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Editorial

Modern Approaches to Non-Perturbative QCD and Other
Confining Gauge Theories

Dmitry Antonov

Formerly at Departamento de Física and CFIF, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais,
1049-001 Lisbon, Portugal; dr.dmitry.antonov@gmail.com

The primary goal of this Special Issue was to create a collection of reviews on the
modern approaches to the problem of quark confinement in QCD. Such approaches include
both the microscopic models of the confining Yang–Mills vacuum and the models of the
quark–antiquark string. Over the course of this project, the Special Issue also benefited
from contributions on other related subjects, such as the topology of baryon-rich matter
or a model of the axionic dark matter.

In their broad review [1], Roman Pasechnik and Michal Šumbera provided an outlook
on some currently popular scenarios of the confinement phenomenon. The key topics cov-
ered by this review include the order parameters for confinement, magnetic order/disorder
phase transition, the center-vortex and the monopole models of the Yang–Mills vacuum,
as well as realizations of confinement in the gauge-Higgs and Yang–Mills theories, and the
phases of QCD matter.

The review [2] by Maria Paola Lombardo is devoted to the subject of topology in dense
matter. After a short overview of the status of the corresponding studies at zero density,
lattice results for baryon-rich matter were presented. This subject was mostly studied in the
two-color QCD and for matter with isospin and chiral imbalances. At high temperatures,
some coherent pattern was shown to emerge. Namely, above the critical temperature for
superfluidity/superconductivity, the topological susceptibility, as a function of either the
isospin or the baryonic chemical potential, turned out to be clearly correlated with the chiral
condensate and the confinement-related quantities. This finding holds true also for the
chiral chemical potential. In that case, a striking effect, called chiral enhancement, has been
found, which is the growth of the chiral condensate with the chemical potential. The same
growth turns out to take place also for the topological susceptibility and the string tension.

The review [3] by Michele Caselle starts with a general introduction to the Effective-
String-Theory (EST) approach to the description of confinement in the Yang–Mills theory.
It further shows that, close to the deconfinement critical temperature, several universal
features of confining gauge theories can be accurately described by the EST. Such features
include the ratio of the deconfinement critical temperature to the square root of the zero-
temperature string tension, the linear increase of the square of the flux-tube width with the
interquark distance, and the temperature dependence of the interquark potential. Moreover,
close to the deconfinement critical temperature, the behavior of the confining string turns
out to be well described by the general principles of conformal invariance and by the
Svetitsky–Yaffe dimensional-reduction conjecture. This finding provides further support
for the description of confinement by means of the EST.

As mentioned above, this Special Issue contains several reviews and research articles
devoted to specific models of the confining Yang–Mills vacuum. In particular, the review [4]
by Maria Cristina Diamantini and Carlo Andrea Trugenberger as well as the article [5]
by Hideo Suganuma and Hiroki Ohata are devoted to the monopole-based scenario of
confinement.

The review by Maria Cristina Diamantini and Carlo Andrea Trugenberger discusses
superinsulators (SI), which represent a new topological state of matter that can exist in the
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vicinity of the superconductor/insulator phase transition. Being dual to superconductors,
SI provide a realization of the electric/magnetic duality. The effective field theory that
describes SI is governed by the compact Chern–Simons term in (2 + 1)D and the compact
BF term in (3 + 1)D. Unlike the superconductor, where the condensate of Cooper pairs leads
to the Meissner effect, Cooper pairs in SI form bound states owing to the dual Meissner
effect, i.e., the monopole-condensate-triggered squeezing of electric fields into the flux
tubes. In fact, magnetic monopoles, while elusive as elementary particles, can be realized
in certain materials in the form of emergent quasiparticle excitations. The monopole Bose
condensate can exist at low temperatures and can manifest itself as a superinsulating state
of infinite resistance. The related monopole supercurrents can thus result in the electric
counterpart of the Meissner effect, which leads to the linear confinement of Cooper pairs.
This way, SI realize one of the mechanisms proposed to explain confinement in the Yang–
Mills theory. Furthermore, for SI samples smaller than the width of the confining string,
a metallic-like low-temperature behavior of SI has been predicted and experimentally
confirmed. It is also predicted that an oblique version of SI can be realized as a pseudogap
state of high-temperature superconductors.

In the article by Hideo Suganuma and Hiroki Ohata, the interrelation between the
chiral condensate, monopoles, and color-magnetic fields in QCD was studied on the
lattice. First, idealized Abelian systems, consisting of a static monopole–antimonopole
pair and a magnetic flux without monopoles, were explored. Lattice simulations of the
chiral condensate of quasi-massless fermions, coupled to the Abelian gauge field in the
mentioned systems, show that this condensate is localized in the vicinity of the magnetic
field. Furthermore, by using SU(3) lattice-QCD Monte-Carlo simulations, the Abelian-
projected QCD in the Maximal Abelian gauge was studied. The results of these studies
show a clear correlation between the chiral condensate, the distribution of monopoles,
and the color-magnetic fields of the Abelianized gauge-field configurations. As a statistical
indicator, the coefficient measuring the correlation between the chiral condensate and the
square of the color-magnetic field in the Abelian-projected QCD, was calculated and found
to be approximately equal to 0.8. The same correlation was found to become weaker in the
deconfinement phase. Thus, the obtained results show that, similar to what happens in the
case of magnetic catalysis, the chiral condensate is locally enhanced by the strong color-
magnetic field, which exists in the vicinity of monopoles in the Abelian-projected QCD.

The results of other studies of the interrelation between the dynamics of quarks and
the confining dynamics of the Yang–Mills fields were reported in the review [6] by Matteo
Giordano and Tamás Kovács, as well as in the articles [7,8] by Manfried Faber, Rudolf
Golubich, and their collaborators.

The review by Matteo Giordano and Tamás Kovács is devoted to the Anderson-type
localization transition, which affects eigenmodes of the lower part of the Dirac spectrum.
Several aspects of this transition were reviewed, mostly by making use of the tools of
lattice gauge theory. In particular, the connection of the localization transition with the
finite-temperature phase transitions was illustrated. This connection makes the localization
transition related to the deconfinement of quarks as well as to the restoration of chiral
symmetry, which is spontaneously broken at low temperatures. The review also discusses
the universality of the localization transition as well as its connection to the topological
excitations of the gauge field, i.e., instantons, and the associated fermionic zero modes.
While the review is mostly focused on QCD, it also discusses how the localization transition
appears in other gauge models, with different fermionic contents and gauge groups, and in
the various space-time dimensions.

The article [7] by Manfried Faber, Rudolf Golubich, and their collaborators, which is
devoted to the center-vortex model of the confining Yang–Mills vacuum, discusses back-
reaction of quarks on the gauge fields of the model. In particular, it shows that the model
reproduces the phenomenological QCD string tension (at interquark distances smaller
than the string-breaking distance) also in the presence of dynamical quarks. Their other
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article [8] suggests a possible resolution for the problems of vortex detection in smooth
lattice configurations and discusses recent improvements in the detection of center vortices.

The related review [9] by Luis Esteban Oxman and his collaborators provides an
overview of the recent progress achieved by the authors in an analytic derivation of the
center-vortex model of the Yang–Mills vacuum. This research program starts with modeling,
in the continuum limit, of some of the properties of center vortices that were found in
the lattice simulations, and proceeds toward the derivation of the corresponding effective
field representations. In particular, when modeling the measure of the center-vortex
ensemble, the authors emphasized the importance of the inclusion of the non-oriented
center-vortex component and the non-Abelian degrees of freedom. The so-constructed
model of percolating center vortices turns out to be capable of reproducing several known
important features of confining flux tubes in the SU(N) Yang–Mills theory.

In their review [10], Ibrahim Burak Ilhan and Alex Kovner discuss the approach aimed
at constructing an effective 4D theory that could provide a simple classical picture of the
main qualitatively important features of both the Abelian and the non-Abelian gauge
theories. This approach starts with ensuring the presence of massless photons, i.e., the
Goldstone bosons, in the Abelian theory, and their disappearance in the non-Abelian case,
which is happening together with the formation of confining strings between charged
states. The suggested formulation avoids the use of vector fields, operating instead with
the basic degrees of freedom, which are the scalar fields of a certain non-linear sigma model.
The Mark 1 model, discussed in the review, turns out to have a large global symmetry
group, with the 2D diffeomorphism invariance in the Abelian limit, which is isomorphic to
the group of all canonical transformations in the classical 2D phase space. This symmetry is
not present in QED, and it is thus further eliminated by “gauging” this infinite-dimensional
global group. By introducing additional modifications to the model (Mark 2), the authors
have first proved that the “Abelian” version of such a modified model is equivalent to the
theory of a free photon. Achieving the desired properties in the “non-Abelian” regime
turns out to be tricky. To this end, the authors introduced a perturbation that led to the
formation of confining strings in the Mark 1 model. These strings have somewhat unusual
properties, as their profile does not fall off exponentially, away from the center of the
string. In addition, the perturbation explicitly breaks the diffeomorphism invariance. The
questions of how to preserve this invariance in the gauged model as well as how to obtain
realistic confining strings in the Mark 2 model currently remain open.

Last but not least, the article [11] by Janning Meinert and Ralf Hofmann, motivated
by the SU(2)CMB-modification of the cosmological model ΛCDM (where “CMB” stands
for Cosmic Microwave Background), considers isolated fuzzy-dark-matter lumps, made
of ultralight axion particles with the masses arising due to distinct SU(2) Yang–Mills
scales and the Planck mass MP. Unlike the SU(2)CMB-model, the corresponding Yang–
Mills theories, which are associated with the three lepton flavors of the Standard Model
of particle physics, stay in the confining (zero temperature) phase throughout most of
the universe’s history. As the universe expands, axionic fuzzy dark matter comprising
a three-component fluid undergoes certain depercolation transitions when dark energy
(represented by the global axion condensate) is converted into dark matter. The authors
extracted the lightest axion mass ma,e = 0.675 · 10−23 eV from the well-motivated model fits
to observed rotation curves in the low-surface-brightness galaxies (SPARC catalogue). Since
the virial mass of an isolated lump solely depends on MP and the associated Yang–Mills
scale, the properties of an e-lump predict those of μ- and τ-lumps. As a result, a typical
e-lump virial mass ∼6.3 · 1010M� suggests that massive compact objects in galactic centers,
such as Sagittarius A∗ in the Milky Way, are (merged) μ- and τ-lumps. In addition, τ-lumps
may constitute global clusters. If the axial anomaly indeed links leptons with dark matter
and the CMB with dark energy, that would demystify the dark universe through a firmly
established feature of particle physics.
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Abstract: In this review, we provide a short outlook of some of the current most popular pictures and
promising approaches to non-perturbative physics and confinement in gauge theories. A qualitative
and by no means exhaustive discussion presented here covers such key topics as the phases of
QCD matter, the order parameters for confinement, the central vortex and monopole pictures of the
QCD vacuum structure, fundamental properties of the string tension, confinement realisations in
gauge-Higgs and Yang–Mills theories, magnetic order/disorder phase transition, among others.

Keywords: magnetic disorder; confinement models; lattice QCD; center vortices; magnetic monopoles;
quark condensate

PACS: 12.38.Aw; 12.38.Gc

1. Introduction

Quantum Chromodynamics (QCD) based upon the SU(3)c gauge theory of colour
represents a real-world example of a fundamental Yang–Mills (YM) theory applied to the
description of strong interactions and is an organic part of the Standard Model (SM) of
particle physics. This theory is extremely successful in predicting various measurable
phenomena at particle colliders. The class of phenomena that originate from (or driven
by) strong interactions is extremely wide and covers such areas as nuclear physics, hadron
physics, physics of quark-gluon plasma, high-temperature and high-density QCD, high-
energy particle production and hadronisation. Depending on characteristic length scales,
QCD behaves very differently. At short space-time separations, e.g., once we zoom into dis-
tances much shorter than the proton radius, QCD appears as a weakly coupled theory that
enables a precise Perturbation Theory (PT) analysis. Much of its success has been achieved
in this asymptotic freedom or ultraviolet (UV) regime where the quark-gluon interaction
strength recedes. Thus, success highlights the QCD theory as the correct theory of strong
interactions at the fundamental level, precisely matching all the existing observations up
to very high momentum transfers reached by the Large Hadron Collider (LHC) so far.
However, on the opposite side of length-scales in the infrared (IR) limit, QCD enters entirely
different, strongly coupled domain, rendering the PT inapplicable and creating substantial
problems for making reliable predictions at intermediate and low momentum transfers,
i.e., at large distances. While it is conventionally believed that QCD should remain the
correct theory of strong interactions also at large distances, in the so-called confined regime,
deriving reliable predictions remains a big theoretical challenge. For one of the broadest
and comprehensive overviews of many phenomenological and theoretical aspects of QCD
and QCD-like gauge theories spanning from IR to UV, from dilute to dense regimes, see
Ref. [1].

The problem of confinement concerns the strongly coupled sector of QCD composed
of interacting coloured partons (quarks and gluons). In virtue of colour confinement,
the coloured particles appear to always be trapped (confined) inside colourless composites.
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The latter emerges as asymptotic states, thus rendering the long-distance regime of hadron
physics described by Effective Field Theory (EFT) approaches, such as the chiral PT, as well
as a variety of non-perturbative techniques realised in numerical simulations on the lattice.
Much of the discussion in the current review is devoted to highlighting main ideas and
possible existing ways to address the confinement problem that is known as the main un-
solved problem in the SM framework. Despite the major efforts of the research community
and tremendous progress made over last few decades, it does not appear to be fully and
consistently resolved yet. There are several important subtleties in the formulation of this
problem to be discussed in what follows. One of the standard ways of formulating the
problem is that there is no complete understanding of why these fundamental degrees
of freedom (DoFs) of QCD (or, generically, of any strongly coupled YM theory) do not
emerge in the physical spectrum of asymptotic states and how the composite hadrons
are dynamically produced starting from the fundamental DoFs in the initial state. In a
phenomenological sense, there is a fundamental mismatch between the underlined DoFs
of QCD in its short- and long-distance regimes manifest in experimental measurements,
and there is not a single consistent theoretical framework that goes beyond the framework
of PT and treats both weakly and strongly coupled regimes on the same footing.

For practical purposes, various phenomenological approaches have been proposed
that characterise the long-distance effects of QCD absorbing them into universal elements
of a given scattering process, such as non-perturbative matrix elements, fragmentation func-
tions or parton distributions. As a commonly adopted picture, a colour-electric flux tube
(also known as a colour string) is stretched among the partons produced in a high-energy
collision. A string-like picture emerges in the limit of large number of colours already
in D = 1 + 1 dimensions as has been advocated by t’Hooft back in early 1970s—see,
e.g., Ref. [2]. As produced partons move away from each other at large enough distances,
those flux tubes fragment into composite particles, such as mesons and baryons, where
initial (anti)quarks and gluons get necessarily combined with newly emerged ones from
the vacuum into colour-neutral configurations. In a nutshell, the basic problem concerns
a first-principle derivation of the long-distance hadron spectrum and dynamics from an
underlined strongly coupled gauge theory. More specifically, a successful model of confine-
ment is expected to provide a first-principle dynamical description of the string formation,
its basic characteristics and string-breaking effects, also connecting those unambiguously
to dynamics of the fundamental DoFs of the underlined gauge theory and deducing the
phase structure of the theory at various densities and temperatures. While there are no
compelling solutions yet available, there are several distinct approaches to confinement
treatment being actively developed in the literature. Not only a large variety of treatments
of confinement has hit the literature in past decades but also a proper definition of confine-
ment; what we actually mean by this word posses a notorious difficulty, as was thoroughly
discussed in Refs. [3,4]. In this review, we will try to summarise some of the existing
attractive treatments of confinement and ideas and why confinement occurs in the way it
does in a conceptual and qualitative manner, without pretending to provide an exhaustive
overview of all relevant details and corresponding references.

The review is organised as follows. In Section 2, we discuss the basic ingredients of
the QCD phase diagram at different temperatures and values of the baryon chemical po-
tential. In Section 3, we provide a brief description of magnetic order/disorder phases and
introduce the basic notions of the lattice gauge theory that will be used in follow-up discus-
sions. In Section 4, we overview basic concepts and ideas that lead to different asymptotic
behaviours of the Wilson loop VEV as an order parameter for the confining phase. Such dis-
tinct properties of QCD scattering amplitudes as the Regge trajectories and the associated
picture of a colour string have been outlined in Section 5. In Section 6, we provide a detailed
outlook on the complementarity between the Higgs and confining phases and describe such
a common feature for both phases as colour confinement. In Section 7, a brief description
of the string hadronisation picture realised in the Lund model is given. Section 8 elaborates
on why confinement criteria based upon gauge symmetry remnants (un)breaking may be
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spoiled by gauge-fixing artefacts, highlighting the need for a gauge-invariant description
of confinement. Section 9 introduces the basics of the center-symmetry-based confinement
criterion and its implications. Section 10 gives a brief outlook on another order parameter of
confinement, the Polyakov loop, particularly suitable for confinement description at finite
temperatures. In Section 11, yet another important order parameter of confinement probing
the vortex structure of the QCD vacuum, the t’Hooft loop, is introduced and the basic
features of the center vortices are described. Section 12 elaborates on the most important
characteristics of the string tension as the probes for a confining phase. The foundations
and implications of the center vortex mechanism of confinement, with its basic tests per-
formed in the literature, have been discussed in Section 13. Section 14 connects the chiral
symmetry breaking and the topological charge to the existence of vortex configurations.
In Section 15, we briefly describe the Gribov–Zwanziger scenario of confinement, relating
it to the non-perturbative behaviour of propagators and describing how a colour string
could emerge in this scenario by considering constituent gluons in the gluon chain model.
A renown dual superconductivity picture of confinement and the fundamental role of
magnetic monopoles have been briefly described in Section 16. A novel generalisation
of the confinement criterion applicable in gauge theories with matter in the fundamental
representation has been briefly discussed in Section 17. Section 18 highlights an important
recent development in understanding the confining property of the gauge-field vacuum
and Higgs-confinement transitions via a novel non-local order parameter. A summary and
concluding remarks are given in Section 19.

2. Phase Structure of QCD Matter

Following the discovery of asymptotic freedom in QCD [5,6], it has been realised that
phase transitions in the hot and dense QCD matter between the hadronic (confined) and
quark-gluon (deconfined) phases are crucial for understanding the cosmological evolution
as well as the state of matter and dynamics of neutron stars [7–14]. Besides, the idea of
experimental measurements through heavy-ion collisions has been offered as a tantalising
opportunity for explorations of this interesting physics. In those early times, a hypothetical
state of QCD matter at characteristic temperatures of around 100 MeV has been envisaged
as existing in two possible states of “hadronic plasma” [9] and “quark-gluon plasma”
(QGP) [10], with an energy density of order 1 GeV/fm3. Later on, it has been understood
that the QCD phase diagram has a much richer structure, particularly, at high baryon
number densities, with a lot of important implications for understanding, for instance,
neutron star physics as well as heavy-ion collisions at particle colliders.

Strongly interacting QGP was first discovered at RHIC collider in 2005 [15–18] and
later has been confirmed at much higher energies at the CERN LHC (for a detailed review,
see, e.g., Refs. [19,20] and references therein). In the QGP phase, as the name suggests,
the strong interactions between constituents of the plasma, “dressed” light quarks and
gluons being its collective excitations, is driven by their SU(3)c colour charges. For a
comprehensive review of early developments and key ideas in the analysis of strongly
coupled QCD phenomena and QGP in particular, see, e.g., Ref. [21], while an overview of
more recent theoretical and experimental studies can be found in Refs. [19,20,22].

In a weakly interacting QCD gas at very high T, the microscopic quark-gluons in-
teractions are relatively weak and should obey the predictions of asymptotic freedom.
The leading-order perturbative QCD coupling that determines the strength of QCD interac-
tions at asymptotically short distances,

αs(Q) � 2π

b0 ln(Q/ΛQCD)
, b0=11− 2

3
Nf , (1)

is given in terms of the QCD energy scale ΛQCD ≈ O(1 GeV), momentum transfer Q �
ΛQCD and the active quark flavours’ number Nf . In a perturbative domain of QCD,
when going towards shorter distances l � Λ−1

QCD, the colour charge is being diluted
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compared to the “soft” and non-perturbative domain of QCD at larger distances l ∼ Λ−1
QCD,

where the charge is being built-up effectively due to the phenomenon called the colour
charge “anti-screening” [5,6]. This is quite an opposite effect to what happens in QED.
This behaviour of the coupling is demonstrated in Figure 1 (left panel), together with
experimentally measured values. As soon as αs(Q) hits large values entering the strongly
coupled (confined) regime at lower T, the PT ceases to work such that effective and non-
perturbative methods are applied, being, however, often vastly disconnected from the
microscopic QCD theory. One could perform a consistent matching of the fundamental
QCD to the effective Lagrangian of chiral PT at the “soft” scale Q � 4π fπ � 1 GeV, where
both descriptions are expected to be valid and overlap. Such a matching provides a clue
about the IR behaviour of αS(Q) that tends to get “frozen” at the value of 〈αS〉IR � 0.56 [23].

Figure 1. On the left panel, the QCD interaction strength αs as a function of the momentum transfer Q at the next-to-leading
order of the PT. The figure is taken from Ref. [24]. On the left panel, the QCD evolution of the characteristic parton (quark
and gluon) density and length-scale with respect to rapidity Y = ln(1/x) and ln Q2. The figure is taken from Ref. [25].

Besides the weakly coupled short wavelength modes of partonic DoFs with Q = 2πT
dominating the thermodynamic evolution at very high T, the QGP also features long
wavelength (non-perturbative) modes, with length scales of l > T−1. The latter modes
dominate the evolution at not-so-high T, forming a liquid and effectively turning QGP into
ideal fluid [22,26,27]. The latter fundamental property of QGP has been discovered first at
RHIC [15–18] and then confirmed at the LHC. Other effects of such strongly interacting
QGP are manifested through a collective flow phenomenon [27] as well as in an effec-
tive suppression of high-energy partons transiting through a hot and dense deconfined
medium [28,29] (for a review, see Ref. [20] and references therein).

Taking the ratio of the interaction-to-kinetic energy of the QGP constituents and
assuming equal contributions from chromo-electric and chromo-magnetic interactions, one
introduces the so-called plasma parameter [30]

Γ � 2
Cq,gαS

aT
, Cq =

N2
c − 1
2Nc

=
4
3

, Cg = Nc = 3, (2)

expressed in terms of the fundamental (quark) and adjoint (gluon) Casimir invariants
of SU(3)c, Cq and Cg, respectively, and the T-dependent average distance between the
partons a satisfying aT ∼ d−1/3

F , where

dF ≡ 2 × 8 +
3
4

(
3 × Nf × 2 × 2

)
. (3)

8
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The latter evolves in T only through Nf (T). Weakly interacting (ideal) plasmas have
a very low Γ < 10−3, while a strongly interacting plasma typically has a much larger
Γ � 1. Taking a nearly ideal (weakly coupled) massless QCD gas, for instance, one obtains
Γ ∼ αSd1/3

F serving as a lower estimate for the plasma parameter as it ignores the partonic
interactions in the ideal gas approximation. In a realistic case of QGP created in heavy-ion
collisions at RHIC, one finds T ≈ 200 MeV and αS = 0.3–0.5 with only two relevant active
flavours, NF = 2, leading to a value of Γ � 1.5–6, indeed being deeply inside the strongly
coupled plasma regime.

The QCD evolution of partonic matter in terms of basic kinematic parameters of
resolved partons in the medium is illustrated in Figure 1 (right panel). For instance,
developing the partonic cascades in typical momentum transfer Q, one resolves the partons
with a transverse area 1/Q2, such that at larger Q and T ∼ Q, one observes a dilution
of the parton density controlled by the DGLAP evolution equations (see for instance
Refs. [31,32]). One may also observe how the parton density evolves with energy or, more
conveniently, with a fraction of light cone momentum taken by a given radiated parton
out of a parent particle, x = k+/P+. One may visualise the partonic cascade off the initial
particle effectively as Brownian-like motion in the transverse plane that can be considered
as the Gribov diffusion process in the evolution “time” Y = ln(1/x). The latter parameter
is simply a rapidity difference between the radiated and parent partons, while the diffusion
constant is D ∼ αS. Such an evolution is controlled by BFKL equations (for more details,
see, e.g., Refs. [31,32] and references therein).

The partonic cascade is essentially dominated by soft gluons at high energies or at
very small fractions x � 1, and they are of the same size at a fixed scale Q. As soon as the
parton scattering cross-section ∼ αS/Q2 multiplied by the probability to find a parton at a
given Q with a fraction x, xGA(x, Q2), becomes of the order of the geometrical cross-section
of an area A occupied by the gluons, ∼ πR2

A, the gluons start to overlap effectively. Due
to a repulsive interaction between gluons, however, their occupation number saturates at
fg ∼ 1/αS. In particular, this occurs for gluons with transverse momenta below a certain
emergent scale Qs(x), k⊥ ≤ Qs(x), known as a saturation or “close packing” scale [33] (see
also Refs. [34,35]),

Q2
s (x) =

αS(Qs)

2(N2
c − 1)

xGA(x, Q2
s )

πR2
A

, (4)

thus, representing a fixed point in the parton x-evolution. Such a saturation phenomenon
is rather generic as an analogical scaling of the density ∼ α−1 characterises various Bose–
Einstein condensation phenomena, in particular, those in the Higgs mechanism and in su-
perconductivity [36]. Such a highly coherent gluonic state of matter has properties of a clas-
sical field [34] and is known in the literature as the Colour Glass Condensate (CGC) [25,35,37]
or glasma [38].

Indeed, in the path integral formulation of the SU(N) gauge theory, for instance, one
sums over all gauge-field configurations weighted with exp(−iSg/h̄), where the action
can be written as

Sg = − 1
4g2

s

∫
Fμν,aF a

μνd4x, (5)

Aa
μ → Aa

μ ≡ gs Aa
μ , Fa

μν → gsFa
μν ≡ F a

μν = ∂μAa
ν − ∂νAa

μ + f abcAb
μAc

ν,

such that g2
s multiplies h̄ in the exponent. Here, f abc, (a, b, c) ∈ {1, . . . , N2 − 1} are the

SU(N) structure constants. The path integral would be dominated by the classical con-
figurations for h̄ → 0 (classical limit), which is, therefore, equivalent to taking the weak
coupling limit of the theory g2

s → 0, where the action is large, Sg � h̄, and so is the number
of quanta in these configurations, fg ∼ Sg/h̄ [34]. There are certain reasons to believe that
such classical-field configurations should describe the state of cold nuclear matter in the
initial stages of ultra-relativistic heavy-ion collisions [25,37].
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Needless to mention, strongly interacting QCD exhibits a variety of emergent collec-
tive effects and phenomena other then those of QGP that are very difficult to understand
and to predict starting from the first-principle microscopic theory of QCD. Observable pre-
dictions of the hot/dense QCD theory depend on the equation of state (EoS) of compressed
nuclear matter, but the latter has not been fully understood yet. This situation is analogical
to emergent phenomena in atomic and condensed-matter physics driven by the QED inter-
action theory at the microscopic level. Notably enough, besides the hadronic and QGP phases,
QCD matter features also other distinct phases predicted in various approaches [39,40].

Among important examples of various realisations of confining non-abelian gauge-
field dynamics in cosmology are the relaxation phenomena in the real-time cosmological
evolution of the QCD vacuum [41] and a possibility of phase transitions in a “dark” strongly
coupled SU(N) gauge sectors [42], both potentially testable via the detection of stochas-
tic primordial gravitational-wave spectra in future measurements. The homogeneous
gluon condensates in the effective SU(N) theory (such QCD gluodynamics) have also
been found to play an important role in the generation of the observable cosmological
constant [20,41,43–46]. For a recent review of implications of the quantum YM vacuum for
the Dark Energy problem, see Ref. [47].

Systematic explorations of QCD matter at high densities and temperatures, including
the search for the critical end point (CEP) in the middle of the phase diagram at μB ∼
0.4 GeV shown in Figure 2, only started about ten years ago. The CEP is located at the
end of the first-order phase transition boundary between the hadronic phase and QGP,
where a second-order phase transition is predicted to occur. One expects a number of new
phenomena in a vicinity of that point [48–51] that have been searched for by the RHIC
Beam Energy Scan program.

Figure 2. An illustration of typical phases of QCD matter that are expected to emerge at various
values of the temperature T and the baryonic chemical potential μB associated with U(1)B breaking
(see Ref. [20] and references therein). Accelerators operating at different center-of-mass (c.m.) energies
are depicted here.

Currently, a number of different studies of QCD phases in various parts of the (T, μB)
diagram are being deployed, both experimentally and theoretically, and a high complexity
has started to emerge. Particularly intense are explorations of low μB � 0 [52–55] and
high μB� 100–600 MeV [40,49,51,55] domains, with possible transitions in between, also
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indicated in Figure 2. Other CEPs may also be expected to emerge such as those for chiral
(crossover at low-T, not shown in the figure) and nuclear liquid-gas (in the nuclear matter
ground-state at nearly-zero T and μB = 0.93 GeV) transitions.

More specifically, looking at the QCD phase diagram in Figure 2 along the direction
of increasing baryon chemical potential μB, we notice that at energies close to the binding
energy of bulk nuclear matter, the so-called cold nuclear matter phase is found. Interactions
between nucleons (quark bound states) may lead to pairing and di-baryon condensation
that spontaneously break the U(1)B baryon number symmetry (see, e.g., Refs. [56,57]).
Physically, this also means that the system is in a superfluid (confining) phase. This
system has a close analogy, for instance, with liquid helium, where one also finds the
Bose–Einstein condensation and Goldstone modes, both associated with the superfluidity
property. The same physics emerge in ordinary nuclear matter based upon the nuclear
many-body theory, which is applicable at not too large densities.

There is still a substantial lack of knowledge on a transition between the cold nuclear
matter and high-density QCD phases, particularly relevant for the physics of neutron stars.
Since QCD is asymptotically free, one can go to a very high μB in the quark-matter phase
and employ weak-coupling techniques [58]. In this quark-matter phase of dense QCD, such
calculations predict a nearly Fermi-liquid with residual interactions that lead to pairing
among quarks in a gauge-dependent way. This is described by means of a gauge-dependent
di-quark condensate 〈qq〉 playing a role of an order parameter in the dynamical Higgs
mechanism such that we deal with a Higgs phase. Indeed, such a di-quark condensate
emerges due to long-range attractive forces between the quarks through a Cooper-like pairs’
condensation [59,60]. Such a high-density (baryon) superfluid phase where the SU(3)c

gluon field is fully “Higgsed” is known in the literature as a colour superconductor1 (CSC)
(for a comprehensive review on key aspects of dense QCD, see Refs. [61,62]). The formation
of such Cooper pairs of quarks can be seen in QCD with three massless u, d, s flavours
at large baryon number densities featuring the following colour and flavour symmetries’
reduction [40,63]

SU(3)c × SU(3)R × SU(3)L × 3U(1)B → SU(3)c+L+R ×Z(2) (6)

down to a diagonal subgroup SU(3)c+L+R. The corresponding symmetry transformations
involve a simultaneous “rotation” of colour and flavour group representations known
as the colour–flavour locking (CFL). Such a CFL phase is known not to be topologically
ordered [64]. Then, in the CFL quark-matter phase, one could also find an order parameter
for U(1)B symmetry breaking (down to Z2) in analogy to the di-baryon condensate in the
nuclear-matter phase—it can be viewed as a cubic power of the di-quark condensate thus
being associated with a superfluid flow.

In fact, both quark matter and nuclear matter phases were found to be relevant for
the EoS of neutron stars (see, e.g., Refs. [62,65,66]), and the signatures of possible phase
transitions might show up in mass-radii relations for neutron stars and gravitational-wave
spectra from neutron star collisions. As at high temperatures no baryon number symmetry
breaking occurs, one supposedly crosses the line where U(1)B gets restored when the
system heats up. As we noticed above, at low temperatures, both low- and high-density
phases have the same order parameter w.r.t. U(1)B breaking, and one of the fundamental
open questions is whether a boundary between the quark-matter (Higgs) and nuclear-
matter (confinement) phases actually exists. Following Refs. [67–69], one could consider
a simplified picture of pure QCD and include three massless flavours in a maximally
symmetric realisation, such that there is no distinction in symmetry realisations between
the hadronic phase and asymptotically high-density phase. The latter means there may be
no phase transition that is consistent with identical global symmetry realisations in both
regimes, t’Hooft anomalies’ matching and with smoothly connecting low-lying excitations
(see, e.g., Refs. [67,70,71]). Such an assumption has become a working one for many
phenomenological studies modelling the EoS for neutron star physics (see, e.g., Ref. [72]
and references therein). Below, following the recent results of Ref. [58], one may conclude,
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however, that the Schäfer–Wilczek conjecture about quark-hadron continuity at large μB
may be largely oversimplified. The reality may be even more complex than what emerges
in existing theoretical approaches. The basic problem is that there are no well-justified
theoretical methods available for the treatment of the strong-coupling regime of QCD,
with a non-zero chemical potential, where lattice simulations may not be very reliable.

Finally, yet another QCD phase that is believed to be located somewhere between the
chirally restored and confined phases is known as quarkyonic matter [73] that may also
have some relevance for neutron star physics [74]. In the limit of large number of colour
charges Nc, the gluons’ contribution scales as ∼N2

c compared to that of quarks ∼Nc such
that this phase is assumed to have energy densities well beyond Λ4

QCD. Since gluons are
bound in glueballs, one ends up with Nc DoFs in this phase.

Let us now turn to a discussion of methods of the lattice gauge theory that became the
main tool for explorations of non-perturbative physics in gauge theories and, in particular,
QCD in the strongly coupled regime and the associated dynamics of confinement, at least,
at not too large chemical potentials.

3. Ising Model and Lattice Gauge Theory

To what extent one can expect to derive precision results for low-energy observables
from the first-principle QCD theory? A default answer to this question is that we should
not expect that, at least, analytically. The collective phenomena that are manifest in the
strongly coupled regime of a gauge theory are so complex that none of the existing analytic
approaches captures all the relevant dynamics and yields satisfactory results. At the
same time, a theory may remain to be correct even if methods of extracting observable
information from it are not perfect or suitable. Often though, we start with a simplified
model that hopefully captures the same physics as a realistic one, but where we have a
better control, and then we abstract the lessons that we learn from such a model back to
more complicated theories, such as QCD.

Luckily, a precise and reliable analysis is possible but only numerically. The best
available framework so far is the lattice gauge theory providing a first-principle numerical
approach for strongly coupled theories, such as QCD. In fact, this framework is often
considered as a “numerical experiment” and may be regarded as a black-box whose results
need to fit a certain theoretical picture of real underlined physical phenomena and objects
providing means to understand those phenomena qualitatively. Whether or not the lattice
results fit a particular picture of confinement is an ongoing and long-standing debate in
the literature. For relatively recent detailed reviews on non-perturbative physics and the
confinement problem, see, e.g., Refs. [3,4,75–77] and references therein. Here and below,
we follow the notation adopted in Ref. [3] unless noted otherwise, acknowledging that
the latter reference represents one of the most complete, pedagogical and sophisticated
reviews available in the literature on what the confinement problem actually is from various
perspectives and approaches.

In order to build a consistent picture of confinement, we need to elaborate on such
important notions as ordered and disordered systems. One of the simplest examples of
the lattice field theory follows the basic principles of statistical mechanics, where the most
relevant properties of these systems are readily seen in the Ising model of ferromagnetism.
For illustration, consider a simple system—a square (D = 2), cubic (D = 3) or hypercubic
(D > 3) array (or lattice) of atoms, each with two spin states—in the external magnetic field
h. This system is described by the Hamiltonian,

H = −J ∑
x

D

∑
μ=1

s(x)s(x + μ)− h ∑
x

s(x), J > 0, (7)

12



Universe 2021, 7, 330

where s(x) = +1 and −1 would correspond to an atom at a point x with spin up and
down, respectively, and we denote here the total number of spins as N. The probability for
a specific configuration of spins, {s(x)}, at a given temperature T, can be written as

P{s(x)} =
1
Z

exp
[
− H

kT

]
, Z = ∑

{s(x)}
exp[−H/kT]. (8)

In the case of zero external field, h = 0, the system apparently possesses a global Z2
symmetry w.r.t. transformations

s(x) → s′(x) = ξs(x), ξ = ±1, (9)

such that the mean magnetisation (average spin)

〈s〉 = ∑
{s(x)}

P{s(x)}
N ∑

y
s(y) (10)

vanishes. This is a system in a so-called disordered state.
Assume that the spins in the initial state are aligned. The exact Z2 symmetry means

that at any given temperature, any finite system would end up in a disordered state
provided that one waits for long enough for that to occur. This leads to the non-existence
of permanent magnets as any alignment of the spins would be destroyed by thermal
fluctuations. However, for large N, i.e., for macroscopic magnets, the time between sizable
fluctuations that could flip a lot of spins would grow exponentially and eventually exceeds
the lifetime of the Universe. For non-zero h, however, the Z2 symmetry appears to be
explicitly broken, enabling 〈s〉 �= 0 at any temperature. In this case, the system appears to
be in an ordered state where a large amount of spins point in the same direction.

Now, consider the magnetisation of a large system in the limit of vanishing h. One
could show that, in general, this quantity is non-vanishing

lim
h→0

lim
N→∞

〈s〉 �= 0, (11)

yielding the so-called spontaneous symmetry breaking (SSB) of the global Z2 symmetry, which
occurs particularly at low temperatures (ordered state). A global symmetry is said to be
broken spontaneously when the Hamiltonian and the corresponding equations of motion
are symmetric, but the solutions for physical observables (such as the magnetisation intro-
duced above) are not. At high T above a certain critical temperature (Curie temperature),
the averaged spin vanishes, and the spin system appears again in a symmetric (disordered)
state. Considering the vacuum expectation value (VEV) of a product of two spins, we notice
G(r) ≡ 〈s(0)s(r)〉 ∼ exp(−r/l), i.e., it falls off exponentially with the distance between
atoms r in a disordered state, where l is the correlation length. There is a phase transition
between the ordered and disordered phases of the system at the Curie temperature for any
D > 1, while for D = 1, the system is in a disordered phase at any T. The existence of
such phase transitions associated with a global symmetry breaking is a generic property of
many different systems and is also manifest in strongly coupled gauge theories, as will be
discussed below.

Let us further promote the global Z2 symmetry to a local one whose transformation
parameter depends on the position of the associated DoFs, ξ(x) = ±1, and can be chosen
independently at each site (gauge transformations). For this purpose, let us consider the links
of the lattice sμ(x) along each dimension μ = 1 . . . D as dynamical DoFs subjected to the
gauge transformation

sμ(x) → ξ(x)sμ(x)ξ(x + μ̂), (12)

and write down the Hamiltonian of the gauge-invariant Ising model
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H = −J ∑
x

D−1

∑
μ=1

D

∑
ν>μ

sμ(x)sν(x + μ̂)sμ(x + ν̂)sν(x). (13)

Thereby, we arrive at the simplest example of the Z2 lattice gauge theory. In order to
describe such systems, one considers observables that are invariant under gauge transfor-
mations. A particularly important class of observables can be obtained by taking the VEV
of the so-called Wilson loop—a product of links on the lattice around a given closed contour
C [78],

W(C) =
〈

Π(x,μ)⊂Csμ(x)
〉

. (14)

The Hamiltonian (13) is given by the simplest Wilson loop given by a plaquette,
the minimal closed loop on the lattice.

In analogy to the gauged Ising model, in a generic lattice gauge theory described
by a certain (discrete or continuous) gauge group G, one starts with the Euclidean action
where the link variables are the elements of the gauge group. For instance, in the case of a
non-abelian group G ≡ SU(2), the group elements in discretized spacetime are

Uμ(x) = eiagAμ(x), Aμ(x) =
1
2

σa Aa
μ(x), (15)

in terms of the lattice spacing a, the gauge coupling g, the Pauli spin matrices σa, a = 1, 2, 3,
and the SU(2) gauge field Aa

μ(x). By convention, the link variable Uμ(x) is associated with
a line running from site x on the lattice to a neighbour site x + μ̂ in the positive direction
μ. The probability distribution of lattice configurations of the gauge field is found in full
analogy to that of the Ising model, namely,

P{s(x)} =
1
Z

exp(−S[U]), (16)

where the Euclidean action, also known as the Wilson action,

S[U] = − β

2 ∑
x,μ<ν

Tr[Uμ(x)Uν(x + μ̂)U†
μ(x + ν̂)U†

ν (x)] (17)

is invariant under local gauge transformations

Uμ(x) → G(x)Uμ(x)G†(x + μ̂), G(x) ⊂ SU(2). (18)

We used the fact that the trace of any SU(2) group element is real. A straightforward
extension to the SU(N) gauge theory leads to

S[U] = − β

2N ∑
x,μ<ν

{
Tr[Uμ(x)Uν(x + μ̂)U†

μ(x + ν̂)U†
ν (x)] + c.c.

}
, (19)

with suitably generalised group elements Uμ(x).
By expanding the latter in powers of Aa

μ(x), taking β = 2N/g2 and turning to the
continuum limit of vanishing lattice spacing a → 0, one arrives at the standard expressions
for the action and gauge transformations in Euclidean spacetime

S =
1
2

∫
d4xTr[FμνFμν], Fμν = ∂μ Aν − ∂ν Aμ − ig[Aμ, Aν], (20)

Aμ(x) → G(x)Aμ(x)G†(x)− i
g

G(x)∂μG†(x), (21)

in terms of the field strength tensor Fμν and a gauge group element G(x). Here, the repeated
indices are summed over as usual.
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The formulation of the lattice gauge theory in Euclidean spacetime has quickly become
the cornerstone and the main reference for numerical analysis of basic characteristics of the
corresponding quantum field theory (QFT) in Minkowski spacetime (such as its low lying
spectrum and the static potential). This is due to the single most important fact that the
Euclidean formulation of the field theory is conveniently considered as a statistical (not
quantum) system whose analysis can be performed using the power of the lattice Monte
Carlo methods. For a detailed description of these methods, see, e.g., Ref. [79].

The Euclidean formulation is particularly designed for studies of QFT at finite tem-
peratures in equilibrium and works in Euclidean space with periodic time direction for
bosonic fields while fermion fields fulfil antiperiodic boundary conditions in the time
direction (for a recent review, see, e.g., Refs. [80,81]). A finite T theory is then constructed
from its zero-temperature counterpart by replacing bosonic and fermionic four-momenta
kμ in Euclidean integrals by 2πnT and (2n + 1)πT, respectively, and then switching from
kμ integration to summation over n. In a hot medium, an average momentum transfer
is given in terms of temperature, Q = 2πT. The study of thermodynamics and phase
transitions is performed in the Hamiltonian formalism starting from the thermal partition
function, and the “time” is Euclidean in the path integral formalism from the beginning
at any temperature. The order of the deconfinement phase transition in the Euclidean
SU(3) lattice gauge theory has been studied in this approach by Monte Carlo methods in
Ref. [82].

In the continuum limit, in order to obtain the Minkowski action of the corresponding
QFT starting from the thermal theory action in Euclidean spacetime, one conventionally
adopts the Wick rotation t → −it and A0 → iA0, relying on the analyticity property of
the vector-potential. Then, an assumption that a numerical simulation successfully set up
in Euclidean spacetime yields relevant results to the corresponding QFT in Minkowski
spacetime would be justified only for smooth transitions between short-distance to long-
distance physics enabling analytic (in physical time and in A0) continuations of amplitudes
from Minkowski to Euclidean spacetime and backwards. Indeed, such an assumption is
violated in the most general case as stated by the so-called Maiani–Testa no-go theorem [83]
related to the “failure” of the Wick rotation mentioned above. Indeed, when going out from
thermodynamics approaching the study of bound states, the Wick rotation is applicable
only to compute static characteristics of the QCD medium, such as vacuum condensates, as
well as masses of stable particles that are the minority of the QCD spectrum. Resonances,
such as the majority of mesons, charmed and stranged baryons, tetraquarks, pentaquarks,
and hadron molecules, are accessible in the Euclidean space only indirectly and only under
restrictive assumptions. For more details on the associated problems in the treatment of
two-particle systems, see Ref. [84], while a review on the status of three-particle systems
can be found, e.g., in Ref. [85].

A manifestation of non-analytic structures (domain walls) in the YM vacuum in physi-
cal time has also been discussed recently in the context of the non-stationary background
of expanding Universe in Ref. [46]. Such structures were found as attractor cosmological
solutions at sufficiently large physical times asymptotically matching the YM dynamics on
the Minkowski background. In the essence of the Maiani–Testa theorem, such non-analytic
(domain-wall) solutions found in the (nearly) Minkowski background would in general not
match the corresponding lattice simulations in Euclidean spacetime, so their implications
for confinement are unclear and should be studied separately. As long as such solutions are
concerned, one may conjecture that the Euclidean YM field theory predictions match those
in Minkowski spacetime only in regions sufficiently far away from the non-analytic phase
boundaries. This conjecture, however, requires further in-depth studies of the implications
of these novel solutions for confinement dynamics.

Another crucial limitation of Monte Carlo lattice simulations concerns the thermal
gauge theory with non-vanishing chemical potential. Indeed, the action becomes complex
if the temperature T and the chemical potential μ are both non-zero, meaning that standard
Monte Carlo methods fail in this case (for a thorough review on this issue, see, e.g., Ref. [86]).
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In particular, due to the sign problem, the lattice simulations of QCD at μB > 0 exhibit
difficulties in reproducing the quark-gluon plasma, as observed in heavy-ion collisions,
even under an assumption of the thermal equilibrium. The situation becomes even worse
when considering the nuclear matter in neutron stars or collapsing black holes at very
large densities in the curved spacetime. The way to proceed is to expand the pressure
in μB/T and calculate the physical observables as Taylor expansions in this quantity, see,
e.g., Ref. [87]. In practice, this requires calculating operators of high order, which are noisy
and require very large statistics [88]. Recently, an alternative summation scheme for the
equation of state of QCD at finite real chemical potential was proposed in [89], designed to
overcome those shortcomings. Using simulations at zero and imaginary chemical potentials,
the extracted LO and NLO parameters describing the chemical potential dependence of
the baryon density were extrapolated to large real chemical potentials. The proposed
expansion scheme converges faster than the Taylor series at a finite density, thus leading
to an unprecedented coverage up to μB/T ≤ 3.5 and to more precise results for the
thermodynamic observables.

4. Asymptotic Behavior of Large Wilson Loop VEVs

Different phases of a gauge theory are classified based on the behaviour of Wilson loop
VEVs at large Euclidean times compared to spacial separations, i.e., TE � R. Computing
those in Euclidean spacetime provides direct access to the interaction energy between
the static field sources in Minkowski QFT when the mass of the sources (and hence the
fundamental energy scale of a confining gauge theory) is taken to infinity. Introducing a
massive scalar field (a “scalar quark”) in an arbitrary representation r to the gauge theory
on the D-dimensional lattice, the corresponding action

S = − β

N ∑
p

ReTr[U(p)]− γ ∑
x,μ

(φ†(x)U(r)
μ (x)φ†(x + μ̂) + c.c.) + ∑

x
(m2 + 2D)φ†(x)φ(x) (22)

is invariant under the gauge transformation of the scalar field: φ(x) → G(x)φ(x), where
the link variable is U(r)

μ (x), and the gauge-field holonomy is U(p) for a given plaquette p.
Consider an operator that creates a particle–antiparticle pair in a colour-singlet state

at a given time TE and separation R,

C(TE) = φ†(0, TE)
[
ΠR−1

n=0 U(r)
i (nî, TE)

]
φ(Rî, TE), (23)

that also creates a colour-electric flux tube (or string) stretched between the charges. In the
limit of heavy static colour-charged sources, m � 1 in lattice units, the second term in
Equation (22) may be considered as a small perturbation, so the string-breaking effect can
be neglected to a first approximation. Indeed, as matter fields are very heavy in this limit, it
would take an infinite energy to pull them out of the vacuum and to place them on a mass
shell in order for them to bind to the sources and hence to screen their charge. This means
that one would stretch the flux tube to an infinite length before it can ever break apart,
which is, of course, an unrealistic but still useful picture to test the confinement property of
the quantum vacuum.

Thus, by integrating out φ in the functional integral, one finds for the VEV

〈C(TE)
†C(0)〉 ∼ Wr(R, TE), (24)

to the leading order in 1/m2 expansion, where

Wr(R, TE) = 〈Tr[U(r)U(r) . . . U(r)]C〉 ≡ 〈χr[U(R, TE)]〉 (25)

is the VEV of the Wilson loop written in terms of the time-like holonomy U(R, TE) of
the pure gauge theory. Here, the link variables run counter-clockwise on a time-like
rectangular contour C = R × TE, the group character is χr, and the sum runs over states
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with two static charges. In the continuum limit, the corresponding holonomy is given by
the path-ordered exponential

U(C) = P exp
[

ig
∮

C
dxμ Aμ(x)

]
. (26)

Therefore, the Wilson loop (holonomy) operator, in this case, represents a rectangular
time-like loop describing the creation, propagation and, finally, destruction of two static
quark and antiquark placed at certain fixed spacial points. The time-like links in a given
Wilson loop can thus be considered as the worldlines of static heavy charges.

On the other hand, in the operator formalism, one deduces that [3]

〈C(TE)
†C(0)〉 ∝ ∑

n
|cn|2eΔEnTE ∼ e−ΔEminTE , TE → ∞, (27)

where ΔEn is the energy of the nth excited state above the vacuum, and in the last part
of this relation, only the dominant contribution (at large TE) from the minimum-energy
eigenstate has been taken into account. In this case, ΔEmin = Vr(R) corresponds to the
energy difference between two static charges, being, in other words, the interaction (static)
potential between them Vr(R). Hence, the VEV of the rectangular Wilson loop

Wr(R, TE) ∼ e−Vr(R)TE (28)

is characterised by the potential V(R), which can be inverted as

Vr(R) = lim
TE→∞

log
[Wr(R, TE + 1)

Wr(R, TE)

]
. (29)

Now consider, for instance, a planar non-self-intersecting Wilson loop in the U(1)
gauge theory, and using the Stokes law, it can be written as

U(C) = exp
[
ie
∮

C
dxk Ak(x)

]
= exp

[
ie
∫

C
dSCFij(x)

]
, (30)

where the areal integration represents the magnetic flux and proceeds through the minimal
area of the large Wilson loop. Thus, due to the additive nature of the flux, such a planar
Wilson loop can be arbitrarily split into a product of smaller loops whose areas add up to
the one of the large loop

U(C) = Πn
i=1U(Ci). (31)

Here, the orientations of the smaller loops are chosen in such a way that neighbouring
contours run in opposite directions to each other. In the case of magnetic disorder, the mag-
netic fluxes through smaller loops Ci (e.g., plaquette variables, in the case of smallest loops)
are completely uncorrelated, such that the VEV factorises as

Wr(C) ≡ 〈U(C)〉 = Πn
i=1〈U(Ci)〉 = exp[−σr A(C)] , σr = − ln〈U(Ci)〉

A′ , (32)

where A and A′ are the larger and smaller Wilson loop areas, respectively.
Assuming the absence of light matter fields that could, in principle, screen the colour

charge of the massive sources, and considering a rectangular Wilson loop with C = R × TE,
the magnetically disordered state is characterised by the linear growth of the interaction
potential with distance R between the static charges asymptotically,

Vr(R) = σrR + 2V0, (33)

which represents a potential of a linear string. Here, V0 is interpreted as a self-energy
contribution, and σr has the meaning of the string tension in a given group representation
r that does not depend on the subloop area A′. For an illustration of the total potential
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interpolating small-R (Coulomb) and large-R (confining) regimes, see Figure 3. The area-
law for the Wilson loop VEV ∼ exp[−σr RTE − 2V0TE] is then reproduced for TE � R, as
expected, or for a generic contour enclosing a large minimal area A(C),

Wr(C) ∼ exp[−σr A(C)− V0 P(C)], (34)

including also a dependence on the perimeter of the contour P(C). Note, the gluon
propagator is singular in the UV regime in the continuum limit which generically induces
a singular term that is interpreted as a divergent self-energy V0 of the charged particles
and antiparticles propagating in the loop. The latter produces a perimeter-law contribution
to the large Wilson loop VEV in the above expression. Thus, usually, a kind of smearing
of the loop via a superposition of nearby loops is required to regularise the Wilson loop
in the continuum limit (see, e.g., Ref. [90]), while on the lattice, such a short-distance
regularisation is always implicit.

V (r)

r

linear part

Coulomb part

total

Figure 3. An illustration of the total static quark potential as a function of interquark separation.

It is straightforward to show that for any gauge group and D = 2, only a magnetically
disordered phase is realised, reproducing the area-law falloff due to the absence of a Bianchi
constraint on the components of the field strength tensor [91]. It is, however, a much harder
problem to prove the area-law falloff of large Wilson loop VEVs in a generic YM theory
with a non-trivial center symmetry, which represents the basic confinement problem (for
more details, see below). A remarkable property of a Wilson loop is that it characterises
vacuum fluctuations of the gauge field, i.e., without the presence of any external sources,

Wr(C) = 〈Ψ0|χr[U(C)]|Ψ0〉, (35)

with a space-like loop C in terms of the ground-state Ψ0 of the Hamiltonian of the pure
gauge theory. As the space-like and time-like loops are related by a Lorentz transformation,
one deduces that the potential energy of interaction between static charges is directly
connected to the gauge-field vacuum fluctuations in the absence of colour-charged sources.

In D > 2 lattice, the Bianchi constraint emerges that correlates the field strength values
at neighbour sites so that those no longer fluctuate independently from one point to an-
other [92]. The absence of those correlations among the smallest Wilson loops, the plaquette
variables, is the single most important requirement that provides the area-law relation for
Wilson loops of arbitrary sizes. For D > 2, such correlations disappear, and the area-law
is established in the strong-coupling limit only, i.e., in the leading order in β � 1. In the
weakly coupled regime β � 1 in D = 3 + 1 electrodynamics, this property does not hold,
and one recovers the massless phase instead with the potential [93]

V(R) = − g2(R)
R

+ 2V0, (36)

corresponding to a perimeter-law falloff of the Wilson loop VEV,
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W(C) ∼ exp[−V0 P(C)], (37)

where P(C) = 2TE for a rectangular loop C (with TE � R), while the coupling g(R) is a slow
function of R that approaches a constant in the Coulomb phase. In non-abelian theories,
the magnetically disordered phase has been established for sufficiently large Wilson loops
using the non-abelian Stokes law (see, e.g., Refs. [94–101]) and also employing a finite-range
behaviour of field strength correlators [102,103]. Let us now briefly discuss one of the most
distinctive features of long-range dynamics of QCD associated with Regge trajectories.

5. Regge Trajectories and QCD Strings

We have seen that the magnetic disorder phase manifests itself through a linear
dependence of the static potential, and this behaviour is inherent to that of a string. What
is the nature of such a “colour string” and how is it formed? Which phenomenological
implications do such strings may have?

In hadronic scattering processes, the t-channel exchanges of QCD resonances are
considered to be important at high energies. As suggested by quantum mechanics, a given
scattering amplitude can be represented as a series expansion in partial waves,

A(k, cos θ) =
∞

∑
l=0

(2l + 1)al(k)Pl(cos θ), (38)

in terms of the Legendre polynomials of the first kind and of order l, Pl(cos θ), the scattering
angle θ and the partial wave amplitudes al . For a 2 → 2 process and particles of equal
mass, for instance,

cos θ = 1 +
2s

t − 4m2 . (39)

Considering an exchange of a single resonance only, with spin l0 and at large s → ∞,
the amplitude behaves as A(s, t) ∝ sl0 , such that by means of the optical theorem, the cor-
responding total cross-section, σtot ∝ sl0−1. This result does not work very well against
the experimental data for an integer value of l0. The way out is to adopt that there are
several resonances being exchanged in the t-channel that should all be taken into account.
This is consistently done in the formalism of the Regge theory operating with an analyt-
ical continuation of partial amplitudes al to the complex angular momentum plane (for
a thorough discussion of Regge theory principles and applications, see, e.g., Ref. [104]).
The poles in this plane are traced out by straight lines known as Regge trajectories, l = α(t),
and are associated with particles. The squared mass of an exchanged resonance with
spin l corresponds to those t at which l is an integer. As a result of the Regge theory,
the asymptotic energy dependence of the scattering amplitude reads

A(s, t) → β(t)sα(t), s → ∞. (40)

As a striking feature of QCD that has not been observed, e.g., in the electroweak (EW)
theory, the Regge trajectories appear to be almost linear functions,

α(t) = α(0) + α′t, (41)

and one of the big questions is which dynamics could provide such a simple behaviour
confirmed experimentally. Namely, hadrons of a given flavour quantum number appear to
lie at almost parallel Regge trajectories.

It is clear that such a behaviour must be specific to confining dynamics of QCD.
Apparently, the potential that binds the quark and anti-quark together into a meson and
rises with the interquark separation linearly should be responsible for such behaviour. One
adopts the physical picture of a string stretched between q and q̄ as a narrow colour-electric
flux tube, which carries the energy E = σr, so that one can neglect the quark masses. For
simplicity, considering the leading Regge trajectory that maximises l at a given t, the flux
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tube of length r rotates about its center such that its end points move with the speed of
light, and

√
t =

∫ r/2

−r/2
dx

σ√
1 − v2

⊥
=

πrσ

2
, (42)

in terms of the string tension σ and the transverse velocity v⊥ = 2x/r. Analogously,
the angular momentum of such a system

l =
∫ r/2

−r/2
dx

σv⊥x√
1 − v2

⊥
=

πr2σ

8
, (43)

providing us finally with the Regge slope l/t = 1/2πσ ≡ α′ = const. The latter can be
extracted by fitting to the experimental data α′ � 0.9 GeV−2, yielding the string tension
value of σ � 0.18 GeV2 = 0.91 GeV/fm.

The fundamental question is how non-local string-like objects emerge from the lo-
cal microscopic parton (quark and gluon) dynamics in QCD. For some peculiar reasons,
the gluon field between a static quark and anti-quark gets “squeezed” into a narrow cylin-
drical domain, whose transverse area is nearly independent on the interquark distance—the
main effect of the magnetic disorder phase. In a colour-electric flux tube picture, the energy
stored in such a QCD string is proportional to the string tension σ that can be found in
terms of the colour electric field Ea

i ≡ Fa
0k as an integral over the transverse area of the flux

tube as [3]

σ =
1
2

∫
d2y⊥ (Ea

i (y))
2. (44)

Such a string then wildly fluctuates in transverse directions, and the energy of such
fluctuations tends to grow with the distance between the static sources. At some critical
distance, the strong fluctuations destabilise the flux tube making the longer strings less
energetically favourable than the shorter ones. So, instead of indefinitely (and linearly)
rising energy stored in a flux tube with its length, one encounters a string breaking effect
realised due to the presence of quarks in QCD or, in a general YM theory, matter fields
in fundamental representation of the gauge group. Let us elaborate on this point in some
more details in what follows.

6. Colour Confinement and Higgs-Confinement Complementarity

A traditional and rather generic question one may ask here is what we actually mean
by confinement in a gauge theory with and without matter fields that transform in the
fundamental representation of the gauge group. As was discussed above, in pure non-
abelian gauge theories without dynamical matter fields, the existing attempts to prove
confinement consist in demonstrating the area-law dependence of W(C), or equivalently,
in showing linear dependence of the static quark potential at large separations2. As we will
elaborate in more formal details below, confinement in a pure YM theory is associated with
an unbroken center symmetry. Thus, the non-perturbative vacuum of QCD or, in general,
a non-abelian gauge theory in the range of length-scales where the static potential satisfies
a linearly-rising behaviour is considered to be in a confined phase.

In the presence of dynamical quarks in the theory, there would not actually be a
linear static potential between heavy test quarks at asymptotically large R. Indeed, if one
attempts to pull them apart, one eventually observes a pair creation (out of the vacuum),
thus ending up with the formation of mesons at very large distances. In this picture, such a
dynamical quark–antiquark pair creation occurs at the ends of the two shorter strings at
the breaking point of the larger one such that the colour charge of the static charges gets
effectively screened off. Such a string breaking or fragmentation phenomenon in QCD causes
the flattening out of the static quark potential at large distances in consistency with the
Regge trajectories of QCD and with the vast phenomenology of particle physics processes
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with hadronic final states. Such a picture has become the cornerstone of hadronisation
modelling when long strings loose their stability and decay into shorter strings, yielding
the spree of hadrons measurable by experiments at long distances. As we will discuss
more later on, no exact center symmetry can be found in such a theory since it generically
gets broken by the presence of matter in fundamental gauge-group representation. There
are reasons to expect a finite range in intermediate distances where the potential could be
seen as approximately linear and hence string-like. Therefore, even as confinement is an
unquestionably useful way of thinking about the long-range physics of QCD, it is by far
a more complex phenomenon than an assumption about an asymptotically linear static
potential associated with unbroken center symmetry.

The phenomenological reality is that coloured quarks and anti-quarks at long distances
are always bind together into composite states—mesons and baryons—and do not exist as
isolated colour charges. This is realised in an effective string-based hadronisation picture
that is proven to work very well phenomenologically in a variety of high-energy scattering
processes with hadron final states (see below). The corresponding dynamics have been
studied in lattice gauge theory simulations in the strong-coupling regime when matter
fields are present in the action [105–107]. The resulting hadrons are automatically colour-
neutral and are the true asymptotic states of QCD not the coloured quarks and gluons.
Hence, sometimes QCD confinement is naively identified with colour confinement (also
known as C-confinement) due to the colour charge being effectively screened away at large
distances by dynamical matter fields such that the coloured partons may only propagate
at short distances. However, one must be a little more careful with such an identification.
If colour confinement were the only property of the confining phase, than typical Higgs
theories (such as the weak interactions’ theory in the SM) should also be considered as
confining [3], although they do not feature such phenomena as flux tube formation and
Regge trajectories [108,109]. This is why “true confinement” appears to be a more complex
phenomenon, and, in addition to C-confinement, it should also be connected to other
distinct properties of the quantum ground state, such as magnetic disorder associated with
an unbroken global symmetry [3]. It does appear indeed rather obvious that C-confinement
always accompanies the magnetic disorder phase, while the opposite may not necessarily
be always true [110].

Indeed, consider an even simpler SU(2)-invariant gauge-Higgs theory [111], with a
Yukawa-type interaction term that can be straightforwardly deduced from Equation (22).
Here, the confinement regime is reproduced for small β, γ � 1 characterised by the linear
rise of the static potential, followed by its flattening at large separations due to string
breaking. So, this regime is very similar to the long-range dynamics of real QCD. However,
at large values of β, γ � 1, one enters the Higgs regime characterised by the presence of
massive vector bosons, analogues to those in the EW theory. This is the so-called massive
phase characterised by a Yukawa-type potential for TE � R

V(R) = −g2 e−mR

R
+ 2V0, (45)

corresponding to a perimeter-law for a generic large planar loop C, W(C) ∼ exp[−V0P(C)]
with R � 1/m. In fact, in both confinement and Higgs (massive) regimes, the colour field
is not detectable far from its source. Indeed, while in the confinement regime, there are
only colour-singlets in the physical spectrum of this theory, in the Higgs regime, the gauge
forces are the short-range ones, such that one charge screening mechanism transforms
into another as the couplings change. This is due to the fact that the gauge-invariant
operators in the SU(2) theory that create colour-singlet states in the confinement domain
are also responsible for the creation of massive vector bosons in the Higgs domain (for an
early discussion on role of the EW theory operators for generation of particle spectra, see,
e.g., Ref. [108]), and those states evolve into each other with varying model parameters.
Whether this happens continuously or via a first-order phase transition is a subject of
ongoing research in the literature, which will be discussed below.
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Referring to the EW theory as a particularly important example one should be also
very careful about what one actually means by the Higgs phase and the associated Higgs
mechanism. Conventionally, the Higgs phase is described in terms of a Mexican-hat shape
potential emerging due to the formation of classical scalar fields’ (Higgs) condensates
in a weakly coupled regime and, as a cause, leading to the spontaneous breaking of a
given symmetry. While the gauge symmetry is manifest at the Lagrangian level, due to
its spontaneous breakdown by means of the Higgs condensate, it is not a symmetry of
solutions of the corresponding equations of motion. Note, however, that it is meaningless
to talk about the spontaneous breaking of a gauge symmetry without specifying a certain
gauge-fixing condition. Indeed, the Higgs vacuum VEV depends on the gauge choice that
we make in practical calculations and can be fixed to any value by an appropriate choice
of the gauge, while the actual physical observables and physical states must be gauge-
invariant and do not depend on this choice. The gauge symmetry SSB phase cannot be
regarded as a true physical system, provided that the gauge symmetries are redundancies
of description and cannot actually break spontaneously. The latter is the statement of
the so-called Elitzur’s theorem [112]. Indeed, according to this theorem, a local gauge
symmetry, in variance to less powerful global symmetries, can not break spontaneously
such that VEVs of any gauge-noninvariant observables must be zero.

In general, in a gauge theory with fundamental-representation matter fields such as
a gauge-Higgs theory, for instance, one typically does not expect to physically identify a
local order parameter that would distinguish between the Higgs and confinement phases
as qualitative descriptions of the corresponding field configurations. If there is no gauge-
invariant way to distinguish between these regimes than it would be justified to attribute
them to a single phase, as mentioned earlier. A discussion of this issue known as the
Higgs-confinement complementarity goes back to as early as the late 1970s and early 1980s.
In Refs. [109,113,114], by varying parameters in relatively simple lattice gauge-Higgs
theories with a global symmetry, analyticity over a set of observables has been rigorously
proven when going from a confining regime in the phase diagram to a regime characteristic
for the Higgs phase. Although at certain large values of β, such a phase boundary emerges
(see, e.g., Ref. [115]), one can find an analyticity line continuously connecting any two
points in the parameter space except γ = 03. In other words, in those models where this is
true, there would indeed be no thermodynamical phase transitions (or phase boundaries)
along this path that separate the two regimes, suggesting a possible existence of a single,
massive phase all along the phase diagram (see Ref. [3] for a more elaborate discussion).
Can this statement be applied only for some specific models or is it always true?

This important result, first obtained in specific models, was then conjectured by some
of the authors into a kind of “folk theorem” (also known as the Fradkin–Shenker–Banks–
Rabinovici theorem), stating that the corresponding conclusion is expected to be always
correct. Namely, if there is no local order parameter distinguishing different symmetry
realisations, one should probably expect the continuity of phases. There are many examples
where such a continuity has indeed been confirmed in simulations such as in transition
from low- to high-temperature QCD when turning from physics of dilute gas of hadronic
resonances to the physics of quark-gluon plasma (at low μB). Indeed, in the Euclidean
description of real QCD, there are certain reasons to believe that there is no thermodynamic
phase transition that separates these two regimes. However, as will be discussed below,
the analyticity conjecture may not actually be always true. As was argued in Ref. [58],
considering a discontinuity in a non-local order parameter, the Fradkin–Shenker–Banks–
Rabinovici theorem does not apply to models where a global symmetry is broken in the
same way in both the Higgs and confinement regimes, i.e., where the Higgs fields are
charged under global symmetries.

In fact, already in the string-breaking picture of hadronisation, by construction,
the gluon vector-potential cannot retain its analyticity and is inherently discontinuous in
the effective string-length (or string-time) scale as the string breaks apart, and no gluon
field is expected to retain between the daughter strings. Whether or not the observables
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still remain analytic upon such a string breaking is one of the big questions for confinement
models. One interesting example of the analyticity breakdown is associated with the notion
of “dense QCD” or QCD at large baryon chemical potentials in the phase with broken
U(1)B. We will elaborate on this aspect in the end of this review.

7. String Hadronisation and the Lund Model

One of the existing successful realisations of the string hadronisation picture is the
so-called Lund string fragmentation model [116] implemented in Monte Carlo event
generators widely used in the phenomenology of particle physics, such as Pythia [117,118].
It realises the basic picture of linear confinement described above, where a flux tube is
stretched between the colour-charged endpoints of the back-to-back qq̄ system that is
characterised by the string tension σ � 1 GeV/fm and the transverse size close to that
of the proton, rp � 0.7 fm. In the simplest formulation of the hadronisation model,
the quarks at the endpoints are assumed to be massless and to have zero transverse
momenta. As the energy transfers between the endpoint quarks and the flux tube, they
move along the light cone experiencing the “yo-yo”-type oscillations. As the quarks move
apart and pair-creation of dynamical qq̄ pairs is enabled, there is non-zeroth probability
for the initial “quark-string-antiquark” system to break up into smaller strings. For a
simple illustration of this phenomenon, see Figure 4. Ordering the newly produced
pairs as qiq̄i, with i = 1, . . . , n − 1, into a chain along the string, depending on the initial
energy of q and q̄, one eventually ends up with the production of a set of n mesons,
{qq̄1, q1q̄2, . . . , qn−2q̄n−1, qn−1q̄} moving along the x axis of the initial string. The qiq̄i
production vertices with coordinates (ti, xi) have a space-like separation, with no unique
time-ordering, satisfying the constraint that the produced ith meson must be on its mass
shell, i.e., σ2[(xi − xi−1)

2 − (ti − ti−1)
2 = m2

i ].
In a more elaborate formulation, quarks have mass mq, while the colour string wildly

fluctuates not only in longitudinal but also in transverse directions, and the amplitude
of those fluctuations tends to grow with the string length and may eventually desta-
bilise the system causing the string to break up. The transverse momenta p⊥ of the
(anti)quarks are then naturally incorporated by giving q and q̄ opposite kicks in the trans-
verse plane, with the mean square 〈p2

⊥〉 = σ/π ≡ κ2 � (0.25 GeV)2, such that the
produced meson receives 〈p2

⊥had〉 = 2κ2. The virtual (anti)quarks tunnel over a distance

m⊥/σ, with m⊥ =
√

m2
q + p2

⊥ the transverse quark mass, before they become on-shell,
and the tunnelling probability of the produced pair provides an extra Gaussian suppression
factor exp(−πm2

⊥/σ).

z

tqq

Figure 4. An illustration of the string hadronisation picture in the Lund model.

In the framework of the Lund model, a consistent selection of the produced DoFs is
performed according to the probability distribution [116],

f (z) ∼ (1 − z)a

z
e−bm2

⊥/z, (46)
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implying an equilibrium distribution of the production vertices on the string

P(Γ) ∼ Γa e−bΓ, (47)

where Γ = σ2(t2 − x2), a, b are free parameters, and z is the light-cone momentum fraction
carried away by a produced meson. The remaining (1 − z) part of the momentum is kept
by the string and is then redistributed among other mesons in its subsequent fragmentation.
Even though the hadron masses do not enter this approach directly, a good description of
the produced particle spectra can be reached with only a few free parameters.

More complicated qq̄gg . . . topologies can be introduced considering a gluon as a
state with separate colour and anticolour indices, well justified in the large-Nc limit [119].
The string then gets stretched between q and q̄ as usual, while each of the gluons attach at
intermediate points along the string respecting the colour flow that goes in and out of each
gluon. Notably, the fragmentation procedure of such a string does not require any extra
free parameters [120]. The fact that there is no string that connects q and q̄ directly in this
case leads to asymmetries in the produced particle spectra in consistency with experimental
observations [121]. At last, baryon production can be conceptually tackled by enabling a
diquark–antidiquark breaking, e.g., via sequential qq̄ production stages (for more details
on this mechanism, see, e.g., Refs. [122,123]).

8. Gauge Symmetry Remnants and Confinement Criteria

Due to the Elitzur’s theorem [112] described above, the phases of a gauge theory
cannot be distinguished by means of the breaking of any local gauge symmetry. Thus,
there must be an additional, global symmetry whose breaking enables us to identify those
phases, at least, when a local order parameter is concerned. In the Ising model, the role of
such a global symmetry is played by the Z2 symmetry as we have noticed earlier. Fixing
a covariant gauge, in general, does not eliminate the gauge freedom entirely but leaves
certain remnant (both dependent and independent on spacetime coordinates) symmetries
that can in principle get spontaneously broken since the Elitzur’s theorem does not apply
to those.

One of the examples of a possible confinement criterion known as the Kugo–Ojima
condition [124,125] states that the full residual gauge symmetry in the Landau gauge
∂μ Aa

μ = 0 must remain unbroken in order to ensure that the expectation value of the colour
charge operator 〈ψ|Qa|ψ〉 vanishes in any physical state ψ. The spacetime-dependent
(but global) part of such a full residual gauge symmetry w.r.t. gauge transformations
Aμ → GAμG† in the Landau gauge is known to take the following form [126,127]

G(x) = exp
( i

2
Ξa(x)σa

)
, (48)

where

Ξa(x) = εa
μxμ − g

1
∂2 (Aμ × εμ)a +O(g2), (49)

in terms of a finite number of arbitrary parameters εa
μ, and the SU(2) gauge coupling

constant g. Besides, for confinement to hold yet another spacetime-independent part
of the full residual gauge symmetry is required to be unbroken in addition to that in
Equation (48). An analogical criterion of confinement has also been formulated in the
Coulomb gauge [128,129].

Thus, according to the Kugo–Ojima and Coulomb confinement criteria, the phase
boundary between the confining and de-confining regimes of a gauge theory is associated
with the boundary between the unbroken and broken full (x-dependent and independent)
remnants of the gauge symmetry in Landau and Coulomb gauges, respectively. However,
a problem highlighted by lattice simulations and demonstrated in Figure 5 is that these
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criteria predict transitions between confinement and deconfinement phases where actually
no such transitions appear in the exact numerical analysis [130].
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Figure 5. Phase boundaries of global gauge symmetry breaking obtained in Landau gauges and in
the gauge-invariant approach in the SU(2) gauge-Higgs theory, along with the sharp crossover line
at β > 2. The figure is taken from Ref. [131].

Different remnant symmetries emergent in different gauges break at different values
of the couplings, so the resulting phase boundary is in fact gauge-dependent and might
indeed emerge even when there is no actual change in the physical state of the system [130].
In order to distinguish a confining state from a non-confining one, one should instead
come up with a gauge-invariant criterion whose violation would indicate a true boundary
between the magnetic order and disorder states that is the same in any gauge. As was
discussed earlier, there is no such criterion in a gauge-Higgs theory. This might indicate that
there is no such gauge-invariant separation of phases that can be attributed to a spontaneous
breaking of a given symmetry, and the system is in the massive phase characterised by the
string-breaking effects and a perimeter-law behaviour of Wilson loop VEVs [3].

There are compelling reasons to believe that the same picture is realised in QCD at very
large separations, supported also by lattice simulations. In the gauge-Higgs theory, only in
the limit of Higgs decoupling, γ = 0, the state of magnetic disorder emerges, as indicated by
the area-law falloff of large Wilson loops at arbitrary large spacetime separations. The same
occurs in the infinite quark mass limit in QCD such that it takes an infinite amount of
energy in order to put an infinitely heavy quark–antiquark pair on its mass-shell from the
vacuum such that the area-law persists to arbitrarily large string lengths.

9. Center Symmetry

So, when one talks about the true (gauge-invariant) separation of phases, one implies
a strong first-order (non-analytic) phase transition between the magnetic order (massive)
and disorder states that exists at a well-defined (unique!) combination of model parameters
in any gauge. Such non-analytic behaviour is associated with a spontaneous breaking of
a certain symmetry, and, to comply with the Elitzur’s theorem [112], such a symmetry
must be global. This type of a symmetry exists and is called the center symmetry—a specific
subgroup of a given gauge symmetry group, which is defined as a subset of the gauge
group elements that commutes with all the elements of the gauge group. For instance,
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the center of the SU(N) gauge symmetry group is its ZN subgroup {exp 2πin/N 1̂N},
with n = 0, . . . , N − 1.

Each of an infinite number of SU(N) representations can be separated into N possible
subsets or N-alities depending on the corresponding representation of ZN (there are only N
of those). Hence, each SU(N) representation is characterised by the N-ality k that is found
as the number of boxes in the associated Young tableau mod N. In other words, N-ality
reflects how a given representation transforms under the center symmetry subgroup of the
gauge group. For instance, if for a matrix representation M[g] of an SU(N) group element
g, M[zg] = zk M[g] for a center ZN element z, one says that g belongs to a representation
of N-ality k (for a more detailed pedagogical discussion, see, e.g., Ref. [3]). In the lattice
formulation, one could show that the action (19) of a pure gauge theory is invariant under
the time-like link transformation

U0(�x, t0) → zU0(�x, t0), z ⊂ ZN , (50)

on a fixed time slice t = t0. This transformation is a particular case of the singular gauge
transformation defined on a time-periodic lattice with a period Lt as

U0(�x, t) → G(�x, t)U0(�x, t0)G†(�x, t + 1), (51)

where G(�x, t) is a periodic function up to a center symmetry transformation, i.e.

G(�x, Lt + 1) = z∗G(�x, 1) , (52)

that also leaves Wilson loops invariant on the lattice. Such a transformation corresponds to
an “almost” gauge transformation in the continuum limit,

Aμ(x) → G(x)Aμ(x)G†(x)− i
g

G(x)∂μG†(x), (53)

where the second term is dropped for t = Lt and for μ = 0 when it turns into a delta-function.
Matter fields in the fundamental representation of the gauge group SU(N), or any

other fields with N-ality k �= 0, break the center symmetry ZN explicitly if they are not
decoupled from the theory—such as the Higgs field for a non-zero coupling γ in the
example discussed above or the quark sector of real QCD (with k = 1) with finite quark
masses. Such a breaking, which is also a necessary ingredient of the string hadronisation
model (see above), causes the static potential to flatten out instead of growing linearly at
asymptotically large distances as the matter fields are, in fact, responsible for the string
breaking phenomenon. Gluons or other particles in the adjoint representation having
N-ality k = 0 do not break the center symmetry so they cannot screen the colour charge of
a static source if the latter has a non-zero N-ality. A well-known exception is the G2 gauge
symmetry, which has a trivial center subgroup, with a single unit element only, such that
the gluons can bind to any source producing a colour-singlet state.

An important criterion of confinement is thus associated with the unbroken center
symmetry in a pure YM theory, implying an asymptotically and infinitely rising static
quark potential and signalling the area-law falloff of large Wilson line VEVs and hence the
presence of the magnetic disorder state. The center symmetry can also be spontaneously
broken by thermal effects, i.e., at high temperatures, in pure YM theories, causing the same
effect of flattening out the static potential asymptotically as that of the matter fields. Other
possible sources of the center symmetry breaking should also be considered in order to
reconstruct a full picture of phases in the underlined gauge theory.

26



Universe 2021, 7, 330

10. Polyakov Loop

Consider a finite (in space) lattice that is periodic in time. Such a lattice is used,
in particular, in quantum statistical mechanics at finite temperatures T, where the partition
function reads

Z = ∑
n
〈n| exp(−βT H)|n〉, βT =

1
T

. (54)

In the continuum limit of a field theory and in Euclidean time TE, the latter generalises
to a path integral

Z =
∫

Dφ(x, 0 ≤ TE < βT)e−S, (55)

where the periodic boundary condition in time φ(�x, 0) = φ(�x, βT) is imposed through an
implicit delta-function. Upon lattice regularisation, the temperature is related to the lattice
period in time Lt as T = 1/(Lta), with a being the lattice spacing as usual, and hence,
βT = Lta is the total time extension of the lattice.

While neither the gauge-field action nor Wilson loops are affected by the ZN center
symmetry transformation (50), the trace of the following holonomy winding in time around
the periodic-time lattice, known as the Polyakov loop [132],

P(�x) = TrΠLt
n=1U0(�x, n), (56)

is ZN non-invariant, i.e., it transforms as P → zP. In the continuum limit, one can represent
the Polyakov loop holonomy as follows

P(�x) = P exp
(

i
∫

dtA0(�x, TE)
)
= S diag

[
e2πiμ1 , e2πiμ2 , . . . , e2πiμN

]
S−1, ∑

j
μj = 0, (57)

in terms of an SU(N) matrix S(x) that diagonalises P(�x).
One can show that in the case of P(�x) being a center element, all μj are equal, and

such a holonomy determines the finite-temperature classical instanton solutions known
from Refs. [133,134]. In fact, in center-projected configurations that will be discussed below,
the Polyakov loop holonomies P(�x) are the only center elements. In general, the Polyakov
loop is non-trivially charged under ZN , meaning that its expectation value plays a role of an
order parameter for the spontaneous breaking of the center symmetry. Hence, the Polyakov
loop is yet another important characteristics of the confined (magnetic disorder) phase
of the gauge theory, and vacuum fluctuations of the gauge field are responsible for the
formation of this phase and in some ways are associated with the center symmetry.

Indeed, a difference between free energies of two states, one containing a single iso-
lated (heavy) static charge q and the other one defined in a pure gauge theory is as follows

e−βT Fq =
Zq

Z
∝ 〈P(�x)〉, (58)

which is obtained by integrating out the massive quark field (in the m → ∞ limit) in the
path integral for Zq over the period of the lattice 0 ≤ TE < βT . Indeed, Fq for a single quark
q would be infinite if 〈P(�x)〉 → 0, i.e., in the case of unbroken center symmetry. At high
temperatures (small βT), the center symmetry is in general spontaneously broken such that
the isolated charges are described by finite-energy states (deconfining phase). A magnetic
disorder-to-order phase transition associated with thermal breaking of the center symmetry
is expected to occur at a critical temperature [135].

11. t’Hooft Loop and Center Vortices

The singular gauge transformation in the continuum limit (53), unlike the ordinary
center symmetry transformation, leaves the action non-invariant. As a result of such a
transform, a singular loop of magnetic flux, the so-called thin center vortex, is being created.
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For instance, as was mentioned earlier, the holonomy for a closed space-like loop C in the
U(1) gauge theory

U(C) = eieΦB (59)

is given in terms of the magnetic flux ΦB through the loop. For a loop winding around a
solenoid oriented along the z-axis, it is possible that ΦB �= 0 even for a zeroth magnetic field
along the closed loop, which can be obtained as a result of a singular gauge transformation
applied to Aμ = 0 with a discontinuous G(x). If in cylindrical coordinates {r, θ, z, t},
the corresponding transformation function G has a discontinuity in θ for r > 0, then

U(C) → e±ieΦB U(C), (60)

where exp(±ieΦB) is an element of the U(1) group, the sign ± depends on the orientation
of the loop C, such that a singular line of magnetic flux (thin vortex) is produced along the
z-axis. Instead of the z-axis, one could introduce yet another closed contour C′ topologically
linked to C such that the singular gauge transformation operator G that creates a magnetic
flux along C′ would satisfy

G(�x(1)) = e±ieΦB G(�x(0)) (61)

on the contour C′ determined by the parametric equation �x = �x(ξ), with ξ = [0, . . . , 1],
such that �x(1) = �x(0) belong to a surface bounded by C′. Upon such a transformation,
a Wilson loop C linked to C′ appears to transform as in Equation (60). The winding number
is defined as the number of times a loop goes around a fixed point in D = 2, while in D = 3,
such a topological invariant generalises to the so-called linking number that determines the
number of times two loops can wind around each other. This can be generalised further
on for D dimensions where a loop C links to a D − 2 hypersurface C′ on which a (D − 2)-
dimensional thin vortex is created by the corresponding singular gauge transformation,
which is discontinuous in the D − 1 (Dirac) region bounded by the D − 2 hypersurface.

Switching over to the SU(N) YM theory, the U(1) group element that multiplies a
transformation operator in Equation (61) should be replaced by a center-group ZN element

G(�x(1)) = zG(�x(0)), U(C) → (z∗)lU(C), (62)

in order for such a transform to create a thin vortex (and hence to affect the action) on the
(D − 2)-dimensional hypersurface only and not on the Dirac D − 1 region that it envelops.
Above, the space-like Wilson loop C is topologically linked to the (D − 2)-dimensional thin
vortex, with the corresponding linking number l. Upon quantisation of the non-abelian
magnetic flux, its quanta are known in the literature as the thin center vortices, while a
regularisation of the singular colour-magnetic field by smearing it out in the transverse
directions to the (D − 2) hypersurface leads to a vortex with finite thickness or a thick center
vortex. For a more detailed description of the vortex configurations and properties, see,
e.g., Ref. [3] and references therein.

Consider an operator B(C) that creates a thin center vortex at a fixed time t0 along
a given loop C in a D = 3 + 1 gauge theory [136]. If C and another closed loop C′ are
topologically linked (with l = 1) in a three-dimensional surface, then

B(C)U(C′) = zU(C′)B(C), z ⊂ ZN , (63)

is valid. In this case, the operator B(C) is known as the t’Hooft loop. As was demonstrated in
Ref. [136], the VEV of a Wilson loop W(C) ≡ 〈U(C)〉 and a t’Hooft loop 〈B(C)〉 may satisfy
either perimeter-law or area-law falloffs but not simultaneously. Indeed, the confined
(magnetic disorder) phase corresponding to an unbroken center symmetry is realised when

W(C) ∼ e−aA(C) ⇐⇒ 〈B(C)〉 ∼ e−bP(C) , a, b > 0, (64)
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while the opposite case,

W(C) ∼ e−a′P(C) ⇐⇒ 〈B(C)〉 ∼ e−b′A(C) , a′, b′ > 0, (65)

implies a spontaneously broken center symmetry (magnetically-ordered phase). Indeed,
the Wilson and t’Hooft loop operators can be considered dual to each other as the first one
creates a closed loop of the colour-electric flux, while the second one creates a closed loop
of the colour-magnetic flux (thin center vortex) at a fixed time t in both cases.

One could introduce a vortex on a finite lattice in D = 4 by replacing U(p′) → ξU(p′)
for a given plaquette p′ in the SU(N) gauge-field action [137]

S = − β

2N

[
∑

p �=p′
(Tr[U(p)] + c.c.) + (Tr[ξU(p′)] + c.c.)

]
, ξ ⊂ ZN , (66)

U(p′) = U1(x0, y0, z, t)U2(x0 + 1, y0, z, t)U†
1 (x0, y0 + 1, z, t)U†

2 (x0, y0, z, t), (67)

which can be viewed as a change in the periodic boundary conditions, also referred
to as twisted boundary conditions. Such a change creates a thick center vortex on the
lattice parallel to (z − t)-plane, satisfying the ordinary periodic boundary conditions in z, t
coordinates.

In the simplest case of SU(2) gauge symmetry, the (magnetic) free energy of a Z2-
center vortex Fm can be found as

e−Fm =
Z−
Z+

(68)

in terms of the partition functions with ordinary and twisted boundary conditions, Z+ and
Z−, respectively, while the free energy of the closed colour-electric flux Fe is

e−Fe = 1 − e−Fm . (69)

It was shown in Ref. [138] that the VEV of a rectangular Wilson loop C with area A(C)
is bounded from above as

W(C) ≤ [exp(−Fe)]
A(C)/(Lx Ly) . (70)

A sufficient condition for the existence of a magnetic-disorder phase, and hence
confinement, in terms of the behaviour of the magnetic vortex free energy then reads

Fm ∼ LzLte−κLx Ly , (71)

i.e., it falls off exponentially at a large LxLy area, such as exp(−Fe) � Fm � 1. Indeed,
the latter limit, together with Equation (70), implies an area-law upper bound for a large
Wilson loop and, hence, the asymptotic string tension. In Ref. [139], it has been pointed out
that quark confinement emerges from a vortex condensate supported by the mass gap.

12. Fundamental Properties of the String Tension

One of the fundamental characteristics of confinement is an non-vanishing asymptotic
string tension or, equivalently, the asymptotic linearity of the static potential [3,4]. As was
proven in Ref. [140], the potential is always convex and is saturated by a straight line from
above. At not too large distances, the string tension for a quark in a given representation r
of the gauge group interacting with an antiquark can be approximated as

σr =
Cr

CF
σF. (72)

This is the property known as the Casimir scaling, which is strictly valid in the large-N
limit. Here, σF is the string tension for the defining (fundamental) representation. Such
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a scaling can be proven in a two-dimensional theory and then to a good precision can be
found also in 4D by means of the dimensional reduction [141], supported also by numerical
simulations [142]. For a more recent analysis of the Casimir scaling in the D = 2 + 1
SU(N) theory in the vortex picture, see Ref. [143]. Asymptotically at very large distances,
the Casimir scaling does not hold (apart from N = 2 and large-N cases) and can be effective
at intermediate distances only.

The dimensional reduction is a specific (approximate) property of the quantum state of
the theory Ψ0[A] emergent at large length-scales. According to this property, a calculation
of the VEV of a large Wilson loop W(R, T) in the fundamental representation in a D = 4
gauge theory can be sequentially reduced to that in a D = 3 theory [144,145] and then
down to a D = 2 case [91]. In this case,

W(R, T) = 〈Tr[U(C)]〉D=4 ≡ 〈Ψ0|Tr[U(C)]|Ψ0〉 � 〈Tr[U(C)]〉D=3 � 〈Tr[U(C)]〉D=2 = e−σA(C), (73)

where the last relation corresponds to the fact that in D = 2, the Wilson loop VEVs obey
an area-law falloff. For this property to hold in the strong coupling limit, the vacuum
functional should take the same form in D = 2, 3, 4 at large length-scales:

Ψ0[A] ∝ exp
[
− 1

4g2
eff

∫
d3x Tr[F2

ij]
]
. (74)

Note that this form can not be correct at short distances in PT, so it should be regarded
as an approximate and generically valid in the non-perturbative regime only. It is also not
correct for Wilson loops in the adjoint representation, which follow a perimeter-law, due
to the colour screening effect. An elaborate form for the vacuum functional that matches
both the dimensional reduction form and the correct free-field limit has been proposed
in Ref. [146] predicting the glueball mass spectrum in D = 2 + 1 in consistency with the
lattice calculations. For other proposals, see, e.g., Refs. [147–151].

Another fundamental property of the string tension, presumably closely related to
confinement, is the observation that the string tension depends only on the N-ality of the
gauge group representation. For static quarks in the adjoint representation, for instance,
gluons screen their charges at large distances, causing the string to break at separations
R satisfying 2E < σAR, where E is the gluonic energy of the produced “gluelump” state,
and σA = CA/CFσF is the string tension in the adjoint representation valid at intermediate
distances. For numerical studies of the adjoint string tensions, see, e.g., Ref. [152]. While
the precise form of the N-ality dependence is not known, there are several models widely
used in the literature. Among them, for instance, the “Casimir scaling” proposal assumes
that the string tension for the lowest dimensional representation (k-string tension) behaves
asymptotically for the SU(N) gauge theory as

σr =
k(N − k)

N − 1
σF. (75)

If the true confinement phenomenon implies the formation of an electric flux tube in
the form of a quantum Nambu-like string, typical predictions of the string model, such
as subleading deviations from linearity of the potential as well as the spectrum of string
excitations, should find their evidence in a first principle analysis of the confining gauge
theories. In particular, one such prediction is a subleading 1/R correction term to the static
quark potential emerging due to transverse fluctuations of the string known as the Lüscher
term [153,154]

V(R) = σrR − π(D − 2)
24

1
R
+ const. (76)

such that the VEV of a large rectangular Wilson loop can be generically parameterised as

Wr(R, TE) = exp[−σrRTE + τ(R + TE)− ξ(TE/R + R/TE) + η], (77)
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where the second term in the exponent is a self-energy contribution that diverges in the
continuum limit, as was mentioned above. On the lattice, one may extract the asymptotic
string tension σ as the following ratio computed at large loop areas

− log
[W(R, TE)W(R − 1, TE − 1)

W(R − 1, TE)W(R, TE − 1)

]
→ σ for RTE → ∞, (78)

known as the Creutz ratio.
Another property of the Nambu string is that the cross-section area of the string

grows logarithmically with the quark separation, the effect known as roughening [155,156].
An agreement with Nambu string model predictions was found earlier in the analysis of
closed string excitations in the D = 2 + 1 SU(N) gauge theory in Ref. [157].

13. Center Vortex Mechanism of Confinement

The center vortex mechanism of confinement is strongly supported by the fact that
the static potential slope depends only on the N-ality, while N-ality zero (or adjoint) string
tensions vanish at asymptotically large distances. Furthermore, when adopting a picture
of a pair creation of particles out of the vacuum at a certain distance causing the string to
break, one implies a microscopic perturbative language of particle states in a particular
configuration. While an extrapolation of perturbative particle states towards large distances
may not necessarily work out well in confining theories, an effective particle picture of
string breaking is still considered to adequately reflect the reality, at least qualitatively.
In proper path integral computations, one sums over all possible field configurations that
should provide the same result for the gauge-invariant observables (such as Wilson loop
VEVs) as the phenomenologically successful effective particle picture of the string breaking.
Ultimately, one would like to find out how the vacuum field fluctuations induce N-ality
dependence of the asymptotic string tension and describe colour screening of the static
sources [3].

While instantons [158] are saddle points of the classical gauge-field action, vortices are
interpreted to be saddle points of the effective one-loop action [159,160] that incorporates
the vacuum polarisation effects, and hence have a pronounced fundamental meaning (see
also Ref. [4]). Fluctuations of center vortices that can be identified as solitonic objects
in typical field configurations are known to give rise to an area law of Wilson loops.
A remarkable property is that Wilson loops in different representations but with the same
N-ality get the same contributions from center vortices, while loops of N-ality zero are
not affected. This follows from the simple fact that the creation of a vortex linked to the
loop C affects the loop holonomy of a given N-ality k as U(C) → zU(C) and its VEV as
Wr(C) → zkWr(C) for z from the center group ZN of SU(N).

In a more generic case, consider a set of vortices linked to a given loop C, with linking
numbers l1,2,3,... having the center elements z1,2,3,.... Then, the creation of this set modifies
the Wilson loop VEV as Wr(C) → Zk(C)Wr(C), where Z(C) = zl1

1 zl2
2 zl3

3 . . . . In the vortex
picture of confinement [136,159,161,162] (see also Ref. [3] and references therein), the
gauge-field vacuum configuration is considered to be a set of vortices superimposed on
a non-confining configuration. Then random fluctuations in a number of vortices in the
system as well as in their linking numbers to a given Wilson loop C induces the area law
dependence of the corresponding Wilson loop VEV. The loop holonomy can be represented
in a factorised form U(C) = Z(C)u(C), where u(C) is a contribution from a non-confining
background, and Z(C) ⊂ ZN is a center-valued holonomy. Then, the vortex mechanism
implies the factorisation of the Wilson loop VEV

〈χr[U(C)]〉 � 〈Zk(C)〉〈χr[u(C)]〉 � exp[−σr A(C)] exp[−μrP(C)]. (79)

A detailed proof relies on a weak correlation between Z(C) and U(C), as well as
between Z(C1) and Z(C2) for any large loops C, C1,2, and can be found for instance in
Ref. [3]. It manifestly demonstrates that the string tension computed for smaller loops is
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the same as that for the larger ones provided that the above assumptions hold and Z(Ci)
experience independent fluctuations.

Numerical estimates [163] suggest that the thickness of the vortex is close to one fermi,
so, in principle, the Wilson loops with an extension below this scale may get affected.
As was demonstrated in Refs. [164,165], such a vortex thickness plays an important role for
generating the Casimir scaling at intermediate distances. At large distances dominated by
large Wilson loops, the N-ality dependence of the linear static potential is reproduced as
expected. From this point of view, vortices are non-local objects that represent specific field
configurations that lead to an asymptotic string tension as a function of N-ality.

The link configurations Uμ(x) = g(x)zμ(x)g−1(x + μ̂) that produce Z(C) holonomies
can be transformed into the link configurations zμ(x) of the ZN lattice gauge theory respon-
sible for confinement by means of a specific SU(N) gauge transformation g(x). The thin
vortices then have a meaning of excitations of the center-group ZN lattice gauge theory.
The original link variables Uμ(x) get separated into a product of center elements zμ(x),
and the link variables of the non-confining background Vμ(x) by the g(x) transform

Uμ(x) = g(x)zμ(x)Vμ(x)g−1(x + μ). (80)

The main aim of the vortex mechanism of confinement is to find a specific g(x) for a
given non-confining background Vμ(x), typically assumed to be a small fluctuation about
the unity. Locations of center vortices can then be extracted from zμ(x) after the above
factorisation U → zV has been performed [166]. One such g(x) transforms the DoFs into a
specific gauge known as the direct maximal center gauge where the deviation of the links
in the adjoint representation from the identity matrix is minimal, or where the quantity

K = ∑
x,μ

Tr[UA
μ (x)] = ∑

x,μ
Tr[Uμ(x)]Tr[U†

μ(x)]− 1, (81)

with the adjoint link UA
μ (x) is maximal. Locations of center vortices can then be extracted

in a dedicated Monte Carlo procedure from the identified center elements zμ(x) once the
center mapping (projection) Uμ(x) → zμ(x) has been performed. If the product Z(p) of
zμ(x) on the projected ZN lattice around a plaquette p satisfies Z(p) �= 1, a thin vortex (or
P-vortex) is then located on that plaquette. The vortex picture of confinement then reduces
to a consideration of P-vortices as random surfaces percolating through the spacetime
volume. Uncorrelated piercings by the P-vortices on a given planar surface correspond to
uncorrelated large center-projected loops. The numerical procedures, however, may fix
the projected lattice to only one out of a large amount of local maxima of the gauge-fixing
functional K known as the Gribov copies [167], not straight to its global maximum, which is
considered to be a problem in several widely used center-gauge fixing approaches.

The problem of Gribov copies is one of the main obstacles for a consistent treatment
of the confinement problem. Considering a set of gauge-equivalent configurations of the
gauge field known as a gauge orbit and imposing a gauge-fixing condition as a certain
hypersurface in a space of gauge field configurations, the Gribov copies can be visualised
as many possible intersections of the gauge orbit with the gauge-fixing hypersurface.
Summing over all contributions from Gribov copies in a path integral, the latter may
actually vanish since those contributions come with opposite signs and may mutually
eliminate each other in a given observable. This is the statement of the Neuberger’s
theorem [168] rendering BRST quantization not well defined in the non-perturbative regime
of a gauge theory (see a detailed discussion in Ref. [3]). One possibility is to restrict the
functional integral to a subspace of gauge configurations with a positive Faddeev–Popov
determinant, the so-called Gribov region, and its boundary also containing the lowest
non-trivial eigenmode with zeroth eigenvalue is called the Gribov horizon. An instructive
example of such a hypersurface restricted to the Gribov region is the Landau gauge fixing
condition that minimises the functional
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R = −∑
x,μ

ReTr[Uμ(x)], (82)

such that the corresponding Gribov region consists of all possible minima of R = R[A] for a
given gauge orbit. However, various gauge orbits might cross the Gribov region a different
number of times leading to different weights assigned to different gauge orbits. A proposal
to consider only unique global minima of R[A] functional for each gauge orbit [169] may be
very difficult to realise in practical calculations. Furthermore, there is no reason to believe
a particular Gribov copy with the global minimum for R[A] is more physical than other
local minima. Lattice procedures, in general, assume that a particular choice of a Gribov
copy would not make a big difference on the numerical results.

In order to establish a direct connection between the existence of P-vortices and a mag-
netically disordered phase, following the reasoning of Ref. [3], let us first consider whether
the center-projected Zμ(x) link variables (extracted, for instance, in a maximal center gauge)
are responsible for the confinement. For this purpose, it is instructive to consider the VEV
of the rectangular R × TE Wilson loop, W(R, TE), defined in Equation (77). If such a loop
is constructed from Zμ(x) links on a center-projected lattice, the corresponding Creutz
ratio (78) appears to converge much faster to σ than for the unprojected Wilson loop VEV.
Already at R = 2, the static potential becomes linear—the property of the so-called preco-
cious linearity. The fact that the asymptotic string tensions extracted from center-projected
and unprojected Wilson loop VEVs at large R are the same is known as the center dominance.
There is also an excellent agreement of the Creutz ratios on the center-projected lattice with
the well-known predictions of the asymptotic freedom for large β (small gauge couplings).

A slow convergence of the Creutz ratio (78) to the string tension at large R in the
unprojected case means that we deal with thick vortices linked to large Wilson loops here.
The center projection effectively shrinks the thickness of the vortices down to a single lattice
spacing, so the linking appears to be relevant already for small center-projected loops.
Indeed, as was deduced earlier, P-vortex piercings are totally uncorrelated on a planar
surface already causing the linearity of the potential at small distances. One naturally
wishes to establish that each thin P-vortex in the projected configurations matches a thick
center vortex in an unprojected lattice in order to prove that the P-vortices do not carry
artefacts of the gauge fixing procedure and indeed are responsible for the underlined
physics of magnetic disorder (and hence confinement).

As thoroughly described in Ref. [3], one way of proving the relevant correlation of
P-vortices with gauge-invariant observables (unprojected Wilson loops) is to compute a
so-called vortex-limited Wilson loop VEV defined as an expectation value of an ordinary
unprojected loop holonomy Wn(C) but taken in the ensemble of configurations where
the minimal surface area of the loop is pierced by n P-vortices. Then, considering for
simplicity the SU(2) theory, if the ratios asymptotically behave as Wn(C)/W0(C) → (−1)n

provided that 〈Z(C)〉 = (−1)n (−1 per each vortex piercing), then the procedure of finding
thin P-vortices on the center-projected lattice effectively locates thick center vortices on
the unprojected lattice. This, indeed, has been confirmed by lattice simulations, see,
e.g., Ref. [170].

Another test proposed in Ref. [171] suggests to insert a thin vortex found by the center
projection operation into a thick vertex on the unprojected lattice and then to check if their
disordering effects, due to center dominance, cancel out asymptotically at large distances.
Indeed, an explicit calculation shows that this procedure eliminates the string tension and
hence the disorder effect. It was also checked in Ref. [172] that the P-vortex density is
independent on the lattice spacing in the continuum limit, as expected for physical objects.
An additional observation of Ref. [173] revealed that the continuum action density appears
to be singular at the location of P-vortices, which, together with their constant density,
signals an intricate cancellation between action and entropy at a surface of infinite action
associated with a vortex.

As was discussed above, at finite temperatures T in a time-periodic lattice, the
Polyakov loop VEVs determine the quark free energy Fq. In the SU(2) gauge theory,
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at T > Tc = 220 MeV, a deconfinement transition occurs when Fq becomes finite and the
static quark potential goes flat. However, even at large T > Tc, space-like Wilson loops
retain their area-law falloff such that vacuum fluctuations inherit some of the key properties
of the confined phase.

This observation fits well with the center-vortex mechanism of confinement [3]. At low
T, due to uncorrelated piercings of the minimal loop areas, one finds 〈P(�x)〉 = 0 and
an exponential falloff of the Polyakov loop correlators for large interquark separation
〈P(�x)P(�x + �R)〉 ∼ exp[−σ(T)LtR], with σ(T)—the T-dependent string tension of a flux
tube stretched between q and q̄. Since the vortices running in space-like directions have a
finite diameter, as the temperature rises, they get squeezed by the reduced finite lattice ex-
tension in time Lt until they effectively stop percolating, eliminating the exponential falloff
of the Polyakov loop correlator and hence 〈P(�x)〉 is no longer zero [163,174]. The asymp-
totic behaviour of the space-like Wilson loop, however, is determined by the piercings of
center vortices oriented in periodic time (i.e., running in timelike directions), and their
cross-section is not limited by a small extension in the time direction at large T. Thus,
the corresponding P-vortices keep percolating on a time slice in the spacial directions such
that the exponential falloff of space-like Wilson loops remains unaffected in the deconfined
regime [175,176].

As we already discussed above, the center symmetry turns out to be explicitly broken
by the dynamical fields in the fundamental representation. The center dominance in the
confinement region in the SU(2) gauge-Higgs theory has been tested in Ref. [177]. In a
region where the screening effects by the matter fields become important, the center vortices
do not disappear but somehow rearrange themselves in order to allow for asymptotically
vanishing string tension while still generating a linear slope in the potential at intermediate
distances (no signature of linearity has been found in the Higgs region at any scale). In the
presence of matter fields, the Dirac volume shrinks and the vortex piercings of the Wilson
loop minimal area are expected to become correlated at large distances, but to the best of
our knowledge, there is no full consensus on exactly how this occurs.

14. Chiral Symmetry Breaking and Topological Charge

The global chiral symmetry of QCD light u, d quark sector SU(Nf )R × SU(Nf )L (with
the number of flavours, say, Nf = 2) is broken spontaneously by the order parameter
known as the quark (or chiral) condensate 〈q̄q〉 �= 0. In addition, it is also broken explicitly
by the light current quark mass turning the Goldstone bosons, the pions, into massive
pseudo-Goldstone states. Another less known mechanism based upon the linear sigma
model of effective quark-meson interactions introduces yet another source of the global
chiral symmetry breaking through a linear term in σ-field proportional to the quark con-
densate. Such a breaking is also explicit, and as such, it provides an additional finite
contribution to the pion mass. A symmetry breaking due to the quark condensation phe-
nomenon is often referred to as dynamical symmetry breaking and is considered a baseline for
Technicolour models of EW symmetry breaking [178,179] (for a detailed review of existing
concepts, see, e.g., Ref. [180]).

As was discussed earlier in the case of Ising model, in order to get a nontrivial
value of the order parameter one should perform two limits in a certain order—first, take
volume to infinity and then set the quark masses to zero. This procedure leads to the
well-known Banks–Casher relation [181] between the chiral condensate as the trace of
the quark propagator and the value of the density of the close-to-zero eigenvalues of the
Dirac operator characterised by vacuum field configurations. The latter density receives
no perturbative contributions, and hence, the dynamical chiral symmetry breaking is an
intrinsically non-perturbative phenomenon.

Provided that in real QCD with light quarks, the string tension vanishes asymptotically
due to colour-screening and string breaking, the chiral condensate by itself is not tied to
the area-law falloff of large Wilson loop VEVs and does not even require the presence of
gauge fields, in analogy to the effective Nambu–Jona-Lasinio model [182]. Naively, one
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might think that these observations indicate no immediate connection between the chiral
symmetry breaking mechanism and the confinement phenomenon. As was emphasised in
Ref. [183], the low-lying Dirac eigenmodes, which are crucial for chiral symmetry breaking,
provide vanishingly small contributions to the string tension and to the Polyakov loop in
both confined and deconfined phases. These observations provided no indication of an
immediate correspondence between chiral symmetry breaking and confinement.

Interestingly enough though, the critical temperatures of chiral and deconfinement
phase transitions appear to be the same or close to each other, as suggested by lattice
simulations, motivating a further search for possible hidden connections between the two
transitions. In particular, a connection between the Polyakov loop, center symmetry, and the
chiral condensate may be due to the fact that, after integrating out fermions, the chiral
condensate is basically a complex expectation value of many Wilson loops, including
those wrapping around compact dimensions. As was elaborated in detail in Ref. [184],
the spectral properties of the Dirac operator are affected by confinement, in particular,
causing the correlators of Dirac eigenvector densities to decay exponentially instead of
a power law in the deconfined phase. Ultimately, one would need to establish a link
between the spectral properties of the Dirac operator in the infrared regime presumably
responsible for chiral symmetry breaking with those in the ultraviolet regime tightly
connected to confinement.

Remarkably, in Refs. [171,185], it was shown that the chiral condensate vanishes as
soon as vortices are removed from the underlined field configurations, while the chiral
condensate values are notably larger in center-projected configurations than those on the
unmodified lattice. This observation shows that the center vortices are responsible not
only for magnetic disorder but also determining the chiral symmetry breaking—thus, both
phenomena are tightly connected [186].

It is well known that the axial symmetry U(1)A of the classical QCD action is broken
by the chiral anomaly at the quantum level. The topological charge given by the integral of
the divergence of the axial current,

Q =
1

32π2

∫
d4xεμναβ Tr[FμνFαβ], (83)

receives contributions from finite action configurations known as instantons [158]. Due
to the Atiyah–Singer Index theorem, the integer Q value has a meaning of a difference of
numbers of zero modes of the Dirac operator with positive and negative chiralities. The η′
meson, which would have been a (pseudo-)Goldstone boson of U(1)A breaking, appears to
be way too heavy phenomenologically (above 1 GeV). Its mass is found to be proportional
to the topological susceptibility found in the pure gauge theory in the chiral and large-Nc
limits, i.e.,

m2
η′ �

2Nf

f 2
π

χ , χ =
〈Q〉
V

, (84)

—the relation known as the Veneziano–Witten formula [187,188]. Here, V → ∞ is a large
volume, and fπ is the pion decay constant. For lattice calculations of the topological
susceptibility and tests of the Veneziano–Witten formula, see, e.g., Refs. [189,190].

The topological susceptibility χ is characterised by the vacuum quantum-field fluc-
tuations in a pure gauge theory without any quark fields. Like the chiral condensate,
the density of the topological charge may not seem to immediately connect to the IR
property of confinement, and naively, one would guess that it may be determined by
non-confining configurations, such as instantons in the standard picture. However, as was
shown in Ref. [191], a P-vortex acquires a fractional topological charge at “writhing” points,
and it is possible to get a correct topological susceptability in certain vortex models [192].
Moreover, the results of Ref. [171] actually demonstrate that the topological charge tends
to vanish upon vortex removal, while in Ref. [193], it was shown that χ computed from
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P-vortices appears to be consistent with the measurements. Therefore, the initial naive
guess do appear to be wrong, and confinement plays a crucial role here as well.

Yet another, more recent, test of the vortex mechanism considering the effective quark
propagator in the Landau gauge in the following IR form

S(k) =
Z(k)

i/k + M(k)
(85)

has been performed in Refs. [186,194] (see also Refs. [3,4] for a pedagogical discussion).
With an appropriate smoothing (“cooling”) procedure in the SU(3) gauge theory that
eliminates short-distance fluctuations, the effective mass M(k) and renormalisation Z(k)
functions have been computed for the full, vortex-only and vortex-removed configurations
and compared to each other. Removing the vortices causes the mass function to plummet
dramatically—see Figure 6—while the full and vortex-only results have appeared to be
essentially the same, hence demonstrating a critical role of the vortices in dynamical
mass generation and chiral symmetry breaking. The maxima of the action for vortex-only
configurations appear to resemble those of instantons, while the number density of those
objects is notably similar for the full and vortex-only configurations and by far much larger
than that for the vortex-removed case. It seems likely that vortices and instantons are
indeed connected in some very non-trivial way.
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Figure 6. The mass function of the effective quark propagator computed accounting for the full and
vortex-removed configurations. The figure is taken from Ref. [195].

Remarkably, the center vortices thus appear to describe a number of fundamentally
important IR phenomena in non-abelian gauge theories in a gauge-invariant way. Neverthe-
less, there are also weak points in the vortex mechanism of confinement that require further
clarification and, in a perspective, a more complete understanding of, for instance, the Gri-
bov copies problem and a lack of natural explanation of the Lüscher term. Further, a more
complete theory of vortices should address these issues, hopefully, on a first-principle basis.

A lack of a perfect consistency of the vortex scenario with full numerical results for the
SU(3) gauge theory has also emerged in the literature. For instance, center projection in
the SU(3) case yields 2/3 of the asymptotic string action computed on the full lattice [196].
However, consistency has been substantially improved by means of a certain gauge-field
smoothing procedure [194], so this may not be regarded as a critical problem.
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In order to make the next step in our understanding of the vortex dynamics, it may
be enlightening to suggest an EFT of vortices as non-local dynamical objects—fluctuating
surfaces—in D dimensions, where all the IR phenomena described above would emerge
naturally among its key predictions. Such a theory known as the random surface model
that resembles a string theory on the lattice has been proposed and elaborated, e.g., in
Refs. [191,192,197–199].

In order to build the simplest D = 4 action density of vortices in this framework,
one considers an extrinsic curvature of the vortex worldsheet multiplied essentially by a
single coupling, while the additional Nambu-like string term proportional to the area of
the vortex worldsheet appears to be redundant and can be omitted. In the SU(2) version
of this model, one assigns (−1)n to the Wilson loop holonomy for the number of vortex
piercings n per minimal loop area, and then one averages it over an ensemble of center
vortex configurations. The latter can be generated by Monte Carlo methods for a lattice
action density given by the number of cases when a single link is shared by two adjacent
orthogonal vortex plaquettes.

In order to compute the topological charge density in this model, for instance, one
employs a weighted stochastic procedure of introducing the monopole lines to the sur-
face of each vortex plaquette (see Section 16 below for a brief description of the mag-
netic monopoles’ scenario of confinement). The topological susceptibility appears to
be insensitive to the monopole lines’ density—a sign of strong predictive power of the
model. Besides, the model correctly predicts the emergence of the chiral condensate at
T < Tc and the restoration of the chiral symmetry at T > Tc, with a critical temperature
of the transition Tc. A variation in the lattice time extension can provide a tempera-
ture dependence, and the second-order deconfinement phase transition has been found.
The single dimensionless coupling and the lattice spacing a determine a wide range of
long-distance non-perturbative phenomena and were fixed through a matching to the
physical Tc/

√
σ and σ/a2 = (440 MeV)2, in terms of the string tension σ. Upon such a

matching, the temperature-dependent values of σ, the chiral condensate and χ are shown
to be in agreement with the full theory. Remarkably, in the case of SU(3) gauge theory, the
random surface model predicts the electric flux tubes in a form of Y-shaped string junctions
for baryons (three-quark systems) [200], which is also in agreement with the numerical
results of Refs. [201,202].

An alternative EFT approach to dynamics of vortices was suggested in Ref. [162] that is
based upon a gauge theory with an adjoint matter field and its gauge-invariant mass term,
which provides a mass for the gauge field via the Higgs mechanism. Besides the vortex
solutions, it also naturally reveals another type of solutions with magnetic monopoles
running along the vortex sheets that are necessary to generate a topological charge.

For a more thorough discussion on the existing vortex-based scenarios, we refer the
reader to Ref. [3]. Now, we turn to alternative scenarios of confinement, yet trying to
connect them with the existence of vortices whenever possible.

15. Gribov-Zwanziger Scenario, Non-Perturbative Propagators and Gluon Chains

Starting from the Coulomb gauge, in Refs. [167,169,203], it has been suggested that
very small eigenvalues of the Faddeev–Popov operator that are located close to the Gribov
horizon contribute the most to the Coulomb potential VC(R) and could in principle enhance
it to a linear form (see also Ref. [204]). This is the so-called Gribov–Zwanziger scenario
of confinement. As it should be for a confined phase, numerical analysis on the lattice
demonstrates the linear rise of Coulomb potential VC(R), which is basically a separation-
dependent part of the interaction energy of the physical qq̄ state defined as

R → ∞ , VC(R) → V(R, T = 0) , V(R, T) = − d
dT

log[G(R, T)] ,

G(R, T) = 〈Ψqq̄|e(H−E0)T |Ψqq̄〉 , Ψqq̄ = q̄(0)q(R)Ψ0 , (86)
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with the ground-state of the theory Ψ0, the vacuum energy E0 and with self-energy con-
tribution neglected at large R. However, the slope of the extracted Coulomb potential
VC(R) is significantly (for a factor of 2–3, depending on the gauge coupling) larger than
that of the static quark potential V(R) � limT→∞ V(R, T) obtained by gauge-invariant
methods [129]. Although the latter is in agreement with Zwanziger inequality [205],
V(R) ≤ VC(R), the potential is overconfining, prompting discussions in the literature on
whether the Coulomb potential in this formulation actually is the full story of confinement
or some crucial ingredients are still missing. It is worth mentioning, however, that the
asymptotic string tension of the Coulomb potential appears to vanish as soon as vortices
are removed from the underlined gauge field configurations, rendering the importance of
the vortices for understanding the confinement phenomenon in the Coulomb gauge [206].
Such configurations without vortices in fact behave as perturbations of the free gauge
theory, in consistency with expectations.

In the confined phase, the Coulomb self-energy of an isolated static charge E is
expected to be infinite, and the main condition for that reads

E ∝
∫

dλ
〈ρ(λ)F(λ)

λ

〉
→ ∞, lim

λ→0

ρ(λ)F(λ)
λ

> 0, F(λ) = 〈φλ|(−∇2)|φλ〉, (87)

where the first relation relies on the continuum limit of small eigenvalues λ → 0 of
the Faddeev–Popov operator, with the corresponding eigenstates φλ and density of the
eigenvalue distribution ρ(λ). Using the lattice methods, it was found that [204]

ρ(λ) ∼ λ0.25, F(λ) ∼ λ0.38, (88)

yielding a divergent E → ∞ and hence satisfying the confinement criterion (87). An en-
hancement of ρ(λ) and F(λ) close to the Gribov horizon λ → 0 seems to be associated
with the role of a center vortex ensemble. However, as was advocated in Ref. [129], the
Coulomb force appears to be confining also at temperatures above the deconfinement
phase transition temperature, which contradicts the fact that a confining potential must be
associated with a phase of magnetic disorder.

The linear confining Coulomb potential in the Gribov–Zwanziger scenario can be
associated with the instantaneous part of the two-gluon correlator. So, confinement could
be effectively considered as an emergent property due to a gluon exchange with a non-
perturbative (dressed) gluon propagator. A naive calculation shows that a linear potential
may arise if the propagator of the gluon exchange scales with momentum transfer as
∼ 1/k4 at k → 0, at least, in one of the possible gauges [207]. One typically attempts to
analyse the IR behaviour of the effective gluon and ghost propagators and vertices using
the formalism of the Dyson–Schwinger equations following from the disappearance of the
functional integral of a total derivative,

〈
− δS

δφi(x)
+ ji(x)

〉
= 0, (89)

with subsequent differentiation over the sources {jk}. For a review on phenomenological
implications of the Dyson–Schwinger approach, see, e.g., Ref. [208] and references therein.

The full gluon and ghost propagators in Euclidean spacetime are conventionally
represented in terms of form factors as

Dab
μν(k) = δab

(
δμν − kμkν

k2

)Z(k2)

k2 , Gab(k) = δab J(k2)

k2 , (90)

respectively, such that their IR behaviour, as the virtuality of the exchange vanishes k2 → 0,
is controlled by

Z(k2) ∝ (k2)−κgl , J(k2) ∝ (k2)−κgh , (91)
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where κgh and κgl are the so-called IR critical exponents (or anomalous dimensions) to be
determined in the calculations.

A necessary condition for the Kugo–Ojima confinement criterion is that the
ghost propagator features an enhanced (stronger than 1/k2) IR singularity, i.e.,
limk→0[J(k2)]−1 = 0, known as the horizon condition [209]. The second condition is
the vanishing gluon propagator, limk→0[Z(k2)/k2] = 0. This is the exactly case for the
so-called scaling solution [210–212] that implies a specific relation between κgl and κgh
in D-dimensions [209,210,212,213]

κgl + 2κgh = −4 − D
2

. (92)

For the D = 4 case, the values are found to be κgh � 0.595 and κgl � −1.19, such that
the gluon propagator indeed tends to vanish at k → 0. In order to explain confinement,
it was argued in Ref. [214] that the quark-gluon vertex should be sufficiently singular in
the long-distance limit, such that its combination with a non-singular gluon propagator
gives rise to the confining potential. The scaling solution has been confirmed by a lattice
analysis of Ref. [215] in the SU(2) gauge theory in the Landau gauge and only in D = 2
dimensions, but it was not observed for D > 2 [216,217].

Another well-known solution, the so-called decoupling solution, with

κgl = −1, κgh = 0, (93)

has been proposed, e.g., in Refs. [218–220]. This solution corresponds to a saturated form of
the IR gluon propagator tending to a constant and, hence, effectively decouples from the dy-
namics in analogy to a massive particle. It is worth noticing here that the non-perturbative
gluon propagator does not behave as a propagator for a massive state. Indeed, from nu-
merical simulations, one observes indications of a violation of positivity, in consistency
with the fact that no coloured gluons exist in the asymptotic spectrum of a gauge theory
that is traditionally connected to gluon confinement [221,222]. Besides, the decoupling
solution implies a simple 1/k2 pole for the ghost propagator. This solution appears to be
favoured by known lattice simulations for D > 2, which also indicate a disagreement with
the Kugo–Ojima criterion. A more generic criterion for quark confinement applicable in
arbitrary gauges relying on the IR behaviour of ghost and gluon propagators has been
proposed in Ref. [223].

One would remark here that the primary probe for the magnetic disorder phase is,
of course, the area-law falloff of gauge-invariant observables, Wilson loop VEVs, and not
the gluon propagator itself, which is not a gauge-invariant object. So one should be extra
careful in interpreting the IR behaviour of the propagator in order to avoid spurious results.
For recent comprehensive effort to obtain a linear static potential in the framework of
Dyson–Schwinger formalism in a Coulomb gauge, see Ref. [224]. A thorough analysis of
the Polyakov line VEVs and effective potential based upon the formalism of the Functional
Renormalisation Group [225] has been performed in Refs. [226,227], and an agreement
with lattice results has been found. However, the search for the area-law dependence of
large Wilson loops’ VEVs with these methods has not been successful so far.

The picture of strongly collimated colour-electric flux tubes stretched between the
colour-charged static sources does not seem to apply to the distribution of colour-electric
field in the Coulomb gauge [3]. Indeed, there is a significant long-range dipole contribution
to the Coulomb electric field that would cause rather strong van der Waals-type forces
between hadrons at large distances. This would immediately contradict to the mass gap
existence [139] that requires only short-range forces between composite colour-neutral
states. This problem generically emerges in any confinement scenario, such as the Dyson–
Schwinger-type approaches where a confining force is associated with a single (dressed)
gluon exchange at large distances. While providing a linear potential, such one-gluon
exchange scenarios (including the Coulomb confinement one) imply a spread out of the
electric field towards large distances, possibly with flux collimation to some extent [228].
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A possible development that may eventually address the shortcomings of the Coulomb
confinement scenario discussed earlier is to notice that the qq̄ state defined in Equation (86)
is not necessarily a minimum-energy state of a system containing a single qq̄ pair, and lower
energy states could in principle be constructed using operators Qj

i—functionals of the lattice
links—that effectively create “constituent” coupled gluons as

Ψ̃qq̄ = q̄i(0)Qj
iqj(R)Ψ0, (94)

where schematically,

Qj
i = a0δ

j
i + a1 Aj

i + a2 Ak
i Aj

k + . . . . (95)

The resulting state effectively represents a chain of gluons bound by attractive forces,
with a q and q̄ at the end of the chain, at large R, that could, in principle, provide a
necessary suppression of the long-range dipole fields. Hence, such a gluon chain may
be viewed as a colour-electric flux tube itself [229,230]. Indeed, as q and q̄ get separated,
more and more constituent gluons get pulled out of the vacuum to minimise the energy of
the system [231,232]. This picture rather naturally emerges by expanding the Wilson line
stretched between q and q̄ in powers of the gluon field and actually implies the absence of
dipole fields at large R. In the limit of large number of colours N in the the SU(N) theory,
such a chain of gluons on a given time slice is dominated by a high-order planar Feynman
amplitude that can be, in principle, tackled by analytic methods.

Among remarkable features of the gluon chain model are the Casimir scaling in
the leading order of 1/N expansion and a subleading 1/N2 string breaking effect at
some critical length-scale leading to a correct N-ality dependence of the string tension
asymptotically. In the case of heavy (static) charges in the adjoint representation of SU(N),
for instance, in the limit N → ∞, two gluon chains instead of one are formed between
the charges, leading to twice larger adjoint string tension compared to the one in the
fundamental representation, i.e., σA = 2σF. The latter is defined only at intermediate
distances but must disappear at asymptotic distances due to colour screening by N-ality
zero gluons in the vacuum. Although gluons do not break the center symmetry as such, they
take part in the colour screening on the same footing as light quarks in QCD such that both
quarks and gluons are absent in the asymptotic spectrum in the virtue of C-confinement
and the string hadronisation model. This suggests a non-trivial but less explored and
speculative possibility that the non-perturbative gauge-field vacuum somehow rearranges
itself at large distances in such a way that the center symmetry might get broken somehow
even without the presence of matter fields in the fundamental representation4.

Indeed, pulling the two gluons (or adjoint matter states) apart from each other, even-
tually the virtual gluons from the QCD vacuum are prompted to bind to the octet-charged
sources, yielding colour-singlet states—gluelumps—at asymptotically large distances. Such
a gluon colour-screening mechanism is very similar to that driven by dynamical virtual
quarks being brought on mass-shell to screen the charge of heavy static quarks as the latter
move apart, and the energy accumulated in the string is partially spent for that purpose.
So, the colour-screening and hence the string-breaking phenomenon is not particularly
sensitive to N-ality but rather to the colour charge itself being the necessary prerequisite for
C-confinement. While the formation of a flux tube between the two gluons at intermediate
distances applies for the confining phase in the strongly coupled regime, C-confinement as
an asymptotic phenomenon occurs also in the Higgs phase but without the formation of an
intermediate flux tube.

Note that an adjoint string breaks via a 1/N2 suppressed but very important (at
large R) interaction between the gluon chains, enabling them to transform into a pair of
gluelumps, as described above (see also Ref. [230]). This correctly generalises for sources in
an arbitrary gauge group representation giving rise to N-ality dependence of the asymptotic
string tension. Such an important string-like property of the gluon chain as the Lüscher
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term appears due to fluctuations in the gluons’ positions on the chain [230]. As was
demonstrated in Ref. [233], introducing up two gluons in a chain preserves the linearity
of the Coulomb potential, but that is already enough to bring its slope much closer to the
true static potential (i.e., obtained by gauge-invariant methods). In this calculation, it was
shown that multi-gluon configurations in the chain appear to be increasingly important at
large R, which also strongly reduces the sensitivity of the results to the lattice volume. This
means that the long-range dipole field becomes strongly suppressed, indicating a possible
formation of a localised colour flux tube (for more discussion on this aspect, see Ref. [3]).

16. Dual Superconductivity and Magnetic Monopoles

As was proposed a long ago in Refs. [132,234–237], the QCD vacuum could be viewed
as a “dual” superconductor, an analog of type-II superconductor, where the electric and
magnetic fields are interchanged. These studies have pioneered the developments of a
beautiful theory of what is sometimes called the dual superconductor picture of confinement.
In a usual superconductor, one deals with a condensate of electric charges (in fact, bosonic
Cooper pairs), and, due to repulsion (or confinement), the magnetic fields get squeezed
into magnetic flux tubes with a constant energy density (Abrikosov vortices). In a “dual”
superconductor, one instead works with a condensate of magnetic charges known as mag-
netic monopoles, where the electric field of static charges would be squeezed (confined) into
electric flux tubes. The latter realisation is what we often regard as ordinary confinement in
QCD. Both the static potential of magnetic monopoles in a type-II superconductor and the
static potential of colour-electric charges in a “dual” superconductor would rise linearly
with the charge separation.

This effect gives rise to a very simple picture of confinement essentially based upon a
suitable generalization of the Landau–Ginzburg superconductivity theory. Indeed, starting
from relativistic abelian Higgs model

S =
∫

dDx
(1

4
FμνFμν + |Dμφ|2 + λ

4
(φ†φ − v2)2

)
, Dμφ = ∂μ + ieAμ, (96)

one recovers the magnetic flux-tube Abrikosov-like solutions dubbed as the Nielsen–Olesen
vortices [238]. Attributing a non-trivial winding number n to the Higgs complex phase,
a Nielsen–Olesen vortex carries the magnetic flux 2πn/e. In the dual version, such vortex
carries an electric flux that confines the electric charges. A particular model, where the
dual abelian Higgs model with confinement is realised, is the N = 2 supersymmetric
YM theory known as the Seiberg–Witten model [239,240] having several distinct types
of electric flux tubes. In this model, a continuous set of distinct vacua is spanned by
the “moduli” space of certain scalar field operators. Soft supersymmetry breaking then
reduces the theory down to an effective N = 1 theory, where the confinement of the electric
charge is realised due to the condensation of the monopole field and electric flux tube
formation. This happens in full analogy to the confinement of the magnetic charge due to
magnetic flux tube formation in usual type II superconductors and in the ordinary abelian
Higgs model. The duality transformation in the Seiberg–Witten model inverts a certain
combination of the effective coupling constant and the θ angle enabling one to obtain
the effective action of light fields at any value of the gauge coupling from the detailed
knowledge about the weak-coupling regime of the theory and its infrared singularities (for
a detailed review of the underlined concepts and formalism, see, e.g., Refs. [241–243]). Such
a duality is due to an exact symmetry of the abelian effective theory manifest at low energies
and not of the original SU(2) theory. In fact, this duality is a proper generalisation of the
famous electric-magnetic duality of the Dirac formulation of Maxwell electrodynamics
(with magnetic monopoles) exchanging the electric charge qe and its magnetic counterpart
qm = 2π/qe. Hence, by means of such a duality transformation, one hopes to learn about
strong-coupling (or long-distance) dynamics given from the weak-coupling regime of its
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dual formulation. In Ref. [244], it was shown that k-string tensions in the SU(N) version of
the Seiberg–Witten model obey the Sine law

σr =
sin(πk/N)

sin(π/N)
σF, (97)

being numerically not very different to that of the Casimir scaling (c.f. Equation (75)).
In itself, the superconductivity picture of confinement is an abelian mechanism that

has been explored originally by Polyakov [245] in the context of the confinement of electric
charges in the D = 2 + 1 compact U(1) gauge theory. This theory turns out to be an
important starting point to approach QCD confinement. While in the D = 2 + 1 case,
the compact QED features monopoles (topological excitations), and in D = 3 + 1, those
monopoles are point-like defects in spacetime, i.e., they are also instantons. Effectively
integrating out all the DoFs except monopoles in D = 2 + 1 compact QED, it was shown in
Refs. [132,237,245] that the action of the monopole gas interacting by means of Coulomb
force on the lattice reads

Sm =
2π2

g2a

[
∑
i �=j

mimjG(ri − rj) + G(0)∑
i

m2
i

]
, (98)

with i, j = 1 . . . N for N monopoles, and the lattice Coulomb propagator G at large distances
behaves as G ∼ 1/4π|ri − rj|. A Wilson loop in this approach can be expressed in terms of
the monopole density and appears as a current loop that generates its magnetic field being
effectively screened away by the (anti)monopoles from the background. Such an effect
causes the area-law falloff for the Wilson loop VEVs. Polyakov has explicitly demonstrated
that even the arbitrarily low density of these monopoles is sufficient to produce confinement
and the mass gap of the theory. This happens in a regime when the entropy related to the
size and shape of large Wilson loops wins over the cost in the monopole action for a large
loop. The latter effect occurs at any coupling for D = 3 QED but only for large enough
couplings in the D = 4 case.

In the case of YM theories, one needs to extract an abelian subgroup from the gauge
group, e.g., by means of an adjoint Higgs field. An important realisation in the case of the
SU(2) gauge theory is the Georgi–Glashow model, where in the minimum of the Higgs
potential and in unitary gauge, there is a residual U(1) local gauge symmetry. Due to
this symmetry, the model exhibits magnetic (‘t Hooft–Polyakov) monopoles [246,247] as
instanton solutions of the classical equations of motion in D = 3 or as static solutions
(solitons) in D = 3 + 1. The Higgs field that is used to fix the unitary gauge necessarily
vanishes at the center of each t’Hooft–Polyakov monopole, making the unitary gauge fixing
ambiguous at those sites. The Wilson loop VEVs are then computed in a similar way as
was done in compact D = 3 QED, resulting in a finite string tension σ ∼ exp(−Sm) [237].
In D = 4, the Georgi–Glashow theory has both confining and non-confining phases;
however, stable monopole solutions only exist in the non-confining phase where they do
not form a Coulomb plasma.

An important caveat in the D = 3 theory is that one cannot simply neglect the effects
of W bosons at large distances (and hence in the analysis of confinement) in the long-range
effective action. Indeed, the string tensions cannot acquire a correct N-ality dependence
without W bosons. The Coulomb monopole gas approximation can be justified in a certain
intermediate range below a string-breaking length-scale, where a W bosons carrying two
units of electric charge are pair-produced and screen the charges of the static sources,
which also possess two units of electric charge. Analogically, the dual abelian Higgs model
that ignores the effect of W bosons predicts a wrong N-ality dependence of the Wilson
loop VEVs. Thus, it is unable to consistently describe long-range physics of vacuum
fluctuations at characteristic distances exceeding the colour screening length-scale. Non-
abelian supersymmetric versions of the dual Higgs model have been proposed in a number
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of existing works yielding specific non-abelian vortex solutions; for a detailed review on
these aspects, see, e.g., Refs. [75,248] and references therein.

Dynamical “abelization” of SU(N) gauge fields can be achieved even without an
adjoint Higgs field. Instead of using an adjoint Higgs field, another way to extract a
Cartan (abelian) subgroup U(1)N−1 of SU(N) suggested in Ref. [249] is the so-called
abelian projection, using a composite operator that transforms like a matter field in the
adjoint representation and fixing a gauge in which this operator is diagonal. The same
effect emerges also with adjoint fermions fields [250,251] or by adding a trace deformation
term to the action [252], and both methods have been successfully explored by lattice
simulations (see, e.g., Refs. [253–255]).

The gluons from the coset of abelian projection are charged under U(1)N−1, while
the monopole condensation would describe their confinement in a way similar to the
dual abelian Higgs model. The basic idea then is to look for a specific gauge in which the
quantum fluctuations of the U(1)N−1-charged gluons are strongly suppressed compared
to the fluctuations of “photons” from the Cartan subgroup U(1)N−1. In such a gauge
called the maximal abelian gauge [256], the link variables would be close to a diagonal
form. For instance, in the SU(2) gauge theory, this is achieved by means of requiring
∑ Tr[Uμ(x)σ3U†

μ(x)σ3] to be maximal while leaving the residual U(1) symmetry w.r.t.
gauge transformations

Uμ(x) → eiφ(x)σ3Uμ(x)e−iφ(x+μ̂)σ3 . (99)

This enables one to decompose Uμ(x) = Cμ(x)uμ(x), where the Cμ(x) matrix is
expressed in terms of a “matter” field cμ(x) with two units of U(1) charge, while the
diagonal uμ(x) = diag(exp(iθμ(x)), exp(−iθμ(x))) is given in terms of the abelian U(1)
gauge field θμ(x), the “photon”, coupled to the “matter” field cμ(x). One, therefore, obtains
the abelian-projected lattice by means of Uμ(x) → exp(iθμ(x)) projection. Note that in the
case of the SU(3) theory, the maximal abelian projection is not unambiguously defined, as
has been discussed for instance in Ref. [257].

In the monopole dominance approximation [258,259], one then replaces the link variables
by the monopole links constructed from the Dirac string variables and the Coulomb
propagator, and then one computes the VEVs of the Wilson loops over an ensemble of such
monopoles. This procedure leads to (almost) the same values for the asymptotic string
tensions of the single-charged Wilson loops in the SU(2) lattice gauge theory as in the
gauge-invariant approach. Furthermore, the single-charged Polyakov loops computed
in the abelian-projected configurations and in the monopole dominance approximation
agree with each other and both vanish below the critical temperature of the deconfinement
transition, in consistency with expectations. However, these results do not agree for double-
charged Polyakov loops. Vanishing VEVs of the latter, and hence the confining disorder, are
found in the monopole dominance approximation, which is inconsistent with the charge
screening effect that must be in place for double-charged static sources, and for that matter,
with the N-ality requirement. This means that in the case of magnetic disorder dominated
by abelian gauge field configurations, the abelian flux can not be distributed according to
the Coulomb monopole-gas approximation.

The latter problem is not present in the abelian-projected configurations yielding a
correct asymptotic behaviour of large Wilson loop VEVs in the fundamental representation.
Fixing an abelian projection gauge in the SU(2) gauge theory arranges the monopoles and
antimonopoles coupled to each other into a chain with the total monopole flux of ±2π. At a
certain fixed time, such a flux can be squeezed into center vortex structures on the abelian-
projected lattice [260]—for an illustration of this effect, see Figure 7. Indeed, the numerical
analysis that locates both the (anti)monopoles through abelian projection and the center
vortices through center projection showed that almost all (anti)monopoles are located on
the vortex sheets arranging themselves into alternating order in a chain (for an inspiring
discussion, see Refs. [3,4]). The fact that the double-charged (Wilson and Polyakov) loops
do not get contributions from linking with such vortices on the abelian-projected lattice is
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reflected in a vanishing asymptotic string tension in this case, in agreement with the charge
screening effect.
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Figure 7. The formation of a center vortex through a collimation of the monopole/antimonopole flux.
The figure is taken from Ref. [4].

It is instructive to introduce a specific order parameter, the VEV of a monopole creation
operator 〈μ(�x)〉, that would signal an emergence of the dual superconducting phase in
a non-abelian gauge theory [261,262]. The operator μ(�x) effectively inserts a monopole
configuration at a certain position into the system such that it does not commute with the
total magnetic charge operator, and hence its VEV would break the corresponding dual
U(1) gauge symmetry, a remnant of the gauge symmetry. According to the monopole
condensation mechanism of confinement, the system is in a confining phase if and only if
〈μ(�x)〉 �= 0, while a transition to a non-confining configuration occurs when 〈μ(�x)〉 → 0,
which indeed coincides with a more generic numerical analysis in the full theory (also at
finite temperatures). There are, however, severe ambiguities such that 〈μ(�x)〉 may also
vanish in the absence of any thermodynamic transition to a deconfined phase [263]. Indeed,
as was already briefly discussed earlier, the breaking of gauge symmetry remnant cannot
be utilised as a correct signature of the magnetic disorder phase.

In a pure non-abelian gauge theory in D = 4, classical instanton solutions can not
be responsible for magnetic disorder of the vacuum field configurations since their field
strength falls off too fast at large distances. However, at finite temperatures, the instanton
solutions as saddle points of the Euclidean gauge fields’ action called calorons can be
relevant for confinement. The latter solutions were found in Refs. [264–266] and are known
in the literature as KvBLL solutions. They may contain monopole constituents sourcing both
electric and magnetic fields, also known as dyons or Bogolmolny–Prasad–Sommerfield
(BPS) monopoles [267,268], which can be widely separated. The thermal approach to pure
4D YM theories based upon nonperturbative results on a thermal ground state in the
deconfined phase derived from an (anti)caloron ensemble has been thoroughly discussed
in Ref. [269] and in references therein. Among important corollaries to this approach is,
for instance, the derivation of the 3D critical exponent of the Ising model for the correlation
length criticality.

The early work of Ref. [134] made important contributions to understanding the trivial-
holonomy calorons in SU(2) Euclidean gauge theory based on Ref. [270], while nontrivial
holonomy solutions have been studied, e.g., in Refs. [264,266,271–273]. Considering, for
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instance, the maximally non-trivial Polyakov loop holonomy P(�x) introduced in SU(N) in
Equation (57), where μj are ordered and spaced with a maximal distance from each other

μmax
n = −1

2
− 1

2N
+

n
N

, (100)

the probability density of calorons in the vacuum would peak at TrP(�x) = 0. As was
discussed earlier, in the center vortex mechanism of confinement, the vanishing Polyakov
loop expectation value computed on an ensemble, where positive and negative fluctuations
in vortex configurations cancel out, is a signature of unbroken center symmetry and, hence,
that of the confinement property. Notably, in the caloron configurations, the maximally
non-trivial Polyakov loop holonomy vanishes by itself before any averaging as the basic
property of such configurations.

Due to this property, a system of widely separated dyons, the dyon gas, whose free
energy is minimal for Tr P(�x) = 0, has been considered as the basis for the description of
the magnetic disorder in YM theories [274]. Indeed, it was shown that the k-string tensions
extracted from space-like Wilson loops are in agreement with those that determine the
asymptotic behaviour of Polyakov loop correlators and follow the Sine law (97). In the high
temperature regime, a phase transition to the deconfinement phase occurs with Tc/

√
σ

values being in perfect agreement with numerical lattice results. Despite such tremendous
success, the path integral measure for the multi-dyon configurations appears to be not
positively definite, thus violating the basic property of the exact measure [275]. However,
numerical simulations of Ref. [276] with a suitable parameterisation of the integration
measure confirmed that the confining static potential indeed emerges in the dyon gas
approximation. Thus, one can conclude that the monopole mechanism based upon the
caloron classical solutions is one of the most promising scenarios of confinement in non-
abelian gauge theories.

There are some critical points to be made regarding the dyon gas picture of confine-
ment neatly summarised in Ref. [3]. The same question as for the monopole Coulomb gas
applies also for the dyon gas regarding the asymptotic string tension of double-charged Wil-
son loops that should disappear due to a screening by gluons. Another question concerns
the probability distribution of Polyakov loop holonomies, which is peaked for a vanishing
maximally-nontrivial holonomy in the fundamental representation, i.e., Tr P(�x) = 0. If this
is indeed true, it implies a negative expectation value of the Polyakov loop in the adjoint
representation. However, if the latter is positive, the probability distribution would be
peaked at the center-element holonomy, as suggested by the center vortex scenario of
confinement. Remarkably, the expectation value of the adjoint Polyakov line in the phase
of magnetic disorder has been found to be positive in the SU(3) theory in Ref. [277].

Besides, considering the asymptotic behaviour of double-winding Wilson loops VEVs’
(i.e., Wilson loops winding around closed co-planar loops C1 and C2), one reveals a dramatic
difference in predictions of the monopole and vortex mechanisms of confinement [278]
(see also [3,4]). The vortex scenario provides the “difference-of-areas” law behaviour for
such loops, ∼ exp[−σ|A(C1)− A(C2)|, where the “−” sign is due to a vortex linking to the
largest loop, correctly reproducing the full lattice results. In this case, the monopole scenario
predicts the “sum-of-areas” falloff as ∼ exp[−σ(A(C1) + A(C2))], which is disfavoured by
numerical simulations. The latter observation indicates that the vacuum cannot be in a dual-
superconducting state of monopole/dyon plasma. In fact, the “difference-of-areas” law is
restored by heavy W bosons that are present in the full YM theory but not in an abelain part
of it. As was suggested in Ref. [4], upon integrating out the W bosons’ states, one expects
the monopole–antimonopole lines to get collimated into Z2 vortices, as is illustrated in
Figure 7, i.e., in a similar fashion to what has been seen on an abelian-projected lattice. This
effectively turns the monopole ensemble into a configuration of Z2 vortices, offering an
intricate connection between the two pictures of confinement.

Another observation of Ref. [279] in the case of the G2 gauge theory has suggested that
the Polyakov loop expectation value exactly vanishes in the dyon gas picture. The colour
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screening in G2, however, requires binding a static source in the fundamental representation
to a minimum of three gluons, likely leading to a very small, but non-zero, Polyakov loop
expectation value that would be difficult to identify numerically [3]. If the colour screening
mechanism is a valid approach, the center symmetry breaking at large distances would be
manifest in G2, whereas the dyon gas approximation, like the Coulomb gas approximation
discussed earlier, might be lacking something relevant in the asymptotic regime.

17. Separation-of-Charge Confinement Criterion

A clear symmetry-based distinction between the confining and Higgs phases in a
gauge theory with fundamental representation matter fields has been recently proposed in
Refs. [110,280,281]. An important generalised criterion of confinement valid in both pure
YM theories and YM theories with matter in the fundamental representation states that

EV(R) ≡ 〈ΨV |H|ΨV〉 − Evac ≥ E0(R), (101)

with ΨV being the qq̄ state connected by a Wilson line,

ΨV ≡ q̄a(�x)Vab(�x,�y; A)qb(�y)Ψ0, (102)

for any choice of the gauge bi-covariant non-local operator Vab(�x,�y; A). The latter depends
only on the gauge field, thus eliminating any possibility for a string breaking by means
of dynamical matter fields. This criterion is a necessary and sufficient condition for the
separation-of-charge confinement (or Sc-confinement, for short), which is meaningful only in
gauge theories with a non-trivial center symmetry. In Equation (101), H is the Hamiltonian,
Evac is the vacuum energy, E0(R) ∼ σR at R → ∞ is an asymptotically linear function,
which has the meaning of the ground-state energy of the qq̄ in a pure SU(N) gauge theory
(but not in the one with matter fields), where the above criterion is equivalent to the
area-law falloff of Wilson loop VEVs.

In the SU(2) gauge-Higgs theory, the confining phase is found for γ � β � 1 and
γ � 1/10, where the Sc-confinement condition (101) is satisfied. However, deeply in the
Higgs phase, for other couplings’ ranges, this criterion is not fulfilled; hence, we deal with
only a weaker C-confinement situation there. In Refs. [110,280,281], it has been shown that
a transition between the C- and Sc-confinement phases must take place in the gauge-Higgs
theory, and the unbroken custodial symmetry has been found to separate the Sc-confining
(if not massless) phase from the Higgs phase corresponding to a C-confined spin glass
state, where the custodial symmetry is actually broken. It would be very interesting to see
how such a new concept of Sc-confinement can be applied for more realistic theories such
as QCD.

18. Separating the Higgs and Confinement Phases: Vortex Holonomy Phase

As was discussed earlier, the results of Refs. [109,113,114] state that it is possible
to identify a continuous path between the Higgs and confinement regimes where no
first-order phase transitions occur like what is believed to happen in physics of high-to-
low temperature QCD (smooth crossover) transition and in several other specific models.
Indeed, one would naively expect that such a continuity always takes place unless the
phases are separated by different realisations of global symmetries.

An important counter-example to this statement has been recently explored in a whole
class of models in Refs. [58,64]. Namely, it has been demonstrated that even in the case of
a spontaneous global U(1) symmetry breaking in both Higgs and confinement regimes
(an analog to the baryon symmetry breaking in dense QCD at low T), it is still possible
to identify a novel non-local order parameter (a vortex holonomy phase) that separates
the two phases, leading to a thermodynamical phase transition. This proof provides an
important argument against the quark-hadron continuity (Schäfer–Wilczek) conjecture in
dense QCD, as mentioned above in Section 2.
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For this purpose, the authors of Ref. [58] started with Polyakov’s D = 4 compact
U(1) gauge theory discussed in the previous section, then imposed a single global U(1)G
symmetry (an analog to U(1)B of QCD) and added three complex scalar fields that ef-
fectively mimic dynamical quark fields in QCD, with the following assignments under
U(1)× U(1)G group

φ+ = {+1,−1}, φ− = {−1,−1}, φ0 = {0,+2}. (103)

Then, the product φ+φ− appears to be an analog to the gauge invariant baryon opera-
tor, and φ0 can couple to φ+φ− product and can be considered as a baryon interpolating
field or a source for baryons. A VEV in φ0 would bring the theory into a superfluid
phase of spontaneously broken U(1)G, such that the global symmetries’ realisation is the
same in the confinement and Higgs phases. In the monopole-driven confinement pic-
ture, the monopoles in this theory would have a finite action that can be UV-completed
through an SU(2) symmetry, just as in the original Polyakov’s description. Finally, addi-
tional discrete Z2 (charge conjugation and flavour-flip) symmetries have also been intro-
duced and can be considered as analogous to the flavour symmetry in QCD. The effect of
monopoles in this model induces an additional term in the Lagrangian [237]

Vm(σ) ∝ e−SI cos σ, (104)

which is a potential for the “dual photon”—a periodic scalar field σ → σ + 2π related to
the field strength by the abelian duality relation

Fμν =
ie2

2π
εμνλ∂λσ. (105)

As one varies the adjustable mass parameters, three different regimes of the theory
emerge. One of them corresponds to the compact 3D U(1) theory with heavy scalar
quarks and confinement where no symmetries are spontaneously broken (“gapped con-
fined” regime). The second regime features the Higgs mechanism with a non-zero VEV
〈φ+φ−〉 �= 0, such that a cubic φ+φ−φ0 term in the potential drives the condensation of φ0,
〈φ0〉 �= 0 and hence spontaneous breaking of U(1)G (Higgs phase with a single massless
Goldstone boson). The third regime has monopole-driven confinement, while 〈φ0〉 �= 0
spontaneously breaks U(1)G symmetry, and the heavy charged scalars are very heavy and
may be disregarded. A key question here is whether the two phases with spontaneously
broken U(1)G (“Higgs” and “confining”) with no distinguishing local order parameter are
really two distinct phases or might be continuously connected.

The main claim of Ref. [58] is that these phases are distinct and can be distinguished
only by a new non-local order parameter that is connected with topological excitations.
Physically, both phases with spontaneously broken U(1)G should be considered as superflu-
ids that have vortices. As a consequence of U(1)G breaking, the theory possesses a gapless
Nambu–Goldstone mode, which is a phase of 〈φ0〉 condensate, as well as topologically sta-
ble vortex excitations when the phase of the 〈φ0〉 condensate winds around the unit circle
when one goes around a given loop. In ordinary superfluids in three spacial dimensions,
this provides vortex loops, but in D = 2 + 1, vortices act like point particles, the point
around which the condensate phase winds. Winding of that phase, in the language of
superfluids, is exactly what is called quantized minimal “circulation”. The winding number
can then be found in terms of a contour integral of the gradient of the phase or simply as

w ∝
∮

C

d〈φ0〉
|〈φ0〉| . (106)

The charge particles in the superfluid phase would then interact with (minimal-energy)
vortices through acquiring an Aharonov–Bohm phase as one sends a charged particle into
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a loop that links with the worldline of the vortex. This phase is measured by the Wilson
loop holonomy

Ω(C) = ei
∮

C A, (107)

whose expectation value
〈Ω(C)〉 ∼ e−mP(C). (108)

This means that short-range quantum fluctuations in the phase (with dynamical funda-
mental representation charges) automatically lead to a perimeter-law decay of the VEV of
a large Wilson loop. In fact, this represents the same physics as that of string breaking that
turns the area-law behaviour of a pure YM theory into perimeter-law behaviour present in
real QCD and in the Higgs phase, as was discussed in detail in previous sections.

Let us consider a Wilson loop expectation value in the presence of a minimal-energy
vortex, which can be thought of in terms of a constrained functional integral where one
integrates over all the field configurations in the theory but with a constraint forcing the
presence of a vortex along some large worldline C in D = 3 spacetime. The same short-
range physics guarantees it is going to have the same perimeter-law behaviour, but it can
have an additional phase factor

〈Ω(C)〉w=1 ∼ eiΦe−mP(C). (109)

In order to extract the phase, one defines the ratio [58]—the vortex order parameter,

OΩ ≡ lim
rv→∞

〈Ω(C)〉w=1

〈Ω(C)〉 , (110)

taking the size of the Wilson loop and its separation from the vortex rv arbitrarily large
simultaneously. The symmetries of the theory guarantee that the Wilson loop VEV 〈Ω(C)〉
is real, and it can be made positive. While the charge conjugation and reflection symmetries
are broken, the flavour-flip symmetry is preserved in the presence of a vortex. The latter
also flips the sign of the gauge field and hence conjugates the holonomy guaranteeing that
the vortex-constrained expectation value of the Wilson loop is also real but can be either
positive or negative, i.e., OΩ = ±1. This means that the vortex order parameter cannot vary
smoothly under variations of model parameters when moving between the two phases.

In Ref. [58], it was demonstrated by means of a semi-classical analysis and through
the minimization of the vortex energy that in the Higgs phase, the vortex order parameter
must be equal to −1. Integrating out the heavy charged scalars in the confining phase,
one can conclude that the vortex-constrained Wilson loop expectation value hardly knows
about the presence of the vortex, thus OΩ = 1. It was argued in Ref. [58] that if one varies
parameters of the theory and at some point the magnetic flux carried by vortices suddenly
jumps, which is what the vortex order parameter is really probing, that surely is going to
change the core energy density of the vortex. In this case, it does change the probability
of having vortex excitations in the ground state wave function, affecting the ground state
energy density. In other words, a sudden change in the vortex properties really should be
reflected in a genuine thermodynamic phase transition.

Given the close analogies of the considered model with QCD, by construction of the
model above, this conclusion may be straightforwardly generalised to a D = 4 non-abelian
theory with fundamental-representation matter charged under a given global symmetry.
This is the case of dense QCD with broken U(1)B, where the SU(3) vortex order parameter
can be shown to take two distinct values in two phases [58]

OΩ ≡ lim
rv→∞

〈TrΩ(C)〉w=1

〈TrΩ(C)〉 =

{
e2πi/3 CFL/Higgs phase
+1 nuclear/confining phase

, (111)

such that the latter OΩ = +1 is understood as the characteristic signature of confined QCD
phase with spontaneously broken baryon symmetry.
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This indeed illustrates the main point suggesting that the quark-hadron continuity
between the nuclear and quark-matter phases may not hold. Ref. [70] has argued that
despite the noted discontinuity in the vortex order parameter, the continuity of phases
may still be intact due to a continuous connection between the vortex in the CSC/CFL
phase and the corresponding one in the nuclear phase. In response to this claim, Ref. [58]
has explicitly proven the existence of thermodynamical phase transition at the interface
between the two phases connected to the manifest discontinuity in the non-local vortex
order parameter. While the debate about this important issue will likely continue in
the literature, it once again reveals the surprising underlined complexity of the non-
perturbative QCD vacuum, and the associated approaches to the confinement problem
may still not be in their final form. It would be very instructive to find possible connections
between the vortex holonomy phase and its discontinuity with the Sc-confinement criterion
briefly discussed in the previous section, both pursuing the same goal of sharply separating
the Higgs and confining phases.

19. Summary

To summarise, the mass gap and colour confinement that are already realised in a
gauge-Higgs theory may not be connected to an asymptotically rising static potential
and Regge trajectories, and, hence, they do not necessarily represent an emergence of the
magnetic disorder state. On the other hand, the magnetic disorder and the associated
area-law behaviour of Wilson line VEVs imply colour confinement and the mass gap
automatically. In this sense, colour confinement and the mass gap only represent a small
part of a bigger picture of confinement and should be considered as a consequence of
the confined magnetic disorder state and flux tubes formation corresponding to a phase
with unbroken non-trivial center symmetry. If there is no non-analytic boundary between
the massive and magnetic disorder phases at finite values of coupling constants and at
some critical length-scale, i.e., a first-order phase transition, one should talk about a single
massive phase at all scales, as, for instance, in the gauge-Higgs theories. The flux tubes
formation is only an approximate picture in this case, roughly consistent with reality
at some intermediate distances, but it does not necessarily represent an emergence of a
new phase.

One of the big questions for real QCD though, i.e., with physical quarks and gluons,
which would distinguish it from the EW theory is then whether a magnetic disorder phase
really exists within some finite interval of characteristic length-scales that would abruptly
transit to a massive phase at asymptotically large length-scales (due to string-breaking),
or not. If not, then real QCD would always be considered on the same footing with a
gauge-Higgs theory as existing in the massive phase only which is one of the basic options
actively discussed in the literature. One thing, however, that distinguishes real QCD from
the EW theory is the existence of experimentally observed Regge trajectories in QCD with
light quarks that, in fact, may indicate the presence of a non-analytic phase boundary at
moderately large distances in QCD in contrast to EW theory, while both would be in the
massive phase asymptotically. Numerical values of the coupling constant here should play
a decisive role here, and for weak couplings, the magnetic disorder may not emerge at all.

In fact, light “sea” quarks, i.e., with masses way below the confinement energy scale
of QCD, emerge due to gluon splitting Ga → qq̄ such that correlated qq̄ pairs could be
viewed as effective gluons as long as the resolution length-scale is above the wave-length
of such a pair. If, at such length-scales, the strong-coupling constant is large enough, one
can view physics in such a regime as that of an effective pure YM theory in a magnetically
disordered phase with unbroken center symmetry. By pulling q and q̄ apart from each
other at length-scales larger than the resolution scale, the center symmetry gets effectively
broken, and the theory enters the massive phase. In the infinite quark mass limit, however,
the string-breaking length-scale grows indefinitely, making the magnetic disorder phase
valid for asymptotically large distances.
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Depending on the values of the gauge coupling constant, the same can occur in a
gauge-Higgs theory in a strongly coupled regime, which is supported by lattice simulations.
Thus, we arrive to a radically different phase structure of a gauge theory depending on
whether it is in a strongly coupled or in a weakly coupled regime. However, even without
matter fields involved, the major problem of confinement remains, namely to understand
why pure YM theories with a non-trivial center symmetry in D ≤ 4 dimensions can only
exist in a state of magnetic disorder. Once this key problem is solved, it will become clearer
under what conditions realistic theories, such as gauge-Higgs theory or real QCD, may
exist and the magnetically disordered phase, and a first-order phase transition towards the
massive phase may occur, if at all.

As was elaborated in this review, the phase structure and properties of the quantum
QCD vacuum is still under intense explorations, both experimentally and theoretically,
numerically and analytically, and is far from its complete and satisfactory description.
However, tremendous progress has been made and some basic contours of the fundamental
picture of confinement have started to emerge. We do understand a confining phase as
an asymptotic magnetic disorder phase with unbroken non-trivial center symmetry that
manifests itself through the area-law behaviour of large Wilson loop VEVs and, hence,
a linear rise of the corresponding static (string) potential. However, real QCD features
such a phase only pre-asymptotically where colour-electric flux tubes exist at not-too-large
distances, while they break apart at length-scales beyond an inverse to the lightest meson
mass (pion) scale, yielding a massive phase asymptotically. The quanta of the magnetic flux,
vortices, have proven to play a crucial role at all stages, from the formation of a flux tube
to its breaking. Given the overwhelming qualitative and quantitative evidence collected
in vast amounts of studies in the literature, the center vortex mechanism remains among
the most favoured scenarios of confinement so far. Other ideas, such as the monopole
scenario, highlight the underlined complexity of the confining phase and phase transitions
and offer different perspectives but in one way or another connect to the vortex picture.
Various order parameters briefly described in this review probe the confining phase and
are capable of separating it from a non-confining (Higgs) phase, with the latter remaining
under a continuous debate in the literature.
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Notes

1 Real superconductors have observable phenomena such as persistent currents distinguishing the superconducting phase from a
normal one. The name “colour superconductor” come out rather misleading in a sense that there are no observable persistent
colour-charge currents associated to this phase [58].

2 One should make a side remark here: considering static charges in the fundamental representation, with a non-zero coupling to
the gauge field in the action, automatically implies that the theory is not a pure non-abelian gauge theory. Obviously, a pure
gauge theory features neither “static” nor “dynamic” quark fields; moreover, as such, the latter fields are not distinguished by
the action unless the static ones are made a lot heavier than the dynamic ones. Therefore, any statements about the linear static
potential in pure non-abelian gauge theories should be taken with reservations and only makes sense when taking a limit of
heavy (static) matter fields that can be effectively integrated out in the corresponding path integral of the theory. However,
the latter procedure formally eliminates such heavy charges from asymptotic states of the resulting EFT entirely, making it
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impossible to use them as probes for vacuum dynamics and hence confinement in pure gauge theories. So, in practice, one does
not eliminate them from the asymptotic states of a gauge theory but rather retains them as heavy sources but with a finite mass.

3 At γ = 0, the theory is in the magnetic disorder phase, which cannot be continuously evolved from other regions in parameter
space with γ �= 0.

4 By construction, a pure gauge theory does not contain any fundamental-representation charges. So instead of heavy quarks,
the use of “constituent gluons” as static colour charges to probe the formation and properties of the flux tubes of finite lengths,
colour screening, string breaking mechanism and the phases of the theory would be the most natural approach to study
confinement in pure non-abelian theories.
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Abstract: Topological fluctuations change their nature in the different phases of strong interactions,
and the interrelation of topology, chiral symmetry and confinement at high temperature has been
investigated in many lattice studies. This review is devoted to the much less explored subject of
topology in dense matter. After a short overview of the status at zero density, which will serve
as a baseline for the discussion, we will present lattice results for baryon rich matter, which, due
to technical difficulties, has been mostly studied in two-color QCD, and for matter with isospin
and chiral imbalances. In some cases, a coherent pattern emerges, and in particular the topological
susceptibility seems suppressed at high temperature for baryon and isospin rich matter. However, at
low temperatures the topological aspects of dense matter remain not completely clear and call for
further studies.

Keywords: QCD; topology; lattice field theory; dense matter; phase transitions

1. Introduction

In broad outline, the general framework of this review is Quantum Chromodynamics
(QCD) and its several phases and critical phenomena depending on temperature, baryonic,
isospin and chiral densities. At high temperatures the matter is in a plasma phase—the
Quark-Gluon Plasma. At lower temperatures and increasing baryonic density, one encoun-
ters nuclear matter first, then a transition to a dense deconfined phase of quarks and gluons.
This phase of matter is realised in the interior of neutron stars, extremely compact stellar
objects produced in the supernova explosions. In this extreme environment several exotic
phases can be realised. The recent observation of gravitational wave signals originating
from the merging of two neutron stars has triggered further interest in the theoretical
investigation in this direction, see e.g., Ref. [1].

Current and planned experiments have the capability of exploring the phase diagram
of strong interactions. Ab-initio lattice studies [2,3] have produced results at non-zero
baryon density, at rather large temperature in QCD, at non-zero isospin and chiral densities,
and in entire phase diagram for two-color QCD, which is protected by the sign problem by
the Pauli-Gürsey symmetry. The focus of most studies is on chiral and confining properties,
and only a limited subset has addressed topology.

The interplay of chiral symmetry, confinement and topology may well depend on the
details of the microscopic dynamics, which in turn is affected by matter density. In vacuum,
chiral symmetry breaking occurs via a space-homogeneous condensate. At high temper-
ature this is known to dissolve, while for low temperatures and high-density different
pairing phenomena result in a rich, and still not entirely explored phase diagram [4–6].
In particular, Ref. [6] suggests a distinct different behaviour of the topological susceptibility
at high temperatures and zero density, and high densities and low temperatures. A simpli-
fied view of the phase diagram from Ref. [5] can be seen in Figure 1. Non-homogeneous
phases [7,8], predicted and only recently observed [9] in simple models at finite density,
may well have different confining and topological properties.

A non-zero density—be it due to baryon, isospin or chiral imbalances—is then an
important probe for the interplay of chiral symmetry, confinement and topology, and may
shed some light on its general aspects.
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Figure 1. A schematic view of the phase diagram of QCD in the baryon, isospin chemical potential,
and temperatures, from Ref. [5]. For two-color QCD the diagram would look similar, but the zero-
temperature baryon and isospin critical chemical potential are the same, and the two dense phases
are characterised by diquark and pion condensation.

2. Topology and Strong Interactions

The dynamics of gauge field is a fascinating aspect of strong interactions. Asymptotic
freedom, and the self-interacting nature of the gluons, are reflected by the structure of the
gauge sector of the theory. A configuration of gauge fields may have a topological content,
measured by the topological charge density q(x) :

q(x) ≡ g2

32π2 Fa
μν F̃μν

a (1)

Indeed (see e.g., Ref. [10]) Q ≡ ∫
q(x)d4x equals the Chern–Pontryagin index or

winding number of gauge fields. It can only assume integer values, thus identifying the
topological class to which the gauge configuration belongs.

The QCD Lagrangian may be coupled to the topological charge density

L = LQCD + θ
g2

32π2 Fa
μν F̃μν

a , (2)

Experiments on the electric dipole moment of the neutron dn place limits on the value
of θ parameter. The limits follow from the relation between dn and θ. QCD sum rules
give dn = 2.4 × 10−16θ e cm [11] and chiral perturbation theory gives dn = 3.3 × 10−16θ e
cm [12]. The most recent experimental measure [13] of the neutron electric dipole moment
is dn = (0.0 ± 1.1 (stat) ± 0.2 (sys)) ×10−26 e cm, which may be interpreted as an upper
limit |dn| < 1.8 × 10−26 e cm at a 90% C.L. Combining the experimental limit with the
relations mentioned above, one arrives at the bound θ < 0.5 × 10−10. This anomalously
small value of θ leads to the hypothesis of an axion field which would force θ to vanish
dynamically [14,15]. tealIn parallel, and not further discussed in this review, the possibility
of a very small, but non-zero nEDM remains open. Such result would indicate physics
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beyond the standard model [16] and it is a subject of an active theoretical investigation, see
e.g., Ref. [17].

2.1. Topology, from Low to High Temperatures

The close and challenging interplay of topology, chiral and axial symmetry and gauge
field dynamics—which we will briefly review below—has motivated investigations at
high temperature, well before considering high density. In short summary, the topological
susceptibility drops at the high temperature chiral phase transition, although it is still
under debate whether a partial axial restoration coincides or not with chiral restoration,
see e.g., Ref. [18] for a recent review, including a full set of references.

The behaviour of topology has been extensively studied at high temperature on
the lattice [18–22]: it decreases in the plasma and at very high temperatures follows the
predictions of the dilute instanton gas, DIGA (which we will briefly introduce in the
next subsection), in which only configurations with zero, or unit, topological charges are
possible. The results are briefly summarised in Figure 2, from Ref. [18].

Figure 2. The fourth root of topological susceptibility versus the temperature in full QCD. (a) shows
the gluonic results from Ref. [21]. (b) shows the tabulated results from Ref. [23]. (c) Ref. [24]; these
results are rescaled from a higher pion mass (d) and (d1) show the results from Ref. [22] obtained
by rescaling from the two lightest masses mπ = 220, 260 MeV. (e) the results from Ref. [20], where a
careful continuum extrapolation with a conservative error estimate was performed. From Ref. [18].

2.2. Symmetries of QCD, and Topology

At a classical level, and in the massless limit, LQCD has a global U(N) × U(N) ≡
SU(N)× SU(N)× U(1)B × U(1)A symmetry, where N is the number of light flavours.
The most natural scenario compatible with the pions and K mesons spectrum is the sponta-
neous breaking of the SU(3)×SU(3) symmetry of LQCD in the three-flavour massless limit,
while the other flavours are massive and do not participate in the chiral dynamics. In this
scenario, Chiral Perturbation Theory predicts the masses of the mesons and baryons made
by the physical up, down and strange quarks. The condensate formed in this breaking
would also break the U(1)A symmetry: hence, the η′ should follow the same fate as the
other mesons, while it is distinctly heavier.
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The way out is breaking explicitly the U(1)A symmetry [25]: since the topological
charge appears in the divergence of the U(1)A current Jμ

5

∂μ Jμ
5 = 2Nf Q + 2

Nf

∑
i=1

miψ̄iγ5ψi (3)

the breaking of the axial symmetry may be achieved by a non-trivial topology which leads
to the non-conservation of the current. In this way the large mass of the η′ affords a direct
evidence of the non-trivial topology of the vacuum, responsible for the explicit U(1)A
breaking [26–28]. The η′ carries thus interesting information on the anomalous component
and on topology: as anticipated in Ref. [29] the η′ should be on the same footing as the
other mesons in the plasma, once the anomalous component disappears. Indeed, this was
verified on the lattice in [30], see Figure 3.

Figure 3. The mass of the η′ as a function of the temperature in QCD: the η′ mass approaches
the mass of a (unphysical) s̄s meson at the transition, signaling the suppression of the anomalous
component due to topological fluctuations. From Ref. [30].

Additionally, the spectrum results concurs in indicating that the topological suscepti-
bility is greatly reduced in the plasma.

One interesting case, much studied numerically, is two-color QCD, which enjoys an
enlarged chiral symmetry [31]: quarks and antiquarks belong to equivalent representation
of the color group. As a consequence of that, the ordinary chiral symmetry of QCD
SU(N) × SU(N) is enlarged to SU(2N). Thanks to this symmetry the theory does not
have a sign problem at non-zero baryon density: intuitively, baryon and isospin density
are the same for the two-color world.

A further symmetry is the isospin symmetry: a global transformation, an SU(2)
rotation in flavour space (QCD interactions are flavour-blind). It acts on up and down
quarks and LQCD is invariant for identical or vanishing masses. In reality this symmetry
is explicitly broken by the (small) mass difference between up and down quarks. Isospin
breaking has consequences also on topology, since chiral perturbation theory [32] predicts,
at leading order (LO),

χLO =
z

1 + z2 m2
π f 2

π (4)
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with z = mu/md. We would not pursue these aspects—we will always consider mu = md.
We will instead consider the effect on topology of an isospin density [33], artificially
induced by an appropriate chemical potential- more precisely, by its third component, I3.
The motivation for this is to understand the regime of finite density of a conserved charge
(the isospin), aiming at the observation of the transition from hadronic to quark degrees of
freedom at zero/low temperatures.

In nuclear matter and in astrophysics isospin imbalance is very important, how-
ever in real world the baryonic density is much larger than the isospin one, μI � μB.
In Ref. [33] as well as in lattice studies [34–40], the authors consider an idealization with
μI �= 0, μB = 0. Such a system is unstable under weak interactions which do not conserve
isospin. Nonetheless, in this purely QCD world this system can still give us relevant
information, also considering that it is free from the sign problem [31], and we will discuss
lattice results below.

This brief discussion on symmetries leads us to consider three different chemical
potentials: two of which associates with conserved charges, μB and μI , the third associated
with a the non-conserved axial current, μ5 ≡ (μR − − − μL)/2, which couples to the
current ψ̄iγ5ψi see Equation (3).

2.3. Conserved Charges μB and μI

Let us consider again the phase diagram in the μB, μI , T space, from Ref. [5], see
Figure 1: at high temperature-chiral symmetry is restored. In the limit of zero temperatures
isospin and baryochemical potential induce the transition to a dense phase, characterised
by different pairing phenomena, see e.g., Refs. [4,5]. A standard scenario predicts the
transition when the chemical potential equals the mass of the lowest state carrying the
corresponding charge: μc

B � mN , and μc
I � mπ , with mN and mπ being the nucleon

and pion mass, respectively. The two dense phases are characterised by different pairing
phenomena in real QCD, and are probably separated by a low temperature phase transition
at in the μB, μI plane, studied in chiral perturbation theory [41].

In two-color QCD, due to the already mentioned fact that the baryons of the theory
are diquarks, the phase diagram in Figure 1 would look the same in the two directions,
with the same thresholds along baryon and isospin chemical potential. The two condensed
phases, which are significantly different in QCD, are now the same and have both (colorless)
condensates: diquark and pion condensates in the μB and μI directions.

2.4. Instantons and Zero Modes

One possible way to discuss the different properties of the phases of strong interac-
tions at zero and non-zero density vis-a-vis topology is to consider the behaviour of instan-
tons [42]. Instantons are classical solutions to the Euclidean equations of motion: localized
regions of space-time (typical sizes are 1/3 fm) , with very strong gluonic fields, and charac-
terised by a topological quantum number. It turns out that there are important differences in
the instanton behaviour at zero and non-zero densities and temperatures [6,43,44]. At low
temperatures one expects a random instanton ensemble, accounting for chiral breaking.
At high temperatures one expects instanton-anti-instanton pairs, eventually behaving at
high temperatures like a dilute gas, described by the Dilute Instanton Gas Approximation,
DIGA, in which only configurations with zero, or unit, topological charges are possible,
while at finite density one may expect instanton chains [43]. The reason for this [43] is that
either at finite temperature and finite density the quark propagation in time direction is
favored over space-like propagation, the latter being suppressed by e−πTr and eiμr, respec-
tively. In general, the fermion determinant generates strong correlations among instantons.
Because of this, the random instanton ensemble, responsible for chiral breaking, dissolves
into clusters oriented in the time direction: the already mentioned instanton-anti-instanton
pairs at high temperature (eventually turning into the dilute instanton gas) and instanton
chains at high density.
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The details may be found in Ref. [44], where the authors discuss the role of instantons
in the three major phases of strong interactions: the hadronic phase, the color supercon-
ductor phase, and the quark-gluon plasma phase. In brief, the reasoning starts from
Equation (3) which shows a remarkable connection between gauge fields and fermions.
This is made more transparent by the Atiyah–Singer index theorem [45,46]:

1
32π2 εμνρσ

∫
Tr[Fμν(x)Fρσ(x)] d4x = n+ − n− . (5)

We see that the topological charge ’counts’ the number of zero modes of the massless Dirac
operator with positive and negative chirality n±. The Atiyah–Singer theorem works also
at finite density, however, the nature of the zero modes are now different, since there are
extra states appearing at the Fermi surface. In QCD this interaction leads to the formation
of diquark (colored) Cooper pairs, to BCS instability and to color superconductivity—these
are the phases depicted in Figure 1. In two-color QCD, diquark pairs are stable as they
are color neutral and a diquark condensate is formed. The different phases of strong
interactions can then be characterised by instanton dynamics, and an important point is
that pair dynamics should always predominate as temperature increases, at any chemical
potential. One would then expect some significant changes in topology at fixed chemical
potential when increasing temperature, as well as changes when fixing the temperature
and increasing the chemical potentials.

2.5. Detecting Topology—The Chiral Magnetic Effect and μ5

From a phenomenological point of view, the Atiyah–Singer theorem opens the way
to the possibility of a direct observation of topology in experiments, see e.g., Refs. [47–49].
In fact, the gluons do not carry conserved charges which could be directly measured.
But we can still ’see’ topological fluctuations in the quark sector. These observations are
at the root of the discovery of the so-called Chiral Magnetic Effect (CME) [49]: electric
charge separation in the presence of an external magnetic field that is induced by the
chirality imbalance. This striking effect could be observed in heavy ion collisions and in
condensed matter experiments and its prediction has spawned a significant experimental
activity. Many reviews are available, see e.g., [48] and we will not discuss further the CME
here, as our focus is equilibrium studies of topology and their signatures in the phase
diagram. However, it is important to underscore that it is indeed the CME that has called
the attention of the lattice community on the chiral chemical potential, and has motivated
the numerical analysis at equilibrium which we will discuss later. teal It is important to
notice that the chiral chemical potential μ5 couples to the chiral charge density operator
ψ†γ5ψ which is not conserved because of the chiral anomaly. So it is not on the same
footing as the baryon chemical potential or the isospin chemical potential. μ5 cannot be
generated in thermodynamic equilibrium, topological fluctuations will wash it out: μ5 is
just an external coupling able to generate a chiral imbalance [50–54], and it may require
renormalization in the ultraviolet [50].

3. Lattice Results—Topology and Dense Matter

In the previous Section we have argued that one may expect some significant dif-
ferences in topology in the different phases, and have shown a summary of results at
zero density. Here we will review the current lattice results for topology in dense matter,
with different temperatures.

A very brief technical note before proceeding: let us remind ourselves that the different
densities we have discussed are realised by adding the appropriate zeroth component of
the current to the Lagrangian, while on Euclidean lattices the temperature is the reciprocal
of the time extent of the lattice, T = 1/Nta, a being the lattice spacing and Nt the number of
sites in the temporal direction. The results on topology are so far limited to the topological
susceptibility, the fluctuations of the topological charge. Details on the rich and highly
technical subject of lattice topology may be found in Ref. [55].
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3.1. Baryon Density

These studies were mostly carried out for two-color QCD, since this is free from the
sign problem. As discussed above, the dynamics may be significantly different from that of
QCD, especially concerning the nature of the pairing at high density. However, the hope
is that the main features of instanton dynamics which are at the heart of this discussion
remain valid—although of course this is subject to verification.

Studies of two-color matter have been performed by several groups [34,56–64]. teal In
cold matter, these studies have confirmed that baryonic matter forms at an onset μo = mπ/2,
whereupon diquarks start populating the vacuum. If the dynamics favor pairing, they
could condense: diquark condensation at low temperatures, above μo is consistently
observed in lattice studies. However, the dependence of the diquark condensate on the
chemical potential is still unsettled, leading to different hypotheses on the nature of the
phase about μo: some studies find consistence with chiral perturbation theory indicating
a BEC phase [64], followed from a transition to free behaviour, interpreted as a crossover
to BCS. Others find compatibility with a free quark behaviour [65] immediately above μo,
at largish masses, and non-conclusive results for lower masses [65]. According to the same
study, early signals for deconfinement for chemical potentials μ � 1.1mπ [61] should be
interpreted with care. In brief, the issue of the nature of the dense phase above μo is subtle,
and under investigation. The very existence of an onset at μo and low temperatures is
instead uncontroversial, and we will concern ourselves with the behaviour of topology
past this onset, in comparison with the observations at high temperatures.

One first study of topology was carried out in two-color QCD with eight flavours of
staggered fermions [58]—this choice may be surprising as the theory in the continuum
limit is known to be within the conformal window of QCD, see e.g., Refs. [66–68]. However,
the coupling was strong enough to break chiral symmetry at zero temperature. In this
condition one may study the phase diagram—similarly, for instance, to what one would
do in lattice strong coupling electrodynamics. One important caveat, of course, is that
topology is poorly defined at strong coupling: the very nature of the topology require
the continuum limit [55]—on a discrete system the barriers among different topological
sectors are finite, as the system may be easily deformed. On the lattice, this produces
the so-called dislocations, which artificially increase topological fluctuations. To mitigate,
at least partially, this effect in Ref. [58] the analysis is restricted to finite temperature, which
is realised with finer lattices. In addition to that, the lattice configurations were subjected
to smoothing—a local coarse graining—designed to suppress artifacts. The results of [58]
indicate that gluon dynamics, chiral symmetry and topology are interrelated in the region
of temperatures 0.3 < T/Tc < 0.4. The behaviour is exemplified in Figure 4: to appreciate
the correlation among different observables the diagrams show the derivatives with respect
to the chemical potential of the Polyakov loop, the chiral condensate and the topological
susceptibility. The coincidence of the peaks, signaling the onset of the superfluid phase, is
quite clear.

Obviously, these earlier investigations called for more studies, including lower tem-
peratures. Of particular interest would be the study of topology in the superfluid phase,
characterised by a diquark condensate, as discussed at the beginning of this Section.

A study dedicated to topology in the cold phase, i.e., accessing the superfluid region
of two-color QCD, found interesting differences between two and four flavours [61],
see Figure 5. The topological susceptibility was measured on two different gauge field
ensembles. The first used a 123 × 24 lattice and N = 2 flavours of Wilson fermions.
The second ensemble used the same system size, and N = 4. The two ensembles have
similar pion masses in lattice units, mπa = 0.68, and may be considered fairly ‘cold’: the
onset for the superfluid phase should then be μoa � 0.34. A summary of the results is
offered by Figure 5: interestingly, apparently the topology in the two-flavour theory is
insensitive to the chemical potential, while the results in the four-flavour model may even
suggest an increase of the topological susceptibility. The authors issue a caveat though: also,
in this case one may fear important discretization effects. Barring these, the observation is
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that other thermodynamic studies revealed that the two-flavour model is weakly coupled
above the onset [60], while in contrast, the four-flavour model appears to be strongly
coupled [62]. So, there is the possibility that the raise of the topological susceptibility in
the four-flavour model above the onset does indeed reflect the strongly coupled nature of
the theory.

Figure 4. The correlation among topology, confinement and chiral symmetry as seen from the μB

derivatives of the topological susceptibility, the Polyakov loop and the chiral condensate in two-color
QCD, on a hot lattice. From Ref. [58].

Figure 5. Topological susceptibility versus chemical potential in two-color QCD for two and four
flavours, from Ref. [61], in a cold lattice; the expected μo in lattice units is μoa � 0.34.
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A recent paper [64] analysed the temperature dependence of the results at high
chemical potential using the same setup at low and high temperature, but for the number
of time slices, which controls the temperature itself. At a temperature of about 0.45Tc,
where Tc is the chiral transition temperature at zero chemical potential, the topological
susceptibility is found to be almost constant for all the values of chemical potential, from the
hadronic to superfluid phase. In contrast, for a temperature of about 0.89Tc the topological
susceptibility becomes small as the hadronic phase changes into the quark-gluon plasma
phase. The results, shown in Figure 6, indicate a significant temperature effect, which
changes the behaviour of the topological susceptibility from constant with μB (in the cold
phase) to decreasing with μ in the hot phase, the latter observation in agreement with
Ref. [57].

Figure 6. Polyakov loop and topological susceptibility in two-color QCD, in a cold (left) and in hot lattice, from Ref. [64].
We would like to highlight here the lack of sensitivity of the topological susceptibility on the threshold for the Polyakov loop
at μo at T = 0.45Tc (left), to be contrasted with the (anti) correlated behaviour of the same observables in the Quark-Gluon
Plasma (right). Please note that the identification of the diquark dense phase with a BEC phase followed by a BCS one is
still under debate [65].

The results of [34] are obtained on a 324 lattice, which is described as a cold one.
In simulations for N = 2 a clear correlation between chiral condensate and topological
susceptibility emerged Figure 7. Accepting that these are simulations on cold lattices,
there is an apparent contradiction with the scenario of [62,64], see Figure 6, left, as well
Figure 5, left. However, the physical temperature is, according to the estimates of the paper
T = 140 MeV [34], so it could well be that one is effectively observing a transition to a
Quark-Gluon Plasma, albeit in a finite volume. Indeed the diquark condensate remains
smaller than the condensate, indicating a different behaviour from the cold transition. This
may offer a solution to this apparent puzzle. A clearer conclusion may be reached by per-
forming simulations for chemical potentials in the dense phase, and varying temperatures:
one may observe a transition from a phase with large topological susceptibility to a phase
with suppressed susceptibility. Lacking those simulations, for the time being the results
remain to some extent puzzling.
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Figure 7. Chiral condensate and topological susceptibility as a function of baryochemical potential in two-color QCD, from
Ref. [34].

3.2. Isospin Density

The phase diagram at finite density of isospin, introduced in Section 2 and shown in
Figure 8, has been studied on the lattice by various authors [36,38,69,70]. An interesting
feature is that the critical line T = T(μI) has a very small slope—it is almost horizontal.
So simulations performed at fixed temperature varying μI are very likely crossing the pion
condensation line unless the temperature is really close to Tc.

Figure 8. Lattice results for the phase diagram of QCD in the temperature-chemical potential for
isospin plane, from Ref. [36].

Topology was studied in Ref. [71]: the authors perform simulations in full QCD with
staggered fermions on 243 × 6 lattices, with a similar setup as the one used in Ref. [72] to
study a 84 lattice. In Ref. [72] the transition to the condensed phase was clearly observed,
with μc

I � mπ/2 On the 243 × 6 lattice the pion mass was set at its physical value,
corresponding to mπa = 0.2, leading to an expected critical isospin chemical potential
μc

I a = 0.1. Topology was then studied by analysing the zero and non-zero modes of the
overlap Dirac operator, which has an exact chiral symmetry, and it is thus particularly
suited for this analysis. The eigenvalue distributions were obtained for μI = 0.5, 1.5μI c
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i.e., below and above the isospin phase transition, and they are remarkably similar, see
Figure 9.

Figure 9. Eigenvalue spectrum of the Overlap Dirac operator for QCD with a physical pion mass, on 243 × 6 lattice for
μI = 0.5, 1.5μI c, left and right diagram. From Ref. [71].

As with what was observed at finite baryon density, and low temperatures, in
two-color QCD, apparently topology in cold systems does not change in dense matter.
This would be consistent with the predictions of Ref. [6].

3.3. Chiral Density

Early lattice studies of chiral density were performed having in mind a toy model
for the chiral magnetic effect in heavy ion collisions [52]. One first systematic study of the
phase diagram at equilibrium appeared in Ref. [73]. Even if QCD with a chiral density does
not have a sign problem, these first studies were performed for two-color QCD, for the sake
of simplicity, economy of computational resources , and possible comparison with results
in two-color QCD with a magnetic field. The resulting phase diagram—which confirms the
prediction of model studies—is reproduced in Figure 10. The larger extent of the hadronic
phase—Tc increases with μ5—reflects the so-called chiral catalisys [53]—the enhancement
of the chiral condensate due to chiral imbalance, which pushes the critical temperatures
towards higher values when increasing μ5. Details and a rich list of references may be
found in a recent review [54].

Lattice studies of topology and confinement with a chiral imbalance have been per-
formed in QCD in Ref. [51], using the tree level improved Symanzik gauge action and
staggered fermions with two flavours of dynamical quarks. Four different pion masses
were explored: mπ = (563, 762, 910) MeV. It was found that the model follows the chiral
perturbation theory prediction [74] ρ5 = ΛQCDμ5: the chiral density depends linearly on
the chiral chemical potential, there are no thresholds. The study reveals that the topological
susceptibility increases with the chiral chemical potential, much in the same way as the
chiral condensate did in the two-color study. Moreover, also the string tension increases,
in a rather correlated way. This was interpreted [51] as a signal that the chiral chemical
potential leads to larger fluctuations of the chiral density and, due to the anomaly, to larger
topological fluctuations in QCD: the chiral chemical potential enhances topological fluctua-
tions which in turn are related to the strength of confinement as seen from the string tension,
see Figure 11.
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Figure 10. The phase diagram of QCD (two-color) in the temperature-chiral chemical potential plane;
note the enlargement of the hadronic phase due to the enhancement of chiral breaking. From Ref. [73].

Figure 11. String tension (left) and topological susceptibility (right) in QCD as a function of the
chiral chemical potential, and different pion masses. From Ref. [51].

4. Summarising

Topology and dense matter are studied independently, and intensively on the lattice.
However, studies of the topological aspects in dense matter are still relatively scarce.
We have reviewed the available information for a baryon rich matter, mostly coming from
two-color QCD, for isospin dense matter, and for a chiral imbalance, hoping to highlight
some clear trend, and to contribute to identify the open issues.

Actually, none of the systems considered here is completely realistic: finite baryon
density may well be realised in experiments; however, on the lattice one must use (unphys-
ical) theories free from the sign problem to access to cold, dense phase. Dense, baryon-less
isospin matter would be unstable under weak interactions. Additionally, chiral imbalance
does not exist at equilibrium even in strong interactions. Yet, these studies may add to our
understanding of the phases of strong interactions, and , in some cases, pose some new
challenge. Indeed, one of the main points to be addressed—the interrelation among topol-
ogy, confinement, chiral symmetry—remains to large extent unsolved. These ambiguities
are partly due to lattice artifacts—they are highlighted in all the works we have reviewed,
partly to the different setup of the simulations.The ambiguities may be particularly severe
in systems with a chiral chemical potential, which are to some extent artificial, and where
a continuum limit is not well defined. Very few studies are available in which dense matter
has been explored as a function of temperature within the same model.
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Nonetheless, at least at high temperature, some coherent pattern emerges: a tentative
conclusion is that above the critical temperature for superfluidity/superconductivity, the
topological susceptibility as a function of chemical potential, either isospin and baryonic,
is well correlated with the chiral condensate and the signals for confinement. The same
remains true for the chiral chemical potential: in that case, there is a striking effect called
chiral enhancement: the chiral condensate grows with chemical potential—and the same is
true for topological susceptibility and string tension.

At low temperatures, however, the results for the topological susceptibility are not
entirely settled: in some cases, a similar behaviour as high temperature has been reported;
in other cases a sensitivity to the number of flavours has been observed; other studies
conclude for the insensitivity of the topological susceptibility to the matter density. The lat-
ter observation would indeed be consistent with the analysis of Ref. [6]. The results in
cold systems often call for further investigations and better control of the lattice artifacts,
and this may be particularly true for studies with a chiral chemical potential. This said,
a feature which seems to be well established is the insensitivity of topological susceptibility
to dense matter. However, if instantons’ chains were indeed realised in cold and dense
matter, there should be some signatures in topological observables. Should one think
that the behaviour of topological susceptibility invalidates this picture, or, rather, that
topological susceptibility is simply not able to capture it?
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Abstract: In this review, after a general introduction to the Effective String Theory (EST) description of
confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased.
We show that, as the deconfinement point is approached from below, several universal features of
confining gauge theories, like the ratio Tc/

√
σ0, the linear increase of the squared width of the flux

tube with the interquark distance, or the temperature dependence of the interquark potential, can be
accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the
EST behaviour turns out to be in good agreement with what was predicted by conformal invariance
or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.

Keywords: Lattice Gauge Theories; Effective String Theories

1. Introduction

One of the most powerful tools we have for studying the non-perturbative behaviour
of confining Yang–Mills theories is the so called “Effective String Theory” (EST) in which the
confining flux tube joining together a quark-antiquark pair is modeled as a thin vibrating
string [1–5]. As explicitly stated in its definition, this model is only an effective large
distance description of the flux tube and not an exact non-perturbative solution of the
Yang–Mills theory; however, due to the peculiar features of the string action, it turns out to
be a highly predictive effective model, whose results can be successfully compared with the
most precise existing Monte Carlo simulations in Lattice Gauge Theories (LGTs). Besides its
predictive power EST is also interesting from a theoretical point of view, since it is a perfect
laboratory to test more refined nonperturbative descriptions of Yang–Mills theories, guess
new hypotheses, and drive our understanding of the role of string theory in this game.

EST also plays an important role from a phenomenological point of view since it
can be used to model the glueball spectrum of QCD [6] or to model the large distance
(non-perturbative) part of the interquark potential in heavy quarkonia [3,4] or the onset of
the deconfinement transition [7].

The simplest, Lorentz invariant, EST is the Nambu–Goto model [1,2] which will be the
main subject of this review. The Nambu–Goto action can be considered in this framework
as a first order approximation of the actual EST describing the non-perturbative behavior
of the Yang–Mills theory. The most interesting result of the last ten years of EST studies is
that this first order approximation works remarkably well and agrees within the errors,
in the large distance limit, with almost all the existing Monte Carlo simulations for all the
confining models that have been studied (with only a few exceptions [8,9]). We shall see
below that this is not by chance and that it is instead a direct consequence of the peculiar
nature of the EST and of the strong constraining power of Lorentz invariance in this context.

This also explains the impressive universality of the infrared regime of confining gauge
theories (with only a mild dependence on the number of space–time dimensions, exactly
as predicted by the Nambu–Goto model), which show essentially the same behaviour for
the interquark potential, the deconfinement temperature and the glueball spectrum. This
universality of LGT results, which holds for models as different as the three dimensional
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gauge Ising model and the four dimensional SU(3) Yang–Mills theory was in the past one of
the major puzzles in the Lattice community and is now understood only as a side effect of
the impressive effectiveness of the Nambu–Goto approximation. It is thus only an apparent
universality and all the details on the gauge group are expected to be encoded in the higher
order EST corrections beyond Nambu–Goto. It is thus clear why a lot of efforts have been
devoted in these last years to the identification and modellization of these non-universal
higher order corrections. The hope is that, since they depend on the particular type of
confining gauge theory, they could shed some light on specific non-perturbative properties
of the theory, for instance on the non-pertubative degrees of freedom (say, instatons or
monopoles) driving confinement in the model.

Due to the asymptotic large-distance nature of the EST expansion, the optimal regime
in which one can observe higher order terms is for short interquark separations, much
smaller than the length of the Polyakov loops. In the string language this is known as the
“open string channel”.

While the above choice is the one which is more often used, it is easy to see, looking at
the explicit expression of the EST partition function that the opposite choice (the “closed
string channel” in string language) in which the short direction is the one with periodic
boundary conditions, is better suited to observe higher order corrections. In the language
of Lattice Gauge Theories this is the high temperature regime of the theory in which the
temperature is just below the deconfinement transition. This is exactly the limit in which
we are interested in this review.

While there are already several good general reviews on EST (see for instance [10–12]),
the goal of this paper is to focus specifically on the EST behaviour in the high-T regime
and to discuss how our understanding of Lattice Gauge Theory in this limit can help us
to constrain and check EST. In particular an important reason of interest of this limit is
that, in LGTs with a second order deconfinement transition, several non trivial results on
EST can be obtained using renormalization group arguments of the type discussed in [13].
This approach, which allows to map a (d + 1) dimensional LGT into a suitably chosen d
dimensional spin model, will be one of the main focus of the present review.

In this review we shall mainly focus on two observables: The interquark potential
and the flux tube width which in the past years played a major role in the progress of
our understanding of EST properties. In particular, the review is organized as follows.
Section 2 will be devoted to a brief introduction to Lattice Gauge Theories. In Section 3
we shall discuss the main properties of EST (and in particular of the Nambu–Goto action)
with a particular focus on the high-T behaviour. Then in Section 4 we shall compare EST
predictions for the interquark potential in the high temperature regime with Monte Carlo
simulations. In Section 5 we shall address the important issue of the width of the flux
tube and discuss its behaviour in the high-T regime. Section 6 will be devoted to a few
concluding remarks.

2. A Brief Summary of LGTs

The natural context in which we can see the EST at work is in the confining phase
of Lattice Gauge Theories (LGT) where EST is expected to describe the large distance
behaviour of the confining flux tube joining a quark antiquark pair. Thus in order to fix
notations and to better understand the physics behind EST it is useful to briefly discuss
a few basic notions of LGTs. We refer the interested reader to the book [14] for a more
detailed introduction to LGTs.

The partition function of a gauge theory in D spacetime dimensions with gauge group
G regularized on a lattice is

Z =
∫

∏ dUμ(�x, t) exp{−β ∑
p

Re Tr(1 − Up)}, (1)

where Uμ(�x, t) ∈ G is the link variable at the site (�x, t) = (x1, .., xD−1, t) in the direction μ
and Up is the product of the links around the plaquette p.
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We shall denote in the following with Nt (Ns) the lattice size in the time (space)
direction and assume for simplicity Ns to be the same for all the space-like directions. We
shall use d to denote the number of space-like directions in the lattice; thus D = d + 1. To
simplify notations we shall fix the lattice spacing a to 1 and neglect it in the following.

As it is well known the link variable Uμ(�x, t) is not gauge invariant and only the traces
of ordered products of link variables along closed paths are gauge invariant.

The simplest choice is the Wilson loops

W(γ) = Tr ∏
(�x,t)∈γ

Uμ(�x, t) (2)

where the product is assumed to be ordered along the path γ. If we choose the path γ to be
a rectangle of size R × L (with L along the Euclidean “time” direction and R along one of
the space directions) then it is possible to relate the expectation value of W(R × L) to the
interquark potential as:

V(R) = − lim
L→∞

1
L

log〈W(R, L)〉. (3)

The idea behind this definition is that we may think of 〈W(R, L)〉 as the free energy
due to the creation at the time t0 of a quark and an antiquark pair which are instantaneously
moved at a distance R from each other, keep their position for a time L and finally annihilate
at the instant t0 + L.

A confining LGT will be characterized by a linearly rising potential and thus, according
to Equation (3) we expect for the Wilson loop an “area law” of this type

〈W(R, T)〉 ∼ e−σ0RT+p(R+T)+k. (4)

The area term is responsible for confinement while the perimeter and constant terms
are non universal contributions related to the discretization procedure. The physically
important quantity is the coefficient of the area term which represents the lattice estimate
of the string tension.

2.1. Finite Temperature LGTs

It is important at this point to stress that Equation (3) above, only defines the so called
zero temperature interquark potential and accordingly σ0 is the zero temperature string
tension. If one is interested in the finite temperature behaviour of the interquark potential
and in the possible presence of a deconfinement transition at some finite temperature Tc
the lattice regularization prescription must be modified.

The lattice regularization of a generic Quantum Field Theory (QFT) at a non-zero,
finite temperature T can be obtained by imposing periodic boundary conditions in the
time direction for the bosonic field (and antiperiodic for fermionic ones). With this choice a
lattice of size (Nsa)d(Nta) represents the regularized version of a system of finite volume
V = (Nsa)d at a finite temperature T = 1/Nta. Even if in the rest of the paper, having
set a = 1, we shall systematically use Nt and Ns as a shorthand notation for Nta and Nsa,
in the above formulas we restored the lattice spacing to emphasize the correct dimensions
of the physical quantities we are defining. The compactified “time” direction at this point
does not have any longer the meaning of time (recall that we are describing a system at
equilibrium in the canonical ensemble) but its size Nta is instead a measure of the inverse
temperature of the system Nta = 1/T.

As a consequence, in a finite temperature setting, the Wilson loop cannot be related
any more to the interquark potential as we did above. Fortunately we have a different
way to construct a quantity with the same physical interpretation. In a finite temperature
setting one can define a new class of gauge invariant observables which are usually called
Polyakov loops.
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A Polyakov loop P(�x) is the trace of the ordered product of all time-like links with the
same space-like coordinates; this loop is closed owing to the periodic boundary conditions
in the time direction:

P(�x) = Tr
Nt

∏
z=1

Ut(�x, z). (5)

In a pure LGT the Polyakov loop has a deep physical meaning, since its expecta-
tion value is related to the free energy of a single isolated quark. Hence the fact that the
Polyakov loop acquires a non-zero expectation value can be considered as a signature of
deconfinement and the Polyakov loop is thus the order parameter of such a deconfine-
ment transition.

The value βc(Nt) of this deconfinement transition in a lattice of size Nt = 1/T in the
compactified time direction can be used to define a new physical observable Tc which is
obtained by inverting βc(Nt). We obtain in this way, for each value of β, the lattice size in the
time direction (which we shall call in the following Nt,c(β)) at which the model undergoes
the deconfinement transition and from this the critical temperature Tc(β) ≡ 1/Nt,c(β) as a
function of β.

2.2. The Finite Temperature Interquark Potential

In a finite temperature setting the interquark potential can be extracted by looking at
the correlations of Polyakov loops in the confined phase. The correlation of two loops P(x)
at a distance R and at a temperature T = 1/Nt (which we denote with the subscript Nt in
the expectation value) is given by

〈P(x)P†(x + R)〉Nt ≡ e−
1
T V(R,T) = e−NtV(R,T), (6)

where we consider the free energy V(R, Nt) as a proxy for the interquark potential at a
finite temperature T

V(R, T) = − 1
Nt

log 〈P(x)P†(x + R)〉Nt . (7)

If we assume also for this correlator an area law similar to the one discussed above for
the Wilson loop:

〈P(x)P†(x + R)〉Nt ∼ e−σ(T)NtR, (8)

then we find again a confining behaviour for the interquark potential. In the above equation
σ(T) denotes this time the finite temperature string tension. As we shall see below σ(T)
is a decreasing function of T and vanishes exactly at the deconfinement point [15,16].
Following the definitions of the previous section, we may identify V(R) with the T → 0
limit of V(R, T) and σ0 with the T → 0 limit of σ(T).

It is interesting to notice that the observable Equation (6) is similar to the expectation
value of an ordinary Wilson loop except for the boundary conditions, which are in this case
fixed in the space directions and periodic in the time direction. The resulting geometry
is that of a cylinder, which is topologically different from the rectangular geometry of the
Wilson loop.

2.3. Center Symmetry and the Polyakov Loop

The major consequence of the periodic boundary conditions in the time direction is
the appearance of a new global symmetry of the action, with symmetry group the center C
of the gauge group (i.e., ZN if the gauge group is SU(N)).

This symmetry can be realized, for instance, by acting on all the timelike links of a
given space-like slice with the same element W0 belonging to the center of the gauge group.

Ut(�x, t) → W0 Ut(�x, t) ∀�x, t fixed . (9)

80



Universe 2021, 7, 170

it is easy to see that the Wilson action is invariant under such transformation. while the
Polyakov loop transforms as:

P(�x) → W0 P(�x); (10)

thus it is a natural order parameter for this symmetry. It will acquire a non zero expectation
value if the center symmetry is spontaneously broken.

Thus we see that the Polyakov loop is at the same time the order parameter of the
deconfinement transition and of the center symmetry: The deconfinement transition in a
pure lattice gauge theory coincides with the center symmetry breaking phase transition. In
the deconfined phase the center symmetry is spontaneously broken while in the confining
phase it is conserved.

2.4. The Svetitsky–Yaffe Conjecture

The peculiar role played by the Polyakov loops in the above discussion, suggests to
use some kind of effective action for the Polyakov loops, integrating out the spacelike links
of the model, to study the deconfinement transition and, more generally, the physics of
finite temperature LGT. Such a construction corresponds in all respects to a “dimensional
reduction”: Starting from a (d + 1) dimensional LGT we end up with an effective action for
the Polyakov loops which will be a d dimensional spin model with global symmetry the
center of the original gauge group.

While the explicit construction of such an effective action may be cumbersome and can
be performed only as a strong coupling expansion, some general insight on the behaviour
of the model can be deduced by simple renormalization group arguments [13] .

Indeed, even if as a result of the integration over the original gauge degrees of freedom
we may expect long range interactions between the Polyakov loops, it can be shown [13]
that these interactions decrease exponentially with the distance. Thus, if the phase transition
is continuous, in the vicinity of the critical point the fine details of the interactions can be
neglected, and the model will belong to the same universality class of the simplest spin
model, with only nearest neighbour interactions, sharing the same symmetry breaking
pattern. For instance, the deconfinement transition of the SU(2) LGT in (2 + 1) and (3 + 1)
dimensions, which in both cases is continuous, belong to the same universality class as,
respectively, the two dimensional and the three dimensional Ising models.

This mapping has several important consequences:

(a) The ordered (low temperature) phase of the spin model corresponds to the deconfined
(high temperature) phase of the original gauge theory. This is the phase in which
both the Polyakov loop, in the original LGT, and the spin, in the effective spin model,
acquire a non-zero expectation value.

(b) As for the operator content of the two models, the Polyakov loop is mapped into
the spin operator, while the plaquette is mapped into the energy operator of the
effective spin model. Accordingly, the Polyakov loop correlator in the confining
phase, from which we extract the interquark potential, is mapped into the spin–spin
correlator of the disordered, high temperature phase of the spin model

(c) Thermal perturbations from the critical point in the original gauge theory, which
are driven by the plaquette operator, are mapped into thermal perturbation of the
effective spin model which are driven by the energy operator. Notice, however, the
change in sign: An increase in temperature of the original gauge theory corresponds
to a decrease of the temperature of the effective spin model.

A major consequence of this correspondence is that, in the vicinity of the decon-
finement point, the behaviour of the interquark potential is strongly constrained and
thus it represents, as we shall see, a powerful tool to test the predictions of the effective
string model.
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2.5. EST Versus LGT: The Roughening Transition

As we mentioned above, a confining interquark potential implies an area law for the
Wilson loop (at zero temperature) or for the correlator of two Polyakov loops (at finite
temperature). A nice feature of the lattice regularization is that such an area law naturally
arises from a strong coupling expansion of these observables. Order by order in the strong
coupling parameter β, the expectation value of a Wilson loop (or of a Polyakov loops corre-
lator) is described by the sum over all the possible surfaces bordered by the Wilson loop
with a weight proportional to their area. As it is well known this expansion diverges at the
so called “roughening point” [3,4,17,18], well before the values of β for which a continuum
limit of the lattice regularization can be approached. This roughening transition is due
to the vanishing of the stiffness of the strong coupling surfaces and has a very insightful
explanation from an EST point of view. The vanishing of the surface stiffness ensures that
the surfaces bordered by the Wilson loop can freely fluctuate as actual continuum-like
surfaces and that they are not any more anchored to the crystallographic planes of the
lattice and can thus be described by a set of (D − 2) real degrees of freedom representing
their transverse displacement from the Wilson loop plane [17,18]. Upon quantization these
transverse coordinates will become the (D − 2) bosonic degrees of freedom of the EST
description which we shall discuss in the next section [3,4]. These massless quantum
fluctuations delocalize the flux tube which acquires a nonzero width, which diverges
logarithmically as the interquark distance increases [19]. We shall discuss in detail this
issue in Section 5.

We may summarize all these observations by saying that the LGT regularization
strongly supports an Effective String Theory description of confinement. We shall devote
the next section to a precise formulation of this EST.

3. Effective String Description of the Interquark Potential

Even if a rigorous proof of quark confinement in Yang–Mills theories is still missing,
there is little doubt that confinement is associated to the formation of a thin string-like flux
tube [1–5], which generates, for large quark separations, a linearly rising confining potential.

This picture is strongly supported by the lattice regularization of Yang–Mills theories
where, as we have seen in the previous section, the vacuum expectation value of Polyakov
loops correlators is given by a sum over certain lattice surfaces which can be considered as
the world-sheet of the underlying confining string.

This picture led Lüscher and collaborators [3,4], more than forty years ago, to propose
that the dynamics of the flux tube for large interquark distances could be described by a
free massless bosonic field theory in two dimensions.

S[X] = Scl + S0[X] + . . . , (11)

where the classical action Scl describes the usual perimeter-area term, X denotes the two-
dimensional bosonic fields Xi(ξ1, ξ2), with i = 1, 2, . . . , D − 2, describing the transverse
displacements of the string with respect the configuration of minimal energy, ξ1, ξ2 are the
coordinates on the world-sheet and S0[X] is the Gaussian action

S0[X] =
σ0

2

∫
d2ξ(∂αX · ∂αX) (12)

We are assuming an Euclidean signature for both the worldsheet and the target space.
This is the first example of an effective string action and, as we shall see below, it is

actually nothing else than the large distance limit of the Nambu–Goto string written in the
so called “physical gauge”.

This free Gaussian action can be easily integrated, leading in the T → 0 (Nt → ∞)
limit to a correction to the linear quark-anti-quark potential, known as Lüscher term [3,4]

V(R) = σ0R + c − π(D − 2)
24R

+ O(1/R2) . (13)
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We shall neglect from now on the constant c which is related to the perimeter term
discussed in the previous section.

It is instructive to look at this correction for finite values of Nt. Thanks to the Gaussian
nature of the action the integration can be easily performed also for finite values of Nt,
for instance using the ζ function regularization, leading to the following result [20–22]:

V(R, T) = σ0R +
D − 2

Nt
log(η(q)), (14)

where η denotes the Dedekind eta function (see the Appendix A):

η(τ) = q
1
24

∞

∏
n=1

(1 − qn) ; q = e2πiτ ; τ = i
Nt

2R
. (15)

To understand the meaning of this result it is useful to expand it in the two limits
R � Nt and R � Nt.

R � Nt, low temperature

V(R, T) = σ0R +

[
− π

24R
+

1
Nt

∞

∑
n=1

log(1 − e−πnNt/R)

]
(D − 2), (16)

R � Nt, high temperature

V(R, T) = σ0R +
D − 2

Nt

[
− πR

6Nt
+

1
2

log
2R
Nt

+
∞

∑
n=1

log(1 − e−4πnR/Nt)

]
. (17)

From a string point of view these limits correspond to the open and closed string
channels, respectively. They are related by a modular transformation τ → −1/τ

η
(

e−2πi/τ
)
=

√−iτη
(

e2πiτ
)

. (18)

which is known as open-closed string duality.
In the LGT language the two limits correspond, respectively, to the low temperature

and the high temperature limits where, obviously, with high temperature we mean a value
of T large, but still below the deconfinement temperature, so that a confining flux tube still
exists between the quark and the antiquark and an EST picture is still a valid description of
the infrared behaviour of the theory.

It is interesting to see that the EST corrections have a completely different behaviour
in the two regimes.

At low temperature we find a rather mild correction, which is dominated by the
Lüscher term mentioned above (the first term in Equation (16)) while the remaining terms
vanish in the Nt → ∞ limit.

On the contrary at high temperature we find that the dominant term is linear in R and
gives a large correction, which increases as the temperature increases, and counteracts the
string tension.

V(R, T) ∼
(

σ0 − π(D − 2)
6N2

t

)
R. (19)

We shall see below that, if one studies the whole Nambu–Goto action this correction
represents only the first term of an infinite set of corrections which can be resummed
as follows

V(R, T) ∼ σ0

√
1 − π(D − 2)

3σ0N2
t

R ≡ σ(T)R (20)
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where we have introduced a temperature dependent string tension σ(T) defined as:

σ(T) = σ0

√
1 − π(D − 2)

3σ0N2
t

(21)

Intuitively, what is happening in this regime is that the fluctuations induced by
the temperature tend to reduce the confining force of the flux tube. As the temperature
increases, fluctuations get stronger and stronger and finally, at the deconfinement point,
the flux tube is destroyed by the fluctuations and there is no more a confining potential
between the quark and the antiquark.

It is exactly this finite temperature regime the main focus of the present review, and it
is clear now the reason of this choice: In this regime string effects are magnified and can be
more easily compared with numerical simulations.

3.1. The Nambu–Goto Action

It is easy to see that the free Gaussian action discussed above cannot be a consistent
effective string description of the flux tube since it does not fulfill the constraints imposed
by the Lorentz invariance of the original gauge theory (we shall discuss this issue in more
detail below). The simplest possible EST fulfilling these constraints is the well known
Nambu–Goto action [1,2]. As we shall see below the free Gaussian action of Equation (12)
is actually the first term of the large distance expansion of the NG action. This explains
why, notwithstanding its lack of consistency, its predictions, and in particular the Lüscher
term, were initially found in good agreement with LGT simulations of several different
gauge models [23–30], and why, with the improvement of LGT simulations, this agreement
was later shown to hold only for for Polyakov loops correlators with large separations and
higher order corrections (in particular the next to leading Nambu–Goto term that we shall
discuss below) started to be detected [31–46]. Notice that some of the first studies on EST
were actually performed in the three dimensional Ising model. In these simulations instead
of the interquark potential one studies the interface free energy which is also described
by the EST, but with different boundary conditions. In particular this is the case of the
following papers: [23,31,36,45].

In the Nambu–Goto model [1,2], the string action SNG is :

SNG = σ0

∫
Σ

d2ξ
√

g , (22)

where g ≡ det gαβ and

gαβ = ∂αXμ ∂βXμ (23)

is the induced metric on the reference world-sheet surface Σ and, as above, we denote the
worldsheet coordinates as ξ ≡ (ξ0, ξ1). This term has a simple geometric interpretation: It
measures the area of the surface spanned by the string in the target space and is thus the
natural EST realization of the sum over surfaces weighted by their area in the rough phase
of the LGT model which we discussed above. This action has only one free parameter:
The string tension σ0 which has dimension (length)−2. Once this is fixed, say, by a fit to
the large distance behaviour of the lattice data at zero temperature, there are no more free
degrees of freedom in the model which is thus, as we shall see, highly predictive.

In order to perform calculations with the Nambu–Goto action one has first to fix
its reparametrization invariance. The standard choice is the so called “physical gauge”.
In this gauge the two worldsheet coordinates are identified with the longitudinal degrees
of freedom of the string: ξ0 = X0, ξ1 = X1, so that the string action can be expressed
as a function only of the (D − 2) degrees of freedom corresponding to the transverse
displacements, Xi, with i = 2, . . . , (D − 1) which are assumed to be single-valued functions
of the worldsheet coordinates. We shall comment below on the problems of this gauge
fixing choice, but let us assume it for the moment and let us see what are the consequences.
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With this gauge choice the determinant of the metric can be written as

g = 1 + ∂0Xi∂0Xi + ∂1Xi∂1Xi

+∂0Xi∂0Xi∂1Xj∂1Xj − (∂0Xi∂1Xi)2 (24)

and the Nambu–Goto action can then be written as a low-energy expansion in the number
of derivatives of the transverse degrees of freedom of the string which, by a suitable
redefinition of the fields, can be rephrased as a large distance expansion. The first few
terms in this expansion are

S = Scl +
σ0

2

∫
d2ξ

[
∂αXi · ∂αXi +

1
8
(∂αXi · ∂αXi)2 − 1

4
(∂αXi · ∂βXi)2 + . . .

]
, (25)

and we see, as anticipated, that the first term of the expansion is exactly the Gaussian
action of Equation (12). From a Quantum Field Theory point of view the free Gaussian
action is the two dimensional Conformal Field Theory (CFT) of the D − 2 free bosons which
represent the transverse degrees of freedom.

Remarkably enough, it can be shown that all the additional terms in the expan-
sion beyond the Gaussian one combine themselves so as to give an exactly integrable,
irrelevant perturbation of the Gaussian term [47], driven by the TT̄ operator of the
D − 2 free bosons [48].

Thanks to this exact integrability, the partition function of the model can be written
explicitely [49,50]. The explicit expression for the partition function was actually found
even before this TT̄ study, first by using the constraints imposed by the open-closed string
duality [51] and then using a d-brane formalism [52]. For the Polyakov loop correlator in
which we are interested here (similar expressions can be obtained also for the other relevant
geometries: The Wilson loop [42] and the interface [53]), the expression in D space–time
dimensions is, using the notations of [51,52]:

〈P(x)∗P(y)〉 =
∞

∑
n=0

wn
2Rσ0Nt

En

(
π

σ0

) 1
2 (D−2)( En

2πR

) 1
2 (D−1)

K 1
2 (D−3)(EnR) (26)

where R denotes, as above, the interquark distance R = |x − y|, wn the multiplicity of the
closed string states which propagate from one Polyakov loop to the other, and En their
energies which are given by

En = σ0Nt

√
1 +

8π

σ0N2
t

[
− 1

24
(D − 2) + n

]
. (27)

At large distance the correlator is dominated by the lowest state

E0 = σ0Nt

√
1 − π(D − 2)

3σ0N2
t

= σ(T)Nt. (28)

where σ(T) is the finite temperature string tension defined in Equation (21).
The weights wn can be easily obtained from the expansion in series of q of the infi-

nite products contained in the Dedekind functions which describes the large-R limit of
Equation (26) (see reference [52] for a detailed derivation):

(
∞

∏
r=1

1
1 − qr

)D−2

=
∞

∑
k=0

wkqk. (29)

For D = 3 we have simply wk = pk, the number of partitions of the integer k, while
for D > 3 these weights can be straightforwardly obtained from combinations of the pk.
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These weights diverge exponentially as n increases; in particular we have:

wn ∼ exp

(
π

√
2(D − 2)n

3

)
. (30)

Again, it is easy to see that the large distance expansion of Equation (26) exactly
matches the free Gaussian result of Equation (14).

3.2. The Nambu–Goto Action at Finite Temperature

Looking at Equation (26) we see that the NG partition function coincides with a a
collection of free particles of mass En and multiplicity wn in D − 1 dimensions. In the large
distance limit only the lowest of these masses survives and the Polyakov loop correlator is
described by an expression of this type

〈P(x)∗P(y)〉 ∼
(

1
R

) 1
2 (D−3)

K 1
2 (D−3)(E0R) (31)

Remarkably enough this is exactly what we would expect from the Renormalization
Group analysis of Section 2.4. In fact, if we interpret the Polyakov loop as a spin of a
D − 1 dimensional spin model with global symmetry the center of the gauge group, then,
if the symmetry group is discrete (like for instance for the SU(2) or SU(3) LGTs), in the
symmetric phase of the model the spin–spin correlator is described by an isolated pole in
the Fourier space, which, when transformed back to the coordinate space becomes exactly
the expression of Equation (31). In this interpretation, the mass E0 becomes the inverse of
the correlation length ξ of the system. We thus find (see Equation (28)).

1
ξ
= σ0Nt

√
1 − π(D − 2)

3σ0N2
t

=
σ0

T

√
1 − π(D − 2)T2

3σ0
(32)

It is interesting to look at the large distance expansion of the interquark potential
in this regime. As anticipated the dominant term is linear in R and is proportional to
the finite temperature string tension σ(T). On top of this we have a set of subleading
corrections, (encoded in the asymptotic expansion of the modified Bessel function K D−3

2
)

which represent a specific signature of the Nambu–Goto action.
Using the large distance expansion of the modified Bessel function Kn(z):

Kn(z) =
√

π

2z
e−z
[

1 +
4n2 − 1

8z
+

16n4 − 40n2 + 9
128z2 +O(z−3)

]
(33)

and the definition of the interquark potential in Equation (7) we find, using Equation (31)

V(R, Nt) ∼ RTE0 +
T(D − 2)

2
ln R +

T(1 − (D − 3)2)

8RE0
· · · (34)

where we dropped an irrelevant additive constant, and neglected terms which are sup-
pressed by higher powers of (RT)−1. In the following we shall mainly study models in
D = 3 dimensions. In this case the above expression becomes:

V(R, Nt) ∼ Rσ(T) +
T
2

ln R +
T2

8Rσ(T)
· · · (35)

In the framework of the Nambu–Goto approximation one can also derive an esti-
mate of the critical temperature Tc,NG measured in units of the square root of the string
tension

√
σ0 [7,54,55]

Tc,NG√
σ0

=

√
3

π(D − 2)
(36)
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given by the value of the ratio Tc,NG√
σ0

for which the lowest mass E0 vanishes. We can thus
rewrite the energy levels as a function of T/Tc,NG as

En =
(D − 2)πT2

c,NG

3T

√
1 − T2

T2
c,NG

[
1 − 24n

D − 2

]
. (37)

In this framework the correlation length can be written as:

ξ(T) =
3T

(D − 2)πT2
c,NG

1√
1 − T2

T2
c,NG

. (38)

which diverges as expected at the critical point. This result is particularly interesting from
a conceptual point of view since it makes explicit in which sense the Nambu–Goto action
is an approximation of the “correct” effective string action. The critical index that we find:
ν = 1/2 is the typical signature of the mean field approximation. We know from the
Svetitsky-Yaffe analysis that this cannot be the correct answer and that the critical index
should instead be that of the symmetry breaking phase transition of the (D − 1) dimensional
spin model with symmetry group the center of the original gauge group. For instance,
for the (3 + 1) dimensional SU(2) model we expect to find ν = 0.6299709(40) [56,57] which
is the value for the three dimensional Ising model or for the (2 + 1) SU(2) LGT we expect
ν = 1, which is the cirtical index for the 2D Ising model. Besides this anomalous dimension,
the major effect of the mean field approximation is, as usual, a shift in the critical temperature.
Indeed, while the Nambu–Goto prediction for the deconfinement temperature is in four

dimensions Tc,NG =
√

3σ0
2π ∼= 0.691

√
σ0 the actual value for the SU(2) deconfinement

transition is slightly larger: Tc/
√

σ0 = 0.7091(36) [58]. The fact that this shift is so small is
another evidence of the goodness of the Nambu–Goto approximation. It is interesting to
notice that this agreement holds for all the LGTs which have been studied [58–62], both
in (2 + 1) and in (3 + 1) dimensions, with the only exception of the 3D U(1) model [63],
for which, in fact, a different EST is expected [8,64], with a dominant contribution from the
extrinsic curvature term.

3.3. Beyond Nambu–Goto

We have seen from the above analysis that the Nambu–Goto action alone cannot be
the end of the story. Finding hints of the correct EST action beyond the Nambu–Goto term
is one of the major open challenges in this context. We shall devote this subsection and the
following to a brief discussion of this issue.

As a starting point let us notice that, from an effective action point of view, there is no
reason to constrain the coefficients of the higher order terms in Equation (25) to the values
displayed there. In principle, one should instead assume the most general form for such an
effective action

S = Scl +
σ0

2

∫
d2ξ
[
∂αXi · ∂αXi + c2(∂αXi · ∂αXi)2 + c3(∂αXi · ∂βXi)2 + . . .

]
, (39)

and then fix the coefficients order by order using Monte Carlo simulations or experimental
results. However, one of the most interesting results of the last few years is that the ci
coefficients are not arbitrary, but must satisfy a set of constraints to enforce the Poincarè
invariance of the lattice gauge theory in the D dimensional target space. These constraints
were first obtained by comparing the string partition function in different channels, using
the open-closed string duality [51,65]. It was later realized [66–70] that they could be
directly obtained as a consequence of the Poincaré symmetry of the underlying Yang–Mills
theory. A similar result, for the first few coefficients of the EST, was obtained also in the
Polchinski-Strominger [5] formalism in [71,72] (See also [73–77] for a debate on these results
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and a discussion on the extension of this analysis to higher orders and its interplay with
conformal invariance).

In fact, even though the SO(D) invariance of the original theory is spontaneously
broken by the formation of the classical string configuration around which one is expanding,
the effective action should still respect this symmetry through a non-linear realization in
terms of the transverse fields Xi [66–70]. These non-linear constraints induce a set of
recursive relations among the coefficients of the expansion, which strongly constrain the
coefficients ci. In particular, it can be shown that the terms with only first derivatives
coincide with the Nambu–Goto action to all orders in the derivative expansion [78] and
that the first correction with respect to the Nambu–Goto action appears at order 1/R7 in
the large R expansion. This explains why the Nambu–Goto model has been so succesfull
over these last forty years to describe the infrared behaviour of confining gauge theories
despite its simplicity and why the deconfinement temperature predicted by Nambu–Goto
is so close to the one obtained in Monte Carlo simulations.

This argument can be better understood looking at the original string action, before fix-
ing the reparametrization invariance from a geometric point of view. In this framework the
effective action is obtained by the mapping

Xμ : M → R
D, μ = 0, · · · , D − 1 (40)

of the two-dimensional surface describing the worldsheet of the string M into the (flat)
D-dimensional target space R

D of the gauge theory and then imposing the constraints due
to Poincaré and parity invariance of the original theory. This approach was discussed in
detail in reference [11]. The first few terms of the action compatible with these constraints
must be combinations of the geometric invariants which can be constructed from the
induced metric gαβ = ∂αXμ∂βXμ. These terms can be classified according to their “weight”,
defined as the difference between the number of derivatives minus the number of fields Xμ

(i.e., as their energy dimension). Due to invariance under parity, only terms with an even
number of fields should be considered. The first term of this expansion, which is also the
only term of weight zero, corresponds, as we mentioned above, to the Nambu–Goto action

SNG = σ0

∫
d2ξ

√
g , (41)

At weight two, two new contributions appear:

S2,R = γ
∫

d2ξ
√

gR, (42)

S2,K = α
∫

d2ξ
√

gK2, (43)

where α, and γ are two new free parameters, R denotes the Ricci scalar constructed from
the induced metric, and K is the extrinsic curvature, defined as K = Δ(g)X, with

Δ(g) =
1√
(g)

∂a[
√
(g)gab∂b] (44)

the Laplacian in the space with metric gαβ. In principle the new free parameters α, and γ
should be fixed, as we did for σ0 by comparing with Monte Carlo simulations. However
this process is simplified by the observation that the term proportional to R is a topo-
logical invariant in two dimensions and, since in the long-string limit in which we are
interested one does not expect topology-changing fluctuations, its contribution can be
neglected [11]. On the other hand, the term in Equation (43) which contains K2 leads to
quantum corrections which decrease exponentially with the interquark distance [8] and are
thus negligible unless the ratio between the coefficient of the K2 term and the string tension
grows to infinity in the continuum limit and this seems to occur only in very few models
like, for instance, the d = 3 U(1) model [8]. In these cases an Effective String Theory model,
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which combines Nambu–Goto and extrinsic curvature was proposed long ago in [79,80].
The resulting EST is usually known as “rigid string”. We shall comment on this issue in the
last section of the review.

At weight four, two new combinations can be constructed and correspondingly two
new parameters appear, leading in the open string channel (i.e., in the low T regime) to
the 1/R7 correction mentioned above. Notice, however, that also these new parameters
are not completely free and can be constrained using a bootstrap type of analysis [81]
in the framework of the S-matrix approach pioneered by [47]. As above they should in
principle be fixed by comparing with Monte Carlo estimates of the potential; however,
their contributions appear at such a high level that they are very difficult to detect even
with the most precise numerical simulations.

3.4. Beyond Nambu–Goto: The Boundary Term

Another term which must be considered beyond the Nambu–Goto one is the so called
“boundary term”. This term has an origin different from those discussed above. It is due
to the presence of the Polyakov loops at the boundary of the correlator. The classical
contribution associated to this correction is the constant term c which appears in the
potential and that we have systematically neglected in the previous analysis. Beyond
this classical term we may find quantum corrections due to the interaction with the flux
tube. The main result in this context is that also these terms are strongly constrained by
Lorentz invariance

The first boundary correction compatible with Lorentz invariance is [82]:

b2

∫
dξ0

[
∂0∂1X · ∂0∂1X
1 + ∂1X · ∂1X

− (∂0∂1X · ∂1X)2

(1 + ∂1X · ∂1X)2

]
. (45)

with an arbitrary, non-universal coefficient b2. The lowest order term of the expansion of
Equation (45) is:

S(1)
b,2 = b2

∫
dξ0(∂0∂1X)2 (46)

The contribution of this term to the interquark potential was evaluated in [78] using
the zeta function regularization:

〈S(1)
b,2 〉 = −b2

π3Nt

60R4 E4(e−
πNt

R ) (47)

where E4 denotes the fourth order Eisenstein series (see the Appendix for definitions and
properties of these functions). In the standard low temperature (Nt � R) setting, this
amounts to a correction proportional to 1/R4 to the interquark potential, which turns out
to be the dominant correction term beyond Nambu–Goto in this regime and represents
a further obstacle to detect signatures of the “bulk” correction terms discussed in the
previous subsection.

Recent high precision Monte Carlo simulations [82–86] allowed to estimate b2 for a few
LGTs with remarkable precision. For the SU(2) model in (2 + 1) dimensions a boundary
correction was estimated even for the first string excitations [86]. Preliminary results
have been also obtained for the (3 + 1) dimensional SU(3) LGT [87,88] where, besides b2,
a tentative estimate of the next to leading term b4 is also reported. As expected these values
are not any more universal and represent the first hint of the fact that different LGTs are
described by different ESTs and that the information on the gauge group of the model and
the gluon content of the flux tube is somehow encoded in the effective string model.

At the same time the above discussion shows that this boundary term is the dominant
non universal correction beyond Nambu–Goto in this low T regime and it is clear that its
presence makes it almost impossible to detect the much weaker signatures of the “bulk”
correction terms discussed in the previous subsection.
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However, by performing a modular transformation (see the Appendix A) it is easy to
see that in the high temperature limit (i.e., R � Nt) this correction becomes

〈S(1)
b,2 〉 = −b2

4π3

15N3
t

E4(e
− 4πR

Nt ) (48)

and does not contain a term proportional to R and thus it does not give a correction to the
temperature dependent string tension σ(T).

This is a second important reason of interest of the high temperature regime which is
the focus of this review. In this limit the boundary term does not interfere with the “bulk”
EST corrections beyond Nambu–Goto which can thus be directly observed with Monte
Carlo simulations.

4. Comparison with Monte Carlo Simulations

In the past years the predictions of EST for the interquark potential were tested with
Monte Carlo simulations of increasing precision in several different LGTs [23–46]. Most
of these tests were performed in the low temperature regime. However, as we have seen
in the previous sections, in order to have a complete understanding of EST and to test
its consistency under the open–closed string transformation, it is interesting to test EST
predictions also in the high temperature regime. This is the goal of this section in which we
shall report the results of a few papers in which EST was compared with high-T Monte
Carlo simulations.

We shall first discuss in detail, as an example, the SU(2) gauge theory in
(2 + 1) dimensions, which is the simplest non-abelian LGT and allows to reach high
precision results with a relatively small amount of computing power. Then, in the last
subsection, we shall briefly review the results obtained in other LGTs both in (2 + 1)
and in (3 + 1) dimensions.

4.1. LGT Observables

Let us first discuss a few combinations of Polyakov loop correlators which are partic-
ularly useful to address the comparison between EST predictions and LGT results in the
high temperature regime.

To simplfy notations let us define the Polyakov loop correlator as:

G(R, T) = 〈P(x)P†(x + R)〉Nt (49)

Following [30,33,89] it is particularly convenient to introduce the following quantities:

Q(R, T) = T ln
G(R, T)

G(R + 1, T)
, (50)

A(R, T) = R2 ln
G(R + 1, T)G(R − 1, T)

G2(R, T)
. (51)

Note that, in the continuum limit a → 0, Q(R, T) tends to the first derivative of
V(R, T) with respect to R:

lim
a→0

Q =
∂V
∂R

, (52)

so that it can be interpreted as a lattice version of (minus) the interquark force. On the
other hand, A(R, T) is a dimensionless quantity proportional to the discretized deriva-
tive of the force:

lim
a→0

A = −R2

T
∂2V
∂R2 . (53)

90



Universe 2021, 7, 170

These quantities are the finite temperature version of the observables introduced
in [30]. In particular Q(R, T) coincides in the low-T limit with the “force” F(R) of [30]
while A(R, T) is related to the “central charge” c(R) of [30] as follows

A(R, T) =
2

RT
c(R). (54)

Using Equation (35) we may estimate the large-R limit of these two observables for
D = 3 LGTs in the framework of the Nambu–Goto effective string model:

Q(R, T) � σ(T) +
T

2R
− T2

8σ(T)R2 + · · · (55)

A(R, T) � 1
2
− T

4σ(T)R
+ · · · (56)

The constraints on the EST discussed in Section 3.3 tell us that these expressions
for Q and A should be universal and should hold for any LGT (except, as usual, the 3d
U(1) LGT). Corrections to the EST beyond Nambu–Goto should only affect higher order
terms (the dots in the above Equations (55) and (56), and are expected to affect the finite
temperature string tension σ(T) only with corrections of the order of (T/Tc)7. In the next
section we shall compare this prediction with Monte Carlo simulations.

4.2. The Su(2) LGT in (2 + 1) Dimensions

The (2 + 1) dimensional SU(2) model has been the subject of several numerical efforts
in the last years; most of them, however, focused on the low T regime of the model. We shall
report here the results of the simulations discussed in [89] which were instead performed
at a relatively high (T = 3

4 Tc) temperature.
The only imput we need to fix our predictions is the zero temperature string tension

σ0. This can be fixed using for instance the results of [33] which we report here

√
σ0 � 1.324(12)

β
+

1.20(11)
β2 (57)

Simulations were perfomed at β = 9 for which we have σ0 = 0.0262(1) [33] on a lattice
of size 1202 × 8. For this value of β the critical tempearture is, almost exactly located at
Nt = 6 thus this choice of lattice sizes corresponds to a temperature T = 3

4 Tc. Polyakov
loop correlators were measured up to the distance of R = 19 lattice spacings. We report for
completeness the results of the simulations in Table 1 and refer the interested reader to [33]
for more details on the simulation settings and on the fitting protocol.

Table 1. Results for Q(r, T), as a function of the interquark distance R, for the (2 + 1) dimensional
SU(2) model at T = 3Tc/4, taken from [89].

R Q R Q R Q

2 0.037433(46) 8 0.02232(11) 14 0.01971(16)
3 0.030958(56) 9 0.02170(12) 15 0.01949(18)
4 0.027600(64) 10 0.02117(12) 16 0.01926(19)
5 0.025553(72) 11 0.02072(13) 17 0.01906(20)
6 0.024154(84) 12 0.02034(15) 18 0.01892(22)
7 0.023118(94) 13 0.02000(15) 19 0.01876(24)

Following Equation (55) the values of Q(R, T) are fitted with:

Q(R, T)|T=3Tc/4 = s +
b
R
+

c
R2 , (58)
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and the following best fit values for the parameters are found

s = 0.01530(37) b = 0.0668(58) c = −0.087(27)

with a reduced χ2
r = 0.75.

The universal correction in which we are interested are encoded in the parameter b
which according to the analysis discussed in the previous sections should be given by

b =
T
2
=

1
16

= 0.0625 ,

which turns out to be in remarkable agreement with the result of the fit.
This is further confirmed by the analysis of the A(R, T) values (which can be easily

obtained from the data reported in Table 1). These values are fitted with

A(R, T)|T=3Tc/4 = k − m
R

, (59)

finding
k = 0.528(28), m = −1.09(28), with χ2

red = 1.6,

which is again in perfect agreement with the expected value k = 1/2.
From the first fit we can extract the value σ(T) = 0.01530(37) for the finite temper-

ature string tension at T = 1/8. Using the value σ0 reported in Equation (57), we may
obtain a “Nambu–Goto” prediction for σ(T) using Equation (21), which turns out to be
σNG(T = 1/8) = 0.01605(6), at two standard deviations from the observed value. This
indicates, as already observed in [90], that for the (2 + 1) SU(2) LGT the Nambu–Goto
string represents a rather good approximation but, as the precision of the simulations
improves, small deviations start to be detected. These deviations are the signatures of the
(T/Tc)7 term mentioned above.

Finally, using the measured value of σ(T) it is possible to obtain predictions for the
subleading corrections in the two fits. One find for the c term in the first fit cNG ∼ −0.1216(5)
and for m in the second fit mNG = −1.946(8). Both values are similar to those extracted
from the fits, but not compatible within the errors. This small discrepancy agrees in sign
and magnitude with the analogous deviations from the Nambu–Goto ansatz observed
in [90] and summarized in the coefficient C3 evaluated there. We shall comment on these
deviations in the next section.

4.3. EST Predictions Versus Monte Carlo Results for Different LGTs

The same analysis was performed in [33] for the (2 + 1) SU(3) and SU(4) lattice
gauge theories and, using data obtained in [91], also in the case of the three dimensional
Ising gauge model for two different temperatures. We summarize the results for the fits to
Q(R.T) in Table 2.

Table 2. Results of the fits to Q(R, T) for various LGTs (listed in the first column), together with the expected values for the
best fit parameters according to the Nambu–Goto EST.

Gauge
Group

Nt T/Tc s σNG(T) b bNG c cNG

SU(2) 8 3/4 0.01530(37) 0.01605(6) 0.0668(58) 0.0625 −0.087(27) −0.1216(5)
SU(3) 8 3/4 0.01884(44) 0.01946(6) 0.0612(74) 0.0625 −0.063(34) −0.1003(5)
SU(4) 8 3/4 0.01721(43) 0.01830(40) 0.0634(70) 0.0625 −0.063(32) −0.1070(20)

Z2 12 1/2 0.01485(2) 0.01487(6) 0.0414(8) 0.04167 −0.049(6) −0.058(1)
Z2 9 2/3 0.01137(11) 0.01067(6) 0.0522(40) 0.0556 −0.076(34) −0.145(1)

Looking at the table we can make a few interesting observations
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• All the models, except the one at the lowest temperature, show deviations in the fitted
value of σ(T) with respect to the Nambu–Goto prediction. These deviations are the
signatures of the terms beyond Nambu–Goto which must be included in the EST
action which we discussed in the previous section. They are exactly those needed to
match the critical index of the deconfinement transition which in this case is ν = 1
instead of the Nambu–Goto value ν = 1/2.

• The universal constant b is always compatible with the theoretical expectation. This
represents a remarkable consistency check of the whole EST construction.

• The constant c shows the same trend for all the models: It is similar to the expected
Nambu–Goto value, but always slightly smaller in magnitude. Most likely this
deviation is due to the fact that in the fit we are neglecting higher terms, and indeed
the first of them, the one proportional to 1/R3 , due to the expansion of the modified
Bessel function has the opposite sign with respect to the 1/R2 one and may explain
the decrease in magnitude of c.

Similar results are found fitting the A(R, T) function (see [33] for further details).
A similar analysis was also performed for the SU(2) model in (3 + 1) dimensions [92]

and (with a different set of observables) for SU(3) in [93]. In both cases two different
temperatures were tested and a good agreement with the Nambu–Goto predictions was
found for the lower one, while deviations were detected for the higher one, pointing to the
possible presence of terms in the EST beyond the Nambu–Goto one. Besides its physical
relevance, this extension to (3 + 1) dimensions is also interesting because the interquark
potential, as can be seen in Equation (34), shows a non-trivial dependece on the number of
space time dimensions which is precisely confirmed by the numerical simulations at the
lowest temperatures.

As a matter of fact this type of corrections in the (3 + 1) dimensional SU(3) models were
already observed more than twenty years ago when the first high precision determinations
of σ(T) were obtained [15,16]. The behaviour of σ(T) was very similar to the one predicted
by the Nambu–Goto action, but with small deviations in the vicinity of the deconfinement
point. Thes deviations led to a non-zero, even if small, value of the string tension σ(Tc) at
the critical point which had the effect of transforming the second order phase transition
predicted by the Nambu–Goto model into the first order deconfinement phase transition of
the SU(3) (3 + 1) dimensional model.

5. Width of the Confining Flux Tube at High Temperature

One of the most intriguing features of the EST picture of confinement is the logarith-
mic increase of the square width w2(R) of the flux tube as a function of the interquark
distance R [19].

σ0w2(R) =
1

2π
log

R
Rc

(60)

where Rc is known as “intrinsic width” and sets the scale of the logarithmic growth.
This logarithmic growth, which is commonly referred to as the “delocalization” of

the flux tube was discussed for the first time many years ago by Lüscher, Münster and
Weisz in [19] but it required several years of efforts before it could be observed in lattice
simulations. The first numerical results were obtained in abelian models [94–100] where,
thanks to duality, simulations can be performed more easily and later the flux tube width
was studied also in non abelian LGTs [87,88,101–111].

An important issue in this context is to understand the fate of the flux tube width
as the deconfinement transition is approached from below. It is important to stress that
delocalization and deconfinement are two deeply different conditions of the flux tube.
As we have seen in Section 2, deconfinement is characterized by the vanishing of the string
tension σ(T) and, accordingly, of the flux tube. The delocalization of the flux tube instead
coincides with the onset of the rough phase. Delocalization is a typical quantum effect.
It is a consequence of the Mermin-Wagner theorem which imposes the restoring in the
continuum limit of the translational symmetry for the fluctuations of the flux tube in the
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transverse directions. Intutively it amounts to say that we cannot fix deterministically
the trajectory of the flux tube but may only describe it as a probabilty distribution. It is
important to stress that, even if delocalized, the flux tube fully keeps its confining function.
The quantum fluctuations which drive the delocalization also influence the confining
potential (as the presence of Lüscher term indicates) but do not destroy it.

While the behaviour of the string tension σ(T) as the deconfinement temperature Tc
is approached from below is rather well understood, much less is known on the behaviour
of the flux tube thickness in this regime. This is an important issue from a physical point
of view since the interplay between delocalization and deconfinement could strongly
influence the transition from hadrons to free quarks as Tc is approached.

Similarly to what we did for the interquark potential, also this problem can be ad-
dressed by performing a modular transformation of the low temperature result. This was
done in [112] in the case of the free Gaussian action (i.e., the first order in the perturba-
tive expansion of the Nambu–Goto effective string) leading in the large R limit to the
following result:

σ0w2
lo =

R
4Nt

+
1

2π
log

Nt

Lc
− 1

π
e−2π R

Nt + · · · (61)

where Lc is a length scale which plays the role in this limit of the intrinsic width of
Equation (60) and the suffix lo is added to emphasize that this is only the leading order
(Gaussian) approximation of the true flux tube width.

We see that the large R behaviour of the square width changes completely and becomes
linear (with a coefficient 1

4σ0 Nt
) instead of logarithmic. This behaviour holds in principle

for any temperature T, but as T decreases it requires larger and larger values of R to
be observed. Similarly it is possible to show that for any fixed value of R the square
width smoothly converges toward the expected logarithmic behaviour as T decreases.
The threshold between the two behaviours is R ∼ 1/T.

In [112] this prediction was tested with a set of high precision Monte Carlo simulations
of the 3D gauge Ising models and only a partial agreement with Equation (61) was found.
For all the temperatures studied in [112] w2(R) was indeed a linearly increasing function
of R. However the coefficient of this linear behaviour was in general larger than the one
predicted by the effective string (except for the smallest temperature values) and, what is
more important, it seemed to diverge as the deconfinement point was approached (while
the coefficient 1

4σ0 Nt
converges instead to a finite value at the deconfinement point).

This discrepancy tells us that as the deconfinement transition is approached the leading
order approximation gets worse and worse and that, similarly to what happens for the
interquark potential, higher order terms must be included. The problem is that, while for
the interquark potential we have the exact solution to all orders, for the flux tube width only
the next to leading order is known [101,113,114]. This correction goes in the right direction
but is not enough to fill the gap between numerical data and theoretical expectations.

We shall see in the next section that the Svetitsky-Yaffe conjecture offers a powerful
tool to address this issue when one approaches the deconfinement transition and allows to
guess the resummation to all orders of the flux tube width for the Nambu–Goto effective
string. The complete answer for the leading term linear in R turns out to be [115–117]

w2(R) =
1

4σ(T)
RT (62)

where σ(T) is the temperature dependent string tension of Equation (21).
By expanding this expression in powers of T/Tc it is easy to see that both the leading

order w2
lo and the next to leading order of [101,113,114] fully agree with Equation (62).

The results for the Ising model of [112] agree with Equation (62) and a few years later,
the same behaviour was observed with a set of high precision simulations in the (3 + 1)
dimensional SU(3) model [104].
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To understand the origin of Equation (62) we should first define the LGT observables
which allows to evaluate the flux tube width, then address their dimensionally reduced
version, according to the Svetitsky-Yaffe projection and finally evaluate these expectation
values using the S-matrix approach. Let us address these issues step by step.

5.1. Definition of the Flux Tube Thickness

In a finite temperature setting the lattice operator which is used to evaluate the flux
through a plaquette p of the lattice is:

〈
φ(p; P, P′)

〉
Nt

=

〈
PP′† Up

〉
Nt

〈PP′†〉Nt

− 〈Up
〉

Nt
(63)

where P, P′ are two Polyakov loops separated by R lattice spacings and Up is the operator
associated with the plaquette p. Different possible orientations of the plaquette p measure
different components of the flux. In the following we shall neglect this dependence which
plays no role in our analysis. The only information that we need is the position of the
plaquette. Let us define 〈

φ(p; P, P′)
〉

Nt
=
〈

φ(�h; R, Nt)
〉

where�h denotes the displacement of p from the P P′ plane. In each transverse direction,
the flux density shows a Gaussian like shape (see for instance Figure 2 of [94]). The width
of this Gaussian w is the quantity which is usually denoted as “flux tube thickness”:

w2(R, Nt) =
∑�h

�h2
〈

φ(�h; R, Nt)
〉

∑�h

〈
φ(�h; R, Nt)

〉 (64)

This quantity depends on the number of transverse dimensions and on the bare
gauge coupling β. Once β is fixed the only remaining dependences are on the interquark
distance R and on the inverse temperature Nt. By tuning Nt we can thus study the flux
tube thickness near the deconfinement transition.

5.2. Dimensional Reduction and the Svetitsky–Yaffe Approach

As we have seen in Section 2.4. In the vicinity of the deconfinement transition the
physics of a (d + 1) LGT can be described using an effective model in which the spacelike
links are integrated out and the only remaining degrees of freedom are the Polyakov loops.
The simplest examples of this effective mapping are the (2 + 1) SU(2) LGT and the (2 + 1)
Ising gauge model which have the same center Z2 and are thus both mapped into the 2D
spin Ising model. We shall use this case as an example in the following to simplify the
discussion. Using the correspondences discussed in Section 2.4 it is possible to construct the
dimensionally reduced projection of the operator which measures the flux tube thickness
which turns out to be a suitable ratio of three and two point correlators of the spin and
energy operators (see [115] for a detailed discussion of this mapping). In the particular
case of the 2D Ising model that we are using as an example this combination is:

〈σ(x1)ε(x2)σ(x3)〉
〈σ(x1)σ(x3)〉 (65)

to be evaluated in the high temperature phase and in zero magnetic field. Since we are
interested in the large distance behaviour of these correlators we can use the so-called Form
Factors approach (see [118] for an introduction to Form Factors and their application in the
context of the 2D Ising model without magnetic field).

A straightforward calculation leads to the following expression for the flux
distribution [115]

P(R, y) =
2πR

4y2 + R2
e−m

√
4y2+R2

K0(mR)
. (66)
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where y denotes the transverse direction, K0 is the modified Bessel function of order 0, m is
the mass of the 2D Ising model and a large mR limit is assumed.

From this flux distribution it is easy to extract the square of the flux tube
width as the ratio

w2(R) =

∫ ∞
−∞ dy y2 P(R, y)∫ ∞
−∞ dy P(R, y)

(67)

which, setting x = 2y/R amounts to evaluate

w2(R) =
R2

4

∫ ∞
−∞ dx x2

1+x2 e−2mr
√

1+x2

∫ ∞
−∞ dx e−2mr

√
1+x2

1+x2

(68)

These integrals can be evaluated asymptotically in the large mR limit [115,116] leading
to the following result:

w2(R) � 1
4

R
m

+ . . . . (69)

where the dots stay for terms constant or proportional to negative powers of R.
The last step in order to compare this result with Equation (62) is to give a meaning to

the Ising mass m in terms of LGT quantities.
This can be easily accomplished if we recall that the mass can be obtained from the

large R limit of the spin spin correlator, which according to the Svetitsky-Yaffe mapping
is the 2D limit of the expectation value of two Polyakov loops at distance R. Following
Equation (28) we can thus identify

m = σ(T)Nt (70)

from which we immediately obtain the result of Equation (62).
Similar arguments allow to obtain also estimates of the intrinsic width of the model [117].
The above analysis was performed in the case of the Ising model, but the argument is

completely general and the derivation of the large distance behaviour holds for any spin
model with a gap in the spectrum.

6. Open Issues and Concluding Remarks

In this review we focused in particular on the behaviour of the interquark potential
and of the flux tube width. There are, however, a few other observables which show a non
trivial behaviour at high-T and allow for non-trivial tests of EST. We could not discuss
them in detail in this review for lack of space and specific expertise but we briefly mention
them here and list a few relevant references which may help the interested reader to deepen
the subject.

• The deconfinement transition as a Hagedorn transition.

One of the more interesting consequences of the EST description of confinement is
that the deconfinement transition can be interpreted as a Hagedorn transition [119].
This can be understood (using a dual transformation) as a direct consequence of the
tachyonic singularity in the interquark potential [7]. This Hagedorn behaviour has
relevant consequences on the equation of state of pure gauge theories which can be
precisely tested using Monte Carlo simulations. In fact, in pure gauge theories the only
massive excitations in the confining phase are glueballs and the equation of state can
be accurately modeled in terms of a gas of these massive, non-interacting glueballs. If
one assumes a description of glueballs as closed color flux tubes (as for instance in the
Isgur-Paton model [6]) then one should expect a Hagedorn-like [119] stringy behaviour
of the glueball spectrum and as a consequence a highly non trivial temperature
dependence of pressure and entropy across the deconfinement transition. This effect
was observed for the first time in reference [120] for the SU(3) Yang–Mills theory in
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(3 + 1) dimensions, and later also in SU(N) theories in (2 + 1) dimensions [121] and in
the (2 + 1) dimensional SU(2) [122,123], finding always a very good agreement with
the expected Hagedorn behaviour.

• The spacelike string tension at high Temperature.

An interesting open issue in Lattice Gauge Theory is to understand and model the
behaviour of the so called “space–like string tension” [124–138] across the deconfine-
ment transition.
The space–like string tension is extracted from the correlator of space–like Polyakov
loops, i.e., Polyakov loops which lay in a space–like plane, orthogonal to the compact
time direction Nt. Due to their space–like nature these Polyakov loops do not play the
role of order parameter of deconfinement and the space–like string tension extracted
from them is different from the actual string tension of the model σ(T).
At low temperature the two string tensions coincide but as the temperature increases
they behave differently [124–127,139]. As we have seen σ(T) decreases as the de-
confinement temperature is approached and vanishes at the deconfinement point,
while the space–like string tension remains constant and then increases in the de-
confined phase [124–126]. The physical reason for this behavior is that the correlator
of two space–like Polyakov loops describes quarks moving in a finite temperature
environment. It can be shown that what we called space–like string tension is related
to the screening masses in hot QCD [128–134] and thus it does not vanish in the
deconfined phase.
An EST description of this behaviour has been recently obtained [140] using the
mapping between the Nambu–Goto action and the TT̄ deformation of the free bosonic
action. An important open issue in this context is to address the interplay of the
space–like string tension with the intrinsic width of the flux tube.

• EST and interfaces.

In this review we studied EST in two particular choices of boundary conditions for
the world sheet: Wilson loops (rectangular geometry) and Polyakov loop correlators
(cylindrical geometry). There is a third important case, the toroidal geometry, which
cannot be easily realized in non-abelian LGTs, but is pretty natural in three dimen-
sional abelian gauge theories. These models, thanks to the Kramers–Wannier duality
can be mapped into standard three dimensional spin models (the most relevant ex-
ample being the 3D gauge Ising model which is mapped into the three dimensional
Ising spin model). By suitably choosing the boundary conditions of the spin model
(for instance: Antiperiodic in the Ising case) in the low temperature phase one can
induce the formation of interfaces which can be described by EST with a toroidal
world sheet [31,36,141–146]. Interfaces in the spin model are in some sense the dual
of the Wilson loops in the gauge model. The partition function of the Nambu–Goto
string with this toroidal boundary conditions can be evaluated with the same tools
used for the Polyakov loop correlators [53]. The major reason of interest of this set-
ting is the absence of boundary terms. It is thus much easier to study higher order
terms of EST and in fact some of the most precise Monte Carlo studies of these terms
were obtained using interfaces in the 3D Ising model [45,146]. The analogy of the
high temperature regime in this context is obtained by “squeezing” the interface in
one direction. From the spin model point of view this is the regime in which one is
approaching dimensional reduction from three to two dimensions [147]. A systematic
comparison of EST predictions and Monte Carlo simulations in this regime is still
lacking and could lead to an interesting and original insight into EST behaviour.

• Interplay between the EST and the dual superconductor model of confinement.

In this review we introduced the EST, following the seminal papers of Lüscher and
collaborators, as a tool to describe the behaviour of Wilson loops in LGT beyond the
roughening transition. There is, however, a different, interesting, route which may
lead to an effective string description of confinement which was proposed long time
ago by Nielsen and Olesen [148], ’t Hooft [149], Mandelstam [150] and Polyakov [151].
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The proposal relies on the description of the QCD vacuum as a coherent state of
color magnetic monopoles or, equivalently, as a magnetic (dual) superconductor (for
a review see for instance [152–154]). According to this picture the (dual) Meissner
effect naturally leads to vortex like structures: The Abrikosov vortices [155] which
are very similar to the confining color flux tubes which are described by the EST. A
very interesting laboratory to address this picture is the 3D U(1) LGT for which it
can be shown, using a duality transformation, that confinement is indeed due to the
condensation of monopoles [156]. The remarkable success of this approach led to
conjecture that a similar mechanism could drive confinement also in non-Abelian
Yang–Mills theories [105–111].
The implicit assumption behind this scenario is that there should exist a duality
transformation mapping gauge fields into strings. In the non-Abelian case, such
gauge/string duality transformation is in general unknown (a notable exception,
however, is given by the holographic correspondence, relating gauge theories and
string theories defined in a higher-dimensional spacetime [157–159]), but in the 3D
U(1) case Polyakov [160] (see also [153,154,161] for an alternative derivation) was
able to give a heuristic proof of this mapping and proposed to describe the free energy
of a large Wilson loop with a string action combining both the Nambu–Goto and the
extrinsic curvature terms, the so called “rigid string” [79,80].
It is by now clear that this approach leads to an EST different from the one discussed
in this review [8]. The “rigid string”, dominated by the extrinsic curvature term,
agrees with the expectation of the dual superconductor model while the one which
we discussed in this review has a negligible extrisic curvature term and is dominated
by the Nambu–Goto behaviour. The major difference between the two ESTs is in the
shape and width of the flux tube [9]. Interestingly this difference is magnified exactly
in the high temperature regime [9,64] which is the subject of this review. It would be
interesting to pursue this study to better understand the role of the extrinsic curvature
term in driving this difference and, more importantly, which one better describes the
behaviour of the flux tube in non-abelian LGTs.
As a final remark on this issue, let us stress that the rigid string shows a pretty different
behaviour depending on the sign of the extrinsic curvature term. An EST with negative
extrinsic curvature was proposed more than twenty years ago in [162–164] and was
subsequently thoroughly studied in [153,154,165–168]. Despite the apparent instability
due to the negative sign of the curvature term, it can be shown that the string is
stabilized by higher order terms in the derivative expansion [165] (for a review, see for
instance [153]). In particular, as far as the topic of this review is concerned, the high
temperature behaviour of the model was studied in detail in [166,167] and, also in this
case, it would be very interesting to test these prediction with high precision Monte
Carlo data for non-abelian LGTs.

In the last few years we have witnessed remarkable progress in our understanding of
EST; however several important issues are still open, from the identification of EST terms
beyond the Nambu–Goto one, to a better understanding of the role and properties of the
rigidity term. The main goal of this review was to show that the high-T regime of LGTs is a
perfect laboratory to test new ideas in this context and compare them with Monte Carlo
simulations. We hope that this review will stimulate further research in this direction.
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Appendix A. Useful Formulae

Here are some properties of the modular functions which appear in the text. To sim-
plify notations we shall denote τ̃ ≡ − 1

τ in the following
The relation with the variables used in the text is:

τ ≡ i
Nt

2R
, q ≡ e2πiτ = e−

πNt
R ,

τ̃ ≡ − 1
τ
= i

2R
Nt

, q̃ ≡ e2πiτ̃ = e−
4πR
Nt . (A1)

The Dedekind-η-function is

η(q) ≡ q
1
24

∞

∏
n=1

(1 − qn) . (A2)

The Eisenstein functions are defined as:

E2k(q) ≡ 1 +
2

ζ(1 − 2k)

∞

∑
n=1

n2k−1qn

1 − qn , (A3)

where ζ(s) denotes the Riemann ζ function defined as follows:

ζ(s) ≡
∞

∑
n=1

n−s , (A4)

The Eisenstein functions can be expanded as follows:

E2(q) = 1 − 24q − 3 · 24q2 − 4 · 24q3 − 7 · 24q4 − · · ·
E4(q) = 1 + 10 · 24q + 90 · 24q2 + · · · (A5)

These functions transform as follows under the modular transformation τ → − 1
τ

(notice the inhomogeneous term in the E2 function):

η(q) = (−iτ̃)1/2η(q̃) =
(

2R
Nt

) 1
2
η(q̃) ,

E2(q) = −6i
π

τ̃ + τ̃2E2(q̃) =
12R
πNt

−
(

2r
l

)2
E2(q̃) =

12R
πNt

(
1 − πR

3Nt
E2(q̃)

)
,

E4(q) = τ̃4E4(q̃) =
(

2R
Nt

)4
E4(q̃) . (A6)
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Abstract: Superinsulators (SI) are a new topological state of matter, predicted by our collaboration
and experimentally observed in the critical vicinity of the superconductor-insulator transition (SIT).
SI are dual to superconductors and realise electric-magnetic (S)-duality. The effective field theory
that describes this topological phase of matter is governed by a compact Chern-Simons in (2+1)
dimensions and a compact BF term in (3+1) dimensions. While in a superconductor the condensate
of Cooper pairs generates the Meissner effect, which constricts the magnetic field lines penetrating
a type II superconductor into Abrikosov vortices, in superinsulators Cooper pairs are linearly
bound by electric fields squeezed into strings (dual Meissner effect) by a monopole condensate.
Magnetic monopoles, while elusive as elementary particles, exist in certain materials in the form of
emergent quasiparticle excitations. We demonstrate that at low temperatures magnetic monopoles
can form a quantum Bose condensate (plasma in (2+1) dimensions) dual to the charge condensate in
superconductors. The monopole Bose condensate manifests as a superinsulating state with infinite
resistance, dual to superconductivity. The monopole supercurrents result in the electric analogue of
the Meissner effect and lead to linear confinement of the Cooper pairs by Polyakov electric strings in
analogy to quarks in hadrons. Superinsulators realise thus one of the mechanism proposed to explain
confinement in QCD. Moreover, the string mechanism of confinement implies asymptotic freedom at
the IR fixed point. We predict thus for superinsulators a metallic-like low temperature behaviour
when samples are smaller than the string scale. This has been experimentally confirmed. We predict
that an oblique version of SI is realised as the pseudogap state of high-TC superconductors.

Keywords: monopoles; confinement; topological interactions

1. Introduction

Although extremely successful in describing many aspects of particle physics, the stan-
dard model does not explain the mechanism of confinement that binds quarks into hadrons.
In 1978, in a Gedanken experiment for quark confinement [1] ’t Hooft introduced the idea
of a dual superconductor in which, in analogy to the Meissner effect, chromo-electric fields
would be squeezed into thin flux tubes with quarks at their ends in a condensate of mag-
netic monopoles. When quarks are pulled apart, it is energetically favourable to pull out of
the vacuum additional quark-antiquark pairs and to form several short strings instead of a
long string. As a consequence, colour charge can never be observed at distances above a
fundamental length scale, 1/ΛQCD and quarks are confined. Only colour-neutral hadron
jets can be observed in collider events. In this phase, that he called the “extreme opposite”
of a superconductor, there is zero quark mobility and, thus, an infinite chromo-electric
resistance. He, hence, called this phase a “superinsulator”.

In condensed matter, superinsulation emerges in materials that have Cooper pairs
and vortices as relevant degrees of freedom. It was originally predicted for Josephson
junction arrays (JJA) [2] and then experimentally found in InO superconducting films [3],
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in Tin films [4,5] and NbTiN films [6]. Superinsulations emerge in all these systems at the
insulating side of the superconductor-insulator transition (SIT). The SIT and the nature
of the phases that it harbours is determined by the competition between two quantum
orders embodied in the topological interactions between charges and vortices (Aharonov-
Bohm/Aharonov-Casher (ABC)) and is, thus, a realisation of the field-theoretical Man-
delstam’t Hooft S-duality [1,7] in a material. A local formulation of such topological
interactions requires the introduction of two emergent gauge fields aμ and bμ (a tensor
field bμν in (3+1) dimensions) coupled to the conserved charge and vortex currents, respec-
tively. The effective field theory that describes this topological phase of matter is a mixed
Chern-Simons (CS) field theory in (2+1) dimensions and a BF theory in (3+1) dimensions.

Superinsulators are characterised by an infinite resistance that persists at finite temper-
atures: charges cannot move even if a voltage (below a critical threshold) is applied. This
infinite resistance is due to linear confinement of charges [8] in a condensate of magnetic
monopoles (instanton plasma in (2+1) dimensions). This confining mechanism is exactly
the mechanism that is realised in compact QED, [9,10], the simplest example of a strongly
coupled gauge theory with a massive photon and linear confinement of charges: the vortex
Bose condensate constricts electric fields into electric flux tubes that bind Cooper pairs and
anti-Copper pairs (Figure 1). The superinsulating state is nothing else than a plasma of
magnetic monopoles (instantons) since, in a condensate, vortex number is not conserved.
In (3+1), dimensions vortices can be viewed as magnetic filaments connecting magnetic
monopoles at their ends [10]. In this one-color version of quantum chromodynamics (QCD)
Cooper pairs play the role of quarks.

Figure 1. Dual Mandelstam’t Hooft–Polyakov confinement. From top to bottom: quark confinement
by chromo-electric strings; magnetic tube (Abrikosov vortex) that forms in a superconductor between
two magnetic monopoles; electric string that forms in a superinsulator between the Cooper pair and
anti-Cooper pair. The lines are the force lines for magnetic and electric fields respectively. In all
cases the energy of the string (the binding energy) is proportional to the distance between either the
monopoles or the charges.

Although the search of magnetic monopoles has been the object of years of efforts [11],
they are elusive as elementary particles. In the materials that exhibit superinsulations,
instead, magnetic monopoles are present in the form of emergent quasiparticle excitations
realising the electric–magnetic symmetry. They behave as quantum particles and at low
temperatures, they form a quantum Bose condensate dual to the charge condensate in
superconductors. Their supercurrents cause the electric analogue of the Meissner effect
and lead to linear confinement of the Cooper pairs [8,12–14]. Magnetic monopoles play,
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thus, a crucial role in the formation and properties of the superinsulating state. As we will
show below, this phase is a phase in which vortex strings with magnetic monopoles at
their the endpoints become loose and confine charges. On the contrary, appreciable vortex
tension implies that vortices are short and confines monopoles in small dipoles, as shown
in Figure 2. Charges are thus liberated.

Figure 2. Magnetic monopole states at low temperatures. (a) Monopoles are confined into small
dipoles by the tension of vortices connecting them. (b) As the tension vanishes, vortices become
loose and magnetic monopoles at their endpoints condense.

A salient feature of QCD is asymptotic freedom, the weakening of the interaction
coupling strength at short distances (ultraviolet (UV) limit). At large distances (infrared (IR)
limit), the quarks are thought to be confined within hadrons, which are physical observable
excitations, by the QCD strings. Quarks themselves cannot be extracted from hadrons
and be seen in isolation. The mechanism for the transition from weak quark interactions
in the UV regime to confinement and strings in the IR regime remains an open issue.
Confinement by strong interactions prevents a direct view on quarks despite that they
move nearly free at the small scales. As we will show below, superinsulators, instead, allow
for a direct observation of the interior of electric mesons made of Cooper pairs by standard
transport measurements. We reveal the transition from the confined to the asymptotic
free Cooper pair motion upon decreasing the distance between electrodes, modelling the
observation scale.

Pure gauge compact QED in 2D, with only closed string excitations [15] is not re-
normalisable. However, coupling the action to dynamical matter results in a non-trivial
fixed point [16]. The same occurs in our case: deep non-relativistic compact QED is
induced by an underlying matter dynamics from which it inherits the corresponding
Berezinskii-Kosterlitz-Thouless (BKT) [17–19] fixed point separating an integer topolog-
ical phase, [20–22] from a confined phase. The CS mass sets the gap for the topological
phase, [20–22], that corresponds to a functional first Landau level and consists of an in-
tertwined incompressible fluid of charges and vortices. The confined phase, instead, is
a highly entangled vortex condensate in which charges are linearly bound. As we will
show below, the effective coupling of the theory will thus flows to small values in the UV
limit, and the induced compact QED2 becomes asymptotically free (the theory is actually
asymptotically safe, since the critical point is at a finite value of the coupling different from
zero but we will use the more familiar term for simplicity’s sake here), the BKT transition
representing the infrared (IR) confining fixed point.

The review is organised like this. In Section 1, we present the effective gauge theories
description of the SIT in (2+1) dimensions and show how the BKT transition arises. We
then derive the phase diagram. In Section 2, we will discuss the characteristics of the
superinsulating phase, computing the string tensions for the electric strings that bind the
Cooper pairs and show how the asymptotic free regime arises. We then generalised the
model of the SIT to the (3+1)-dimensional case in Section 3 and compute the phase diagram
that essentially coincides with the one in one dimension less. In Section 4, we discuss
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the characteristic of the superinsulating phase and show that also in (3+1) dimensions
this is a confinement phase in which Cooper pairs are bounded by electric flux tubes in a
condensate of magnetic monopole. Section 5 is devoted to conclusions.

2. 2+1 Dimensions

We will use natural units c = 1, h̄ = 1 , ε0 = 1 but restore physical units when
necessary. The infinite-range ABC interaction, embodying the quantum phase acquired
either by a charge encircling a vortex or by a vortex encircling a charge, dominates the
structure of the critical vicinity of the SIT. The world-lines of elementary charges and
vortices are described by:

Qμ = ∑i
∫

x(i)q
dτ

dx(i)qμ(τ)

dτ δ3
(

x − x(i)q (τ)
)

,

Mμ = ∑i
∫

x(i)m
dτ

dx(i)mμ(τ)
dτ δ3

(
x − x(i)m (τ)

)
,

(1)

where the index i labels the elementary charges and vortices, parametrized by the coor-
dinates x(i)q and x(i)m , respectively, n is the dimensionless charge ( in our case n = 2 to
describes Cooper pairs), and Greek subscripts run over the Euclidean three dimensional
space encompassing the 2D space coordinates and the Wick rotated time coordinate. ABC
phases are encoded in the Gauss linking number between the two curves (1):

Slinking = i
∫

d3xQμεμαν
∂α

−∇2 Mν , (2)

where εμαν is the completely antisymmetric tensor. To ensure a local formulation of the
action (2), one introduces two emergent gauge fields, aμ and bμ mediating ABC interactions
and the topological part of the action takes the form

SCS =
∫

d3x
[

i
n

2π
aμεμαν∂αbν + i

√
naμQμ + i

√
nbμ Mμ

]
. (3)

Equation (3) defines the mixed Chern-Simons (CS) action [23–25] and represents the
local formulation of the topological interactions between charges and vortices. Since it
contains only one field derivative, it is the dominant contribution to the action at long
distances and it is invariant under the gauge transformations aμ → aμ + ∂μλ and bμ → bμ +
∂μχ, reflecting the conservation of the charge and vortex numbers. In this representation
jμ = (

√
n/2π)εμαν∂αbμ and φμ = (

√
n/2π)εμαν∂αaμ are the continuous charge and vortex

number current fluctuations, while Qμ and Mμ stand for integer point charges and vortices.
The CS kernel has a zero mode [23–25] and needs a regularisation. To this end we will

use the next-order terms in the effective action of the SIT that contain two field derivatives
and that are gauge invariant. Introducing the dual field strengths fμ = εμαν∂αbμ and
gμ = εμαν∂αaμ and setting n = 2 for Cooper pairs, we obtain the action

S2D =
∫

d3x i 1
π aμεμαν∂αbν +

1
2e2

vμ
f 2
0 + ε

2e2
v

f 2
i + 1

2e2
qμ

g2
0 +

ε
2e2

q
g2

i + i
√

2aμQμ + i
√

2bμ Mμ , (4)

where f0 and g0 are the magnetic fields, fi and gi the electric fields and μ is the magnetic
permeability and ε is the electric permittivity which define the speed of light v = 1/

√
με in

the material. The two coupling constants e2
q and e2

v have canonical dimension [1/length]
so, naively the two kinetic terms are infrared-irrelevant. However they are necessary
to correctly define the pure CS limit in which the topological mass m = eqev/2πv =
O(1/vλL) → ∞ [26,27], where λL is the London penetration depth in the bulk material.
With the two energy scales e2

q and e2
v we can define a dimensionless coupling constant

g = ev/eq = O(d/(αλL)), where d is the thickness of the film and α = e2/4π is the fine
structure constant. g plays the role of the conductance in materials. The electric-magnetic
duality (charge–vortex symmetry) is given by the action symmetry with respect to the
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transformation g ≡ ev/eq ↔ 1/g. Thus, g is a tuning parameter driving the system across
the SIT, and the SIT itself corresponds to g = gc = 1.

To describe the linking number the two compact emergent gauge fields must be
compact. To formulate U(1) symmetries we will use a lattice regularisation introducing
a lattice of spacing �. This is not entirely trivial, however, since particular care has to
be exercised in the definition of the lattice CS term so that discrete gauge invariance is
maintained [2]. To this end we introduce the forward and backward derivatives and
shift operators

dμ f (x) = f (x+�μ̂)− f (x)
� , Sμ f (x) = f (x + �μ̂) ,

d̂μ f (x) = f (x)− f (x+�μ̂)
� , Ŝμ f (x) = f (x − �μ̂) .

(5)

We also introduce forward and backward finite differences:

Δμ f (x) = f (x + �μ̂)− f (x) ; Δ̂μ f (x) = f (x)− f (x + �μ̂) . (6)

Summation by parts on the lattice interchanges both the two derivatives (with a
minus sign) and the two shift operators. Gauge transformations are defined by using
the forward lattice derivative. In terms of these operators one can then define two lattice
Chern-Simons terms

kμν = Sμεμανdα , k̂μν = εμανd̂αŜν , (7)

where no summation is implied over equal indices. Summation by parts on the lattice
interchanges also these two operators (without any minus sign). Gauge invariance is then
guaranteed by the relations

kμαdν = d̂μkαν = 0 , k̂μνdν = d̂μ k̂μν = 0 . (8)

Note that the product of the two Chern-Simons terms gives the lattice Maxwell operator

kμα k̂αν = k̂μαkαν = −δμν∇2 + dμd̂ν , (9)

where ∇2 = d̂μdμ is the 3D Laplace operator.
Integrating out the fictitious gauge fields we obtain an action for the topological

excitations alone:

Stop = ∑x v2 e2
q
� Qμ

1
v4m2−d0 d̂0−v2∇2

2
Qμ + v2 e2

v
� Mμ

1
v4m2−d0 d̂0−v2∇2

2
Mμ

+i 2πv6m2

� Qμ
kμν

(d0 d̂0+v2∇2
2)(v

4m2−d0 d̂0−v2∇2
2)

Mμ ,
(10)

where ∇2 is the 2D spatial Laplacian. The third term in this action describes the lattice
version of the topological linking of electric and magnetic strings of width 1/(vm)2 and,
due to the Dirac quantization condition, at large distances, it reduces to an integer. We will
thus drop this term.

The phase diagram is determined by the condensation (or lack thereof) of topological
defects. The conditions for the condensation are derived using the standard free energy
arguments [28]: the action of the Euclidean field theory model plays the same role as the
energy and quantum corrections to the classical action play the same role as the entropy in
an equivalent statistical mechanics model in one additional spatial dimension. The ground
state of the quantum model corresponds to the minimum of its free energy. Following the
standard lattice gauge field theory arguments of [29] we retain only the self-interaction
terms in (10)
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Stop = 2πm�vG(m�v)
[

eq

ev
Q2 +

ev

eq
M2
]

N , (11)

where G(m�v) is proportional to the diagonal element of the lattice kernel G(m�v, x − y)
representing the inverse of the operator (�2/v2)(m2

Tv4 − d0d̂0 − v2∇2
2) and we consider

strings made of N bonds with integer electric and magnetic quantum numbers Q and
M. We assign to strings an entropy proportional to their length, being given by μN with
μ ≈ ln(5) since, at each step, the non-backtracking strings can choose among 5 possible
directions on how to continue. The main contribution to the free energy is thus:

F = 2πm�vG(m�v)
[

eq

ev
Q2 +

ev

eq
M2 − 1

η

]
N , (12)

with the dimensionless parameter η given by:

η =
2πm�vG(m�v)

μ
, (13)

which, together with the ratio g = ev/eq fully determines the quantum phase structure.
When the energy term in (12) dominates, the free energy is positive and minimized

by short closed loop configurations while, when the entropy dominates, the free energy
is negative and minimised by large strings and long closed loops giving the following
condensation conditions for long strings with integer quantum numbers Q and M:

η
eq

ev
Q2 + η

ev

eq
M2 < 1 . (14)

If two or more condensations are allowed, one has to choose the one with the lowest
free energy. This condition describes the interior of an ellipse with semi-axes

rQ =
√

ev
eq

√
1
η ,

rM =
√

eq
ev

√
1
η ,

(15)

on a square lattice of integer electric and magnetic charges. The ratio g = ev/eq deter-
mines the ratio of the semi-axes while the parameter η sets the overall scale of the ellipse.
The quantum phase diagram is found by noting which integer charges lie within the ellipse
when the semi-axes and the overall scale are varied:

η < 1 →
{

g > 1 , electric condensation = superconductor ,
g < 1 , magnetic condensation = superinsulator ,

η > 1 →

⎧⎪⎪⎨
⎪⎪⎩

g > η , electric condensation = superconductor ,
η > g > 1

η , no condensation = Bose metal = topologicalinsulator ,

g < 1
η , magnetic condensation = superinsulator .

The phase structure is shown in Figure 3.
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Figure 3. The quantum phase diagram of the SIT as a function of the coupling constant g. The point
g = 1, η = 1 is a tricritical point dominating the phase structure.

A detailed description of all these possible phases can be found in [8,30]. In what
follows we will concentrate on the superinsulating phase.

3. Superinsulating Phase

To understand the nature of the superinsulating state, we couple the charge current jμ
to the physical electromagnetic gauge field Aμ by adding to the action the minimal coupling
term 2eAμ jμ and set Qμ = 0, since charges are dilute, in (4). The effective action Seff(Aμ),
which gives the electromagnetic response of an ensemble of charges in a superinsulator, is
obtained by integrating out the gauge fields aμ and bμ, and summing over the condensed
vortices Mμ. The action we obtain is the deep non-relativistic version of Polyakov’s compact
QED action [10] in which only the electric fields survive

Stop
(

Mμ, Aμ

)
= ∑

x,i

1
2e2

eff
(Fi + 2πMi)

2 , (16)

where e2
eff is the effective coupling constant

e2
eff =

2π2

μ

1
ηg

= e2 π

2μη

λL
d

= e2O
(

λL
d

)
. (17)

The partition function that we obtain is:

Z = Z0 · Zinst. =
∫ +∞

−∞
DAμ e

− 1
2e2

eff
∑x,i Fi

2

· ∑
{m}

e
− 2π2

e2
eff

∑x m 1
−∇2

2
m

, (18)

where ∇2
2 is the spatial Laplacian instead of the full Laplacian in 3D Euclidean space-time

present in the relativistic version of the model. As we will see, this difference has important
consequences on the model since the interaction of the monopoles near the SIT, in this case,
is logarithmic, (e2

eff/2π)ln|x|, instead of an inverse linear power of the relativistic model.
The deep non-relativistic limit does not affect, however, the main consequence of

Polyakov’s original idea [10]: the physics of a superinsulator is governed by the sponta-
neous proliferation of instantons M = d0M0 + di Mi, corresponding to magnetic monopoles,
so that the vortex number is not conserved in the condensate. These instantons represent
quantum tunnelling events by which vortex fluctuations appear and disappear in the
condensate. Then, in a mirror analogue to the monopole confinement, i.e., formation of
Abrikosov vortices as a result of the Meissner effect in a Cooper pair condensate, the mag-
netic monopole condensation leads to a dual phenomenon, the emergence of the electric
strings [10] mediating confinement of Cooper pairs in superinsulators.
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The deep non-relativistic limit plays a crucial role in the shape of the monopoles.
The gauge invariance of the bμ fields force the constraint dμ Mμ = 0 that is satisfied by
choosing di Mi = m and consequently dt M0 = −m. m represents instanton quantum
tunnelling events in which vortices on the film appear and disappear and their magnetic
flux flows in and out isotropically in the four available spatial directions, as it is shown
in Figure 4. Another important effects of instantons is that they disorder the system and
generate a mass for the photon given by [10]

mγ =
8π2

e2
eff

z , (19)

rendering thus the Coulomb potential screened with a a screening length λel = 1/mγ.

Figure 4. A non-relativistic magnetic monopole instanton representing a quantum tunnelling event
in which a fundamental vortex of flux 2π at time t is divided up into four fluxes π/2 that flow out
isotropically in the spatial directions. At the next instant t + �0 there is no vortex on the film anymore.
For simplicity the condensate islands are represented schematically as in a regular array.

To probe Cooper pair confinement we compute the expectation value of the Wilson
loop operator W(C), where C is a closed loop in 3D Euclidean space-time (a factor � is
absorbed into the gauge field Aμ to make it dimensionless),

〈W(C)〉 = 1
ZAμ ,Mi

∑
{Mi}

∫ +π

−π
DAμ e

− 1
2ee f f 2 ∑x(Fi−2πMi)

2

eiqext ∑C Aμ . (20)

When the loop C is restricted to the plane formed by the Euclidean time and one of
the space coordinates, 〈W(C)〉 measures the potential between two external probe charges
±qext. A perimeter law indicates a short-range potential, while an area-law is tantamount to
a linear interaction between the probe charges [10] with a new emergent scale represented
by the string tension σ that gives the strength of the linear potential. We now multiply
the Wilson loop operator by 1 in the form exp(−i2πqextMi) on the plaquettes forming the
surface S encircled by the loop C and we introduce a unit vector Si perpendicular to the
plaquettes forming the surface S.

We then decompose Mi into transverse and longitudinal components, Mi = MT
i +

ML
i with MT

i = εijΔjn + εijΔjξ, ML
i = Δiλ, where {n} are integers and Δλ = Δ̂iΔiλ = m.

The two sets of integers {Mi} are thus traded for one set of integers {n} and one set of
integers {m} representing the magnetic monopoles. The integers {n} are used to shift the
integration domain for the gauge field Aμ to [−∞,+∞]. The real variables {ξ} are then
also absorbed into the gauge field. The integral over this non-compact gauge field Aμ gives
then the Gaussian fluctuations around the instantons m, representing the saddle points
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of the action. Gaussian fluctuations do not contribute to confinement and, thus, can be
neglected. Only the summation over instantons, {m}, remains:

〈W(C)〉 = 1
Zm

∑
{m}

e
− 2π2

e2
eff

∑x mx
1

−∇2
2

mx
ei2πqext ∑S Δ̂iSi

1
−Δ mx . (21)

For qext = 1, i.e., Cooper pair probes, the sum over instantons gives rise to an area law
for the expectation value of the Wilson loop (21) with a string tension given by [31]

σ =

√
8

�0�

eeff
π

e
− π2

e2
eff

G2(0)
, (22)

where G2(0) is now the infrared-regularized 2D lattice Coulomb potential at coinciding
points. This linear potential is due to a flux tube (string) of electric field connecting
Cooper pairs and Cooper holes. This string, with a Cooper pair and a Cooper hole at its
endpoints, has a typical width λel [15] and typical length ds = 1/

√
σ and is the electric

equivalent of a strong interaction pion. When one pulls this string by, say, an external
voltage, Cooper pairs and Cooper holes start moving apart but there comes a moment
where it becomes energetically favourable for the system to pop out a Cooper pair-Cooper
hole pair in some intermediate island and to form two short strings. Only neutral states
exist asymptotically in this phase of the system and the resistance becomes infinite since
charges cannot move anymore. There is, however, a crucial difference with the relativistic
case, in which monopoles are always in a plasma phase due to their weak inverse linear
interaction. In the deep non-relativistic limit, the interactions between monopoles is
logarithmic, as we already pointed out, so, near the SIT they can undergo a confining
quantum BKT transition [17–19] for sufficiently strong coupling constants g. In fact e2

eff
plays the role of the temperature and, from (17), we see that g plays the role of an inverse
temperature, so we have the usual XY model: for low values of g instantons are free
and charges are confined, while instants undergo a confining transition and become
logarithmically confined at g = gcr. This quantum BKT transition represents the SIT
itself with a transition between the superinsulating phase and the intermediate Bose metal,
the bosoic topological insulator phase.

The BKT transition is an infinite-order transition and follows from the observation
that the dual formulation of the 2D Coulomb gas is the well known sine-Gordon model.
To obtain the Coulomb gas formulation we start from from Zinst (18) and rewrite the
Gaussian term in the action for the topological excitations in terms on an auxiliary field as:

Zinst =
∫ +π

−π
Dχe−∑x,i

e2
e f f

8π2 (Δiχx)
2

∑
N

zN

N! ∑
x1,...,xN

∑
m1,...,mn=±1

ei ∑x mx(χx+ηx) , (23)

where

z = e
−2π2G(0)

e2
e f f , (24)

is the instanton fugacity and we have adopted the dilute gas approximation in which we
consider only mx = ±1. G(0) is the infrared-regularised value of the lattice Coulomb
kernel at coinciding points. The sums can be now computed, with the result

Zinst =
∫ +∞

−∞
Dχ e−∑x,i

e2
e f f

8π2 (Δiχx)
2+2z(1−cos(χx)) , (25)

which is nothing else than the partition function of the sine-Gordon model (for a review
see [32]) which describes the physics of the planar XY model. Following the results for
the XY model [32] we find thus a critical coupling gcrit = (4π/μ)(1/η) which plays the
role of the critical temperature in this quantum BKT transitions. Monopoles and linear
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confinement of charges can exist only for g < gcr, in excellent agreement with the estimate
obtained from the crude free energy argument for strings which would correspond to the
string entropy value μ = 4π.

For the XY model described by (25) re-normalisation group flow (varying the temper-
ature) is expressed best in terms of the two variables

u = 1 − Tcr
T ,

v = 16πz Tcr
T .

(26)

The half line z = 0, T < Tcr is an half line of infrared fixed points all corresponding to
states with bound vortices and differing by a constant representing the initial conditions of
the flow equations. In our case, g flows to large values in the IR limit, and the line z = 0, g <
gcr is a line of confining IR fixed points for the charges. The magnetic monopole instantons
cause linear confinement of charges in the superinsulating phase and the granularity scale
� (lattice spacing) determines the string tension of this linear potential and sets thus also the
scale of linearly bound pairs of charges, see (22). The SIT corresponds to an IR Berezinskii-
Kosterlitz-Thouless [17–19] fixed point (gcr, z = 0). The BKT re-normalisation flow toward
short UV scales implies a decreasing g and an increasing z. The confining interaction
decreases when flowing towards short scales and, we reach the scale O(�) as we will show,
charges essentially do not feel any potential anymore, showing what is called asymptotic
freedom. This phenomenon is typically associated with non-Abelian gauge theories, where
it characterises their UV fixed point [33], here it is associated with the sine-Gordon model
(and not the compact QED) and describes an IR fixed point so it should be called asymptotic
safety but here will use the more familiar term asymptotic freedom.

The only evidence for quarks inside hadrons is indirect, through high-energy collision
that smash them and create hadron jets in colliders such as LHC. In such experiments, it
is impossible to “look inside hadrons” to study the UV to IR confining transition. Here
we show that this is, instead, possible in condensed matter superinsulators since the
electric interaction is much weaker than the strong interaction and, therefore, the size
an electric pion larger than the size of real pion. In superinsulators if the string length
scale ds is large enough so that the regime λel < ds is realized, one can probe the interior
of “superinsulating mesons” by measuring the IV dependencies on samples with linear
dimensions L < λstring. In this case the “interior” interaction at intermediate scales λel <
r < ds is a screened Coulomb potential. This should result in a strong size-dependence of
the I(V) response, such that the superinsulating hyperactivated behaviour of the resistance
observed in sufficiently large samples changes to a metal-like behaviour in sufficiently small
systems with L � ds. This size-dependence corresponds exactly to the transition from the
confinement regime at large scale to the asymptotic free regime inside the “electric mesons”.

To gain more insight about this transition, let us focus on the interaction energy U(r)
between charges separated by a distance r, derived from the compact QED model of
superinsulation (we henceforth restore physical units) is

U(r) = σ(T)r − ch̄π

24r
+ a
[

ln
(

λel
r0

)
− K0

(
r

λel

)]
, (27)

where the second term is the so-called Lüscher term [34] and the third term, containing the
MacDonald function K0, is the screened 2D Coulomb potential, reducing to a ln(r/r0) for
r � λel while decaying exponentially at r � λel, with r0 ≈ the superconducting coherence
length. For r > d � r0, the Lüscher term is negligible, so that U(r0) � 0. Near the SIT,
the strength of the Coulomb potential becomes [8]

a = (4e2/2πε0εd)( f (κ)/g) . (28)

The exact form of f (κ) is given in [8] and is not relevant here.
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When samples are very big, with their dimension L such that L � ds, charges are
confined and we expect the usual hyperactivated behaviour of the resistance as a function
of temperature of superinsulators. However, for samples with dimensions in the range
λel < L < ds Cooper pairs sufficiently far apart feel neither the string tension, since the
string is loose on these scales, nor the Coulomb interaction, which is screened on the scale
λel. We expect thus to observe a transition from hyperactivated resistance behaviour to
a metallic saturation at the lowest temperatures when the sample size is decreased. This
is exactly what has been observed in a NbTiN superinsulating film by varying the bridge
length on which the external voltage is applied [12], as shown in Figure 5. For large bridge
lengths the film displays hyperactivated resistances, for the smallest bridge length 0.2 mm,
however, we see metallic saturated behaviour at low temperatures. The crossover from
hyperactivation to metallic behaviour should take place around a bridge length L ≈ ds.
The typical string size can be estimated from experimental data as follows. The energy
kBTdec is the energy necessary to break up the string by raising the temperature. So it is a
measure of

√
σ and, therefore,

ds ≈ h̄v
kBTdec

, (29)

where we have reinstated physical units with v = (1/
√

ε)c. Using the experimentally
determined deconfinement temperature Tdec ≈ 400 mK and the known dielectric constant
of NbTiN near the SIT [6], ε ≈ 800, one can obtain an estimate ds ≈ 0.13 mm in excellent
quantitative agreement with the observation of the metallic crossover. This is the first direct
experimental evidence of asymptotic freedom.

Figure 5. Sheet resistance of a NbTiN superinsulating film as a function of the effective sample size
(bridge length) (a) Logarithmic plot of sheet resistance R� vs. inverse temperature 1/T for bridges
of various length L. The dashed straight line shows the Arrhenius behaviour R ∝ exp(1/T). Inset:
experimental setup. The Si substrate with AlN buffer layer is shown with light gray and the Hall
bridge of NbTiN is dark grey. The square gold contacts are given in yellow. All lateral sizes are given
in millimetres. (b) Same data as in (a) but replotted in terms of the conductance G = 1/R� vs. T in
log-line scale. The dotted lines are fits using a two dimensional Coulomb gas model that generalises
the Berezinskii-Kosterlitz-Thouless (BKT) formula for the conductance G ∝ exp[−(T/Tdec − 1)1/2]

by incorporating a self-consistent solution of the effects of electrostatic screening, where the screening
length λc and Tdec enter as fitting parameters. For all bridges the deconfinement temperature is
Tdec ≈ 400 mK. (c) Same data as in (b) but for temperature renormalized as (T/Tdec − 1)1/2. The solid
line corresponds to the case of an infinite electrostatic screening length λc → ∞.

4. (3+1) Dimensions

In this section, we will generalise our theory to the (3+1)-dimensional case. We will use
in what follow a relativistic notation. The relevant degrees of freedom, Cooper pairs, and
Josephson vortices, can acquire topological ABC phases when one is encircling the other.
However, vortices are now one-dimensional extended objects and their world-surfaces
are described by the two-index antisymmetric tensor mμν (we will use for the moment a
continuous notation). Due to this the generalisation of the Chern-Simons representations
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of the linking number will include a Kalb-Ramond antisymmetric tensor fields bμν [35]
which couples to the vortex current giving the BF action, generalising (3):

L =
1

4π
bμνεμναβ∂αaβ + aμ jμ +

1
2

bμνmμν , (30)

where jμ and mμν are the charge and vortex currents, respectively. Although the field
strength associated to aμ is, as usual, fμν = ∂μaν − ∂νaμ, in (3+1) dimensions its the dual
field strength is a 2-tensor,

f̃ μν =
1
2

εμναβ fαβ = εμναβ∂αaβ . (31)

The field strength associated with the tensor field bμν is a 3-tensor

hμνα = ∂μbνα + ∂νbαμ + ∂αbμν , (32)

and its dual field strength is, thus, a vector:

hμ =
1
6

εμναβhναβ =
1
2

εμναβ∂νbαβ . (33)

These field strengths fμν and hμνα can be used to add dynamics to the purely topologi-
cal BF term (30),

L =
1

12Λ2 hμναhμνα +
1

4π
bμνεμναβ∂αaβ − 1

4 f 2 fμν f μν , (34)

where f is a dimensionless coupling and Λ has canonical dimension [1/length]. This action
was introduced as a field theory for a condensed matter system in [2]. The BF model is
topological, since it is metric-independent. In addition to the usual gauge transformations
aμ → aμ + ∂μξ, (34), is also invariant under gauge transformations of the second kind,

bμν → bμν + ∂μλν − ∂νλμ . (35)

When using the BF term to model the emergent behaviour of condensed matter
systems, one identifies the topologically conserved charge current jμ and vortex current
mμν as

jμ = 1
2π hμ = 1

4π εμναβ∂νbαβ ,

mμν = 1
2π f̃ μν = 1

2π εμναβ∂αaβ ,
(36)

with Cooper pairs measured in integer units of 2e and vortices in integer units of 2π/2e =
π/e.

To formulate the gauge-invariant lattice BF-term, we follow [2] and introduce the
lattice BF operators

kμνρ ≡ Sμεμανρdα ,

k̂μνρ ≡ εμναρd̂αŜρ ,
(37)

The two lattice BF operators are interchanged (no minus sign) upon summation by
parts on the lattice and are gauge invariant so that:

kμνρdν = kμνρdρ = d̂μkμνρ = 0 ,

k̂μνρdρ = d̂μ k̂μνρ = d̂ν k̂μνρ = 0 ,
(38)
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and satisfy the equations

k̂μνρkρλω = −(δμλδνω − δμωδνλ

)∇2

+
(

δμλdνd̂ω − δνλdμd̂ω

)
+
(

δνωdμd̂λ − δμωdνd̂λ

)
,

k̂μνρkρνω = kμνρ k̂ρνω = 2
(

δμω∇2 − dμd̂ω

)
,

(39)

where ∇2 = d̂μdμ is the lattice Laplacian. We use the notation Δμ and Δ̂μ for the forward
and backwards finite difference operators.

As in the (2+1)-dimensional case, in the Euclidean lattice formulation, Qμ and Mμν

becomes integer link and plaquette variables Qμ and Mμν. In 4 Euclidean dimensions
they describes the Euclidean world-lines of point charges and Euclidean world-surfaces
of vortices. In materials, the velocity of light will be v = 1/

√
εμ < 1 by defining the

Euclidean time lattice spacing as �0 = �/v , where ε is the electric permittivity and μ is
the magnetic permeability we incorporate this velocity by rescaling all time derivatives,
currents, and zero-components of gauge fields by the factor 1/v. As a consequence, both
gauge fields acquire a dispersion relation E =

√
m2v4 + v2p2 with the topological mass

given by m = f Λ/2πv, and we thus obtain the lattice action:

S = ∑
x

�4

4 f 2 fμν fμν + i
�4

4π
aμkμαβbαβ +

�4

12Λ2 hμναhμνα + i�aμQμ + i�2 1
2

bμν Mμν . (40)

The dimensionless parameter f = O(e) encodes the effective Coulomb interaction
strength in the material, Λ is the magnetic scale, Λ = O(1/λL), where λL is the London
penetration depth of the superconducting granules.

To find the topological action for monopoles, we start from Equation (40) and integrate
out fictitious gauge fields aμ and bμν

Stop = ∑x
f 2

2�2 Qμ
δμν

(mv)2−∇2 Qν +
g2

8 Mμν
δμαδνβ−δμβδνα

(mv)2−∇2 Mαβ

+i π(mv)2

2� Qμ
kμαβ

∇2((mv)2−∇2)
Mαβ .

(41)

The last term can be neglected since it represents the Aharonov-Bohm phases of
charged particles around vortices of width λL. In fact we consider scales much larger than
λL, the denominator in (41) reduces to (mv)2∇2 and this last term becomes (i2π − integer),
reflecting the absence of Aharonov-Bohm phases between charges ne and magnetic fluxes
2π/ne .

Gauge invariance requires closed vortex loops. The presence of magnetic monopoles
at the endpoints of open vortices will break the gauge symmetry of the second kind (35)
and the longitudinal components of the tensor gauge field bμν will become usual vector
gauge fields for the magnetic monopoles. What is the effect of this gauge breaking term?
Monopoles will experience the same type of Coulomb interaction experienced by charges,
but this interaction is subdominant with respect to the linear tension created by the vortices
between a monopole–antimonopole pair. We can thus neglect it for the determination of
the phase structure and admit open vortices with magnetic monopoles at the endpoints.

The important consequence of the topological interactions is that they induce self-
energies in form of the mass of Cooper pairs and tension for vortices between magnetic
monopoles. These self-energies are encoded in the short-range kernels in the action (41),
which we approximate by a constant. World-lines and world-surfaces are thus assigned
energies, that are nothing else that their Euclidean actions in the present statistical field
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theory setting, proportional to their length N and area A which we measure in numbers of
links and plaquettes,

SN = 2π(mv�)G f
Λ� Q2N ,

SA = 2π(mv�)G Λ�
f M2 A .

(42)

Here Q and M are the integer quantum numbers carried by the two kinds of topo-
logical excitations and G = O(G(mv�)), where G(mv�) is the diagonal element of the
lattice kernel G(x − y) representing the inverse of the operator �2((mv)2 −∇2). As in the
(2+1)-dimensional case, to construct the free energy, we need to estimate the entropy of link
strings and plaquette surfaces. The entropy is, for string, proportional to their length μNN,
and for surfaces proportional to their area [36] μA A. Both coefficients μ are non-universal:
for strings μN � ln(7) since at each step the non-backtracking string can choose among 7
possible directions on how to continue, while, for surfaces, μA does not have such a simple
interpretation but can be estimated numerically. The total free energy that we obtain is:

F = 2π(mv�)G
[(

f
Λ�

Q2 − 1
ηQ

)
N +

(
Λ�

f
M2 − 1

ηM

)
A
]

,

where we have defined

ηQ =
2π(mv�)G

μN
, ηM =

2π(mv�)G
μA

. (43)

When the self-energy dominates, large string and surface configurations are sup-
pressed in the partition function and Cooper pairs or vortices are gapped excitations,
suppressed by their large action. On the contrary, when the entropy dominates large string
and surface configurations are favoured in the “free energy” (effective action) and they con-
dense. The phase in which long world-lines of Cooper pairs condense is a superconducting
phase characterised by a charge Bose condensate. The phase in which a Bose condensate of
magnetic monopoles forms, instead, is a superinsulator.

The formation of larger world-surface implies that the strings binding monopoles and
antimonopoles into neutral pairs become loose on distance scales � 1/vm. This implies
that magnetic monopoles at the endpoints of the loose vortices become deconfined and
Bose condense.

The combined energy-entropy balance equations are best viewed as defining the
interior of an ellipse on a 2D integer lattice of electric and magnetic quantum numbers,

Q2

r2
Q

+
M2

r2
M

< 1 , (44)

where the semi-axes are given by

r2
Q = �Λ

f
1

ηQ
= �Λ

f

√
μN
μA

1
η ,

r2
M = f

�Λ
1

ηM
= f

�Λ

√
μA
μN

1
η ,

(45)

with
η =

√
ηQηM = 2π(mv�)G/

√
μNμA . (46)

In (3+1)-dimensional case, however, only configurations with {0, M} or {Q, 0} have
to be considered, and configurations with Q �= 0 and M �= 0 must be excluded since the
two types of excitations are different. The phase diagram is found by establishing which
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integer charges lie within the ellipse when the semi-axes are varied. We thus obtain a phase
diagram that is essentially as in (2+1) dimensions:

η < 1 →
{

g < 1 , charge Bose condensate ,
g > 1 , monopole Bose condensate ,

η > 1 →

⎧⎪⎪⎨
⎪⎪⎩

g < 1
η , charge Bose condensate ,

1
η < g < η , bosonic insulator ,

g > η , monopole Bose condensate ,

(47)

with the tuning parameter g given in this case by:

g =
f
�Λ

√
μN

μA
. (48)

5. (3+1) Dimensions Superinsulating Phase

To derive the effective action for a superinsulator in (3+1) dimensions we follow
exactly the same steps as in the (2+1)-dimensional case and we add the minimal coupling
of the charge current jμ to the electromagnetic field:

L → L+ i ∑
x
�4 Aμ jμ = L+ i ∑

x
�4 1

4π
Aμkμαβbαβ , (49)

and we compute its effective action by integrating over the fictitious gauge fields aμ and
bμν. Using summation by parts, however, the above coupling amounts only to a shift

Mμν → Mμν +
1

2π
�2k̂μνα Aα , (50)

in (40). The electromagnetic response Seff
(

Aμ

)
is then obtained by integrating over the

fictitious gauge fields and setting Qμ = 0:

e−Seff(Aμ) = ∑
Mμν

e
− 1

8 f 2 ∑x,μ,ν(F̃μν−2πMμν)
2

. (51)

Equation (51) is the action of Polyakov’s compact QED in (3+1) dimensions.
To prove linear confinement of charges we introduce two external probe charges ±qext

and compute the expectation value for the corresponding Wilson loop operator W(C),
where C is a closed loop, now in 4D Euclidean space-time:

〈W(C)〉 = 1
ZAμ ,Mμν

∑
{Mμν}

∫ +π

−π
DAμ e

− 1
8 f 2 ∑x,μ,ν(F̃μν−2πMμν)

2

eiqext ∑C lμAμ , (52)

where lμ = 1 on the links forming the closed loop C and lμ = 0 everywhere else. We can
now use the lattice Stoke’s theorem and, for small values of the coupling f , the saddle-point
approximation to rewrite Equation (52) as:

〈W(C)〉 = 1
ZAμ ,Mμν

∑
{Mμν}

∫ +π

−π
DAμ e

− 1
8 f 2 ∑x(F̃μν−2πMμν)

2

ei qext
2 ∑S Sμν(F̃μν−2πMμν) , (53)

where the quantities Sμν are unit surface elements perpendicular (in 4D) to the plaquettes
forming the surface S encircled by the loop C and vanish on all other plaquettes. We have
also multiplied the Wilson loop operator by 1 in the form exp(−iπqext ∑x Sμν Mμν).
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At this point, we can simply repeat the computation of Polyakov [10] which shows an
area law behaviour for the expectation value of the Wilson loop:

〈W(C)〉 = e−σA (54)

where A is the area of the surface S enclosed by the loop C and the string tension is given by

σ =
32 f

π
√

εμ

1
�2 exp

(
−πG(0)

8 f 2

)
, (55)

where G(0) = 0.155 is the value of the 4D lattice Coulomb potential at coinciding points.
The monopole condensate, thus, generates a string binding together charges and preventing
charge transport in systems of a sufficient size. A magnetic monopole condensate is a
3D superinsulator, characterized by an infinite resistance at finite temperatures [2,8,14].
The critical value of the effective Coulomb interaction strength for the transition to the
superinsulating phase is fcrit = O(�/λL).

These results shows that the string confinement mechanism of superinsulation allows
to generalise the concept of a superinsulator to (3+1) dimensions. The SIT has, however,
been experimentally found only in (2+1) dimensions. What will be the experimental
hallmark of superinsulation in (3+1) dimensions and, at the same time, unequivocally
discriminate between the 3d and 2d superinsulators, exposing the linear nature of the
underlying confinement? We can gain insight on this problem by looking at the finite
temperature behaviour and the deconfinement transition at which string confinement of
Cooper pairs ceases to exist. At a critical temperature Tdc the linear tension of the string
turns to zero and the superinsulator transforms into a conventional insulator. In [37],
we have shown that the confining string theory description of superinsulation leads to a
deconfinement criticality that depends on the space dimension. In fact the critical behaviour
is embodied by the behaviour of the (dimensionless) correlation length that is proportional
to the inverse of the square root of the string tension near the critical temperature. In (2+1)
dimensions when approaching the deconfinement transition from below the correlation
length at the transition diverges according to the law

ξ± ∝ exp

[
b±√|T/Tc − 1|

]
, (56)

reproducing thus the BKT [17–19] criticality, typical of the 2D XY model, criticality that was
predicted for compact QED in (2+1) dimensions by Svetitsky and Yaffe [38].This behaviour
has been experimentally observed in [6]. In (3+1) dimensions, instead, we predicted in [37]
that the finite-temperature confinement–deconfinement transition is in the Vogel-Fulcher-
Tamman class [39], a quasi-2D behaviour in which the correlation length at the transition
diverges according to the law

ξcorr ∝ e
ξ

|T−Tcr | . (57)

This criticality differs from the one of the 2D XY model only by the power in the
exponent. This critical behaviour has been detected in InO films [40], in which the thickness
is much larger than the superconducting coherence length. While it seems premature to
view this result as a conclusive evidence, yet one can view it as a possible indication of
linear confinement in 3d superinsulators.

6. Conclusions

Even after decades of intense research the problem of quark confinement has not yet
been completely understood. One of the most promising ways to explain confinement is
that confinement of colour is produced by dual superconductivity [1,7,10]: the chromoelec-
tric field produced by quark–antiquark pairs is constrained by the dual Meissner effect
into Abrikosov flux tubes in the same way as magnetic field is confined in usual super-
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conductors of type II. This produces an energy proportional to the distance of the pairs,
E = σR, with σ the string tension, leading to confinement. Magnetic monopoles, however,
have never been observed as elementary particles. In this review, we have shown that they
exist as emergent excitations in superconducting films exhibiting the SIT as instantons,
where they can form a plasma, and as particles in 3D materials, where they can form a
Bose condensate. Monopoles give thus rise to a new state of matter, the superinsulator,
in which electric fields are squeezed into flux tubes by the dual Meissner effect leading
to linear confinement of charges. Superinsulators realize thus a single-colour version of
quantum chromodynamics (QCD) with Cooper pairs playing the role of quarks. Due to
the Abelian nature of QED, although in strong coupling, for superinsulators it is possible
to derive analytically the linear confinement by electric strings. In QCD, instead, this is
possible only through numerical computations. Superinsulators are, thus, a toy model
for exploring and testing the fundamental implications of confinement by monopoles and
asymptotic safety via desktop experiments on superconductors.
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Abstract: Using the lattice gauge field theory, we study the relation among the local chiral condensate,
monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate
idealized Abelian gauge systems of (1) a static monopole–antimonopole pair and (2) a magnetic flux
without monopoles, on a four-dimensional Euclidean lattice. In these systems, we calculate the local
chiral condensate on quasi-massless fermions coupled to the Abelian gauge field, and find that the
chiral condensate is localized in the vicinity of the magnetic field. Second, using SU(3) lattice QCD
Monte Carlo calculations, we investigate Abelian projected QCD in the maximally Abelian gauge,
and find clear correlation of distribution similarity among the local chiral condensate, monopoles, and
color magnetic fields in the Abelianized gauge configuration. As a statistical indicator, we measure
the correlation coefficient r, and find a strong positive correlation of r � 0.8 between the local chiral
condensate and an Euclidean color-magnetic quantity F in Abelian projected QCD. The correlation is
also investigated for the deconfined phase in thermal QCD. As an interesting conjecture, like magnetic
catalysis, the chiral condensate is locally enhanced by the strong color-magnetic field around the
monopoles in QCD.

Keywords: QCD; chiral symmetry; monopole; lattice QCD; spontaneous symmetry breaking; Abelian
projection; magnetic catalysis

1. Introduction

Quantum chromodynamics (QCD) is an SU(Nc) gauge theory to describe the strong
interaction, and has presented many interesting subjects full of variety and difficult prob-
lems in physics. Actually, in spite of the simple form of the QCD action, this miracle theory
creates hundreds of hadrons and leads to various interesting non-perturbative phenomena,
such as color confinement and dynamical chiral-symmetry breaking [1].

This magic is due to the strong coupling of QCD in the low-energy region, and this
strong-coupling nature drastically changes the vacuum structure itself. Therefore, a pertur-
bative technique is no more workable and analytical treatment of QCD is fairly difficult
in the strong-coupling region. As a reliable standard technique, lattice QCD Monte Carlo
simulations have been applied to analyze non-perturbative QCD [2,3].

Among the non-perturbative properties of QCD, spontaneous chiral-symmetry break-
ing is particularly important in our real world. Indeed, chiral symmetry breaking drastically
influences the vacuum structure and gives a non-trivial vacuum expectation value of the
chiral condensate 〈q̄q〉, which plays the role of an order parameter. Additionally, it is con-
sidered that chiral symmetry breaking leads to dynamical quark-mass generation [1,4], and
creates most of the matter mass of our Universe, apart from the dark matter, because only
small masses of u, d, current quarks, and electrons are Higgs-origin in atoms [5] and their
contribution to the nucleon mass is estimated to be small [6]. In addition, chiral symmetry
breaking inevitably accompanies light pions of the Nambu–Goldstone bosons, and their
small mass gives range of the nuclear force.
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In non-perturbative QCD, color confinement is also one of the most important phe-
nomena in physics, and presents an extremely difficult mathematical problem. Experiments
for hadron spectra and lattice QCD studies for various inter-quark potentials [7–10] show
that the quark confining force is basically characterized by a universal physical quantity of
the string tension σ � 0.89 GeV/fm. This universal string tension is physically explained
by one-dimensional squeezing of the color electric flux, i.e., the color flux-tube formation
in hadrons, as is also indicated by lattice QCD for both mesons [3] and baryons [11]. As
for the relation between color confinement and chiral symmetry breaking, it is not yet
clarified directly from QCD. Although almost coincidence between deconfinement and
chiral-restoration temperatures [12] suggests their close correlation, a lattice QCD analysis
using the Dirac-mode expansion based on the Banks–Casher relation [13] indicates some
independence of these phenomena in QCD [14,15].

For the quark confinement mechanism, Nambu [16], ’t Hooft [17], and Mandelstam [18]
proposed the dual superconductivity scenario, paying attention to analogy with the Abrikosov
vortex in the superconductivity, where Cooper-pair condensation leads to the Meissner effect,
and the magnetic flux is excluded or squeezed like a one-dimensional tube as the Abrikosov
vortex. If the QCD vacuum can be regarded as the dual version of the superconductor, the
electric-type color flux is squeezed between (anti)quarks in hadrons, and quark confinement
can be physically explained by the dual Meissner effect. Because of the electromagnetic du-
ality, the dual Meissner effect inevitably needs condensation of magnetic objects, i.e., color
magnetic monopoles, which correspond to the dual version of the electric Cooper-pair
bosonic field.

In the dual-superconductor picture for the QCD vacuum, however, there are two large
gaps with QCD.

1. Although QCD is a non-Abelian gauge theory, the dual-superconductor picture is
based on an Abelian gauge theory subject to the Maxwell-type equations including
magnetic currents, where electromagnetic duality is manifest;

2. Although QCD includes only color electric variables, i.e., quarks and gluons, as the el-
ementary degrees of freedom, the dual-superconductor picture requires condensation
of color magnetic monopoles as a key concept.

Historically, to bridge between QCD and the dual-superconductivity, ’t Hooft pro-
posed Abelian gauge fixing [19], partial gauge fixing which only remains Abelian gauge
degrees of freedom in QCD. By Abelian gauge fixing, QCD reduces into an Abelian gauge
theory, where off-diagonal gluons behave as charged matter fields similar to W±

μ in the
Weinberg–Salam model and give the color electric current jμ in terms of the residual
Abelian gauge symmetry. As a remarkable fact in the Abelian gauge, color-magnetic
monopoles appear as topological objects corresponding to the non-trivial homotopy group
Π2(SU(Nc)/U(1)Nc−1) = ZNc−1

∞ in a similar manner to appearance of ’t Hooft–Polyakov
monopoles [20] in the SU(2) non-Abelian Higgs theory. Thus, in the Abelian gauge, QCD is
reduced into an Abelian gauge theory, including both electric current jμ and magnetic cur-
rent kμ, which is expected to give a theoretical basis of the dual-superconductor picture for
the confinement mechanism, although off-diagonal gluons remain as charged matter fields.

From the viewpoint of Abelianzation of QCD, the maximally Abelian (MA) gauge [21]
is an interesting special Abelian gauge. In the MA gauge, off-diagonal gluons have a
large effective mass of about 1 GeV in both SU(2) and SU(3) lattice QCD [22–24], so that
off-diagonal gluons become infrared inactive, and only the Abelian gluon is relevant at
distances larger than about 0.2 fm. Additionally, monopole condensation is suggested from
appearance of long entangled monopole worldlines [21,25] and the magnetic screening in
lattice QCD [26,27].

In this way, by taking the MA gauge, the QCD vacuum can be regarded as an Abelian
dual superconductor at a large scale, and color magnetic monopoles seem to capture
essence of non-perturbative QCD. Note, however, that, even without gauge fixing, there is
an evidence of monopole condensation in non-Abelian gauge theories [27], and, therefore,
it might be possible to define infrared-relevant monopoles in QCD and to construct the dual
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superconductor system in more general manner. In fact, MA gauge fixing gives a concrete
way to extract infrared-relevant Abelian gauge manifold and monopoles from QCD.

In the context of the dual superconductor picture, close correlation between monopoles
and chiral symmetry breaking was pointed out in the dual Ginzburg–Landau theory [28],
in SU(2) lattice QCD in the MA gauge [29,30], and in SU(3) lattice QCD [31,32]. Since most
of the pioneering lattice studies were done in SU(2) QCD or on a small lattice as 83 × 4, we
recently investigated SU(3) QCD with a large volume, and find a clear correlation between
monopoles and the chiral condensate in SU(3) lattice QCD in the MA gauge [33].

In this paper, as a continuation of Ref. [33], we proceed the lattice works for the relation
between chiral symmetry breaking and color magnetic objects including monopoles. In
particular, as a new point of this paper, we quantitatively study correlation of the local
chiral condensate with color magnetic fields using the lattice gauge theory.

The organization of this paper is as follows. In Section 2, we review the MA gauge and
Abelianization of QCD in SU(3) lattice formalism. In Section 3, we prepare magnetic objects
in Abelian projected QCD. In Section 4, we consider the local chiral condensate and chiral
symmetry breaking in Abelian gauge systems. In Section 5, we present idealized Abelian
gauge systems of a static monopole–antimonopole pair on a lattice, and investigate the
relation of the local chiral condensate with the magnetic objects. In Section 6, we perform
SU(3) lattice QCD Monte Carlo calculations and study the relation among monopoles,
magnetic fields, and the local chiral condensate in Abelian projected QCD in the MA gauge.
Section 7 is devoted for summary and conclusion.

2. Maximally Abelian Gauge and Abelianization of QCD

To begin with, we briefly review the lattice formalism for maximally Abelian (MA)
gauge fixing and Abelianization in QCD.

Continuum QCD is described with the quark field q(x), the gluon field Aμ(x) ∈
su(Nc) and the QCD gauge coupling g. In SU(Nc) lattice QCD [3], the gluon field is de-
scribed as the SU(Nc) link variable Uμ(s) ≡ exp

(
iagAμ(s)

) ∈ SU(Nc) on four-dimensional
Euclidean lattices with the spacing a and the volume V = LxLyLzLt.

Using the Cartan subalgebra �H ≡ (T3, T8) in SU(3), MA gauge fixing is defined so as
to maximize

RMA[Uμ(s)] ≡ ∑
s

4

∑
μ=1

tr
(

U†
μ(s)�HUμ(s)�H

)
= ∑

s

4

∑
μ=1

(
1 − 1

2 ∑
i �=j

∣∣Uμ(s)ij
∣∣2) (1)

by the SU(3) gauge transformation, and, therefore, this gauge fixing strongly suppresses
all the off-diagonal fluctuation of the SU(3) gauge field. In the MA gauge, the SU(3) gauge
group is partially fixed remaining its maximal torus subgroup U(1)3 × U(1)8 with the global
Weyl (color permutation) symmetry [34], and QCD is reduced to an Abelian gauge theory.

From the SU(3) link variable UMA
μ (s) ∈ SU(3) in the MA gauge, we extract the Abelian

link variable

uμ(s) = ei�θμ(s)·�H = diag
(

eiθ1
μ(s), eiθ2

μ(s), eiθ3
μ(s)
)
∈ U(1)3 × U(1)8 ⊂ SU(3) (2)

by maximizing the overlap

RAbel ≡ 1
3

Re tr
{

UMA
μ (s)u†

μ(s)
}
∈
[
−1

2
, 1
]

. (3)

Note that the distance between uμ(s) and UMA
μ (s) becomes the smallest in the SU(3)

manifold, and there is a constraint ∑3
i=1 θi

μ(s) = 0 (mod 2π) reflecting the uni-determinant
of uμ(s). Here, θi

μ(s) (i = 1, 2, 3) is taken to be the principal value of −π ≤ θi
μ(s) < π.

The Abelian projection is defined by the simple replacement of the SU(3) link variable
Uμ(s) by the Abelian link variable uμ(s) for each gauge configuration, that is, O[Uμ(s)] →
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O[uμ(s)] for QCD operators. Abelian projected QCD is thus extracted from SU(3) QCD.
The case of 〈O[Uμ(s)]〉 � 〈O[uμ(s)]〉 is called “Abelian dominance” for the operator O [35].

As a remarkable fact, Abelian dominance of quark confinement is shown in both
SU(2) [36] and SU(3) lattice QCD [37–39]. Additionally, Abelian dominance of chiral
symmetry breaking is observed in SU(2) [29–31] and SU(3) lattice QCD [33].

3. Magnetic Objects in Abelian Projected QCD

In this section, we prepare magnetic objects in Abelian projected QCD in four-dimensional
Euclidean space-time.

3.1. Monopoles in Abelian Projected QCD

In this subsection, we define monopoles in Abelian projected QCD in lattice formal-
ism [40]. Like the ordinary SU(3) plaquette, the Abelian plaquette variable is defined as

uμν(s) ≡ uμ(s)uν(s + μ̂)u†
μ(s + ν̂)u†

ν(s) = ei�θμν(s)·�H

= diag(eiθ1
μν(s), eiθ2

μν(s), eiθ3
μν(s)) ∈ U(1)2 ⊂ SU(3), (4)

where μ̂ is the μ-directed unit vector in the lattice unit. The Abelian field strength θi
μν(s)

(i = 1, 2, 3) is the principal value of the exponent in uμν(s), and is defined as

∂μθi
ν(s)− ∂νθi

μ(s) = θi
μν(s)− 2πni

μν(s),

−π ≤ θi
μν(s) < π, ni

μν(s) ∈ Z, (5)

with the forward derivative ∂μ. Note that θi
μν(s) is U(1)2 gauge invariant and corresponds

to the regular Abelian field strength in the continuum limit of a → 0, while ni
μν(s) corre-

sponds to the singular gauge-variant Dirac string [40].
The electric current jiμ and the monopole current ki

μ are defined from the Abelian field
strength θi

μν as

jiν(s) ≡ ∂′μθi
μν(s), (6)

ki
ν(s) ≡ ∂μθ̃i

μν(s)/2π = ∂μñi
μν(s) ∈ Z, (7)

where ∂′μ is the backward derivative and θ̃μν is the dual tensor of θ̃μν ≡ 1
2 εμναβθαβ. Both

electric and monopole currents are U(1)2 gauge invariant, according to U(1)2 gauge
invariance of θi

μν(s). In the lattice formalism, ki
μ(s) is located at the dual lattice L4

dual of
sα + 1

2 with flowing in μ direction [41].
In this way, Abelian projected QCD includes both electric current jiμ and monopole

current ki
μ. Remarkably, lattice QCD shows monopole dominance, i.e., dominant role of

monopoles for quark confinement in the MA gauge [42]. Additionally, lattice QCD shows
monopole dominance for chiral symmetry breaking, that is, monopoles in the MA gauge
crucially contribute to spontaneous chiral-symmetry breaking in both SU(2) [29,31] and
SU(3) lattice QCD [33].

In the lattice formalism, the monopole current ki
μ appears on the dual lattice L4

dual of
sα + 1

2 , and, therefore, we define the local monopole density

ρL(s) ≡ 1
3 · 24

3

∑
i=1

∑
s′∈P(s)

4

∑
μ=1

∣∣∣ki
μ(s

′)
∣∣∣, (8)

where P(s) denotes the dual lattices in the vicinity of s, i.e., P(s) =
{

s′ ∈ L4
dual

∣∣|s − s′| = 1
}

.
Note here that the distance between the site s and its closest dual site s′ is |s − s′| =√

∑4
1(

1
2 )

2 = 1 in the four-dimensional Euclidean space-time.
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3.2. General Argument for Magnetic Instability and Magnetic Objects in the QCD Vacuum

In QCD in the MA gauge, color magnetic monopoles generally appear, and play an
important role in non-perturbative properties, which might looks curious, since the original
QCD action does not have monopoles.

However, some active roles of magnetic objects would be natural in QCD, because
QCD itself has color magnetic instability, and spontaneous generation of color magnetic
fields generally takes place, as Savvidy first pointed out in 1977 [43,44].

In fact, in the QCD vacuum in the Minkowski space-time, the gluon condensate
〈Ga

μνGa
μν〉 takes a large positive value, which physically means that the QCD vacuum

is filled with color magnetic fields. Since the gluon condensate is expressed with color
magnetic fields �Ha and color electric fields �Ea as

〈Ga
μνGa

μν〉 = 2(〈�H2
a 〉 − 〈�E2

a〉) > 0, (9)

its large positivity means inevitable significant generation of color magnetic fields. Thus,
some superior role of magnetic objects is expected instead of electric objects in the Minkowski
QCD vacuum.

In the Euclidean space-time, because of the space-time SO(4) symmetry, the roles of
magnetic and electric fields become similar. Actually, the gluon condensate is written as
Ga

μνGa
μν = 2(�H2

a + �E2
a), where the electromagnetic duality is manifest. Then, in Euclidean

QCD, the electric field often behaves as a magnetic field, and, therefore, we regard the
Euclidean electric field as a sort of the magnetic field in this paper.

3.3. Lorentz Invariant Quantities in Abelian Projected QCD

In Abelian projected QCD, there are two Lorentz invariant quantities F and G in the
Euclidean space-time:

F ≡ 1
3

3

∑
i=1

1
4

Fμν
i Fμν

i =
1
3

3

∑
i=1

1
2
(�H2

i + �E2
i ), (10)

G ≡ 1
3

3

∑
i=1

1
4

Fμν
i F̃μν

i =
1
3

3

∑
i=1

�Hi · �Ei, (11)

with the color magnetic field (�Hi)j ≡ 1
2 εjkl Fkl

i and the color electric field (�Ei)j ≡ Fj4
i . These

quantities are also invariant under the residual U(1)2 gauge transformation and global
Weyl transformation [34], i.e., permutation of the color index, in the MA gauge.

Here, F is parity-even and expresses total magnitude of magnetic fields in the Eu-
clidean space-time, since the electric field behaves as a magnetic field there. In this paper, we
simply call F “magnetic quantity” in Euclidean gauge theories. Note that G is parity-odd
and is just the Abelian projected quantity of the topological charge density on instantons in
QCD, which might relate to chiral symmetry breaking.

In the lattice formalism, the field strength tensor is a plaquette variable spanning at s,
s + μ̂, s + ν̂, and s + μ̂ + ν̂, so that we define the Abelian field strength Fi

μν(s) as the local
average of clover-type four plaquettes,

a2gFi
μν(s) ≡

1
4

(
θi

μν(s) + θi
μν(s + μ̂) + θi

μν(s + ν̂) + θi
μν(s + μ̂ + ν̂)

)
, (12)

and consider F and G as local quantities in each Abelian gauge configuration.

4. Local Chiral Condensate and Chiral Symmetry Breaking in Gauge Theories

In this section, we consider the chiral condensate and chiral symmetry breaking in the
gauge theory in terms of the quark propagator.
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4.1. Local Chiral Condensate in Lattice QCD

In this subsection, we briefly review the local chiral condensate in lattice formalism.
The local chiral condensate can be calculated with the quark propagator for each gauge
configuration U = {Uμ(s)} generated with the Monte Carlo method.

As the lattice fermion, we here adopt the Kogut–Susskind (KS) fermion [3]. For the
KS fermion, the Dirac operator γμDμ is expressed by ημDμ with the staggered phase
ημ(s) ≡ (−1)s1+···+sμ−1 (μ ≥ 2) with η1(s) ≡ 1. The KS Dirac operator is expressed as

(ημDμ)ss′ =
1
2

4

∑
μ=1

∑
±
±ημ(s)U±μ(s)δs±μ̂,s′ (13)

with U−μ(s) ≡ U†
μ(s − μ̂), and the KS Dirac eigenvalue equation takes the form of

1
2

4

∑
μ=1

∑
±
±ημ(s)U±μ(s)χn(s ± μ̂) = iλnχn(s). (14)

Here, the quark field qα(s) is described by a spinless Grassmann variable χ(s) [3], and the
chiral condensate per flavor is evaluated as 〈q̄q〉 = 〈χ̄χ〉/4 in the continuum limit.

The local chiral condensate can be calculated using the quark propagator of the KS
fermion with a small quark mass m. The chiral-limit value is estimated by the chiral
extrapolation of m → 0. As a technical caution, the chiral and continuum limits do not
commute for the KS fermion at the quenched level, although this problem would be absent
in full QCD [45].

For the gauge configuration U = {Uμ(s)}, the Euclidean KS fermion propagator is
given by

Gij
U(x, y) ≡ 〈χi(x)χ̄j(y)〉U = 〈x, i|

(
1

ημDμ[U] + m

)
|y, j〉 (15)

with the color index i and j. This propagator is numerically obtained by solving the large-scale
linear equation with a point source. The local chiral condensate for the gauge configuration
{Uμ(s)} is expressed with the propagator as

〈χ̄(x)χ(x)〉U = −Tr GU(x, x). (16)

Here, we consider the net chiral condensate by subtracting the contribution from the trivial
vacuum U = 1 as

〈χ̄χ(x)〉U ≡ 〈χ̄(x)χ(x)〉U − 〈χ̄χ〉U=1, (17)

where the subtraction term is exactly zero in the chiral limit m = 0. The global chiral
condensate is obtained by taking its average over the space-time x and the gauge ensembles
U1, U2, ..., UN ,

〈χ̄χ〉 ≡ ∑
x,i
〈χ̄χ(x)〉Ui / ∑

x,i
1. (18)

4.2. Chiral Symmetry Breaking in Abelian Gauge System

In this subsection, we analytically investigate relation between chiral symmetry break-
ing and the field strength in Euclidean Abelian gauge systems. For the simple argument,
we consider Euclidean U(1) gauge systems with quasi-massless Dirac fermions coupled to
the U(1) gauge field, although it is straightforward to generalize this argument to Abelian
projected QCD with U(1)2 gauge symmetry.
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In the U(1) gauge system, the chiral condensate is proportional to the functional trace
of the fermion propagator,

I ≡ Tr
1

� D + m
= −mTr

1
D2 − m2 + g

2 σ · F
, (19)

with the covariant derivative Dμ ≡ ∂μ + igAμ, the field strength Fμν, σ · F ≡ σμνFμν and
σμν ≡ i

2 [γμ, γν]. Note that D2 − m2 is a negative-definite operator, and all of its eigenvalues
are negative. Since the trace of any odd-number product of γ-matrices is zero, we find

I = −mTr
D2 − m2 − g

2 σ · F
(D2 − m2)2 − 2g2(F − γ5G)− g

2 [D
2, σ · F]

, (20)

with

F ≡ 1
4

FμνFμν =
1
2
(�H2 + �E2), G ≡ 1

4
Fμν F̃μν = �H · �E. (21)

Because of the overall factor m in I, I goes to zero in the chiral limit m → 0, unless the
denominator becomes zero in this limit.

Since the operator (D2 − m2)2 in the denominator is positive definite, to realize the
zero denominator in I in Equation (20), we need a significant negative contribution from
the other three terms including F , G, or [D2, σ · F]. For instance, in the absence of the field
strength, i.e., Fμν ≡ 0, one finds near m � 0

IFμν≡0 = mTr
1

p2 + m2 = mγ
∫ d4 p

(2π)4
1

p2 + m2 = m
γ

16π2

∫ Λ2

dp2 p2

p2 + m2 � m
γΛ2

16π2 (22)

with the UV cut-off Λ and the degeneracy γ. According to the positive denominator in the
integrand, IFμν≡0 has no IR singularity to cancel m of the numerator, and, therefore, IFμν≡0
goes to zero in the chiral limit of m → 0.

To cancel m in the numerator of I, we need a significantly large amount of the field
strength so as to present zero mode in the denominator of I and to keep I non-zero in the
chiral limit. Note here that F (≥ 0) always gives a negative (non-positive) contribution
in the denominator of I, while the contribution from G or [D2, σ · F] can be positive and
negative. In fact, the magnetic quantity F can give the zero mode in the denominator of
I, even without the contribution from G and [D2, σ · F]. In contrast, in Euclidean Abelian
gauge systems, F ≡ 1

4 F2
μν = 0 means Fμν = 0, and then G = [D2, σ · F] = 0.

To conclude, the magnetic quantity F is expected to be significantly important to
realize chiral symmetry breaking in Euclidean Abelian gauge theories, although, in some
cases, the contribution from G and [D2, σ · F] can assist the realization of chiral symme-
try breaking.

In a special case of constant Fμν, one finds [D2, σ · F] = 0 for the Abelian system, and obtains

I = −mTr
(D2 − m2)[(D2 − m2)2 − 2g2F ]

[(D2 − m2)2 − 2g2F ]2 − 4g2G2 , (23)

because of trγ5 = trσμν = trγ5σμν = 0. For more special case of a constant magnetic field,
there occurs the Landau-level quantization, and the spatial degrees of freedom perpen-
dicular to the magnetic field is frozen in the lowest Landau level. This infrared effective
low-dimensionalization of the charged spinor dynamics induces chiral symmetry breaking
in the chiral limit [46–48], which is known as magnetic catalysis [49].
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5. Abelian Gauge System with a Static Monopole–Antimonopole Pair on a Lattice

In the QCD vacuum, complicated monopole world-lines generally emerge in the MA
gauge [21,25], and, therefore, it is difficult to clarify the primary correlation with the chiral
condensate among the magnetic objects, such as monopoles, F and G.

In this section, to seek for the primary correlation with the chiral condensate, we
create idealized Abelian gauge system with a monopole–antimonopole pair on a lattice,
and investigate the relation among the local chiral condensate, monoples, and magnetic
fields. Additionally, we consider a magnetic flux system without monopoles.

For simplicity, we here consider U(1) lattice gauge systems described by U(1) link variables

uμ(s) = eiθμ(s) ∈ U(1), (24)

and quasi-massless Dirac fermions coupled to U(1) gauge fields with the coupling g = 1.

5.1. Static Monopole–Antimonopole Pair Systems

To begin with, we deal with an idealized Abelian gauge system of a static monopole–
antimonopole pair on a periodic lattice of the four-dimensional Euclidean space-time.

In the three-dimensional space R3, let us consider a static monopole–antimonopole
pair with the distance of l in z-direction. To realize such a lattice gauge system, we set the
Abelian link-variable uμ(s) to be

ux(s) = uy(s + x̂) = u†
x(s + ŷ) = u†

y(s) = i for sx = sy = 0, 1 ≤ sz ≤ l, (25)

otherwise uμ(s) = 1.
Figure 1 shows the building-block plaquette to realize a static monopole–antimonopole

pair on the lattice. Here, only the red link-variables take a non-trivial value of i.

Figure 1. The building-block plaquette to realize a static monopole–antimonopole pair on the lattice
in (a) the x-y plane and (b) spatial R3 for s = (0, 0, sz, st) with 1 ≤ sz ≤ l. Only the red link-variables
take a non-trivial value of i. The all-red plaquette induces the singular Dirac string at its center on the
dual lattice. A physical magnetic field is also created in the neighboring plaquette uxy(s) including
only one red link.

As for the phase variable θμ(s), which corresponds to the Abelian gluon, one finds

θx(s) = θy(s + x̂) = −θx(s + ŷ) = −θy(s) =
π

2
for sx = sy = 0, 1 ≤ sz ≤ l, (26)

otherwise θμ(s) = 0. For the all-red plaquette with sx = sy = 0 and 1 ≤ sz ≤ l, one gets

∂xθy(s)− ∂yθx(s) = θx(s) + θy(s + x̂)− θx(s + ŷ)− θy(s) = 2π, (27)
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which leads to the Dirac string of nxy(s) = −1 and zero field strength θxy(s) = 0, because
of the definition of the field strength θμν(s) and the Dirac string nμν(s),

∂μθν(s)− ∂νθμ(s) = θμν(s)− 2πnμν(s), −π ≤ θμν(s) < π, nμν(s) ∈ Z. (28)

Thus, the all-red plaquette induces the singular Dirac string at its center on the dual lattice. In
fact, for the idealized system in Figure 1b, a Dirac string appears inside the all-red plaquette.

At the terminal of the Dirac string, a monopole or an anti-monopole appears on the
dual lattice, as shown in Figure 2. Actually, the three-dimensional spatial cube including
only one all-red plaquette has a static (anti)monopole at its center (on the dual lattice),
because only one nkl(s) has non-zero value of ±1 among the six independent plaquettes
composing the cube,

k4(s) = ∂jñj4(s) =
1
2

εjkl∂jnkl(s) =
1
2

εjkl{nkl(s + ĵ)− nkl(s)}
= nxy(s + ẑ)− nxy(s) + nyz(s + x̂)− nyz(s) + nzx(s + ŷ)− nzx(s)
= ±1. (29)

Thus, this idealized system includes a static monopole at ( 1
2 , 1

2 , 1
2 ) and a static anti-monopole

at ( 1
2 , 1

2 , l + 1
2 ) in spatial R3.

Figure 2. The link-variables to realize a static monopole–antimonopole pair on the lattice in spatial R3.
Only the red link-variables take a non-trivial value of i. (a) The cube including only one all-red pla-
quette induces a magnetic monopole at its inside on the dual lattice. (b) A monopole (black diamond)
and an anti-monopole (white diamond) appear at the two terminals of the red plaquette tower.

This monopole and anti-monopole system has also physical magnetic flux around the
line segment connecting the monopole pair. In fact, a physical magnetic field is created
in the neighboring plaquette uxy(s) of the all-red plaquette in Figure 1. In this idealized
system, only the plaquette uxy(s) including one red link takes a non-trivial value as

uxy(s) = −i = e−iπ/2 in case with one nontrivial link, (30)

otherwise uμν(s) = 1. Note here that, by gauge transformation, the location of the Dirac
string is generally changed, but the physical field strength is never changed.

Figure 3 shows the local chiral condensate 〈χ̄χ(s)〉u and the magnetic quantity F ≡
1
4 F2

μν = 1
2
�H2 for l = 4 in the three dimensional space R3. In this demonstration, the quark

mass is taken to be m = 0.01 in the lattice unit.

131



Universe 2021, 7, 318

x

1
2

3
4

5
6

7
8y

1 2 3 4 5 6 7 8

z

1

2

3

4

5

6

7

8

(a)

static monopole

static anti-monopole

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

| < χ̄χ(x, y, z) >u | at m = 0.01

x

1
2

3
4

5
6

7
8y

1 2 3 4 5 6 7 8

z

1

2

3

4

5

6

7

8

(b)

static monopole

static anti-monopole

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

F(x, y, z) ≡ 1
4FμνFμν(x, y, z)

Figure 3. An idealized Abelian gauge system of a static monopole and anti-monopole pair with the distance of l = 4. In the
three dimensional space R3, the value is visualized with the color graduation for (a) the local chiral condensate and (b) the
magnetic quantity F .

For this idealized static system, there actually appears a magnetic field �H, i.e., non-
zero flux of F = 1

2
�H2 > 0, in space between the monopole and the anti-monopole, and

the local chiral condensate takes a significant value in the vicinity of the magnetic field.
In contrast, one finds G = �H · �E = 0 everywhere, since only spatial plaquettes take a non-
trivial value and �E =�0. Thus, in this system, it is likely that the magnetic field stemming
from monopoles has the primary correlation with the local chiral condensate.

5.2. Static Magnetic Flux System

Next, let us investigate a static magnetic flux system without monopoles. Owing to
the spatial periodicity, the special case of l = Lz in the static monopole–antimonopole
system has no (anti)monopoles, because of the magnetic-charge cancellation. In this special
case of l = Lz, there only exists a physical static magnetic flux along z-direction.

Figure 4 shows the local chiral condensate 〈χ̄χ(s)〉u and the magnetic quantity F ≡
1
4 F2

μν = 1
2
�H2 for l = Lz in spatial R3, taking the quark mass of m = 0.01 in the lattice unit.

Again, the local chiral condensate takes a significant value in the vicinity of the
magnetic field �H, i.e., non-zero flux of F = 1

2
�H2 > 0, even without (anti)monopoles. Note

also that this system has G = �H · �E = 0 everywhere, because of �E =�0. Therefore, in this
idealized system, we conclude that the magnetic field or F has the primary correlation
with the local chiral condensate.
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Figure 4. An idealized Abelian gauge system of a static magnetic flux without monopoles. In the three dimensional space
R3, the value is visualized with the color graduation for (a) the local chiral condensate and (b) the magnetic quantity F .

6. Lattice QCD Study for Local Chiral Condensate, Monopoles, and Magnetic Fields

In our previous study with lattice QCD, we observed a strong correlation between the
local chiral condensate and monopoles in Abelian projected QCD [33]. As a possible reason
of this correlation, we conjectured that the strong magnetic field around monopoles is
responsible to chiral symmetry breaking in QCD, similarly to the magnetic catalysis [46–49].

In this section, using lattice QCD Monte Carlo simulations, we investigate the relation
among the local chiral condensate, monopoles, and magnetic fields in Abelian projected
QCD. In this paper, the SU(3) lattice QCD simulation is performed using the standard
plaquette action at the quenched level. In each space-time direction, we impose the periodic
boundary condition for link variables, and the anti-periodic boundary condition for quarks
in order to describe also thermal QCD.

For the numerical Monte Carlo calculation, we basically adopt the lattice parameter of
β ≡ 2Nc/g2 = 6.0 and the size V = 244. The lattice spacing a � 0.1 fm is obtained from the
string tension σ = 0.89 GeV/fm [37]. Additionally, we adopt β = 6.0 and V = 243 × 6 for
the high-temperature deconfined phase at T � 330 MeV above the critical temperature.

Using the pseudo-heat-bath algorithm, we generate 100 and 200 gauge configura-
tions for V = 244 and 243 × 6, respectively. All the gauge configurations are taken every
500 sweeps after thermalization of 5000 sweeps. MA gauge fixing is performed with the
stopping criterion that the deviation ΔRMA/(4V) becomes smaller than 10−5 in 100 iter-
ations. For the calculation of the local chiral condensate, we use the quark propagator
of the KS fermion with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit, Here,
the quark mass is taken to be finite, since the chiral and continuum limits do not commute
for the KS fermion at the quenched level [45]. The jackknife method is used for statistical
error estimates.

For each lattice gauge configuration of Abelian projected QCD in the MA gauge, we
calculate the local monopole density ρL(s), the local chiral condensate, and the Lorentz
invariants F and G, defined in Section 3.

6.1. Distribution Similarity between Local Chiral Condensate and Magnetic Variables

To begin with, we pick up a gauge configuration generated in lattice QCD on V = 244

at β = 6.0, and investigate correlation between the local chiral condensate and mag-
netic variables.
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Figure 5 shows the local chiral condensate 〈χ̄χ(s)〉u with the quark mass of m = 0.02,
the local monopole density ρL(s), and the Lorentz invariants F (s) and |G(s)|, respectively,
as well as the monopole location in the space R3 at a time slice, for a typical gauge
configuration of Abelian projected QCD.

x

5
10

15

20y
5

10
15

20

z

5

10

15

20

(a)

monopoles or anti-monopoles at t = 11.5

monopoles or anti-monopoles at t = 12.5

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

| < χ̄χ(x, y, z, t = 12) >u | at m = 0.02

x

5
10

15

20y
5

10
15

20

z

5

10

15

20

(b)

monopoles or anti-monopoles at t = 11.5

monopoles or anti-monopoles at t = 12.5

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

ρL(x, y, z, t = 12)

x

5
10

15

20y
5

10
15

20

z

5

10

15

20

(c)

monopoles or anti-monopoles at t = 11.5

monopoles or anti-monopoles at t = 12.5

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

F(x, y, z, t = 12)

x

5
10

15

20y
5

10
15

20

z

5

10

15

20

(d)

monopoles or anti-monopoles at t = 11.5

monopoles or anti-monopoles at t = 12.5

0.002 0.004 0.006 0.008 0.010 0.012

|G(x, y, z, t = 12)|
Figure 5. Lattice QCD results for (a) the local chiral condensate 〈χ̄χ(s)〉u with the quark mass of m = 0.02, (b) the local
monopole density ρL(s), and the Lorentz invariants (c) F (s) and (d) |G(s)| in spatial R3 at a time slice, for a typical gauge
configuration of Abelian projected QCD. The value is visualized with the color graduation. Monopoles at t = 11.5 and 12.5
are plotted with upper and lower triangles, respectively.

From Figure 5a, one finds that the local chiral condensate tends to take a large value
near the monopole location [33]. Since monopoles appear on the dual lattice, we show
the local monopole density ρL(s), as the average on closest dual sites. Of course, ρL(s)
takes a large value near the monopole. The distribution of the the local monopole density
resembles that of the local chiral condensate, as was pointed out in Ref. [33]. Figure 5c,d
show the Lorentz invariants F and G, respectively. As a new result in this paper, we find
that the distributions of F and G also resemble that of the local chiral condensate.
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The close relation of monopoles with F and G might be understood, since the field
strength tensor relates to monopoles as ∂μ F̃i

μν = ki
ν. Roughly speaking, the monopole can

be a kind of source of F and G . In contrast, their similarity with the local chiral condensate
is fairly non-trivial.

In any case, we find clear correlation of distribution similarity among the local chiral
condensate, the local monopole density, and the Lorentz invariants F and G in Abelian
projected QCD in the MA gauge.

6.2. Correlation Coefficients between Local Chiral Condensate and Magnetic Variables

In this subsection, we quantify the similarity between the local chiral condensate
〈χ̄χ(s)〉u and magnetic variables, i.e., ρL(s), F (s) and G(s), defined in Section 3. To this
end, we use all the generated 100 gauge configurations in lattice QCD on V = 244 at
β = 6.0, and calculate the local chiral condensate at 24 distant space-time points for each
gauge configuration, resulting 1600 data points at each quark mass.

Figure 6 shows the scatter plot between the local chiral condensate 〈χ̄χ(s)〉u and
magnetic variables, i.e., the local monopole density ρL(s), Lorentz invariants F (s) and
|G(s)|, respectively, using 100 gauge configurations of Abelian projected QCD in the MA
gauge, with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit. In Figure 6, positive
correlation is qualitatively found between the local chiral condensate and the magnetic
variables, ρL, F and |G|, respectively.
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Figure 6. The scatter plot between the local chiral condensate 〈χ̄χ(s)〉u and (a) the local monopole density ρL(s), (b) F (s)
and (c) |G(s)|, using 100 Abelianized gauge configurations in SU(3) lattice QCD with β = 6.0 and V = 244 at each quark
mass m.

Next, we consider a quantitative analysis using correlation coefficients between the
local chiral condensate and the magnetic variables, as a statistical indicator of correlation. In
general, for arbitrary two statistical ensembles {Ai} and {Bi}, their correlation coefficient r
is defined as

r ≡ 〈(A − 〈A〉)(B − 〈B〉)〉
σAσB

, (31)

using the average notation 〈 〉 and the standard deviation σA ≡ √〈(A − 〈A〉)2〉 and
σB ≡ √〈(B − 〈B〉)2〉. Here, r = 1 means perfect positive linear correlation, and r � 0.7
indicates strong positive linear correlation.

We measure correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u|
and three magnetic variables, ρL(s)α, F (s)α and |G(s)|α, at various exponent α, using
100 gauge configurations of Abelian projected QCD in SU(3) lattice QCD at β = 6.0 on
V = 244, for the quark mass m = 0.01 in the lattice unit. Table 1 shows the result for the
correlation coefficients.
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Table 1. Correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u| and three magnetic
variables, ρL(s)α, F (s)α, and |G(s)|α at various α, using 100 gauge configurations of Abelian projected
QCD in SU(3) lattice QCD at β = 6.0 on V = 244, for the quark mass m = 0.01 in the lattice unit.

Lattice α ρα
L Fα |G|α

V = 244, β = 6.0 0.25 0.47 0.63 0.60
0.5 0.55 0.71 0.67
1 0.62 0.79 0.67

1.5 0.63 0.81 0.60
2 0.60 0.80 0.55

Quantitatively, the magnetic quantity F has the strongest correlation with the chiral
condensate rather than ρL and G. As a conclusion of this paper, we find a strong positive
correlation of r � 0.8 between the local chiral condensate |〈χ̄χ(s)〉u| and the magnetic
quantity F (s) in the confined vacuum of Abelian projected QCD.

6.3. High-Temperature Deconfined Phase

Finally, we also investigate a high-temperature deconfined phase in lattice QCD on
V = 243 × 6 at β = 6.0, where the temperature is T � 330 MeV above the critical tempera-
ture. We generate 200 gauge configurations, and calculate the local chiral condensate at 23

distant space points at a time slice for each gauge configuration, resulting 1600 data points
at each quark mass.

Figure 7 shows the scatter plot between the local chiral condensate |〈χ̄χ(s)〉u| and
magnetic variables, i.e., the local monopole density ρL(s), and Lorentz invariants F (s)
and |G(s)|, respectively, using 200 gauge configurations of Abelian projected QCD in the
MA gauge, with the quark mass of m = 0.01, 0.015, 0.02 in the lattice unit.
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Figure 7. Result of the high-temperature deconfined phase for the scatter plot between the local chiral condensate 〈χ̄χ(s)〉u

and (a) ρL(s), (b) F (s) and (c) |G(s)|, using 200 Abelianized gauge configurations in SU(3) lattice QCD with β = 6.0 and
V = 243 × 6 at each quark mass m.

We show in Table 2 correlation coefficients between the local chiral condensate |〈χ̄χ(s)〉u|
and three magnetic variables, ρL(s)α, F(s)α and |G(s)|α, at various exponent α, using 200
gauge configurations of Abelian projected QCD in SU(3) lattice QCD at β = 6.0 on V = 243 ×6,
for the quark mass m = 0.01 in the lattice unit.

From Figure 7 and Table 2, all the correlations between the local chiral condensate and
the three magnetic variables, ρL, F and G, become weaker in the deconfined phase, where
the chiral condensate itself goes to zero in the chiral limit.
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Table 2. Correlation coefficients in the deconfined phase between the local chiral condensate |〈χ̄χ(s)〉u|
and three magnetic variables, ρL(s)α, F(s)α and |G(s)|α at various α in Abelian projected QCD of SU(3)
lattice QCD at β = 6.0 on V = 243 × 6 for m = 0.01.

Lattice α ρα
L Fα |G|α

V = 243 × 6, β = 6.0 0.25 0.37 0.49 0.49
0.5 0.43 0.55 0.55
1 0.49 0.55 0.52

1.5 0.50 0.51 0.45
2 0.49 0.46 0.38

7. Summary and Conclusions

We have studied the relation among the local chiral condensate, monopoles, and mag-
netic fields, using the lattice gauge theory, as a continuation of Ref. [33].

First, we have created idealized Abelian gauge systems of (1) a static monopole–
antimonopole pair, and (2) a magnetic flux without monopoles, on a four-dimensional
Euclidean lattice. In these systems, we have calculated the local chiral condensate on
quasi-massless fermions coupled to the Abelian gauge field, and have found that the chiral
condensate is localized in the vicinity of the magnetic field.

Second, performing SU(3) lattice QCD Monte Carlo simulations, we have investigated
Abelian projected QCD in the maximally Abelian gauge, and have found clear correlation
of distribution similarity among the local chiral condensate, color monopoles, and color
magnetic fields in the Abelianized gauge configuration.

As a statistical indicator, we have measured the correlation coefficient r, and have
found a strong positive correlation of r � 0.8 between the local chiral condensate and the
Euclidean color-magnetic quantity F .

We have also examined the local correlation in the deconfined phase of thermal QCD,
and have found that the correlation between the local chiral condensate and magnetic
variables becomes weaker.

Thus, in this paper, we have observed a strong correlation between the local chiral
condensate and magnetic fields in both idealized Abelian gauge systems and Abelian
projected QCD. From these results, we conjecture that the chiral condensate is locally
enhanced by the strong color-magnetic field around the monopoles in Abelian projected
QCD, like magnetic catalysis.

Note, however, that this correlation does not necessarily mean that chiral symmetry
breaking is caused by the non-uniform magnetic field. To realize spontaneous chiral-
symmetry breaking, as was discussed in Section 4.2, we need some zero mode in the
denominator of I in the chiral limit. In the context of the dual superconductor picture, this
might be realized by condensation of monopoles, as was suggested in the dual Ginzburg-
Landau theory [28].

To conclude, once chiral symmetry is spontaneously broken, the local chiral conden-
sate is expected to have a strong correlation with the color magnetic field.
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Abstract: It is by now well established that Dirac fermions coupled to non-Abelian gauge theories
can undergo an Anderson-type localization transition. This transition affects eigenmodes in the
lowest part of the Dirac spectrum, the ones most relevant to the low-energy physics of these models.
Here we review several aspects of this phenomenon, mostly using the tools of lattice gauge theory.
In particular, we discuss how the transition is related to the finite-temperature transitions leading to
the deconfinement of fermions, as well as to the restoration of chiral symmetry that is spontaneously
broken at low temperature. Other topics we touch upon are the universality of the transition, and
its connection to topological excitations (instantons) of the gauge field and the associated fermionic
zero modes. While the main focus is on Quantum Chromodynamics, we also discuss how the
localization transition appears in other related models with different fermionic contents (including
the quenched approximation), gauge groups, and in different space-time dimensions. Finally, we
offer some speculations about the physical relevance of the localization transition in these models.

Keywords: localization; QCD; lattice gauge theory; finite temperature

1. Introduction

Quantum Chromodynamics (QCD) is currently our best microscopic description of
strong interactions. As is well known, QCD is a gauge theory with gauge group SU(3),
coupling six “flavors” of quarks, which are spin- 1

2 Dirac fermions transforming in the
fundamental representation of the group, to the eight spin-1 gauge bosons (known as
gluons) associated with the local SU(3) symmetry. Despite their apparently simple form,
the interactions of quarks and gluons, as dictated by the gauge principle and encoded in
the Dirac operator, give rise to a wide variety of phenomena. Most notably, the low-energy
properties of strongly interacting matter are largely determined by the phenomena of
confinement and chiral symmetry breaking (see, e.g., Refs. [1–4]). At zero temperature,
quarks and gluons are in fact confined within hadrons by a linearly rising potential, up to
distances where a quark-antiquark pair can be created out of the vacuum. Furthermore,
there is an approximate chiral symmetry associated with the lightest quarks, which in
the limit of exactly massless quarks is broken spontaneously. This determines most of
the properties of light hadrons, once the effects of the explicit breaking by the light quark
masses is taken into account.

Confinement and chiral symmetry breaking persist also at nonzero but low tempera-
ture and densities. It is well established that, at vanishing chemical potential, QCD under-
goes a finite-temperature transition to a deconfined, chirally restored phase (quark-gluon
plasma), around Tc ≈ 155 MeV [5,6]. This transition is a rapid but analytic crossover [7],
with both confining and chiral properties of the theory changing dramatically in a relatively
narrow interval of temperatures.

In particular, the confining properties are determined by the fate of an approximate
Z3 center symmetry, i.e., a symmetry under gauge transformations which are periodic in
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time up to an element of the group center. At low temperature, center symmetry is only
explicitly and mildly broken by the presence of quarks; at higher temperatures, instead,
center symmetry is strongly broken spontaneously by the ordering of the Polyakov loop,
i.e., the holonomy of the gauge field along a straight path winding around the temporal
direction. In the “quenched” limit of infinitely heavy quarks, QCD reduces to SU(3) pure
gauge theory, where center symmetry is an exact symmetry of the action, realized at low
temperature à la Wigner-Weyl in the Hilbert space of the system, while spontaneously
broken at high temperatures. Around the same temperature at which the Polyakov loop
starts becoming ordered in QCD, corresponding roughly to the spontaneous breaking of
center symmetry, also the chiral properties of the system change radically. The approximate
order parameter of chiral symmetry, i.e., the chiral condensate 〈ψ̄ψ〉, decreases rapidly
around Tc, corresponding to the disappearance of the effects of spontaneous breaking in the
chiral limit. The net effect is an effective restoration of chiral symmetry, up to the explicit
breaking due to the quark masses.

While the existence and the nature of the finite-temperature transition are by now well
established, the mechanisms of confinement and chiral symmetry breaking, and similarly
of deconfinement and chiral symmetry restoration, are not fully understood yet; nor is the
apparently close relation between these two phenomena that are in principle completely
unrelated. An important role in the breaking and restoration of chiral symmetry is played
by the topological properties of the gauge field configurations.

It might be possible to understand the formation of a chiral condensate in the low
temperature phase of QCD in terms of instantons and the associated zero modes [8–15].
It is well known that there is an exact zero mode of the Dirac operator associated with
an isolated instanton or anti-instanton, and with their finite-temperature versions known
as calorons [16–23]. Typical gauge field configurations can be interpreted as a more or
less dense medium of instantons and anti-instantons. For a sufficiently high density of
topological objects, the associated zero modes will strongly mix and form a finite band of
near-zero Dirac modes, which in turn gives rise to a finite condensate via the Banks-Casher
relation [24]. At higher temperatures the density of topological objects decreases, and so
do the density of near-zero Dirac modes and the chiral condensate, until the symmetry
is effectively restored. This is the “disordered medium scenario” for chiral symmetry
breaking. The mechanism of confinement is understood less clearly, and various proposals
have been put forth: we invite the interested reader to consult Refs. [1,2].

Relatively recently, a third phenomenon has been found to take place in correspon-
dence with deconfinement and chiral symmetry restoration in QCD, namely the localization
of the low-lying eigenmodes of the Dirac operator [25–40]. Localization is a widely studied
subject in condensed matter physics, since Anderson’s work on the absence of diffusion in
random lattice system [41]. In his seminal paper, Anderson showed how the presence of
disorder causes the spatial localization of energy eigenmodes. For electrons in a disordered
medium, such as a conductor with impurities, localized modes appear at the band edge,
beyond a “mobility edge” separating extended and localized modes. As the amount of
impurities/disorder increases, the mobility edge moves towards the band center, eventu-
ally leading to all modes becoming localized, and to the conducting sample turning into
an insulator. It is outside the scope of this paper (and frankly quite a Herculean task) to
provide an exhaustive account of the developments in the theory of Anderson localization,
and we refer the interested reader to the reviews [42–46].

It has been shown that a similar localization phenomenon takes place for the low-lying
modes of the Dirac operator in QCD above the pseudocritical temperature [27,28,30,33,34,39,40]:
up to a critical point in the spectrum, i.e., the analogue of the “mobility edge”, low modes
are spatially localized on the scale of the inverse temperature [33,39]. The mobility edge
depends on the temperature T, and its extrapolation towards the confined phase vanishes
at a temperature compatible with Tc [33,40]. At the mobility edge, a second-order phase
transition takes place in the spectrum, which has been shown to be a genuine Anderson
transition [34–37].
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A disorder-driven transition, such as the Anderson transition in the Dirac spec-
trum, obviously needs a source of disorder. This was first identified in the local fluc-
tuations of the topological charge density, treated as a dilute ensemble of pseudoparticles
(calorons) [25–28]. As already mentioned above, these topological objects individually
support localized zero modes of the Dirac operator; since they overlap, the corresponding
modes mix and shift away from zero, but for a dilute ensemble this effect is small and
modes remain localized and near zero. While evidence was produced supporting the
connection between localization and topological objects, it turned out that not all localized
modes could be explained this way [31], and at least another source of disorder was needed.
This was identified in the fluctuations of the Polyakov loop [31], a hypothesis supported by
numerical results [31,39,40] and by the critical properties found at the mobility edge [34–37].
This led to the so-called “sea/islands picture” of localization, proposed in Ref. [31] and
further elaborated in Refs. [47–49]: Dirac eigenmodes tend to localize on “islands” of
Polyakov loop fluctuations away from its ordered value, which form an extended “sea” in
the deconfined phase. The sea/islands picture requires only the existence of a phase with
ordered Polyakov loop in order for localization to appear, and so leads one to expect the lo-
calization of the low Dirac modes in a generic gauge theory with a deconfinement transition.
This has been verified in a variety of models [32,49–56], including ones without topology,
thus providing further support to the sea/islands picture. This also clearly suggests a
strong connection between localization of the low Dirac modes and deconfinement.

The relation between localization and chiral symmetry restoration has received less
attention, mostly because of the intrinsic difficulty of studying gauge theories with massless
fermions, where chiral symmetry is exact. It is, however, clearly established that localization
of the low modes is accompanied by evident changes in the spectral density at the low
end of the spectrum. In Refs. [51,54,57,58] it was observed that in the quenched theory a
peak of near-zero modes of topological origin forms, followed by a spectral range with low
mode density. A similar peak of localized modes was observed in Ref. [38] in the presence
of dynamical fermions. (The presence of this peak was discussed before in Ref. [59],
and has been studied recently in Refs. [60,61], although the localization properties of the
eigenmodes are not studied there.) It is shown in Ref. [58] that the near-zero peak can be
explained in terms of a dilute instanton/anti-instanton gas and the associated zero modes.
Recently, it has been proposed that the presence of a finite density of near-zero localized
modes in the chiral limit can lead to the disappearance of the finite-temperature massless
excitations predicted by the finite-temperature version of Goldstone’s theorem [62].

While the presence of localization at high temperature, and its connection with the
finite-temperature transition in QCD and in other gauge theories are by now fairly well
established, the physical meaning of localization of Dirac modes, and a detailed understand-
ing of the aforementioned connection with deconfinement and chiral symmetry restoration,
have proved to be quite elusive. The hope is that a better understanding of localization can
shed light on the mechanisms of confinement and chiral symmetry breaking, and on the
finite-temperature deconfining and chirally restoring transition.

In this review we will discuss developments in the study of the localization of Dirac
modes in finite-temperature gauge theories. While the main focus is on QCD, we will
discuss also other models, showing in particular that the connection between localization
and deconfinement is a general phenomenon. As this review is aimed both at the particle
physics and condensed matter communities (and expected to disappoint them both),
we provide brief introductions to the subjects of finite-temperature QCD and Anderson
localization in an attempt to bridge the gaps. Older results were already reviewed in
Refs. [36,63].

Localization in gauge theories also occurs in a few other contexts, albeit those corre-
spond to physical situations very different from the one discussed in the present review.
For this reason here we do not discuss them in detail, and only mention them for com-
pleteness. A non-exhaustive list of references includes the following papers. For results
concerning the relation between the localization properties of the low Dirac modes and
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the topological structure of the vacuum in gauge theories, we refer to Refs. [64–68] and
references therein. The role played by localization in the Aoki phase of quenched QCD
with Wilson fermions, especially concerning the fate of Goldstone modes, is studied in
Refs. [69,70]. Localization properties of the eigenmodes of the covariant Laplacian in
Yang-Mills theories are studied in Refs. [71,72].

The plan of this paper is as follows. In Section 2 we review finite-temperature QCD and
related issues. In Section 3 we review the topic of localization and Anderson transitions
in some generality. In Section 4 we discuss localization in QCD at finite temperature.
The disordered medium scenario and the sea/islands picture, providing mechanisms for
localization, are discussed in Section 5. Localization in gauge theories other than QCD
is discussed in Section 6. Finally, in Section 7 we draw our conclusions and show some
prospects for the future.

2. QCD at Finite Temperature

In strongly interacting systems such as QCD localization takes place as the systems
cross from the hadronic to the high-temperature quark-gluon plasma state. To put local-
ization in QCD in the proper context, in the present section we summarize some basic
facts about this finite temperature transition. For an introduction to gauge theories at finite
temperature we refer the reader to the literature (see, e.g., Refs. [73,74]).

In an extended sense, QCD is a gauge theory with Nf flavors of quarks transforming
in the fundamental representation of the gauge group SU(Nc) and interacting via the
corresponding gauge field, the excitations of which are the gluons. In a stricter sense,
in QCD Nf is fixed to six, the number of known quark flavors, and Nc = 3. At finite
temperature, the theory is formally defined by the Euclidean partition function

ZQCD =
∫
[dA] e−SYM[A] ∏

f
det
(

/D[A] + m f

)
, (1)

where the product runs over the quark flavors with masses m f , A is the gauge field, SYM is
the Euclidean Yang-Mills action and

/D[A] =
4

∑
μ=1

γμ(∂μ + igAμ) (2)

is the Euclidean Dirac operator, with γμ the Euclidean, Hermitean gamma matrices and
g the coupling constant. The temporal direction is compactified to a circle of size equal
to the inverse temperature, and periodic boundary conditions in the temporal direction
are imposed on the gauge fields. In this form of the partition function the quark fields,
appearing in the action quadratically, have been explicitly integrated out, resulting in
the quark determinant. The Dirac operator is an anti-Hermitean operator with purely
imaginary spectrum, which is furthermore symmetric about zero thanks to the property
{γ5, /D} = 0.

It is instructive to consider the theory as a function of its parameters, that in reality
are fixed by the observed properties of hadrons. The only such parameters of QCD are the
quark masses.1 In particular, the low-energy properties of light hadrons are completely
determined by the masses of the lightest quarks, the u and d quark, and to some extent the
heavier s quark. The other three known quark flavors are so heavy that they have little
influence on the low energy physics.

Quark masses are also important parameters from a theoretical point of view, because
they crucially influence some symmetries of the system. Even though in nature these
are only approximate symmetries, considering them helps to better understand the finite
temperature transition of QCD. In an imaginary world with two massless quark flavors, i.e.,
when mu = md = 0, QCD would have an exact SU(2)V × SU(2)A ×U(1)A chiral symmetry.
Here SU(2)V is a rotation in the two-dimensional (u, d) flavor-space that acts identically
on all the Dirac components. In contrast, the flavor non-singlet axial symmetry SU(2)A not
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only mixes the two flavors, but also transforms the left and right Dirac components with
opposite phases. Finally, the U(1)A flavor-singlet axial symmetry acts trivially in flavor
space and rotates the left and right Dirac components with opposite phases. Even though
these are all symmetries of the classical Lagrangian, after quantization the U(1)A part
of the symmetry is anomalously broken. Furthermore, at zero temperature the SU(2)A
axial symmetry is spontaneously broken. The emerging three Goldstone bosons are the
analogues of the pions, and the order parameter of the symmetry breaking is the light
quark condensate 〈ψ̄ψ〉. Finally, the vector part of the symmetry SU(2)V remains intact
even for finite, but equal quark masses.

In reality, the nonzero and non-equal masses of the u and d quarks explicitly break
these symmetries; however, the spontaneous and anomalous breaking inherited from the
massless theory both turn out to be much stronger than this explicit breaking. In fact,
in an imaginary world with zero u and d quark masses, the low-energy properties of the
light hadrons would be much the same as they are in the real world. The only important
exceptions would be the pions, which in that case would be exact Goldstone bosons with
zero mass.

If one imagines changing the quark masses, the other interesting limit is the one
in which quarks are much heavier than in reality. In particular, in the limit of infinitely
heavy quarks the quark determinant in the path integral completely decouples and the
back-reaction of the quarks on the gauge field disappears. This is the so-called quenched
theory. In this limit QCD has a different exact symmetry, the symmetry group being the
center of the gauge group, in the case at hand Z3. The symmetry transformation in question
is a gauge transformation that is singular along a spacelike hypersurface, and its singularity
is characterized by an element of the center Z3. Recalling that the system is finite in the
temporal direction with periodic boundary conditions for the gauge field, this symmetry
transformation is a gauge transformation that is not periodic in the temporal direction
(hence singular), and it multiplies by the same Z3 center element all the holonomies (gauge
parallel transporters) going around the system in the temporal direction. The holonomies
wrapping around the system in the temporal direction along a straight path are also called
Polyakov loops.

Gauge invariant local gluonic quantities are defined in terms of holonomies around
small loops, and those never wrap around the system. These types of loops cross the
hypersurface where the gauge transformation is singular the same number of times in both
directions. As a result, the Z3 factors along such a loop always cancel, and gauge invariant
local quantities are invariant with respect to the Z3 center transformations. In contrast,
fermionic quantities are affected, since such a singular gauge transformation essentially
introduces an extra Z3 twist for the temporal boundary condition of the fermions through
the covariant derivative in the Dirac operator. The boundary condition affects the spectrum
of the Dirac operator and also its determinant that appears in the path integral. At low
temperatures where the correlation length is much smaller than the temporal extent of the
system, and Polyakov loops fluctuate locally with little correlation, the temporal boundary
condition has only a small impact on the Dirac determinant. Consequently, the quarks only
mildly break the Z3 symmetry. However, at high temperature, where the correlation length
becomes comparable to or larger than the temporal size of the system, and the Polyakov
loops tend to align with each other, this picture changes drastically.

To understand exactly how that happens, let us first recall that in finite temperature
quantum field theory the temporal boundary condition for fermions is antiperiodic. For free
massless fermions this implies a gap in the spectrum of the Dirac operator equal to the
first Matsubara frequency. If by a singular gauge transformation (as defined above) we
introduce an additional Z3 twist in the boundary condition then the gap will decrease,
because the twist π corresponding to the antiperiodic boundary condition will decrease
to π ± 2π/3 = ±π/3 (mod 2π). In the interacting theory there is no gap in the spectrum,
but through this mechanism the low end of the spectrum is much denser when the spatially
averaged Polyakov loop is in the complex center sectors (i.e., close to one of the complex
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center elements) than when it is in the real one (i.e., close to the identity), where the effective
twist comes only from the antiperiodic boundary condition. As a result, the fermion
determinant, that disfavors larger low-mode density, strongly favors the real Polyakov
loop sector, and for finite quark mass this is the only sector that contributes to the path
integral. This is how fermions explicitly break the Z3 center symmetry and select the real
Polyakov loop sector out of the three sectors that would be equivalent in their absence.
This mechanism is at work also at low temperature, but much less effective there since the
average Polyakov loop fluctuates around zero.2

Now going back to the quenched theory, at zero and low temperature, the exact
Z3 symmetry of its Lagrangian remains intact, while above a critical temperature this
symmetry is spontaneously broken and its order parameter, the trace of the Polyakov loop,
develops a nonzero expectation value. In fact, in the quenched theory, the logarithm of the
expectation value of the Polyakov loop is proportional to the gauge field energy it costs
to insert an infinitely heavy static quark in the system. In this way, the vanishing of the
Polyakov loop in the low-temperature phase shows that no free quarks can exist there,
so quarks are confined into hadrons. In contrast, the nonzero expectation value of the
Polyakov loop in the high temperature phase implies that quarks are not confined there.

The nature of the finite-temperature transition in extended QCD is governed by the
chiral and the Z3 symmetries, which—as we have already seen—depend on the quark
masses. In the quenched limit (infinite quark mass) lattice simulations have shown the
transition to be weakly first order [78,79], and this behavior persists for large enough,
but finite quark masses. If the quarks become lighter, the transition weakens and for
intermediate quark masses there is a wide region where it is only a crossover. In particular,
the light-quark masses in nature fall in this range [7]. For even smaller quark masses, the
transition is again expected to become a true phase transition, but its order depends on the
number of light quark flavors. For two light flavors (and physical strange quark mass) it is
expected to be second order, whereas for three light flavors a first order phase transition is
anticipated. However, the presence of these phase transitions, previously predicted based
on an epsilon expansion [80] (see also [81] for the role played by the U(1)A anomaly), have
not yet been confirmed by lattice simulations, because simulations close to the chiral limit
are technically challenging.

Most of the results discussed in this review are based on numerical calculations on the
lattice. Lattice field theory is a nonperturbative approach to the quantization of quantum
field theories, based on the discretization of the relevant path integrals that define the theory
in the path-integral approach. We provide here only a very brief introduction to this subject,
referring the interested reader to the extensive literature (e.g., the books [73,74,82–84]).
In the lattice approach to gauge theories devised by Wilson [85], the SU(3) gauge fields
of QCD are replaced by unitary SU(3) matrices (link variables) associated with the links
of a finite hypercubic lattice. In continuum language, these correspond to the parallel
transporters of the gauge fields along the paths connecting neighbouring lattice points.
After a suitable discretization of the gauge action, the relevant path integrals are obtained
by integrating over the gauge fields, which in practice means integrating the link variables
over the group manifold with the invariant (Haar) group measure. The desired, continuum
field theory is obtained (if this is possible) by properly tuning the parameters in the action,
so that the correlation length of the system in lattice units diverges, and the system “forgets”
about the underlying lattice. For pure gauge theories, the only available parameter is the
lattice inverse gauge coupling (usually denoted by β), which ceases to be a freely adjustable
parameter and turns instead into a measure of the lattice spacing.3

The approach outlined above is easily generalized to other gauge theories based on
different gauge groups, by simply replacing the SU(3) link variables and the corresponding
Haar measure with elements of the relevant gauge group and the corresponding Haar
measure. The inclusion of fermions instead is not straightforward, especially for what
concerns the implementation of chiral symmetry. Nonetheless, there are several viable
discretization of the Dirac operator, which are expected to all lead to the same results in
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the continuum limit. Since they appear below in Section 4, we mention Wilson fermions,
staggered fermions (possibly rooted), domain wall fermions, overlap fermions, and twisted
mass fermions (see Ref. [83,84] and references therein for details). We finally mention that
several improvement schemes exist that bring the system closer to the continuum limit,
i.e., that reduce the effects due to the finiteness of the lattice spacing. Such schemes exist
both for the gauge action and for the fermionic determinant (see Ref. [83,84] and references
therein for details).

2.1. Finite-Temperature Transition, Dirac Spectrum, and Localization—An Overview

We have seen that in the two extreme cases, the quenched limit and the chiral limit, two
different symmetries, the Z3 center symmetry and the SU(2)A axial symmetry govern the
transition. The respective order parameters, the Polyakov loop and the quark condensate,
signal spontaneous breaking of the symmetry in the high temperature phase for the Z3
symmetry and in the low temperature phase for the SU(2)A axial symmetry. In nature, both
symmetries are only approximate, the transition is a crossover and the order parameters
have only inflection points in the crossover region. It also follows that in real QCD there is
no sharply defined transition temperature. In contrast, regardless of the quark mass, the
localization transition, i.e., the appearance of the first localized modes at the low edge of the
Dirac spectrum, occurs at a sharply defined critical temperature. Moreover—as anticipated
in the Introduction, and as we will see below in Sections 4 and 6—the localization transition
occurs in the temperature range of the deconfining and chiral crossover in the case of real
QCD, and exactly at the deconfining temperature in the quenched limit. This suggests
that there might be a connection between the thermodynamic (chiral and deconfining)
transitions on the one hand, and the localization transition on the other hand.

Besides the coincidence of their respective critical or pseudocritical temperatures,
these phenomena are also connected through the degrees of freedom playing the most
important role in their respective dynamics. When the system crosses into the high tem-
perature phase, the spectral density of the Dirac operator around zero drops considerably,
exactly vanishing in the chiral limit. This is how the chiral symmetry, spontaneously broken
at low temperature, is restored above the transition. Indeed, through the Banks-Casher
relation [24], the order parameter of chiral symmetry breaking, the quark condensate, is
proportional in the chiral limit to the spectral density at zero, and generally strongly sensi-
tive to the low end of the spectrum. Lower spectral density also means that eigenmodes
close to each other in the spectrum are less likely to be mixed by fluctuations of the gauge
field, which might lead to localization at the low end of the Dirac spectrum.

The spectral density, however, is not the only important parameter that influences
localization. In the quark mass regions numerically explored so far, where the transition
is either a crossover (near and below the physical values of the light quark masses) or a
true phase transition governed by (approximate) center symmetry (heavy quark limit), the
spectral density does not immediately drop to zero at the (pseudo)critical temperature.
In particular, in the quenched limit just above the transition a narrow but tall spike at zero
appears in the spectral density (see Figure 1). This is due to near-zero modes associated with
a dilute gas of calorons and anticalorons, local fluctuations of the topological charge [58].
Even though the spectrum is dense in the spike, eigenmodes there are localized [86].
A similar peak of near-zero modes is also found for physical, near-physical, and below-
physical light-quark masses [38,59–61]. For near-physical masses these modes are found to
be localized [38], and most likely this persists as the mass is decreased.
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Figure 1. The spectral density, Equation (9) (here normalized by the volume), of the overlap
Dirac operator in quenched QCD (i.e., SU(3) pure gauge theory), just above the phase transi-
tion at T = 1.045Tc. The grey band indicates the point separating the lowest, topological modes
from the rest (its width equals the corresponding uncertainty). From Ref. [58]. (Figure adapted
from R.Á. Vig and T.G. Kovács, arXiv:2101.01498 (2021), and used under a CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0)).

Recently, the spike in the spectral density received another interpretation. It was
argued that it signals the appearance of a new, previously undiscovered “phase” of QCD,
intermediate between the low-temperature confined and the high-temperature deconfined
phase [87]. In a more recent paper the same authors studied a newly defined infrared
dimension dIR of the eigenmodes in the low end of the spectrum of the chirally symmetric
overlap Dirac operator. They concluded that the exact zero modes have dIR = 3, and in
the spectral peak dIR changes rapidly but smoothly from 2 to 1 as one moves up in the
spectrum [88]. This behavior persists up to the bulk of the spectrum, where the spectral
density, together with the infrared dimension dIR of the modes starts to increase again.
This nontrivial change in the infrared dimension all happens in the region where based
on the spectral statistics and the scaling of the participation ratio with the volume, the
eigenmodes are thought to be localized. It would be interesting to further investigate how
dIR relates to the usual fractal dimension D2 (see Equation (6)), and what kind of spatial
structure in the eigenmodes gives rise to this nontrivial behavior. This could also depend
on the chiral and locality properties of the particular discretization of the Dirac operator.

Topological fluctuations and the localization of the eigenmodes are both intimately
related to fluctuations of the Polyakov loop, the order parameter of the quenched tran-
sition. The spatial localization of low Dirac eigenmodes is found to strongly correlate
with local fluctuations of the Polyakov loop away from its symmetry-breaking equilibrium
value [31,39,40]. This gives rise to the sea/islands picture of localization that we will discuss
in Section 5.2 of the present paper in more details. Localization on calorons and localization
on Polyakov loop fluctuations are, however, not mutually exclusive, as calorons always
contain large fluctuations of the Polyakov loop. In fact, within a caloron, the Polyakov
loop wraps around the gauge group in a topologically nontrivial way. The connection
between calorons and Polyakov loop fluctuations is also shown by the strong correlation
between the Polyakov loop and the topological susceptibility that can be observed close to
the transition in the high temperature phase (see Figure 2).
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Figure 2. The dependence of the topological susceptibility on the value of the spatially averaged
Polyakov loop in quenched lattice simulations. The susceptibility was computed by dividing the
configurations in sets according to the spatially averaged Polyakov loop. The averages for the
whole ensembles (in two volumes) are shown by the horizontal bands, the widths indicating the
uncertainties. From Ref. [58]. (Figure adapted from R.Á. Vig and T.G. Kovács, arXiv:2101.01498
(2021), and used under a CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0)).

The finite temperature transition of QCD is a result of the interplay of all those mech-
anisms that we just discussed, involving the Polyakov loop, the topological fluctuations
and the spectral density of the Dirac operator around zero. Since localization is intimately
related to all these aspects, it might hold the key to a better intuitive understanding of the
dynamics of the transition.

3. Localization and Anderson Transitions

In a classic paper [41], Anderson showed that a sufficiently large amount of disorder
in a lattice system prevents quantum-mechanical diffusion. Working in the one-particle
tight-binding approximation, and mimicking the effect of disorder by supplementing the
tight-binding Hamiltonian with a random potential on the lattice sites, Anderson showed
that all the eigenfunctions of the system are localized for sufficiently strong disorder (i.e.,
for a sufficiently broad distribution for the random potential).

A practical example of this situation is a “dirty” crystal where some of the lattice
atoms are replaced by impurities. Anderson’s results imply that all the electron eigenstates
become localized for a sufficiently large concentration of impurities. This prevents electron
diffusion and the associated transport phenomena; in particular, the d.c. conductivity at
zero temperature vanishes [89,90]. Localization then provides a possible mechanism for a
disorder-induced metal-insulator transition (MIT).

Anderson’s original arguments were later scrutinized and clarified by several au-
thors [91–97]. Since then, the topic of disorder-induced localization, or Anderson localization,
has been extensively studied in the condensed matter community, and it is impossible
for us to provide here a comprehensive survey, or even do justice to the related literature.
In this section we limit ourselves to a short review of the main aspects of Anderson local-
ization, especially those relevant to gauge theories, discussed in the next Section. We invite
the interested reader to consult the reviews [42–46].

3.1. The Anderson Model

In its simplest form, the (orthogonal) Anderson model Hamiltonian reads

HAM
�x,�y = ε�xδ�x,�y +

3

∑
μ=1

(δ�x+μ̂,�y + δ�x−μ̂,�y) , (3)
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where �x,�y label the sites of a simple cubic lattice with lattice vectors μ̂, μ = 1, 2, 3, and
ε�x is a random on-site potential, with uniform probability distribution in the interval
[−W

2 , W
2 ]. The lattice spacing and the hopping energy are set to 1 for simplicity. The width

W of the distribution is a measure of the amount of disorder in the system, with W = 0
corresponding to a perfectly pure crystal. In this case, for a lattice of side L with periodic
boundary conditions the eigenstates of HAM are plane waves with wave vectors �p = 2π�k

L ,
with kμ = 0, 1, . . . , L − 1. However, as soon as even a small amount of disorder is put
into the system, i.e., W �= 0, the eigenmodes ψ(�x) at the band edge become exponentially
localized, i.e., |ψ(�x)|2 ∼ e−|�x−�x0|/ξ for E beyond critical energies ±Ec(W) called “mobility
edges” [90] (see Figure 3). As the amount of disorder W in the system increases, the
mobility edge moves towards the band center. Eventually, for W larger than a critical
disorder, Wc, all the modes become localized. If Equation (3) describes the conduction band
of an electron in some “dirty” crystalline system, for large enough W the Fermi energy will
lie in the localized part of the band; d.c. transport then takes place through hopping of
electrons from one localized state to another, which has an exponentially small probability
of happening, and in the limit of infinite size leads to the absence of charge transport.
As the amount of impurities increases past the critical value, the system then undergoes a
metal-to-insulator transition.

Figure 3. Sketch of the density of states ρ (see Equation (9)) as a function of energy E in the
Anderson model, Equation (3). Localized modes are present in the shaded region beyond the
mobility edges ±Ec.

3.2. Anderson Transitions

When the energy of the modes crosses the mobility edge Ec(W) at fixed W, or equiv-
alently when the disorder in the system crosses the energy-dependent critical disorder
Wc(E) at fixed mode energy E, the nature of the eigenmodes of HAM changes from delo-
calized to localized. As argued in Ref. [98], in three dimensions the associated transition
is a second-order phase transition (Anderson transition), with divergent correlation length
ξ(E) ∼ |E − Ec|−ν or ξ(W) ∼ |W − Wc|−ν, where the same exponent ν is expected.

This prediction is based on the so-called scaling theory of localization (see Ref. [43]
for an introduction): first proposed in Ref. [98] based on previous ideas exposed in
Refs. [42,99–101], it was later put on a firmer basis through a field-theoretical descrip-
tion of disordered systems and Anderson transitions [102–104] (see Ref. [45] for a full list
of references). The basic idea is that the change in the conductance G(L) of the system4 as
its size L is increased is controlled only by the localized or delocalized nature of the energy
eigenmodes, which in turn is measured by the conductance itself, as a proxy for the disor-
der in the system. This implies a scaling behavior of the conductance, d ln G(L)

d ln L = β(G(L)).
Using the asymptotics of the β function obtained from localized or delocalized modes
is then enough to show that in three dimensions there is an unstable fixed point (in the
renormalization-group sense), and so a mobility edge in the energy spectrum and a phase
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transition at some critical amount of disorder (see Figure 4). In one dimension no Ander-
son transition is expected as all modes are localized in the presence of disorder [105,106],
while the situation in two dimensions is more complicated (see below).

Figure 4. The scaling function β(g) against the dimensionless conductance g = 2h̄G
e2 in various

dimensions. From Ref. [98]. (Reprinted figure with permission from E. Abrahams, P.W. Anderson,
D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). Copyright (1979) by the
American Physical Society).

The Anderson model that we just described, Equation (3), is but the simplest disor-
dered Hamiltonian in three dimensions, and can be generalized in various ways. One
can consider different probability distributions for the on-site disorder (e.g., the Lloyd
model [107]), add off-diagonal disorder by making also the hopping terms random [108–110],
increase the range of interaction by adding more hopping terms (e.g., Ref. [111]), and so on.
However, according to the general theory of the renormalization group (see, e.g., Ref. [112]),
critical properties at a second-order phase transition are shared by systems in the same
universality class, determined only by general properties such as the dimensionality and the
symmetries of the system.5

From a technical point of view, the Anderson model is a model of (sparse) ran-
dom matrices. The properties of these models are the subject of Random Matrix Theory
(RMT) [113–115]. For random systems, the relevant symmetry classification has been
provided by Dyson [116], later extended by Verbaarschot [117], and completed by Altland
and Zirnbauer [118–121] (see also Refs. [45,122]). The main symmetry classes, relevant to the
models discussed in this review, are determined by the existence (or not) of an antiunitary
symmetry operator T (“time reversal”) commuting with the Hamiltonian, [T, H] = 0, and
further specified by whether T2 = 1 or T2 = −1. If T exists and T2 = 1, the system is in
the orthogonal class (O): this is the case for the model in Equation (3). If T does not exist, the
system is in the unitary class (U). Perhaps the simplest example of a system in this class is
the so-called unitary Anderson model (UAM),

HUAM
�x,�y = ε�xδ�x,�y +

3

∑
μ=1

(δ�x+μ̂,�y + δ�x−μ̂,�y)e
iφ�x,�y , φ�y,�x = −φ�x,�y , (4)

which includes also off-diagonal disorder in the form of random phases φ�x,�y in the hopping
terms, mimicking the presence of a random magnetic field. Finally, if T exists and T2 = −1,
the system is in the symplectic class (S). This classification is complete as far as the statistical
properties in the bulk of the spectrum are concerned.

A refined classification is needed if one wants to discuss statistical spectral properties
near the origin. In this case, one has to consider whether also a “particle-hole” symmetry
exists, realized in terms of an antiunitary operator C obeying {C, H} = 0, and if so whether

151



Universe 2021, 7, 194

C2 = ±1. This gives rise to nine different combinations. The eight combinations obtained
when at least T or C exists correspond to eight different symmetry classes. If both T and C
exist, it automatically follows that a unitary operator Γ = TC exists, anticommuting with
the Hamiltonian, {Γ, H} = 0, and satisfying Γ2 = 1. However, a Γ satisfying this property
can exist also if T and C are both absent. In this case there are two further symmetry classes,
corresponding to whether such a Γ exists or not, for a total of ten. The classification is
summarized in Table 1. In particular, if Γ exists and commutes with T (if this also exists),
the system belongs to one of the chiral classes (chO, chU, and chS). Examples of systems
of this type are provided by certain lattice models with random hopping terms, and no
on-site potential, on bipartite lattices.

Table 1. Symmetry classes of random matrix ensembles. Entries corresponding to time-reversal (T)
and particle-hole (C) symmetry indicate whether the symmetry is absent (0) or, if present, what is its
square (±); entries corresponding to chiral symmetry (Γ) indicate whether it is absent or present (0
or 1).

T C Γ Class

Wigner-Dyson classes

0 0 0 A (unitary)
+ 0 0 AI (orthogonal)
− 0 0 AII (symplectic)

chiral classes

0 0 1 AIII (chiral unitary)
+ + 1 BDI (chiral orthogonal)
− − 1 CII (chiral symplectic)

Bogoliubov-de Gennes classes

0 − 0 C
+ − 1 CI
0 + 0 D
− + 1 DIII

3.3. Detecting Localization: Eigenmode Observables

A convenient way to study the localization properties of the eigenmodes of a random
lattice Hamiltonian and how they change along the spectrum is by means of the inverse
participation ratios (IPRs),6

IPRq ≡ ∑
x
|ψ(x)|2q , (5)

where it is assumed that eigenmodes obey the usual normalization condition, i.e., ∑x |ψ(x)|2 = 1,
and x now labels the sites of the relevant lattice, assumed finite and of volume V = Ld,
with L the linear size and d the dimensionality. Unless specified otherwise, in the following
both the term and the notation IPR, without subscript, will be used to refer specifically to
the case q = 2. For modes extended throughout the whole system, one has qualitatively
|ψext(x)|2 ∼ 1/V, and so IPRq ∼ V1−q: after averaging over the possible realizations of
disorder, which will be denoted with 〈. . .〉, and taking the large-volume limit, one has
then 〈IPRq〉 → 0 as V → ∞ (for q > 1). For modes localized in a region of volume V0
one has |ψloc(x)|2 ∼ 1/V0 inside the localization region and negligible outside, and so
IPRq ∼ V1−q

0 : one has then 〈IPRq〉 → const. as V → ∞. At the mobility edge, instead,
the scaling of IPRq with the volume depends on q in a highly nontrivial way. One has
in general

IPRq ∼ L−(q−1)Dq , (6)
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where Dq = d for extended modes and Dq = 0 for localized modes, while at criticality Dq
is not a constant. This reflects the multifractal nature of eigenmodes at Ec [124,125], and
leads to define a set of multifractal exponents characterizing the critical behavior at the
Anderson transition (see Ref. [45]).

Closely related to the IPR is the participation ratio,

PR ≡ 1
V

IPR−1
(
=

1
V

IPR−1
2

)
, (7)

which measures the fraction of the system effectively occupied by the mode. For localized
modes one has in the infinite volume limit 〈PR〉 → 0, while for delocalized modes extended
throughout the system one finds 〈PR〉 → a nonzero constant. Another equivalent way to
measure the localization properties is to use the mode “size”, i.e., V · PR = IPR−1, which
as V → ∞ (after averaging over the disorder) remains constant for localized modes and
diverges for delocalized modes. For systems with nontrivial spin and/or internal degrees
of freedom, the eigenvectors ψα,c(x) possess extra spin (α) and/or internal indices (c).
In these cases it is convenient to employ a definition of the IPR which is invariant under
spacetime and internal (unitary) rotations, i.e.,

IPR = ∑
x

(
∑
α,c

|ψα,c(x)|2
)2

= ∑
x

(
ψ(x)†ψ(x)

)2
, (8)

where the normalization condition ∑x ψ(x)†ψ(x) = 1 is understood. For example, for
eigenmodes of the continuum, Wilson, or overlap Dirac operators, α = 1, . . . , 4 is the
Dirac index, and c = 1, . . . , Nc is the gauge group (“color”) index; for eigenmodes of the
staggered operator α is absent but c is present.

3.4. Detecting Localization: Eigenvalue Observables

Another useful tool to detect localization are the statistical properties of the eigen-
values λi of a random lattice Hamiltonian, which are closely related to the localization
properties of its eigenvectors [126]. Localized modes are in fact expected to be sensitive only
to local fluctuations in the disorder, and so the corresponding eigenvalues are expected to
fluctuate independently. More precisely, after removal of non-universal, model-dependent
features by means of the so-called unfolding procedure [113] (see below), the unfolded
eigenvalues corresponding to localized modes should obey Poisson statistics. Delocal-
ized modes, on the other hand, are expected to be mixed easily by fluctuations in the
disorder, and so the corresponding unfolded spectrum should behave like that of a dense
random matrix, and display the statistics of the Gaussian ensemble of Random Matrix
Theory [113–115] in the appropriate symmetry class.

Unfolding is a monotonic mapping of the eigenvalues λi that makes the spectral
density equal to 1 throughout the spectrum. The spectral density is defined as

ρ(λ) ≡ 〈∑
i

δ(λ − λi)〉 . (9)

The unfolded eigenvalues xi are given by

λi → xi =
∫ λi

dλ ρ(λ) , (10)

and it is easy to see that they have unit density, ρ̄(x) = dλ
dx ρ(λ) = 1. For random matrix

models with dense matrices, the bulk statistical properties of the unfolded spectrum are
expected to be universal (i.e., to not depend on the details of the model) and uniform
throughout the spectrum. This has been proved rigorously for a large class of matrix
ensembles (see Refs. [127,128] and references therein). One can then determine these
properties in the exactly solvable Gaussian ensembles in the various symmetry classes
(orthogonal, unitary, symplectic) [113]. In particular, the probability distribution of the
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unfolded spacings si = xi+1 − xi, or unfolded level spacing distribution (ULSD), pULSD(s),
can be obtained exactly, although not in closed form. A good approximation for the
ULSD is provided by the so-called Wigner surmise in the appropriate symmetry class [114]
(see Figure 5),

p(β)
WS(s) = aβsβe−bβs2

, (11)

where β is the Dyson index of the Gaussian ensemble, and one has for the various symme-
try classes7

orthogonal : β = 1 , a1 =
π

2
, b1 =

π

4
,

unitary : β = 2 , a2 =
32
π2 , b2 =

4
π

,

symplectic : β = 4 , a4 =
262144
729π3 , b4 =

64
9π

.

(12)

For chiral classes, the same ULSD is found as for the corresponding non-chiral classes.

GOE (β = 1)

GUE (β = 2)

GSE (β = 4)

Poisson

0
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1

0 1 2 3

p(
β
)

W
S
(s
)

s

Figure 5. Wigner surmise for the various symmetry classes. The exponential distribution for Poisson
statistics is also shown.

For independent eigenvalues, obeying Poisson statistics, the ULSD is the exponen-
tial distribution,

pPoisson(s) = e−s . (13)

Both for localized and delocalized modes, exact analytical results are then available
for the statistical properties of the unfolded spectrum, and the transition from one type of
modes to the other can be easily monitored across the spectrum. This allows in particular
to identify the mobility edge, where a different, critical statistics is expected instead of
Poisson or RMT statistics [129,130]. Various families of random matrix models have been
developed to describe the critical statistics [131–138].

We mention in passing an alternative approach to the study of universal statistical
properties of the spectrum, based on the use of the ratio of consecutive level spacings [139].
Since this ratio is independent of the local spectral density, this approach has the advantage
of not requiring any unfolding, and has been shown to provide more precise results
than those obtained from the unfolded spectrum in a variety of many-body systems (see
Ref. [140] and references therein).

3.5. Finite-Size Scaling at the Anderson Transition

The mobility edge and the correlation-length critical exponent ν can be obtained by
means of a finite-size scaling study [130] of the average OL(λ) of suitable observables built
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out of the unfolded spectrum, and computed locally in the spectrum, for lattices of linear
size L. Local statistics are defined formally as

OL(λ) ≡ 1
ρ(λ)

〈∑
i

δ(λ − λi)O(λi)〉 ≡ 〈O〉λ , (14)

where O(λi) is some function of the eigenvalues (e.g., the level spacing Δλi = λi+1 − λi,
or the unfolded level spacing si = xi+1(λi+1)− xi(λi) and its powers), and the average is
over the ensemble. The last equality sets an alternative notation for local averages.

In practice, for a finite sample of disorder realizations obtained numerically, local
statistics are computed by dividing the spectrum in small bins and averaging over modes
within those, as well as over the sample. Unfolding is done by first fitting some smooth
ρaverage(λ) to the numerical data and then applying Equation (10). Alternatively, one can
sort the eigenvalues of the sample by magnitude and replace them by their rank divided by
the number of disorder realizations. If one is interested only in unfolded level spacings, one
can divide Δλi by the average level spacing 〈Δλ〉λ in the relevant spectral region, si =

Δλi
〈Δλ〉λ

(notice that in the infinite-volume, infinite-statistics limit one has 〈Δλ〉λ = 1/ρ(λ)).
For a finite-size scaling study, convenient observables are obtained from the un-

folded level spacing distribution, pULSD(s), defined above. Commonly used are the
second moment, 〈s2〉 =

∫ ∞
0 ds pULSD(s)s2, and the integrated probability distribution

Is0 =
∫ s0

0 ds pULSD(s). As the system size grows, OL(λ) tends to its value for Poisson statis-
tics in spectral regions where modes are localized, and to its value for (the appropriate)
RMT statistics in spectral regions where modes are delocalized. Near the mobility edge λc,
renormalization-group arguments and the one-parameter scaling hypothesis [98] imply
that OL(λ) depends on λ and L only through the combination ξ(λ)/L, where ξ is the
correlation length,8 that diverges at λc like ξ(λ) ∼ |λ − λc|−ν. Since OL(λ) is analytic in
λ for finite L, it must then take the form OL(λ) = f ((λ − λc)L1/ν). Corrections to one-
parameter scaling due to irrelevant operators can also be included, and the corresponding
critical exponents be measured [141] (see Ref. [142] for an introduction). The goodness of
one-parameter scaling can be visualized by means of the so-called “shape analysis” [143],
obtained by plotting one spectral observable against another. If the scaling hypothesis is
correct, only ξ/L should determine the statistical properties of the spectrum, and so points
corresponding to different λ and system sizes should all lie on a single curve, correspond-
ing to a path in the space of probability distributions connecting RMT and Poisson going
through the critical statistics.9 Thanks to the persistence of a remnant of multifractality
near the mobility edge [144], one can apply similar finite-size scaling techniques also to
the study of eigenmodes near criticality, in order to obtain the multifractal exponents [145],
as well as the correlation-length exponent ν [146].

3.6. Anderson Transitions in Specific Models: Analytic Predictions and Numerical Results

Critical properties at the Anderson transition have been extensively studied by means
of numerical simulations in the case of the conventional symmetry classes (O, U, and S),
see Refs. [45,142,147,148] and references therein. According to the scaling theory of local-
ization [98], a second-order Anderson transition is expected in all the conventional classes
in three dimensions. The existence of these Anderson transitions has been confirmed
numerically, and measurements of the correlation length critical exponent ν have shown
that the three classes belong to different universality classes [141,148–152] (see Table 2).
The expected nontrivial multifractal structure has also been found [145,146,148,151,152].
Universality has been explicitly demonstrated for the orthogonal class using different dis-
order distributions [141], and for the unitary class using different Hamiltonians [148,152].

155



Universe 2021, 7, 194

Table 2. Correlation-length critical exponent for Anderson transitions in the conventional symme-
try classes.

Symmetry Class Method ν Reference

orthogonal
localization length of quasi-1d bar 1.57+0.02

−0.02 [141]

multifractal finite-size scaling 1.590+0.012
−0.011 [151]

multifractal finite-size scaling 1.595+0.014
−0.013 [148]

unitary
localization length of quasi-1d bar 1.43+0.04

−0.04 [149]

multifractal finite-size scaling 1.437+0.011
−0.011 [148]

multifractal finite-size scaling 1.446+0.006
−0.006 [152]

symplectic localization length of quasi-1d bar 1.375+0.016
−0.016 [150]

multifractal finite-size scaling 1.383+0.029
−0.024 [148]

In two dimensions, the predictions of the scaling theory of localization depend strongly
on the details of the model. Absence of an Anderson transition is predicted in the orthogo-
nal Anderson model, where all modes are expected to be localized for nonzero disorder,
while an Anderson transition is predicted in the symplectic case (Ando model) [153,154].
The inclusion of topological effects in the field-theoretical description of disordered systems
led one to expect an Anderson transition also in the theory of the integer Quantum Hall
Effect [155], which belongs to the unitary class (see Ref. [156] for a review). While numeri-
cal evidence qualitatively supported this idea [157], significant quantitative discrepancies
between different microscopic models were observed (see Ref. [158] for a summary), in con-
trast with the expected universality of the transition. A better understanding of the field
theory describing the critical point was obtained only recently, in terms of a conformal
field theory deformed only by marginal perturbations, that emerge from the spontaneous
breaking of the replica (super)symmetry of the relevant nonlinear sigma model [159].
This proposal is quantitatively supported by numerical results, and can explain the appar-
ent numerical discrepancies [158]. A transition between localized and delocalized modes
was observed in the two-dimensional unitary Anderson model [160]. This transition is
a disorder-induced transition of topological (Berezinskiı̆-Kosterlitz-Thouless [161–163])
type, with exponentially divergent correlation length, log ξ ∼ |λ − λc|−1/2, in contrast to
the usual second-order transition. For the unitary Anderson model there are conflicting
theoretical predictions: while perturbative contributions lead to all states being localized
(see, e.g., Refs. [45,154]), the inclusion of nonperturbative terms can possibly lead to the
presence of an Anderson transition (see references cited in Ref. [160]). A similar transition
of topological type was also observed in a model for disordered graphene with strong
long-range impurities [164], belonging to the orthogonal class in two dimensions.

For our purposes, it is important to discuss the effect of off-diagonal disorder on
localization. In the orthogonal class, theoretical arguments [109,110] suggest that off-
diagonal disorder alone cannot localize modes at the band center; only increasing the
on-site disorder leads eventually to localization of all the modes. This is confirmed by
numerical results in three dimensions for the orthogonal Anderson model with random
hopping [165–168]. The mobility edges ±Ec separating extended and localized modes
move towards the band center as the on-site disorder W is increased, and all modes are
localized for W > Wc. In the absence of diagonal disorder (W = 0) for bipartite lattices,
this model belongs to the chiral orthogonal class. The critical exponent ν characterizing the
Anderson transition at Ec �= 0 when W = 0 is found to be in agreement with that of the
(non-chiral) orthogonal class, as well as with the one characterizing the transition at E = 0
as the critical on-site disorder Wc is reached [166,167].

The origin E = 0 is singled out when the system has chiral symmetry (which is always
the case when the lattice is bipartite and only off-diagonal disorder is present). In two
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dimensions, theoretical arguments predict critical behavior of modes at E = 0 (i.e., modes
are extended but not fully delocalized) [111,169–175], while all other modes are localized.
Numerical results indicate that modes are indeed critical at E = 0 [174,176–181], but an
Anderson transition to localized modes can also appear [174,182]. It has been argued
that such an Anderson transition can be present due to non-perturbative, topological
effects [183]. In three-dimensional models with chiral symmetry, Anderson transitions
at the origin (Ec = 0) are expected to show critical properties differing from those of
the correponding conventional class (and from those at Ec �= 0). Ref. [184] studied the
Anderson transition at E ∼ 0 in a chiral unitary model with purely off-diagonal disorder,
finding multifractal exponents differing from those of the corresponding non-chiral class.
In Refs. [185,186] the Anderson transition at the origin was studied in two-band models
with on-site disorder in the chiral orthogonal and chiral unitary classes (as well as in other
non-conventional symmetry classes), finding correlation length critical exponents differing
from those of the corresponding non-chiral classes (and not entirely universal).

The critical properties of Anderson transitions at Ec �= 0 in systems with chiral
symmetry are instead not expected to differ from those in the corresponding conventional
classes. Ref. [187] provides evidence of localization near the band center in a chiral unitary
model mimicking fermions in a background of correlated spins with antiferromagnetic
coupling in three dimensions, with the same critical properties as the non-chiral class; in two
dimensions states near the band center seem instead to remain extended. Anticipating the
results discussed in the following Sections, Refs. [27,34,35,37,51,53] provide examples of
models in the chiral unitary class, both in three and two dimensions, displaying Anderson
transitions at finite energy, and showing the same critical properties at the mobility edge as
the corresponding non-chiral classes.

4. Localization and Deconfinement in QCD at Finite Temperature

The study of localization in QCD was initially motivated by the idea that the spon-
taneous breaking of chiral symmetry could have a similar origin as conductivity in a
disordered medium [8–15]. The basic idea of the disordered medium scenario is that the
near-zero modes responsible for the breaking of chiral symmetry originate from the mixing
of the zero modes associated with overlapping instantons (or, more precisely, calorons at
finite temperature). At finite temperature these zero modes are exponentially localized on
the scale of the inverse temperature. If instantons/calorons overlap sufficiently, mixing of
the corresponding zero modes will transform the zero eigenvalues into a near-zero band
of levels, and lead to delocalized eigenmodes [10].10 This is analogous, for example, to
the Anderson-Mott insulator-metal transition11 driven by the impurity concentration in
doped semiconductors (see, e.g., Ref. [189]). Starting from the chirally symmetric phase
and decreasing T, the overlap of calorons increases and eventually leads to a finite density
of near-zero, delocalized modes. This leads to expect a localization-delocalization transition
in the near-zero region.

As we will see below, this scenario is most likely only a part of the story, and overlooks
the important role played by deconfinement in localizing the low Dirac modes. Instead
of sticking to the disordered medium scenario, we prefer to adopt a more general point
of view, looking at the Dirac operator as a random matrix, ignoring initially any relation
with topological objects and deconfinement. After a few introductory remarks on this
approach, we review the available results regarding localization and Anderson transitions
in various lattice approximations for QCD, following a chronological order. Some of the
results discussed here deal with the pure gauge theory, sometimes for Nc = 2, and are
included in this section mostly for historical reasons. A summary of the results for QCD
proper and organized by topic is provided at the end of the section.

4.1. The Dirac Operator as a Random Matrix

The Dirac operator in the background of fluctuating gauge fields can be intepreted
as a sparse random matrix, and the properties of its eigenvalues and eigenvectors can be
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studied with the machinery discussed in the previous Section. For the continuum anti-
Hermitian Dirac operator, −i /D can be formally treated as the Hamiltonian of a disordered
system, with disorder provided by the gauge fields. If an Anderson transition is present in
its spectrum, its critical properties are expected to be determined by the symmetry class of
the Dirac operator and by the dimensionality of the space-time over which it is defined.

Concerning the symmetry class, the four-dimensional Dirac operator for fundamental
fermions in SU(Nc) theories belongs to the chiral unitary class for Nc > 2, and to the
chiral orthogonal class for Nc = 2.12 The spectral correlations of Dirac eigenvalues in
QCD (Nc = 3) are then expected to display GUE-type bulk statistics,13 as long as the
corresponding eigenvectors are delocalized.14 If localized modes are present, they are
expected to obey Poisson statistics, regardless of the symmetry class.

The discretization of the Dirac operator on a lattice is known to be tricky due to the
doubling problem (see Refs. [73,74,82–84]), and in some cases its chiral properties are
changed (see Ref. [188] and Ref. [115], Section 5.2.1). For staggered fermions [196–198] a
remnant of the continuum chiral symmetry preserves the chiral nature of the symmetry
class, and the staggered Dirac operator belongs to the chiral unitary class, as the continuum
operator, for Nc ≥ 3. For Nc = 2 the symmetry class is instead changed to the chiral
symplectic one.15 Overlap fermions [199–202] possess an exact lattice chiral symmetry, and
belong to the same symmetry class as their continuum counterpart. More precisely, since the
overlap operator is not anti-Hermitean, this is true for its anti-Hermitean part. It is then
understood, unless specified otherwise, that the imaginary part of the overlap eigenvalues
is considered in the following. For the low modes this is an adequate approximation, that
becomes exact in the continuum limit. Moreover, since the unfolded spectrum is unaffected
by any monotonic mapping, the statistical properties of the low modes are unchanged
if one uses other types of projection on the imaginary axis (i.e., eigenvalue magnitude,
stereographic projection).16

Concerning the dimensionality of the problem, in finite-temperature field theory the
temporal size of the system is fixed (in physical units) in the thermodynamic limit, and only
the size of the d spatial directions is sent to infinity in the thermodynamic limit. For d + 1
spacetime dimensions, the dimensionality of the disordered system described by the Dirac
operator in a gauge-field background is then equal to d, while the temporal direction can
be technically seen as an internal degree of freedom.

4.2. Numerical Results on the Lattice

The disordered medium scenario was investigated in Ref. [25] by means of numer-
ical simulations of quenched QCD on the lattice on both sides of the finite-temperature
transition. They used a single spatial volume, employed the staggered discretization of
the Dirac operator, and studied the rotation- and gauge-invariant version of the IPR of an
eigenmode ψ, Equation (8). They observed that in the physical Z3 sector (real Polyakov
loop sector) the IPR of the lowest modes was considerably larger above the transition than
below the transition (see Figure 6). Moreover, above Tc it was larger in the real sector than
in the complex Polyakov loop sectors, where it does not change much across the transition.
Sensitivity to the Polyakov loop sector is equivalent to sensitivity to the temporal boundary
conditions, and shows that the low modes cannot be localized in the temporal direction on
a scale much shorter than the temporal size.17 This suggests the presence of a localization
transition in the physical sector, with spatially localized low modes at high temperature.
Evidence for some of the localized modes being related to calorons was also provided.
More evidence for localization of the low modes in the real sector appeared in Ref. [26],
where more volumes and a chirally improved discretization of the Dirac operator were
used. The volume scaling of the IPR of the low modes in the real sector was found to be in
qualitative agreement with that expected for localized modes.
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Figure 6. IPR of the low staggered modes on quenched configurations below (left), slightly above (center), and well above
(right) the deconfinement transition for real (θP = 0) and complex (θP = ± 2

3 ) Polyakov loop sectors. From Ref. [25].
(Reprinted figure with permission from M. Göckeler, P.E.L. Rakow, A. Schäfer, W. Söldner, and T. Wettig, Phys. Rev. Lett. 87,
042001 (2001). Copyright (2001) by the American Physical Society).

The disordered medium scenario was investigated further by García-García and
Osborn in Refs. [27,28]. In Ref. [27] they considered an Instanton Liquid Model (ILM) for
the QCD vacuum (see Ref. [204]), and studied the behavior of the instantonic zero modes.
Changing the temperature, and so the spatial extension of the zero modes, they observed
the appearance of a mobility edge near the origin, both in the quenched approximation
and in the presence of fermions. In the quenched case, the multifractal properties of the
near-zero modes at the transition were found to be consistent with those of the 3d unitary
Anderson transition (see Refs. [45,148,152]). With two massless flavors, the mobility edge
appears at the same temperature where the chiral condensate shows a drop (see Figure 7,
left). Although the thermodynamic limit was not studied, this was taken as an indication
that localization of the low modes coincides with the chiral transition.

90 100 110 120 130 140 150
Temperature

0

0.2

0.4

0.6

0.8

1

ch
ir

al
 c

on
de

ns
at

e

0

0.05

0.1

0.15

0.2

0.25

IP
R

<ψψ>  L
3
 = 63

<ψψ>  L
3
 = 126

<ψψ>  L
3
 = 189

IPR  L
3
 = 63

IPR  L
3
 = 126

IPR  L
3
 = 189

 0

 5

 10

 15

 20

 25

 6  6.05  6.1  6.15  6.2  6.25  6.3

beta

IPR  L=12
chiral condensate x 50  L=12

IPR  L=16
chiral condensate x 50  L=16

Figure 7. Left: IPR of the lowest Dirac mode and chiral condensate in an ILM model for QCD with two massless fermions
for various system sizes (in fm3). From Ref. [27]. (Reprinted from Nucl. Phys. A, 770, A.M. García-García and J.C. Osborn,
“Chiral phase transition and Anderson localization in the Instanton Liquid Model for QCD”, Pages 141–161, Copyright (2006),
with permission from Elsevier). Right: IPR (here times the volume V = L3) of the low Dirac modes and chiral condensate
in 2+1 flavor QCD with staggered fermions. From Ref. [28]. (Reprinted figure with permission from A.M. García-García and
J.C. Osborn, Phys. Rev. D 75, 034503 (2007). Copyright (2007) by the American Physical Society).

A test of the disordered medium scenario in a more realistic context was presented
in Ref. [28]. There the localization properties of the near-zero modes were studied on the
lattice in quenched QCD, i.e., pure gauge SU(3) theory, and “unquenched” QCD, i.e., with
2+1 flavors of dynamical quarks of relatively large masses, leading to heavier-than-physical
pions [205,206]. The one-loop Symanzik improved gauge action was used, and the Asqtad-
improved [207–210] staggered discretization was employed for the lattice Dirac operator.
In both cases, they found indications of critical (i.e., volume-independent) spectral statistics
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(from the second moment of the ULSD) at a temperature Tloc
c , where also IPR · V starts

increasing with the volume (for the unquenched case see Figure 7, right). In the quenched
case, indications of a vanishing spectral density and of an increase of the Polyakov loop
are found at a similar temperature Tdec/χ

c , identified with the deconfinement temperature
(in the physical Z3 sector). In the unquenched case, Tloc

c is close to the crossover temperature
Tχ

c obtained from the chiral susceptibility. Although the use of small lattices does not allow
a full quantitative assessment, these indications suggest that an Anderson transition takes
place near the origin of the spectrum as the system crosses over from the low-temperature
to the high-temperature phase, with the low-lying Dirac modes turning from delocalized
to localized, and the formation of a mobility edge that separates them from delocalized
modes in the bulk of the spectrum.

Studies of localization in QCD-like settings includes also the case of two flavors of
dynamical staggered fermions [29], and that of quenched two-color QCD (i.e., pure gauge
SU(2) theory) analyzing overlap [30,31] and staggered [32] spectra. In the two-flavor
three-color case Ref. [29] found that IPR · V of the low modes was volume-independent
below the transition temperature T2 f

c , but above that it scaled with the volume in a manner
compatible with localization (see Figure 8, left). Ref. [30] shows evidence of absence of
correlations in the low-lying overlap spectrum, which is typical of localized modes, at
T = 2.6TSU(2)

c , where TSU(2)
c is the deconfinement temperature of the pure gauge SU(2)

theory. Ref. [32] shows clear evidence of localization of the low-lying staggered modes,
and of the presence of a mobility edge separating them from delocalized bulk modes, again
at T = 2.6TSU(2)

c . This is obtained by studying how (i) the scaling with the lattice spatial
volume of the spatial “size” (IPR−1/Nt)

1
3 of the eigenmodes, and (ii) the ULSD of the

corresponding eigenvalues change along the spectrum. The spatial extension of the low
modes is volume-independent, while higher up in the spectrum it is seen to increase with
the lattice size (see Figure 8, right). Looking at the ULSD in different spectral regions, it is
observed that it matches the exponential distribution of Poisson statistics for the lowest
modes, changing towards the symplectic Wigner surmise18 as one moves towards the bulk.
Finally, in Ref. [31] the transition in the overlap spectrum from localized to delocalized
modes is studied via the ULSD at T = 2.6TSU(2)

c . A clear change from the exponential
to the orthogonal Wigner surmise is observed.19 Moreover, assuming that there are no
strong interactions among instantons and anti-instantons, it is argued that the instanton
density is too low to match the density of localized modes at this temperature. Indications
of correlations between localized modes and local fluctuations of the Polyakov loop away
from its ordered value (i.e., 1, in the physical sector) are also reported (see Section 5.2 for a
detailed discussion).
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A comprehensive study of localization in the high-temperature phase of real-world
QCD appeared in Ref. [33], using a tree-level Symanzik improved gauge action and a
two-level stout smeared [211] staggered fermion action for 2+1 quark flavors with physical
mass [212]. Several volumes, aspect ratios and lattice spacings were used, covering the
temperature range 1.7Tc < T < 5Tc (here Tc = 155 MeV [5]) with lattices of linear
size 2 fm ≤ L ≤ 6 fm. Localized modes were observed at the low end of the spectrum
(see Figure 9, left). A temperature-dependent mobility edge λc(T) separating low-lying,
localized modes from delocalized bulk modes was found in the whole temperature range,
studying how the spectral statistics change along the spectrum from Poisson to unitary
RMT type. More precisely, λc was estimated as the inflection point of the variance of the
ULSD, 〈s2〉λ − 〈s〉2

λ = 〈s2〉λ − 1, computed locally in the spectrum. As T increases, λc(T)
increases as well. Extrapolation to the continuum is studied at T = 400 MeV. The mobility
edge is expected to renormalize like a quark mass, and the ratio λc/mud is indeed shown
to be independent of the lattice spacing within numerical uncertainties. The localization
length l ≡ a〈IPR− 1

4 〉 of the low modes is also shown to extrapolate to a finite continuum
limit, and lT is found to be between 0.7 and 0.9 for all the lattice ensembles. A second-order
polynomial fit to the RG-invariant quantity λc(T)/mud shows that it extrapolates to zero
at Tloc

c = 170 MeV (see Figure 9, right), which is within the temperature range where the
system undergoes a crossover from the low-temperature phase to the high-temperature
phase [5,6]. This is consistent with localization of the low modes appearing as the system
changes from confined and chirally broken to deconfined and chirally restored. The density
of localized modes (number of modes per unit spatial volume) is seen to increase with T
(see Figure 13 below).
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Figure 9. Average PR of the staggered Dirac modes as a function of the eigenvalue λ for various volumes at T = 394 MeV,
a = 0.125 fm (left) and renormalized mobility edge λc/mud as a function of T (right) in 2+1 flavor QCD with staggered
fermions and physical quark masses. From Ref. [33]. (Reprinted figures with permission from T.G. Kovács and F. Pittler,
Phys. Rev. D 86, 114515 (2012). Copyright (2012) by the American Physical Society).

The critical behavior of the eigenmodes at the mobility edge was studied in Refs. [34,35,37].
All these references use the same setup as Ref. [33] with Nt = 4 and a = 0.125 fm, corre-
sponding to T = 2.6Tc. In Ref. [34] it was established, by means of a finite size scaling
analysis of the integrated ULSD Is0 , that the transition from localized to delocalized modes
at the mobility edge is indeed an Anderson transition (see Figure 10, left). The critical
exponent was found to be ν = 1.43(6), in agreement with the one obtained for the 3d
unitary Anderson model [149] (see Table 2). In Ref. [35] the critical eigenvalue statis-
tics at the mobility edge was studied in terms of the one-parameter family of deformed
random matrix ensembles of Refs. [136,137]. The critical statistics was shown to be in-
deed volume-independent, and well described by a deformed random matrix ensemble,
with deformation parameter consistent with the one found for the 3d unitary Anderson
model [148,149,152]. Finally, in Ref. [37] the critical exponent ν and the multifractal expo-
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nents where studied using the finite size scaling techniques for the eigenmode density
developed in Refs. [145,146]. All exponents were found to be in agreement with those of
the 3d unitary Anderson model [148,152] (see Figure 10, right).

While mostly focussed on the properties of the spectrum, Ref. [38] briefly discussed
the localization properties of the low Dirac modes in QCD near the crossover temperature.
The spectrum of the overlap operator was studied in the background of gauge configura-
tions generated with tree-level improved Symanzik gauge action and 2+1 flavors of highly
improved staggered quarks (HISQ) [213] with near-physical quark masses (ml/ms = 1/20,
mπ = 160 MeV). Evidence was found of a small peak of localized near-zero modes at
T = 1.2Tc and T = 1.5Tc (here Tc = 154 MeV). Localization was inferred from the small-
ness of the PR; the volume scaling was not discussed. It was suggested that near-zero
modes in the peak correspond to an approximate superposition of the exact zero modes
associated with instanton–anti-instanton pairs. Comparison of the PR of zero and near-zero
modes shows however that only a fraction of near-zero modes is compatible with this
interpretation. The large fluctuations of the PR of the near-zero modes suggests instead a
large variability of the number of topological lumps participating in the superposition.
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Figure 10. Left: scaling of Is0 near the mobility edge in 2+1 QCD with staggered quarks, at T = 394 MeV and a = 0.125 fm.
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(2014). Copyright (2014) by the American Physical Society). Right: multifractal exponents Dq, governing the scaling of
IPRq ∼ L−Dq(q−1) at large linear size L at the mobility edge, in 2+1 QCD with staggered quarks (T = 394 MeV, a = 0.125 fm)
and in the 3d unitary Anderson model. From Ref. [37]. (Reprinted figure with permission from L. Ujfalusi, M. Giordano,
F. Pittler, T.G. Kovács and I. Varga, Phys. Rev. D 92, 094513 (2015). Copyright (2015) by the American Physical Society).

Localization in two-flavor QCD was studied in Ref. [39] using tree-level improved
Symanzik gauge action and dynamical Möbius domain-wall fermions [214–216] with
stout smearing, and looking at the spectrum of the Hermitian operator γ5D, with D the
four-dimensional effective Dirac operator of the five-dimensional domain-wall fermion.
This operator is in the chiral unitary class. The temperature range was 0.9Tc ≤ T ≤ 1.9Tc
with Tc � 175 MeV the deconfinement temperature estimated from the average Polyakov
loop. A range of bare quark masses, two spatial volumes and two temporal extensions
(in lattice units) were used. Above Tc, the scaling of the PR of the eigenmodes shows
that the lowest modes are localized, while moving up in the spectrum modes become
delocalized (see Figure 11, left). The size v ≡ V · PR of the low modes increases along the
spectrum and decreases with T (see Figure 11, right). The localization length l ≡ v

1
4 of the

lowest (nonzero) mode was shown to be of the order of the inverse temperature, lT ∼ 1.3.
The ULSD computed locally in the spectrum was seen to change from Poisson-type to
RMT-type in the unitary class as one moves from the lowest modes towards the bulk. By
contrast, below Tc RMT statistics was observed everywhere in the spectrum. Changing
boundary conditions to periodic in time, low modes were found to be delocalized with
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RMT statistics also above Tc. A clear correlation between the spatial density ψ†ψ(x) of the
low modes and the local fluctuations of the Polyakov loop P(�x) away from its ordered
value was observed, favoring sites with Re trP(�x) close to −1, and becoming stronger as T
increases (see Figure 12 below). Correlation with action (s(x)) and topological charge (q(x))
densities was also observed, with localized modes favoring sites with large s and q, in
particular “(anti)self-dual” sites where |q|/s ∼ 1. The overlap of the left- and right-chirality
components of the modes was seen to be the smallest for the lowest modes, and to increase
as one moves towards the bulk; it was also seen to increase with temperature, and showed
little dependence on the bare quark mass.

In Ref. [40] (see also Ref. [217]), localization was studied in 2+1+1 flavor QCD with
physical strange and charm masses but heavy pions (mπ � 370 MeV), looking at the
(stereographically projected) spectrum of the overlap operator in the background of con-
figurations generated with Iwasaki gauge action and dynamical twisted-mass Wilson
fermions [218–220]. Above Tc � 188 MeV, a very small PR is found for the lowest modes,
which increases to around 0.8 in the bulk. The position of the mobility edge was estimated
as the inflection point of the PR in the spectrum. As a function of T, λc(T) appears to
be linear, and its extrapolation vanishes at a temperature compatible with Tc. A strong
anticorrelation of the localized modes with Re trP(�x) was observed.

Figure 11. Scaling of the PR (and of V · PR in the inset) for β = 4.18, Nt = 8 (T = 257 MeV � 1.5Tc) and bare mass m = 0.01
(left), and dependence on T and m of the PR of the 10 lowest modes (right) in two-flavor QCD with Möbius domain-wall
fermions. From Ref. [39]. (Figures adapted from G. Cossu and S. Hashimoto, J. High Energy Phys. 06, 56 (2016), and used
under a CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0)).

4.3. Summary

Let us summarize the results discussed in this section, restricting to QCD “proper”,
i.e., gauge group SU(3) and dynamical quarks. QCD-like models and other gauge theories
are discussed in detail below in Section 6.

• Low Dirac modes are localized in lattice QCD in the high-temperature phase. More precisely,
a large amount of evidence indicates that the low Dirac modes are localized in lattice
QCD, for temperatures above the finite-temperature transition, for more or less physi-
cal quark content and masses, and different fermion discretizations [28,33,38–40]. The
available evidence suggests that localization is not a lattice artifact and survives the
continuum limit: both the localization length and the renormalized mobility edge
seem in fact to possess a continuum limit. Evidence is, however, limited to a single
study, and at a single temperature [33].

• Localization appears approximately at the transition. As the transition is only a crossover, this
statement can only be of qualitative nature. In all the cases discussed above [28,33,39,40],
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localization appears somewhere in the range of temperatures where the crossover
takes place.

• The localization length is of the order of the inverse temperature [33,39].
• An Anderson transition takes place in the Dirac spectrum in the high-temperature phase.

More precisely, a mobility edge separating localized and delocalized modes in the
spectrum is observed on the lattice [33–35,37,39,40]. For staggered fermions it has been
shown that a genuine Anderson transition takes place at the mobility edge [34,35,37].

• Localized modes correlate with local fluctuations in the confining and topological properties
of the configurations. More precisely, the spatial position of localized modes shows
correlations with the local fluctuations of the Polyakov loop away from order [39,40],
as well as with positive fluctuations of the action density and of the magnitude of the
topological charge density, especially at (anti)self-dual points [39].

We now list a few remarks.

• As disordered systems, almost all the models discussed in this section are in the 3d
chiral unitary class.20 The appearance of localized modes at the band center contrasts
with the delocalized nature of the band center in the 3d chiral orthogonal Anderson
model [166,167]. On the other hand, it agrees with what was found in the 3d chiral
unitary Anderson model [184], and in the Anderson model with correlated disorder
of Ref. [187] in the same class.

• The results of Refs. [34,35,37] indicate that a genuine second-order Anderson tran-
sition is present in the staggered Dirac spectrum in high-temperature QCD, in the
universality class of the 3d unitary Anderson model. Since QCD is in the 3d chiral
unitary class, this suggests that the Anderson transition at nonzero eigenvalue for
the 3d chiral and non-chiral unitary classes belong to the same universality class.
This is not surprising, as chiral symmetry is not expected to play an important role
in the bulk of the spectrum, but only near the origin, around which the spectrum
is symmetric precisely due to chiral symmetry. Further support to the lack of any
differences in the transition of the chiral and non-chiral model is given by the findings
of Ref. [27] concerning the multifractal exponents in the ILM model for QCD, and
by the critical statistics found in the Anderson model with correlated disorder of
Ref. [187]. A different critical behavior is found instead when the Anderson transition
is at the origin in 3d chiral models [184–186].

• In the ILM model of Ref. [27], both in the quenched and unquenched cases, a second
mobility edge was observed higher up in the spectrum, moving towards the high end
as the temperature is decreased. While this part of the spectrum is not representative
of real QCD, as the model neglects nonzero modes at the outset, it is nonetheless
possible that a similar localization mechanism at the high end of the spectrum applies
in QCD as well.21

• It is now clear that the Dirac spectral density does not vanish in the deconfined
phase of pure gauge SU(3) theory, if one uses sufficiently fine lattices, or lattice
discretizations of the Dirac operator with good chiral properties; instead, a peak is
formed near the origin (see Refs. [51,57,59]). A sort of “chiral transition” still takes
place at deconfinement, where the peak structure appears.

• The disordered medium scenario requires that the densities of instantons and of local-
ized modes match in the high-temperature phase. As observed in Ref. [31] and, in the
pure gauge case, in Ref. [86] (see Section 6), the instanton density, obtained assuming
an ideal (non-interacting) instanton gas approximation, is lower than the density of
localized modes (number of modes per unit spatial volume). Moreover, the latter is
seen to increase with T [33], while the instanton density decreases. This indicates that
topology can only partially explain the localization of the low Dirac modes.

• An alternative interpretation of localization in terms of topological objects was pro-
posed in Ref. [39]. The authors suggest that localized modes favor regions where
L-type (Kaluza-Klein) monopole-antimonopole pairs are located. These are one of the
types of monopole constituents inside calorons [20]. This interpretation is supported
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by the correlation with Polyakov-loop fluctuations, action and topological density,
and chirality. A direct identification of monopoles or a quantitative estimate of their
density is, however, unavailable.

Figure 12. Density plot of the average local norm ψ†ψ of low Dirac modes in the Polyakov loop
plane (here P = 1

3 tr P) in the high-temperature phase. From Ref. [39]. (Figure adapted from
G. Cossu and S. Hashimoto, J. High Energy Phys. 06, 56 (2016), and used under a CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0)).

5. Mechanisms for Localization

In this section, we discuss in some detail the two mechanisms, or more precisely the
two sources of disorder, proposed so far to explain localization of the low Dirac modes in
QCD: the disordered medium scenario, based on topology fluctuations; and the sea/islands
picture, based on fluctuations of the Polyakov loop. We have already briefly discussed the
disordered medium scenario in the previous section; here we discuss it again, both to keep
this section self-contained, and to give more details.

5.1. The Disordered Medium Scenario

As is well known, the continuum Dirac operator in the background of a gauge con-
figuration of topological charge Q has n± exact zero modes of definite chirality ±1, with
Q = n+ − n− (index theorem). In particular, for instantons (resp. anti-instantons) of
topological charge 1 (resp. −1) one finds an exact zero mode of positive (resp. negative)
chirality. The same holds for the finite-temperature generalization of instantons known as
calorons [16–23].22 The zero modes supported by instantons (i.e., at T = 0) are algebraically
localized, decaying like 1/R3 with the distance R from the instanton center. The zero modes
supported by calorons are instead fully delocalized in the temporal direction, and exponen-
tially localized in the spatial directions, decaying like e−rT , with r the spatial distance from
the caloron center and T the temperature of the system. For a dilute ensemble of these
objects, their associated zero modes are not exact Dirac eigenmodes any longer, due to
the fact that instantons/calorons overlap. The low-lying Dirac eigenmodes are instead
linear combinations of these “unperturbed” zero modes,23 obtained by diagonalizing the
“perturbed” Dirac operator, which in the zero-mode basis reads (see, e.g., Ref. [204])

i /D =

(
0 TIA

TAI 0

)
, (15)

with TIA and TAI = T†
IA the matrices of the overlap integrals of i /D between the unperturbed

zero modes associated with an instanton–anti-instanton pair.24 For a dilute ensemble the
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total topological charge Q is expected to be simply equal to the sum of the individual
charges. Out of all the unperturbed zero modes, Q are preserved by topology despite
mixing,25 while the remaining ones are not protected by topology and spread around λ = 0
forming a band. The extent of this spreading and the resulting density of near-zero Dirac
modes for typical gauge configurations are dynamical issues, determined by the typical
density and size of topological objects. In the quenched case, a finite spectral density of near-
zero modes is expected to survive as long as a non-negligible density of topological objects
supports them. In the presence of dynamical fermions, the fermionic determinant tends
to suppress configurations with a higher density of near-zero modes, and so suppresses
topological excitations, with respect to the quenched case, but a finite spectral density is still
possible. In any case, the details of the dynamics, including especially the temperature and
the fermion masses, determine whether a nonzero density of near-zero modes is formed,
i.e., loosely speaking, whether chiral symmetry is spontaneously broken.

For sufficiently low temperature, and not too many quark flavors, the density of
topological objects and the effect of mixing become strong enough to overcome the repulsive
effect of the fermionic determinant, and chiral symmetry breaks spontaneously through the
formation of a nonzero density of near-zero modes. This is the disordered medium scenario
for chiral symmetry breaking [8–15]. The mixing of the unperturbed modes is also expected
to spread them out in space, over topological objects that overlap non-negligibly with their
original location. If the typical spatial distance n− 1

3 between topological objects is large
compared to the typical spatial range 1/T of the corresponding unperturbed zero modes,
one expects the resulting perturbed near-zero modes to remain localized on a few objects
only. Here n =

Ntop
V is the spatial density of Ntop calorons and anti-calorons in a finite

spatial volume V. At high temperatures both density and range are small, and near-zero
modes are expected to be localized. As the temperature decreases, both density and range
increase, with more and more topological objects overlapping, and near-zero modes are
expected to eventually delocalize over the whole system [10]. It is reasonable to expect that
delocalization will take place around the same temperature as chiral symmetry breaking
(in the loose sense explained above). It should be clear, however, that finite spectral density
and delocalization of modes near the origin are not automatically linked.26

According to the scenario above, near-zero localized modes should be associated
with local lumps of topological charge. It is worth noting that (anti)calorons in SU(Nc)
gauge theory are made up of Nc (anti)monopole constituents [20], and that when these are
well separated the associated zero mode is localized on a single constituent; which one
depends on the holonomy (Polyakov loop) of the gauge field at asymptotic distance from
the core [222,223]. For typical high-temperature ordered configurations with Polyakov loop
in the trivial sector, the relevant constituent is the type-L monopole, which also has the
largest action and topological charge densities, as well as the smallest size (see Ref. [221]).
This further characterizes the favorable locations for modes according to the disordered
medium scenario.

Refs. [25,26,38,39,86] provide evidence that some of the modes are indeed localized on
topological objects. In particular, Ref. [39] shows that the locations favored by some of the
localized low modes have all the features of L-type monopoles and antimonopoles: large
action and topological charge densities, near (anti)self-duality, and near degeneracy of two
eigenvalues of the untraced Polyakov loop (see Figure 12).27 In Refs. [58,86] it is shown that
for pure gauge SU(3) theory the distribution of the number of near-zero modes in the peak
of the spectral density near zero (see Figure 1) is consistent with the distribution of a dilute
gas of topological objects. This suggests that the peak of near-zero modes indeed originates
from the zero modes associated with topological objects. This provides further evidence
supporting the disordered medium scenario as a viable mechanism for localization, and its
close relation with spontaneous chiral symmetry breaking.

If localization were entirely due to mixing topological would-be zero modes, then the
density of localized modes would be equal to that of the topological objects (calorons).28

Since above the transition the density of calorons decreases sharply with increasing temper-
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ature, we would expect the same behavior of the density of localized modes. However, as
shown in Ref. [33], the density of localized modes actually increases with temperature (see
Figure 13). In the pure gauge case, no more than half of the localized modes seem to be of
topological origin for temperatures as low as 1.03Tc [86] and as the temperature increases,
this fraction rapidly decreases. In Figure 14 we show the temperature dependence of the
fraction of localized modes that can be associated with near-zero modes of topological
origin [51,86]. We show results obtained with the overlap Dirac operator, and with the
staggered Dirac operator for three different values of the lattice spacing. All the results are
consistent and show that with increasing temperature a rapidly decreasing fraction of the
localized modes are of topological origin. We can conclude that while topology-related
localized modes may suffice to explain the near-zero peak, they cannot explain all the
remaining localized modes found in a typical high-temperature gauge configuration, which
therefore require a different supplementary mechanism.
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Figure 13. Density of localized modes (modes per cubic fermi) in high-temperature QCD. From
Ref. [33]. (Reprinted figure with permission from T.G. Kovács and F. Pittler, Phys. Rev. D 86, 114515
(2012). Copyright (2012) by the American Physical Society).
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5.2. The Sea/Islands Picture

An alternative mechanism has been proposed in Ref. [31], and further elaborated in
Refs. [47–49]. The basic observation is that the eigenvalues of the untraced Polyakov loop
at a spatial site �x effectively change the temporal boundary condition felt locally by the
quark eigenfunctions ψ(t,�x). Indeed, working for simplicity in the continuum, if one fixes
the gauge to the temporal gauge A4(t,�x) = 0, the eigenvalue problem reduces to

/Dψ = (∂4γ4 + /D(3))ψ = iλψ , /D(3) =
3

∑
j=1

γj(∂j + igAj) , (16)

while the effect of a nontrivial (untraced) Polyakov loop P(�x) is to change the temporal
boundary condition from antiperiodic to

ψ(1/T,�x) = −P(�x)ψ(0,�x) . (17)

Equations (16) and (17) define the eigenvalue problem in temporal gauge. Clearly, the
effective local boundary condition Equation (17) affects the contribution of site �x to the
Dirac eigenvalue, iλ = (ψ, /Dψ).

To gain some insight on the effects of the Polyakov loop, it is useful to study a
family of configurations for which the eigenvalue problem can be solved exactly, namely
those with Aμ(t,�x) = 0 everywhere, and with a constant but nontrivial Polyakov loop.
This can always be diagonalized by means of a global gauge transformation, so without
loss of generality we can take P(�x) = diag(eiφ1 , eiφ2 , eiφ3), with ei(φ1+φ2+φ3) = 1. On these
configurations the eigenfunctions of − /D2 are plane waves,

ψ
(a,k,�p)
c (t,�x) = δcaei(ωakt+�p·�x) , (18)

where c is the color index,29 with temporal frequency (effective Matsubara frequency) given by

ωak = T[(2k + 1)π + φa] , k ∈ Z , (19)

and corresponding eigenvalues

λak(�p)2 = ω2
ak + �p 2 . (20)

Restricting without loss of generality to φ1,2 ∈ (−π, π], φ1 + φ2 + φ3 = 0, the lowest
positive Dirac eigenvalue is seen to be

λmin = T(π − max
a

|φa|) , (21)

i.e., it decreseas monotonically and symmetrically as one moves away from φa = 0 ∀a, and
vanishes when at least one of the Polyakov loop eigenvalues equals −1.

While the configuration discussed above is obviously unrealistic, the result Equa-
tion (21) allows understanding qualitatively which sites will be favored by a low Dirac
eigenmode when the Polyakov loop configuration is mostly ordered near P(�x) ≈ 1, with
“islands” of fluctuations in the “sea” of ordered Polyakov loops, as it happens at high tem-
perature. One can in fact interpret Equation (21), now with �x-dependent phases φa = φa(�x),
as a sort of three-dimensional local potential for the quarks, to which one should add the
appropriate “hopping terms” originating from the spatial dependence of the Polyakov
loops, as well as from the spatial components of the gauge potential. From this point of
view, fluctuations of the Polyakov loop away from order provide regions of lower potential
that can “trap” the quarks.

More precisely, at high temperatures φa(�x) ≈ 0 in an extended region, and neglecting
in a first approximation the effect of the islands and of hopping, one finds fully delocalized
modes. In the same approximation one finds a spectral gap, with the corresponding
(positive) eigenvalues starting at Tπ, i.e., the usual lowest (fermionic) Matsubara frequency.
The presence of islands and the effect of the interactions are expected to reduce this gap,
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but the lowest eigenvalue that can be reached by a delocalized mode is expected to remain
separated from the origin. On the other hand, localizing on an island of fluctuations can be
“energetically” more favorable, and bring the corresponding eigenvalues inside the gap,
as long as the gain in potential energy achieved by avoiding the sea of ordered Polyakov
loops is sufficiently larger than the price paid for localization in terms of spatial momenta.
This leads to expect the following scenario, at least when the islands are sufficiently distant
from each other: a region of low spectral density, or pseudogap, opens between the origin
and some point λc in the spectrum, or mobility edge, above which modes are extended
throughout the whole space; modes in the pseudogap can exist only if they are localized
on energetically convenient islands of fluctuations.

The scenario described above, which has been dubbed the sea/islands picture of
localization, shows a clear similarity with the Anderson-type models of condensed matter
physics, and the terminology has been chosen precisely to reflect this similarity. From the
point of view of random Hamiltonians, the local fluctuations of the Polyakov loop provide
a three-dimensional source of on-site disorder. This would naturally explain the fact that
the critical behavior found at the mobility edge in QCD is the same as that of the three-
dimensional unitary Anderson model.30 There are, however, important differences with
the simple unitary Anderson model of Equation (4). In that case, localization starts from
the band edges and moves towards the band center as the amount of disorder, as measured
by the width of its probability distribution, is increased. In QCD, while localization may as
well be present at the band edges (cf. the results of Ref. [27] in the ILM model and Ref. [56]
in Z2 gauge theory), it is its appearance directly at the band center that characterizes the
deconfined phase. Moreover, the actual source of disorder are the eigenvalues of the
Polyakov loops, which are complex numbers lying on the unit circle, and so the magnitude
of the disorder is actually bounded.

Another important difference, which is relevant also to the problem of spontaneous
chiral symmetry breaking, is the different structure of the “free” Hamiltonian associated
with the two cases in the absence of fluctuations. For the Anderson model this is simply
H(AM)

free = ∑3
j=1 Tj + T†

j with Tj the translation operator in direction j, while for the Dirac

operator one has (for a naive lattice discretization) /Dfree = ∑4
μ=1 γμ(Tμ −T†

μ). Here periodic
boundary conditions are understood in the spatial directions; the effective boundary
conditions Equation (17) are assumed for the temporal direction. While the spectrum

of H(AM)
free , E(�p) = ∑j cos pj, with pj =

2πkj
L , is dense near the origin, the presence of the

gamma matrices in /Dfree leads to λak(�p) =
√

ω2
ak + �p 2. Even in the case ωak = 0, in which

there is no sharp spectral gap, the spectral density near the origin is low and vanishes at
λ = 0.

An important aspect of this scenario is that deconfinement is naturally associated with
the two effects that lead to localization of the low modes in high-temperature QCD. The first
such effect is of course the formation of a sea of ordered Polyakov loops close to the identity,
which can cause the opening of a spectral pseudogap and so make modes that localize on
the islands of fluctuations stable against delocalization, as explained above. However, the
appearance of the pseudogap requires also a second effect due to the ordering of Polyakov
loops at deconfinement, namely the increased correlation between gauge fields on different
time slices. The discussion of this effect requires a more detailed description of the Dirac
operator in the language of Anderson models, in what can be called the “Dirac-Anderson
approach”. Here we sketch the discussion in the continuum in the temporal gauge; a more
detailed and mathematically more precise analysis is presented in Ref. [48] for staggered
fermions on the lattice.

Due to its compactness, the temporal direction can be treated as an internal degree
of freedom, in particular by expanding the quark eigenfunctions on a complete basis of
plane waves eiωakt obeying the appropriate effective boundary conditions, Equation (17).
Here ωak are the effective Matsubara frequencies of Equation (19), now �x-dependent, which
provide a random on-site potential of the form ωak(�x)γ4. For every color a with associated
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Polyakov-loop phase φa(�x), in correspondence to each wave number k there is a different
branch of the on-site potential, and so a different associated three-dimensional Anderson-
type model, built by adding the on-site disorder to the spatial part of the Dirac operator
(projected on the a, k subspace). We will refer to each of these models as a Dirac-Anderson
model. The full Dirac operator is obtained by putting the various Dirac-Anderson models
together, and by including their coupling induced by the hopping terms (i.e., the spatial
part of the operator). The strength of the coupling among the Dirac-Anderson models turns
out to be inversely related to the correlation of the gauge fields on different time slices.
At low temperatures this correlation is small, the Dirac-Anderson models are strongly
coupled, and the internal degree of freedom is effectively one more direction in which
the modes can extend, thus facilitating their delocalization. This is in agreement with the
effectively four-dimensional nature of QCD in the low temperature phase. As a matter
of fact, the pseudogap does not open at low temperatures, where the spectral density
is finite near zero, and this can only happen if the various Dirac-Anderson models do
mix with each other (see the discussion about the free Dirac operator). In the absence
of a pseudogap, localization of a mode is generally unstable against mixing with modes
of similar energies. At high temperature, instead, the Polyakov loops become ordered
inducing stronger correlations among different time slices, and the Dirac-Anderson models
decouple making the problem effectively three-dimensional. In particular, the pseudogap
is now expected to appear: it would be present for exactly decoupled Dirac-Anderson
models (see again the discussion about the free Dirac operator), and their limited mixing is
not sufficient to close it. Localized modes near the band center can then be supported by
Polyakov loop fluctuations, as discussed above. As shown in Ref. [48] in a toy model where
ordering of the Polyakov loop and correlation of the time slices can be varied independently,
both effects are required for localization to appear at the band center.

An important aspect of the sea/islands picture is that it is not incompatible with
the growing density of localized modes observed in QCD. Differently from the case of
topological charge, Polyakov-loop fluctuations are not quantized. As T grows in the
deconfined phase, the volume Vfluct occupied by Polyakov-loop fluctuations is expected
to decrease, Vfluct ∼ T−c1 , as the Polyakov loop becomes more and more ordered. On the
other hand, the typical size V0 of the islands of fluctuations is also expected to decrease,
V0 ∼ T−c2 . The number of localized modes is expected to be directly related to the
number of islands, Vfluct/V0 ∼ Tc2−c1 , and whether this number increases or decreases
with temperature depends on the details of the dynamics. For example, while increasing
in QCD [33] up to T ∼ 5Tc, it is seen to decrease in 2+1-dimensional SU(3) gauge theory
above T ∼ 1.1 ÷ 1.2Tc [53].

Perhaps the most appealing feature of the sea/islands picture is its simplicity: all that
it needs to work is the ordering of the Polyakov loop. This leads immediately to expect that
localized modes will appear at the low end of the spectrum whenever an ordering transition
takes place, independently of details such as the gauge group and its representation,
fermionic content, nontrivial topological features, dimensionality,31 and so on. This is
discussed in the next section.

6. Localization in Other Gauge Theories

In this section, we discuss localization of the low Dirac modes in gauge theories other
than QCD. Some of the references have been already discussed in Section 4 in connection
with QCD, where they where treated as approximations. Here they are briefly discussed
again, focussing more on the differences than on the similarities with QCD.

The main motivation in studying more general gauge theories is to investigate further
the extent of the connection between localization on one side, and deconfinement and
chiral restoration on the other. In particular, studying localization in models with genuine
deconfining and/or chirally restoring phase transitions allows one to investigate this
connection in a more clear-cut setting than in QCD, where it is somewhat blurred by the
crossover nature of the transition. Studying more general gauge theories also allows one to
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test the sea/islands picture discussed in the previous section, and its generic prediction of
localization of low modes in the high-temperature, “ordered” phase.

Genuine deconfining phase transitions are found in pure gauge SU(Nc) theory. In 3+1
dimensions the transition is second order for Nc = 2 and first order for Nc ≥ 3, while
in 2+1 dimensions it is second order for Nc = 2, 3 and first order for Nc ≥ 4 (see, e.g.,
Refs. [78,79,224,225]). As already mentioned in Section 4, localized low Dirac modes have
been found in pure gauge SU(2) theory in 3+1 dimensions, both with the overlap [30,31]
and with the staggered [31,32] Dirac operator (see Figure 8, right), above the deconfinement
temperature Tc. (Further details can be found in Section 4 and will not be repeated here.)
No sign of localized modes was found instead below Tc. From the random-matrix point of
view, the SU(2) case differs from SU(Nc ≥ 3) as the symmetry class is the symplectic instead
of the unitary one. This is reflected in the different behavior of the unfolded spectrum
in the bulk, which agrees with the symplectic Wigner surmise, Equations (11) and (12).
A detailed study of the Anderson transition was not pursued.

Results for pure gauge SU(3) have been presented in Refs. [51,54,86] for the 3+1-dimen-
sional case, and in Ref. [53] for the 2+1-dimensional case. Localized low Dirac modes
are found in both cases in the deconfined phase. In 3+1 dimensions the temperature de-
pendence of the mobility edge λc was studied using the Wilson gauge action both with
staggered [51] and overlap [54] fermions (using in this case the magnitude of the eigenval-
ues), smearing the gauge fields with two steps of stout smearing [211] in the staggered case,
and two steps of hex smearing [226] in the overlap case. The integrated ULSD computed
locally in the spectrum, Is0(λ), was used to determine λc as the point where Is0 takes its

critical value I(c)s0 [34], i.e., Is0(λc) = I(c)s0 . Here use was made of the universality of the
critical properties of the Anderson transition, which should be shared by QCD and pure
gauge SU(3) theory, as they are both in the 3d unitary class. This was confirmed by the
volume-independence of the resulting λc. For both discretizations, λc is seen to extrapolate
to zero at a temperature which agrees with the deconfinement temperature (see Refs. [78,79]
and references therein) within numerical errors (see Figure 15).
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Figure 15. Mobility edge in pure gauge SU(3) theory in the staggered (left) and overlap (right) Dirac spectrum. From
Refs. [51,54]. (Figures adapted from T.G. Kovács and R.Á. Vig, Phys. Rev. D 97, 014502 (2018) (left), and from R.Á. Vig and
T.G. Kovács, Phys. Rev. D 101, 094511 (2020) (right), and used under a CC-BY 4.0 license (https://creativecommons.org/
licenses/by/4.0)).

The 2+1-dimensional case was studied in Ref. [53] using the Wilson gauge action and
the staggered discretization (without smearing). Universality arguments lead to expect
that the Anderson transition is of BKT type with exponentially divergent correlation length,
as found in Ref. [160] for the 2d unitary Anderson model. The results of Ref. [53] support
this scenario. In particular, spectral statistics are critical, i.e., volume independent for
all λ above λc, as expected for a BKT-type Anderson transition [227], see Figure 16, left.
The mobility edge was determined by means of a finite size scaling study, and found to
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extrapolate to zero at a temperature compatible with the deconfinement temperature [225]
(although with much larger numerical uncertainty), see Figure 16, right. In the confined
phase no localization was found, but low modes were seen to display a nontrivial fractal
dimension D2 < 2 (see Equation (6)).

Ns = 32

Ns = 40

Ns = 48

Ns = 56

Ns = 64

Ns = 72

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

I λ

λ

Poisson

RMT

λc

0.2

0.25

0.3

0.35

0.4

0.45

4.5 5 5.5 6 6.5

λ
c

β̄

Figure 16. Spectral statistics Is0 along the spectrum for various volumes at coupling β̄ = 6.25 (left), and mobility edge as
a function of β̄ (right) for the staggered operator in 2+1-dimensional pure gauge SU(3) theory. (Here β̄ = β/3 with β the
Wilson action coupling.) In the left panel, Poisson and RMT predictions and the position of the mobility edge are also shown.
In the right panel, a power-law fit (black solid line) to λc, the position (blue solid line) and error band (blue dashed lines) of
β̄loc at which λc extrapolates to zero, and the error band of the critical β̄c (magenta dashed lines) are also shown. From
Ref. [53]. (Figures adapted from M. Giordano, J. High Energy Phys. 05, 204 (2019), and used under a CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0)).

Localization of Dirac modes was studied in Z2 pure gauge theory in 2+1 dimensions
in Ref. [56], probed with unimproved staggered fermions. This model has the simplest
gauge group, and the lowest dimensionality in which a deconfining transition is found.
Studying the fractal dimension D2, it was shown that low modes are localized (D2 = 0)
in the high-temperature, deconfined phase of the theory in the positive center sector (i.e.,
positive spatially averaged Polyakov loop), while they are delocalized (with D2 < 2) in
the low-temperature, confined phase, and in the high temperature phase in the negative
center sector (i.e., negative spatially averaged Polyakov loop). Localized modes are also
found at the high end of the spectrum, independently of the phase and of the center sector.
Significant correlation between localized modes and both Polyakov loops and clusters of
negative plaquettes was observed.

While a genuine phase transition is expected for SU(3) gauge group in the presence of
Nf = 3, light enough dynamical fermions [80], so far a critical point has been observed only
on coarse lattices, and disappears in the continuum limit [228–230]. Although only a toy
model for QCD, the SU(3) theory with Nf = 3 flavors of unimproved staggered fermions
on Nt = 4 lattices is nonetheless a well-defined statistical model with a genuine first order
transition, affecting both its chiral and confining properties, despite the absence of exact
chiral and center symmetries. More precisely, as the coupling β crosses the critical value βc,
the chiral condensate jumps downwards to a much smaller but still finite value; and the
average Polyakov loop jumps upwards from its small but nonzero value to a considerably
larger value. Evidence of localization of the low staggered Dirac modes was reported
in Ref. [50] for bare fermion mass m = 0.01, below the critical value mc = 0.0259 [230],
where genuine first-order phase transitions are present. A mobility edge was shown to
be present for β > βc: it increases with β, and extrapolates to zero close to βc. The lowest
mode was also seen to turn from delocalized to localized at a coupling βloc compatible
with βc, i.e., in correspondence with the finite-temperature transition (see Figure 17, left).
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Figure 17. Left: average Polyakov loop (red squares), chiral condensate (upward blue triangles) and average PR of
the lowest staggered mode (downward magenta triangle) for Nf = 3 unimproved staggered fermions of bare mass
m = 0.01 on Nt = 4 lattices. The critical coupling βc = 5.0985 is also shown. From Ref. [50]. (Figure adapted from
M. Giordano, S. D. Katz, T. G. Kovács, and F. Pittler, J. High Energy Phys. 02, 055 (2017), and used under a CC-BY 4.0 license
(https://creativecommons.org/licenses/by/4.0)). Right: mobility edge as a function of the deformation parameter h in
trace-deformed SU(3) gauge theory in the high-temperature deconfined phase (β = 6.0). Here the critical deformation
parameter for reconfinement is hc = 0.1. The black diamond is the h = 0 result of Ref. [51]. From Ref. [55]. (Figure adapted
from C. Bonati, M. Cardinali, M. D’Elia, M. Giordano, and F. Mazziotti, Phys. Rev. D 103, 034506 (2021), and used under a
CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0)).

The relation between localization and deconfinement was tested at a different decon-
finement phase transition in trace-deformed [231,232] pure gauge SU(3) theory at finite
temperature in Ref. [55]. In this model a deformation term ΔS = h ∑�x |trP(�x)|2 is added
to the action, which (for h > 0) tends to locally suppress a nonzero trace for the Polyakov
loop P(�x). For temperatures above the deconfinement temperature, ΔS pushes the theory
towards a “reconfined” phase where trP(�x) ∼ 0. This happens when the deformation
parameter h crosses a (temperature dependent) critical value hc. Ref. [55] studied the
spectrum of the two-stout smeared staggered spectrum at β = 6.0 on Nt = 6 lattices for
various volumes and deformation parameters. Results showed that localized modes are
present for h < hc, but disappear as the system crosses over into the reconfined phase.
The mobility edge was determined by comparing the fractal dimension of the modes with
its value at criticality [148]. While monotonically decreasing with h, it is not clear whether
it vanishes continuously at hc or jumps to zero discontinuously (see Figure 17, right).

Finally, the connection between localization and ordering of the background configura-
tion was studied in spin models in Refs. [47–49,52]. Ref. [47] used a simple 3d Hamiltonian
in the orthogonal class with on-site disorder provided by the spins of a continuous-spin
Ising-type model. In the ordered phase of the spin model, localization was observed for
the low modes, with a mobility edge separating them from higher modes, and critical
behavior compatible with that of the 3d orthogonal Anderson model. Refs. [48,49] dealt
with the Dirac-Anderson form of the staggered operator (see Section 5.2), so in the 3d chiral
unitary class, in the case Nt = 2 in the background of Polyakov loops constructed from
a spin model. Localized low modes are observed in the ordered phase of the model [48],
appearing at the critical temperature [49]. Ref. [52] reports on the CP3 model in 1+1 and
2+1 dimensions. While in 1+1 dimensions localized modes are found in both phases of the
model, as expected in one spatial dimension, in the 2+1 case localized modes are found
only in the ordered phase. This model belongs to the 2d chiral unitary class.

7. Conclusions and Outlook

The presence of localized modes in the spectrum of the Dirac operator in the high-
temperature phase of gauge theories is by now well established. Numerical studies on
the lattice have shown that above the transition temperature the low-lying Dirac modes
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are spatially localized on the scale of the inverse temperature, in QCD and QCD-like
theories, as well as in several pure gauge theories and related models in 3+1 and 2+1
dimensions [25–40,47–56,86].

The physical significance of localization has so far remained quite elusive. First of all
we should emphasize an important difference between localization in electron systems
and localization in QCD. In the former case the mobility edge in the spectrum can be
“accessed” by tuning a suitable control parameter, such as an electric field or the density
of electrons. As the Fermi energy crosses the mobility edge, the system undergoes a
genuine phase transition, with the zero-temperature conductivity changing non-analytically.
In contrast, the mobility edge in the QCD Dirac spectrum cannot be directly connected to
a thermodynamic transition. This is because in that case, in general, there is no control
parameter that can be adjusted to make the system sensitive to just the eigenmodes at
the mobility edge in the spectrum. The only exception is when the mobility edge is at
zero, which happens only at the critical temperature of localization. If at the same time
the quark masses are set to zero, the system becomes most sensitive to the lowest Dirac
eigenmodes, the ones closest to zero. Thus, only in this double limit when the temperature
tends to the critical temperature of localization and the quark mass to zero can one possibly
directly connect the localization transition to a genuine thermodynamic phase transition.
Unfortunately, this limit is out of the reach of present day lattice simulations and we have
no numerical evidence of what happens there.

On the other hand, some progress has been made to understand the physical signifi-
cance of localization in QCD. A clear connection with deconfinement has emerged: in all
the models investigated so far, localization of the low modes shows up when the system
transitions from the confined, low-temperature phase to the deconfined, high-temperature
phase [28,33,49–51,53–56]. Convincing evidence has been presented for the crucial role
played by the ordering of the Polyakov loop and by its fluctuations in the formation of a
mobility edge in the Dirac spectrum, separating low-lying, localized modes from the delo-
calized bulk modes [31,39,40,48,56]. As the Polyakov loop is the (approximate, in the case of
QCD) order parameter for confinement, the observed connection between localization and
deconfinement has a dynamical explanation, further backed by a viable mechanism (the
sea/islands picture [31,47–49], see Section 5.2) relating the two phenomena. This raises the
hope that further studies can lead to a better understanding of confinement, and possibly
to the uncovering of the mechanism behind this remarkable property of gauge theories.
In this context, it would be interesting to further elucidate the relation between localization
and center symmetry, since so far only models with nontrivial gauge group center have
been investigated.

Localization could also help in explaining the close relation observed between decon-
finement and restoration of chiral symmetry. These two phenomena in fact take place at the
same temperature, or in a relatively narrow interval of temperatures, where also localized
low Dirac modes appear. Localization could then provide the key to understanding this
relation between in principle unrelated phenomena. Unfortunately, while the connection
between deconfinement and localization can be easily studied in a clear-cut situation by
investigating pure gauge theories with a genuine deconfining phase transition, studying
the connection between chiral symmetry restoration and localization by means of numeri-
cal lattice simulations faces the considerable difficulties involved in taking the chiral limit.
Studies of this type would be of great interest, especially in the light of the possible role
played by localized modes in suppressing the finite-temperature Goldstone excitations,
suggested in Ref. [62]. A particularly interesting case would be that of adjoint massless
fermions, for which both chiral and center symmetries are exact, and an intermediate, de-
confined but chirally broken phase was observed on the lattice for two flavors in Ref. [233].
This suggests that a nonzero density of near-zero, localized modes is present in this phase,
and that no Goldstone excitation is present.

Nonetheless, even in theories such as QCD where chiral symmetry is only approximate,
the study of the relation between localized modes and topological fluctuations of the gauge
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fields sheds indirectly some light on the interplay of chiral symmetry and localization.
Indeed, a peak of near-zero [59–61] localized [38] modes of topological origin appears
around the QCD pseudocritical temperature. These modes originate most likely from the
mixing of the localized zero modes associated with isolated instantons and anti-instantons,
which in the high-temperature phase form a dilute gas of topological excitations (the
disordered medium scenario [8–15], see Section 5.1). In contrast, in the low temperature
phase these excitations form a dense medium, and the mixing of the associated zero modes
leads to a band of near-zero delocalized modes giving rise to a nonzero spectral density
near the origin, and so a large increase of the chiral condensate.

An interesting observation is that in the quenched limit of QCD this peak of near-
zero modes can be accurately described in terms of a non-interacting gas of topological
objects [58,86]. The absence (or near absence) of interactions could be related to why the
associated zero modes do not mix efficiently, thus remaining localized and failing to
spread in a near-zero band of eigenvalues. On the other hand, as this occurs only in
the high-temperature phase, it is natural to expect that deconfinement is responsible for
the radical change in the behavior of topological excitations. This aspect surely deserves
more attention.

In this review, we summarized what is known (to us, at least) about localization
of Dirac modes in the deconfined phase of gauge theories, and highlighted the connec-
tions between localized modes, ordering of the Polyakov loop, density of low modes, and
topological objects. We hope that this will motivate further investigations of the inter-
play of confinement, chiral symmetry, topology, and localization in finite-temperature
gauge theories.
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Notes
1 In principle, there is also the gauge coupling, but it turns out not to be a freely adjustable parameter, instead it runs

with the energy scale. See Ref. [75], ch. 18.
2 This type of argument first appeared in Ref. [76] to explain the difference in the chiral condensate observed in the

various center sectors of quenched lattice QCD in the deconfined phase [77].
3 As the lattice spacing corresponds to the inverse of the largest energy attainable on the lattice, this indicates that the

gauge coupling runs with the energy scale, see footnote 1, and Ref. [82], ch. 13.
4 The conductance G(L) for a d-dimensional (hyper)cubic sample of linear size L equals G(L) = σLd−2 where σ is the

conductivity of the system.
5 The dimensionality and the symmetry class do not always determine uniquely the universality class of the Anderson

transition: see Ref. [45].
6 The participation ratio (see below) was introduced in Ref. [123]; its inverse as a measure of localization is discussed

in Ref. [42].
7 Notice that by construction one has for a generic random matrix ensemble

∫ ∞
0 ds pULSD(s) =

∫ ∞
0 ds pULSD(s)s = 1. This

follows from the fact that the average spacing equals the inverse of the spectral density, which is 1 for the unfolded
spectrum.

8 On the insulator side of the transition, ξ can be identified with the localization length, while on the metallic side it
can be related to the conductivity [44].

9 Shape analysis in QCD is discussed in Refs. [35,36].
10 The possibility of localization taking place in QCD was mentioned in Ref. [188].
11 Mott transitions are MITs driven by electron-electron interactions, in contrast to the disorder-driven Anderson transition.

In Anderson-Mott transitions both interactions and disorder play an important role.
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12 The detailed symmetry classification of the Dirac operator in various dimensions is provided in Refs. [117] (four
dimensions), Refs. [190–192] (three dimensions), and Ref. [193] (two dimensions).

13 Bulk statistics are not affected by the chiral symmetry, and should not be confused with the microscopic statistics
near λ = 0, which, in contrast, are affected if a nonzero density of modes is present. In the chirally broken phase,
where Σ = T

V πρ(0) �= 0, with V the volume, the statistical properties of the microscopic spectrum zi ≡ λiΣ V
T near λ = 0

are described by the microscopic correlations of the chGUE. See Ref. [115] for a detailed review.
14 RMT is expected to govern correlations up to some characteristic separation scale between eigenvalues (“Thouless

energy”), both for microscopic and bulk statistics [13,14,194]. For the role played by fluctuations in the ensemble in
determining this scale in the case of bulk statistics, see Ref. [195].

15 The symmetry class of the staggered operator is actually independent of the spacetime dimension.
16 We note in passing that for adjoint fermions in four dimensions the relevant class is the chiral symplectic class for

all Nc in the continuum, and on the lattice with overlap fermions; for staggered fermions it is instead the chiral
orthogonal class for all Nc [115,203], independently of the dimension.

17 From this observation, Ref. [25] concluded that modes are actually extended in the temporal direction. This is actually
not necessary: localization in the temporal direction on a scale comparable with the temporal size is sufficient for
modes to be sensitive to the boundary conditions.

18 For the fundamental representation of the gauge group SU(2) the staggered operator is in the symplectic class due to
the property σ2Uσ2 = U∗ of SU(2) matrices U (see Ref. [188] and Ref. [115], Section 5.2.1).

19 The overlap operator is in the same symmetry class as the corresponding continuum operator, so the orthogonal
class for fundamental fermions and gauge group SU(2) (see Ref. [188] and Ref. [115], Section 5.2.1).

20 The only exception is the SU(2) theory studied in Refs. [30–32], which is in the 3d chiral orthogonal or chiral
symplectic class depending on the fermion discretization, see footnotes 18 and 19.

21 Localized modes at the high end of the staggered Dirac spectrum have also been found in 2+1-dimensional Z2 gauge
theory [56], see Section 6.

22 For a review of instantons and calorons we refer the reader to Refs. [10,204,221].
23 In a first approximation, the nonzero unperturbed modes associated with topological objects can be neglected.
24 Overlap integrals vanish for a pair of instantons or anti-instantons due the definite (and equal) chirality of the zero

modes.
25 While the index theorem requires only Q = n+ − n−, it is expected that only zero modes of one chirality appear in

typical gauge configurations.
26 For example, modes are localized at the band center in the Anderson model above the critical disorder, but with

finite spectral density; and in the near-zero spike found right above Tc in QCD and pure gauge SU(3) theory.
27 The claim of Ref. [39] is actually stronger: localized low modes do localize on L − L̄ monopole-antimonopole pairs.

We believe that this claim is not fully supported by the available evidence. On the one hand, while both selfdual and
anti-selfdual points are clearly favored by localized modes, there is no clear evidence that these modes localize where
selfdual and anti-selfdual points are spatially close. On the other hand, L-type anti(monopoles) are located at sites
where a pair of the eigenvalues (eiφ1 , eiφ2 , e−i(φ1+φ2)) of the untraced Polyakov loop is nearly degenerate and close to
−1 (fluctuations of the degenerate pair around −1 correspond to fluctuations of the Polyakov loop at spatial infinity
around 1), and while these sites are among the favorable localization points, sites with Re trP = −1 but without
eigenvalue degeneracy are at least equally (if not more) favorable, see Figure 12.

28 This observation applies also to the case in which the relevant objects are the L-type monopoles and antimonopoles,
independently of them being part of calorons, as suggested in Ref. [39].

29 Since /D2 is trivial in Dirac space in this case, the Dirac index is omitted.
30 Notice that the mobility edge is generally far from the near-zero zone where localized modes are of topological

origin [86].
31 Dimensionality should not matter as long as both deconfinement and localization are allowed. For example, no

Anderson transition should be found in 1+1-dimensional gauge theories at finite temperature: no deconfinement
transition is present there, and all modes are expected to be localized in one spatial dimension.
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Abstract: Gauge fields control the dynamics of fermions, and, in addition, a back reaction of fermions
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1. Introduction

The QCD vacuum is highly nontrivial and has magnetic properties, as we have
known since Savvidy’s article [1]. The QCD vacuum should explain the non-perturbative
properties of QCD, including confinement [2] and chiral symmetry breaking [3]. Lattice
QCD puts the means at our disposal to answer the question about the important degrees
of freedom of this non-perturbative vacuum. In the center vortex picture [4–6], the QCD
vacuum is seen as a condensate of closed quantized magnetic flux tubes. These flux tubes
have random shapes and evolve in time and therefore form closed surfaces in the dual
space. They may expand and shrink, fuse and split and percolate in the confinement
phase in all space-time directions and pierce Wilson loops randomly. Thus, Wilson loops
asymptotically follow an exponential decay with the area. This is the area law of Wilson
loops, which allows attributing the string tension to center vortices. The finite temperature
phase transition is characterized by a loss of center symmetry and correspondingly by a
loss of percolation in time direction. Therefore, vortices get static and only spatial Wilson
loops keep showing the area law behavior.

Color electric charges are sources of electric flux according to Gauss’s law. The electric
flux between opposite color charges does not like to penetrate this magnetic “medium” of
center vortices and shrinks to the well-known electric flux tube. On the other hand, the
magnetic flux does not like to enter the electric string. Since fermions carry color charges,
their dynamics is controlled by the gauge field. The presence of a fermion condensate
is expected to suppress the quantized magnetic flux lines, and as a result the gluon con-
densate and therefore the string tension are reduced. Since, as usual, the lattice spacing
is determined via the string tension, taking into account dynamical fermions leads to a
decrease of the lattice spacing. In this article, we show a careful investigation of the string
tension within the vortex picture of the QCD vacuum.

SU(2) and SU(3) QCD have equivalent non-perturbative properties. In a first study,
we restrict our analysis to the simpler case of SU(2)-QCD. The most important difference
between SU(2) and SU(3) QCD is the order of the finite temperature phase transition for
a pure gluonic Lagrangian. There is a natural explanation for this difference from the
structure of SU(2) and SU(3) vortices. There is only one non-trivial center element in the
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group SU(2) and therefore one type of center vortices, whereas there are two non-trivial
center elements for SU(3) and two types of vortices, allowing two vortices of the same type
to fuse to the other type. This leads to a more stable structure of the net of vortices for SU(3)
and to a first order phase transition, whereas in SU(2) the transition is of second order.

We investigate the fermionic back reaction on the gluonic degrees of freedom in SU(2)
QCD. Visualizing the distribution of center vortices, this back reaction can be easily ob-
served (see Figure 1). One can clearly see that dynamical fermions decrease the percolation
of vortices. It is difficult to draw a closed surface in four dimensions. Therefore, we restrict
ourselves to the three dimensional diagram of a time-slice and indicate the continuation to
other slices by line stubs.

With fermions Without fermions

Figure 1. The closed vortex surface is visualized by showing the dual P-plaquettes of three-
dimensional lattice slices. Stubs of red lines indicate plaquettes that are not fully part of the lattice slice
shown. We clearly see that with fermions (left) an overall smaller amount of P-plaquettes is observed
compared with the pure gluonic case (right). In both cases, one big vortex cluster dominates.

We want to quantify the effect in more detail. We are especially interested in the center
vortex model [4–6] and its sensitivity to the fermionic back reaction. We also analyze the
influence of fermionic fields on the geometric structure of the center vortex surface. This
work compares four different estimates of the string tension, with and without fermions, in
the full theory and in the vortex picture:

• via the potential calculated from the center degrees of freedom only, in pure gluonic
ensembles;

• via the potential calculated from the center degrees of freedom only, in the presence
of fermionic fields;

• via the potential in the full theory, in pure gluonic ensembles; and
• via the potential in the full theory, in the presence of fermionic fields.

With this comparison, we study the sensitivity of the center vortex model to the
fermionic back reaction.

Our work is based on the QCD path integral which defines the vacuum to vacuum
transition amplitude. In lattice QCD, we usually evaluate this amplitude on a lattice
periodic in Euclidean time. Inserting a complete set of eigenstates of QCD with the
quantum numbers of the vacuum in this amplitude results in an exponential decay of the
eigenstates with the physical time extent aNt of the lattice, where a is the lattice spacing and
Nt is the number of lattice sites in time direction. The inverse of this time extent therefore
acts as a temperature of the ensemble. In a Monte-Carlo simulation, the states are occupied
with the corresponding Boltzmann factor. The higher is the excitation, the smaller is the
Boltzmann factor and the more difficult is the measurement of its properties. Finally, the
excited states are vanishing in the noise.
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The potential, as well as the string tension, can be calculated using Wilson loops

W(R, T) = TrPei g
∫

R×T Aa
μ(x)tadxμ

. (1)

A loop of size R × T in space-time represents the world-line of a quark-antiquark
system at distance R propagating in the QCD vacuum for a time T. On a Euclidean
lattice in SU(2)-QCD, a path ordered loop is determined by the product of link variables
Uμ(x) ∈ SU(2) along the loop. Inserting a complete set of eigenstates of the quark-antiquark
system into the expectation value 〈W(R, T)〉, the contributions of the eigenstates decay
exponentially with Euclidean time T. The expectation values of Wilson loops can therefore
be expanded in a series of eigenstates of the quark-antiquark system

〈W(R, T)〉 =
∞

∑
i=0

cie−εi(R)T , (2)

For large times, 〈W(R, T)〉 is dominated by the ground state energy ε0(R). The more
precise we determine limT→∞〈W(R, T)〉, the better is the precision of the quark-antiquark
potential V(R) := ε0(R). Since the energy of the quark-antiquark system increases with
the distance R, it follows from the above discussion that for increasing R the signal for
V(R) is vanishing soon in the noise. How we handle this noise and how center vortices
are detected is explained in Section 2. We assume that the potential is dominated by a
Coulombic part at small R but rises linearly for large R,

ε0(R) = V(R) = V0 + σR − α

R
. (3)

We use 〈W(R, T)〉 to approximate ε0(R), denoted as 1-exp fit. V0 parameterizes the scale
dependent self-energy of the quark-antiquark sources. Wilson loops extracted from the
center degrees of freedom are dominated by the long-range fluctuations of the QCD
vacuum, hence we describe the potential within these degrees of freedom by

VCP(R) = v0 + σCPR. (4)

The aim of this article is to investigate whether we can understand the string tension
and its modification in the presence of fermions in the vortex model of confinement. Further,
we present and discuss conceptual improvements to the gauge fixing procedure, required
for the center vortex detection.

For systems with dynamical fermions one would expect string breaking when the
energy of the system rises above twice the pion mass, but string breaking has been detected
only using mesonic channels (see [7]). The center vortex model explains the asymptotic
behavior of Wilson loops. There are indications that center vortices are sensitive to string
breaking [8,9], but a direct measurement is not possible. From the vortex structure, we do
not find any indication for string breaking which could show up as disintegration of the
percolating vortex.

2. Materials and Methods

This section starts with a description of the parameters of the lattice configurations,
used for our analysis. Then, our method of detecting center vortices with some novel
improvements is discussed. We explain how the information about the geometric structure
of the vortex surface can be acquired by smoothing procedures and we end with a detailed
explanation of our method to extract the potential from Wilson loops. In each subsection,
we list the intermediate results.
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2.1. Simulation Specifications

We study the configurations described in [10] for chemical potential μ = 0 with SG
defined by a tree level improved Symanzik gauge action [11,12]

SG = β

(
c0 ∑

�
(1 − 1

2
Tr �) + c1 ∑

��
(1 − 1

2
Tr ��)

)
, (5)

with coefficients c0 = 5/3 and c1 = −1/12. The first sum corresponds to the Wilson action
with � indicating single unoriented plaquettes, while the second sum uses rectangular
Wilson loops built of 6 links, symbolized by ��. The inverse coupling is defined as β = 4

g2

for SU(2).
For the fermionic degrees of freedom, staggered fermions are used with an action of

the form
SF = ∑

x,y
ψ̄x M(m)x,yψy +

λ

2 ∑
x

(
ψT

x τ2ψx + ψ̄xτ2ψ̄T
x

)
, (6)

with τi being the Pauli matrices and

M(m)xy = mδxy +
1
2

4

∑
ν=1

ην(x)
[
Ux,νδx+hν ,y − U†

x−hν ,νδx−hν ,y

]
, (7)

where ψ̄, ψ are staggered fermion fields, a is the lattice spacing, m is the bare quark mass,
Ux,ν is a SU(2) element corresponding to a link at position x is in direction and μ and ην(x)
are the standard staggered phase factors: η1(x) = 1, ην(x) = (−1)x1+...+xν−1 , ν = 2, 3, 4.
The total action is given by S = SG + SF. Integrating out the fermionic degrees of freedom,
the partition function with Nf = 2 is given by

Z =
∫

DU e−SG (det(M† M) + λ2)
1
4 . (8)

The properties of 1000 configurations of size 324 with β = 1.8, quark mass parameter
m = 0.0075 (corresponding to mπ = 740(40) MeV with lattice spacing a = 0.044 fm),
and λ = 0.00075 are compared to 1000 pure gluonic configurations at the same inverse
coupling β. For both sets of 1000 configurations, we extract the potentials from all available
Wilson loop data and compare them with the string tensions resulting from the two sets
of 40 × 100 center projected configurations. In this way, we try to answer the question, if
in the presence of dynamical fermions the center degrees of freedom determine the string
tension of the gluonic flux tube in quark–antiquark systems.

2.2. Center Vortex Detection

Assuming that center excitations are the relevant degrees of freedom for confinement,
we detect these center vortices within the lattice configurations. We first identify gauge
matrices Ω(x) ∈ SU(2) at each site xμ maximizing the functional

RF = ∑
x

∑
μ

| Tr[Úμ(x)] |2 with Úμ(x) = Ω(x + eμ)Uμ(x)Ω†(x). (9)

After fixing the gauge, the link variables Úμ(x) are projected on the center degrees
of freedom, that is ±1 for SU(2), to neglect short range properties and keep only long-
range effects

Uμ(x) → Zμ(x) ≡ signTr[Uμ(x)]. (10)

After performing the center projection, the center projected plaquettes resulting from
the vortex detection are the products of four center elements. The projected plaquettes
are non-trivial, known as P-plaquettes, U� = −1, if one or three links are non-trivial. In
the four-dimensional lattice, a given link belongs to six plaquettes. On the dual lattice,
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the corresponding six plaquettes build the surface of a cube. Therefore, the duals of P-
plaquettes form closed surfaces, dual P-vortices which correspond to the closed flux line
evolving in time.

This procedure is the original DMCG [13] in which a gradient climb with over relaxation
was used to maximize the gauge functional. From a few gauge copies only, produced in
this way, the one with the highest value of the functional is usually chosen for further
analysis. This method leads to promising results, but improvements at maximizing the
gauge functional using simulated annealing have brought a flaw to light—the many local
maxima of RF do not necessarily correspond to the same physics. Bornyakov et al. [14]
showed that there exist local maxima of the gauge functional that underestimate the string
tension. We have been able to resolve these problems for smaller lattices using improved
version of the gauge fixing routines based on non-trivial center regions [15–17], but our
implementation was not able to handle the big lattices used in this work. Taking a closer
look at the problem at hand, we can look for a different approach. We now consider Creutz
ratios to estimate the string tension

σ ≈ χ(R) = − ln
〈W(R + 1, R + 1)〉 〈W(R, R)〉
〈W(R, R + 1)〉 〈W(R + 1, R)〉 , (11)

with Wilson loops W(R, R) of size R = T. Some probability densities for the relation
between the values of the gauge functional RF and the Creutz ratio χ(R) for individual
configurations are shown in Figure 2. This determination is based on 40 configurations
with 100 gauge copies for configurations with (left) and without (right) dynamical fermions.
For Creutz ratios of small Wilson loops, we observe a nearly linear relation between the
two quantities reflecting the finding of Bornyakov et al. [14]: there exist gauge copies of the
configurations with maximal RF and very low σ. With increasing size of Wilson loops, this
correlation weakens. Nevertheless, the request to maximize the gauge functional (9) fails.

Another observation is of high interest: extremely small and large values of the gauge
functional are strongly suppressed in the probability densities. Instead of looking for
higher local maxima of the gauge functional, we propose a different approach: “ensemble
averaged maximal center gauge” (EaMCG). We produce many random gauge copies,
approach the next local maximum by the gradient method and take the average of the
ensemble. The idea is that not the best local maximum alone carries the physical meaning,
but the average over all local maxima does: maxima with a higher value of the gauge
functional result in a reduced string tension, but they are not dominating the ensemble.
The same holds for lower valued maxima, possibly overestimating the string tension.

Taking again a look at Figure 2, it can be seen that the average values and the most
probable values are in good agreement for small loops. This is shown in more detail in
Figure 3 for Creutz ratios of different loop-sizes. The fact that differences increase with
loop sizes can probably be explained by the lack of statistics for the Creutz ratios of single
configurations. Until the values start to deviate from one another, there is a variation
of 10% over the whole R-region. Despite the low statistics of a single configuration, the
intermediate loop sizes already reproduce the asymptotic behavior and let us expect the
possibility for a more precise determination. First averaging over Wilson loops and then
calculating Creutz ratios gives much more stable results (see χW(R) in Figure 3). The
final estimate of the string tensions in Sections 2.4 and 3 is based on the determination of
the potential.
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Figure 2. These probability densities specify the relation between the values of gauge functional and
Creutz ratio for individual configurations. This determination is based on 40 configurations with 100
gauge copies for the configurations with dynamical fermions (left) and without (right). For Creutz
ratios of small Wilson loops, we observe a nearly linear relation. With increasing size of the Wilson
loops this correlation weakens. We marked the average values (star) and the most probable values
(circle) of the distributions.
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Figure 3. The average and most probable values of χ(R) are compared for simulations with and without fermions. This
complements the probability densities of Figure 2. The increasing discrepancy between the two quantities with larger R can
probably be explained by the low precision of Creutz ratios of single configurations. Until the values start to deviate from
one another, the variations of χ(R) are of the order of 10%. For comparison, we show also the more precise Creutz ratios
χW(R) extracted from averages of Wilson loops.

Thus far, we have calculated the Creutz ratios for single configurations of the ensemble
and have taken the average afterwards. The EaMCG itself does not average over Creutz
ratios, but combines first the Wilson loops of all gauge copies and configurations. From
this fact, it is possible to extract the quark anti-quark potential, which allows a more precise
determination of the string tension from the center vortex model.

In the respective single configurations, we observe one percolating large cluster that is
surrounded and traversed by small fluctuations. These result in an increased number of
P-plaquettes that do not contribute to the string tension. Analyzing these distortions, we
gain insight on the influence of fermions on the geometric structure of the vortex surface.

2.3. Smoothing the Vortex Surface

There exist several procedures for smoothing the vortex surface by removing dis-
tortions. These procedures are discussed in detail in [18]. They do not modify the long
range effects of the configuration. To get information about the smoothness of the vortex
surface with and without fermions, we use the smoothing steps depicted in Figure 4. The
smoothing 0 is not depicted, which removes unit-cubes.

smoothing 1 smoothing 2 smoothing 3

Figure 4. The effect of the smoothing procedures on the vortex surface is depicted, taken from ([19]
Figure 5.8). We distinguish warts (left), bottlenecks (middle) and stumbling blocks (right). The unit
cubes are not depicted, which are simply deleted.

The smoothing steps 1–3 cut out parts of the vortex surface and closes the emerging
holes with a flat surface. In this way, short-range fluctuations of the vortex surface are
suppressed. We first count the P-plaquettes without any smoothing performed, and then
the loss of P-plaquettes for the respective smoothing steps is determined. The results are
given in Table 1.

191



Universe 2021, 7, 130

Table 1. Reduction of the total count of P-plaquettes for different smoothing procedures.

P-plaquette Reduction smoothing 0 smoothing 1 smoothing 2 smoothing 3

With fermions 12.5% 10.1% 24% 10.2%

Without fermions 7% 10.6% 27.8% 10.9%

This quantifies the percentage of the respective structures depicted in Figure 4. When
fermions are present, we clearly have a higher proportion of unit cubes and a lower
proportion of bottlenecks than without fermions.

By restricting this analysis to the single percolating vortex cluster, we gain information
about the long range excitations. The results are given in Table 2. The reduction in the
proportion of bottlenecks is also seen here. The presence of fermions leads to a smoother
surface of the percolating cluster.

Table 2. Reduction of P-plaquettes for the percolating vortex cluster for different smoothing procedures.

Reduction within Cluster smoothing 1 smoothing 2 smoothing 3

With fermions 8.6% 24.5% 8.8%

Without fermions 9.6% 28.1% 10%

2.4. Potential Fits and Noise Handling

When extracting the potential from Wilson loops, two effects have to be taken care of:

• for small areas, the loop averages are influenced by short range fluctuations; and
• with increasing area, the data suffer from statistical noise and soon the errors get

larger than the signal.

An example for a 1-exponential fit to Wilson loops 〈W(R, T)〉 for given R and T ≥ Ti
(see Equation (2)) is shown in the left diagram of Figure 5. The dependence of this example
on the initial T = Ti is depicted in the right diagram.
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Figure 5. (Left) Example of the optimal 1-exponential fit of Wilson loops for given R. (Right)
Dependence of ε0(R, Ti) on the fit region T ≥ Ti. The line marks the fit for the optimal value for Ti.

At lower Ti, an increase of Ti causes large changes of the fit parameters, but with
growing Ti these changes become smaller until a most stationary point is reached which
may be hidden behind a strong increase of error bars. With the naked eye, one sees data
that result in quite good fits, but finding analytic or numeric criteria for the choice of Ti
proves difficult. The smaller is the change of the values of the fit parameters, the smaller are
the error bars of Wilson loops, and a rapid increase of the p-value of the fits often coincide,
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but this is not a general rule. Our criteria to choose Ti is based on identifying the first local
minimum of an error quantifier

Err :=
2
3
〈Δδi〉+ 1

3
〈Δerr〉. (12)

Here, 〈Δδi〉 denotes the average change of the fit parameter ε(R, Ti±1) when decreasing
or increasing Ti; and 〈Δerr〉 denotes the average over the error bars of ε(R, Ti−1), ε(R, Ti),
and ε(R, Ti+1). The weight factors are chosen to avoid the choice of occasionally nearly
stationary regions with large error bars. For R > 3, we prevent any further increase of
Ti, because with increasing R the error bars start to grow earlier. The example in Figure 5
tries to convince that the selection of Ti based on the error quantifier results in optimal fits
under the boundary conditions of systematic deviations for low Ti and increasing error
bars for high Ti. Using this procedure, we determine the potential for the whole range of
R-values, which allows extracting the slope of the potential at large values of R.

3. Summarized Results and Discussion

The fermionic back reaction on the string tension is clearly observed in the full theory
as well as for EaMCG (Ensemble averaged Maximal Center Gauge), where the link vari-
ables of the gauge field are projected to Z2. The potentials for the gluonic and fermionic
configurations are depicted in Figure 6 and compare the full SU(2) theory with the Z2
theory. The string tension was extracted by fitting the respective Equation (3) or (4) to the
data describing the potential. The resulting parameters of these fits are given in Table 3.
The relevant parameters to compare are σ and σCP.
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Figure 6. (Left) Potential V(R) in lattice units between two sources in the fundamental representation.
There is a large difference between the string tensions for pure gluonic configurations (“gluonic”) and
in the presence of one species of dynamical fermions. (Right) Potentials extracted from Wilson loops
after ensemble averaged maximal center projection are depicted for pure gluonic configurations
and for configurations with dynamical fermions. Due to the removal of short range fluctuations the
potentials are in both cases almost linearly increasing with the lattice distance R. Data are fitted by
linear functions. For gluonic (fermionic) configurations, only data with R ≥ 6(2) are fitted.

Without fermions, both estimates for σ are compatible within errors to one another:
In the full SU(2), we observe σ = 0.0756(12) compared to σCP = 0.07691(13) in the
Z2 description. With fermions the full SU(2) theory results with σ = 0.0199(9) a lower
value than the Z2 theory with σCP = 0.02291(5). In all cases, we clearly observe that
the presence of fermions reduces the string tension in lattice units: The back reaction
is observed in the full SU(2) theory and also reproduced by the center vortices. The
determination of the lattice spacing via the usual formula (a =

√
χ/2.23 fm, corresponding
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to χ = (440 MeV)2) results in 0.123(1) fm for the gluonic configurations and 0.0633(15) fm
for the fermionic configurations.

Table 3. The parameters for the fits according Equations (3) and (4) in Figure 6 allow a direct
comparison of the respective string tensions. A strong suppression of the Coulomb part can be seen
in the Z2 theory.

Theory SU(2) Z2

Parameter V0 σ α v0 σCP

gluonic 0.5175(38) 0.0756(12) 0.2326(26) −0.0366(8) 0.07691(13)
fermionic 0.5464(27) 0.0199(9) 0.2414(19) 0.01027(13) 0.02291(5)

Concerning the geometric structure of the vortex surface, we observe that the presence
of fermions increases the number of isolated short range fluctuations (see Table 1): without
fermions, about 6.98% of the P-plaquettes are part of isolated unit cubes, whereas, with
fermions, this proportion increases to 12.45%. The proportion of P-plaquettes belonging to
bottlenecks is in total decreased from 27.81% to 24%. Fermions increase the amount of unit
cubes, but decrease the amount of bottlenecks.

Restricting the analysis to the long-ranged cluster we observe a decrease of fluctu-
ations, especially bottlenecks, when fermions are present (see Table 2): the proportion
of P-plaquettes belonging to bottlenecks is reduced from 28.12% to 24.45%. All other
fluctuations are only reduced by about 1%.

From this, we can conclude that the presence of fermions causes short range fluctua-
tions to detach from the vortex surface, resulting in a more smooth vortex surface that is
surrounded by an increased number of isolated short range fluctuations.
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1. Introduction

The center vortex model assumes that the relevant excitations of the QCD vacuum
are center vortices, closed color magnetic flux lines evolving in time. It can explain Con-
finement [1] and chiral symmetry breaking [2–4]. In four-dimensional space–time, the flux
lines form closed surfaces in dual space, see Figure 1. In the low-temperature phase, they
percolate space–time in all dimensions.

Figure 1. The geometric relation between piercings, the flux line and the vortex surface is schemati-
cally shown. Left: A flux line can be traced by following non-trivial plaquettes (depicted in orange
with a “−1”) after transformation to maximal center gauge and projection to the center degrees
of freedom. Middle: Each non-trivial plaquette belongs to four elementary cubes, where the flux
enters and has to leave through another plaquette. The depicted grey rectangles correspond to the
same plaquette. For each cube, the three involved coordinates are indicated. Right: Due to the
evolution in time, the flux line (depicted as orange line) forms a closed two-dimensional surface in
four-dimensional spacetime.

Within lattice simulations, the center vortices are detected in maximal center gauge after
projection to the center degrees of freedom. The procedure is described in more detail in
Section 2. As long as the detected vortices reproduce the relevant physics, we speak of a
valid vortex finding property. During the analysis of the color structure of vortices in smooth
configurations [5] one is confronted with a loss of the vortex-finding property. Problems in

Universe 2021, 7, 122. https://doi.org/10.3390/universe7050122 https://www.mdpi.com/journal/universe
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detecting center vortices due to ambiguities in the gauge-fixing procedure were already
found by Kovacs and Tomboulis [6]. They also point out that the thickness of vortices is
of importance for the extraction of properties related to confinement. We found that this
thickness can cause troubles in the vortex detection, resulting in a loss of the string tension.
In search for improvements in the vortex detection, the cause of this loss is analyzed and a
possible resolution discussed. We model the influence of cooling on the vortex thickness
and the corresponding loss of the vortex density. An upper limit for the lattice spacing and
a lower limit for the lattice size is presented. These limits are derived from measurements
of the vortex density and estimates of the cross-section of flux tubes.

2. Materials and Methods

Our lattice simulations of the SU(2) Wilson action cover an interval of inverse coupling
β ∈ [2.1, 3.6] in steps of 0.05. We start with low β values to identify discretization effects
and to detect the onset of finite size effects. To check how far the compatibility of our model
reaches, we expand the calculations to relatively large values of β. The lattice spacing a
corresponding to the respective values of β is determined by assuming a physical string
tension of (440 MeV)2 via a cubic interpolation of the literature values given in Table 1.
This is complemented by an extrapolation according to the asymptotic renormalization
group equation for β > 2.576

a(β) = Λ−1e−
β

8β0 with β0 =
11

24π2 and Λ = 0.015(2) fm−1, (1)

with Λ obtained by fitting this equation to the values of a for β ≥ 2.6 in Table 1.

Table 1. The indicted dependence of the lattice spacing a in fm and the string tension σ in lattice
units on the inverse coupling β is taken from references [7–11].

β 2.3 2.4 2.5 2.635 2.74 2.85

a [fm] 0.165(1) 0.1191(9) 0.0837(4) 0.05409(4) 0.04078(9) 0.0296(3)
σ [lattice] 0.136(2) 0.071(1) 0.0350(4) 0.01459(2) 0.00830(4) 0.00438(8)

The analysis is performed on lattices of size 84 and 104 with 0, 1, 2, 3, 5 and 10 Pisa-
Cooling [12] steps with a cooling parameter of 0.05. We have chosen these small lattice
sizes because, in bigger lattices, the finite-size effects are expected at higher values of β and,
as we will show, the detection of center vortices becomes increasingly difficult with rising
values of β.

A central part of our analysis consists of identifying non-trivial center regions, regions
whose is perimeter evaluated as close to non-trivial center elements, using the algorithms
presented in references [13–15]. In the gauge-fixing procedure, we look for gauge matrices
Ω that maximize the functional

R2 = ∑
x

∑
μ

| Tr[Úμ(x)] |2 with Úμ(x) = Ω(x + eμ)Uμ(x)Ω†(x). (2)

The non-trivial center regions are used to guide this procedure to prevent the problems
found by Bornyakov et al. [16]. The detection of such non-trivial center regions is based
on enlarging regions until they get as close as possible to non-trivial center elements.
This quite calculation-intensive procedure is depicted in Figure 2.

As not all resulting regions are evaluated sufficiently near to a non-trivial center
element, we take only those into account which are sufficiently near to non-trivial center el-
ements.

During the gauge-fixing, only such gauge matrices Ω are allowed that preserve the
sign of the non-trivial center regions. As this causes the rejection of some gauge matrices,
the number of required simulated annealing steps until convergence of the gauge functional
might increase.
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Figure 2. The non-trivial center regions, used for the gauge-fixing procedure, are detected by
repeating the depicted procedure until every plaquette either belongs to an identified region or has
already been used as the seed to grow a region. The direction of enlargement of the respective regions
is marked by an arrow. Plaquettes that belong to a region are colored; plaquettes already used as
seed are shaded. In the final determination of the non-trivial center regions enclosing a thick vortex,
no collision handling is performed.

After gauge fixing and projection, plaquettes are identified that evaluate non-trivial
center elements. These are dubbed P-plaquettes and considered to be pierced by a P-vortex.

If the number of P-plaquettes is smaller than the number of non-trivial center regions
used to guide the gauge-fixing procedure, this is a clear indication of a failing vortex
detection. For each value of β, the proportion of configurations where this is the case
is determined. This allows to quantify the loss of the vortex-finding property besides
quantifying it directly via the string tension of the center-projected configurations.

The further analysis is performed in the full SU(2) configurations. For each P-plaquette,
a non-trivial center region that encloses the P-plaquette is identified. This center region is
considered to be pierced by the thick vortex detected by the P-vortex. Figure 3 depicts the
relation between P-vortices, thick vortices and the non-trivial center regions.

→ →

Figure 3. Two-dimensional slices through a four-dimensional lattice are depicted. The vortex
detection starts as a best-fit procedure of P-Vortices to thick vortices, indicated by the first arrow.
Then, starting from the detected P-plaquettes, non-trivial center regions are identified to reconstruct
the thick vortex. These non-trivial center regions are, in general, not rectangular.
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The cross-section of the flux building thethick vortex, Avort, is measured by counting
the plaquettes that build up the non-trivial center regions enclosing the corresponding thick
vortex. In each configuration, we determine minimal, average and maximal cross-sections.

The string tension σ is determined via Creutz ratios χ calculated in the center pro-
jected configurations

σ ≈ χ(R, T) = − ln
〈W(R + 1, T + 1)〉 〈W(R, T)〉
〈W(R, T + 1)〉 〈W(R + 1, T)〉 , (3)

with R × T Wilson loops W(R, T). As the Coloumb-part of the potential is strongly sup-
pressed after projecting to the center degrees of freedom, the linear part corresponding
to a non-vanishing string tension is already reproduced with small loop sizes, as we saw
in references [14,15,17]. Symmetric Creutz ratios are used and the average of χ(1, 1) and
χ(2, 2) is taken to determine the string tension. Our study is based on the data generated
in reference [5], where we did not save a sufficiently wide range of Wilson loop data.

Assuming independence of vortex piercings, the string tension can also be related to
the vortex density �vort, the number of P-plaquettes per unit volume, via

σ ≈ −ln(1 − 2 × �vort). (4)

The requirement of uncorrelated piercing is only fulfilled if the vortex surface is
strongly smoothed, otherwise this simple equation overestimates the string tension.

The working hypothesis is that the loss of the vortex-finding property, observed via
a loss of the string tension, when cooling is applied, can be related to a thickening of the
vortices. We will try to model the loss of the vortex density based on an analysis of the
geometric structure of center vortices.

3. Results

The different measurements are performed for a lot of different values of β and several
cooling steps. So as not to overload the visualizations only a part of the intermediate results
is depicted, showing only specific numbers of cooling steps and restricting to a smaller
interval of β-values. Those parts of the data that are dominated by finite size effects are
identified and excluded from the further analysis.

Starting with the quantification of the vortex-finding property presented in Figure 4,
some troubles are brought to light. The proportion of configurations where fewer P-
plaquettes have been identified than non-trivial center regions exist, rises rapidly when
passing a specific value of β. This specific value depends on the lattice size and the number
of cooling steps.

When reducing the lattice size or increasing the number of cooling steps, the loss
of the vortex-finding property occurs at lowered values of β. The proportion depicted
seems to saturate at about 30%, except for 10 cooling steps at a lattice of size 84, where it
reaches higher values. The fact that some non-trivial center regions have no corresponding
P-plaquettes after gauge fixing and projection to the center degrees of freedom hints at
a possible explanation for part of the lost string tension. The gauge functional given in
Equation (2) is local in the sense that each gauge matrix Ω is solely based on the eight
gluonic links connected to the specific lattice point. Farther distances than a single lattice
spacing are not directly taken into account. In contrast, the detection of the non-trivial
center regions is, in a sense, more physical as it is based solely on gauge-independent
quantities, that is, the evaluation of arbitrary big Wilson loops. When detecting P-vortices
in smooth configurations and high lattice resolutions, the center flux can be distributed
over many link variables. Each of these links can evaluate arbitrarily close to the trivial
center element, although a Wilson loop build by the links can evaluate arbitrarily near to
the non-trivial center element. In such a scenario, a gauge-fixing procedure, only taking
the vicinity of lattice points into account, will likely fail and result in an underestimated
string tension.
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Figure 4. The proportion of configurations is depicted where less non-trivial plaquettes have been
identified than non-trivial regions exist. The datapoints are joined to guide the eye. Due to the
logarithmic scaling of axes, only non-vanishing values are depicted: all lines start with 0% at lower
values of β. The interruption of the green line corresponding to the lattice of size 104 at 10 cooling
steps at β = 2.55 results from a vanishing percentage at the respective β-value. Observe that the
curves rise at different values of β for different number of cooling steps and different lattice sizes.

Looking at the Creutz ratios depicted in Figure 5 two possibly intertwined effects can
be observed.

Figure 5. The string tension σ is estimated via an average of the Creutz ratios χ(1, 1) and χ(2, 2)
calculated in center-projected configurations for different numbers of cooling steps and lattice sizes.
The datapoints are joined by lines to guide the eye. The literature values correspond to those listed
in Table 1; the asymptotic line is given by Equation (1). Observe that, in the low β-regime, an
underestimation of the string tension correlates to the number of cooling steps. This underestimation
is independent of the lattice size. At higher values of β, finite size effects set in.

At sufficiently low values of β, the string tension is independent of the lattice size,
but decreases with an increasing number of cooling steps. Of interest is that, for sufficiently
small values of β, the deviation from the asymptotic prediction decreases with a rising
value of β—for example, the 104-lattice starts at 10 cooling steps with an underestimation
of the asymptotic string tension of 50% ± 1% at β = 2.1, improving to 40.8% ± 0.4%
at β = 2.25. At higher values of β, the independence from the lattice size no longer
holds. For different lattice sizes, a sudden decrease in the string tension occurs at different
values of β. The respective β-values are compatible for different numbers of cooling steps.
The dependency on the lattice size and the independence on the number of cooling steps
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hint at finite size effects, but finite size effects do not give a direct explanation of the
reduction in the string tension at lower values of β: We do not observe a dependency on the
lattice size in the low β-regime. Based on the deviations of the string tensions for different
lattice sizes, we expect finite size effects to occur at length scales around 1.3 fm, independent
of cooling: observing that the lattice of size 84 deviates from the 104-lattice at β ≈ 2.3,
corresponding to a lattice spacing of a ≈ 0.165, we acquire a physical lattice extend around
1.32 fm for the smaller lattice. The finite size effects on the bigger lattice set in at β between
approximately 2.35 and 2.4, resulting in a length scale between approximately 1.2 fm and
1.4 fm. This length scales are compatible with the findings of Kovacs and Tomboulis [18].
In Ref. [5] we also found color-homogeneous regions embedded in the vortex surface with
roughly the same diameters. Similar distances can also be found between neighbouring
piercings of a Wilson loop, extracted from the vortex density, as will be seen in Table 4.

A relation to the thickness Avort of center vortices is suspected and points towards
possible further analysis. The possibility of a thick vortex expanding due to a spreading
of the center flux was already suggested by Kovacs and Tomboulis in [19]. Assuming a
circular cross-section of the flux tube, its diameter can be calculated as

dflux = 2 ×
√

Avort

π︸ ︷︷ ︸
rflux

, (5)

with Avort being the area of the flux cross-section. That flux lines are closed requires that
within each two-dimensional slice through the lattice at least two vortex piercings can find
place. This give a criteria on the lattice extent L

L > 2 ∗ dflux. (6)

If Avort measured by a plaquette count exceeds 19 for a lattice of size 104, or 12 for a
lattice of size 84, we can expect finite size effects to step in. These thresholds are of relevance for
the average, minimal and maximal flux tube cross-section depicted in Figures 6–8. The mean
flux tube cross-section presented in Figure 6 shows that we have to restrict to relative low
values of β to stay away from finite size effects.

Figure 6. The average cross-sections of the flux tubes, measured by counting plaquettes, increases
when cooling is applied. It reaches a threshold at which finite size effects are expected to become
problematic, shown as a dashed line for the two lattice sizes. Measurements performed on lattices of
different size have good compatibility.

Taking a look at the maximal flux tube cross-section depicted in Figure 7, we can
expect finite size effects at even lower values of β: None of the data with 10 cooling steps
can be expected to be free of finite size effects.
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Figure 7. The maximal cross-sections of the flux tubes hint at finite size effects. Within our β-interval,
only the lattice of size 104 stays below the threshold when cooling is applied. With cooling, the
different lattice sizes become more and more incompatible.

The lattice of size 84 could be too small even without any cooling applied. With cooling
and increasing β the different lattice sizes become more and more incompatible. This may
be caused by finite size effects and insufficient statistics. Still, the overall behaviour
with cooling is qualitatively reproduced and allows the gain of another estimate on the
growth rate.

Looking at the minimal tube size depicted in Figure 8 an even more sudden rise in the
cross-section can be observed.

Figure 8. The minimal size of the flux tubes cross-sections shows a strong dependency on the lattice
size. This dependency becomes even stronger when cooling is applied. Only with, at most, three
cooling steps applied, the data seem thrust-worthy for β < 2.3.

We expect that the minimal flux tube cross-sections starts to grow with a certain β,
where the high action density of non-trivial plaquettes leads to a suppression within the
path integral. This causes a dependency on the lattice size due to the reduced statistics.
For sufficiently low values of β and sufficiently low numbers of cooling steps, the minimal
flux tube cross-section is given by exactly one plaquette, independent of β and the number
of cooling steps. We restrict further analysis to 104-lattices with β ≤ 2.3 and, at most, five
cooling steps. Nevertheless, we depict the full data in all relevant figures to allow for a
check of the plausibility of our model by looking at the specific deviations of the data from
our prediction.
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Assuming an exponential growth in the flux tubes’ cross-section with an increase in
the number of cooling steps, a model of the form

Avort(Ncool) = Avort(0) eNcool (gcool+gdiscret a) (7)

is fit to the data, with Ncool being the number of cooling steps and a the lattice spacing.
The fit-parameter gcool corresponds to the exponential growth in the flux tube with cooling.
As the tube size is measured by counting plaquettes, we have to account for discretization
effects. This is done by adding another fit-parameter gdiscret in the exponent, related to the
lattice spacing and the number of cooling steps. The two parameters are not necessarily
constant as they can depend on the specific structure of interest. We restrain from carrying
along another index: In the following, the values of these two parameters are to be con-
sidered only with respect to the specific context. They differ for the average cross-sections
and the maximal cross-sections of flux tubes. The fit of this model to the average flux tube
sizes is shown in Figure 9 in physical units. The fit is done for small β and cooling steps
indicated by black points.

Figure 9. The measured data of the average flux tube cross-section for various numbers of cooling
steps and several β are shown by black and orange points. The dashed lines depict the fits according
to Equation (7), where only the black datapoints were used. The corresponding fit parameters are
given in Table 2. Deviations of the data from the fits can be related to finite size effects.

The fit, dashed lines reproduce the data well until the expected onset of finite size
effects for cross-sections, increasing with the number of cooling steps and β. This onset
is compatible to the estimates in Equation (6) and will be discussed later. At present, we
concentrate on the growth in the flux tube cross-section described by the fit parameters given
in Table 2. The suspected exponential growth of Avort is confirmed by the good quality of
the fit for positive gcool, even for larger values of β and cooling steps.

Table 2. The parameters of the model described by Equation (7) and depicted in Figure 9 for average
cross-sections are shown.

Average
Cross-Sections

Estimate t-Statistic p-Value

gcool 0.14(1) 13.6393 6.3 × 10−11

gdiscret −0.17(5) fm−1 −3.62376 1.9 × 10−3
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The negative value of gdiscret reflects the decreasing slope of the dashed lines with
increasing β, indicating an influence of the lattice resolution: a coarser lattice reduces the
growth of Avort. The overall behaviour of Avort is qualitatively reproduced by the maximal
cross-sections, as depicted in Figure 10.

Figure 10. The measured data of the maximal flux tube cross-section for various numbers of cooling
steps and several β are shown by black and orange points. The dashed lines depict the fits according
to Equation (7), where only the black datapoints were used. The corresponding fit parameters are
given in Table 3. Deviations of the data from the fits can be related to finite size effects.

Only the growth has slowed down, as can be seen in the values given in Table 3.

Table 3. The parameters of the model described by Equation (7) and depicted in Figure 10 for
maximal cross-sections are shown.

Maximal
Cross-Sections

Estimate t-Statistic p-Value

gcool 0.0999(10) 9.1369 3.5 × 10−8

gdiscret −0.13(5) fm−1 −2.61939 1.7 × 10−2

This implies that the growthin Avort with increased cooling is limited.
A further influence of cooling is a smoothing of the vortex surface. We will now model

this smoothing and show that the vortex flux tubes can be thickened without pushing each
other apart. The vortex density �vort allows to gain information about the distance of the
vortex centers. Here, we have to take into account that some of the P-plaquettes belong
to correlated piercings and can be attributed to short-range fluctuations. We define the
quantity Amax as the non-overlapping area around vortex centers.

The vortex density �vort is usually calculated by dividing the number P-plaquettes by
the total plaquette number. Given enough statistics, it can be determined by counting the
number of piercings Nvort within a sufficiently large Wilson loop of Area Aloop build by
Nloop plaquettes

�vort =
Nvort

Nloop
=

Nvort

Aloop ∗ a−2 =
Nvort

(Afree + Nvort ∗ Amax) ∗ a−2 . (8)
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In the last identity, we have split the area of the loop into two non-overlapping parts:
each piercing is enclosed by circular area given by Amax and Afree covers the remaining
part of the loop. When cooling is applied, we have to take into account that Amax grows.

�vort(Ncool) =
Nvort

(Afree + Nvort ∗ (Amax(0) + δAmax(Ncool))) ∗ a−2 . (9)

Using Aloop = Afree + Nvort ∗ Amax(0) and a model of the form given in Equation (7)
for Amax(Ncool) we attain δAmax = Amax(0)(eNcool (gcool+gdiscrete a) − 1). It follows

�vort(Ncool) =
�vort(0)

1 + �vort(0) Amax(0)a−2 (eNcool (gcool+gdiscrete a) − 1)
. (10)

We fit gcool, gdiscrete and Amax(0) to the measurements of �vort. The measured data
and the fit are shown in Figure 11.

Figure 11. The vortex density is depicted for different values of β and different numbers of cooling
steps. For the model prediction, shown as dashed lines, only the black datapoints were used. That the
datapoints fall below the model prediction at specific numbers of cooling steps for different values
of β can be explained by finite size effects. The corresponding parameters of the model are given
in Table 4.

The respective fit parameters are listed in Table 4.

Table 4. The parameters of the model described by Equation (10) for the loss of the vortex density
during cooling.

Vortex Density Estimate t-Statistic p-Value

gcool 0.035(1) 26.5368 2.8 × 10−15

gdiscret 0.066(2) fm−1 27.6254 fm−1 1.5 × 10−15

Amax(0) 1.41(5) fm2 25.8937 fm2 4.2 × 10−15

The value of Amax(0) is larger than the flux tube cross-sections depicted in Figure 9.
This, and the fact that the value of gcool, for the vortex density is smaller than those of the
vortex flux tube cross-sections indicate that the majority of piercings remain separated from
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one another even when cooling is applied. Assuming circular geometry, we can calculate
the minimal possible distance between vortex centers

dcenter(Ncool) = 2

√
Amax(Ncool)

π
. (11)

To determine how many cooling steps are possible, we need to know how much
the vortices can grow by cooling without getting into conflict. We estimate the minimal
available separation by

sflux(Ncool) = 2

√
Amax(0)

π︸ ︷︷ ︸
dcenter(0)

− 2

√
Avort(Ncool)

π︸ ︷︷ ︸
dflux(Ncool)

. (12)

We use dcenter(0), the average distance between piercings when no loss of the vortex
density occurred, and subtract the average diameter of the flux tubes dflux(Ncool) with
cooling applied. If sflux(Ncool) becomes smaller than one lattice spacing, our methods
of center vortex detection are likely to fail: we can no longer find two non-overlapping
non-trivial center regions enclosing the thick vortex flux tubes. This allows for a limit for
the lattice spacing to be derived, a, given in Equation (13) together with a limit on L based
on Equation (6)

a < sflux and L > Max(2dflux, Max(dflux)). (13)

The requirement for the lattice extent L is based on the fact that two vortex piercings
have to fit in every two-dimensional slicing through the lattice. Assuming a vanishing
minimal flux tube size, the limit is given either by two times the average diameter dflux
or one times the maximal diameter Max(dflux)—whatever is bigger. The assumption
of a vanishing minimal flux tube size is an approximation: on the lattice, the minimal
size is given by exactly one plaquette, which is normally negligible in comparison to the
lattice extent.

Using what we learned so far, we can evaluate these inequalities and find numerical
values for the upper limit of a and the lower limit of L. These are depicted in Figure 12 and
will now be discussed. Discretization effects are neglected by setting gdiscret = 0. Fitting
the average flux tube cross-sections for configurations without cooling for 2.1 ≤ β ≤ 2.3,
see Figure 9, by a polynom up to quadratic order with respect to the lattice spacing a gives

Avort(0) ≈ 3.367(38) a2 + 0.200(9) fm a, (14)

compatible with the values we found in [20]. A fit to the maximal cross-sections without
cooling for 2.1 ≤ β ≤ 2.3, see Figure 10, results in higher fit parameters

Max(Avort(0)) ≈ 11.3(2) a2 + 0.224(37) fm a. (15)

Using this fit and Equation (12) with Amax(0) from Table 4 we obtain an upper limit
for the lattice spacing that depends on the number of cooling steps and gcool. With this
limit, we can determine a lower limit for the required lattice extent. Both limits are shown
in Figure 12 for the two different values of gcool resulting from average and maximal flux
tube sizes from Tables 2 and 3. Let us remember how these limits were derived. Closed flux
lines require sufficient room for two piercings within each two dimensional slice through
the lattice—a lower limit for the lattice extent arises.

Taking the stronger limits with gcool = 0.14, we determine the corresponding limits
of β for given lattice size and number of cooling steps. In Table 5 some numerical values
are shown.
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Figure 12. Based on the growth in the flux tubes and the reduction in the vortex density in dependency of the number
of cooling steps, an upper limit for the lattice spacing (left) and a lower limit for the lattice extent (right) can be derived,
as given in Equation (13). The weaker limit depicted in red is based on the slower growth in the maximal sized flux tubes
with gcool = 0.0999 (see Table 3), the stronger limit, depicted in orange, is based on the faster growth in average-sized flux
tubes with gcool = 0.14 (see Table 2).

Table 5. For different numbers of cooling steps and different lattice extents, the table gives a lower
and an upper limit for β. “None” indicates that the limits exclude one another.

Ncool \ L 8 10 14 20 30 40 50

0 2.12
2.32

2.12
2.39

2.12
2.48

2.12
2.58

2.12
2.73

2.12
2.84

2.12
2.92

1 2.14
2.31

2.14
2.38

2.14
2.48

2.14
2.58

2.14
2.73

2.14
2.83

2.14
2.91

2 2.16
2.31

2.16
2.38

2.16
2.47

2.16
2.58

2.16
2.72

2.16
2.83

2.16
2.91

3 2.19
2.3

2.19
2.37

2.19
2.47

2.19
2.57

2.19
2.71

2.19
2.82

2.19
2.9

5 2.23
2.29

2.23
2.36

2.23
2.46

2.23
2.56

2.23
2.7

2.23
2.81

2.23
2.89

10 None 2.34
2.34

2.34
2.44

2.34
2.54

2.34
2.67

2.34
2.78

2.34
2.86

15 None None None 2.44
2.52

2.44
2.65

2.44
2.76

2.44
2.84

20 None None None None 2.54
2.63

2.54
2.73

2.54
2.82

25 None None None None None 2.66
2.71

2.66
2.79

We now look at the meaning of these limits for the string tension. In Figure 5, we
observe that the deviation from the asymptotic prediction decreases with increasing β in
the low β-regime. We believe that this behaviour holds within the β-intervals of Table 5.
The upper limit of β can be extended by increasing the lattice size. It would be inter-
esting to see if this alone suffices to restore full compatibility with the asymptotic string
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tension with modest cooling, but the required computational power might exceed our
present capabilities.

4. Discussion

Using non-trivial center regions we analyzed how Pisa-cooling influences the cross-
sections of thick center vortices. We found an exponential growth that slows down with
increasing cross-sections. By geometric arguments, we derived an upper limit for the lattice
spacing above which discretization effects trouble the vortex detection and a lower limit
for the lattice extent where finite size effects set in. This window gets smaller with cooling
and decreasing lattice extent. Cooling results in deviations from the asymptotic behaviour:
an underestimation of the string tension occurs. Within the window, increasing β leads to
better agreement with the asymptotic behaviour. It would be interesting to see whether the
string tension calculated on the projected lattice is, in fact, fully restored with sufficiently
large β or if only a partial restoration occurs.

By improving the method of center vortex detection, it might be possible to soften the
aforementioned limits. The method of vortex detection used in this work was based on
the direct maximal center gauge guided by non-trivial center regions [13–15]: we identify
regions whose perimeter evaluates to the non-trivial center element and preserve their
evaluation during gauge-fixing and center projection. This approach comes with three
possibilities of improvement.

The growth in the flux tube due to cooling results in the non-trivial center factors
within the evaluation of Wilson loops being spread over more and more links. In the
original direct maximal center gauge the contribution to the gauge functional at a given
site x is determined by its attached links only. By taking farther links into account, the
troubles arising from the spread of the center flux may be counteracted.

When two thick vortices are not separated by at least one lattice spacing, the identifi-
cation of non-trivial center regions enclosing the single piercings might fail. The original
method used for the detection of non-trivial center regions is based on enlarging the
perimeter of Wilson loops while preventing overlaps of the resulting regions: if overlaps
occurred, the region that evaluates to a higher trace is deleted. By allowing overlaps, an
improvement might be possible: more non-trivial center regions are kept to guide the
further gauge-fixing procedure.

With rising number of cooling steps, more non-trivial center regions than P-plaquettes
were found: The direct maximal center gauge failed to preserve some of the non-trivial
center regions. This could be counteracted by inserting non-trivial factors before starting the
simulated annealing procedure used to maximize the gauge functional. These non-trivial
factors should guarantee that each non-trivial center region evaluates to the non-trivial
center element when evaluated in the center projected configuration.
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Abstract: In this review, we discuss the present status of the description of confining flux tubes in
SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on
three main pillars: modeling in the continuum the ensemble components detected in the lattice, the
derivation of effective field representations, and contrasting the associated properties with Monte
Carlo lattice results. The integration of the present knowledge about these points is essential to get
closer to a unified physical picture for confinement. Here, we shall emphasize the last advances,
which point to the importance of including the non-oriented center-vortex component and non-
Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs
are responsible for the emergence of topological solitons and the possibility of accommodating the
asymptotic scaling properties of the confining string tension.

Keywords: confinement; ensembles and effective fields; topological solitons

1. Introduction

Our knowledge about the elementary particles, as well as three of the four known
fundamental interactions, is successfully described by the standard model of particle
physics. In particular, the quantitative behavior of the electromagnetic, weak, and strong
interactions is encoded in the common language of gauge theories. In the strong sector, an
important and intriguing phenomenon regarding the possible asymptotic particle states
takes place. When quarks and gluons are created in a collision, they cannot move apart.
Instead, they give rise to jets of colorless particles (hadrons) formed by confined quark and
gluon degrees of freedom. Although confinement is key for the existence of protons and
neutrons, a first-principles understanding of the mechanism underlying this phenomenon
is still lacking. At high energies, the detailed scattering properties between quarks and
gluons are successfully reproduced by QCD perturbative calculations in the continuum,
which are possible thanks to asymptotic freedom. This is in contrast with the status at
low-energies, where the validity of quantum chromodynamics (QCD) is well-established
from computer simulations of the hadron spectrum which successfully make contact with
the observed masses. This review focuses on this type of non-perturbative problem in pure
SU(N) Yang–Mills (YM) theory, which is a challenging open problem in contemporary
physics. Here again, Monte Carlo simulations provide a direct way to deal with the large
quantum fluctuations and compute averages of observables such as the Wilson loop, which
is an order parameter for confinement in pure YM theories. As usual, the lattice calculations,
as well as the center-vortex ensembles we shall discuss, consider an Euclidean (3d or 4d)
spacetime. Unless explicitly stated, this is the metric that will be used throughout this work.
For heavy quark probes in an irreducible representation D, the Wilson loop is given by:

WD(Ce) =
1
D

tr D
(

P
{

ei
∫
Ce

dxμ Aμ(x)
})

, (1)
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where D is the dimensionality of D. The closed path Ce can be thought of as associated
to the creation, propagation, and annihilation of a pair of quark/antiquark probes. From
a rectangular path with sides T and R, information about the static interquark potential
was obtained from the large T behavior 〈WD(Ce)〉 ∼ e−T VD(R). An area law, given by
the propagation time T multiplied by the interquark distance R, corresponds to a linear
confining potential [1] (for a review, see [2]).

There are many model-independent facts that point to the importance of the center of
the group SU(N) to describe the confining properties of YM theory. In this regard, the first
ideas relating the possible phases to the Z(N) properties of the vacuum were developed
in [3]. There, disorder vortex field and string field operators were introduced in (2 + 1)d
and (3 + 1)d Minkowski spacetime, respectively. At equal time, they satisfy

ŴF(Ce) V̂(x) = ei2π L(x,Ce)/N V̂(x) ŴF(Ce) , in (2 + 1)d, (2)

ŴF(Ce) V̂(C) = ei2π L(C,Ce)/N V̂(C) ŴF(Ce) , in (3 + 1)d, (3)

where the subindex F denotes the fundamental representation, x ∈ R
2 (C ∈ R

3) is a point
(curve) in real space where a thin pointlike (looplike) thin center vortex is created in three
(four) dimensional spacetime. L(x, Ce) and L(C, Ce) are the corresponding linking numbers.
An explicit realization of V̂ was given by the action V̂|A〉 = |AS〉, where |A〉 are quantum
states with well-defined shape A0 = 0, Ai (i = 1, 2, 3) at a given time. The field AS

μ has
the form of a gauge transformation, but performed with a singular phase S ∈ SU(N). To
define the operator V̂(x) (respectively V̂(C)), S must change by a center element when
going around any spatial closed loop that links x (respectively C). Spurious singularities
may be eliminated by using the adjoint representation Ad(S), which leaves a physical
effect only at the point x, or closed path C, where Ad(S) is multivalued. Arguments in
favor of characterizing confinement as a magnetic Z(N) spontaneous symmetry breaking
phase (center-vortex condensate),

〈V̂(x)〉 �= 0, 〈V̂(C)〉 ∼ e−μPerimeter(C) , (4)

were also given in that work.
The lattice also provides direct information about the role played by the center of

SU(N) in the confinement/deconfinement phase transition. This is observed in the proper-
ties of the Polyakov loops Px(A ), which are given by Equation (1) computed on a straight
path located at a spatial coordinate x and extending along the Euclidean time-direction.
Due to the finite-temperature periodicity conditions, these segments can be thought of
as circles. By considering the fundamental representation, Px(A ) was analyzed in the
lattice [4]. When changing from higher to lower temperatures, the distribution of the phase
factors of Px(A ), for typical Monte Carlo configurations, shows a phase transition. At
higher temperatures, for most x, the phase factors are close to one of the center elements
ei2πk/N , k = 0, . . . , N − 1. On the other hand, below the transition, they are equally dis-
tributed on Z(N), as a function of the spatial site x. As a result, the Monte Carlo calculation
gives a transition from a non-vanishing to a vanishing gauge-field average 〈Px〉, which is
in fact x-independent, where the electric Z(N) symmetry is not broken. This corresponds
to a transition from a deconfined phase at higher T, where the quark free energy is finite,
to a confined phase below Tc, where the free energy diverges.

In the full Monte Carlo simulations, the relevance of Z(N) is also manifested in general
Wilson loops at asymptotic distances. In this regime, the string tension only depends on the
N-ality k of D, which determines how the center Z(N) of SU(N) is realized in the given
quark representation [5],

D (ei 2π
N I) =

(
ei 2π

N

)k
ID . (5)

212



Universe 2021, 7, 253

Regarding the confinement mechanism, lattice calculations aimed at determining the
relevant degrees of freedom have been performed for many years. In particular, procedures
have been constructed to analyze Monte Carlo Uμ(x) ∈ SU(N) link-configurations and ex-
tract center projected configurations Zμ(x) ∈ Z(N) [6–9] (for recent techniques to improve
the detection of center vortices, see [10]). A given plaquette is then said to be pierced by a
thin center vortex if the product of these center elements along the corresponding links
is non-trivial. Observables may then be evaluated by considering vortex-removed and
vortex-only configurations. The confining properties are only well described in the latter
case [6,7,11–18]. In the lattice, the analysis and visualization of center-vortex configura-
tions [19] led to important insights regarding the origin of the topological charge density in
the YM vacuum. In 3d (4d), thin center vortices are localized on worldlines (worldsheets)
ω. In this case, the Wilson loop in Equation (1) yields a center element

WD(Ce) = ZD(Ce) =
1
D

tr
[
D
(

ei 2π
N I
)]L(ω,Ce)

, (6)

where L(ω, Ce) is the total linking number between ω and Ce. This result also applies
to thick center vortices, when their cores are completely linked by Ce. In this case, ω
refers to the thick center vortex guiding centers. In the scaling limit, where the lattice
calculations make contact with the continuum, the density of thin center vortices detected
at low temperatures is finite [7,20]. Furthermore, center vortices percolate and have positive
stiffness [21,22], while the fundamental Wilson loop average over Zμ(x) displays an area
law. This is in accordance with center-vortex condensation and the Wilson loop confinement
criteria. For SU(2), a model based on the projected thin center-vortex ensemble captures
97.7% of the fundamental string tension. On the other hand, the percentage drops to ∼62%
for SU(3) [23]. One of the most important features of the center-vortex scenario is that
it naturally explains asymptotic N-ality: the center element contribution in Equation (6)
only depends on the N-ality of D. For these reasons, it is believed that the confinement
mechanism should involve these degrees of freedom. For a recent discussion about this
area of research, see [24].

When it comes to accommodating the model-independent full Monte Carlo calcula-
tions, some questions arise. In 3d, the full asymptotic string tension dependence on D is
very well fitted by the Casimir law [25]

σ
(3)
k =

k(N − k)
N − 1

, (7)

which is proportional to the lowest quadratic Casimir among those representations with the
same N-ality k of D, which corresponds to the antisymmetric representation. In addition, it
is precisely at asymptotic interquark distances where a model based on an ensemble of thin
objects should be more reliable. This is different at intermediate distances, where finite-size
effects allowed for an explanation of the observed scaling with the Casimir of D [26,27].
Then, one question is: how to capture the asymptotic law in Equation (7) from an average
over percolating thin center-vortices? In 4d, where the available data cannot tell between a
Casimir or a Sine law [28]

σ
(4)
k =

k(N − k)
N − 1

vs. σ
(4)
k =

sin kπ/N
sin π/N

, (8)

is there any ensemble based on center-vortices that could reproduce one of these behaviors?
More importantly, how can one explain this together with the formation of the confining
flux tube observed in the lattice? This means reproducing the Lüscher term [29–31] and the
observed transverse field distributions (see [32–34], and references therein). Here, we shall
review some developments aimed at providing a possible answer to these questions.

In Section 2, we shall discuss the simplest Abelian center-vortex ensembles. In Section 3,
we summarize, from different points of view, additional non-Abelian information and cor-
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relations that could be natural ingredients to be taken into account. In Section 4, we review
ensembles of percolating oriented and non-oriented center vortices in 3d and 4d, their effective
field description, as well as the possibility to accommodate the asymptotic properties of the
confining string. Finally, in Section 5, we discuss recent lattice results in the light of our
effective description, and present some perspectives.

2. Center-Vortex Ensembles

The idea that center vortices are the dominant degrees of freedom in the infrared
regime means, in practice, that the Wilson loop average at asymptotic distances may well
be captured by modeling the average of the center-elements in Equation (6). This line of
research was mainly explored in the lattice [35] by considering an ensemble of fluctuating
worldlines (in 3d) or worldsurfaces (in 4d) with tension and stiffness (see also the discussion
at the beginning of Section 3.2). For example, in 4d, a theory of fluctuating center-vortex
worldsurfaces in four dimensions was introduced by considering the lattice action [35]

Slatt(ω) = μA(ω) + cNp , (9)

where A(ω) is the area of the vortex closed worldsurface ω, formed by a set of plaquettes,
and Np is the number of pairs of neighboring plaquettes of the surface lying on different
planes. The latter term, as well as the lattice regularization, contribute to the stiffness
of the vortices. This model, initially introduced for SU(2), and then generalized for
SU(3) [36], is able to describe important features, such as the confining string tension for
fundamental quarks and the order of the deconfinement transition. This type of model
can be also formulated in the continuum. The objective is the same, that is, looking
for natural ensemble measures to compute center-element averages and compare them
with the asymptotic information extracted from the full Monte Carlo average 〈WD(Ce)〉. A
successful comparison is expected to give important clues about the underlying mechanism
of confinement. When computing center-element averages in the continuum, the simplest
model has the form:

〈ZD(Ce)〉 = N ∑
ω

e−S(ω) 1
D

tr
[
D
(

ei 2π
N I
)]L(ω,Ce)

, (10)

where ∑ω represents the sum over different configurations in a diluted gas of closed
worldlines (in 3d) or worldsurfaces (in 4d). The weight factor e−S(ω) implements the
effect of center-vortex tension (μ) and stiffness (1/κ) observed in the lattice [21,22]. More
precisely, S(ω) contains a term proportional to the length or area of ω, and another one
proportional to a power of the absolute value of the curvature of ω. See Equation (A3) for
an explicit formula in 3 dimensions. S(ω) could also contain interactions with a scalar field
ψ that, when integrated with a corresponding weight W(ψ), generates interactions among
the variables ω.

Extended models can also be introduced where the defining elements are not only
given by ω but also by additional labels. At the level of the gauge field variables Aμ, the
center-vortex sectors can be characterized by different mappings S0 ∈ SU(N) containing
defects (see Section 4.2). A center vortex with guiding center ω and magnetic weight β is
characterized by S0 = e−iχβ·T , β · T ≡ β|qTq, where χ is a multivalued angle that changes
by 2π when going around ω, and Tq, q = 1, . . . , N − 1 are the Cartan generators. As they
carry a single weight, these vortices are known as oriented (in the Cartan subalgebra). For
elementary center vortices, the tuple β is one of the magnetic weights βi (i = 1, . . . , N) of
the fundamental representation. In the region outside the vortex cores, Aμ is locally a pure
gauge configuration constructed with S0. Then, for fundamental quarks, the contribution
to a large loop contained in that region is i-independent and given by the elementary
center-element (1/N) tr

(
e−i2πβi ·T) = ei2π/N to the power L(ω, Ce). Different elementary

fluxes may join to form more complex configurations, provided this is done in a way that
conserves the flux. For example, N center-vortex guiding centers associated with different
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magnetic weights βi can be matched. For simplicity, let us consider the SU(3) case in three
dimensions and a configuration characterized by S0 = eiχ1β1·Teiχ2β2·T , where χ1 and χ2
are multivalued when going around the closed worldlines ω1 and ω2, respectively. These
worldlines could meet at a point, then follow a common open line γ, and again bifurcate to
close the corresponding loops. In this case, we would have a pair of fluxes entering the
initial point, carrying the fundamental weights β1, β2, and a flux leaving along γ, carrying
the weight β1 + β2. In SU(3), this sum is an antifundamental weight −β3. In other words,
there are three fluxes entering the initial point, which carry the three different fundamental
weights β1, β2, β3. This can be readily generalized to SU(N), where N fluxes carrying
the different fundamental weights can meet at a point, as these weights satisfy ∑i βi = 0.
Vortices may also be non-oriented [37], in the sense that they may not be described by
a single weight. In this case, the center-vortex components with different fundamental
weights are interpolated by instantons in 3d and monopole worldlines in 4d. These lower
dimensional junctions, which carry a flux of the form βi − β j, should be weighted with
additional phenomenological terms in S(ω). Furthermore, in the 4d case, three monopole
worldlines carrying fluxes βi − β j, β j − βk, βk − βi can be matched at a spacetime point.
Similar higher-order matching rules are also possible. In what follows, we shall discuss the
different ensembles, starting with the simplest possibilities in 3d and 4d.

3. Abelian Effective Description of Center Vortices

In this section, we shall briefly discuss center-vortex ensembles formed by diluted
closed worldlines in 3d (Section 3.1) or worldsurfaces in 4d (Section 3.2), characterized by
no other properties than tension, stiffness, and vortex–vortex interactions. No additional
degrees of freedom, matching rules or correlations with lower dimensional objects will be
considered here.

3.1. Three Dimensions

In a planar system, thin center vortices are localized on points, so they are created
or annihilated by a field operator V̂(x). The emergence of this order parameter can be
clearly seen by applying polymer techniques to center-vortex worldlines [38]. In [39],
the center-element average for fundamental quarks, over all possible diluted loops, was
initially represented in the form

〈ZF(Ce)〉 = N
∫
[Dψ] e−W[ψ] e

∫ ∞
0

dL
L
∫

dx
∫

du Q(x,u,x,u,L) , (11)

where Q(x, u, x0, u0, L) is the integral over all paths with length L, starting (ending) at x0
(x) with unit tangent vector u0 (u), in the presence of scalar and vector sources ψ and 2π

N sμ,
and weighted by tension and stiffness. The factor W[ψ] = ζ

2

∫
d3x ψ2(x) generates, upon

integration of the auxiliary scalar field ψ, repulsive contact interactions between the loops
with strength given by the parameter 1

ζ . Indeed, as in the exponential we have x = x0,
u = u0, its expansion generates the diluted loop ensemble. As usual, the factor 1/L is
to avoid loop overcounting when choosing x0 on a given loop. The external source sμ is
localized on a surface S(Ce) whose border is the Wilson loop. As a consequence, it generates
the intersection numbers between the loop-variables in Q and S(Ce), which coincide with
the different linking-numbers. Using the large-distance behavior of Q(x, u, x0, u0, L), which
satisfies a Fokker–Planck diffusion equation (given by Equations (A1) and (A7), with
bμ Abelian, and D(Γγ[bμ]) being the complex number Γγ[bμ]) we then showed that the
ensemble average of center elements becomes represented by a complex scalar field V(x),

〈ZF(Ce)〉 ≈ N
∫
[DV][DV̄] e−

∫
d3x
[

1
3κ DμVDμV+ 1

2ζ (VV−v2)2
]

,

v2 ∝ −μκ > 0, Dμ = ∂μ − i
2π

N
sμ . (12)
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This was obtained for small (positive) stiffness 1/κ and repulsive contact interactions.
The scalar field V is originated due to the approximate behavior of Q(x, u, x0, u0, L) in
Equation (A12), which turns the exponential in Equation (11) into a functional determinant.
The squared mass parameter of this field is proportional to κμ, where μ is the center-vortex
tension. For percolating objects (μ < 0), the U(1) symmetry of the effective field theory is
spontaneously broken (κμ < 0). Among the consequences, we have:

1. In the center-vortex condensate, the effective description is dominated by the soft
Goldstone modes, V(x) ∼ v eiφ(x). Then, the calculation of the center-element average
is neither Gaussian nor dominated by a saddle-point, as it involves a compact scalar
field φ and large fluctuations;

2. This is better formulated in the lattice, where the Goldstone mode sector is governed
by a 3d XY model with frustration

S(3)
latt = β̃ ∑

x,μ
Re
[
1 − eiγ(x+μ̂)e−iγ(x)e−iαμ(x)

]
. (13)

The external source in Equation (12) translates into the frustration eiαμ(x) = ei 2π
N if

S(Ce) is crossed by the link and is trivial otherwise;
3. In the expansion of the partition function, due to the measure ∏x

∫ π
−π dγ(x), the terms

that contribute contain products of the composite eiγ(x+μ̂)e−iγ(x) (or its conjugate)
over links organized forming loops. Otherwise, the integrals over the site variables at
the line edges vanish (see Figure 1);

4. Due to frustration, every time Ce is linked, a center element is generated. Then, in
the lattice, the closed center-vortex worldlines in the initial ensemble, which led to
Equation (11) and gave origin to the effective description (12), are represented by the
loops of item 3.

This point of view will be useful to propose other ensemble measures relying on lattice
models, as in the case where the derivation of the effective description is not known, see for
example Sections 3.2 and 5.3. It is also interesting to see that the initial ensemble properties
encoded in Equation (11) are recovered close to the 3d XY model critical point, as expected.
Indeed, using the same techniques reviewed in [40] for the case without frustration, the
partition function may be formulated in terms of integer-valued divergenceless currents,
originated after using the Fourier decomposition

eβ cos γ =
∞

∑
b=−∞

Ib(β)eibγ , (14)

at every lattice link. The resulting expression turns out to be equivalent to a grand canonical
ensemble of non-backtracking closed loops formed by currents of strength |bμ| = 1. In
the model without frustration, close to the critical point βc ≈ 0.454 (continuum limit), the
relevant configurations are known to be formed by large loops rather than by multiple
small loops, and multiple occupation of links is disfavored, thus making contact with the
initial properties parametrized in the ensemble (see Table 1 below).

Table 1. The correspondence between the effective field and 3d XY model representations of the
Abelian center−vortex ensemble.

3d XY Effective Fields

large loops are favored negative tension μ
multiple small loops are disfavored positive stiffness 1/κ

multiple occupation of links is disfavored repulsive interactions
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(a) (b)

Figure 1. The Wilson loop and the frustration are represented in red and green, respectively. Configu-
rations of type (a), which involve sites joined by open lines, do not contribute to the partition function.
Only site configurations joined by loops, like the one in (b), contribute (with a center-element).

3.2. Four Dimensions

Regarding the effective description of 4d ensembles based on random surfaces, as
in the 3 + 1 dimensional world center vortices are one-dimensional objects spanning
closed worldsurfaces, the emergent order parameter would be a string field. However,
unlike the 3d case, a derivation starting from the ensemble of closed worldsurfaces with
stiffness is still lacking. Such generalization should initially describe a growth process
where a surface is generated, and then derive a Fokker–Planck equation for the lattice
loop-to-loop probability. Similarly to what happens with end-to-end probabilities for
polymers, where stiffness is essential to get a continuum limit when the monomer size
goes to zero [41,42], curvature effects are expected to be essential for the continuum limit
of triangulated random surfaces. Indeed, ensembles of surfaces which consider only the
Polyakov (or Nambu-Goto) action leads to a phase of branched polymers [43,44]. On the
other hand, in [45], the phase fluctuations of an Abelian string field with frozen modulus
were approximated by a lattice field theory: the U(1) gauge-invariant Abelian Wilson action.
In other words, the Goldstone modes for a condensate of one-dimensional objects are gauge
fields. Motivated by this enormous simplification and by an analogy with the 3d case,
in [46] we proposed a Wilson action with frustration as a starting point to define a measure
for percolating center vortices in four dimensions. This proposal will be discussed in
Section 5.3. For the time being, we summarize the main initial steps, which are analogous
to items 1–4 in Section 3.1:

1. In the center-vortex condensate, the effective theory is dominated by the soft Gold-
stone modes, which are represented by an emergent compact Abelian gauge field
Vμ ∈ U(1). In the center-vortex context, we proposed another natural one based on
Vμ ∈ SU(N) (see Section 5.3);

2. The lattice version of the Goldstone mode sector is given by a Wilson action
with frustration;

3. In the expansion of the partition function, the relevant configurations to compute the
gauge model correspond to link-variables on the edges of plaquettes organized on
closed surfaces (see Figure 2);

4. The frustration is non-trivial on plaquettes x, μ, ν that intersect S(Ce). Every time a
closed surface links Ce, a center-element for quarks in the representation D is generated.

Thus, the main simplification in 4d is that, in a condensate, the effective description
can be captured by a local field. Similarly to 3d, where the soft modes can be read in
the phase of the vortex field V(x) ∼ v eiγ(x), the natural soft modes in 4d are given by a
compact gauge field,

V(C) ∼ v eiγΛ(C), γΛ(C) =
∮

C
dxμ Λμ . (15)
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(a) (b)

Figure 2. (a) Configurations formed by link variables distributed on plaquettes organized on an
open surface do not contribute, as the Vμ link−variables at the surface edges cannot form singlets;
(b) when they are organized on closed surfaces, singlets can be formed and the group−integral is
non−trivial.

4. Center-Vortex Gauge Fields, Matching Rules, and Correlations

The simplest center-vortex ensembles discussed in Section 3 could provide an impor-
tant basis to understand the confinement mechanism at asymptotic distances. However,
they do not contain enough ingredients to reproduce more intricate properties. In this
section, we shall discuss the center-vortex gauge fields and typically non-Abelian elements
that could characterize the associated ensembles.

4.1. Thick Center Vortices and Intermediate Casimir Scaling

Before discussing generalized center-vortex ensembles with matching rules and non-
oriented components, let us recall how the consideration of center-vortex thickness and
the natural non-Abelian orientations in the gauge group can account for the observed
Casimir scaling at intermediate distances. Some ideas along this line were initially pursued
in [47]. In [26,27] (see also [48]), a simple model was put forward in the lattice, where the
contribution to a planar Wilson loop along a curve Ce was modeled. The starting point
is to postulate an ensemble of thick center vortices whose total flux, as measured by a
fundamental holonomy, have different possibilities zj = ei2π j/N , j = 1, . . . , N − 1. When a
thick center vortex is partially linked, the contribution to the Wilson loop is given by the
insertion of a group element Gj(x, S) that depends on the location (x) of the center-vortex
midpoint (or guiding center) with respect to Ce. It also depends on a group orientation S,

Gj(x, S) = SGj(x)S† , (16)

where Gj = exp
[
i αj · T

]
is in the Cartan subgroup and the tuples αj are formed by

model-dependent scalar profiles. These profiles implement the natural condition that
Gj(x, I) = zj IN , if the thick center vortex is fully enclosed by Ce, it is IN if it is not enclosed
at all, and it gives an interpolating value otherwise. After averaging over random group
orientations in [26,27], they arrived at

σCe(D) ≡ −∑
x

1
A

ln(1 −
N−1

∑
j=0

f j(1 − 1
D

Tr D
( Gj
)
)) , (17)

where f j is the probability that a given plaquette of the planar surface enclosed by Ce
be pierced by the midpoint of a center-vortex of type j, σCe(D) is the string tension in
representation D, and A is the minimal area of Ce. At intermediate distances, after some
natural approximations, an appropriate choice of profiles, and using the key formula

Tr (D(Tq)D(Tp)) = D δqp
C2(D)

N2 − 1
, (18)
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the Casimir Scaling
σI(D)

σI(F)
=

C2(D)

C2(F)
(19)

was obtained. In [26,27], based on a specific choice of probabilities and profiles, it was
also possible to reproduce different asymptotic behaviors, such as the Casimir and the
Sine law. In Section 5, we shall review a different line based on oriented and non-oriented
center vortices, which naturally lead to an asymptotic Casimir law. As these models are
generated from weighted center-element averages, they are expected to be applicable in
the asymptotic region.

4.2. Center-Vortex Sectors in Continuum YM Theory

Center vortex correlations were considered for the first time in [3]. In (2 + 1)d
Minkowski spacetime, the order–disorder algebra in Equation (2) says that the action
of V̂(x) on |A〉 gives

ŴF(Ce)
(
V̂(x)|A〉) = ei 2π

N WF(Ce)
(
V̂(x)|A〉) , (20)

if x is encircled by Ce, and it leaves the state |A〉 unaltered otherwise. Here, |A〉 is a state
with well-defined shape in the Weyl gauge A0 = 0, That is, V̂(x)|A〉 is a state where a thin
center-vortex is created on top of Ai. In particular, the action of V̂N(x) is trivial. Then, the
possible phases were effectively described by a model with magnetic Z(N) symmetry

L = ∂μV̄ ∂μV + m2 V̄V +
λ

2
(V̄V)2 + ξ (VN + V̄N) . (21)

This includes quadratic and quartic correlations, as well as the N-th order terms
that capture the possibility that N vortices may annihilate. The case m2 > 0 would
correspond to a Higgs phase where center vortices are in the spectrum of asymptotic
states. The case m2 < 0 corresponds to a center-vortex condensate, with N degenerate
classical vacua, so that Z(N) is spontaneously broken. For a detailed analysis of this
effective description, see [49,50]. In [3], based on the center-vortex operator definition
V̂(x)|A〉 = |AS〉, discussed in Section 1, 3d Euclidean vortex Green’s functions 〈V̄(y)V(x)〉
were defined. This was done by considering the YM path-integral over configurations Aμ

with boundary conditions around the pair of points x, y ∈ R
3, such that a vortex is created

at x, it is then propagated, and finally annihilated at y. When |x − y| → ∞, an exponential
decay would correspond to a Higgs phase and 〈V〉 = 0, because of the clustering property.
This agrees with the discussion above, where the Higgs phase m2 > 0 is characterized by a
Z(N) symmetric vacuum. On the other hand, a condensate would correspond to a Green’s
function that tends to a constant.

Now, from the definition of the operator V̂(x), it is clear that it introduces singularities
in the gauge fields. If A is smooth, the configuration AS is singular, with a field strength
containing a delta-singularity at the center vortex location x. As pointed out by ’t Hooft,
the operator’s definition could be made more precise by smearing the singularities over
an infinitesimal region around x. Otherwise, we would be working with singular infinite
action gauge fields. Although this direction was not pursued in that work, the smeared
Green’s functions could depend on the choice of boundary conditions, for the mapping
S ∈ SU(N), around x and y. In other words, the vortex field V̂ could hide non-Abelian
degrees of freedom which are not evidenced by the algebra in Equation (2), which only
depends on properties with respect to the Wilson loop.

In [51], we proposed a partition of the full configuration space of smooth gauge fields
{Aμ} into sectors V(S0) ⊂ {Aμ} characterized by topological labels S0. For this objective,
we introduced Nf auxiliary adjoint scalar fields ψI by means of an identity in the YM
path integral, which constrain them to be a solution to a classical equation of motion for
the minimization of an auxiliary action Saux(ψI , A). Imposing regularity and boundary
conditions, the solution ψI(A) is unique, and can be decomposed by means of a gener-
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alized polar decomposition ψI(A) = SqIS−1, where S(x) ∈ SU(N) and (q1, . . . , qNf) is a
“modulus” tuple. The phase defects cannot be eliminated by regular gauge transformations
U, which act on the left S → US. A gauge field is then said to belong to a given sector
V(S0) if S(A) is equivalent to a class representative S0. The continuum of possible labels
S0 are characterized by the location of oriented and non-oriented center-vortex guiding
centers, with all possible matching rules (see the discussion in Section 2). Although a
possible label for an oriented center-vortex would be S0 = eiχβ·T , a typical non-oriented
configuration is characterized by S0 = eiχβ·TW. In 3d, close to some points (instantons)
on the center-vortex worldline generated by eiχβ·T , the mapping W behaves as a Weyl
transformation that changes the fundamental weight β to β′. Similarly, in 4d, the change
occurs at some monopole worldlines on the center-vortex worldsurfaces generated by
eiχβ·T (see [46]). The full YM partition function and averages of observables were then
represented by a sum over partial contributions,

ZYM = ∑
S0

Z(S0)
, 〈O〉YM =

1
ZYM

∑
S0

∫
V(S0)

[DAμ]O e−SYM . (22)

Here, ∑S0
is a short-hand notation for the contribution originated from the continuum

of labels S0. These ideas provided a glimpse of a path connecting first principles Yang–Mills
theory to an ensemble containing all possible center-vortex configurations. In addition
to addressing this important conceptual issue, the partition into sectors may circumvent
the well-known Gribov problem when fixing the gauge in non-Abelian gauge theories, as
Singer’s no go theorem [52] only applies to global gauges in configuration space (see [53]
for a detailed discussion). In [51], the gauge was locally fixed by a regular gauge transfor-
mation that rotates S to the reference S0, which is imposed by a sector dependent condition
fS0(ψ) = 0. Furthermore, the theory was shown to be renormalizable in the vortex-free
sector [54]. The extension of the renormalization proof to sectors labeled by center vortices
is under way, and will be presented elsewhere. An interesting consequence of this con-
struction is that a new label may be generated by the right multiplication, S0 → S0Ũ−1,
with regular Ũ, which is not necessarily connected to S0 by a regular gauge transformation.
That is, given a center-vortex sector, there is a continuum of physically inequivalent sectors
characterized by non-Abelian d.o.f. where the defects are located at the same spacetime
points. In the context of effective Yang–Mills–Higgs models, which describe the confining
string as a smooth topological classical vortex solution, the presence of similar internal
d.o.f. was previously noted in a large class of color-flavor symmetric theories [55–64].

5. Mixed Ensembles of Oriented and Non-Oriented Center Vortices

The general properties of center vortices discussed so far motivate the search for
a natural ensemble that captures all the asymptotic properties of confinement. Among
them, the formation of a confining flux tube is the most elusive one in this scenario.
The formation of this object would also explain the Lüscher term, which has not been
observed in projected center-vortex ensembles. Furthermore, the asymptotic Casimir law
(cf. Equation (7)) should be reproduced in 3d, while in 4d we would like to understand
the coexistence of N-ality with the Abelian-like flux tube profiles [32–34]. It is clear that a
confining flux tube requires an ensemble whose effective description contains topological
solitons, namely, a confining domain wall in (2 + 1)d and a vortex in (3 + 1)d. However,
the simple models of oriented and uncorrelated center vortices discussed in Section 3
do not have the conditions to support these topological objects1. In what follows, we
shall review how the inclusion of the center-vortex matching rules and correlations with
lower dimensional defects (see Sections 2 and 4.2) could fill the gap between center-vortex
ensembles and the formation of a flux tube. In [65,66], lattice studies showed that the
4d Abelian-projected lattice is not represented by a monopole Coulomb gas, but rather
by collimated fluxes attached to the monopoles. In the continuum, these configurations
correspond to the previously discussed non-oriented center vortices. While in 4d the lower
dimensional defects on center-vortex worldsurfaces are monopole worldlines, in 3d they
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are instantons. The relevance of non-oriented center vortices to generate a non-vanishing
Pontryagin index was shown in [37]. Now, although oriented and non-oriented center
vortices, located at the same place, would contribute to a large Wilson loop with the same
center-element, it is natural to weight them with different effective actions. In the second
case, the measure should also depend on the location of the lower-dimensional defects.

5.1. 3d Ensemble with Asymptotic Casimir Law

In this section, we review the mixed ensembles formed by oriented and non-oriented
center-vortices with N-line matching rules introduced in [67]. In that reference, to prepare
the formalism so as to include the different correlations, we initially wrote the contribution
to the Wilson loop of a thin center-vortex loop l as

WD(Ce)|loop =
1
N

Tr Γl [bCe
μ ], Γγ[bμ] = P{ei

∫
γ dxμbμ} , (23)

where bCe
μ = 2πβe · T sCe

μ , βe is the highest magnetic weight of D, and sCe
μ is a source

localized on Ce. Here, we use the notation βe · T = βe|qTq, with Tq, q = 1 . . . , N − 1 being
the Cartan generators of SU(N). Then, after weighting each loop with a phenomenological
factor e−S(l) accounting for tension and stiffness (cf. Equation (10)), and summing over all
possible diluted loops, we obtained the center-element average

〈ZD(Ce)〉 = e
∫ ∞

0
dL
L
∫

dx
∫

du tr Q(x,u,x,u,L) , (24)

where Q(x, u, x0, u0, L) is the integral over all the paths with length L that begin at x0 with
unit tangent vector u0, and end at x with orientation u. This is given by Equation (A1), using
as D the fundamental representation. This object satisfies a non-Abelian diffusion equation
whose large κ-limit (small stiffness) solution (cf. Equation (A12)) led to approximate
Equation (24) by

〈ZD(Ce)〉 ≈ Zloops = N
∫
[dφ] e−

∫
d3x φ†Oφ, O = − 1

3κ
(IN∂μ − ibCe

μ )2 + μIN , (25)

where φ is an emergent complex scalar field in the fundamental representation.
One basic defining property of center vortices is that N such objects can be virtually

created out of the vacuum at x0 and then annihilated at x. At the level of the gauge fields,
this is related to the possibility of matching N guiding centers each one carrying a different
fundamental magnetic weight βi, i = 1, . . . , N, which satisfy β1 + . . . + βN = 0. Then,
to incorporate all possible oriented center-vortex line matchings (see Section 5.1.1), we
expanded the loop ensemble in Equation (25) considering the N types of weights, each
one represented by a fundamental field φi, i = 1, . . . , N. At this point, the center-element
average over loops was generated from the partition function

ZN
loops =

∫
[DΦ†][DΦ] e−

∫
d3x[ 1

3κ Tr((DμΦ)†DμΦ)+μTr(Φ†Φ)] , (26)

where Φ is a complex N × N matrix with components Φij = φj|i.

5.1.1. Including N-Vortex Matching

The contribution to the Wilson loop of N center-vortex worldlines starting at x0 and
ending at x, and carrying different weights, was rewritten as

WD(Ce)|N−lines =
1

N!
εi1...iN εi′1...i′N Γγ1 [b

Ce
μ ]|i1i′1

. . . ΓγN [b
Ce
μ ]|iNi′N . (27)
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By weighting each line in Equation (27) with the factor e−S(γi), and integrating over
paths with fixed endpoints and over all the lengths Li (cf. Equation (A13)), we obtained

CN ∝
∫

d3xd3x0 εi1...iN εj1...jN G(x, x0)i1 j1 . . . G(x, x0)iN jN , (28)

where G(x, x0) is the Green’s function of the operator O. In this manner, the N-line
contribution in Equation (28) and similar processes were generated by adding a term
∝ (det Φ + det Φ†). The effective description thus obtained is separately invariant under
local and global SU(N) symmetries Sc(x), S f ∈ SU(N)

Φ → Sc(x)Φ, bμ → Sc(x)bμS−1
c (x) + iSc(x)∂μS−1

c (x) ,

Φ → ΦS f . (29)

In the effective description, other natural terms compatible with these symmetries,
like the vortex–vortex interaction Tr(Φ†Φ)2, should also be included, thus leading to the
center-element average 〈ZD(Ce)〉 = Zv[bCe

μ ]/Zv[0],

Zv[bCe
μ ] =

∫
[DΦ†][DΦ]e−

∫
d3x
[

1
3κ Tr((DμΦ)† DμΦ)+μTr(Φ†Φ)+

λ0
2 Tr(Φ†Φ)2−ξ0(det Φ+det Φ†)

]
. (30)

This effective description has some similarities with the ’t Hooft model (cf. Equation (21)).
More specifically, they coincide for configurations of the type Φ = VIN . However, there
is no reason for the path-integral to favor this type of restricted configuration. Up to this
point, in the percolating phase (μ < 0), the quadratic and quartic terms tend to produce a
manifold of classical vacua labeled by U(N), while the addition of the det Φ-interaction
reduces this manifold to SU(N). Then, unlike the ’t Hooft model, in the SSB phase this
effective description has a continuum set of classical vacua which precludes the formation
of the stable domain wall. It is interesting to formulate the Goldstone modes V(x) ∈ SU(N)
in the lattice, which leads to

S(3)
latt(b

Ce
μ ) = β̃ ∑

x,μ
Re
[
I− ŪμV(x + μ̂)V†(x))

]
, (31)

where Uμ(x) = ei2πβe·T ∈ Z(N), if the link x, μ crosses S(Ce), and it is the identity other-
wise. As expected, in the expansion of the partition function, besides the contribution of
sites distributed on links that form loops, there is also one originated from N lines that start
or end at a common site x. In the former case, the singlets are included in N ⊗ N̄, while in
the latter they are in the products of N V(x) or V†(x) (compare with the Abelian case in
Section 3.1). In this way, the rules originating Equation (30) can be recovered in the lattice.
This type of cross-checking is useful to better understand proposals of lattice ensemble
measures in situations where it is harder to derive the effective field description, like in
4d spacetime.

5.1.2. Including Non-Oriented Center Vortices in 3d

In terms of Gilmore–Perelemov group coherent-states (see [68,69] for a complete dis-
cussion or [46] for a summary of the main ideas) |g, ω〉 = g|ω〉, g ∈ SU(N),
Equations (23) and (27) became

WD(Ce)|loop ∝
∫

dμ(g) 〈g, ω|Γl [b
Ce
μ ]|g, ω〉 ,

WD(Ce)|N−lines ∝
∫

dμ(g)dμ(g0) 〈g, ω1|Γγ1 [b
Ce
μ ]|g0, ω1〉 . . . 〈g, ωN |ΓγN [b

Ce
μ ]|g0, ωN〉 . (32)

The first contribution can be thought of as associated to the creation of a center-vortex
with initial fundamental weight ω and group orientation g, which is propagated along
the closed worldline l, and is then annihilated. The second corresponds to N vortices
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with different magnetic weights βi = 2N ωi, i = 1, . . . , N, created out of the vacuum at a
spacetime point x0, that follow separate worldlines γi and then annihilate at x f . Following a
similar interpretation, and recalling that the center-vortex weights change at the instantons,
we introduced non-oriented center vortices. When a closed object is formed by n parts
γ1 ◦ γ2 ◦ . . . ◦ γn with n instantons at points x1 . . . xn, we considered the contribution

Cn =
∫

dμ(g1) . . .
∫

dμ(gn)〈g1, ω|g2, ω′〉〈g2, ω|g3, ω′〉 . . . 〈gn, ω|g1, ω′〉× (33)

× 〈g1, ω′|Γγn [b
Ce
μ ]|gn, ω〉 . . . 〈g3, ω′|Γγ2 [b

Ce
μ ]|g2, ω〉〈g2, ω′|Γγ1 [b

Ce
μ ]|g1, ω〉 .

Here, a center vortex is propagated along γ1 from x1, with orientation g1 and weight
ω, up to x2, with orientation g2 and weight ω′. At x2, keeping the orientation g2, the weight
changes to ω′, and then γ2 is followed, etc. This precisely characterizes a non-oriented
center vortex, where the flux orientation along the Cartan subalgebra changes. Additionally,
notice that |ω′〉〈ω| is the root vector Eα, which is in line with the presence of pointlike
defects carrying adjoint charge. Moreover, when the chain configuration links the Wilson
loop Ce, one of the holonomies Γγ1 , . . . , Γγn gives a center element, while all the others are
trivial, thus leading to the expected center-element for a chain, up to a positive and real
weight factor. Performing the integrals on the group, we arrived at an additional vertex and
the final formula for the ensemble average of WD(Ce), incorporating all the configurations
discussed so far,

〈ZD(Ce)〉 =
Z[bCe

μ ]

Z[0]
, Z[bμ] =

∫
[DΦ] e−Seff(Φ,bμ) , (34)

Seff(Φ, bμ) =
∫

d3x
(

Tr(DμΦ)†DμΦ + V(Φ, Φ†)
)

, Dμ = ∂μ − ibμ , (35)

V(Φ, Φ†) =
3
2

λ0κTr(Φ†Φ +
μ

λ0
IN)2 − ξ0(3κ)

N
2 (det Φ + det Φ†)− 3ϑ0κTr

(
Φ†TAΦTA

)
, (36)

where λ0, ξ0, ϑ0 > 0, and we have made the redefinition Φ → √
3κΦ of the field. When

vortices with positive stiffness percolate (1/κ > 0, μ < 0), a condensate is formed. In the
parameter region λ0 , ξ0 >> ϑ0, the most relevant fluctuations will be parametrized by
Φ ∝ S, S ∈ SU(N). It is interesting to check in the lattice how the different configuration
types are recovered. The additional non-oriented component in the discretized theory is
generated from the product of an adjoint variable arising from the new term

Tr
(

Φ†TAΦTA

)
∼ const. Tr(Ad(S)) , (37)

at a lattice site x, with the adjoint contribution in N ⊗ N̄ associated with V(x) and V†(x).

5.2. Saddle-Point Analysis in 3d

For non-trivial ϑ, the SU(N) classical vacua degeneracy is lifted, and the possible
global minima become discrete:

Φ = vZN , ZN = {ei 2πn
N ; n = 0, 1, . . . , N − 1} , (38)

6λ0κN
(

v2 +
μ

λ0

)
− 2ξ0(3κ)

N
2 NvN−2 − 3κϑ0(N2 − 1) = 0 . (39)

Thus, the presence of instantons opens the possibility of stable domain walls that
interpolate the different vacua. In this case, the calculation may be approximated by a
saddle-point expansion. Considering a large circular Wilson Loop Ce centered at the origin
of the x2 − x3 plane, the effect of the source is simply to impose the boundary conditions

lim
x1→−∞

Φ(x1, x2, x3) = vIN , lim
x1→∞

Φ(x1, x2, x3) = vei2πβe ·T , (0, x2, x3) ∈ S(Ce) . (40)
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In [67], we showed that the Ansatz

Φ = (η IN + η0β · T)eiθβ·Teiα (41)

closes the equations of motion, yielding scalar equations for the profiles η, η0, θ, α. Due to
the relation ei2πβe ·T = e−i 2kπ

N , the boundary conditions (40) may be imposed either by a
solution where α varies with θ constant, or vice versa. The first possibility is closely related
to the ’t Hooft model (cf. Equation (21)). In the second case, the θ variation is governed by
the Sine-Gordon equation

∂2
x1

θ =
3κϑ0

2
sin(θ) . (42)

In this manner, for quarks with N-ality k, we obtained the asymptotic Casimir Law

εk =
k(N − k)

N − 1
ε1 , (43)

where ε1 is proportional to the Sine-Gordon parameter 3κϑ0.

5.3. A 4d Ensemble with Asymptotic Casimir Law

Here, we review the ensembles of oriented and non-oriented center vortices in four
dimensions as proposed in [46]. In that study, instead of deriving the effective description
of center-vortex ensembles with negative tension and positive stiffness, we started the dis-
cussion from the natural Goldstone modes defined on the lattice (see also Section 3.2). The
missing steps are expected to be implemented by deriving diffusion loop equations includ-
ing the effect of stiffness. The lattice description of an Abelian ensemble of worldsurfaces
coupled to an external Kalb–Ramond field in the form

∫
dσ1dσ2 Bμν(X(σ1, σ2))Σμν(X(σ1, σ2)), Σμν =

∂Xμ

∂σ1

∂Xν

∂σ2
− ∂Xν

∂σ1

∂Xμ

∂σ2
, (44)

where Xμ(σ1, σ2) is a parametrization of the worldsurface, was obtained in [45]. This was
done in terms of a complex-valued string field V(C), where C is a closed loop formed by a
set of lattice links. The associated action is

SV = −∑
C

∑
p∈η(C)

[
V̄(C + p)UpV(C) + V̄(C − p)ŪpV(C)

]
+ ∑

C
m2V̄(C)V(C) . (45)

η(C) is the set of plaquettes that share at least one common link with C, while C + p
is the path that follows C until the initial site of the common link, then detours through
the other three links of p, and continues along the remaining part of C. In addition, the
coupling (44) originates the plaquette field Up = eia2Bμν(p). Then, the following polar
decomposition was considered

V(C) = w(C) ∏
l∈C

Vl , Vl ∈ U(1) , (46)

with a phase factor that has a “local” character, as it was written in terms of the holonomy
along C of gauge field link-variables Vl . Finally, when a condensate is formed (m2 < 0), it
was argued that the modulus is practically frozen2, so that w(C) ≈ w > 0. By using this
fact in Equation (45), the only links whose contribution do not cancel are those belonging
to p:

V̄(C + p)UpV(C) = w2 ∏
l∈C+p

∏
l′∈C

V̄lUpVl′ = w2Up ∏
l∈p

V̄l . (47)
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Thus,

S(4)
latt(αp) = β̃ ∑

p
Re

[
I− Ūp ∏

l∈p
Vl

]
. (48)

where the sum is over all plaquettes p and a constant was added such that the action
vanishes for a trivial plaquette. Then, the description of a loop condensate, where loops
are expected to percolate, is much simpler than that associated with a general phase. The
string field parameter gives place to simpler gauge field Goldstone variables Vμ = eiΛμ(l),
governed by a Wilson action with frustration Up. This was the starting input used in [46].
An external Kalb–Ramond field that generates the center elements when the simplest
center-vortex worldsurface link Ce is obtained by replacing Bμν → 2πk

N sμν, where k is the
N-ality of the quark representation D and

sμν =
∫

S(Ce)
d2σ̃μνδ(4)(x − X(σ1, σ2)) , (49)

d2σ̃μν =
1
2

εμναβ

(
∂Xα

∂σ1

∂Xβ

∂σ2
− ∂Xβ

∂σ1

∂Xα

∂σ2

)
dσ1dσ2 (50)

is localized on S(Ce). In the lattice, this localized source corresponds to a frustration
Up = eiαp , where αp = −2πk/N if p intersects S(Ce) and it is trivial otherwise. Similarly
to the 3d case, we can check a posteriori that the lattice expansion involves an average
of center elements over closed worldsurfaces (see Section 3.2). This is a consequence of
the properties of U(1) group integrals. This also applies to the non-Abelian extension
Vμ ∈ SU(N), governed by

Slatt
V (αμν) = β̃ ∑

x,μ<ν

Re tr
[

I − ŪμνVμ(x)Vν(x + μ̂)V†
μ (x + ν̂)V†

ν (x)
]

,

where plaquettes are denoted as usual. The closed surfaces are generated because N ⊗ N̄
contain a singlet. Interestingly, the SU(N) version has additional configurations where N
open worldsurfaces meet at a loop formed by a set of links. This is due to the presence
of a singlet in the product of N link variables. Therefore, the associated normalized
partition function

Zlatt
v [αμν]

Zlatt
v [0]

, Zlatt
v [αμν] =

∫
[DVμ] e−Slatt

V (αμν) (51)

is an average of the center elements generated when a Wilson loop in representation D is
linked by an ensemble of oriented center-vortex worldsurfaces with matching rules.

5.4. Including Non-Oriented Center Vortices in 4d

Although thin oriented or non-oriented center vortices contribute with the same center-
element to the Wilson loop, they are distinct gauge field configurations, with different
Yang–Mills action densities. It is then important to underline that the ensemble measure
could depend on the monopole component. In order to attach center vortices to monopoles,
we included dual adjoint holonomies defined on a “gas” of monopole loops and fused
worldlines. In this case, because of the integration properties in the group there are
additional relevant configurations like those of Figure 3a,b. The use of adjoint holonomies
is in line with the fact that monopoles carry weights of the adjoint representation (the
difference of fundamental weights), see [46,51].
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(a) (b) (c)

Figure 3. Non−oriented center vortices containing monopole worldlines. We show a configuration
that contributes to the lowest order in β̃ (a), and one that becomes more important as β̃ is increased
(b). A non-oriented center vortex with three matched monopole worldlines is shown in (c).

Then, partial contributions with n-loops were generated by

Zlatt
mix[αμν]

∣∣
p ∝

∫
[DVμ] e−Slatt

V (αμν) W (1)
Ad . . .W (n)

Ad

W (k)
Ad =

1
N2 − 1

tr
(

∏
(x,μ)∈ C latt

k

Ad
(
Vμ(x)

))
. (52)

In addition to the matching rules of N worldsurfaces, which in the continuum occur
as N different fundamental magnetic weights add to zero, monopole worldlines carrying
different adjoint weights (roots) can also be fused. For example, when N ≥ 3, three
worldlines carrying different roots that add up to zero can be created at a point. For this
reason, we also considered partial contributions to the ensemble like

Zlatt
mix[αμν]

∣∣
p ∝

∫
[DVμ] e−Slatt

V (αμν) Dlatt
3 , (53)

where Dlatt
3 is formed by combining three adjoint holonomies Ad(Γlatt

j ) (see Figure 3c).
Other natural rules involve the matching of four worldlines. Then, weighting the monopole
holonomies with the simplest geometrical properties (tension and stiffness), the lattice
mixed ensemble of oriented and non-oriented center vortices with matching rules can be
pictorially represented as

Zlatt
mix[αμν] =

∫
[DVμ] e−Slatt

V (αμν) × . . . (54)

where the dots represent possible combinations of holonomies as illustrated in Figure 4.
Then, noting that ei2πk/N = e−i 2π β·we , where β is a fundamental magnetic weight and

we is a weight of the quark representation D, we considered the naive continuum limit,
Vμ(x) = eiaΛμ(x), Λμ ∈ su(N),

Zmix[sμν] =
∫
[DΛμ] e

− ∫ d4x 1
4g̃2 (Fμν(Λ)−2πsμν βe·T)2

× . . . (55)

The dots represent all possible monopole configurations to be attached to center-vortex
worldsurfaces (see Figure 5). Each contribution was obtained using the methods in the
Appendix A. The first factor in Figure 5 (monopole loops) generates emergent adjoint fields
coupled to the effective field Λμ.
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Figure 4. Natural combinations of holonomies that can be used to model the mixed ensemble of
oriented and non-oriented center vortices. Each contribution is weighted with tension and stiffness.

Figure 5. Continuum limit of the monopole sector. The worldline contributions are obtained from
the solution to a Fokker–Planck diffusion equation.

For example, a diluted ensemble of a given species of monopoles, with tension μ̃ and
stiffness 1

κ̃ , is generated by

e
∫ ∞

0
dL
L
∫

d4x du tr Q(x,u,x,u,L) , (56)

where Q is given by Equation (A1) and D corresponds to the adjoint representation. In
the small-stiffness approximation, the non-Abelian diffusion equation for Q is solved by
Equation (A12), with

O = − π

12κ̃

(
∂μ − i Ad

(
Λμ

))2
+ μ̃IDAd

. (57)

Therefore, the factor in Equation (56) was approximated by

e−Tr ln O =
∫
[Dζ][Dζ†] e−

∫
d4x ((Dμζ †,Dμζ)+m̃2(ζ†,ζ))

m̃2 = (12/π) μ̃κ̃, Dμ(Λ) ζ = ∂μζ − i [Λμ, ζ] , (58)

where ζ is an emergent complex adjoint field, and we have introduced the Killing product
between two Lie algebra elements X, Y as (X, Y) ≡ tr(Ad(X)Ad(Y)). In the continuum,
the path-integral of Ad(Γ[Λ]) over shapes and lengths led to the Green’s function for the
operator O, so that fusion rules like the one in Equation (53) became effective Feynman
diagrams. Indeed, to differentiate the monopole lines that can be fused, the monopole loop
ensemble was extended to include different species. At the end, a set of real adjoint fields

227



Universe 2021, 7, 253

ψI ∈ su(N) emerged (I is a flavor index). This, together with the non-Abelian Goldstone
modes (gauge fields), led to a class of effective Yang–Mills–Higgs (YMH) models,

Zmix[sμν] =
∫
[DΛμ][Dψ] e

− ∫ d4x
[

1
4g2 (Fμν(Λ)−2πsμν βe·T)2

+ 1
2 (DμψI ,DμψI)+VH(ψ)

]
. (59)

The vertex couplings weight the abundance of each fusion type. Percolating monopole
worldlines (positive stiffness and negative tension) favor a spontaneous symmetry breaking
phase that can easily correspond to SU(N) → Z(N) SSB. This pattern has been extensively
studied in the literature (see [55–60,70–72] and references therein).

5.5. Analysis of the Saddle Point in 4d

In [73–75], we investigated a possible model containing N2 − 1 real adjoint scalar
fields ψI and Ad(SU(N)) flavor symmetry,

VH(ψ) = c +
μ2

2
(ψA, ψA) +

κ

3
fABC(ψA ∧ ψB, ψC) +

λ

4
(ψA ∧ ψB)

2 , (60)

where X ∧Y ≡ −i[X, Y]. This model includes some of the correlations previously discussed.
The case μ̃ = 0 is specially interesting. At this point, the classical vacua are

Λμ =
i
g

S∂μS−1, ψA = vSTAS−1 . (61a)

Then, the Higgs vacua manifold is Ad(SU(N)) and the system undergoes SU(N) →
Z(N) SSB, which leads to stable confining center strings. Interestingly, at μ̃ = 0, we were
able to find a set of BPS equations that provide vortex solutions whose energy is

ε = 2πg̃v2β · 2δ , (62)

where δ is the sum of all positive roots of the Lie algebra of SU(N). Using an inductive
proof based on the Young tableau properties, we showed that the smallest β · 2δ factor is
given by the k-A weight, the highest weight of the totally antisymmetric representation
with N-ality k. Then, for a general representation D(·) with N-ality k, the asymptotic string
tension satisfies

σ(D)

σ(F)
=

C2(k-A)

C2(F)
=

k(N − k)
N − 1

, (63)

which is one of the possible behaviors observed in lattice simulations. Furthermore, the radial
energy distribution transverse to the string is k(N − k) times the distribution for a Nielsen–
Olesen vortex. For k = 1, this agrees with the YM energy distribution of the fundamental
confining string, recently obtained from lattice Monte Carlo simulations [32–34].

6. Discussion

We reviewed ensembles formed by oriented and non-oriented center vortices in 3d
and 4d Euclidean spacetime that could capture the confinement properties of SU(N) pure
Yang–Mills theory. Different measures to compute center-element averages were discussed.
In 3d and 4d, they include percolating oriented center-vortex worldlines and worldsurfaces
that generate emergent Goldstone modes, which correspond to compact scalar and gauge
fields, respectively. The models also have the natural matching rules of N center vortices,
as well as the non-oriented component where center-vortex worldlines (worldsurfaces) are
attached to lower-dimensional defects, i.e., instantons (monopole worldlines) in 3d (4d).
In addition to the weighting center vortices with tension and stiffness, it is also natural to
include additional weights for the lower dimensional defects. In 4d, monopole matching
rules are also included. The corresponding effective field content and the SSB pattern may
lead to the formation of a confining center string, represented by a domain wall (vortex) in
two-dimensional (three-dimensional) real space. The Lüscher term is originated as usual,
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from the string-like transverse fluctuations of the flux tube. An asymptotic Casimir law
can also be accommodated. This asymptotic behavior was observed in 3d, while in 4d it is
among the possibilities.

More recently, the transverse distribution of the 4d YM energy-momentum tensor
Tμν and the field profiles have been analyzed at intermediate and nearly asymptotic
distances [32,34,76]. In [34], it was numerically shown that the Tμν tensor of the Abelian
Nielsen–Olesen (ANO) model cannot fit the SU(3) data at the vortex guiding center for
L = 0.46 fm (intermediate distance) and L = 0.92 fm (near asymptotic distance) at the same
time. In fact, in [34], it was shown that the components of the energy-momentum tensor at
the origin may not be accommodated for L = 0.46 fm. Then, on this basis, an ANO effective
model to describe the fundamental string was discarded. However, while it is clear that
an effective model for the confining flux tube should work at asymptotic distances, it is
not that obvious that the same model could be extrapolated to intermediate distances. By
intermediate distances we mean those where the string tension scales with the quadratic
Casimir of the quark representation. In particular, this is the region where adjoint quarks
are still confined by a linear potential, before the breaking of the adjoint string. On the
other hand, in the asymptotic region, gluonic excitations around external quarks in a given
irreducible representation D(·) may be created, so as to produce an asymptotic scaling law
that only depends on the N-ality of D(·). As discussed in this review, the effective field
descriptions were derived by considering the (weighted) average of center elements over
oriented and non-oriented center vortices, which is expected to be applicable at asymptotic
distances. In other words, we wonder if it is meaningful to discard possible effective
models on the basis of the lack of adjustment to lattice data on a wide range that includes
the intermediate region, where these models are not expected to fully capture the physics.
Additionally, note that the known mechanism to explain intermediate Casimir scaling is
based on including center-vortex thickness. In turn, these finite-size effects are not included
in the ensemble definition that leads to our effective model. Interestingly, while the lattice
data rule out the ANO model at intermediate distances L = 0.46 fm, such profiles are still
among the possibilities at the nearly asymptotic distance L = 0.92 fm. Accordingly, the 4d
SU(N) → Z(N) models we discussed in this review have a point in parameter space where
the infinite flux tube profiles Abelianize, while keeping all the required N-ality properties.
Additionally, the ideas presented in this review imply that not only an asymptotic Casimir
law should be observed, but also that the transverse confining flux tube profiles for quarks
in different representations should be the same, up to the asymptotic scaling law. This is
true for both 3d and 4d, with the profiles being of the Sine-Gordon type in 3d. It would be
interesting to test these predictions with lattice simulations.
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Appendix A. Non-Abelian Diffusion

Center vortices in 3 dimensions and monopoles in 4 dimensions are propagated along
worldlines in Euclidean spacetime. Then, the corresponding ensembles will naturally
involve the building block Q associated to a worldline with length L that starts at x0 with
orientation u0 and ends at x with final orientation u. This is given by

Q(x, u, x0, u0, L) =
∫
[dx(s)]x,u

x0,u0
e−S(γ) D

(
Γγ[bμ]

)
, (A1)

Γγ[bμ] = P{ei
∫

γ dxμbμ} , (A2)

229



Universe 2021, 7, 253

where S(γ) is a vortex effective action, and an interaction with a general non-Abelian
gauge field bμ was considered. We are interested in the specific form

S(γ) =
∫ L

0
ds
(

1
2κ

u̇μu̇μ + μ

)
, uμ(s) =

dxμ

ds
, (A3)

which corresponds to tension μ and stiffness 1/κ. These objects were extensively studied
in [46,77]. In what follows, we review the results obtained.

For the simplest center-vortex worldlines in 3d, D is the defining SU(N) represen-
tation, while for monopole worldlines in 4d, D corresponds to the adjoint. To derive a
diffusion equation for this object, the paths were discretized into M segments of length
ΔL = L/M. In this case, the path ordering was obtained from

P{e−
∫ L

0 dsH(x(s),u(s))} = e−H(xM ,uM)ΔL . . . e−H(x1,u1)ΔL, (A4)

where H(x, u) = −iD(uμbμ(x)). The relation between the building block QM associated to
a discretized path containing M segments of length ΔL and that associated with a path of
length L − ΔL is given by:

QM(x, u, x0, u0, L) =
∫

dnx′dn−1u′e−μΔLψ(u − u′)×
e−μΔLe−H(x,u)ΔLδ(x − x′ − uΔL) QM−1(x′, x0, u′, u0) , (A5)

with

ψ(u − u′) = N e−
1

2κ ΔL
(

u−u′
ΔL

)2

(A6)

arising from the discretization of the stiffness term. It acts like an angular distribution in
velocity space, which tends to bring u′ close to u. Expanding Equation (A5) to first order in
ΔL, and taking the limit ΔL → 0, the diffusion equation(

∂L − κσ

2
L̂2

u + μ + uμ(∂μ − iD(bμ)
)

Q(x, u, x0, u0, L) = 0 , (A7)

was obtained, to be solved with the initial condition

Q(x, u, x0, u0, 0) = δ(x − x0)δ(u − u0)ID . (A8)

D is the dimension of the quark representation D and L̂2
u is the Laplacian on the sphere

Sn−1. The constant σ is given, in n spacetime dimensions, by

σ =

√
π

2n−3

Γ
( n−2

2
)
Γ
(

n+1
2

)
Γ2
(

n−1
2

)
Γ
( n−3

2
)
⎛
⎝4Γ(n − 3)

Γ
( n−3

2
) − Γ(n − 1)

Γ
(

n+1
2

)
⎞
⎠ . (A9)

For the cases considered in this review (n = 3, 4), σ = 1, 2/π, respectively. In the limit
of small stiffness, there is practically no correlation between u and u0, which allowed for a
consistent solution of these equations with only the lowest angular momenta components:

Q(x, u, x0, u0, L) ≈ Q0(x, x0, L), ∂LQ0(x, x0, L) = −OQ0(x, x0, L) , (A10)

O = − 2
(n − 1)σκn

(∂μ − iD(bμ))
2 + μ, Q0(x, x0, 0) =

1
Ωn−1

δ(x − x0) , (A11)

Ωn−1 being the solid angle of Sn−1. This implies,

Q(x, u, x0, u0, L) ≈ 〈x|e−LO|x0〉 . (A12)
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Then, in this limit, we also have∫ ∞

0
dL du du0

∫
[Dx]x,u

x0,u0
e−S(γ) D(Γ[b]) =

∫ ∞

0
dL du du0 Q(x, u, x0, u0, L)

≈ 〈x|O−1|x0〉, O G(x, x0) = δ(x − x0) ID . (A13)

Notes

1 Namely, a SSB pattern with discrete classical vacua in (2 + 1)d and multiple connected vacua in (3 + 1)d.
2 Similarly to the 3d case, this phase should be stabilized by a quartic interaction.
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Abstract: In this review, we revisit our approach to constructing an effective theory for Abelian and
Non-Abelian gauge theories in 4D. Our goal is to have an effective theory that provides a simple
classical picture of the main qualitatively important features of these theories. We set out to ensure
the presence of the massless photons—Goldstone bosons in Abelian theory and their disappearance
in the Non-Abelian case—accompanied by the formation of confining strings between charged states.
Our formulation avoids using vector fields and instead operates with the basic degrees of freedom
that are the scalar fields of a nonlinear σ-model. The Mark 1 model we study turns out to have a large
global symmetry group-the 2D diffeomorphism invariance in the Abelian limit, which is isomorphic
to the group of all canonical transformations in the classical two dimensional phase space. This
symmetry is not present in QED, and we eliminate it by “gauging” this infinite dimensional global
group. Introducing additional modifications to the model (Mark 2), we are able to prove that the
“Abelian” version is equivalent to the theory of a free photon. Achieving the desired property in the
“Non-Abelian” regime turns out to be tricky. We are able to introduce a perturbation that leads to the
formation of confining strings in our Mark 1 model. These strings have somewhat unusual properties,
in that their profile does not decay exponentially away from the center of the string. In addition,
the perturbation explicitly breaks the diffeomorphism invariance. Preserving this invariance in the
gauged model as well as achieving confining strings in Mark 2 model remains an open question.

Keywords: confinement; higher order theories; gauge theory; effective field theory; magnetic
flux symmetry

1. Introduction

Understanding confinement in Non-Abelian gauge theories is a long standing the-
oretical problem. There is very little doubt that QCD is confining. One has very strong
indications of that from lattice gauge theory as well as from a variety of theoretical consider-
ations. Nevertheless, a satisfactory simple understanding of the confinement phenomenon
in 3 + 1 dimensional theories is still missing. By such an understanding, we mean a simple
qualitative picture that relies on universal concepts.

In 2 + 1 dimensions, such a picture does exist. In this low dimensionality, one is able
to directly relate confinement with a universal phenomenon of spontaneous symmetry
breaking. The symmetry in question is a discrete symmetry generated by the magnetic
flux [1–3]. The equivalence between confinement and a spontaneous breaking of magnetic
symmetry provides a simple classical picture of the formation of a confining string.

There is an additional feature of gauge theories in 2 + 1 dimensions that very much
facilitates their qualitative understanding. Namely, the effective description of confining
Non-Abelian gauge theories and Abelian nonconfining differs only by simple magnetic
symmetry breaking deformation. The magnetic symmetry in the Abelian case is a continu-
ous U(1) group but is a discrete group ZN in SU(N) gauge theories (without fundamental
matter). This reduction of symmetry is affected in the effective Lagrangian by the presence
of a simple deformation. The presence of this deformation, together with the spontaneous
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breaking of the discreet ZN group, unambiguously ensures an area law for Wilson loops
and thereby a confining potential at long distances [2–4].

This review is devoted to a recent work that aims at constructing an analogous
effective theory description in 3 + 1 dimensions. The goal here is to “guess” an effec-
tive description that would display features similar to the 2 + 1 dimensional case [5,6].
We design a model that embodies features of the transition between the Abelian and
Non-Abelian regimes, similar to 2 + 1 dimensions. Although it is not derived from QCD
per se and therefore is not a bona fide QCD effective theory, amusingly, it does have some
properties that have appeared before in the QCD context. In particular, the model has clear
similarities with the Faddeev–Niemi model, which has been proposed as an effective theory
of glueballs [7–11]. We note, however, that our perspective here is completely different,
and we are not concentrating on the interpretation of knots as glueballs [7–11].

Prior to introducing our effective model, we will give a short recap of the confining
physics in 2 + 1 dimensional gauge theories. Consider the simplest Abelian gauge theory—
QED with scalar Higgs fields. In addition to electric charge, it has a continuous magnetic
global symmetry. The generator of this Uμ(1) group is the total magnetic flux through
2D, Φ =

∫
d2xB(x). As any proper global symmetry, Uμ(1) has an order parameter.

In the present case, this is a complex field V, whose physical meaning is a field associated
with creation and annihilation of point-like magnetic vortices. In the Coulomb phase, its
expectation value does not vanish, 〈V〉 = v �= 0, and thus, the magnetic symmetry is
spontaneously broken. One can easily write down an effective low energy theory that
fits this simple symmetry breaking pattern and describes the low energy dynamics. The
relevant model is defined by the Lagrangian

L = −∂μV∂μV∗ − λ(V∗V − e2

8π
)2 (1)

The phase of the field V appears in Equation (1) as a Goldstone boson associated
with the spontaneous breaking of Uμ(1). This is nothing but the massless photon of
QED. Interestingly, although the electric charge did not figure prominently in constructing
Equation (1), it is indeed present in this description in the shape of the topological charge—
the winding number of the field V

Jμ =
1
e

εμνλ∂νV∗∂λV (2)

A charged state of QED in the low energy description appears as a topological soli-
ton of V: V(x) = veiθ(x), with θ = tan−1 y/x. This description is frequently called a
“dual” description as the basic fields used here are dual of the fields in the original QED
Lagrangian, but a more physical view is that the Lagrangian Equation (1) is merely an
effective low-energy long-distance Lagrangian of QED with scalar fields.

Equation (1) is a good starting point for understanding the confinement in Non-
Abelian gauge theories. Recall that in 2 + 1 dimensions, confining theories have a weakly
coupled regime. For example, the SU(N) Higgs model at weak coupling is confining in
the weakly coupled case. The appropriate low energy description for this theory is almost
identical to Equation (1), with one important difference, i.e., an additional perturbation
that breaks the magnetic Uμ(1) symmetry down to ZN

L = −∂μV∂μV∗ − λ(V∗V − e2

8π
)2 + μ(VN + V∗N) (3)

The presence of this additional potential has the effect of reducing the number of
degenerate vacua of the Abelian theory (which is infinite) to a finite number of states
connected by the ZN symmetry transformations. The effect of this reduction on the energy
of a charged state is profound. A rotationally invariant “hedgehog” configuration now
has an infinite energy proportional to the volume of the system. The lowest state with the
nonvanishing winding number (“color charge”) is not rotationally invariant anymore but
instead has the winding concentrated within a quasi one-dimensional “flux tube” [2,3]. Its
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energy is proportional to the length of the flux tube and thus leads to linear confinement
of charges.

The identification of electric (or “color”) charges with topological defects in the effec-
tive theory is intuitively very appealing. Topological defects naturally have long range
interactions due to their inherently nonlocal nature, which, in conjunction with sponta-
neous symmetry breaking, leads directly to linear confinement. Additionally, the identifica-
tion of photons with Goldstone bosons in the Abelian limit furnishes a natural universal
explanation for the fact that the photon is strictly massless.

The question arises if a similar description can be achieved in 3 + 1 dimensions. One
would like this description to encompass the Goldstone boson nature of photons in QED
as well as an interpretation of confinement in terms of topological charges in Non-Abelian
theories. Of course, life in 3 + 1 dimensions is not at all that simple. First off, photons
now are vector particles and thus, their interpretation as Goldstone bosons in the standard
sense is questionable. Even if one successfully argues in favor of this, identification of
the relevant conserved current that breaks spontaneously is far from straightforward.
Clearly, this current has to be intimately tied with the dual field strength F̃μν since the
photon is a spin one particle [12]. The identification of photons as Goldstone bosons of
this higher form symmetry was achieved a while ago in [12] and was revived recently
in [13]. The dual field strength, however, is an object of a very different nature than
an ordinary vector current since no local order parameter that carries its charge can be
defined even in principle. One might hope that a more conventional picture of symmetry
breaking coexists with the “generalized symmetry” explanation, and it would be useful
to clarify this. Another significant stumbling block is that we do not know of weakly
coupled confining theories in 3 + 1 dimensions. QCD is certainly strongly interacting while
a classical effective description of the type described before is directly applicable only for a
weakly interacting theory.

These are hard problems to solve, much too hard for the present modest attempt.
Instead of addressing them head on here, we will largely ignore them and instead will
simply try to construct a model that encompasses the basic properties described above:

1. The degrees of freedom of the model must be scalar fields, and no fundamental
gauge fields should be involved.

2. A well-defined “Abelian regime” should be clearly definable. In this regime, two
massless degrees of freedom should exist. These massless particles should be Goldstone
bosons and as far as possible must have the properties of photons.

3. The Abelian regime should allow for the existence of classical topological solitons
associated with the nontrivial topology of the manifold of vacua. These solitons represent
electrically charged particles. More precisely, we would like the topological charge of the
solitons to be associated with the mapping of the spatial infinity onto the manifold of
vacua and thus be identified with Π2(M). Charged particles in QED are excitations of
finite energy, and thus, the classical energy of the solitons must be infrared finite, and more
precisely, the energy density of a soliton solution away from the position of the soliton
must decrease as the fourth power of the distance. This is nontrivial in 3 + 1 dimensions
since our model has no gauge fields, while scalar fields that contribute to Π2 have to be
long range.

4. A “Non-Abelian regime” of the model is achieved by adding a perturbation that
breaks explicitly the symmetry, which leads to the appearance of Goldstone bosons in
the Abelian case. The Goldstone bosons now disappear from the spectrum or, more
precisely, acquire a finite mass. In addition, in this Non-Abelian situation, the solitons do
not disappear on small spatial scales, but they must become confined by a linear potential.
The linear potential should arise due to the formation of a “string” or “flux tube” with
finite linear energy density between the solitons.

In the first part of this review, we discuss a model (Mark 1) that exhibits all the above
features. The Abelian version of the model has, in fact, been studied some years ago
from a completely different perspective in [14] as a possible variation of Maxwell’s theory.
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The properties of this model turn out to be a little unusual. In particular, as we will see,
requiring the energy of a soliton in the Abelian regime to be finite puts a very strong
restriction on possible forms of the kinetic term for the scalar fields. This noncanonical
kinetic term results in rather unusual properties of confining strings once the symmetry
breaking perturbation is introduced. In particular, the “Non-Abelian string” is forced into
having an infinite number of zero modes. This infinite degeneracy can be avoided, but the
price one has to pay is adding another perturbation that does not have a natural place in
the paradigm described above.

Although the model has many nice features, it does not perfectly emulate many
properties of gauge theories. Most importantly, in the Abelian regime, it has more classical
solutions than allowed by the structure of Abelian gauge theories; in particular, some of
them carry nonvanishing magnetic charge density. Thus, the field playing the role of the
dual field strength tensor is not conserved in Mark1. A related problem is that we are not
able to find classical solutions that can represent arbitrary multiphoton states. Although
solutions of equations of motion that behave as single photons can be constructed, we
show that there are no solutions that correspond to a two-photon state with arbitrary
photon polarization.

This is partly due to the fact that the global symmetry group of the model turns
out to be much larger than naively anticipated. The global symmetry group turns out to
be isomorphic to diffeomorphism symmetry in two dimensions. These diffeomorphism
transformations act nontrivially on the Hilbert space even though the fields that we identify
with the electric and magnetic fields of QED are invariant under their action. QED does
not possess such a large global symmetry.

We then discuss an approach devised to eliminate this global symmetry, which
amounts to “gauging” it. The framework we work in is very different from the usual
gauge theories, where “gauging” amounts to eliminating a set of local degrees of freedom.
In our case, gauging applies only to global group of transformations and therefore does
not change the number of local degrees of freedom.

Unfortunately, although we are able to eliminate the global diffeomorphisms from
the model, it turns out not to be enough to bring it into full conformity with QED. We,
therefore, take a different track and discuss a modification (Mark 2), which circumvents this
obstacle. We show that the the model Mark 2, which shares many features with Mark 1, is
indeed equivalent to the theory of a free Maxwell field in 3 + 1 dimensions. However, even
though we are able to reproduce the Abelian limit, introducing a reasonable Non-Abelian
perturbation turns out to be quite tricky. We make some comments on how this can be
achieved, but the implementation is left for the future.

2. The Abelian Model: Mark 1

2.1. The Field Space and the Lagrangian

As explained in the introduction, our aim is to devise a model containing scalar fields
only with two massless degrees of freedom, which allows for finite energy solitons. We,
thus, zero in on a theory of two scalar fields. In order to have a chance to get Goldstone
bosons, we endow it with SU(2) symmetry. The simplest option open for us is an O(3)
nonlinear σ-model.

φa, a = 1, 2, 3; φ2 = 1 (4)

This moduli space allows for a nontrivial topology Π2(S2). We will identify the
corresponding topological charge with the electric charge of QED

Q =
e

4π2

∫
d3xεabcεijk∂iφa∂jφ

b∂kφc (5)

This identification when extended to current density suggests the following repre-
sentation of the electric current and, by extension, of the electromagnetic field in the
effective description:

Jμ =
e

4π2 εabcεμνλσ∂νφa∂λφb∂σφc (6)
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Fμν = εabcεμνλσφa∂λφb∂σφc (7)

Our initial challenge is the following potential problem. A standard two derivative
kinetic term would lead to infrared divergent energy of a soliton carrying a nonvanish-
ing topological charge of Equation (5). Consider the simplest topologically nontrivial
field configuration:

φa
h(x) =

ra

|r| f (|r|); f (|r|) →r→∞ 1 (8)

The derivatives of the field decrease as the first power of the distance away from the
soliton core, and therefore, the standard two derivative kinetic term gives energy, which
diverges linearly in the infrared. The only way to cure this divergence is to not allow a two
derivative kinetic term but instead consider a kinetic term with more than two derivatives.

Some reflection shows that there is a unique four derivative term that would do the
job, which is also the most natural choice from another point of view. Since our goal is to
approach the QED as close as possible, the natural choice for the kinetic term is the square
of the field strength tensor in Equation (7). When written in terms of the scalar field φa,
this is just the well-known Skyrme term.

We, thus, consider a somewhat unusual nonlinear σ-model, which is defined by
the Lagrangian:

L =
1

16e2 FμνFμν + λ(φ2 − 1)2 (9)

with Fμν defined in Equation (7).
At first sight, it may seem strange that the sign of the F2 term in the Lagrangian

Equation (9) is positive, while in QED, the same term enters with the negative sign. The
sign in Equation (9) is determined by the requirement of positive definiteness of the
Hamiltonian and is thus nonnegotiable. However, the reversal of the sign of the kinetic
term is a staple of dual models. The 2 + 1 dimensional models described in the introduction
exhibit the same feature. In the Lagrangian of the effective theory, the kinetic term is the
standard |∂μV|2, while in QED, it is of course −F̃2

μ . With the identification of V∗∂μV ∝ F̃μ,
the signs of the two kinetic terms are again opposite. The reason for this inversion is that,
while in QED, the electric field is proportional to the time derivative of the basic field (in
this case, Aμ). In the effective dual description, it is the magnetic field that contains the
time derivative of the vertex field V. Thus, in order for the Hamiltonian of the two models
to be the same, the kinetic terms in the respective Lagrangians must have opposite signs.

In Equation (9), we have introduced a coupling λ. The role of this coupling is easy to
understand. In the strong coupling limit λ → ∞, the isovector φ is forced to have a unit
length, and we are back to Equation (4). In this limit, the field strength is trivially conserved

∂νFμν = 0 (10)

which means that electric current vanishes. Therefore, the strong coupling limit should
correspond to the pure Maxwell theory: the energy of the soliton Equation (8) at strong
coupling diverges linearly in the ultraviolet. At finite λ, the radial component of the field
φa can vary in space and vanishes in the soliton core. This eliminates the UV divergence of
the energy, and the soliton has a finite mass. The finite value λ, therefore, corresponds to
an Abelian theory with charged matter of finite mass. We again stress that the energy of
the soliton is also finite in the infrared, thanks to our choice of the four derivative action.
For the hedgehog configuration in Equation (8), the “electric field” decreases as Ei(x) ∝ r̂i

r2 ,
and the energy density away from the soliton core decreases as 1/r4. This is the same as
the behavior of the Coulomb energy of a static electric charge in the electrodynamics.

Interestingly, the same model was discussed a while ago in [14] with an entirely
different motivation.
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2.2. The Equations of Motion

Given the Lagrangian, we can now write down equations of motion for our effective
theory. We work in the strong coupling limit and define two independent degrees of
freedom as

φ3 = z, ψ = φ1 + iφ2 =
√

1 − z2eiχ (11)

With this definition, we have

Fμν = εμναβεabcφa∂αφb∂βφc = −2εμναβ∂αz∂βχ (12)

The Lagrangian becomes

L =
1

4e2 (∂μz∂νχ − ∂μχ∂νz)2 (13)

and the equations of motion are

∂μ
[ 1

e2 ∂νχ
(
∂μz∂νχ − ∂νz∂μχ

)]
= 0

∂μ
[ 1

e2 ∂νz
(
∂μz∂νχ − ∂νz∂μχ

)]
= 0 (14)

Interestingly, these equations can be written as

1
e2 ∂νG(z, χ)∂μ

(
∂μz∂νχ − ∂νz∂μχ

)
=

1
e2 ∂ν

[
G(z, χ)∂μ

(
∂μz∂νχ − ∂νz∂μχ

)]
= 0 (15)

with G(z, χ) being an arbitrary function of two variables. These can be thought of as an
infinite number of conservation equations, where the conserved current corresponding to a
given function G(z, χ) is defined as

JG
ν = G(z, χ)∂μ

(
∂μz∂νχ − ∂νz∂μχ

)
(16)

We will see later that the existence of an infinite number of conserved currents is a
very important feature.

2.3. The Symmetries of the Model and Correspondence to Electrodynamics

Given that we have identified and infinite number of conserved currents from Equa-
tion (16), we see that the choice of the Skyrme term as the kinetic term in the Lagrangian
allows a very large global symmetry group of the model. The global symmetry group of
Equation (9) is not just the SO(3) group that we required from the outset but is isomorphic
to the group of diffeomorphisms in two dimensions.

This is easy to understand. The field strength in Equation (7) is related to an infinitesi-
mal area element on a configuration space. A given field configuration φa(x) defines a map
from space-time to a sphere S2. Consider a given component, such as the field strength
tensor, say F12 at some point x. To express it in terms of φ, we consider three infinitesimally
close points A ≡ xμ, B ≡ xμ + δμ1a, and C ≡ xμ + δμ2a. These three points in space-time
map into three infinitesimally close points on the sphere φa(A), φa(B), φa(C). The field
strength F12 is proportional (up to the factor a−2) to the area of the infinitesimal triangle
on S2 defined by these three points. Since our Lagrangian depends only on Fμν, clearly an
arbitrary area preserving reparametrization of the sphere leaves our action unchanged.

The original SO(3) global symmetry is only a small subgroup of the area preserving
diffeomorphisms of S2—the group we will denote Sdi f f (S2) [15]. As an aside, we note
that this group is also isomorphic to the group of canonical transformations on a classical
two-dimensional phase space. The infinitesimal Sdi f f (S2) transformation when acting on
z and χ is written as

z → z +
∂G
∂χ

; χ → χ − ∂G
∂z

(17)
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The Noether currents are those given by Equation (16), and the equations of motion
are equivalent to conservation equations of these currents.

An intriguing point is that the symmetry Equation (17) is reminiscent of the world
sheet diffeomorphism invariance of the Nambu-Gotto string. Indeed, if the fields z and
χ are thought as the world sheet string coordinates, the world sheet diffeomorphism
invariance is precisely Equation (17) . The model discussed here is not motivated by a string
theory and a priori has nothing to do with a string theory. Nevertheless, the similarities
may run deeper than just a coincidence since the fundamental “order parameters” of the
magnetic symmetry in 3 + 1 dimensions are indeed magnetic vortex strings [12]. The S2

topology of the world sheet would then ask for closed string loops. The analogy is indeed
intriguing and would be worthwhile pursuing further, but since this is not the goal of
our exploratory efforts here, we will return to the field theoretical approach in the rest of
this review.

The fact that the global symmetry group of the model is so large means that the moduli
space (space of all vacuum configurations) is much larger than S2, which corresponds to
a symmetry breaking pattern SO(3) → SO(2). Consider an arbitrary field configuration
φa(x) that maps the configuration space into any one-dimensional curve on S2. Such a
configuration has a vanishing action and therefore is a classical vacuum. The full moduli
space is, therefore, the union of maps φa(x) that map R4 to L, where L is an arbitrary point
or a one-dimensional curve on S2.

Still the important question for us is whether the topology of this moduli space is
right to support classically quantized topological charge. Indeed, from its definition, it is
clear that the topological charge Q is quantized on any smooth classical configuration of
fields φ(x). The catch is that there are many more degenerate soliton configurations than
just the rotationally invariant hedgehog of Equation (8). Any Sdi f f (S2) transformation
with an arbitrary (regular) function G of Equation (17) applied to Equation (8) generates
a configuration φaG

h (x), which carries the same charge Q as φa
h(x) and is degenerate with

it in energy. However, although these are different field configurations, they all have the
same electric field Ei = εijkεabcφa∂jφ

b∂kφc since the field strength is invariant under the
action of Sdi f f (S2). Thus, if one is physically only allowed to measure electromagnetic
fields, all these solitons look identical.

2.4. The Photon States-a.k.a. Plane Waves

We have constructed the Lagrangian Equation (9) so that it has the maximal similarity
to QED when written in terms of the putative electromagnetic fields. This does not yet
ensure that the content of the theory is the same as that of electrodynamics. We do know
that the field strength Fμν identified in Equation (7) satisfies half of Maxwell’s equations—
the Coulomb law and the evolution equations for electric field. The other half of Maxwell’s
equations (dynamics of magnetic fields) have to follow from the equations of motions
of our model. Indeed, there is clear similarity between Equation (15) and the Maxwell’s
equations. Equation (15) can be rewritten in terms of Fμν as

[∂νG(z, χ)]∂μ F̃μν = 0 (18)

This ensures that for any configuration of the fields z, the χ that satisfies ∂μ F̃μν = 0
also satisfies the equations of motion of our model. However, the converse is not assured.
In Appendix A, we give an example of a solution of Equation (15) that does not satisfy the
equations of motion of electrodynamics.

Thus, there is no full equivalence between the model Equation (9) and electrodynamics.
Nevertheless, we can ask to what extent the spectrum of solutions of Equation (9) contains
basic excitations of QED. The excitations of particular interest in the present context are of
course the photons. (Although we are dealing with a classical theory and not a quantum
theory, we will, with a slight abuse of language, refer to plane wave configurations of Fμν

with light-like momentum as photons).
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We aim now to show that free wave excitations are indeed solutions of Equation (15).
Consider the following configuration

χ(x) = Aεμxμ; z(x) = sin kμxμ (19)

where the vector εμ is normalized as εμεμ = −1. Calculating the field strength, we find

F̃μν = A(εμkν − ενkμ) cos k · x (20)

Thus,
∂μ F̃μν = −A

[
(ε · k)kν − k2εν

]
sin k · x (21)

If the momentum vector is light-like and the polarization vector ε is perpendicular to
k, this vanishes:

k2 = 0; ε · k = 0 (22)

For a fixed light-like momentum kμ, Equation (22) has three independent solutions for
εμ, one of which is proportional to kμ. For εμ ∝ kμ, the field strength tensor Equation (19)
vanishes, and so, there are two independent polarization vectors ε

μ
λ, λ = 1, 2 that yield

plane wave solutions for Fμν. We can always choose the polarization vectors so that their
zeroth component vanishes ε

μ
λ = (0, εi

λ), just like in electrodynamics. The square of the
overall amplitude of wave A in the quantum case is proportional to the number of photons
with a given momentum and a given polarization vector.

Note that the freedom in the choice of the independent polarization vectors is exactly
the same as in electrodynamics

εμ → εμ + akμ (23)

This change of polarization vector is generated by the transformation

χ → χ + a arcsin z (24)

which is a particular element of the Sdi f f (S2) group from Equation (17). More generally,
the field configuration in Equation (19) can be transformed by any element of Sdi f f (S2)
without causing a change in Fμν.

The solution Equations (19)–(22) describe a state that in all respects is equivalent to
the freely propagating photon, and we will refer to it as such. The solution Equation (19)
suggests an intuitive interpretation for the properties of the photon states in terms of the
effective theory. The momentum of the photon is simply the momentum associated with
the variation of the third component of the isovector φa, while the direction of the photon
polarization vector is the direction of the spatial variation of the phase χ.

We again note that the present formulation is easier to interpret in terms of quantities
dual to those normally used in QED. One usually introduces the vector potential Aμ via
Fμν = ∂μ Aν − ∂ν Aμ, which potentiates the homogeneous Maxwell’s equation ∂μ F̃μν = 0.
However, in the absence of electric charges, one can alternatively potentiate the other half
of Maxwell’s equation by introducing the dual vector potential via F̃μν = ∂μ Ãν − ∂ν Ãμ. In
the absence of charges, the dynamics of the dual vector potential Ãμ is identical to that
of Aμ, and it can be expanded in exactly the same polarization basis as Aμ. In this dual
formulation, QED possesses a dual gauge symmetry Ãμ → Ãμ + ∂μλ(x).

To make the correspondence to our model more obvious, we can introduce a “dual
vector potential” by

Ãμ = z∂μχ (25)

As opposed to the field strength tensor itself, this object is not invariant under the
Sdi f f (S2) group transformation from Equation (17):

Ãμ → Ãμ + ∂μ[G − z
∂G
∂z

] (26)
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This is similar to the dual gauge transformation in electrodynamics with the gauge
function λ(x) = G − z ∂G

∂z .
The analogy of Equation (25) is suggestive, but one has to keep in mind that this is not

at all an equivalence. First, the transformation Equation (26) is not a gauge transformation
but rather the action of a global symmetry transformation of the Lagrangian on Ãμ of
Equation (25). More importantly, an arbitrary vector field cannot be expressed in terms
of two scalars by a relation of the type Equation (25), even allowing for a possible gauge
ambiguity. Thus, Equation (25) cannot be considered merely a convenient parametrization
of the dual potential of electrodynamics. For this reason, the variation of the Lagrangian
Equation (9) with respect to such a constrained vector potential does not lead to directly to
homogeneous Maxwell’s equations but instead to Equation (18).

We have thus determined that monochromatic plane wave F̃μν solves the equations of
motion of our effective model. In QED, which is a linear theory of Fμν, the immediate conse-
quence is that a superposition of such waves is a solution as well. However, Equation (18)
is not linear in the basic field variables, and thus, a superposition of two such solutions is
not assured to be a solution as well. Let us try to construct a “two photon state” by slightly
extending the ansatz Equation (19).

χ = λμxμ; z = a sin kμxμ + b sin pμxμ (27)

with kμ and pμ—both light-like vectors, λμkμ = λμ pμ = 0 and λμλμ = −1. The latter two
conditions can be satisfied by taking

λμ = α
[
εμ − ε · k

k · p
pμ − ε · p

k · p
kμ

]
(28)

with an arbitrary vector εμ and an appropriate normalization constant α.
The dual field strength tensor is now:

F̃μν = a(kμεk
ν − kνεk

μ) cos k · x + b(pμε
p
ν − pνε

p
μ) cos p · x (29)

with
εk

μ = λμ − λ0

k0
kμ; ε

p
μ = λμ − λ0

p0
pμ; (30)

This looks like a bona fide two-photon state. However, our ansatz does not yield a
generic two-photon state with arbitrary polarization vectors: both the polarization vectors
εk and εp above have equal components in the perpendicular direction to the plane spanned
by pi; ki. Thus, we are one degree of freedom short and cannot construct a two-photon
state with arbitrary polarizations of both photons. Although this might look merely like
a limitation of our particular ansatz, we show in Appendix A that this problem is not
restricted to the ansatz Equation (27) but is unfortunately a genuine limitation of our
effective model.

3. Going Non-Abelian: The “Confining String”

Our main goal in this project is to have a model representation of the confinement phe-
nomenon in Non-Abelian theories. We, therefore, take the same trek as in 2 + 1 dimensions.
Namely, we will add to the Lagrangian Equation (9) a simple perturbation that explicitly breaks
the global symmetry of the model. This modification of low energy description is meant to get
rid of the multiple vacuum structure inherent to spontaneous symmetry breaking and therefore
eliminate massless excitations. For convenience, we will choose a potential that (classically) sets
the vacuum expectation value of the field z to unity.

With the above considerations, we are led to consider the Lagrangian

L =
1

16e2 FμνFμν − 2
e2 Λ2(z − 1)2 (31)
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The potential we have added of course breaks the SO(3) symmetry, but in addition, it
is also not invariant under a general Sdi f f (S2) transformation. However, the Sdi f f (S2) is
not broken completely but only up to the subgroup

χ → χ − dG(z)
dz

(32)

We keep this in mind throughout the discussion of this section.
The equations of motion of the perturbed model are

∂μ
[ 1

e2 ∂νχ
(
∂μz∂νχ − ∂νz∂μχ

)]
=

4
e2 Λ2(z − 1)

∂μ
[ 1

e2 ∂νz
(
∂μz∂νχ − ∂νz∂μχ

)]
= 0 (33)

These equations do not have static topologically stable solutions of finite energy. How-
ever, one can still ask what is the energy of a configuration of a soliton and antisoliton
separated far in space. As the answer to this question, we expect to find a (approximately)
translationally invariant string-like configuration that connects the soliton and the anti-
soliton and produces a linear confining potential between the two. Consider a static field
configuration translationally invariant in the third direction. The only components of Fμν

that do not vanish then are:

F03 = 2εij∂iz∂jχ (34)

Let us take the following ansatz, which preserves rotational symmetry in the x1 − x2 plane:

χ(x) = θ(x); z(x) = z(r) (35)

Here, r and θ are the polar coordinates in the x1, x2 plane. This ansatz parametrizes
a configuration with a unit winding in the x1, x2 plane, which should be the case for a
string connecting a soliton and an antisoliton. The soliton partner of the pair is located
at a very large negative value of x3. At even more negative x3, the field must relax
into the vacuum φ1 = φ2 = 0; z = 1. Therefore, the topological charge calculated on
a surface enclosing the soliton (but not its antisoliton partner) should be given by the
two dimensional topological charge—the winding number of the phase χ on any surface
crossed by the string. The same argument applies for the antisoliton, which resides at large
positive value of x3. Our ansatz, therefore, describes a confining string connecting a widely
separated soliton–antisoliton pair.

Interestingly, the equation of motion for the field χ is automatically satisfied for
Equation (35). The only nontrivial equation is that for z:

4z′′ = 4Λ2(z − 1) (36)

with z′ ≡ dz
d(r2)

In order for the solution to have finite linear energy density, z must satisfy the bound-
ary conditions:

z(0) = −1, z(∞) = 1 (37)

The solution with these boundary conditions is

z(r2) = 1 − 2 exp{−Λr2} (38)

Some of the properties of this solution are intuitively appealing. It has a finite width
governed by the only dimensional parameter Λ. Outside of this width, the fields relax to
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vacuum. Inside the string, the potential energy is finite, and thus, the string carries finite
linear energy density. The string tension is found to be

σ = 8π
Λ
e2 (39)

One feature of the solution, however, is rather peculiar. Away from the string core, the
fields do not approach the vacuum configuration exponentially but rather as a Gaussian in
transverse distance. The string profile is, therefore, unusual as it has a very sharp boundary,
outside of which the vacuum is reached very quickly. Such a behavior is unusual and, in
fact, is not possible in a local field theory with a finite mass gap and a finite number of
massive excitations. We can trace the origins of this behavior back to the non canonical
kinetic term in Equation (9), which has four derivatives. For simple dimensional reasons,
the kinetic energy for a rotationally invariant configuration is given by the second derivative
with respect to r2 rather than r, which results in a Gaussian rather than exponential decay
of the solution fields.

4. The ZN Preserving Perturbation

The potential of Equation (31) breaks the SO(3) as well as the Sdi f f (S2) symmetries
but leaves an O(2) subgroup of SO(3) and a large subgroup Sdi f f (S2) (Equation (32))
unbroken. On the other hand, if we follow a direct analogy with 2 + 1 dimensions, we
expect the effective theory in the Non-Abelian regime to preserve only a ZN subgroup of
SO(3). We can easily implement such a perturbation in the effective theory. Let us modify
the Lagrangian to

L =
1

16e2 F2 − 2
e2 Λ2(z − 1)2

[
1 − μ(ψN + ψ�N)

]
=

1
16e2 F2 − 2

e2 Λ2(z − 1)2
[
1 − 2μ(1 − z2)N/2 cos Nχ

]
(40)

For large enough μ, the additional perturbation shifts the lowest energy value away
from z = 1. For simplicity, we will only consider values

μ <
1
2

(41)

for which the vacuum configuration remains at z = 1.
We will now study the effect of the additional perturbation on the structure of the

“confining string”.
Assuming a long string in the direction x3, the energy per unit length can be written as

E =
∫

d2x
1

2e2 (εij∂iz∂jχ)
2 +

2
e2 Λ2(z − 1)2

[
1 − 2μ(1 − z2)N/2 cos Nχ

]
(42)

4.1. Perturbative Solution

For small values μ � 1, we can find corrections to the string solution perturbatively.
Let us take the following ansatz for the perturbative solution:

z(r, θ) = z(r); χ = θ + χ1(r, θ) = θ + f (r) sin Nθ (43)

where z(r) is given by Equation (38). Although this is not the most general possible
form of the perturbative correction, it nevertheless yields a solution to first order in μ, as
we now show.

The leading order perturbative equation for f is

1
e2 8N2(z′)2 f sin Nθ =

1
e2 NμΛ2(z − 1)2(1 − z2)N/2 sin Nθ (44)

which is solved by

f (r2) =
μ

N

[
2e−Λr2

(1 − e−Λr2
)
]N/2

(45)
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In principle, we have to consider also the minimization equation for z(r). It reads

1
e2 8N

[
2z′′ f + z′ f ′

]
=

1
e2 4μΛ

[
2(z − 1)(1 − z2)N/2 − Nz(z − 1)2(1 − z2)N/2−1

]
(46)

One can explicitly check that this equation is satisfied by the perturbative expression
of Equation (45) and z(r) of Equation (38).

The longitudinal electric field inside the string is given by

F03 = −4Λe−Λr2
[
1 + μ

(
2e−Λr2

(1 − e−Λr2
)
)N/2

cos Nθ
]

(47)

As before, the electric field is concentrated within the radius Λ1/2 in the transverse
plane, with an angular modulation of the transverse profile due to the additional ZN
invariant potential.

4.2. General Solution

We now demonstrate the string solution beyond the simple perturbative approxima-
tion discussed above. Minimizing the energy functional Equation (42) yields the equations:

1
e2 εij∂jχ∂iF =

∂U
∂z

1
e2 εij∂jz∂iF = −∂U

∂χ
(48)

with
F ≡ 1

2
F03 = εij∂iz∂jχ , (49)

where U is the potential of Equation (42).
These equations can be combined into:

1
2e2 ∂k(F2) = ∂kU (50)

Requiring that the electric field vanishes at transverse infinity, as should be the case
for any finite energy density configuration, we find

F2 = 2e2U; F =
√

2e2U (51)

Let us work in the modified polar coordinates (τ = r2, θ). We then have

∂τz∂θχ − ∂θz∂τχ =

√
1
2

e2U (52)

This equation has infinite number of solutions. This infinite degeneracy results from
an unusual symmetry of the energy functional Equation (42). Consider the group of
area-preserving diffeomorphisms on a plane SDi f f (R2)

(z(x), χ(x)) → (z(x′), χ(x′)); ∂(x′1, x′2)
∂(x1, x2)

= 1 (53)

These transformations leave the energy functional Equation (42) invariant. Therefore,
any string solution can be transformed by a transformation Equation (53), generating an
infinite number of degenerate solutions. Note that the longitudinal electric field is itself
invariant under Equation (53), and thus, all the degenerate solutions have identical electric
field and energy density profiles.

Interestingly, the transformations SDi f f (R2) of Equation (53) are diffeomorphisms on
the coordinate space rather than on the field space. Thus, this is a different diffeomorphisms
than Sdi f f (S2), which we discussed in the previous section and is explicitly broken by
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the potential U. The symmetry SDi f f (R2) is in a sense accidental since it only exists for
configurations translationally invariant in one direction.

Let us now discuss two solutions related by SDi f f (R2). We can utilize the large
symmetry by prescribing a simple dependence of χ on the angle : χ = θ. The equation for
z then follows from Equation (52).

∂τz =

√
1
2

e2U =

√
Λ2(z − 1)2

[
1 − 2μ(1 − z2)N/2 cos Nθ

]
(54)

The coordinate θ enters here as a parameter, and for a given value of θ, the solution is

τ =
∫ z(τ)

−1
dz

1√
Λ2(z − 1)2

[
1 − 2μ(1 − z2)N/2 cos Nθ

] (55)

This has correct large distance asymptotic behavior since as τ → ∞, the function z has
to approach unity for the right hand side to diverge. It is easy to find the large distance
asymptotics of the solution. When z is close to unity, the term proportional to μ in the
denominator can be neglected, and we have

τ =
∫ z(τ)

−1
dz

1√
Λ2(z − 1)2

(56)

which is solved by
z(τ → ∞) = 1 − 2e−Λτ (57)

This is identical to Equation (38), and thus, the IR asymptotics of the solution is not
sensitive to the ZN perturbation.

As an example of another solution, we assume that z has no angular dependence. We
then have:

∂τz∂θχ =

√
Λ2(z − 1)2

[
1 − 2μ(1 − z2)N/2 cos Nχ

]
(58)

This determines θ as a function of r:

θ =
∫ χ(r,θ)

0

z′dχ√
Λ2(z − 1)2

[
1 − 2μ(1 − z2)N/2 cos Nχ

] (59)

The explicit solution is

θ =
2
N

z′√
Λ2(z − 1)2(1 − 2μ(1 − z2)N/2)

F(
Nχ

2
,

4μ(1 − z2)N/2

2μ(1 − z2)N/2 − 1
) (60)

where F(φ, m) is the incomplete elliptic integral of the first kind:

F(φ, m) =
∫ φ

0
(1 − m sin θ2)−1/2dθ (61)

Imposing on the solution the boundary condition

χ(θ + 2π) = χ(θ) + 2π (62)

and using F( kπ
2 , m) = kK(m), with K(m)—the complete elliptic integral of the first kind, gives

2π =
4z′√

Λ2(z − 1)2(1 − 2μ(1 − z2)N/2)
K(

4μ(1 − z2)N/2

2μ(1 − z2)N/2 − 1
) (63)
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It is easy to check that for z → 1, this reduces to

z′ = Λ(1 − z) (64)

and thus, the IR asymptotics again is the same as in Equation (38).

5. Discussion of the Model Mark 1

In constructing our model, we have tried to follow the guide of 2 + 1 dimensional
gauge theories and, based on several requirements, “guess” a theory of scalar fields that
may emulate the effective theory of 3 + 1 dimensional gauge theories. The model we were
led to is not quite satisfactory, but it does have several interesting and intriguing features.

First off, already in the Abelian limit, it is quite peculiar. It possesses an infinite
dimensional global symmetry group, which is spontaneously broken by classical solutions
of lowest energy. On the other hand, the observables that we would like to identify
with physical quantities in QED turn out to be invariant under this symmetry. This
may seem problematic; however, we note that a somewhat similar situation occurs in
2 + 1 dimensions and, in general, in dual type descriptions. In 2 + 1 dimensional gauge
theories, the electromagnetic field is invariant under the action of the magnetic U(1)
symmetry, which does act nontrivially on the magnetic vortex field—the basic degree
of freedom in the effective/‘dual” description. In the present 3 + 1 dimensional model,
likewise, the electromagnetic field does not feel the action of the (infinite) global symmetry
group Sdi f f (S2), which does act nontrivially on the “fundamental” scalar fields of the
effective theory.

The global Sdi f f (S2) symmetry is classically broken by the lowest energy configurations.
This is similar to 2 + 1 dimensions, but the situation is more involved. In 2 + 1 dimensions,
we had to deal with a standard symmetry breaking pattern of symmetry with a finite number
of generators. In our 3 + 1 dimensional model, on the other hand, the symmetry group is
infinitely dimensional, and thus, the space of vacuum configurations is very large. It includes
not only translationally invariant field configurations but also configurations with nontrivial
spatial dependence. These configurations break translational invariance in addition to the global
Sdi f f (S2) symmetry. This is not a unique situation, and in fact, such a situation is ubiquitous
in condensed matter systems, but in relativistic field theories, it is quite rare. As a result, since
the vacuum set has large entropy, it could well be that classical analysis fails in this model
quite badly. Many of the classical vacua differ from each other only in the finite region of space.
Generically in cases like this, upon quantization, these configurations become connected by
tunneling transitions of finite probability. One, therefore, may expect that the quantum portrait
of moduli space is very different from the classical one. This question is worth investigating on
its own, but this goes far beyond the scope of the present work.

With a symmetry breaking perturbation, our model exhibits a simple classical mecha-
nism of confinement of topological defects, such as in 2 + 1 dimensions. However, some
peculiarities are present again. We have discovered that string solutions are infinitely
degenerate. The static energy of configurations translationally invariant in one direction
has an additional diffeomorphism invariance. This is not the same invariance as in the
Abelian limit, as the diffeomorphisms in question are transformations in coordinate space
and not in the field space. Nonetheless, this symmetry leads to degeneracy between an
infinite number of solutions, all of which have the same electric field. As far as the electric
field profile is concerned, the solution, as far as we can ascertain, is unique. This infinite
degeneracy makes one wonder about the fate of such strings in a quantum theory, given
that they carry large entropy associated with the degeneracy.

All the peculiar features of the model stem from the nonconventional, higher deriva-
tive kinetic term required to have finite energy of a soliton in the absence of the poten-
tial. One could add the standard two derivative kinetic term ∂μφa∂μφa as a perturbation.
Although we have not explored this possibility in detail, it is clear that this would lift the
degeneracy between the different string solutions. With this additional kinetic term, our
model becomes identical with the model proposed by Faddeev and Niemi in [7–11] as an
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effective theory of QCD. Note, however, that our proposed picture of confinement is very
different from and in a way complementary to that of [7–11]. The authors of [7–11] are
mostly interested in closed string solutions meant to represent the glueballs, while in our
way of thinking, it is the open strings, with the endpoints representing “constituent gluons”
that play the main role in analogy with 2 + 1 dimensions [2,3,16]. In the Faddeev–Niemi
model, stability of closed string solutions is ensured by nontrivial twisting of the phase
of the scalar field along the string. Open strings, on the other hand, are not associated
with twist and in principle can break into shorter strings, which is the case in QCD. The
stability of classical strings solutions in a quantum theory is not absolute but is rather an
approximate feature that arises dynamically provided the string endpoints are sufficiently
heavy [17]. This endpoint mass suppresses quantum tunneling, which is responsible for
the decay of long strings.

Finally, it is worthwhile noting that the addition of the two derivative kinetic term
makes our model similar to the CP1 model, which has been recently discussed in the
literature in relation to effective models of confinement [18].

The large global symmetry of our model in the Abelian, which has no obvious parallel
in QED, is worrisome. One can wonder if it is responsible at least partially for the absence
of an arbitrary “two-photon state”, as we have found here. It is, therefore, natural to try
and eliminate this symmetry from the model. In the next section, we describe an approach
to doing so by “gauging” this global symmetry. This amounts to restricting the Hilbert
space of the model to states that are invariant under Sdi f f (S2).

6. Gauging Sdi f f (S2)

In this section, we show how the global Sdi f f (2) symmetry can be eliminated from
the theory. The standard way of going about such a task is to “gauge” the symmetry, i.e., to
impose the vanishment of the appropriate charge. It is usually employed to eliminate local
symmetries; however, as a matter of principle, it can also be done for global symmetries.
We will now describe this procedure.

Recall that the symmetry in question is

z → z +
∂G(z, χ)

∂χ
, χ → χ − ∂G

∂z
(65)

with G being an arbitrary function of the two variables z and χ but does not explicitly
depend on space-time coordinates.

This symmetry is associated with the conserved currents

JG
ν = G(z, χ)Jν = G(z, χ)∂μ(∂μz∂νχ − ∂μχ∂νz). (66)

where
Jν = ∂μ(∂μz∂νχ − ∂μχ∂νz) (67)

The corresponding charges are

QG =
∫

d3xG(z, χ)J0 =
∫

d3xG(z, χ)∂μ(∂μz∂0χ − ∂μχ∂0z) (68)

We note for future use that the symmetry transformation can be written as a canonical
transformation on a phase space spanned by z and χ.

δz = {z, G}; δχ = {χ, G}; {A, B} ≡ ∂A
∂z

∂B
∂χ

− ∂A
∂χ

∂B
∂z

(69)

To gauge this symmetry, we first introduce the analog of the zeroth component of
vector potential Λ(z, χ, t). Note that Λ is not an arbitrary function of space-time coordinates
but only a function of the field variables z and χ and time t.
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We now change our definition of the “magnetic field” to

Bk = 2(∂kχ∂0z − ∂0χ∂kz)− ∂kΛ = 2(∂kχ∂0z − ∂0χ∂kz)− ∂Λ
∂z

∂kz − ∂Λ
∂χ

∂kχ (70)

Defining “covariant derivative” as

∇0χ = ∂0χ +
1
2

∂Λ
∂z

∇0z = ∂0z − 1
2

∂Λ
∂χ

(71)

we can write this as
Bk = 2(∂kχ∇0z −∇0χ∂kz) (72)

Note that this definition of covariant derivative implies for any function of z and χ

∇0Φ(z, χ) =
d
dt

Φ − 1
2
{Φ, Λ} (73)

With this altered definition of the magnetic field, and the electric field is still defined as

Ei = 2εijk∂jz∂kχ (74)

we now write the Lagrangian

L = −1
2
(�E2 − �B2) (75)

As we show now, this Lagrangian is gauge invariant. First, let us consider time
independent transformations from Equation (69). Under this transformation, we define the
transformation of Λ as

δΛ = −{Λ, G} = −
[

∂Λ
∂z

∂G
∂χ

− ∂Λ
∂χ

∂G
∂z

]
(76)

Note, that this equation should be understood as the change in the functional form of
Λ as a function of z and χ. With this definition and taking into account that the values of z
and χ change according to Equation (69), we find

Λ′(z′, χ′) = Λ(z, χ) (77)

Thus, it is easy to see that both Ei and Bi are invariant under the time-independent
transformations Equations (69) and (76).

Now, consider time-dependent transformations, G(z, χ, t). The electric field is in-
variant under the time-dependent transformations as well. For the magnetic field, a
straightforward calculation gives

2(∂kχ∂0z − ∂0χ∂kz) →2
[

∂k

(
χ − ∂G

∂z

)
∂0

(
z +

∂G
∂χ

)
− ∂0

(
χ − ∂G

∂z

)
∂k

(
z +

∂G
∂χ

)]
=2(∂kχ∂0z − ∂0χ∂kz) + 2∂i∂0G + O(G2)

(78)

Thus, if we define the transformation of Λ as

δΛ = 2∂0G − {Λ, G} (79)

we find that the magnetic field in Equation (72) is invariant.
To summarize, we have now constructed the Lagrangian, which is invariant under

arbitrary time-dependent Sdi f f (S2) transformations. Physically, this gauge invariance
means that the Sdi f f (S2) charges are required to vanish on physical configurations. Indeed,
we can see that the equation of motion for Λ is indeed equivalent to this constraint. We note
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that variation with respect to Λ should be done with care since Λ is not an independent
field. One cannot vary space-time dependence of Λ arbitrarily; instead, one has to vary the
functional form of the dependence on the field z and χ.

Let us derive equations of motion for Lagrangian Equation (75). Varying with respect
to z and χ, we obtain

∂iχ
[
∂0Bi + εijk∂jEk

]
− ∂iBi∇0χ = 0 (80)

∂iz
[
∂0Bi + εijk∂jEk

]
− ∂iBi∇0z = 0

or in relativistic notation

∇νχ∂μ F̃μν = 0; ∇νz∂μ F̃μν = 0 (81)

These can be combined into a covariant conservation equation

∇μ JG
μ = 0 (82)

with the current
JG
μ ≡ G(z, χ)∂ν F̃νμ = 0 (83)

with arbitrary function G.
In addition, there is an equation obtained by differentiation with respect to Λ. To

understand how to derive this equation, we can expand Λ(z, χ) in a complete basis of func-
tions on a two-dimensional space, for example, by writing Λ(z, χ) =

∫
dpdqeipz+iqχΛ̃(p, q)

and substituting it into the action, then differentiate with respect to Λ̃. The resulting
equations are ∫

d3xJG
0 =

∫
d3xG(z, χ)∂iBi = 0 (84)

This equations are rather interesting. They put a large number of constraints on the
divergence of the magnetic field. Unfortunately, the number of constraints is not large
enough to ensure that magnetic monopole charge vanishes, as G is only a function of two
variables (at any given time), while the coordinate space is obviously three-dimensional.

One could ask whether the modification we made can help us find arbitrary two gluon
states in the spectrum. Unfortunately, the answer is negative. The simplest way to see
it is to realize that one can gauge fix the “vector potential” Λ to zero—the Hamiltonian
gauge of sorts. In this gauge, the dynamical equations of the model are identical with
the equations of Mark 1. Thus, we do not have new solutions to the equations of motion.
The gauging does eliminate those solutions that do not satisfy the constraint Equation (84),
but it does not generate any new solutions to the equations of motion.

Thus, although it feels like gauging Sdi f f (S2) may be a step in the right direction, it
is not sufficient. In the next section, we discuss a further modification of the model-Mark 2,
which starts from the same premise but successfully reproduces the theory of free photon.

7. The Model Mark 2

The model of [5], despite having some interesting properties, fails to describe ad-
equately the low energy dynamics of the Abelian limit. As we have learned from the
previous section, gauging the Sdi f f (S2) symmetry does not solve the main problems
of [5], i.e., on one hand, the constraints it imposes are not sufficient to ensure vanishing of
magnetic charge density, and on the other hand, it does not allow for additional solutions
of equations of motion that can be identified with multiphoton states of arbitrary polar-
ization. Both of these deficiencies are associated with the fact that the “vector potential”
Λ is not a bona fide local degree of freedom but only a function of two variables z and χ.
Let us extend our approach by allowing Λ to become an independent function of space
time. We, therefore, change our definition of magnetic field to [6]

Fμν = εμναβ[εabcφa∂αφb∂βφc + (n · ∂)nα∂βΦ] (85)
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Here, n = (1, 0, 0, 0) is a time-like vector of unit length and Φ is a scalar field [19].
This is a generalization of Equation (70) with Λ → ∂0Φ.

We stress that, as opposed to the discussion in the previous section, Φ(x) is now a
bona fide field that has a general dependence on space-time coordinates.

The Lagrangian, as before, is

L =
1
4

FμνFμν = −1
2
(�E2 − �B2) (86)

One may worry that since n is chosen to be a time-like vector, the model is not a
Lorentz invariant. Nevertheless, we will show below that the model possesses a Lorentz
invariant super selection sector, and it is this sector that will turn out to be equivalent
to QED.

We now have to understand what effect the modification has on the Abelian limit of
the model. We will analyze its canonical structure and will demonstrate that it is identical
to that of free electrodynamics. This applies to the commutators between the “electric”
and “magnetic” fields and the Hamiltonian. We, thereby, demonstrate that the model is
equivalent to the theory of a free noninteracting photon, even though it is not formulated
in terms of a covariant vector potential field. We also derive the Lorentz transformation
properties on the degrees of freedom of the model. We demonstrate that the fields φi are
not covariant scalar fields but instead transform nontrivially and noncovariantly under
the Lorentz group. We confirm that due to these modified transformation properties, the
model retains Lorentz invariance.

8. Equations of Motion and Canonical Structure

8.1. Equations of Motion

As before, we use the following parametrization of the basic fields χ and z via φ3 = z
and φ1 + iφ2 =

√
1 − z2eiχ. The electromagnetic field can now be written as:

Fμν = εμναβ[−2∂βχ∂αz + nα∂β∂0Φ] (87)

or explicitly
Ei = 2εijk∂jz∂kχ (88)

Bk = [2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (89)

Varying the action, Equation (86) yields the following equations of motion

∂0∂k

[
Fijε

ij0k
]
= 0 = ∂0∂kBk (90)

∂βχ∂α(Fμνεμναβ) = 0 = ∂kχ∂α(Fμνεμναk) = ∂kχ(∂0Bk + (∂ × E)k) (91)

∂βz∂α(Fμνεμναβ) = 0 = ∂kz∂α(Fμνεμναk) = ∂kz(∂0Bk + (∂ × E)k) (92)

The main difference with our previous attempt is Equation (90). This equation now
means that the “magnetic charge density” ∂kBk is locally conserved. In the current model,
therefore, the magnetic charge density is time independent at any space point. Equation (90)
imposes the existence of “super selection sectors” characterized by the value of the magnetic
charge density at all spatial coordinates. Clearly, most of these sectors are not translationally
invariant. In order to preserve translational invariance, we limit our consideration to the
trivial sector with ∂kBk = 0. The rest of our discussion pertains exclusively to this super
selection sector.

Using this constraint on the magnetic field, we can invert Equations (91) and (92).
(One has to be careful since there is an ambiguity in the inversion of Equations (91) and (92).
In general, we find ∂0Bk + (∂ × E)k = αEk, where α is an arbitrary constant. Nonetheless,
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since B and ∂ × E are pseudovectors, while E is a vector, a nonvanishing value of α would
violate parity. Imposing parity invariance on the solution sets α = 0.)

∂0Bk + (∂ × E)k = 0 (93)

Recall that with the field strength components given by Equation (87), the “electric”
equation

∂μFμν = 0 (94)

is satisfied identically. Thus, the equations of motion of the model Mark 2 are the full set of
Maxwell’s equations.

8.2. The Hamiltonian

Let us now turn to the Hamiltonian description of the model. The canonical momenta
as calculated from Equation (87) are given by :

pz =
δL

δ∂0z
= Fijε

ij0k∂kχ = 2Bk∂kχ = 2∂kχ[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (95)

pχ =
δL

δ∂0χ
= Fijε

ijk0∂kz = −2Bk∂kz = −2∂kz[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (96)

pΦ =
δL

δ∂0Φ
=

1
2

∂k(Fijε
ij0k) = ∂kBk = ∂k[2(∂kχ∂0z − ∂0χ∂kz)− ∂k∂0Φ] (97)

The time derivatives of the fields can be expressed as:

χ̇ =
1

E2 [pz(zχ) + pχχ2 + εijkΦ̇iEjχk] (98)

ż =
1

E2 [pzz2 + pχ(zχ) + εijkΦ̇iEjzk] (99)

Using these equations, we express pΦ as:

pΦ = ∂k

[
1

E2 εklmEl(pzzm + pχχm)− 1
E2 EkEiΦ̇i

]
(100)

or in terms of a “vector potential”

Dk =
1

E2 εklmEl(pzzm + pχχm) (101)

as
pΦ = ∂k

(
Dk − ÊkÊiΦ̇i

)
(102)

The Hamiltonian is then calculated as:

H =
∫

d3x
[
pzż + pχχ̇ + pΦΦ̇ − L

]
=
∫

d3x
1
2

(
E2 + B2

)
(103)

In arriving at this expression, we have neglected a boundary term
∫

d3x∂k
(

BkΦ̇
)
.

8.3. Canonical Structure

In order to prove the equivalence between Mark 2 and QED, we have to show that the
canonical commutation relations of Ei and Bi are identical in the two theories. We do this
in the present section.

Since all components of the electric field in Mark 2l are functions only of coordinates
and not canonical momenta, they clearly commute with each other

[
Ei(x), Ej(y)

]
= 0 (104)
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In order to calculate the commutation relations between electric and magnetic fields,
we restrict ourselves explicitly to the zero magnetic charge density super selection sector
and set pΦ = 0. Equation (102) then becomes

∂kDk
E

= Êk∂k

(
ÊiΦ̇i

E

)
(105)

where we have used ∂kEk = 0.
Formally, the solution is written as

ÊiΦ̇i = E(x)
∫ x

−∞
dlC

∂kDk
E

(106)

In this expression, the integration contour C starts at x and ends at some point at
spatial infinity. The direction along the contour at every point is parallel to the direction of
the electric field at this point.

Using the definition of D, we have:

Bk = Dk − Ek

∫ x

−∞
dlC

∂mDm

E
(107)

Consider first the following auxiliary quantity

[Ei(x), Dk(y)] = 2i
El(y)
E2(y)

εiabεklm[∂
x
a δ(x − y)χb(x)zm(y) + ∂x

b δ(x − y)za(x)χm(y)]

= 2i
El(y)
E2(y)

εiabεklm∂x
a δ(x − y)[χb(y)zm(y)− zb(y)χm(y)]

= iÊl(y)Êc(y)εiabεklmεcmb∂x
a δ(x − y) = i

[
εiak − Êb(y)Êk(y)εiab

]
∂x

a δ(x − y)

(108)

Using this, we calculate

[Ei(x), Bk(y)] = [Ei(x), Dk(y)]− Ek(y)
∫ y

−∞
dlC

∂t
m[Ei(x), Dm(t)]

E(t)

= [Ei(x), Dk(y)]− Ek(y)
∫ y

−∞
dlC

1
E(t)

∂t
m
[(

εiam − Êb(t)Êm(t)εiab
)
∂x

a δ(x − t)
]

= [Ei(x), Dk(y)] + Ek(y)
∫ y

∞
dlCÊm(t)∂t

m

(
Êb(t)
E(t)

εiab∂x
a δ(x − t)

)
= iεiak∂x

a δ(x − y)

(109)

Here, it was important that the integration contour C is parallel to the electric field
everywhere. In addition, we have assumed that all the fields vanish at the spatial boundary.

The commutator Equation (109) is identical to the commutator of corresponding
quantities in QED.

We now consider the commutator of the magnetic fields.
It is easy to see that [Bi(x), Ba(y)] = 0 as long as the curve Cx that enters the definition

of Bi(x) in Equation (107) does not pass through the point y, and Cy does not pass through
x. If this condition is not satisfied, direct evaluation of the commutator is not easy. Instead,
we argue indirectly. One can straightforwardly obtain a number of relations involving the
commutator of interest. Consider, for instance,

[Bi(x)∂iχ(x), Bj(y)∂jz(y)] = [pz(x), pχ(y)] = 0 (110)

Trivially:
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Bi(x)∂jz(y)[∂iχ(x), Bj(y)] + Bj(y)∂iχ(x)[Bi(x), ∂jz(y)] + ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] =(
Bi(x)∂jz(y)∂

(x)
i

∂Dj(y)
∂pχ(x)

− Bj(y)∂iχ(x)∂(y)j
∂Di(x)
∂pz(y)

)
+ ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] = (111)

(Bi(y)∂
(x)
i δ(x − y) + Bi(x)∂(y)i δ(x − y)) + ∂iχ(x)∂jz(y)[Bi(x), Bj(y)] =

∂iχ(x)∂jz(y)[Bi(x), Bj(y)] = 0

Similarly,

∂iz(x)∂jz(y)[Bi(x), Bj(y)] = ∂iχ(x)∂jχ(y)[Bi(x), Bj(y)] = 0 (112)

Using ∂kBk = 0, we obtain:

∂iz(x)∂y
j [Bi(x), Bj(y)] = ∂iχ(x)∂y

j [Bi(x), Bj(y)] = ∂x
i ∂

y
j [Bi(x), Bj(y)] = 0 (113)

Defining the matrix Mij(x, y) ≡ [Bi(x), Bj(y)], we, therefore, find that it is antisym-
metric under the exchange (i, x) ↔ (j, y) and satisfies the set of equations (Equations (111)–
(113)). The general solution for these constraints can be written as

Mij(x, y) = Ei(x)Fj(y)− Ej(y)Fi(x) (114)

with Fi(x) being an arbitrary vector function. However, we already saw that when x does
not belong to Cy and y does not belong to Cx, then Mij(x, y) = 0. This determines Fi(x) = 0,
so that finally:

[Bi(x), Bj(y)] = 0 (115)

for all x, y.

9. Lorentz Transformations of the Fields

We now wish to discuss the properties of the fields z and χ under Lorentz transforma-
tions. The rotational transformation properties of z and χ are clearly those of a scalar field.
This is obvious since the rotational invariance is represented in our model in the standard
linear manner. This is not the situation with Lorentz boosts. The electric and magnetic
fields are components of a covariant Lorentz tensor, and therefore, it is clear that z and χ
cannot be covariant scalar fields.

We take the following parametrization of infinitesimal Lorentz transformations:

z(x) → z(Λ−1x) = (1 + βΔ)z(x) + a

χ(x) → χ(Λ−1x) = (1 + βΔ)χ(x) + b

Θ(x) ≡ ∂0Φ → Θ(Λ−1x) = Θ(x) + c

(116)

Here, β is the boost parameter and Δ ≡ ωμ
νxν∂μ with ω

μ
ν —an antisymmetric generator

of Lorentz transformation. The boost in the direction of a unit vector n̂ is generated by
ωi

0 = n̂i. The terms involving a, b, and c are not canonical, and we will determine them
requiring that Fμν transforms as a covariant tensor.

Let us consider first a boost in the direction of the first axis, n̂ = (1, 0, 0).
The components of the field strength tensor transform as

E2(x) → E2(Λ−1x)− βB3(Λ−1x) (117)

Writing this in terms of z, χ, and Θ and using Equation (116), we have:

E2(x) = 2[∂3z(x)∂1χ(x)− ∂1z(x)∂3(x)] → 2[∂3z(Λ−1x)∂1χ(Λ−1x)− ∂1z(Λ−1x)∂3(Λ−1x)] (118)
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Comparing the two we obtain:

− β∂3Θ + 2[∂3z∂1b + ∂3a∂1χ − ∂1z∂3b − ∂1a∂3χ] = 0 (119)

Similarly, the transformation of E1 yields

2(∂2z∂3b + ∂2a∂3χ − ∂3z∂2b − ∂3a∂2χ) = 0 (120)

and that of E3:
β∂2Θ + 2[∂1z∂2b + ∂1a∂2χ − ∂2z∂1b − ∂2a∂1χ] = 0 (121)

Introducing fi = 2(a∂iχ − b∂iz), and ui = (0, β∂3Θ,−β∂2Θ), the above equations
combine into

εijk∂j fk = ui (122)

The general solution for f is:

fi = − εijk∂juk

∂2 + ∂iλ̃

= βn̂iΘ + ∂iλ

(123)

where
λ̃ − β

n̂i∂i
∂2 Θ = λ (124)

with λ still to be determined.
Noting that Equations (123) and (89) become the same under the substitution,

Equation (123) for a and b can be solved as

∂0z → a

∂0χ → b

∂0Φ → λ

Bk → βΘn̂k

(125)

Using Equations (98) and (99), we find:

a =
1

E2 (βΘn̂i + λi)εijkEjzk

b =
1

E2 (βΘn̂i + λi)εijkEjχk

(126)

Now, Equation (123) becomes an equation for λ:

Ei(βΘn̂i + ∂iλ) = 0 (127)

which yields:

λ(x) = −β
∫ x

∞
dlCÊin̂iΘ (128)

where as before, the contour C is locally parallel to the vector Ei.
The function c can similarly be determined by considering the transformation of the

magnetic field.

B1(x) → B1(Λ−1x) = 2[∂1χ(Λ−1x)∂0(Λ−1x)− ∂0χ(Λ−1x)∂1z(Λ−1x)]− ∂1Θ(Λ−1x) (129)

yields
2[∂1χ∂0a + ∂1b∂0z − ∂0χ∂1a − ∂0b∂1z]− ∂1c + βΔ∂1Θ = 0 (130)
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Similarly, the transformation of B2 and B3 gives

2[∂2χ∂0a + ∂0z∂2b − ∂0χ∂2a − ∂2z∂0b]− ∂2c + βΔ∂2Θ = 0

2[∂3χ∂0a + ∂0z∂3b − ∂0χ∂3b − ∂3z∂0b]− ∂3c + βΔ∂3Θ = 0
(131)

These can be combined into a single vector equation

∂0 fi − ∂i f0 − ∂ic + βΔ∂iΘ = 0 (132)

Using Equation (123), we write this:

∂i[∂0λ − f0 − c + βΔΘ] = 0 (133)

yielding

c = 2(a∂0χ − b∂0z)− ∂0λ − βΔΘ

= β

[
2

E2 εijkEj(∂0χzk − ∂0zχk)

[
Θn̂i − ∂i

∫ x

∞
dlCÊl n̂lΘ

]
+ ∂0

∫ x

∞
dlCÊin̂iΘ − ΔΘ

] (134)

To summarize, the fields z, χ, and Φ under Lorentz boost transform according to
Equation (116) with a,b, and c given in Equations (126), (128), and (134). These somewhat
complicated transformation properties ensure that electromagnetic fields are components
of the covariant Lorentz tensor.

10. Discussion of Model MARK 2

Our amended model (Mark 2) is equivalent to the theory of a free photon. We were
led to this model by our wish to eliminate the global Sdi f f (S2) symmetry but had to go
further from the original model in order to achieve equivalence with QED. What is the fate
of Sdi f f (S2) in Mark 2? It is indeed easy to see that this symmetry is gauged. In order to
see that, let us write

∂0Φ = Λ(z, χ, t) + ∂0Φ̄ (135)

Assigning to Λ the same transformation properties under Sdi f f (S2) as before and
requiring Φ̄ to be invariant, we see that the Lagrangian Equation (86) is indeed invari-
ant under the Sdi f f (S2) global gauge transformation. Note that the decomposition
Equation (135) is always possible, given that Φ is an arbitrary function of space-time
coordinates. It is important that we have been able to obtain the theory of a free photon.
Our main goal, however, was (and remains) to understand confinement in the Non-Abelian
case. Here, the road is still very long and winding, and at this point, there are mainly
questions. We need to generalize our model in several directions. First, charged states have
not been included in the model. This should be relatively straightforward to mitigate. As
suggested in [5], we should relax the constraint of constant length of the sigma model field
φa and instead endow the modulus field φ2 with nontrivial dynamics. This will soften
the classical behavior of the model in UV and will lead to UV finite energy of charged
states. The configuration space of our model is SO(3) × R, with the SO(3) symmetry
broken spontaneously to O(2). The moduli space should, therefore, have a nontrivial
homotopy group Π2(M) = Z and allow for a nontrivial topological charge, which is
identified with the electric charge. (There may be some subtlety in this argument related to
the fact that the global gauge group Sdi f f (S2) has to be modded out. However, since the
gauge transformation is global, we do not anticipate any problems.)

The more complicated question is how to extend this model into the Non-Abelian
regime. Following the logic of [5], we should add a perturbation thats explicitly breaks the
global symmetry of the model and via this breaking generates a linear potential between
the charges. Here, first of all, we need to understand whether this perturbation should
preserve the Sdi f f (S2) gauge symmetry or should break it explicitly. Such a global gauge
symmetry was not present in 2 + 1 dimensional models [2,3], and we lack guidance on
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this question from 2 + 1 d. It seems likely that the Sdi f f (S2) should be preserved by
the perturbation. If that is the case, the type of perturbations considered in [5] do not fit
the bill. Perhaps one should deal directly with the breaking of the generalized magnetic
symmetry—the symmetry generated by the magnetic flux [12,13] in terms of its order
parameter—the t Hooft loop [1].

A rough idea of how this can work is the following. Let us try to define an operator
that breaks the generalized magnetic symmetry. This should be an analog of a t Hooft loop
operator, except it should have end points, so rather a t Hooft line operator. We write the
following bilocal expression

V(x, y) = exp
(

i
∫ t=0

t=−∞
dtA0(x, t)

)
exp
(

i
∫ y

x
Ai(z, t = 0)dzi

)
exp
(

i
∫ t=−∞

t=0
dtA0(y, t)

)
(136)

Here, the components of dual vector potential are chosen as Ai = z∂iχ and
A0 = z∂0χ + 1

2 ∂0Φ(x). Given the Sdi f f (S2) transformation properties of the various
operators, we have

Ai → Ai + ∂i

[
G − z

∂G
∂z

]
(137)

A0 → A0 +
d
dt

[
G(z, χ; t)− z

∂G
∂z

]
(138)

Under the assumption that the fields vanish at infinity, it is easy to see that the operator
Equation (136) is invariant under Sdi f f (S2). In terms of its quantum numbers, this operator
essentially creates a monopole–antimonopole pair at points x and y. For infinitesimally
close points y = x + ε, this becomes

V(x, εi) = 1 + iεi

[
z∂iχ − ∂iΦ − ∂i

∫ 0

−∞
dtz∂0χ

]
+ εiεj

[
z∂iχ − 1

2
∂iΦ − ∂i

∫ 0

−∞
dtz∂0χ

][
z∂jχ − 1

2
∂iΦ − ∂j

∫ 0

−∞
dtz∂0χ

]
(139)

We could contemplate averaging this operator over the direction of the point splitting
vector ε, which would kill the linear in ε term and would result in a term reminiscent of
the gauge invariant Stueckelberg mass for the dual vector potential [20]. Adding an n-th
power of such an operator as a perturbation to the Lagrangian would seem a reasonable
way to proceed in order to break the generalized magnetic symmetry to the ZN subgroup.

Unfortunately, Equation (139) contains a term that is nonlocal in time. Thus, adding it
to the Lagrangian would lead to nonlocal in time theory, which amounts to adding extra
degrees of freedom in disguise. Although this may turn out to be necessary, it is clearly
outside the rather tight framework that we have set out to ourselves from the beginning.
Thus, before taking this route, a better understanding is necessary. We hope to be able to
make progress in this approach in the future.
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Appendix A

In this appendix, we show that the model considered in this paper does not admit
two-photon solutions with arbitrary polarizations. We are looking for two-photon solutions
for which the electromagnetic tensor is of the form:

F̃μν = ∂[μz∂ν]χ = A(kμε1
ν − kνε1

μ) cos kx + B(pμε2
ν − pνε2

μ) cos px (A1)

For simplicity, we choose the case when the first photon has momentum k in
x-direction and polarization a in y-direction, while the second photon has momentum
p in y-direction and polarization b in z-direction. Note that this case is not covered by our
construction of two-photon states in the body of the paper.

Now, for components of F̃μν, we have:

∂[0z∂1]χ = 0 = ∂[1z∂3]χ = 0 (A2)

∂[0z∂2]χ = ka cos kx = −∂[1z∂2]χ (A3)

∂[0z∂3]χ = pb cos px = −∂[2z∂3]χ (A4)

Introducing new coordinates (x, y, z, t) → (x̄ = t − x, ȳ = t − y, t̄ = t, z̄ = z) and
using unbarred symbols for notational simplicity, we have:

∂[tz∂y]χ = ∂[tz∂z]χ = ∂[xz∂z]χ = 0 (A5)

∂[tz∂x]χ = ∂[xz∂y]χ = −ka cos kx (A6)

∂[yz∂z]χ = pb cos py (A7)

These equations have no solutions. Assuming ∂tz �= 0, the first two equations in
Equation (A5) imply ∂yz∂zχ − ∂zz∂yχ = 0, which contradicts Equation (A7). Alternatively,
assuming ∂tz = 0, implies vanishing of either ∂tχ or two other partial derivatives of z .
It is then easy to see that both these options are in conflict with the rest of the equations.
The result is that a two-photon state with this polarization pattern cannot be constructed in
this model.

The model also contains solutions that do not satisfy the homogeneous Maxwell
equation. As an example of such a solution consider the configuration

χ = sin p · x; z = sin k · x (A8)

It is easy to see that this configuration satisfies equations of motion provided

(p · k)2 − p2k2 = 0 (A9)

A simple example is a light-like momentum kμ and a space-like momentum pμ satis-
fying p · k = 0. This yields the dual field strength

F̃μν ∝ (kμ pν − kν pμ)[cos(p + k) · x + cos(p − k) · x] (A10)

which is not conserved

∂μ F̃μν ∝ p2kν[sin(p + k) · x + sin(p − k) · x] (A11)

In fact, both momenta k + p and k − p are space-like, and thus, F̃μν looks tachyonic.
However, as mentioned in the Discussion, since the model classically has many degenerate
vacua with broken translational invariance, the interpretation of classical solutions as
excitations is not so clear.
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Abstract: Motivated by the SU(2)CMB modification of the cosmological model ΛCDM, we consider
isolated fuzzy-dark-matter lumps, made of ultralight axion particles whose masses arise due to
distinct SU(2) Yang–Mills scales and the Planck mass MP. In contrast to SU(2)CMB, these Yang–Mills
theories are in confining phases (zero temperature) throughout most of the Universe’s history and
associate with the three lepton flavours of the Standard Model of particle physics. As the Universe
expands, axionic fuzzy dark matter comprises a three-component fluid which undergoes certain
depercolation transitions when dark energy (a global axion condensate) is converted into dark
matter. We extract the lightest axion mass ma,e = 0.675 × 10−23 eV from well motivated model fits
to observed rotation curves in low-surface-brightness galaxies (SPARC catalogue). Since the virial
mass of an isolated lump solely depends on MP and the associated Yang–Mills scale the properties of
an e-lump predict those of μ- and τ-lumps. As a result, a typical e-lump virial mass ∼6.3 × 1010 M�
suggests that massive compact objects in galactic centers such as Sagittarius A∗ in the Milky Way are
(merged) μ- and τ-lumps. In addition, τ-lumps may constitute globular clusters. SU(2)CMB is always
thermalised, and its axion condensate never has depercolated. If the axial anomaly indeed would
link leptons with dark matter and the CMB with dark energy then this would demystify the dark
Universe through a firmly established feature of particle physics.

Keywords: galaxy rotation curves; low surface brightness; dark matter; dark energy; ultralight axion
particles; cores; halos; mass-density; profiles; pure Yang–Mills theory

1. Introduction

Dark matter was introduced as an explanation for the anomalous, kinematic behavior
of luminous test matter in comparison with the gravity exerted by its luminous surround-
ings, e.g., virialised stars within a galaxy [1] or a virialised galaxy within a cluster of
galaxies [2]. That luminous matter can be segregated from dark matter is evidenced by the
bullet cluster in observing hot intergalactic plasma (X-ray) in between localised dark-mass
distributions (gravitational lensing) [3,4].

The present Standard Model of Cosmology (SMC) ΛCDM posits a spatially flat
Universe [5] with about 70% dark energy, inducing late-time acceleration [6,7]. This
model requires a substantial contribution of about 26% cold dark matter to the critical
density and allows for a contribution of baryons of roughly 4%.

To determine all parameters of ΛCDM at a high accuracy, cosmological distance scales
can be calibrated by high-redshift data (inverse distance ladder, global cosmology), coming
from precision observations of the Cosmic Microwave Background (CMB) or from large-
scale structure surveys probing Baryon Acoustic Oscillations (BAO). Alternatively, low-
redshift data (direct distance ladder, local cosmology) can be used by appeal to standard
or standardisable candles such as cepheids, TRGB stars, supernovae Ia, and supernovae
II. Recently, a comparison between global and local cosmology has revealed tensions [8]
in some of the cosmological parameter values (e.g., H0 [9–12] and σ8 − Ωm [13–15], see
also [16] for the context of a high-redshift modification of ΛCDM).

These interesting discrepancies motivate modifications of ΛCDM [17]. A cosmological
model aiming to resolve these tensions should target high-redshift radiation and the dark
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sector. In particular, models which are in principle falsifiable by terrestrial experiments
and which pass such tests could lead to a demystification of the dark Universe. How-
ever, searches for weakly interacting, massive and stable particles (WIMPS) [18], whose
potential existence is suggested by certain extensions of the Standard Model of Particle
Physics (SMPP), so far have not produced any detection [19,20].

An attractive possibility to explain the feebleness of a potential interaction between the
dark sector of the SMC and SMPP matter in terms of the large hierarchy between particle-
physics scales and the Planck mass is the theoretically [21–23] and experimentally [24]
solidly anchored occurrence of an axial anomaly, which is induced by topological charge
densities [25] in the ground states of pure Yang–Mills theories [26]. The axial anomaly
acts on top of a dynamical chiral symmetry breaking mediated by a force of hierarchically
large mass scale compared to the scales of the Yang–Mills theories. To enable the axial
anomaly throughout the Universe’s entire history chiral fermions, which acquire mass
through gravitational torsion and which can be integrated out in a Planck-scale de Sitter
background [27], need to be fundamentally charged under certain gauge groups. In such a
scenario gravity itself—a strong force at the Planck scale—would induce the dynamical
chiral symmetry breaking [28–30]. The anomaly then generates an axion mass ma [25]
for particles that a priori are chiral Nambu–Goldstone bosons. Working in natural units
c = h̄ = kB = 1, one has

ma =
Λ2

MP
, (1)

where Λ denotes a Yang–Mills scale and MP = 1.221 × 1028 eV the Planck mass [28,30].
The cold-dark-matter (CDM) paradigm is successful in explaining large-scale structure
in the ΛCDM context but exhibits problems at small scales, e.g., galactic and lower [31]:
While N-body simulations within ΛCDM reveal matter-density profiles of the galactic DM
halos that are characterised by a central cusp of the Navarro-Frenk-White (NFW) type [32],
ρNFW ∝ r−1 [33] (r the radial distance to the center of the galaxy), observations suggest a
core or soliton profile ρsol(r) subject to a constant central matter density ρc = ρsol(r = 0),
see, e.g., [34–40]. A model of fuzzy dark matter (FDM) [34,36,41–48], according to the
ground-state solution of the Schrödinger–Poisson system embedded into cosmological
simulations [47], posits a condensate of free axion particles within the galactic core. For the
radial range

r200 > r > re > 3 rc (2)

the associated central matter densities ρsol(r) gives way to a selfgravitating cloud of
effective, nonrelativistic particles of mass ∼ λ3

deB × ρNFW(r). Here r200 denotes the virial
radius defined such that

ρNFW(r200) = 200
3 M2

P
8π

H2
0 , (3)

where H0 is the Hubble constant, and λdeB = λdeB(r) indicates the de-Broglie wavelength
of an axionic particle for re < r < r200 where the NFW model applies. Note that within
the core region r < re the correlation length in the condensate is given by the reduced
Compton wave length λ̄C = 1/ma. In what follows, we will refer to such a system—
condensate core plus NFW-tail—as a lump. In [49], FDM fits to the rotations curves of low-
surface-brightness galaxies, which are plausibly assumed to be dominated by dark matter,
have produced an axion mass of ma = 0.554 × 10−23 eV. Note also that the cosmological
simulation of [47] associates the axionic scalar field with dark-matter perturbations only but
not with the background dark-matter density which is assumed to be conventional CDM.

Another potential difficulty with ΛCDM, which FDM is capable of addressing, is
the prediction of too many satellite galaxies around large hosts like the Milky Way or
Andromeda [50], see, however [51] for a cosmological simulation within CDM. A recent
match of observed satellite abundances with cosmological simulations within the FDM
context yields a stringent bound on the axionic particle mass ma [51]: ma > 2.9 × 10−21 eV.
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This bound is consistent with ma = 2.5+3.6
−2.0 × 10−21 eV derived from an analysis of the

Milky Way rotation curve in [39].
There is yet another indication that ΛCDM may face a problem in delaying the

formation of large galaxies of mass M ∼ 1012 M� due to their hierarchical formation
out of less massive ones. This seems to contradict the high-redshift observation of such
galaxies [52] and suggests that a component of active structure formation is at work.

Assuming axions to be a classical ideal gas of non-relativistic particles the mass ma
can be extracted from CMB simulations of the full Planck data subject to scalar adiabatic,
isocurvature, and tensor-mode initial conditions [53] (10−25 eV≤ ma ≤ 10−24 eV with a
10% contribution to DM and a 1% contribution of isocurvature and tensor modes) and from
a modelling of Lyman-α data [54] with conservative assumptions on the thermal history of
the intergalactic medium. For the XQ-100 and HIRES/MIKE quasar spectra samples one
obtains, respectively, ma ≥ 7.12 × 10−22 eV and ma ≥ 1.43 × 10−21 eV.

In our discussion of Section 5 we conclude that three axion species of hierarchically
different masses could determine the dark-matter physics of our Universe. When compar-
ing the results of axion-mass extractions with FDM based axion-mass constraints obtained
in the literature it is important to observe that a single axion species always is assumed.
For example, this is true of the combined axion-mass bound ma > 3.8 × 10−21 eV, derived
from modelling the Lyman-α flux power spectrum by hydrodynamical simulations [54],
and it applies to the cosmological evolution of scalar-field based dark-matter perturbations
yielding an axion mass of ma ∼ 8 × 10−23 eV in [47].

In the present article we are interested in pursuing the consequences of FDM for the
physics of dark matter on super-galactic and sub-galactic scales within a cosmological
model which deviates from ΛCDM in three essential points: (i) FDM is subject to three
instead of one nonthermal axionic particle species, whose present cosmological mass
densities are nearly equal, (ii) axion lumps (condensate core plus halo of fluctuating density
granules) cosmologically originate from depercolation transitions at distinct redshifts zp,i
out of homogeneous condensates [16], and (iii) the usual, nearly scale invariant spectrum
of adiabatic curvature fluctuations imprinted as an initial condition for cosmological cold-
dark-matter evolution, presumably created by inflation, does not apply.

Point (i) derives from the match of axion species with the three lepton families of the
Standard Model of particle physics. These leptons emerge in the confining phases of SU(2)
Yang–Mills theories [55]. According to Equation (1) axion masses are then determined by
the universal Peccei-Quinn scale MP and the distinct Yang–Mills scales Λe, Λμ, and Λτ .

Point (ii) is suggested by a cosmological model [16] which is induced by the postulate
that the CMB itself is described by an SU(2) gauge theory [26] and which fits the CMB
power spectra TT, TE, and EE remarkably well except for low l. The according overshoot
in TT at large angular scales may be due to the neglect of the nontrivial, SU(2)-induced
photon dispersion at low frequencies.

Point (iii) relates to the fact that a condensate does not maintain density perturbations
on cosmological scales and that zp,e ∼ 53. As a consequence, constraints on axion masses
from cosmological simulations by confrontation with the observed small-scale structure
should be repeated based on the model of [16]. This, however, is beyond the scope of the
present work.

To discuss point (ii) further, we refer to [16], where a dark sector was introduced as a
deformation of ΛCDM. This modification models a sudden transition from dark energy
to dark matter at a redshift zp = 53. Such a transition is required phenomenologically to
reconcile high-z cosmology (well below the Planckian regime but prior to and including
recombination), where the dark-matter density is reduced compared to ΛCDM, with well-
tested low-z cosmology. That a reduced dark-matter density is required at high z is as
a result of an SU(2)CMB-induced temperature-z relation [56]. Depercolation of a formely
spatially homogeneous axion condensate, which introduces a change of the equation of
state from ρ = −P to P = 0, is a result of the Hubble radius rH—the spatial scale of causal
connectedness in a Friedmann–Lemaitre–Robertson–Walker (FLRW) Universe—exceeding
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by far the gravitational Bohr radius rB of an isolated, spherically symmetric system of
selfgravitating axion particles. The value of the ratio rH/rB at depercolation so far is subject
to phenomenological extraction, but should intrinsically be computable in the future
by analysis of the Schrödinger–Poisson system in a thus linearly perturbed background
cosmology whose dark sector is governed by axion fields subject to their potentials.

Roughly speaking, at depercolation from an equation of state ρ = −P the quantum
correlations in the axionic system become insufficient to maintain the homogeneity of the
formerly homogeneously Bose-condensed state. The latter therefore decays or depercolates
into selfgravitating islands of axionic matter whose central regions continue to be spatially
confined Bose condensates but whose peripheries are virialised, quantum correlated parti-
cle clouds of an energy density that decays rapidly in the distance r to the gravitational
center to approach the cosmological dark-sector density. On cosmological scales, each of
these islands (lumps) can be considered a massive (nonrelativistic) particle by itself such
that the equation of state of the associated ensemble becomes P = 0: The density of lumps
then dilutes as a−3 where a denotes the cosmological scale factor.

For the entire dark sector we have

Ωds(z) = ΩΛ + Ωpdm,0(z + 1)3 + Ωedm,0

{
(z + 1)3, z < zp,e
(zp,e + 1)3, z ≥ zp,e

. (4)

Fits of this model to the TT, TE, and EE CMB power spectra reveal that
Ωedm,0 ∼ 1

2 Ωpdm,0. Here Ωpdm,0 denotes a primordial contribution to the present dark-
matter density parameter Ωdm,0 = Ωedm,0 +Ωpdm,0 while Ωedm,0 refers to the emergence of
dark matter due to the depercolation of a formerly homogeneous Bose–Einstein condensate
into isolated lumps once their typical Bohr radius is well covered by the horizon radius rH .
One may question that depercolation occurs suddenly at zp,e, the only justification so far
being the economy of the model. If a first-principle simulation of the Schrödinger–Poisson
system plus background cosmology reveals that the transition from dark energy to dark
matter during depercolation involves a finite z-range then this has to be included in the
model of Equation (4).

After depercolation has occurred, a small dark-energy residual ΩΛ persists to become
the dominant cosmological constant today. As we will argue in Section 5, the primordial
dark-matter density Ωpdm,0 could originate from the stepwise depercolation of former
dark energy in the form of super-horizon sized μ- and τ-lumps. Therefore, dark energy
dominates the dark sector at sufficiently high z. However, due to radiation dominance
dark energy then was a marginal contribution to the expansion rate. The model of [16]
was shown to fit the CMB anisotropies with a low baryon density, the local value for the
redshift of re-ionisation [57], and the local value of H0 from supernovae Ia distance-redshift
extractions [10,11].

The purpose of the present work is to propose a scenario which accommodates
Ωedm,0, Ωpdm,0, and ΩΛ. At the same time, we aim at explaining the parameters Ωedm,0
and Ωpdm,0 in terms of axial anomalies subject to a Planck-mass Peccei-Quinn scale
and three SU(2) Yang–Mills theories associated with the three lepton families. In ad-
dition, an explanation of parameter ΩΛ is proposed which invokes the SU(2) Yang–Mills
theory underlying the CMB. Hence, the explicit gauge-theory content of our model is:
SU(2)e× SU(2)μ× SU(2)τ× SU(2)CMB .

We start with the observation in [36] that ultralight bosons necessarily need to occur
in the form of selfgravitating condensates in the cores of galaxies. Because these cores were
separated in the course of nonthermal depercolation halos of axion particles, correlated
due to gravitational virialisation on the scale of their de Broglie wavelength, were formed
around the condensates. Such a halo reaches out to a radius, say, of r200 where its mass
density starts to fall below 200 times the critical cosmological energy density of the spa-
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tially flat FLRW Universe. A key concept in describing such a system—a lump—is the
gravitational Bohr radius rB defined as

rB ≡ M2
P

Mm2
a

, (5)

where M is the mass of the lump which should coincide with the viral mass, say M200. We
use two FDM models of the galactic mass density ρ(r) to describe low-surface-brightness
galaxies and to extract the axion mass ma: The Soliton-NFW model, see [44] and references
therein, and the Burkert model [58,59].

Rather model independently, we extract a typical value of ma,e ∼ 0.7× 10−23 eV which
confirms the value obtained in [49]. With Equation (1) this value of ma,e implies a Yang–
Mills scale of Λe ∼ 287 eV. This is smaller than Λe = 511 keV/118.6 = 4.31 keV found
in [55] where a link to an SU(2) Yang–Mills theory governing the first lepton family is made:
SU(2)e. Note that the larger value of Λe was extracted in the deconfining phase [55] while
the smaller value, obtained from the axion mass ma,e, relates to the confining phase. The
suppression of Yang–Mills scale is plausible because topological charges, which invoke the
axial anomaly, are less resolved in the confining as compared to the deconfining phase. The
gravitational Bohr radius associated with a typical e-lump mass of Me ∼ 6.3 × 1010 M�
turns out to be rB,e ∼ 0.26 kpc.

Having fixed the scales of SU(2)CMB, SU(2)e and linked their lumps to dark en-
ergy and the dark-matter halos of low-surface-brightness galaxies, respectively, we asso-
ciate the lumps of SU(2)¯ and SU(2)ø with Ωpdm,0 of the dark-sector cosmological model
in Equation (4). Within a galaxy, each individual μ- and τ-lump provides a mass fraction
of (me/mμ)

2 ∼ 2.3 × 10−5 and (me/mτ)
2 ∼ 8.3 × 10−8, respectively, of the mass Me of an

e-lump, see Equation (11).
This paper is organised as follows. In Section 2 we discuss features of lumps in terms

of a universal ratio between reduced Compton wavelength and gravitational Bohr radius.
As a result, a typical lump mass can be expressed solely in terms of Yang–Mills scale and
Planck mass. The rotation curves of galaxies with low surface brightness (SPARC library)
are analysed in Section 3 using two models with spherically symmetric mass densities: the
Soliton–Navarro–Frenk–White (SNFW) and the Burkert model. Assuming that only one
Planck-scale axion species dominates the dark halo of a low-surface-brightness galaxy in
terms of an isolated, unmerged e-lump, we extract the typical axion mass ma,e in Section 3.2.
In Section 3.3 we demonstrate the consistency of axion-mass extraction between the two
models: The gravitational Bohr radius, determined in SNFW, together with the lump mass,
obtained from the Burkert-model-fit, predicts an axion mass which is compatible with the
axion mass extracted from the soliton-core density of the SNFW model. The typical value
of the axion mass suggests an association with SU(2) Yang–Mills dynamics responsible for
the emergence of the first lepton family. In Section 4, this information is used to discuss
the cosmological origin and role of lumps played in the dark Universe in association with
the two other lepton families and the SU(2) gauge theory propounded to describe the
CMB [16,56]. As a result, on subgalactic scales the μ-lumps could explain the presence of
massive compact objects in galactic centers such as Sagittarius A∗ in the Milky Way [60,61]
while τ-lumps may relate to globular clusters [62]. On super-galactic scales and for z < zp,e,
however, lumps from all axion species act like CDM. On the other hand, the CMB-lump’s
extent always exceeds the Hubble radius by many orders of magnitude and therefore
should associate with dark energy. Finally, in Section 5 we discuss in more detail how
certain dark structures of the Milky Way may have originated in terms of μ- and τ-lumps.
We also provide a summary and an outlook on future work. We work in natural units
h̄ = c = kB = 1.
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2. Gravitational Bohr Radius and Reduced Compton Wave Length of a
Planck–Scale Axion

We start by conveying some features of basic axion lumps, cosmologically originated
by depercolation transitions, that we wish to study. Let

λ̄C,i ≡ 1
ma,i

(6)

denote the reduced Compton wavelength and

da,i ≡
(

ma,i

ρ̄i

)1/3
(7)

the mean distance between axion particles within the spherically symmetric core of the
lump of mean dark-matter mass density ρ̄i. One has

ρ̄i ∼ M200,i
4π
3 r3

B,i
. (8)

The energy densities ρi of each of the three dark-energy like homogeneous condensates
of axionic particles prior to lump depercolation are assumed to arise due to Planckian
physics [30]. Therefore, each ρ̄i may only depend on MP and ma,i (i = e, μ, τ). Finite-extent,
isolated, unmerged lumps self-consistently are characterised by a fixed ratio between the
reduced Compton wavelength λ̄C,i—the correlation length in the condensate of free axion
particles at zero temperature—and the Bohr radius rB,i.

Let us explain this. Causal lump segregation due to cosmological expansion (deper-
colation), which sets in when the Hubble radius rH becomes sufficiently larger than rB, is
adiabatically slow and generates a sharply peaked distribution of lump masses (and Bohr
radii) in producing typically sized condensate cores. These cores are surrounded by halos
of axion particles that represent regions of the dissolved condensate and nonthermally are
released by the mutual pull of cores during depercolation. In principle, we can state that
for an isolated, unmerged lump

rB,i

λ̄C
= κ(δi) , (9)

where κ is a smooth dimensionless function of its dimensionless argument δi ≡ ma,i/MP
with the property that limδi→0 κi(δi) < ∞. This is because the typical mass Mi ∼ M200,i
of an isolated, unmerged lump, which enters rB,i via Equation (5), is, due to adiabatically
slow depercolation, by itself only a function of the two mass scales ma,i and MP mediating
the interplay between quantum and gravitational correlations that give rise to the forma-
tion of the lump. Since δi is much smaller than unity, we can treat the right-hand side
of Equation (9) as a universal constant. In practice, we will in Section 3 derive the values
of rB,e and ma,e by matching dark-matter halos of low surface-brightness galaxies with
well motivated models of a lump’s mass density. As a result, we state a value of κ ∼ 314
in Equation (25) of Section 4.

Equation (9) together with Equations (1), (5) and (6) imply for the mass Mi of the
isolated, unmerged lump

Mi =
1
κ

M3
P

Λ2
i

. (10)
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Equation (10) is important because it predicts that the ratios of lump masses solely are
determined by the squares of the ratios of the respective Yang–Mills scales or, what is the
same [55], by the ratios of charged lepton masses me, mμ, and mτ . One has

Mτ

Mμ
=

(
mτ

mμ

)2
∼ 283 ,

Mμ

Me
=

(
me

mμ

)2
∼ 2.3 × 10−5 ,

Mτ

Me
=

(
me

mτ

)2
∼ 8.3 × 10−8 . (11)

Moreover, Equations (1), (6)–(8) and (10) fix the ratio ξi ≡ da,i
λ̄C,i

as

ξi =

(
4π

3

)1/3(
κ

Λi
MP

)4/3
. (12)

Since Λi � MP we have ξi � 1, and therefore a large number of axion particles are
covered by one reduced Compton wave length. This assures that the assumption of a
condensate core is selfconsistent. A thermodynamical argument for the necessity of axion
condensates throughout the Universe’s expansion history is given in Section 4. In [36], the
non-local and non-linear (integro-differential) Schrödinger equation, obtained from a linear
Schrödinger equation and a Poisson equation for the gravitational potential, see, e.g., [63],
governing the lump, was analysed. An excitation of such a lump in terms of its wave-
function ψi containing radial zeros was envisaged in [36,49]. Here instead, we assume the
isolated, unmerged lump to be in its ground state, parameterised by a phenomenological
mass density ρi(r) ∝ |ψi|2(r) > 0 which represents the lump well [47].

Finally, Equation (5) together with Equations (1) and (10) yield for the gravitational
Bohr radius

rB,i = κ
MP

Λ2
i

. (13)

3. Analysis of Rotation Curves

In this section, we extract the axion mass ma,e from observed RCs of low-surface-
brightness galaxies which fix the lump mass Me and a characterising length scale—the
gravitational Bohr radius rB,e. This, in turn, determines the (primary, see Section 4) Yang–
Mills scale Λe associated with the lump. We analyse RCs from the SPARC library [64].

3.1. Fuzzy Dark Matter: Soliton–Navarro–Frenk–White vs. Burkert Model

To investigate, for a given galaxy and RC, the underlying spherically symmetric mass
density ρ(r) it is useful to introduce the orbit-enclosed mass

M(r) = 4π
∫ r

0
dr′ r′2ρ(r′) . (14)

Assuming virialisation, spherical symmetry, and Newtonian gravity the orbital veloc-
ity V(r) of a test mass (a star) is given as

V(r) =

√
GM(r)

r
, (15)

where M(r) is defined in Equation (14), and G ≡ M−2
P denotes Newton’s constant. The

lump mass M is defined to be M200 ≡ M(r200) where r200 is given by Equation (3).
For an extraction of ma,e and therefore the associated Yang–Mills scale governing the

mass of a lump according to Equation (10), we use the Soliton–Navarro—Frenk–White
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(SNFW) and the Burkert model. The mass-density profile of the NFW-part of the SNFW-
model is given as [33]

ρNFW(r) =
ρNFW

s
r
rs
(1 + r

rs
)2 , (16)

where ρNFW
s associates with the central mass density, and rs is a scale radius which rep-

resents the onset of the asymptotic cubic decay in distance r to the galactic center. Note
that profile ρNFW exhibits an infinite cusp as r → 0 and that the orbit-enclosed mass M(r)
diverges logarithmically with the cutoff radius r for the integral in Equation (14). In order
to avoid the cuspy behavior for r → 0, an axionic Bose–Einstein condensate (soliton density
profile) is assumed to describe the soliton region r ≤ re. From the ground-state solution
of the Schrödinger–Poisson system for a single axion species one obtains a good analytic
description of the soliton density profile as [49]

ρsol(r) =
ρc

(1 + 0.091(r/rc)2)8 , (17)

where ρc is the core density [47]. On the whole, the fuzzy dark matter profile can than be
approximated as

ρFDM(r) = Θ(rε − r)ρsol + Θ(r − rε)ρNFW . (18)

For the Burkert model one assumes a mass-density profile of the form [58,59]

ρBu(r) =
ρ0 r3

0
(r + r0)(r2 + r2

0)
(19)

where ρ0 refers to the central mass density and r0 is a scale radius.

3.2. Analysis of RCs in the SNFW Model

Using Equations (14), (15) and (18), we obtain the orbital velocity VSNFW of the SNFW
model [65] [Equation (17)] which is fitted to observed RCs. This determines the parameters
rε, rs, and ρc. The density ρs relates to these fit parameters by demanding continuity of the
SNFW mass density at rε [49]. As a result, one has

ρs(ρc, rc, rε, rs) = ρc
(rε/rs)(1 + rε/rs)2

(1 + 0.091(rε/rc)2)8 . (20)

Examples of good fits with χ2/d.o.f. < 1 are shown in Figure 1, see Tables 1 and 2 for
the corresponding fit parameters. The derived quantity ma,e is extracted from the following
equation [47]

ρc ≡ 1.9 × 109(ma,e/10−23eV)−2(rc/kpc)−4M�kpc−3 (21)

The other derived quantities r200 and M200 are obtained by employing Equations (3)
and (14) with M(r = r200) ≡ M200, respectively. In Figure 2, a frequency distribution of
ma,e is shown, based on a sample of 17 best fitting galaxies, see Figure 1 for the fits to the
RCs. The maximum of the smooth-kernel-distribution (solid line) is at

ma,e = (0.72 ± 0.5)× 10−23 eV . (22)
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Figure 1. Best fits of SNFW to RCs of 17 SPARC galaxies. The arrows indicate the Bohr radius of the e-lump, rB,e (red), the
core radius of the soliton rc (orange), the transition radius from the soliton model to the NFW model re (yellow), and the
scale radius of the NFW model rs (green).
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Table 1. Fits of RCs to SNFW model: Galaxy name, Hubble Type, χ2/d.o.f., luminosity, axion mass ma, r200, virial mass
M200, central density ρc, scale radius rs, transition radius re, core radius rc, and re/rc. The fitting constraints are heuristic
and motivated by the results of [49], r200 < 200 kpc, re, rc < 6 kpc, and re/rc > 0.1.

Galaxy
Hub.
Type

Lum.
[L�

/
pc2]

χ2
/d.o.f.

ma,e
[eV×10−23

] r200

[kpc]
M200[

M� × 1010
]

DDO170 Im 73.93 0.73 1.00 ± 0.82 36.90 ± 8.16 2.81 ± 1.95

F565-V2 Im 40.26 0.02 0.31 ± 0.47 60.71 ± 11.52 11.65 ± 5.05

F568-1 Sc 57.13 0.02 0.41 ± 0.24 70.06 ± 7.82 22.59 ± 6.67

F571-V1 Sd 64.39 0.03 0.50 ± 0.30 49.71 ± 6.70 7.12 ± 2.83

F574-1 Sd 128.48 0.02 0.93 ± 0.15 53.96 ± 3.09 9.79 ± 1.44

F583-4 Sc 83.34 0.13 3.87 ± 1.37 75.08 ± 32.44 17.88 ± 13.83

NGC3109 Sm 140.87 0.18 1.14 ± 0.39 77.09 ± 18.07 19.85 ± 5.45

NGC3877 Sc 3410.59 0.17 0.39 ± 0.04 69.37 ± 12.49 26.91 ± 6.58

NGC4085 Sc 5021.46 0.07 0.41 ± 0.18 46.07 ± 7.09 9.26 ± 2.78

NGC6195 Sb 174.11 0.47 0.48 ± 0.03 121.72 ± 9.61 122.40 ± 24.56

UGC00731 Im 82.57 0.19 3.39 ± 0.87 53.27 ± 8.51 7.62 ± 2.90

UGC00891 Sm 113.98 0.01 0.93 ± 0.10 44.92 ± 1.42 4.78 ± 0.36

UGC06628 Sm 103.00 0.00 3.61 ± 0.10 23.35 ± 0.87 0.77 ± 0.05

UGC07125 Sm 103.00 0.25 1.81 ± 0.65 47.55 ± 10.38 4.97 ± 2.68

UGC07151 Scd 965.67 0.72 1.94 ± 2.32 32.32 ± 5.65 2.53 ± 1.58

UGC11820 Sm 34.11 0.82 5.99 ± 4.75 75.83 ± 49.15 18.10 ± 34.72

UGC12632 Sm 66.81 0.09 1.47 ± 0.23 46.91 ± 6.10 5.56 ± 1.48

Table 2. Fits of RCs to SNFW model: Galaxy name, central density ρc, soliton density ρs, scale radius rs, transition radius re,
core radius rc, and re/rc. The fitting constraints are heuristic and motivated by the results of [49], r200 < 200 kpc, re, rc <

6 kpc, and re/rc > 0.1.

Galaxy
ρC × 107

[M�
/

kpc3]
ρs × 107

[M�
/

kpc3]
rs

[kpc]
re

[kpc]
rc

[kpc]
re/rc

DDO170 1.34 ± 0.38 0.95 ± 0.78 6.02 ± 1.51 3.48 ± 2.99 3.45 ± 1.39 1.01

F565-V2 1.6 ± 0.21 0.51 ± 0.33 12.46 ± 4.33 3.14 ± 0.8 5.89 ± 4.38 0.53

F568-1 6.61 ± 0.56 2.67 ± 1.04 7.87 ± 1.36 2.59 ± 0.6 3.62 ± 1.06 0.72

F571-V1 1.61 ± 0.24 1.22 ± 0.68 7.42 ± 1.71 3.96 ± 1.21 4.65 ± 1.4 0.85

F574-1 5.41 ± 0.26 1.81 ± 0.32 6.98 ± 0.46 2.52 ± 1.04 2.52 ± 0.21 1.00

F583-4 8.05 ± 1.34 0.12 ± 0.13 27.1 ± 19.49 1.73 ± 0.41 1.12 ± 0.19 1.55

NGC3109 2.28 ± 0.09 0.14 ± 0.08 25.88 ± 11.92 2.03 ± 0.56 2.83 ± 0.48 0.71

NGC3877 15. ± 0.91 13.56 ± 15.7 4.4 ± 2.43 4.87 ± 0.91 3.03 ± 0.15 1.61

NGC4085 13.49 ± 1.04 103.33 ± 134.83 1.46 ± 0.82 2.46 ± 0.41 3.02 ± 0.65 0.81

NGC6195 128.1 ± 7.47 2.67 ± 0.6 13.68 ± 0.96 3.55 ± 0.12 1.59 ± 0.05 2.23

UGC00731 7.41 ± 0.87 0.39 ± 0.16 12.17 ± 1.85 1.62 ± 0.34 1.22 ± 0.15 1.32

UGC00891 1.63 ± 0.05 0.57 ± 0.06 8.85 ± 0.39 2.97 ± 0.19 3.42 ± 0.19 0.87

UGC06628 4.34 ± 0.08 1.3 ± 0.21 3.4 ± 0.28 2.27 ± 0.07 1.35 ± 0.02 1.68

UGC07125 2.2 ± 0.39 0.22 ± 0.12 13.55 ± 2.2 3.06 ± 0.94 2.27 ± 0.39 1.35

UGC07151 13.48 ± 2.86 7.49 ± 5.62 2.52 ± 0.66 1.05 ± 0.46 1.39 ± 0.83 0.75

UGC11820 15.04 ± 4.43 0.11 ± 0.2 28.64 ± 6.01 1.35 ± 0.66 0.77 ± 0.3 1.76

UGC12632 3.77 ± 0.3 0.61 ± 0.24 9.01 ± 1.82 3.12 ± 0.49 2.2 ± 0.16 1.42
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Figure 2. Frequency distribution of axion mass ma,e as extracted from the SNFW model for
17 best fitting galaxies. The maximum of the smooth-kernel-distribution (solid, blue line) is at
ma,e = (0.72 ± 0.5)× 10−23 eV (red, vertical line).

In Figure 3 a frequency distribution of M200 is shown for the 17 best-fitting galax-
ies. Figure 4 depicts the distribution of these galaxies in the M200—surface-brightness
plane. The maximum of the smooth-kernel-distribution is at M200 = (6.3 ± 3)× 1010 M�.
With Equation (5) this implies a mean Bohr radius of

rB,e =
M2

p

(6.3 ± 4)× 1010 M� ((0.72 ± 0.5)× 10−23 eV)2

= (0.26 ± 0.1) kpc . (23)

This value of rB,e is used in the Burkert-model analysis of Section 3.3 to extract the
frequency distribution of ma,e via the frequency distribution of M200.

Figure 3. Frequency distribution of the virial mass M200 in units of solar masses M� from the 17
best-fitting galaxies in the SNFW model. The maximum of the smooth-kernel-distribution (solid line)
is at M200 = (6.3 ± 4)× 1010 M�.
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Figure 4. Extracted virial masses M200 in units of solar masses M� from sample of the 17 best-fitting
galaxies in the SNFW model.

3.3. Analysis of RCs in the Burkert Model

Figure 5 depict the fits of the Burkert model to the 17 RCs used in the SNFW fits.
Tables 3 and 4 indicate that three out of these 17 RCs are fitted with a χ2/d.o.f. > 1.
Therefore, we resort to a sample of 80 galaxies which fit with χ2/d.o.f. < 1.

Our strategy to demonstrate independence of the mean value of ma,e on the details
of the two realistic models SNFW and Burkert is to also determine it from Equation (5).
To do this, we use the value of the gravitational Bohr radius rB,e in Equation (23) and the
values of M200 extracted from RC fits within an ensemble of 80 SPARC galaxies to the
Burkert model. The results are shown in Tables 3 and 4, Figures 6 and 7. This yields a
frequency distribution of ma,e shown in Figure 8. Obviously, the maximum of the smooth-
kernel distribution, ma,e = (0.65 ± 0.4)× 10−23 eV, is compatible with that in the SNFW
model ma,e = (0.72 ± 0.5)× 10−23 eV. Notice how M200 clusters around the value M200 ∼
5 × 1010 M�.

In our treatment of cosmological and astrophysical implications, we appeal to the
mean value of ma,e-extractions in the SNFW and the Burkert model as

ma,e = 0.675 × 10−23 eV . (24)
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Figure 5. Burkert-model fits to the 17 best fitting SNFW-model galaxies. The purple arrow indicates the value of r0.
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Table 3. Burkert model: Galaxy name, Hubble Type, χ2/d.o.f., luminosity, axion mass ma, r200, virial mass M200, core
density ρ0, and core radius r0. In the red frame the 17 galaxies used for the SNFW fit are highlighted.

Galaxy
Hub.
Type

Lum.
[L�/pc2]

χ2
/d.o.f.

ma,e
[eV×10−23] r200

[kpc]
M200[

M� × 1010] ρ0 × 107

[M�/kpc3]
r0

[kpc]
DDO170 Im 73.93 0.74 1.18 ± 0.24 33.22 ± 1.64 2.34 ± 0.28 2.03 ± 0.14 3.98 ± 0.16
F565-V2 Im 40.26 0.04 0.68 ± 0.14 47.44 ± 3.11 7.06 ± 1.03 2.39 ± 0.16 5.39 ± 0.29
F568-1 Sc 57.13 0.06 0.47 ± 0.09 57.09 ± 2.82 15.19 ± 1.47 9.13 ± 0.46 4.10 ± 0.13
F571-V1 Sd 64.39 0.03 0.74 ± 0.15 44.84 ± 2.51 6.03 ± 0.69 2.45 ± 0.15 5.06 ± 0.20
F574-1 Sd 128.48 0.10 0.70 ± 0.14 43.92 ± 1.74 6.62 ± 0.45 6.69 ± 0.26 3.51 ± 0.08
F583-4 Sc 83.34 0.51 1.33 ± 0.34 28.84 ± 3.82 1.85 ± 0.61 6.66 ± 1.26 2.30 ± 0.25
NGC3109 Sm 140.87 0.17 0.91 ± 0.18 38.94 ± 0.91 3.93 ± 0.23 2.68 ± 0.06 4.23 ± 0.09
NGC3877 Sc 3410.59 0.46 0.38 ± 0.08 63.43 ± 3.48 23.22 ± 3.28 23.82 ± 1.88 3.26 ± 0.15
NGC4085 Sc 5021.46 0.63 0.50 ± 0.12 52.85 ± 5.37 13.34 ± 3.53 22.57 ± 2.90 2.77 ± 0.25
NGC6195 Sb 174.11 50.97 0.21 ± 0.06 91.02 ± 16.07 74.49 ± 32.29 37.13 ± 9.18 4.07 ± 0.56
UGC00731 Im 82.57 1.55 1.08 ± 0.24 33.71 ± 3.07 2.83 ± 0.66 5.15 ± 0.68 2.92 ± 0.23
UGC00891 Sm 113.98 0.14 1.04 ± 0.20 35.94 ± 0.96 3.03 ± 0.19 2.34 ± 0.07 4.09 ± 0.09
UGC06628 Sm 103.00 0.01 2.40 ± 0.48 19.65 ± 0.92 0.57 ± 0.07 5.82 ± 0.41 1.63 ± 0.06
UGC07125 Sm 103.00 0.83 1.06 ± 0.22 36.11 ± 2.61 2.90 ± 0.51 1.63 ± 0.17 4.67 ± 0.28
UGC07151 Scd 965.67 0.94 1.32 ± 0.28 27.68 ± 1.93 1.87 ± 0.34 19.42 ± 1.91 1.52 ± 0.09
UGC11820 Sm 34.11 11.39 0.73 ± 0.20 46.42 ± 7.09 6.17 ± 2.34 1.63 ± 0.34 6.00 ± 0.80
UGC12632 Sm 66.81 0.22 1.05 ± 0.21 34.69 ± 1.37 3.01 ± 0.30 4.40 ± 0.25 3.18 ± 0.10
CamB Im 66.20 0.02 1.10 ± 0.31 36.66 ± 6.71 2.74 ± 1.15 0.91 ± 0.04 5.81 ± 1.06
D512-2 Im 93.94 0.33 2.52 ± 0.76 19.25 ± 3.55 0.52 ± 0.24 4.68 ± 0.99 1.73 ± 0.29
D564-8 Im 21.13 0.02 4.15 ± 0.82 14.37 ± 0.50 0.19 ± 0.02 2.10 ± 0.08 1.70 ± 0.05
DDO064 Im 151.65 0.40 1.47 ± 0.45 27.02 ± 4.99 1.51 ± 0.71 6.87 ± 1.10 2.12 ± 0.37
F563-1 Sm 41.77 0.54 0.59 ± 0.13 50.11 ± 4.84 9.55 ± 2.26 5.90 ± 0.83 4.16 ± 0.32
F563-V2 Im 146.16 0.15 0.60 ± 0.13 47.48 ± 3.69 9.24 ± 1.70 14.65 ± 1.42 2.89 ± 0.18
F567-2 Sm 46.65 0.25 1.64 ± 0.56 26.26 ± 6.02 1.23 ± 0.69 2.66 ± 0.82 2.88 ± 0.56
F568-3 Sd 132.08 0.80 0.49 ± 0.10 58.93 ± 5.29 13.95 ± 2.73 2.76 ± 0.23 6.39 ± 0.47
F568-V1 Sd 90.54 0.05 0.60 ± 0.12 47.54 ± 2.15 9.09 ± 0.82 12.07 ± 0.57 3.10 ± 0.09
F579-V1 Sc 201.76 0.47 0.71 ± 0.17 41.3 ± 4.54 6.59 ± 1.75 25.8 ± 4.07 2.08 ± 0.17
F583-1 Sm 60.93 0.11 0.73 ± 0.14 45.23 ± 1.46 6.23 ± 0.43 2.73 ± 0.08 4.90 ± 0.13
KK98-251 Im 52.10 0.57 1.86 ± 0.46 24.45 ± 3.06 0.95 ± 0.29 2.25 ± 0.22 2.83 ± 0.34
NGC0024 Sc 1182.58 0.61 0.81 ± 0.16 36.96 ± 1.41 5.03 ± 0.51 51.79 ± 3.18 1.46 ± 0.05
NGC0055 Sm 391.59 0.32 0.70 ± 0.14 46.22 ± 1.19 6.62 ± 0.42 2.80 ± 0.08 4.94 ± 0.12
NGC0100 Scd 1193.52 0.10 0.81 ± 0.16 40.65 ± 1.10 5.04 ± 0.33 5.73 ± 0.18 3.40 ± 0.08
NGC0300 Sd 437.35 0.74 0.76 ± 0.15 41.89 ± 1.63 5.71 ± 0.58 7.45 ± 0.43 3.20 ± 0.11
NGC2366 Im 113.98 0.69 1.61 ± 0.32 25.86 ± 1.22 1.27 ± 0.15 4.98 ± 0.29 2.27 ± 0.10
NGC2915 BCD 313.93 0.30 1.04 ± 0.22 32.66 ± 2.31 3.03 ± 0.58 17.25 ± 2.02 1.87 ± 0.11
NGC2976 Sc 1502.55 0.62 0.51 ± 0.12 52.34 ± 5.22 12.77 ± 3.27 20.73 ± 1.02 2.82 ± 0.28
NGC3917 Scd 1226.96 0.87 0.43 ± 0.09 61.13 ± 2.97 18.06 ± 2.19 8.28 ± 0.54 4.51 ± 0.18
NGC3949 Sbc 185.71 0.85 0.45 ± 0.11 54.76 ± 6.26 16.38 ± 4.96 50.95 ± 7.60 2.18 ± 0.22
NGC3953 Sbc 1999.08 0.20 0.27 ± 0.05 77.09 ± 3.05 44.03 ± 4.44 37.19 ± 2.18 3.41 ± 0.11
NGC3972 Sbc 1587.93 0.51 0.5 ± 0.10 53.96 ± 3.61 13.22 ± 2.25 13.02 ± 1.14 3.41 ± 0.20
NGC3992 Sbc 3257.09 0.95 0.19 ± 0.04 99.24 ± 8.40 88.76 ± 19.86 23.2 ± 3.34 5.15 ± 0.34
NGC4068 Im 261.11 0.07 1.03 ± 0.28 35.59 ± 5.60 3.09 ± 1.19 3.22 ± 0.24 3.63 ± 0.56
NGC4088 Sbc 3988.69 0.65 0.36 ± 0.08 64.61 ± 4.96 24.74 ± 5.03 25.43 ± 3.19 3.25 ± 0.20
NGC4157 Sb 23813.87 0.85 0.33 ± 0.07 68.59 ± 5.23 30.54 ± 6.20 32.73 ± 4.20 3.17 ± 0.19
NGC4217 Sb 4373.51 0.55 0.36 ± 0.07 64.62 ± 2.90 25.96 ± 3.00 37.45 ± 2.57 2.85 ± 0.10
NGC4389 Sbc 322.72 0.15 0.41 ± 0.10 63.93 ± 7.79 19.69 ± 5.94 5.91 ± 0.55 5.29 ± 0.61
NGC4559 Scd 1602.62 0.76 0.54 ± 0.11 52.00 ± 2.59 11.35 ± 1.47 9.78 ± 0.78 3.62 ± 0.15
UGC00634 Sm 126.13 0.87 0.51 ± 0.11 57.24 ± 4.75 12.59 ± 2.54 2.70 ± 0.31 6.22 ± 0.43
UGC01230 Sm 69.32 0.19 0.56 ± 0.12 51.30 ± 3.78 10.35 ± 1.81 6.27 ± 0.67 4.18 ± 0.23
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Table 4. Burkert model with χ2/d.o.f. < 1: Galaxy name, Hubble Type, χ2/d.o.f., luminosity, axion mass ma, r200, virial
mass M200, core density ρ0, and core radius r0 (ordered as in the SPARC library).

Galaxy
Hub.
Type

Lum.

[L�
/

pc2]
χ2

/d.o.f.
ma,e

[eV×10−23
] r200

[kpc]
M200[

M� × 1010
] ρ0 × 107

[M�
/

kpc3]
r0

[kpc]

UGC01281 Sdm 135.78 0.17 1.16 ± 0.24 32.78 ± 1.89 2.45 ± 0.35 3.56 ± 0.2 3.23 ± 0.17

UGC02023 Im 121.57 0.03 0.36 ± 0.16 73.23 ± 24.56 24.82 ± 19.87 1.92 ± 0.21 8.95 ± 2.97

UGC04305 Im 88.07 0.76 3.42 ± 0.9 15.39 ± 2.06 0.28 ± 0.1 7.2 ± 1.55 1.19 ± 0.14

UGC04325 Sm 213.22 0.26 1. ± 0.2 32.71 ± 1.31 3.29 ± 0.34 31.75 ± 1.83 1.53 ± 0.05

UGC04483 Im 82.57 0.26 6.58 ± 1.48 9.51 ± 0.84 0.08 ± 0.02 19.32 ± 2.23 0.52 ± 0.04

UGC04499 Sdm 127.30 0.09 1.05 ± 0.21 34. ± 1.01 2.96 ± 0.21 5.97 ± 0.24 2.8 ± 0.07

UGC05005 Im 65.59 0.06 0.52 ± 0.1 59.27 ± 2.86 12.09 ± 1.21 1.1 ± 0.06 8.85 ± 0.32

UGC05414 Im 127.30 0.11 1.25 ± 0.25 30.31 ± 1.42 2.09 ± 0.24 5.9 ± 0.3 2.51 ± 0.11

UGC05750 Sdm 124.98 0.08 0.68 ± 0.14 49.77 ± 3.23 7.13 ± 0.97 1.07 ± 0.06 7.5 ± 0.4

UGC05829 Im 63.22 0.33 0.93 ± 0.23 38.9 ± 4.8 3.81 ± 1.16 2.21 ± 0.28 4.52 ± 0.52

UGC05918 Im 24.94 0.06 2.35 ± 0.48 19.9 ± 1.15 0.59 ± 0.09 6.01 ± 0.47 1.64 ± 0.08

UGC05999 Im 51.62 0.35 0.53 ± 0.12 57.19 ± 5.87 11.71 ± 2.81 1.72 ± 0.22 7.29 ± 0.63

UGC06399 Sm 311.05 0.03 0.8 ± 0.16 40.82 ± 1.2 5.16 ± 0.36 6.2 ± 0.22 3.32 ± 0.08

UGC06446 Sd 86.46 0.78 1.05 ± 0.23 32.95 ± 2.75 3.01 ± 0.66 13.01 ± 1.64 2.08 ± 0.15

UGC06667 Scd 614.94 0.11 0.81 ± 0.16 40.55 ± 1.3 5.03 ± 0.39 5.97 ± 0.23 3.34 ± 0.09

UGC06917 Sm 261.11 0.35 0.66 ± 0.13 45.28 ± 2.24 7.48 ± 0.92 9.48 ± 0.64 3.19 ± 0.13

UGC06923 Im 347.40 0.4 0.97 ± 0.26 34.69 ± 4.92 3.46 ± 1.28 11.64 ± 2.17 2.28 ± 0.29

UGC06930 Sd 189.16 0.21 0.62 ± 0.13 47.7 ± 3.06 8.45 ± 1.38 7.41 ± 0.72 3.65 ± 0.19

UGC06983 Scd 121.57 0.68 0.66 ± 0.14 45.05 ± 3.3 7.54 ± 1.42 11.27 ± 1.24 2.99 ± 0.18

UGC07089 Sdm 520.99 0.22 0.86 ± 0.18 40.29 ± 2.82 4.41 ± 0.75 2.82 ± 0.23 4.31 ± 0.27

UGC07261 Sdm 566.02 0.33 1.28 ± 0.31 28.32 ± 3.03 2. ± 0.57 18.97 ± 3.11 1.57 ± 0.14

UGC07323 Sdm 283.68 0.8 0.71 ± 0.17 44.67 ± 5.34 6.55 ± 1.98 5.06 ± 0.62 3.9 ± 0.43

UGC07524 Sm 106.86 0.57 0.86 ± 0.17 39.92 ± 1.58 4.45 ± 0.44 3.66 ± 0.19 3.89 ± 0.13

UGC07559 Im 55.06 0.03 2.93 ± 0.6 17.5 ± 0.93 0.38 ± 0.05 4.15 ± 0.23 1.63 ± 0.08

UGC07577 Im 54.55 0.04 3.14 ± 1.07 18.08 ± 4.38 0.33 ± 0.19 1.02 ± 0.12 2.76 ± 0.66

UGC07603 Sd 520.99 0.22 1.66 ± 0.33 23.7 ± 1. 1.19 ± 0.13 21.7 ± 1.3 1.26 ± 0.05

UGC07608 Im 46.65 0.07 1. ± 0.22 35.39 ± 2.78 3.27 ± 0.65 5.23 ± 0.44 3.05 ± 0.22

UGC07866 Im 97.46 0.1 3.78 ± 0.92 14.34 ± 1.63 0.23 ± 0.07 7.72 ± 1.11 1.08 ± 0.11

UGC08490 Sm 576.54 0.95 1.24 ± 0.25 28.16 ± 1.51 2.14 ± 0.31 38.07 ± 3.44 1.23 ± 0.05

UGC08837 Im 77.42 0.29 0.54 ± 0.18 57.39 ± 13.51 11.12 ± 6.14 1.26 ± 0.11 8.13 ± 1.89

UGC09037 Scd 841.07 0.61 0.34 ± 0.07 72.32 ± 3.54 28.35 ± 2.75 5.11 ± 0.28 6.33 ± 0.21

UGC09992 Im 73.25 0.24 3.68 ± 1.34 14.37 ± 3.31 0.24 ± 0.15 10.76 ± 3.86 0.97 ± 0.19

UGC11557 Sdm 337.93 0.28 0.73 ± 0.17 44.75 ± 4.74 6.16 ± 1.6 3.16 ± 0.4 4.6 ± 0.43

UGC12506 Scd 5608.28 0.69 0.2 ± 0.04 96.54 ± 6.95 80.52 ± 12.65 17.8 ± 1.77 5.53 ± 0.26

UGCA281 BCD 12.05 0.34 4.71 ± 1.08 11.71 ± 1.1 0.15 ± 0.04 27.12 ± 2.79 0.58 ± 0.05
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Figure 6. Frequency distribution of the virial mass M200 in units of solar masses M� from the 80
best-fitting galaxies in the Burkert model. The maximum of the smooth-kernel-distribution (solid
line) is at M200 = (2.9 ± 4)× 1010 M�.

Figure 7. Extracted virial masses M200 in units of solar masses from Burkert-model fits to 80 RCs
with χ2/d.o.f. < 1 vs. the respective galaxy’s central surface brightness in units of L�/pc2.

Figure 8. Frequency distribution of 80 axion masses ma,e, extracted from the Burkert-model fits of
M200 to the RCs of galaxies with a χ2/d.o.f. < 1. The maximum of the smooth-kernel distribution
(solid, blue line) is ma,e = (0.65 ± 0.4)× 10−23 eV (red, vertical line).
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4. Galactic Central Regions and the Dark Sector of the Universe

Interpreting the dark-matter structure of a typical low-surface-brightness galaxy as
an e-lump, we have rB,e = 0.26 kpc from the SNFW model, see Section 3.2. Therefore, the
value of κ in Equation (9) is

κ = 314 . (25)

With ma,e = 0.675 × 10−23 eV Equation (1) yields

Λe = 287 eV . (26)

This is by only a factor 15 smaller than the scale Λe = me/118.6 (me = 511 keV the
mass of the electron) of an SU(2) Yang–Mills theory proposed in [55] to originate the
electron’s mass in terms of a fuzzy ball of deconfining phase. There the deconfining region
is immersed into the confining phase and formed by the selfintersection of a center-vortex
loop. Considering an undistorted Yang–Mills theory for simplicity1, the factor of 15 could
be explained by a stronger screening of topological charge density—the origin of the axial
anomaly—in the confining ground state, composed of round, pointlike center-vortex loops,
versus the deconfining thermal ground state, made of densely packed, spatially extended
(anti)caloron centers subject to overlapping peripheries [26]. The factor of 15 so far is a
purely phenomenological result (it could be expected to be O(100) or higher) which is
plausible qualitatively because of the reduced topological charge density in the confining
phase where overlapping magnetic monopoles and antimonopoles, aligned within hardly
resolved center vortices, are the topological charge carriers. The complex interplay between
the would-be Goldstone nature of the axion, as prescribed by fermion interaction at the
Planck scale, and the topological charge density of an SU(2) Yang–Mills theory deeply in
its confining phase is anything but understood quantitatively so far. One may hope that
simulations of the axion potential in a center-vortex model of the confining phase, such a
proposed in [66], will yield more quantitative insights in the future.

The link between the masses of the three species of ultralight axions, whose fuzzy
condensates form lumps of typical masses Me, Mμ, and Mτ , with the three lepton families
via the Planck-scale originated axial anomaly within confining phases of SU(2) Yang–Mills
theories is compelling. In particular, Me = M200 can be determined by mild modelling
of direct observation, as done in Section 3, while Mμ and Mτ are predicted by an appeal
to Equations (11). Such a scenario allows to address two questions: (i) the implication of a
given lump’s selfgravity for its stability and (ii) the cosmological origin of a given species
of isolated lumps.

Before we discuss question (i) we would like to provide a thermodynamical argument,
based on our knowledge gained about axion and lump masses in terms of Yang–Mills
scales and the Planck mass, why Planck-scale axions associated with the lepton families
always occur in the form of fuzzy or homogeneous condensates. Namely, the Yang–Mills
scales Λe, Λμ = Λe mμ/me, and Λτ = Λe mτ/me together with Equations (1) and (26), yield
axion masses as

ma,e ∼ 0.675 × 10−23 eV ,

ma,μ ∼ 2.89 × 10−19 eV , (27)

ma,τ ∼ 8.17 × 10−17 eV .

The critical temperature Tc for the Bose–Einstein condensation of a quantum gas of
free bosons of mass ma and (mean) number density na ∼ M/(ma

4
3 πr3

B) is given as

Tc =
2π

ma

(
na

ζ(3/2)

)2/3
. (28)
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We conclude from Equations (11), (13), (27) and (28) that

Tc,e ∼ 9.7 × 1030 GeV ,

Tc,μ ∼ 7.7 × 1039 GeV , (29)

Tc,τ ∼ 6.1 × 1042 GeV .

All three critical temperatures are comfortably larger than the Planck mass
MP = 1.22 × 1019 GeV such that throughout the Universe’s expansion history and modulo
depercolation, which generates a nonthermal halo of particles correlated on the de Broglie
wave length around a condensate core, the Bose-condensed state of e-, μ-, and τ-axions is
guaranteed and consistent with ξ � 1, compare with Equation (12).

We now turn back to question (i). Explicit lump masses can be obtained from Equation (11)
based on the typical mass Me = 6.3 × 1010 M� of an e-lump. One has

Mμ = 1.5 × 106 M� ,

Mτ = 5.2 × 103 M� . (30)

For the computation of the respective gravitational Bohr radii according to Equation (5)
both quantities, axion mass ma,i and lump mass Mi, are required. To judge the gravitational
stability of a given isolated and unmerged lump throughout its evolution a comparison
between the typical Bohr radius rB,i and the typical Schwarzschild radius rSD,i, defined as

rSD,i ≡ 2Mi

M2
P

, (31)

is in order. Using Me = 6.3 × 1010 M�, Figure 9 indicates the implied values of the Bohr
radii rB,e, rB,μ, and rB,τ by dots on the curves of all possible Bohr radii as functions of
their lump masses when keeping the axion mass ma,i fixed. Notice that for all three
cases, e-lumps, μ-lumps, and τ-lumps, typical Bohr radii are considerably larger than their
Schwarzschild radii. Indeed, from Equations (1), (10), and (31) it follows that

rB
rSD

=
1
2

κ2 . (32)

With κ = 314 we have rB/rSD = 4.92 × 104. An adiabatic pursuit of the solid lines
in Figure 9 down to their intersections with the dashed line reveals that an increase of lump
mass by a factor ∼ 222 is required to reach the critical mass for black-hole formation. While
this is unlikely to occur through mergers of e-lumps within their peers it is conceivable for
merging μ- and τ-lumps, see below.

The mean mass density of a lump scales with the fourth power of the Yang–Mills scale,
see Eqsuation (8), (10) and (13). With the hierarchies in Yang–Mills scales Λτ/Λμ ∼ 17
or Λμ/Λe ∼ 200 it is conceivable that sufficiently large number of lumps of a higher
Yang–Mills scale, embedded into a lump of a lower scale, catalyse the latter’s gravitational
compaction to the point of collapse, see, however, discussion in Section 5.1.

With Equation (11) we have Mμ/Me ∼ 2.3 × 10−5 such that a dark mass of the self-
gravitating dark-matter disk of the Milky Way, exhibiting a radial scale of (7.5 · · · 8.85) kpc
and a mass of MMW = (2 · · · 3)× 1011 M� [62], would contain a few previously isolated
but now merged e-lumps. This implies with Equation (11) a μ-lump mass of

Mμ = (4.7 · · · 7)× 106 M� . (33)
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Figure 9. Schwarzschild radius (dashed line) and gravitational Bohr radii (solid lines; dark blue:
e-lump, turquoise: μ-lump, and black: τ-lump) as functions of lump mass in units of solar mass
M�. The dots indicate lump masses which derive from the typical mass of an isolated e-lump Me =

6.3 × 1010 M� suggested by the analysis of the RCs of low-surface-brightness galaxies performed in
Section 3.

In [62], the mass of the dark halo of the Milky Way, which is virialised up to r ∼ 350 kpc,
is determined as 1.8 × 1012 M�. In addition to the halo and the disk, there is a ringlike
dark-matter structure within (13 · · · 18.5) kpc of mass (2.2 · · · 2.8)× 1010 M�. Since these
structures probably are, judged within the here-discussed framework, due to contami-
nations of a seeding e-lump by the accretion of τ- and μ-lumps we ignore them in what
follows. In any case, a virialised dark-matter halo of 350 kpc radial extent easily accomo-
dates the dark mass ratio ∼0.1 between the selfgravitating dark-matter disk and the dark
halo in terms of accreted τ- and μ-lumps.

Interestingly, the lower mass bound of Equation (33) is contained in the mass range
(4.5 ± 0.4) × 106 M� [61] or (4.31 ± 0.36) × 106 M� [60] of the central compact object
extracted from orbit analysis of S-stars.

Next, we discuss question (ii). Consider a situation where the gravitational Bohr
radius rB exceeds the Hubble radius rH(z) = H−1(z) at some redshift z. Here H(z) defines
the Hubble parameter subject to a given cosmological model. In such a situation, the
lump acts like a homogeneous energy density (dark energy) within the causally connected
region of the Universe roughly spanned by rH . If rB falls sizably below rH then formerly
homogeneous energy density may decay into isolated lumps. In order to predict at which
redshift zp such a depercolation epoch has taken place we rely on the extraction of the
epoch zp,e = 53 in [16] for the depercolation of e-lumps. To extract the depercolation
redshifts zp,μ and zp,τ we use the cosmological model SU(2)CMB proposed in [16] with
parameters values given in column 2 of Table 1 of that paper. In Figure 10 the relative
density parameters of the cosmological model SU(2)CMB are depicted as functions of z,
and the point of e-lump depercolation zp,e = 53 is marked by the cusps in dark energy
and matter.

The strategy to extract zp,μ and zp,τ out of information collected at zp,e = 53 is to
determine the ratio αe of rH = 16.4 Mpc at zp,e = 53 and rB,e = 0.26 kpc for a typical,
isolated, and unmerged e-lump as

αe ≡ rH
rB,e

∣∣∣∣
z=zp,e

= 55, 476 . (34)
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It is plausible that αe can be promoted to a universal (that is, independent of the Yang–
Mills scale and temperature) constant α, again, because of the large hierarchy between all
Yang–Mills scales to the Planck mass MP. Moreover, the ratio of radiation temperature to
the Planck mass MP remains very small within the regime of redshifts considered in typical
CMB simulations. Using the cosmological model SU(2)CMB, Equation (13), and demanding
α to set the condition for μ- and τ-lump depercolation (rH ≡ α rB,i), one obtains

zp,μ = 40, 000, zp,τ = 685, 000 . (35)

Figure 10. Cosmological model SU(2)CMB of [16] (with parameter values fitted to the TT, TE, and EE
CMB Planck power spectra and taken from column 2 of Table 1 of that paper) in terms of relative
density parameters as functions of redshift z. Normalised density parameters refer to dark energy
(Ω′

Λ), to total matter (baryonic and dark, Ω′
m), and to radiation (three flavours of massless neutrinos

and eight relativistic polarisations in a CMB subject to SU(2)CMB, Ω′
r). The dotted red line represents

the Hubble radius of this model. The redshifts of e-lump, μ-lump, and τ-lump depercolations are
indicated by vertical lines intersecting the z-axis. Only e-lump depercolation is taken into account
explicitly within the cosmological model SU(2)CMB since at zp,μ = 40,000 and zp,τ = 685,000 the
Universe is radiation dominated.

In Figure 10 the relative density parameters Ω′
Λ (dark energy), Ω′

m for total matter
(baryonic and dark), Ω′

r (total radiation), and the Hubble radius rH are depicted as functions
of z. Moreover, the redshifts of e-lump, μ-lump, and τ-lump depercolations—zp,e, zp,μ,
and zp,τ—are indicated by vertical lines intersecting the z-axis. The depercolation epochs
for μ- and τ-lumps at redshifts zp,μ = 40,000, and zp,τ = 685,000 are not modelled within
SU(2)CMB because the Universe then is radiation dominated.

In Figure 11 a schematic evolution of the Universe’s dark sector, subject to the SU(2)
Yang–Mills theories SU(2)τ , SU(2)μ, SU(2)e, and SU(2)CMB invoking Planck-scale induced
axial anomalies, is depicted.

After a possible epoch of Planck-scale inflation and reheating the temperature of the
radiation dominated Universe is close to the Planck mass MP, and rH ∼ M−1

P . In this
situation, the Bohr radii of the various hypothetical lump species (Peccei-Quinn scale MP,
SU(2)τ , SU(2)μ, SU(2)e, and SU(2)CMB Yang–Mills dynamics) are much larger than rH , and
the (marginal) dark sector of the model then solely contains dark energy.
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Figure 11. The evolution of the Universe’s dark sector according to SU(2) Yang–Mills theories of scales Λe = me/(15× 118.6),
Λμ = mμ/(15 × 118.6), Λτ = mτ/(15 × 118.6) (confining phases, screened), and ΛCMB ∼ 10−4 eV (deconfining phase,
unscreened) invoking Planck-scale induced axial anomalies. The horizon size, set by the Hubble radius rH at various epochs
(a–e), is shown by a red circumference. At epoch (a) gravity induced chiral symmetry breaking at the Planck scale creates
a would-be-Goldstone boson which, due to the axial anomaly, gives rise to four ultralight axionic particle species. Their
gravitational Bohr radii rB,τ , rB,μ, rB,e, and rB,CMB are much larger than rH . Therefore, the associated energy densities should
be interpreted as dark energy. (b) As the radiation dominated Universe expands the smallest Bohr radius rB,τ falls below
rH . Once the ratio α ≡ rH/rB,τ is sufficiently large (α = 55,500) τ-lumps depercolate (zp,τ = 685,000). (c) As the Universe
expands further the Bohr radius rB,μ falls below rH . When the ratio of rH and rB,μ again equals about α = 55,500 μ-lumps
derpercolate (zp,μ = 40,000). The cosmological matter densities of τ and μ-lumps are comparable [16]. Since the mass of
an isolated, unmerged τ-lump is by a factor of about (mτ/mμ)2 ∼ 283 smaller than the mass of an isolated, unmerged
μ-lump it then follows that the number density of τ-lumps is by this factor larger compared to the number density of
μ-lumps. (d) Upon continued expansion down to redshift zp,e = 53 e-lumps depercolate. Their number density is by a
factor of (mμ/me)2 ∼ 42,750 smaller than the number density of μ-lumps. (e) The value of rB,CMB is vastly larger than
rH(z = 0): rB,CMB = 2.4 × 1010 Mpc vs. rH(z = 0) = 4038 Mpc. Therefore, a depercolation of CMB-lumps up to the present
is excluded. As a consequence, the condensate of CMB-axions is dark energy. (f) Possible dark-matter configuration of a
galaxy including τ-lumps and a single μ-lump inside an e-lump.

Around zp,τ = 685,000 (radiation domination) the depercolation of τ-lumps occurs
for α ≡ rH/rB,τ ∼ 55,500. Once released, they evolve like pressureless, non-relativistic
particles and, cosmologically seen, represent dark matter.

As the Universe expands further, the ratio α ≡ rH/rB,μ ∼ 55,500 is reached such that
μ-lumps start to depercolate at zp,μ = 40,000. Since they contribute to the cosmological
dark-matter density roughly the same amount like τ-lumps, see [16] for a fit of so-called
primordial and emergent dark-matter densities to TT, TE, and EE power spectra of the
2015 Planck data, one concludes from Equation (11) that their number density is by a factor
(mτ/mμ)2 ∼ 283 smaller than that of τ-lumps. For a first estimate this assumes a neglect
of local gravitational interactions. That is, at μ-lump depercolation there are roughly 300
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τ-lumps inside one μ-lump. Each of these τ-lumps possesses a mass of Mτ = 5.2× 103 M�.
The implied accretion process involving additional τ-lumps may catalyse the gravitational
compaction of the thus contaminated μ-lump, see discussion in Section 5.1.

At zp,e = 53 e-lumps depercolate [16]. Again, disregarding local gravitational binding,
we conclude from Equation (11) and a nearly equal contribution of each lump species to
the cosmological dark-matter density [16] that the number densities of μ- and τ-lumps are
by factors of (mμ/me)2 ∼ 42,750 and (mτ/me)2 ∼ 283× 42,750, respectively, larger than
the number density of e-lumps. At e-lump depercolation we thus have 42,750 μ-lumps and
42,750 ×283 ∼ 1.2 × 107 τ-lumps within one e-lump.

Again, ignoring local gravitational binding effects, the dilution of τ- and μ-lump
densities by cosmological expansion predicts that today we have 42, 750/(zp,e + 1)3 = 0.27
μ-lumps and 42, 750× 283/(zp,e + 1)3 = 77 τ-lumps within one e-lump. Local gravitational
binding should correct these numbers to higher values but the orders of magnitude—
O(1) for μ-lumps and O(100) for τ-lumps—should remain unaffected. It is conspicu-
ous that the number of globular clusters within the Milky Way is in the hundreds [67],
with typical masses between ten to several hundred thousand solar masses [61]. With
Mτ = 5.2 × 103 M� it is plausible that the dark-mass portion of these clusters is constituted
by a single or a small number of merged τ-lumps. In addition, in the Milky Way there is
one central massive and dark object with about (4.5 ± 0.4)× 106 [61] or (4.31 ± 0.36)× 106

solar masses [60]. If, indeed, there is roughly one isolated μ-lump per isolated e-lump today
then the mass range of the Milky Way’s dark-matter disk, interpreted as a merger of few
isolated e-lumps, implies the mass range of Equation (33) for the associated μ-lump merger.
This range contains the mass of the central massive and dark object determined in [60,61].

5. Discussion, Summary, and Outlook

5.1. Speculations on Origins of Milky Way’s Structure

The results of Section 5 on mass ranges of τ-lumps, μ-lumps, and e-lumps being
compatible with typical masses of globular clusters, the mass of the central compact
Galactic object [60,61], and the mass of the selfgravitating dark-matter disk of the Milky
Way, respectively, is compelling. We expect that similar assignments can be made to
according structures in other spiral galaxies.

Could the origin of the central compact object in Milky Way be the result of τ- and
μ-lump mergers? As Figure 9 suggests, a merger of n ≥ 222 isolated τ- or μ-lumps is
required for black hole formation. Since we know that the mass of the central compact
object is ∼ 4 × 106M� a merger of n ≥ 222 μ-lumps is excluded for Milky Way. Thus, only
a merger of n ≥ 222 τ-lumps, possibly catalysed by the consumption of a few μ-lumps,
is a viable candidate for black-hole formation in our Galaxy. Such a process—merging of
several hundred τ-lumps within the gravitational field of a few merging μ-lumps down to
the point of gravitational collapse—would be consistent with the results of [60,61] who fit
stellar orbits around the central massive object of Milky Way extremely well to a single-
point-mass potential. Indeed, the gravitational Bohr radius of a μ-lump is 7 × 10−6 kpc
while the closest approach of an S2 star to the gravitational center of the central massive
object of Milky Way is 17 lh = 5.8 × 10−7 kpc [60]. Therefore, μ-lumps need to collapse in
order to be consistent with a point-mass potential.

The Milky Way’s contamination with baryons, its comparably large dark-disk mass
vs. the mass of the low-surface-brightness galaxies analysed in Section 3, and possibly tidal
shear from the dark ring and the dark halo during its evolution introduce deviations from
the simple structure of a typical low-surface-brightness galaxy. Simulations, which take all
the here-discussed components into account, could indicate how typical such structures
are, rather independently of primordial density perturbations.

Isolated τ-, μ-, and e-lumps, which did not accrete sufficiently many baryons to be
directly visible, comprise dark-matter galaxies that are interspersed in between visible
galaxies. The discovery of such dark galaxies, pinning down their merger-physics, and
determinations of their substructure by gravitational microlensing and gravitational-wave
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astronomy could support the here-proposed scenario of active structure formation on
sub-galactic scales.

5.2. Summary and Outlook

In this paper, we propose that the dark Universe can be understood in terms of axial
anomalies [21–23] which are invoked by screened Yang–Mills scales in association with
the leptonic mass spectrum. This produces three ultra-light axion species. Such pseudo
Nambu-Goldstone bosons are assumed to owe their very existence to a gravitationally
induced chiral symmetry breaking with a universal Peccei–Quinn scale [25] of order the
Planck mass MP = 1.22 × 1019 GeV [30]. We therefore refer to each of these particle species
as Planck-scale axions. Because of the relation ma,i = Λ2

i /MP the screened Yang–Mills
scale Λi derives from knowledge of the axion mass ma,i. Empirically, the here-extracted
screened scale Λe = 287 eV points to the first lepton family, compare with [55]. This enables
predictions of typical lump and axion masses in association with two additional SU(2)
Yang–Mills theories associating with μ and τ leptons.

Even though the emergence of axion mass [25] and the existence of lepton families [55]
are governed by the same SU(2) gauge principle, the interactions between these ultra-light
pseudo scalars and visible leptonic matter is extremely feeble. Thus, the here-proposed
relation between visible and dark matter could demystify the dark Universe. An important
aspect of Planck-scale axions is their Bose–Einstein, yet non-thermal, condensed state.
A selfgravitating, isolated fuzzy condensate (lump) of a given axion species i = e, μ, τ
is chiefly characterised by the gravitational Bohr radius rB,i [36] given in terms of the
axion mass ma,i and the lump mass Mi = M200,i (virial mass), see Equation (5). As it
turns out, for i = e the information about the latter two parameters is contained in
observable rotation curves of low-surface-brightness galaxies with similar extents. Realistic
models for the dark-matter density profiles derive from ground-state solutions of the
spherically symmetric Poisson–Schrödinger system at zero temperature and for a single
axion species. These solutions describe selfgravitating fuzzy axion condensates, compare
with [47]. Two such models, the Soliton-NFW and the Burkert model, were employed in
our present extractions of ma,e and Me under the assumption that the dark-matter density
in a typical low-surface brightness galaxy is dominated by a single axion species. Our
result ma,e = 0.675 × 10−23 eV is consistent with the result of [49]: ma,e = 0.554 × 10−23 eV.
Interestingly, such an axion mass is close to the result 10−25 eV≤ ma ≤ 10−24 eV [53]
obtained by treating axions as a classical ideal gas of non-relativistic particles—in stark
contrast to the Bose condensed state suggested by Equation (28) or the gas surrounding
it with intrinsic correlations governed by large de-Broglie wavelengths. This value of the
axion mass is considerably lower then typical lower bounds obtained in the literature:
ma > 2.9 × 10−21 eV [51], ma = 2.5+3.6

−2.0 × 10−21 eV [39], ma > 3.8 × 10−21 eV [54], and
ma ∼ 8 × 10−23 eV in [47]. We propose that this discrepancy could be due to the omission
of the other two axion species with a mass spectrum given by Equation (27). For example,
the dark-matter and thus baryonic density variations along the line of sight probed by
a Lyman-α forest do not refer to gravitationally bound systems and therefore should be
influenced by all three axion species.

Once axions and their lumps are categorised, questions about (i) the cosmological
origin of lumps and (ii) their role in the evolution of galactic structure can be asked.
Point (i) is addressed by consulting a cosmological model (SU(2)CMB [16]) which requires
the emergence of dark matter by lump depercolation at defined redshifts, see also [68].
Depercolation of e-lumps at redshift zp,e = 53 anchors the depercolations of the two other
lump species. One obtains zp,μ = 40,000 and zp,τ = 685,000.

The critical temperature Tc,e of SU(2)e for the deconfining-preconfining phase tran-
sition (roughly equal to the temperature of the Hagedorn transition to the confining
phase [26]) is Tc,e = 9.49 keV [55]. A question arises whether this transition could affect
observable small-scale angular features of the CMB. In the SU(2)CMB based cosmological
model of [16] Tc,e = 9.49 keV corresponds to a redshift of zc,e = 6.4 × 107. (Typically, CMB
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simulation are initialised at z = 109 [69]). Traversing the preconfining-deconfining phase
transition at zc,e an already strongly radiation dominated Universe receives additional
radiation density and entropy. However, we expect that the horizon crossing of curvature
perturbation at z > zc,e, which may influence small-scale matter perturbations, will affect
CMB anisotropies on angular scales l > 3000 only. Therefore, Silk damping would reduce
the magnitudes of these multipoles to below the observational errors.

Up to the present, lump depercolation does not occur for the Planck-scale axion species
associated with SU(2)CMB: here, the gravitational Bohr radius of the axion condensate
always exceeds the Hubble radius by many orders of magnitude. As for point (ii), the
masses and Bohr radii of μ- and τ-lumps seem to be related with the central massive
compact object of the Milky Way [60,61] and globular clusters [62], respectively. Within a
given galaxy such active components of structure formation possibly originate compact
stellar streams through tidal forces acting on τ-lumps. Whether this is supported by
observation could be decided by a confrontation of N-body simulations (stars) in the
selfgravitating background of the externally deformed lump.

Apart from cosmological and astrophysical observation, which should increasingly be
able to judge the viability of the here-proposed scenario, there are alternative terrestrial
experiments which can check the predictions of the underlying SU(2) gauge-theory pattern.
Let us quote two examples: First, there is a predicted low-frequency spectral black-body
anomaly at low temperatures (T ∼ 5 K) [70] which could be searched for with a relatively
low instrumental effort. Second, an experimental link to SU(2)e would be the detection of
the Hagedorn transition in a plasma at electron temperature 9.49 keV and the stabilisation
of a macroscopically large plasma ball at a temperature of 1.3 × 9.49 keV [55]. Such electron
temperatures should be attainable by state-of-the-art nuclear-fusion experiments such as
ITER or by fusion experiments with inertial plasma confinement.
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Note
1 The chiral dynamics at the Planck scale, which produces the axion field, to some extent resolves the ground states of

Yang–Mills theories: axions become massive by virtue of the anomaly because of this very resolution of topological
charge density.
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