertical stiffness (N/m)
bsi Suspension damping coefficient (N.s/m)
kARB,i Stiffness of anti-roll bar
bARB,i Damping coefficient of anti-roll bar
lsi Instantaneous length of strut (m)
Ri Instantaneous length of tyre radius (m)
xsi/xti Suspension spring compression/tyre spring compression (m)

vxgi/vygi
Longitudinal velocity/lateral velocity at tyre contact patch in coordinate
system attached to tyre contact patch (m/s)

vxsi/vysi/vzsi
Longitudinal velocity/lateral velocity/vertical velocity at suspension corner
in coordinate system attached to C.G. (m/s)

vxui/vyui/vzui
Unsprung mass longitudinal velocity/lateral velocity/vertical velocity in
coordinate system attached to C.G. (m/s)

ωi Angular velocity of wheel rotation (rad/s)
αi Tyre lateral side-slip angle (rad)
si Tyre longitudinal slip ratio
δi Steering input of each wheel (rad)
Ti Traction/brake input of each wheel (N.m)

Appendix A

The Lyapunov method is used to prove the stability of the proposed integrated MPC
approach. The Lyapunov function can be chosen as the optimal value of the optimisation
cost function of MPC according to Equation (53):

V0(k) = min
uj

∑N
i=1

[
a1(v̂x(k + i)− vxd(k + i))2 + a2

(
β̂(k + i)− βd(k + i)

)2

+a3(ω̂z(k + i)− ωzd(k + i))2 + a4R̂(k + i)2
]
= min

uj
∑N

i=1 L(x(k + i), u(k + i − 1))
(A1)

It can be noted that V0(k) is positively defined. Now we need to prove V0(k + 1) ≤
V0(k) to finish the Lyapunov proof.

V0(k + 1) = min
uj

∑N
i=1 L(x(k + i + 1), u(k + i))

= min
uj

{[
∑N

i=1 L(x(k + i), u(k + i − 1))
]
− L(x(k + 1), u(k))

+L(x(k + N + 1), u(k + N))}
≤ −L(x(k + 1), u(k)) + V0(k) + L(x(k + N + 1), u(k + N))

(A2)

If the absolute value of terminal term L(x(k + N + 1), u(k + N)) is smaller than the abso-
lute value of initial term L(x(k + 1), u(k)), the Lyapunov stability of the MPC can be proved.

Since over the whole prediction horizon, the desired optimisation targets are constant.
If the four wheels are all in a healthy condition or only one of the four tyres has a blow-out,
the left and right motors can generate different motor torques and an additional yaw
moment (torque-vectoring function) to improve the yaw stability performance. Thus,
the absolute value of the terminal term L(x(k + N + 1), u(k + N)) is smaller than the
absolute value of the initial term L(x(k + 1), u(k)) and the stability of the MPC can be
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proved. On the other hand, if two or more of the tyres have a blow-out, the torque-
vectoring function cannot be surely achieved so the absolute value of the terminal term
L(x(k + N + 1), u(k + N)) is not surely smaller than the absolute value of the initial term
L(x(k + 1), u(k)), which cannot prove the stability of the MPC.
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Abstract: Trajectory tracking is a key technology for precisely controlling autonomous vehicles. In
this paper, we propose a trajectory-tracking method based on model predictive control. Instead
of using the forward Euler integration method, the backward Euler integration method is used to
establish the predictive model. To meet the real-time requirement, a constraint is imposed on the
control law and the warm-start technique is employed. The MPC-based controller is proved to be
stable. The simulation results demonstrate that, at the cost of no or a little increase in computational
time, the tracking performance of the controller is much better than that of controllers using the
forward Euler method. The maximum lateral errors are reduced by 69.09%, 47.89% and 78.66%. The
real-time performance of the MPC controller is good. The calculation time is below 0.0203 s, which is
shorter than the control period.

Keywords: autonomous driving; trajectory tracking; real-time control; model predictive control

1. Introduction

Research in autonomous driving has aroused increasingly more attention of late [1,2].
The most basic and important goal of an autonomous passenger vehicle is to free people
from driving and safely take passengers from an initial state to a final state in a desired
interval of time. The architecture of contemporary autonomous driving systems is typically
organized into the perception system and the decision-making system [3]. The perception
system takes charge of estimating the vehicle states and representing the surrounding
environment using data from sensors, including Light Detection and Ranging (LIDAR),
Radio Detection and Ranging (RADAR), cameras, a Global Positioning System (GPS), and
an Inertial Measurement Unit (IMU). In particular, camera data is of vital importance.
Tesla released its fully self-driving version 9 Beta software on 10 July 2021, which relies on
camera vision and neural net processing to deliver autopilot. The Lane Support System
(LSS) uses cameras to identify the road lines and alert drivers to potential hazards. However,
there is still much uncertainty regarding the vision needs of LSS and the results of the
experimental tests for LSS are quite limited [4,5]. Cafiso and Pappalardo [4] developed
logit models to investigate road characteristics and conditions that affects LSS performance
and employed the Firth’s penalized maximum-likelihood method to estimate the logistic
regression coefficients and standard errors to describe the rareness of the events. They gave
threshold values for the luminance coefficient in diffuse lighting conditions and horizontal

Sensors 2021, 21, 7165. https://doi.org/10.3390/s21217165 https://www.mdpi.com/journal/sensors
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curvature radius, and presented remarks on road maintenance and design standards.
Pappalardo et al. [5] experimentally tested LSS performance in two lane rural roads with
distinct geometric alignments and road marking conditions. They proposed a decision
tree method to analyze the cause of the LSS faults and the effects of the variables involved.
On the other hand, the decision-making system takes charge of navigating a car from the
current position to a goal position safely, feasibly, timely, and comfortably [6]. The decision-
making system can be further divided into three subsystems: a decision and planning
system, a control system, and an actuation system. Of them, motion planning is a key
autonomous driving technique. Li and Shao [7] proposed a motion planner for autonomous
parking, and the time-optimal dynamic optimization problem with vehicle kinematics,
collision-avoidance conditions and mechanical constraints was solved using a simultaneous
approach using the interior-point method. Zhang [8] proposed a hierarchical three-layer
trajectory planning framework to realize real-time collision avoidance on highways under
complex driving conditions. Therefore, a general framework of an autonomous driving
system is shown in Figure 1. Besides a perception and decision-making system, advanced
X-by-wire chassis, including drive-by-wire, steer-by-wire, brake-by-wire and active/semi-
active suspension subsystems are of vital importance to improving the performance and
safety of connected and autonomous vehicles. Zhang et al. [9] proposed a fault-tolerant
control method for steer-by-wire systems to mitigate the undesirable influence of front
wheel steering angle sensor faults via the use of the Kalman filtering technique. A complete
and systematic survey on chassis coordinated control methods for full X-by-wire vehicles
can be found in [10]. Here we focus on trajectory tracking, which is a key technology for
precisely controlling autonomous vehicles.

Figure 1. General framework of an autonomous driving system comprising perception, decision and
planning, control and actuation.

The trajectory tracking algorithms are designed to ensure that a vehicle follows a
predetermined trajectory generated either offline using navigation systems or online using
the motion planning module. The performance of trajectory tracking directly determines
the performance of autonomous vehicles, which involves driving safety, passenger com-
fort, travel efficiency, and energy consumption [11]. The trajectory tracking control of
autonomous vehicles is a challenging research area because these systems typically are
nonlinear systems with non-holonomic constraints.

Pure-pursuit [12] and the Stanley method [13] are two prevalent geometric controllers.
The main advantage of these methods is that they use simple geometric models with few
parameters, and therefore can give timely feedback on the current state and constraints
to meet the real-time requirement of an autonomous vehicle. The pure-pursuit method
and its variants are one of the most commonly used methods to solve the path-tracking
problem for mobile robots [14]. The Stanley method is the path-tracking approach used by
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Stanley, Stanford University’s autonomous car; Stanley won the DARPA Grand Challenge
in 2005 [13]. However, these methods have their limitations. Pure-pursuit control works
as a proportional controller of the steering angle operating on the cross-track error by
calculating the curvature from the current position to some goal position. When the look-
ahead distance is too large, its performance is poor, and the vehicle may cut corners when
changing direction or making a U-turn. The Stanley method considers both the heading
and cross-track errors and therefore it is more effective and steady than the pure-pursuit
method. But it does not perform well on discontinuous paths. To sum up, geometric-based
tracking controllers (pure pursuit, Stanley, etc.) have a simple structure and are easy to
implement. However, they are not suitable for applications that need to consider vehicle
dynamics (e.g., high-speed trajectory tracking, extreme path curvature, etc.). It is also
difficult to achieve a trade-off between stability and tracking performance [15].

Proportional-Integral-Derivative controllers (PID) [16] and sliding model controllers
(SMC) [17] are two prevalent classical control algorithms. Although PID controllers have
good tracking performance, there is a major challenge in the tuning of the parameters
because of the vehicle and tire nonlinearities. SMC is a well-developed nonlinear state-
feedback controller and has been used to design vehicle trajectory tracking controllers.
Because of the nonlinear control law, SMC shows good tracking accuracy. However, there
are several drawbacks: first, its performance is sensitive to the sampling rate of the con-
troller; second, chattering problems exist under certain conditions [18]; third, robustness
is only guaranteed on the sliding surface; and lastly, it needs prior knowledge [19]. To
sum up, compared with geometric-based tracking controllers, model-based tracking meth-
ods are more feasible and reliable in real driving scenarios at the cost of the increase in
computational burden and complexity.

Reinforcement learning (RL) has shown an ability to achieve super-human results at
turn-based games like Go [20] and chess [21]. Deep RL has been applied to the decision-
making system of autonomous driving in several simulated environments [22]. Moham-
madi et al. [23] proposed an optimal tracking controller for nonlinear continuous-time
systems with time-delay, mismatched external disturbances, and input constraints, using
the technique of integral reinforcement learning and a Hamilton-Jacobi-Bellman equation.
However, there are two main limitations for RL-based methods. First, they require large
amounts of data to build up a feasible model; specifically, data is sometimes expensive and
hard to obtain. Second, they require a sufficiently long time to train the model to complete
the specific tasks due to significant data manipulation. The performance of the controllers
using machine-learning methods relies on the learning capability of the model and the
quality of the data.

Model Predictive Control (MPC) has been applied to trajectory planning and tracking
of an autonomous vehicle due to its flexibility and ability to compute optimal solutions with
hard and soft constraints [24,25]. Shen et al. [24] proposed a unified receding-horizon opti-
mization scheme for the integrated path-planning and tracking control of an autonomous
underwater vehicle using nonlinear MPC techniques. Borrelli et al. [25] proposed a novel
approach to autonomous steering systems based on an MPC scheme. The general frame-
work of an MPC structure is shown in Figure 2. However, these MPC-based tracking
controllers are feasible only in low-speed scenarios.

Figure 2. General framework of an MPC structure.
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The accuracy of the trajectory tracking control can be greatly improved by improving
the accuracy of the predictive model. Most researchers have attempted to improve the
accuracy of the kinematic or dynamic model to improve the accuracy of the controller. Few
people paid attention to the computation errors during the integration process. With the
accumulation of the computation errors, the controller could lose its stability or an accident
might even result.

In this paper, we propose a new trajectory-tracking algorithm based on MPC. Instead
of using the forward Euler integration method, the backward Euler integration method is
used to establish the predictive model.

The contributions here can be summarized as follows:

• A trajectory tracking method is proposed based on MPC. Instead of using the forward
Euler method, the backward Euler method is used to establish the predictive model.
The proposed method is designed to meet the real-time requirement of autonomous
vehicles by structuralizing the control law and employing the warm-start strategy.

• Unlike conventional MPC-based controllers, both the acceleration and steer angle
are control inputs. The proposed MPC-based controller can automatically adjust the
velocity according to the information of the reference trajectory.

• The dynamic regret of the proposed controller is tightly bounded, and the closed-loop
controller is proved to be stable.

• The MPC controller using the backward Euler method has a better tracking accuracy
in the lateral error, and it is more robust.

This paper is organized as follows. The MPC-based controller of autonomous vehicles
is described in Section 2. After that, the stabilizability of the controller is discussed in
Section 3. Simulation results are shown in Section 4. Section 5 concludes this paper by
summarizing all of the main results.

2. Control Design

Establishing a prediction model and designing a rolling optimization function are the
kernels of designing a path tracking controller. Due to the strongly nonlinearity of vehicle
dynamics, it is very hard to establish a model to describe the actual vehicle dynamics.
Researchers generally use Ackermann steering geometry and its simplified bicycle models
to describe the vehicle kinematics and dynamics. MPC schemes using dynamic vehicle
models and various tire models are generally computationally expensive, and tire models
may become singular at low speeds [26]. Kong et al. [26] compared a kinematic and a
dynamic bicycle model, and showed that both models could correctly predict a vehicle’s
future states, and combining MPC schemes with a simple kinematic bicycle model is less
computationally expensive. Polack et al. [27] compared a 3-DOF kinematic bicycle model
with a 9-DOF model, and showed that the 3-DOF model could capture enough of the
non-holonomic constraints of the actual vehicle dynamics. When the maximum-allowed
lateral acceleration of a vehicle was no greater than 0.5 g m/s2, where g is the acceleration
due to gravity, using a 3-DOF kinematic bicycle model produces acceptable results and
could generate a feasible track. Chen et al. [28] implemented an MPC-based controller for
path-tracking using three vehicle dynamics models: a bicycle model, an 8-DOF model and
a 14-DOF model. They showed that the bicycle controller could successfully navigate a
vehicle along the given path and calculate the optimal steering sequences faster than the
controllers with the 8-DOF and 14-DOF vehicle. They concluded that the bicycle controller
is suitable for a possible physical implementation with real-time requirements. Therefore,
in this paper, the kinematic model of autonomous vehicles is used [26,29]

.
x = v cos(ϕ + β),
.
y = v sin(ϕ + β),
.
ϕ = v sin(β)

lr
,

.
v = a,
β = tan−1( lr

l f +lr
tan(δ)),

(1)
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where x and y are the coordinates of the center of mass in an inertial frame (X,Y). ϕ is the
inertial heading, and v is the longitudinal speed of the vehicle. The parameters lf and lr are
the distance from the center to the front and rear axles, and δ is the front steering angle.
Two front and two rear wheels of the vehicle are combined into single wheels located at the
center of the front and rear axle, respectively, as illustrated in Figure 3. β is the slip angle at
the center of gravity.

Figure 3. Kinematic rear axle bicycle model of the vehicle.

In our problem, X = [x, y, ϕ, v] is the vehicle state, U = [a, δ] is the control state. The
model is established based on the following assumptions.

• The vehicle is traveling on a flat surface, with the vehicle’s movement perpendicular
to the road surface ignored.

• Only the front wheel can be steered.
• The wind resistance and ground-side friction that the wheels are subjected to while

driving are ignored.
• The wheels always maintain good rolling contact with the ground.
• The impact of the vehicle suspension is not taken into account.
• Load transfer is not considered.

The state-space equations of the vehicle system (1) are continuous in time and cannot
be used for the design of the MPC algorithm directly. Therefore, the model of the system
was converted to discrete state-space equations by discretizing the state-space equations.
We assume that the model can be rewritten as

.
X = f (X, U). (2)

Generally, the state at k + 1 instant at time t is computed using the forward Euler
integration method

X(k + 1|t ) = X(k|t ) + Ts
.
X(k|t ) = X(k|t ) + Ts f (X(k|t ), U(k|t )), (3)

where Ts is the sampling time.
In this paper, instead of the forward Euler method, the backward Euler method is

used to establish the predictive model. Although it requires an extra computation at each
iteration, the backward Euler method has great stability properties and its local truncation
error is of order O(T3

s ), which is much smaller than O(T2
s ) using the forward Euler method.

Hence, the backward Euler method’s error generally decreases faster as Ts → 0.
The state at k + 1 instant at time t is computed using the backward Euler method

X̃(k + 1|t ) = X(k|t ) + Ts f (X(k|t ), U(k|t )),
X(k + 1|t ) = X(k|t ) + Ts f (X̃(k + 1|t ), U(k|t )), (4)

Equation system (8) can be rewritten as

X(k + 1|t ) = X(k|t ) + Ts f̃ (X(k|t ), U(k|t )),
f̃ (X(k|t ), U(k|t )) = f (X(k|t ) + Ts f (X(k|t ), U(k|t )), U(k|t )). (5)
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Therefore, the state information of vehicles in the prediction horizon NP can be obtained

X(k + 1|t ) = X(k|t ) + Ts f̃ (X(k|t ), U(k|t )),
...

X(k + i|t ) = X(k + i − 1|t ) + Ts f̃ (X(k + i − 1|t ), U(k + i − 1|t )),
...

X(k + Nc + 1|t ) = X(k + Nc|t ) + Ts f̃ (X(k + Nc|t ), U(k + Nc|t )),
...

X(k + NP|t ) = X(k + NP − 1|t ) + Ts f̃ (X(k + NP − 1|t ), U(k + Nc|t )),

(6)

where Nc is the control horizon and 1 ≤ Nc ≤ NP, which denotes component-wise inequality.
The differences between the predictive states and the reference trajectory Xref are

defined as follows

e(k + 1|t ) = X(k + 1|t )− Xre f (k + 1|t ),
...

e(k + NP|t ) = X(k + NP|t )− Xre f (k + NP|t ).
(7)

To ensure the passenger comfort and feasibility of the vehicle, the output control
should be varied as smoothly as possible. Therefore, the optimization objective function is
defined as

J(e(t), U(t)) =
NP

∑
i=1

‖e(k + i|t )‖2
Q +

Nc

∑
i=1

‖U(k + i|t )− U(k + i − 1|t )‖2
R, (8)

where Q and R are the weight matrices for the vehicle states and control states, respec-
tively. Consequently, the rolling optimization can be obtained by solving the constrained
optimization problem in every sampling period

min
U(t)

J(e(t), U(t))

s.t.
amin ≤ a(k + i|t ) ≤ amax, i = 1, 2, · · · , Nc,
δmin ≤ δ(k + i|t ) ≤ δmax, i = 1, 2, · · · , Nc,
emin ≤ e(t) ≤ emax, t = k + Ts, · · · , k + NPTs,

(9)

where (amin, amax) and (δmin, δmax) are the hard constraints of the vehicle. The last con-
straints are added to ensure safety driving.

The control inputs are obtained by solving the optimization problem (9). The first
element in the control inputs is taken as the optimal control at the current time. After the
prediction and control of the current time step are completed, the states are updated with
the actual ones, which are then used as the initial states for the optimization problem in the
next predictive horizon. The process is repeated until the vehicle reaches the final state.

The problem (9) is a quadratic programming (QP) one which is a traditional opti-
mization problem for trajectory tracking. The first term in the cost function requires that
the actual trajectory be as close as possible to the reference trajectory to ensure the safety
and feasibility of the trajectory. The second term requires that the control input be varied
smoothly to ensure the feasibility of the vehicle and the comfort of passengers. The differ-
ence between the reference and the actual trajectory must be sufficiently small. Otherwise,
it may lead to a crash, and the trajectory is no longer feasible.

To meet the real-time requirement, instead of directly calculating a control sequence
by solving (9), we solve an approximate optimization problem by imposing the constraints
uk+1 = uk+2 = . . . = uk+Nc on the control law. Therefore, we only need to calculate a
‘mediocre’ control to follow the given trajectory. This significantly reduces the complexity
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of the primal problem as it dramatically reduces the number of the variables. It is worth
noting that imposing the constraint conditions uk+1 = . . . = uk+Nc on (9) is equivalent to
setting Nc to 1. Besides greatly reducing the computational burden, one of the most telling
advantages of structuralizing the control is to produce an improvement in the robustness
and in the general behavior of the system, because allowing the free evolution of the
manipulated variables could lead to undesirable high-frequency control signals and even
to instability as noted in [30]. We note that, if the coefficient matrices Q and R are positive
semi-definite, the primal problem is tightly bounded and the approximate problem is also
tightly bounded. Since Q and R are positive semi-definite, x1

TQx1 ≥ 0, x2
TRx2 ≥ 0. Hence,

the cost function in (9) is convex. The feasible region subjected to the constraint conditions
(linear equations and inequalities) in (9) is also convex. Thus, the optimal solution of (9) is
located in either the interior or the boundary of the feasible region. Therefore, the value
of the cost function does not go to infinity, and the primal problem is tightly bounded.
When imposing the constraint condition uk+1 = . . . = uk+Nc, the corresponding feasible
region is still convex since the intersection of convex sets is still a convex set. Similarly, the
approximate problem is tightly bounded. In the next section, we prove that the proposed
close-loop MPC controller is stable if Nc = N1 = 1, λ = 0 and NP is large.

3. Stabilizability of Controller

Combining (1) and (5) leads to

xk+1 = xk + Ts(vk + aTs) cos(ϕk + Tsvk sin(β)/lr + β),
yk+1 = yk + Ts(vk + aTs) sin(ϕk + Tsvk sin(β)/lr + β),
ϕk+1 = ϕk + Ts(vk + aTs) sin(β)/lr,
vk+1 = vk + aTs.

(10)

Equation system (10) can be rewritten as

Xk+1 = (I + AkTs)Xk + BkTsUk,

Ak =

⎡⎢⎢⎣
0 0 −(vk + aTs) sin(γ) cos(γ)− (vk + aTs)Ts sin(γ) sin(β)/lr
0 0 (vk + aTs) cos(γ) sin(γ) + (vk + aTs)Ts cos(γ) sin(β)/lr
0 0 0 sin(β)/lr
0 0 0 0

⎤⎥⎥⎦,

Bk =

⎡⎢⎢⎣
Ts cos(γ) −(vk + aTs) sin(γ)(1 + vkTs cos(β)/lr)βδ

Ts sin(γ) (vk + aTs) cos(γ)(1 + vkTs cos(β)/lr)βδ

Ts sin(β)/lr (vk + aTs) cos(β)βδ/lr
1 0

⎤⎥⎥⎦,

γ = ϕk + Tsvk sin(β)/lr + β, βδ =
lr l

l2 cos2(δ)+l2
r sin2(δ)

, l = l f + lr.

(11)

For the sake of convenience, we omit the subscript k in the remainder of this paper.

Theorem 1. System (11) is controllable.

Proof of Theorem 1. First, we seek the eigenvalues λ of A. By solving the characteristic
polynomial det(λI-A) = 0, we have

λ1 = λ2 = λ3 = λ4 = 0. (12)
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According to the definition of controllability proposed by Hautus [31], system (4) is
controllable if and only if, for all λi, i = 1, 2, 3, 4 Rank([λiI-A,B]) = 4. Here we only need to
consider Rank([λ1I-A,B]) due to (12)

[λ1 I − A, B] =

⎡⎢⎢⎣
0 0 −A13 −A14 B11 B12
0 0 −A23 −A24 B21 B22
0 0 −A33 −A34 B31 B32
0 0 −A43 −A44 B41 B42

⎤⎥⎥⎦ = [04×2, Ω4×4]. (13)

The determinant of Ω is

det(Ω) =
(vk + aTs)

2l cos(β)

l2 cos2(δ) + l2
r sin2(δ)

�= 0. (14)

Hence we have Rank(Ω) = 4 and 4 ≥ Rank([λ1I-A,B]) ≥ Rank(Ω) = 4.�

Theorem 2. System (11) is observable.

Proof of Theorem 2. According to the definition of observability proposed by Hautus [31],
system (4) is observable if and only if, for all λi, i = 1, 2, 3, 4 Rank([λiI-A;C]) = 4.

In our problem, the output function is Y = X = CX, and thus C = I4×4 and Rank(C) = 4.
Therefore, 4 ≥ Rank([λ1I-A;C]) ≥ Rank(C) = 4. �

Theorem 3. System (11) is stabilizable.

Proof of Theorem 3. According to the definition of stabilizability proposed by Hautus [31],
system (11) is stabilizable if and only if λi ≥ 0, i = 1, 2, 3, 4, and the system is controllable.
Combining Theorem 1 and (12) proves that Theorem 3 holds. �

Theorem 4. The closed-loop MPC controller is stable for Nc = 1, λ = 0 and large NP.

Proof of Theorem 4. This proof is similar as that for Theorem 4 in [32] for generalized
predictive control. When NP is sufficiently large, we have

GTG > 0, (15)

where
G =

[
B; AB; · · · ; ANP−1B

]
NP×Nc

. (16)

Therefore, GTG is a positive scalar, which is always invertible. Therefore, the matrix
GTG + λI is invertible, and a feasible control can be obtained using the expression in [32]

uopt = (GTG + λI)
−1

GT(Xr − X). (17)

Since our optimization problem is convex, there is only one optimal solution and thus
our controller will asymptotically converge to (17). �

4. Simulation

The simulation environment is MATLAB/Simulink R2020a, and (9) is solved using
‘fmincon’, a built-in function in MATLAB. Sequential quadratic programming is used as
the nonlinear solver. The warm-start technique is employed by using the result of the
previous optimization problem as a guess for the current optimization problem to further
speed up the efficiency of the nonlinear solver. The accuracy of ‘fmincon’ is set to 10−6.
The processor used in the simulation is Intel(R) Core(TM) i7-4510U @ 2.00 GHz 2.6 GHz.
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Real-Time Synchronization is enabled to test the real-time performance of the controllers.
The simulation system consists of a kinematic model of autonomous vehicles and the
trajectory tracking controller proposed in this paper. The parameters of the vehicle model
and the controller are shown in Table 1 and can be found in [33]. The road conditions
are assumed to be dry and clean and they can support the forces required for braking,
accelerating and steering.

Table 1. Parameters of the vehicle and the controller.

Parameter Value

lf 1.232 m
lr 1.468 m

Range of a [−1 m/s2, 1 m/s2]
Range of δ [−0.44 rad, 0.44 rad]

Range of lateral error [−0.5 m, 0.5 m]
NP 15
Nc 1
Q 100I 1

R I
1 I is the unit matrix.

4.1. Sinusodial Path Following

First, we present the tracking results of a sinusoidal trajectory with an amplitude of
4 m and a wavelength of 100 m in [20]. The reference speed along x-axis Vref is set to be a
constant. The open-loop reference trajectory is given by

Yre f = 4 sin(2πXre f /100). (18)

The tracking result of the sinusoidal trajectory is shown in Figure 4. The sampling
time is set to Ts = 0.05 s. The reference trajectory was indicated by the black solid line. The
obtained trajectories using the forward and backward Euler method were represented by a
blue dotted line and a red dashed line, respectively. When the reference velocity is set to
Vref = 40 km/h, the maximum lateral error using the backward Euler method was 0.0767 m,
in contrast to 0.2481 m using the forward Euler method. The maximum longitudinal errors
using the forward and backward Euler method were 0.07 m and 0.0703 m, respectively.
The maximum calculation time using the backward Euler method was 0.0203 s, and the
average calculation time was 0.0081 s, in contrast to 0.0197 s and 0.01 s using the forward
Euler method. The maximum heading errors were 0.0277 rad using the backward Euler
method and 0.019 rad using the forward Euler method. When the reference velocity is set to
Vref = 60 km/h, the maximum lateral error using the Euler method was 0.4191 m; whereas,
it was 0.2184 m using the backward Euler method. The maximum calculation times using
the forward and backward Euler method were 0.0183 s and 0.0143 s, respectively; the
average computation times were 0.0086 s and 0.0084 s; the maximum heading errors were
0.0293 rad and 0.0355 rad. The maximum longitudinal errors are 0.1059 m and 0.1085 m.
To sum up, the lateral error using the backward Euler method was much smaller than
that using the forward Euler method. However, the longitudinal error and heading error
using the backward Euler method were slightly larger than that using the forward Euler
method. Besides that, the backward Euler method required a little more calculation time.
The state errors, including the lateral, longitudinal and heading errors, increased with the
reference velocity.
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Figure 4. Results for tracking the sinusoidal trajectory with Ts = 0.05 s: left for Case (a) with
Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

The comparison of the calculation time between the two controllers is shown in
Figure 5. The calculation time of the MPC controller using the backward Euler method
at each control period was almost the same or slightly larger than that of the MPC-based
controller using the forward Euler method.

Figure 5. Comparison of the computation time for tracking the sinusoidal trajectory with Ts = 0.05 s:
left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

Figures 6 and 7 show the articulated acceleration and steer angle, respectively. The For-
ward Euler method was more sensitive to the longitudinal velocity, whereas the backward
Euler method was more sensitive to the steer angle.

We noted that, as mentioned before, the differences between the reference and actual
trajectories increase with the vehicle velocity. There exists a threshold value of velocity to
determine the existence of the solution of the optimization problem for trajectory track-
ing. In other words, when the reference velocity is greater than some value, no feasible
solution exists. When Ts = 0.05 s, the threshold value of the reference velocity using the
forward Euler method was 67.7 km/h (when Vref = 67.8 km/h, the maximum lateral
error was 0.5009 m), whereas it was 83 km/h using the backward Euler method (when
Vref = 83.1 km/h, the maximum lateral error was 0.5002 m). Hence, the MPC using the
backward Euler method was more robust than that using the forward Euler method.
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Figure 6. Articulated acceleration for the comparison between the forward and backward Euler
method: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

Figure 7. Articulated steer angle for the comparison between the forward and backward Euler
method: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.

4.2. Circular Path

In the second scenario, the vehicle was required to track a circle with a radius of 40 m.
The parametric equations for the circle were⎧⎨⎩

X(t) = Rd cos(ϕ(t)− π/2),
Y(t) = Rd + Rd sin(ϕ(t)− π/2),
ϕ(t) = t Vre f /Rd,

(19)

where Rd is the radius of the reference circle. The initial configuration and constraint
conditions were chosen to be same as previously to be consistent. The sampling time and
the reference velocity are set to Ts = 0.05 s and Vref = 10 m/s, respectively.

The tracking result of the circular path is shown in Figure 8. The maximum lateral
and longitudinal errors using the backward Euler method were 0.0596 m and 0.0091 m,
in contrast to 0.3664 m and 0.3664 m using the forward Euler method. The maximum
calculation time using the backward Euler method was 0.016 s, and the average calculation
time was 0.0084 s, in contrast to 0.0199 s and 0.0085 s using the forward Euler method. The
maximum heading errors were 0.0411 rad using the backward Euler method and 0.0194 rad
using the forward Euler method. In sum, the MPC controller using the backward Euler
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method had a better tracking accuracy in the circular path than that using the forward
Euler method.

Figure 8. Simulation results for the circular path with radius Rd = 40 m. Notations the same as in
Figure 4.

Figures 9 and 10 show the articulated acceleration and steer angle, respectively. The
articulated acceleration and steer angle using the backward Euler method were quite
different from those using the forward Euler method. As can be seen from Figure 8,
the backward Euler method was more accurate than the forward Euler method, and the
calculation times were almost the same as shown in Figure 11.

Figure 9. Articulated acceleration for the comparison between the forward and backward Euler
method for the circular trajectory.

Figure 10. Articulated steer angle for the comparison between the forward and backward Euler
method for the circular trajectory.
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Figure 11. Comparison of the computation time for the circular path. Red dashed curve: MPC-based
controller using the backward Euler method; blue dotted curve: MPC-based controller using the
forward Euler method.

4.3. Double Line Change Path

In this scenario, the vehicle was required to track a double line change path. The
reference trajectory of the double line change path can be found in [33]. The tracking
result of the double line change path is shown in Figure 12. When the reference velocity is
set to Vref = 40 km/h, the maximum lateral and longitudinal errors using the backward
Euler method were 0.3034 m and 0.0203 m, in contrast to 0.3827 m and 0.0412 m using the
forward Euler method. The maximum heading errors were 0.0673 rad using the backward
Euler method and 0.0648 rad using the forward Euler method. When the reference velocity
is set to Vref = 60 km/h, the maximum lateral and longitudinal errors using the backward
Euler method were 0.587 m and 0.0504 m, in contrast to 0.6187 m and 0.0311 m using the
forward Euler method. The maximum heading errors were 0.1035 rad using the backward
Euler method and 0.0967 rad using the forward Euler method. In sum, the MPC controller
using the backward Euler method had a better tracking accuracy in the circular path than
that using the forward Euler method. Figures 13 and 14 show the articulated acceleration
and steer angle, respectively.

Figure 12. Simulation results for the double line change path: left for Case (a) with Vref = 40 km/h
and right for Case (b) with Vref = 60 km/h.
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Figure 13. Articulated acceleration for the comparison between the forward and backward Euler
method for the circular trajectory: left for Case (a) with Vref = 40 km/h and right for Case (b) with
Vref = 60 km/h.

Figure 14. Articulated steer angle for the comparison between the forward and backward Euler
method for the circular trajectory: left for Case (a) with Vref = 40 km/h and right for Case (b) with
Vref = 60 km/h.

The comparison of the calculation time between the two controllers is shown in
Figure 15. When the reference velocity is set to Vref = 40 km/h, the maximum calculation
time using the backward Euler method was 0.0178 s, and the average calculation time
was 0.0084 s, in contrast to 0.0157 s and 0.0084 s using the forward Euler method. When
the reference velocity is set to Vref = 60 km/h, the maximum calculation time using the
backward Euler method was 0.0152 s and the average calculation time was 0.008 s, in
contrast to 0.0169 s and 0.0083 s using the forward Euler method.

Figure 15. Comparison of the computation time for tracking the double line change path with
Ts = 0.05 s: left for Case (a) with Vref = 40 km/h and right for Case (b) with Vref = 60 km/h.
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Through three sets of comparisons, we can draw some conclusions. First, the lateral
tracking errors using the backward Euler method were much smaller than those when using
the forward Euler method. Second, the lateral tracking errors using either the forward or
backward Euler method increased with the reference velocity. Third, the calculation times
using the backward Euler method were almost the same with that using the forward Euler
method. Lastly, compared with the articulated acceleration, there was a clear discrepancy
in the articulated steer angle.

5. Conclusions

An effective and efficient method for generating a feasible trajectory is of vital im-
portance to meet the requirement of instantaneous control for autonomous driving. In
this paper, we have proposed a trajectory tracking controller based on MPC. Most MPC-
based and other methods either set the velocity to a constant or cannot actively adjust
the longitudinal velocity according to the information of the reference trajectory. To solve
this problem, both the acceleration and steer angle are set to control inputs. Hence, the
proposed controller can automatically adjust the velocity according to the information of
the reference trajectory. Moreover, instead of the forward Euler integration method, the
backward Euler integration method is used to establish the predictive model. To meet
the real-time requirement, we impose the constraints uk+1 = . . . = uk+Nc on the control law.
This significantly reduced the problem complexity. The warm-start technique was used to
further accelerate the convergence of the optimization solver of the controller by using the
previous results as a guess for the current optimization problem.

The proposed closed-loop MPC controller was stable and validated by simulation
experiments. Compared with the MPC controller using the forward Euler method, the
MPC controller using the backward Euler method had a much better accuracy in the lateral
error, which is an important indicator to ensure driving safety. The lateral error could be
reduced by up to 78%. There is little difference in the longitudinal error between the two
controllers. However, the heading error of the MPC controller using the backward Euler
method was larger than that of the MPC controller using the forward Euler method. The
maximum and average computation times using the backward Euler method were almost
the same or slightly larger than those using the forward Euler method. Moreover, the MPC
controller using backward Euler method was more robust than that using the forward Euler
method. The threshold value of the velocity for the MPC controller using the backward
Euler method was larger than that using the forward Euler method (83 km/h versus
67.7 km/h for the sinusoidal trajectory). Overall, the MPC controller using the backward
Euler method had a better tracking accuracy at the cost of no or little computation time.

The existence of the discrepancy between the actual trajectory and the reference
trajectory is mainly due to the modelling errors, computation errors and disturbance
errors. Recent studies on MPC-based controllers mainly focus on the modelling errors
and disturbance errors. Few authors investigated the computation errors during the
discretization for nonlinear systems. We hope that this paper is instructive and allows
researchers new insight into creating MPC-based controllers.

From the perspective of science, our contribution is to give a new way to establish a
predictive model, which is a cornerstone of designing a path tracking controller. Besides
the forward and backward Euler methods, there are several integration methods, such as
the midpoint method and Runge-Kutta methods. Improving the accuracy of the prediction
model using other integration methods could be a promising way to get an effective control
to maintain a good tracking accuracy.
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Abstract: In the process of vehicle chassis electrification, different active actuators and systems have
been developed and commercialized for improved vehicle dynamic performances. For a vehicle
system with actuation redundancy, the integration of individual chassis control systems can provide
additional benefits compared to a single ABS/ESC system. This paper describes a Unified Chassis
Control (UCC) strategy for enhancing vehicle stability and ride comfort by the coordination of
four In-Wheel Drive (IWD), 4-Wheel Independent Steering (4WIS), and Active Suspension Systems
(ASS). Desired chassis motion is determined by generalized forces/moment calculated through a
high-level sliding mode controller. Based on tire force constraints subject to allocated normal forces,
the generalized forces/moment are distributed to the slip and slip angle of each tire by a fixed-point
control allocation algorithm. Regarding the uneven road, H∞ robust controllers are proposed based
on a modified quarter-car model. Evaluation of the overall system was accomplished by simulation
testing with a full-vehicle CarSim model under different scenarios. The conclusion shows that the
vertical vibration of the four wheels plays a detrimental role in vehicle stability, and the proposed
method can effectively realize the tire force distribution to control the vehicle body attitude and
driving stability even in high-demanding scenarios.

Keywords: electric vehicle; unified chassis control; unsprung mass

1. Introduction

With the growing concern about pollution, energy shortage, and also fast development
of electric propulsion technologies, modern vehicles are increasingly electrified. From
the driver’s point of view, an adequate response in critical driving conditions is still a
challenging task for non-professional drivers. Therefore, electric or electromechanical
systems, featuring energy regeneration capability and fast response, are readily developed
and applicated to improve the vehicle dynamics, from the aspects of comfort, stability,
safety, maneuverability, and driver’s feeling, especially in adverse driving situations.

In order to enhance the driving stability and the overall dynamic performance, a vehi-
cle may be equipped with multi-actuators, which can be classified into three categories as
active torque distribution [1], active steering [2], and active suspension control [3]. Among
all possible actuators, ABS-based differential braking has received the most attention since
it can be executed on almost all vehicles regardless of powertrain configuration, known as
the traditional ESC system. In 2003, the active front steering technology was developed
and recognized as a supplemental approach to generate desired yaw moment without
braking, ensuring enhanced vehicle stability even in high-speed conditions. However, the
differential braking systems reduce the driving speed, which may conflict with the driver’s
intention during acceleration scenarios. Concerning this defect, active torque distribution
was implemented by two actuation methods: torque vectoring [4] and individual motors.
The corresponding vehicle stability control method was called direct yaw control.

In most vehicle control approaches, different control logic based on various actuators
are always separately synthesized and locally tuned without considering the interaction
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among them, which may lead to sub-optimal or conflicting control efforts. Nowadays,
extensive research has been carried out on the coordination of active steering and indepen-
dent torque control. Furthermore, the integration with active suspension systems provides
a new research field under the name of global chassis control [5–7] or UCC (Unified Chassis
Control) [8–10]. In general, most integrated control algorithms were developed using
two different approaches concerning the actuators hierarchy: (1) In the first method, a
supervisor with a higher command hierarchy was used to monitor vehicle states and
coordinate different sub-controllers. As illustrated, sometimes the active steering was only
considered if the differential braking system exceeded its limits or before the ESC was
activated [11]. In [12], the coordination of active front steering and ESC was investigated
using a rule-based method according to the different value ranges of lateral acceleration.
(2) The second UCC category treated the overall control structure as two levels. In the
upper-level, desired yaw moment was computed, then in the lower-level, the moment was
distributed into tire forces [8,13].

From a control point of view, a variety of problems arise from the UCC system syn-
thesis, such as multiple input–multiple output control design, system robustness, and
non-linearity. Many researchers have tried to solve these challenges from the standpoints
of reference track following and control optimization. Fuzzy logic was applied for an inter-
mediate layer of a UCC method [14]. The sliding mode control technique, which possesses
good robustness, was used to cope with system uncertainties [7,15]. In [11,16], control
objectives were achieved in a linear parameter varying robust framework by providing a
solution to the linear matrix inequality problem. The H∞-based observer is also designed
for fault estimation and fault-tolerant control [17,18]. Model prediction control becomes a
hotspot due to significant development on online computational devices [19–21]. Another
challenge stemmed from how to achieve the constrained optimal allocation problems in
systems with redundancy. In [9], the desired yaw moment distribution was algebraically
solved by Karush–Kuhn–Tucker Conditions. Combined with the desired target following,
energy minimization, and tire force saturation, the Holistic Cornering Control architecture
was introduced [22,23]. Under this framework, the gain optimization was designed based
on linear matrix inequality and genetic algorithm techniques. In [24], the redundant actu-
ator allocation problem was investigated with pseudo-inverse and accelerated fix-point
iterative algorithms. Since the tire normal load restraints the boundary of longitudinal
and lateral force, the vertical force control indirectly influences the vehicle dynamics in
the motion plane. The research in [25] has shown the possible benefits to be attained by
modulating normal force through active suspension control during cornering maneuvers.
Regarding the multiple targets of vehicle yaw performance and attitude, the integration
control method involving suspensions and braking actuators was investigated in [26,27].
However, the integrated suspension control does not consider the tire contact stability.

Different from traditional vehicle chassis structures, the layout with four in-wheel
motors is especially suitable for high-performance and off-road vehicles. However, this
layout inevitably introduces a larger unsprung mass. With the development of in-wheel
motor technology, it becomes a common judgment that the introduced unsprung mass
aggravates the wheel vibration and vehicle ride comfort [28]. Especially when the vehicle
is running over an uneven road, one or more of the wheels might jump, and the tires
will lose adhesion stochastically, which leads to the unbalance of driving/braking torques
among four wheels and even makes the vehicle encounter instability situations. This
effect occurs not only for in-wheel drive electric vehicles but also for common vehicles.
Till now, little research can be found in this area. Vos et al. [29] verified that the vertical
accelerations caused by bad roads could increase the roll and pitch movement ranges.
Zhang et al. [30] proposed the inference that the unsprung mass plays a different role in
the rollover motion between a flat road and an uneven road, and verified it with typical
situations. Tan et al. [31] investigated the negative effect of wheel motor vibration on
vehicle anti-rollover performance. In addition, the tire contact stability has been given little
attention in existing UCC designs.
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The purpose of this work is to present a unified control framework with a particular
focus on wheel vertical vibrations for enhanced tire contact stability. More specifically, we
treat the multi-objective active suspension design problem as a robust tracking problem to
achieve desired body attitude and normal forces simultaneously. Besides, a reconfigurable
control allocation (CA) method is used to deal with the problematic condition of tire contact
force loss due to an uneven road or tire blow-out emergency. Evaluation of the overall
system was accomplished by simulation testing with a full-vehicle CarSim model under
different test scenarios.

The remaining sections of this paper are organized as follows: Section 2 briefly presents
the overall system modeling. In Section 3, nonlinear controller design and reconfigurable
CA approach are presented, and the synthesis of the normal force controller considering
different targets is described, followed by Section 4, which examines the closed-loop vehicle
dynamics performance under different test scenarios through simulation results. Section 5
provides some concluding remarks.

2. System Modeling

2.1. Nonlinear Vehicle Model

In this paper, both the chassis planar motion (longitudinal, lateral, and yaw) and the
spatial motion (vertical, roll, and pitch) are considered. Thus, the vehicle body motion
is treated as a rigid body with six degrees of freedom. Figure 1 shows the vehicle planar
motion model. The dynamics equations of planar motions can be written as⎧⎨⎩

m
( .
vx − vyωz

)
+ mser

.
ωz ϕ = FX − Fr

m
( .
vy + vxωz

)− mser
..
ϕ = FY

Izz
.

ωz = Mz

, (1)

with m as the vehicle mass (including the sprung mass ms and unsprung mass mu) and Izz
as the moment of inertia along Z-axis. The vehicle states are defined as the body motion
velocity in three directions, namely (vx vy ωz), with the vehicle coordinate system fixed at
the vehicle Center of Gravity (CG). er denotes the distance of CG from the rolling center
and ϕ is the rolling angle. The resultant forces exerted on the vehicle are defined as FX, FY,
and MZ, with the following expressions{

FX = ∑ FXi, i ∈ Q := f l, f r, rl, rr
FY = ∑ FYi, i ∈ Q := f l, f r, rl, rr

, (2)

MZ = a
(

FY f l + FY f r

)
− b(FYrl + FYrr) + d

(
FX f r + FXrr − FX f l − FXrl

)
(3)

Fr stands for the total longitudinal resistance. FXi and FYi are the tire forces under the
vehicle coordinate system, whereas the longitudinal and lateral forces of a single tire under
the tire coordinate system are expressed as Fxi and Fyi. Their relationship is described
as follows. [

FXi
FYi

]
=

[
cos δi − sin δi
sin δi cos δi

][
Fxi
Fyi

]
, i ∈ Q := f l, f r, rl, rr (4)

Considering the assumption that the vehicle has a four-wheel independent steering
system, δi stands for the steering angle of a given wheel with the subscript representing
the position which is controlled by every steering actuator. In Figure 2, the vehicle spatial
motion models are illustrated. Concerning the unsprung mass dynamics, we treat the
vehicle as a whole system under the influence of lateral and longitudinal accelerations.

53



Sensors 2021, 21, 3931

Figure 1. Vehicle planar motion model.

Figure 2. Vehicle roll and pitch motion.

Based on the reference direction in Figure 2, if we treat the sprung/unsprung mass as
a whole system, the roll and pitch dynamic equations can be respectively expressed as

Ixx
..
ϕ = Mϕ + ayms(hr + er) + msgϕer + aymuha, (5)

Iyy
..
θ + axms

(
hp + ep

)
+ axmuha = Mθ + msgθep, (6)

where, Ixx and Iyy are the principal moments of inertia of the vehicle body part along X
and Y axis, respectively. (hr + er) and (hp + ep) represent the heights of the rolling center
and pitching center, respectively, with er as the distance between vehicle CG and rolling
center and hp as the distance between vehicle CG and pitching center. ha represents the
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height of the unsprung mass center. The vehicle longitudinal/lateral accelerations can be
calculated as,

ax =
.
vx − vyωz, ay =

.
vy + vxωz

These values are assumed to be available through a sensing system. Here, we ignore
the mass of suspension links and assume that the unsprung mass CG is located in the wheel
center. Mθ and Mϕ denote the moments generated by the load transfer among vertical tire
forces, and we describe this relationship in the form of⎧⎨⎩ FZ f l = FZ f l − Mθ

2(a+b) +
Mϕ

4d , FZ f r = FZ f r − Mθ
2(a+b) −

Mϕ

4d ,

FZrl = FZrl +
Mθ

2(a+b) +
Mϕ

4d , FZrr = FZrr +
Mθ

2(a+b) −
Mϕ

4d ,
(7)

where, FZi are static normal tire forces and FZi are desired tire normal forces, which can be
achieved using four independent active suspension actuators.

2.2. Nonlinear Tire Model

We applied Pacejka’s Magic Formula tire model [32] to describe the nonlinear char-
acteristics of tires, which is an empirical approach and can be effectively matched with
experimental data. The longitudinal force, lateral force, and self-aligning moment of tire
can be expressed by the following unified form with different parameter sets.⎧⎨⎩

y(x) = D sin{Carctan[Bx − E(Bx − arctanBx)]}
Y(X) = y(x) + Sv

x = X + Sh

, (8)

where Y represents the tire force that could be the longitudinal/lateral tire force or self-
aligning moment. X denotes the model input, which corresponds to the tire slip or the slip
angle. Sv and Sh correspond to the vertical and horizontal bias, respectively. Coefficients
B, C, D, and E are the stiffness, shape, peak, and curvature factors, respectively. When
considering the coupling of lateral and longitudinal force, we usually neglect the curvature
factor for simplicity, and then the following relations hold approximately.

Fxi =
σxi
σi

Fx0i, Fyi =
σyi

σi
Fy0i (9)

Fx0i and Fy0i can be calculated by applying their corresponding magic formulas, with
σxi as the longitudinal tire slip expressed below and σyi as the lateral tire slip.{

σxi =
Riωi−vwxi

vwxi
, during braking

σxi =
Riωi−vwxi

Riωi
, during acceleration

, (10)

where, vwxi expresses the velocity at tire center in the tire forward direction. According to
the mentioned vehicle planar model, the slip angles of each wheel are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α f l = −δ f l + arctan
(

vy+
.
ψa

vx−
.
ψd

)
≈ −δ f l +

vy+
.
ψa

vx−
.
ψd

α f r = −δ f r + arctan
(

vy+
.
ψa

vx+
.
ψd

)
≈ −δ f l +

vy+
.
ψa

vx+
.
ψd

α f r = −δrl + arctan
(

vy−
.
ψa

vx−
.
ψd

)
≈ −δ f r +

vy−
.
ψa

vx−
.
ψd

αrr = −δrr + arctan
(

vy−
.
ψa

vx+
.
ψd

)
≈ −δrr +

vy−
.
ψa

vx+
.
ψd

(11)

Then, the lateral wheel slip is expressed as

σyi =
vwxi
Riωi

tan αi, (12)
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and we have the resultant slip

σi =
√

σ2
xi + σ2

yi (13)

2.3. Driver Model

As to calculate the steering wheel input δsw, a standard preview-based controller in
CarSim is used as a driver model, which minimized the vehicle deviations from the desired
path for a given preview time. Further, the desired yaw motion is generated through a
reference model, which describes the ideal vehicle responses based on vehicle speed and
δsw, in the form of

ωz,des(s)
δsw(s)

=
krωz,des

(T1s + 1)(T2s + 1)
, (14)

ωz,des =
vx

(a + b) + (bCr−aCf )mv2
x

2CrCf (a+b)

(15)

where kr denotes the gain of the reference model. In this work, we set kr = 0.05. T1 and
T2 are tunning parameters. Cf and Cr represent the lateral stiffness of a single front/rear
tire. Desired lateral velocity vy,des is set to zero to avoid unnecessary tire lateral slip. Since
the vehicle rollover can easily lead to fatal traffic accidents, it is necessary to prevent it
through braking under rollover propensity quantitatively described by a Rollover Index
(RI) that depends on the vehicle lateral acceleration and body roll angle [10]. When the
index reaches the target warning value RIth, brake control is adopted to prevent the vehicle
from rolling over dangers. The RI is in the form of⎧⎨⎩ RI = C1

(
|ϕt | .

ϕth+ϕth| .
ϕt|

ϕth
.
ϕth

)
+ C2

( |ay|
ay,c

)
+ (1 − C1 − C2)

|ϕt |√
ϕ2

t +
.
ϕ

2
t

, if ϕ
( .

ϕ − kϕ
) ≥ 0

RI = 0, if ϕ
( .

ϕ − kϕ
)
< 0

(16)
When the RI reaches the defined target value RIth, we control the lateral acceleration

by braking to reduce the RI down to RIth, and the desired lateral acceleration is described as

∣∣∣ay,des

∣∣∣ = ay,c

C2
[RIdes − C1

(
|ϕt| .

ϕth + ϕth
∣∣ .
ϕt
∣∣

ϕth
.
ϕth

)
− (1 − C1 − C2)

|ϕt|√
ϕ2

t +
.
ϕ

2
t

] (17)

Considering the relationship between vehicle lateral acceleration and driving speed

ay,des =
.
vy + vx,desωz, (18)

ay =
.
vy + vxωz (19)

It follows that
vx,des = vx +

1
ωz

(
ay,des − ay

)
(20)

Otherwise, we consider the desired longitudinal speed as a constant cruising value when
the RI was controlled within a reasonable range. Then the desired vehicle speed becomes

vx,des = vx,cons (21)

3. Design of the Control System

For a UCC design with all four wheels having independent torque, suspension,
and steering-by-wire functions, the vehicle works as a redundantly actuated system. A
hierarchical control structure shown in Figure 3 is presented to coordinate different control
subsystems by the allocation of tire forces.
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Figure 3. The architecture of unified vehicle dynamics control.

In this scheme, the high-level controller determines the resultant force/moment
affected on the vehicle according to the control targets, including both the vehicle lateral
stability and the spatial body motion (roll and pitch). Regarding the desired body motion
dynamics, the target values of lateral and longitudinal transfer among the normal forces
of every tire can be obtained. With the allocated normal forces through active suspension
control, the CA algorithm distributes the resultant lateral and longitudinal forces to every
wheel, which are finally realized through the closed-loop tracking control methods by
considering the nonlinear tire model. In this work, we ignore the tire transient dynamics
and assume that the desired tire longitudinal/lateral forces are well tracked through the
variation of wheel steering angle δi and the driving/braking torque Tw,i. The steering angle
of each wheel can be obtained through (11) with the desired value of wheel slip angle.
According to the desired wheel longitudinal forces, Tw,i are calculated as,

Tw,i = Jw,i
.

ωw,i + Fx,irw,i, (22)

where Jw,i include the wheel-side inertia. rw,i and ωw,i are the radius and the angular speed
of the wheels, respectively. The values of δi and Tw,i are treated as the inputs of the vehicle
model in simulations. We also assume that all necessary quantitires in the control design
can be practically measured or estimated.

3.1. High-Level Robust Controller Design

Parameter uncertainty is a common issue that requires robustness in control design.
Compared with the actual vehicle model, common parameters with uncertainty include
vehicle mass m, the inertia of moment Ixx, Iyy, Izz, rolling center position er, pitching center
position ep, unmodeled dynamics such as suspension dynamics, and disturbance like wind
gust and road roughness. Addressing the vehicle non-linearity and mentioned system
uncertainties, a sliding mode controller is proposed for system robustness based on the
simplified dynamics. If we define the system states as

xi = [vx, vy,
.
ψ,

.
ϕ,

.
θ]

The vehicle system can be given in state-space form as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x1 = x2x3 − 1

m Fr − ms
m er

.
x3x4 +

1
m u1 + Δ1.

x2 = −x1x3 +
ms
m er

.
x4 +

1
m u2 + Δ2.

x3 = 1
Izz

u3 + Δ3
.
x4 =

ay [ms(hr+er)+muha ]
Ixx

+ msger ϕ
Ixx

+ 1
Ixx

u4 + Δ4
.
x5 = − ax[ms(hp+ep)+muha]

Iyy
+

msgepθ
Iyy

+ 1
Iyy

u5 + Δ5

(23)
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where Δi stand for unmodeled dynamics. The control inputs are defined as

(u1, u2, u3, u4, u5) =
(

FX , FY, Mz, Mϕ, Mθ

)
These equations can be treated as five single-input-single-output systems, then the

control inputs u1, . . . ,u5 become decoupled. Next, we select the velocity error as the sliding
surface for state x1, x2, and x3 for the path following purpose. Considering that the body
roll and pitch motions should not be avoided completely for tire contact stability, we design
dynamics sliding surfaces for the other two states.⎧⎨⎩

Sn = en = xn − xn,des, n = 1, 2, 3
Sn = x4 + Cϕ ϕ, n = 4
Sn = x5 + Cθθ, n = 5

(24)

In this paper, we turn the coefficients as Cϕ = Cθ = 1. For each channel, the Lyapunov
function candidate is in the form of

Vn =
1
2

S2
n (25)

To achieve the attractive behavior of the sliding surface in a finite time period, it
follows that .

Vn = Sn
.
Sn ≤ −ηn|Sn| (26)

where the value of ηn(>0) decides the speed of sliding surface convergence. The attractive
equations can be given as

.
Sn = −KnSign(Sn) (27)

Taking channel one as example, we have

x2x3 − Fr

m
− ms

m
er

.
x3x4 +

1
m

u1 + Δ1 − .
x1,des = −K1Sign(S1) (28)

In practical use, some system parameters remain unknown to control design. Thus,
the desired control efforts can only be expressed based on the nominal values, such as

u1 = m[−x2x3 +
Fr

m
+

ms

m
er

.
x3x4 +

.
x1,des − Δ1 − K1Sign(S1)] (29)

Substituting this value into (26), it follows that

.
V1 = S1

{(
1 − m

m

)
x2x3 +

(
mser

m
− mser

m

)
.
x3x4 +

(
m
m

− 1
)

.
x1,des +

(
Δ1 − m

m
Δ1

)
− m

m
K1Sign(S1)

}
(30)

Here, we select the nominal values as⎧⎪⎨⎪⎩
m =

√
mminmmax, β−1

m ≤ m
m ≤ βm

ms =
√ms,minms,max, β−1

ms ≤ ms
ms

≤ βms

er =
√er,miner,max, β−1

er ≤ er
er
≤ βer

(31)

where,

βm =

√
mmax

mmin
, βms =

√
ms,max

ms,min
, βer =

√
er,max

er,min

Then all factors in (30) have corresponding upper bounds⎧⎪⎨⎪⎩
∣∣1 − m

m

∣∣ ≤ max
{∣∣1 − β−1

m
∣∣, |1 − βm|

}
= β11∣∣∣mser

m − mser
m

∣∣∣ ≤ max
{∣∣1 − β−1

ms β−1
er
∣∣, |1 − βmsβer|

}
er,max = β12∣∣Δ1 − m

m Δ1
∣∣ ≤ max{|Δ1,max|, |Δ1,min|}+ βm

∣∣Δ1
∣∣ = β13

(32)
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Due to the assumption that all the vehicle states and their derivates are physically
upper bounded, Equation (30) becomes

.
V1 ≤

[
β11|x2x3|m + β12

∣∣ .
x3x4

∣∣
m + β11

∣∣ .
x1,des

∣∣
m + β13 − β−1

m K1

]
|S1| ≤ −η1|S1| (33)

In order to achieve the convergence inequality, it is then sufficient to have

K1 ≥ βm
(

β11|x2x3|m + β12
∣∣ .
x3x4

∣∣
m + β11

∣∣ .
x1,des

∣∣
m + β13 + η1

)
(34)

To avoid the chattering effects caused by the switching function, it is replaced by a
saturation function, which is a continuous approximation with the thickness of φ1, and
then the control law of channel 1 becomes

u1 = m[−x2x3 +
1

2m
CAx2

1 +
ms

m
er

.
x3x4 +

.
x1,des − Δ1 − K1Sat

(
S1

φ1

)
] (35)

Through the same process, the control laws for other sliding surfaces are

u2 = m
[

x1x3 +
ms

m
er

.
x4 +

.
x2,des − Δ2 − K2Sat

(
S2

φ2

)]
(36)

u3 = Izz

[
.

ωz,des − Δ3 − K3Sat
(

S3

φ3

)]
(37)

u4 = −ay

[
ms

(
hr + er

)
+ muha

]
− msesgϕ + Ixx

[
−Cϕx4 − Δ4 − K4Sat

(
S4

φ4

)]
(38)

u5 = ax

[
ms

(
hp + ep

)
+ muha

]
− msepgθ + Iyy

[
−Cθ x5 − Δ5 − K5Sat

(
S5

φ5

)]
(39)

For every channel, by choosing the Kn to be sufficiently large, the convergence inequal-
ities can be guaranteed, and the sliding surfaces are designed to be attractive. In this paper,
we choose K1 = 0.02, K2 = 0.2, K3 = 0.01, K4 = 0.1, and K5 = 0.1. Through the appropriate CA
method, the high-level control efforts u1-u5 are distributed into four wheels. However, we
cannot always achieve these control efforts considering that the tire forces are generated
through the contact behavior between tires and road and are physically bounded.

3.2. Control Allocation Algorithm

The hierarchical control algorithm with a redundant set of actuators frequently con-
tains a high-level controller to generate virtual control efforts and a control allocation
algorithm to coordinate the actuators to produce the desired control values together. If the
control efforts require forces beyond the capabilities of the actuators due to saturation or
physical limitations, the CA algorithm should be able to lower its performance and search
for a control input vector that minimized the error. Additionally, redundant actuators can
be utilized to provide fault tolerance for safety-critical conditions such as normal force
losing. For real-time applications, the computational effort is also an essential property
for choosing the CA algorithm. In this viewpoint, we applied a fixed-point CA method to
solve the CA problem in constraint system control. Based on the nonlinear vehicle and tire
models, the generalized force/moment can be expressed using a set of nonlinear functions
of control variables

ud = F(λ, U), (40)

where, λ = [Fzi, μi, δi]
T is a 12 × 1 vector configurating the CA problem and remains

invariable during a CA computation step. ¦Ìi is the friction coefficient between road and
tires. U = [αi, κi]

T is a 8 × 1 control vector of slip angle and slip ratio of each tire. ud
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denotes the desired generalized force, which can be rewritten using a first-order linearizing
expression about an operating point,

F(λ, U) ≈ F(λ, Uk−1) +
∂F
∂U (λ, Uk−1) · (Uk − Uk−1) ⇒

F(λ, U)− F(λ, Uk−1) +
∂F
∂U (λ, Uk−1) · Uk−1 = ∂F

∂U (λ, Uk−1) · Uk = BF · Uk
(41)

where, BF is a Jacobian matrix defined by the configurating vector and the control vector of
the last step, which describes the sensitivity of the control vector to desired value vector
u′

d, which is in the form of

u
′
d = ud − F(λ, Uk−1) +

∂F
∂U

(λ, Uk−1) · Uk−1 (42)

Then, Equation (41) becomes

u
′
d ≈ BF · Uk (43)

The CA algorithm minimized the following objective function, including the CA errors
and control effort. The optimization criteria can be given as

minJ =
1
2
(1 − ε)ΓTWeΓ +

1
2

εUTWUU (44)

where Γ = (BFU − u′
d) is the control error vector, and the variation of control value U∈[UL,

UU] is restrained by actuator rate limits and achievable value ranges. The two bounds are
decided by {

UL = max[Umin, Uk−1 − τ · rmax]
UU = min[Umax, Uk−1 + τ · rmax]

(45)

where, τ represents the sampling time and rmax is the maximum rates of variable values.
This constraint helps to ensure the process stability. ε is a number to balance the weight
between control efforts error and actuation cost, which is chosen as 0.5. Suppose that we
want to minimize J:R8→R, a gradient descent algorithm has the iterative step

Ui+1 = Ui − η∇J(Ui) (46)

∇J(U) is the derivative of J at U. Substituting the derivative of J into this equation. It
follows that {

Ui+1 = sat
[
(1 − ε)ηBT

F Weu
′
d − (ηT − I)Ui

]
:= I(Ui)

T = (1 − ε)BT
F WeBF + εWU

(47)

where the step length parameter η is set to η = 1/‖T‖F, with ‖·‖T being the Frobenius norm
of a matrix, which is more computationally efficient than induced norms. The saturation
function sat can cut the elements of the control vector U(i+1) at their limits. If J is convex
and the operator I is convergent, then a point Uk is a fixed point of I if and only if ∇J(Uk) =
0, so if and only if Uk minimizes J, with the expression

Uk = I(Uk) (48)

3.3. Tire Normal Forces Robust Tracking Control

Based on the mentioned tire models, the boundaries of friction ellipses are directly
affected by the normal tire forces, which are the control vectors of the high-level strategy for
inhibiting undesired vehicle motion. The tracking control based on the active suspension
system is a challenging task because of the following reasons.

(1) In practical use, the wheel motions are under the effect of road roughness, especially
considering the high unsprung mass introduced by the electric propulsion system,

60



Sensors 2021, 21, 3931

such as the in-wheel motor. This kind of motion instability will cause the inaccuracy
of tire load tracking.

(2) Quarter car model is the classic model which was widely utilized in suspension analy-
sis and control synthesis. However, the spatial kinematics and dynamics considering
the suspension geometry are relatively complicated, leading to the inaccuracy and un-
certainty of model parameters. Though some analytic model of suspension geometry
is presented and realized in simulation [33], the complex computation makes them
less efficient in real-car implements.

(3) The active suspension control algorithm is always a trade-off between the vehicle ride
comfort and tire-road adhesion stability, which is hard to be optimized simultaneously.
Moreover, the tracking control requirement makes the problem more complex and
increases the difficulty of controller design.

In this work, we used the traditional quarter car model and H-∞ robust control
method to solve the modeling uncertainty and parameter variation problem. The model
concept is illustrated through Figure 4, with Mb as the one-fourth sprung mass, Mw as the
one-fourth unsprung mass, ks as the equivalent suspension stiffness, bs as the equivalent
suspension damping, and kt as the tire stiffness. The force from the vehicle body Fin is a
known input. Fa is the active force returned by the active suspension controller.

Figure 4. One-fourth active suspension model with body inertia force.

Based on the traditional quarter car model, an extra equivalent body inertia force Fin is
imposed upon the sprung mass to reflect the coupling effect between the quarter model and
the full-vehicle model. The value of Fin is supposed to be the desired normal tire force. Due
to suspension geometry and ride comfort requirements, the equivalent suspension stiffness
and damping are actually not constant values, which is treated as system uncertainties. The
body inertia force and road profile are the outside disturbances to the system. However,
we can still use their nominal values to establish the model. The states of the controlled
system are defined as [x1, x2, x3, x4] =

[
xw,

.
xw, xb,

.
xb
]
, and generalized system inputs are

[u1, u2, u3] =
[
Fin, xg, Fa

]
.

Then, the vertical dynamics of suspension can be given as{ .
x2 = −

(
ks+kt
Mw

)
x1 − bs

Mw
x2 +

ks
Mw

x3 +
bs

Mw
x4 +

kt
Mw

u2 − 1
Mw

u3
.
x4 = ks

Mb
x1 +

bs
Mb

x2 − ks
Mb

x3 − bs
Mb

x4 − 1
Mb

u1 +
1

Mb
u3

(49)

The system performance index is selected as

Yper f =
[ ..
xb, en, Fa

]
(50)

where the sprung mass acceleration is the index for ride comfort, and en = Fin − kt(xg − xw)
expresses the normal force control error, defined as the tire contact stability index. Fa stands
for the active suspension actuator force. The system output includes the performance index
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as well as the signals to be measured for feedback control, which may contain the body
(unsprung mass) acceleration (BA) and tire dynamic load (DL). We use the linear fractional
transformation method to define an extended state-space model to deal with the parameter
uncertainties. The closed-loop system diagram is described in Figure 5 [34].

Figure 5. Robust tracking control of tire contact force.

The weighting functions of system performance index Wba, Wtl, and control output
and Wu, which define the target performance in the frequency domain, should be well
tuned to acquire a stable and satisfactory controller. Here, we design and tune the weighting
function according to the open-loop suspension performance, and the amplitude-frequency
characteristics of BA and DL are compared with the inverse of the weighting function Wba
and Wtl in Figure 6. Furthermore, since the desired characteristic of BA and DL is hard to
achieve simultaneously, we use different control structures to achieve the vehicle comfort
target and tire stability target:

(1) Controller 1: For the state of tire contact force cannot reflect the dynamic behavior of
sprung mass, only the sprung mass acceleration was selected as the feedback signal
of the comfort-orientated control scheme.

(2) Controller 2: In the tire-stability-orientated control scheme, both the unsprung mass
acceleration and tire contact force work as the feedback signals, with the former signal
reflecting the desired tire normal force and the latter one providing the real normal
force. The sensor reflects the DL could be tire-pressure based, for example.

In order to compare the performance of the closed-loop system of controller 1 and con-
troller 2, the state-space system models are established in the MATLAB environment, where
the corresponding H-∞ controllers are synthesized through coupled Riccati equations [35].
Further, a sinusoidal input was built to test the tracking performance of controller 2. Simu-
lation results concerning body acceleration and tire dynamic load in the time domain are
shown in Figure 7. Their root mean square values are listed in Table 1 for comparison. An
A-class uneven road is simulated by filtered white noise according to ISO8608, with the
vehicle speed chosen as 120 km/h.

Table 1. RMS values of body acceleration and tire dynamic load.

Suspension Performances
Passive Suspension
(without Control)

Comfort-Orientated Control Stability-Orientated Control

Body acceleration (m/s2) 0.6732 0.2795 (↓58%) 0.9067 (↑35%)
Tire dynamic load (N) 242.7421 377.5729 (↑56%) 204.7990 (↓16%)
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Figure 6. The inverse of system performance index weighting functions: (a) vertical acceleration;
(b) tire dynamic load.

Figure 7. Performance of Controllers 1 and 2: (a) body acceleration; (b) tire dynamic load.

The simulation results illustrate that, under the comfort-oriented control, the body
acceleration magnitude illustrated by the blue line was decreased, compared with the
value without active control expressed by the black line. On the contrary, the average
tire DL was increased. Reversely, the stability-oriented control inhibited the normal tire
force tracking error but enlarged the body acceleration magnitude unavoidably. Results in
Figure 8 indicated that controller 2 achieved good tracking performance under sinusoidal
input signal with the suppression of road roughness disturbance.
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Figure 8. Normal force tracking of controller 2.

Although we only consider the tracking control of tire vertical forces, energy consump-
tion of the active suspension system cannot be neglected. The tradeoff between vibration
suppression and energy consumption should be considered in practical applications, which
could be realized by adjusting the weighting funcion Wu.

4. Simulation Studies

In order to evaluate its overall performance, the UCC system with the application
of the stability-oriented controller (controller 2) is implemented in a CarSim–Simulink
co-simulation platform. The target vehicle is a B-class sports car. Its parameters are
listed in Table 2. Compared with the traditional ESC approach, the dynamic performance
and advantages of the proposed UCC method are interpreted through the following
driving conditions.

Table 2. Vehicle parameters in the simulation.

Symbol Description Values and Units

m Vehicle mass 1140 kg
CD Aerodynamic drag coefficient 0.34
a Distance of front wheel axle from C.G. 1.165 m
b Distance of rear wheel axle from C.G. 1.165 m
d Half of the wheel base 0.7405 m

Izz Yaw inertia 996 kg m2

ms Vehicle sprung mass 1020 kg
ks Suspension stiffness 33,972 N/m
bs Suspension damping 2000 N s/m
kt Tire stiffness 200,000 N/m

4.1. High-Speed Double Lane-Changing (DLC) on a Rough Road Surface

Double lane-changing is a standard test to evaluate the vehicle handling performance,
which is usually done at a constant longitudinal speed. However, this maneuver becomes
more challenging under a rough road surface at high speed because of the intensification of
vertical vibration, and it is possible that the fluctuation of normal tire forces will influence
the allocation accuracy of desired general longitudinal and lateral forces. In order to
evaluate the dynamic performance of the proposed UCC system, a comparison simulation
with the same controller was carried out based on the DLC test at 120 km/h speed under
flat and rough road surfaces. The A-class uneven road profile is generated randomly. Since
the effectiveness of active suspension control has been verified before, here we mainly focus
on the lateral vehicle performances compared with the flat road situation. Simulations
results are compared in Figures 9–13.
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Figure 9. Lateral acceleration in high-speed DLC.

Figure 10. Vehicle slip angle in high-speed DLC.

Figure 11. Rollover index in high-speed DLC.

Figure 12. FL tire slip in high-speed DLC.

Figure 13. FL tire slip angle in high-speed DLC.
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The simulation verified that the CA method could generate desired resultant forces for
the vehicle to complete the DLC maneuver under road roughness. Besides, the results in
Figures 9–11 demonstrate that the road disturbance generated slight undesired vehicle dy-
namics, including lateral and rolling motions. To investigate the effect of road roughness on
the CA algorithm, the control values of the front left tire are compared in Figures 12 and 13.

We can see from the results that the UCC method has a certain degree of robustness
due to the sliding mode controller. However, in the critical points of DLC process (around 2
s and 3.5 s), the vehicle lateral acceleration and yaw rate approached their maximum values,
and the tire forces were close to the boundary. In order to achieve the required lateral force,
slip angles of four tires should not have a significant variation, as shown in Figure 12. In
these critical time points, the normal force fluctuation led to an extra yaw moment, which is
supposed to be compensated by the longitudinal vehicle forces. As can be seen in Figure 13,
the tire slip variation in such time points was more significant than at other times, and this
effect was even more severe in rough road conditions. Since in the proposed UCC strategy,
the desired forces are evenly allocated into four tires, the situations of the other three tires
were similar and will not be discussed to avoid redundant expression.

4.2. High-Speed Double Lane-Changing (DLC) on a Flat Road Surface (Compared with ESC)

Based on the same DLC test, while the first scenario examined the UCC performance
on the uneven road, this second one focused on the comparison with the traditional ESC
method. The ESC system is an envelope stability controller based on direct yaw control,
which can only control the longitudinal force distribution among four tires. The results
in Figures 14–19 explain the superiority of the proposed UCC system on lateral vehicle
dynamics compared with the ESC control strategy. The vehicle failed to pass this scenario
without active control.

Figure 14. Yaw rate on flat road during high-speed DLC.

Figure 15. Vehicle slip angle on flat road during high-speed DLC.
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Figure 16. Lateral acceleration on flat road during high-speed DLC.

Figure 17. Body roll angle on flat road during high-speed DLC.

Figure 18. Body pitch angle on flat road during high-speed DLC.

Figure 19. Vehicle path on flat road during high-speed DLC.

Figures 14–16 and Figure 19 show yaw rate, vehicle slip angle, lateral acceleration,
and vehicle path, respectively, and illustrate that the UCC has better performance than the
ESC with respect to the yaw stability. Therein the desired vehicle slip angle control was
well done by the UCC control. This is due to the fact that the vehicle system with multiple
actuators can make full use of the adhesion coefficient of each wheel to generate desired
resultant force/moment. By comparing the vehicle rolling and pitch angles presented in
Figures 17 and 18, one can clearly see that the proposed UCC maintained the body altitude
effectively, enhancing the vehicle ride comfort due to active suspension control.
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4.3. High-Speed Fishhook Maneuver

The Fishhook test is a dynamic test for predicting the dynamic rollover propensity.
To begin the maneuver, the vehicle is driven in a straight line at the desired entrance
speed, and then the driver releases the throttle and initiates the designed steering motion
described in Figure 20. In this section, the steering maneuver of this test was adopted
to verify the anti-rollover mechanism of the proposed UCC with the braking command
triggered by the RI threshold set to 0.2. Figures 21–25 shows the results at entrance speed
120 km/h concerning relative vehicle states. If no control strategy is applied, the vehicle
will lose control early at around 1.5 s, as shown in the figures.

Figure 20. Steering angle in high-speed fishhook maneuver.

Figure 21. Longitudinal force in high-speed fishhook maneuver.

Figure 22. Rollover index in high-speed fishhook maneuver.

Figure 23. Body roll angle in high-speed fishhook maneuver.
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Figure 24. Yaw rate in high-speed fishhook maneuver.

Figure 25. Vehicle global path in high-speed fishhook maneuver.

The result of vehicle RI clearly illustrates that, at time t = 1.5 and t = 2.3, when the
steering angle reached its maximum value, the vehicle experienced the most apparent
rollover propensity. Though the rollover did not happen actually due to the ESC control,
the RI value still reached a dangerous level. The proposed UCC method can significantly
reduce the RI value in the following two aspects.

(1) The body altitude control function of UCC reduced the vehicle roll angle, indicated
in Figure 23.

(2) The braking force was triggered to inhibit the increase of lateral acceleration, which is
shown in Figure 21.

We also observe from Figure 24 that the UCC method led to better dynamic perfor-
mance and can achieve the desired yaw rate without losing stability. Additionally, the
vehicle path curves shown in Figure 25 indicate that the undesired yaw moment generated
by ESC control may promote the tendency of vehicle over-steering in high-speed curving
situations, which can be avoided using the UCC with appropriate parameters tunning.

4.4. Tire Blow-Out in the Hard-Braking Process (Re-Configurable Control)

This scenario is designed for the condition where one tire blew out during hard
braking. The initial vehicle speed is 120 km/h and a hard braking command (about −0.6 g)
is given at 0 s, and then at the end of the first second, the front-left tire blew out and lost
its lateral and longitudinal forces. The steering input is kept as zero, which keeps in line
with the actual reaction. Based on different control strategies, three different conditions are
considered, including UCC, ESC control, and passive vehicle. Results concerning vehicle
and tire states are provided in Figures 26–30.
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Figure 26. Longitudinal force in hard-braking.

Figure 27. Lateral force in hard-braking.

Figure 28. Yaw rate in hard-braking.

Figure 29. Vehicle path in hard-braking.

Figure 30. Vehicle speed in hard-braking.
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Curves in Figures 26 and 27 described the re-allocation of tire longitudinal and lateral
forces (in the body coordinate) after the front-left tire blew out through a reconfigurable
UCC approach, keeping the desired resultant forces/moment unchanged. The vehicle yaw
rate and path based on different control configurations are shown in Figures 28 and 29.
These results illustrate the extra yaw moment due to the tire blowing-out and the lane
departure behavior it caused for both the ESC control and passive situations. However, the
prompt intervention of driver steering input (closed-loop ESC in figures) can reduce the
danger to some extent accompanied by ESC, but it is highly demanding for non-professional
drivers to respond appropriately under such emergencies.

On the contrary, the UCC just required the driver to keep straight ahead. Additionally,
it is worth noticing in Figure 30 that the traditional ESC control cannot compensate for
the lost tire brake forces. Thus, the brake distance was increased. However, the UCC
reconfigurable method was able to hold the initial braking deceleration and inhibit the
interference of extra yaw moment due to the re-allocation of tire forces. The proposed UCC
is the only strategy that is able to keep the driver’s intention for this emergency.

5. Conclusions

In this paper, a UCC strategy involving the vehicle yaw stability, body altitude, and
tire contact stability was presented. A hierarchical control structure was adopted to realize
the UCC, including high-level sliding mode control, fixed point CA, and a normal tire force
robust tracking controller. Simulations of high-demanding driving situations concerning
rough road surface, fast DLC, fishhook maneuver, and the tire blowing-out situation
performed on a nonlinear full vehicle model have shown the effectiveness and advantages
of the proposed control method. The following conclusions can be drawn:

(1) For a four-wheel independent drive–independent steering configuration, the pro-
posed UCC method can effectively realize the tire planar force distribution and the
desired vehicle motion, which proves to be a practical solution due to its simple
feedback control rules and reconfigurable allocation.

(2) Considering the wheel vertical vibrations, we present a robust tire normal force
tracking controller to address the tire contact stability issue. This work provides an
innovative method for improving the vehicle driving stability and maintaining the
desired body attitude simultaneously.
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Abstract: Vehicle dynamic parameters are of vital importance to establish feasible vehicle models
which are used to provide active controls and automated driving control. However, most vehicle
dynamics parameters are difficult to obtain directly. In this paper, a new method, which requires only
conventional sensors, is proposed to estimate vehicle dynamic parameters. The influence of vehicle
dynamic parameters on vehicle dynamics often involves coupling. To solve the problem of coupling,
a two-stage estimation method, consisting of multiple-models and the Unscented Kalman Filter,
is proposed in this paper. During the first stage, the longitudinal vehicle dynamics model is used.
Through vehicle acceleration/deceleration, this model can be used to estimate the distance between
the vehicle centroid and vehicle front, the height of vehicle centroid and tire longitudinal stiffness.
The estimated parameter can be used in the second stage. During the second stage, a single-track
with roll dynamics vehicle model is adopted. By making vehicle continuous steering, this vehicle
model can be used to estimate tire cornering stiffness, the vehicle moment of inertia around the yaw
axis and the moment of inertia around the longitudinal axis. The simulation results show that the
proposed method is effective and vehicle dynamic parameters can be well estimated.

Keywords: vehicle dynamic parameters; Unscented Kalman Filter; multiple-model

1. Introduction

Nowadays, modern road vehicles are using an increasing number of active systems
to improve vehicle safety, passenger comfort, vehicle performance and energy efficiency.
Advanced Driver Assistance Systems (ADAS), as well as Automated Driving (AD) tech-
nologies, are being increasingly implemented in vehicles, aiming for improved driving
safety and passenger comfort [1,2]. In addition, the autonomous driving test rig is also an
important method to test autonomous driving control algorithms (as shown in Figure 1, it is
an autonomous driving test rig proposed by our research group) [3–5]. The implementation
of these fields greatly depends on accurate vehicle dynamic parameters. Vehicle dynamic
parameters are also important for vehicle modeling. Thus, vehicle dynamic parameters
are important for vehicle design and testing. The vehicle dynamic parameters (VDPs),
such as the vehicle mass, moment of inertia and position of the vehicle centroid, affect the
closed-loop behavior of active safety systems and play an important role [6]. It is necessary
to determine the VDPs to obtain real vehicle responses. Some of the VDPs can be easily
measured such as the mass, the track width or the wheelbase. However, other parame-
ters are unknown and difficult to be measured directly, such as the distance from vehicle
centroid to the front axis. The moment of inertia around each axis can be measured by
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special equipment which is extremely costly. In contrast, the estimation method is a less
intrusive and expensive way to obtain VDPs. The VDPs can be estimated by combining the
estimation algorithm with some cheap sensors such as Inertial Measurement Unit (IMU),
Global Positioning System (GPS), wheel speed sensors and steering angle sensor [7].

Figure 1. Autonomous driving test rig.

To obtain VDPs, many different methods have been proposed. In [8], a novel model-
based parameter identification approach using optimized excitation trajectory is proposed
to identify the VDPs. However, this method needs test rigs, which is a huge cost. In ad-
dition, a variety of algorithms for VDPs estimation have been presented in works of
literature [9–39]. The influence of VDPs on vehicle dynamics often involves coupling.
Most of the papers only study the estimation part of some parameters and the other param-
eters are treated as being easily measured or obtained. In actual applications, this strategy
is not feasible. In real applications, all VDPs need to be obtained through simple sensors
and estimation strategies. Since the VDPs are always coupled with the vehicle states,
the state-parameter joint and dual estimation methods [9,10] have become increasingly
prevalent and have been studied by many researchers. Some researchers use the Dual
Kalman Filter (DKF) to identify the VDPs and the vehicle states simultaneously. Besides,
VDPs estimation is usually classified based on the parameters of interest and the vehicle
dynamics model used. In [11], common onboard sensors which are able to measure the
lateral acceleration and yaw rate and a non-linear vehicle model are used. Augmented
Extended Kalman Filtering is used to estimate motion states and tire cornering stiffness
based on a non-linear vehicle model and sensor. Sideslip and roll angles of electric are
estimated using lateral tire force sensors through RLS and the Kalman Filter based on the
Single-track model in [12]. Sprung mass, yaw moment of inertia and longitudinal position
of the center of gravity are identified through a dual unscented Kalman Filter in [13]. In [14],
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a four-wheel nonlinear vehicle model with roll dynamics and a correlation between the
inertial parameters is used for a dual Unscented Kalman Filter to simultaneously identify
the inertial parameters and the vehicle state. A local observability analysis on the nonlinear
vehicle model is used to activate and deactivate different modes of the proposed algorithm.
A Dual Extended Kalman Filter (DEKF) is used to estimate both vehicle states and vehicle
parameters such as the vehicle mass, moment of inertia about the vertical axis and distance
between the center of gravity and the front axle [15]. An extended Kalman Filter-based
estimator adopting a dynamic vehicle model for determining the vehicle’s longitudinal
and lateral velocity as well as the yaw rate is proposed in [16]. In [17], a novel approach
based on combined H∞ and extended Kalman Filter (H∞-EKF) is used to estimate the
center of gravity position of electric vehicles. To implement this estimation algorithm,
a simplified vehicle dynamics model is applied to the filter formulation. The H∞ estimator
is employed to filter states by means of minimizing the influence of unexpected noise,
whose statistics are unknown. Simultaneously, the other EKF estimator uses the states
derived by the former filter to identify the position of the vehicle centroid. A methodology
based on multiple-models and a switching method for real-time estimation of the position
of vehicle centroid is proposed in [13]. The method uses the well-known simple linear
vehicle models for lateral and roll dynamics and assumes the availability of lateral acceler-
ation, the yaw rate, velocity, and steering angle measurements. As mentioned in previous
research, the existing estimation methods are either expensive or only portions of the VDPs
can be estimated. However, vehicle dynamics modeling needs to completely determine the
completed VDPs, while the cost of VDPs acquisition should be as small as possible. Thus,
a method that can obtain completed VDPs at low cost urgently needs to be proposed.

In order to obtain completed VDPs at a low cost, we propose a two-stage estimation
method consisting of multiple-models and Unscented Kalman Filter to estimate VDPs.
In the first stage, the vehicle is set to accelerate/decelerate and the longitudinal vehicle
model is used. During this stage, the height of the vehicle centroid, tire longitudinal stiffness
and the longitudinal position of the vehicle centroid are estimated by the Unscented Kalman
Filter. After these parameters are estimated, these estimated parameters can be used in
the second stage. In the second stage, a Single-track with roll dynamics vehicle model is
adopted and the vehicle is set to continuous steering. Through vehicle steering, this model
can be used to estimate tire cornering stiffness, the vehicle moment of inertia around the
yaw axis and the moment of inertia around the longitudinal axis. After the two-stage
estimation, all VDPs are estimated. The rest of the paper is organized as follows: vehicle
dynamics model are shown in Section 2. The method used to estimate VDPs is provided in
Section 3. Section 4 shows and discusses the simulation results. Finally, Section 5 delivers
the conclusions and points towards future work.

2. Vehicle Model

The vehicle model used in this paper is a multiple-model approach which is based
on a longitudinal vehicle dynamics model (as shown in Figure 2a) and a single-track with
roll dynamics vehicle model (as shown in Figure 2b,c), which comprises: the motion in the
longitudinal direction x, the longitudinal velocity; the motion in the lateral direction y or
lateral velocity; the yaw around the vertical axis z, described by the yaw rate and roll with
regard to the longitudinal axis x; and the roll rate [13]. Figure 2 illustrates the vehicle model
adopted in this paper. The whole motion of the vehicle is a direct result of the forces (the
aerodynamic forces and rolling resistance are neglected in this paper) that are generated
between the road and tires. As shown in Figure 2b, the four-wheel vehicle dynamics model
can be simplified as a single-track model. Other states that depend directly on these states
can be derived, such as longitudinal and lateral accelerations. The tire states, such as the
wheel slip angle, slip ratio and rotational velocities are also important. Tire-road friction
force can be obtained based on tire states and tire stiffness. The vehicle states are also
largely dependent on VDPs. VDPs include vehicle mass, moments of inertia around each
axis and the position of the vehicle centroid.
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(a)

(b)

(c)

Figure 2. Vehicle model: (a) Longitudinal vehicle dynamics model; (b) Single-track vehicle model;
(c) Vehicle roll dynamics.
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The vehicle dynamic model can be described by differential equations. The vehicle
model implemented here can be obtained from [17,18]. When the vehicle was accelerating
or decelerating along the longitudinal direction, the longitudinal vehicle dynamics model
was adopted. As shown in Figure 2a, the longitudinal vehicle dynamics model was built
with the longitudinal motion, as well as the front and rear wheel rotations

m
.
vx = Fx f + Fxr (1)

J
.

ω f = Tf − rFx f (2a)

J
.

ωr = Tr − rFxr (2b)

where m is vehicle total mass, vx represents the longitudinal vehicle velocity Fxf and Fxr
represent the longitudinal forces of the front and rear tires. J is the wheel’s moment of
inertia. r is the equivalent radius of the front and rear tires. Ti, ωi (i = f, r) represent the
wheel torque and angular speed. The load distribution can be expressed by the vertical
forces that act on each of the four wheels. These can be calculated as follows:

Fzf = mg
lr

L
− max

h
L

(3a)

Fzr = mg
lf

L
+ max

h
L

(3b)

where Fzf and Fzr are vertical force of the front and rear wheels. ax is the longitudinal
accelerations, g is the gravitational constant, lf is the distance between the vehicle centroid
and vehicle front axis, lr is the distance between the vehicle centroid and vehicle rear axis
and h denotes the height of the vehicle centroid. L is the distance between the front axis
and rear axis.

When the vehicle was being steered, the single-track with roll dynamics vehicle model
was adopted. As shown in Figures 1c and 2b, the differential equations for the calculation
of longitudinal and lateral acceleration are as follows:

.
vx = ax + vy

.
ψ (4)

.
vy = ay + vx

.
ψ (5)

ax =
1
m
(
Fxfcosδ + Fyfsinδ + Fxr

)
(6)

ay =
1
m
(
Fxfsinδ + Fyfcosδ + Fyr

)
(7)

Yaw and roll motion can be obtained from:

..
ψ =

Γ

Iz
(8)

Ix
..
φ = mh

(
ay + gφ

)− kφφ − cφ

.
φ (9)

where
.

ψ is the yaw rate,
.

φ is the roll rate, Iz is the moment of inertia around the yaw axis,
Ix is the moment of inertia around the longitudinal axis, kφ is the roll stiffness, cφ is the
roll damping and ay is lateral acceleration. Γ can be calculated as follows:

Γ = lf
(
Fxfcosδ + Fyfsinδ

)− lrFyr (10)

where δ is the wheel steer angle while Fyr represents the lateral forces of the rear tires.
There are many different approaches for achieving tire force, such as the so-called ‘Magic
Formula’ by Pacejka [19], the tire model by Fiala [20] or the ‘TMeasy’ tyre model [21].
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When the acceleration/deceleration strength of the vehicle is small and the steering angle
is small, the tire force can be calculated as follows:

Fxi = Cσsi (11a)

Fyi = Cααi (11b)

where Fxi, Fyi (i = f, r) represent the longitudinal and lateral tire forces, Cα denotes the tire
cornering stiffness, Cσ denotes the tire longitudinal stiffness, si is the slip ratio and αi is
the slip angle. αi can be presented as follows:

αf =
vy − lf

.
ψ

vx
− δ (12a)

αr =
vy − lr

.
ψ

vx
(12b)

the slip ratio si (i = f, r) can be presented as follows:

si =
ωir
vx

− 1 (13)

When the acceleration/deceleration strength of the vehicle was small, the tire-road
friction coefficient was proportional to the slip ratio rate [21]. Then the longitudinal tire
force can also be presented as follows:

Fxi = FziCKsi (14)

where CK is the slip ratio rate. It is a constant value related to the road surface. When the
road surface was different, CK changed as well. From Equations (11a) and (14), it can be
seen that tire longitudinal stiffness can be calculated based on the slip ratio rate and vertical
force of the wheel. This means that the tire longitudinal stiffness can be obtained when the
slip ratio rate is estimated.

3. Estimation Method

To adapt to non-linear problems in vehicle dynamics estimation, EKF is widely used
for estimating different vehicle states. However, the accuracy of EKF-based estimation
cannot be guaranteed due to linearization errors with Jacobian matrices when approximat-
ing non-linear systems [20–26]. More recently, additional attention has been paid to UKF
estimation, which uses a set of sigma points to conduct non-linear transformation so that
it can deal with strong non-linear estimation problems for vehicle dynamics systems [31].
The UKF, developed by Julier et al. [32] and refined by Wan and van der Merwe et al. [33]
provides a new estimation approach. Unlike the EKF, the UKF approximates the probability
density function of system states by implementing the Unscented Transformation (UT)
instead of the system dynamics model. The UT captures the mean and covariance of the
Gaussian random vector (GRV) to at least second-order accuracy through the use of a set
of sample points. UKF is an effective method to estimate the states or the parameters of a
discrete dynamic system. In this paper, we use UKF to estimate VDPs through a two-stage
method. The frame diagram of the two-stage estimation method is shown in Figure 3.
In this paper, we assume that the velocity of the vehicle can be measured by GPS, and the
vehicle mass is known. The driving or braking torques of vehicle (Ti) can be obtained.
Longitudinal acceleration ax, lateral acceleration ay and the yaw rate

.
ψ can be measured by

IMU. Rolling stiffness kφ and roll damping cφ are given by the manufacturer. The relevant
parameters are listed in Table 1.
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Table 1. Nomenclature.

Parameter Description

m Vehicle mass
g Gravitational constant
Ix The moment of inertia around the longitudinal axis
Iz The moment of inertia around the yaw axis
b Vehicle width
lf Distance between the vehicle centroid and vehicle front axis
lr Distance between the vehicle centroid and vehicle rear axis
r Effective tire radius
h Height of vehicle centroid
cφ Roll damping coefficient
kφ Roll stiffness
Cα Tire cornering stiffness
CK Slip ratio rate
J Wheel moment of inertia

vx Longitudinal vehicle velocity
Fxf Longitudinal forces of the front tire
Fxr Longitudinal forces of the rear tire
Tf Front wheel torque
Tr Rear wheel torque
Fzf Vertical force of front wheel
Fzr Vertical force of rear wheel
ax Longitudinal accelerations
.
ψ Yaw rate
.
φ Roll rate
ay Lateral acceleration
δ Wheel steer angle

Fyr Lateral forces of the rear tires
Cσ Tire longitudinal stiffness
Si Slip ratio
αi Slip angle

Figure 3. Two-stage estimation method.
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As shown in Figure 3, the longitudinal vehicle dynamics model was adopted during
the first stage. For the first stage, the longitudinal vehicle dynamics model could be
described by Equations (1)–(3), (11a) and (14). To make sure the longitudinal vehicle
dynamic model is able to reflect the real state of the vehicle, the absolute value of the front-
wheel steering angle needed to be smaller than 0.62 deg and the absolute value of yaw rate
needed to be smaller than 1 deg/s (as shown in Table 1). The inputs of the longitudinal
vehicle dynamics model were wheel torque Ti(i = f, r). The states of the longitudinal
vehicle dynamics model included the angular speed ωi(i = f, r) and longitudinal vehicle
velocity vx. The measurable outputs were the angular speed ωi(i = f, r) and longitudinal
vehicle velocity vx. As shown in Figure 3, the distance between the vehicle centroid
and vehicle front lf, the height of vehicle centroid h and the tire longitudinal stiffness
CK are estimated parameters. To enable the VDPs to be estimated (persistent excitation
requirement), specific command signals needed to be given to activate the corresponding
parameters (As shown in Table 1).

When l f , h and CK were estimated during the first stage, these estimated VDPs could
be used in the second stage (as shown in Figure 3). During the second stage, a single-
track with roll dynamics vehicle model was used and is described by Equations (4)–(12).
As shown in Figure 3, the inputs of the single-track with the roll dynamics vehicle model
the wheel steer angle δ, lateral accelerations ay, yaw rate

.
ψ and the roll rate

.
φ. The states

of this model include longitudinal vehicle velocity vx, lateral velocity vy, longitudinal
accelerations ax, lateral acceleration ay, yaw rate

.
ψ and the roll rate

.
φ. The estimated

parameters are the moment of inertia around the yaw axis Iz, the moment of inertia around
the longitudinal axis Ix and the tire cornering stiffness Cα. When the conditions of the
second stage in Table 2 are met, VDPs (Iz, Ix, Cα) can be estimated.

Table 2. Two-stage estimation condition requirements.

First Stage: Linear Acceleration/Deceleration

• Longitudinal vehicle dynamic model

• |Front Wheel steering angel|<0.62 deg

• |Yaw Rate|<1deg/s

• Longitudinal acceleration/deceleration

Second stage: Continuous turn

• Single-track with roll dynamics vehicle model

• First stage estimation finished

• Longitudinal speed remains constant

• Continuous turn

As shown in Figure 3, UKF was used in both the first stage and second stage. UT is
one of the most important parts of UKF. First, we introduce UT here. UT is shown in
Table 2 [29].

When a system function is given as y = f(x), x is the state and the dimension of x is
L (as shown in Table 2). Given an L-dimensional GRV x with mean x̂ and covariance Px,
the statistics of y = f(x) were approximated by the selection of 2L+ 1 discrete sample points
{χi}2L

i=0 =
{

x̂ and x̂ ± σj, j = 1, . . . , L
}

where σj is the ith column of the matrix
√
(L + λ)Px.

λ is a scaling parameter and depends on α, κ and L. The constant α determines the spread
of sigma points about the mean x̂. The constant κ is generally set to 3 − L. The constant β
was used to incorporate prior knowledge of the distribution. In this paper, α = 0.01, β = 2.

As shown in Table 3, ω represents VDPs; x represents the states of dynamics; d repre-
sents the measured vector; u represents the input vector of the dynamic system. Re

k is the
measurement noise covariance. Rr

k is the processing noise covariance. The corresponding
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parameters are shown in Table 4 and Section 4. At different stages, these variables repre-
sented different parameters. The local observability was demonstrated by investigating
the rank of the observability matrix [20]. If the observability matrix had the full column
rank, it was said to be locally observable. Using the continuous state-space representation,
the discretized state-space representation was written by the Euler’s forward discretization
in (15).

Table 3. UT.

UT Setup

λ = α2(L + κ)− L
W(m)

0 = λ
L+λ

W(c)
0 = λ

L+λ + 1 − α2 + β

W(m)
i = W(c)

i = 1
2(L+λ)

, i = 1, . . . , 2L
γ =

√
L + λ

Table 4. UKF for VDPs estimation.

1: Initialize
^
ω

+

0 , P+
ω0

^
ω

+

0 =E[ω(0)]

P+
ω0=E[(ω(0)− ^

ω
+

0 )(ω(0)− ^
ω

+

0 )]
2: Prediction and sigma-point calculation:

^
ω
−
k =

^
ω

+

k−1
P−

ωk
=P+

ωk−1
+Rr

ωk−1

Wk|k−1=[
^
ω
−
k

^
ω
−
k +γ

√
P−

ωk

^
ω
−
k −γ

√
P−

ωk
]

Dk|k−1=G(xk,Wk|k−1,uk)
^
d
−
k =

2L
∑
i=0

W(m)
i Di,k|k−1

3: Update after the measurement of d(k)

P−
dk

=
2L
∑
i=0

W(c)
i (Di,k|k−1−

^
d
−
k )(Di,k|k−1−

^
d
−
k )

T

+Re
k

P−
ωkdk

=
2L
∑
i=0

W(c)
i (Wi,k|k−1− ^

ω
−
k )(Di,k|k−1−

^
d
−
k )

T

Kk=P−
ωkdk

(P−
dk

)
−1

^
ω

+

k=
^
ω
−
k +Kk[d(k)−

^
d
−
k ]

P+
ωk

=P−
ωk
−KkP−

dk
KT

k

d(xk) = xk−1 + TsG(xk−1,ωk−1, uk−1) (15)

where Ts is the sampling time. The observability matrix is the Jacobian of measurement
vector d, with respect to the parameter vector ω. During the first stage, the Longitudi-
nal vehicle dynamics model was used. According to Equations (1)–(3), (11a) and (14),
the dynamic functions could be rewritten as:

m
.
vx =

(
mg

lr
L
− max

h
L

)
CKs f +

(
mg

l f

L
+ max

h
L

)
CKsr (16)

J
.

ω f = Tf − r
(

mg
lr
L
− max

h
L

)
CKs f (17)

J
.

ωr = Tr − r
(

mg
l f

L
+ max

h
L

)
CKsr (18)
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and the measurement vector d was written as:

d = G1(x,ω1, u) =

⎡⎣ g11

g12

g13

⎤⎦ =

⎡⎢⎢⎢⎢⎣
(

g lr
L − ax

h
L

)
CKsf +

(
g

lf
L + ax

h
L

)
CKsr

Tf−r(mg lr
L −max

h
L )CKsf

J

Tr−r
(

mg
lf
L +max

h
L

)
CKsr

J

⎤⎥⎥⎥⎥⎦ (19)

where ω1 represents a constant vector of the vehicle inertial parameters. During the first
stage, ω1 =

[
lf h Ck

]T. The observability matrix was defined as the Jacobian of G1

with respect to the parameter vector ω1. The Jacobian matrix, C1 = ∇ω1 G1, was repre-
sented as:

C1=∇ω1G1=

[ ∂g11
∂ω11

∂g11
∂ω12

∂g11
∂ω13

∂g12
∂ω11

∂g12
∂ω12

∂g12
∂ω13

∂g13
∂ω11

∂g13
∂ω12

∂g13
∂ω13

]
(20)

where
∂g11
∂ω11

=− g
L

CKsf+
g
L

CKsr,
∂g11
∂ω12

=−ax

L
CKsf+

ax

L
CKsr,

∂g11
∂ω13

=gsf−g
lf

L
sf−ax

h
L

sf+g
lf

L
sr+ax

h
L

sr

∂g12
∂ω11

= rmg
JL CKsf,

∂g12
∂ω12

=
rmaxCKsf

JL , ∂g12
∂ω13

=−rmg 1
J sf+rmg

lf
JL sf+maxr h

JL sf

∂g13
∂ω11

=− rmgCKsr
JL , ∂g13

∂ω12
=− rmaxCKsr

JL , ∂g13
∂ω13

=−r(mg lr
JL +max

h
JL )sr

Then C1 could be written as:

C1=∇ω1G1=[ − g
L CKsf+

g
L CKsr − ax

L CKsf+
ax
L CKsr gsf−g

lf
L sf−ax

h
L sf+g

lf
L sr+ax

h
L sr

rmgCKsf
JL

rmaxCKsf
JL −rmg 1

J sf+rmg
lf
JL sf+maxr h

JL sf

− rmgCKsr
JL − rmaxCKsr

JL −r(mg lr
JL +max

h
JL )sr

]
(21)

As shown in the above equation, the observability matrix was able to meet the require-
ment of the full column rank as long as the acceleration ax was properly selected.

During the second stage, the measurement vector consisted of the longitudinal vehicle
velocity, yaw rate and roll rate. According to Equations (4)–(14), the dynamic functions
could be rewritten as:

.
vx =

1
m

(
Cσs f cosδ + Cαα f sinδ + Cσsr

)
+ vy

.
ψ (22)

..
ψ =

l f

(
Cσs f cosδ + Cαα f sinδ

)
− lrCααr

Iz
(23)

..
φ =

h
(

Cσs f sinδ + Cαα f cosδ + Cααr

)
+ mghφ − kφφ − cφ

.
φ

Ix
(24)
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then the measurement vector d was written as:

d=G2(x,ω2)=

[ g21
g22
g23

]

=

[ 1
m (Cσsfcosδ+Cααfsinδ+Cσsf)+vy

.
ψ

lf(Cσsfcosδ+Cααfsinδ)−lrCααr
Iz

h(Cσsfsinδ+Cααfcosδ+Cααr)+mghφ−kφφ−cφ
.

φ

Ix

] (25)

where ω2 represents a constant vector of the vehicle inertial parameters. During the second
stage, ω2=[ Iz Ix Cα ]

T. The observability matrix was defined as the Jacobian of G2 with
respect to the parameter vector ω2. The Jacobian matrix, C2=∇ω2G2, was represented as:

C2=∇ω2G2=

[ ∂g21
∂ω21

∂g21
∂ω22

∂g21
∂ω23

∂g22
∂ω21

∂g22
∂ω22

∂g22
∂ω23

∂g23
∂ω21

∂g23
∂ω22

∂g23
∂ω23

]
(26)

where
∂g21
∂Iz

=0,
∂g21
∂Ix

=0,
∂g21
∂Cα

=
αfsinδ

m

∂g22
∂Iz

=− lf(Cσsfcosδ+Cααfsinδ)−lrCααr

I2
z

,
∂g22
∂Ix

=0,
∂g22
∂Cα

=
lfαfsinδ−lrαr

Iz
.

∂g23
∂Iz

=0, ∂g23
∂Ix

=− h(Cσsfsinδ+Cααfcosδ+Cααr)+mhgφ−kφφ−cφ
.

φ

I2
x

, ∂g23
∂Cα

=
hαfcosδ+hαr

Ix

Then C2 could be written as:
C2=∇ω2G2

=

[ 0 0
αfsinδ

m

− lf(Cσsfcosδ+Cααfsinδ)−lrCααr

I2
z

0
lfαfsinδ−lrαr

Iz

0 − h(Cσsfsinδ+Cααfcosδ+Cααr)+mhgφ−kφφ−cφ
.

φ

I2
x

hαfcosδ+hαr
Ix

]
(27)

As shown in the above equation, the observability matrix was able to meet the require-
ment of full column rank as long as the steering angle δ was properly selected. Based on
the above analysis, the VDPs can be estimated when the acceleration ax and steering angle
δ are designed according to Table 2.

In order to compare the estimation performance of the method proposed in this paper,
we used the commonly used extended Kalman algorithm for comparison. The extended
Kalman algorithm is shown in Table 5.
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Table 5. EKF for VDPs estimation.

EKF Algorithm

1. Initialize ω̂+
0 , P+

ω0

ω̂+
0 = E[ω(0)]

P+
ω0

= E
[(

ω(0)− ω̂+
0
)(

ω(0)− ω̂+
0
)]

2. Prediction before the measurement of d(k)
ω̂−

k = ω̂+
k−1

P−
ωk

= P+
ωk−1

+ Rr
k−1

d̂−k = G
(

ω̂+
k−1, s(k − 1), u(k − 1)

)
3. Update after the measurement of d(k)

Kk = P−
ωk

C−
k

T(C−
k P−

ωk
C−

k
T + Re

k
)−1

ω̂+
k = ω̂−

k + Kk

[
dk − d̂−k

]
P+

ωk
= P−

ωk
− KkC−

k P−
ωk

The meanings of relevant parameters in the Table 5 are same as the meanings of
relevant parameters in Table 4.

4. Simulation Results

The parameters of the vehicle model are shown in Table 6.

Table 6. Model parameters and definitions.

Parameter Description Value Unit

m Vehicle mass 1600 kg
g Gravitational constant 9.8 m/s2

Ix The moment of inertia around the longitudinal axis 4175 kg m2

Iz The moment of inertia around the yaw axis 2000 kg m2

b Vehicle width 1.53 m
l f Distance between the vehicle centroid and vehicle front axis 1.4 m
lr Distance between the vehicle centroid and vehicle rear axis 1.1 m
r Effective tire radius 0.3 m
h Height of vehicle centroid 0.637 m
cφ Roll damping coefficient 5737 Nms/deg
kφ Roll stiffness 36,000 Nm/deg
Cα Tire cornering stiffness 66,900 N/rad
CK Slip ratio rate 10 -
J Wheel moment of inertia 0.6 kg m2

As shown in Figure 3, the whole parameter estimation process was divided into
two parts. The second stage of the estimation could only start after the first stage of
the estimation was completed. Due to space limitations, the control of the vehicle is not
discussed here. The vehicle control can refer to reference [36–39]. First, we estimated
Iz, Ix, Cα. As shown in Table 1, the vehicle needed to be continuously accelerated and
braked for VDPs estimation. For this paper, the vehicle speed command signal was set as
shown in Figure 4. It is a sinusoidal signal with a period of 12.5 s and an amplitude of 10.
It includes acceleration/deceleration and can meet the requirements of the first stage (as
shown in Table 1).
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Figure 4. Vehicle longitudinal speed command.

VDPs can be estimated by making the car follow the command signal (as shown in
Figure 4) to run for 4 cycles and 50 s. The simulation results are shown in Figure 5.

(a)

(b)

(c)

Figure 5. First stage VDPs estimation: (a) slip ratio rate estimation; (b) the height of vehicle centroid
estimation; (c) estimation of the distance between the vehicle centroid and vehicle front axis.
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As shown in Figure 5, the slip ratio rate Cσ,the height of vehicle centroid h and the
distance between the vehicle centroid and vehicle front axis l f were estimated and the
estimated values approximated the real values in a short time (about 10 s) through the
proposed method in this paper. Compared with the UKF used in this paper, the estimation
error of EKF was larger (as shown in Figure 5). When Cσ, h and l f were estimated, they were
used in the second stage. To meet the requirement of the second stage (as shown in Table 2),
the vehicle steering angle command signal was set as Figure 6.

Figure 6. Vehicle steering angle command signal.

As shown in Figure 6, the vehicle steering angle command signal is a sawtooth wave
with a period of 10 s and an amplitude of 5. Additionally, the vehicle operated at a speed
of 10 m/s. The simulation results are shown in Figure 7.

(a)

(b)

Figure 7. Cont.
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(c)

Figure 7. Second stage VDPs estimation. (a) the tire cornering stiffness estimation (b) the mo-
ment of inertia around the longitudinal axis estimation (c) the moment of inertia around the yaw
axis estimation.

As shown in Figure 7, tire cornering stiffness Cα, the moment of inertia around
the longitudinal axis Ix and the moment of inertia around the yaw axis Iy can be well
estimated and the estimated error is small through the method proposed by us. However,
the estimation error by EKF becomes larger compared with the first stage (as shown
in Figure 7). The simulation results show that the proposed method is very capable of
estimating the VDPs, and thus proves the effectiveness of the proposed method. This is
mainly caused by two reasons. First, the estimated parameters with larger errors in the first
stage are used in the second stage. Second, the parameter estimation in the second stage
is a non-linear estimation (This can be seen in Equation (27)). The two simulation results
prove that the method proposed in this paper can more accurately estimate the VDPs.

5. Discussion and Conclusions

In this paper, a new method is proposed to estimate VDPs. Different from other
studies that only estimated portions of VDPs, the proposed two-stage estimation method
which combines multiple-models and the Unscented Kalman Filter is able to estimate more
VDPs. Because the states of a vehicle are affected by the tire stiffness, the tire stiffness
is difficult to measure. The proposed estimation method is able to estimate VDPs and
tire stiffness. The proposed two-stage estimation method also solves the problem that
VDPs have a coupling effect on vehicle motion, which makes the VDPs difficult to estimate.
For comparison, EKF is used. The simulation results prove that the proposed method not
only can estimate VDPs but also that the estimation errors are small.

The proposed two-stage estimation method in this paper can obtain all the VDPs
needed for vehicle dynamics modeling at one time. It is useful for vehicle modeling,
control and autonomous driving control algorithm tests on a test rig. More and more
artificial intelligence technologies are being widely used in autonomous driving. However,
most intelligent control algorithms are trained using vehicle kinematics models. An intel-
ligent control algorithm trained with the kinematics model cannot accurately reflect the
state of a real vehicle on the road. In order to ensure the effectiveness of the intelligent
control algorithm, the vehicle dynamics model needs to be used in the algorithm training
process. However, VDPs provided by most vehicle and devices manufacturers are not
complete. The method proposed in this paper can estimate most of the VDPs required for
vehicle dynamics modeling. Then it can be used to develop intelligent control algorithms
for autonomous vehicles.

Our current research work verifies the effectiveness of the method proposed in this
paper from the simulation. It verifies the program in advance for the next step of real
vehicle test verification. In addition, it is assumed that some vehicle states can be measured
directly in this paper. However, they are difficult to obtain in real scenarios. In the future
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work, we will use a Dual Unscented Kalman Filter to estimate the unmeasurable states and
VDPs simultaneously.
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Abstract: The collision warning system (CWS) plays an essential role in vehicle active safety. How-
ever, traditional distance-measuring solutions, e.g., millimeter-wave radars, ultrasonic radars, and
lidars, fail to reflect vehicles’ relative attitude and motion trends. In this paper, we proposed a vehicle-
to-vehicle (V2V) cooperative collision warning system (CCWS) consisting of an ultra-wideband
(UWB) relative positioning/directing module and a dead reckoning (DR) module with wheel-speed
sensors. Each vehicle has four UWB modules on the body corners and two wheel-speed sensors on
the rear wheels in the presented configuration. An over-constrained localization method is proposed
to calculate the relative position and orientation with the UWB data more accurately. Vehicle ve-
locities and yaw rates are measured by wheel-speed sensors. An extended Kalman filter (EKF) is
applied based on the relative kinematic model to combine the UWB and DR data. Finally, the time to
collision (TTC) is estimated based on the predicted vehicle collision position. Furthermore, through
UWB signals, vehicles can simultaneously communicate with each other and share information, e.g.,
velocity, yaw rate, which brings the potential for enhanced real-time performance. Simulation and
experimental results show that the proposed method significantly improves the positioning, directing,
and velocity estimating accuracy, and the proposed system can efficiently provide collision warning.

Keywords: collision warning system; ultra-wideband; dead reckoning; time to collision

1. Introduction

The global status report on road safety 2018, launched by the WHO in December 2018,
highlighted that the number of annual road traffic deaths had reached 1.35 million [1]. Two-
vehicle and multi-vehicle collisions were the most severe types of accidents. Studies showed
that more than 80% of road traffic accidents resulted from drivers’ belated responses, and
more than 65% resulted in rear-end collisions [2]. Researches indicate that more than 80% of
accidents could have been averted if drivers had focused and driven correctly in three
seconds before the accident [3].

In recent years, more and more researchers have focused on advanced driving assis-
tance systems (ADAS) to raise consumers’ awareness of safety devices and to reduce the risk
of accidents caused by careless driving. As an essential component of the collision warning
system, the forward collision warning system (FCWS), can measure the distance with the
leading vehicle by itself and warn drivers when the distance between vehicles is less than
the safe distance. At present, FCWS using active sensors, such as laser [4,5], radar [6],
vision sensor [7–9], and infrared [10], has been widely studied. Sanberg et al. [11] presented
a stereo vision-based CWS suited for real-time execution in a car. Hernandez et al. de-
signed an object warning collision system for high-conflict vehicle-pedestrian zones using
a laser [12]. Coelingh et al. [13,14] proposed a collision avoidance and automatic braking
system using a car mounted with radar and camera. Srinivasa et al. [15] proposed an im-
proved CWS combining data from a forward-looking camera and a radar. Although these
sensors have high accuracy, they cannot work robustly in bad weather such as rain, snow,
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and fog and effectively identify dangerous vehicles in visual blind areas. Many advanced
algorithms have been proposed to overcome the defects of the sensors [16,17]. However,
these algorithms are always limited to particular scenarios, e.g., lane changing [18] and
turning [19].

CCWS is an effective solution to this issue, which combines traditional CWS with
vehicle-to-infrastructure (V2I) communication and V2V communication [20]. In CCWS, the
sensor defects of a single vehicle are supplemented by acquiring information from other ve-
hicles or infrastructures. A V2V-based system shares information among the on-board units
(OBU) of vehicles. In V2I systems, accidents and hazardous events are detected by roadside
units (RSU) and sent to the OBUs of vehicles [21]. Since vehicles can communicate directly
through V2V without dependence on infrastructures, it is more suitable for CWS than V2I.
Yang et al. [22] proposed a novel FCWS, which used license plate recognition and vehicle-
to-vehicle (V2V) communication to warn the drivers of both vehicles. Xiang et al. [23]
proposed an FCWS based on dedicated short-range communication (DSRC) and the global
positioning system (GPS). Yang et al. [24] proposed an FCWS combining differential global
positioning system (DGPS) and DSRC. Patra et al. [25] proposed a novel FCWS, in which
GPS provides the relative positioning information, and vehicles communicate through
a vehicular network integrated with smartphones. In general, CCWS can overcome the
limitations of the in-vehicle sensor-based CWS by sharing information such as vehicle
speed, location, and angle to surrounding vehicles. However, the current V2V based CWSs
implement relative positioning and communication separately using different technologies,
e.g., predicting collision warning based on radars but communicating through WIFI, which
may affect the real-time performance.

To address this issue, the UWB-based CCWS seamlessly combines CWS and V2V with-
out delay. UWB is a communication technology that uses nanosecond narrow pulse signal
to transmit data and to measure distances, which has become an effective transmission
technology in location-aware sensor networks [26]. Inherently, the UWB-based ranging
technology has the advantages of high time resolution and can achieve centimeter-level
ranging accuracy [27]. UWB is more adaptable to different environments than traditional
sensors used in CWS [28]. There has also been some research on UWB-based CCWS.
Sun et al. [29] proposed a UWB/INS (Inertial Navigation System)-based automatic guided
vehicle (AGV) collision avoidance system. Liu et al. [30] designed a vehicle collision-
avoidance system based on UWB wireless sensor networks. Marianna et al. used UWB to
obtain distance information and calculated the collision time to provide collision warnings
for workers [31]. Kianfar et al. presented a CWS for the underground mine, which predicted
collisions using distances between workers and the mining vehicle measured by UWB [32].
In summary, the existing UWB-based CCWS mainly has two technical routes, which are
based on absolute positioning and relative positioning, respectively. The former is hard
to popularize due to the small coverage area and high cost of base stations. For the latter,
most of the existing research only considers the relative distance between targets rather
than the position and ignores the information such as relative velocity and orientation.

To deal with the above problems, a CCWS based on UWB and DR is proposed in this
paper. In the proposed system, relative positioning and communication are implemented
by UWB simultaneously, which contributes to better real-time performance. Four UWB
modules are installed on each vehicle, which makes it possible to calculate not only two-
dimension (2D) relative positions but also relative orientations. An over-constrained
method is proposed to improve the positioning/directing accuracy. Then, the accuracy
and stability of the system are further improved, and the TTC can be estimated with the
integration of DR.

This paper is organized as follows: In Section 2, the three subsystems of CCWs are
introduced. Section 3 carries on a simulation to evaluate the performance of the system.
In Section 4, we conduct experiments and analyze the results. Finally, we summarize the
conclusions in Section 5.
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2. Algorithm and Modeling

The CWS consists of three parts, the UWB-based relative positioning and directing
system, the DR system based on wheel-speed sensors, and the TTC estimation system. In
the following sections, the UWB-based relative positioning/directing system is shortened
to the UWB system. In this section, the UWB and DR subsystems are established. Then, an
EKF-based fusion algorithm is proposed to integrate UWB with DR, which significantly
improves the accuracy of relative position, orientation, and velocity. Finally, the TTC
estimation method in several different collision scenarios is put forward.

2.1. The Relative Positioning and Directing System

According to the vehicle axis system regulated by ISO 8855: 2011 [33], as shown in
Figure 1, the origin is located at the automotive rear axle center. The X-axis points to the
forward of the vehicle, and the Y-axis points to the left. In this paper, all proposed systems
are established based on this axis system.

Figure 1. Vehicle axis system.

Figure 2 shows the UWB system model. XOY represents the coordinate system of
vehicle 1. X’O’Y’ represents the coordinate system of vehicle 2. Points 1, 2, 3, and 4 represent
the UWB modules on vehicle 1, and points M, N, P, and Q represent the UWB modules on
vehicle 2. The coordinate of each UWB module in its own vehicle axis system is known
when installed. As Figure 2, XK = [xK, yK]

T is defined as the position of module K in the
axis system of vehicle 1 and X′

K = [x′K, y′K]
T is defined as the position of module K in the

axis system of vehicle 2, where K =
(
1, 2, 3, 4, M, N, P, Q, C, O, O′).

 
Figure 2. The UWB based relative positioning system model.

With the distances measured by UWB and the coordinates of UWB modules, the
relative position and orientation [x, y, β]T can be calculated. [x, y]T is the position of
vehicle 2 in the axis system of vehicle 1. β is the relative orientation, which means the
intersection angle of the two vehicles’ driving directions.
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As the ranging precision of UWB is very sensitive to NLOS, not all UWB modules are
necessary at the same time. Therefore, only four modules, two on each vehicle, in LOS are
picked at the same time. The other modules are used to help distinguish multiple solutions.
On account of the high time resolution and low multipath effect of UWB signals, it is not
complex to distinguish NLOS and LOS signals.

Figure 2 shows a typical driving scenario. Vehicle 2 is changing lanes to the front of
vehicle 1. Apparently, rear-end collision risk exists if vehicle 1 drives faster than vehicle
2 and does not brake. Since the CWS is especially necessary in this condition, we take it
as an example to interpret our algorithm. In this case, points 1, 2, M, and N are in LOS.
Define d1, d2, d3, and d4 as the real distances shown in Figure 2, and d̂1, d̂2, d̂3, and d̂4
as the corresponding measurements ranged by UWB. Other known parameters include
X1 = [x1, y1]

T , X2 = [x2, y2]
T , X′

M =
[
x′M, y′M

]T , X′
N =

[
x′N , y′N

]T . Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d1 =
√
(xM − x1)

2 + (yM − y1)
2

d2 =
√
(xM − x2)

2 + (yM − y2)
2

d3 =
√
(xN − x1)

2 + (yN − y1)
2

d4 =
√
(xN − x1)

2 + (yN − y1)
2

. (1)

As d1, d2, d3, and d4 are unknown, d̂1, d̂2, d̂3, and d̂4 are substituted into Equation (1)
for the estimated positions of M and N, X̂M = [x̂M, ŷM]T and X̂N = [x̂N , ŷN ]

T . Then, the
estimated distance between M and N can be calculated by Equation (2).

d̂5 =

√
(x̂M − x̂N)

2 + (ŷM − ŷN)
2 (2)

However, when UWB modules are installed, the real distance between M and N is a
determined constant, which can be calculated by Equation (3).

d5 =

√(
x′M − x′N

)2
+
(
y′M − y′N

)2 (3)

When ranging error exists, d̂5 �= d5. In order to get the least square (LS) solutions that
could better meet all the distances, we rewrite Equation (1) as Equation (4).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 =
√
(xM − x1)

2 + (yM − y1)
2

d2 =
√
(xM − x2)

2 + (yM − y2)
2

d3 =
√
(xN − x1)

2 + (yN − y1)
2

d4 =
√
(xN − x1)

2 + (yN − y1)
2

d5 =
√
(xM − xN)

2 + (yM − yN)
2

(4)

Significantly, it is an overdetermined nonlinear equation set with five equations and
four unknowns. When ranging error exists, the equation set does not have exact solutions.
We define function g as shown in Equation (5).
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g(xM, yM, xN , yN) =

(
d̂1 −

√
(xM − x1)

2 + (yM − y1)
2
)2

+

(
d̂2 −

√
(xM − x2)

2 + (yM − y2)
2
)2

+

(
d̂3 −

√
(xN − x1)

2 + (yN − y1)
2
)2

+

(
d̂4 −

√
(xN − x2)

2 + (yN − y2)
2
)2

+

(
d̂5 −

√
(xM − xN)

2 + (yM − yN)
2
)2

(5)

Then, the positioning algorithm is converted to an optimization problem with the opti-
mized objective function g. According to the first-order necessary condition of optimization
problems, the partial derivative of the function g should be zero, which is

∂g
∂xM

=
∂g

∂yM
=

∂g
∂xN

=
∂g

∂yN
= 0. (6)

Several sets of local optimal solutions may be derived from Equation (6). Define[
x∗M, y∗M, x∗N , y∗N

]
as the global LS solution that minimizes the objective function g. Then,

we have
[x∗M, y∗M, x∗N , y∗N ]

T = argmin[g(xM, yM, xN , yN)]. (7)

The solutions of Equation (7) are much more accurate than those of Equation (1). It
will be proved later by simulation in Section 3. When no real solutions can be solved from
Equation (7), we can go back to Equation (1) for solutions instead.

In the example scenario, we can get two sets of solutions that are symmetric about
the line determined by point 1 and point 2, as shown in Figure 3. Dealing with this,
ranging information between other UWB modules can be drawn. For example, in Figure 3,
distances M4 and Q2 can be used to distinguish the two sets of solutions.

Figure 3. Two sets of solutions.

After
[
x∗M, y∗M, x∗N , y∗N

]
is solved, the relative orientation β and position [x, y]T can be

derived as
β = atan2(yM − yN , xM − xN)− π

2[
x
y

]
=

[
x∗
y∗

]
−
[

cos(β) − sin(β)
sin(β) cos(β)

][
x′
y′

]
(8)
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where
[

x∗
y∗

]
= 1

2

[
x∗M + x∗N
y∗M + y∗N

]
,

[
x′
y′

]
= 1

2

[
x′M + x′N
y′M + y′N

]
, atan2(y, x) =

2arctan
(

y√
x2+y2+x

)
.

2.2. The DR System Based on Wheel Speed Sensors

The proposed system consists of four wheel-speed sensors, which are installed on the
rear wheels of two vehicles. According to the Ackerman steering model shown in Figure 4,
the instantaneous center of a vehicle is located on the line of the rear axle. The velocity v,
yaw rate ω, and tuning radius r can be derived as shown in Equation (9).⎧⎪⎨⎪⎩

v = vr+vl
2

ω = vr−vl
L

r = v
ω

(9)

where vr denotes the speed of the right wheel, vl represents the speed of the left wheel, and
L indicates the rear wheelbase.

Figure 4. Ackerman steering model.

Then, the position [xt+Δt, yt+Δt]
T and yaw angle yawt+Δt of the vehicle in the global

axis system at time t + Δt can be reckoned by [xt, yt]
T , vt, and yamt at time t as shown in

Equation (10). ⎡⎣ xt+Δt
yt+Δt

yawt+Δt

⎤⎦ =

⎡⎣ xt + vtΔt cos(yawt)
yt + vtΔt sin(yawt)

yawt + ωΔt

⎤⎦ (10)

2.3. The EKF Based UWB/DR Fusion Model

We define Xk as the state vector at time k. It contains the relative position/orientation
Pk = [xk, yk, βk]

T, as well as yaw rates and velocities of the two vehicles Sk =
[
ω1k , ω2k , v1k , v2k

]T,
which can be expressed as Equation (11).

Xk =
[
xk, yk, βk, ω1k , ω2k , v1k , v2k

]T (11)

We define Δt as the time period from time k − 1 to time k. Xk can be predicted by
Xk−1 based on the relative kinematics model shown in Figure 5. The state equation can be
expressed on the basis of Equation (10) as Equation (12).
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Figure 5. The relative kinematic model.

Xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk
yk
βk

ω1k
ω2k
v1k
v2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f (Xk−1, W) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C cos(θ) + D sin(θ)
−C sin(θ) + D cos(θ)

βk−1 − θ + ω2k−1 Δt + 1
2 Wω2 Δt2

ω1k−1 + Wω1 Δt
ω2k−1 + Wω2 Δt
v1k−1 + Wv1 Δt
v2k−1 + Wv2 Δt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where
C = xk−1 − v1k−1 t + v2k−1 cos(βk−1)Δt − Wv1 ωΔt2/2 + Wv2 cos(βk−1)Δt2/2,

D = yk−1 + v2k−1 sin(βk−1)Δt + Wv2 sin(βk−1)Δt2/2,

θ = ω1k−1 Δt + Wω1 Δt2/2.

Then, the transition matrix of the state vector A can be derived as Equation (13).

A =
∂ f
∂X

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ) sin(θ) A1,3 A1,4 0 − cos(θ)Δt A1,7
− sin(θ) cos(θ) A2,3 A2,4 0 sin(θ)Δt A2,7

0 0 1 −Δt Δt 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where
A1,3 = −cos(θ)sin(βk−1)v2k−1 Δt + sin(θ)cos(βk−1)v2k−1 Δt,

A1,4 = −Csin(θ)Δt + Dcos(θ)Δt,

A1,7 = cos(θ)cos(βk−1)Δt + sin(θ)sin(βk−1)Δt,

A2,3 = sin(θ)sin(βk−1)v2k−1 Δt + cos(θ)cos(βk−1)v2k−1 Δt,

A2,4 = −Ccos(θ)Δt − Dsin(θ)Δt,

A2,7 = −sin(θ)cos(βk−1)Δt + cos(θ)sin(βk−1)Δt.

Similarly, the transition matrix of process noise is:

G =
∂ f
∂W

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1,1 0 G1,3 G1,4
G2,1 0 G2,3 G2,4

−Δt2/2 Δt2/2 0 0
Δt 0 0 0
0 Δt 0 0
0 0 Δt 0
0 0 0 Δt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)
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where
G1,1 = [−Csin(θ) + Dcos(θ)]Δt2/2,

G1,3 = −cos(θ)Δt2/2,

G1,4 = [cos(θ)cos(βk−1) + sin(θ)sin(βk−1)]Δt2/2,

G2,1 = [−Ccos(θ)− Dsin(θ)]Δt2/2,

G2,3 = sin(θ)Δt2/2,

G2,4 = [−sin(θ)cos(βk−1) + cos(θ)sin(βk−1)] Δt2/2.

The error covariance matrix Q of process noise consists of error covariances of speeds
and yaw rates, that is:

Q = cov(W) =

⎡⎢⎢⎣
σ2

ω1
0 0 0

0 σ2
ω2

0 0
0 0 σ2

v1
0

0 0 0 σ2
v2

⎤⎥⎥⎦. (15)

Thus, the predicting process of the model is:

X̂−
k = f

(
X̂k−1

)
P−

k = APk−1 A + GQG.
(16)

We define Zk as the observation vector, containing the relative position and orienta-
tion of vehicle 2 measured by the UWB system, four wheel-speeds measured by the DR
system, and the observation noise Vk. Then, the observation equation can be expressed as
Equation (17).

Zk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xUWB,k
yUWB,k
βUWB,k

vr1,k
vl1,k
vr2,k
vl2,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= HXk + Vk (17)

Referring to Equation (9), the velocities and yaw rates of the two vehicles can be
expressed by the velocities measured by wheel-speed sensors as Equation (18).⎡⎢⎢⎣

v1r
v1l
v2r
v2l

⎤⎥⎥⎦ =

⎡⎢⎢⎣
L1/2 0 1 0
−L1/2 0 1 0

0 L2/2 0 1
0 −L2/2 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

ω1
ω2
v1
v2

⎤⎥⎥⎦ (18)

Then, the Jacobian matrix H is obtained as Equation (19).

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 L1/2 0 1 0
0 0 0 −L1/2 0 1 0
0 0 0 0 L2/2 0 1
0 0 0 0 −L2/2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

The estimating process is:

Kk = P−
k HT(HP−

k HT + R
)−1

X− = X̂−
k + Kk

(
Zk − HX̂−

k
)

Pk = P−
k − Kk HP−

k .

(20)
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In Equation (20), R represents the error covariance matrix of Zk. It can be divided into
the error covariance matrix of the UWB system RUWB and the error covariance matrix of
the DR system RDR. That is:

R = cov(Vk) =

[
RUWB 0

0 RDR

]
, (21)

where RUWB =

⎡⎢⎣ σ2
x 0 0

0 σ2
y 0

0 0 σ2
β

⎤⎥⎦, RDR =

⎡⎢⎢⎣
σ2

vr1
0 0 0

0 σ2
vl1

0 0
0 0 σ2

vr2
0

0 0 0 σ2
vl2

⎤⎥⎥⎦.

RDR is decided by measurement errors of the wheel-speed sensors directly, whereas
RUWB is decided by positioning and directing errors, which is indirectly decided by the
ranging error of UWB modules. Define D = [d1, d2, d3, d4]. On the basis of Equation (5), we
can derive the relationship between the deviation D and the deviation of UWB modules’
position XM and XN as Equation (22). d5 is ignored because it is not a measurement but a
constant, which means dd5 = 0.

dD =

⎡⎢⎢⎣
dd1
dd2
dd3
dd4

⎤⎥⎥⎦ =
∂D

∂(xM, yM, xN , yN)

⎡⎢⎢⎣
dxM
dyM
dxN
dyN

⎤⎥⎥⎦ = FD

⎡⎢⎢⎣
dxM
dyM
dxN
dyN

⎤⎥⎥⎦, (22)

FD can be derived as Equation (23).

FD =

⎡⎢⎢⎢⎢⎣
xM−x1

d1

yM−y1
d1

0 0
xM−x2

d2

yM−y2
d2

0 0
0 0 xN−x1

d3

yN−y1
d3

0 0 xN−x2
d4

yN−y2
d4

⎤⎥⎥⎥⎥⎦. (23)

where d1 = d̂1, d2 = d̂2, d3 = d̂3, d4 = d̂4, xM = x∗M, yM = y∗M, xN = x∗N , yN = y∗N .
From Equation (8), we can get the relationship between the deviation of the vehicle

position and orientation XUWB = [x, y, β] and the deviation of the UWB modules’ position
XM and XN as Equation (24).

dXUWB =

⎡⎣ x
y
β

⎤⎦ =
∂XUWB

∂(xM, yM, xN , yN)

⎡⎢⎢⎣
dxM
dyM
dxN
dyN

⎤⎥⎥⎦ = FXUWB

⎡⎢⎢⎣
dxM
dyM
dxN
dyN

⎤⎥⎥⎦. (24)

FXUWB can be derived as Equation (25).

FXUWB =

⎡⎢⎣ F1,1 F1,2 F1,3 F1,4
F2,1 F2,2 F2,3 F2,4

− (yM−yN)

d2
5

(xM−xN)

d2
5

(yM−yN)

d2
5

− (xM−xN)

d2
5

⎤⎥⎦, (25)

where
F1,1 = 1/2 +

[
x′M cos(β)− y′M sin(β)

]
(yM − yN)/d2

5,

F1,2 = −[
x′M cos(β)− y′M sin(β)

]
(xM − xN)/d2

5,

F1,3 = 1/2 − [
x′M cos(β)− y′M sin(β)

]
(yM − yN)/d2

5,

F1,4 =
[
x′M cos(β)− y′M sin(β)

]
(xM − xN)/d2

5,

F2,1 =
[
y′M cos(β) + x′M sin(β)

]
(yM − yN)/d2

5,

F2,2 = 1/2 − [
y′M cos(β) + x′M sin(β)

]
(xM − xN)/d2

5,
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F2,3 = −[
y′M cos(β) + x′M sin(β)

]
(yM − yN)/d2

5,

F2,4 = 1/2 +
[
y′M cos(β) + x′M sin(β)

]
(xM − xN)/d2

5,

x′MN =
(
x′M + x′N

)
/2, y′MN =

(
y′M + y′N

)
/2,

xM = x∗M, yM = y∗M, xN = x∗N , yN = y∗N .

Then, RUWB can be expressed as Equation (26).

RUWB = FXUWB

(
FT

DFD

)−1
FT

DRDFD

(
FT

DFD

)−1
FT

XUWB
, (26)

where RD = diag
(

σ2
d1

, σ2
d2

, σ2
d3

, σ2
d4

, σ2
d5

)
is determined directly by UWB ranging

error covariance.

2.4. The Collision Warning Model

CWS mainly works in two ways, headway measurement warning (HMW) and TTC-
based warning [34]. Both of them need to measure the distance to the front vehicle but
estimate the collision time with different speeds as Equation (27).

Headway Collision Time = Headway
vRearVehicle

TTC = Headway
vRearVehicle−vFrontVehicle

(27)

The TTC-based system takes relative velocity into account, so it provides a more
accurate collision warning. In this paper, the proposed system allows vehicles to share
information through UWB, such as velocities. The TTC method is apparently the bet-
ter choice.

Two vehicles driving on the road have the probability of collisions in various types,
such as head-to-head collision, rear-end collision, and side collision. Different kinds of
collisions may happen at different times. That means all cases need to be taken into account
in order to obtain the exact TTC. Before establishing the collision warning model, we
simplified the shape of a vehicle as a rectangle. With this assumption, all kinds of collisions
can be described as point-to-edge collisions. Edge-to-edges collisions and point-to-point
collisions are also covered by point-to-edge collisions, as shown in Figure 6.

 

 
(b) 

(a) (c) 

Figure 6. Collision types. (a) Point-to-edge collision; (b) Edge-to-edge collision; (c) Point-to-point collision.

After unifying different collision types, TTC can be calculated in the same way. We
take the collision type shown in Figure 7 as an example. In this case, the front left corner of
vehicle 2 collides on the right edge of vehicle 1. As we defined in Section 2.1, the coordinate
of a point in the axis system of vehicle 1 is expressed as Xk = [xk, yk]

T , and Xk
′ = [xk

′, yk
′]T

in the axis system of vehicle 2. Ri (i = 1,2,3,4) represents the four corners of vehicle 1.
Fi (i = 1,2,3,4) represents the four corners of vehicle 2. Therefore, the coordinate of Ri
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is XRi =
[
xRi , yRi

]T , which is known by measuring the size of the vehicle 1. Similarly,

X′
Fi
=

[
x′Fi

, y′Fi

]T
is also known by measuring the size of vehicle 2. The relative position

of X = [x, y]T and the relative orientation β are estimated by the UWB/DR system. Then,
the coordinates of vehicle 2′s corners in the axis system of vehicle 1 can be derived as
Equation (28). [

XF1 , XF2 , XF3 , XF4

]
= R

[
X′

F1
, X′

F2
, X′

F3
, X′

F4

]
+ X[1, 1, 1, 1] (28)

where R =

[
cos(β) − sin(β)
sin(β) cos(β)

]
.

 

Figure 7. The collision warning model.

We define all the points at the collision time as RCi and FCi , and their coordinates

as XRCi
=

[
xRCi

, yRCi

]T
, XFCi

=
[

xFCi
, yFCi

]T
. The velocity vectors of the two vehicles are

known for the UWB/DR system, which are VR = [vR cos(βR), vR cos(βR)]
T (βR = 0) and

VF = [vF cos(βF), vF sin(βF)]
T (βF = β). Assume that point Fi collides on the edge between

Rj and Rk at time tFi ,Rjk . Then XFCi
, XRCj

, and XRCk
can be expressed as Equation (29).

XFCi
= XFi + VFtFi ,Rjk

XRCj
= XRj + VRtFi ,Rjk

XRCk
= XRk + VRtFi ,Rjk

(29)

Point Fi collides on the edge between Rj and Rk means Fci is on the segment RCj RCk ,
which can be expressed as Equation (30).

⇀
FCi RCj ·

⇀
FCi RCk = −‖ ⇀

FCi RCj‖‖
⇀

FCi RCk‖ (30)

Solution t of Equation (30) is the collision time under the condition that corners of
vehicle 2 collide on edges of vehicle 1, including 16 different conditions altogether. In
the other 16 cases in which the corners of vehicle 1 collide on the edges of vehicle 2, the
collision times can be calculated similarly. Thirty-two collision times can be calculated in
total. Ignoring negative values, the minimum of the rest value is TCC. That is:

TTC = min
(

tRi ,Fjk , tFi ,Rjk

)
, (i = 1, 2, 3, 4; jk = 12, 23, 34, 41),

tRi ,Fjk ≥ 0, tFi ,Rjk ≥ 0.
(31)

When TTC → ∞ or TTC < 0, there is no risk of collision.
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3. Simulation

In this section, simulation is conducted to evaluate our algorithm. Firstly, the accuracy
of the UWB positioning and directing system is validated by comparing the algorithm with
and without the constraint of d5. Secondly, the accuracy of the UWB/DR fusion model
based on EKF is compared to the accuracy of UWB and DR separately. Finally, plenty of
driving scenarios are generated to evaluate the success rate of the CWS.

3.1. Simulation of the Overconstrained UWB Positioning and Directing System

In Section 2.1, a relative positioning/directing algorithm with the constraint of d5
is proposed. Its performance is simulated in this section. Firstly, a driving scenario is
established in the driving scenario designer of MATLAB as shown in Figure 8. The blue
cube represents vehicle 1, and the red cube represents vehicle 2. The lines in blue and
red denote their driving track. Kinematic parameters of vehicle and positions of UWB
modules and wheel sensors in their own vehicle axis system are defined in the model. The
UWB ranging error is set to σd = 0.05 m, and the wheel speed error is set to σv = 0.2 m/s
referring to the sensors we will use in experiments. Calculating results of our algorithm
are compared to the real values exported by the model.

 

Figure 8. The virtual scenario in the driving scenario designer.

Solutions of the algorithm with and without the constraint of d5 are compared in
Figure 9 and Table 1. The improvement of accuracy with the derivation of d5 is very intu-
itive, especially for x and β. In Table 1, the root mean square error (RMSE) is recommended
to compare their accuracy quantitatively.

(a) (b) (c) 

Figure 9. Comparison of relative positioning and directing algorithm with and without the constraint of d5: (a) The relative
longitudinal position x; (b) The relative lateral position y; (c) The relative orientation β.
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Table 1. RMSE of the algorithm with and without d5.

Algorithm RMSEx (m) RMSEy (m) RMSEβ (◦)

With d5 0.70 0.73 46.29
Without d5 0.21 0.58 2.42

3.2. Simulation of the UWB/DR Fusion Algorithm

We also take the scenario in Section 3.1 as an example to validate the performance of
the UWB/DR fusion algorithm. The comparison results are shown in Figure 10 and Table 2.
The proposed UWB/DR fusion method based on EKF significantly improves the accuracy
and stability of positioning and directing.

(a) (b) (c) 

Figure 10. Comparison of positioning and directing performance using UWB and fusion of UWB/DR: (a) The relative
longitudinal position x; (b) The relative lateral position y; (c) The relative orientation β.

Table 2. RMSE of position and orientation estimated by UWB and UWB/DR.

Algorithm RMSEx (m) RMSEy (m) RMSEβ (◦)

UWB 0.21 0.58 2.42
UWB + DR (EKF) 0.06 0.17 0.83

Figures 11 and 12 and Table 3 compare the accuracy of yaw rates and velocities
estimated by UWB/DR to DR. They are improved significantly as well, which contributes
to the better prediction accuracy of TTC in the next section.

 
(a) (b) 

Figure 11. Comparison of yaw rates measured by DR and estimated by UWB/DR: (a) Yaw rate of vehicle 1; (b) Yaw rate of
vehicle 2.
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(a) (b) 

Figure 12. Comparison of velocities measured by DR and estimated by UWB/DR: (a) Velocity of vehicle 1; (b) Velocity of
vehicle 2.

Table 3. RMSE of velocities and yaw rates estimated by DR and UWB/DR.

Algorithm RMSEω1 (◦/s) RMSEω2 (◦/s) RMSEv1 (m/s) RMSEv2 (m/s)

DR 8.92 8.71 0.14 0.15
UWB + DR (EKF) 5.07 4.60 0.12 0.08

3.3. Simulation of CWS based on TTC Estimation

In this section, we generate plenty of driving scenarios with different velocities, relative
positions, and relative orientations, as shown in Figure 13. The ranges of parameters are
set as outlined in Table 4.

 

Figure 13. TTC simulating scenarios.

Table 4. Ranges of parameters in TTC simulation.

Parameters Range

v1&v2 (km/h) 0~75
x (m) −200~200
y (m) −15~15
β (◦) 0~360

TTCreal is certain when a scenario is established, and TTCest estimated by CWS is
calculated every 10 ms. The collision warning threshold is set to 3.0 s. It means that when
TTCest ≤ 3.0 s, the CWS will send an alert. TTCerr = TTCest – TTCreal denotes the TTC error
at the warning time as Figure 14.
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Figure 14. TTC estimation error.

In order to guarantee driving safety, we set 2.7 s as the latest warning time. If the
system does not work when the vehicle is colliding within 2.7 s, the collision warning
evaluation is failed. In addition, in order not to disturb the driver too much, if the system
sends alerts when vehicles have no risk of collision within 4 s, we regard the warning as
false. Then, TTCerr can be divided into three conditions corresponding to three evaluations
of collision warning as Equation (32).

TTCerr

⎧⎪⎨⎪⎩
> 0.3 Failed
∈ [−1, 0.3] Correct
< −1 False

(32)

• “Failed” denotes warning too late or not warning;
• “Correct” denotes warning in the proper time period;
• “False” denotes warning too early or warning by mistake.

The scenario marked with gray background is the typical rear-end collision scenario,
which is the most critical function of a collision warning system. One hundred and ninety-
six rear-end collision scenarios are generated, and Table 5 shows the results. In all the
196 simulation scenarios, two of them behave false, which means that the collision warning
is triggered too early. All of the others perform correctly. It shows the reliability of the
proposed CWS in the most common rear-end collision scenarios.

Table 5. Collision warning evaluation in rear-end scenarios.

Evaluation Quantity

Failed 0
Correct 194

False 2

Then, we emulate other scenarios in which two vehicles drive in any lanes from
any positions to any directions defined in Figure 13 and Table 4. Results are shown in
Table 6. The scenarios with initial TTCreal less than 3 s will not be considered. In the remaining
10,823 scenarios, 10,593 of them perform correctly. The collision warning success rate is 97.9%.
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Table 6. Collision warning evaluation in random scenarios.

Evaluation Quantity

Failed 0
Correct 10,596

False 227

4. Experiments

In this section, experiments are divided into two parts: straight driving experiments
and curved driving experiments. The straight driving experiments are conducted referring
to JT/T883-2014, which describes the standard experiments for FCWS, published by the
Ministry of Transport of the People’s Republic of China (MOT). As JT/T883-2014 only
regulates straight driving experiments, to further validate the performance of our system,
curved driving experiments are conducted in addition. Since the CWS is implemented
based on the UWB/DR relative positioning/directing system, the positioning/directing
accuracy can reflect the performance of the CWS. Therefore, in the curved experiments,
we drive through complex routes and compare the positioning/directing accuracy to the
parameters of a commercial millimeter-wave radar (MMWR) used for collision warning.

4.1. Experimental Equipment and Environment

Figure 15 shows the equipment used in the experiments. Two vehicles are required
in the experiments for relative positioning and directing. UWB modules are installed on
the corners of the vehicles. Four wheel-speed sensors designed by our team are installed
on the centers of the wheels. The wheel-speed measurements are transmitted to a receiver
inside the vehicle wirelessly, which receives the velocity information from the four wheels
and then sends it to the controller area network (CAN) bus. In the proposed system, only
the speeds of the rear wheels are used. UWB modules are also developed by our team
based on DW1000. Two vehicles share data through UWB. All data are transferred to the
CAN bus and recorded by the computer using a USB-CAN adapter. A computing terminal
receives sensor data from the CAN bus and calculates the relative position, direction,
velocity, and TTC. Results from the computing terminal are compared to the measurement
of a high-precision integrated positioning system, which combines dual-antenna real-time
kinematic (RTK)-GPS and INS. The long-range radio (LoRa) antenna is used to receive
differential signals from the RTK-GPS base station, which is installed in the testing ground.
A total station is used to measure the relative coordinates of the UWB modules to the main
RTK-GPS antenna. It should be noted that the main GPS antenna is not right above the
center of the rear wheels. The deviation needs to be derived from measurements of the
total station and compensated in the algorithm.

 

Figure 15. Experimental Equipment.

Figure 16 shows the testing ground in which we conduct experiments. The driving
routes of the two types of experiments are also marked in Figure 16.
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Figure 16. The testing ground and vehicle driving routes.

4.2. Straight Driving Experiments

According to JT/T883-2014 [35], experiments for FCWS consist of three tests. Each
test needs repeating seven times. Only if five of them were passed, and no two consecutive
failed tests exist could the test be evaluated as passed. In the standard experiments, the
headway distances, velocities, and accelerations of vehicles need controlling around specific
values, so we design software as shown in Figure 17, with necessary parameters displayed,
which helps drivers better control vehicles and records necessary data. The TTC derived
from the data of the RTK-GPS/INS is recognized as real TTC.

 

Figure 17. Vehicle state display software.

4.2.1. Test 1

Test 1 is designed as shown in Figure 18. The rear vehicle drives at the speed of
72 km/h toward the parked front vehicle from an inertial headway distance of 150 m. If
the collision warning system is triggered before the real TTC is 2.7 s, the test is passed.
Otherwise, the test is failed.
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Figure 18. Test 1 in the straight driving experiments.

4.2.2. Test 2

Test 2 is designed as shown in Figure 19. The rear vehicle drives at the speed of
72 km/h toward the front vehicle, which drives at the speed of 32 km/h, from an initial
headway distance of 150 m. If the collision warning system is triggered before the real TTC
is 2.1 s, the test is passed. Otherwise, the test is failed.

 

Figure 19. Test 2 in the straight driving experiments.

4.2.3. Test 3

Test 3 is designed as Figure 20. The rear vehicle drives at the speed of 72 km/h
toward the front vehicle, which drives at the speed of 32 km/h and decelerates with the
acceleration of −0.3 g. If the collision warning system is triggered before the real TTC is
2.4 s, the test is passed. Otherwise, the test is failed.

 

Figure 20. Test 3 in the straight driving experiments.

4.2.4. Results Analysis of the Straight Driving Experiments

During each test, two TTC values are calculated: (1) TTCreal, which is derived from the
RTK-GPS/INS information; (2) TTCCWS, which is estimated using the UWB/DR measure-
ments. Since the terminating conditions in the three experiments are different, to satisfy all
the three tests and reserve some margin, we set the warning TTCCWS to 3.0 s. The software
in Figure 17 will send a warning when either TTCreal or TTCCWS reaches its marginal value.
If TTCreal reaches the regulated marginal value when TTCCWS is still greater than 3.0 s, the
test is terminated and evaluated as failed. In the standard, only the minimum threshold of
the collision warning time is regulated, whereas the maximum threshold is not. In other
words, the standard only cares about “how safe” the warning is, with no consideration
of “how accurate” it is. However, as we explained in Section 3, too early warnings are
annoying and offensive, so we set 4.0 s as the upper limit. If the CWS is triggered when
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TTCreal > 4.0 s, we also regard the test as failed. According to JT/T883-2014, each test needs
repeating seven times. Tables 7–9 show the results of the three tests, respectively.

Table 7. Results of Test 1.

1 2 3 4 5 6 7

TTC(CWS) 2.9987 2.9907 2.9759 2.9814 2.9729 2.9722 2.9799
TTC(Real) 3.0047 3.0069 2.9925 2.9963 2.9902 3.0136 3.0219
Evaluation Pass Pass Pass Pass Pass Pass Pass

Table 8. Results of Test 2.

1 2 3 4 5 6 7

TTC(CWS) 2.9863 2.9810 2.9987 2.9804 2.9954 2.9899 2.9673
TTC(Real) 3.0423 3.1166 3.0245 3.0354 3.1283 3.1269 3.0226
Evaluation Pass Pass Pass Pass Pass Pass Pass

Table 9. Results of Test 3.

1 2 3 4 5 6 7

TTC(CWS) 2.9782 2.9905 2.9947 2.9789 2.9942 2.8623 2.8958
TTC(Real) 2.7560 2.8110 2.7877 2.6851 2.6511 2.5831 2.8975
Evaluation Pass Pass Pass Pass Pass Pass Pass

According to Tables 7–9, all the tests were passed, which proves that the proposed
system can satisfy the requirement of MOT and has the ability to provide collision warning
for vehicles in time.

4.3. Curved Driving Experiments

JT/T883-2014 only regulates the straight driving experiments but does not request or
give advice to curved driving experiments. However, to further validate the superiority
of our system, we conduct curved driving experiments and compare its accuracy to a
commercial MMWR, Aptiv (Electronically Scanning RADAR) ESR 2.5, which is used in
CWS. The MMWR measures the relative distance, relative azimuth, and relative velocity.
Table 10 shows the accuracy of Aptiv ESR 2.5 according to its datasheet. ρ, θ, and v
represent the relative distance, azimuth angle, and velocity, respectively. The MMWR has
two working modes, middle-distance mode and long-distance mode, and the accuracies
are different.

Table 10. The accuracy of the MMWR.

Mode Coverage (m) RMSEρ (m) RMSEθ (◦) RMSEv (m/s)

Middle Distance 50 0.25 1 0.12
Long Distance 100 0.5 0.5 0.12

In order to facilitate comparison, the curved experiments are also divided into a
middle-distance experiment under vehicle distances within 50 m and a long-distance
experiment under vehicle distances within 100 m. The estimated values of the relative
position [x, y] are converted to the polar coordinate [ρ, θ], and the velocities of the two
vehicles [v1, v2] are converted to the relative velocity v, as shown in Figure 21. In addition,
the relative orientation β cannot be measured by MMWR directly.

4.3.1. Middle-Distance Experiments

The proposed CWS and MMWR are all dynamic systems, so the vehicle distance is
not kept to a constant value but changes in the experiment. During the middle-distance
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experiment, the vehicle distance changes between 10 and 50 m. In our system, the vehicle
distance represents the distance between the real axle centers of the two vehicles, so it
cannot be zero.

 

Figure 21. The transformation from Cartesian coordinates to polar coordinates.

4.3.2. Long-Distance Experiments

During the long-distance experiment, the vehicle distances change between 10 and 100 m.

4.3.3. Results Analysis of the Curved Experiments

According to Figures 22 and 23, the accuracy of the proposed system improves signif-
icantly after fusion, which reaches the same conclusion as the simulation results shown
in Figure 12. The relative position is described as Cartesian coordinate [x, y] in the sim-
ulation but as polar coordinate [ρ, θ] in the experiments. Both x and y improve after
fusion as shown in Table 2, whereas only θ without ρ improves after fusion according to
Tables 11 and 12. That is because the accuracy improvement of θ can contribute to better
accuracy of both x and y, as Figure 21. Therefore, the experimental results are consistent
with the simulation. The comparison result of the proposed system and the MMWR is
shown in Table 13, which combines Tables 11 and 12 with Table 10.

Table 11. The accuracy of the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

No Fusion 0.14 0.76 0.22 1.84
Fusion 0.14 0.31 0.11 0.39

Table 12. The accuracy of the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

No Fusion 0.18 0.77 0.22 1.86
Fusion 0.17 0.31 0.12 0.40

Table 13. Accuracy comparison of the proposed system and the MMWR.

Mode System RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

Middle
Distance

MMWR 0.25 1 0.12 None
Proposed System (No Fusion) 0.14 0.76 0.22 1.84

Proposed System (Fusion) 0.14 0.31 0.11 0.39

Long
Distance

MMWR 0.5 0.5 0.12 None
Proposed System (No Fusion) 0.18 0.77 0.24 1.86

Proposed System (Fusion) 0.17 0.31 0.12 0.40
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(a) (b) 

 
(c) (d) 

Figure 22. The results of the middle-distance experiments. (a) Relative distance; (b) Relative azimuth
angle; (c) Relative velocity; (d) Relative orientation.

 

(a) (b) 

 
(c) (d) 

Figure 23. The results of the long-distance experiments. (a) Relative distance; (b) Relative azimuth
angle; (c) Relative velocity; (d) Relative orientation.
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The distance accuracy of the proposed system is always much better than the MMWR,
no matter with or without fusion. The azimuth accuracy without fusion is about 0.76◦ in
both experiments, which is better than the middle-distance MMWR but is inferior to
the long-distance MMWR. However, velocity accuracy without fusion is worse than the
MMWR in both modes. As for the fusion system, the accuracy of relative distance and
azimuth performs significantly better than the MMWR, and the relative velocity accuracy
also improves to a similar level as the MMWR in both middle and long-distance modes.
Table 14 shows the accuracy enhanced rates of the proposed system to the MMWR.

Table 14. Enhanced rate of the proposed system to the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s)

Middle Distance 44% 69% 8%
Long Distance 66% 38% 0%

In addition, the proposed system can provide the relative orientation, which is not
available directly in the MMWR system.

5. Conclusions

In this paper, we proposed a CWS combining UWB and DR. An improved relative
positioning/directing algorithm based on UWB is presented, and a DR model based on the
speeds of the rear wheels is established. Then, a fusion algorithm using EKF is proposed
to improve the accuracy of relative position, orientation, and velocity. Afterwards, the
advantage of the proposed system is preliminarily verified by simulation. Finally, experi-
ments are conducted to further validate the performance of our system, and the experiment
results are compared to a commercial MMWR used in CWS. The main conclusions are
summarized as follows:

• The proposed relative positioning/directing algorithm with an additional distance
constraint significantly improves the relative positioning/directing accuracy, espe-
cially the directing accuracy, as shown in Figure 9 and Table 1.

• The fusion method significantly improves the relative positioning/directing accu-
racy and slightly improves the velocity accuracy according to the simulation and
experiment results.

• The proposed CWS passes the regulated tests in JT/T883-2014 published by MOT,
which proves the feasibility of the proposed system.

• In middle-distance mode up to 50 m, compared to the MMWR, the proposed system
improves the relative positioning/directing accuracy by 44%, 69%, and 8%, respec-
tively, in the relative distance, azimuth angle, and velocity. As for in long-distance
mode, the enhanced rate is 66% and 38%, respectively, for the relative distance and
azimuth angle. The relative velocity accuracy of the proposed system is similar to
the MMWR.

• In both middle and long-distance modes, the proposed system can provide relative
orientations with errors no more than 0.4◦ RMSE, which is not available directly
in MMWR systems, but it is very beneficial to the CWS.

The inadequacy of the proposed system is the velocity accuracy. Although it performs
at the same level as MMWR in terms of velocity accuracy, it can be further improved.
To facilitate comparison of the proposed system and the MMWR, the velocity data of
the experiments are shown as relative velocity. We also analyze the accuracy of absolute
velocities of two vehicles. In the middle-distance experiment, RMSEv1 = 0.16 m/s and
RMSEv2 = 0.13 m/s, and in the long-distance experiment, RMSEv1 = 0.16 m/s and
RMSEv2 = 0.16 m/s. Both of them are inferior to the simulation results. It is because the
DR system is established based on a theoretical Ackerman steering model, which ignores
the stiffness of suspensions and tires. In the actual situation, vehicle dynamic parameters
such as side-slip angles will also affect the precision of the algorithm. Therefore, our
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research direction in the future is the system with a more accurate vehicle dynamic model
and with more sensors integrated such as IMU and GPS.
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Abstract: There are many small objects in traffic scenes, but due to their low resolution and limited
information, their detection is still a challenge. Small object detection is very important for the
understanding of traffic scene environments. To improve the detection accuracy of small objects in
traffic scenes, we propose a small object detection method in traffic scenes based on attention feature
fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global
scales to aggregate the effective information of the feature maps. Based on this block, an attention
feature fusion block (AFFB) is proposed, which can better integrate contextual information from
different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection
network and obtain the final network structure. The experimental results show that, compared to the
benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under
the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage
points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the
mAP of small objects by 3.5%.

Keywords: traffic scenes; object detection; multi-scale channel attention; attention feature fusion

1. Introduction

In traffic scenes, the visual perception technology of intelligent vehicles can help
automatic driving systems to perceive complex environments accurately and in time, which
is a requirement for avoiding collisions and for safe driving. With the rapid development
of computer vision technology, vehicle visual perception is increasingly being adopted in
the field of automatic driving. For example, object detection based on deep learning has
played a very important role in the field of automatic driving.

Object detection involves the delineation of the bounding box of an object to be
detected in the given image, and then the determination of the class that the object in the
box belongs to. Due to their large amount of calculations, redundant marker boxes, and
poor robustness of manual features, traditional object detection algorithms are currently
being replaced by their deep learning counterparts. Lightweight real-time object detection
models, such as the “you only look once” (YOLO) algorithm [1–3], the single shot multibox
detector (SSD) algorithm [4], Light-Head R-CNN [5], and ThunderNet [6], have already
demonstrated good detection effects in actual application scenarios.

At present, the prevailing deep learning-based object detection algorithms, such as
YOLOv5 [7], treat each region of the whole feature map equally by default, that is, each
region has the same contribution to the final detection result. This means that they do
not weigh the convolution features extracted from the network according to their position
and importance. However, compared with simple ordinary scenes, there are usually more
complex and rich semantic features around the object to be detected in actual traffic scenes.
If the features of the object area are weighted according to their importance, the objects to
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be detected can be better positioned in the feature map and the detection accuracy and
generalization ability of the model can be improved.

Furthermore, in traffic scenes, there are many small objects in the distance. These
objects offer limited feature information due to their relatively small size, which makes
detection more difficult. Research on small object detection includes a deconvolutional
single shot detector (DSSD) [8], scale normalization for image pyramids (SNIP) [9], high-
resolution detection network (HRDNet) [10], etc. The DSSD algorithm mainly improves
the detection performance of the object detector for small objects by using a better feature
extraction network and adding context information. The SNIP algorithm uses a novel
training scheme, called scale normalization for image pyramids (SNIP), which selectively
back-propagates the gradients of object instances of different sizes as a function of the
image scale to better detect small objects. The HRDNet algorithm feeds high-resolution
input into a shallow network to reserve more positional information while feeding low-
resolution input into a deep network to extract more semantics. By extracting various
features from high to low resolutions, the algorithm improves the detection performance
of small objects as well as maintaining the detection performance of medium and large
objects. These algorithms each have their own advantages and limitations. Improving the
detection of small objects in traffic scenes as much as possible is also one of the current
research hotspots in the field of visual perception for autonomous vehicles. The YOLOv5
model is a milestone object detection method, which achieves a good balance between
accuracy and speed, but it still has the possibility for improvement in small object detection
problems in traffic scenes.

In response to the above problems, in this paper, we first propose an MS-CAB to
alleviate the problems caused by scale changes to small object detection. This block
effectively improves the feature inconsistency between objects at different scales, and at
the same time, focuses attention on the objects in the area that need to be focused on,
which reduces the unnecessary shallow feature information of the background. In other
studies [11,12], the attention mechanism also considers the scale, such as by aggregating
contextual information through convolution kernels of different sizes or from the feature
pyramid inside the attention module. The MS-CAB proposed here aggregates contextual
information along the channel dimensions of the feature map. It can not only focus on large
objects that are distributed globally, but also deal with small objects that are distributed
more locally. This block helps the model to detect and identify objects with extreme size
differences.

Second, based on MS-CAB, an AFFB is proposed that is different from linear fusion
schemes such as addition and concatenation, which are completely context-independent.
The block is non-linear and can better capture the contextual information from different
network layers by fusing features that are inconsistent semantically and in terms of scale.
By replacing the simple addition or concatenation operation with the AFFB, a network
model with fewer parameters and higher detection accuracy can be obtained, and the
detection effect of small objects is improved greatly.

The remainder of this paper is organized as follows: Section 2 introduces the related
works and existing problems of the three topics of object detection, attention mechanisms,
and feature fusion. Section 3 briefly introduces the benchmark model, YOLOv5s, and
then elaborates on the principle and structure of the proposed MS-CAB and the AFFB.
Section 4 presents the experiments and an analysis of the results. The paper ends with our
conclusions and suggestions for future work.

2. Related Works

2.1. Object Detection

Object detection algorithms are mainly divided into one-stage and two-stage methods.
Relatively speaking, one-stage object detection algorithms have better real-time perfor-
mance, but lower accuracy, while two-stage algorithms have better accuracy, but weaker
real-time performance. He et al. proposed a two-stage spatial pyramid pooling network
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(SPPNet) in 2014 [13]. By introducing a spatial pyramid pooling layer, the convolutional
neural network (CNN) can receive inputs of non-fixed size without considering the size of
the region of interest. The SPPNet method was ultimately 20 times faster than R-CNN [14],
with comparable accuracy. Ren et al. proposed Faster R-CNN [15], and the region proposal
network (RPN) candidate box generation algorithm based on Fast R-CNN [16], which
greatly improved the speed of object detection. Besides, Lin et al. proposed feature pyramid
networks (FPN) [17], which solved the multi-scale problem in object detection. Through
a relatively simple network connection change, the detection effect of small objects is
greatly improved while maintaining the original model’s computational load. The YOLO
algorithm [1], which divides the image into multiple regions, formulates the bounding box,
and predicts the probability of an object belonging to a class at the same time, was pro-
posed by Redmon et al. It was the first one-stage object detection algorithm based on deep
learning and started a new approach towards object detection. The author subsequently
proposed the improved versions of YOLOv2 [2] and YOLOv3 [3], which further improved
the detection accuracy while maintaining a relatively high detection speed. Then, Liu et al.
proposed the SSD algorithm [4], which greatly improved the accuracy of object detection
by introducing multi-reference and multi-resolution detection technology, especially for
small objects.

To solve the problem of imbalance between positive and negative categories, Lin et al.
proposed the RetinaNet algorithm [18], in which the focal loss is derived so that the
algorithm can maintain a relatively fast detection speed, while the detection accuracy
can be equivalent to that of two-stage object detection algorithms. Zhu et al. proposed
the feature selective anchor-free (FSAF) module [19], which can be inserted into a one-
stage detector with a feature pyramid structure to enhance the decision feature layer to
which each input instance belongs to make full use of the performance of FPN, and this
method has a high mAP value and little additional computation. Zhou et al. proposed
CenterNet [20], which uses the object center point predicted by the heatmap instead of
the anchor mechanism to predict the object and uses a higher-resolution output feature
map. This network has strong scalability and simple model design, and thus achieves good
results in detection speed and accuracy. Tan et al. proposed EfficientDet [21], which is a
weighted bi-directional feature pyramid network (BiFPN) and a composite scale expansion
method to refresh the mAP of the MS COCO dataset. In the above works, the detection
accuracy of the object detection algorithms was improved to varying degrees. However,
it is more important to make full use of the effective information of the input features to
improve the detection performance of the model, especially the detection accuracy of small
objects in traffic scenes while keeping the number of model parameters and the real-time
performance of the model basically unchanged.

2.2. Attention Mechanism

When facing the external environment, the human visual system can quickly iden-
tify useful information and ignore irrelevant information. This characteristic is gradually
being considered by computer vision researchers. Deep learning’s attention mechanism
first appeared as an imitation of the human visual attention mechanism [22]. Non-local
neural networks were proposed by Wang et al. in one of the important works on attention
mechanisms in the field of computer vision [23]. Non-local operations calculate the re-
sponse at a position as a weighted sum of the features at all positions and establish remote
dependencies through self-attention, and they can also be used as general modules for
various tasks, which can lead to improvements in the model accuracy. The squeeze-and-
excitation network (SENet) [24] proposed by Hu et al. was the first attention mechanism
that focused on the channel level dependencies of the model, and could adaptively adjust
the characteristic response value of each channel. This network won the ImageNet 2017
classification competition and has been recognized as an important advancement in the
field. Woo et al. proposed the convolutional block attention module (CBAM) [25], which
contains two modules of channel attention and spatial attention so that the model has
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better performance and interpretability and pays more attention to foreground objects. The
selective kernel network (SKNet) was proposed by Li et al. [26], which utilizes a building
block called a selection kernel unit that allows each neuron to adaptively adjust the size of
the receptive field, depending on the scale of the input information. Experiments showed
that SKNet achieved better detection accuracy through its relatively low model complexity.

Roy et al. proposed spatial and channel squeeze-and-excitation (scSE) [27] for semantic
segmentation. They proposed three variants of the squeeze-and-excitation (SE) module,
channel squeeze-and-excitation (cSE), spatial squeeze-and-excitation (sSE), and scSE, as
improvements of the SE module. Experiments have shown that these modules can enhance
useful features and suppress useless ones. Combining the advantages of non-local neural
networks and SENet, Cao et al. proposed the global context network (GCNet) [28], which
uses a relatively small amount of calculations to optimize the global context modeling
capabilities. Huang et al. proposed the criss-cross network (CCNet) [29], which was also
based on Non-local Neural Networks. Its special feature is the novel criss-cross attention
module, which can obtain contextual information from remote dependencies in a more
effective way. The dual attention network (DANet) was proposed by Fu et al. [30], which
adds two attention modules to a dilated fully convolutional network to model semantic
dependencies in the spatial and the channel dimensions. This model achieved excellent
results on the semantic segmentation dataset, Cityscapes.

Most of the above-mentioned attention mechanisms use global channel attention
mechanisms, which are more suitable for the detection of large objects with a more global
distribution. However, the scale range of objects is very large in actual traffic scenes. If
only the contextual information is extracted from the global range, the detection effect of
the model is better for large objects with more distribution in the global range, but will be
weaker for small objects with more distribution in the local range. Therefore, a simplified
multi-scale channel attention block composed of local channel attention and global channel
attention is needed to adaptively extract contextual object information to improve the
detection effect of small objects.

2.3. Feature Fusion

In many object detection tasks, the fusion of features at multiple scales is an important
way to improve detection performance. Low-level object features have high resolution
and usually contain more location and detail information, but they lack semantic infor-
mation and have more noise. High-level features have richer semantic information after
the convolution operation, but their resolution is reduced, and the location and detail
information are lacking. Efficient integration of low-level and high-level features is key to
improving a model’s detection performance. Depending on the sequence of feature fusion
and prediction, feature fusion can be divided into early fusion and late fusion methods.
Early fusion fuses features of different layers first and then trains predictors on the fused
features, such as the addition operation in ResNet [31] and the concatenation operation in
U-Net [32]. Late fusion improves the detection performance by combining the detection
results of different layers, and can be mainly divided into two types. The first separately
predicts the features of multiple scales before fusion, and then the obtained prediction
results are processed comprehensively, such as in SSD [4], multi-scale CNN [33], etc. The
second approach uses the idea of feature pyramid networks for reference, and then predicts
after fusing the features, such as in YOLOv3 [3], feature fusion single shot multibox detector
(FSSD) [34], etc.

The feature fusion problem is currently a research hotspot in the field of object detec-
tion. Chaib et al. improved the effect of feature fusion using a discriminant correlation
analysis-based feature fusion strategy [35], which incurred only a small computational
cost. The FSSD was proposed by Li et al. [34], which includes a feature fusion module.
The module first fuses the features of different layers through concatenation operations
to obtain a larger-scale feature, and then a feature pyramid is constructed on this feature
map. This significantly improves the detection accuracy of the SSD model, with only a
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slight speed reduction. Lim et al. proposed the SSD with feature fusion and attention
(FA-SSD) [36], which includes a feature fusion module and an attention module. The
results showed that the network improved the accuracy of object detection, especially the
detection performance of small objects.

Pang et al. proposed Libra R-CNN [37], which integrates features from different
layers to obtain more balanced semantic feature information. Compared with [15] and [18],
the detection effect on the MS COCO dataset was significantly improved. Ghaisi et al.
proposed the neural architecture search feature pyramid network (NAS-FPN) [38], which
uses a neural architecture search algorithm to customize a feature pyramid network that
merges features across a range. This approach produced significant improvements in many
object detection networks. An adaptive spatial feature fusion (ASFF) strategy was proposed
by Liu et al. [39], which combines features of different layers by learning weight parameters.
Experimental results showed that this method was superior to concatenation and element-
wise methods. In addition to the feature fusion using deep learning technology, Gao et al.
analyzed the limitations of only using deep learning methods, and proposed a new fusion
logic that can effectively combine the advantages of known knowledge used by a traditional
method with the self-extracted features learned by a deep learning method [40]. A better
detection performance can be achieved by properly designing traditional and deep learning
detectors. However, the above methods of feature fusion are biased towards constructing
complex paths to combine the features of different network layers or groups. They are
all too complicated. Therefore, we propose an AFFB with a simple structure to improve
the integration of various object context features in traffic scenes using fewer parameters
and smaller models to ultimately improve the network’s object detection performance,
especially the detection accuracy of small objects.

3. Benchmark Model and Proposed Methods

In this section, we briefly introduce the benchmark model YOLOv5s, then elaborate
on the principle and structure of the proposed MS-CAB, and finally present the AFFB based
on MS-CAB.

3.1. The YOLOv5s Benchmark Model

The development of the YOLO series ushered in a change in object detection tech-
nology through the adoption of deep learning. At present, the YOLO series includes
YOLOv1 [1], YOLOv2 [2], YOLOv3 [3], YOLOv4 [41], and YOLOv5 [7]. The YOLOv5
model is the latest iteration of the model, and constitutes an improvement over YOLOv4.
The model is faster, more accurate, has fewer model parameters, and can be more easily
adapted to various devices embedded in vehicles. The YOLOv5 model refers to four
models of different sizes, namely, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, where
smaller models have fewer parameters, lower accuracy, and are faster. To better meet
the real-time requirements of object detection in traffic scenes, in this study, we chose the
YOLOv5s model as the benchmark model for improvement.

3.2. Multi-Scale Channel Attention Block

Based on the idea of combining local and global features in the convolutional neural
networks adopted in ParseNet [42] and multi-scale channel attention [43], we propose
MS-CAB, with the main difference being that we use 1 × 1 convolution rather than kernels
of different sizes to control the channel attention scale. Similar to spatial attention, channel
attention also has a scale, and the variable that controls that scale is the size of the pooling.
Figure 1 shows a diagram of the MS-CAB structure, which is divided into two scales, the
local scale and the global scale, where context features are aggregated through both scales.
The branch that uses global average pooling is the global scale, while the other is the local
scale. This block gathers contextual information along the channel dimension of the feature
map, and can simultaneously focus on large objects that are more distributed in the global
range and small objects that are distributed more in the local range, which helps the model
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to detect and identify objects with extreme scale changes in traffic scenes. In the following,
we introduce the details of the implementation of the proposed MS-CAB.

Figure 1. The MS-CAB structure. The global average pooling branch is the global channel attention,
while the other is the local channel attention.

Suppose that the output of a certain layer in the middle of the network is X and
X ∈ RC×H×W , where C is the channel number of the feature map, and H and W are the
height and width of the feature map, respectively. Then, X is used as the input of MS-CAB.
The global and local channel attention can be obtained by changing the pooling size, and
1 × 1 convolution is used as the local channel context aggregator to extract the channel
interaction at each spatial location. The local channel context L(X) ∈ RC×H×W can be
expressed as

L(X) = BN(Conv2(Hs(BN(Conv1(X))))), (1)

where the convolution kernel parameters of Conv1 and Conv2 are C
r × C × 1 × 1 and

C × C
r × 1 × 1, r is the channel reduction ratio, BN stands for batch normalization [44], and

Hs stands for the Hardswish activation function [45]. The local channel context L(X) has
the same shape as the input feature map X, and retains and highlights the richly detailed
information of the low-level features. It focuses more on the small object information
present in the local range.

The global channel context G(X) ∈ RC×1×1 can be expressed as

G(X) = BN(Conv2(Hs(BN(Conv1(Hs(g(X))))))), (2)

g(X) =
1

H × W ∑ H
i=1∑ W

j=1X[:,i,j] (3)

where g(X) ∈ RC stands for global average pooling. Here, G(X) has the same number of
channels as the input feature map X and pays more attention to large object information
that is distributed more globally.

Combining the local channel context L(X) and the global channel context G(X), the
output Y ∈ RC×H×W of the MS-CAB can be expressed as follows:

Y = X ⊗ MSCAB(X) = X ⊗ σ(L(X)⊕ G(X)) (4)

where MSCAB(X) ∈ RC×H×W represents the output weight of the MS-CAB, σ represents
the sigmoid function, ⊗ represents element-wise multiplication, and ⊕ represents the
addition of the broadcast mechanism.

The proposed MS-CAB was embedded in the four Concat operation branches of the
YOLOv5s model, and a new network model, MS-CAB_YOLOv5s, was obtained. The
network structure diagram is shown in Figure 2. In the diagram, “Input” refers to the
network input, and “Prediction” is the prediction result made by the network on the feature
map on three scales. “Upsample” represents an upsampling operation, “Concat” denotes a
concatenation operation, and “Conv” denotes a convolution operation. The composition
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of the “Focus” block is shown in Figure 3. It performs a slicing operation on the input
red/green/blue (RGB) image, ultimately integrating the width and height information
into the channel dimension. Its main function is to reduce floating point operations and
improve the running speed of the model. The CBL block is composed of a convolution layer,
batch normalization, and the Hardswish activation function, and its composition is shown
in Figure 4. The YOLOv5s model contains two cross stage partial (CSP) structures [46], of
which the CSP1 structure is used in the backbone of the network, while the CSP2 structure
is used in the neck of the network. The composition of CSP1_X is shown in Figure 5.
Here, CSP1_X indicates that it contains X residual units; for example, CSP1_1 contains one
residual unit, and CSP1_3 contains three residual units. The composition of each residual
unit is shown in Figure 6. The composition of CSP2_X is shown in Figure 7. Here, CSP2_X
means that, in addition to the first CBL component, there are 2 × X CBL components in the
middle. The size of the convolution kernel in the first CBL component is 1 × 1, while in the
second CBL component it is 3 × 3. For example, in addition to the first CBL component in
CSP2_1, there are 2 × 1 = 2 CBL components in the middle, and the convolution kernel
sizes in the two CBL components are 1 × 1 and 3 × 3, respectively. The SPP block uses the
maximum pooling method to perform “Concat” operations on feature maps of different
scales, and its composition is shown in Figure 8.

Figure 2. The MS-CAB_YOLOv5s network structure.

Figure 3. Composition of the “Focus” block.

Figure 4. Composition of the CBL block.
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Figure 5. Composition of the CSP1_X block.

Figure 6. Composition of the residual unit block.

Figure 7. Composition of the CSP2_X block.

Figure 8. Composition of the SPP block.

3.3. Attention Feature Fusion Block

In combination with the multi-scale channel attention block proposed above, we
propose AFFB, which can better capture contextual information from different network
layers by fusing semantic and scale-inconsistent features and thus achieve better object
detection. Figure 9 is a structure diagram of the AFFB. Due to the presence of the multi-scale
channel attention block, the output Z ∈ RC×H×W of the AFFB can be expressed as

Z = MSCAB(X1 ⊕ X2)⊗ X1 + (1 − MSCAB(X1 ⊕ X2))⊗ X2 (5)

where X1 ∈ RC×H×W and X2 ∈ RC×H×W are two input feature maps, with X1 being a
low-level semantic feature map and X2 a high-level semantic feature map. The values of
the fusion weights MSCAB(X1 ⊕ X2) and 1− MSCAB(X1 ⊕ X2) are both between 0 and 1,
which corresponds to a weighted averaging operation between X1 and X2.

Figure 9. The AFFB structure.

In YOLOv5s, linear feature fusion is performed through concatenation, which only
yields a fixed linear aggregation of feature maps, and is not adaptable to the object to be
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detected. The AFFB has fewer parameters, is non-linear, and can capture the contextual
information from different network layers better through the fusion of features that are
inconsistent semantically and in terms of scale. The four “Concat” operations are then
replaced in the YOLOv5s model with the proposed AFFB to obtain a new network model
AFFB_YOLOv5s, as shown in Figure 10.

Figure 10. The AFFB_YOLOv5s network structure.

4. Experiments and Result Analysis

4.1. Datasets and Experimental Settings
4.1.1. Datasets

In this paper, the object detection task is oriented towards traffic scenes, and thus
the experimental part mainly used the BDD100K dataset [47], while the PASCAL VOC
dataset [48] was used as an auxiliary validation dataset.

The BDD100K dataset is the largest open autonomous driving dataset, and includes
ten categories of traffic scene objects: car, bus, person, bike, truck, motor, train, rider, traffic
sign, and traffic light. It has a very rich diversity of geography, environments, and weather
to enable models to recognize a variety of complex traffic scenes and make the models’
generalization ability stronger at the same time. The dataset has a total of 100,000 images
with a resolution of 1280 × 720 pixels. The official usage guidelines recommend splitting
the dataset into a training set, a validation set, and a test set at a 7:1:2 ratio. As the labels
of the test set are not disclosed, we used the validation set to test the model and evaluate
the model’s detection performance of the model. The final training set consisted of 70,000
images, and the test set consisted of 10,000 images. (The BDD100K dataset is available at
https://bdd-data.berkeley.edu, accessed on 25 November 2020).

The PASCAL VOC dataset is a commonly used object detection dataset, and it includes
two parts, VOC2007 and VOC2012, with a total of 20 categories: airplane, bicycle, bird,
boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted
plant, sheep, sofa, train, and TV monitor. In this paper, 22,136 images of the VOC2007
and VOC2012 training and validation sets were used for model training. The test set of
VOC2007 has a total of 4952 images and was used to evaluate the detection performance of
the model. (The PASCAL VOC dataset is available at http://host.robots.ox.ac.uk/pascal/
VOC/, accessed on 30 November 2020).
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4.1.2. Experimental Settings

(a) Network loss function

The loss function of the network designed in this paper is divided into three parts:
bounding box regression loss Lbox, confidence loss Lobj, and classification loss Lcls. The
total loss of the network is the sum of the three functions. The bounding box regression loss
uses the complete intersection over union (CIoU) loss [49], and both the confidence loss and
classification loss use the binary cross-entropy (BCE) with logits loss (BCEWithLogitsLoss).
The CIoU loss considers three important geometric factors of the bounding box regression
loss: the overlap area between the prediction and the ground truth boxes; the center
point distance of the prediction and the ground truth boxes; and the aspect ratio between
the prediction and the ground truth boxes, which improves the speed and accuracy of
bounding box regression. The bounding box regression loss Lbox can be expressed as
follows:

Lbox = 1 − CIoU = 1 − (IoU − ρ2

c2 − αv) (6)

where intersection-over-union (IoU) is the ratio of the intersection area to the union area
of the prediction box and the ground truth box, ρ is the Euclidean distance between the
center points of the prediction and the ground truth boxes, and c is the diagonal length
of the smallest enclosing box covering both the prediction box and the ground truth box.
Besides, α is the trade-off parameter, which is defined as

α =
v

(1 − IoU) + v
(7)

here, v is a parameter that measures the consistency of the aspect ratio between the ground
truth box and the prediction box, and it is expressed as follows:

v =
4

π2 (arctan
wgt

hgt − arctan
wp

hp )
2

(8)

where wgt and hgt are the width and height of the ground truth box, while wp and hp are
the corresponding values of the prediction box.

The BCEWithLogitsLoss mainly measures the binary cross-entropy between the target
value and the output value of the model. It can be expressed as

Ln = −wn[ynlogσ(xn) + (1 − yn)log(1 − σ(xn))] (9)

where wn is the loss weight of each category, yn is the target value, xn is the output value
of the model, and σ is the sigmoid function.

(b) Training parameter settings

In this study, we used the stochastic gradient descent algorithm [50] to optimize
the loss function. The momentum was set to 0.937, the weight decay coefficient was set
to 0.0005, and the initial learning rate was set to 0.01. We used warmup training [51],
cosine annealing [52], gradient accumulation, exponential moving average, and other
optimization strategies. In terms of data augmentation, in addition to the most advanced
mosaic data augmentation method [41], common data augmentation methods, such as
random hue, saturation, value transformation, image horizontal and vertical translation,
image scaling, and image left and right flip, were also used. The batch size was set to 32, the
epochs were set to 300, and the resolution size of the input image was set to 640 × 640. The
channel reduction ratio r was set to 4. The k-means clustering algorithm was used to obtain
new anchor boxes. Other parameter settings were consistent with the default settings of
YOLOv5. The computer configuration used in the experiment is shown in Table 1.
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Table 1. Computer configuration.

Project Content

CPU Intel Xeon E5-2620 v4
RAM 32GB
GPU NVIDIA TITAN Xp
Operating System Ubuntu 18.04.5 LTS
Cuda Cuda 10.1 with Cudnn 7.5.1
Data Processing Python 3.8, OpenCV
Deep Learning Framework Pytorch 1.7.0

(c) Testing parameter settings

The batch size was set to 1, the resolution size of the input image was set to 640 × 640,
the confidence threshold for the filtering prediction box was set to 0.001, and the IoU
threshold for non-maximum suppression was set to 0.6. Other parameter settings were
consistent with the default YOLOv5 settings.

4.2. Quantitative Result Analysis

The three models, YOLOv5s, MS-CAB_YOLOv5s, and AFFB_YOLOv5s, were trained
on the BDD100K dataset to test the effectiveness of the proposed MS-CAB and AFFB blocks.
Five indicators commonly used in the field of object detection, namely, precision, recall,
mAP, frames per second (FPS), and the number of parameters, were used to quantitatively
evaluate the accuracy of the model [7]. To quantitatively study the impact of the proposed
improvements on the detection of small objects, we examined small objects of the size
defined by the COCO dataset [53], that is, those with a pixel area smaller than 32 × 32 pixels.
Moreover, to verify the generalization ability of the model on other datasets, we used the
same parameter settings as above on the public dataset PASCAL VOC for network training,
and then tested to complete the auxiliary validation.

The accuracy evaluation results of the three models on the BDD100K validation
set are shown in Table 2. It is evident that under the premise of ensuring the real-time
requirements of a vehicle’s environment perception, compared with the original YOLOv5s
model, the precision, recall, and mAP of the MS-CAB_YOLOv5s and AFFB_YOLOv5s
models proposed in this paper were improved to varying degrees. Among them, the mAP
of the AFFB_YOLOv5s model increased by 0.9 percentage points, which is a significant
improvement given the complexity of the BDD100K traffic scene dataset. The 63 FPS
achieved by both improved networks can fully meet the real-time requirements of vehicles’
environment perception systems. Furthermore, the parameters of the model were reduced
to a certain extent. The size of the model is only 14.7 MB, which makes it quite suitable for
embedded vehicle platforms.

Table 2. Model performance comparison on the BDD100K validation set.

Model Precision (%) Recall (%) mAP (%) FPS Parameters (M)

YOLOv5s 32.5 57.7 50.6 77 7.28
MS-CAB_YOLOv5s 32.5 58.1 51.0 63 7.45

AFFB_YOLOv5s 33.0 58.3 51.5 63 7.20

The BDD100K dataset is a traffic scene dataset, and thus contains many cars and
traffic signs at a distance with a pixel area less than 32 × 32 pixels. These objects are
defined as small objects that need to be detected. Table 3 shows the comparison results
of the three models for small object detection performance. Compared with the original
YOLOv5s model, the MS-CAB_YOLOv5s and AFFB_YOLOv5s models proposed in this
paper had a significantly improved precision of small object detection, while the recall
decreased slightly, and the mAP, respectively, improved by 1.6 and 3.5 percentage points.
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This shows that the MS-CAB and AFFB significantly improved the model’s detection effect
on small objects.

Table 3. Comparison of models on small object detection performance.

Model Precision (%) Recall (%) mAP (%)

YOLOv5s 11.7 51.9 21.5
MS-CAB_YOLOv5s 16.4 49.8 23.1

AFFB_YOLOv5s 23.1 48.6 25.0

To verify the generalization ability of the model, the three models were trained and
tested on the PASCAL VOC dataset. The performance comparison for each model is
shown in Table 4. Under the premise of ensuring real-time performance, the two models,
MS-CAB_YOLOv5s and AFFB_YOLOv5s, had improved precision, recall, and mAP. This
again verifies the effectiveness of the MS-CAB and AFFB to improve the performance of
object detection. At the same time, it shows that our improved model can adapt to different
datasets or scenes and has good generalization ability.

Table 4. Performance comparison of models on PASCAL VOC test set.

Model Precision (%) Recall (%) mAP (%) FPS Parameters (M)

YOLOv5s 60.3 82.3 79.4 76 7.31
MS-CAB_YOLOv5s 62.0 82.7 80.2 61 7.48

AFFB_YOLOv5s 63.4 82.9 80.8 61 7.23

4.3. Comparative Analysis of Detection Results

Figure 11 shows a visual comparison of the detection results of the YOLOv5s model,
the MS-CAB_YOLOv5s model, and the AFFB_YOLOv5s model. To see the differences
between the three models more easily, the yellow rectangles in the detection result of
column (a) in Figure 11 indicate the objects that were not detected by YOLOv5s. Similarly,
the yellow rectangles in the detection result of column (b) indicate the objects that were not
detected by MS-CAB_YOLOv5s. The AFFB_YOLOv5s model could detect small objects
with small pixel areas, such as cars, people, and traffic signs, at long distances that were
not detected by the YOLOv5s model. At the same time, the detection effect was also
excellent under dark night conditions. Moreover, compared with the benchmark model
YOLOv5s, the detection effect of the MS-CAB_YOLOv5s model was better. It could detect
some objects that the YOLOv5s model did not detect, but its effect was not as good as that
of AFFB_YOLOv5s. For example, in column (b) of Figure 11, the person on the left side
of the figure on the second row and the traffic sign on the right side of the figure on the
third row were not detected by the MS-CAB_YOLOv5s model, but they were all accurately
detected by the AFFB_YOLOv5s model. Based on these detection results in Figure 11,
both the MS-CAB_YOLOv5s model and the AFFB_YOLOv5s model could improve the
effect of object detection in traffic scenes, and the AFFB_YOLOv5s model had the best
detection effect, especially for small objects that are away from the vehicle, which is of
great significance for improving the stability and efficiency of automatic driving systems
and preventing traffic accidents.
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(a) YOLOv5s (b) MS-CAB_YOLOv5s (c) AFFB_YOLOv5s 

Figure 11. Comparison of the detection results of YOLOv5s, MS-CAB_YOLOv5s, and AFFB_YOLOv5s.

5. Conclusions and Future Work

The high accuracy and fast real-time performance of object detection algorithms are
very important for the safety and real-time control of autonomous vehicles. In this paper,
we presented a small object detection method for traffic scenes based on attention feature
fusion for autonomous driving systems as an improvement to the YOLOv5s architecture.
To aggregate the effective information at the local and global scales, MS-CAB simultane-
ously focuses on small objects that are more distributed within a local range and large
objects that are more distributed on the global range. Using AFFB to fuse contextual
information from different network layers, we obtain a model with fewer parameters and
higher accuracy. Under the condition of meeting the real-time requirements of vehicles’
environment perception systems, compared with the benchmark model YOLOv5s, the
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model proposed in this paper increased the mAP of all objects on the validation set of the
traffic scene dataset BDD100K by 0.9 percentage points. Specifically, small objects’ mAP
was increased by 3.5%. Therefore, the model achieves a better balance between object
detection accuracy and speed in traffic scenes, and can effectively improve the performance
of vision-based object detection systems for autonomous vehicles.

Since our proposed method is essentially based on deep learning, there are some
general limitations. First, the interpretability of deep learning is poor. It learns the implicit
relationship between input and output features, but not the causal relationship. Secondly,
the neural network has many parameters, and network training requires a large amount of
time and relatively large computing power. Therefore, the deep learning method requires
stronger computer hardware equipment. Finally, the accuracy of the model based on the
deep learning method greatly relies on the collected data, and the accuracy of the dataset
label directly determines the accuracy of the model detection. A traditional method based
on manual feature extraction is a beneficial supplement to the deep learning method. In
future research, we will try to combine the two methods to further improve object detection
performance. We plan to deploy the model proposed in this paper to embedded vehicle
devices to develop more convenient portable applications. Moreover, we will explore the
extent to which the proposed blocks improve the performance of larger YOLOv5 models.
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Abstract: Vehicle platooning reduces the safety distance between vehicles and the travel time of vehi-
cles so that it leads to an increase in road capacity and to saving fuel consumption. In Europe, many
projects for vehicle platooning are being actively developed, but mostly focus on truck platooning on
the highway with a simpler topology than that of the urban road. When an existing vehicle platoon
is applied to urban roads, many challenges are more complicated to address than highways. They
include complex topology, various routes, traffic signals, intersections, frequent lane change, and
communication interference depending on a higher vehicle density. To address these challenges, we
propose a distributed urban platooning protocol (DUPP) that enables high mobility and maximizes
flexibility for driving vehicles to conduct urban platooning in a decentralized manner. DUPP has
simple procedures to perform platooning maneuvers and does not require explicit conforming for the
completion of platooning maneuvers. Since DUPP mainly operates on a service channel, it does not
cause negative side effects on the exchange of basic safety messages on a control channel. Moreover,
DUPP does not generate any data propagation delay due to contention-based channel access since
it guarantees sequential data transmission opportunities for urban platooning vehicles. Finally, to
address a problem of the broadcast storm while vehicles notify detected road events, DUPP performs
forwarder selection using an analytic hierarchy process. The performance of the proposed DUPP is
compared with that of ENSEMBLE which is the latest European platooning project in terms of the
travel time of vehicles, the lifetime of an urban platoon, the success ratio of a designed maneuver, the
external cost and the periodicity of the urban platooning-related transmissions, the adaptability of
an urban platoon, and the forwarder selection ratio for each vehicle. The results of the performance
evaluation demonstrate that the proposed DUPP is well suited to dynamic urban environments by
maintaining a vehicle platoon as stable as possible after DUPP flexibly and quickly forms a vehicle
platoon without the support of a centralized node.

Keywords: urban platooning; vehicle-to-vehicle communication; in-vehicle network; analytic hierar-
chy architecture

1. Introduction

Recently, sensors, advanced data processing techniques, and wireless networking
technology have enabled vehicles to generate a variety of information and share road
infrastructure, and share it with others, contributing to ensuring safety and efficiency
while driving. Besides, automated vehicle technology is accelerating the further develop-
ment of self-driving towards the highest level of automation. This is expected to bring
significant changes to our car-centric lifestyle linked with cooperative intelligent trans-
portation systems (C-ITS). In a mixed traffic environment with human-driven vehicles and
partially-automated vehicles under level 3 automation, smart transportation applications
already begin to appear in the form of sensing driving (e.g., intersection collision warn-
ing and cooperative adaptive cruise control), awareness driving (e.g., emergency vehicle
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warning, traffic jam warning, and intersection collision warning), and cooperative driving
(e.g., vehicle platooning, cooperative overtaking, and cooperative lane change) [1]. In auto-
mated vehicles, to support these applications, sensing information is mainly obtained from
equipped sensors such as the radar, lidar, or vision sensors. Sensor-centric applications
such as lane detection, lane-keeping, and obstacle detection, therefore, utilize either these
sensors individually or sensor fusion technology [2–4]. However, there are times when it is
more difficult to obtain an accurate measurement of the driving environment due to an
increase in uncertainty derived from dynamic driving environments and sensor measuring
errors. In other words, only using sensor readings could not guarantee the safe driving of
automated vehicles. To overcome the limitations inherent in physical sensors and adapt
quickly to unexpected driving conditions, wireless communication technology is very
useful. Moreover, to support vehicle platooning, it is useful that any sensing information
related to the same physical variable is combined with the control information received
from surrounding vehicles. From the safety point of view, the communication functionality
is necessary to monitor any behavior of surrounding vehicles and increase the stability of a
given platoon by maintaining its velocity and safety distance.

Until now, the vehicle platooning technique is mainly investigated in Europe and is
referred to as truck platooning. For instance, it is studied through various projects such
as KONVOI, SARTRE (Safe Road Trains for the Environment), and ENSEMBLE [5–7].
It is noted that their truck platooning techniques are proposed for a particular type of
road because it is expected that the effectiveness of the vehicle platooning increases on a
highway with a simple topology. In other words, since a highway is the main road with
a few interchanges connecting towns or cities, it may last a long time on the highway
once a vehicle platoon is formed. For this reason, they focus on platooning for trucks to
reduce logistics costs. With complex topologies and dynamic vehicle movements, there
are challenges in applying the highway platooning techniques directly to an urban road.
For instance, vehicle routes may become diverse due to many road sections divided
by intersections. When traffic flow is temporarily blocked by intersections and traffic
signal lights, the number of vehicles in the local road section may increase. Crosswalks,
pedestrians, or vehicles parked on the side of the road also become a source of bottlenecks
of traffic flow. They tend to interfere with the movement of other vehicles and may lead
to change in the vehicle route frequently. In this urban environment, the duration time
of the vehicle platoon may be shorter than that on the highway. Besides, an urban area
has already many existing transportation applications and communication infrastructures
that may cause interference with V2V (vehicle-to-vehicle) communication required for
platooning maneuvers.

Vehicle platooning enables vehicles to respond to speed changes occurring upstream
with a faster reaction than that of drivers [8]. According to the European Commission, the
majority of fatalities occur on rural roads and urban roads, with 55% of a road accident
fatality occurring on rural roads and 37% on urban roads [9]. In this regard, urban platoon-
ing can contribute to the reduction of accidents on urban roads. Using vehicle platooning,
the following vehicles can reduce 14% of fuel consumption because two or more vehicles
form a chain in the same lane and a lead vehicle in front reduces the air resistance of
the following vehicles [10]. In addition, it is possible to reduce the inter-vehicle distance,
thereby increasing road capacity. The travel time taken from the vehicle’s source to its
destination may decrease as well.

To fully take these advantages of the vehicle platooning on urban roads, in this paper,
we investigate how to provide stable and reliable urban platooning for vehicles with V2V
communication functionality. In addition, we focus on the development of the method
in which urban platooning vehicles are aimed at quickly participating in a local platoon
on urban roads and sharing control information required for urban platooning with low
delay. As the protocol suite for vehicular ad-hoc networks, IEEE WAVE (Wireless Access in
Vehicular Environment) is specified in the IEEE 1609 family of standards [11]. Its medium
access control (MAC) and physical layers are based on the IEEE 802.11p. It is designed to
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broadcast particular messages, i.e., basic safety messages (BSMs), based on the collision-
sense multiple access with collision avoidance (CSMA/CA) mechanism [12]. Therefore, it
is difficult to guarantee road safety as either the traffic density of roads, the amount of data
to be sent, or the number of flows increases [13]. To develop safety-critical applications
based on V2V communication, a critical issue is to deliver data within a given time. Due
to the uncertainty of the wireless channel, its link delay might be as high as hundreds of
milliseconds [14]. Especially, as the vehicle density on the road increases, the transmission
delay could become much higher. Increasing delay may influence the stability of a given
platoon [15]. Meanwhile, to achieve the automation and reliable control of self-driving, sensor
reading data of every vehicle should be transmitted within a given transmission cycle, i.e.,
every minimum 5 to maximum 100 milliseconds, in in-vehicle networks [16–19]. Therefore, we
jointly consider the requirements of intra-vehicular control and inter-vehicular commu-
nication to guarantee reliable urban platooning. It is indicated that control data of each
vehicle in a given platoon should be shared until the next transmission cycle to ensure the
stability of a given platoon when the V2V communication-based data is exploited. Another
issue is to maximize the duration of the formed urban platoon. It may depend on the
flexible and autonomous formation of an urban platoon [20]. To clarity the terms flexible
and autonomous platooning, we specify the requirements of flexible and autonomous
platooning as follows. A vehicle should join a given platoon at the rear when it participates
in a given platoon without regard to its location. When a vehicle intends to disjoin the
given platoon, the given platoon allows it to leave regardless of its location. Therefore, this
formation should be performed either in the lane in which they are driving or through
lane changes. If a given platoon encounters a new platoon, they can merge with each other
autonomously, depending on a given condition. The separated platoons with the existing
formation should be maintained as much as possible even though the existing platoon is
separated by unexpected situations. The other issue is related to the nature of broadcasting
communication. During driving, both vehicles in an urban platoon and vehicles under
normal-driving conditions could encounter unexpected traffic conditions. In IEEE WAVE,
every vehicle should inform surrounding vehicles of the events as soon as events that
negatively affect driving are detected. It may result in a broadcast storm of redundant
information in a local road section. To increase the efficiency of data propagation, it is
necessary to perform notifications of the emergency messages required for safety-critical
applications by minimizing the number of forwarders to notify this information.

In this paper, we propose a distributed urban platooning protocol (DUPP) that is
designed to maximize flexibility for vehicles, considering their high mobility. It conducts
urban platooning in a decentralized manner. We adopt four distinct approaches to elim-
inate unnecessary competition in contention-based medium access. First, in DUPP, a
distributed medium access method as a layer is designed and added on top of IEEE 802.11p
to ensure that all members of an urban platoon transmit messages fairly and sequentially.
Second, although urban platooning is one of the safety-critical applications, DUPP operates
mainly on a service channel rather than a control channel designated for safety-critical
applications. Third, to adapt quickly to the complex urban topology and the changing
traffic conditions, DUPP is designed with very simple operations for the urban platooning
maneuvers consisting of creation, joining, leaving, merging, and splitting. In addition,
it never requires explicit acknowledgments. Fourth, during urban platooning, only one
forwarder transmits the related information when unexpected events on roads occur. To
enhance the propagation efficiency, DUPP determines one forwarder by an analytic hierar-
chy process (AHP) using vehicle status indicators. Therefore, not only the upkeep cost of
urban platooning under DUPP is minimized but also DUPP-enabled vehicles are capable
of quickly responding to the dynamic driving environment in urban roads.

It is important to validate the effectiveness of the proposed urban platooning. We
exploit the PLEXE simulator with a microscopic vehicle control model. To make a virtual
traffic environment mimicking a real city’s road, we use the NYC public traffic data
collected for 24 h and a part of the NYC road network. The DUPP’s performance is
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evaluated by examining (1) the vehicle travel time to see how much our DUPP increases
road capacity and efficiency, (2) the lifetime of an urban platoon in order to see how
quickly an existing urban platoon responds on the urban road, (3) the success ratio of each
urban platooning maneuver, (4) the drop ratio of BSMs on the control channel in order to
show how much the operations of our DUPP affect the performance of other vehicles not
involved in urban platooning, (5) the transmission periodicity of urban platooning-related
messages in order to show both the stability of an urban platooning and satisfying the
requirement for the control frames that should be transmitted through in-vehicle networks
for reliable driving control, (6) the maintenance of safety distances between the vehicles to
show the adaptability to unexpected situations through forwarder selection, and (7) the
selection ratio for each vehicle in an urban platoon to demonstrate the performance of the
designed AHP-based forwarder selection.

The contribution of this paper is as follows. First, to quickly adapt to the dynamic
traffic flow and complex topology of an urban road network, we propose a novel urban
platooning protocol enabling distributed coordination and decentralized autonomous
maneuvers. It is well suited to zero infrastructure communications and to support adaptive,
flexible, and simple platooning. Especially, DUPP does not require any control message
to explicitly confirm the completion of each maneuver and is distributed to each vehicle
interested in a given platoon. Although all transmissions in DUPP are based on the IEEE
802.11p that employs contention-based access, the delay of the data propagation and the
maneuver conduction are minimized due to our distributed coordination. In addition, we
address the problem of the broadcast storm by employing the approach of the analytic
hierarchy process to regulate the number of forwarders even if vehicles simultaneously
detect event occurrence. To demonstrate the effectiveness of the proposed urban platooning,
we construct a new environment to which actual traffic public data is applied.

The remainder of this paper is organized as follows. In Section 2, we review the recent
related research and discuss the requirements for urban platooning. Section 3 provides
a detailed description of the proposed DUPP. We evaluate the performance of DUPP,
comparing it with that of ENSEMBLE in Section 4. Finally, the conclusions and future work
are provided in Section 5.

2. Related Work

In this section, we mainly review previous studies for vehicle platooning performed
in a distributed manner and discuss the requirements imposed on urban platooning. Many
protocols for vehicle platooning on highways have been designed, which adopt either
a centralized approach or a distributed approach to vehicle platoon formation [7,21–25].
The centralized approach requires a central system that is responsible for determining
which vehicle platoon a given vehicle will join. To determine a certain platoon to be joined,
the central system uses status information collected from all of the driving vehicles on
roads. In the distributed approach, a driving vehicle determines joining platoon by itself,
based on status information collected from neighboring vehicles. Once a vehicle platoon is
formed, regardless of which approach is used for the platoon formation, a leader vehicle
driving in front of a given platoon arranges how to control vehicle movement during
vehicle platooning. The operation of vehicle platooning, therefore, is generally performed
in a centralized manner.

Heinovski and Dressler have proposed the distributed formation method where
a vehicle independently determines a specific platoon with its preceding vehicle to be
joined [21]. To select one preceding vehicle to be joined, a vehicle exploits status information
collected from preceding vehicles, which are driving in front of the vehicle, through beacon
messages based on the IEEE 802.11p. A vehicle joins behind the selected preceding vehicle
after investigating which of all preceding vehicles can drive with it for a long time. If there
are no vehicle platoons around, a vehicle creates a vehicle platoon for itself. To start a
joining maneuver for a specific platoon, a vehicle explicitly sends a request message to the
selected preceding vehicle, and then receives a response message from it. On a highway,
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this procedure is effective to reliably form the platoon. However, once a joining maneuver
is started by the given vehicle, it is not allowed to change the selected preceding vehicle
to another preceding vehicle even if traffic conditions change. They assume that once a
joining maneuver is successful, any vehicle does not leave its platoon until it reaches its
destination. In addition, if the given vehicle is in its joining maneuver, other following
vehicles cannot join the given vehicle and just wait until it finishes its joining maneuver.
It is noted that in urban roads, the driving speed and the driving route may frequently
change depending on vehicle density and intersections with traffic lights. Therefore, it is
not efficient if the formed platoon does not allow vehicles to change or the selection of
the platoon to join cannot be changed. Although explicitly sending and receiving control
messages for the joining maneuver contribute to improving the reliability of the joining
maneuver, it also imposes an additional processing delay during the joining maneuver
depending on the driving environment.

There is a study that enables the joining of a platoon regardless of the driving position
of a given vehicle [22]. Vehicles on the road exchange information of their speeds and
positions with the surrounding vehicles to support both lateral and longitudinal control
models. To perform a joining maneuver, this protocol adopts a three-way handshake
process with explicit control messages by sending a request message to a leader vehicle,
receiving a response message from it, and finally reporting back to it using an acknowledge
message after a vehicle approaches the selected preceding vehicle to be joined by speeding
up. In this process, although a platoon can be stably formed by using explicit control
messages, a leader vehicle is involved in the whole procedure for the platoon formation.
That results in a relatively long time for the completion of the maneuver, depending on the
vehicle density. Furthermore, it allows a vehicle to join a platoon at the side of a platoon
by changing the driving lane. It means that a joining maneuver needs to operate more
sophisticatedly. It might be useful in an environment with a simple topology and few
negative factors affecting its completion. However, it is not suitable for urban platooning
where driving route changes frequently occur since an urban environment requires a
quick response to more complicated situations than those of highways. When an urban
platooning protocol is designed, it needs to consider whether to improve the flexibility
by allowing vehicles to join at the side of a platoon or improve stability by allowing
vehicles to join only at the back. It is noted that the former requires more sophisticated
and complicated maneuvers than those of the latter. In this paper, we are interested in
improving the adaptability and stability of urban platooning at the same time.

One platooning protocol is to mainly use a radar sensor to maintain the inter-vehicle
distance and only occasionally use wireless communication to share control information
for unexpected driving situations [23]. A vehicle is allowed to join a platoon regardless
of its driving position. When a joining maneuver occurs at the side of the platoon, it is
necessary to change the distance between two vehicles that exist backward and forwards
in the position to be joined at the side of a platoon. To achieve this, the vehicle preceding
the two vehicles located at the front and back of a new joining position sends a control
message to notify those two vehicles of an increase or a decrease in speed. The preceding
vehicle transmits the control message through ultra-short distance communication so that
only the following vehicle could receive it. For every 100 ms, a leader vehicle allocates a
different channel used for communication to each vehicle belonging to its platoon. Using
different channels for communication leads to a decrease in communication interference
among many vehicles. However, since urgent information must be transmitted to rear
vehicles across multiple hops, using different channels increases communication delay.

Satisfying the periodicity of control message transmission during vehicle platooning
is a critical issue in terms of control. In this regard, Böhm and Kunert have proposed a
fair communication method in which a leader vehicle allocates a time slot of transmis-
sion to each vehicle belonging to its platoon within a given superframe [24]. To ensure
the reliability of vehicle platooning, a leader vehicle explicitly acknowledges individual
vehicles whenever member vehicles transmit their messages. In addition, every vehicle
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is also required to acknowledge receipt of the leader vehicle’s message. In this approach,
a given superframe is divided into two phases. The first phase is designed for a leader
vehicle to collect the information of the member vehicles as each vehicle transmits its status
information in the time slot assigned to it. In the second phase, a leader vehicle individually
informs each vehicle of control information for vehicle platooning. During the first phase,
one or more vehicles can fail to transmit their message in the assigned time slots. A leader
vehicle continuously allocates a new time slot to all failed vehicles until either allfailed
vehicles succeed the transmission of its control message or all the time slots assigned in
the first phase are exhausted. In the worst case, thus, the second phase is postponed until
a maximum period defined for the first phase is consumed. Even in the second phase,
if a leader vehicle fails to transmit a control message for each member vehicle, it should
also retransmit control messages after its scheduled transmissions for every vehicle are
finished. In this protocol, there should exist an explicit phase to collect status information
so that a leader vehicle controls all vehicles in a platoon by transmitting control messages
required for vehicle platooning. All platooning vehicles are responsible for explicit ac-
knowledgments for all data transmission within the assigned time slot. Depending on
the vehicle density on an urban road, contentions for transmission can be significantly
intensified so that it may be difficult to guarantee a stable platoon. Furthermore, when
a leader node leaves its platoon, its platoon is bound to be destroyed and a new platoon
should be constructed again. In a dynamic driving environment such as an urban road,
there is a desire to maintain a platoon no matter which vehicle leaves.

In addition, one study also points out the difficulty of guaranteeing transmission
reliability [25]. Especially, under high channel load, there can occur many packet collisions
due to the nature of IEEE 802.11p. To ensure transmission reliability, they propose a
token-based MAC protocol. In this protocol, one member of the local platoon with the
best connectivity among the neighboring local platoons plays a role of a token manager
as a central controller. After the token manager determines a receiver, called a token
holder, for its frame, it transmits its data with a token. A token holder is responsible for
sending its frame as its token is delivered to a new token holder. If the token holder cannot
transmit its frame with a token for a new token holder, this is excluded from a given
local platoon. At the same time, the token manager creates a new token that indicates
retransmission starting at the beginning. When this token-based MAC protocol is applied
to urban platooning, there may be tricky issues. For instance, if a node cannot transmit
data due to a communication failure, according to their token management mechanism,
the token manager creates a new token. While ensuring the reliability of the transmission,
the periodicity of control message transmission required for urban platooning may not be
satisfied, which may lead to a dangerous platoon driving situation.

ENSEMBLE is designed as a truck platooning protocol with flexibility regardless of
the type of trucks [7]. This protocol operates on a control channel and uses the extension
of the cooperative awareness message (CAM) specified as standard in EN 302 637-2 [26].
It focuses on specifying the creation, joining, and leaving maneuvers for efficient vehicle
platooning. During driving, platooning vehicles should periodically transmit not only
their CAM extensions once every 100 ms but also platooning-related control messages once
every 50 ms. To join a platoon, a vehicle that does not participate in a platoon uses the
information of the CAM extension received from surrounding vehicles belonging to the
platoon. If a vehicle intends to join a specific platoon, it should send a request message
to the rear vehicle at the end of the platoon. The rear vehicle allows it to join by explicitly
responding with a response message. If a vehicle intends to leave a platoon, it is allowed to
leave the platoon after it transmits a leaving-related message to all vehicles in the platoon
ten times. It is noted that the ENSEMBLE-enabled platoon is destroyed even if one vehicle
leaves the platoon. In the urban road where many vehicles frequently join and leave
an existing platoon, it is hard to maintain vehicle platoons constructed by ENSEMBLE.
Furthermore, since a single control channel is used for vehicle platooning, performance
degradation might be severe in urban environments with high vehicle density. While
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urgent information related to the detected events is shared with surrounding vehicles
during vehicle platooning, this may hinder the transmissions of platooning-related control
messages by imposing the additional load to the control channel in a dense area.

As described above, there have been many attempts to perform vehicle platooning
in a distributed manner. However, they are not suitable for urban driving environments
with complex topology and high uncertainty. From the literature review, the requirements
for urban platooning are derived. First, a vehicle should determine a vehicle platoon
to join by itself by minimizing the amount of information collected from surrounding
vehicles. Second, even without the explicit acknowledgment from the vehicles of the
platoon, the platoon should be reliably maintained. Third, once a vehicle platoon is
created, various maneuvers suitable for driving environments need to be specified for
a long lifetime. In addition, specified maneuvers should provide the adaptability and
flexibility of the platoon formation. Fourth, information for urgent events should be shared
quickly with platooning vehicles to ensure their stability by actively controlling the vehicle
movement. We should consider minimizing the additional load on the platooning-related
transmission. Considering the derived requirements for urban platooning, we exploit a
fully distributed coordination based on a beaconing mechanism to maximize flexibility
and adaptability, which has been actively studied for ultra-wideband [27,28]. It is capable
of quickly organizing a new network connection and rapidly joining a new network [29].

3. Distributed Urban Platooning Protocol

In this section, considering the mobility of vehicles, we introduce a novel distributed
urban platooning protocol that is designed to maximize flexibility, adaptability, and stability.
DUPP is developed to support fair and reliable data propagation by suppressing unneces-
sary transmission among surrounding vehicles on the urban road and allowing an urban
platoon to adapt rapidly to a frequently changing driving environment (i.e., changeable
routes of vehicles, irregular traffic flow, and a signalized intersection). The functionality
of DUPP is distributed among vehicles involved in urban platooning and is composed
of the distributed control for medium access and urban platooning maneuvers. First, for
distributed control for medium access, we design a distributed coordination method added
on top of IEEE 1609.4 and IEEE 802.11p, which is described in Section 3.1. Second, for
distributed control for urban platooning maneuvers, flexible and autonomous platooning
(FAP) maneuvers are proposed which are discussed in Section 3.2.

An urban platoon consists of two or more vehicles driving on the same lane. The length
of an urban platooning is limited to η in order to maintain efficiency and stability under
an urban driving environment with complex topologies and dynamic vehicle movements,
where η can be defined by experiments. From the literature, η would be set to 7 [7]. In
this paper, an urban platoon with a certain length below η is referred to as a local platoon.
A local platoon is defined as P = {Lvi , Fvi , Rvi}, where Lvi , Fvi , and Rvi are individual
subsets of S =

{
v1, v2, . . . , vη

}
which represents a set of vehicles joining a local platoon

with the identification of 1 ≤ i ≤ η. Furthermore, this set P becomes a partition set of the
set S when the number of vehicles in a local platoon is over three. During driving, a vehicle
that intends to perform urban platooning is referred to as a candidate node vk ∈ V, where
set V is a set with the elements of a driving vehicle on the road. When a new local platoon
is initially formed, it might have one vehicle that is an owner and creator of the new local
platoon. This vehicle is referred to as a leader node Lvi (vi ∈ S, |Lvi | = 1) which is a node
driving at the very front of the local platoon. After that, many vehicles as candidate nodes
can participate in the local platoon of this leader node, which are referred to as member
nodes Mvi (vi ∈ S − {vk

∣∣vk = Lvk

}
, |Mvi | = η − 1). Among the member nodes Mvi , one

vehicle driving at the tail end of the local platoon is called a rear node Rvi (vi ∈ S, |Rvi | = 1)
and the other vehicles are referred to as follower nodes Fvi (vi ∈ S, |Fvi | = η − 1 − 1) except
for a rear node. According to this definition, in DUPP, a vehicle should take at least one of
the four roles (i.e., candidate, leader, follower, and rear nodes) of vehicles related to a local
platoon corresponding to four defined vehicle sets (i.e., {vk} ∩ {Lvi , Fvi , Rvi}). Member
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nodes may consist of one rear node and one and more follower nodes while |S| ≥ 3. If the
number of vehicles in a local platoon is below two, the member node is a rear node.

3.1. A Distributed Coordination for Urban Platooning

In this subsection, we introduce a distributed coordination method by which vehicles
can form a local platoon, sequentially participating in urban platooning, and obtaining the
control information from member nodes and a leader node within a given time. It is well
suited to zero infrastructure communications and to support FAP maneuvers.

IEEE WAVE is referred to as the suite of IEEE 1609.x standards including IEEE
802.11p [11]. In WAVE, IEEE 1609.4 that describes multi-channel operations works on
top of the IEEE 802.11p MAC [30]. DUPP exploits alternative channel access among the
four methods for multi-channel operations. The alternative channel access divides the
channel access time into a synchronization interval with a fixed length of 100 ms. The
synchronization interval consists of a control channel interval (CCH-I) with a fixed length
of 50 ms and a service channel interval (SCH-I) with a fixed length of 50 ms. During CCH-I,
vehicles should reside in one designated control channel and share BSMs for supporting
safety-critical applications. During SCH-I, one of four service channels (SCHs) is used by
vehicles to support non-safety applications.

In DUPP, vehicles of a local platoon should share platooning-related information in
the form of a platoon control message (PCM) on a given SCH during SCH-I. Regardless
of an urban platooning, it is compulsory for driving vehicles to broadcast BSMs on the
designated CCH during CCH-I. A leader node is required to transmit a WAVE service
advertisement (WSA) message notifying the availability of an urban platooning. The multi-
channel operation of DUPP works regardless of the number of transceivers of a vehicle.
To coordinate PCM transmissions among vehicles during SCH-I, the DUPP’s superframe,
indicating periodic time interval as shown in Figure 1, consists of two major parts: a
beacon period (BP) followed by a data period. The data period for sharing platooning
control information may be divided into a contention-free period (CFP) and an event-
based period (EBP). The EBP is an optional period activated depending on whether a
certain event occurs or not. The BP is defined for vehicles to send only beacon messages
designated to get scheduled access to the medium. The CFP aims to share PCMs within the
existing local platoon to conduct the urban platooning by controlling vehicles’ acceleration.
During driving, the nodes of a local platoon should respond to four events that may have
the potential negative effects on the stability and safety of the urban platooning against
various events predefined for ETSI’s DENM (Decentralized Environmental Notification
Message) [31]. They include emergency brake lights, hazard locations of dangerous curves,
obstacles and road construction, and road conditions such as heavy rain, snow, and slippery
road. All nodes detecting one of the events should be responsible for transmitting a
platoon event message (PEM) within the EBP of a given superframe. In order to exclude
the possibility of all nodes struggling with intensified competition, DUPP selects one
transmitting node among them in a distributed manner.

Each superframe starts with the BP where the leader node of a local platoon transmits
a beacon message. Each BP has only two beacon messages transmitted independently
by two vehicles. After the first one is transmitted by a leader node Lvi , the second one
is sent by a new candidate node vk ∈ V based on IEEE 802.11p. A new candidate node
attempts the transmission of its beacon message only after receiving the beacon message
of the leader node. It is noted that only one candidate node succeeds in this competition
even though there may exist several candidate nodes accessing to medium to send their
beacon messages. In other words, DUPP allows only one vehicle for each superframe to
participate in the existing local platoon.

After finishing the BP, the CFP starts with the PCM transmission of a leader node. An
individual member node sequentially transmits its PCM upon receiving the PCM from
its preceding member node. Since the wireless channel is shared with contention-based
medium access and is easily influenced by various driving environments, nodes’ transmis-
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sions in the local platoon might be delayed or failed. DUPP is responsible for periodically
transmitting accurate control information through in-vehicle networks. Therefore, if one
of them does not succeed in transmitting the PCM, all nodes behind the failed node are
regulated from transmitting their PCM. It means that the nodes behind the delayed or
failed node cannot send their PCMs during the superframe and should be separated from
the existing local platoon. Those nodes need to perform either a creation, joining, splitting,
or merging maneuver.

Figure 1. A channel access method defined for a distributed coordination.

During EBP, DUPP allows only one vehicle (i.e., a forwarder node) to broadcast a
PEM as a representative of a local platoon in order to give a warning against the detected
event. It aims to reduce the redundant messages generated from many nodes detecting
a particular event simultaneously. To determine a forwarder node to broadcast its PEM,
an individual node of the local platoon makes a decision by itself, based on an analytic
hierarchy process. We describe this AHP-based decision in Section 3.3.

A WSA message defined in IEEE 1609.3 is composed of a header and a series of WAVE
elements [32]. The header information includes the current WAVE version and extension
fields. The WAVE elements may include three segments (i.e., a series of variable-length
Service Info, a series of variable-length Channel Info, and a WAVE Routing Advertisement).
Since the WAVE Routing Advertisement segment is to provide information about infras-
tructure internetwork connectivity, it is not necessary for DUPP designed for distributed
coordination using zero-infrastructure communication.

In DUPP, three segments (Service Info, Channel Info, and Platooning Info) are used
for the leader node’s WSA message as shown in Figure 2, which illustrates a new WSA
message used for DUPP designed for urban platooning. To notify the availability of urban
platooning, the Platooning Info segment is newly added. The size of the WSA message
used for DUPP is a total of 48 bytes. We discuss each segment in detail in the following.

WAVE 
version

Extension 
fields Service Info Channel Info

Service 
Priority

Channel 
Index

Extension 
fields

WAVE 
Element ID 

Operating 
Class Adaptable Data 

Rate
Extension 

fields

Platoon Size Member List

PSIDWAVE 
Element ID 

Header Added elementWAVE element

Platooning Info

Channel 
Number

Transmit 
Power Level

Figure 2. A WAVE service advertisement message for urban platooning.

First, the Service Info segment contains information about a supported service. The
first field of the Service Info segment is a WAVE Element ID field with a value of 0x01. To
distinguish the type of the supported services, a unique identifier (ID) is allocated to each
service. This service ID is used to the value of the PSID (Provider Service Identifier) field.
The Service Priority field determines access to service channels to respond to the service
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request of this specified priority. In this regard, we use the value having the highest priority
among given services to occupy the service channel. The Channel Index field indicates
the service channel where the advertised urban platooning service operates. Normally, in
one WSA message, there may be information on one or more channels to support various
services at the same time. The n value of the Channel Index field of the Service Info segment
connects to the n-th Channel Info segment. However, it is assumed that the nodes for
DUPP concentrate on this urban platooning service. Therefore, the WSA message of DUPP
has only one Channel Info segment and the Channel Index field which is set as the value
of 0x01.

Second, the Channel Info segment aims to provide the information on the wireless
channel used for a defined service. In the Channel Info segment, the WAVE Element ID is
specified by the value of 0x02. The Operating Class field allows the Channel Number to
identify a specific channel uniquely in the context of a country. The Channel Number field
indicates the number of the channel for urban platooning to operate. To communicate with
each other, the nodes of a given local platoon should specify how fast and how strong they
transmit after they move to the channel where urban platooning operates. It is related to
the two fields of Data Rate and Transmit Power Level. The Adaptable field enables them
to operate in a more flexible way. If the Adaptable field is set to zero, they are required
to communicate by complying with the values specified in the Data Rate and Transmit
Power Level fields. If not, the value of the Data Rate field is used as a minimum value for
transmission, and the transmission power of the nodes cannot exceed the value specified
in the Transmit Power Level field. Finally, the Platooning Info segment contains two fields
of the Platoon Size with the number of nodes and Member List with the list of IDs of all
nodes belonging to a local platoon. These fields are used to assist platooning maneuvers.

In DUPP, the three messages supporting a local platoon are designed: a beacon
message, PCM, and PEM as discussed above. To maintain stable urban platooning, DUPP
exploits a part of the existing SAE J2735-based BSM part 1 to share vehicle information and
extends it to contain additional information regarding a local platoon. As shown in Figure 3,
this extension illustrates the basic form of three messages. The basic form consists of two
elements of vehicle information and platoon information.

 
Figure 3. The basic format of three messages for urban platooning.

First, the vehicle information element is categorized into three segments. As shown
in Figure 3, the Identity segment has three fields related to basic information about a
given message.

The first field of Msg ID is a unique ID of a message, the second ID field is the vehicle’s
ID of a sender node, and the third SecMark field is a generated time of the message. To
maintain shorter inter-vehicle space, it is necessary to exchange dynamics information of
all DUPP nodes. In this regard, the Position segment has information consisting of Latitude,
Longitude, and Size fields of the vehicle. The Motion segment contains vehicle dynamics
information defined as Speed, Heading, Angle, and AccelSet fields. In detail, the AccelSet
field consists of four acceleration values (i.e., longitude acceleration, latitude acceleration,
vertical acceleration, and a yaw rate).

Second, the platoon information element consists of maneuver and AHP segments. In
the maneuver segment, the value of the Type field of each message is given as a different
value to distinguish three messages. The beacon message, PCM, and PEM have 0x01, 0x02,
and 0x03 respectively. To specify an existing local platoon, the Vehicle IDs field contains a
list with the IDs of all nodes in sequence in this local platoon. Since DUPP does not perform
explicit confirmation of nodes’ maneuvers, this Vehicle IDs field is designed to ensure its
reliability while vehicles are conducting distributed coordination. When a leader node
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generates a beacon message, the leader node specifies the Vehicle IDs field with a list of
all nodes belonging to its local platoon. The Vehicle IDs field of the leader node is used to
notify candidate nodes of information on all nodes belonging to its local platoon and can be
used to identify this local platoon from others on the same channel. A candidate node adds
its own vehicle ID to a leader node’s list and puts the extended list in this field to notify
the leader node of its intention to attend. It indicates that the candidate node designates
a specific local platoon to participate. In the case of the PCM, as it does in the beacon
message, the leader node also constructs the list for all nodes belong to its local platoon.
When there is a candidate node succeeding to the transmission of a beacon message during
this superframe and the current number of all nodes is below η, the list is extended by
adding the vehicle ID of that candidate node. This extended list indicates implicitly that
the leader node accepts a new joining attempt presented by the beacon message of the
candidate node. During the CFP, the members receiving the PCM of the leader node also
extend the list by adding the vehicle ID of that candidate node. The Maneuver field is
designed to describe nodes’ maneuvers defined for a distributed urban platooning. In the
case of a beacon message, the value of the Maneuver field can be either 0x00 or 0x01. The
value of 0x00 means the message of the leader node and the value of 0 × 01 means the
message of the newly joining node (i.e., one of the candidate nodes). When the Type field
has the value representing PCM, the Maneuver field has one of four different values: 0x00
representing a normal driving node within a given local platoon, 0x01 representing a newly
joining node, 0x02 representing a node intending for leaving, 0x03 representing a newly
merging node, and 0x04 representing a node to conduct splitting. When the value of the
Type field is PEM, the Maneuver field indicates the ID of an event. The total size of each of
the DUPP messages is fixed as 86 bytes.

Three fields of the AHP segment are used to determine a forwarder for a local platoon.
In DUPP, each node of the local platoon only uses the information of PCMs when a
forwarder is determined in a distributed manner. Therefore, the beacon message and PEM
do not specify the AHP segment. The string stability field contains the difference between
expected and real position, indicating how well the node keeps the safety distance required
by the leader node of the local platoon. The interference field specifies the number of
vehicles coexisting outside the local platoon in order to convey information about how
much data transmission of this PCM’s owner affects the data transmission outside the local
platoon. Since the connectivity represents a capability of data dissemination of a given
node, the connectivity field has the number of nodes behind this PCM’s owner.

3.2. Flexible and Autonomous Platooning

To maximize the flexibility and adaptability of urban platooning, flexible and au-
tonomous platooning is designed for DUPP. FAP defines the vehicle’s maneuvers with five
platooning maneuvers: creation, joining, merging, leaving, and splitting maneuvers. For
ease of understanding, the flow diagram for each FAP is illustrated in Appendix A.

3.2.1. A Creation Maneuver

A creation maneuver is a series of processes in which a candidate node becomes a
leader node to create a new local platoon. To create a local platoon, it is assumed that
there is no platoon in the transmission range of a candidate node. After a candidate node
determines creating a new local platoon under those conditions, a candidate node sends
a new WSA message on CCH during CCH-I and becomes a leader node. At the end of
CCH-I, it switches to SCH specified in the WSA message. When a leader node transmits a
beacon message to start the BP, a new local platoon is generated on SCH. While there is one
vehicle belonging to a local platoon, the vehicle is not only a leader node but also a rear
node. Therefore, a leader node completes creating a local platoon within one superframe
on SCH.

There may be situations that violate the assumptions above. If there is an existing
local platoon, a candidate node can receive a WSA message broadcast by a certain vehicle.
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If a candidate node is interested in this local platoon and satisfies four join requirements, it
does not generate a new WSA message but performs a joining maneuver. The four join
requirements are described in Section 3.2.2 in detail. If a candidate node intends not to
participate in this local platoon, it transmits its own WSA message to create a local platoon.

3.2.2. A Joining Maneuver

A joining maneuver is a series of processes for a candidate node to join an existing
platoon. To join a local platoon, a candidate node should satisfy four join requirements:
(1) there is at least one local platoon in the transmission range of the candidate node
regardless of the driving lane, (2) the candidate node follows the given local platoon, (3) the
total length of the local platoon should be less than η before the candidate node participates
in the existing local platoon, and (4) the existing local platoon and the candidate node
should not be blocked by obstacles such as vehicles of no interest.

A candidate node that decides on participating in the leader node’s local platoon
performs its speed control and channel switching simultaneously. To inform a new vehicle
of a joining position, the WSA message of a leader node includes the ID of the rear node
in the existing local platoon. By using the ID of the rear node, a candidate node obtains
position information from the BSM of the rear node and approaches within 20 m of the
rear node to perform the joining maneuver. If the candidate node and the rear node are
not driving in the same lane, the candidate node changes the lanes and approaches the
rear node.

Simultaneously, at the beginning of SCH-I, the candidate node moves to the SCH
specified in the WSA of the leader node to perform a joining maneuver. On SCH, the
candidate node starts to perform the joining maneuver by transmitting its beacon message
during the BP. It is allowed to transmit a beacon message after the leader node transmits
its beacon message. The beacon message of the candidate node should specify the value
of 0x01 in the Maneuver field and have the Vehicle IDs field with the leader node’s list to
specify the local platoon to join. Since the candidate node can obtain the leader node’s
list from the WSA message on CCH, it can confirm the leader node’s beacon message
transmitted on SCH. After the candidate node successfully transmits the beacon message,
the leader node of the local platoon expands the list of the existing nodes belonging to this
local platoon to include the new candidate node. The leader node allows the candidate
node to join this local platoon by transmitting the PCM with the extended list in the given
superframe during the SCH-I. While the existing local platoon is maintained, the leader
node is responsible for managing the list of the vehicles’ IDs including a new rear node
and providing the list periodically through the beacon message, the WSA message, and
the PCM.

Assuming no contention, the candidate node (i.e., winner) finishes the joining maneu-
ver by transmitting its PCM and can complete it within one synchronization interval. There
might be one and more new candidate nodes to attempt to join the existing local platoon.
However, since one candidate node wins in contention-based access, it transmits its beacon
message after a leader node succeeds to broadcast its beacon message during the BP. This
winner becomes a new member of the local platoon and becomes a rear node at the same
time. Accordingly, the rear node is changed into a follower node. The candidate nodes
that were not successful to join the local platoon in the first attempt can try in the next
superframe. In this regard, if there are several candidate nodes to join the local platoon at
the same time on SCH, to complete the joining maneuver, it takes as many superframes as
the number of candidate nodes attempting at the same time. Nevertheless, it is noted that
there might exist two cases for a candidate node not to completely join an existing local
platoon over time: (1) the case that the rear of the vehicle is blocked by another vehicle
that is not interested in this platoon and (2) the case that the number of the member and
leader nodes exceeds the designated size η of the local platoon after a winner among new
candidate nodes conducts the joining maneuver. In these cases, the candidate nodes except
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for the winner should perform the creation maneuver to generate a new local platoon in
the next CCH-I.

3.2.3. A Merging Maneuver

A merging maneuver is conducted when two consecutive local platoons meet in the
same lane. To merge local platoons, it is assumed that (1) two local platoons should be in
the same lane, (2) the leader node of each local platoon should be in the transmission range
of each other, (3) the sum of the length of two platoons should be below η, and (4) two
local platoons should not be blocked by obstacles such as vehicles that are not interested in
the urban platooning.

When driving on the road, the length of a local platoon will increase until the number
of nodes is below η. However, this local platoon can be split by traffic lights and com-
munication failure. It is possible that there are many small local platoons, reducing the
efficiency of the urban platooning. To improve the performance of the DUPP, we design a
merge maneuver allowing small local platoons to merge to form one large local platoon.
For instance, if there are two small local platoons nearby, two leader nodes can hear each
other’s WSA message during CCH-I. According to the distributed coordination of DUPP,
the following local platoon can merge into the preceding local platoon. To perform the
merging maneuver, all nodes of the following local platoon change the speed to approach
the preceding local platoon. To do this, the leader node of the following local platoon
should send a PCM with the desired speed. After that, if the leader node of the following
local platoon approaches within 20 m of the rear node of the preceding local platoon, the
merging maneuver will be performed by hearing each other’s WSA message during CCH-I.
In the next SCH-I, the nodes in the following local platoon switch the service channel
designating in the WSA message of the preceding local platoon.

During the BP in the next SCH-I, two leader nodes of the preceding and following
local platoons should transmit individual beacon messages. First, the leader node of the
preceding local platoon sends a beacon message with its managed node IDs. Second, the
leader node of the following local platoon responds with a beacon message containing all
the node IDs of the preceding and following local platoons. In the CFP, the leader node
of the preceding local platoon sends a PCM containing the list of all node IDs which is
obtained from the beacon message of the leader node of the following local platoon. It
indicates that the leader node of the preceding local platoon allows the following local
platoon to be merged to its local platoon. As a confirmation of newly merged members, all
the nodes in the preceding local platoon transmit PCM which contains not only the nodes in
the preceding local platoon but also the nodes in the following local platoon. The PCMs of
the following local platoon nodes are the same as that of the preceding local platoon nodes
except for the value of a particular field. The Maneuver field in the PCM has the value of
0x04 that indicates that they are newly merged nodes. As the nodes of the following local
platoon merge into the preceding local platoon, the value of the Maneuver field will be the
value of 0x00 in the next superframe. As the merging maneuver is completed when the
nodes in the following local platoon transmit a PCM containing the Maneuver field as the
value of 0x04, the merging maneuver is finished within one and a half synchronization
interval if two platoons are close enough before the merging maneuver is performed.

3.2.4. A Leaving Maneuver

A leaving maneuver represents the behavior of the vehicle to leave without partic-
ipating in the local platoon anymore regardless of its position. There are two cases that
the vehicle leaves from a platoon: the expected and the unexpected. The former indicates
that the vehicle has a plan to change its route in advance due to the road traffic conditions
(e.g., congestion, illegal parking, and traffic disruption due to a signalized intersection).
The latter indicates that a vehicle is considered as leaving a local platoon by other members
that cannot send PCMs within a deadline of one synchronization interval.
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As a node of the local platoon changes its route due to road traffic conditions, the
node is separated from the local platoon. Before this separation, a node should inform the
other nodes of its intention of leaving the local platoon by transmitting its PCM with the
Maneuver field of the value of 0x02. However, the leaving maneuver is different depending
on whether a leaving node is a leader node or not. If a leaving node is the rear node of
the local platoon, the follower node just in front of it becomes a new rear node. In this
case, the leader node removes the leaving node’s ID from the managed list in this local
platoon. In the next CCH-I, the leader node broadcasts the changed information through
its WSA message, providing tacit approval for a leaving maneuver. If a leaving node is
one of the follower nodes, it should conduct a lane change to leave after it transmits its
PCM. Due to this leaving node, there occurs a large distance gap in the middle of the local
platoon. To maintain the safety distance specified by its leader node, the follower node
behind the leaving node controls its speed, using the distance gap from its new preceding
node and the position and acceleration of the PCM received from the leader node in a
given superframe. If a leaving node is the leader node, the leaving maneuver enables the
member node just behind it to inherit the leader node’s role. Therefore, the member node
just behind the leader node should become a new leader node at the next CCH-I. The new
leader node transmits its WSA message after it constructs its node list excluding the ID
of the leaving leader node. The expected case requires one synchronization interval for
completing it.

The unexpected leaving maneuver is more complex than the expected leaving maneu-
ver. An unexpected case may occur when a node cannot transmit a PCM within a given
superframe due to a communication failure. A leader node is responsible for detecting
an unexpected case within a given superframe. As soon as detecting it, the leader node
determines ruling out this failure node and removes this node ID from the managed list.
According to the distributed coordination in DUPP, all member nodes behind the failure
node are also removed from the local platoon since they are not allowed to transmit their
PCM. After that, they can perform creation, joining, or merging maneuvers after they
are eliminated against the local platoon. In other words, performing these maneuvers is
preferred than accepting a potential risk that may occur if they drive during a certain grace
period without the latest PCMs. The leaving maneuver of the unexpected case is completed
when the leader node transmits the updated WSA message in the next CCH-I. Accordingly,
the leaving maneuver is also finished within one synchronization interval.

On the road, the eliminated nodes should perform one among the creation, joining,
splitting, and merging maneuvers. Determining an appropriate maneuver is based on the
number of the eliminated nodes. We define the length of the local platoon as ρ and the
driving order number of a given node in the local platoon as i. The leader node (i.e., i = 1)
and the rear node (i.e., i = ρ) are not related to the decision depending on the number of
eliminated nodes since they comply with the expected leaving maneuver. Depending on
driving conditions as discussed above, it can perform either creation or joining maneuver.
When the unexpected leaving node is identified by the driving order number i (i �= 1), the
i-th node divides the given local platoon into a front group and a rear group. The front
group is part of the given local platoon and is maintained as a local platoon by the leader
node (i.e., i = 1). However, the rear group consists of the eliminated nodes and is not the
local platoon because the leader node does not exist in that. If the number of the eliminated
nodes in the rear group is less than or equal to three, the eliminated nodes independently
and sequentially perform joining maneuvers.

When the number of the eliminated nodes in the rear group is greater than three,
they perform a splitting maneuver. To improve the efficiency of DUPP, the split local
platoon is designed to merge into a small local platoon. Among the eliminated nodes, the
first driving nodes start the splitting maneuver for eliminated nodes. After the splitting
maneuver, a new rear local platoon should merge into the front local platoon according to
the assumptions of the merging maneuver (as described in Section 3.2.2). This is because it
is more efficient to perform the joining maneuver than performing the splitting maneuver
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when the maximum number of the eliminated nodes is three. The join maneuver requires
at least one to three synchronization intervals depending on the number of the eliminated
nodes. However, the splitting maneuver accompanied by the merging maneuver requires
the minimum of three synchronization intervals: an interval to confirm the elimination
by the WSA message of the leader node in the front local platoon, an interval to create
a new rear local platoon by sending a WSA message, and an interval to perform the
merging maneuver.

If the failed node recovers its communication capability after performing any maneu-
ver of the eliminated nodes, this node can perform either the creation or joining maneuver
according to the creation and join conditions.

3.2.5. A Splitting Maneuver

A local platoon might be physically split when all nodes of the local platoon cannot
completely cross the intersection because of the traffic signal after the leader node of the
local platoon goes into an intersection. Furthermore, a certain vehicle might interrupt
the smooth flow of a local platoon when the local platoon is unstable. It leads to the
separation of the local platoon in the DUPP. As discussed above, a group consisting of the
nodes eliminated from the existing local platoon can determine performing the splitting
maneuver according to the local platoon condition. Among the nodes that will be separated
physically, the member node driving at the front is responsible for the splitting maneuver
and becomes a new leader node. Therefore, the new leader node creates a new local platoon
(i.e., a rear local platoon) separated from the given local platoon, and the new platoon
consists of the existing separated nodes. The new leader node should transmit its WSA
message in the next CCH-I for starting splitting maneuver which is the same as the creation
maneuver. In contrast to the creation maneuver, however, they do not transmit their beacon
messages during BP since the member nodes already belong to the new local platoon. The
new leader node transmits a PCM with the value of 0x03 in the Maneuver field and the list
of the existing member nodes that are separated from the previous leader node’s list. All
member nodes of the new local platoon sequentially transmit their PCM with the new list
of nodes and the value of 0x03 in the Maneuver field. In this regard, the splitting maneuver
is completed within one synchronization interval.

3.3. Analytic Hierarchy Process-Based Forwarder Selection

The EBP is an optional period activated depending on whether a certain event occurs
or not. In DUPP, certain events with a negative effect on urban platooning are pre-defined.
They include emergency brake lights, hazard locations of dangerous curves, road con-
struction and obstacles on the road, and road conditions such as heavy rain, snow, and
slippery road. When nodes in the local platoon detect any such pre-defined event, they
may transmit redundant messages using the wireless channel. To address this problem,
we regulate the number of nodes for event notification by selecting only one forwarder
among vehicles. As soon as CFP is finished by receiving PCMs of all nodes in the local
platoon, each node performs AHP-based selection to determine the one-time forwarder
using information distributed in PCMs.

The AHP approach is useful in systematically solving the problem of decision-making
that may be differentiated depending on the degree of influence of the interrelated and
complex criteria required for decision making [33]. In the AHP approach, the definition
of criteria and the calculation of their weight are critical to assess the alternatives. The
structure of the proposed AHP-based forwarder selection of DUPP is shown in Figure 4.
The fundamentals of AHP consist of the definition of criteria, the pairwise comparison
between criteria, pairwise comparison between alternatives, and the priority calculation
for achieving an objective [34–37]. The proposed AHP-based forwarder selection of DUPP
follows the AHP’s fundamental processes, focusing on the development of the following
four items: the definition of three criteria, the definition of grades for each criterion and
for each node, the calculation of the decision weight, and the priority decision. The AHP
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methodology allows DUPP to determine which alternative is the most consistent with our
three criteria and the degree of importance.

Figure 4. A structure for the AHP-based selection method.

3.3.1. Definition of Three Criteria

In the first step, to select an appropriate forwarder (i.e., objective in AHP) among
all nodes (i.e., alternatives in AHP) in a local platoon, the DUPP defines three criteria
consisting of string stability, interference, and connectivity. In AHP-based forwarder
selection, DUPP intends to select a node heavily affected by the detected event to become a
forwarder. DUPP also considers the individual communication conditions of the nodes in
the local platoon. The string stability is related to the degree of the detected event’s effect
and both interference and connectivity represent the communication capability of a node.
After the priority for each node is calculated using three criteria, the node with the highest
priority is determined as a forwarder in a given superframe.

The string stability refers to the stability of a driving node in a local platoon and
indicates how well the node keeps the safety distance required by the leader node in the
local platoon. The string stability of node i at time t, denoted as Si(t), is given as:

Si(t) =

∣∣∣∣∣ epi (t)− {rpi(t′) + vi(t − t′)× (t − t′)}
dsa f e

∣∣∣∣∣, (1)

where epi(t) is the expected position of node i at time t, rpi(t′) indicates i node’s position
given at time t′, vi(Δ) is the average speed of node i during Δ that is the amount of time
elapsed from the time t′, and dsa f e indicates the safety distance the nodes comply with
depending on a given headway time between nodes. The time t′ is the time at which node i
has received a leader node’s PCM in a given superframe. Therefore, the given time t refers
to the time Δ after time t′. epi(t) is estimated with the position of node i at time t − 1, the
acceleration value in the longitude acceleration field of the PCM received from a leader
node at time t′ − 1, and the amount of time elapsed from time t − 1 to time t. Therefore,
the closer the value of Si is to 0, the better the distance between nodes is maintained and
the higher the stability is. The node with a high value in the stability has a high probability
to be selected as a forwarder.
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The interference criterion represents the degree of interference resulting from the data
transmission of a given node on other nodes outside the local platoon for their transmission.
The interference of node i at time t, denoted as Ii(t), is given as:

Ii(t) =
mi(t)

Mi
, (2)

where mi is the number of all nodes on the road that node i can interfere with, regardless of
whether they belong to the local platoon, and Mi indicates the maximum number of nodes
that can exist in the transmission range of node i. The maximum number of nodes in the
transmission range of node i is defined by the vehicle’s length, safety distance, road units,
and lanes. It is assumed that one road segment is divided into small road units of a certain
size (in this paper, it is given as 20 m). When a node tries to transmit data, many road units
can be included within its transmission range. Meanwhile, a vehicle occupies a certain
size of space on the road. It is reasonable to assume that a vehicle needs space equal to the
length of the vehicle plus the safety distance. For instance, when the length of a vehicle is
4 m, it needs about 17.3 m of space on the road when its speed is given as 60 km/h and
the time headway is given as 0.8 s in urban platooning. This length may vary depending
on the type of vehicle. Considering the situation of a small road unit filled with vehicles
for each lane, the total number of vehicles, n, within a small road unit can be calculated.
When a road unit consists of multiple lanes, it is the total number of vehicles in a road unit
multiplied by the number of lanes. In this regard, Mi is defined as:

Mi = n ∗
u

∑
r= 1

Lr, (3)

where n is the total number of a vehicle within road unit r, u is the number of road units
within the transmission range of node i, and Lr is the number of lanes of the road unit r.
Therefore, the closer the value of Ii is to 0, the less the interference with other nodes is. In
terms of forwarder selection, the node with a low interference level has a high probability
to be selected as a forwarder.

The connectivity criterion represents the capability of data dissemination of a given
node. The connectivity of node i at time t, denoted as Ci(t), is given as:

Ci(t) =
ni(t)

ρ
, (4)

where ni(t) is the number of nodes behind node i in the local platoon at time t and the
current number of nodes in the local platoon is denoted as ρ. Therefore, the closer the value
of Ci is to 1, the better the communication capability is. In terms of forwarder selection, the
node with high connectivity level has a high probability to be selected as a forwarder.

3.3.2. Pairwise Comparison between Criteria

The AHP determines the relative superiority of the alternatives after the relative
importance of the criterion is determined through a pairwise comparison [35]. DUPP
performs the first pairwise comparison in each criterion during the second step and the
second pairwise comparison to all nodes for each criterion during the third step. The first
one aims to compare the importance of criteria through pairwise comparisons, two at a
time. The second one aims to compare the importance of nodes, two at a time, through
pairwise comparisons. These pairwise comparisons are used to generate a decision weight set
for each criterion and each node, respectively, as a decision weight vector. To perform the first
pairwise comparison of each criterion, a general grade is defined as shown in Table 1. Using
the grade in AHP provides a way to include experience and knowledge of the DUPP in an
intuitive way for DUPP [35]. We divide the importance into three grades and give each
grade a score from one to five increasing by two points to widen the difference in grade.
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We weight the criteria using the general grade. In other words, this general grade enables
DUPP to represent the preference between criteria by assessing them.

Table 1. A general grade used for pairwise comparison to criteria.

Grade Description

1 Equally important
3 A little important
5 Very important

When each node performs a pairwise comparison to criteria, DUPP requires construct-
ing an n-by-n decision matrix (i.e., n = 3) which is a square matrix [38]. In the AHP-based
forwarder selection, the decision matrix is generated using the general grade in order
to represent relative importance between defined criteria. As discussed above, in DUPP,
a node that is heavily affected by the detected event should transmit the related infor-
mation to many nodes (the more, the better) without affecting other nodes in terms of
communication. In this regard, the string stability is considered to have higher importance
than the interference. The connectivity is designed to have the lowest importance. In
detail, depending on the general grade of Table 1, the relative importance indicates that
the importance of the string stability to the interference is five-point and the importance of
the interference to the string stability gets the reciprocal of this five-point. Note that the
decision matrix may vary according to the definition of relative importance with different
grades [33].

The results of the relative importance between the two criteria are presented in the
n-by-n decision matrix. Table 2 shows how the criteria are rated against each other. In
Table 2, the result of the decision matrix is denoted as Mp(S, I, C) =

[
aij
]
, 1 ≤ i, j ≤ n

for string stability denoted as S, interference denoted as I, and connectivity denoted
as C. From the n-by-n decision matrix, a decision weight vector (i.e., n-by-1 matrix)
is calculated as the normalized eigenvector corresponding to the largest eigenvalue of
a pairwise comparison matrix as follows. A pairwise comparison matrix denoted as
Pp(S, I, C) =

[
bij
]
, 1 ≤ i, j ≤ n, for defined criteria is constructed through normalization

dividing each element of the decision matrix by the total value of the corresponding
columns. For instance, b11 is obtained by dividing a11 by 1.533 that is the total sum of the
values in the first column as shown in Table 2. After that, weight values to each criterion
are calculated by dividing the sum of the values of all columns of each row by the number
of rows. The vector of decision weights, denoted as Wp(S, I, C) = [wk], 1 ≤ k ≤ n, is
generated for three criteria and should satisfy the conditions 0 ≤ wk ≤1 and ∑n

1 wk = 1.
The results of the decision matrix, the pairwise comparison matrix, and the decision weight
vector are summarized in Table 2. Each value of the calculated eigenvector Wp(S, I, C) is
considered as the predetermined decision weight for each criterion, respectively.

Table 2. The results of the decision, pairwise comparison, and decision weight matrices.

Criteria
Mp(S, I,C) Pp(S, I,C) Wp(S,I, C)

S I C S 1 I 1 C 1 Subtotal 1 Decision Weight 2

S 1 3 5 0.652 0.692 0.556 1.900 0.637
I 1/3 1 3 0.217 0.231 0.333 0.781 0.258
C 1/5 1/3 1 0.130 0.077 0.111 0.318 0.105

1 All values are rounded to three decimal places. 2 Its consistency rate to assess the consistency of the comparison matrix is 4%.
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3.3.3. Pairwise Comparison between Alternatives

DUPP performs the second pairwise comparison for all nodes in the same way as
performing the first pairwise comparison to the criteria. The second pairwise comparison
for all nodes is independently performed in terms of the string stability (Si(t), 1 ≤ i ≤ ρ),
the interference (Ii(t), 1 ≤ i ≤ ρ), and connectivity (Ci(t), 1 ≤ i ≤ ρ) at time t when
the number of the nodes belonging to the local platoon is given as ρ. In other words,
DUPP compares the ρ node alternatives to the criteria. For each criterion, determining the
relative grade between nodes is based on the difference of the given criterion of nodes. The
difference between node i and j for a given criterion χ which is defined as Equation (5).

Δij(χ) =
∣∣χi − χj

∣∣ (5)

If the difference Δij(χ) ranges from a given low-boundary denoted as βlow(χ) to a
given high-boundary denoted as βhigh(χ), node i is given as the defined grade and the
grade of node j is given as the reciprocal of the grade of node i. Hence, the relative grade
for pairwise comparison can be described by the following equation:

βlow(χ) < Δij(χ) ≤ βhigh(χ) (6)

We divide the different values into five grades and give each grade a score from one
to nine increasing by two points. Hence, we provide the relative grade of nodes’ pairwise-
comparison according to the range defined by experimental values as shown in Table 3 [33].
When giving the relative grade between two nodes, it depends on the difference between
two nodes for each criterion. For interference, in the comparison with node i and node j,
node j obtains one from the relative grade but node i has the reciprocal of the relative grade
obtained when the difference between node i and node j is positive (i.e., χi − χj > 0). For
string stability and the connectivity between node i and node j, node i obtains one among
the relative grade but node j has the reciprocal of the obtained relative grade when the
difference between node i and node j is positive (i.e., χi − χj > 0).

Table 3. A relative grade used for the pairwise comparison of nodes.

Δij(χ) β(χ)

Δij(Si(t))
βlow(Si(t)) 0 0.3 0.5 0.7 0.9
βhigh(Si(t)) 0.1 0.5 0.7 0.7 1

Δij(Ii(t))
βlow(Ii(t)) 0 0.3 0.5 0.7 0.9
βhigh(Ii(t)) 0.1 0.5 0.7 0.7 1

Δij(Ci(t))
βlow(Ci(t)) 0 0.1714 0.3428 0.5142 0.6857
βhigh(Ci(t)) 0.1714 0.3428 0.5142 0.6857 0.8571

Grade 1 3 5 7 9

Based on Table 3, the decision matrix (i.e., n × n matrix, 1 ≤ n ≤ ρ) for all nodes is
constructed by the same method as for constructing the decision matrix Mp(S, I, C) for
each criterion above. Three matrices of the pairwise comparison to all nodes are constructed
for each criterion by using the defined relative grade of Table 3. The priority weight matrix
of a node for all criteria, denoted as Wi(t) =

[
WS(t) WI(t) WC(t)

]
(i.e., 1 × 3 matrix at time t),

consists of the priority weight value for each criterion. To help understand the AHP-based
forwarder selection technique, we provide an example of the priority weight matrix at
time t, which is summarized in Table 4. The values of this priority weight matrix are
changed whenever a one-time forwarder is determined. This is because the information
for AHP-based selection is synchronized through PCMs in the local platoon.
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Table 4. A priority weight matrix for all nodes at a given time.

Node ID WS(t)
1 WI(t)

2 WC(t)
3

1 0.076532 0.205409 0.350396
2 0.076532 0.205409 0.237473
3 0.076532 0.179435 0.158966
4 0.31917 0.157457 0.105558
5 0.298168 0.100314 0.069645
6 0.076532 0.083507 0.046163
7 0.076532 0.06847 0.031798

1 Its consistency ratio to assess the consistency of the comparison matrix is 5.9%. 2 Its consistency ratio to assess
the consistency of the comparison matrix is 3.6%. 3 Its consistency ratio to assess the consistency of the comparison
matrix is 3.5%.

3.3.4. Priority Calculation for Achieving an Objectives

In the final step on the AHP-based forwarder selection, using the priority weight
matrix of all nodes, each node selects the appropriate node with the highest priority as a
forwarder. The priority of a node for a forwarder selection, denoted as Pi(t), is a weighted
sum of the priority weight for node i (Wi(t) =

[
WS(t) WI(t) WC(t)

]
) based on the decision

weight of each criterion (i.e., Wp(S, I, C) = [wk], 1 ≤ k ≤ n) and is given as follows:

Pi(t) = w1 × WS(t) + w2 × WI(t) + w3 × WC(t) (7)

From Equation (7) using the decision weight vector of Table 2 and the priority weight
matrix of the example at time t in Table 4, we derive that Node 4 is determined as a
forwarder using Table 5 which shows the calculated priorities of each node.

Table 5. The priority of nodes.

Node Priority

1 0.138643
2 0.126786
3 0.111789
4 0.254057 1

5 0.222135
6 0.075004
7 0.069586

1 The highest priority

4. Performance Evaluation

For performance evaluation in terms of flexibility, adaptability, and stability, we use the
PLEXE simulator that integrates the traffic simulator Sumo with the networking simulator
OMNet++ [39]. Our experiment uses real traffic data in the particular area of New York
City in which there exist vehicles without communication capability. However, to construct
a mixed traffic environment in which vehicles with or without communication capability
coexist, the ratio of vehicle generation with communication capability is adjusted from the
actual traffic volume. We assume that in the experiment, all vehicles with communication
capability participate in urban platooning.

4.1. Experimental Environment

In this subsection, we describe the experimental environment to evaluate the per-
formance of DUPP. The road network used for the experiment corresponds to the map
extracted from Open Street Map (OSM), which is shown in Figure 5.
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Figure 5. The road network used for the experiment.

Our experiment is performed with the actual traffic data of New York City, collected
for 24 h, using a particular area of the road network of New York City with a size of
4.2 × 3.5 km [40]. In this paper, the actual traffic data indicates traffic volume (i.e., the total
amount of vehicles passing through a given route) measured for a certain period of time in
a given road network. From measured actual traffic data, we get a vehicle generation ratio
using the number of vehicles entering the road network by time. To obtain the generation
rate per entry point, the vehicle generation ratio is divided by the number of entry points
in the road network. In this experiment, vehicles are generated at seven entry points which
are numbered from 1 to 7 as shown in Figure 5. For each of the entry points, a vehicle is
generated by a Poisson distribution with a different generation ratio depending on the
time, denoted as λ (vehicles per second). The red circle represents the vehicle distribution
and the clearer the circle, the more vehicles there are. Table 6 shows the generation ratio of
vehicles for time. For 24 h, a total of 41,698 vehicles enter the road network. The peak time
in which vehicles are generated the most for 24 h is from 4 to 5 p.m. The amount of traffic
flow generated during this time period will affect the traffic conditions of the next time
unit (i.e., 5 to 6 p.m.). The maximum speed of the vehicle is regulated as 60 km/h. Vehicles
are randomly assigned the entry and exit points, and travel along a determined path in the
road network.

Table 6. The generation ratio of vehicles for time.

Time
From 0 1 2 3 4 5 6 7 8 9 10 11

To 1 2 3 4 5 6 7 8 9 10 11 12

λ
a.m. 0.061 0.046 0.036 0.028 0.025 0.022 0.024 0.031 0.039 0.046 0.059 0.067
p.m. 0.084 0.101 0.12 0.122 0.132 0.122 0.118 0.103 0.091 0.072 0.059 0.046

Every vehicle should periodically broadcast a BSM on every 100 ms during the CCH-I.
When vehicles perform another non-safety application regardless of the urban platooning,
during SCH-I, they periodically broadcast the application-related message with the size
of 100 bytes. The vehicles of the local platoon should periodically exchange PCMs with
all nodes in a local platoon. All vehicles exchange messages based on the CSMA/CA
mechanism of IEEE WAVE. In Table 7, we summarize the experimental environment.
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Table 7. Parameters defined for the experimental environment.

Parameters Values

BSM size 182 bytes

Physical and MAC layers
Channel coordination

IEEE 802.11p

IEEE 1604.4

Bitrate 27 Mbps

Tx range 1 km

Propagation model Two-ray interference model [41]

Maximum length of a local platoon 7 vehicles

Speed limit 60 km/h

Experiment time 24 h

Map size 4200 × 3500 (m)

In this environment, we consider the effect of the number of vehicles not interested
in an urban platooning on the performance of the DUPP. Therefore, three different sce-
narios are created by varying the generation ratio of the vehicles with communication
capability to 100%, 60%, and 30%, respectively. These scenarios are used in both DUPP and
ENSEMBLE. We denote three scenarios for DUPP as DUPP-100, DUPP-60, and DUPP-30,
respectively and for ENSEMBLE, three scenarios are expressed as ESB-100, ESB-60, and
ESB-30, respectively. It is referred to as NONE when there are only normal driving vehicles
that have no communication functionality and never participate in urban platooning in
this experiment.

4.2. Experimental Results

We evaluate the effectiveness of the proposed DUPP by comparing its performance
with the performance of ENSEMBLE in terms of the travel time of vehicles, the lifetime
of an existing local platoon, the success ratio of FAP maneuvers, the external cost of
PCM transmission, the periodicity of PCM transmission, the adaptability to unexpected
situations, and the forwarder selection ratio in a local platoon.

4.2.1. Vehicle Travel Time

The travel time of a vehicle is one of the significant indicators representing the level
of improvement by the proposed DUPP in terms of road capacity and efficiency. It is
measured as the time to take a vehicle to drive from an entry point to an exit point. In this
experiment, to effectively show the general tendency of the travel time over the vehicle
density by time zone, the day is divided into 24 time zones. For instance, time zone
1 indicates a period of 1 to 2 a.m. Figure 6 shows the average travel time of vehicles in each
time zone for each protocol (i.e., DUPP, ENSEMBLE, and NONE). Figure 7 presents the
results for each distance of given routes for each protocol. In Figure 6a, the tendency of
the individual results of DUPP-30 and DUPP-60 is similar to the tendency of the result of
DUPP-100. In addition, it is shown that they are also superior in terms of average travel
time compared with NONE and ENSEMBLE-30 and 60. Therefore, to further highlight the
difference among their results in terms of performance more carefully, all results presented
in Figures 6b and 7 are generated under the scenarios of DUPP-100 and ESB-100. As shown
in Figure 6b, for 24 h, DUPP shows the best performance in terms of the average travel
time. When there are few vehicles such as time zone 3 to 6, there is little difference in the
average travel time among the DUPP-100, ESB-100, and NONE scenarios. However, it is
clearly shown that the difference in the average travel time gets larger as the vehicle density
increases gradually at time zone 6 to 16. This difference becomes prominent after the
generation ratio of vehicles is the highest (i.e., time zone 17). In that time zone, the average
travel time of DUPP-100 is 28.3% less than that of NONE (i.e., 1071 s) and 20.4% less than
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that of ESB-100 (i.e., 965 s). Moreover, as the number of DUPP-enabled vehicles increases,
it causes a reduction in the average travel time. On the other hand, the performance of the
ENSEMBLE-enabled vehicles is better than that of NONE, but its performance is worse
than that of DUPP. The difference in the performance between DUPP and ENSEMBLE is
derived from the efficient and adaptable FAP maneuvers in a dynamic road environment. It
becomes clear by the number of the local platoons as shown in Figure 8c. The experimental
result showing that DUPP maintains more urban platoons on the road than ENSEMBLE
indicates that DUPP is more adaptable to urban roads.

(a) (b)

Figure 6. Average travel time according to the time zone for each protocol: (a) average travel time; (b) average travel time
for DUPP-100, ESB-100, and NONE.

Figure 7. Average travel time over the driving distance at peak time zone 16.

155



Sensors 2021, 21, 2684

(a) (b)

(c) (d)

Figure 8. Lifetime of local platoons: (a) average lifetime of local platoons, representing the continuity of them; (b) average
number of generated local platoons, representing the stability of them; (c) average number of existing local platoons,
representing the stability of them; (d) average length of local platoons, representing the durability of them.

To examine whether DUPP affects the travel time as the driving distance varies, we
present the average travel time in the peak time zone 16 (i.e., 4 to 5 p.m.) for various
distances in Figure 7. Although there exist many routes in the road network, only three
of all routes are selected to effectively analyze the performance difference among DUPP,
ENSEMBLE, and NONE. The three routes are presented in Figure 5: a red route with a
length of 4 km, a gray route with a length of 5.5 km, and a blue route with a length of
7 km. These routes are chosen based on several aspects, including more than 150 vehicles
per hour, at least five intersections, and a total distance of at least 3 km. For instance, in
Figure 5, we exclude the routes (e.g., entry point 1 to exit point 7) that do not have enough
vehicles and the routes (e.g., entry point 2 to exit point 3) that are too short to generate a
sufficient amount of measured data.

In the case of the red route with 4.0 km, the average travel time for DUPP-100 corre-
sponds to 84% of that of ESB-100 and 78% of that of NONE, respectively. In the case of the
blue route with 7 km, the average travel time for DUPP-100 corresponds to 76% of that
of ESB-100 and 69% of that of NONE, respectively. As the route is lengthened, not only
the difference between DUPP-100 and ESB-100 but also the difference between DUPP-100
and NONE increases. Furthermore, the average travel time of DUPP-100 does not increase
significantly even when comparing the red route with the blue route. DUPP-100 increases
by only 319 s from the red route to the blue route while ESB-100 increases by 506 s. Espe-
cially, an increase in the distance of the route indicates that the road’s uncertainty increases.
In other words, due to many signalized intersections and unexpected traffic conditions,
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vehicles might perform different urban platooning maneuvers frequently. Hence, under
high uncertainty, it is difficult for ENSEMBLE-enabled urban platooning to maintain the
existing local platoons, since an existing local platoon is destroyed even when one of the
vehicles leaves its local platoon. As a result, as the driving distance increases, ENSEMBLE’s
performance may deteriorate.

4.2.2. Platoon Lifetime

Another performance indicator is the lifetime of an existing local platoon. This
performance metric can illustrate if the protocol has the capability to respond quickly to
the dynamic topology of the urban environment. In addition, it is significantly associated
with the durability, continuity, and stability of existing local platoons. For each protocol,
we measure the average lifetime until the local platoon is destroyed after a local platoon
is created, the average number of the local platoons generated and maintained, and the
average length of the generated local platoons for 24 time zones. The measured results are
illustrated in Figure 8. In Figure 8a, DUPP has a tendency that the average lifetime of the
local platoons increases as the vehicle density on the road increases. An increase in the
vehicle density can be explained by the three scenarios in which the number of vehicles
participating in the urban platooning increases (i.e., DUPP-30, DUPP-60, and DUPP-100)
and the flow of time towards the peak time zone 16. In DUPP, the inflow and outflow
of other nodes to the existing local platoons are performed immediately according to the
traffic conditions. Since local platoons are maintained as long as possible even though
the nodes are leaving or splitting from it, DUPP shows better performance as vehicle
density increases.

In DUPP, the local platoons may be separated into smaller local platoons as the road
uncertainty increases but they merge soon. As shown in Figure 8b,c, DUPP-enabled local
platoons are maintained relatively long after they are generated, while ENSEMBLE-enabled
local platoons are mostly generated, instead of maintaining the existing local platoons. Note
that even if the vehicles also perform the merging and joining maneuvers in ENSEMBLE,
existing local platoons are easily destroyed as the road uncertainty increases. Although the
merging maneuver is likely to occur frequently when there are a lot of small local platoons,
it is difficult for the local platoons to merge even at the peak time zone in ENSEMBLE.
A large number of generated local platoons as shown in Figure 8b indicates that only
creation and joining maneuvers, and the destruction of the local platoons are repeated in
ENSEMBLE as the vehicle density increases.

The lifetime of the local platoon is also examined in more detail in connection to
the average length of the local platoons of Figure 8d. It shows that the local platoons in
DUPP-100 have the longest average length. In DUPP, merging and joining maneuvers
occur more actively as the vehicle density increases, positively affecting the length and
the lifetime. In contrast to DUPP, ESB-100 shows a shorter length and a lower number of
the existing local platoons than those in DUPP-30 since ENSEMBLE does not maintain
the existing local platoon whenever nodes perform leaving or splitting maneuvers from it.
Therefore, in ENSEMBLE, the average length of the existing local platoons is bound to be
small as shown in Figure 8d.

4.2.3. Success Ratio of Maneuvers

To demonstrate the high performance of DUPP-enabled urban platooning, we present
the success ratio of FAP maneuvers including creation, joining, leaving, splitting, and
merging. In this paper, we present only the result of the joining maneuver in Figure 9
since the success ratios from all maneuvers have a similar tendency. The success ratio of
urban platooning is affected by external factors such as communication capability and
road environments. The dynamic road environment including unexpected obstacles and
signalized intersections may require vehicles to perform different platooning maneuvers. If
an obstacle exists between a rear node and a candidate node, communication interference
might also occur. Furthermore, a high density of vehicles with communication capability
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may lead to communication interference. Hence, the failure of the joining maneuver is
analyzed in terms of communication capability and road environments in Figure 9b–d.

 
(a) (b) 

 
(c) (d) 

Figure 9. Success ratio of joining maneuver: (a) success ratio of a joining maneuver; (b) failure ratio of a joining maneuver
under DUPP-100 and ESB-100; (c) failure ratio of a joining maneuver under DUPP-60 and ESB-60; (d) failure ratio of a
joining maneuver under DUPP-30 and ESB-30.

For DUPP and ENSEMBLE, Figure 9a shows that the success ratio is getting lower
when the number of participating nodes becomes smaller and the vehicle density becomes
higher. The number of vehicles participating in the urban platooning (i.e., DUPP-30,
DUPP-60, and DUPP-100) represents the degree of communication capability of vehicles
on the road. When the vehicles perform the joining maneuver under the scenarios of
DUPP-100 and ESB-100, the vehicles in ESB-100 fail much more than those in DUPP-100
as the vehicle density increases. When the number of vehicles participating in urban
platooning is the smallest among our scenarios (i.e., DUPP-30 and ESB-30), we can also
see that ENSEMBLE’s performance is lower than that of the DUPP-30 for quite a long time
(12 to 8 p.m.). Specifically, based on the peak time zone, the failure ratio of DUPP-100 is
0.21 and that of ESB-100 is only 0.31 as shown in Figure 9b. As the number of vehicles with
communication capability decreases, the difference between their failure ratios widens. In
other words, as shown in Figure 9c,d, the failure ratio of the ESB-60 and ESB-30 increase to
0.37 and 0.48, respectively, while the failure ratios of DUPP-60 and DUPP-30 have increased
very slightly to 0.222 and 0.24, respectively.

In the case of the fewest vehicles with communication capability (i.e., DUPP-30), due
to road environments, it is possible for the joining maneuver to be blocked more frequently
by other vehicles when vehicles attempt to join an existing local platoon. The results of
Figure 9b–d also show that the DUPP’s success ratio is affected more by the road en-
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vironment as the number of vehicles participating in the urban platooning decreases.
Nevertheless, the joining failure in DUPP-30 due to the road environment tends to rarely
increase even as it approaches peak time zone 16. Moreover, for all vehicles with communi-
cation capability (i.e., DUPP-100), the failure ratio derived from the road environment in
DUPP is almost constant as 0.09 as shown in Figure 9b. In other words, in DUPP-100, the
impact of the road environment on the performance is negligible. This indicates that its
performance is only affected by communication interference since a local platoon is likely
in the fully saturated condition while performing the joining maneuver.

4.2.4. Average Drop Ratio

The external cost of PCM transmission is measured as the drop ratio of BSMs on
CCH to show the extent of the operations of DUPP affecting the performance of other
vehicles regardless of given urban platooning. The average drop ratio of BSMs is measured
by dividing the number of received BSMs by the number of transmitted BSMS for all
nodes. Figure 10 shows the results of the average drop ratio of DUPP and ENSEMBLE as
bar graphs. To fairly compare the performance of the two protocols, we first define the
normal scenario, which is a certain driving condition where there exist only vehicles with
communication capability and not to participate in urban platooning. The average drop
ratio of the normal scenario is shown as a line graph between the upper and lower dashed
lines in Figure 10. The upper and lower dashed lines indicate the maximum and minimum
drop ratios in the normal scenario, respectively. The average drop ratios of DUPP-100,
DUPP-60, and DUPP-30 are 0.063, 0.036, and 0.009, respectively. The average drop ratio of
DUPP is usually within the range of variation of the result of the defined normal scenario
and the slight difference between DUPP and the normal scenario is derived from the WSA
transmission in the operation of DUPP. On the other hand, since ENSEMBLE operates only
on CCH, its drop ratio increases significantly. In addition, BSM transmissions cannot be
guaranteed while the vehicle density increases due to the nature of CSMA/CA mechanism.
In detail, ESB-100 has an average drop ratio of 0.1, and ESB-60 and ESB-30 have those of
0.068 and 0.042, respectively. In the worst case, ENSEMBLE (i.e., ESB-100) has a very high
average drop ratio of 0.225.

 
Figure 10. Drop ratio of basic safety messages.

4.2.5. Stability

To show the stability of the urban platooning, the transmission periodicity of urban
platooning-related messages is shown in Figure 11. It relates to whether it meets the
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requirement for the control frames that should be transmitted over in-vehicle networks
for reliable driving control. It is known that vehicles in a local platoon cannot maintain
constant inter-vehicle space without periodical message transmissions [42,43]. When the
urban platooning-related messages are not shared in time, the time headway gradually
increases depending on the delayed transmission time. If the transmission is not successful
within the maximum 0.8 s, the local platoon can no longer be stable [44]. Moreover, since it
also affects the transmission of control messages through the in-vehicle network, providing
accurate control information cannot be guaranteed. Therefore, it is imperative to send
and receive messages periodically, and especially the transmission should be completely
performed within 100 ms which is the time of one synchronization interval, considering
the periodicity of the control information. The transmission periodicity is measured as the
average number of PCMs transmitted within 100 ms and is presented as transmission success
ratio in Figure 11a. Figure 11b,c presents the distance gap between vehicles belonging to a
specific local platoon for 60 s at the peak time zone in the blue route as shown in Figure 5.

(a) 

  
(b) (c) 

Figure 11. Transmission periodicity of the urban platooning-related messages: (a) transmission success ratios of DUPP
and ENSEMBLE; (b) inter-vehicle distance under DUPP-100 with the transmission periodicity of 94.27%; (c) inter-vehicle
distance under ESB-100 with the transmission periodicity of 92.19%.

As shown in Figure 11a, the result shows that the periodicity of DUPP-100 is better than
that of ESB-30. As interference increases, the transmission success ratio typically decreases.
Figure 11a shows there is a tendency that all results related to the performance deteriorate
as the time approaches the peak time zone and the number of vehicles participating in
urban platooning increases. However, although the worst value of the average transmission
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success ratio of DUPP is 0.969, the DUPP’s performance does not significantly decrease
over the entire time zone. Moreover, even in DUPP-100, Figure 11b shows that the DUPP-
enabled vehicles stably drive with complying with the velocity specified by a leader node.
The inter-vehicle distance under DUPP-100 presented in Figure 11b is during the time
DUPP-enabled vehicles have a transmission success ratio of 0.9427. Figure 11c shows the
result of ESB-100 having a transmission success ratio of 0.9219. The more its periodicity is
destroyed, the more difficult it becomes to maintain stable driving. Due to severe traffic
congestion and a signalized intersection, while driving for 60 s, vehicles belonging to that
specific local platoon experience the first stable driving from 0 to 10 s, the second slightly
unstable driving from 10 to 30 s, the third greatly unstable driving, and the last stable
driving from to 60 s. Figure 11b shows that in DUPP-100, the second slightly unstable
driving starts at 10 s but it is stabilized soon. After the third greatly unstable driving lasts
for about 10 s after 30 s, the last stable driving starts at about 40 s. Figure 11c shows that in
ESB-100, the second slightly unstable driving starts at 10 s and lasts until 30 s, the third
greatly unstable driving lasts to 45 s. During this period, DUPP-100 quickly recovers from
unstable driving such that the distance gap between the intermediate nodes fluctuates for
a while, maintaining its safety distance.

4.2.6. Maintenance of Safety Distances

To evaluate the adaptability to unexpected situations through forwarder selection, the
stability is examined by showing the maintenance of safety distances between the vehicles
for a given local platoon in Figure 12. The number of PEMs transmitted after detecting a
certain event is also shown in Figure 12. The unexpected event naturally occurs if vehicles
step on the brake when either they enter a congested road section or a vehicle makes a
lane change in front of a given local platoon in this experiment. Before a certain event
is detected by vehicles of one and more local platoons, all vehicles belonging to a given
local platoon drive at a speed of 36 km/h and maintain a safety distance of 8 m. After they
enter the congested area from 15 s in Figure 12, a leader node marked as Node 1 in a given
platoon starts to apply the brake, and from 25 s, they are in the most congested road section
where there are many local platoons. After 40 s, they start to leave this area. Therefore,
after 12 s, the PEMs related to the braking event start to be generated and transmitted.

As shown in Figure 12a, in the scenario of ESB-100, the ENSEMBLE-enabled vehicles
can no longer maintain the local platoon due to transmissions of PEMs. Although ENSEM-
BLE does not use PEMs for vehicle platooning, vehicles on the road might receive and
transmit the PEMs for detected events [45]. That might lead to placing a large load on the
operating wireless channel. Figure 12a shows that it is difficult for ENSEMBLE-enabled
vehicles to perform safe driving control since PCMs are not successfully transmitted after
a given local platoon enters a congested road section. In other words, since the vehicle
density is very high from 15 s, it is difficult to successfully transmit PCMs and this nega-
tively affects urban platooning. Furthermore, in the contested road section, it can be also
seen that a maximum of 38 PEMs transmitted on CCH results in hindering the successful
transmission of PCMs required for urban platooning. Especially, Node 3 determines that
it is difficult to maintain the safety distance anymore because it cannot receive the PCMs
of the preceding nodes including Node 1 and Node 2, and then, sends a message with
the intention to leave this local platoon. As a result, ENSEMBLE-enabled vehicles can no
longer participate in a given platoon because the given local platoon is destroyed after 37 s.

In contrast to the ENSEMBLE’s operation for the use of PEMs, DUPP immediately
adjusts the driving speed using the information of PEM received. In this regard, Figure 12b
shows that DUPP-100 rapidly changes its speed to maintain a safety distance between
nodes without destroying the local platoon. Until 15 s, a given local platoon becomes stable.
However, we can see that the significant fluctuation starting from 25 s is maintained for
about 12 s, and an individual vehicle belonging to a local platoon experiences the difficulty
of maintaining the distance gap to the preceding vehicle. This is because the increase in
vehicle density triggers a problem in driving control. Therefore, we can see that from 15 s,
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the state of the given local platoon begins to change to a very gradually unstable state due
to the increase in the PCM’s drop ratio. Nevertheless, within a short period of time, since
the transmissions of the PEMs and PCMs gradually succeed and at least the minimum
number of messages required for maintenance is transmitted, the given local platoon is
gradually recovered to a stable state. During this period, there is a maximum of 14 PEMS
generated by many local platoons within the transmission range of the given local platoon,
all of which contribute to a stable platoon state.

 
(a) (b) 

Figure 12. The effect of forwarder selection in distance gap: (a) inter-vehicle distance under ESB-100 with PEMs; (b)
inter-vehicle distance under DUPP-100 with PEMs.

4.2.7. Forwarder Selection Ratio

Finally, we examined the forwarder selection ratio for each vehicle in vehicle platoons
to demonstrate the performance of the designed AHP-based forwarder selection using
all criteria (i.e., string stability, interference, and connectivity). All results in Figure 13 are
derived only from local platoons where the platoon length does not change for at least 60 s to
produce valid results. For each road section, chosen randomly among many road sections
as shown in Figure 5, an event is generated by a Poisson distribution with a different
generation ratio depending on the time, using λ = 10 (events per second). In Section 3.3,
certain events with a negative effect on urban platooning are defined and divided into two
types: an event requiring urgent control and an event requiring a warning alarm.

In DUPP, it is noted that each node in a local platoon keeps the stable string stability
close to zero except when an event requiring urgent control occurs, such as urgent braking.
A node that suddenly brakes is highly likely to become a forwarder by our AHP-based
selection since its string stability changes more drastically than connectivity and interfer-
ence. In this regard, all forwarders as shown in Figure 13a are selected as nodes that have
detected the event first. While a selected forwarder shares its PEM with other nodes, the
string stabilities of the nodes behind an event-detected node are sequentially affected due
to an emergency brake light of the preceding node. Therefore, while the event is detected,
a new forwarder is continuously selected for the changed driving conditions.

When an event requiring a warning alarm such as dangerous curves, road construction,
obstacles, heavy rain, and slippery road occurs, the criteria of interference and connectivity
might affect the AHP-based forwarder selection more than the criterion of string stability.
Due to intersections, a vehicle can experience a change in vehicle density. A vehicle can
also face it when a vehicle driving in a road section with a low vehicle density approaches
a road section with a higher vehicle density or when it exits from a road section with a
high vehicle density. A change in vehicle density causes the fluctuation in interference.
Especially, while each node in a local platoon sequentially approaches and enters a road
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section of a high vehicle density, the effect of interference of the node which enters first
increases as soon as it enters. Hence, following nodes behind the entering node has a
relatively lower effect of interference than that of the entering node. Moreover, among the
following nodes, the front node is likely to be selected as a forwarder since it has higher
connectivity than that of the other following nodes. In other words, since nodes in a local
platoon drive sequentially in a road section of a higher vehicle density along its specified
route, a node just before entering the high vehicle density road section is more likely to be
selected. This trend is shown in Figure 13b regardless of the platoon length. We can see
that Node 4 in a platoon length of 7 and Nodes 2, 3, and 6 in the platoon length of 6 are
selected more than the other nodes in Figure 13b. This is because there is no change in road
conditions affecting the forwarder selection when a local platoon waits for a green signal at
an intersection. Consequently, the forwarder selection is highly affected by interference
when an event requiring a warning alarm occurs and there is little change in string stability.

 
(a) 

  

(b) (c) 

Figure 13. Forwarder selection ratio for each platoon length under DUPP-100: (a) the effect of the string stability on
AHP-based forwarder selection; (b) the effect of the interference on AHP-based forwarder selection; (c) the effect of the
connectivity on AHP-based forwarder selection.

Excluding the above two situations with an event requiring urgent control and the
significant change in vehicle density, forwarder selection is affected by a criterion of
connectivity. Figure 13c shows the forwarder selection ratio when a warning event occurs
in a low-density road section. We can see that Node 1 in a local platoon is the most
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selected node due to the highest connectivity. The other nodes except for Node 1 are
occasionally selected. This is because their string stabilities fluctuate when the red light of
the intersection causes a sudden stop of nodes in a local platoon.

5. Conclusions

Vehicle platooning is a technology that allows multiple vehicles to move as one group
on roads, sharing control information through wireless communication and control their
movements under the same condition. It reduces the time headway of vehicles, improves
fuel efficiency and the driver’s convenience, and contributes to the safety of the driving
vehicle by responding immediately to the movement of preceding vehicles. Although there
are several vehicles platooning studies, they have limitations in flexibility, adaptability, and
stability, because they assume only a simple vehicle topology. Urban platooning is charac-
terized by a dynamic road condition depending on signalized intersections, changeable
routes, unexpected obstacles, and various vehicle densities. DUPP is an urban platooning
protocol to maximize flexibility for vehicles operating in a decentralized manner, consid-
ering high mobility. With the compatibility with entities using the existing IEEE 802.11p,
the proposed DUPP advertises the existence of a local platoon using WSA during CCH-I
and performs an urban platooning during SCH-I. DUPP guarantees that vehicles complete
urban platooning maneuvers quickly since they perform FAP maneuvers in a distributed
manner without the help of a leader node. AHP-based forwarder selection supports
reducing redundant message transmissions.

We assess the applicability of DUPP in urban environments with several aspects and
compare the performance of DUPP with that of ENSEMBLE. DUPP reduces the average
travel time by 20% compared with that of ENSEMBLE. We have shown that the urban pla-
toons in DUPP-100 last 1.76 times longer and exist 1.64 times larger than those of ESB-100
even at the peak time zone. In addition, the join success rate is 79.3% for DUPP, compared
to 72.9% for ENSEMBLE. They indicate that DUPP adapts quickly to urban roads and has
its flexibility when performing FAP maneuvers. According to the result in external cost, in
the worst cases, DUPP has received 90.7% of BSMs while ENSEMBLE has received only
77.4% of BSMs. DUPP hardly affects road safety even when the vehicle density increases. It
is critical to satisfy the requirement for the transmission periodicity that affects the stability
of a given local platoon. In this regard, it is demonstrated that DUPP is more stable than
ENSEMBLE. Even in the worst, DUPP succeeds 96.5% of transmissions within 100 ms while
ENSEMBLE is only 83.9% successful in its transmissions within 100 ms. In DUPP, when a
forwarder selected by AHP transmits PEM, the total amount of transmitted PEMs corre-
sponds to 37.8% of ENSEMBLE’s event messages. Since redundant transmissions of event
messages adversely affect the exchange of platooning control messages in ENSEMBLE, we
have seen that its platooning is not stable. By regulating the number of PEMs and quickly
sharing them, a local platoon has been stably maintained in DUPP. Finally, we examined
how a vehicle is selected as a forwarder as the three criteria of string stability, interference,
and connectivity are varied. In this regard, it is demonstrated that DUPP determines an
appropriate vehicle as a forwarder for each occurrence of various events. We demonstrate
the effectiveness of the proposed urban platooning in terms of flexibility, adaptability,
and stability. Consequently, DUPP enables the distributed coordination and autonomous
maneuvering to quickly adapt to dynamic traffic flows and complex topologies of urban
road networks.

In future work, we plan to implement DUPP in the real vehicle such as an unmanned
ground vehicle (UGV) and will compare the performance of an AHP-based forwarder
selection with a greedy selection method. Furthermore, the length of an urban platooning
(η) represents a trade-off between urban platooning adaptability and effectiveness. A local
platoon of a smaller length can be difficult to show good performance in terms of the
average travel time but it can adapt well to dynamic traffic environments. Although a
local platoon of a longer length can be easy to show good performance, it is not easy to
maintain the local platoon under the complex urban roads. Therefore, when the length of
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an urban platooning is varied, we can examine how well the vehicles adapt to the road
condition with high uncertainty when the vehicles drive and how much the performance
is improved. We will conduct this validation in the future.
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Appendix A

Figure A1. Normal driving in urban platooning.
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Figure A2. Merging, splitting, and leaving maneuvers in urban platooning to normal driving.

References

1. C-ITS: Cooperative Intelligent Transport Systems and Services. Available online: https://www.car-2-car.org/about-c-its/
(accessed on 7 February 2021).
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Abstract: For accurate object vehicle estimation using radar, there are two fundamental problems:
measurement uncertainties in calculating an object’s position with a virtual polygon box and latency
due to commercial radar tracking algorithms. We present a data-driven object vehicle estimation
scheme to solve measurement uncertainty and latency problems in radar systems. A radar accuracy
model and latency coordination are proposed to reduce the tracking error. We first design data-driven
radar accuracy models to improve the accuracy of estimation determined by the object vehicle’s
position. The proposed model solves the measurement uncertainty problem within a feasible set for
error covariance. The latency coordination is developed by analyzing the position error according to
the relative velocity. The position error by latency is stored in a feasible set for relative velocity, and
the solution is calculated from the given relative velocity. Removing the measurement uncertainty
and latency of the radar system allows for a weighted interpolation to be applied to estimate the
position of the object vehicle. Our method is tested by a scenario-based estimation experiment to
validate the usefulness of the proposed data-driven object vehicle estimation scheme. We confirm
that the proposed estimation method produces improved performance over the conventional radar
estimation and previous methods.

Keywords: object vehicle estimation; radar accuracy; data-driven; radar latency; weighted interpola-
tion; autonomous vehicle

1. Introduction

Autonomous driving technologies such as collision risk decision, path planning with
collision avoidance, lane change systems, and advanced driver assistance systems (ADASs)
are attracting attention [1–4]. These research areas are becoming critical not only for
research but also to bring autonomous vehicles to public roads. To improve active safety
systems for autonomous driving, it is necessary to accurately estimate the relative position
of surrounding vehicles [5,6]. Object vehicle estimation research incorporates various types
of sensors, such as radio detecting and ranging (radar), light detection and ranging (LiDAR),
and cameras. Among the various sensors, radar is a reliable vehicle sensor that measures
the motion of surrounding vehicles. Its advantages lie in its commercial availability and
robustness against environmental variation. Radar sensors have been applied in ADASs
functions such as blind-spot detection (BSD) and adaptive cruise control (ACC).

However, radar has intrinsic measurement uncertainties in calculating an object vehi-
cle’s position and velocity as it uses a virtual polygon box with only partial information [7–9].
To address this limitation, various filters have been applied to improve radar accuracy.
In radar applications, the Kalman filter (KF) and the interacting multiple model (IMM)
were compared in [10]. A particle filter [11] and an unscented Kalman filter (UKF) [12]
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for nonlinear systems have been proposed for target tracking using a radar sensor. For
reasonable object tracking of a radar system, it has been found that the multiple model
approach provides better filtering performance than a single model [13]. Radar tracking
performance is improved through IMM [14] and convex interpolation [15] by using dif-
ferent radar accuracies depending on the object vehicle position [16]. In [9], the authors
proposed an IMM algorithm using extended Kalman filters (EKF) for multi-target state
estimation. In [17], the performances of the IMM and Viterbi algorithm were investigated
and compared through radar tracking and detection. A self-adapting variable structure
multiple model (VS-IMM) estimation approach combined with an assignment algorithm
was presented in [18] for tracking ground targets with constrained motion. Motion un-
certainties due to variable dynamic driving situations were handled using the VS-IMM.
In [19], the authors presented a data-driven object tracking approach by training a deep
neural network to learn situation-dependent sensor measurement models.

Another approach to accurate object tracking using radar adds sensors such as a
camera and LiDAR. Research fusing radar and camera sensors is described in [20]. In [21],
the authors used visual recognition information to improve tracking model selection, data
association, and movement classification. An algorithm to estimate the location, size, pose,
and motion information of a threat vehicle was implemented by fusing the information
from a stereo-camera and from millimeter-wave radar sensors in [22]. In [23], the authors
proposed a fusion architecture using radar, LiDAR, and camera for accurate detection and
classification of moving objects. In [24], heuristic fusion with adaptive gating and track to
track fusion were applied to a forwarding vehicle tracking system using camera and radar
sensors, and the two algorithms were compared. In [25], the authors presented an EKF that
reflects the distance characteristics of LiDAR and radar sensors. In [26], the fusion of radar
and camera sensor data with a neural network was studied to improve object detection
accuracy. In [27], the object was identified and detected using vision and radar sensor data,
and YOLOv3 architecture. However, the sensor fusion approach requires a larger number
of sensors. Although the estimation performance can be improved through multi-sensor
applications, it increases the vehicle’s cost. In addition, latency occurs due to the increase
in computational cost for sensor fusion [28].

As stated above, by applying a filter without an additional sensor, accurate tracking is
possible without increasing the cost. However, radar latency (processing delay) increases
with the use of a filter [16,29,30]. This latency increases further depending on the tracking
algorithm used (e.g., point cloud clustering, segmentation, single sensor tracking, multi-
lateration, classification, and filtering) in vehicle applications [7,14,31,32]. In this regard,
the radar sensor was evaluated for the effect of processing latency on the efficiency of
detecting, acquiring, and tracking a target [29]. In [33], the authors noted that it is impor-
tant for delays in the measurement (i.e., the time elapsed since a physical event occurs
until it is output to the application) and accurate data on the position of other vehicles
in future driver assistance systems. In [34], the authors proposed a classification method
based on deep neural networks using automotive radar sensors in consideration of latency.
Eventually, this processing latency causes a tracking error depending on the relative speed
in autonomous driving applications. Therefore, a person who designing an upper-level
application should consider processing latency when developing object vehicle estimation
for driving safety.

The objective of this paper is to propose an object vehicle estimation scheme to improve
radar accuracy. The scheme develops a data-driven object vehicle estimation scheme that
can consider radar accuracy within a feasible set to solve the measurement uncertainty and
latency problems. To resolve these problems, we first develop radar accuracy models by
comparing the radar and ground truth data divided in each zone. Each zone’s models are
selected depending on where the object vehicle is located. We then solve the radar latency
problem according to the relative velocity. The position error for the relative velocity data
sets is stored in each vertex, and we find the solution in the feasible set for these data
sets. By using the developed radar accuracy models with latency coordination, weighted
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interpolation is applied to estimate the object vehicle. This approach will allow the radar
accuracy models to remove the measurement uncertainty and latency within the feasible
set. We verify the utility of the proposed method through scenario-based experiments.
The contribution of this paper is the developmetn of an accurate object vehicle estimation
scheme that solves the radar measurement uncertainty and latency problems.

The remainder of this paper is organized as follows. Section 2 describes two problems
to improve object vehicle estimation accuracy. The data-driven radar accuracy modeling
with an occupancy zone is described in Section 3. In Section 4, weighted interpolation
is applied to object estimation by considering error characteristics and latency. Section 5
describes the analysis and results by applying the proposed method to vehicle applications
and mentions future work. Section 6 presents concluding remarks.

2. Problem Statement

The problem we are interested in is object vehicle estimation by considering a radar’s
measurement uncertainty and latency, as shown in Figure 1. There are two fundamental
problems in accurate object vehicle estimation: measurement uncertainties in calculating
an object’s position with a virtual polygon box and latency due to the tracking algorithm
of a commercial radar. To resolve these problems, we develop a data-driven object vehicle
estimation scheme using a radar accuracy modeling method with weighted interpolation.
The radar accuracy modeling is designed using an error model between the radar and the
ground truth data, and taking into account the relative speed. We are also interested in
demonstrating the utility of our method through experiments.

Ego vehicle

x

y

Interpolated point on object vehicle surface by radar

Real center point of vehicle rectangle (ground truth)
Center point of vehicle rectangle by radar

Object vehicle rectangle by radar 

Relative distance between radar and interpolated point 

Interpolated point on object vehicle surface (ground truth)

Straight line connecting the radar and center point  

Obj #1

Lateral 
position error

Longitudinal
position error

Radar

Object vehicle rectangle (ground truth) 

Measurement uncertainty

Latency

Velocity vector

Longitudinal
position error

Relative velocity vector between ego and object vehicle

Obj #2

Point cloud by radar

Figure 1. Example of object vehicle estimation by radar: the measurement uncertainty occurs due
to insufficient point cloud and classification errors. This error occurs because the radar estimation
algorithm (e.g., point cloud clustering, segmentation, single sensor tracking, multilateration, clas-
sification, and filtering) can only estimate an object vehicle’s size with a virtual polygon box with
partial information [7,8,14,35]. Furthermore, the latency that causes position errors occurs due to the
tracking algorithm of a commercial radar. The error caused by the latency becomes larger depending
on the relative velocity.
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These problems are almost undetectable and unknown to those who develop high-
level applications such as ADASs. Therefore, we propose a scheme modeling these unde-
tectable and unknown error characteristics as noise characteristics based on each divided
zone and design a data-driven object estimation scheme. In addition, we propose a method
to reduce errors that occur in radar algorithms by developing data-driven latency coordi-
nation. We use the relative position and velocity, which are the only available data to the
person designing an upper-level application.

3. Data-Driven Radar Accuracy Modeling

To improve radar accuracy, we first developed a model. Previous research analyzing
radar accuracy [14,15] found that the error characteristics differ according to the mounting
angle and detection area of the radar observing the object [16]. Since the radar error
differs depending on the angle and the detection area, it is difficult to obtain an error
characteristic solution for a radar’s detection area. Therefore, we model these unknown
error characteristics so that an error has the same value in each of the divided representative
detection zones because the part of the object vehicle detected by the radar is similar to
other object vehicles in the same detection area. In other words, each radar unit has a
representative model for each zone. The measurement uncertainty of radar can be reduced
by using an occupancy zone with the error characteristics. However, there is an error
according to the object vehicle’s velocity due to the radar’s latency (the results of the
analysis of the experimental data are shown in Section 4). This is caused by the object
tracking algorithm of commercial radars [14,29]. This is a problem for anyone designing
high-level applications for radar.

Therefore, we constructed an example of occupancy zones, as shown in Figure 2,
taking into account the detectable area of the radar, where {X, Y} is the global coordinate
frame, {x,y} is the ego vehicle coordinate frame, and ṙ is the relative vehicle speed. The
example of a divided occupancy zone configuration is divided by the x-axis (considering
a multiple of the overall vehicle length), the y-axis (considering lane spacing), and the
z-axis (considering experimental data analysis) based on the vehicle coordinate frame.
Here, the z-axis is divided by data sets for each relative speed. The center point of each
divided black quadrangle zone becomes each vertex of the red quadrangle (feasible set
for error covariance). Then, the error characteristics analyzed in each zone are stored
in each vertex. The radar accuracy in each divided occupancy zone detected by radar
sensors is analyzed by comparing radar sensor data with ground truth (GT), as shown in
Figure 1. An interpolated point on the object vehicle surface is calculated by a straight line
connecting the ego vehicle’s radar and the center point of the virtual polygon box of the
object vehicle. Here, the real center point (ground truth) is calculated from the differential
global positioning system (DGPS) mount point. Then, we can obtain the longitudinal and
lateral position errors by comparing the interpolated point and the center point.

The model for object vehicle estimation can be expressed as a discrete-time state-
space model assuming that the vehicle is moving with constant relative velocity in the
longitudinal and lateral directions, respectively [36]. With the state xk =

[
rx ry ṙx ṙy

]T ,
the state-space model is defined as

xk+1 = Φxk +(m,n,s)wk,

yk = Cxk +(m,n,s)vk
(1)

where

Φ =

⎡⎢⎢⎣
1 Tc 0 0
0 1 0 0
0 0 1 Tc
0 0 0 1

⎤⎥⎥⎦,

(m,n,s)wk ∼ N (0,(m,n,s)Qk),

(m,n,s)vk ∼ N (0,(m,n,s)Rk)

(2)
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with
m ∈ [1, 2, · · · , M], n ∈ [1, 2, · · · , N], s ∈ [1, 2, · · · , S] (3)

where yk is the output variables at the measurement instant k, (m,n,s)wk is the system noise,
(m,n,s)vk is the radar measurement accuracy, C is the identity matrix, rx is the longitudinal
relative distance, ry is the lateral relative distance, ṙx is the longitudinal relative velocity, ṙy
is the lateral relative velocity, m is the longitudinal relative positional zone index, n is the
lateral relative positional zone index, s is the zone index for relative velocity, M is the zone
number of the X-axis, N is the zone number of the Y-axis, and S is the zone number of the
Z-axis.
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Figure 2. Example of a divided occupancy zone configuration: the occupancy zone is created by taking into account the
detectable area of the radar, which is divided by the x-axis and y-axis based on the vehicle coordinate frame. The z-axis is
divided by data sets for relative velocity. The center point of each divided black quadrangle zone becomes each vertex of
the red quadrangle (feasible set for error covariance). Then, the error characteristics analyzed in each zone are stored in
each vertex.

Assumption 1. Radar measurement accuracy (m,n,s)vk has a zero-mean white Gaussian distri-
bution property in each zone [37]. The radar measurement accuracy covariance (m,n,s)Rk is a
value determined by the characteristics of the sensor. The radar measurement accuracy covariance
(m,n,s)Rk in each zone is set based on the error characteristics. The radar sensor is calibrated at each
zone, such that the mean value of the position error becomes zero. Therefore, the zero-mean radar
error becomes

e =
[
rx, ry, ṙx, ṙy

]T
RADAR − [

rx, ry, ṙx, ṙy
]T

GT
(4)

and its covariance is
E
[
eeT] ∼ N (0,(m,n,s)Rk) (5)

where subscript GT represents the ground truth data and subscript RADAR represents the calibrated
radar data. Since it is not easy to obtain radar accuracy covariance values according to driving
situations, we experimentally applied covariance values based on the method presented in [38].
In this regard, the experimental analysis results with the calibrated radar accuracy are shown in
Section 4.

Remark 1. By adjusting the system noise covariance (m,n,s)Qk through the KF in which the previ-
ously set radar measurement accuracy covariance (m,n,s)Rk is used, estimation errors approaching
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the minimum value in each zone are obtained [39]. Then, we set the system noise covariance
(m,n,s)Qk for each zone.

4. Object Tracking with Weighted Interpolation

4.1. Estimation with Error Characteristic

The weighted interpolation in the occupancy zone is applied to state estimation by
considering the error characteristics. The weighted interpolation method is used to solve
the ambiguity problem of moving from a zone to another zone caused by dividing the
occupancy zone. To apply weighted interpolation, we create a feasible set fc denoted by
a red quadrangle relative to the center point of each black quadrangle zone in Figure 2.
The center point of each zone is the vertex of the feasible set fc for error covariance, and
fc takes into account the lane width. The data-driven covariance R∗ calculated in the
previous section is stored at each zone’s vertex. This process is carried out offline using
data analyzed in advance.

In online computation, the object vehicle positions x and y, and relative speed ṙ are
given by the radar sensor. Then, the data-driven covariance stored at the vertex is applied
to state estimation. The three-dimensional parameter vector Pc =

[
x y ṙ

]T ∈ R
3 can be

represented in the polytopic form [15,40,41]:

Pc = Vcξc (6)

where
ξc =

[
ξc,1 · · · ξc,8

]T ∈ R
8 (7)

denotes a weighted interpolation parameter vector satisfying ∑8
q=1 ξc,q = 1, ξc,q ≥ 0, and

Vc =
[
Pc,1 · · · Pc,8

] ∈ R
3×8 (8)

denotes each zone’s vertices. When selecting the each zone’s vertices Vc, we chose the
eight vertices closest to the given x, y, and ṙ measured by the radar in the feasible set fc, as
shown in Figure 2. Then, we can get

ξc,q =
Lc,sum/Lc,q

∑8
i=1(Lc,sum/Lc,i)

, q = 1, · · · , 8 (9)

where Lc,sum = ∑8
i=1 Lc,i in which Lc is the Euclidean distance between each vertex and the

given point (x, y, ṙ) measured by the radar. Using the interpolation parameters with the
parameter vector at eight vertices, we can find an approximate data-driven covariance Ro

from the precomputed data-driven covariance R∗(Vc) calculated from Assumption 1 at
each vertex. The approximate data-driven covariance Ro is expressed as follows:

Ro =
[
R∗(Pc,1) · · · R∗(Pc,8)

]
ξc. (10)

From the KF using Ro, we can obtain the estimated object vehicle position x̂ and
ŷ [39,42]. This approach satisfies the computational complexity because it does not con-
sider all the zones’ vertices. Here, we describe covariance related to the position for the
object vehicle estimation; the covariance related to the velocity can be referred to [14] in a
similar way.

4.2. Latency Coordination

To solve the aforementioned latency problem, weighted interpolation is applied to
the state estimation similar to the previous subsection. As stated above, a radar’s latency
varies depending on the relative velocity. The velocity region is divided, and the average
position error by latency that occurred in each velocity set is stored in each vertex. Detailed
data analysis is provided in Section 4.
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The object vehicle longitudinal relative velocity ṙx and lateral relative velocity ṙy are
given by the radar sensor. Then, the position error average E∗

l by latency in each velocity
region stored at the vertex is applied to the state estimation. Two-dimensional parameter
vector Pl =

[
ṙx ṙy

]T ∈ R
2 can be represented in the polytopic form:

Pl = Vlζl (11)

where
ζl =

[
ζl,1 ζl,2

]T ∈ R
2 (12)

denotes the weighted interpolation parameter vector satisfying ∑2
p=1 ζl,p = 1, ζl,p ≥ 0, and

Vl =
[
Pl,1 Pl,2

] ∈ R
2×2 (13)

denotes the vertices. When selecting two vertices from the given relative velocities ṙx and
ṙy measured by the radar, we chose two vertices that matched the relative velocity data set
from the viable set fl . Then, we can get

ζl,p =
Ll,sum/Ll,p

∑2
j=1(Ll,sum/Ll,j)

, p = 1, 2 (14)

where Ll,sum = ∑2
j=1 Ll,j in which Ll is the Euclidean distance between each vertex and

the given relative velocities point (ṙx, ṙy) measured by the radar. Using the interpolation
parameters given the parameter vector for the relative velocity at two vertices, we can find
an approximate position error from the interpolation between the precomputed average
position error E∗

l (Vl) ∈ R
2×2 at each vertex. The approximate position error Eo

l ∈ R
2 is

expressed as follows
Eo

l =
[
E∗

l (Pl,1) E∗
l (Pl,2)

]
ζl . (15)

Using the precomputed position error average E∗
l (Vl) at each vertex, we can calculate

the approximate position error Eo
l =

[
xo yo]T for a given relative velocity ṙx and ṙy. The

approximate position error Eo
l , and x̂ and ŷ calculated by KF in the previous subsection are

directly involved in the determination of estimated approximate position x̂o and ŷo:

x̂o = x̂ − xo, ŷo = ŷ − yo. (16)

Then, estimated approximate position x̂o and ŷo are applied to object vehicle tracking.

5. Application

We experimentally validated how useful the proposed data-driven weighted interpo-
lation algorithm is when applied to object vehicle estimation of an autonomous vehicle.

5.1. Experimental Setup

For the experimental setup shown in Figure 3, the ego and object vehicles used were
Genesis DH and Tucson IX from Hyundai, as shown in Figure 4, respectively. The rear left,
and rear right view radars connected by a master and slave system with radar local control
area network (CAN) were located on both sides of the rear of the ego vehicle and were
rotated 23 degrees outward.
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Figure 3. Hardware configuration of the experimental setup.

(a)

(b)

Figure 4. Vehicles used for experiment: (a) ego vehicle: Genesis DH from Hyundai and (b) object
vehicle: Tucson IX from Hyundai.

The radar used 24 GHz BSD from Mando-Hella Electronics Corp., in Incheon, South
Korea, the update sampling rate was 50 ms, and the distance detect range was up to 70 m.
The ground truth data were collected at an update period of 10 ms using DGPS from
OxTS (RT-2002, RT-Range, global navigation satellite system (GNSS) antenna, RT-XLAN,
and RT-Base) with its real-time kinematic (RTK) positioning service (1σ = 0.01 m). We
collected the object vehicle’s ground truth data through the RT-Range and RT-XLAN Wi-Fi.
Radar and DGPS data were collected through MicroAutoBox from dSPACE, analyzed with
Vector’s CANoe with VN1630, and evaluated using MATLAB/Simulink. These data were
given by the ego and object vehicle driven manually on a high-speed circuit in the Korea
Automobile Testing & Research Institute (KATRI) in South Korea, as shown in Figure 5.
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Figure 5. Test road: Korea Automobile Testing & Research Institute (KATRI).

5.2. Radar Accuracy Analysis

The radar accuracy was analyzed by the occupancy zone, as shown in Figure 6. The
radar accuracy was analyzed by comparing the DGPS and radar data in each divided
occupancy zone. Each zone shows the probability density function contour of the normal
distribution based on DGPS, and blue (10 ≤ ṙ ≤ 30 km/h), black (−10 ≤ ṙ < 10 km/h),
and red (−30 ≤ ṙ < −10 km/h) colors were plotted for each speed data set. It was
found that the radar accuracy was different depending on the relative distance and speed.
The error was increased as the relative distance and relative velocity between the ego
vehicle and the object vehicle increased. Depending on the relative distance, measurement
uncertainties by radar occurred [14,16]. We collected data through various real driving
situations. The radar accuracy analysis was based on a total of 193,324 samples In this
regard, the longitudinal relative velocity between the two vehicles was about −30 to
30 km/h.

Remark 2. If the amount of sampled calibrated sensor data increases, the distribution of the
measurement noise becomes the Gaussian distribution, as shown in Figure 6. Therefore, the system
has better performance with more calibrated sensor data. Here is a reference if the measurement
noise is not Gaussian [43].

The longitudinal position error, which increases with relative velocity, was due to the
latency of the radar, as shown in Figure 7. The average position error E∗

l of each velocity
data set was analyzed as follows:

(i) The average position error of the data set (−30 ≤ ṙx < −20 km/h) is 1.968 m.

(ii) The average position error of the data set (−20 ≤ ṙx < −10 km/h) is 0.709 m.

(iii) The average position error of the data set (−10 ≤ ṙx < 10 km/h) is 0.018 m.

(iv) The average position error of the data set (10 ≤ ṙx < 20 km/h) is −0.511 m.

(v) The average position error of the data set (20 ≤ ṙx ≤ 30 km/h) is −1.793 m.

The calculated position error average by latency was stored at each vertex of the
velocity regions. Based on the analysis results, the position error and covariance values of
each zone’s error were obtained for the filter design.
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Figure 7. Histogram of the radar relative distance error depending on the vehicle speed.

The point to note here is that Figures 6 and 7 showed different results from what
is generally understood, and therefore, careful attention is required. The radar’s point
cloud data is accurate in the longitudinal direction and inaccurate in the lateral direction.
This is certain in radar’s row data. However, providing a cloud data point to users
makes it difficult for upper-level users to use radar data. Therefore, commercial radar
represents an object as one tracking point data through an estimation algorithm (e.g.,
point cloud clustering, segmentation, single sensor tracking, multilateration, classification,
and filtering) [7,8,14,35]. Therefore, there is latency (processing delay). The greater the
difference in speed between the ego vehicle and the object vehicle, the greater the latency,
and in a vehicle application with a velocity in the longitudinal direction, it causes a
longitudinal error. As a result of this, unlike the general idea that the relative longitudinal
distance of the radar is more accurate than the relative lateral distance, the experimental
data with DGPS shows that the longitudinal direction is more inaccurate than the lateral
direction. This means that, as the relative speed increases, the longitudinal error increases.
Therefore, anyone designing an upper-level application needs to increase the radar accuracy.
This is why we used object vehicle estimation with radar accuracy modeling.

Remark 3. The latency of the relative lateral velocity is insignificant so it is not considered [44]. It
can be calculated similarly to the method calculating the position error by latency.

5.3. Scenario-Based Experimental Result

An object vehicle tracking scenario is constructed using data-driven object vehicle
estimation with a radar sensor. For a comparative study of object vehicle tracking, we
collected radar data while the object vehicle was driving in the detectable area of the rear
left radar of the ego vehicle. As stated above, we determined the error characteristics in the
occupancy zone by analyzing radar accuracy. Then, the approximate object estimation data
were obtained by the data-driven weighted interpolation process using error characteristics
data. When using weighted interpolation, the interpolation parameter vector was designed
to satisfy 0 < ε ≤ ξc,q and 0 < ε ≤ ζl,p for numerical stability, where ε and ε are small
values. The proposed process improves the estimation performance of the commercial
radar and the previously studied interpolation method [15].
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The comparative results of the tracking performance are shown in Figure 8. The
proposed weighted interpolation scheme improved the object vehicle tracking performance
by reducing the estimation error. The scenario-based relative movement of object tracking
was plotted in the top view. The proposed weighted interpolation scheme’s performance
was similar to that of DGPS. On the other hand, object tracking using a commercial radar
had a larger tracking error than the proposed method due to measurement uncertainty and
radar latency. Compared to DGPS, the root mean square error (RMSE) of the commercial
radar and the proposed method are 3.04 m and 1.29 m in the longitudinal position and
0.57 m and 0.32 m in the lateral position, respectively. When estimated with a commercial
radar, there is a longitudinal position error of about −5 m and a lateral position error of
about −1.5 m between −43 m and −38 m. This is because the latency significantly affects
the longitudinal position error. This error is also affected by the measurement uncertainty
and relative acceleration. The influence of relative acceleration will be described in detail
in the next paragraph. In addition, there is a lateral position error of about 1 m between
−17 m and −15 m. This error is due to the influence of measurement uncertainty. In
this regard, Figure 9 shows object tracking in the 3D view, including the relative velocity.
The object vehicle changed lanes while increasing speed to overtake the ego vehicle. The
proposed method outperforms the conventional radar estimation method and the previous
interpolation method [15]. This is because the relative speed was not considered in the
previous interpolation method. In this regard, the position error is covered in more detail
in the next subsection, with Figures 10–14. The proposed weighted interpolation scheme
reflects the average position error and covariance for the relative speed, even when there
is speed variation. We observed that the proposed weighted interpolation scheme is
robust against speed variation and that it outperforms the tracking performance of the
commercial radar.

Figure 8. Scenario-based relative movement of object estimation from the top view: when estimated with a commercial
radar, the longitudinal and lateral position errors (between −37 and −33 m) and lateral position error (between −17 and
−15 m) occurred due to latency and measurement uncertainty.

Figure 9. Scenario-based relative movement of object estimation with relative speed in a 3D view.

180



Sensors 2021, 21, 2317

Acceleration area 
(Radar)

Acceleration area 
(Proposed method)

Acceleration area 
(Interpolation [15])

Figure 10. Scenario-based relative movement for relative longitudinal distance and relative speed replotted from Figure 9:
there is an acceleration area because the object vehicle changes lanes with increasing speed to overtake the ego vehicle.
After that, the relative speed decreases.

Longitudinal 
acceleration (Radar)

Longitudinal acceleration 
(Proposed method)

Longitudinal acceleration
(Interpolation [15])

Figure 11. Longitudinal distance error for scenario-based object estimation: the proposed method outperforms the
conventional radar estimation method and the previous interpolation method. However, there is a longitudinal error in all
methods due to latency for longitudinal acceleration in the acceleration area.

Lateral acceleration
(Radar)

Lateral acceleration
(Proposed method)

Lateral acceleration
(Interpolation [15])

Figure 12. Lateral distance error for scenario-based object estimation: the proposed method outperforms the conventional
radar estimation method and the previous interpolation method. When measured with radar, the lateral position error is
heavily influenced by the measurement uncertainty. However, there is a lateral position error in all methods due to latency
for lateral acceleration via the lane change motion of the object vehicle.
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Figure 13. Histogram of the longitudinal distance error for scenario-based object estimation: using
the weighted interpolation method improves the estimation performance statistically. However, there
is a longitudinal error due to latency for longitudinal acceleration in the acceleration area.

Figure 14. Histogram of the lateral distance error for scenario-based object estimation: using the
weighted interpolation method improves the estimation performance statistically. However, there
is a lateral position error due to latency for lateral acceleration via the lane change motion of the
object vehicle.

5.4. Performance Analysis with Limitation

The proposed method outperforms the conventional radar estimation method and the
previously researched interpolation method [15]. The performance for the scenario-based
experimental result is shown in Figures 10–14. Figure 10 represents the relative longitudinal
distance (x-axis) and relative velocity (y-axis) from Figure 9. There are acceleration areas
(relative speed increase area) for radar, the previously researched interpolation method, and
the proposed method. Figures 11 and 12 show the longitudinal and lateral position errors
in terms of the x-axis position. The proposed method has a smaller position error than the
conventional radar estimation method and the previous interpolation method compared to
DGPS. Previously researched interpolation methods introduce measurement uncertainty
and latency errors for speed. This is because speed is not considered. When measured
with radar, the lateral position error is heavily influenced by the measurement uncertainty.
Figures 13 and 14 show histograms of the relative position error for longitudinal and lateral,
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respectively. By using the proposed method, longitudinal errors due to latency and lateral
errors due to measurement uncertainty are reduced.

However, there is a lateral position error in all methods due to latency for lateral
acceleration via the lane change motion of the object vehicle. The estimation performance is
improved by using the weighted interpolation method, but there is a limitation to the pro-
posed method. The limitation arises because radar accuracy modeling is used only as the
constant relative velocity model (2) and because relative acceleration is not considered. The
longitudinal position error increases in the acceleration area, as shown in Figures 11 and 13.
This is confirmed to be the effect of latency on relative acceleration. The position error
was reduced outside of the acceleration area due to the proposed method. Since the object
vehicle’s lane change in the acceleration area is also performed, the lateral position error in-
creases as the relative lateral acceleration increases, as shown in Figures 12 and 14. We have
confirmed that the position error occurs in radar, the previously researched interpolation
method, and the proposed method due to the influence of relative acceleration.

As future work, research should be conducted to reduce the effects of relative acceler-
ation. The effect of relative acceleration can be reduced by using the relative acceleration
model. In this regard, we will further consider the acceleration model using multiple mod-
els and expect to improve the collision risk performance using accurate radar estimation.

6. Conclusions

This paper proposed a data-driven object vehicle estimation scheme to solve the radar
system accuracy problem. For object estimation considering the radar accuracy, we first
developed an accuracy model that considers the different error characteristics depending
on the zone. The accuracy model was used to solve the measurement uncertainty of
radar. We also developed latency coordination for the radar system by analyzing the
position error depending on the relative velocity. The developed accuracy modeling and
latency coordination methods were applied to object vehicle estimation using weighted
interpolation. The utility of the proposed method was validated through a scenario-based
estimation experiment. The proposed data-driven object vehicle estimation outperformed
the commercial radar algorithm and the previously researched interpolation method. The
proposed method is expected to improve object vehicle estimation accuracy. Future work
is expected to use an additional acceleration model as multiple models to reduce the effect
of relative acceleration. This achievement is critical for autonomous driving technology
for developing a high-level controller for functions such as collision risk decision, path
planning with collision avoidance, and lane change system.
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Abstract: The driver’s attentional state is a significant human factor in traffic safety. The executive
control process is a crucial sub-function of attention. To explore the relationship between the driver’s
driving performance and executive control function, a total of 35 healthy subjects were invited to take
part in a simulated driving experiment and a task-cuing experiment. The subjects were divided into
three groups according to their driving performance (aberrant driving behaviors, including lapses
and errors) by the clustering method. Then the performance efficiency and electroencephalogram
(EEG) data acquired in the task-cuing experiment were compared among the three groups. The
effect of group, task transition types and cue-stimulus intervals (CSIs) were statistically analyzed by
using the repeated measures analysis of variance (ANOVA) and the post hoc simple effect analysis.
The subjects with lower driving error rates had better executive control efficiency as indicated by
the reaction time (RT) and error rate in the task-cuing experiment, which was related with their
better capability to allocate the available attentional resources, to express the external stimuli and to
process the information in the nervous system, especially the fronto-parietal network. The activation
degree of the frontal area fluctuated, and of the parietal area gradually increased along with the
increase of CSI, which implied the role of the frontal area in task setting reconstruction and working
memory maintaining, and of the parietal area in stimulus–Response (S–R) mapping expression. This
research presented evidence of the close relationship between executive control functions and driving
performance.

Keywords: attention; executive control; simulated driving; task-cuing experiment; electroencephalo-
gram; fronto-parietal network

1. Introduction

Traffic safety has a great impact on the family and society. The World Health Organiza-
tion (WHO) reported that approximately 1.25 million people died in road traffic accidents
every year [1]. Among the traffic accidents, a very large proportion was caused by the
drivers, which was nearly 90% according to the National Motor Vehicle Crash Causation
Survey (NMVCCS) [2]. The driver, as the final service object, is the central node of sensa-
tion and control in the driver-vehicle-environment system and plays the most important
role in traffic safety [3]. Drivers’ physical and psychological state would greatly affect
driving safety. The abnormal state of the driver, such as distraction and fatigue, would
result in visual disturbances, which were related to most accidents [2]. Driving distraction
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and fatigues are the ubiquitous problems and the major cause of injury and death for the
drivers throughout their life cycle [4]. Driving fatigue, usually resulted from lack of sleep
or prolonged driving, would cause a decreased function of the sensory-motion system and
a decline in driver’s attention ability [5]. Driving distraction is defined as any activity that
detracts the driver from the primary driving task, and is mainly reflected in three aspects,
i.e., visual (taking one’s eyes off the road), manual (taking one’s hand off the wheel) and
cognitive (taking one’s mind away from the driving task) distraction [6]. Both driving
fatigue and distraction are the manifestations of insufficient attention allocated for the
driving tasks.

Several studies have investigated the monitoring method of the driving attentional
state. Generally, several kinds of methods were developed, based on either the behav-
iors, the psychophysiological state of the driver, or the driving parameters of the vehicle.
Some behaviors of the drivers, such as nodding, yawning and mouth movements were
closely related to fatigue [7]. Usually, these behaviors were recorded and then analyzed to
extract the fatigue-related features, such as Percentage of Eyelid Closure over the Pupil
(PERCLOS) [8], the manipulation of the steering wheel [9], etc. Some studies demonstrated
the correlation of the physiological parameters of the driver with driving attention, such
as the high-frequency electrocardiogram (ECG) component [10] and the EEG (electroen-
cephalogram) signals of the frontal areas [11]. The trajectory and the state of the vehicle,
such as the speed, acceleration, and driving direction can also be utilized for distraction
detection [12]. Studying the mechanism and the influential factors of attention can help
to accurately evaluate the driver’s alert state, replace the passive safety control strategy
by active monitoring, improve the driving safety and effectively reduce the occurrence of
traffic accidents.

The cognitive studies on attention included the behavioral [13], psychological [14,15],
and neuroimaging schemas [16,17] both in subjects with attention-related disorders such
as attention deficit hyperactivity disorder (ADHD) [18] and in normal people. Attention is
characterized as the ability to effectively block outside distractions while focusing on a single
object or task, which is a general function of the whole brain. The neuroimaging studies
indicated that several neural networks were involved in attentional functions [19], among
which three subsystems were specifically conceptualized, which were alerting, orienting and
executive control [20]. Alerting is defined as reaching and maintaining a state that is highly
sensitive to incoming stimuli, which would activate the anterior attention system, including
the frontal cortex, posterior parietal cortex, and thalamus [20]. Alerting subsystem maintains
the alert state and acts on the posterior attention system to support visual orienting. The
orienting subsystem screens information from alert input to divert attention to the selected or
focused stimulus, which is related with the activities of the frontal eye field, superior parietal
cortex, temporal parietal junction, frontal eye fields, and superior colliculus [21]. The executive
control subsystem monitors and resolves conflicts between thoughts, feelings, and responses,
and plays a crucial role in attention, decision-making and complex conflict processing [20].
Currently, the most used paradigm to study the executive control function is the task-cuing
paradigm. In this paradigm, the subjects would perform two or more types of tasks randomly
under the instruction of a cue, which would be presented before or at the same time each
target appears and prompt the type of task to be performed. The performance efficiency, such
as RT and error rate, and the neuroimaging indexes, such as the EEG signal and the functional
magnetic resonance imaging (fMRI) signal [19,22], would be recorded and compared between
task switching and task repetition conditions. Results indicated that the response was slower,
and the error rate was usually higher under the task switching condition, which was called the
switch cost. Switch cost is an important indicator to quantify the function of executive control.
Theoretical accounts of executive control assumed that multiple components were involved
in activating a task-set, including paying attention to new cue-task connections, inhibiting
the expression of previous task setting rules, shifting attention to relevant stimulus attributes,
activating a goal representation, reconstructing the task’s S–R (stimulus response) rules, setting
response criteria and store task settings in working memory [23–27]. The switch cost was
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believed to occur during the active task setting reconstruction process. Better capability of
the task setting reconstruction and complex cognitive processes optimization would result
in the reduction of switching cost, which implied the higher efficiency of executive control
function in cognitive processes coordination [25–27]. The switch cost, to some degree, is
the behavioral manifestation of the executive control function. The spatiotemporal activities
of the brain, on the other hand, laid the psychophysiological foundation of the executive
control function. Several brain areas, including the prefrontal cortex, temporal cortex and
anterior cingulate gyrus [18,22,28], were involved. Their activities varied among people with
different attentional states, such as stronger activation of the dorsal anterior cingulate cortex,
middle temporal gyrus, precuneus, lingual gyrus, precentral gyrus and insula in ADHD
patients compared with the healthy adults under the task switching condition [18]. Besides,
the psychological experiments demonstrated that the attentional state and CSIs were closely
related. For example, the switch cost would increase if the CSI was too short [29,30]. The
dynamic relationship between switch cost and brain activities is important to evaluate the
executive control function, and is worthy of further research.

The executive control functions should be closely related to the driving performance.
To test this hypothesis, quantitatively analyze the behavioral manifestations of the executive
control functions, and explore the underlying cognitive mechanism, a total of 35 subjects
were recruited to participate in a simulated driving experiment and a task-cuing experiment.
The dataset including their driving behavior and EEG signals were acquired. The subjects
were divided into three groups according to their driving performance (aberrant driving
behaviors, namely lapses and errors). The performance efficiency and brain activation
characteristics under different task transition types and CSI levels in different groups were
analyzed. The results demonstrated the close relationship between driving performance
and executive control efficiency. The fronto-parietal network participated in the executive
control process and had a specific function in task setting construction and working memory
maintenance.

2. Materials and Methods

2.1. Method Overview

The main research work was organized as follows: (i) simulated driving experiment
and task-cuing experiment; (ii) systematic clustering (SPSS20.0, United States) to divide the
subjects into different groups based on the driving performance; (iii) three-way repeated
measures ANOVA for behavioral and EEG data among different groups of subjects; (iv) one-
way repeated measures ANOVA and paired T-test to analyze differences between CSI and
task transition types under different groups; (v) one-way ANOVA and two independent
sample T-test to test the differences among different groups.

2.2. Subjects and Experiment Design

A total of 35 right-handed healthy adults (26 males and 9 females; 4 undergraduates,
28 postgraduates, 2 PhD candidates and 1 PhD) with no history of neurological disease
were recruited, ranging in age from 21 to 46 (24.9 ± 5.7) years. Their visions were normal
or corrected normal. All subjects had a Chinese C1 type (small car) driver’s license with 1
to 17 (3.7 ± 3.1) driving years. They signed the written informed consent. The research was
granted by the ethical review committee of Wuhan University of Technology. All subjects
participated in two experiments: the simulated driving and the task-cuing experiment.

The simulated driving platform was built by Unity3D (Unity Technologies, Austin, TX,
USA) and the Logitech G29 driving simulator (Logitech, Zurich, Switzerland), as shown
in Figure 1a. The simulated driving scenario was an approximately 7 km circular orbital
road, including slopes, turns, bridge holes, and other elements. Subjects were instructed to
sit comfortably wearing the 64-channel Ag/AgCl electrode EEG cap (actiCHamp, Brain
Products GmbH, Gilching, Germany), focus on driving along the road, and perform the
operation of twisting the steering wheel or braking. The electrodeposition of the EEG
electrode cap is shown in Figure 1b. Before the experiment, all subjects had enough time
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(15 min or so) to familiarize themselves with the driving scene, brake pedal, acceleration
torque, and steering wheel sensitivity to prepare for the experiment. During the driving
process, each subject was required to complete three driving tasks at a speed limit of
70 km per hour, and each driving task included four laps. After each task, the participants
took a short break of five minutes to avoid driving fatigue. The Logitech G29 provided
similar force feedback of the steering wheel and brake as real driving. No subjects reported
discomfort or driving sickness.

Figure 1. (a) Simulated driving platform; (b) EEG (electroencephalogram) cap electrode location map.

The task-cuing experiment was designed by E-Prime3.0 (Psychology Software Tools
Inc., Sharpsburg, PA, USA) and presented on a 19-inch liquid crystal display (LCD) monitor
with a screen resolution of 1600*900 (Figure 2). The task-cue was a white picture of a circle
or triangle (6 cm × 6 cm) in a black background. The stimulus was a random number from
1 to 9 (except for 5) in red or green. The subjects sat in front of the screen with their sightline
on the screen center, wore the EEG cap (actiCHamp, Brain Products GmbH, Gilching,
Germany), and were instructed to respond to two types of tasks according to the task-cue.
Task A: If the task-cue was a triangle, the subjects needed to judge the color of the number,
and press “1” for red or “2” for green. Task B: If the task-cue was a circle, the subjects
needed to judge the size of the number, and press “1” for numbers smaller than 5 or “2”
for bigger than 5. There is also a task transition type that needed to be reminded about the
trials. The task was either repeated or switched relative to the previous trial. According
to the execution instructions of the task-cue, the participants were required to distinguish
the color or size of the number. If the current task was different from the previous one,
the current trial was classified as a switching trial; if the current task was the same as the
previous one, the current trial was classified as a repeat trial. This factor was checked to see
whether or not the switching trial has an impact on executive control over the repeat trial.

All subjects conducted seven sessions of the task-cuing experiment. Each session
contained 42 trials, in which two kinds of tasks appeared randomly and evenly. The
occurrence of different events in the same task was different, which was 2:1 of red to green
ratio, and 2:1 of bigger-than-5-number to smaller-than-5-number ratio. In each trial, a “+”
was shown for 100 ms, then an empty screen for 250 ms, followed by the cue for 100 ms
and then the stimulus. The CSI between the cue and the stimulus was set at seven levels,
i.e., 200 ms, 400 ms, 600 ms, 800 ms, 1000 ms, 1200 ms, and 1400 ms, which distributed
randomly and evenly in each session. The stimulus would not disappear until the subjects
pushed a button. After the reaction of the subjects, an empty screen would be shown for
500 ms.
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Figure 2. A single trial presentation process and task operation rules of the task-cuing experiment.

All subjects practiced before the formal experiment to get familiar with the task
protocols. During the experiment, they could take a short break between two sessions.

2.3. Data Acquisition

In the simulated driving experiment, the driving data and EEG data were recorded
simultaneously. The driving data, including the vehicle position and the steering wheel
rotation angle, were acquired by the C# scripts based on Unity3D. The EEG data was
collected at 1000 Hz by the Biopac actiCHamp Amplifier and BrainVision PyCorder (Brain
Products GmbH, Gilching, Germany). The cap worn by the subjects was referenced to the
FCz electrode according to the international 10–20 system protocol. The whole driving
process of the vehicle on the screen was recorded by Apowersoft (Apowesoft, Hong Kong,
China). For the task-cuing experiment, the behavioral data, including the RTs and error
rates of the subjects were recorded by the E-DataAid module of E-Prime. The task transition
type of each trial except the first one was defined as either repeated or switched relative to
the previous trial, i.e., task repetition or switching.

2.4. Analysis of Behavioral Data

The driving performance of the subjects was evaluated according to the recorded
screen video in the driving process. Specifically, the errors (severe accidents of driving out
of the road or car collisions in which situation the vehicle was out of control and needed to
be reset to the normal state by the experimenter) and lapses (moderate accidents resulted
in off-road but under-control vehicle) made during the simulated driving experiment were
counted. Systematic clustering was applied to these two types of errors to divide the
subjects into different groups.

The behavioral data in the task-cuing experiment, including the RTs and the error rates
under different conditions (group category, task transition type, and CSI) were analyzed.
The differences in task activation among the subjects were tested using a 3 (group category:
group 1, group 2, group 3) × 2 (task transition type: task repetition, task switch) × 7 (CSI:
200 ms, 400 ms, 600 ms, 800 ms, 1000 ms, 1200 ms, 1400 ms) repeated measures ANOVA
(SPSS20.0, United States).

2.5. Analysis of EEG Data

The preprocessing of the EEG data was carried out using the EEGLAB toolbox (Swartz
Center for Computational Neuroscience, San Diego, CA, USA) in MATLAB (R2013b,
MathWorks, Natick, MA, USA). The signal in Fp1 and Fp2 channels were removed from the
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subsequent statistical analysis due to the disturbance of the electrooculogram (EOG). TP9
and TP10 were selected as the re-reference electrodes. Bandpass filtering (0.1–35 Hz) was
applied to remove the noise. By extracting data epochs (200 milliseconds before stimulation
to 1500 ms after stimulation) from the continuous EEG signal and data averaging, event
information was obtained and event-related potential (ERP) images were created. Finally,
independent component analysis (ICA) was applied to remove eye artifacts (including
the signal artifacts due to the movement of the eyeball, ocular muscles, and eyelid), ECG
artifacts, electromyography (EMG) artifacts, and other noises.

By behavioral data analysis, the EEG data were also analyzed by 3 × 2 × 7 repeated
measures ANOVA. The F values in the analysis result of variance were extracted to draw the
topographic maps, the interactions and single-factor effects were analyzed. Paired T-test
(testing for activation differences between different task transition types), one-way repeated
measures ANOVA (testing for activation differences under different CSI conditions), one-
way ANOVA (test the differences among three groups) and two independent sample T-test
(testing for activation differences between any two groups) were used to explore the effects
of various factors on the implementation of executive control mechanisms.

3. Results

3.1. Behavioral and EEG Characteristics of Different Groups of Subjects
3.1.1. Grouping Results

The 35 subjects were divided into different groups according to their aberrant be-
haviors (errors and lapses) using the systematic clustering (“bottom-up” aggregation,
Euclidean distances, shortest distance algorithm). Initially each subject belonged to the
different categories. Then, the pair of subjects with the shortest distance were merged into
one category. The distance between this category and the other categories were calculated
and merged the two nearest categories. Continue this procedure until all the categories
were merged into one. Three categories were set in advance and the subjects were classified
according to the pedigree cluster diagram. The clustering results based on the driving
data are shown in Figure 3. Subject 7, 17, 21, 23, 27 and 28 were classified as group 1,
subject 1, 8, 10, 14, 15, 16, 19, 24, 25, 26, 29, 30, 32, 33, and 34 were classified as group 2, and
the rest were classified as group 3. There was no significant difference in genders, ages,
driving years and education levels among the three groups (χ2 = 4.836, P = 0.089; F = 0.149,
P = 0.862; F = 0.102, P = 0.903; χ2 = 2.978, P = 0.561 respectively). The average numbers of
errors, lapses and all aberrant driving behaviors (summed numbers of lapses and errors)
in group 1, group 2 and group 3 were (7.67 ± 5.75, 20.5 ± 1.61, 28.17 ± 6.85), (9.73 ± 3.83,
10.87 ± 2.29, 20.6 ± 4.32) and (2.93 ± 2.58, 2.86 ± 1.75, 5.79 ± 3.51) respectively. The mean
occurrence of the errors, lapses and total occurrence in the three groups were significantly
different (F = 12.152, 170.065 and 64.951 respectively). The post hoc pair-wise comparison
indicated significant difference of lapses (T = 9.202, 20.644, and 10.515), and all the aberrant
driving behaviors (T = 3.065 of group 1 vs. group 2, 9.789 of group 1 vs. group 3, and 10.084
of group 2 vs. group 3, all P < 0.01). The occurrence of errors was significantly different
between group 2 and group 3 (T = 5.709, P < 0.01). The difference of the errors in group
1 vs. group 2 and group 3 was not significant (T = −0.969, P = 0.345; T = 1.941, P = 0.102
respectively).

3.1.2. Effect of Task Transition Types, CSIs and Group on the Behavioral Data

The three-way repeated measures ANOVA on RTs (reaction times) analysis indicated
that the main effects of task transition type and CSI on RTs were significant (F (1, 32) = 35.531,
P = 0.000, and F (6, 192) = 7.769, P = 0.000 respectively). The main effect of group (F (2,
32) = 2.986, P = 0.065), the threesome interaction effect (F (12, 192) = 1.532, P = 0.115) and
pair-wise interaction effects (F (6, 192) = 1.541, P = 0.167; F (2, 32) = 1.233, P = 0.305; F (12,
192) = 0.772, P = 0.679) were not significant. Generally, in the three groups, the RTs were
basically smaller under the task repetition condition than those under the task switching
condition (Figure 4). The mean RT of group 1 (Figure 4a) was 799 ms and 909 ms for the
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task repetition and task switching condition respectively, of group 2 (Figure 4c) was 866 ms
and 980 ms respectively, and of group 3 (Figure 4e) was 744 ms and 809 ms respectively.
The RT in group 1 was shorter than that of group 2 but longer than that of group 3 (not
significant). In group 1, when the CSI was lower than 800 ms, the switch cost fluctuated
around 150 ms to 200 ms, as the CSI continued to increase, the switch cost first decreased
and then increased, reaching the minimum when the CSI was 1200 ms. In group 2, the
switch cost first increased along with the increasing of CSI and then fluctuated around
100 ms. In group 3, the switch cost fluctuated around 70 ms and reached minimum when
the CSI was 400 ms. The mean switch cost of RT in group 1, group 2 and group 3 was
110 ms, 114 ms and 65 ms respectively.

Figure 3. Results of systematic clustering based on the driving data.
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Figure 4. RT (reaction time) and error rate of the three groups as functions of task transition type and CSI (cue-stimulus
interval).

The main effect of task transition type on the error rates was significant (F (1, 32) = 6.154,
P = 0.019). The main effects of CSI and group (F (6, 192) = 0.546, P = 0.773; F (2, 32) = 2.673,
P = 0.084), the threesome interaction effect (F (12, 192) = 0.661, P = 0.787) and the pair-wise
interaction effects (F (6, 192) = 0.563, P = 0.759; F (2, 32) = 0.979, P = 0.387; F (12, 192) = 0.933,
P = 0.515) were not significant. The mean error rate of group 1 was 1.2% and 1.7% under
the task repetition and switching condition respectively; of group 2 was 2.9% and 4.8%
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respectively, and of group 3 was 2.7% and 2.9% respectively. Generally, for the three groups,
the error rates were smaller under the task repetition condition than that under the task
switching condition, and the error rate of group 2 was higher than the other two groups. In
group 1, the switch cost fluctuated around 0.5%, and the smallest absolute value appeared
when the CSI was 200 ms (Figure 4b). The switch cost of group 2 had a downward trend as
the CSI increased, except for an abnormal increase when the CSI was 1000 ms (Figure 4d). In
group 3, the switch cost generally decreased along with the increasing of CSI, but increased
when the CSI was 800 ms and 1400 ms, respectively (Figure 4f). The mean switch cost of error
rate in group 1, 2 and 3 was 0.6%, 1.9% and 0.1% respectively.

3.1.3. Effect of Task Transition Types, CSIs and Group on the EEG Data

The main effect of CSI on brain activity was significant in the most frontal and parietal
(Figure 5b, all electrodes except TP7, P7, PO7, O1, Oz and Iz), of group in the prefrontal
(AFz, AF3, AF4 and AF8), the frontal (F1, F2, F3, F4, F6, F7 and F8), the frontal-central (FC1,
FC2, FC4 and FC6), the central (Cz and C1) and the right fronto-temporal regions (FT8,
Figure 5c). The main effect of task transition type (Figure 5a), the threesome interaction
effect (Figure 5d) among group, task transition type and CSI was not significant. The
pairwise interaction effects were significant at several limited electrodes (AFz, F1, F2, T8
and PO4 in Figure 5e, FC2, Cz and C2 in Figure 5f).

 

Figure 5. The main effects and interaction of group, task transition type and CSI in EEG data.

Considering the existence of the interaction effects, the post hoc comparison was
performed to test the simple effects of the task transition type, CSI and group.

In group 1 (Figure 6a), the repeat trials caused stronger activation in the left prefrontal
region (AF3) when the CSI was 800 ms, and the switching trials caused significantly
stronger activation in the right parietal cortex (P8) as the CSI increased to 1400 ms. The
difference in CSI was mainly concentrated in the prefrontal (AFz, AF7 and AF8), frontal (F1,
F3 and FC1), fronto-temporal (FT7 and FT8) central (C2, C4 and C6) and central-parietal
(CP2 and CP4) regions under the task repetition condition, and in the frontal (centered at
the F1 electrode), right fronto-temporal (FT8) and right central parietal (centered at the C2
electrode) regions under the task switching condition.

In group 2 (Figure 6b), the repeat trials caused stronger activation in the left central
parietal (CP1) and parietal regions (P1) when the CSI was 200 ms, the switching trials
caused significantly stronger activation in the right prefrontal region (AF8) when the CSI
was 1400 ms. The difference in CSI was mainly concentrated in the frontal (F2, FC2 and
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FC4), parietal (P6) and parietal-occipital (PO8) regions under the task switching condition,
while not significant under the task repetition condition.

CSI   200 ms 400 ms 600 ms 800 ms 1000 ms 1200 ms 1400 ms 

Among–CSI 
difference, 

ANOVA (
P ) 

Task  
repetition 

 

Task 
switch 

Paired  
T–test 

(a) group 1 

Task  
repetition 

 

Task 
switch 

Paired  
T–test 

(b) group 2 

Task  
repetition 

 

Task 
switch 

Paired  
T–test (
P ) 

(c) group 3 

Figure 6. The simple effect of CSI and task transition types on EEG data in different groups.

In group 3 (Figure 6c), compared to the switch trials, the repeat trials caused signifi-
cantly stronger activation in the parietal (Pz and P3) and parietal-occipital (POz and PO3)
regions when the CSI was 600 ms, and the switching trials caused significantly stronger
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in the right fronto-temporal (FT8), temporal (T8), temporal parietal (TP8), most central
frontal (a large area centered in the FCz electrode) regions when the CSI was 1400 ms. The
difference in CSI was mainly concentrated in the frontal (F1, F2, FC1 and FC2), central
(Cz, C1, C2 and C4) and central parietal (CPz, CP1, CP2 and CP4) regions under the task
repetition condition, and under the task switching condition, in most of the prefrontal,
frontal, parietal, temporal and parietal-occipital regions (up to AFz, down to POz, left to
FT7, and right to FT8 electrodes), which was the fronto-parietal network.

For the difference among the three groups (Figure 7a), under the task repetition
condition, the brain activation differences were in the right frontal (F2, F4, F6, F8 and FC6)
and right fronto-temporal (FT8) regions when the CSI was 400 ms, in the right frontal-
central (FC6), left fronto-temporal (FT7 and FT9), central (Cz, C1, C2, C3, C4 and C6)
and central-parietal (CP1) regions when the CSI was 1000 ms, in the frontal-central (FC2),
right fronto-temporal (FT8) and central (Cz) regions when the CSI was 1200 ms, and in
most of the prefrontal and central regions (centered at the F1 electrode) when the CSI was
1400 ms. Under the task switching condition, the brain activation differences were in the
right parietal-occipital (PO8) region when the CSI was 400 ms, in the prefrontal (AFz and
AF4), frontal (F4), right parietal-occipital (PO8) and occipital (O2 and Iz) regions when the
CSI was 600 ms, in the prefrontal (AFz), right frontal (F2, F4, F6 and FC4), parietal (CP1, P1
and P5), left parietal-occipital (PO7) and occipital (O1) regions when the CSI was 800 ms,
in the prefrontal (AFz), frontal (F1, F2, F3, F5, FC2 and FC5), left fronto-temporal (FT7)
and central (Cz, C1 and C6) regions when the CSI was 1000 ms, in the frontal and central
parietal regions (part of the area centered at the Cz electrode) when the CSI was 1200 ms.
When the CSI increased to 1400 ms, the brain activation differences occurred in almost all
areas of the prefrontal, frontal, bilateral temporal and central parietal regions.

For the difference between group 1 and group 2 (Figure 7b), the brain activations in
group 1 were more intense, in the frontal (centered at the F2 electrode, CSI = 400 ms), central
parietal (CPz and CP1, CSI = 600 ms) and frontal-parietal (most areas of the frontal and pari-
etal regions, CSI > 800 ms) regions under task repetition condition, in the frontal (centered
at the F2 electrode, CSI = 600 ms), parietal (centered at the CP1 electrode, CSI = 800 ms and
1400 ms) and frontal-parietal (most areas of the frontal and parietal regions, CSI = 1000 ms
and 1200 ms) regions under task switching condition. The brain activations in group 2 were
stronger in the right parietal-occipital (PO8, CSI = 400 ms, 600 ms, 800 ms and 1000 ms)
and occipital (Iz, CSI = 600 ms) regions.

For the difference between group 1 and group 3 (Figure 7c), the brain activations in
group 1 were stronger, in the right central (C2, C4, FC4 and FC6, CSI = 400 ms) and bilateral
fronto-temporal (FT7 and FT8, CSI = 400 ms and 1000 ms) regions under task repetition
condition, in the parietal-occipital (centered at the PO3 electrode, CSI = 800 ms) and right
fronto-temporal (FT8, CSI = 1200 ms) regions under task switching condition. The brain
activation in group 3 was stronger in the frontal central region (FC2, CSI = 1400 ms) under
task switching condition.

As for the difference between group 2 and group 3 (Figure 7d), the brain activation
in group 3 was stronger, in the central (FC3, Cz and CP1, CSI = 1000 ms and 1200 ms)
and fronto-parietal (most areas of the frontal and parietal regions, CSI = 1400 ms) regions
under task repetition condition. Under the task switching condition, the brain activations
in group 2 were stronger in the left parietal (P7, CSI = 800 ms), parietal-occipital (PO7 and
PO8, CSI = 400 ms, 600 ms and 800 ms) and occipital (Oz, O1, O2 and Iz, CSI < 1000 ms)
regions. With the increase of CSI, the brain activation intensity and activation range in
group 3 gradually increased, and when the CSI was 1400 ms, the brain activation area
almost covered the entire frontal-parietal network.
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Figure 7. The simple effect of group on EEG data under different CSI conditions and task transition types.

4. Discussion

In this work, a total of 35 healthy subjects were recruited to participate in a simulated
driving experiment and a task-cuing experiment. The subjects were divided into three
groups according to their driving performance. Then the performance efficiency and EEG
data acquired in the task-cuing experiment were compared among the three groups, and
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the effect of task transition types and CSIs was statistically analyzed. The performance
efficiency and the underlying cognitive mechanism of the executive control function, and
its relationship with the driving performance was investigated.

4.1. Relationship between Driving Performance and Executive Control Efficiency

Driving is a very complicated procedure, which is composed of a series of behavioral
operations, and resulted from the dependable perception-decision-execution cycle of the
brain. The driving performance can be studied using the number of crashes, the number of
incorrect use of turn signals, overtaking distance, vehicle trajectory and speed, etc. [12,31].
Reason et al. [32] presented a useful theoretical model by using the risky driving behaviors
for the driving performance evaluation. Particularly three categories of aberrant behaviors
related to different cognitive and decisional processes were defined, i.e., errors, lapses
and violations. Errors were defined as failures to achieve the intended consequences of
planned actions (e.g., braking too quickly on a road with low friction), largely representing
information-processing deficits. Lapses were defined as failures of attention or memory
(e.g., attempt to drive away from traffic light in third gear), largely representing information-
sensory deficits. Violations were defined as deliberate violation of rules or failure to follow
safe driving practices (e.g., decide to continue driving at the red light). Enlighted by this
definition, we defined the errors and lapses in our work according to the severity of the
accidents and the controllability of the vehicle. The severe accidents were caused by a
series of mistakes made during the information processing procedure, while the moderate
accidents were usually resulted from negligence of the external information. Errors and
lapses constructed two dimensions to depict the aberrant driving behaviors in our driving
scene. Accordingly, the enrolled 35 subjects were divided into three groups. The driving
performance was the best in group 3 with the fewest errors and lapses. Group 1 had the
highest occurrence of lapses and medium occurrence of errors, and group 2 had the highest
occurrence of errors and medium occurrence of lapses.

Executive control refers to the coordination of multiple tasks to complete complex
cognitive control processes. task-cuing experiment is a common paradigm to study the
underlying mechanism of executive control function. The subjects needed to perform the
same task as the former one (task repetition) or quickly switch to another kind of task
(task switching). During the experiment, the subjects would maintain a specific cognitive
state and construct a task setting process involving perception, attention, memory, and
response [33]. Under the task repetition condition, the subjects only needed to implement
previously configured task settings. While under the task switching condition, the subjects
needed more effort to complete the configuration of a new kind of task. The executive
control demands were greater, due to the working memory requirements to maintain
multiple tasks in memory, the inhibition of the previous task, and the activation of the
current task [34]. Consequently the subjects’ response was usually slower and the accuracy
lower, which was considered as the switch cost phenomenon [30]. The switch cost could
be utilized as a quantitative indicator and was positively correlated with the subjects’
executive control efficiency [23,27]. In our work, the task transition type had the significant
independent impact on RT and error rate, which was significantly larger under the task
switching condition for all the groups. Though group effect was not significant, the average
switch costs of RTs and error rates in group 1, 2, and 3 were 110 ms and 0.6%, 114 ms
and 1.9%, and 65 ms and 0.1%, respectively (Figure 4), which indicated the best executive
control performance of group 3, and the worst of group 2. The behavioral performance of
group 3 in the task-cuing experiment revealed that group 3 obviously had better capability
to allocate the available attentional resources when the demands for the working memory
maintaining former information inhibition, and reconfiguration of the current task was
greater. This capability also resulted in better driving performance of group 3, which was
highly correlated with their attentional and cognitive states. Although the total number
of the abnormal driving behaviors of group 2 was lower than that of group 1, group 2
had the most errors, the largest switch cost, and the worst executive control function.
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This implied that in the two aberrant driving behaviors, error clearly better reflected the
executive control function. This would be further ascertained by the EEG results. CSI had
a significantly independent impact on RT (Figure 4). As CSI increased, the performance
efficiency (including RT and error rate) was significantly improved. The switch cost of
the error rate decreased as the CSI increased, especially in group 3. The impact of CSI
on behavioral performance and switch cost proved that the task setting reconstruction
process, i.e., the preparation effect for new trials [35], was an important source of switch
cost. During the experiment, once the task-cue appeared, the brain began to complete
the control conversion process from the initial abstract rule representation to the actual
representation [22]. When the CSI was short, this process cannot be well executed due to
the pressure and insufficiency of the preparation time, which would result in an unstable
characterization of the actual stimulus. Whereas when the CSI was longer, the conversion
process would be much smoother, and better performance efficiency could be achieved.

4.2. The Underlying Cerebral Network for the Executive Control Function

The brain activities under different task transition conditions reflected how the brain
was organized to fulfill the executive control function. As can be seen in Figure 5, generally
the main effect of task transition type on the EEG activities was not significant (Figure 5a).
However, it had the interaction effect with group factor in some electrodes (Figure 5e). The
following post hoc simple effect analysis indicated that group 1 (Figure 6a) had stronger
activation in AF3 (CSI = 800 ms), group 2 (Figure 6b) in CP1 and P1 (CSI = 200 ms), and
group 3 (Figure 6c) in Pz, P3, POz and PO3 (CSI = 600 ms) under the task repetition condition;
while group 1 had stronger activation in P8 (CSI = 1400 ms), group 2 in AF8 (CSI = 1400 ms)
and group 3 in most electrodes of the fronto-parietal network (CSI = 1400 ms) under the
task switching condition. These results suggested the different activation patterns during
the executive control procedure in three groups of subjects. The ANOVA results did reveal
the significant main effect of group on the EEG data, specifically in the prefrontal (AFz, AF3,
AF4 and AF8), the frontal (F1, F2, F3, F4, F6, F7 and F8), the frontal-central (FC1, FC2, FC4
and FC6), the central (Cz and C1) and the right fronto-temporal regions (FT8, Figure 5c),
which constituted the fronto-parietal network [17,29]. In general, the activation levels were
stronger and activation ranges in the fronto-parietal network were wider in group 3 under
the task switching condition. This was responsible for their better capability to reallocate the
attentional resources, which also proved that most of the brain regions of the fronto-parietal
network were required to complete the task setting process [33–35].

The activation comparison among three groups indicated that their difference was
stronger under the task switching condition, when the regions extended from a small area in
the frontal and central regions (centered at F2) to most areas of the fronto-parietal network
with increased intensity as well (Figure 7a). Under both task switch and task repetition
conditions, the activation degree of group 1 and group 3 was significantly stronger than
group 2 (Figure 7b,d). The weakest activation intensity of group 2 was responsible for their
worst performance of the executive control function and their highest occurrence of the
driving errors. The underlying regions of interest for the executive control functions and
their activity changes, along with the CSI were further analyzed. As for the comparison
between group 1 and 2 (Figure 7b), when the CSI was 200–800 ms, the activation range
and intensity varied and the difference was mainly concentrated in the prefrontal and
frontal regions (around F2). When the CSI was 1000–1200 ms, the difference was stable
in most brain regions including the prefrontal, frontal, central, temporal and superior
parietal regions. As for the comparison between group 2 and 3 (Figure 7d), the activation
difference was mainly concentrated in the frontal (centered at F2, CSI = 800 ms) and frontal-
central regions (centered at the FC1, CSI = 1200ms) under the task switching condition,
and occupied most of the fronto-parietal network under both conditions when the CSI was
1400 ms. In general, our results indicated the significant effect of the group factor in the
frontal-parietal network. Additionally, the instability of frontal region activation revealed
its specific role in executive control. It has been suggested that a superordinate fronto-
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cingulo-parietal network supporting cognitive control may also underlie a series of distinct
executive functions, including attention, signal recognition, behavior strategy formulation,
motion control, impulse control, and information feedback recognition [22,28,36]. In the
task-cuing experiment, during the period from the end of the previous trial to the end
of the next task-cue, there was a process of working memory maintenance of multiple
task settings, evaluation and reconstruction of the current task setting [22,37]. When the
task to perform was switched, the task settings needed to be updated and the extra work
was required to suppress the previous task setting, which resulted in stronger cerebral
activities. Consistent with the behavioral results, the better performance efficacy and
stronger activation of group 3 indicated their better capability to allocate the available
attentional resources, to express the external stimuli, and to process the information in the
nervous system, especially the fronto-parietal executive control network.

4.3. Effect of CSI Level on the Brain Activities

The main effect of CSI on EEG data was significant. Besides, CSI had the interaction
effect with groups in some channels (FC2, Cz and C2 in Figure 5f). The influence of CSI
levels on the executive control process can be also observed in the following post hoc
simple effect analysis. The among-CSI difference of the brain activation existed in mostly
the left prefrontal, frontal, right frontal-parietal and bilateral fronto-temporal regions
under task repetition condition and in fronto-parietal network (centered at FC2) under
task switching condition in group 1 (Figure 6a), in F2, FC2, FC4, P6 and PO8 under task
switching condition in group 2 (Figure 6b), in the frontal and central regions (a small area
centered at Cz) under the task repetition condition and in the fronto-parietal network
(most areas of frontal, central, bilateral temporal and parietal and parietal-occipital regions)
under task switching condition in group 3 (Figure 6c). The simple effect analysis indicated
that the activation degree and range of brain regions increased along with the increase of
CSI. The brain activation differences among different CSIs were mainly concentrated in
the fronto-parietal network, which was most strong in group 3, secondly strong in group
1, and the weakest in group 2 (Figure 6). The results indicated that subjects with better
attention status and better executive control efficiency were more sensitive to CSI.

In general, the increase of the CSI is helpful for the activation of the task settings
and the more effective conversion among different tasks. It is noted that when CSI was
1000 ms, the intensity and range of the brain activation were significantly increased in all
three groups and then remained at a high level (Figure 6). Additionally, 1000 ms seemed to
be also a key downtrend point of the switch cost, especially for the RT of group 2 and 3
(Figure 4). Both the performance efficiency and the underlying cognitive process reached an
optimal level at this CSI. An appropriate CSI might be helpful for the subjects to maintain
the balance of task setting reconstruction and S–R mapping expression. Both the task
setting reconstruction and S–R mapping expression relied on the working memory, which
was an iterative process including encoding, storage, recognition and recall. When the CSI
was relatively short, the task-cue processing and task setting reconstruction was needed
to be performed synchronously, there was no time for enough iterations, and resultantly,
the accuracy of the executive control function could not be guaranteed. On the other hand,
when the CSI was long, a series of iterations could be fulfilled. Besides, according to the
experience of the subjects, they might even have time for the rehearsal of the expected task.
Under this circumstance, the pre-task setting reconstruction process might have already
started before the stimulus, and the working memory load would remain at a high level.

Though there existed differences among the three groups, both frontal and parietal
regions were involved. The activities of the frontal cortex fluctuated along with the CSI. It
was activated when the CSI was 200 ms, and the activation seemed to be weakened when
the CSI increased to 400 ms in group 2 and group 3 (Figure 6b,c). As the CSI continued
to increase, the frontal activation increased again. The frontal cortex was responsible for
maintaining task settings, regulating and controlling task-related behaviors [16]. When the
CSI was short, the subjects did not have enough time to classify the stimulus and complete
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the task setting reconstruction process [38]. The time pressure and the conflict between task
setting and S–R mapping required the high degree of participation of the frontal region [29].
When the preparation time is sufficient, the time pressure was reduced, the conflict between
task setting and S–R mapping expression was reduced, and the requirement of the cognitive
control was also decreased. As a result, the activity of the frontal cortex was weakened.
When the CSI increased further, the activation of the frontal cortex was restrengthened,
which was related to the increased load of the working memory due to the prolonged time
of S–R mapping expression [29,34]. This can also explain the phenomenon that the activity
of the parietal cortex, which was sensitive to the conflict of S–R mapping [39], was stronger
when the CSI was larger. These results indicated the possible role of the frontal area in task
setting reconstruction and working memory maintaining, and of the parietal area in S–R
mapping expression.

4.4. Novelty and Limitations

In this research, a unified experimental and analytical schema for multimodal data in-
cluding the behavior, EEG activity and psychological performance was presented to explore
the underlying cognitive mechanism of attention in driving. Through the comparative
analysis of different groups of participants, the quantitative correlation between executive
control function and driving performance was established, and the spatiotemporal activity
of the brain during this procedure was revealed. The relationship between dangerous driv-
ing behavior and attention, along with CSIs and other parameters, was disclosed. Based on
the presented methods and the acquired results, the attentional state of the driver could
be monitored through EEG signals to avoid the distraction, and the dangerous driving
behaviors including errors and elapses could be prevented. Besides, the attentional and
behavioral characteristics of the drivers can be analyzed in advance and the subject-specific
driving style can be evaluated. Accordingly, different real-time online human-computer
interaction schemes can be provided for different kinds of drivers. Furthermore, the indi-
vidual’s driving performance and their EEG performance could be mutually corroborated,
which would supply new reference for driving training and administration. In general, the
presented schema supplies a new kind of intelligent human-computer interaction method,
and this active safety control would significantly improve the driving safety. Except for
driving, the research findings would be applied to other life risk activities.

The present study is limited principally by the unbalanced gender proportion, uneven
ages and driving ages of the subjects. Age, gender and educational background are all
the crucial factors affecting the executive control functions, performance efficiency, and
brain activities of the human [40,41]. A total of 35 subjects were studied and there are
only 6 subjects in group 1. Though the meaningful results were found and no significant
difference was detected for ages, genders, driving ages and education backgrounds among
the three groups, these results need to be replicated in much larger sample size and the
general population. Besides these factors, the other demographic factors of different groups,
such as the driving experience including the driving frequency and the load, might all
have significant effect on the cognition and behavior of the drivers. The definition of all the
related parameters and a larger sample size would be crucial to help consolidate a bigger
picture of our work. The individual’s driving performance and their EEG performance
could be mutually corroborated, which would supply new reference for driving training
and administration. However, in our work, their interaction dynamics cannot be analyzed
because of the insufficient repeated measures of the subjects from both the cognitive and the
behavioral sides. We would like to conduct a longitudinal cohort study and we believe that
very interesting and more robust results would be obtained. Second, the spatiotemporal
characteristics of the underlying brain function need to be further studied. In our work,
we analyzed the brain electrical activity mapping. As EEG is a kind of scalp electrical
signal and has a limited spatial resolution, the location of the anatomical areas might not
be very accurate. We observed the participation of the frontal and parietal regions in the
executive control process. However, deeper areas in the brain, such as the cingulate gyrus,
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which has been demonstrated to be a critical part of the fronto-cingulo-parietal network for
executive functions [28], cannot be located. The EEG source localization technique might be
helpful. The causal relationship among the regions and their dynamic activity can be further
analyzed by using the time series analysis methods, such as dynamic causal modeling [42].
Finally, the executive control function is one of the three sub-functions (altering, orienting
and executive control) of attention. According to our understanding, alerting and orienting
subsystems acted mainly in the information perception level. Compared with them, the
executive control subsystem acted mainly in the higher decision and control level. The
executive control function would have a direct relationship with the behaviors, such as the
switch cost of reaction time and error rate in the psychological experiment and driving
performance in the simulated driving experiment. Hence in this work, we focused on
the executive control function and found its positive correlation with these behavioral
performances. However, the other two sub-functions are also important for the whole
process, and their implication in the driving performance is worthy of study. Till now, the
relationship among these sub-functions and the underlying mechanism of attention is not
yet clear [43]. This warrants further synthetic research of the sub-functions of attention.
The driving performance of the drivers was evaluated based on two types of aberrant
driving behaviors, i.e., errors and lapses. Although this definition method was relatively
common in the research of human factors in engineering and driving behavior [31,32], it
was still a subjective judgment method. The objective data such as steering wheel angle
and driving route was planned to define abnormal driving behavior in the future research.

5. Conclusions

In this work, the simulated driving and task-cuing experiments were conducted, and
the correlation between driving performance and executive control function was analyzed.
The subjects with lower driving error rates had better performance efficiency as indicated
by the RT and error rate in the task-cuing experiment, which was related with their better
capability to allocate the available attentional resources, to express the external stimuli and
to process the information in the nervous system, especially the fronto-parietal executive
control network. The activation degree of the frontal area fluctuated, and of the parietal
area gradually increased along with the increase of CSI, which implied the possible role
of the frontal area in task setting reconstruction and working memory maintaining, and of
the parietal area in S–R mapping expression. This research provided evidence of a close
relationship between executive control functions and driving performance, which supplies
new reference for intelligent human-computer interaction and active safety control in driving.
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Abstract: Connected and autonomous vehicles (CAVs) could reduce emissions, increase road safety,
and enhance ride comfort. Multiple CAVs can form a CAV platoon with a close inter-vehicle distance,
which can further improve energy efficiency, save space, and reduce travel time. To date, there have
been few detailed studies of self-driving algorithms for CAV platoons in urban areas. In this paper,
we therefore propose a self-driving architecture combining the sensing, planning, and control for
CAV platoons in an end-to-end fashion. Our multi-task model can switch between two tasks to drive
either the leading or following vehicle in the platoon. The architecture is based on an end-to-end
deep learning approach and predicts the control commands, i.e., steering and throttle/brake, with a
single neural network. The inputs for this network are images from a front-facing camera, enhanced
by information transmitted via vehicle-to-vehicle (V2V) communication. The model is trained with
data captured in a simulated urban environment with dynamic traffic. We compare our approach
with different concepts used in the state-of-the-art end-to-end self-driving research, such as the
implementation of recurrent neural networks or transfer learning. Experiments in the simulation
were conducted to test the model in different urban environments. A CAV platoon consisting of two
vehicles, each controlled by an instance of the network, completed on average 67% of the predefined
point-to-point routes in the training environment and 40% in a never-seen-before environment. Using
V2V communication, our approach eliminates casual confusion for the following vehicle, which is a
known limitation of end-to-end self-driving.

Keywords: connected and autonomous vehicles; artificial neural networks; end-to-end learning;
multi-task learning; urban vehicle platooning; simulation

1. Introduction

One major trend in intelligent transportation systems is the development of connected
and autonomous vehicles (CAVs), which has seen vast progress over the past few years.
However, research on autonomous vehicles has a long history, starting in the 1980s with
the PROMETHEUS project and Autonomous Land Vehicle in a Neural Network (ALVINN),
an experimental vehicle that made use of neural networks for the driving task. Over 30
years later, vehicles with lower levels of driving automation—up to Level 2 as specified by
SAE J3016 [1]—have become commercially available. Researchers and the industry now
focus on the development of vehicles with higher levels of driving automation, such as
Levels 4 and 5. These enable autonomous driving without the need for human interaction.
Furthermore, highly automated vehicles can increase road safety and reduce emissions [2].
Higher levels of driving automation also allow vehicles to drive in a platoon and reduce the
inter-vehicle distance. A platoon generally consists of a leading vehicle with one or more
followers. The leading vehicle is driven autonomously or manually, while the following
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vehicle usually acts autonomously, especially at close inter-vehicle distances. Driving with
a close inter-vehicle distance not only has the potential to reduce emissions on highways
because of the reduction in drag and hence energy consumption, but also saves space in
an already limited urban area [3,4]. For example, CAV platoons on a dedicated lane can
reduce the reverse-accordion effect when jointly accelerating at a green traffic light. In this
work, we focus on CAV platoons deployable in an urban area.

Key to the success of CAVs are the recent advances in machine learning (ML). Different
ML techniques, e.g., deep learning, facilitate the extraction of information from a large
amount of sensor data to understand the CAV’s environment. Although there exist different
approaches to achieve the ultimate goal of developing self-driving cars, most of them
rely on the usage of ML methods to a high degree. These approaches can be classified
into the following three categories: modular pipelines, direct perception, and end-to-end
deep learning.

The approach primarily used for self-driving cars employs modular pipelines and is
based on the mediated-perception principle [5]. This approach makes use of the decom-
position of the driving task to split the complex task into successive modules (perception,
prediction, planning, and control) [6]. Each module consists of a range of specialized
submodules. Using onboard sensors like the camera, LiDAR, radar, GNSS, and the inertial
measurement unit, the perception module creates a comprehensive internal representation
of the self-driving car’s environment. Given the internal environment’s representation,
the planning module is responsible for the route, path, and motion planning [7]. The
subsequent control module converts the trajectories generated by the planning system into
commands for the self-driving car’s actuators of the steering wheel, engine, and brakes.

Although the modular pipeline approach has good interpretability, the information
computed at every time step adds unnecessary complexity to the system. Additionally,
a large amount of labeled data (e.g., 3D bounding boxes [8] or pixel-wise semantic seg-
mentation [9]) are needed for supervised training of the submodules of the perception
module. These data are costly and hard to obtain. Additionally, some localization algo-
rithms require accurate high-definition road maps [10], which have to be generated offline.
Another problem is the error propagation that can occur in multiple sections of the modular
pipeline [11].

Based on the psychological theory about perception [12], the direct-perception ap-
proach was proposed by [13] to solve the self-driving challenge. Rather than splitting the
entire driving task into smaller submodules, the authors used a single neural network
in the perception module to predict meaningful affordances. These affordances are a
low-dimensional compact and intermediate representation of the CAV’s surroundings, as
opposed to the high-dimensional output of the modular pipeline approach. Examples of
affordances used by the authors are the car’s angle relative to the lane, distances to lane
markings, and cars in the current and adjacent lanes. Based on the affordances, a simple
car controller outputs the commands to drive the vehicle. The authors proved the general-
ization ability of their system by testing the model and trained with data captured in the
TORCS simulator, on real-driving videos. Reference [14] generalized the direct-perception
approach to address the task of driving in an urban environment, which demands addi-
tional affordance indicators. A general problem posed by the direct-perception approach is
that the affordances are manually chosen and may not be suitable for the complex driving
task, i.e., not all situations can be covered by a few low-dimensional affordances.

The third paradigm for autonomous driving is end-to-end learning [15]. In general,
the idea of end-to-end learning is to train a neural network that directly maps the raw
sensor data to driving commands, i.e., it outputs the steering angle and throttle or brake
values. The input data may come from different sensors, such as mono cameras, stereo
cameras, LiDAR, or any combination thereof. However, the most widely used sensor is
the mono camera. In recent years, convolution neural networks (CNN) [16] have been
the most widely used method for feature extraction of image data, since CNNs achieved
the best results for image recognition at the ImageNet Large Scale Visual Recognition
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Challenge (ILSVRC) [17]. The training is based on supervised learning. During the training
phase, the networks process the images and the corresponding labels. During inference,
the networks predict these labels, with images as the only input. In direct comparison, the
driving performance of the end-to-end approach is comparable to the driving performance
of the modular pipeline, but it is less fragile in new environments [18]. A benefit of this
approach is that there is no need for hand-engineered heuristics, and hence, the system
is more robust for unpredictable situations. Furthermore, collecting labeled training data
on an image-level for end-to-end learning is easier than on a pixel-level for the modular
pipeline approach.

In this work, we propose a multi-task deep learning architecture for CAV platoons
that is trained in an end-to-end fashion. This architecture is based on vision only and can
be used in both the leading vehicle and following vehicles to maneuver them. The vehicles
communicate via V2V communication to improve the performance. The neural network
was tested in a never-seen-before urban environment in a simulation under different
weather conditions and with dynamic traffic. A two-vehicle platoon followed the road
while obeying traffic rules, such as traffic lights at intersections. We benchmarked the
performance of our approach with state-of-the-art metrics and demonstrated the capability
our model taking over control of a two-vehicle platoon to complete predefined routes.

2. Related Work

Research on the platooning of vehicles has a long history, although it is mainly focused
on the energy savings or communication topology of platooning vehicles. Preliminary
work on autonomous truck platooning was undertaken by [19] in 1995. The authors tested
a two-vehicle platoon with a manually-driven leading truck followed by an autonomous
truck. The sensor setup for the following truck consisted of a single front-facing camera
together with the vehicle states (e.g., acceleration and velocity) of the leading truck, which
were obtained via V2V communication. This vision-based approach estimated the truck’s
heading based on the lane markings and the distance to the leading truck by visual detection
of active infrared lights on the rear of the leading truck. Major large-scale pilot studies were
also conducted to determine the feasibility and benefits of truck platooning on highways.
These works include the European research programs CHAUFFEUR and CHAUFFEUR2
in the early 2000s [20]. Other similar projects were the California PATH truck-platooning
program and KONVOI [21]. A more comprehensive review of these projects can be found
in [22].

End-to-end self-driving: The origin of this approach dates back to the late 1980s. In
1989, ALVINN [23] used a small (by today’s standards) fully connected network to predict
the turn curvature in front of the car. The inputs were images captured by a camera and
scans from a laser range finder. The training data were collected using a simulated road
generator, which created video images, as well as laser range finder images. As a result,
ALVINN was capable of following a 400 m section of the road at a speed of 0.5 m/s.
Instead of a fully connected network, Reference [24] implemented a six layer CNN in
the remote-controlled mobile robot DAVE. DAVE was intended to operate in unknown
off-road terrain and avoid smaller obstacles such as trees and ponds. The input of this
network consisted of images from a front-facing stereo camera, and the output was the
steering angle. The network was trained with images and control commands recorded
while a human was maneuvering the robot in different terrains and light conditions.
After the training, DAVE managed to drive approximately 20 m on average until it hit an
obstacle [25]. Reference [26] used the TORCS simulator to train an agent to drive on a race
track by employing reinforcement learning. This approach is solely vision-based, with a
recurrent neural network receiving front-facing images and predicting the steering angle,
brake, and throttle. The performance is comparable to that of hard-coded controllers, which
have access to all vehicle states. A seminal work on end-to-end learning is DAVE-2 [25]. In
2016, the authors designed and trained a CNN named PilotNet to steer a full-sized vehicle.
Unlike the mobile robot DAVE, which was tested a decade earlier, DAVE-2 was trained
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with about 72 h of real-world driving data, captured by three front-facing cameras while
driving on public roads under different light and weather conditions. The network training
benefited from two off-center cameras, which implied a shift from the center of the lane
and thereby enabled the network to learn to recover from mistakes. Only the center camera
was used for testing.

Similar systems have been tested in recent years, with training data either taken from
real-world datasets [27–32] or generated in simulations [33–36]. Some of this research
explored the benefits of including temporal dependencies between consecutive images
by adding recurrent layers to the network. For example, References [27,30,31] added long
short-term memory (LSTM) layers on top of the CNN. The CNN was responsible for feature
extraction of the images, while the LSTM incorporated features of the last time steps for
the driving decision of the current time step. Reference [36] followed the same approach
and additionally implemented the end-to-end approach in a simulated urban environment.
To obey the traffic rules, the authors added additional inputs to the network, such as the
relevant traffic light state and speed limit. Application of end-to-end self-driving to vehicle
platooning: The above works did not address end-to-end deep learning algorithms that are
specifically designed for the application in vehicle platoons. This topic was first addressed
in [32,34].

Reference [34] used the end-to-end learning of CNNs to maneuver a truck behind
a leading truck in a simulation based on vision only. The output of the network was
branched and predicted the steering angle and throttle/brake. The simulation environment
was a flat terrain in an off-road area. The leading truck made random driving decisions,
while the following truck was operated manually during data collection. The labels
associated with each image consisted of discrete steer and throttle/brake values, making
the training a classification problem. After supervised training, several test runs were
conducted. Although this was the first work to address end-to-end self-driving for CAV
platoons, it did not consider an urban environment and focused on the following vehicle
only. Since the leading vehicle was manually driven, the platoon could not operate fully
autonomously. Furthermore, the system setup produced discrete output values that would
not allow smooth driving behavior. Additionally, because the network was tested in the
same simulation environment that it was trained in, its ability to generalize and extrapolate
data to unseen environments was not assessed.

In 2019, Reference [32] was the first to mention the additional implementation of
V2V communication to enhance the performance of end-to-end self-driving. The authors
proposed a network architecture that processed images recorded by two cooperative self-
driving vehicles simultaneously. The goal was to predict the steering angle of the following
vehicle for lane-keeping on highways. Via V2V communication, the image data from a
leading vehicle were transmitted to the following vehicle, where they were merged with
the follower’s images. The authors argued that adding images from the leading vehicle
improved the performance of the system because there was more available information.
Using information from the leading vehicle can improve driving behavior, but the image
stream between the cars as proposed by the authors transmits information at a high level.
Simple low-level vehicle states, e.g., acceleration and velocity, are easier to transmit because
of the reduced data size. Moreover, the images of the leading vehicle might already be
processed by the network of the leading vehicle itself, making a second processing in the
following car redundant.

With our work, we want to address the limitations of [32,34]. Our contributions are
the implementation of an end-to-end self-driving model that:

• is not limited for deployment in following vehicles, but can also be used in leading
vehicles of a CAV platoon, hence performing multiple tasks;

• is predicting continuous instead of discrete control commands for a smooth driving
behavior;

• is not limited to operating in off-road or highway environments, but can be used in a
challenging urban environment;
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• and is using V2V communication, but transmitting low-level vehicle states instead of
a high-level image stream.

3. Models

In this section, we introduce our proposed architecture for CAV platoons and mod-
ified architectures of this baseline for comparison. Before going into the details of the
architectures in the following subsections, some features that all models have in common
are discussed. The last part of this section addresses the specifics of training that come
along with multi-task learning.

The general vision-based end-to-end approach for CAVs maps observations st, e.g.,
images, at each time step t to an action at. This implies that there exists a driving policy
that satisfies a function F, which describes the relationship between st and at, that is
at = F(st). Given a dataset D = {(si, ai)}N

i=1 with expert driving demonstrations, the goal
of the network training process is to optimize the parameters θ of a function G(s, θ) to
approximate F(st) by minimizing the loss L:

min
θ

∑
i
L(G(si, θ), ai). (1)

While the observations st usually contain images, they can be extended by including
vehicle states or other measurements.

To operate a CAV platoon, at least two vehicles are controlled simultaneously with
slightly different tasks. The leading vehicle follows a route while staying in the lane, obey-
ing traffic rules and avoiding collisions with static and dynamic objects. It makes driving
decisions based on the perceived environment and the high-level plan (e.g., navigation to
a predefined destination). Following vehicles in a platoon, however, have limited front
visibility because of their close proximity to the preceding car. Furthermore, as long as
they are part of the platoon, they follow their immediate predecessor while staying in the
lane. Following a preceding vehicle can be further simplified for a homogeneous CAV
platoon, in which all vehicles are identical. In this case, any following vehicle of the platoon
follows a preceding vehicle with similar visual features to all other vehicles, independent
of its position.

The different tasks of leading and following vehicles have different requirements for
the inputs and outputs of the network. The basic input for the multi-task network in both
vehicles is images from a single front-facing camera. Other sensor modalities are not taken
into account to avoid sensor fusion. We chose a single camera over stereo cameras to
overcome the calibration problem. When used in the leading vehicle, two additional inputs
are added to the network, that is the current vehicle speed and the high-level command.
The current vehicle speed is added as an input since it influences the longitudinal driving
decisions [37]. The high-level command provides information about the driving direction.
Possible discrete states are 〈Left, Straight, Right, No Intersection〉. The state No Intersection
is active when the leading vehicle is not in close proximity to an intersection, whereas
the other three states indicate the driving direction at an upcoming intersection. These
states can be provided by a high-level planner, e.g., a navigation system. As stated before,
the following vehicle always follows the leading vehicle, and therefore, the velocity and
high-level command inputs are not required.

The outputs for the leading vehicle are the control commands, including steering angle
and throttle/brake. For the following vehicle, the outputs are the steering angle and gap
between the vehicles. We did not choose the throttle/brake as the output for the following
vehicle because of the ambiguity of the images, known as casual confusion [38]. The images
showing an acceleration and deceleration phase may look similar, but have different labels,
and hence, the network cannot distinguish between these situations. To overcome the
casual confusion for the following vehicle, we chose to predict the gap between the cars,
which is unique for each image. This can further improve the steering-angle prediction,
since the network learns to focus on the leading vehicle during training.
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We combined the driving task for the leader and follower into a single multi-task
network, which is based on the following constraints. First, we used identical vehicles as
the leader and follower, so that the camera position in both vehicles was the same. Second,
the shared layers perceived a similar visual input, namely the image of the environment in
front of the vehicle. We argue that each task can benefit from the other: the leading vehicle
trains the network to focus on the road and lanes in general, while the following vehicle
strengthens the network to detect dynamic objects. Additionally, the joint training with
different datasets can improve the generalization ability of the network.

The information flow topology of the V2V communication follows the predecessor-
following principle as described in [39], in which following vehicles in the platoon receive
information from their immediate predecessor. The control of following vehicles is a
combination of a neural network for the lateral control and a conventional car-following
model for the longitudinal control. The car-following model follows a simple constant
spacing control strategy, which is sufficient for our experiments (ensures weak string
stability), but it could be replaced with different control strategies.

3.1. Model A: Multi-Task Network Baseline

Our proposed multi-task network consists of a shared CNN acting as a feature extrac-
tor and two prediction heads (fully connected (FC) networks) for the leader or follower,
respectively. As illustrated in Figure 1, the same trained network can be used for the leading
or following vehicle. Different inputs and outputs are activated or deactivated, depending
on in which vehicle the network is used. In the leading vehicle, the network takes images as
the input for the CNN. Together with the high-level command and the velocity, the output
of the CNN is processed in an FC network to predict the steering angle and throttle/brake,
which are directly applied as the vehicle controls. In the following vehicle, the network also
uses images as the input for the CNN. The subsequent FC network predicts the steering
angle and the gap between the vehicles. As in the leading vehicle, the steering angle is
directly used for vehicle control. The predicted gap, together with the acceleration and
velocity of the leading vehicle (transmitted via V2V communication), serves as the input for
a simple car-following model, which is similar to [40]. The desired acceleration ẍFollower(t)
of the vehicle is calculated based on the acceleration of the leading vehicle ẍLeader(t), the
velocity difference between both vehicles Δẋ(t), the predicted gap s(t), and the desired gap
sdes. The influence of the leader’s acceleration, the velocity difference, and the gap is tuned
with α, β, and γ, respectively (α = 1.0, β = 0.75, and γ = 0.2 in our experiments, similar
to [40]). As with [41], α = 1.0 guarantees weak string stability for this constant spacing
control strategy.

ẍFollower(t) = αẍLeader(t) + βΔẋ(t) + γ(s(t)− sdes) (2)

The detailed multi-task neural-network architecture is shown in Figure 2. The feature
extractor is similar to the CNN of PilotNet [25]; however, two additional max pooling layers
are inserted after the last two convolutional layers to reduce the dimensions. The input
of the feature extractor is RGB images with 400 × 132 pixels normalized to [−1, 1]. The
feature extractor output is shared by the prediction heads of the leader and the follower.

The prediction head for the leader is split into two branches predicting the steering
angle and the throttle/brake. These two branches include the additional inputs, namely
the high-level command and the ego velocity. The inputs are concatenated with the feature
extractor output and jointly serve as the input for the subsequent shared fully connected
layer with 1000 neurons. An auxiliary classification task is added within the leader head to
classify the status of a traffic light within sight. This auxiliary task is activated only during
training and helps the network to focus on traffic lights to improve the throttle/brake
prediction. We define three different output states 〈no traffic light, red, green〉. The state
no traffic light is active if there is no traffic light within 30 m along the path. Below 30 m, the
auxiliary task classifies the state of the traffic light as either red or green. The auxiliary task
is directly connected to the feature extractor output without the influence of the additional
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inputs. This way, the CNN learns to predict the traffic light state using visual clues only.
The prediction head of the follower is also split into two branches for the prediction of
steering angle and vehicle gap.

Figure 1. Overview of the proposed system. The leading and following vehicle use the same multi-task network architecture
(for details, see Figure 2), but activate different prediction heads. The acceleration and velocity of the leading vehicle are
transmitted to the following vehicle via V2V. Details on the car-following model used in the following vehicle can be found
in (2).

Figure 2. Detailed network architecture. The proposed multi-task deep learning network for connected and autonomous
vehicle (CAV) platoons (Model A) with the details of the architecture. The feature extractor is a CNN based on PilotNet [25].
Following the feature extractor, the network consists of two prediction heads to serve its tasks in the leading and following
vehicle, respectively. The prediction heads consist of FC networks with multiple branches for the individual outputs.

The structure of all branches was inspired by the FC network of [25]. We use fully
connected layers with a decreasing number of neurons at each subsequent layer. All layers
use dropout to improve the generalization of the network, with a dropout probability of
0.2 for convolutional layers and 0.4 for fully connected layers (at each batch, we ignore 20%
and 40% of the neurons per layer, respectively). The activation function for all layers except
the output layers is the rectified linear unit (ReLU). The steering and throttle/brake output
layers use tanh (limits outputs to (−1, 1)); the traffic light output (auxiliary task) uses
softmax for classification (outputs class probabilities); and the gap prediction uses a linear
activation function for regression. Contrary to [34], the outputs for the throttle/brake and
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steering are continuous values instead of discrete values, which results in more realistic
and smoother driving. In total, the baseline model has 1,910,747 trainable parameters.
This relatively small number of parameters may help to reduce overfitting and decreases
training time.

3.2. Model B: Multi-Task Network with LSTM Extension

Model B seizes the idea of [32] to incorporate time-distributed images using a recurrent
neural network and is implemented to compare this approach with Model A. Different
from [32], V2V communication is not used to send an image stream, but to transmit low-
level vehicle states as in Model A. Furthermore, as [32] was limited to lateral vehicle
control, the outputs of Model B are identical to the outputs of Model A for lateral and
longitudinal control.

We add three LSTM layers between the feature extractor and the prediction heads.
Each LSTM layer has 128 neurons to keep the overall parameter count comparable to that
of Model A (multi-task network baseline). In total, the multi-task network with the LSTM
extension has 1,492,443 parameters. The activation function of the LSTM layers is tanh,
and the weights are initialized with the Xavier initialization (most widely used for the tanh
activation function). We do not use dropout for the LSTM layers.

The LSTM network has two variables, namely the sequence length and the sampling
interval. The sequence length � defines the number of images from the past, including
the image at the current time step, which are used to make the prediction at the current
time step. The sampling interval τ describes the number of steps between the consecutive
images used in the LSTM network. For example, a sequence length of � = 5 combined
with a sampling interval of τ = 2 takes every other image of the training data five times
in order to fill one sequence. Therefore, this exemplary sequence covers a period of nine
consecutive images. We use a sliding window to generate the sequences during training,
following [30]. Instead of using fixed consecutive sequences, the sliding window ensures
that, within a training epoch, every image is used once at all positions of the sequence. The
principle of the sliding window with a sequence length of three is depicted in Figure 3.

3.3. Model C: Multi-Task Network with Pre-Trained Feature Extractor

Instead of training a network from scratch, transfer learning can be applied to use
pre-trained networks. The idea behind transfer learning is that a network trained on a large
dataset, such as a dataset for object detection, can be applied in a different domain. We
replace the feature extractor (PilotNet CNN) in our architecture with a CNN with more
convolutional layers; in particular, we use ResNet-50 [42] pre-trained on the ImageNet
(ILSVRC) dataset. To adapt this network to our existing architecture, we remove the last
classification layer of ResNet-50 and replace it with a max pooling layer. This last layer
serves as the input for the prediction heads. The prediction heads are identical to the
prediction heads of Model A. The weights of the layers in the first seven of 16 residual
blocks are not trainable and are therefore blocked from updating to retain the lower-level
features. Embedded in our architecture, the complete network has 28,300,999 parameters.

3.4. Model D: Single-Task Networks

To compare the multi-task network baseline with single-task networks, we split our
multi-task network into two single-task networks for the leading and following vehicle.
Each network is trained separately with the corresponding part of the dataset. These models
should provide information on whether multi-task learning is beneficial for the driving
performance. The single-task network for the follower is similar to the model of [34] and
serves as a comparison with their approach. Different from [34], Model D uses continuous
control commands and V2V communication identical to Model A.
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Figure 3. Model B: multi-task network with LSTM extension. Three LSTM layers follow the feature
extractor output. The sliding window method includes the last � images with a time step of τ between
the images.

3.5. Model E: Multi-Task Network without Auxiliary Task

The auxiliary task is added to the multi-task network to raise the network’s awareness
for traffic lights during training. In Model E, the auxiliary task is removed, while the rest
of Model E is identical to the multi-task network baseline (Model A). This model is used
in a separate experiment to provide information on whether the auxiliary task leads to a
performance increase of the multi-task network.

3.6. Multi-Task Network Training

The multi-task networks are trained in single supervised training runs, where the
training data contain images from both the leading and following vehicle. This has ad-
vantages over successive training, as in the latter, the network is prone to developing a
bias towards the data with which it was initially trained. To jointly train the network to
achieve good performance for both tasks (i.e., in the leading and following vehicle), we use
a dynamically weighted loss function,

L = (1 − η)LLeader + ηLFollower (3)

where η weights the loss functions of the leader and follower prediction heads. For each
batch, we train with either LLeader or LFollower, i.e., a batch never consists of samples from
both a leading and a following vehicle. If a batch consists of samples only showing images
captured by the leading vehicle, we set η = 0, otherwise η = 1. This way, we can control in
which prediction head the weights are updated during gradient backpropagation.

The leader and follower loss functions are summations of the individual loss functions
of each branch within the prediction heads. For the leader loss function, that is:

LLeader =
3

∑
i=1

λi
LeaderLi

Leader (4)
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with the two individual loss functions for the two branches of steering and throttle/brake
and the auxiliary loss for the traffic light classification. The factor λi

Leader weights the
individual and auxiliary loss functions. Similarly, the follower loss function is defined as:

LFollower =
2

∑
i=1

λi
FollowerLi

Follower (5)

with the two individual loss functions for steering and gap. We use the mean squared error
for all individual loss functions except for the auxiliary loss LTraffic Light

Leader , where we use the
categorical cross-entropy since it is a classification output.

4. Experimental Setup

This section describes the simulation environment, the training dataset, the training
process, and the experiments conducted for evaluation.

4.1. Simulation Environment

For training and validation data, we used data generated in a simulator rather than
real-world datasets. This was because we needed a special dataset containing vehicle
platooning scenarios, which is not available in common datasets. The simulator also
allowed us to test the performance of the networks in different environments, compared
with only using a subset of the dataset as test data. We recorded the dataset in the CARLA
simulator [18], which provides different environments with rural or urban landscapes and
allows the configuration of environmental conditions such as weather or light.

Our experimental vehicles in the simulation were minibuses with a length of 6 m;
see Figure 4a. The specifications of these minibuses are similar to 2getthere’s GRT [43] or
Navya’s Autonom Shuttle Evo [44]. Each vehicle was equipped with three front-facing
cameras: a center camera at a height of 2.7 m and two cameras located at the left and right
at a distance of 0.5 m from the center camera. Only the center camera was used during
testing. The off-center cameras simulated a shift from the center of the lane and improved
the ability of the network to recover from disturbances, as with [25]. The image resolution
of each camera was 400 × 132 pixels with a field of view of 100◦ and a pitch of −15◦. We
recorded at 10 fps, as a higher sample rate would produce more similar images.

During the dataset recording, both vehicles of the platoon drove autonomously and
randomly in the simulated urban environment, capturing images and their corresponding
labels. Both vehicles used a Stanley controller for the lateral control (minimizing heading
error and cross-track error). The gap between both vehicles was varied to capture a broad
range of gaps. The leading vehicle obeyed traffic rules such as traffic lights and speed
limits and paid attention to other road users. The following vehicle followed the leader
all the time. We injected noise into both vehicles by occasionally shifting them laterally.
This happened every 10 to 15 s with a probability of 2⁄3. The training data were captured
in CARLA Town01, and testing was conducted in Town01 and Town02. Town01 (see the
map in Figure 4b) has 2.9 km of drivable roads in total, and Town02 has 1.4 km of drivable
roads [18]. We used several weather and light settings during training.
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(a)

(b)
Figure 4. Simulation environment. (a) Two-vehicle platoon with minibuses used for dataset recording
in the CARLA simulator [18]. (b) Map of Town01, which serves as the urban environment for the train-
ing and validation dataset recording. Each point represents a position visited by the vehicles during
dataset recording. Smaller deviations from the center line are due to injected noise (lateral shifts).

4.2. Training Dataset

In total, we collected 160,000 images from both the leading and following vehicles,
which corresponds to about 4.5 h or 75 km of driving. We split our dataset into a training
part and validation part. The validation part was used to monitor the validation loss during
training and consisted of 10,000 samples, and the remaining 150,000 samples were used
for training. The 10,000 samples of the validation part were the last 6.25% of the complete
dataset, a similar ratio to [14]. As with [45], we did not randomly select samples for the
validation dataset from the complete dataset, as this would have led to the validation
dataset being similar to the training dataset. The testing was directly conducted in the
simulation, so we did not need a testing dataset.

The majority of the training data consisted of images showing the vehicle driving
straight, as seen in the histogram in Figure 5a. The higher the steering angle was, the fewer
training samples were in the dataset. Note the asymmetry with more samples showing
higher right steering angles (positive) than left steering angles (negative). This is because
of the right-hand traffic in the simulation, which usually leads to higher steering angles for
right turns than for left turns. Training with a dataset containing mainly steering angles
around zero degrees could have led to a network that was biased towards driving straight.
To compensate for this, we upsampled images showing higher steering angles. We selected
a steering angle threshold of ±20◦, and images satisfying this threshold were upsampled
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with a factor of three. Many samples of the training dataset showed the vehicle waiting at
a red traffic light with a velocity of 0 m/s (Figure 5b). While staying static at a red traffic
light, the images were nearly identical. For this reason, we downsampled these images by
reducing their occurrence by 50%.

(a) (b)

Figure 5. Distribution of the captured dataset for (a) the steering angle and (b) the velocity. The dataset contains 160,000 sam-
ples in total.

In the dataset, the actions for every state are the steering and throttle/brake values
present at the moment the state, i.e., the image, was captured. However, during testing,
the network should predict the control commands for the next discrete time step, since
the current time step was already executed. For this reason, we shifted all actions to the
previous state, i.e., an image captured at time t is labeled with the control commands that
were applied at the next time step t + 1.

4.3. Network Training

The goal of the training was to minimize the dynamic weighted loss function described
in (3). We used the AdaMax optimizer with an initial learning rate of 10−4. However, the
learning rate was reduced when the training stagnated. We tried different initial learning
rates from 10−3 to 10−6, but achieved the best results with 10−4. Network weights were
initialized with the He or Xavier initialization for layers with ReLU or tanh activation
functions, respectively. The performance decreased with other weight initialization tech-
niques (e.g., He initialization with a normal distribution instead of a uniform distribution).
Training data normalization was performed for all input and output data. The images,
steering angle, and throttle/brake were normalized to [−1, 1], and the velocity and the gap
were normalized to [0, 1]. The high-level command was encoded in a one-hot vector, and
we used a batch size of 128 samples. Larger batch sizes not only require more memory, but
also can lead to a lower generalization ability [46].

Prior to feeding the data into the network, we augmented the images with random
rotations, shifts, zooming, and brightness changes in the following ranges, each with a
continuous uniform distribution:

• Rotation in the range [−5◦ ... 5◦]
• Horizontal shift in the range [−5% ... 5%]
• Vertical shift in the range [−5% ... 5%]
• Zoom in the range [−10% ... 0%]
• Brightness change in the range [−10% ... 10%]

During training, we observed the training and validation loss of the joint and individ-
ual loss functions. We saved the model after each training epoch and stopped the training
as the loss converged after about 100 epochs (∼27 h of training time), as shown in Figure 6
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for Model A. We used the model with the lowest validation loss for testing, which was not
necessarily the last model.

Figure 6. Dynamically weighted loss curve for Model A. The validation loss is calculated at the end
of every epoch. Note that for this model, the lowest validation loss was achieved at Epoch 74.

4.4. Experiments and Evaluation Metrics

We conducted two experiments to evaluate the performance of the multi-task network:
predefined point-to-point routes and free driving. In both experiments, each trained Model
A–D was tested in three different scenarios separately. First, we assessed the performance
of the model taking over control of the leading vehicle, without considering any following
vehicles. In the second scenario, the model took over control of only the following vehicle,
while the leading vehicle was controlled by the controller of the simulation. Finally, we
evaluated the performance of a two-vehicle platoon in which two instances of the model
took over the vehicle control of both vehicles. In this scenario, an episode ends if any
vehicle could not complete the objective due to a crash.

The models were tested in two different environments in the simulation, a similar
arrangement to that for the tests conducted by [14,35,36]. The first environment was the
same as the one in which the training data were collected (Town01). Thus, the network
had already processed similar images during training. The second environment was a
never-seen-before map with an urban landscape (Town02). This environment was used to
analyze the generalization ability of the network for unseen places.

Point-to-point routes: As with the test scheme of [18], we used point-to-point routes
where the vehicle had to make several turns and drive through intersections to reach its
destination. Models A–D were tested on 25 randomly generated routes, with each route
repeated twice, which gave a total of 50 episodes per tested model. The length of each route
was 500 m, with zero to eight signalized intersections per route. An episode was finished
as soon as the vehicle reached the destination or hit an obstacle. The average completion
rate (ACR) of the episodes was reported for every model.

Free driving: In addition to the average route completion, we recorded the mean time
to failure (MTTF) for all models, as with [34]. A failure was a crash with an object, a stop
longer than 60 s, or a high-level command not being obeyed. Traffic light violations did not
count as failures, but were recorded for a separate evaluation. For the calculation of this
metric, we placed the vehicles in the simulated environment and let them drive randomly.
At intersections, the high-level command was chosen randomly based on the intersection
layout. If a crash occurred, the episode was stopped and the time to failure was logged.
The MTTF was calculated by taking the average of the individual TTFs of 10 episodes per
model and scenario. The maximum TTF per episode was limited to 1440 s, and exceeding
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this limit triggered a new episode. This setup was also used to assess the impact of the
auxiliary task, via calculation and comparison of the average violation rate of red traffic
lights (AVR) for Model A and Model E. The AVR is the sum of red traffic light violations
divided by the total number of traffic lights passed.

5. Results

Point-to-point routes: The results of the quantitative evaluation of the point-to-point
routes with a static environment are summarized in Figure 7. The graph shows the average
completion rate of the point-to-point routes for Models A–D. The results for the platoon
refer to a two-vehicle platoon consisting of one leading and one following vehicle. In
general, all models performed better in the training environment than the never-seen-
before environment, which was to be expected.

Figure 7. Average completion rate of the routes in % for four different models in two environments. The results for
the platoon refer to a two-vehicle platoon consisting of one leading and one following vehicle (A: multi-task network
baseline, B: multi-task network with LSTM extension, C: multi-task network with pre-trained feature extractor, D: single-
task networks).

The multi-task network baseline (Model A) achieved the highest ACRs in the vehicle
platoon and leader scenario in both simulation environments. The performance of the
two-vehicle platoon is limited by the leading vehicle’s performance, which is reflected by
similar results for leader and platoon. Whenever the following vehicle could not complete
an episode, it was in all cases the result of a crash into static objects. However, we observed
that, in 35% of the uncompleted episodes for the leader, the vehicle did not accelerate
after a full stop or directly at the beginning of an episode. This is due to the casual
confusion, as shown in [47]. We could solve the casual confusion for the following vehicle
by implementing V2V communication, but it still persisted for the leading vehicle.

The LSTM extension (Model B), similar to [32], achieved a performance similar to
that of Model A for the following vehicle. We observed low-frequency lateral oscillations
of both vehicles within the lane. These oscillations led to the vehicles leaving the lane
and resulted in crashes in some cases. The casual confusion was more severe than with
Model A and in many cases caused zero acceleration at the beginning of an episode.

Replacing the feature extractor with the pre-trained ResNet-50 (Model C) led to
superior performance of the following vehicle and driving that was nearly without failures.
Although the driving performance of the leading vehicle was good, we observed that this
model did not always follow the high-level command.

220



Sensors 2021, 21, 1039

Even though the single-task network (Model D) of the leader did not share the feature
extractor with the follower and therefore could specialize the feature extractor to its sole
needs, the performance was worse compared with the multi-task network baseline.

We tested the driving behavior of the multi-task network baseline (Model A) with
dynamic traffic. The performance of both the leader and follower decreased mainly as a
result of crashes with other vehicles, with ACRs of 57 and 72%, respectively, in the training
environment. Casual confusion after stopping behind other vehicles was another reason
for the reduction in the leader’s performance.

Free driving: The MTTF results are summarized in Figure 8, separated into model
(A–D), scenario (leader, follower, platoon), and environment. In case the failure was caused
by casual confusion, the TTF was taken at the moment the vehicle stopped. The MTTF
results confirm the ACR results of the point-to-point routes, with minor exceptions. We
limited the maximum TTF per episode to 1440 s; however, the longest episode without
failure for the following vehicle lasted close to one hour and covered nearly 14 km of
autonomous driving before it was stopped manually.

Figure 8. Mean time to failure (MTTF) in seconds for four different models in two environments. The results for the platoon
refer to a two-vehicle platoon consisting of one leading and one following vehicle (A: multi-task network baseline, B: multi-
task network with LSTM extension, C: multi-task network with pre-trained feature extractor, D: single-task networks).

Auxiliary task: The auxiliary task was used to set the focus of the feature extractor on
traffic lights during training, but this output was not used during testing. Table 1 shows
the AVR results of the comparison of the multi-task model with (Model A) and without
(Model E) the auxiliary task; a lower AVR is better. The model with the auxiliary task
violated one out of three red traffic lights. Without the prediction of the traffic light state,
the vehicle violated nearly two out of three traffic lights, an increase of almost 100%. The
overall driving performances of both models were comparable, which is reflected by the
similar MTTF scores (Model A had 109 s and 84 s, while Model E had 313 s and 78 s for
training and the new environment, respectively). The lower MTTF of Model A in the
training environment was induced by casual confusion, since this model performed more
full stops. These results show that the network learned to focus on traffic lights without
significantly losing driving performance.

Gap estimation: For the following vehicle, we predicted the gap to the leader instead
of throttle/brake commands to avoid casual confusion. Figure 9 shows the accuracy of
the gap prediction. Each predicted gap was compared with the ground-truth gap at the
time of prediction. All points were captured on a single route containing 14,400 predictions
in total, with the desired gap set to 7.5 m. This route included multiple poses of the
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leading vehicle and situations in which only parts of the leading vehicle were visible to
the following vehicle due to the curvature of the road. The RMSE of the prediction on this
route was 0.44 m, and the R2 was 0.532. In general, a higher ground-truth gap led to a
higher prediction, with a few exceptions.

Table 1. Average violation rate (AVR) of red traffic lights in % for the multi-task network with
(Model A) and without (Model E) the auxiliary task.

Training Environment New Environment

Model A Model E Model A Model E

AVR 33 64 34 65

Figure 9. Accuracy of the gap prediction. Every point is a gap prediction captured on a single route,
with 14,400 predictions in total. The solid black line indicates the linear regression of all points.

6. Discussion

The results show that networks trained in an end-to-end fashion can be used to drive a
CAV platoon with two vehicles. In our experiments, the performance of the leading vehicle,
in particular, improved in comparison with single-task networks, which was demonstrated
by the fact that the ACR more than doubled in both environments. If the following
vehicle lost track of the leader, e.g., during sharp turns, the vehicle could benefit from the
knowledge it had gained through the joint training. If the following vehicle separates from
the platoon, it could simply switch the prediction head and therefore change its state to act
as a leader.

For the following vehicle, we achieved an MTTF of 895 s with the multi-task network
baseline (Model A) in the training environment. Reference [34] reported an MTTF of 58 s
for a following vehicle in a simulation with their best model. Although the results are
not directly comparable, since we used a different simulation, our higher MTTF is still
a significant improvement and may be attributed to the joint training of our multi-task
network and to our model’s use of V2V communication.

In contrast to [32], the overall performance of the multi-task network with LSTM
extension (Model B) was the lowest among the evaluated models. We used a single set
of sequence lengths and sampling intervals (three each). However, an extensive study
of these parameters could improve the performance. Tuning of other hyperparameters
such as the number of LSTM layers, the number of neurons per layer, and the position
of the LSTM layers within the network could also lead to a performance increase. In
addition, we observed that Model B tended to oscillate within the lane, which may lower
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the riding comfort for passengers. It is not known if the LSTM model of [32] is also prone
to oscillations, since their offline evaluation was limited to a dataset in which the control
command of the current time step has no influence on the vehicle’s position in the next
time step.

The results of the multi-task network with a pre-trained feature extractor (Model C)
varied for the leading and following vehicle. This model achieved the best performance
when used in the following vehicle, but used in the leading vehicle, it was outperformed
by the multi-task network baseline using PilotNet as a feature extractor with fewer convo-
lutional layers. The leading vehicle drove in a stable manner, but did not always obey the
given high-level command, which led to lower performance in both the ACR and MTTF.

The performance of the single-task networks (Model D) is significantly worse than the
performance of the multi-task network (Model A) in both conducted experiments. Since
other parameters of the models are identical, this performance difference can be attributed
to multi-task learning. This proves the initial assumption that multi-task learning can
improve the platoon’s performance.

The auxiliary task for the traffic light prediction proved able to raise the network’s
awareness for traffic lights while maintaining the driving performance. Without the
auxiliary task (Model E), the average violation rate of red traffic lights increased by about
100% compared to the model with the auxiliary task (Model A). However, Model A still
violated one-third of all red traffic lights. Further investigations have be done to improve
driving behavior with respect to traffic lights, since this is not only limited to platooning,
but a general challenge for all end-to-end self-driving approaches.

The longitudinal control of the following vehicle was based on information transmitted
via V2V communication and the predicted gap. This structure was not fully end-to-end, but
it solved the casual confusion for the following vehicle, whereas the casual confusion still
existed for the leading vehicle and lowered its performance significantly. Reference [47]
suggested including an auxiliary task that predicts the ego velocity to solve the problem of
casual confusion. However, even though the authors noticed a performance increase, the
casual-confusion problem was still not solved.

Although the latency of V2V communication in our simulation is nonexistent, real-
world applications of V2V communication following the IEEE 802.11p standard with an
update rate of 10 Hz show a distance-dependent latency. Since we are using data from the
previous time step to predict the next control commands as described in Section 4.2, the
transmission of the data via V2V communication must be completed within one interval of
the update rate, which is 100 ms for our model. Therefore, any latency below 100 ms has no
impact on the computed control commands of our model. For a close range (<35 m between
the vehicles), Reference [48] measured an average latency of less than 50 ms. Based on
these measurements, we assume that the latency, including all delays, is always below
100 ms. In case a message is not received because of wireless dropout, the following vehicle
could switch to the leader mode at any time.

In this work, we focused on using the camera as the only sensor. Since the camera is
not able to measure the gap to the preceding vehicle and its velocity directly, we predict the
gap within the neural network and send the velocity information via V2V communication.
The accuracy of the distance prediction (RMSE 0.44 m) is sufficient for the downstream car-
following model to follow the leading vehicle at a safe distance (7.5 m in the experiments).
Using an additional sensor such as LiDAR or radar could yield the gap directly and
substitute or support the prediction.

As this work introduces the multi-task network for CAV platoons and is targeted to
prove the model’s general ability to drive a CAV platoon, we limit our experiments to a
platoon consisting of two vehicles, i.e., one leading and one following vehicle. Another
direction for future work could be the extension of this model and the experiments to cover
a vehicle platoon with more than two vehicles.
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7. Conclusions

This paper presents a new multi-task end-to-end self-driving architecture for the
special use case of CAV platoons. The architecture consists of a CNN and two fully
connected subsequent prediction heads. The CNN serves as a feature extractor to process
images captured by a front-facing camera. Only one prediction head is activated at a
time, depending on where the network is used—in the leading or following vehicle of
the platoon.

Our experiments show that neural networks trained in an end-to-end fashion are
capable of driving two vehicles in a platoon autonomously. In particular, we proved that
joint training of a network with two similar tasks can increase the overall performance. We
modified our architecture to include different concepts proposed in the literature, such as
the incorporation of temporal dependencies by using LSTM layers and transfer learning
with a pre-trained network. In our application, LSTM layers were not shown to improve
the performance. However, transfer learning had a positive impact on the performance
of the following vehicle, although the performance of the leading vehicle suffered as it
sometimes ignored the high-level navigational command. Adding an auxiliary task, in
our case the prediction of the traffic light state, can assist the network to focus on certain
features of the images.

In the experiments performed in the simulation, the following vehicle completed most
of the routes or achieved high completion rates. The problem of the casual confusion could
be solved for the following vehicle by incorporating V2V communication and predicting
the gap instead of throttle/brake values. The main limitation of the platoon is the casual
confusion of the leading vehicle, which resulted in no acceleration after full stops. Further
research could therefore be undertaken to investigate possible solutions to this limitation.
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Abstract: The traditional potential field-based path planning is likely to generate unexpected path
by strictly following the minimum potential field, especially in the driving scenarios with multiple
obstacles closely distributed. A hybrid path planning is proposed to avoid the unsatisfying path
generation and to improve the performance of autonomous driving by combining the potential field
with the sigmoid curve. The repulsive and attractive potential fields are redesigned by considering
the safety and the feasibility. Based on the objective of the shortest path generation, the optimized
trajectory is obtained to improve the vehicle stability and driving safety by considering the constraints
of collision avoidance and vehicle dynamics. The effectiveness is examined by simulations in
multiobstacle dynamic and static scenarios. The simulation results indicate that the proposed method
shows better performance on vehicle stability and ride comfortability than that of the traditional
potential field-based method in all the examined scenarios during the autonomous driving.

Keywords: potential field; sigmoid curve; path planning; autonomous vehicles

1. Introduction

Path planning as an essential part of the autonomous driving has been widely researched in recent
years. The path planning layer of autonomous vehicles (AVs) can be classified into the global and local
path planners according to the planning horizon [1,2]. The global path planners are mainly focused
on the navigation with the optimal economic, the least congestion and the highest average speed by
considering the entire configurable space from the start point to the target point [3]. Different from
the global path planners, local path planners usually pay more attention to the improvements on the
driving safety and the vehicle stability in the process of dynamic obstacle avoidance by considering
the constraints of kinematics and dynamics, during autonomous driving [4].

Many planning algorithms of AVs are inherited from wheeled-robotics principles because
of their similarities in structure and control. In the wheeled robotics community, path planning
methodologies can be classified into four groups, including graph search-based, sampling-based,
interpolation-based and numerical optimization-based [5]. The idea behind graph search-based
methods is to construct a configurable state-space based on graph theory and then use different search
strategies (e.g., Voronoi diagrams [6], the Dijkstras algorithm [7], the A∗ algorithm [8] or the State Lattice
algorithm [9]) to generate a discrete route with grid or lattice occupancy. Being different from graph
search-based methods, sampling-based methods can be further categorized into stochastic sampling
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and deterministic sampling depending on the sampling space used. Deterministic sampling-based
methods [10] require less computation cost than the stochastic sampling-based methods [11], as they
sample in a semistructured space instead of an entire configuration action-space or state-space.
There are some common features between graph-based and sampling-based methods. For example,
the paths generated from both methods are connected by a series of discrete waypoints [12], and these
paths need further smoothing for practical application in AVs or wheeled-robotics. Since continuous
curvature is a necessary requirement of drivable paths, interpolation-based path planning methods
have been developed to generate smooth and continuous-curvature routes based on different curve
models, such as spline curves model [13], clothoid curve model [14], etc.

The feasible solutions of satisfying the smooth and drivable constraints are usually not unique.
Thus, numerical optimization-based path planning methods are developed to obtain the optimal
route based on designing an objective function [15], e.g., the shortest-distance, the highest-efficiency,
the shortest-time, etc. A potential field-based path planning method (PFBM), as a typical numerical
optimization approach, was proposed by establishing the attractive potential field (PF) around a
target point and the repulsive potential fields around obstacles to realize the obstacle avoidance
of a robot in [16]. A composite PF is established with the constructed repulsive and attractive PFs,
to automatically guide a robot to the destination by searching the gradient descent direction. Up to now,
the PFBM has been applied both in structured [17,18] and unstructured [19] environments for AV path
planning. Traditional PFBMs are usually based on a known target point and span the entire discrete
space, which makes them reasonable and efficient for robotics control in indoor or simple environments.
However, these requirements are difficult to accurately determine for autonomous driving in practical
road environments. Furthermore, there is no qualitative assessment of the reasonability of the paths
generated using PFBM, especially in driving scenarios with multiple obstacles. Besides, the planned
paths are very sensitive to the configuration of the parameters [16]. For example, if the parameters of the
PF functions are inappropriately configured or the obstacles are located with short distances, the route
generated using PFBM is likely to fall into local minima, resulting in rough and unexpected routes.

To address the above mentioned problems, in this paper we propose a hybrid potential field
sigmoid curve method (HPFSM) as shown in Figure 1, which aims to optimize the planned path of
PFBM and to achieve an expected collision-free trajectory to improve the performance of autonomous
driving. Firstly, the PF functions are designed based on the geometric shape, relative position and
distance, etc. Then, the potential fields are established for the obstacles, the target lane and the
road boundaries according to the defined PF functions, respectively. A collision-free route with the
minimum PF can be achieved by fusing the established PFs. A constrained nonlinear optimization
problem is constructed based on the collision-free path and the sigmoid curves. Finally, an optimal
path of satisfying the constraints of collision avoidance and vehicle dynamics can be achieved by
solving with the interior point algorithm. The main contributions of this study include:

(1) A novel hybrid path planning method is proposed to get better collision-free path for
improvements on vehicle stability and ride comfort during autonomous driving by combining
potential field with sigmoid curve.

(2) Based on the distribution function of two-dimensional joint probability density, an improved
potential field of the obstacle is designed to mimic more realistic distribution of collision risk by
decoupling the PF in longitudinal and lateral directions.

(3) With the designed objective of the shortest path generation, the trajectory is optimized to
improve the vehicle stability and the ride comfort during autonomous driving by considering the
constraints of collision avoidance and vehicle dynamics.

This paper is organized as follows: Section 2 designs a potential field-based path planning and
shows how PFBM can generate unexpected paths. Section 3 introduces the proposed HPFSM. Section 4
presents the validation and evaluation results by comparing the proposed method with PFBM both in
the static and dynamic driving scenarios. Finally, Section 5 presents our conclusions.
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Figure 1. Framework of the hybrid path planning method by combining potential fields with
sigmoid curves.

2. An Improved Potential Field-Based Path Planning

Because of the good collision-free performance, PFBM has been widely used as a path planning
approach for AVs [20]. The path planning process of PFBM can be mainly divided into two
parts, namely, the part for designing PF functions and the collision-free route generation part for
obstacle avoidance.

2.1. The Design of PF Functions

The PF is affected by obstacle properties including the obstacle’s physical characteristics
(e.g., geometric shape and structure), and its dangerous degree is affected by the mass and motion
state of the obstacle [21,22].

2.1.1. Road PFs

Road PFs include the PF of road boundary and the PF of target lane. Since the potential
field-based path planning is likely to fall into the local minima, especially in an unknown
environment [23]. To avoid the local minima problem in our proposed path planning method,
both the driving environment and the obstacles (vehicles) are assumed to be known, thus the
potential fields can be designed and established more appropriately. In real intelligent transportation
systems, these information can be obtained via the vehicle-to-vehicle and vehicle-to-infrastructure
technologies [24]. Besides, we design the attractive potential field with the center line of the target lane
to attract the ego vehicle driving to the target lane instead of with only one target point [25,26],
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which will reduce the chance to trap into the local minima by solving a series of optimization
subproblems. In this study, the attractive PF is defined as:

UTrgL = a
(
Y − YTrgL

)2 . (1)

The road boundary is designed as a repulsive PF in Equation (2), which is used for preventing the
ego vehicle driving out of the road.

URBd =

⎧⎪⎨⎪⎩
b (Y − YBr)

2 Y ≤ YBr

b (YBl − Y)2 Y ≥ YBl
0 Y ∈ (YBr, YBl)

, (2)

where a, b ∈ R, YBr < YBl and YTrgL ∈ (YBr, YBl); a and b respectively denote the shape coefficients of
the target-lane PF and the road-boundary PF, which are used to adjust the amplitude of PF; Y denotes
the lateral position of the ego vehicle; YTrgL denotes the lateral position of the center line of the target
lane; YBl and YBr denote the lateral positions of the left and right road boundaries, respectively.

Two examples of the successful applications without the local minima problem are shown in
Figure 2. In the situation without obstacle vehicles, Figure 2a shows that the ego vehicle will always
drive along the path (the central line of the target lane) with the minimum potential field when using
our proposed method. In the situation with an obstacle vehicle in the target lane, Figure 2b shows that
the planned path with minimum PF will lead the ego vehicle to overtake the obstacle vehicle and then
drive back to the target lane.

(a) (b)

Figure 2. Examples without trapping into local minima: (a) scenario without obstacle vehicle;
(b) scenario with an obstacle vehicle.

2.1.2. Obstacle Potential Field

The obstacle potential field (OPF) function is defined to construct the repulsive PF according to the
longitudinal and lateral safe distances. The calculations of the safe distances are based on the relative
speed (between the ego vehicle and the obstacle) and the maximum longitudinal/lateral deceleration
of the ego vehicle [12], which means the velocities of the ego vehicle and the obstacle are required.
The longitudinal and lateral safe distances (Xs(t), Ys(t)) are calculated as :⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xs(t) = Xo
2 +

(Vx(t)−Vobs,x(t))
2

2ax,max(t)

Ys(t) = Yo
2 +

(Vy(t)−Vobs,y(t))
2

2ay,max(t)

, (3)

where ax,max(t) �= 0 and ay,max(t) �= 0 are the maximum longitudinal and lateral decelerations of the
ego vehicle; Xo and Yo are the length and width of the obstacle, respectively; Vobs,x(t) and Vobs,y(t)
represent the longitudinal and lateral velocities of the obstacle, respectively; Vx(t) and Vy(t) are the
longitudinal and lateral velocities of the ego vehicle, respectively.
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The OPF can be decomposed along the longitudinal and lateral directions of the road coordinate
system, and the definition domains of the two directions are usually independent and different [18].
Considering the above characteristics, a two-dimensional (2D) joint probability density distribution
function is used as the basic function to define the OPF as:

UOPF (�, μ, Σ) =
asta

2π
√|Σ| e

(
− 1

2 (�−μ)TΣ−1(�−μ)
)

, (4)

where

μ = (Xobs(t), Yobs(t))
T , Σ =

[
Xs

2(t) 0
0 Ys

2(t)

]
, � = (X(t), Y(t))T ,

where μ and Σ denote the mean and covariance matrix; (Xobs(t), Yobs(t)) and (X(t), Y(t)) denote the
positions of the obstacle and the ego vehicle at time t, respectively; asta ∈ R is the shape coefficient
used to adjust the amplitude of OPF; Xs(t) and Ys(t) are the calculated safe distances along the
longitudinal and lateral directions of the road coordinate system at time t, respectively. Figure 3
is shown to illustrate that the OPF is adaptive to the safe distance, i.e., the OPF will vary with the
velocities of the ego vehicle and the obstacles.

Figure 3. Potential fields with different longitudinal and lateral safe distances.

2.2. Collision-Free Path Generation

The idea behind PFBM is to generate a collision-free path occupied the minimum PF along the
driving direction. The related attractive and repulsive PFs can be constructed and integrated according
to the parameters described in Table 1.
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Table 1. Parameters for PF construction.

Parameter Value Parameter Value Parameter Value

X (m) 0∼200 YTrgL (m) 1.75 Yobs (m) 1.5
Y (m) 0∼7 YBl (m) 6 Xs (m) 20

a 0.5 YBr (m) 1 Ys (m) 1.5
b 100 Xobs (m) 50 asta 1 ×104

The fused PF is shown in Figure 4. Based on this, the minimum PF path is obtained along the
longitudinal direction of the road coordinate (X direction). Obviously, the generated collision-free
path (the blue trajectory) is optimal subject to the defined PFs.

Figure 4. PFBM path planning for collision avoidance.

However, the path obtained using PFBM is not always smooth and expected, especially in these
driving scenarios with multiple closely distributed obstacles. The blue path in Figure 5 shows the
trajectory planned using PFBM [27] in a driving scenario with two closely distributed obstacles.
Although the planned path is collision-free, it involves undesired driving maneuvering, which will
affect the efficiency of obstacle avoidance and the tracking performance. An expected trajectory to
mimic the real driver (e.g., the red route) is required for AV path planning to ensure the efficiency of
the obstacle avoidance and to improve tracking performance.

Figure 5. A driving scenario with two obstacle vehicles.

The unexpected maneuvers of the planned path are more evident when the number of obstacles
increases, as shown in Figure 6. In practical applications, the AVs would result in frequent unnecessary
steering maneuvers when tracking this unexpected path. The planned paths in Figures 5 and 6
indicate that the PFBMs are disadvantaged to be applied in the driving scenarios with multiple closely
distributed obstacles. Therefore, a novel hybrid path planning method is proposed, which combines
PFs with sigmoid curves to solve the problem of generating unexpected trajectory.
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Figure 6. A driving scenario with multivehicle.

3. A Hybrid Path Planning Method

Based on the deterministic curve models, e.g., splines [28], clothoid curves [14],
and polynomials [29], etc, the smooth candidate routes can be generated quickly and efficiently.
However, it is difficult to shape desiring driving trajectory using the B-spline, C-spline, clothoid
and even quintic polynomial models because of the strong coupling relationship among the tunable
parameters. Considering the tunable feature of the parameters in the sigmoid curve model [30],
which the amplitude, slope, and central symmetry point of the sigmoid curve can be adjusted
independently. Therefore, a hybrid path planning method is proposed by combining the PFBM
with sigmoid curves to obtain a smooth collision-free and efficient expected route.

3.1. Definition of the Sigmoid Curve

The process of obstacle avoidance is similar to that of vehicle lane change. The trajectory is tangent
to the center lines of the related lanes at the start and end points according to the standard lane change
path [31]. In this paper, the sigmoid function is introduced as an essential function for generating
obstacle avoidance paths. The definition is presented in Equation (5):⎧⎪⎨⎪⎩

fsig(x) = Pb · sigmoid (x, Pc, Pa)

sigmoid (x, Pc, Pa) =
1

1+e−Pa(x−Pc)

, (5)

where Pa, Pb and Pc are the related parameters to shape the sigmoid curve. The parameter Pa represents
the maximum slope, Pb is the amplitude coefficient, Pc denotes the centrosymmetric point and the
point of maximum slope. These parameters can be used to determine a sigmoid curve uniquely.

3.2. Tunable Features of the Sigmoid Curve

Figure 7 shows the tunable features of the sigmoid curve including the maximum slop, the
amplitude and the central point. Figure 7a shows that the centrosymmetric point can be adjusted
independently using the parameter of Pc, which can be used to move the sigmoid curve in longitudinal
direction. Figure 7b shows that the amplitude can be adjusted using the parameter of Pb, which can
be applied to compress or stretch the sigmoid curve in the lateral direction. Furthermore, Figure 7c
indicates that the maximum slope is also independently tunable using the parameter of Pa, which can
be used to adjust the maximum slope of the sigmoid curve at the centrosymmetric point.
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Figure 7. Tunable features of the sigmoid curve: (a) Sigmoid curves with different central point;
(b) Sigmoid curves with different central point; (c) Sigmoid curves with different maximum slope.

3.3. Configuration of the Sigmoid Curve

3.3.1. Collision-Free Path Generation of PFBM

The potential fields are integrated according to Equation (6):

UPF(t) = UTargL(t) + URBd(t) + UOPF(t), (6)

where UPF(t) is the integrated PF, UTargL(t), URBd(t) and UOPF(t) are the corresponding target lane PF,
the road boundary PF and the obstacle PF at time t, respectively.

The PFBM collision-free path is obtained through Equation (7):

{Xmin, Ymin} = min
{xmin(t),ymin(t)}

UPF(t), (7)

where {Xmin, Ymin} represent the collision-free path with the minimum PF along the
longitudinal direction.
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The corresponding lateral positions of the obstacles mapping to the collision-free path are obtained
by interpolation through Equation (8):{

∀ : xj
obs ∈ [xi, xi+1] , j ∈ M

∃ : yj
obs = interp1

(
Xmin, Ymin, xj

obs

) ⇒ yj
obs =

yi+1 − yi
xi+1 − xi

(
xj

obs − xi

)
+ yi, (8)

where (xi, yi) ∈ {Xmin, Ymin} and (xi+1, yi+1) ∈ {Xmin, Ymin} are two known waypoints in the
collision-free path; interp1 denotes the one-dimensional linear interpolation function for calculating the
corresponding lateral coordinates to the collision-free path; i and j denote the index of the waypoints
and the index of the obstacles, respectively; M is the amount of the obstacle; xj

obs and yj
obs are the

longitudinal and lateral coordinates corresponding to the PFBM path, respectively.
The planned collision-free path is composed of several sigmoid curves, and the definition

domains are varying with the positions of obstacles. The definition domains of the sigmoid curves are
determined using Equation (9):

Ωx,i =

⎧⎪⎪⎨⎪⎪⎩
[xstart, xi

obs] i = 1[
xi−1

obs , xi
obs

]
i ∈ (1, n)[

xi−1
obs , xend

]
i = n

, (9)

where Ωx,i denotes the definition domain of the ith sigmoid curve, xstart and xend indicate the start
and end points of the planning horizon, n = M + 1 represents the amount of sigmoid curves.
Considering the detection ranges of on-board sensors [32], the planning horizon is limited to 200 m.

3.3.2. Parameter Configuration

Some key way-points of the collision-free path can be obtained using Equations (7) and (8). Since
the amplitude of sigmoid curve is related to the lateral coordinates of the target lane (YTrgL) and the
key waypoints (yobs), the amplitude of the curve is determined in Equation (10):

Pb,i =

⎧⎪⎨⎪⎩
yi

obs − YTrgL i = 1
yi

obs − yi−1
obs i ∈ (1, n)

YTrgL − yi−1
obs i = n

. (10)

The slope parameter can be determined using Equation (11):

Pa,i = k1,i · sign (Pb,i) , (11)

where k1,i denotes the maximum slope at the centrosymmetric point and sign is the sign function.
The centrosymmetric point of the sigmoid curve is defined in Equation (12):

Pc,i =

⎧⎪⎨⎪⎩
xi

obs − k2,iXs i = 1

xi−1
obs +

k2,i(xi
obs−xi−1

obs )
2 i ∈ (1, n)

xi−1
obs + k2,iXs i = n

, (12)

where k2,i ≥ 1 is a tunable coefficient.
When the above three parameters and the bias have been obtained in the definition domain Ωx,i,

the sigmoid curve can be determined uniquely using Equation (13):

fsig,i = Pb,i · sigmoid(x, Pc,i, Pa,i) + bi , (13)

x ∈ Ωx,i, bi =

{
YTrgL i = 1
yi−1

obs i �= 1
,
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where fsig,i denotes the ith sigmoid curve function, bi is the corresponding bias. Figure 8 shows the
parameters that shape the sigmoid curve in detail.
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Figure 8. The parameters of sigmoid curve.

3.4. Trajectory Optimization with Sigmoid Curves

Since the coefficients of k1,i and k2,i are not determined yet, a series of sigmoid curves can be
generated by the above configurations. An optimization objective function is designed to obtain the
shortest path subject to the constraints of the lateral acceleration and the yaw rate to ensure collision
avoidance and to improve the vehicle stability of the autonomous driving. The distance of sigmoid
curve is calculated according to Equation (14):

Ssig,i =
∫ xi

end

xi
start

√
1 + ḟ 2

sig,i(x)dx. (14)

3.4.1. Collision Avoidance Constraint

The planned path generated by PFBM is collision-free, which can be used as the constraints of
collision avoidance to assist configuring the collision-free sigmoid curves. The collision-free feature
can be determined if the sigmoid curves are always farther to the obstacle than that of the collision-free
path of PFBM. As Figure 9a indicates, the collision feature cannot be deduced directly and an additional
check is required. Therefore, the constraints of collision avoidance should be considered to ensure the
collision-free feature of the candidate sigmoid curves.

Instead of combining the geometric information of obstacles [33], the collision avoidance can be
ensured by comparing the lateral positions of the candidate paths to that of the PFBM. As illustrated
in Figure 9b, collision avoidance is ensured when the red line is completely above the blue line under
this situation.

The constraints to ensure collision avoidance based on the path of PFBM are shown in
Equation (15):

KCons
Ineq,i(1) :=

{
fsig,i (xi) ≥ Ymin, yi

obs ≥ Yobs
fsig,i (xi) ≤ Ymin, yi

obs < Yobs
, (15)

where xi ∈ Ωx,i denotes the longitudinal range of the road, and KCons
Ineq,i denotes the inequality constraints

of k1,i and k2,i.
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(a)

(b)
Figure 9. Collision-free checking: (a) Collision avoidance is not ensured; (b) Collision avoidance
is ensured.

3.4.2. The Constraints of Vehicle Dynamics

The constraints of vehicle dynamics should also be considered in path planning module to
improve the vehicle stability [34,35] during path tracking. The vehicle stability and ride comfort can
be well evaluated based on the lateral acceleration and yaw rate during the path tracking. Assuming
that the target velocity is invariant during path tracking, the yaw rate is considered as shown in
Equation (16): {

ωv,i = ρiV
|ωv,i|≤ ωs

, (16)

where ωv,i (rad/s) is the yaw rate of the ith curve at a speed of V (m/s), ρi is the curvature of the ith
curve and ωs (rad/s) denotes the yaw rate constraint to ensure path tracking stability.

The lateral acceleration is considered as follows in Equation (17):{
ay,i = Vcosθiωv,i
|ay,i)|≤ as

, (17)

where V (m/s) denotes the target speed for path tracking, as (m/s2) denotes the constraints of lateral
acceleration in path planning module, ay,i is the lateral acceleration of the ith curve.
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The constraints of vehicle dynamics can be transformed into a constraint of path curvature in
Equation (18):

KCons
Ineq,i(2) :=

⎧⎪⎪⎨⎪⎪⎩
ρi =

| f̈sig,i(x)|
(1+ ḟsig,i(x)2)

3/2

|ρi|≤ ρcos

ρcos = min( as
V2 , ws

V )

, (18)

where ρcos denotes the curvature constraint of planned path considering the ride comfort and vehicle
stability in path planning module.

3.4.3. Geometric Constraints

The geometric constraints include amplitude, start point, endpoint and central symmetric point
constraints. The end point constraint is defined as:

KCons
Eq,i (1) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xend
i = Ωx,i(end)

yend
i = interp1

(
Xmin, Ymin, xend

i

)
fsig,i

(
xend

i

)
= yend

i

0 < ḟsig,i |xend
i

≤ ε

, (19)

where ε denotes the infinitesimal value, and KCons
Eq,i denotes the equality constraints of k1,i and k2,i.

The start point constraint is defined as:

KCons
Eq,i (2) :=

⎧⎪⎨⎪⎩
xstart

i = Ωx,i(start)
yend

i − fsig,i
(
xstart

i
)
= Pb,i

0 < ḟsig,i |xstart
i

≤ ε

. (20)

The constraint of the centrosymmetric point Pc,i is defined as:

KCons
Ineq,i(3) :=

{
xend

i − Pc,i ≥ Xs

xstart
i < Pc,i < xend

i
. (21)

The inequality constraints are thus summarized as:

Ki
Ineq =

{
KCons

Ineq,i(1), KCons
Ineq,i(2), KCons

Ineq,i(3)
}

, (22)

where Ki
Ineq refers to the inequality constraints of the ith curve, including the constraints of the collision

avoidance , the constraints of the lateral acceleration, the constraints of the yaw rate and the constraints
of the geometric.

The constrained nonlinear optimization problem is formulated as:

min
{k1,i ,k2,i}

∫ xi
end

xi
start

√
1 + ḟ 2

sig,i(x)dx (23)
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s.t.
xend

i = Ωx,i(end)
yend

i = interp1
(

Xmin, Ymin, xend
i

)
fsig,i

(
xend

i

)
= yend

i

xstart
i = Ωx,i(start)

yend
i − fsig,i

(
xstart

i
)
= Pb,i

0 < ḟsig,i |xend
i

≤ ε

0 < ḟsig,i |xstart
i

≤ ε, ε > 0

{k1,i, k2,i} ∈ Ki
Ineq

A driving scenario with one static obstacle is proposed to analyze the planned path of HPFSM.
The relevant parameters for realizing HPFSM are described in Table 2. Figure 10 shows that there are
several trajectories satisfying the collision-free constraints, e.g., the blue solid and dotted curves. With a
target speed of 20 m/s, the optimal trajectory among the candidate curves is the shortest trajectory
(composed with the red and black curves) satisfying the constraints of vehicle dynamics, which require
the yaw rate and lateral acceleration are within 25 deg/s and 2 m/s2, respectively.

Table 2. Initialization parameters.

Parameter Value Parameter Value Parameter Value

μ (75, 1.5) b1 0 x2 [75, 150]
Σ diag([10, 1.5]) Pc,1 [0, 75] b2 3.5

Pb,1 3.5 Pa,1 [0, 1] Pc,2 [75, 150]
x1 [0, 75] Pb,2 -3.5 Pa,2 [−1, 0]
V 20 (m/s) as 2 (m/s2) ωs 25 (deg/s)

Figure 10. The optimal trajectory with sigmoid curves in a static scenario.

Figure 11a shows the curvature of the optimal trajectory generated using HPFSM. It shows the
curvature is continuous, which means the optimal trajectory is drivable. Figure 11b shows the yaw
rate and lateral acceleration calculated under the target tracking speed of 20 m/s. It indicates that both
the constraints of the lateral acceleration and the yaw rate are effectiveness during the path planning.
The results of Figure 11 illustrate that the trajectory can be optimized to satisfy the constraints of
vehicle dynamics with the parameters optimization of sigmoid curves.
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Figure 11. HPFSM path planning with constraints: (a) curvature of the planned trajectory; (b) yaw rate
and lateral acceleration.

4. Verification and Discussion

To further examine and evaluate the proposed approach, a static and a dynamic driving scenario
are designed for simulation, respectively. The parked vehicles are considered as the obstacles in
the static scenario, and vehicles with short intervals are introduced as the overtaking objects in the
dynamic scenario.

4.1. Driving Scenarios for Simulation and Evaluation

A static scenario is with three cars parked on the roadsides as shown in Figure 12. There are two
parked cars located in the target lane, while the ego vehicle is approaching to the parked car with
a speed of 20 m/s. The positions of the three parked vehicles are (Xobs,1 = 80 m, Yobs,1 = 1.5 m ),
(Xobs,2 = 180 m, Yobs,2 = 6.2 m) and (Xobs,3 = 280 m, Yobs,3 = 1.5 m), respectively. The constraints of
the lateral acceleration and yaw rate are designed within 2 m/s2 and 25 deg/s, respectively.

Figure 12. A static driving scenario with three vehicles parked on roadsides.
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A dynamic overtaking scenario is designed with three leading vehicles located with short
distances, as shown in Figure 13. The red dotted line denotes the target lateral position, i.e., the center
line of the target lane. Three leading vehicles are driving with a constant speed (Vobs,1 = Vobs,2 =

Vobs,3 = 15 m/s) from different initial positions (Xobs,1 = 50 m, Xobs,2 = 70 m, Xobs,3 = 85 m).
The initial position and speed of the ego vehicle are set as Xego = 0 m and Vego = 15 m/s, respectively.
The target speed and lateral position of the ego vehicle are set as 20 m/s and 1.75 m, respectively.
Meanwhile, the constraints of yaw rate and lateral acceleration are designed within 2 m/s2 and
25 deg/s, respectively.

Figure 13. Leading vehicles driving with short interval distance.

4.2. Path Tracking Controller for Validation

Since the main purpose of path planning is to provide an expected reference trajectory for path
tracking, it is more meaningful to evaluate the proposed path planning method with the combination
of a path tracking controller. Based on these, a linear time-varying model predictive tracking controller
(LTV-MPC) [20] is used to evaluate the HPFSM by comparing with PFBM. The 3-DOF bicycle model,
including the longitudinal, lateral and yaw directions, is used as the prediction model of the LTV-MPC.

The dynamics equations of the 3-DOF dynamics model are presented in Equation (24):⎧⎪⎨⎪⎩
m
(
v̇x − ωvy

)
= Fx cos δ

m
(
v̇y + ωvx

)
= Fy,r + Fy,f cos δ

Izω̇ = Fy,fLf cos δ − Fy,rLr

. (24)

The motion equations of the vehicle are shown in Equation (25):{
Ẋ = vx cos ϕ − vy sin ϕ

Ẏ = vx sin ϕ + vy cos ϕ
, (25)

where vx, vy and ω are the longitudinal velocity, lateral velocity and yaw rate of the vehicle, respectively;
X, Y and ϕ denote the vehicle longitudinal, lateral position and the heading angle; m and Fx represent
the vehicle mass and longitudinal force of the front-driving tire; Fy,f and Fy,r denote the lateral force of
front and rear tires; Lf, Lr and Iz represent the front, rear wheelbase and the vehicle inertia around
vertical axis, respectively; δ is the steering angle of the front wheel. The relevant vehicle parameters
are the same as Table I in [17]. The configuration parameters of the LTV-MPC are presented in Table 3.
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Table 3. Parameters of the MPC Controller.

Symbol Description Value [Units]

Np Prediction horizon 20 [unitless]
Nu Control variable’s number 2 [unitless]
Ns State variable’s number 6 [unitless]
Ts Sampling period 0.05 [s]
δw Limitation of steering wheel angle [−540, 540] [◦]

Δδw Steering wheel angle rate [−5, 5] [◦]
Fx Longitudinal tire force limitation [−2000, 2000] [N]

ΔFx Tire force rate limitation [−50, 50] [N]
Q Weights matrix of states tracking diag([1 × 10−7, 1 × 102, 1 × 10−7, 0, 1 × 10−7, 0])
R Weights matrix of control variables diag([1 × 10−7, 1 × 10−5])

4.3. Results and Discussion

4.3.1. Static Scenario

The comparisons of trajectories between HPFSM and PFBM are shown in Figure 14a,
respectively. The green and red trajectories are the generated paths of PFBM and HPFSM, respectively.
It shows that the optimized path by HPFSM is more feasible to be an expected driving trajectory,
because the path is smoother than that of PFBM without increasing in length (400.87 m vs. 403.88 m).
The shaded part illustrates that the red trajectory is collision-free by comparing the lateral positions of
the two paths. The comparison of the curvatures between the two trajectories is shown in Figure 14b,
which further illustrates the red path is smoother than the green one.
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Curvature: HPFSM

(b)

Figure 14. The path comparisons between HPFSM and PFBM in a static scenario: (a) Trajectory
comparison: HPFSM vs PFBM; (b) Curvature comparison: HPFSM vs PFBM.

The planned paths of HPFSM and PFBM are tracked by the LTV-MPC with a target speed of
20 m/s, respectively. The comparisons of the yaw rate and lateral acceleration between the two
methods are shown in Figure 15. The comparison of lateral acceleration shows that the instantaneous
and average values of HPFSM are smaller than that of PFBM in Figure 15a, which illustrates the
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ride comfort is improved with HPFSM. Meanwhile, Figure 15b shows the comparison of yaw rate,
which illustrates that the yaw rate based on PFBM does not satisfy the designed constraint of 25 deg/s;
however, the yaw rate based on HPFSM can be well constrained. This implies that the stability of the
ego vehicle is also better while tracking the path of HPFSM.
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Figure 15. Path tracking comparisons between the two methods in a static scenario: (a) LTV-MPC
tracking: Lateral acceleration comparison; (b) LTV-MPC tracking: Yaw rate comparison.

The improvements with HPFSM in the static scenario is analyzed in Table 4. It shows that the
maximum and average lateral accelerations are decreased almost 60% (6.254 m/s2 vs. 2.504 m/s2)
and 40.6% (0.475 m/s2 vs. 0.282 m/s2) comparing to PFBM, respectively. Meanwhile, the yaw rate is
also optimized in the maximum and average values, respectively. The maximum and average yaw
rates with HPFSM are improved 60.47% (44.17 deg/s vs. 17.459 deg/s) and 28.2% (3.517 deg/s vs.
2.524 deg/s), respectively.

Table 4. Results comparisons in the static scenario.

Symbol Description HPFSM PFBM −(%)

ay,max (m/s2) Maximum lateral acceleration 2.504 6.254 59.9
ay,mean (m/s2) Average lateral acceleration 0.282 0.475 40.6
ωmax (deg/s) Maximum yaw rate 17.459 44.170 60.47
ωmean (deg/s) Average yaw rate 2.524 3.517 28.2

4.3.2. Dynamic Scenario

The tracking velocities of HPFSM and PFBM are shown in Figure 16a to ensure a consistent speed
environment during the overtaking task. The trajectories of the two methods are shown in Figure 16b;
they show that the ego vehicle can finish the overtaking task with both of these two methods. However,
the trajectory with PFBM shows an sudden fluctuation at the position around X = 300 m, which will
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result in sharp steering maneuvers as shown in Figure 16c. These unexpected steering maneuvers will
further affect both the driving safety and stability.
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Figure 16. An overtaking scenario with multivehicle distributed in short interval distance: (a) HPFSM
vs. PFBM: Tracking velocity; (b) HPFSM vs. PFBM: Tracking trajectory; (c) HPFSM vs. PFBM: Steering
angle of front wheel.

The yaw rate and the lateral acceleration of the two methods are compared in Figure 17. The yaw
rate is constrained within 10 deg/s while tracking the path of HPFSM; however, the yaw rate is
beyond the designed constraint of 25 deg/s while tracking the path of PFBM, as shown in Figure 17a.
Meanwhile, the comparison of the lateral acceleration in Figure 17b shows the lateral acceleration
based on HPFSM is much smaller than that of PFBM during tracking. These illustrate that both the
vehicle stability and the ride comfort of the ego vehicle are improved with the proposed HPFSM
comparing to the PFBM. The improvements with HPFSM in the dynamic scenario are shown in
Table 5. This indicates that the maximum and average lateral accelerations with HPFSM are decreased
87.8% (2.4 m/s2 vs. 0.29 m/s2) and 83.9% (0.18 m/s2 vs. 0.029 m/s2), respectively. Meanwhile, the yaw
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rate is also optimized in the maximum and average values compared to the PFBM. The maximum
and average yaw rates are improved 82.8% (20.4 deg/s vs. 3.5 deg/s) and 72.2% (1.7 deg/s vs.
0.47 deg/s), respectively.
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Figure 17. The comparisons of yaw rate and lateral acceleration: (a) HPFSM vs. PFBM: Yaw rate;
(b) HPFSM vs. PFBM: Lateral acceleration.

Table 5. Results comparisons in the dynamic scenario.

Symbol Description HPFSM PFBM −(%)

ay,max (m/s2) Maximum lateral acceleration 0.293 2.410 87.8
ay,mean (m/s2) Average lateral acceleration 0.029 0.180 83.9
ωmax (deg/s) Maximum yaw rate 3.508 20.430 82.8
ωmean (deg/s) Average yaw rate 0.477 1.713 72.2

5. Conclusions

A hybrid path planning is proposed to achieve an expected path generation and to improve
the vehicle stability and the ride comfort during autonomous driving by combining the potential
field with the sigmoid curve. The collision avoidance and the vehicle dynamics are considered to
obtain the shortest collision-free trajectory composed by sigmoid curves. The multiobstacle static and
dynamic scenarios are designed to examine the effectiveness of HPFSM, respectively. To evaluate the
performance of autonomous driving with HPFSM, an LTV-MPC is used to track the planned paths of
HPFSM and PFBM, respectively. The simulation results of the static scenario show that the maximum
and average lateral accelerations are decreased 60% and 40%, and the maximum and average yaw rates
are decreased almost 60.47% and 28.2%, respectively. The results of the simulated dynamic scenario
show the same trend as the static scenario with a decrease of almost 80% in the indexes of both the
lateral acceleration and the yaw rate. However, these improvements are achieved on the basis of the
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analysis of the simulation results; the figures are likely to be more modest in the practical application.
These simulation results indicate that the vehicle stability and the ride comfort are well improved with
the proposed method during autonomous driving. How the local minima problem can be completely
or sufficiently avoided in more complex and unknown driving scenarios with more traffic participants
is still a challenging task and should be further addressed in the future work. Meanwhile, our future
work will present experimental applications of the proposed method under real driving scenarios.
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The following abbreviations are used in this manuscript:

AVs Autonomous Vehicles
PF Potential Field
OPF Obstacle Potential Field
PFBM Potential Field-based Path Planning Method
HPFSM Hybrid Potential Field Sigmoid Curve Method
LTV-MPC Linear Time-varying Model Predictive Tracking Controller
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Abstract: In truck platooning, the leading vehicle is driven manually, and the following vehicles run
by autonomous driving, with the short inter-vehicle distance between trucks. To successfully perform
platooning in various situations, each truck must maintain dynamic stability, and furthermore,
the whole system must maintain string stability. Due to the short front-view range, however,
the following vehicles’ path planning capabilities become significantly impaired. In addition,
in platooning with articulated cargo trucks, the off-tracking phenomenon occurring on a curved road
makes it hard for the following vehicle to track the trajectory of the preceding truck. In addition,
without knowledge of the global coordinate system, it is difficult to correlate the local coordinate
systems that each truck relies on for sensing environment and dynamic signals. In this paper,
in order to solve these problems, a path planning algorithm for platooning of articulated cargo trucks
has been developed. Using the Kalman filter, V2V (Vehicle-to-Vehicle) communication, and a novel
update-and-conversion method, each following vehicle can accurately compute the trajectory of
the leading vehicle’s front part for using it as a target path. The path planning algorithm of this
paper was validated by simulations on severe driving scenarios and by tests on an actual road.
The results demonstrated that the algorithm could provide lateral string stability and robustness for
truck platooning.

Keywords: TROOP; truck platooning; path planning; kalman filter; V2V communication;
string stability; off-tracking; articulated cargo trucks; kabsch algorithm

1. Introduction

Truck platooning refers to a form in which a number of trucks run as a fleet with short inter-vehicle
distance using V2V (Vehicle-to-Vehicle) communication. Figure 1 shows the architecture of a truck
platooning system. The leading vehicle (LV) is driven manually by an experienced driver, and the
following vehicles (FVs) run by autonomous driving. The following vehicle (FV) uses environment
sensors such as radar and camera to perceive vehicles and lanes ahead and perform autonomous
driving by longitudinal and lateral vehicle control. The autonomous driving algorithm of the FV does
not rely on GPS since the vehicle cannot receive correct GPS signals in some conditions, like when
driving through tunnels. In the case of platooning of large cargo trucks, the length of the fleet can
easily reach 100 m. Thus, the number of trucks in one platoon is usually limited to 3 or 4, considering
the safety of the nearby vehicles.
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Sensors 2020, 20, 7022

 
Figure 1. Overall architecture of truck platooning system. 

Figure 1. Overall architecture of truck platooning system.

Many studies are being conducted worldwide on truck platooning since it can bring improvement
in driving safety, driver convenience, traffic throughput, fuel economy, and emission reduction.
In Europe, truck manufacturers have been establishing consortiums for collaborative research on
truck platooning. In 2016, they hosted the European Truck Platooning Challenge [1], and in 2018,
they launched a large-scale inter-country project ENSEMBLE for multi-brand truck platooning [2].
In the US, the legislation necessary for platooning is actively being prepared to spur truck platooning
to practical use in the near future [3].

In Korea, a first government project on truck platooning-TROOP (TRuck platOOning Project)-was
launched in 2018 [4]. It will last until the end of 2021, with the final goal of developing the most
advanced truck platooning system covering not just the control technologies but also the operational
and management technologies based on the C-ITS services that the government has already established.

Figure 2 shows the photo of the trucks developed in the TROOP project. They are an articulated
cargo truck with two bodies-tractor and trailer-linked by a kingpin where all the longitudinal and
lateral controls are performed only at the tractor. The total length of each truck is 16.66 m. In the
TROOP project, the ODD (Operational Design Domain) of truck platooning includes highway driving
with a radius of 460R or more at a design speed of 90 kph. This paper introduces the research on the
path planning algorithm of the FV, which has been developed as part of the TROOP project.

 

Figure 2. Photo of trucks in the TRuck platOOning Project (TROOP) Project. (Pictured by Hyundai
Motor Company).

The longitudinal control of the FV aims at maintaining a short distance to the front truck, and this is
basically done by adopting the well-established ACC (Adaptive Cruise Control) algorithm, which relies
on radar. Short inter-vehicle distance is important in truck platooning since it gives fuel economy to
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the FV by reducing aerodynamic drag. In TROOP, the final target is 0.5 s time-gap at 90 kph, or 12.5 m,
which is shorter than the truck’s length. The FV also uses V2V communication, thus, it can immediately
respond to critical situations such as when the LV makes sudden braking.

The lateral control of the FV aims at following the driving path of the LV while staying on its own
lane. The FV uses a camera to perform lane keeping, but the well-established LKS (Lane Keeping
System) algorithm [5,6] cannot be used since the front-view range of the camera is severely limited by
the preceding truck [7]. The path following control of the FV sets as its target the trajectory that the
LV has gone through. Therefore, in truck platooning, a higher level of control technology is required
than the lateral control method used in general autonomous driving. There are two main methods for
lateral control of platooning, ‘Direct vehicle-following’ and ‘Vehicle path-following’ [8].

In the direct vehicle-following method, the following vehicle directly follows the preceding vehicle
by calculating the steering angle based on a geometrical principle using the relative longitudinal and
lateral distance with the preceding vehicle [9,10]. Alternatively, using the relative position and relative
angle between the subject vehicle CG (Center of Gravity) and the rear center of the preceding vehicle,
a virtual curved path to the rear of the preceding vehicle can be computed [11,12]. However, since these
methods use the relative position information of the rear of the preceding vehicle, not the trajectory
of the steering wheel of the preceding vehicle, there may be a problem of driving inside the actual
trajectory of the preceding vehicle during turning. In addition, when driving on a highway with a
small curvature, since the relative yaw angle with the preceding vehicle is quite small, the reliability of
the virtual curved path for following the preceding vehicle cannot be guaranteed if the accuracy of
perception is low or the resolution of the measured value is small.

On the other hand, vehicle path-following is a method of following the trajectory of the preceding
vehicle. The trajectory of the preceding vehicle can be obtained using motion parameters of the subject
vehicle and storing the position coordinates of the rear of the preceding vehicle [8,13,14]. As the
look-ahead distance within the trajectory of the preceding vehicle can be controlled, the performance
of path tracking can be improved. However, there is a problem that enough look-ahead distance
cannot be obtained at high speed due to a short inter-vehicle distance during platooning. In case of a
semi-trailer truck, off-tracking, which is the difference in the path between the tractor’s steering axle
and the trailer’s rear bumper, occurs during turning, causing a tracking error when following the
preceding vehicle.

Figure 3 shows the off-tracking phenomenon, which occurs when a tractor-and-trailer type truck
runs on a curved road. It displays different patterns at low speed and high speed for the same truck.
At low speed, the trajectory of the rear bumper of the trailer is formed inside the trajectory of the tractor,
while at high speed, the trajectory of the trailer travels outward than that of the tractor due to the
increase in lateral acceleration [15]. Off-tracking is a major factor that harms the stability of the lateral
dynamics of the platoon, and the stability gets worse as it propagates towards the tail of the platoon.

 

(a) Low-speed off-tracking (b) High-speed off-tracking 

Figure 3. Schematic of off-tracking [15].
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To overcome the off-tracking problem, the FV needs to use the trajectory of the tractor—not the
trailer—of the preceding vehicle for its own target path [16]. However, it is not possible for the FV to
perceive the position of the preceding vehicle’s tractor only by camera. A study has been proposed to
take advantage of the curvature of the trajectory of the preceding vehicle’s trailer position [17], but it is
effective only when the yaw angle between the two vehicles is small. Another study has been proposed
to use the DRTK (Dynamic Based Real-Time Kinematic) and V2V to access the global position of the
tractor of the preceding vehicle [18,19], but platooning trucks generally do not employ GPS since GPS
signal cannot be received in conditions such as when driving through tunnels.

In this study, a path planning algorithm has been developed for lateral control of the FV in
truck platooning formed by articulated cargo trucks. The algorithm uses camera/radar fusion data,
IVN (In-Vehicle Network) chassis signals, and V2V communication. Using the Kalman filter and a
novel coordinate conversion method, the FV is now able to figure out the trajectory of the LV’s tractor
position to use as its own target path. The algorithm of this paper was validated by simulations on
severe driving scenarios and by tests on an actual road. The results demonstrated that the algorithm
can provide lateral string stability and robustness in truck platooning.

In addition, the proposed path planning algorithm can be expanded by generating a target path in
the interchange and junction of the highway with a small turning radius and can be applied to various
specially equipped vehicles as well as trucks. Furthermore, since the target path is generated based
on the trajectory of the preceding vehicle using V2V communication, it can be applied even on an
unpaved road without a lane. As a result, this study is expected to improve stability and fuel economy
through platooning by applying it to various specially equipped vehicles in various road environments
as well as large cargo trucks.

2. System Architecture

Figure 4 shows Hyundai Xcient 6× 2 tractor used in the TROOP project. The actuating mechanisms
for steering, braking, and acceleration have been modified to enable autonomous driving. A mono
camera and a radar are mounted on the dashboard and front bumper, respectively, to perceive the center
point of the preceding vehicle’s bumper. The V2V module uses dual antennas, and they are installed
inside the left and right side-mirrors to minimize the area of communication blind spot. Computation
of the proposed path planning algorithm is carried out using MicroAutoBox II, which also serves as a
CPU (Central Processing Unit) for implementing platooning control logics.

Figure 4. Hyundai Xcient 6 × 2 tractor.
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Figure 5 shows the specification of the truck used in the TROOP project. The total length of the
vehicle is 16.66 m. The tractor and trailer are connected by a kingpin, but all the longitudinal and
lateral controls are performed only at the tractor.

 

Figure 5. Specification of whole truck (unit: mm).

In the TROOP project, the truck platooning system was developed in three parts: Platooning
operation control system, longitudinal control system, and lateral control system. The platooning
operation control system performs the function of join, maintain, leave, and gap change of the platoon
vehicle. In this paper, we only deal with the path planning method for lateral control, not the platooning
operation system and the longitudinal control system.

Figure 6 shows the overall architecture of the truck platooning lateral controller. All vehicles
participating in the fleet perform V2V communication among each other using DSRC/802.11p WAVE
(Wireless Access in Vehicular Environment) protocol [20].

Figure 6. Overall architecture of truck platooning lateral controller.

In Figure 6, the LV controller creates its driven trajectory ( 1�) and transmits it to the FV via V2V
communication. Using the LV’s trajectory, the FV performs path planning ( 2�), i.e., calculates its own
target path to follow. Finally, the FV implements path tracking control to follow the target path ( 3�).
In the same way, target paths are created between any adjacent FVs, so in essence, all FVs can follow
the trajectory of the LV. Although the path tracking algorithm was developed as well in the TROOP
project, this paper will cover only the path planning algorithm.
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In order for the FV to create its own target path using the proposed path planning algorithm,
longitudinal speed, lateral speed, yaw rate, and kingpin angle are required. Among them, vehicle
speed, yaw rate, and kingpin angle can be measured, but their values are vulnerable to sensor noise.
In addition, lateral speed cannot be directly measured. In order to solve this problem, the Kalman filter
was designed in this study, and its details will be covered in Chapter 3.

Since all signals measured by each truck are measured in its own coordinate system, the driving
trajectory of the preceding vehicle received via V2V communication must be converted to fit the
local coordinate system of the recipient truck. This is also necessary since truck platooning in the
TROOP project does not rely on any global positioning equipment. To solve this problem, a novel
point matching method was developed in this study, and its details will be covered in Chapter 4.

If V2V communication is disconnected during platooning, platooning operation,
and longitudinal/lateral control cannot be performed. The supervisor controller cancels platooning,
and the control mode of each vehicle is changed to the independent autonomous driving mode, and the
situation is notified to the driver. For example, the longitudinal control mode is changed to the ACC
mode and lateral control mode to LKS. In this paper, we are dealing with the path planning method in
the situation where V2V communication is operating normally.

3. Generation of Subject Vehicle Trajectory

Described in this chapter is how each truck creates its own driving trajectory, and the overall
architecture is shown in Figure 7. Explanation in this chapter may be based on the LV, but the same
method equally applies to all FVs.

Figure 7. Architecture of subject vehicle trajectory generation.

3.1. Vehicle State Estimation by Kalman Filter

This section explains the Kalman filter that was designed in this study to estimate the state
variables needed to generate the subject vehicle trajectory. In previous studies, since it is impossible to
measure the lateral speed of a vehicle, only general highway driving scenarios with a small lateral
speed were considered, and the lateral speed was assumed to be zero [8,13,14]. However, the large
cargo truck, which is the target vehicle of this study, has sensitive dynamic characteristics depending
on the load weight and the road environment, and reliability of the buffered trajectory is important
to consider not only driving within a lane but also a lane change scenario. Therefore, it is necessary
to generate a trajectory more accurately in consideration of the lateral speed of the vehicle. There is
a method of using a kinematic model of a vehicle [21], but as described in Chapter 1: Introduction,
the kinematic model cannot represent the off-tracking characteristics of a truck. Thus, a 3 DOF (Degrees
of Freedom) articulated vehicle model was selected to represent the dynamic characteristics of a truck
properly. Figure 8 shows the 3 DOF articulated vehicle model from which the Kalman filter has been
built. All variables and parameters of the model are defined with respect to the local coordinate system
of each truck, which has its origin at the tractor CG, x-axis facing front, and y-axis facing left.
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Figure 8. 3 degrees of freedom articulated vehicle model.

The articulated vehicle model in Figure 8 is represented by the state vector
[
vy1,γ1,

.
φ,φ
]T

.

Here, vy1 is the lateral speed of the tractor, γ1 is the yaw rate of the tractor, and
.
φ and φ are the angular

velocity and angle of the kingpin, respectively. Equation (1) shows the equations of motion of this
articulated vehicle model.

(m1 + m2)
( .
vy1 + vxγ1

)
−m2(h1 + a2)

.
γ1 −m2a2

..
φ

= − 1
vx

[
Cvy1 +

{
Cs1 −C3(h1 + a2 + b2

}
γ1 −C3(a2 + b2)

.
φ
]
+ C1δ f

−h1m2
( .
vy1 + vxγ1

)
+
{
I1 + m2h1(h1 + a2)

} .
γ1 + m2h1a2

..
φ

= − 1
vx

[
Cs1 vy1 +

{
Cq2

1
+ C3h1(h1 + a2 + b2

}
γ1 + C3h1(a2 + b2)

.
φ
]
+ C1a1δ f

−m2a2
( .
vy1 + vXγ1

)
+
{
I2 + m2a2(h1 + a2)

} .
γ1 +

(
I2 + m2a2

2

) ..
φ

= − 1
vx

[
−C3(a2 + b2)vy1 +

{
C3(a2 + b2)(h1 + a2 + b2)

}
γ1 + C3(a2 + b2)

2
( .
φ+ vxφ

)]

(1)

In Equation (1), the subscripts ()1 and ()2 are used to denote the tractor and the trailer, respectively;
m is the vehicle mass; I is the yaw moment of inertia; l is the wheelbase; a is the distance from CG to
the front axle and b the distance from CG to the rear axle; h is the distance between the tractor’s CG
and the kingpin; e is the distance between the tractor’s rear axle and the kingpin; and l∗ is the distance
between the tractor’s front axle and the kingpin; vx is the longitudinal vehicle speed; vy is the lateral
vehicle speed; and γ is the yaw rate. Ci, αi and Fyi are the tire cornering stiffness, the wheel slip angle,
and the lateral force of the ith wheel axle, respectively; and δ f is the front steer angle.

Equation (1) can be made into a matrix-type state equation as below.

.
X = M−1A X + M−1B u

where X =
[
vy1,γ1,

.
φ,φ
]T

, u = δ f
(2)
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In the above, X is the state and u is the input, which is the front steer angle of the tractor.
The parameter matrices in Equation (2) are defined as below.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
m1 + m2 −m2(h1 + a2) −m2a2 0
−m2h1 I1 + m2h1(h1 + a2) m2h1a2 0
−m2a2 I2 + m2a2(h1 + a2) I2 + m2a2

2 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A = − 1
vx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C + C3 CS1 −C3(h1 + l2) + (m1 + m2)v2

x −C3l2 −C3vx

CS1 −C3h1 Cq2
1
+ C3h1(h1 + l2) −m2h1v2

x C3h1l2 C3h1vx

−C3l2 C3l2(h1 + l2) −m2a2v2
x C3l22 C3l2vx

0 0 −vx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C1

a1C1

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where C = C1 + C2, Cs1 = a1C1 − b1C2, Cq2

1
= a2

1C1 + b2
1C2

(3)

The Kalman filter of this study has been designed to estimate the state every 10 ms, which is equal
to the CAN communication period in each vehicle. To do this, Equation (2) was converted into its
discrete-time form as in Equation (4).

Xk+1 = Ad·Xk + Bd·δ f

where
(4)

Ad =
(
I +

Δt
2

M−1A
)(

I − Δt
2

M−1A
)−1

, Bd = Δt·M−1B with Δt = 0.01

In this study, the yaw rate and the kingpin angle were measured and used as input to the
Kalman filter. Equation (5) shows the measurement model for the Kalman filter where zk is the
measurement variable.

zk = H·Xk

where H =

[
0 1
0 0

0 0
0 1

]
(5)

The Kalman filter operates by repeating a series of two stages: Prediction and update [22]. Using
the system model, it predicts the state variables, compensates for the difference between the measured
variables and their predicted values, and outputs a new estimation of the state variables

In the prediction stage, the predicted state estimate x̂−k is computed together with the predicted
error covariance P−k by the following equation.

x̂−k = Adx̂k−1 + Bduk−1

P−k = AdP+
k−1AT

d + Q
(6)

In Equation (6), the overstrike ˆ means an estimate of the corresponding variable, and the
superscripts ()− and ()+ denote the predicted estimate and updated estimate, respectively. Q is a
diagonal matrix that represents the covariance of the process noise. Q is used as a tuning parameter
with the influence that: A larger value for a certain diagonal element of Q makes estimation of
the corresponding state variable more affected by the measurement variables. In this study, Q was
chosen as Equation (7) for the reason that the lateral velocity vy1, which is not directly measurable,
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should depend more heavily on the measured variables for its estimation than the remaining state
variables do.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
45 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

In the update stage, the algorithm computes the measurement residual ỹk and the Kalman gain Kk
using Equation (8). The measurement residual is the difference between the actual measurement zk and
its estimate Hx̂−k , and the Kalman gain is a weight matrix for updating the prediction in Equation (6).

ỹk = zk −Hx̂−k
Kk = P−k HT

(
HP−k HT + R

)−1 (8)

In Equation (8), R is a 2 × 2 diagonal matrix representing the covariance of the measurement noise.
A larger diagonal element implies a higher reliability of the corresponding measurement signal. In this
study, R was chosen as Equation (9), reflecting the characteristics of the sensors used in the trucks of
the TROOP project. The yaw rate sensor gave fairly precise measurement, while the kingpin angle
sensor had notable hysteresis property and not very high resolution.

R =

[
1 0
0 1.5

]
(9)

Finally, the state estimate is updated to x̂+k using Equation (10), and at the next time step, it is
used as x̂k−1 in Equation (6). Likewise, the error covariance matrix is updated to P+

k , and it is used as
P+

k−1 at the next time step.
x̂+k = x̂−k + Kkỹ

P+
k = (I −KkH)P−k

(10)

Figure 9 shows the results of the simulation, which was conducted to verify the performance of
the Kalman filter. TruckSim was used for the vehicle model [23], and Matlab/Simulink was used to
implement the filter algorithm. As input, a sinusoidal front steer angle with 90 deg amplitude and
0.125 Hz frequency was applied to the truck model running at 90 kph.

 

(a) 

 

(b) (c) 

Figure 9. Comparison of simulation results of TruckSim and Kalman filter. (a) Lateral velocity;
(b) Yaw rate; (c) Kingpin angle.

Figure 9 shows that in the graph of lateral velocity, the estimation deviates from the true value
(TruckSim) by as much as 12.6% in magnitude, but more importantly, there was little phase delay
between the estimation and the true value. In the case of the yaw rate and kingpin angle, Figure 9
shows that their estimations are very close to their true values both in magnitude and phase.
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Although there are more simulation results of the designed Kalman filter, they are not shown here
since they all show similar credibility as above. The robustness of the Kalman filter was not actively
examined in the simulation environment since the path planning test results with actual vehicles will
demonstrate those properties anyway. The state estimation by the Kalman filter in this section is
used for the path planning in Section 4.2 as well as for the subject vehicle trajectory generation in the
following section.

3.2. Generation of Front and Rear Trajectories of Subject Vehicle

In the proposed path planning algorithm, the LV must generate its own driving trajectory since
this trajectory makes it possible for the FV to create its target paths. This trajectory is composed of two
parts - front trajectory TF.LV and rear trajectory TR.LV-each of which is formed by accumulating into a
buffer a total of 300 samples as below.

TF.LV =

[
XF.LV

YF.LV

]
=

[
xF.LV1 xF.LV2 · · · xF.LVn

yF.LV1 yF.LV2 · · · yF.LVn

]
2× 300 matrix

TR.LV =

[
XR.LV

YR.LV

]
=

[
xR.LV1 xR.LV2 · · · xR.LVn

yR.LV1 yR.LV2 · · · yR.LVn

]
2× 300 matrix

(11)

Throughout this paper, the subscript “F” (short for “Front”) refers to the center of the steering
axle of the LV tractor, and the subscript “R” (short for “Rear”) refers to the center of the rear bumper of
the LV trailer. In addition, the second subscript “LV” in ( ).LV refers to the coordinate system in which
the value is defined. For example, xR.LV means x values of “R” (= LV’s rear point) in terms of the LV
local coordinate, xR.FV (which will be introduced later) means x values of “R” (= LV’s rear point) in
terms of the FV local coordinate. Care must be taken not to be confused with the absolute concept of
the first subscripts F and R and the relative concept of the second subscripts LV and FV, both used in
the same variable.

The numbering among 300 samples was made thus that the number increases from the most
recent one to the past. The buffer is a pipeline with FIFO (First In First Out) property. Thus, ( )1 is the
value at the current sample and ( )2 is the value at one sample before. When time passes to the next
sample, all the elements of the buffer are shifted by one to the past, with the new sample added at the
front. Figure 10 shows how the trajectory looks like from the view point of the truck.

Figure 10. Subject vehicle trajectory buffer.

Equation (12) shows the geometric equations of the “Front” and “Rear” points with respect to the
LV’s local coordinate system. Since the local coordinate system on a truck changes as the truck moves,
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the trajectories TF.LV and TR.LV are updated at every sample with the information of translation and
rotation made during the last sampling period.

[
xF.LV1

yF.LV1

]
=

[
a1

0

]
[

xR.LV1

yR.LV1

]
=

[ −h
0

]
+

[
cosφ − sinφ
sinφ cosφ

]
·
[ −l2 − d2

0

] (12)

As seen above, the subject vehicle trajectory is represented by a total of 1200 points (counting
front and rear trajectories and x-y values for each sample), which will be sent to the rear vehicles.
The TROOP project mandates V2V communication to occur every 20 ms, but 1200 data points are too
big for this purpose. To solve this problem, curve fitting to a third-order polynomial was performed,
which reduces 600 data points to 4 coefficient values. Curve fitting also gives the side benefit of making
the trajectory smooth even in the presence of outliers or random noises in the raw data of TF.LV and
TR.LV.

Table 1 shows the message that the LV transmits to the FV via V2V communication. Along with
TF.LV and TR.LV in the form of the coefficients for their 3rd order polynomial, the LV sends to the
FV [xR.LV1 , yR.LV1 ], which is the center point of the LV’s rear bumper at the current sample. The is
because the FV requires a reference point when implementing conversion between the local coordinates,
which is explained in Chapter 4.

Table 1. The message that the leading vehicle (LV) sends to the following vehicle (FV) via
V2V communication.

Message Notation

coefficients of 3rd order polynomial for LV’s “Front” trajectory
[
CF3 , CF2 , CF1 , CF0

]
coefficients of 3rd order polynomial for LV’s “Rear” Trajectory

[
CR3 , CR2 , CR1 , CR0

]
coordinate of LV’s “Rear” point at the current sample [xR.LV1 , yR.LV1 ]

4. Proposed Path Planning Algorithm

Figure 11 shows the architecture of the FV lateral controller. Using the received message in Table 1,
the FV performs path planning, i.e., calculates its target path, and this enters the path tracking control
module as input.

Figure 11. The architecture of the FV lateral controller.

The target path of the FV is basically the past trajectory of the LV, TF.LV, but since TF.LV is
defined from the viewpoint of the LV, it must be converted into the local coordinate system of the FV.
This conversion is difficult without having any knowledge of the global coordinate system, or perhaps
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the most challenging part in the whole truck platooning. This chapter describes how this problem was
solved in this research.

4.1. Concept of Coordinate Matching

Figure 12 illustrates how the coordinate matching algorithm in this paper works, with an example
of representing a dataset P in terms of the coordinate system of a dataset Q, when the two datasets P
and Q have the same shape but are dislocated in the 2D plane.

 

Figure 12. Workflow of point matching algorithm.

Coordinate matching is equivalent to point matching among two datasets P and Q. First, a reference
point is selected from P and Q, respectively. They must represent an identical point in an identical 2D
shape. From the difference of their locations, a translation vector can be found, and all points in Q are
translated accordingly. Finally, a rotation matrix is found that makes P and Q coincide.

To apply the above concept to path planning in the truck platooning, TR.LV and TR.FV were chosen
as P and Q in Figure 12, respectively. As previously explained, TR.LV is the trajectory of the LV’s
rear point in the LV’s coordinate system. TR.FV, which appears for the first time here, represents the
trajectory of the LV’s rear point in the FV’s coordinate system. As Figure 13 shows, the FV can generate
TR.FV since the FV can perceive the rear end of the LV with a camera and radar.

Figure 13. LV’s rear bumper trajectory from the viewpoint of FV.
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For the reference point in the two datasets TR.LV and TR.FV, their first elements
[
xR.LV1 , yR.LV1

]T
and
[
xR.FV1 , yR.FV1

]T
were used since they represent an identical point at an identical time. Figure 14

shows the schematics of the coordinate matching between LV and FV.

 

Figure 14. Schematics of coordinate matching in path planning of truck platooning.

4.2. Steps for Path Planning

This section shows how the FV computes its target path. Although the explanation is based on
the LV–FV relationship, the same argument equally applies to any two adjacent trucks in the platoon,
like in the FV1-FV2 relationship. First, Table 2 shows four trajectories involved in path planning. It is
reminded that the “Front” point refers to the center of the steering axle of the LV tractor, and the “Rear”
point refers to the center of the rear bumper of the LV trailer.

Table 2. Trajectories involved in path planning.

Mathematical Notation Description

TF.LV =

[
XF.LV
YF.LV

]
=

[
xF.LV1 xF.LV2 · · · xF.LVn

yF.LV1 yF.LV2 · · · yF.LVn

] trajectory of “Front” point
in LV’s coordinate system

TR.LV =

[
XR,LV
YR,LV

]
=

[
xR.LV1 xR.LV2 · · · xR.LVn

yR.LV1 yR.LV2 · · · yR.LVn

] trajectory of “Rear” point
in LV’s coordinate system

TF.FV =

[
XF.FV
YF.FV

]
=

[
xF.FV1 xF.FV2 · · · xF.FVn

yF.FV1 yF.FV2 · · · yF.FVn

] trajectory of “Front” point
in FV’s coordinate system

TR.FV =

[
XR,FV
YR,FV

]
=

[
xR.FV1 xR.FV2 · · · xR.FVn

yR.FV1 yR.FV2 · · · yR.FVn

] trajectory of “Rear” point
in FV’s coordinate system

TR.FV =

[
XR,FV
YR,FV

]
=

[
xR.FV1 xR.FV2 · · · xR.FVn

yR.FV1
yR.FV2

· · · yR.FVn

] trajectory of “Rear” point
generated by FV

Figure 15 illustrates the process of how the FV performs path planning. First, the LV generates
TF.LV and TR.LV and concurrently, the FV generates TR.FV. Through V2V communication, the FV
receives TF.LV and TR.LV (in the form of the 3rd order polynomial coefficients) from the LV. Using TR.LV

and TR.FV , the FV performs a coordinate conversion, which is possible since they represent an identical
trajectory. Coordinate conversion is to find the translational and rotational relationship between LV
and FV as in Equation (13).
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Figure 15. Schematics of path planning.

Find 2× 1 translation vector T =

[
xT

yT

]
and 2× 2 rotation matrix R such that

TR.FV � R·TR.LV + T·w where w= 1× n vector with ones (13)

Using the same relationship between the coordinate systems of LV and FV in the above, the FV
can compute TF.FV by Equation (14).

TF.FV = R·TF.LV + T·w (14)

TF.FV is the trajectory of the center of the steering axle of the LV’s tractor from the viewpoint of the
FV, as seen in Figure 16. TF.FV is important because it can serve as the target path to the FV. However,
the FV cannot generate TF.FV using only camera and radar since the tractor of the LV is blocked by
the trailer of the LV most of the time. TF.FV is the final output of the path planning algorithm of
this research.

Figure 16. LV trajectory defined in the FV coordinate system.

4.3. Kabsch Algorithm

The rotation matrix in Equation (13) is computed after TR.LV is translated thus that its first point
coincides with the first point of TR.FV, and this is illustrated in Figure 17.
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Figure 17. Reference point matching before finding the rotational relationship.

In the study, the Kabsch algorithm [24,25] was adopted to find the optimal rotation matrix after the
reference point matching. The Kabsch algorithm is a method to compute the optimal rotation matrix
by minimizing the RMSD (Root Mean Squared Deviation) between the two datasets to be matched.
This algorithm is used to convert the LV’s trajectory received by V2V communication into the FV’s
coordinate system, and it is explained below in the context of path planning.

First, Equation (15) shows the two datasets and their reference points.

P = TR.LV =

[
XR,LV

YR,LV

]
=

[
xR.LV1 xR.LV2 · · · xR.LVn

yR.LV1 yR.LV2 · · · yR.LVn

]
, p0 =

[
xR.LV1

yR.LV1

]
: reference point of P

Q = TR.FV =

[
XR,FV

YR,FV

]
=

[
xR.FV1 xR.FV2 · · · xR.FVn

yR.FV1
yR.FV2

· · · yR.FVn

]
, q0 =

[
xR.FV1

yR.FV1

]
: reference point of Q

(15)

Next, the reference point matching in Figure 17 is done by translating both trajectories, thus that
their reference points are located at the origin of the FV’s local coordinate system.

P = P− p0·w
Q = Q− q0·w

(16)

Next, the rotation matrix is computed thus that the root mean squared error between the two
datasets P and Q are minimized. To do this, their covariance matrix H is formed and singular value
decomposition is done to this matrix (Equation (17)).

H = P·QT

H = U·S·VT
(17)

Finally, the rotation matrix and the translation matrix T are computed by Equation (18), and using
them the target path for the FV can be computed by Equation (14).

d = sign
(
det
(
V·UT

))
R = V·

(
1 0
0 d

)
·UT

T = q0 −R·p0

(18)
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Algorithm 1 shows the proposed path planning process.

Algorithm 1. Path planning algorithm

Input:

TF.LV : Trajectory of “Front” point in LV’s coordinate system
TR.LV : Trajectory of “Rear” point in LV’s coordinate system, Dataset P
TR.FV : Trajectory of “Rear” point in FV’s coordinate system, Dataset Q
[xR.LV1 , yR.LV1 ]: Coordinate of LV’s “Rear” point at current sample
Output:

TF.FV : Trajectory of “Front” point in FV’s coordinate system
Find the reference points p0, q0 using [xR.LV1 , yR.LV1 ]

Translate the trajectories to coincide with the origin of FV’s local coordinate system
P = P− p0·w, Q = Q− q0·w, w: weight matrix
Find the rotation matrix and translation matrix
H = P·QT ← covariance matrix
[U, S, V] = svd(H)← singular value decomposition
D ← 2-by-2 diagonal matrix
if
∣∣∣V ·UT

∣∣∣ < 0, then

D(2, 2) = −1, return D;
end

R = V·D·UT ← rotation matrix
T = q0 −R·p0 ← translation matrix
Compute the target path
TF.FV ← TF.LV using R and T
return TF.FV ;

5. Results of Simulation and Road Test Experiments

The proposed path planning algorithm of this paper was validated by both simulation and road
test experiments, and their results are shown and analyzed in this chapter.

5.1. Simulation Result

A simulation environment was constructed to validate the path planning algorithm of this
paper. The plant model for truck platooning was made with TruckSim, and the path planning logic
was implemented with Matlab/Simulink. Table 3 shows three test scenarios used in the simulation.
Scenarios S1 and S2 are the cases of driving on a curved road at low and high speeds, and Scenario S3
is a double lane change.

Table 3. Test scenarios for simulation.

No. Speed Time-Gap Method Radius [m]

Scenario S1 40 kph 1 0.7 s 1 Driving on a curved road 100R
Scenario S2 90 kph 1 0.7 s Driving on a curve road 250R
Scenario S3 90 kph 0.7 s Double lane change Straight road

1 In the TROOP project, the minimum speed of platooning is 40 kph, the maximum speed is 90 kph, and the target
time-gap for demonstration of platooning in 2020 is 0.7 s.

5.1.1. Scenario S1–Curved Road with 100R, 40 kph, 0.7 s Time Gap

Figure 18 shows the simulation results for Scenario S1.
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(a) (b) 

Figure 18. The simulation results for Scenario S1 (a) TF.LV , TR.LV , and TR.FV in LV and FV; (b) TF.FV ,
TR.FV and TR.FV in FV. The black dash is the actual travel path (GT) of the front trajectory of LV. The cyan
line next to the vehicles means the left/right lane.

Figure 18a shows that in the LV, the tractor trajectory TF.LV is formed inside the trailer trajectory
TR.LV , which verifies the pattern of the low-speed off-tracking illustrated in Figure 3a. An almost exact
agreement of TR.LV and TR.FV in Figure 18a indicates that the point matching algorithm using the two
trajectories for the LV’s rear point was working successfully.

Comparing TF.LV and the trajectory of its true value (GT), the graph shows that they started at
the same point, but TF.LV gradually deviates from GT as the point goes afterward. This is due to the
estimation error in the Kalman filter, which was used in the generation of the subject vehicle trajectory.
This kind of error cannot be completely avoided in any case. However, since the FV’s actual target
path begins at some distance ahead—typically 16 m ahead at 40 kph—to secure enough look-ahead
distance, this estimation error does not cause any significant trouble in path planning. In addition,
this trajectory error can be reduced by giving more weight to the latest trajectory point than the past,
when performing point matching.

Figure 18b shows the target path of the FV, TF.FV, which is the final output of the proposed path
planning algorithm. It can be observed that this target path is located outside of TR.FV (or TR.FV).
This is an effort to overcome the off-tracking phenomenon which produces fairly large positive kingpin
angle in both trucks in this case.

In Figure 18b, the LV truck was removed from the plot to demonstrate that the FV can generate a
long-range target path even when its front view is severely impaired by the trailer of the LV. This is
important since it can provide lateral string stability to the fleet. In fact, the conditions of Scenario S1
are too harsh to be found in actual driving situations.
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5.1.2. Scenario S2-Curved Road with 250R, 90 kph, 0.7 s Time Gap

Figure 19 shows the simulation results for Scenario S2.

(a) (b) 

Figure 19. The simulation results for Scenario S2 (a) TF.LV , TR.LV , and TR.FV in LV and FV; (b) TF.FV ,
TR.FV and TR.FV in FV.

Figure 19a shows that in the LV, the tractor trajectory TF.LV was formed outside the trailer trajectory
TR.LV , which was the opposite of what happened in Scenario S1. In Scenario S2, the lateral acceleration
was 0.25 g—much higher than 0.13g in Scenario S1—and due to this large centrifugal force, the trailer
was pushed outside to yield the high-speed off-tracking pattern in Figure 3b. Like in Scenario S1,
the two trajectories TR.FV and TR.LV matched almost exactly, which indicates the high reliability of
the path planning algorithm of this paper. The deviation of TF.LV from its true trajectory (GT) can be
explained similarly as in Scenario S1, except that at 90 kph, the look-ahead distance where the actual
target path begins was about 35m ahead of the FV.

Figure 19b shows that the target path of the FV, TF.FV, was located slightly inside of TR.FV

(or TR.FV). With such configuration, the FV can prevent the vehicle from leaving its lane outward.
This path must be very close to the actual trajectory of the LV truck, which was driven manually by an
experienced driver.

For large cargo trucks, if the target path was incorrectly generated at high speeds, the lateral
stability of the vehicle may be compromised, raising the risk of rollovers. Since the driver of LV is
a professional driver who understands platoon driving well, the trajectory generated by LV driving
at high speeds is the target path that can guarantee the stability of the vehicle. FV performs the
proposed path planning using the trajectory of LV and directly follows the path, and then rollover can
be prevented. In the same principle as feed-forward control using the target longitudinal acceleration
of the LV for longitudinal control, using the LV trajectory received via V2V communication as a target
path is a key to ensuring the string stability of the truck platoon.
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5.1.3. Scenario S3–DLC (Double Lane Change) on a Straight Road, 90 kph, 0.7 s Time Gap

Figures 20 and 21 show the simulation results for Scenario S3 in which the platoon makes double
lane change to avoid stopped vehicles ahead in their driving lane. While former scenarios were
for verifying the steady-state performance of the proposed algorithm, this scenario is for verifying
transient performance.

 

Figure 20. The simulation results for Scenario S3. At t1, LV finds stopping vehicles and begins to
change lanes. At t2, the platoon is passing by them. At t3, the platoon has overtaken stopped vehicles
and is returning to its original lane.

 

(a) 

 

(b) (c) 

Figure 21. The simulation results for Scenario S3. (a) Rotation angle for point matching; (b) Lateral
acceleration; (c) lateral offset of the vehicle with respect to the center of the lane.
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Figure 20 shows snapshots of the platoon at three different moments during DLC: t1 is when DLC
initiates, t2 is when the platoon is passing the stopped vehicles, and t3 is when the platoon is returning
to its original lane after securing enough space past the stopped vehicles.

Figure 20 shows that the FV recognizes the change in the driving path of the LV truck and
successfully creates its target path throughout the DLC maneuver: During the transient periods of lane
change and during the straight driving when passing the stopped vehicles.

Figure 21 shows that during the DLC the rotation angle computed in the point matching algorithm
varies in the range of −2.3 deg to 2.4 deg, and the lateral acceleration varies between −0.085 g and
0.085 g. This is rather a mild variation, whose amount depends on the platooning strategy for the lane
change. As mentioned earlier, since the fleet length can reach 100 m in the platooning of articulated
cargo trucks, the platoon can cause safety issues to the nearby vehicles. For this reason, lane change of
the platoon must be minimized as much as possible, and even when it should happen as in the current
scenario, both individual stability and string stability should not be violated. As shown in Figure 21b,
the peak to peak of the lateral acceleration of the FV is slightly smaller than that of the LV. This means
that the transient response characteristics have improved from the LV to the rear FV of the platoon,
indicating that the lateral string stability has been secured. Figure 21c implies that the whole process
of DLC is completed in 14 s, which corresponds to 350 m at 90 kph. Figure 21c also shows that the
transient response of the platoon is quite stable, with almost negligible overshoot on both lane changes.

From the simulation results thus far, it could be verified that the proposed path planning algorithm
provides lateral string stability for various driving conditions of truck platooning.

5.2. Road Test Experiments Result

Along with simulation, actual vehicle tests were conducted to validate the proposed path planning
algorithm. It was performed in the Yeoju Smart Highway, which was built by the Korean government
in 2014 as a testbed for cooperative autonomous vehicles. It is located right next to the Jungbu Naeryuk
Highway near Yeoju Junction and is a two-lane road with a total length of 7.7 km. Figure 22 shows
the satellite photograph. It includes a straight road part and two 2000R curved road parts with
opposite curvatures.

 

Figure 22. Yeoju Smart Highway testbed.

5.2.1. Scenario T1–Curved Road with 2000R, 80 kph, 0.7 s Time Gap

Figure 23 shows the test results for Scenario T1. Using a drone, the image of the platooning trucks
was recorded (Figure 23a), and the image of the LV’s rear view was captured by a camera installed in
the FV (Figure 23b).
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(a) 

 

(c) 

 

(b) 

Figure 23. The test results for Scenario T1. (a) Top-view of the platooning trucks; (b) front-camera view
of FV; (c) LV trajectories generated by FV in FV coordinate system.

As can be imagined from the snapshots in Figure 23a,b, the platooning trucks could maintain the
time gap without causing any lateral stability issues in this test. In Figure 23c, the front box represents
the LV, and the rear box represents the FV’s tractor, and the black dotted lines on both sides of the
vehicles indicate the road lanes that the camera perceived.

The plot in Figure 23c indicates that, with LV blocking the front view area of the FV’s camera,
the lane detection range of the FV was not more 24 m ahead. Even worse, Figure 23b shows that the
lane markings can be missing at some intervals in real situations. However, Figure 23c plot shows that
despite these difficulties, the proposed path planning algorithm provides a reliable target path that
spans 33 m ahead of the FV.

In Figure 23, it is very interesting to note that, although the road is gently curved to the right and
the trucks are running at high speeds, the off-tracking is occurring in the opposite direction of the
high-speed off-tracking pattern seen in Figure 3b. This is because the test road has a slight bank with a
downside inside the curve, which is typical on a curved road of every highway. To a cargo truck, even
a slight bank can notably affect its lateral motion by making the trailer slide down the bank by its own
weight. Thus, the pattern of the target path in Figure 23c indicates that the proposed path planning
algorithm is robust to environmental disturbances.
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5.2.2. Scenario T2–SLC (Single Lane Change) on a Straight Road, 80 kph, 0.7 s Time Gap

Figure 24 shows the test results for Scenario T2. The first picture shows an overlapped image of
three drone images shot at three different moments during SLC. The pictures on the second row show
the snapshots of the LV at those three different moments.

 

Figure 24. The test results for Scenario T2. At t1, LV initiates single lane change (SLC), at t2, FV changes
lanes, and at t3, LV settles in the new lane.
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In Figure 24, t1 is the time when the LV initiates SLC to the left lane. The bottom graphs show that
at t1 the target path of the FV is properly generated toward the left lane. If the FV was relying only on
camera/radar to generate its target path, it would have been hard to tell whether the LV intended to
change lanes or else (like when the trailer of the LV unintentionally drifts out of its lane due to a bank).
Using V2V communication and the proposed algorithms, however, the path planning method could
tell the LV’s intention and generate the target path of the FV to agree with the intention.

From t2 to t3, the FV changes lanes and then settles on the new lane. Similarly to the above case,
if the FV follows the rear point of the LV that its front camera/radar perceives, the FV would experience
significant overshoot to settle on the new lane by knowing the LV’s intention only after its result occurs.
In a typical single lane change maneuver, an experienced driver is known to perform reverse steering
as early as when the vehicle is in the middle of crossing lanes to reduce the overshoot later when the
vehicle settles on the new lane. In this test, it was observed that the proposed path planning algorithm
worked just like an experienced driver with enough look-ahead distance virtually made.

As shown in the front camera view in the middle of Figure 24, a downward slope is formed in
the direction of changing lanes. Heavy-duty trucks are at risk of being pushed down the slope by the
load, and the risk will be increased when changing lanes. The FV needs to quickly control the vehicle’s
attitude through reverse steering at the appropriate point during the lane change. The proposed
algorithm enables the FV to immediately respond to the steering intention that the professional LV driver
responds to changes in the road, thus that the FV can stably follow the LV in any road environment.

From the results by simulation and experimental tests, the path planning algorithm of this paper
has demonstrated capabilities to respond quickly to the LV’s steering intention and to act against
unexpected road disturbances, which can enable more sophisticated steering control and thus secure
lateral string stability of the platoon.

5.2.3. Scenario T3–Unintended Steering Input, 80 kph, 0.7 s Time Gap

Figure 25 shows the test results for Scenario T3. This scenario was considered to validate the
reliability of the proposed path planning algorithm in a situation where an unintended steering
disturbance is applied to the vehicle. The first graph shows the measured steering wheel angle
and steering wheel angle command. The pure pursuit algorithm [26] was used for path tracking.
Three photos of the inside of the tractor’s cab are shown in chronological order from t1 to t3.

At t1, the FV driver turned the steering wheel counterclockwise to make an unintended steering
disturbance into the vehicle. As shown in the first graph in Figure 25, a steering wheel angle of 10.2 deg
was applied to FV. The driver released his hands from the steering wheel immediately after making
the steering input. At t2, while moving out of the lane, the FV generates the target path that the LV,
which is running normally, traveled based on the coordinate system of the FV. At this time, steering
wheel angle command was generated up to −18 deg to follow the trajectory of the LV. At t3, FV is stably
converging through a slight opposite steering after reaching the target path. Through scenario T3,
it was verified that the FV can follow the LV by stably generating the target path even when steering
disturbance occurs.

In road test scenarios T1, T2, and T3, the proposed path planning algorithm is robust and
functioning accurately in various driving environments. By receiving the trajectories of the LV via
V2V communication, it is possible to effectively solve the problem of the limited perceived distance of
the existing path tracking algorithm for platooning. First, it is possible to overcome an error between
the LV’s tractor trajectory and the FV’s trajectory by following the trajectory of the tractor rather than
the trailer in consideration of the off-tracking characteristics of the truck. Next, by using the path
reflecting the steering intention of the professional driver of the LV, the FV can generate a target path
that is robust against changes in road conditions such as banks. Lastly, it was possible to create a
target path considering the influence of the driver’s unintended steering input as well as the external
disturbance factor.
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Figure 25. The test results for Scenario T3. At t1, FV’s driver make a steering input, at t2, FV is returning
to the center of the lane, and at t3, FV settles in the lane.

6. Conclusions

Truck platooning refers to a form in which a number of trucks run as a fleet with short inter-vehicle
distance using V2V communication. The leading vehicle is driven manually by an experienced driver,
and the following vehicles run by autonomous driving. To successfully perform platooning in various
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situations, each truck must maintain dynamic stability and at the same time, the whole system must
maintain string stability.

Due to the short front-view range, the following vehicles’ path planning capabilities become
significantly impaired. In addition, in platooning with articulated cargo trucks, which is the case of
this study, an off-tracking phenomenon occurring on a curved road makes it hard for the following
vehicle to track the trajectory of the preceding truck. Furthermore, without knowledge of the global
coordinate system, it is difficult to correlate the local coordinate systems that each truck relies on for
sensing environment and dynamic signals.

In this paper, to solve these problems, a path planning algorithm for platooning of articulated
cargo trucks has been developed. Using the Kalman filter, V2V communication, and a novel
update-and-conversion method, each following vehicle can accurately compute the trajectory of the
leading vehicle’s front part for using it as a target path. This paper’s path planning algorithm was
validated by simulations on severe driving scenarios and by tests on an actual road. From the simulation
and experimental results, it could be verified that the proposed path planning algorithm provides
lateral string stability, even for very harsh driving conditions of truck platooning. The algorithm also
demonstrated the capabilities to respond quickly to the leading vehicle’s steering intention and to act
against unexpected road disturbances, which can enable sophisticated path tracking control.
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