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P Systems with Evolutional Communication and Division Rules
Reprinted from: Axioms 2021, 10, 327, doi:10.3390/axioms10040327 . . . . . . . . . . . . . . . . . 61

Marius Zimand

List Approximation for Increasing Kolmogorov Complexity
Reprinted from: Axioms 2021, 10, 334, doi:10.3390/axioms10040334 . . . . . . . . . . . . . . . . . 73

Cezar Câmpeanu
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Preface to ”In Memoriam, Solomon Marcus”

Solomon Marcus (https://en.wikipedia.org/wiki/Solomon Marcus) was a Romanian

mathematician, member of the Romanian Academy, and professor at the University of Bucharest.

He was a polymath with research in mathematics (mathematical analysis, measure theory, topology,

mathematical and computational linguistics), theoretical computer science, poetics, linguistics,

semiotics, philosophy, and history of science and education.

This book commemorates Marcus’s fifth death anniversary with a selection of articles

in mathematics, theoretical computer science, and physics written by authors who work in

Marcus’s research fields, some of whom have been influenced by his results and/or have

collaborated with him. Marcus’s (currently) final mathematical paper was published in Axioms,

https://www.mdpi.com/2075-1680/7/1/15.

This book includes ten papers, one reviewing the contributions of Solomon Marcus to

Theoretical Computer Science and Applications, and the others devoted to Membrane Computing,

Interdimensionality, Network Topologies, Turing Machines, Complexity of Quasiperiodic Infinite

Words, Kolmogorov Complexity, Cover Automata, and Communication Patterns.

Cristian S. Calude , Gheorghe Paun

Editors
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Abstract: Solomon Marcus (1925–2016) was one of the founders of the Romanian theoretical computer
science. His pioneering contributions to automata and formal language theories, mathematical
linguistics and natural computing have been widely recognised internationally. In this paper we
briefly present his publications in theoretical computer science and related areas, which consist in
almost ninety papers. Finally we present a selection of ten Marcus books in these areas.

Keywords: automata theory; formal language theory; bio-informatics; recursive function theory

1. Introduction

In 2005, on the occasion of the 80th birthday anniversary of Professor Solomon Marcus,
the editors of the present volume, both his disciples, together with his friend Professor
G. Rozenberg, from Leiden, The Netherlands, have edited a special issue of Fundamenta
Informaticae (vol. 64), with the title Contagious Creativity. This syntagma describes accurately
the activity and the character of Marcus, a Renaissance-like personality, with remarkable
contributions to several research areas (mathematical analysis, mathematical linguistics,
theoretical computer science, semiotics, applications of all these in various areas, history
and philosophy of science, education), with many disciples in Romania and abroad and
with a wide recognition all around the world. Marcus projected his mathematical thinking
in all domains in which he worked. Here is an example from semiotics, in the words of the
Finnish musicologist and semiologist E. Tarasti (President of the International Association
for Semiotic Studies (2004–2014), see N.-S. Drăgan, In Memoriam Solomon Marcus, “Hide
and seek” with Solomon Marcus and Umberto Eco, Book of Abstracts, First Edition of the
International Conference Semiosis in Communication, 1–3, Bucharest, 2016.):

No other semiotician is so accurate and challenging in his reasoning about funda-
mental issues of our discipline.

In what follows we only briefly describe his contributions to theoretical computer
science and related areas, especially to automata and formal language theories, natural
computing (DNA and membrane computing), applications of grammars in various do-
mains, recursive function theory and provability in mathematics, as well as a selection
of his many books in these areas. Some re-printed in S. Marcus, Words and Languages
Everywhere, Polimetrica, Milano, 2007, but almost all collected in the two-volume book
G. Păun (ed.), Solomon Marcus, Selected Papers—Computer Science, Spandugino Publ. House,
Bucharest, 2018, abbreviated SPCS. Our choices have been guided by SPCS.

Marcus’ pioneering book Gramatici şi automate finite (Grammars and Finite Automata),
published in 1964 in Romanian is one of the first monographs in the world on this subject.
This book, written in a rigorous mathematical language at a time when the domain was
in infancy, covers automata and language theories, closely linking finite automata and
Chomsky regular grammars. The book ends with a chapter on the relations between

Axioms 2021, 10, 54. https://doi.org/10.3390/axioms10020054 https://www.mdpi.com/journal/axioms
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natural languages and regular grammars, a theme which motivated Marcus’ interest and
his many publications in mathematical linguistics. Unfortunately, the book, written in
Romanian, was not translated into any other language; hence, it remained almost unknown
internationally. This is not the case with many of his subsequent books, specifically those
in mathematical linguistics, some of which will be listed in this paper. These books have
been translated in several languages (French, English, German, Russian, Italian, Czech,
Spanish, Greek and other languages) and then published by Academic Press, Dunod,
Nauka and other well-known international publishers. Without exception, they had a very
high international audience and impact.

His first paper in formal language theory was published in 1963 and it is illustrative
for his permanent interest in building bridges between apparently disjoint research areas;
in this case, finite automata, regular grammars, arithmetical progressions. Symmetrically,
his last paper, published 50 years later, returns to bio-informatics, a domain which he
somehow prognosticated (too early) in the beginning of the 70’s.

2. A Working Classification

It is difficult to classify the theoretical computer science papers of Marcus because of
their inter/multi-disciplinarity. In SPCS, the papers have been classified into four large
categories: Formal language theory, applications of formal language theory, bio-informatics,
and recursive function theory. We will use this classification here too.

In the first class there are papers dealing with finite state grammars and automata,
contextual grammars, the history of formal language theory, combinatorics on words and
on infinite sequences (periodicity and quasi-periodicity, unavoidable patterns, density of
words of a given length), mathematical analysis notions adapted to formal language theory,
and so on.

The last category deserves a closer study, which we only suggest here: To system-
atically extend notions/ideas from mathematical analysis to formal language theory in
general and to combinatorics on words in particular (a symmetric study is worth carrying
out for applications of formal languages to other mathematical areas, e.g., number theory
by classifying various classes of numbers in Chomsky’s hierarchy, characterising them with
grammars, etc.). This was a direction of research programmatically explored by Marcus.
The title of his 1999 paper is explicit and significant in this respect: From real analysis to
discrete mathematics and back, followed by details: Symmetry, convexity, almost periodicity, and
strange attractors. In the beginning of this paper he wrote:

Despite its importance, the relation between continuous and discrete mathematics
is a rather neglected topic. (. . . ) Working in real analysis in the fifties and in the
sixties and then in discrete mathematics (the mathematical theory of languages),
I became interested to look for the discrete analog of some facts belonging to
continuous mathematics.

Among the most fruitful ideas of this kind we mention several variants of the Darboux
property for languages, the basic one being the following: If we have three families of
languages, L1 ⊂ L2 ⊂ L3, conceivably belonging to a larger hierarchy of families of
languages, possibly infinite, and two languages L1 ∈ L1, L3 ∈ L3 \ L2, can we find a
language L2 ∈ L2 such that L1 ⊂ L2 ⊂ L3? Various definitions of symmetry, attractors,
periodicity, convexity, etc., have been extended to strings. In all cases, Marcus used to
define a series of subtle variants, of the type left-, right-, almost-, pseudo-, weak-, strong-,
etc. Marcus had an unbounded creativity to pose open problems, and these papers never
missed them; quite a few papers solved such problems, some of them with Marcus as
a coauthor.

Actually, formulating open problems and suggesting research directions is one of the
specific features of “Marcus’ style”. Many of the questions formulated by Marcus were
addressed by his disciples, collaborators, by researchers in mathematics and computer
science from Romania and other countries. Some problems were, partially or totally,
solved—many of them are still waiting for solutions.
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3. A Constant Interest for Bio-Informatics

We mentioned before that in the 1970s Marcus published “too early” a paper deal-
ing with applications of mathematical linguistics and formal language theory in biology,
specifically in the genomics area. The year was 1974 and the title of the paper is Linguistic
structures and generative devices in molecular genetics.

Bio-informatics can be understood in two senses, as an attempt to use computer sci-
ence in biology, providing notions, tools, techniques to the biologist and, mainly in the last
decades, in the opposite direction, to utilise ideas inspired from biology in developing algo-
rithms in computer science, and in hardware too, as is the case in DNA computing—DNA
molecules do computations. In his paper, Marcus considered both directions. In the first
direction of research he synthesised previous approaches and results; in the second one
he proposed new research vistas for using mathematical (linguistic) tools in addressing
questions in the genetic area, to model the DNA and its biochemistry. Speculations about
using DNA molecules as a support for computations were published only later (by M. Con-
rad, R. Feynman, C. H. Bennet), while the first computing model based on an operation
specific to DNA recombination was introduced only in 1987 by T. Head (another friend
of Marcus). However, it is worth emphasising the attention paid by Marcus, in this first
paper and also in many others, to a 1965 proposal formulated by the Polish mathematician
Z. Pawlak (famous for introducing in early 1990s, the rough sets), to generate proteins
starting from amino acids; the method used a specific representation of amino acids and
certain picture grammars. (This is the reason Marcus considered Z. Pawlak a precursor of
picture grammars, a type of generative mechanisms developed later.)

Over the years, Marcus was constantly interested in the (mathematical) linguistic
approach to cellular biology, to applications in genomics and life sciences. For instance,
after the apparition of DNA computing in 1994, and especially after the initiation of
membrane computing in 1998, he had contributed to these areas with a series of papers and
participated to several international meetings dedicated to these subjects, in Romania and
abroad. As expected, the inter-disciplinary approach, typical to Marcus, is always present
in his contributions—here are two illustrative titles of papers in membrane computing,
Membranes versus DNA and Bridging P systems and genomics, presented at the first meetings
devoted to membrane computing (Curtea de Argeş, Romania, 2001, 2002). Actually, in
2002, he proposed a slogan which became folklore in this research area:

Life = DNA software + membrane hardware.

As expected, in this area too he proposed several research directions, some of them
truly “non-standard” (“too” inter-disciplinary) at the first sight. We only cite two examples
of ideas not yet explored: To consider membranes with a topology different from the usual
one (vesicle-like membranes), where the separation between inside and outside is crisp (for
example, to study membranes similar to Klein’s bottle), and, respectively, to use multisets,
the sets with a multiplicity associated with their elements (the usual data structure in
membrane computing) described by Pawlak rough sets.

4. Marcus Contextual Grammars

In a paper simply called “Contextual grammars” (published in 1969 in Revue Roumaine
de Mathématiques Pures et Appliquées) Marcus has introduced the grammars which are
now called Marcus contextual grammars, a branch of formal language theory. In fact, the
paper was presented one year before in an international linguistics conference held in
Stockholm, Sweden.

The paper has ten pages, but currently there probably exist more than 400 papers
on contextual grammars, about two dozen of PhD and Master Theses, as well as two
monographs, one published by the Publishing House of the Romanian Academy, Bucharest,
1982 (in Romanian), and one by Kluwer Publishing, The Netherlands, in 1997 (Marcus
Contextual Grammars), both of them authored by Gh. Păun. In the second volume of
the massive Handbook of Formal Languages, Springer-Verlag, 1997 (three volumes), edited
by G. Rozenberg and A. Salomaa, there are two chapters dedicated to this topic, one by

3
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Marcus, “Contextual grammars and natural languages”, which discusses motivations and
developments in this area, and another more technical one, “Contextual grammars and
formal languages”, by A. Ehrenfeucht, Gh. Păun, and G. Rozenberg.

The idea has the origins in algebraic linguistics: For a natural language L (over an
alphabet V), with every word w over V one associates a set of contexts 〈u, v〉 over V which
accept w with respect to L (that is, uwv ∈ L). Can we use this process of selecting words by
contexts, in order to describe a language? One can also conversely state it. The answer was
initially given in the form of simple contextual grammars, triples of the form G = (V, A, C),
where V is an alphabet, A is a finite language over V (its elements are called axioms), and C
is a finite set of contexts over V. Such a grammar generates a language L(G) which contains
(1) all axioms in A and (2) all strings obtained from axioms by adjoining contexts to them.
More formally, L(G) contains all strings of the form un . . . u1xv1 . . . vn, where x ∈ A and
〈ui, vi〉 ∈ C for all 1 ≤ i ≤ n, with n ≥ 0; for n = 0 the string is an axiom from A.

This simple model does not have a powerful generative capacity. Moreover, it does not
take into consideration the string-contexts selectivity mentioned above. However, at the end
of the paper, Marcus also proposes the contextual grammars with choice, G = (V, A, C, ϕ),
where ϕ : V∗ → 2C is the selection mapping (of contexts by the strings). This time, a string
is in L(G) if it is of the form un . . . u1xv1 . . . vn as above with x ∈ A, 〈u1, v1〉 ∈ ϕ(x), and
〈ui, vi〉 ∈ ϕ(ui−1 . . . u1xv1 . . . ui−1) for all i = 2, . . . , n.

A great research program started from there, following the usual questions of for-
mal language theory: Variants (extensions and restrictions), characterisations, generative
power, comparisons of the obtained families among them and with the known families
of languages, especially with those in the Chomsky hierarchy, closure and decidability
properties, parsing complexity, equivalent automata, etc.

An important detail, which makes Marcus contextual grammars so attractive is the
fact that they are not using, like the Chomsky grammars, nonterminal symbols, categorial
auxiliary symbols: They are intrinsic grammars as each derived string belongs to the
generated language.

Still, there was an embarrassing restriction in the initial model, the possibility to
adjoin contexts only in the ends of the current string. A real breakthrough was proposed
at the end of the 1970s, when the Vietnamese Nguyen Xuan My came to Romania to
start a PhD with Marcus. In a joint paper Nguyen-Păun, the inner contextual grammars
have been introduced: The contexts can be added in any place inside the current string,
under the control of the selection mapping. (Formally, an inner contextual grammar is
a usual contextual grammar with choice, G = (V, A, C, ϕ), with ϕ : V∗ → 2C, with the
language L(G) defined as the smallest language L ⊆ V∗ such that (i) A ⊆ L and (ii) if
x1x2x3 ∈ L and 〈u, v〉 ∈ ϕ(x2), then x1ux2vx3 ∈ L.) In this way, the generative capacity
has significantly increased, the flexibility (hence the adequacy) of the model has been
accordingly augmented.

Another important advance in this area was made at the beginning of the 1990s, when
G. Rozenberg, A. Salomaa, A. Ehrenfeucht became interested in contextual grammars.
Details can be found in Kluwer’s monograph mentioned before and in two chapters in the
Handbook of Formal Languages.

Progress was rather rapid. Certain classes of contextual grammars have been proved to
be relevant for modelling typical constructions in natural languages (duplication, multiple
agreements, crossed agreements) and classes of contextual grammars which are mildly
context sensitive in the sense requested by linguists (A. K. Joshi and others) have been
introduced. They are parsable in polynomial time and contain strings whose lengths do
not make large jumps—sometimes one asks only that the language be semilinear.

In this way, the impressive bibliography we mentioned above has been accumulated—
and this bibliography is still growing.
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5. Applications of Formal Language Theory

In this class we have included the papers devoted to applications of grammars and
automata. This was a really central and continuous interest of Marcus, also passed onto
his students and collaborators. The domains of applicability are very diverse: Natural and
programming languages, the semiotics of folklore fairy tales, the modelling of economic
processes, diplomatic negotiations, the medical diagnosis, the semiotics of theatre, action
theory, learning theory, chemistry, genetics.

These applications should be placed in a more general context under the slogan
linguistics as a pilot-science, a catchphrase coined by C. Levi-Strauss: Adopted, extended
and transformed by Marcus it became a real research program for his Romanian school of
mathematical linguistics and formal language theory.

The grounding assumption, also explored by M. Nowakowska in her book Lan-
guages of Action, Languages of Motivations, Mouton, The Hague, 1973, was that many pro-
cesses/activities can be described as sequences of elementary actions (“semantic marks”),
sequences which are governed by precise restrictions which can be described by syntactic
rules. Thus, languages describing actions and grammars describing languages of actions
came into stage. Combined with the Chomskian hypothesis that the linguistic competence
is innate and influences all other competences of the human brain, Levi-Strauss’s slogan
became Marcus’ formal linguistics as a pilot-science. Indeed, a large variety of processes,
from fairy tales description to economic processes proved to be described, at convenient
levels of abstraction, by grammars of the types initially developed in linguistics.

6. Recursive Function Theory and Provability

The last category of papers we mention deals with recursive functions and provability
in mathematics; it contains fewer papers, but some of these papers have a special signifi-
cance, as they clarify an important paternity in the history of computability. Specifically,
they proved that the first example of a recursive function which is not primitive recursive
was constructed by G. Sudan in 1927, simultaneously with and independently of W. Acker-
mann, who was credited before with this achievement (1928). The problem was examined
by Marcus in collaboration with C. Calude and I. Ţevy, following a suggestion coming from
G. C. Moisil.

It is important to mention that Marcus was constantly concerned with adequately valu-
ing the history of the Romanian mathematics: Pointing out the priorities in this area was
already one of the main goals of his well-known book Din gândirea matematică românească
(From the Romanian Mathematical Thinking), Scientific and Encyclopaedic Publishing House,
Bucharest, 1975.

This group also includes a few papers on provability in mathematics, at different
levels of formalisation and with various tools, including proof-assistants.

7. Papers

7.1. Formal Language Theory

1. S. Marcus, Automates finis, progressions arithmétiques et grammaires à un nombre
fini d’etats. Comptes rendus de l’Academie des Sciences Paris, 256, 17 (1963), 3571–3574.

2. S. Marcus, Sur un modéle de H. B. Curry pour le langage mathématique. Comptes
rendus de l’Academie des Sciences Paris, 258, 7 (1964), 1954–1956.

3. S. Marcus, Sur les grammaires à un nombre fini d’états. Cahiers de Linguistique
Théorique et Appliquée, 2 (1965), 146–164.

4. S. Marcus, Analytique et génératif dans la linguistique algébrique. In To Honor Roman
Jakobson II, Mouton, The Hague, 1967, 1252–1261.

5. S. Marcus, Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquée,
14, 10 (1969), 1525–1534; also, Preprint nr. 48, Intern. Conf. Comput. Ling., Stock-
holm, 1968.

6. S. Marcus, Deux types nouveaux de grammaires génératives. Cahiers de Linguistique
Théorique et Appliquées, 6 (1969), 67–74.
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7. S. Marcus, Darboux property and formal languages. Revue Roumaine de Mathématiques
Pures et Appliquées, 22, 10 (1977), 1449–1451.

8. S. Marcus, Problems. Bulletin of the European Association for Theoretical Computer Science,
27 (1985), 245.

9. S. Marcus, Formal languages before Axel Thue? Bulletin of the European Association for
Theoretical Computer Science, 34 (1988), 62.

10. S. Marcus, Din istoria limbajelor formale. Al doilea Colocviu Naţional de Limbaje, Logică,
Lingvistică Matematică, Braşov, iunie 1888, 1–9.

11. S. Marcus, Gh. Păun, Langford strings, formal languages and contextual ambiguity,
Intern. J. Computer Math., 26, 3 + 4 (1989), 179–191.

12. L. Kari, S. Marcus, Gh. Păun, A. Salomaa, In the prehistory of formal languages,
Gauss languages. Bulletin EATCS, 46 (1992), 124–139.

13. S. Marcus, Fivefold symmetry: A generative approach. In Caiet de Semiotică. Univ.
Timişoara, 9 (1992), 1–23.

14. S. Marcus, Thirty-six years ago. The beginning of the formal language theory. In Salo-
days in Theoretical Computer Science, May 1992 (A. Atanasiu, C.S. Calude, eds.), Univ.
Hyperion, Bucharest, 1993.

15. S. Marcus, Symbols in a multidimensional space. In SEMIOTICS 1990 (K. Haworth, J.
Deely, T. Prewitt, eds.) with SYMBOLICITY (J. Bernard, J. Deely, V. Voigt, G. Withalm,
eds.), The Semiotic Soc. of America, 1993, 115–126.

16. J. Dassow, S. Marcus, Gh. Păun, Iterated reading of numbers and “black-holes".
Periodica Mathematica Hungarica, 27, 2 (1993), 137–152.

17. J. Dassow, S. Marcus, Gh. Păun, Iterative reading of numbers; Parikh mappings,
parallel rewriting, infinite sequences. Preprint of. Tech. Univ. Otto von Guericke Univ.,
Magdeburg, July 1993, 18 pp.

18. J. Dassow, S. Marcus, Gh. Păun, Iterative reading of numbers: The ordered case.
In Developments in Language Theory. At the Crossroad of Mathematics, Computer Science
and Biology (G. Rozenberg, A. Salomaa, eds.), World Sci. Publ., Singapore, 1994,
157–168.

19. S. Marcus, Gh. Păun, On symmetry in languages. Intern. J. Computer Math., 52, 1/2
(1994), 1–15.

20. S. Marcus, Gh. Păun, Infinite words and their associated formal languages. In Salodays
in Auckland (C. Calude, M.J.J. Lennon, H. Maurer, eds.), Auckland Univ. Press, 1994,
95–99.

21. S. Marcus, Al. Mateescu, Gh. Păun, A. Salomaa, On symmetry in strings, sequences
and languages. Intern. J. Computer Math., 54, 1/2 (1994), 1–13.

22. S. Marcus, Gh. Păun, Infinite (almost periodic) words, formal languages, and dynami-
cal systems. Bulletin EATCS, 54 (1994), 224–231.

23. M. Kudlek, S. Marcus, A. Mateescu, Contextual grammars with distributed catenation
and shuffle. Found. of Computation Theory, FCT, LNCS 1279 (B.S. Chlebus, L. Czeja,
eds.), Springer, Berlin, 1997, 269–280.

24. J. Dassow, S. Marcus, Gh. Păun, Convex and anti-convex languages. Intern. J.
Computer Math., 69, 1-2 (1998), 1–16.

25. S. Marcus, C. Martin-Vide, Gh. Păun, On the power of internal contextual grammars
with maximal use of selectors. Conf. Automata and Formal Languages, Salgotarjan, 1996,
Publicationes Mathematicae, Debrecen, 54 (1999), 933–947.

26. S. Marcus, On the length of words. In Jewels are Forever. Contributions on Theoretical
Computer Science in Honor of Arto Salomaa (J. Karhumaki, H. Maurer, Gh. Păun, G.
Rozenberg, eds.), Springer, Berlin, 1999, 194–203.

27. S. Marcus, From real analysis to discrete mathematics and back: symmetry, convexity,
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1. Introduction

Networks of evolutionary processors (NEPs for short) have been extensively inves-
tigated in the last two decades since their generative variant has been introduced in [1].
An informal description of a NEP is as follows: it is a graph whose nodes are hosts for
some very simple processors inspired by the basic mutations at the DNA nucleotide level,
namely insertion, deletion, and substitution. Each processor is able to make just one of
these operations on the data existing in the node that hosts it. Data may be organized
as strings, multisets, two-dimensional pictures, graphs, etc. In this work, we consider
that the data consist of strings. A very important assumption is that each string appears
in an arbitrarily large number of identical copies such that if the processor can apply an
operation to different sites of a string, the operation is actually applied simultaneously to
each of these sites in different copies of the string. Furthermore, if more that one rule can
be applied to a string, each rule is applied to a different copy of that string. This process
described above is considered to be an evolutionary step. Each evolutionary step alternates
with a communication step. In a communication step, all the strings that can leave a node
(they can pass the output filter associated with that node) actually leave the node and
copies of them enter each node connected to the left node, provided that they can pass
the input filter of the arriving node. We say that an input string, which initially is in a
designated node, called the input node, is accepted if another designated node, called
the output node, is non-empty after a finite number of computational steps (evolution,
communication). The complexity of a computation is defined in the usual way.

From the very beginning, NEPs have been proven to be computationally complete
models [2,3], such that they have been used to solve hard problems [4]. Several variants
have been considered depending on the positions of filters: filters associated with nodes
(different filters [3], uniform filters [5], polarization [6]) or filters associated with edges [7].
Later on, several ways of simulating and implementing different variants of these networks
have been reported [8–11]. A rather new and attractive direction of research has been to
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investigate the possibility of simulating directly and efficiently one variant by another
without the intermediate step of an extra computational model (Turing machine, tag-system,
register machine, etc.) in between, see, e.g., [5].

This work continues this line of research by proposing direct simulations between two
NEPs such that the input one is an arbitrary NEP while the output one has a predefined
topology that can be a complete graph, a star graph, or a grid. Thus, after a preliminary
section with the basic definitions and concepts, we give the construction of a complete
NEP equivalent to a given NEP. We continue with another section, where we give such a
construction for a star graph and finally a construction for a grid NEP. A short conclusion
ends the paper.

2. Basic Definitions

The basic concepts and notations that are to be used throughout the paper are defined
in the sequel; the reader may consult [12] for basic concepts that are not defined here. We
use the following concepts and notations:

• V∗ is the set of all strings formed by symbols in V;
• |x| is the length of string x;
• ε ∈ V∗ is the empty string, |ε| = 0;
• alph(x) is the minimal alphabet V such that x ∈ V∗.

We now recall some definitions from a few papers where the networks of evolutionary
processors have been introduced, see, e.g., [1], for the generating model, and [3,13,14], for
the accepting model. Let a → b be a rule, where a, b ∈ (V ∪ {ε}):
• If a, b ∈ V, then the rule is called a substitution rule;
• If a ∈ V and b = ε, then the rule is called a deletion rule;
• If a = ε and b ∈ V, then the rule is called an insertion rule.

The set of all substitution, deletion, and insertion rules over V is denoted by SubV ,
DelV , and InsV , respectively.

Given a rule σ as above and a string w ∈ V∗, we define the following actions of σ on
w , to any position (∗), to the leftmost position (l), and to the rightmost position (r), as
explained in the sequel:

– If σ ≡ a → b ∈ SubV , then

σ∗(w) =

{ {ubv : ∃u, v ∈ V∗ (w = uav)},
{w}, otherwise

According to this definition, applying a rule to a string may result in a finite number
of strings. This implies that in our setting each string may appear in an arbitrarily large
number of copies.

– If σ ≡ a → ε ∈ DelV , then σ∗(w) =

{ {uv : ∃u, v ∈ V∗ (w = uav)},
{w}, otherwise

σr(w) =

{ {u : w = ua},
{w}, otherwise

σl(w) =

{ {v : w = av},
{w}, otherwise

– If σ ≡ ε → a ∈ InsV , then σ∗(w) = {uav : ∃u, v ∈ V∗ (w = uv)},
σr(w) = {wa}, σl(w) = {aw}.

For every rule σ, α ∈ {∗, l, r}, and L ⊆ V∗, we define σα(L) =
⋃

w∈L
σα(w). Given a

finite and non-empty set of rules M, a string w and a language L, we define the followings:

Mα(w) =
⋃

σ∈M
σα(w) and Mα(L) =

⋃
w∈L

Mα(w).
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In the original papers mentioned above, the rewriting operations defined above were
referred as evolutionary operations since they may be viewed as formal operations abstracted
from local DNA mutations.

For two disjoint subsets P (permitting symbols) and F (forbidding symbols) of an
alphabet V and a string z over V, we define the predicates:

ϕ(s)(z; P, F) ≡ P ⊆ alph(z) ∧ F ∩ alph(z) = ∅
ϕ(w)(z; P, F) ≡ (P �= ∅) → (alph(z) ∩ P �= ∅) ∧ F ∩ alph(z) = ∅.

For every language L ⊆ V∗ and β ∈ {(s), (w)}, we define:

ϕβ(L, P, F) = {z ∈ L | ϕβ(z; P, F)}.

An evolutionary processor (EP) over an alphabet V is a tuple (M, PI, FI, PO, FO), where:

• M is a set of either substitution, or deletion or insertion rules over the alphabet V.
Formally: (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents the set
of evolutionary rules of the processor;

• PI, FI ⊆ V are the input permitting/forbidding symbols of the processor, while
PO, FO ⊆ V are the output permitting/forbidding symbols of the processor.

We denote the set of evolutionary processors over V by EPV . A network of evolutionary
processors (NEP for short) is a seven-tuple Γ = (V, U, G,N , α, β, In, Out), where:

• V and U are the input and network alphabets, respectively, V ⊆ U.
• G = (XG, EG) is an undirected graph without loops, with the set of nodes XG and

the set of edges EG. Each edge is given in the form of a binary set. G is called the
underlying graph of the network;

• N : XG −→ EPU is a mapping which associates with each node x ∈ XG the evolution-
ary processor N (x) = (Mx, PIx, FIx, POx, FOx);

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the strings
existing in that node;

• β : XG −→ {(s), (w)} defines the type of the input/output filters of a node. More
precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕβ(x)(·; PIx, FIx),
output filter: τx(·) = ϕβ(x)(·; POx, FOx).

That is, ρx(z) (resp. τx(z)) indicates whether or not the string z can pass the input
(resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set of strings of L
that can pass the input (resp. output) filter of x.

• In and Out ∈ XG are the input node, and the output node, respectively, of the NEP.

A configuration of a NEP Γ as above is a function C : XG −→ 2U∗
which associates a

multiset of strings C(x) with every node x of Γ. As each string appears in an arbitrarily
large number of copies, we work with the support of this multiset. For a string w ∈ V∗,
we define the initial configuration of Γ on w by C(w)

0 (In) = {w} and C(w)
0 (x) = ∅ for all

x ∈ XG \ {In}.
A configuration is followed by another configuration either by an evolutionary step or

by a communication step. A configuration C′ follows a configuration C by an evolutionary
step if each component C′(x), for some node x, is the result of applying all the evolutionary
rules in the set Mx that can be applied to the strings in the set C(x). Formally, configuration
C′ follows the configuration C by a an evolutionary step, written as C =⇒ C′, if

C′(x) = Mαx
x (C(x)) for all x ∈ XG.

In a communication step of a NEP the following actions take place simultaneously for
every node x:

(i) All the strings that can pass the output filter of a node are sent out of that node;
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(ii) All the strings that left their nodes enter all the nodes connected to their original ones,
provided that they can pass the input filter of the receiving nodes.

Note that, according to this definition, those strings that are sent out of a node and
cannot pass the input filter of any node are lost.

Formally, a configuration C′ follows a configuration C by a communication step (we
write C′ |= C) iff for all x ∈ XG

C′(x) = (C(x) \ τx(C(x))) ∪ ⋃
{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))).

Let Γ be a NEP, the computation of Γ on the input string w ∈ V∗ is a sequence
of configurations C(w)

0 , C(w)
1 , C(w)

2 , . . . , where C(w)
0 is the initial configuration of Γ on w,

C(w)
2i =⇒ C(w)

2i+1 and C(w)
2i+1 |= C(w)

2i+2, by a for all i ≥ 0. Note that the configurations are
changed by alternative steps.

A computation as above halts, if there exists a configuration in which the set of strings
existing in the output node Out is non-empty. Given a NEP Γ and an input string w, we say
that Γ accepts w if the computation of Γ on w halts. Consequently, we define the language
accepted by Γ by

L(Γ) = {z ∈ V∗ | the computation of Γ on z halts}.

The time complexity of the halting computation C(z)
0 , C(z)

1 , C(z)
2 , . . . C(z)

m of Γ on z ∈ V∗
is denoted by timeΓ(z) and equals m. The time complexity of Γ is the function from IN to
IN, TimeΓ(n) = max{timeΓ(z) | z ∈ L(Γ), |z| = n}. In other words, TimeΓ(n) delivers the
maximal number of computational steps carried out by Γ for accepting an input string of
length n.

3. Simulating Any NEP with a Complete NEP

Theorem 1. Given an arbitrary NEP Γ, there exists a complete NEP Γ′ such that the following
two conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′

, tr
i
′′ | 1 ≤ i ≤ n}

Note that the underlying graph G′ is a complete graph. First, we add the following
nodes to G′:

• node xstart :

M =

{
{ε → tl

1
′′}, if α(x1) �= l

{ε → tr
1
′′}, if α(x1) = l

,

PI = ∅, FI = T,
PO = ∅, FO = ∅,

α =

{
l, if α(x1) �= l
r, if α(x1) = l

, β = (w).
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• nodes xs
i , 1 ≤ i ≤ n (they actually simulate the work of xi in Γ):

M = M(xi),
PI = PI(xi), FI = FI(xi) ∪ T \ {tl

i , tr
i },

PO = PO(xi), FO = FO(xi),
α = α(xi), β = β(xi).

For each node xi, 1 ≤ i ≤ n in Γ we add a subnetwork to Γ′ according to the
subsequent cases:

Case 1. If α(xi) = l, the subnetwork is defined as follows (these nodes are used for
preparing the string in the aim of processing them in the nodes xs

i ):

• nodes xIns
i , 1 ≤ i ≤ n :

M = {ε → tr
i
′′},

PI = {tl
i
′}, FI = ∅,

PO = {tr
i
′′}, FO = ∅,

α = r, β = (w).

• nodes xDel
i , 1 ≤ i ≤ n :

M = {tl
i
′ → ε},

PI = {tr
i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = l, β = (w).

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tr
i
′ → tr

i } ∪ {tr
i
′′ → tr

i },
PI = {tr

i , tr
i
′, tr

i
′′}, FI = {tl

i
′},

PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the subnetwork is analogous to the Case 1 with the characters l
and r interchanged.

Case 3. If α(xi) = ∗, the subnetwork is defined as follows (the role of these nodes is
the same as above, namely to prepare the strings for being processed in the nodes xs

i ):

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tl
i → tl

j
′ | {xi, xj} ∈ Γ}∪

{tr
i
′ → tr

i } ∪ {tl
i
′ → tl

i} ∪ {tl
i
′′ → tl

i},
PI = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = ∗, β = (w).

Let w be the input string in Γ. In the input node xstart, the character tl
1
′′

is inserted at
the beginning of the string if α(x1) ∈ {r, ∗}, or the character tr

1
′′ is inserted at the end of the

string, provided that α(x1) = l. Next, the string enters xSub
1 where the character is replaced

with tl
1 and tr

1, respectively. Then, the string can only enter xs
1 and the simulation starts.

Note that the same evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since

the special character tl
1
′′

or tr
1
′′ is set up in a way that it does not block the computation of

nodes with α = r and α = l, respectively. Inductively, we may assume that a string of the
form tl

iw or wtr
i lies in the node xs

i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.
Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.

Then, a string tl
iw

′ or a string wtr
i is produced in the node xs

i and sent to the node xSub
i . Let

us analyze the case of a string tl
iw

′. The process is analogous for the other string. In xSub
i ,

the character tl
i is replaced with the symbol tl

j
′
, assuming that {xi, xj} ∈ Γ, which ensures

the new string can only be accepted by subnetworks j corresponding to nodes xj connected
to xi in the original network Γ. From here, the process differs in accordance with the value
α of the connected node xj.
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• If α(xj) = l, the string can only enter xIns
j where the symbol tr

j
′′ is appended to it. The

new string, tl
j
′w′tr

j
′′, continues through xDel

j where tl
j
′

is removed and xSub
j where tr

j
′′

is replaced with tr
j , allowing it to enter the node xs

j . Since the character tr
j is at the end

of the string, it does not interfere with the application of evolutionary rules at the left
of the string;

• If α(xj) = r or α(xj) = ∗, the string directly enters xSub
j and the symbol tl

j
′

is replaced

with tl
j. Then, the string enters xs

j . As one can see, the communication step in Γ has
been simulated by a constant number of (evolution and communication) steps in
Γ′. A new evolutionary step in Γ is now simulated. It follows that L(Γ) = L(Γ′).
Furthermore, the number of steps in Γ′ for simulating an evolutionary step followed
by a communication one in Γ is constant; hence, TimeΓ′(n) ∈ O(TimeΓ(n)) holds.

4. Simulating Any NEP with a Star NEP

Theorem 2. Given an arbitrary NEP Γ, there exists a star NEP Γ′ such that the following two
conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′, tl

i
′′

, tr
i
′′, tl

i
′′′

, tr
i
′′′ | 1 ≤ i ≤ n}

The star network uses the definitions illustrated above for the complete network, with
the following modifications:

We add a new node Star to the subnetwork which acts as the center of the star network.

• node Star :

M = {tl
i → tl

j
′ | {xi, xj} ∈ Γ} ∪ {tr

i → tr
j
′ | {xi, xj} ∈ Γ}∪

{tl
i
′′′ → tl

i} ∪ {tr
i
′′′ → tr

i },
PI = ∅, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

The nodes xSub
i , 1 ≤ i ≤ n are modified as follows:

Case 1. If α(xi) = l:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i
′ → tr

i
′′′} ∪ {tr

i
′′ → tr

i
′′′},

PI = {tr
i
′, tr

i
′′}, FI = {tl

i
′},

PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the nodes xSub
i are analogous to the case 1 with the characters l

and r interchanged.
Case 3. If α(xi) = ∗, the nodes xSub

i , 1 ≤ i ≤ n are defined in the following way:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i
′ → tr

i
′′′} ∪ {tl

i
′ → tl

i
′′′}∪

{tl
i
′′ → tl

i
′′′},

PI = {tl
i
′
, tr

i
′, tl

i
′′}, FI = ∅,

PO = ∅, FO = ∅,
α = ∗, β = (w).

Let w be the input string in Γ. In the input node xstart, the character tl
1
′′

is inserted
in the left-hand side of the string if α(x1) ∈ {r, ∗}, or the character tr

1
′′ is inserted at the
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end of the string provided that α(x1) = l. Next, the string enters Star where no rule can
be applied. From Star, it can only enter xSub

1 where the character is replaced with tl
1
′′′

and tr
1
′′′, respectively. The new string returns to Star where tl

1
′′′

and tr
1
′′′ are changed to tl

1
and tr

1. Then, the string can only enter xs
1 and the simulation starts. Note that the same

evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since the special character

tl
1
′′

or tr
1
′′ is set up in a way that it does not block the computation of nodes with α = r and

α = l, respectively. Inductively, we may assume that a string of the form tl
iw or wtr

i lies in
the node xs

i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.
Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.

Then, a string tl
iw

′ or a string w′tr
i is produced in the node xs

i and sent to the node Star. Let
us analyze the case of a string tl

iw
′. The process is analogous for the other string. In Star,

the character tl
i is replaced with the symbol tl

j
′
, granted that {xi, xj} ∈ Γ, which ensures the

new string can only be accepted by subnetworks j corresponding to nodes xj connected to
xi in the original network Γ. From here, the process is similar to the one described in the
previous proof.

• If α(xj) = l, the string can only enter xIns
j where the symbol tr

j
′′ is attached at the end

of it. The new string, tl
j
′w′tr

j
′′, continues through xDel

j where tl
j
′

is removed and xSub
j

where tr
j
′′ is replaced with tr

j
′′′. Then, tr

j
′′′ is switched with tr

j in Star, allowing it to
enter the node xs

j . Since the character tr
j is at the end of the string, it does not interfere

with the application of evolutionary rules at the left of the string;
• If α(xj) = r or α(xj) = ∗, the string directly enters xSub

j and the symbol tl
j
′

is replaced

with tl
j
′′′

. Then, the string enters xs
j after having tl

j
′′′

changed to tl
j in Star. As in the

previous construction, the communication step in Γ has been simulated by a constant
number of (evolution and communication) steps in Γ′, and a new evolutionary step
in Γ is going to be simulated. We conclude that the two networks accept the same
language.

The explanations above allow us to infer that any step in Γ is simulated by a constant
number of steps in Γ′; hence, TimeΓ′(n) ∈ O(TimeΓ(n)) holds.

5. Simulating Any NEP with a Grid NEP

Theorem 3. Given an arbitrary NEP Γ there exists a grid NEP Γ′ such that the following two
conditions are satisfied:

1. L(Γ) = L(Γ′);
2. TimeΓ′(n) ∈ O(TimeΓ(n)).

Proof. Let Γ = (V, U, G,N , α, β, x1, xn) be a NEP with the underlying graph G = (XG, EG)
and XG = {x1, x2, . . . , xn} for some n ≥ 1; x1 ≡ In and xn ≡ Halt. We construct the NEP
Γ = (V′, U′, G′,N ′, α′, β′, xstart, xs

n); xstart ≡ In and xs
n ≡ Halt, where

V′ = V, U′ = U ∪ T,
T = {tl

i , tr
i , tl

i
′
, tr

i
′ | 1 ≤ i ≤ n}

First, we add the following nodes to Γ′:

• node xstart :

M =

{ {ε → tl
1}, if α(x1) �= l

{ε → tr
1}, if α(x1) = l

,

PI = ∅, FI = T,
PO = ∅, FO = ∅,

α =

{
l, if α(x1) �= l
r, if α(x1) = l

, β = (w).
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• nodes xs
i , 1 ≤ i ≤ n :

M = M(xi),
PI = PI(xi), FI = FI(xi) ∪ T \ {tl

i , tr
i },

PO = PO(xi), FO = FO(xi),
α = α(xi), β = β(xi).

For each node xi, 1 ≤ i ≤ n in Γ we add a subnetwork to Γ′ according to the
subsequent cases:

Case 1. If α(xi) = l, the subnetwork is defined as follows:

• nodes xIns
i , 1 ≤ i ≤ n :

M = {ε → tr
i
′},

PI = ∅, FI = T,
PO = {tr

i
′}, FO = ∅,

α = r, β = (w).

• nodes xDel
i , 1 ≤ i ≤ n :

M = {tl
i
′ → ε},

PI = {tl
i
′}, FI = ∅,

PO = ∅, FO = ∅,
α = l, β = (w).

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ} ∪ {tr

i
′ → tr

i }∪
{tr

i
′′ → tr

i },
PI = T, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

Case 2. If α(xi) = r, the subnetwork is analogous to the case 1 with the symbols l and r
interchanged.

Case 3. If α(xi) = ∗, the subnetwork is defined as follows:

• nodes xSub
i , 1 ≤ i ≤ n :

M = {tr
i → tr

j
′ | {xi, xj} ∈ Γ}∪

{tl
i → tl

j
′ | {xi, xj} ∈ Γ}∪

{tl
i
′ → tl

i} ∪ {tr
i
′ → tr

i },
PI = T, FI = ∅,
PO = ∅, FO = ∅,
α = ∗, β = (w).

Lastly, we add a set of dummy nodes to complete the grid topology with the specifica-
tions below:

• nodes Di, 1 ≤ i ≤ 2n ∧ α(xi) = ∗ :

M = ∅,
PI = ∅, FI = U′,
PO = ∅, FO = ∅,
α = ∗, β = (w).

• nodes D :

M = ∅,
PI = ∅, FI = {tl

i , tr
i | 1 ≤ i ≤ n},

PO = ∅, FO = ∅,
α = ∗, β = (w).

The grid network is set up in the following way.

• The node xstart is in the top left corner. The first column is composed by it followed
by the node xs

1 corresponding to the input node x1 ∈ Γ and the remaining nodes xs
i

arranged in any order;
• The second column is composed by a dummy node D and the nodes xSub

i . Each node
xSub

i is connected to the node xs
i through the left edge;

18



Axioms 2021, 10, 183

• The third column is composed by a dummy node D and the nodes xDel
i . Each node

xDel
i is connected to the node xSub

i through the left edge. In the case of α = ∗, a node
Di is used instead of a node xDel

i ;
• The fourth column is composed by a dummy node D and the nodes xIns

i . Each node
xIns

i is connected to the node xDel
i through the left edge. In the case of α = ∗, a node

Di is used instead of a node xIns
i ;

• The fifth column is composed by nodes D.

Let w be the input string in Γ. In the input node xstart, the character tl
1 is inserted in

the beginning of the string if α(x1) ∈ {r, ∗}, or the character tr
1 is inserted at the end of

the string, if α(x1 ∈ Γ) = l. Then, the string can only enter xs
1 and the simulation starts.

Note that the same evolutionary rules applicable in x1 ∈ Γ are also possible in xs
1 since the

special character tl
1 or tr

1 is set up in a way that it does not block the computation of nodes
with α = r and α = l, respectively. Inductively, we may assume that a string of the form
tl
iw or wtr

i lies in the node xs
i ∈ Γ′ if and only if the string w lies in the node xi ∈ Γ.

Let w be transformed into w′ in the node xi and sent to the connected nodes to xi in Γ.
Then, a string tl

iw
′ or a string wtr

i is produced in the node xs
i and sent to the connected node

xSub
i . In this node, the symbols tl

i and tr
i are replaced with tl

j
′

and tr
j
′, respectively, granted

that {xi, xj} ∈ Γ. Then, the string continues through the second column of xSub
i nodes until

it ultimately enters the node xSub
j . Note that even if the string passes through the other

nodes xSub
k | k �= j, no rule can applied so the string remains unchanged until it gets to the

desired node. Next, the computation can be continued in one of the following ways:

• If α(xj) = l, no rule can be applied in xSub
j and the string enters xDel

j . In that node,

the symbol tl
j
′

is removed. Next, since it does not contain any character t ∈ T, the

string can only enter the node xIns
j where a character tr

j
′ is attached to the end. Then,

the string continues through the fifth column of dummy nodes D and it ultimately
returns to xSub

j where tr
j
′ is replaced with tr

j , allowing it to enter the node xs
j ;

• If α(xj) = r or α(xj) = ∗, the string directly enters xSub
j and the symbol tl

j
′

is replaced

with tl
j. Then, the word enters xs

j . As in the previous proofs, we conclude that
L(Γ) = L(Γ′), as well as TimeΓ′(n) ∈ O(TimeΓ(n)).

6. Conclusions and Further Work

We have proposed three constructions for simulating an arbitrary NEP by a NEP hav-
ing an underlying structure that is a complete graph, a star graph, and a two-dimensional
grid, respectively. All these simulations are time efficient in the sense that every computa-
tional step in the given network is simulated by a constant number of computational steps
in the constructed network.

In our view, it would be of interest whether or not similar results are valid for other
variants of NEPs, such as polarized NEPs or NEPs with filtered connections as well as for
variants of networks of splicing processors.
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1. A Caveat: Speculation and Progress

Rule inference is the process of hypothesizing a general rule or “law” from examples
or “phenomena” [1,2]. The halting problem is the task to determine, given an arbitrary
computer program and an input, whether the program will eventually halt or continue to
run forever. This has been proven to be unsolvable in general. As the former rule inference
problem can be reduced to the latter halting problem, it is provable unsolvable in general.
This constraint on induction has been coped with by the philosophy of science in a variety
of ways:

Popper suggested that, instead of induction and verification, which appears to be a
hopeless endeavor, falsification might be a good demarcation criterion between science
on the one hand, and on the other hand ideology, sophisms, or, in a more frugal term,
bullshit [3]. Lakatos responded by criticizing that, due to side assumptions and a vast
‘protective belt’ of auxiliary hypotheses, in many practical circumstances, falsification
fails. As a result, contemporaries can seldom predict what might turn out to become a
progressive versus a degenerative research program [4].

Kuhn observed that science may be characterized by brief iconoclastic periods of
revolution, followed by longer conformist periods of consolidation [5]. Feyerabend even
challenged methodology as mythology and ideology akin to religious dogmas, and sug-
gested keeping science wide open and performing an “exhaustive search” of ideas by
allowing “anything” to enter the scientific debate, thereby, imposing little methodological
restrictions [6]; he also recommended a formal separation between state and science, and
lay judges for the evaluation of success [7] and the allocation of scientific funding.

In any case, there seems to be no convergence of conceptual progression. Taking
gravity and celestial motion, for example: the Ptolemaic system was expressed in terms
of geometry. It was superseded by the Copernican revolution that later became based on
Newtonian gravitational forces. Later on, Newtonian gravity was replaced by the curved
geometry of space–time of Einstein’s theory of general relativity. By analogy, it appears
highly likely that our contemporaries would view any model superseding the present
canon as utterly speculative, if not outright nonsense.

Such a historic perspective leads to greater liberty and openness of ideas, and yet
this creativity needs to be guided and stimulated by empirical findings and attempts to
falsify consequences and claims. This amounts to an amalgam of the aforementioned ideas
brought forward in the philosophy of science, resulting in a sort of pragmatism that is
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well balanced between wild fantasy and empirical grounding. Exactly how much of those
ingredients are in order may greatly depend on the temperament and character of the
individual researcher.

We, therefore, present the following considerations with a caveat to the reader, as it
trespasses far beyond any empirically verifiable physics of our time; and yet some aspects
of it might indicate the way to fruitful avenues of scientific modeling. We hope that the
following speculations are not too weird for the realistic, critical, and sober mind. At best
this could be seen as a vision of things to come.

2. Definition

Interdimensionality, or, by another naming, dimensional shadowing [8]—the “emula-
tion” of a lowerdimensional configuration space by a fractal subset of a higherdimensional
manifold—is the (co)existence and (co)habitation of parts or fragments of an “outer” space
of a “higher” extrinsic Hausdorff dimension [9] by some “inner” subspace entity that has a
“lower” or equal intrinsic Hausdorff dimension. One may imagine such a situation as a frac-
tal of Hausdorff dimension d embedded in a continuum, such as the Hilbert space Rn or Cn,
with d ≤ n. Therefore, pointedly speaking, we might exist on a sort of Cantor set or Menger
sponge-like structure—fractals obtained by self-similar elimination of proper parts—of
(almost) an integer Hausdorff dimension, which is part of a high-dimensional super-verse.

Formally, the Hausdorff dimension d of a set A ∈ Rn, defined via the d-dimensional
Hausdorff measure, is based on its “umklapp” property—the sudden change from measure
value zero to infinity if the dimension parameter is taken higher or lower than a unique
value—as follows. Suppose ∪iFi covers A, and suppose further that there exists a limit in
which all individual constituents Fi of this covering become infinitesimal in diameter. Then,
the Hausdorff measure μd, and a unique dimensional parameter d called the Hausdorff
dimension is

μδ(A) = lim
ε→0+

inf
{Fi}

{
∑

i

(
diam Fi

)δ

∣∣∣∣∣ δ ∈ R, δ > 0, ∪iFi ⊃ A,
(
diam Fi

) ≤ ε

}
, (1)

where the infimum is over all countable ε-covers {Fi} of A; with the dimension d as an
“umklapp” parameter of

μδ(A) =

{
0 if δ > d,
∞ if δ < d.

(2)

That is, the Hausdorff dimension d is the unique dimensional parameter at which the
measure μδ as a function of the dimensional parameter value δ smaller or larger than d is
infinite or vanishes, respectively. Note that the diameter “diam” presupposes the notion of
a distance defined via a metric. For self-similar fractal sets, the capacity dimension c is
defined by

c = lim
ε→0+

log[n(ε)]/ log
(

ε−1
)

, (3)

where n(ε) is the number of segments of length ε, equals the Hausdorff dimension d.
An example of a set of integer dimension m embedded into an outer space Rn with

n > m is the set whose (contravariant) coordinates with respect to some (covariant) basis
Rn is given by{(

x1, x2, . . . , xm, r1(x1, x2, . . . , xm), . . . , rn−m(x1, x2, . . . , xm)
)ᵀ∣∣∣xi, rj ∈ R

}
, (4)

where ri(x1, x2, . . . , xm), 1 ≤ i ≤ n − m are some total, possibly constant or random,
choice functions.

For most practical operational purposes [10,11] the intrinsic perception of the dimen-
sionality of such shadowed, interdimensional object might effectively remain that of a
“solid continuum” of that intrinsic (Hausdorff) dimension. It may not be too unreasonable
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to compare this to the common notion of “emptiness of space in-between point particles”
constituting solid physical objects, or the “perceived continuous motion” from individual
still frames [12,13].

There are some findings consistent such speculations: For instance, associated with
every integer-dimensional regular rectifiable m-dimensional fractal embedded in Rn, there
exists a locally defined tangential m–dimensional vector subspace of Rn [9,14]. Even
for non-integer-dimensional fractals, integer-dimensional tangent spaces may be “good”
approximations for all practical physical purposes.

Further examples for cohabitation of continua that need not involve fractals are para-
doxical decompositions, such as Vitali’s partition of the unit interval and the decomposition
of the sphere by Hausdorff [15]. If we relax the definition of dimension, we may also speak
of (dense) “scattered” point sets “inhabiting” the continuum. The variations may be many-
fold; for instance, one may consider partitions or intertwined subsets of continua. One
may not even deal with extrinsic continua but with general sets that allow some form of
intrinsic embedding.

Let us finally review two almost trivial examples of an arbitrary number of one-
dimensional subspaces of R2, as schematically depicted in Figure 1. The first one is a
collection of parallel lines. The second one is a star-shaped configuration intertwining in
the origin, spanned by respective mutually distinct unit vectors. In the latter case, the only
way for “flatlanders” [16] living on different subspaces to communicate with each other is
through a single point—the origin.

(a) (b)

Figure 1. Schematic drawing of interdimensional configurations that are (a) isolated or (b) intertwine,
as seen from some outer, embedding space.

In general, fractals need not be regular and rectifiable and of integer dimension. Rather
they may be “cloud-like shapes”, with “scattered” holes and gaps. Those gaps will not be
perceived intrinsically. Indeed, one may speculate that this situation gives rise to a metric
that essentially mimics curvature [17].

Fractal theory has inspired and evolved into many innovative, useful, and interesting
applications, especially in new materials and nanostructures. Such important developments
can lead us to new views of, and physical means related to, dimensionality [18,19].

As the aim is the provision of a very general analysis that is unconstrained by the
technicalities of specific models, no concrete theory is discussed. Nevertheless, it might
be not too far-fetched to briefly mention some potential connections between interdimen-
sionality and various paradigms in modern particle physics and cosmology. Some of these
involve the description of a volume of space as conceptualized by holographic principles,
such as the AdS/CFT correspondence related to D-branes in string theory, or the ekpyrotic
models relying on string theory, branes, and extra “hidden” dimensions. Other scenar-
ios in the context of the theory of general relativity involve traversable wormholes (aka
Einstein–Rosen bridges) linking disparate points in spacetime.

3. Disjoint and Intertwining Shadows

To proceed to interdimensional motion, we need to consider intertwining areas of
interdimensionality. The simplest nontrivial case is the one schematically depicted in
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Figure 1b in which all universes share a single point of communication. Of greater interest
might be a situation in which an entire region of space is shared. One might think also of a
“small” fraction of a universe “traversing” another universe, such that, compared to the
overall extension of these universes, this common share appears like the tip of an iceberg.

4. Interdimensional Motion

Interdimensional motion is the motion of some “inner” intrinsic subspace in the
“outer”, extrinsic space. If two inner spaces are involved, it may happen that certain limits
of motion, such as continuity or maximal speed, that are valid in one subspace, can be
breached and overcome by another subspace. In what follows, some scenarios will be
discussed. We shall adopt the following notation: inner “intrinsic” subspaces will be
denoted by M and N.

Let us discuss this by considering a simple example of a rotating point, as schematically
drawn in Figure 2a. From the point of view of M the rotation in N is observed as periodic
(dis)appearances of some object rotating in M.

Another “wormhole”-like scenario schematically drawn in Figure 2b is a “bend” or
“curved” (relative to the exterior “outer” continuum) reference frame M that is intermit-
tantly accessed from N. Suppose that the propagation speed limit for motion is the same
cM = cN in both frames. Then, the object appears to be traveling with a velocity greater
than this limit velocity in M because of the “shortcut” access through N.

Still another scenario schematically drawn in Figure 2c is one in which N allows for
faster that M–light motion—that is, cM � cN—and this property is used to access regions
in M through motion in N that appear space-like separated in M’s frame of reference.

(a) (b) (c)

Figure 2. Schematic drawing of worldlines of interdimensional motion, as seen from the outer,
embedding space: (a) periodic, (b) shortcut, and (c) coevolution.

4.1. Interdimensional Chronology Protection

In these and similar situations, no issues with respect inconsistent evolution, in partic-
ular, time paradoxes, arise. As whatever relative space–time reference frames are opera-
tionally constructed [20] in M and N, the “outer” extrinsic space, in which both M and N
are embedded, regulates the phenomenology.

Indeed, from an extrinsic, “God’s eye view” of the outer space there is no consistency
issue because the evolution seen from this “global” comprehensive perspective never
yields or allows inconsistent phenomena. Concerns raised by intrinsic space–time frames
generated with the means available in M and N are merely epistemic, and the means are
relative to the devices and conventions (such as for synchronizing clocks) available to the
inhabitants of M and N.

This results in an interdimensional scheme of chronology protection based on the
epistemic relativity of reference frames. At the same time, from an “outer” (i.e., ontolog-
ical) point of view, those frames are “bundled together” through the coembedding and
cohabitation of some outer space.

There are similarities between the consistency of observable phenomena regarding the
higher-dimensional bulk space and the consistent histories approach to the Many Worlds
models [21]. Both involve multiple “merging” paths.
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4.2. Examples of Dimensional Relativity

The following examples closely follow the scenarios schematically depicted in Figure 2b,c.
They have some similarities to ballistic missiles that avoid the limitations of velocity from
atmospheric drag (friction) by leaving and re-entering Earth’s atmosphere, or are analogs
of supercavitation—the formation of vapor bubbles in a liquid caused by flow around an
object, allowing minimal friction movement inside liquids at nearly the speed of sound.

The first example, depicted in Figure 3, shows an interdimensional dive into a di-
mension that allows higher velocities, or rather traversals of space per time, in M through
“jump” into another dimension N, thereby, creating a shortcut from two space–time points
A to B. This is different from breaking the intradimensional warp barrier by hyper-fast
solitons in Einstein–Maxwell-plasma theory [22] as it employs dimensional capacities that
are not bound by intradimensional motion.

xM

tM cM

cNA B

xN

tN cM cN

A

B

(a) (b) (c)

Figure 3. Schematic drawing of (a) worldlines of interdimensional “jump” motion, as seen from the
outer, embedding space: (a) “dive” into N at A, reappearance at B; (b) space–time diagram as seen
from intrinsic coordinates in M; (c) space–time diagram as seen from intrinsic coordinates in N.

The second example, depicted in Figure 4, shows an interdimensional “drag” motion
that uses a dimensional motion in N whose velocity exceeds that of the normal signal
velocity in M. As already mentioned, in both of these cases, consistency is guaranteed by
the overall consistency in the outer embedding space.

xM

tM cM

cN

A B

xN

tN cM cN

A

B

(a) (b) (c)

Figure 4. Schematic drawing of (a) worldlines of interdimensional forced, continuous motion, as seen
from the outer, embedding space: (a) until A and from B, the motion is dominated by constraints on
the velocity vN , and between A and B, the velocity cN dominates; (b) space–time diagram as seen
from intrinsic coordinates in M; (c) space–time diagram as seen from intrinsic coordinates in N.

5. Further Speculations

Let us conclude this article with some speculative thoughts. The first is on limits to
isolating the dimensions from one another, from “keeping them apart”; in particular, in
the event of some catastrophic occurrence. It may well be that the domain of dimensional
intersections may increase, as such events may dominate and spread to larger parts of the
“outer” space.

Secondly, interdimensionality can be compared to computer simulations, with inter-
faces between such universes serving as intertwining regions. The difference between vir-
tual reality (exchanges) and (intertwining) interdimensionality is the emphasis on measure-
theoretic aspects in the latter case.

The matters discussed here must be considered highly speculative, and far from a
fully developed formal theory. Nevertheless, it is our conviction that, to progress, science
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has to expand and explore a great variety of options, even if they appear remote to the
contemporary mind.
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Abstract: In this paper we propose and analyse from the computational complexity point of view
several new variants of nondeterministic Turing machines. In the first such variant, a machine accepts
a given input word if and only if one of its shortest possible computations on that word is accepting;
on the other hand, the machine rejects the input word when all the shortest computations performed
by the machine on that word are rejecting. We are able to show that the class of languages decided
in polynomial time by such machines is PNP[log]. When we consider machines that decide a word
according to the decision taken by the lexicographically first shortest computation, we obtain a new
characterization of PNP. A series of other ways of deciding a language with respect to the shortest
computations of a Turing machine are also discussed.

Keywords: computational complexity; Turing machine; oracle Turing machine; shortest computations

1. Introduction

The computation of a nondeterministic Turing machine and, in fact, any computation
of a nondeterministic machine that consists of a sequence of moves can be represented as
a (potentially infinite) tree. Each node of this tree is an instantaneous description (ID for
short); that is, a string encoding the configuration of the machine at a given moment: the
content of the machine’s memory and the current state of the machine. The children of a
node are the IDs encoding the possible configurations in which the machine can be found
after a (nondeterministic) move is performed starting from the ID corresponding to that
node. If the computation is finite then the tree is also finite and each leaf of the tree encodes
a final ID: an ID in which the state is either accepting or rejecting. The machine accepts if
and only if one of the leaves encodes the accepting state (also in the case of infinite trees),
and rejects if the tree is finite and all the leaves encode the rejecting state.

Therefore, in the case of finite computations, one can check if a word is accepted/rejected
by a machine by searching in the computation tree for a leaf that encodes an accepting ID.
Theoretically, this is done by a simultaneous traversal of all the possible paths in the tree (as
we can deduce, for instance, from the definition of the time complexity of a nondeterminis-
tic computation). However, in practice, it is done by traversing each path at a time, until an
accepting ID is found, or until the whole tree was traversed. Unfortunately, this may be a
very time consuming task. Consequently, one may be interested in heuristic methods that
may speed up this search, or, in other words, methods of using nondeterministic machines
in a more efficient manner.

Our paper proposes such a method: the machine accepts a word if and only if one
of the shortest paths in the computation tree ends with an accepting ID and rejects the
input word if all the shortest paths end with rejecting IDs. Intuitively, we traverse the
computation tree on levels and, as soon as we reach a level containing a leaf, we check if
there is a leaf encoding an accepting ID on that level, and accept, or if all the leaves on
that level are rejecting IDs, and, consequently, reject. While it is not hard to see that the
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class of languages which are accepted (respectively decided) by these machines is the class
of recursively enumerable languages (respectively, the class of recursive languages), we
are able to show that the class of languages that are decided according to this strategy
by Turing machines, whose shortest computations have a polynomial number of steps,
equals the class PNP[log]. As a consequence of this result we can also show that the class of
languages that are decided by Turing machines, working in nondeterministic polynomial
time on any input but deciding according to the computations that have a minimal number
of nondeterministic moves, also equals the class PNP[log]. These results continue a series of
characterizations of PNP[log], started in [1–3].

Then, we propose another method: the machine accepts (rejects) a word if and only if
the the first leaf that we meet in a breadth-first-traversal of the computation tree encodes
an accepting ID (respectively, encodes a rejecting ID); note that in this case, one must define
first an order between the sons of a node in the computation tree. Again, it is not hard
to show that these machines have the same computational power as unrestricted Turing
machines. However, we show that, in the case of ordering the tree lexicographically, the
class of languages that are decided, according to this new strategy, by Turing machines
whose shortest computations have a polynomial number of steps, equals the class PNP.

The research presented in this paper is related to a series of papers presenting variants
of nondeterministic Turing machines, working in polynomial time, that accept (or reject)
a word if and only if a specific property is (respectively, is not) verified by the possible
computations of the machine on that word. We recall, for instance: polynomial machines
that accept if and only if the number of accepting paths is even (⊕P from [4]), polynomial
machines which accept if at least 1/2 of their computations are accepting, and reject if at
least 1/2 of their computations are rejecting (the class PP [5], which coincidentally include
PNP[log] [6]), or polynomial machines that accept if at least 2/3 of the computation paths
accept and reject if at most 1/3 of the computation paths accept (the class of bounded-
error probabilistic polynomial time BPPpath from [7]); several other examples can be
found on the Complexity Zoo web page (https://complexityzoo.net/ (accessed on 10
November 2021), a web page constructed and maintained, at the time when this paper
was submitted, by the zookeeper Scott Aaronson, the veterinarian Greg Kuperberg, and
the zoo conservationist Oliver Habryka on behalf of the LessWrong community) or in [8].
However, instead of looking at all the computations, we look just at the shortest ones, and
instead of asking questions regarding the number of accepting/rejecting computations, we
just ask existential questions about the shortest computations.

Our work finds motivations also in the area of nature-inspired supercomputing mod-
els. Some of these models (see [9,10], for instance) were shown to be complete by simulating,
in a massively parallel manner, all the possible computations of a nondeterministic Turing
machine; characterizations of several complexity classes, like NP, P and PSPACE, were
obtained in this framework. However, these machines were, generally, used to accept
languages, not to decide them; in the case when a deciding model was considered [9], the
rejecting condition was just a mimic of the rejecting condition from classical computing
models. Modifying such nature-inspired machines in order to decide as soon as a possible
accepting/rejecting configuration is obtained, in one of the computations simulated in
parallel, seems to be worth analysing: such a halting condition looks closer to what really
happens in nature, and it leads to a reduced use of resources, comparing to the case when
the machine kept on computing until all the possibilities were explored. Moreover, from a
theoretical point of view, considering such halting conditions could lead to novel character-
izations of a series of complexity classes (like the ones discussed in this paper) by means
of nature-inspired computational models, as they seem quite close to the idea of deciding
with respect to the shortest computations. To this end, we refer to the papers [11,12], and
we leave open the question of whether similar results could be obtained for bio-inspired
machines with more particular and compact structure [13–15] or for bio-inspired problem
solvers [16].
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2. Basic Definitions

The reader is referred to [8,17,18] for the basic definitions regarding Turing machines,
oracle Turing machines, complexity classes and complete problems. In the following we
present just the intuition behind these concepts, as a more detailed presentation would
exceed the purpose of this paper.

A k-tape Turing machine is a construct M = (Q, V, U, q0, acc, rej, B, δ), where Q is a
finite set of states, q0 is the initial state, acc and rej are the accepting state, respectively, the
rejecting state, U is the working alphabet, B is the blank-symbol, V is the input alphabet and
δ : (Q \ {acc, rej})× Uk → 2(Q×(U\{B})k×{L,R}k) is the transition function (that defines the
moves of the machine). An instantaneous description (ID for short) of a Turing machine is a
word that encodes the state of the machine and the contents of the tapes (actually, the finite
strings of nonblank symbols that exist on each tape), and the position of the tape heads, at
a given moment of the computation. An ID is said to be final if the state encoded in it is the
accepting or the rejecting state. A computation of a Turing machine on a given word can
be described as a sequence of IDs: each ID is transformed into the next one by simulating
a move of the machine. If the computation is finite then the associated sequence is also
finite and it ends with a final ID; a computation is said to be an accepting (respectively,
rejecting) one, if and only if the final ID encodes the accepting state (respectively, rejecting
state). All the possible computations of a nondeterministic machine on a given word can
be described as a (potentially infinite) tree of IDs: each ID is transformed into its sons by
simulating the possible moves of the machine; this tree is called a computation tree.

A word is accepted by a Turing machine if there exists an accepting computation of
the machine on that word; it is rejected if all the computations are rejecting. A language is
accepted (decided) by a Turing machine if all its words are accepted by the Turing machine,
and no other words are accepted by that machine (respectively, all the other words are
rejected by that machine). The class of languages accepted by Turing machines is denoted
by RE (and is known as the class of recursively enumerable languages), while the class of
languages decided by Turing machines is denoted by REC (and called the class of recursive
languages).

The time complexity (or length) of a finite computation on a given word is the mini-
mum between the number of IDs that occur in an accepting computation of that word and
the height of the computations-tree of the machine on the word. A language is said to be
decided in polynomial time if there exists a Turing M machine and a polynomial f such
that the time complexity of a computation of M on each word of length n is less than f (n),
and M accepts exactly the given language. The class of languages decided by deterministic
Turing machines in polynomial time is denoted P and the class of languages decided by
nondeterministic Turing machines in polynomial time is denoted NP. If a machine decides
a language in polynomial time we usually say that this machine works in polynomial time.

A Turing machine with oracle A, where A is a language over the working alphabet
of the machine, is a regular Turing machine that has a special tape (the oracle tape) and a
special state (the query state). The oracle tape is just as any other tape of the machine, but,
every time the machine enters the query state, a move of the machine consists of checking
if the word found on the oracle tape is in A or not, and returning the answer.

We denote by PNP the class of languages decided by deterministic Turing machines,
that work in polynomial time, with oracles from NP. We denote by PNP[log] the class
of languages decided by deterministic Turing machines, that work in polynomial time,
with oracles from NP, and which can enter the query state at most O(log n) times in a
computation on a input word of length n.

The following problem is complete for PNP, with respect to polynomial time reductions
(see [19] for a proof):

Problem 1. (Odd—Travelling Salesman Problem, TSPodd) Let n be a natural number, and d
be a function d : {1, . . . , n} × {1, . . . , n} → IN. Decide if the minimum value of the set I =
{∑n

i=1 d(π(i), π(i + 1)) | π is a permutation of {1, . . . , n}, and π(n + 1) = π(1)} is odd.
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We assume that the input of this problem is given as the natural number n, and n2

numbers representing the values d(i, j), for all i and j. The size of the input is the number
of bits needed to represent the values of d times n2.

Next we describe a PNP[log]-complete problem; however, we need a few preliminary
notions (see [20] for a detailed presentation). Let n be a natural number and let C =
{c1, . . . , cn} be a set of n candidates. A preference order on C is an ordered list 〈cπ(1) <
cπ(2) < . . . < cπ(n)〉, where π is a permutation of {1, . . . , n}; if ci appears before cj in the
list we say that the candidate ci is preferred to the candidate cj in this order. Given a
multiset V of preference orders on a set of n candidates C (usually V is given as a list of
preference orders) we say that the candidate ci is a Condorcet winner, with respect to the
preference orders of V, if ci is preferred to each other candidate in strictly more than half of
the preference orders. We define the Dodgson score of a candidate c, with respect to V, as
the smallest number of exchanges of two adjacent elements in the preference orders from
V (switches, for short) needed to make c a Condorcet winner; we denote this score with
Score(C, c, V). In [20] it was shown that the following problem is PNP[log]-complete, with
respect to polynomial time reductions:

Problem 2. (Dodgson Ranking, DodRank) Let n be a natural number, let C be a set of n candidates,
and c and d two candidates from C. Let V be a multiset of preference orders on C. Decide if
Score(C, c, V) ≤ Score(C, d, V).

We assume that the input of this problem is given as the natural number n, two num-
bers c and d less or equal to n, and a list of preference orders V, encoded as permutations
of the set {1, . . . , n}. If we denote by #(V) the number of preference orders in V, then the
size of the input is O(#(V)n log n).

The connection between decision problems and languages is discussed in [18]. When
we say that a decision problem is solved by a Turing machine, of certain type, we actually
mean that the language corresponding to that decision problem is decided by that machine.

3. Shortest Computations

In this section we propose a modification of the way Turing machines decide an input
word. Then we propose a series of results on the computational power of these machines
and the computational complexity classes defined by them.

Definition 1. Let M be a Turing machine and w be a word over the input alphabet of M. We
say that w is accepted by M with respect to shortest computations if there exists at least one finite
possible computation of M on w, and one of the shortest computations of M on w is accepting; w is
rejected by M with regard to shortest computations if there exists at least one finite computation
of M on w, and all the shortest computations of M on w are rejecting. We denote by Lsc(M) the
language accepted by M with regard to shortest computations, i.e., the set of all words accepted
by M, with regard to shortest computations. We say that the language Lsc(M) is decided by M
with regard to shortest computations if all the words not accepted by M, with regard to shortest
computations, are rejected with regard to shortest computations.

The following remark shows that the computational power of the newly defined
machines coincides with that of classic Turing machines.

Remark 1. The class of languages accepted by Turing machines with regard to shortest computa-
tions equals RE, while the class of languages decided by Turing machines with regard to shortest
computations equals REC.

Proof. On the one hand, since any language from REC (respectively, RE) is decided
(accepted) by a deterministic Turing machine, it is clear that it is also decided (accepted)
with regard to shortest computations by the same machine. Indeed, a deterministic machine
has a single computation, and this is also the shortest computation, so the decision reached

30



Axioms 2021, 10, 304

on this computation is the same decision reached when the machine works according to
the shortest computation policy.

On the other hand, if a language is decided (respectively, accepted) by a Turing
machine M with regard to shortest computations then that language is decided (accepted)
by a classic deterministic Turing machine M′ as follows. The machine M′ simply generates
the computation tree of M on an input word w level by level. Basically, this is a very simple
process: starting with all the configurations on one level, M′ simulates one computational
step of M on each of them, and collects the resulting configurations. In this way, M′
explores, in order, the levels of the computation tree of M. Then, the machine M′ stops as
soon as it generates a level of the computation tree of M which contains a final ID. It accepts
the input word if the respective level contains an accepting ID, and rejects otherwise. To a
certain extent, the deterministic machine M′ explores the computation tree of M breadth-
first, and stops this exploration on the first level of this computation tree which contains
final ID; the decision is then made by analysing the IDs of the respective level.

Next we define a computational complexity measure for the Turing machines that
decide the shortest computations.

Definition 2. Let M be a Turing machine, and w be a word over the input alphabet of M. The
time complexity of the computation of M on w, measured with regard to shortest computations,
is the length of the shortest possible computation of M on w. A language L is said to be decided
in polynomial time with regard to shortest computations if there exists a Turing M machine and
a polynomial f such that the time complexity of a computation of M on each word of length n,
measured with regard to shortest computations, is less than f (n), and Lsc(M) = L. We denote
by PTimesc the class of languages decided by Turing machines in polynomial time with regard
to shortest computations.

The main result of this section is the following:

Theorem 1. PTimesc = PNP[log].

Proof. The proof will be structured in two parts. First, we show the upper bound PTimesc ⊆
PNP[log], and then we show the lower bound PTimesc ⊇ PNP[log].

For the first part of the proof, let L ⊆ V∗ be a language in PTimesc and let M be a
Turing machine that decides L in polynomial time with regard to shortest computations.
Additionally, let f be a polynomial such that the time complexity of the computation of M
on each word of length n, measured with regard to shortest computations, is less than f (n).
Finally, let # be a symbol not contained in V.

We define the language L′ = {x#w#1k | w ∈ V∗, x ∈ {0, 1}, and, if x = 1 (respectively,
x = 0) there exists an accepting (respectively, rejecting) computation of M, of length less
than k, on the input word w}. It is not hard to see that L′ is in NP. A nondeterministic
machine deciding L′ works as follows: it simulates, nondeterministically, a computation
of at most k steps of M, and accepts if and only if x = 1, or, respectively, x = 0, and the
simulated computation is accepting, or, respectively, rejecting; otherwise (i.e., if in the k
steps simulated by the machine a final configuration was not obtained) it rejects. Clearly,
this machine works in polynomial time.

A deterministic Turing machine M′, with oracle L′, accepting L implements the
following strategy, on an input word w:

1. M′ searches (by binary search) the minimum length of an accepting computation of
M on w, with length less or equal to f (|w|). In this search, the machine queries the
oracle L′ for O(log2( f (|w|))) times, asking, in each of these queries, if a string of the
form 1#w#1k, with k ≤ f (|w|), is in L′.

2. Let n0 be the minimum length of an accepting computation, with length less than or
equal to f (|w|), computed in the previous step (we assume that n0 is set to a special
value, f (n) + 1 for instance, if the search is unsuccessful). The machine verifies now,
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by another oracle query, if 0#w#1n0−1 ∈ L′ (i.e., if there exists a shorter rejecting
computation of M). If the answer of the last query is positive, M′ rejects the input
word, otherwise, it accepts.

Since the machine M has at least one possible computation on w of length less than
f (|w|), and that w ∈ L if and only if the shortest computation of M accepts, it is clear that
the machine M′ decides the language L. Furthermore, M′ works in polynomial time and
makes at most O(log n) queries to the oracle L′; therefore, L ∈ PNP[log]. This completes the
proof of the upper bound.

For the second inclusion, note that the class PTimesc is closed to polynomial-time
reductions. That is, if L ∈ PTimesc and L′ is polynomial-time reducible to L, then L′ ∈
PTimesc. Indeed, assume that g is a function, that can be computed in polynomial time
by a deterministic Turing machine such that, w ∈ L′ if and only if g(w) ∈ L. A machine
that decides with regard to shortest computations the language L′ works as follows: first,
for the input w, it computes deterministically the function g(w), and, then, runs the
machine accepting L on the input g(w); it is clear that this machine implements the
desired behaviour, and that it works in polynomial time, measured with regard to shortest
computations. Therefore, it is sufficient to show that the PNP[log]-complete problem DodRan
can be solved in polynomial time by a Turing machine M that makes a decision with regard
to shortest computations.

Let us first make several denotations. The input of M consists in the number n, the set
C of n candidates, c and d two candidates from C, and V the multiset of preference orders on
C (encoded as explained in the previous section). It is not hard to see that one can verify if a
candidate is a Condorcet winner for the multiset V of preference orders on C in polynomial
time; let f be a polynomial that upper bounds the time needed to do this checking, for
every n and #(V). Note that one needs at most (n − 1)

(⌊
#(V)

2

⌋
+ 1
)

switches to make a
candidate a Condorcet winner, since, in the worst case, we must bring this candidate from
the last position to the first position in

⌊
#(V)

2

⌋
+ 1 of the orders. Additionally, making

(n − 1)
(⌊

#(V)
2

⌋
+ 1
)

switches in the orders of V requires polynomial time. Let g be a

polynomial that sets the upper bounds for the time needed to make (n − 1)
(⌊

#(V)
2

⌋
+ 1
)

switches, for every n and #(V).
This machine implements the following algorithm:

1. M writes, nondeterministically, two numbers k1 and k2 (as the strings 1k1 and 1k2 ),

with ki ≤ (n − 1)
(⌊

#(V)
2

⌋
+ 1
)

for i ∈ {1, 2}. Then, M chooses nondeterministically
k1 switches to be made in V, and saves them as the set T1, and k2 switches to be made
in V, and saves them as the set T2.

2. M makes (deterministically) the switches from T1, and saves the newly obtained
preference orders as a multiset V1. M makes (deterministically) the switches from T2,
and saves the newly obtained preference orders as a multiset V2.

3. M checks (deterministically) if c is a Condorcet winner in V1. If the answer is positive
it goes to step 4, otherwise it makes 2 f (n, #(V)) + 2g(n, #(V)) dummy steps and
rejects the input word.

4. M checks (deterministically) if d is a Condorcet winner in V2. If the answer is positive
it goes to step 7, otherwise it makes 2 f (n, #(V)) + 2g(n, #(V)) dummy steps and
rejects the input word.

5. If k1 ≤ k2 the machine accepts the input, otherwise it rejects it.

First, let us see that M works correctly. In step 1 it chooses nondeterministically some
switches in V, that are supposed to make c and d Condorcet winners, respectively. Notice
that the length of a possible computation performed in this step depends on the choice
of the numbers k1 and k2; if these numbers are smaller, then the computation is shorter.
Then in step 2 the machine actually makes (deterministically) the switches chosen in the
previous step. The length of a possible computation, until this moment, is still determined
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by the choice of k1 and k2. In steps 3 and 4 the machine verifies if those switches were
indeed good to make c and d winners, according to the orders modified by the previously
chosen moves. If they were both transformed in winners by the chosen switches, the
computation continues with to step 5; otherwise, the machine makes a sequence of dummy
steps, long enough to make that computation irrelevant for the final answer of the machine
on the given input. Note that at least one choice of the switches, in step 1, makes both
c and d winners. Now, the shortest computations are those ones in which both c and d
were transformed into winners and the chosen numbers k1 and k2 are minimal. Yet this
is exactly the case when k1 = Score(C, c, V) and k2 = Score(C, d, V). In the step 5, all
the computations in which c and d were transformed into winners are completed by a
deterministic comparison between k1 and k2. Thus, after the execution of this step the
shortest computations remain the ones where k1 = Score(C, c, V) and k2 = Score(C, d, V);
the decision of this computation is to accept, if k1 ≤ k2, or to reject, otherwise. Consequently,
M accepts if and only if Score(C, c, V) ≤ Score(C, d, V), and rejects otherwise. Moreover, it
is rather easy to see that M works in polynomial time, since each of the 5 steps described
above can be completed in polynomial time.

In conclusion, we showed that DodRan can be solved in polynomial time by a Turing
machine that decides with regard to shortest computations. It follows that PTimesc ⊇
PNP[log], and this ends our proof.

The technique used in the previous proof to show that PNP[log]-complete problems
can be solved in polynomial time by Turing machines that decide with regard to shortest
computations suggests another characterization of PNP[log]. In this respect, consider nonde-
terministic Turing machines, working in polynomial time, that decide an input according
to the decisions of the computations in which the least number of nondeterministic moves
is made. Such a machine can be formally defined as follows:

Definition 3. Let M be a Turing machine working in polynomial time and w be a word over the
input alphabet of M. We say that w is accepted by M with respect to the computations with a
minimum number of nondeterministic moves if one of the possible computations of M on w, in
which M makes the minimum number of nondeterministic moves, is accepting; w is rejected by M
with regard to the computations with minimum number of nondeterministic moves if all the possible
computations of M on w, in which M makes the minimum number of nondeterministic moves, are
rejecting.We denote by Lnm(M) the language decided by M with regard to the computations with a
minimum number of nondeterministic moves and by PTimenm the class of all the languages decided
in this manner.

It is not hard to see that, given a Turing machine working in polynomial time and an
input word for that machine, the machine will always decide the input word with regard
to the computations with minimum number of nondeterministic moves, since all of its
computations are finite. One can show the following result.

Theorem 2. PTimenm = PNP[log].

Proof. We can use a proof similar to the one of Theorem 1.
For the inclusion PTimenm ⊆ PNP[log] we can assume, without loss of generality, that

the machine accepting a language from PTimenm has all the possible computations on an
input of length n of the same length f (n), for some polynomial f (we can complete some of
the computations with dummy deterministic steps, in order to make this happen). Then we
just have to search (using binary search) for the computation with the minimum number of
nondeterministic moves, and check if it is an accepting or rejecting one.

For the inclusion PTimenm ⊇ PNP[log], we use the machine constructed in the proof of
PTimesc ⊇ PNP[log], and note that the shortest computations performed by this machine on
a certain input are also the computations where the minimum number of nondeterministic
moves are made. This concludes our proof.
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4. The First Shortest Computation

4.1. Ordered Turing Machines

In the previous section we proposed a decision mechanism of Turing machines that
basically consisted in identifying the shortest computations of a machine on an input word,
and checking if one of these computations is an accepting one, or not. Now we analyse
how the properties of the model are changed if we order the computations of a machine
and the decision is made according to the first shortest computation, in the defined order.

Let M = (Q, V, U, q0, acc, rej, B, δ) be a t-tape Turing machine, and assume that δ(q,
a1, . . . , at) is a totally ordered set, for all ai ∈ U, i ∈ {1, . . . , t}, and q ∈ Q; we call such a
machine an ordered Turing machine. Let w be a word over the input alphabet of M. Assume
that s1 and s2 are two (potentially infinite) sequences describing two possible computations
of M on w. We say that s1 is lexicographically smaller than s2 if s1 has fewer moves than
s2, or they have the same number of steps (potentially infinite), the first k IDs of the two
computations coincide and the transition that transforms the kth ID of s1 into the k + 1th
ID of s1 is smaller than the transition that transforms the kth ID of s2 into the k + 1th ID of
s2, with respect to the predefined order of the transitions. It is not hard to see that this is a
total order on the computations of M on w. Therefore, given a finite set of computations of
M on w, one can define the lexicographically first computation of the set as that one which
is lexicographically smaller than all the others.

Definition 4. Let M be an ordered Turing machine, and w be a word over the input alphabet of M.
We say that w is accepted by M with respect to the lexicographically first computation if there exists
at least one finite possible computation of M on w, and the lexicographically first computation of
M on w is accepting; w is rejected by M with regard to the lexicographically first computation if
the lexicographically first computation of M on w is rejecting. We denote by Llex(M) the language
accepted by M with regard to the lexicographically first computation. We say that the language
Llex(M) is decided by M with regard to the lexicographically first computation if all the words not
contained in Llex(M) are rejected by M.

As in the case of Turing machines that decide with regard to shortest computations,
the class of languages accepted by Turing machines with regard to the lexicographically
first computation equals RE, while the class of languages decided by Turing machines
with regard to the lexicographically first computation equals REC. The time complexity
of the computations of Turing machines that decide with regard to the lexicographically
first computation is defined exactly as in the case of machines that decide with regard
to shortest computations. We denote by PTimelex the class of languages decided by Turing
machines in polynomial time with regard to the lexicographically first computation. In this context,
we are able to show the following theorem.

Theorem 3. PTimelex = PNP.

Proof. In the first part of the proof we show that PTimelex ⊆ PNP. Let L be a language in
PTimelex and let M be a Turing machine that decides L in polynomial time with regard
to the lexicographically first computation. Additionally, let f be a polynomial such that the
time complexity of the computation of M on each word of length n, measured with regard
to the lexicographically first computation, is less than f (n).

We define the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0) there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}. It is not hard to see that L′ is in NP. A nondeterministic machine
deciding it works as follows: it simulates, nondeterministically, a computation of at most
k steps of M, starting with the IDs in the sequence w′, and accepts if and only if this
x = 1,or, respectively, x = 0, and the simulated computation is accepting, or, respectively,
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rejecting; otherwise (i.e., if in the simulated computation steps a final configuration was
not obtained), it rejects. Clearly, this machine works in polynomial time.

A deterministic Turing machine M′, with oracle L′, accepting L implements the
following strategy, on an input word w:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less than or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2( f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length of a
computation, with length less than or equal to f (|w|).

2. Next, M′ tries to construct, ID by ID, the first (shortest) computation of length n0,
using the oracle L′. Assume that w′ is a sequence of IDs identified until a given
moment as a prefix of the sequence encoding the first computation of length n0, and
we try to lengthen this sequence. Assume that w1, w2, . . . , wk are the IDs that can be
obtained from the last ID of w′, ordered according to the transitions that were used to
obtain them. We search the minimum i, with 1 ≤ 1 ≤ k, such that 0#w#w′wi#1n0 or
1#w#w′wi#1n0 is in L′. Once we have identified this minimum value, denoted i0, we
add the ID wi0 to the sequence w′, and repeat the process described above, until w′
contains n0 IDs.

3. The machine finally checks if the string 1#w#w′#1n0 is in L′, and if it is so accepts, or,
if the string 0#w#w′#1n0 is in L′, and, in this case, rejects.

It is not hard to see that M′ correctly computes the length n0 of the shortest com-
putation of M on an input word w. Also, once this length computed, the first shortest
computation is identified, and the machine checks if this computation is an accepting or a
rejecting one. Thus, M′ implements the desired behaviour. Finally, note that M′ works in
polynomial time: in step 2 it makes O(n0) queries, asking if strings of polynomial length
are in L′, while the rest of the computation is clearly carried out in polynomial time. This
completes the proof of the upper bound on PTimelex.

To show the second inclusion, note that, similar to the case of machines deciding with
regard to shortest computations, the class PTimelex is closed to polynomial-time reductions.
Thus, it is sufficient to show that the PNP-complete problem TSPodd can be solved in
polynomial time by a Turing machine M that decides with regard to the lexicographically
first computation.

Therefore, we construct a Turing machine M that solves TSPodd with regard to the
lexicographically first computation. The input of this machine consists in a natural number
n, and n2 natural numbers, encoding the values of the function d : {1, . . . , n}×{1, . . . , n} →
IN. We can assume, without losing generality, that all the input numbers are given as
decimal numbers; furthermore, we assume that all the n2 numbers, that encode the values
of the function d, have the same number of decimal digits, denoted by m (we may add
some leading zeros at the beginning of these numbers in order to make this assumption
hold). Therefore, the size of the input is O(n2m). Additionally, let us make the assumption
that every time we sum up n numbers of m digits we make exactly f (m, n) steps, where
f is a polynomial, and the sum is always represented using the same number of digits
(clearly bounded by the input size).

This machine implements the following algorithm:

1. M writes, nondeterministically, a permutation π of {1, . . . , n} and computes, deter-
ministically, the sum S = ∑n

i=1 d(π(i), π(i + 1)). Let k be the number of digits of
S.

2. M writes, nondeterministically, a number S0 of k digits; this number may have some
leading zeros. We assume that this step is performed in k computational steps, each
consisting in choosing one of the moves {m0, m1, . . . , m9} in which one of the digits
0, . . . , 9, respectively, is written. These moves are ordered m0 < m1 < . . . < m8 < m9.

3. M writes, nondeterministically, a permutation π′ of {1, . . . , n} and computes, deter-
ministically, the sum S′ = ∑n

i=1 d(π′(i), π′(i + 1)).
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4. M checks, deterministically, if S′ = S0. If yes, it goes to step 5, otherwise it makes
2n2m dummy step and rejects.

5. M checks, deterministically, if S′ is odd. If yes, it accepts, otherwise it rejects.

It is important to state that the order of the nondeterministic moves that are executed
in steps 1 and 3 has no impact on the computation. For uniformity we consider that they
are ordered, but we do not make any assumption on what order is actually used.

Before showing that the machine works correctly, we notice that it works in polynomial
time. Indeed, it is not hard to see that every possible computation of M consists of a
sequence of steps of polynomial length, and always ends with a decision.

To show the soundness of our construction, let us observe that all the possible com-
putations implemented by the first 3 steps of the above algorithm have the same length.
In the first of these steps we choose a possible permutation π of {1, . . . , n} and compute
the sum S = ∑n

i=1 d(π(i), π(i + 1)); in this way we have computed a possible solution of
the Travelling Salesman Problem, defined by the function d, and the real solution of the
problem should be at most S. Then we try to find another permutation π′ that leads to a
smaller sum. For this we choose first a number S0 that has as many digits as S (of course, it
may have several leading zeros); however, the computations are ordered in such a manner
that a computation in which smaller numbers are constructed comes before a computation
in which a greater number is constructed. Then, in steps 3 and 4, M verifies if S′ can
be equal to the sum ∑n

i=1 d(π′(i), π′(i + 1)), for a permutation π′ nondeterministically
chosen. If the answer is yes then it means that S0 is also a possible solution of the problem;
otherwise, we conclude that the nondeterministic choices made so far were not really the
good ones, so we reject after we make a long enough sequence of dummy steps, in order
not to influence the decision of the machine. Finally, we verify if S0 is odd, and accept if
and only if this condition holds. By the considerations made above, it is clear that in all
the shortest computations we identified some numbers that can represent solutions of the
Travelling Salesman Problem; moreover, in the first of the shortest computations we have
identified the smallest such number, i.e., the real solution of the problem. Consequently,
the decision of the machine is to accept or to reject the input according to the parity of the
solution identified in the first shortest computation, which is correct.

Summarizing, we showed that TSPodd can be solved in polynomial time by a Turing
machine that decides with regard to the lexicographically first computation. It follows that
PTimelex ⊇ PNP, and this concludes our proof.

Remark 2. Note that the proof of Theorem 1 shows that PNP[log] can be also characterized as the
class of languages that can be decided in polynomial time with regard to shortest computations
by nondeterministic Turing machines whose shortest computations are either all accepting or all
rejecting. On the other hand, in the proof of Theorem 3, the machine that we construct to solve with
regard to the lexicographically first computation the TSPodd problem may have both accepting and
rejecting shortest computations on the same input. This shows that PNP[log] = PNP if and only if
all the languages in PNP can be decided with regard to shortest computations by nondeterministic
Turing machines whose shortest computations on a given input are either all accepting or all
rejecting.

4.2. Ordering Functions

There is a point where the definition of the ordered Turing machine does not seem
satisfactory: each time a machine has to execute a nondeterministic move, for a certain state
and a tuple of scanned symbols, the order of the possible moves is the same, regardless of
the input word and the computation performed until that moment. Therefore, we consider
another variant of ordered Turing machines, in which such information is considered:
Let M be a Turing machine. We denote by 〈M〉 a binary encoding of this machine (see, for
instance, [18]). It is clear that the length of the string 〈M〉 is a polynomial with respect to the
number of states and the working alphabet of the machine M. Let g : {0, 1, #}∗ → {0, 1, #}∗
be a function such that g(〈M〉#w1#w2# . . . #wk) = w′

1#w′
2# . . . #w′

p, given that w1, . . . , wk are
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binary encodings of the IDs that appear in a computation of length k of M (we assume that
they appear in this order, and that w1 is an initial configuration), and w′

1, . . . , w′
p are the IDs

that can be obtained in one move from wk. Clearly, this function induces canonically an
ordering on the computations of a Turing machine. Assume s1 and s2 are two (potentially
infinite) sequences describing two possible computations of M on w. We say that s1 is
g-smaller than s2 if the first k IDs of the two computations, which can be encoded by the
strings w1, . . . , wk, coincide, and g(〈M〉#w1#w2# . . . #wk) = w′

1#w′
2# . . . #w′

p, the k + 1th ID
of s1 is encoded by w′

i , the k + 1th ID of s2 is encoded by w′
j, and i < j. It is not hard to

see that g induces a total order on the computations of M on w; thus, we will call such a
function an ordering function. Therefore, given a finite set of computations of M on w we
can define the g-first computation of the set as the one that is g-smaller than all the others.

Definition 5. Let M be a Turing machine, and g : {0, 1, #}∗ → {0, 1, #}∗ be an ordering function.
We say that w is accepted by M with respect to the g-first shortest computation if there exists at
least one finite possible computation of M on w, and the g-first of the shortest computations of M
on w is an accepting one; w is rejected by M with regard to the lexicographically first computation
if the g-first shortest computation of M on w is a rejecting computation. We denote by Lg

f sc(M) the
language accepted by M with regard to the g-first shortest computation, i.e., the set of all words
accepted by M, with regard to the g-first shortest computation. As in the case of regular Turing
machines, we say that the language Lg

f sc(M) is decided by M with regard to the g-first shortest

computation if all the words not contained in Lg
f sc(M) are rejected by that machine, with regard

to the g-first shortest computation.

It is not surprising that, if g is Turing computable, the class of languages accepted
by Turing machines with regard to the g-first shortest computation equals RE, while
the class of languages decided by Turing machines with regard to the lexicographically
first computation equals REC. The time complexity of the computations of Turing machines
that decide with regard to the g-first shortest computation is defined exactly as in the case
of machines that decide with regard to shortest computations. We denote by PTimeg

f sc the
class of languages decided by Turing machines in polynomial time with regard to the g-first shortest
computation. We also denote by PTimeo f sc the union of all the classes PTimeg

f sc, where the
ordering function g can be computed in polynomial deterministic time. We are now able to
show the following theorem.

Theorem 4. PTimeo f sc = PNP.

Proof. In fact, we will show that PTimeo f sc = PTimelex. First, let us observe that the
inclusion PTimeo f sc ⊇ PTimelex holds canonically. Indeed, the lexicographical order of the
computations defined in the previous section is just a particular case of an order defined by
an ordering function computable in deterministic polynomial time.

Further, we show that PTimeo f sc ⊆ PTimelex. Given g an ordering function that can
be computed in deterministic polynomial time, let L be a language and M be a Turing
machine that decides in polynomial time L with regard to the g-first shortest computation.
Let us assume, without loss of generality, that the time needed to compute the value of g
for a string of k configurations of M, all having the same initial configuration, regardless
of the configurations. We define an ordered machine M′ and show that it decides L with
regard to the lexicographically first computation, also in polynomial time.

We will not give the details of the construction of M′, as they can be quite tedious,
but we will give the main idea implemented by this machine. The machine M′ basically
simulates the computation of the machine M and keeps on a track (called “memory track”)
the encoding of M and the encodings of IDs of M that were obtained during the simulated
computation. Assume that M′ should simulate a move of M, provided that the current
state of M is q and the scanned symbols are (a1, . . . , ak). First, M′ enters in a state qg in
which it computes the value of the function g having as argument the string saved on
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the memory track. Suppose that the computed value is the string w′
1#w′

2# . . . #w′
p, and

the machine M must make the transition mi to obtain the ID w′
i from the current ID, for

i ∈ {1, . . . , p}. Accordingly, the machine M′ enters in a state qm1,...,mp , and from this state it
must make a nondeterministic move that simulates the move of M. However, we define
M′ such that its possibilities, in this case, are ordered: the first comes the move m1, then the
move m2, and so on, finally coming mp (m1 < m2 < . . . < mp, in the formalism of ordered
machines). Once the move is simulated, the machine M′ saves the encoding of the current
ID of the simulated machine (again, we may assume that this operation can be done in
the same time for any ID, since their length is bounded by a polynomial), and goes on to
simulate the next move of M.

It is not hard to see that M′ simulates soundly the behaviour of M. Basically, M′
keeps a history of the computation performed by M and uses a subroutine, computing the
function g, to ensure that the lexicographical order of the simulated computations coincides
with the order defined by the function g for the machine M and its real computations.
Additionally, the part of the algorithm implemented by M′ that is not involved in the actual
simulation (that is in keeping the history of the simulated computation and computing the
values of g) depends only on the number of steps of M simulated until that point and on
the input word, so it is quite easy to see that the shortest computations of M are simulated
by the shortest computations of M′; moreover, the g-first shortest computation of M is
simulated by the lexicographically first shortest computation of M′.

It follows that the language L is decided by M′ in polynomial time with regard to the
lexicographically first computation.

To conclude, we showed that PTimeo f sc ⊆ PTimelex.
It follows that PTimeo f sc = PTimelex and, according to Theorem 3, we obtain the

identity PTimeo f sc = PNP.

Notice that PNP[log] ⊆ PTimeg
f sc ⊆ PNP, for all the ordering functions g which can be

computed in polynomial deterministic time. The second inclusion is immediate from the
previous Theorem, while the first one follows from the fact that any language in PNP[log] is
accepted with regard to shortest computations, in polynomial time, by a nondeterministic
Turing machine whose shortest computations are either all accepting or all rejecting; clearly,
the same machine can be used to show that the given language is in PTimeg

f sc.
It is interesting to see that for some particular ordering functions, as for instance the

one that defines the lexicographical order discussed previously, a stronger result holds:
PTimeg

f sc = PNP (where g is the ordering function). We leave as an open problem to see if
this relation holds for all the ordering functions, or, if not, to see when it hold.

5. Conclusions and Further Work

In this paper, we have shown that considering a variant of Turing machine, that
decides an input word according to the decisions of the shortest computations of the
machine on that word, leads to new characterizations of two well-studied complexity
classes PNP[log] and PNP. These results seem interesting since they provide alternative
definitions of these two classes that do not make use of any other notion than the Turing
machine (such as oracles, reductions, etc.) Note that some of our proofs rely on showing
that complete problems can be solved by machines deciding with respect to the shortest
computations. These complete problems were chosen according to the personal preferences
of the author; clearly, other complete problems could have been solved similarly with
the respective techniques. We feel, however, that our solutions capture entirely the ideas
that connect the different complexity classes we characterize with the usage of shortest
computations.

From a theoretical point of view, an attractive continuation of the present work would
be to analyse if the equality results in Theorems 1–3 relativise. It is not hard to see that the
upper bounds shown in these proofs are true even if we allow all the machines to have
access to an arbitrary oracle. It remains to be settled if a similar result holds in the case
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of the lower bounds. However, we conjecture that the lower bounds do not hold in the
presence of arbitrary oracles, highlighting, in this way, the difference between the way our
variant of Turing machine decides and the way regular oracle Turing machines decide.

Nevertheless, other accepting/rejecting conditions related to the shortest computa-
tions could be investigated. As we mentioned in the Introduction, several variants of
Turing machines that decide a word according to the number of accepting, or rejecting,
computations were already studied. We intend to analyse what happens if we use similar
conditions for the shortest computations of a Turing machine. In this respect, using the
ideas of the proof of Theorem 3, one can show that

Theorem 5. Given a nondeterministic polynomial Turing machine M1, one can construct a
nondeterministic polynomial Turing machine, with access to NP-oracle, M2, whose computations
on an input word correspond bijectively to the short computations of M1 on the same word, such
that two corresponding computations are both either accepting, or rejecting.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Further-
more, let f be a polynomial such that the time complexity of the computation of M on each
word of length n is less than f (n).

Recall the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0) there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}, from the proof of Theorem 3. Additionally, recall that L′ is in NP.

We construct now a nondeterministic Turing machine M′, with oracle L′, that acts
as follows:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2( f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length of a
computation, with length less or equal to f (|w|). This step is executed deterministi-
cally.

2. Next M′ tries to construct nondeterministically, ID by ID, one of the shortest compu-
tations of M on w (the length of this computation is n0), using the oracle L′. Assume
that w′ is a sequence of IDs identified until a given moment as a prefix of the sequence
encoding such a computation, and we try to lengthen this sequence. Assume that
w1, w2, . . . , wk are the IDs that can be obtained from the last ID of w′. We search all the
possible i, with 1 ≤ 1 ≤ k, such that 0#w#w′wi#1n0 or 1#w#w′wi#1n0 is in L′. Once we
have identified these values, denoted by i1, . . . , ip, we add, nondeterministically, one
of the IDs wij , with j ∈ {1, . . . , p} to the sequence w′, and repeat the process described
above, until w′ contains n0 IDs.

3. The machine finally checks if the string 1#w#w′#1n0 , for a w′ obtained in one of the
possible computations, is in L′, and if it is so, the computation is accepting, or, if the
string 0#w#w′#1n0 , for a w′ obtained in one of the possible computations, is in L′, and,
in this case, the computation is rejecting.

It is not hard to see that M′ correctly computes the length n0 of the shortest compu-
tation of M on an input word w. Additionally, once this length computed, the shortest
computations of M′ are identified, and the machine simulates these computations nonde-
terministically. Thus, the computations of M can be put in a bijective correspondence with
the shortest computations of M′: one of the shortest computations of M corresponds to the
computation of M′ that simulates this shortest computation. Finally, note that M′ works in
nondeterministic polynomial time.

This concludes the proof of Theorem 5.

This Theorem is useful to show upper bounds on the complexity classes defined by
counting the accepting/rejecting shortest computations. Some examples in this direction
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are: PPsc ⊆ PPNP (where PPsc is the class of decision problems solvable by a nondetermin-
istic polynomial Turing machine which accepts if and only if at least 1/2 of the shortest
computations are accepting, and rejects otherwise) or BPPsc ⊆ BPPNP

path (where BPPsc is
the class of decision problems solvable by a nondeterministic polynomial Turing machine
which accepts if at least 2/3 of the shortest computations are accepting, and rejects if at
least 2/3 of the shortest computations are rejecting).

Remark 3. However, in some cases, one can show stronger upper bounds; for instance, PPsc ⊆
PP

NP[log]
ctree (where PP

NP[log]
ctree is the class of decision problems solvable by a PP-machine which can

make a total number of O(log n) queries to an NP-language in its entire computation tree, on an
input of length n). It seems an interesting problem to find lower bounds for such classes, as well.

Proof. Let M be a nondeterministic Turing machine working in polynomial time. Addi-
tionally, let f be a polynomial such that the time complexity of the computation of M on
each word of length n is less than f (n).

Recall the language L′ = {x#w#w′#1k | w ∈ V∗, w′ is a sequence of consecutive IDs
of M, x ∈ {0, 1}, and, if x = 1 (respectively, x = 0), there exists an accepting (respectively,
rejecting) computation of M on the input word w of length less than k, starting with the
sequence of IDs w′}, from the proof of Theorem 3. Recall also that L′ is in NP.

We construct now a nondeterministic Turing machine M′, with oracle L′, that acts
as follows:

1. M′ searches (by binary search) the minimum length of a computation of M on w,
with length less or equal to f (|w|). In this search, the machine queries the oracle
L′ for O(log2( f (|w|))) times, asking, in each of these queries, if a string of the form
1#w#ε#1k and 0#w#ε#1k, with k ≤ f (|w|), is in L′. Let n0 be the minimum length
of a computation, with length less than or equal to f (|w|). This step is executed
deterministically.

2. Next, M′ simulates the computations of M, counting how many steps it has already
simulated. As soon as a computation has more than n0 steps, it makes a nondeter-
ministic move, with two possible continuations: one possibility is to accept the input,
while the other one is to reject it. The computations with n0 steps are fully simulated
(and the decision of M′ in those cases coincide with the decision of M).

It is not hard to see that M′ correctly computes the length n0 of the shortest compu-
tation of M on an input word w. It is also clear that the difference between the number
of accepting paths and the number of rejecting paths of M′ equals the difference between
the number of accepting shortest computations and rejecting shortest computations of M.
Finally, note that M′ works in nondeterministic polynomial time, and it makes O(log n)
queries to a NP language, summed up over all the possible computations. Therefore, if we
see M′ as a PP-machine, it makes exactly the same decision as M, seen as a PPsc-machine.

Clearly, this implies that PPsc ⊆ PP
NP[log]
ctree , and our proof is concluded.

Alternatively, one can see that all the languages from PPsc can be accepted by deter-
ministic Turing machines working in polynomial time, that are allowed to make O(log n)
queries to NP and exactly one query to PP, which gives the decision of the machine, on an
input of length n. The only difference from the above idea is that step 2 of the algorithm is
replaced by a PP-language query.

Another remark is that the idea presented above holds in the case of other classes, like
⊕P (where ⊕P is the class of decision problems solvable by a nondeterministic polynomial
Turing machine which accepts if and only if the number of accepting paths is even), which
was introduced in [4].

One can show, similarly to the above, that ⊕Psc ⊆ ⊕P
NP[log]
ctree (where ⊕P

NP[log]
ctree is the

class of decision problems solvable by a ⊕P-machine which can make a total number of
O(log n) queries to an NP-language in its entire computation tree, on an input of length
n). The only difference from the above proof is that in step 2 of the algorithm, as soon as a
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computation has more than n0 steps, the machine M makes a nondeterministic move with
three possible continuations: two possibilities are to accept the input, and the other is to
reject it.

The same idea applies to the class RP, of decision problems solvable by a nondetermin-
istic polynomial Turing machine which accepts if and only if at least half of the computation
paths accept and rejects if and only if all computation paths reject, introduced in [5]. In this

case we get RPsc ⊆ RP
NP[log]
ctree (where RP

NP[log]
ctree is the class of decision problems solvable

by a RP-machine which can make a total number of O(log n) queries to an NP-language
in its entire computation tree, on an input of length n).

According to Remark 2, one can see that the lower bounds PNP[log] ⊆ PPsc, PNP[log] ⊆
⊕Psc and PNP[log] ⊆ RPsc hold.
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Abstract: A quasiperiod of a finite or infinite string is a word whose occurrences cover every part
of the string. An infinite string is referred to as quasiperiodic if it has a quasiperiod. We present
a characterisation of the set of infinite strings having a certain word q as quasiperiod via a finite
language Pq consisting of prefixes of the quasiperiod q. It turns out its star root ∗√Pq is a suffix code
having a bounded delay of decipherability. This allows us to calculate the maximal subword (or
factor) complexity of quasiperiodic infinite strings having quasiperiod q and further to derive that
maximally complex quasiperiodic infinite strings have quasiperiods aba or aabaa. It is shown that,
for every length l ≥ 3, a word of the form anban (or anbban if l is even) generates the most complex
infinite string having this word as quasiperiod. We give the exact ordering of the lengths l with
respect to the achievable complexity among all words of length l.

Keywords: quasiperiod; formal language; asymptotic growth; polynomial
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1. Introduction

In his tutorials [1–3] Solomon Marcus dealt with several properties of infinite words.
Among them he considered quasiperiodicity and its influence on measures of symmetry
like complexity, recurrence or entropy. One topic of interest was their subword complexity
(or factor complexity [4]). Besides the asymptotic behaviour of the factor complexity, also
known as their topological entropy ([4], Section 4.2.2) or [5] Marcus was also interested in
the behaviour of the complexity function f (ξ, n) assigning to a natural number n ∈ N the
number of subwords of the infinite word (ω-word) ξ. Here he was also concerned with
recurrences in ω-words and their influence to subword complexity. A well-known fact
established by Grillenberger is that the asymptotic subword complexity (or topological
entropy) of an almost periodic (or uniformly recurrent) ω-word can be arbitrarily close
(but not equal) to the maximal subword complexity (see [4], Theorem 4.4.4).

The present paper summarises results on the subword complexity of infinite words
obtained in [6–8]. We study in detail the structure of the set of infinite words having a
certain word q as quasiperiod and how this is connected with the set of finite words with
the same quasiperiod. Moreover, we address a question raised in [9] about the maximally
achievable subword complexity of a quasiperiodic infinite word.

A first result shows that for every word q there is a value λq, 1 ≤ λq < 2, such that,
for every infinite word ξ with quasiperiod q, the complexity function f (ξ, n) is bounded
by O(1) · λn

q , and this bound is achieved for certain infinite words having quasiperiod
q. The maximally possible value for λq is λq = tP ≈ 1.324718, where tP is the smallest
Pisot-Vijayaraghavan number, that is, the unique real root tP of the cubic polynomial
x3 − x − 1.

As a generalisation of the above-mentioned questions [2,9] we estimate, for every
length n ≥ 3, the values λn = max{λq : |q| = n}, their ordering and the words q, |q| = n,
for which λq = λn. It appears that a two letter alphabet is sufficient for achieving the
maximal complexity λn.
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In order to prove these properties we start with a general investigation of quasiperiod-
icity of words (as e.g., in [10–12]) and infinite words.

The paper is organised as follows. After introducing some notation we derive in
Section 3 a characterisation of quasiperiodic words and ω-words having a certain
quasiperiod q. Moreover, we use the finite basis sets Pq and its dual Rq (L(q) and R(q)
in [12]) from which the sets of quasiperiodic words or ω-words having quasiperiod q can
be constructed. In Section 4 it is then proved that the star root of Pq is a suffix code having
a bounded delay of decipherability and, dually, the star root of Rq is a prefix code.

This much prerequisites allow us, in Section 5, to estimate the number of subwords
of the language Qq of all quasiperiodic words having quasiperiod q. It turns out that
cq,1 · λn

q ≤ f (Qq, n) ≤ cq,2 · λn
q where f (Qq, n) is the number of subwords of length n

of words in Qq and 1 ≤ λq ≤ tP depends on q. We construct, for every quasiperiod
q, a quasiperiodic ω-word ξq with quasiperiod q whose subword complexity f (ξq, n)
is maximal.

The values λq turn out to be maximal positive roots of polynomials associated with
the star root ∗√Pq. Section 6 deals with the properties of those polynomials. This allows to
compare the roots λq.

The following Sections 7 and 8 deal with the proof of the above mentioned results on
the values λq and λn = max{λq : |q| = n}. Here we derive also the complete ordering of
the values λn.

2. Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By N =
{0, 1, 2, . . .} we denote the set of natural numbers. Let X be an alphabet of cardinality
|X| = r ≥ 2, and let throughout the paper a, b ∈ X, a �= b, be two different letters. By X∗
we denote the set of finite words on X, including the empty word e, and Xω is the set of
infinite strings (ω-words) over X. Subsets of X∗ will be referred to as languages and subsets
of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets L ⊆ X∗ and B ⊆ X∗ ∪ Xω . For a language L
let L∗ :=

⋃
i∈N Li, and by Lω := {w1 · · ·wi · · · : wi ∈ L \ {e}} we denote the set of infinite

strings formed by concatenating words in L. The smallest subset of a language L which
generates L∗ is called its star root ∗√L [13]. It holds

∗√L = (L \ {e}) \ (L \ {e})2 · L∗ .

Furthermore |w| is the length of the word w ∈ X∗ and pref(B) is the set of all finite
prefixes of the strings in B ⊆ X∗ ∪ Xω . We shall abbreviate w ∈ pref(η) (η ∈ X∗ ∪ Xω) by
w � η.

We denote by B/w := {η : w · η ∈ B} the left derivative of the set B ⊆ X∗ ∪ Xω. As
usual, a language L ⊆ X∗ is regular provided it is accepted by a finite automaton. An
equivalent condition is that its set of left derivatives {L/w : w ∈ X∗} is finite.

The sets of infixes of B or η are infix(B) :=
⋃

w∈X∗ pref(B/w) and infix(η) :=⋃
w∈X∗ pref({η}/w), respectively. In the sequel we assume the reader to be familiar with

basic facts of language theory.
We call a word w ∈ X∗ \ {e} primitive if w = vn implies n = 1, that is, w is not the

power of a shorter word, and we call w ∈ X∗ \ {e} overlap-free if none of its proper prefixes
is a suffix of w. The following facts are known (e.g., [14,15]).

Fact 1. Every word w ∈ X∗ \ {e} has a unique representation w = vn where v is primitive.

Fact 2. Let q, v, w ∈ X∗, 0 < |v| < |q|. If v · q = q · w then v = u · u′, q = (u · u′)κ · u and
w = u′ · u for some u, u′ ∈ X∗, u �= e, and κ ∈ N. In particular, q is not overlap-free.

Fact 3. If w · v = v · w, w, v ∈ X∗ then w, v are powers of a common (primitive) word.
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As usual a language L ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · · vk for
w1, . . . , wl , v1, . . . , vk ∈ L implies l = k and wi = vi. A code L is said to be a prefix
code (suffix code) provided no codeword is a prefix (suffix) of another codeword.

3. Quasiperiodicity

3.1. General Properties

The notion of quasiperiodicity can be formalised in the following manner. A finite
or infinite word η ∈ X∗ ∪ Xω is referred to as quasiperiodic with quasiperiod q ∈ X∗ \ {e}
provided that for every j < |η| ∈ N∪{∞} there is a prefix uj � η of length j− |q| < |uj| ≤ j
such that uj · q � η, that is, for every w � η the relation u|w| � w � u|w| · q is valid.
Informally, η has quasiperiod q if every position of η occurs within some occurrence of q in
η [11,12].

Let for q ∈ X∗ \ {e}, Qq be the set of quasiperiodic words with quasiperiod q. Then
{q}∗ ⊆ Qq = Q∗

q and Qq \ {e} ⊆ X∗ · q∩ q · X∗. In order to describe the set of quasiperiodic
strings having a certain quasiperiod q ∈ X∗ \ {e} the following definition is helpful.

Definition 1. A family
(
wi
)�

i=1, � ∈ N ∪ {∞}, of words wi ∈ X∗ · q is referred to as a q-chain
provided w1 = q, wi � wi+1 and |wi+1| − |wi| ≤ |q|.

It holds the following.

Lemma 1.

1. w ∈ Qq \ {e} if and only if there is a q-chain
(
wi
)�

i=1 such that w� = w.
2. An ω-word ξ ∈ Xω is quasiperiodic with quasiperiod q if and only if there is a q-chain(

wi
)∞

i=1 such that wi � ξ.

Proof. It suffices to show how a family
(
uj
)|η|−1

j=0 can be converted to a q-chain
(
wi
)�

i=1 and
vice versa.

Consider η ∈ X∗ ∪ Xω and let
(
uj
)|η|−1

j=0 be a family such that uj · q � η and j − |q| <
|uj| ≤ j for j < |η|.

Define w1 := q and wi+1 := u|wi | · q as long as |wi| < |η|. Then wi � η and |wi| <
|wi+1| = |u|wi | · q| ≤ |wi|+ |q|. Thus

(
wi
)�

i=1 is a q-chain with wi � η.

Conversely, let
(
wi
)�

i=1 be a q-chain such that wi � η and set

uj := max�
{

w′ : ∃i(w′ · q = wi ∧ |w′| ≤ j)
}

, for j < |η| .

By definition, uj · q � η and |uj| ≤ j. Assume |uj| ≤ j − |q| and uj · q = wi. Then
|wi| ≤ j < |η|. Consequently, in the q-chain there is a successor wi+1, |wi+1| ≤ |wi|+ |q| ≤
j + |q|. Let wi+1 = w′′ · q. Then uj � w′′ and |w′′| ≤ j which contradicts the maximality of
uj.

Lemma 1 yields the following consequences.

Corollary 1. Let u ∈ pref(Qq). Then there are words w, w′ ∈ Qq such that w � u � w′ and
|u| − |w|, |w′| − |u| ≤ |q|.

Corollary 2. Let ξ ∈ Xω. Then the following are equivalent.

1. ξ is quasiperiodic with quasiperiod q.
2. pref(ξ) ∩ Qq is infinite.
3. pref(ξ) ⊆ pref(Qq).
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3.2. Finite Generators for Quasiperiodic Words

In this part we consider the finite languages Pq and Rq (L(q) and R(q) in [12]) which
generate the set of quasiperiodic words as well as the set of quasiperiodic ω-words having
quasiperiod q.

We set

Pq := {v : e � v � q � v · q} = {v : ∃v′(v′ � q ∧ v · v′ = q)} . (1)

Then we have the following properties.

Proposition 1.

1. q ∈ Pq and Pq = {q} if and only if q is overlap-free.
2. Qq = P∗

q · q ∪ {e} ⊆ P∗
q

3. pref(Qq) = pref(P∗
q ) = P∗

q · pref(q)

Proof. 1. q ∈ Pq is obvious and and the equivalence follows immediately from the defini-
tion of Pq.

2. In order to prove Qq ⊆ P∗
q · q ∪ {e} we show that wi ∈ P∗

q · q for every q-chain(
wi
)�

i=1. This is certainly true for w1 = q. Now proceed by induction on i. Let wi =
w′

i · q ∈ P∗
q · q and wi+1 = w′

i+1 · q. Then w′
i · vi = w′

i+1. Now from wi � wi+1 we obtain
e � vi � q � vi · q, that is, vi ∈ Pq.

Conversely, let vi ∈ Pq and consider v1 · · · v� · q. Since q � vi · q the family (v1 · · · vj ·
q)�j=0 is a q-chain. This shows P∗

q · q ∪ {e} ⊆ Qq.
3. is an immediate consequence of 2.

Proposition 1 and Corollary 2 imply the following characterisation of ω-words having
quasiperiod q.

{ξ : ξ ∈ Xω ∧ ξ has quasiperiod q} = Pω
q (2)

Proof. Since Pq is finite, Pω
q = {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ pref(P∗

q )}.

A dual generator of Qq is obtained by the right-to-left duality of reading words using
the suffix relation ≤s instead of the prefix relation �.

Rq := {v : e <s v ≤s q <s q · v} = {v : ∃v′(v′ <s q ∧ v′ · v = q)} . (3)

Analogously to Proposition 1 we obtain

Proposition 2.

1. q ∈ Rq and Rq = {q} if and only if q is overlap-free.
2. Qq = q · R∗

q ∪ {e} ⊆ R∗
q , and

3. pref(Qq) = pref(q) ∪ q · pref(R∗
q).

The proof of Items 1 and 2 is similar to the proof of Proposition 1 using the reversed
version of q-chain, and Item 3 then follows from Item 2. A slight difference appears with
an analogy to Equation (2).

{ξ : ξ ∈ Xω ∧ ξ has quasiperiod q} = q · Rω
q ⊆ Rω

q (4)

Here the last inclusion might be proper, e.g., for q = aba where Rω
aba = {ba, aba}ω �=

aba · Rω
aba.

An alternative derivation of the languages Pq and Rq can be found in Definition 2
of [12]. Here the borders, that is, prefixes which are simultaneously suffixes of the
quasiperiod q, are used:
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Pq = {v : ∃w(w � q ∧ w <s q ∧ q = v · w)} , and

Rq = {v : ∃w(w � q ∧ w <s q ∧ q = w · v)} .

In the subsequent sections we focus on the investigation of Pq due to the left-to-right
direction of ω-words.

3.3. Combinatorial Properties of Pq

We investigate basic properties of Pq using simple facts from combinatorics on words
(see e.g., [14–16]).

Proposition 3. v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ � v such that q = vk · v̄ for
k =

⌊|q|/|v|⌋.
This is an immediate consequence of Fact 2.

Corollary 3. v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ N such that q � vk′ .

Now set q0 := min� Pq. Then in view of Proposition 3 and Corollary 3 we have the
following canonical representation.

q = qk
0 · q̄ where k =

⌊|q|/|q0|
⌋

and q̄ � q0 . (5)

We will refer to q0 as the repeated prefix and to k as the repetition factor. If |q0| > |q|/2,
that is, if k = 1 we will refer to q as irreducible. (Reducible words are also known as periodic
words [10,11].)

Corollary 4. Every word v ∈ ∗√Pq is primitive.

Proof. Assume v = vl
1 for some v ∈ ∗√Pq and l > 1. Then q � vk′ = vl·k′

1 , and, according
to Corollary 3 v1 ∈ Pq contradicting v ∈ ∗√Pq.

Proposition 4. Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and v ∈ P∗

q \ {e}.

1. If w � q then v · w � q or q � v · w.
2. If w · v � q then w ∈ {q0}∗.

Proof. From Proposition 1.2 we know v · q ∈ P∗
q · q ⊆ Qq ⊆ q · X∗. Consequently, q � v · q.

Then v · w � v · q implies v · w � q or q � v · w according to whether |w · w| ≤ |q| or not.
Since q0 � v, it suffices to prove the second assertion for q0. First one observes that,

w � q and |w| ≤ |q| − |q0|. Thus w � qk−1
0 · q̄. Therefore, we have w · q0 � q and q0 · w � q

which implies w · q0 = q0 · w and, according to Fact 3, w and q0 are powers of a common
word. The assertion follows because q0 is primitive.

Next we derive a lower bound on the lengths of words in Pq \ {q0}∗.
To this end, we use the Theorem of Fine and Wilf.

Theorem 1 ([17]). Let v, w ∈ X∗. Suppose vm and wn, for some m, n ∈ N, have a common
prefix of length |v|+ |w| − gcd (|v|, |w|). Then v and w are powers of a common word u ∈ X∗ of
length |u| = gcd (|v|, |w|). (Here gcd (k, l) denotes the greatest common divisor of two numbers
k, l ∈ N.)

Proposition 5. Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and v ∈ Pq \ {q0}∗. Then

|v| > |q| − |q0|+ gcd (|v|, |q0|).
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Proof. If q0, v ∈ Pq Corollary 3 and Equation (5) imply that q is a common prefix of qk+1
0

and vk′ for some k′ ∈ N. If |v| ≤ |q| − |q0|+ gcd (|v|, |q0|) then by Theorem 1 q0 and v are
powers of a common word, that is, v is a power of the primitive word q0.

Corollary 5. ∗√Pq = Pq \ q2
0 · {q0}∗

Proof. It suffices to show Pq ∩ P2
q · P∗

q ⊆ {q0}∗. To this end observe that in view of
Proposition 5 |v · v′| > |q| whenever v ∈ Pq \ {q0}∗ or v′ ∈ Pq \ {q0}∗.

As an immediate consequence we obtain that ∗√Pq = Pq if and only if q is an irre-
ducible quasiperiod. Moreover, Proposition 5 shows that

∗√Pq ⊆ {q0} ∪ {v′ : v′ � q ∧ |v′| > |q| − |q0|+ gcd (|v′|, |q0|)} . (6)

3.4. The Reduced Quasiperiod q̂

Next we investigate the relation between a quasiperiod q = qk
0 · q̄ where q0 = min� Pq

and q̄ � q0 and its reduced quasiperiod q̂ := q0 · q̄. Since q ∈ Qq̂, we have Qq̂ ⊇ Qq.
We continue with a relation between Pq and Pq̂. It is obvious that qi

0 ∈ Pq for every
i = 1, . . . , k and Pq̂ ⊆ {v : q̂0 � v � q̂} . (7)

Lemma 2 ([7], Lemma 2.2). Let q ∈ X∗, q �= e, q0 = min� Pq, q = qk
0 · q̄ and q̂ = q0 · q̄ the

reduced quasiperiod of q. Then

Pq = {qi
0 : i = 1, . . . , k − 1} ∪ {qk−1

0 · v : v ∈ Pq̂} .

Proof. Consider v ∈ Pq̂. Then v � q0q̄ � v · q0q̄, and, consequently, qk−1
0 · v � qk

0 · q̄ �
qk−1

0 · v · q0q̄ � qk−1
0 · v · qk

0 · q̄, that is, qk−1
0 · v ∈ Pq.

Conversely, let v′ ∈ Pq and v′ /∈ {qi
0 : i = 1, . . . , k − 1}. Then, according to Proposition 5

there is a unique v �= e such that v′ = qk−1
0 · v. Now v′ = qk−1

0 · v � q = qk
0 · q̄ � v′ · q =

qk−1
0 · v · qk

0 · q̄ implies v � q0 · q̄ � v · qk
0 · q̄. Since |v| ≤ |q0 · q̄| and q0 · q̄ � qk

0 · q̄, we have
v � q0 · q̄ � v · q0 · q̄.

Together with Corollary 5 this implies

Pq \ {q0}∗ = ∗√Pq \ {q0}∗ = qk−1
0 · (Pq̂ \ {q0}) . (8)

Moreover, we have the following.

Corollary 6. | ∗√Pq| = 1 if and only if q ∈ {q0}∗ and q0 is overlap-free.

Proof. Since q0 ∈ ∗√Pq, | ∗√Pq| = 1 is equivalent with ∗√Pq = {q0} or, according to
Equation (8), with Pq̂ = {q0}. This amounts to q̂ = q0 and, following Proposition 1.1 q̂ = q0
has to be overlap-free.

For the repeated prefix q̂0 of q̂ we have the obvious relation |q̂0| > |q̄|. In case q̂0 �= q0
we can improve this.

Lemma 3. Let q = qk
0 · q̄ with k ≥ 2, q̄ � q0 and q̂ = q0 · q̄. If q̂0 �= q0 then

q̄ � q̂0 � q0 and |q̂0| > |q̄|+ gcd (|q0|, |q̂0|) ,

and there is a nonempty suffix v �= e of q0 such that v � q̂0 and v · q̄ � q̂2
0.

Proof. We have q̄ � q0 and, since q0 ∈ Pq̂, also q̂0 � q0. Moreover, q̂ � q2
0 and q̂ � q̂k′

0 for some
k′ ∈ N. Since q0 �= q̂0 and both prefixes are primitive words, in view of Theorem 1 as a common
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prefix of q2
0 and q̂|q0|

0 the word q̂ = q0 · q̄ has to satisfy |q̂| < |q0|+ |q̂0| − gcd (|q0|, |q̂0|), that
is, |q̂0| > |q̄|+ gcd (|q0|, |q̂0|). The assertion q̄ � q̂0 � q0 now follows from a comparison of
the lengths of q̄, q̂0 � q0.

Now, let v be the suffix of q0 defined by q̂k′
0 · v = q0 � q̂k′+1

0 . Then v � q̂0 and
v · q̄ � (q̂0)

2.

3.5. Primitivity and Superprimitivity

In this section we consider the inclusion relations between the languages Qq, q �= e.
Analogously to the primitivity of words in [10–12] a word was referred to as superprimitive
if it is not covered by a shorter one. This leads to the following definition.

Definition 2 (superprimitive). A non-empty word q ∈ X∗ \ {e} is superprimitive if and only
if Qq is maximal w.r.t. “⊆” in the family {Qq : q ∈ X∗ \ {e}}.

The next proposition relates the irreducibility of quasiperiods to superprimitivity.

Proposition 6 ([12], Remark 4). If q ∈ X∗ \ {e} is superprimitive then |min� Pq| > |q|/2, and
if |min� Pq| > |q|/2 then q is primitive.

Proof. If q0 = min� Pq and |q0| ≤ |q|/2 then q = qk
0 · q̄ for some q̄ � q0. Thus q ∈ Qq0 q̄ and

q0q̄ /∈ Qq.
As q = q′m with m > 1 implies |q0| ≤ |q′| ≤ |q|/2, the other assertion follows.

The converse of Proposition 6 is not valid.

Example 1. Let q = abaabaababaab. Then Pq = {abaabaab, abaabaababa, q}, and |min� Pq| =
8 > 13/2 but as abaabaababaab ∈ Qabaab the word q is not superprimitive.

The word q = ababa is primitive but q0 = ab has |q0| ≤ |q|/2.

In contrast to the fact that the word q0 = min� Pq is always primitive, it need not
satisfy |min� Pq0 | > |q0|/2 let alone be superprimitive..

Example 2. q = aabaaabaaaa has q0 = aabaaabaa which, in turn has Pq0 = {aaba, aabaaaba, q0}
with |aaba| = 4 < |q0|/2.

It turns out that every language Qv is contained in a unique maximal Qq. To this end
we derive the following lemma (cf. also [10,11]).

Lemma 4. Let v ∈ Qq and u ∈ infix(v) ∩ q · X∗ ∩ X∗ · q. Then u ∈ Qq.

For the sake of completeness we give a proof.

Proof. We use a maximal q-chain (wi)
n
i=1 with wn = v. Assume v = u1 · u · u2. Since u has

q as prefix and suffix, there are 1 ≤ j ≤ l ≤ n such that wj = u1 · q and wl = u1 · u. Let, for

1 ≤ i ≤ l − j + 1, the words w′
i be defined by wi+j−1 = u1 · w′

i . Then (w′
i)

l−j+1
i=1 is a q-chain

with wl−j+1 = u, that is, u ∈ Qq.

Corollary 7. If v ∈ Qq ∩ Qu and |q| < |u| then Qu ⊆ Qq.

The corollary shows that every language Qv is contained in a unique maximal Qq and
that two languages Qu, Qq are either disjoint or compatible w.r.t. set inclusion. The latter is
not true for ω-languages.

Example 3. Let q = aabaa and u = aabaaa. Then qω /∈ Pω
u , uω /∈ Pω

q but Pω
u ∩ Pω

q ⊇
aa · {baaa, baaaa}ω.
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4. Pq and Rq as Codes

In this section we investigate in more detail the properties of the star root of Pq. It turns
out that ∗√Pq is a suffix code which, additionally, has a bounded delay of decipherability.
This delay is closely related to the largest power of q0 being a prefix of q.

According to [14,18–20] a subset C ⊆ X∗ is a code of a delay of decipherability m ∈ N if
and only if for all v, v′, w1, . . . , wm ∈ C and u ∈ C∗ the relation v · w1 · · ·wm � v′ · u implies
v = v′. Observe that C ⊆ X∗ is a prefix code if and only if C has delay 0.

First we show that ∗√Pq is a suffix code. This generalises Proposition 7 of [12].

Proposition 7. ∗√Pq is a suffix code, and ∗√Rq is a prefix code.

Proof. Assume u = w · v for some u, v ∈ ∗√Pq , u �= v. Then u � q and Proposition 4 (2) proves
w ∈ {q0}∗ \ {e}. Consequently, |v| ≤ |q| − |q0|. Now Proposition 5 implies v ∈ {q0}∗ and
hence u ∈ {q0}∗. Since u, v ∈ ∗√Pq, we obtain u = v = q0 contradicting u �= v.

Using the duality of Pq and Rq one shows in an analogous manner that ∗√Rq is a
prefix code.

An easy consequence of Proposition 7 is the Left and Right Normal Form of a quasiperi-
odic string ([12], Proposition 8).

Corollary 8 (Normal Form). Every word w ∈ Qq has a unique factorisation w = v1 · v2 · · · vn
into words vi ∈ ∗√Pq ( ∗

√
Rq, respectively).

Since ∗√Rq is a prefix code while the words v ∈ Pq are prefixes of each other, we
obtain | ∗√Pq ∩ ∗√Rq| = 1 generalising Remark 5 of [12]. In fact ∗√Pq ∩ ∗√Rq = {q} or
∗√Pq ∩ ∗√Rq = {q0} depending on whether q �= qk

0 or not.
We continue this part by investigating the delay of decipherability of ∗√Pq. We prove

that the delay depends on the repetition factor k.

Theorem 2. Let q ∈ X∗ \ {e}, q0 = min� Pq, and | ∗√Pq| > 1. Then ∗√Pq is a code having a
delay of decipherability of k or k + 1.

Proof. If | ∗√Pq| > 1 then in view of Proposition 5 there is a q′ ∈ ∗√Pq with |q′| > |q| − |q0|.
Since q′ ∈ Pq, we have q � q′ · q0 � q′ · q. Consequently, q0 · qk−1

0 � q � q′ · q0, that is, the
delay of decipherability is at least k.

To prove the converse we show that for q � qm
0 the delay cannot exceed m.

Assume the contrary, that is, v ·w1 · · ·wm+1 � v′ ·u for some words v, v′, w1, . . . , wm+1 ∈
∗√Pq, v �= v′, and u ∈ P∗

q . From Proposition 4 (1) we obtain u � q or q � u and, since
|wi| ≥ |q0|, also q � w1 · · ·wm+1.

If v � v′, in view of the inequality |v| + |q| ≥ |v′| + |q0| our assumption yields
v′ · q0 � v · q. Therefore, w · q0 � q for the word w �= e with v · w = v′ and, according to
Proposition 4 (2) w ∈ {q0}∗. This contradicts the fact that ∗√Pq is a suffix code.

If v′ � v, then |u| > |w1 · · ·wm+1| ≥ |q|, and via |v′| + |q| ≥ |v| + |q0| we obtain
v · q0 � v′ · q from our assumption. This yields the same contradiction as in the case v � v′.

The observation q � qk+1
0 finishes the proof.

For q = qk
0 the preceding proof shows the following.

Corollary 9. If q = qk
0 and | ∗√Pq| > 1 then ∗√Pq has a delay of decipherability of exactly k.

Thus, if | ∗√Pq| > 1 and q �= qk
0 the code ∗√Pq may have a minimum delay of

decipherability of k or k + 1. We provide examples that both cases are possible.

Example 4. Let q := aabaaaaba. Then q0 = aabaa, k = 1 and ∗√Pq = Pq = { q0, aabaaaab, q }
which is a code having a delay of decipherability 2.
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Indeed aabaaaabaa = q0 · q0 � q · q0 or
aabaaaabaa = q0 · q0 � aabaaaab · q0 .

Moreover, in Example 4, q · q0 /∈ Qq. Thus our example shows also that q · P∗
q need not

be contained in Qq.

Example 5. Let q := aba. Then k = 1 and Pq = {ab, aba} is a code having a delay of decipherabil-
ity 1.

Since ∗√Rq is a prefix code, every ω-word ξ ∈ Rω
q has a unique factorisation into

words w ∈ ∗√Rq. For suffix codes the situation is, in general, different. Consider e.g., the
suffix code {b, ba, aa}. Property 4 (ii) of [20] (see also ([21], Proposition 1.9)) shows that
codes of bounded delay of decipherability also admit a unique factorisation of ω-words.
Thus we obtain from Theorem 2.

Lemma 5 (Normal Form for quasiperiodic ω-words). Every ω-word ξ ∈ Pω
q has a unique

factorisation ξ = v1 · v2 · · · vi · · · into words vi ∈ ∗√Pq.

5. Subword Complexity

In this section we investigate upper bounds on the the subword complexity function
f (ξ, n) for quasiperiodic ω-words. If ξ ∈ Xω is quasiperiodic with quasiperiod q then
Proposition 3 and Corollary 3 show infix(ξ) ⊆ infix(P∗

q ). Thus

f (ξ, n) ≤ |infix(P∗
q ) ∩ Xn| for ξ ∈ Pω

q . (9)

Similar to ([22], Proposition 5.5) let ξq := ∏v∈P∗
q \{e} v. This implies infix(ξq) =

infix(P∗
q ). Consequently, the tight upper bound on the subword complexity of quasiperi-

odic ω-words having a certain quasiperiod q is fq(n) := f (ξq, n) = |infix(P∗
q ) ∩ Xn|.

Observe that in view of Propositions 1 and 2 the identity

infix(P∗
q ) = infix(R∗

q) = infix(Qq) (10)

holds.
The asymptotic upper bound on the subword complexity fq(n) is obtained from

λq = lim sup
n→∞

n
√
|infix(P∗

q ) ∩ Xn| , (11)

that is, for large n, fq(n) ≤ λ̂n whenever λ̂ > λq.
The following facts are known from the theory of formal power series (cf. [23,24]).

As infix(P∗
q ) is a regular language the power series ∑n∈N fq(n) · tn is a rational series and,

therefore, fq satisfies a recurrence relation

fq(n + k) = ∑k−1
i=0 ai · fq(n + i)

with integer coefficients ai ∈ Z. Thus fq(n) = ∑k′−1
i=0 gi(n) · θn

i where k′ ≤ k, θi are pairwise
distinct roots of the polynomial tn − ∑k−1

i=0 ai · ti and gi are polynomials of degree not larger
than k.

In the subsequent parts we estimate values characterising the exponential growth
of the family

(|infix(P∗
q ) ∩ Xn|)n∈N. This growth mainly depends on the root of largest

modulus among the θi and the corresponding polynomial gi.
First we show that, independently of the quasiperiod q, the root θi of largest modulus

is always positive and the corresponding polynomial gi is constant.
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In the remainder of this section we use, without explicit reference, known results from
the theory of formal power series, in particular about generating functions of languages
and codes which can be found in the literature, e.g., in [14,23,24].

5.1. The Subword Complexity of a Regular Star Language

The language P∗
q is a regular star-language of special shape. Here we show that,

generally, the number of subwords of regular star-languages grows only exponentially
without a polynomial factor. We start with some easily derived relations between the
number of words in a regular language and the number of its subwords.

Lemma 6. If L ⊆ X∗ is a regular language then there is an m ∈ N such that

|L ∩ Xn| ≤ |infix(L) ∩ Xn| ≤ m · ∑2m
i=0 |L ∩ Xn+i| (12)

If the finite automaton accepting L has m states then for every w ∈ infix(L) there are
words u, v of length ≤ m such that u · w · v ∈ L. Thus as a suitable m one may choose the
number of states of an automaton accepting the language L ⊆ X∗.

A first consequence of Lemma 6 is that the identity

lim sup
n→∞

n
√
|L ∩ Xn| = lim sup

n→∞

n
√
|infix(L) ∩ Xn| (13)

holds for regular languages L ⊆ X∗.
In order to derive the announced exponential growth we use Corollary 4 of [25] which

shows that for every regular language L ⊆ X∗ there are constants c1, c2 > 0 and a λ ≥ 1
such that

c1 · λn ≤ |pref(L∗) ∩ Xn| ≤ c2 · λn . (14)

A consequence of Lemma 6 is that Equation (14) holds also (with a different constant
c2) for infix(L∗).

5.2. The Subword Complexity of Qq

In this part we estimate the value λq of Equation (11). In view of Equations (10) and
(14) the value λq satisfies the inequality c1 · λn

q ≤ |infix(P∗
q ) ∩ Xn| ≤ c2 · λn

q .
As P∗

q is a regular language Equations (11) and (13) show that

λq = lim supn→∞
n
√
|P∗

q ∩ Xn|
which is the inverse of the convergence radius rad s∗q of the power series s∗q(t) := ∑n∈N |P∗

q ∩
Xn| · tn. The series s∗q is also known as the structure generating function of the language P∗

q .
Since ∗√Pq is a code, we have s∗q(t) = 1

1−sq(t)
where sq(t) := ∑v∈ ∗√Pq

t|v| is the

structure generating function of the finite language ∗√Pq. As s∗q has non-negative coeffi-
cients Pringsheim’s theorem shows that rad s∗q = λ−1

q is a singular point of s∗q . Thus λ−1
q

is the smallest root of 1 − sq(t). Hence λq is the largest positive root of the polynomial
pq(t) := t|q| − ∑v∈ ∗√Pq

t|q|−|v|.

Remark 1. If the length of q0 = min� Pq does not divide |q| then pq(t) is the reversed polynomial
of 1 − sq(t), that is, has as roots exactly the the inverses of the roots of 1 − sq(t).

If |q0| divides |q| then q /∈ ∗√Pq (cf. Corollary 5) and pq(t) has additionally the root 0 with
multiplicity |q| − |q′| where q′ is the longest word in ∗√Pq.

Summarising our observations we obtain the following.
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Lemma 7. Let q ∈ X∗ \ {e}. Then there are constants cq,1, cq,2 > 0 such that the structure
function of the language infix(P∗

q ) satisfies

cq,1 · λn
q ≤ |infix(P∗

q ) ∩ Xn| ≤ cq,2 · λn
q

where λq is the largest (positive) root of the polynomial pq(t).

Remark 2. One could prove Lemma 7 by showing that, for each polynomial pq(t), its largest
(positive) root has multiplicity 1. Referring to Corollary 4 of [25] (see Equation (14)) we avoided
these more detailed considerations of a particular class of polynomials.

Now we are able to formulate our main theorem.
As quasiperiods q, |q| ≤ 2, have trivially P∗

q = {q0}∗, that is, λq = 1, in the sequel we
confine our considerations to quasiperiods q of length |q| ≥ 3, and we will always assume
that the first letter of a quasiperiod q is a ∈ X.

Define Qmax := {anban : n ≥ 1} ∪ {anwan : |w| = 2, w �= aa, n ≥ 1}.

Theorem 3 (Main theorem). Let q ∈ a · X∗, |q| ≥ 3, q /∈ Qmax, be a quasiperiod and n =

� |q|−1
2 �. Then λq < λanban or λq < λanbban according to whether |q| is odd or even.

Moreover, λw < λaba = λaabaa if w ∈ a · X∗ \ {aba, aabaa}.

6. Polynomials

Before proceeding to the proof of our main theorem we derive some properties of
polynomials of the form p(t) = tn − ∑i∈M ti, where M ⊆ {i : i ∈ N ∧ i < n}. This class
of polynomials includes the polynomials pq(t) whose maximal roots λq characterise the
growth of infix(P∗

q ) as described in Lemma 7. We focus in results which are useful for
comparing their maximal roots.

The polynomials p(t) ∈ P̂ :=
{

tn − ∑i∈M ti : ∅ �= M ⊆ {0, . . . , n − 1}} have the
following easily verified properties.

p(0) ≤ 0, p(1) ≤ 0, p(2) ≥ 1 and p(t) < 0 for 0 < t < 1 . (15)

If ε > 0 and p(t′) ≥ 0 for some t′ > 0 then p
(
(1 + ε) · t′

)
> 0 . (16)

Since p(1) ≤ 0 and p(2) ≥ 1 for p(t) ∈ P̂ , Equation (16) shows that once p(t′) ≥
0, t′ ≥ 1, the polynomial p(t) has no further root in the interval (t′, ∞) and p(t) ∈ P̂ has
exactly one root in the interval [1, 2). This yields the following fundamental property.

Property 1. If t0 is the positive root of the polynomial p(t) ∈ P̂ in [1, 2) and 1 ≤ t′ < 2 then
p(t′) ≤ 0 if and only if t′ ≤ t0.

For the roots of maximal modulus we have the following theorem.

Theorem 4 (Cauchy). Let p(t) = ∑n
i=0 ai · ti be a complex polynomial. Then every root t′ of p(t)

satisfies |t′| ≤ t0 where t0 is the maximal root of the polynomial |an| · tn − ∑n−1
i=0 |ai| · ti.

This implies the following property of polynomials p(t) ∈ P̂ .

If p(t) = 0 then |t| ≤ t0 . (17)

From Property 1 we derive the following criterion to compare the maximal roots of
polynomials in P̂ .

Criterion 1. Let p1(t), p2(t) ∈ P̂ have maximal roots t1 and t2, respectively. Then p2(t1) > 0 if
and only if t1 > t2.
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We conclude this section with a bound on the maximal root of certain polynomials
in P̂ .

Lemma 8. Let p(t) = tn − ∑m
i=0 ti, n > m ≥ 1. Then p(t) < 0 for 1 ≤ t ≤ 2n−m

√
(m + 1)2 and

p(t) > 0 for n−m
√

m + 1 ≤ t.

Proof. The assertion follows from the inequality tn − (m + 1) · tm < p(t) < tn − (m +
1) · tm/2 when t > 1. The part p(t) < tn − (m + 1) · tm/2 uses the arithmetic-geometric-

means inequality ∑m
i=0 ti > (m + 1) · m+1

√
∏m

i=0 ti = (m + 1) · tm/2, and the other part is
obvious.

The following special case is needed below in Lemma 12.

Corollary 10. If p(t) = tn − ∑n−3
i=0 ti, n ≥ 4, then p(t) < 0 for 1 ≤ t ≤ n+3

√
(n − 2)2.

The subsequent sections are devoted to the proof of our main theorem.

7. Irreducible Quasiperiods

We start with irreducible quasiperiods.

7.1. Extremal Polynomials

The polynomials pq(t) of irreducible quasiperiods have non-zero coefficients only for

|q| and i < |q|
2 . Therefore we investigate the set

P :=
{

tn − ∑i∈M ti : n ≥ 2 ∧ ∅ �= M ⊆ {i : i ≤ n−1
2 }} .

Let pn(t) := tn − ∑
� n−1

2 �
i=0 ti ∈ P .

Property 2. Let p(t) ∈ P a polynomial of degree n ≥ 3. Then pn(t) ≤ p(t) for t ∈ [1, 2], and
pn(t) has the largest positive root among all polynomials of degree n in P .

Proof. This follows from tn − ∑
� n−1

2 �
i=0 ti < p(t) for p(t) ∈ P \ {pn(t) : n ≥ 3} when

1 < t ≤ 2 and Criterion 1.

Observe that, for n ≥ 1,

p2n+1(t) = t2n+1 − ∑n
i=0 ti and p2n+2(t) = t2n+2 − ∑n

i=0 ti .

Moreover, the words anban ∈ Qmax and anwan ∈ Qmax, w ∈ {xb, bx}, x ∈ X are the
quasiperiods corresponding to the extremal polynomials p2n+1(t) ∈ P and p2n+2(t) ∈ P ,
respectively.

Lemma 9. Qmax := {q : q ∈ a · X∗ ∧ |q| ≥ 3 ∧ pq(t) = p|q|(t)}

Proof. If q ∈ Qmax then obviously pq(t) = p|q|(t). Conversely, if pq(t) = t|q|−
∑v∈ ∗√Pq

t|q|−|v| = p|q|(t) then ∗√Pq = {v : v � q ∧ |v| > |q|
2 }. Then, in view of q � v · q,

every prefix w � q of length |w| < |q|
2 is also a suffix of q. This is possible only for q ∈ Qmax

or q ∈ {a}∗.

In the sequel the positive root of pn(t) is denoted by λn. From Criterion 1 we obtain
immediately.

Property 3. Let t ≥ 1. We have t < λn if and only if pn(t) < 0.
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Then Property 2 implies the following.

Theorem 5. If q ∈ a · X∗, |q| ≥ 3, is an irreducible quasiperiod then λq ≤ λ|q|, and λq = λ|q| if
and only if q ∈ Qmax.

7.2. The Ordering of the Maximal Roots λn

Before we proceed to the case of reducible quasiperiods we determine the ordering of
the maximal roots λn. This will not only be interesting for itself but also useful for proving
λq < λ|q| when q is reducible (see Equation (28) below).

The extremal polynomials pn(t), n ≥ 2, satisfy the following general relations (By
convention, ∑m

i=k ai = 0 if k > m).

t · p2n(t)− 1 = p2n+1(t) , (18)

p2n+2(t)− t2 · p2n(t) = tn+1 − t − 1 , (19)

tn−2 · p2n+1(t)− (tn + 1) · p2n−1(t) = ∑n−3
i=0 ti, and (20)

tn−2 · p2n+3(t)− (tn+1 + 1) · p2n(t) = −tn + ∑n−3
i=0 ti . (21)

Lemma 10. The polynomials t3 − t − 1 and t5 − t2 − t − 1 = (t2 + 1) · (t3 − t − 1) have largest
positive roots λ3 = λ5 among all polynomials in P , λ5 > λ4 and λ2n−1 > λ2n+1 > λ2n for
n ≥ 3.

Proof. From Equation (18) we have p2n+1(λ2n) = −1 < 0 and, therefore, λ2n < λ2n+1
when n ≥ 1.

Similarly, Equation (20) yields p2n+1(λ2n−1) = λ
−(n−2)
2n−1 · ∑n−3

i=0 λi
2n−1 > 0 which im-

plies λ2n+1 < λ2n−1 for n ≥ 3 and λ3 = λ5 when n = 2.

The largest (positive) root λ3 of the polynomial t3 − t − 1 is also known as the smallest
Pisot-Vijayaraghavan number.

So far we have ordered the ‘odd’ roots: λ3 = λ5 > λ7 > λ9 > · · · . Next we are going
to investigate the ordering of the ‘even’ roots λ2n, n ≥ 2.

To this end we derive the following bounds.

Lemma 11.

1. 3n+1√n2 ≤ λ2n ≤ n+1
√

n and 3n−1√n2 ≤ λ2n−1 ≤ n
√

n for n ≥ 2.
2. Let n ≥ 5. Then λ2n ≥ n−1

√
2.

Proof. 1. follows from Lemma 8.

2. We calculate p2n(
n−1
√

2) = 4 · n−1
√

4 − ∑n−1
i=0

n−1√2i ≤ 4 · 4
√

4 − (2 + (n − 1)) =

4 · √2 − (n + 1) < 0 if n ≥ 5 and the assertion follows with Property 1.

Remark 3. The lower bound of Lemma 11.2 does not exceed the lower bound in
Lemma 11.1. However, the latter is more convenient for the purposes of Lemma 12.

Lemma 12. If n ≥ 5 then λ2n−2 > λ2n and λ2n > λ2n+3.

Proof. If t ≥ n−1
√

2 then tn − t − 1 ≥ t − 1 > 0. Consequently, Equation (19) and
Lemma 11.2 imply p2n−2(λ2n) < 0 whence λ2n < λ2n−2.

If n ≥ 5 we have n+1
√

n ≤ n+3
√
(n − 2)2 and, following Lemma 11.1 λ2n ≤ n+3

√
(n − 2)2.

Then Equation (21) yields −λ2n · p2n+3(λ2n) = λn
2n − ∑n−3

i=0 λi
2n, and Corollary 10 shows

p2n+3(λ2n) > 0 whence λ2n > λ2n+3.
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Since p8(
3
√

2) > 0, the proof of Lemma 12 cannot be applied to lower values of n. Thus
it remains to establish the order of the λi for i ≤ 13. To this end, we consider some special
identities and use Criterion 3 and Lemma 12.

p12(t)− (t8 + t5 + t4 + t2 + t) · p4(t) = t2 − 1 , and (22)

p13(t)− t · (t8 + t5 + t4 + t2 + t) · p4(t) = t3 − t − 1 = p3(t) . (23)

Lemma 13. λ8 > λ10 > λ13 > λ4 > λ12

Proof. Lemma 12 shows λ8 > λ10 > λ13. Equation (22) yields p12(λ4) = λ2
4 − 1 > 0

whence λ4 > λ12, and Equation (23) yields p13(λ4) = p3(λ4) < 0, that is, λ13 > λ4. This
shows our assertion.

For the remaining part we consider the identities

t2 · p11(t)− (t5 + 1) · p8(t) = −t4 + t + 1 = −p4(t) , (24)

p11(t)− (t5 + 1) · p6(t) = t3 · p4(t) , and (25)

t · p9(t)− (t4 + 1) · p6(t) = −t3 + 1 . (26)

Lemma 14. λ9 > λ6 > λ11 > λ8

Proof. We use Equations (24)–(26). Then p11(λ8) = −p4(λ8) < 0 implies λ11 > λ8,
p11(λ6) = λ3

6 · p4(λ6) > 0 implies λ6 > λ11, and, finally, λ6 · p9(λ6) = −λ3
6 + 1 < 0 implies

λ9 > λ6.

Now Lemma 10, 12–14 yield the complete ordering of the values λn.

Theorem 6. Let λn, n ≥ 3, be the maximal root of the polynomial pn(t). Then the overall ordering
of the values λn starts with

λ3 = λ5 > λ7 > λ9 > λ6 > λ11 > λ8 > λ10 > λ13 > λ4 > λ12

and continues as follows λ2n+1 > λ2n > λ2n+3, n ≥ 7.

In connection with Proposition 6 and Corollary 7 we obtain that the Pisot-Vijayaraghavan
number λ3 = λ5 is an overall upper bound on the values λq.

Corollary 11. If q ∈ X∗, |q| ≥ 3, then λq ≤ λ3 = λ5.

From Lemma 11.1 we obtain immediately.

Corollary 12. Let M ⊆ N \ {0, 1, 2} be infinite. Then inf{λi : i ∈ M} = 1.

8. Reducible Quasiperiods

Reducible quasiperiods q have a repeated prefix q0 = min� Pq with |q0| ≤ |q|/2 and
a repetition factor k ≥ 2 such that q = qk

0 · q̄ where q̄ � q0. Moreover |q̄| < |q0| ≤ |q|/2.
Observe that q0 is primitive.

We shall consider three cases depending on the relation between the lengths n = |q|,
� = |q0|, the length of the suffix |q̄| < |q0| and the repetition factor k ≥ 2.

IN the first case |q0| + |q̄| ≤ 2, in view of q̄ � q0, we have necessarily q̄ = e and
q ∈ a∗ ∪ {ab}∗, a, b ∈ X, a �= b and, therefore, Qq = {q0}∗ and λq = 1.

Let now |q0|+ |q̄| ≥ 3. We divide the remaining cases according to the additional
requirement |q| − 2|q0| ≥ 3 and its complementary one |q| − 2|q0| ≤ 2. In the latter case
we have necessarily k = 2 and |q̄| ≤ 2.
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8.1. The Case |q0|+ |q̄| ≥ 3 ∧ |q| − 2|q0| ≥ 3

Thus, the preceding consideration shows that we have |q̄| ≥ 3 (in particular, if
q = q2

0 · q̄) or the repetition factor k ≥ 3. This implies |q| = 7 (where q = (ab)3a) or |q| ≥ 9.
From Equation (6) we have

∗√Pq ⊆ {q0} ∪ {v : v � q ∧ |v| > |q| − |q0|+ 1} (27)

This implies that for |q0| ≤ |q|/2 the polynomials pq(t) have non-zero coefficients
only for |q| = n, |q| − |q0| = n − � and i < |q0| − 1, that is, are of the form pq(t) =

tn − tn−� − ∑i∈Mq ti where Mq ⊆ {i : i < �− 1}. Therefore, in the sequel we consider the
positive roots of polynomials in

Pred :=
{

tn − tn−� − ∑
i∈M

ti : n ≥ 1 ∧ � ≤ n
2
∧ M ⊆ {i : i < �− 1}}

Let pn,�(t) := tn − tn−�−∑�−2
i=0 ti ∈ Pred and λn,� be its maximal root. (In the preceding

paper [8] we used a slightly different definition of Pred, and, therefore, of pn,�(t) and λn,�.)
Similar to Property 2, Criterion 3 and Theorem 5 we have the following.

Property 4. Let n ≥ 3, � ≤ n
2 and p(t) ∈ Pred. Then p(t) ≥ pn,�(t) for t ∈ [1, 2], and pn,�(t)

has the largest positive root among all polynomials of degree n and parameter � in Pred.

Lemma 15. If q, |q| = n, is a quasiperiod with |q0| = � ≤ n/2 then pq(t) ≥ pn,�(t) for t ≥ 1, in
particular, λq ≤ λn,�.

Remark 4. In contrast to Property 2 not for every polynomial pn,�(t) there is a quasiperiod q such
that pn,�(t) = pq(t), see Remark 5 below.

We have the following relation between the polynomials pn(t) and pn,�(t).

pn(t)− t� · pn−2�(t) = pn,�(t)− t�−1, for n − 2� ≥ 3 (28)

This yields

Corollary 13. Let n − 2 · � ≥ 3. If λn < λn−2� then λn,� < λn.

Proof. If λn < λn−2� then pn−2�(λn) < pn−2�(λn−2�) = 0. Thus pn,�(λn) = −λ�
n ·

pn−2�(λn) + λ�−1
n > 0, that is, λn > λn,�.

Next we show the relation λq < λ|q| for all quasiperiods q having |q0| ≤ |q|/2 and
|q0|+ |q̄| ≥ 3.

Lemma 16. Let |q| − 2|q0| ≥ 3 and |q0|+ |q̄| ≥ 3. Then λq < λ|q|.

Proof. Above we have shown that |q| − 2|q0| ≥ 3 and |q0| + |q̄| ≥ 3 imply |q| ≥ 7 or
|q| ≥ 10 according to whether |q| is odd or even.

The ordering of Theorem 6 and Corollary 13 show λn > λn,� for all odd values n ≥ 7
and for all even values n ≥ 12.

It remains to consider the exceptional case when n = |q| = 10. Here |q| − 2|q0| ≥ 3 and
|q0|+ |q̄| ≥ 3 imply � = |q0| = 3. Consider p10,3(t) = t10 − t7 − t − 1 = p10(t)− t2 · p5(t).

From λ5 > λ10 and p10(λ10) = 0 we have p10,3(λ10) = −λ2
10 · p5(λ10) > 0, that is,

λ10,3 < λ10.
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Remark 5. Equation (6) shows that for n = |q| = 10 and � = |q0| = 3 we have ∗√Pq = {q0, q},
that is, pq(t) = t10 − t7 − 1. Thus there is no quasiperiod q such that pq(t) = p10,3(t) =
t10 − t7 − t − 1.

8.2. The Case |q0|+ |q̄| ≥ 3 ∧ |q| − 2|q0| ≤ 2

This amounts to |q| = 2 · |q0|+ |q̄| where |q̄| ∈ {0, 1, 2}.
Here we have to go into more detail and to take into consideration also the reduced

quasiperiod q̂ = q0 · q̄ of q and its repeated prefix q̂0 = min� Pq̂. Observe that both repeated
prefixes q0, q̂0 are primitive.

For q = qk
0 · q̄, k ≥ 2, we have from Equations (7) and (8)

pq(t) ∈
{

t|q| − t|q|−|q0| − ∑i∈M ti : M ⊆ {0, . . . , |q̂| − |q̂0|}
}

.

Observe that |q̂0| > |q̄| (in view of Lemma 3 even |q̂0| > |q̄|+ 1 if q̂0 �= q0) and thus
|q̂| − |q̂0| = |q0| − (|q̂0| − |q̄|) < |q0|.

Let P′
red :=

{
tn − t� − ∑i∈M ti : n > � > j ∧ M ⊆ {0, . . . , � − j}} and pn,�,j(t) =

tn − t� − ∑
�−j
i=0 ti. Here the parameter j corresponds to the value |q̂0| − |q̄|. Then similar to

Property 4 and Lemma 15 we have

Property 5. Let n, � ≥ 3, � ≤ n
2 , � > j, and p(t) ∈ P′

red. Then p(t) ≥ pn,�,j(t) for t ∈ [1, 2],
and pn,�,j(t) has the largest positive root among all polynomials of degree n and parameters � and j
in P′

red.

Lemma 17. If q, |q| = n, is a quasiperiod with |q0| = � ≤ n/2 and |q̂0| − |q̄| ≥ j then
pq(t) ≥ pn,�,j(t) for t ≥ 1, in particular, λq ≤ λn,�,j.

We consider the cases |q̄| ∈ {0, 1, 2} separately. In the sequel we shall make use of the
relation

t3 − t2 − 1 ≤ t2 − t − 1 < 0 for 1 ≤ t ≤ λ3 = max{λn : n ∈ N} . (29)

8.2.1. The Case q = q2
0 ∧ |q̄| = 0

As shown above the case |q0| ≤ 2 and |q̄| = 0 amounts to λq = 1. Thus we may
consider only the case when |q0| ≥ 3. Here we have the following relation between p2�(t)
and p2�,�,3(t).

p2�(t)− p2�,�,3(t) = t�−2(t2 − t − 1) (30)

Lemma 18. If q = q2
0 and |q0| = � ≥ 3 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 3. Then |q̂0| − |q̄| ≥ 3, and Property 5 and Lemma 17 yield
pq(t) ≥ p2�,�,3(t) for t ∈ [1, 2]. Now Equations (29) and (30) show pq(λ2�) ≥ p2�,�,3(λ2�) =

−λ�−2
2� (λ2

2� − λ2� − 1) > 0, that is λq < λ2�.
It remains to consider 1 ≤ |q̂0| ≤ 2. If q̂0 ∈ a∗ then q0 = a� which is not primitive. Thus

q̂0 = ab and, since q0 is primitive, q0 = (ab)ma, m ≥ 1 whence q = q2
0 = (ab)ma · (ab)ma.

We obtain ∗√Pq = {(ab)ma · (ab)i : i = 0, . . . , m} and, consequently, pq(t) = t4m+2 +

∑m
i=0 t2i+1. Then (Observe again ∑m

i=k ai = 0 if k > m).

pq(t)− p4m+2(t) = −t2m+1 +
m
∑

i=0
t2i = −t2m+1 + t2m + t2m−2 +

m−2
∑

i=0
t2i

= −t2m−2 · (t3 − t2 − 1) +
m−2
∑

i=0
t2i ,

and from Equation (29) we obtain pq(λ4m+2) ≥ −λ2m−2
4m+2(λ

3
4m+2 − λ2

4m+2 − 1) > 0.
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8.2.2. The Case q = q2
0 · q̄ ∧ |q̄| = 1

Here we have the following relation between p2�+1(t) and p2�+1,�,2(t).

p2�+1(t)− p2�+1,�,2(t) = t�−1(t2 − t − 1) (31)

Lemma 19. If q = q2
0 · a, a ∈ X, then λq < λ|q|.

Proof. First we suppose |q̂0| − |q̄| ≥ 2. Then � = |q0| ≥ |q̂0| ≥ 3, and Property 5 and
Equation (31) yield pq(λ2�+1) ≥ p2�+1,�,2(λ2�+1) = p2�+1(λ2�+1)− λ�−1

2�+1(λ
2
2�+1 − λ2�+1 −

1). The assertion pq(λ2�+1) > 0, that is λq < λ2�+1 follows from Equation (29).
It remains to consider |q̂0| = 2. By Lemma 3 q̂0 = q0 implies |q̂0| > |q̄|+ 1 = 2. Hence

q̂0 = q0 = ab, q = ababa and pq(t) = t5 − t3 − 1 = t2 · p3(t) + t2 − 1. Then λababa < λ5
follows from λ5 = λ3 and pq(λ5) = λ2

5 − 1 > 0.

8.2.3. The Case q = q2
0 · q̄ ∧ |q̄| = 2

Here we have the following relation between p2�+2(t) and p2�+2,�,2(t).

p2�+2(t)− p2�+2,�,2(t) = t�−1(t3 − t − 1) = t�−1 · p3(t) (32)

Lemma 20. If q = q2
0 · q̄ with |q̄| = 2 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 4. Then Property 5, Equation (32) and λ2�+2 < λ3 yield
pq(λ2�+2) ≥ p2�+2,�,2(λ2�+2) = −λ�−1

2�+2 · p3(λ2�+2) > 0, that is, λq < λ2�+2.
It remains to consider |q̂0| = 3. If q̂0 �= q0 Lemma 3 implies |q̂0| > |q̄|+ 1. Conse-

quently, q̂0 = q0. Then |q0| = 3 and |q| = 8, and Equation (6) yields ∗√Pq ⊆ {q0, v, q}
where v � q and |v| = |q| − 1 = 7. Thus pq(t) ≥ t8 − t5 − t − 1 = p8(t)− t2 · p3(t) for
1 ≤ t ≤ λ3.

This shows pq(λ8) ≥ −λ2
8 · p3(λ8) > 0, that is, λq < λ8.

Summarising, the results of Section 8 yield

Theorem 7. If q ∈ X∗, |q| ≥ 3, is a reducible quasiperiod then λq < λ|q|.

Our main theorem (Theorem 3) then follows from Theorems 5 and 7.
Together with Corollary 12 our theorem yields a new proof of a theorem of [5] which

shows that multi-scale quasiperiodic infinite words have zero topological entropy. In [5] a
multi-scale quasiperiodic infinite word is a quasiperiodic infinite word which admits infinitely
many quasiperiods.

9. Concluding Remark

In this paper we dealt with the function f (ξ, n) = |infix(ξ) ∩ Xn| for quasiperi-
odic ω-words. Their factor complexity (or topological entropy) is defined as τ(ξ) :=

limn→∞
log|X| |infix(ξ)∩Xn |

n (e.g., [4], Section 4.2.2 or [5,22]). Thus the upper bound for ξ ∈ Pω
q

is log|X| λq ≤ log|X| tP which is bounded away from the value 1 for almost periodic ω-
words.

Along with the subword complexity in [5] the Kolmogorov complexity of quasiperi-
odic ω-words was addressed. Obviously, subword complexity upper bounds Kolmogorov
complexity (e.g., [22]). Since the ω-languages Pω

q are regular ones, the results of [22] show
that there are ω-words ξ ∈ Pω

q whose Kolmogorov complexity achieves their subword com-
plexity. Moreover, as Pω

q = q · Rω
q where Rω

q is a finite prefix code, the results of [22,26,27]
give more detailed bounds for most complex quasiperiodic ω-words w.r.t. several notions
of Kolmogorov complexity [28].
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Abstract: A widely studied field in the framework of membrane computing is computational com-
plexity theory. While some types of P systems are only capable of efficiently solving problems from
the class P, adding one or more syntactic or semantic ingredients to these membrane systems can
give them the ability to efficiently solve presumably intractable problems. These ingredients are
called to form a frontier of efficiency, in the sense that passing from the first type of P systems
to the second type leads to passing from non-efficiency to the presumed efficiency. In this work,
a solution to the SAT problem, a well-known NP-complete problem, is obtained by means of a family
of recognizer P systems with evolutional symport/antiport rules of length at most (2,1) and division
rules where the environment plays a passive role; that is, P systems from ĈDEC(2, 1). This result is
comparable to the one obtained in the tissue-like counterpart, and gives a glance of a parallelism and
the non-evolutionary membrane systems with symport/antiport rules.

Keywords: membrane computing; computational complexity theory; P vs. NP problem; evolutional
communication; symport/antiport

MSC: 68Q07; 68Q15

1. Introduction

Membrane computing is a bio-inspired paradigm of computation, based on the struc-
ture and behavior of living cells. Introduced in 1998 by Gh. Păun [1], giving birth to devices
known as membrane systems or P systems. There are several different types of P systems,
but three of them are specially studied: cell-like membrane systems [1], whose tree-like
structure characterizes the relation between its regions; tissue-like membrane systems [2],
defined as a set of cells that can interact between them and with the environment, and
neural-like membrane systems [3], having an explicitly defined directed graph as a relation
of the neurons through synapses. The last paradigm is being intensely studied in practical
applications, and different variants have been created to their use in different fields [4–6]
The paradigm of membrane computing is very wide, covering topics from theory [7,8] to
applications [9–11], dedicating a branch to simulators and in silico implementations [12].

A widely studied question in this framework from the very beginning is which
kind of problems can be solved by means of membrane systems. Membrane systems
can differ in the type of objects with which they can compute (e.g., symbols, strings,
matrices), the type of relation between the regions (e.g., hierarchical structure, directly
connected membranes, cells implicitly connected by the rules) and the rules governing
the computation of the system (e.g., object evolution rules, symport/antiport rules, division
rules), among others. This variety of ingredients can change not only the type of problem
that a P system can solve, but how efficiently can it solve a certain problem. More precisely,
decision problems are usually studied in the field of computational complexity theory

Axioms 2021, 10, 327. https://doi.org/10.3390/axioms10040327 https://www.mdpi.com/journal/axioms
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in order to classify them in complexity classes that contain problems that can be solved
with a similar amount of computational resources [13].

Recognizer membrane systems [14] are P systems with certain ingredients, such as
two special objects yes and no, and requisites, such as all the computations halt and return
the same result. The design of a family of recognizer membrane systems of a certain type
R solving certain decision problems can reveal which kind of problems can be solved
efficiently by means of that class of P systems.

A widely studied type of membrane systems in the field of computational complex-
ity theory is the framework of tissue P systems with symport/antiport rules. In [15],
a polynomial-time solution to SAT was designed by means of a family of recognizer tissue P
systems with symport/antiport rules of length at most five and division rules. In this type
of P system, the length is defined as the number of objects implied in the symport/antiport
rules of the system (e.g., the length of the rule (i, u/v, j) is |u|+ |v|). This result was eventu-
ally improved in [16], where the maximum number of objects implied in a communication
rule was two. If only one object was allowed in communication rules, then only tractable
problems could be efficiently solved, as demonstrated in [17]. A similar frontier of efficiency
was found by using separation rules instead of division rules in [18,19], but in this case,
the frontier is from passing of communication rules of length at most two to length at most
three, instead of passing from one to two. Some results about their relative environmentless
counterparts were demonstrated in [20,21]. Symport/antiport rules were first introduced
in tissue-like membrane systems, but later used in cell-like membrane systems, where
results were surprisingly similar [22–27], giving a glance of the similarity of using both
tree-like and directed graph structures.

In [28], tissue P systems with evolutional symport/antiport rules were introduced,
including in communication rules the capability to evolve the objects while traveling from
one region to another one. In this type of P system, two different definitions of length can
be cited: On the one hand, the length of an evolutional communication rule can be defined
with a single number that is related with the number of objects in the whole rule (e.g., in the
rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
is |u|+ |v|+ |u′|+ |v′|); on the other hand, the length can be

defined as a pair of numbers concerning the number of objects in the left-hand side and
the right-hand side of the evolutional communication rules of the system (e.g., the length
of the rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
is (|u|+ |v|, |u′|+ |v′|)). In [29], several new results

were presented, publishing some improvements from [28,30–32]. More precisely, in [32]
an efficient family of tissue P systems with evolutional communication rules of length
at most (2, 1) and division rules using the environment as an active agent of the system
solving the SAT problem is presented. In this work, we investigate the role of evolutional
communication rules in cell-like membrane systems that use division rules as exponential
workspace-generating rules, and letting the environment as a mere agent that only receives
the corresponding answer of the system.

The rest of the paper is structured as follows: Section 2 is dedicated to introducing
some terms used throughout the work. In the next section, cell P systems with evolutional
symport/antiport rules and division rules are defined, and their recognizer versions are
introduced. Sections 4 and 5 are devoted to present a solution to the problem SAT by means
of a family of P systems with evolutional communication rules and division rules of length
at most (2, 1), and to prove the correctness of the solution. Finally, in Section 6 the results
of this paper are discussed, and comparatives with other classes of P systems are given,
and some open research lines are proposed, besides a description of the work in progress.

2. Preliminaries

In this section, some concepts that will be used throughout the paper will be de-
fined. The reader can find expanded and deeper information about formal languages and
membrane computing in [8,33].

An alphabet is a non-empty (finite) set, whose elements are usually called symbols. A string
over Γ is a ordered finite succession of elements from Γ. We denote the empty string by λ.
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Given two sets A and B, the relative complement A \ B is defined as A \ B = {x ∈ A |
x �∈ B}. For each set A, we denote by |A| the cardinal (number of elements) from A.

A multiset can be described explicitly as follows: {(a1,M(a1)), . . . , (an,M(an))},
and the notation M = aM(a1)

1 . . . aM(an)
n will be used. The cardinal of a multiset M over

Γ = {a1, . . . , an} is defined as |M| = M(a1) + . . . +M(an). We denote by Mf (Γ) the set
of all the finite multisets over Γ, and M+

f (Γ) = Mf (Γ) \ {∅}
Given two multisets M1 and M2 over Γ, the union of the multisets, denoted as M1 ∪ M2

or M1 + M2, is the application over Γ defined as: for each a ∈ Γ, (M1 ∪ M2)(a) = M1(a) +
M2(a). A multiset M1 is included in M2, and it is denoted by M1 ⊆ M2, if M1(a) ≤ M2(a)
for each a ∈ Γ.

3. P Systems with Evolutional Communication and Division Rules

In this section, the framework of cell-like membrane systems where evolutional
communication rules and division rules are used is introduced.

Definition 1. A P system with evolutional symport/antiport rules and division rules of degree
q ≥ 1 is a tuple

Π =
(
Γ, E , μ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
where:

• Γ is a finite (working) alphabet;
• E ⊆ Γ is the environment alphabet;
• μ is a rooted tree structure;
• M1, . . . ,Mq are the initial multisets of the membranes;
• R1, . . . ,Rq are the rules of the membranes of the system of the following form:

–
[

u [ ]j

]
i
→
[
[ u′ ]j

]
i

, with 0 ≤ i, j ≤ q, i �= j, u ∈ M+
f (Γ), u′ ∈ Mf (Γ); in the case

that i = 0, then u must contain at least one object from Γ \ E (evolutional send-in
symport rules);

–
[
[ u ]j

]
i
→
[

u′ [ ]j
]

i
, with 0 ≤ i, j ≤ q, i �= j, u ∈ M+

f (Γ), u′ ∈ Mf (Γ) (evolu-
tional send-out symport rules);

–
[

u [ v ]j
]

i
→
[

v′ [ u′ ]j
]

i
, with 0 ≤ i, j ≤ q, i �= j, u, v ∈ M+

f (Γ), u′, v′ ∈ Mf (Γ)
(evolutional antiport rules);

– [ a ]i → [ b ]i [ c ]i , with 1 ≤ i ≤ q, i �∈ {iout, iskin}, a, b, c ∈ Γ, being iskin the label of
the skin membrane (division rules).

• iout ∈ {0, 1, . . . , q} is the output region of the system.

A P system with evolutional symport/antiport rules and division rules of degree q ≥ 1
can be seen as a set of q membranes biyectively labelled by 1, . . . , q organized in the rooted
tree structure μ, whose root node is the skin membrane, and such that (a) E represents the set
of objects that are situated in the environment an arbitrary number of times; (b) M1, . . . ,Mq
represents the initial multisets situated in the q membranes of the system; (c) iout is a
distinguished region i that will encode the output of the system. The term region i will
be used to denote the membrane i, in case 1 ≤ i ≤ q, and to the environment in the case
i = 0 or i = env. We will use env and 0 indistinguishably as the label of the environment.
If E = ∅, it is usually omitted from the tuple.

A configuration at an instant t of such a system is described by the membrane structure
of the P system at the instant t, the multisets of objects from Γ in each membrane at that
instant and the multiset of objects from Γ \ E situated in the environment. The initial
configuration of Π =

(
Γ, E , μ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
is (μ,M1, . . . ,Mq, ∅).

A evolutional send-in symport rule is applicable to a configuration Ct at an instant t if
there exists a region labelled by i that has at least a child membrane labelled by j and that it
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contains the multiset u of objects. The execution of such a rule
[

u [ ]j

]
i
→
[
[ u′ ]j

]
i

in Ct

consumes the objects of u from such a region i, and it produces the multiset of objects u′
in the child membrane j in Ct.

A evolutional send-out symport rule is applicable to a configuration Ct at an instant
t if there exists a region labelled by i that has at least a child membrane labelled by j
and the child membrane contains the multiset u of objects. The execution of such a rule[
[ u ]j

]
i
→
[

u′ [ ]j
]

i
in Ct consumes the objects of u from such a region j, and it produces

the multiset of objects u′ in the child membrane i in Ct.
A evolutional antiport rule is applicable to a configuration Ct at an instant t if there exists

a region labelled by i that contains a multiset of objects u and it has at least a child membrane
labelled by j and the child membrane contains the multiset v of objects. The execution of
such a rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
in Ct consumes the objects of u from such a region j

and objects from v from such a region i, and it produces the multiset of objects u′ in that
membrane i and the multiset of objects v′ in that membrane j in Ct.

A division rule is applicable to a configuration Ct at an instant t if there exists a region
labelled by i that contains an object a. The execution of such a rule [ a ]i → [ b ]i [ c ]i in Ct
consumes the object a from the membrane i, the membrane is duplicated with its contents
included, and objects b and c are produced one in each new membrane created in Ct.

As in tissue P systems with evolutional symport/antiport rules, two definitions of
length (or size) can be described. On the one hand, the length of a evolutional commu-
nication rule r ≡

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
can be length(r) = (|u| + |v| + |u′| + |v′|);

on the other hand, it can be described as a pair length′(r) = (|u|+ |v|, |u′|+ |v′|). The first
description corresponds with the sum of the cardinalities of all the multisets in the rule,
while the second definition corresponds with the pair such that the first component corre-
sponds with the sum of cardinalities of the left-hand side of the rule (LHS), and the second
component corresponds with the sum of the cardinalities of the right-hand side of the rule
(RHS). If r is a symport rule, then |v| = |v′| = 0 or |u| = |u′| = 0.

We say that a configuration Ct of a P system with evolutional communication rules and
division rules Π produces a configuration Ct+1 in a transition step, denoted by Ct ⇒Π Ct+1
and we say that Ct+1 is a next configuration of Ct if we can pass from Ct to Ct+1 applying
the rules of Π according to the following principles:

• At most one rule can be applied to each object of each membrane (selected in a non-
deterministic way).

• For each membrane i, either evolutional communication rules
[

u [ v ]j
]

i
→
[

v′ [ u′ ]j
]

i
or

a single division rule [ a ]i → [ b ]i [ c ]i can be applied. In the case of applying evolutional
communication rules at configuration Ct, they would be selected in a non-deterministic,
parallel and maximal way; that is, all the objects in the membrane i that can fire a rule, will
fire it. In the case that a division rule [ a ]i → [ b ]i [ c ]i is applied, it will be selected in a
non-deterministic way. It can be seen as the division rule blocks the communication of
the membrane with its corresponding parent membrane. All the rules are applied in an
atomic way, but in order to be precise, it can be that two microsteps are executed: first, all
the evolutional communication rules are executed, and then division rules are executed. It
is worth taking this into account since a membrane i being divided can still communicate
with its inner membranes in the same transition step.

A configuration Ct is a halting configuration if no rules can be applied to such configu-
ration at an instant t.

A computation C of a P system Π can be described as a tuple C = (C0, C1, . . .), where
each configuration Ct+1 can be obtained from Ct, except for the initial configuration C0.
We say that C is a halting computation of length n + 1 if the configuration Cn is a halting
configuration.

64



Axioms 2021, 10, 327

Recognizer membrane systems were introduced in [14] as a way to solve decision
problems. We define here recognizer P systems with evolutional communication rules and
division rules.

Definition 2. A recognizer P system with evolutional communication rules and division rules of
degree q ≥ 1 is a tuple (Π, Σ, iin), where:

• Π =
(
Γ, E , μ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
is a P system with evolutional communication

rules and division rules of degree q, with {yes, no} ⊆ Γ \ E two distinguished objects that
will represent the output of the system, and Mi ⊆ Γ \ Σ for 1 ≤ i ≤ q;

• Σ ⊆ Γ \ E is the input alphabet;
• iin ∈ {1, . . . , q} is the label of the input membrane;
• iout = 0;
• All the computations of Π halt.
• If C is a computation of Π, then either an object yes or an object no, but not both, are sent to

the environment in the last step of the computation.

Let Π =
(
Γ, Σ, E , μ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout

)
be a recognizer P system of this

type, then for each input multiset m over Σ, we consider the system Π with input multiset
m, and we denote it by Π + m. This is characterized by the fact that the multisets associated
with the initial configuration of the system is: (M1, . . . ,Miin + m, . . . ,Mq, ∅); that is,
it is obtained from the initial configuration (M1, . . . ,Miin , . . . ,Mq, ∅) of Π, by adding
the multiset m to Miin .

We define then a Output(C) function whose domain is the set of computations of Π.
Such a function will formalize the results or outputs of the system. If C is a computation
of the system Π, then Output(C) = yes (respectively, Output() = no) if the object yes
(resp., object no) appears in the environment associated to the halting configuration of C,
but does not appear in any other configuration of C. A computation C will be called
an accepting computation (respectively, a rejecting computation) if Output(C) = yes (resp.,
Output(C) = no). Computations of recognizer membrane systems always halt, and will
return either yes or no as a response. A recognizer membrane system with input multiset
Π + m is confluent, in the sense that all the computations give the same answer; that is,
given an input multiset m, all the computations of a recognizer membrane system with
input multiset Π + m will be either accepting computations or rejecting computations.

The class of recognizer P systems with evolutional symport/antiport rules of length
at most k (respectively, with length at most (k1, k2)) and division rules is denoted by
CDEC ((k)) (resp., CDEC ((k1, k2))). If the environment does not play an active role, we say
that it is a recognizer P system with symport/antiport rules of length at most k (resp., with
length at most (k1, k2), i.e. LHS with length at most k1 and RHS with length at most k2)
and division rules without environment, and we denote this class of systems by ĈDEC(k)
(resp., ĈDEC(k1, k2)).

In this work, a family of recognizer P systems will be used in order to solve decision
problems. Let X = (IX, θX) a decision problem. We say that X is solvable in polynomial
time by means of a uniform family of recognizer P systems Π = {Π(n) : n ∈ N} of the class
R, and we denote it by X ∈ PMCR, if the following conditions hold:

(a) Π is polynomially uniform by Turing machines; that is, there exists a Turing machine
that constructs Π(n) in polynomial time.

(b) There exists a polynomial encoding (cod, s) of X such that:

b.1 Π is polynomially bounded with respect to (X, cod, s); that is, there exists
k ∈ N such that for each u ∈ IX , each computation of Π(s(u)) + cod(u) runs,
at most, for |u|k computation steps.

b.2 Π is sound and complete with respect to (X, cod, s).
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4. Methods

Let ϕ a propositional formula in CNF with n variables and p clauses. Let s(ϕ) = 〈n, p〉
and cod(ϕ) contains xi,j,0 if the literal xi is in the clause Cj, xi,j,0 if the literal ¬xi is in
the clause Cj and x∗i,j,0 if the variable xi does not appear in the clause Cj. Let the function
⊥(i, j) = i⊥j = i + jn. Then, the system Π(〈n, p〉) will be the responsible of solving ϕ. Let

Π(〈n, p〉) = (Γ, Σ, E , μ,M1, . . . ,Mnp+5,R1, . . . ,Rnp+5, iin, iout)

a recognizer membrane system from CDEC ((2, 1)), where:

1. The working alphabet Γ = Σ ∪ {yes, no, y1, y2, n1, n2, α′, #} ∪
{ai,j, Ti,j, Fi,j, xi,j, xi,j, x∗i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪
{xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ np + �np/2�+ 1} ∪
{cj | 1 ≤ j ≤ p} ∪ {αj | 1 ≤ j ≤ p + 1} ∪ {γk | 0 ≤ k ≤ np + 2} ∪
{δk | 0 ≤ k ≤ np + 3} ∪ {δ′k | 0 ≤ k ≤ np + 1}.

2. The input alphabet Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
3. Environment alphabet E = ∅.
4. μ = [ [ ]1[ ]2 . . . [ ]np[ ]np+2[ ]np+3[ ]np+4[ ]np+5 ]np+1

5. Mk = ∅, 1 ≤ k ≤ np + 1,
Mnp+2 = {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {αj | 1 ≤ j ≤ p + 1},
Mnp+3 = {δ′0}, Mnp+4 = {δ0}, Mnp+5 = {γ0}.

6. The set of rules R=R1 ∪ . . .Rnp+5 contains the following rules:

6.1 Rules for generating all the necessary γnp+2 to simulate the environment.
[ γk ]np+5 → [ γk+1 ]np+5 [ γk+1 ]np+5 for 0 ≤ k ≤ np + 1[
[ γnp+2 ]np+5

]
np+1

→
[

γnp+2 [ ]np+5

]
np+1

6.2 Rules to generate p copies of the 2n possible truth assignments. For that, 2np

“partial” truth assignments will be generated.[
ai,j
]

np+2 → [ Ti,j ]np+2 [ Fi,j ]np+2[
[ Ti,jFi,j′ ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

⎫⎬
⎭ for

1 ≤ i ≤ n
1 ≤ j, j′,≤ p

6.3 Rules to generate 2np copies of cod(ϕ).[
xi,j,0 [ ]i⊥j

]
np+1

→
[
[ xi,j,1 ]i⊥j

]
np+1[

xi,j,0 [ ]i⊥j

]
np+1

→
[
[ xi,j,1 ]i⊥j

]
np+1[

x∗i,j,0 [ ]i⊥j

]
np+1

→
[
[ x∗i,j,1 ]i⊥j

]
np+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[
xi,j,k

]
i⊥j

→ [ xi,j,k+1 ]i⊥j [ xi,j,k+1 ]i⊥j[
xi,j,k

]
i⊥j

→ [ xi,j,k+1 ]i⊥j [ xi,j,k+1 ]i⊥j[
x∗i,j,k

]
i⊥j

→ [ x∗i,j,k+1 ]i⊥j [ x∗i,j,k+1 ]i⊥j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for
1 ≤ i ≤ n
1 ≤ j ≤ p
1 ≤ k ≤ np + �np/2�

[
[ xi,j,np+�np/2�+1 ]i⊥j

]
np+1

→
[

xi,j [ ]i⊥j

]
np+1[

[ xi,j,np+�np/2�+1 ]i⊥j

]
np+1

→
[

xi,j [ ]i⊥j

]
np+1[

[ x∗i,j,np+�np/2�+1 ]i⊥j

]
np+1

→
[

x∗i,j [ ]i⊥j

]
np+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[
γnp+2 [ δ′0 ]np+3

]
np+1

→
[
[ δ′1 ]np+3

]
np+1[

δ′k
]

np+3 → [ δ′k+1 ]np+3 [ δ′k+1 ]np+3 for 1 ≤ k ≤ np[
[ δ′np+1 ]np+3

]
np+1

→
[

δ′np+1 [ ]np+3

]
np+1

6.4 Rules to check which clauses are satisfied.

66



Axioms 2021, 10, 327

[
xi,j [ Ti,j ]np+2

]
np+1

→
[
[ cj ]np+2

]
np+1[

xi,j [ Ti,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

x∗i,j [ Ti,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

xi,j [ Fi,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

xi,j [ Fi,j ]np+2

]
np+1

→
[
[ cj ]np+2

]
np+1[

x∗i,j [ Fi,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for 1 ≤ i ≤ n, 1 ≤ j ≤ p

6.5 Rules to check if all the clauses are satisfied by a truth assignment.[
δ′np+1 [ αp+1 ]np+2

]
np+1

→
[
[ α′ ]np+2

]
np+1[

[ cjαj ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

for 1 ≤ j ≤ p[
[ αjα

′ ]np+2

]
np+1

→
[

n1 [ ]np+2

]
np+1

for 1 ≤ j ≤ p

6.6 General counter.[
γnp+2 [ δk ]np+5

]
np+1

→
[
[ δk+1 ]np+5

]
np+1

for 0 ≤ k ≤ np + 2[
[ δnp+3 ]np+5

]
np+1

→
[

δnp+3 [ ]np+5

]
np+1

6.7 Rules to return a negative answer.[
n1 [ ]np+2

]
np+1

→
[
[ n1 ]np+2

]
np+1[

δnp+3 [ n1 ]np+2

]
np+1

→
[

n2 [ ]np+2

]
np+1[

[ n2 ]np+1

]
0
→
[
no [ ]np+1

]
0

6.8 Rules to return an affirmative answer.[
δnp+3 [ α′ ]np+2

]
np+1

→
[
[ y1 ]np+2

]
np+1[

[ y1 ]np+2

]
np+1

→
[

y2 [ ]np+2

]
np+1[

[ y2 ]np+1

]
0
→
[
yes [ ]np+1

]
0

6.9 Input membrane iin = np + 1 and output membrane iout = 0.

In this section, the behaviour of a recognizer P system from CDEC ((2, 1)) solving an
instance ϕ from SAT is described. Let ϕ = C1 ∧ . . . ∧ Cp be a propositional logic formula
in CNF, where Cj = l1 ∨ . . . ∨ lrj , lk ∈ {xi,¬xi | 1 ≤ i ≤ n}. Then ϕ will be processed by the
system Π(s(ϕ)) + cod(ϕ), where s(ϕ) = 〈n, p〉 and cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 |
¬xi ∈ Cj} ∪ {x∗i,j,0 | xi �∈ Cj ∧ ¬xi �∈ Cj}.

Let us note codk(ϕ) the set of all the elements from cod(ϕ) with the third subscript equal
to k. Let us note cod∗(ϕ) the set of all the elements from cod(ϕ) without the third subscript.

The solution follows a brute force algorithm protocol in the framework of recognizer
P systems with evolutional symport/antiport rules and division rules, and consists of
the following stages:

4.1. Generation Stage

In the generation stage, different elements necessary for the rest of the computation are
generated at the same time. First, in order to avoid the use of the environment to obtain γ
objects, it is necessary to use some of the synchronization protocols in [32], 2np+2 copies of
the object γnp+2 will be generated in membranes np + 5 through the rules from 6.1. These
objects will be present in the membrane np + 1 at configuration Cnp+3. For generating
the different truth assignments, objects Ti,j and Fi,j will represent a partial truth assignment
of the variable xi in the following sense: Objects Ti,j and Fi,j′ , with i �= j, would be
incompatible, since two different values would be assigned to the same variable. Therefore,
in order to remove this possibility, these two objects will be removed from the system by
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means of the rule
[
[ Ti,jFi,j′ ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

. After applying these rules, only

“real” truth assignments would be present in the system. In fact, there can be assignments
where a variables has not been assigned any value. In this case, it will not return a false
positive. For generating the different np partial truth assignments, np computational steps
should be applied, but since rules are fired in a non-deterministic way, and the removal of
these incompatible variables could be applied in between the process of generation, at most
�np/2� extra steps should be taken into account. Therefore, in configuration Cnp+�np/2�,
membranes labelled by np + 2 will contain all the possible truth assignments.

Besides, objects from cod(ϕ) will be sent into their corresponding membrane. From
the second computational step, membranes 1, . . . , np will be duplicated in each step until
having 2np+�np/2� copies of the corresponding object from codnp+�np/2�(ϕ). These objects
will be sent out to the membrane np + 1, and therefore in the configuration Cnp+�np/2�+1,
2np+�np/2� copies of cod∗(ϕ) will be present in the membrane np + 1. In this configuration,
the next stage begins.

4.2. First Checking Stage

In this stage, objects from cod∗(ϕ) will react with objects Ti,j and Fi,j through rules
from 6.4. In this stage, an object cj will be generated in a membrane np + 2 if and only if
the truth assignment represented in that membrane makes true the corresponding literal.
This stage takes one computational step. At the same time, counters δk and δ′k are being
generated. δk will evolve by using objects γnp+2 as “catalysts”, and np copies of the object
δ′np+1 will be present at the membrane np + 1 at configuration C2np+5. When this happens,
the second checking stage starts.

4.3. Second Checking Stage

The (2np+ 6)-th step will consist of the application of the rule
[

δ′np+1 [ αp+1 ]np+2

]
np+1

→[
[ α′ ]np+2

]
np+1

, creating an object α′ in each membrane labelled by np + 2. At the same time,

objects cj present in a membrane will remove the corresponding object aj; that is, the absence of
an object aj in a membrane np + 2 represents that clause Cj is satisfied by the corresponding

truth assignment. The object α′ will fire a rule
[
[ αjα

′ ]np+2

]
np+1

→
[

n1 [ ]np+2

]
np+1

if there

exists an object aj in such a membrane. This stage takes exactly two computational steps.

4.4. Output Stage

In configuration C2np+7, the existence of an object α′ in a membrane labelled by np + 2
implies that no objects αj remained in such a membrane; that is, that all clauses are satisfied by
the corresponding truth assignment. Therefore, if there exists an object α′ in such a membrane,
it implies that the formula ϕ is satisfiable. Thus, two different scenarios can be observed.
On the one hand, if the formula is satisfiable, there exists at least one membrane labelled by
np + 2 at configuration C2np+7 such that it contains an object α′. In the next step, an object y1
will be generated in such a membrane, that will be sent out, first to membrane np + 1 as an
object y2, and finally to the environment as an object yes. On the other hand, if the formula is
unsatisfiable, no objects α′ remain in any of the membranes labelled by np + 2 at configuration
C2np+7. Objects n1 will be sent to the membrane np + 1 and, in the next step, they will be sent
back to any membrane np + 2, taking into account that the target membranes are selected in a
non-deterministic way. In the next step, as the object δnp+3 still exists in membrane np + 1, it
reacts with an object n1, transforming it into an object n2 at the skin membrane, and in the last
step of the configuration, it will be sent out to the environment as an object no. It is important
to take into account that, in the affirmative case, object δnp+3 is consumed, and since only one
object of this kind exists, objects n1 will not have any objects to react with. This stage takes
exactly three computational steps, both in the affirmative case and in the negative case. In
Figure 1, a graphical description of this process is provided to clarify how this stage works.
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Figure 1. Evolution of the final stage in the affirmative case (left) and in the negative case (right).
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5. Results

The results of the paper will be discussed in this section.

Theorem 1. SAT ∈ PMCCDEC ((2,1))

Proof. The family of P systems constructed previously verifies the following:

• All the systems from Π = {Π(n) | n ∈ N} are recognizer P systems from CDEC ((2, 1)).
• The family Π is polynomially uniform by Turing machines given that, for each

n, p ∈ N, rules of Π(〈n, p〉) from Π are defined recursively by n, p ∈ N, and the quan-
tity of resources needed for constructing an element of the family is of polynomial
order with respect to n and p, as it is shown below:

– Alphabet size: 3n2 p2 + (11 + � np
2 �)np + 2p + 16 ∈ Θ(n2 p2)

– Initial number of membranes: np + 5 ∈ Θ(np)
– Initial number of objects in cells: np + p + 4 ∈ Θ(np)
– Number of rules: 3n2 p2� np

2 �+ 2np2 + 15np + 2p + 16 ∈ Θ(n3 p3)
– Maximum number of objects involved in a rule: 3 ∈ Θ(1).

• The pair of polynomial-time computable functions (cod, s) defined complies the fol-
lowing: for each formula ϕ from SAT, s(ϕ) is a natural number, cod(ϕ) is the input
multiset of the system Π(s(ϕ)) and for each t ∈ N, s−1(t) is a finite set.

• The family Π is polynomially bounded in time: in fact, for each formula ϕ from SAT,
the recognizer P system Π(s(ϕ)) + cod(ϕ) takes exactly 2np + 10 computational steps
in return an answer, either positive or negative, being n the number of variables and p
the number of clauses of ϕ.

• The family Π is sound with respect to (X, cod, s): in fact, for each formula ϕ, if
the computations of Π(s(ϕ)) + cod(ϕ) are accepting computations, then ϕ is satisfiable.

• The family Π is complete with respect to (X, cod, s): in fact, for each formula ϕ that is
satisfiable, all the computations of Π(s(ϕ)) + cod(ϕ) are accepting computations.

Corollary 1. NP ∪ co − NP ⊆ PMCCDEC ((2,1))

Proof. It is enough to observe that SAT is an NP-complete problem, SAT ∈ PMCCDEC ((2,1))
and the class PMCCDEC ((2,1)) is closed under polynomial-time reduction and under com-
plementary.

In fact, this family does not use the environment with an active role, therefore:

Corollary 2. NP ∪ co − NP ⊆ PMCĈDEC(2,1)

Proof. It is enough to observe that NP ∪ co − NP ⊆ PMCCDEC ((2,1)) from the fact that
a uniform family of recognizer membrane systems from CDEC ((2, 1)) solving the problem
SAT in polynomial time has been constructed, and this solution does use the environment
only as the output of the system, E = ∅, and does not take any object from it.

Corollary 3. NP ∪ co − NP ⊆ PMCĈDEC(3)

6. Discussion

The idea of this solution is to use the power of division rules to generate all the possible
truth assignments and objects first, and later on to use the parallel communication between
membranes to transport all the needed objects. It is important to take into account that
this is a great difference with P systems with active membranes, since in these systems,
communication rules between membranes are limited to one object per membrane and
time step. While the first stage takes the majority of the time, checking of the clauses
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and output of the system are executed in five time steps, using the created workspace
in the generation stage. This implies that a great optimization (for instance, in the form of
a parallel implementation) would be needed in order to generate the exponential number
of membranes in polynomial (in this case, linear) time. In a practical way, this could lead to
an interesting competitor with respect to the state-of-art SAT solvers, that are necessary to
solve industrial propositional logic formulae used to improve some engineering processes.

7. Contributions

In this work, a solution to SAT by means of a family of recognizer membrane systems
from ĈDEC(2, 1) is given. In previous works, a similar result in the tissue-like counterpart
was given, but using the environment as an active element. An interesting work would
be to prove that the role of the environment is also irrelevant in tissue P systems with
evolutional symport/antiport rules and division rules. Besides, similar results using
separation rules instead of division rules were provided in the same work. Taking into
account the differences between division rules and separation rules and between tissue-like
and cell-like, it would be interesting to see if this result can also be translated to the cell-like
framework. In this sense, a complete study of the role of the environment while using
separation rules, both in the tissue-like and in the cell-like frameworks will be studied.
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8. Păun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing, 1st ed.; Oxford University Press, Inc.:

New York, NY, USA, 2010.
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Abstract: It is impossible to effectively modify a string in order to increase its Kolmogorov complexity.
However, is it possible to construct a few strings, no longer than the input string, so that most of
them have larger complexity? We show that the answer is yes. We present an algorithm that takes
as input a string x of length n and returns a list with O(n2) strings, all of length n, such that 99% of
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1. Introduction

The Kolmogorov complexity of a binary string x, denoted C(x), is the minimal de-
scription length of x, i.e., it is the length of the shortest program (in a fixed universal
programming system) that prints x. We analyze the possibility of modifying a string in
an effective way in order to obtain a string with higher complexity, without increasing
its length. Strings with high complexity exhibit good randomness properties and are
potentially useful, because they can be employed in lieu of random bits in probabilistic al-
gorithms. It is common to define the randomness deficiency of x as the difference |x| −C(x)
(where |x| is the length of x) and to say that the smaller the randomness deficiency is, the
more random the string is. In this sense, we want to modify a string so that it becomes
“more” random. As stated, the above task is impossible, because, clearly, any effective
modification cannot increase the Kolmogorov complexity (at least not by more than a
constant). If f is a computable function, C( f (x)) ≤ C(x) +O(1), for every x. Consequently,
we have to settle for a weaker solution and the one we consider is that of list approximation.
List approximation consists in the construction of a list of objects guaranteed to contain at
least one element having the desired property. Here, we try to obtain a stronger type of list
approximation, in which, not just one, but most of the elements in the list have the desired
property. More precisely, we study the following question.

Question. Is there a computable function which takes as input a string x and outputs a
short list of strings, which are not longer than x, such that most of the elements in the list
have complexity greater than C(x)?

The formulation of the question rules out some trivial and non-interesting answers.
First, the requirement that the list is “short” is necessary, because, otherwise, we can ignore
the input x and simply take all strings of length n and most of them have complexity at
least n − 2, which is within O(1) of the largest complexity of strings of length n. Secondly,
the restriction that the length is not increased is also necessary, because, otherwise, we can
append to the input x a random string and obtain, with high probability, a more complex
string (see the discussion in Section 2). These restrictions not only make the problem
interesting, but also amenable to applications in which the input string and the modified
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strings need to be in a given finite set. The solution that we give can be readily adjusted to
handle such applications.

There are several parameters to consider. The first one is the size of the list. The shorter
the list is, the better the approximation is. Next, the increasing-complexity procedure that
we seek does not work for all strings x. Let us recall that C(x) ≤ |x| + O(1) and, if x
is a string of maximal complexity at its length, then there simply is no string of larger
complexity at its length. In general, for strings x that have complexity close to |x|, it
is difficult to increase their complexity. Thus, a second parameter is the bound on the
complexity of x for which the increasing-complexity procedure succeeds. The closer this
bound is to |x|, the better the procedure is. The third parameter is the complexity of
the procedure. The procedure is required to be computable, but it is preferable if it is
computable in polynomial time.

We show the following two results. The first one exhibits a computable list approximation
for increasing the Kolmogorov complexity that works for any x with complexity C(x) <
|x| − log log |x| − O(1).

Theorem 1 (Computable list of quadratic size for increasing the Kolmogorov complexity).
There exists a computable function f that takes as input x ∈ {0, 1}∗ and a rational number δ > 0
and returns a list of strings of length at most |x| with the following properties:

1. The size of the list is O(|x|2)poly(1/δ);
2. If C(x) < |x| − log log |x| − O(1), then the (1 − δ) fraction of the elements in the list f (x)

have a Kolmogorov complexity larger than C(x) (where the constant hidden in O(1) depends
on δ).

Whether the bound C(x) < |x| − log log |x| − O(1) can be improved remains open.
Further reducing the list size is also an interesting open question. We could not establish a
lower bound and, as far as we currently know, it is possible that even a constant list size
may be achievable.

In the next result, the complexity-increasing procedure runs in polynomial time in the
following sense. The size of the list is only quasi-polynomial, but each string in the list is
computed in polynomial time.

Theorem 2 (Polynomial-time computable list for increasing the Kolmogorov complexity).
There exists a function f that takes as input x ∈ {0, 1}∗ and a constant rational number δ > 0 and
returns a list of strings of length at most |x| with the following properties:

1. The size of the list is bounded by 2O(log |x|·log(|x|/δ));
2. If C(x) < |x| −O(log |x| · log(|x|/δ)), then (1− δ) fraction of the elements in the list f (x)

have a Kolmogorov complexity larger than C(x);
3. The function f is computable in polynomial time in the following sense: there is a polynomial

time algorithm that takes as input x, i and computes the i-th element in the list f (x).

Remark 1. A preliminary version of this paper has appeared in STACS 2017 [1]. In that version,
it was claimed that the result in Theorem 1 holds for all strings x with C(x) < |x|. The proof had a
bug and we can only prove it for strings satisfying C(x) < |x| − log log |x| − O(1). The proof
of Theorem 2 given here is different from that in [1]. Theorem 2 has better parameters than its analog
in the preliminary version.

Remark 2. Any procedure that constructs the approximation list can be converted into a prob-
abilistic algorithm that does the same work and picks one random element from the list. The
procedure in Theorem 2 can be converted into a polynomial-time probabilistic algorithm, which uses
O(log |x| · log(|x|/δ)) random bits to pick which element from the list to construct (see item 3 in
the statement).
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Vice-versa, a probabilistic algorithm can be converted into a list-approximation algorithm in
the obvious way, i.e., by constructing the list that has as elements the outputs of the algorithm for
all choices of the random coins.

Thus, a list-approximation algorithm A1, in which (1− δ) elements in the list have the desired
property, is equivalent to a probabilistic algorithm A2 that succeeds with probability 1 − δ. The
number of random bits used by A2 is the logarithm in base two of the size of the list produced by A1.

1.1. Basic Concepts and Notation

We recall the standard setup for Kolmogorov complexity. We fix an universal Turing
machine U. The universality of U means that, for any Turing machine M, there exists
a computable “translator” function t, such that, for all strings p, M(p) = U(t(p)) and
|t(p)| ≤ |p| + O(1). For the polynomial-time constructions, we also require that t is
polynomial-time computable. If U(p) = x, we say that p is a program (or description) for x.
The Kolmogorov complexity of the string x is C(x) = min{|p| | p is a program for x}. If p
is a program for x and |p| ≤ C(x) + c, we say that p is a c-short program for x.

1.2. Related Works

The problem of increasing the Kolmogorov complexity has been studied before by
Buhrman, Fortnow, Newman and Vereshchagin [2]. They show that there exists a polynomial-
time computable f that takes as input x of length n and returns a list of strings, all having
length n, such that, if C(x) < n, then there exists y in the list with C(y) > C(x) (this is
Theorem 14 in [2]). In the case of complexity conditioned by the string length, they show
that it is even possible to compute in polynomial time a list of constant size. That is, f (x)
is a list with O(1) strings of length n and, if C(x | n) < n, then it contains a string y with
C(y | n) > C(x | n) (this is Theorem 11 in [2]). Our results are incomparable with the
results in [2]. On one hand, their results work for any input x with complexity less than |x|,
while, in Theorem 1, we only handle inputs with complexity at most |x| − log log |x| −O(1)
(and, in Theorem 2, the complexity of the input is required to be even lower). On the other
hand, they only guarantee that one string in the output list has higher complexity than x,
while we guarantee this property for most strings in the output list and this can be viewed
as a probabilistic algorithm with few random bits as explained in Remark 2.

This paper is inspired by recent list-approximation results regarding another problem
in the Kolmogorov complexity, namely, the construction of short programs (or descriptions)
for strings. Using a Berry paradox argument, it is easy to see that it is impossible to
effectively construct a shortest program for x (or, even a, say, n/2-short program for x).
Remarkably, Bauwens et al. [3] show that effective list approximation for short programs
is possible. There is an algorithm that, for some constant c, takes as input x and returns
a list with O(|x|2) strings guaranteed to contain a c-short program for x. They also show
a lower bound; The quadratic size of the list is minimal up to constant factors. Bauwens
and Zimand [4] consider a more general type of optimal compressor that goes beyond the
standard Kolmogorov complexity and, using another type of pseudo-random function
called conductor, re-obtains the overhead of O(log2 n). Theorem 2 directly uses results from
the latter, namely, Theorem 3. Theorem 1 uses a novel construction, but some of the ideas
are inspired from the papers mentioned above.

2. Technique and Proof Overview

We start by presenting an approach that probably comes to mind first. It does not work
for inputs x having a complexity very close to |x|, such as in Theorem 1 (for which we use a
more complicated argument), but, combined with the results from [4], it yields Theorem 2.

Given that we want to modify a string x so that it becomes more complex, which, in a
sense, means more random, a simple idea is to just append a random string z to x. Indeed,
if we consider strings z of length c, then C(xz) > C(x) + c/2, for most strings z, provided
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that c is large enough. Let us see why this is true. Let k = C(x) and let z be a string that
satisfies the opposite inequality, that is,

C(xz) ≤ C(x) + c/2, (1)

Given a shortest program for xz and a self-delimited representation of the integer c,
which is 2 log c bits long, we obtain a description of x with at most k + c/2 + 2 log c bits.
Note that, in this way, from different z’s satisfying (1), we obtain different programs for x
that are (c/2 + 2 log c)-short. By a theorem of Chaitin [5] (also presented as Lemma 3.4.2
in [6]), for any d, the number of d-short programs for x is bounded by O(2d). Thus,
the number of strings z satisfying (1) is bounded by 2c/2+2 log c+O(1). Since, for large c,
2c/2+2 log c+O(1) is much smaller than 2c, it follows that most strings z of length c satisfy the
claimed inequality (the opposite of (1)). Therefore, we obtain the following lemma.

Lemma 1. If we append to a string x, a string z chosen at random in {0, 1}c, then C(xz) >
C(x) + c/2 with probability 1 − 2−(c/2−2 log c−O(1)).

The problem with appending a random z to x is that this operation not only increases
the complexity (which is something we want) but also increases the length (which is
something we do not want). The natural way to get around this problem is to first compress
x to close to the minimal description length using the probabilistic algorithms from [4]
described in the Introduction and then append z. If we know C(x), then the algorithms
from [4] compress x to length C(x) + Δ(n), where n is the length of x and Δ(n) (called the
overhead) is O(log n) (or poly(log n) for the polynomial-time algorithm). After appending a
random z of length c, we obtain a string of length C(x) + Δ(n) + c and, for this to be n (so
that length is not increased), we need C(x) ≤ n − Δ(n)− c. This is the idea that we follow
for Theorem 2, with an adjustment caused by the fact that we do not know C(x) but only a
bound of it.

However, in this way, we cannot obtain a procedure that works for all x with C(x) <
n − log log n − O(1), as required in Theorem 1. Our proof for this theorem is based on a
different construction. The centerpiece is a type of bipartite graph with a low congestion
property. Once we have the graph (in which the two bipartitions are called the set of left
nodes and the set of right nodes), we view x as a left node and the list f (x) consists of
some of the nodes at distance 2 from x in the graph. (A side remark: Buhrman et al. [2] also
use graphs, namely, constant-degree expanders, and they obtain the lists also as the set of
neighbors at some given distance.) In our graph, the left side is L = {0, 1}n, the set of n-bit
strings, the right side is R = {0, 1}m, the set of m-bit strings, and each left node has degree
D. The graphs also depend on three parameters, ε, Δ and t, and, for our discussion, it is
convenient to also use δ = ε1/2 and s = δ · Δ. The graphs that we need have two properties:

• For every subset B of left nodes of size at most 2t, the (1 − δ) fraction of nodes in B
satisfies the low congestion condition which requires that the (1 − δ) fraction of their
right neighbors have at most s neighbors in B. (More formally, for all B ⊆ L with
|B| ≤ 2t, for all x ∈ B, except at most δ|B| elements, all neighbors y of x, except at
most δD, have degB(y) ≤ s, where degB(y) is the number of y’s neighbors that are in
B. We say that such x has the low-congestion property for B.)

• Each right node has at least Δ neighbors.

The graph with the above two properties is constructed using the probabilistic method
in Lemma 2.

Let us now see how to use such a graph to increase the Kolmogorov complexity in the
list-approximation sense. Let us suppose that we have a graph G with the above properties
for the parameters n, δ, Δ, D, s and t.
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Claim 1. There is a procedure that takes as input a string x of length n with complexity C(x) < t
and produces a list with D · Δ strings, all having length n, such that at least a fraction of (1 − 2δ)
of the strings in the list has a complexity larger than C(x).

Indeed, let x be a string of length n with C(x) = k < t. Let us consider the set
B = {x′ ∈ {0, 1}n | C(x′) ≤ k}, which we view as a set of left nodes in G. Note that the
size of B is bounded by 2t. A node that does not have the low-congestion property for
B is said to be δ-BAD(B). By the first property of G, there are at most δ|B| elements in B
that are δ-BAD(B). It can be shown that x is not δ-BAD(B). The reason is, essentially, that
the strings that are δ-BAD(B) can be enumerated and they make up a small fraction of B;
therefore, they can be described with less than k bits. Now, to construct the list, we view
x as a left node in G and we “go-right-then-go-left”. This means that we first “go-right”,
i.e., we take all the D neighbors of x and, for each such neighbor y, we “go-left”, i.e., we
take Δ of the y’s neighbors and put them in the list. Since x is not δ-BAD(B), (1 − δ)D
of its neighbors have at most s = δ · Δ elements in B. Overall, less than 2δ · D · Δ of the
strings in the list can be in B and so at least a fraction of (1 − 2δ) of the strings in the list
has complexity larger than k = C(x). Our claim is proved.

3. Proof of Theorem 2

We use the following definition and results from [4].

Definition 1.

• A compressor C is a probabilistic function that takes as input a rational number ε > 0, a
positive integer m and a string x and outputs (with probability 1) a string C(ε, m, x) of length
exactly m.

• Δ(ε, m, n) is a function of ε and positive integers m and n, called overhead.
• A compressor C is Δ-optimal for the Kolmogorov complexity, if there exists an algorithm D

(called decompressor) such that, for every string x, every rational ε ≥ 2−|x| and every
m ≥ C(x) + Δ(ε, m, |x|),

Prob[D(C(ε, m, x)) = x] ≥ 1 − ε.

In other words, if we are given a bound m that is at least C(x)+overhead, then C
compresses x to a string of length m, from which D is able to reconstruct x with high
probability.

Theorem 3 (Theorem 1.1 in [4]). There exists a compressor C with overhead Δ(ε, m, n) =
O(log m · log(n/ε)) that is Δ-optimal for the Kolmogorov complexity. Furthermore, the compressor
C takes as input (ε, m, x) and runs in polynomial time in |x|, using a random string of length
O(log m · log(|x|/ε)).

Note: Theorem 1.1 in [4] is more general, but we only need the above version.

Proof of Theorem 2. We follow the plan sketched in Section 2; we compress the input
x to a string y with the optimal compressor from Theorem 3 and then append to y a
random string z of constant length. We show that, with high probability, yz has the desired
properties; it has a complexity larger than C(x) and it is not longer than x. We see below
that this randomized algorithm uses O(log |x| · log |x|/ε)) random bits, which implies the
desired list approximation via the observations in Remark 2.

Let the compressor C and the overhead Δ be the functions from Theorem 3. Let
ε = δ/2. We fix n; let us consider a string x of length n such that C(x) ≤ n − 3Δ(ε, n, n).
Note that C(x) ≤ n −O(log n · log(n/ε)). Let m = n − 2Δ(ε, n, n) and y = C(ε, m, x) (note
that y is a random variable because C is a randomized function). For n sufficiently large,

C(x) ≤ n − 3Δ(ε, n, n) ≤ m − Δ(ε, m, n).
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Let A be the event by which the decompressor D reconstructs x from y. By Theorem 3,
A has probability 1 − ε.

We take c a constant large enough such that Equations (2) and (3) below are satisfied.
Conditioned by A,

C(y) ≥ C(x)− c (because x is reconstructed from y) (2)

Let c′ = 2c. We choose c so that

2−(c′/2−2 log c′−O(1)) < ε, (3)

where the O(1) term is the constant from Lemma 1.
We append to y a string z chosen at random in {0, 1}c′ . By Lemma 1 and Equation (3),

with probability 1 − ε, C(yz) > C(y) + c′/2 = C(y) + c. Now, we condition on A and we
obtain that, with probability 1 − 2ε,

C(yz) > C(y) + c ≥ C(x)− c + c = C(x).

We take δ = 2ε. Now, let us check the properties of the above algorithm. For every
n-bit string x with C(x) ≤ n − 3Δ(ε, n, n) = n − O(log |x| · log |x|/δ), the algorithm takes
as input x and δ and outputs, in polynomial time, the string yz that, with probability
1 − δ, has a complexity larger than the complexity of x. The string yz has length m + c =
n − 2Δ(ε, n, n) + c ≤ n. The whole randomized procedure uses O(log m · log(n/ε)) =
O(log n · log(n/δ)) random bits for compression with C and c′ = O(1) random bits for z.
The list approximation is obtained from the probabilistic algorithm in the obvious way, i.e.,
by including in the list one element for each choice of the random string (see Remark 2).
The theorem is proved.

4. Proof of Theorem 1

We split the proof in three parts. In Section 4.1, we introduce balanced graphs; in
Section 4.2, we show how to increase the Kolmogorov complexity in the list approximation
sense using balanced graphs and, in Section 4.3, we use the probabilistic method to obtain
the balanced graph with the parameters needed for Theorem 1.

4.1. Balanced Graphs

Here, we formally define the type of graphs that we need. We work with families
of bipartite graphs Gn = (L ∪ R, E ⊆ L × R), indexed by n, which have the following
structure:

1. The vertices are labeled with binary strings, L = {0, 1}n and R = {0, 1}n, where we
view L as the set of left nodes and R as the set of right nodes.

2. All the left nodes have the same degree D; D = 2d is a power of two and the edges
outgoing from a left node x are labeled with binary strings of length d.

3. We allow multiple edges between two nodes to exist. For a node x, we write N(x) for
the multiset of x’s neighbors, each element being taken with the multiplicity equal to
the number of edges from x landing into it.

A bipartite graph of this type can be viewed as a function EXT : {0, 1}n × {0, 1}d →
{0, 1}n, where EXT(x, y) = z if there is an edge between x and z labeled y. We want EXT
to yield a (k, ε) randomness extractor whenever we consider the modified function EXTk,
which takes as input (x, y) and returns EXT(x, y), from which we keep only the first k bits.
(Note: A randomness extractor is a type of function that plays a central role in the theory
of pseudo-randomness. All we need here is that it satisfies Equation (4).)

From the function EXTk, we go back to the graph representation and we obtain the
“prefix” bipartite graph Gn,k = (L = {0, 1}n, Rk = {0, 1}k, Ek ⊆ L × Rk), where, in Gn,k, we
merge the right nodes of Gn that have the same prefix of length k. The left degrees in the
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prefix graph do not change. However, the right degrees may change and, as k becomes
smaller, the right degrees typically become larger due to merging.

The requirement is that, for every subset B ⊆ L of size |B| ≥ 2k, for every A ⊆ Rk,∣∣∣∣ |Ek(B, A)|
|B| × D

− |A|
|Rk|

∣∣∣∣ ≤ ε, (4)

where Ek(B, A) is the set of edges between B and A in Gn,k. (Note: This means that Gn,k is
a (k, ε) randomness extractor.)

We also want to have the guarantee that each right node in Gn,t has degree at least Δ,
where Δ and t are parameters.

Accordingly, we have the following definition.

Definition 2. A graph Gn = (L, R, E ⊆ L × R) as above is (ε, Δ, t)-balanced if the following
requirements hold:

1. For every k ∈ {1, . . . , n}, let Gn,k be the graph corresponding to EXTk described above. We
require that, for every k ∈ {1, . . . , n}, Gn,k is a (k, ε) extractor, i.e., Gn,k has the property
in Equation (4).

2. In the graph Gn,t, every right node with non-zero degree has degree at least Δ.

In our application, we need balanced graphs in which the neighbors of a given node
can be found effectively. As usual, we consider families of graphs (Gn)n≥1 and we say that
such a family is computable if there is an algorithm that takes as input (x, y), views x as a
left node in G|x|, views y as the label of an edge outgoing from x and outputs z, where z is
the right node where the edge y lands in G|x|.

The following lemma provides the balanced graphs that we need as explained in the
proof overview in Section 2.

Lemma 2. For every rational ε > 0, there exist some constant c and a computable family of graphs
(Gn)n≥1, where each Gn = (L = {0, 1}n, R = {0, 1}n, E ⊆ L × R) is (ε, Δ, t)-balanced graph,
with left degree D = 2d for d = �log(2n/ε2)�, Δ = 2(1/ε)3/2D and t = n − log log n − c.

The proof of Lemma 2 is by the standard probabilistic method and is presented in
Section 4.3.

4.2. From Balanced Graphs to Increasing the Kolmogorov Complexity in the List-Approximation
Sense

The following lemma shows a generic transformation of a balanced graph into a
function that takes as input x and produces a list so that most of its elements have a
complexity larger than C(x).

Lemma 3. Let us suppose that, for every δ > 0, there are t = t(n) and a computable family of
graphs (Gn)n≥1, where each Gn = (Ln = {0, 1}n, Rn = {0, 1}n, En ⊆ Ln × Rn) is (δ2, Δ, t)-
balanced graph, with Δ = 2(1/δ3) · D, where D is the left degree.

Then, there exists a computable function f that takes as input a string x and a rational number
δ > 0 and returns a list containing strings of length |x|; additionally, the following are true:

1. The size of the list is O((1/δ)3D2);
2. If C(x) ≤ t, then (1 − O(δ)) of the elements in the list have a complexity larger than C(x).

(The constants hidden in O(·) do not depend on δ.)

Proof. The following arguments are valid if δ is smaller than some small positive constant.
We assume that δ satisfies this condition and also that it is a power of 1/2. This can be
performed because scaling down δ by a constant factor only changes the constants in the
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O(·) in the statement. Let ε = δ2. We explain how to compute the list f (x), with the
property stipulated in the theorem’s statement.

We take Gn to be the (ε, Δ, t)-balanced graph with left nodes of length n promised by
the hypothesis. Let Gn,t be the “prefix” graph obtained from Gn by cutting the last n − t
bits in the labels of right nodes (thus preserving the prefix of length t in the labels).

The list f (x) is computed in two steps:

1. First, we view x as a left node in Gn,t and take N(x), the multiset of all neighbors of x
in Gn,t.

2. Secondly, for each p in N(x), we take Ap to be a set of Δ neighbors of p in Gn,t (e.g.,
the first Δ ones in some canonical order). We set f (x) =

⋃
p∈N(x) Ap (if p appears np

times in N(x), we also take Ap in the union np times; note that f (x) is a multiset).

Note that all the elements in the list have length n and the size of the list is | f (x)| =
Δ · D = 2(1/δ)3D2.

Let x be a binary string of length n, with complexity C(x) = k. We assume that k ≤ t.
The rest of the proof is dedicated to showing that the list f (x) satisfies the second item in
the statement. Let

Bn,k = {x′ ∈ {0, 1}n | C(x′) ≤ k},

and let Sn,k = �log |Bn,k|�. Thus, 2Sn,k ≤ |Bn,k| < 2Sn,k+1. Later, we use the fact that

Sn,k ≤ k ≤ t. (5)

We consider the graph Gn,Sn,k , which is obtained, as explained above, from Gn by
taking the prefixes of the right nodes of length Sn,k. To simplify notation, we use G instead
of Gn,Sn,k . The set of left nodes in G is L = {0, 1}n and the set of right nodes in G is
R = {0, 1}m, for m = Sn,k.

We view Bn,k as a subset of the left nodes in G. Let us introduce some helpful
terminology. In the following, all the graph concepts (left node, right node, edge and
neighbor) refer to the graph G. We say that a right node z in G is (1/ε)-light if it has at most

(1/ε) · |Bn,k |·D
|R| neighbors in Bn,k. A node that is not (1/ε)-light is said to be (1/ε)-heavy.

Note that

(1/ε) · |Bn,k| · D
|R| ≤ (1/ε)

2Sn,k+1 · D
2Sn,k

= δΔ,

thus, a (1/ε)-light node has at most δΔ neighbors in Bn,k.
We also say that a left node in Bn,k is δ-BAD with respect to Bn,k if at least a δ fraction

of the D edges outgoing from it lands in the right neighbors that are (1/ε)-heavy. Let
δ-BAD(Bn,k) be the set of nodes that are δ-BAD with respect to Bn,k.

We show the following claim.

Claim 2. At most a 2δ fraction of the nodes in Bn,k is δ-BAD with respect to Bn,k.
(In other words, for every x′ in Bn,k except at most a 2δ fraction, at least a (1 − δ) fraction

of the edges going out from x′ in G lands in the right nodes that have at most Δ′ neighbors with
complexity at most k).

We defer for later the proof of Claim 2 and continue the proof of the theorem.
For any positive integer k, let

Bk = {x′ | C(x′) ≤ k and k ≤ t(|x′|)}.

Let Ik = {n | k ≤ t(n)}. Note that |Bk| = ∑n∈Ik
|Bn,k|. Let x′ ∈ Bk and let n′ = |x′|.

We say that x′ is δ-BAD with respect to Bk if, in Gn′ , x′ is δ-BAD with respect to Bn′ ,k. We
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denote by δ-BAD(Bk) the set of nodes that are δ-BAD with respect to Bk. We upper bound
the size of δ-BAD(Bk) as follows:

|δ-BAD(Bk)| = ∑n′∈Ik
|δ-BAD(Bn′ ,k)|

≤ ∑n′∈Ik
2δ · |Bn′ ,k| (by Claim 2)

= 2δ ∑n∈Ik
|Bn′ ,k|

= 2δ|Bk|
≤ 2δ · 2k+1.

Note that the set δ-BAD(Bk) can be enumerated given k and δ. Therefore, a node x′
that is δ-BAD with respect to Bk can be described by k, δ and its ordinal number in the
enumeration of the set δ-BAD(Bk). We write the ordinal number on exactly k+ 2− log(1/δ)
bits and δ in a self-delimited way on 2 log log(1/δ) bits (recall that 1/δ is a power of 2), so
that k can be inferred from the ordinal number and δ. It follows that, if x′ is δ-BAD with
respect to Bk, then, provided 1/δ is sufficiently large,

C(x′) ≤ k + 2 − log(1/δ) + 2 log log(1/δ) + O(1) < k. (6)

Now, we recall our string x ∈ {0, 1}n, which has complexity C(x) = k. The inequality
(6) implies that x cannot be δ-BAD with respect to Bk, which means that (1 − δ) of the
edges going out from x land in neighbors in G having at most δΔ neighbors in Bk. The
same is true if we replace G by Gn,t, because, by the inequality (5), the right nodes in G are
prefixes of the right nodes in Gn,t.

Now, let us suppose that we pick at random a neighbor p of x in Gn,t and then find a
set Ap of Δ neighbors of p in Gn,t. Then, with probability 1 − δ, only a fraction of δ of the
elements of Ap can be in Bk. Let us recall that we have defined the list f (x) to be

f (x) =
⋃

p neighbor of x in Gn,t

Ap.

It follows that at least a (1 − δ)2 > (1 − 2δ) fraction of the elements in f (x) has
complexity larger than C(x). This ends the proof.

We now prove Claim 2.

Proof of Claim 2. Let A be the set of right nodes that are (1/ε)-heavy. Then,

|A| ≤ ε|R|.

Indeed, the number of edges between Bn,k and A is at least |A| · (1/ε) · |Bn,k |·D
|R| (by the

definition of (1/ε)-heavy), but, at the same time, the total number of edges between Bn,k
and R is |Bn,k| · D (because each left node has degree D).

Next, we show that
|δ-BAD(Bn.k)| ≤ 2δ|Bn,k|. (7)

For this, note that G is a (Sn,k, ε) randomness extractor and Bn,k has size at least 2Sn,k .
Therefore, by the property (4) of extractors,

|E(Bn,k, A)|
|Bn,k| · D

≤ |A|
|R| + ε ≤ 2ε.

On the other hand, the number of edges linking Bn,k and A is at least the number of
edges linking δ-BAD(Bn,k) and A; this number is at least |δ-BAD(Bn,k)| · δD. Thus,

|E(Bn,k, A)| ≥ |δ-BAD(Bn,k)| · δD.
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Combining the last two inequalities, we obtain

|δ-BAD(Bn,k)|
|Bn,k| ≤ 2ε · 1

δ
= 2δ.

This ends the proofs of Claim 2, which is the last piece that we needed for the proof of
Lemma 3.

Theorem 1 is obtained by plugging, into the above lemma, the balanced graphs from
Lemma 2 with parameter ε = δ2.

4.3. Construction of Balanced Graphs: Proof of Lemma 2

We use the probabilistic method. We consider a random function EXT : {0, 1}n ×
{0, 1}d → {0, 1}n for d = �log(2n/ε2)�. We show the following two claims, which imply
that a random function has the desired properties with positive probability. Since the
properties can be checked effectively, we can find a graph by exhaustive search. We use the
notation from Definition 2 and from the paragraph preceding it.

Claim 3. For sufficiently large n, with probability ≥ 3/4, it holds that, for every k ∈ {1, . . . , n},
in the bipartite graph Gn,k = {L, Rk, Ek ⊆ L × Rk}, every B ⊆ L = {0, 1}n of size |B| ≥ 2k and
every A ⊆ Rk = {0, 1}k satisfies ∣∣∣∣ |Ek(B, A)|

|B| × D
− |A|

|Rk|
∣∣∣∣ ≤ ε. (8)

Claim 4. For some constant c and every sufficiently large positive integer n, with probability
≥ 3/4, every right node in the graph Gn,n−log log n−c has degree at least Δ.

Proof of Claim 3. First, we fix k ∈ {1, . . . , n} and let K = 2k and N = 2n. Let us consider
B ⊆ {0, 1}n of size |B| ≥ K and A ⊆ Rk. For a fixed x ∈ B and y ∈ {0, 1}d, the probability
that EXTk(x, y) is in A is |A|/|Rk|. By the Chernoff bounds,

Prob
[∣∣∣∣ |Ek(B, A)|

|B| × D
− |A|

|Rk|
∣∣∣∣ > ε

]
≤ 2−Ω(K·D·ε2).

The probability that relation (8) fails for a fixed k, some B ⊆ {0, 1}k of size |B| ≥ K
and some A ⊆ Rk is bounded by 2K · (N

K) · 2−Ω(K·D·ε2), because A can be chosen in 2K ways;
further, we can consider that B has size exactly K and that there are (N

K) possible choices of
such B’s. Since D ≥ 2n/ε2, the above probability is much less than (1/4)2−k. Therefore,
the probability that relation (8) fails for some k ∈ {1, . . . , n}, some B and some A is less
than 1/4.

Proof of Claim 4. We use a “coupon collector” argument. We consider the graph
Gn,n−log log n−c for some constant c to be fixed later. This graph is obtained from the
above function EXT as explained in Definition 2. The graph Gn,n−log log n−c is a bipartite
graph with left side L = {0, 1}n, right side R′ = {0, 1}n−log log n−c and each left node has
degree D = 2d. We show that, with probability ≥ 3/4, every right node in Gn,n−log log n−c
has degree at least Δ. The random process consists of drawing, for each x ∈ L and edge
y ∈ {0, 1}d, a random element from R′. Thus, we draw at random ND times, with re-
placement, from a set with |R′| “coupons”. Newman and Shepp [7] have shown that, to
obtain at least h times each coupon from a set of p coupons, the expected number of draws
is p log p + (h − 1)p log log p + o(p). By Markov’s inequality, if the number of draws is
4 times the expected value, we collect each coupon p times with probability 3/4. In our
case, we have p = 2n−log log n−c and h = Δ; it can be checked readily that, for an appropriate
choice of the constant c, 4(p log p + (h − 1)p log log p + o(p)) < ND, provided n is large
enough.
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Abstract: Deterministic Finite Cover Automata (DFCA) are compact representations of finite lan-
guages. Deterministic Finite Automata with “do not care” symbols and Multiple Entry Deterministic
Finite Automata are both compact representations of regular languages. This paper studies the bene-
fits of combining these representations to get even more compact representations of finite languages.
DFCAs are extended by accepting either “do not care” symbols or considering multiple entry DFCAs.
We study for each of the two models the existence of the minimization or simplification algorithms
and their computational complexity, the state complexity of these representations compared with
other representations of the same language, and the bounds for state complexity in case we perform
a representation transformation. Minimization for both models proves to be NP-hard. A method
is presented to transform minimization algorithms for deterministic automata into simplification
algorithms applicable to these extended models. DFCAs with “do not care” symbols prove to have
comparable state complexity as Nondeterministic Finite Cover Automata. Furthermore, for mul-
tiple entry DFCAs, we can have a tight estimate of the state complexity of the transformation into
equivalent DFCA.

Keywords: finite languages; deterministic finite cover automata; multiple entry automata; automata
with “do not care” symbols; similarity relations

1. Introduction

The concept of Cover Automata was first presented at a conference paper of Câmpeanu
et al. at the Workshop on Implementations and Applications of Automata (WIAA) in Rouen
(1999) [1,2] when the authors introduced a formal definition of a Deterministic Finite Cover
Automaton (DFCA) and a minimization algorithm. A cover language for a language L is a
superset L′ of L. If L is a finite non-empty language, then the length of the longest word in
L exists, and we can denote it with a natural number, l. A DFCA for a finite language L
is a deterministic finite automaton (DFA) accepting a cover language for L, such that the
accepted words that are not in L have their length greater than l.

During the last two decades, several papers used DCFAs for compact representation
of finite languages. Other efficient minimization algorithms were also published, for
example [3–8]. The concept of DFCA was also generalized to the nondeterministic version
in a paper presented at AFL 2014 in Szeged by Câmpeanu [9], followed by the journal
version [10].

Using nondeterminism, we can reduce the size of the automata recognizing some
languages, but minimizing such automata is known to be PSPACE-complete. Therefore,
several other intermediate representations of languages that maintain deterministic transi-
tions were proposed. That is why it is a must to study these extensions in case they are
applied to cover automata, which we are doing in Section 2. The first extension considered
here is to enhance DFCAs with “do not care” symbols, thus obtaining finite cover automata
with “do not care” symbols, denoted by  -DFCAs, in other words, finite cover automata
accepting partial words. Fischer and Paterson introduced partial words in [11] in 1974,
and the authors in [12,13] prove that the minimization of finite automata with “do not
care” symbols is NP-hard. As emphasized by Professor Solomon Marcus in [14], many

Axioms 2021, 10, 338. https://doi.org/10.3390/axioms10040338 https://www.mdpi.com/journal/axioms

85



Axioms 2021, 10, 338

researches from other areas studied the same concept, but in a different theoretical setup
with different notations. An example of such a paper related to partial words is [15], where
the authors show strong connections between graph problems and pattern matching with
some of the symbols in the patterns not known. In that paper, the “do not care” symbol
denoted here by  is denoted by φ. We will prefer the  notation because most references
use this notation and using a symbol that is not part of any alphabet is easier to identify.
Holzer et al. in [16,17] prove that “almost all problems related to partial word automata,
such as equivalence and universality, are already PSPACE-complete”. Some of their proofs
link non-deterministic automata problems with graph theory problems in a similar fashion
as it is done in [15]. As such, because the minimization of  -DFAs is hard, only the sim-
plification algorithms were developed for these types of finite machines, and an example
is presented in [13]. A simplification algorithm will eventually produce an equivalent
automaton with less states than the input automaton, but it is not guaranteed to be minimal.
In Section 3, we show that the same difficulties found for NFCA’s simplification are also
present for  -DFCAs, even though  -DFCAs can be considered a particular simpler class of
NFCAs. We show a simplification algorithm for  -DFCAs that has a better time complexity
than the one presented for  -DFAs in [13].

In [12], the authors give an example of automaton having limited nondeterminism—
there is only one transition with degree 2 for the same letter—which is hard to minimize.
The same argument can be used to prove that finding the minimal finite cover automaton
with “do not care” symbols is also a hard problem. We already know that NFCA minimiza-
tion is NP-hard, and details of why the previous proofs work as well for  -DFCAs are
presented in Section 3. In the same paper [12], the example of an automaton that is hard to
minimize accepts a finite language having all the accepted words of length at most 3. This
example is used to show that minimizing multiple entry deterministic automata (MEFA)
(When the number k of entries is known, we use the term k-DFA instead of MEFA) is hard.
In Section 4, we show that the method with exactly the same construction will also work
for Multiple Entry Finite Cover Automata (MEFCA), or k-entry DFCAs (k-DFCA), adding
the results on k-entry FA to the previous ones obtained in [18–21]. In Section 4, we show
that for binary alphabets, by transforming a k-DFCA into a minimal DFCA we can reach
the upper bound for NFA to DFCA transformation. Moreover, we show that the general
bound is reached for the state complexity of this transformation. Section 5 includes future
work and a list of open problems, and the conclusions are drawn in Section 6.

2. Cover Automata Extensions

2.1. Notations

The number of elements of a set T is #T, an alphabet is usually denoted by Σ, and
the set of words over Σ is Σ�. The length of a word w ∈ Σ� is the number of letters of
w, and it is denoted by |w|. Thus, if w = w1w2 · · ·wk, where wi ∈ Σ, for all 1 ≤ i ≤ k,
then |w| = k. In particular, when k = 0, we have a word with no letters, denoted
by ε, and |ε| = 0. We also use the following notations: Σ=l = {w ∈ Σ� | |w| = l},
Σ≤l = {w ∈ Σ� | |w| ≤ l}, Σ>l = {w ∈ Σ� | |w| > l}, Σ<l = {w ∈ Σ� | |w| < l}, and
Σ+ = {w ∈ Σ� | |w| �= ε} =

⋃
i>0

Σi.

A Deterministic Finite Automaton (DFA) is a quintuple A = (Q, Σ, δ, q0, F), where
Q is a finite non-empty set, the set of states, Σ is the alphabet, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ : Q × Σ −→ Q is the transition function. In case the
transition function δ is a partial function, denoted as δ : Q × Σ ◦−→ Q, we have a partial
DFA. In case δ is defined for all values of s ∈ Q and a ∈ Σ, the DFA is complete. If we do
not emphasize that the DFA is partial, then we understand that the DFA is complete. The
transition function δ can be extended in a natural way to Q × Σ∗ as follows: δ(q, ε) = q,
δ(q, wa) = δ(δ(q, w), a). For the rest of the paper we denote the extension δ, by δ. If the
transition function δ : Q × Σ ◦−→ Q is a partial function, then the automaton is incomplete;
otherwise, it is a complete one. A Nondeterministic Finite Automaton (NFA) is a quintuple
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A = (Q, Σ, δ, Q0, F), where all the elements are the same as for a DFA except, Q0 ⊆ Q is the
set of initial states and the transition function δ, which is now defined as δ : Q × Σ −→ 2Q.
In case of an NFA, for the transition function we have that for w ∈ Σ�, δ(Q0, w) ⊆ Q, and
δ(q, wa) =

⋃
s∈δ(q,w)

δ(s, a). In what follows, we will use the NFA’s with only one initial

state as it is defined in [22]. For any NFA A = (Q, Σ, δ, Q0, F) there is an equivalent NFA
A = (Q ∪ {q0}, Σ, δ′, q0, F), where q0 /∈ Q, δ′(s, a) = δ(s, a), for all s ∈ Q and a ∈ Σ, and
δ′(q0, a) =

⋃
s∈Q0

δ(s, a). Using the form for NFA with only one initial state, or initially

connected NFAs, simplify most of the definitions and results and the state complexity will
differ from the general case by just one state.

For multiple entry automata, we have a quintuple A = (Q, Σ, δ, Q0, F), where Q0 ⊆ Q.
In some cases [23], all the states are considered initial states, thus Q0 = Q, while in most
other cases, we consider k-entry DFA so the transition function δ is deterministic and
#Q0 = k [19].

A state s in a finite automaton A is reachable if there is a word w ∈ Σ� such that
δ(q0, w) = s. In case of a k-entry DFA or an NFA, the state q0 must be one of the initial
states. A state s is useful if there exists w ∈ Σ� such that δ(s, w) ∩ F �= ∅. In case of a
deterministic δ, we have that δ(s, w) ∈ F. A sink state or a dead state is a reachable state
with all its transitions being self-loops. All states that are not reachable and not useful can
be eliminated without changing the language accepted by the automaton. A deterministic
automaton with all states reachable and useful, except one sink state, is called a reduced
automaton. In the case of nondeterministic automata, an automaton is considered reduced
if all its states are both reachable and useful. In what follows, all automata are reduced
automata, so they do not have unreachable or unuseful states.

For an alphabet Σ, we can consider a new symbol  , called “do not care symbol”,
which can replace any letter of Σ. Thus, a word w over the alphabet Σ = Σ ∪ { }, will be
a partial word if |w| > 0. We say that the word u ∈ Σ� is weaker than v ∈ Σ� , denoted
u � v, if |u| = |v| and for all positions i, 1 ≤ i ≤ |u|, if ui ∈ Σ then ui = vi.

Let L be a regular language over the alphabet Σ ∪ { }, with σ : Σ −→ 2Σ a sub-
stitution such that σ(a) = {a} for all a ∈ Σ, and σ( ) ⊆ Σ. The regular language
L ⊆ Σ� is recognized by  -DFA, A = (Q, Σ , δ, q0, F), if L = L(A). Accordingly, a
 -DFA Aσ = (Q, Σ , δ, q0, F) associated with some substitution σ is defined as a DFA that
recognizes a partial language L , and it is also associated with the total language σ(L ).

A cover automaton for a finite language L is a DFA recognizing a cover language L′
such that L = L′ ∩ Σ≤l , for l being the length of the longest word in L. An l-NFCA A is
a cover automaton for the language L(A) ∩ Σ≤l , [10,24]. Any DFA A accepting a finite
language is a DFCA for L(A) with l = max{|w| | w ∈ L(A)}.

Two words, x and y, are similar with respect to the finite language L, written x ∼L y, if
for every w ∈ Σ≤l−max{|x|,|y|}, xw ∈ L, whenever yw ∈ L. In this definition, l is the length
of the longest words in L. The similarity relation on words is not an equivalence relation,
as it is only reflexive, symmetric, and semi-transitive.

If A is a DFCA for the finite language L, we can also define the level of a state as
the length of the shortest path from the initial state to that state, that is levelA(p) =
min{|w| | δ(q0, w) = p}. In case of multiple entry DFCAs, a state will have k lev-
els, i.e., levelA,i(p) = min{|w| | δ(q0,i, w) = p}, for all 1 ≤ i ≤ k, and levelA(p) =
(levelA,1(p), levelA,2(p), . . . , levelA,k(p)), where Q0 = {q0,1, . . . , q0,k}.

The following definition is in [10] (Definition 2):

Definition 1. In a NFCA A = (Q, Σ, δ, q0, F), two states p, q ∈ Q are similar, written s ∼A q,
if δ(p, w) ∩ F �= ∅ if δ(q, w) ∩ F �= ∅, for all w ∈ Σ≤l−max{level(p),level(q)}.

In case the NFCA A is understood, we may omit the subscript A, i.e., we write p ∼ q
instead of p ∼A q, also we can write level(p) instead of levelA(p).
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We consider only non-trivial NFCAs for L, i.e., NFCAs such that level(p) ≤ l for all
states p, and with all the states useful and reachable.

We define deterministic and nondeterministic state complexity of a language as:

sc(L) = min{#Q | A = (Q, Σ, δ, q0, F), is deterministic, complete, and L = L(A)}

and

nsc(L) = min{#Q | A = (Q, Σ, δ, q0, F), is non-deterministic and L = L(A)}.

In case of a finite language L, we can also define the cover complexity variants:

csc(L) = min{#Q | A = (Q, Σ, δ, q0, F), deterministic, complete, and L = L(A) ∩ Σ≤l}

and

ncsc(L) = min{#Q | A = (Q, Σ, δ, q0, F), non-deterministic, and L = L(A) ∩ Σ≤l}.

We have that ncsc(L) ≤ nsc(L) ≤ sc(L), and ncsc(L) ≤ csc(L) ≤ sc(L).
For an automaton A, we say that it is minimal if the number of states of A is equal

to its corresponding complexity; therefore, we can have minimal DFAs, NFAs, DFCAs,
NFCAs,  -DFAs, MEFAs, and MEFCAs. An algorithm which takes an automaton of one of
the above types as input and produces a minimal automaton of the same type as output is
called a minimization algorithm. In some cases, minimization algorithms are exponential.
Therefore, it is worth designing algorithms that will reduce the number of states, but they
may not produce a minimal automaton. In that case, we have simplification algorithms
that may reduce the number of states of the automaton used as input and produce an
equivalent one with possibly fewer states. Simplification algorithms are preferred for
cases when their computational complexity is significantly lower than the complexity of a
minimization algorithm.

For either minimization or simplification algorithms, the method that is used the most
is to merge two or more states into one state in such a way that the recognized language does
not change. By merging state p into state q we redirect all incoming transitions to state p to
incoming transitions to state q. For outgoing transitions in case of deterministic automata,
outgoing transitions from p are lost, but outgoing transitions from q are preserved. In case
of nondeterministic automata merging can be done in many different ways. For example,
the following definition is in [10] (Definition 3):

Definition 2. Let A = (Q, Σ, δ, q0, F) be an NFCA for the finite language L.

1. We say that the state q is weakly mergeable in state p if the automaton A′ = (Q′, Σ, δ′, q0, F′),
where Q′ = Q − {q}, F′ = F ∩ Q′, and

δ′(s, a) =

⎧⎨
⎩

δ(s, a), if δ(s, a) ⊆ Q′ and s �= p,
(δ(s, a) \ {q}) ∪ {p}, if q ∈ δ(s, a) and s �= p,
(δ(s, a) ∪ δ(q, a)) \ {q}, if s = p

is also an NFCA for L. In this case, we write p � q.
2. We say that the state q is strongly mergeable in state p, if the automaton A′ = (Q′, Σ, δ′, q0, F′),

where Q′ = Q − {q}, F′ = F ∩ Q′, and

δ′(s, a) =
{

δ(s, a), if δ(s, a) ⊆ Q′
(δ(s, a) \ {q}) ∪ {p}, if q ∈ δ(s, a),

is also an NFCA for L. In this case, we write p � q.

88



Axioms 2021, 10, 338

By Theorem 3 of [10], if two states are similar, they are also strongly mergeable;
therefore, we can reduce the size of that automaton.

Next, we analyze two possible extensions of cover automata. One of them is to allow
“do not care” symbols, while the other is to add multiple initial states. For these two types
of automata, first, we give the new definitions, then we analyze which results hold and
which ones need to be adapted to the new concepts.

2.2. Cover Automata for Partial Words

A DFCA with “do not care” symbols, written  -DFCA, is a cover automaton for the
finite language L ⊆ Σ≤l . Please note that in a  -DFA or  -DFCA, it is not required to have
for every state transitions with “do not-care” symbol  . Thus, partial automata are usually
presented as incomplete automata, namely, the transitions of “do not care” symbol to a
dead state are omitted.

The language recognized by a  -DFCA, A, over the extended alphabet Σ ∪ { } is
L′ = {w | Σ� ∪ { } | δ(q0, w) ∈ F and |w| ≤ l}, where l is the length of the longest
accepted word. We need to find the language over the original alphabet Σ, thus we apply
a substitution σ : Σ� ∪ { } −→ 2Σ to get σ(L) as the σ-language over Σ�, accepted by
the  -DFCA.

In [13], as well as in [25], for the substitution σ we can have σ( ) = Γ ⊆ Σ. In this
paper, we only consider the case where σ( ) = Σ, although most results are valid even if
σ( ) ⊂ Σ.

By replacing the “do not care” symbols in a  -DFCA with all letters in Σ, the  -DFCA
becomes a NFCA. Thus, if L is a language accepted by a minimal  -DFCA with n states,
then the “do not care” state complexity of L is dnccsc(L) = n. Since any DFCA can be also
considered a  -DFCA, we have that ncsc(L) ≤ dnccsc(L) ≤ dncsc(L) ≤ sc(L).

3. Cover Automata with “Do Not Care” Symbols

In our study, we only need to see how “do not care” symbols influence state similarity
and mergeability of two states, because everything that would be valid for NFCAs would
then apply to  -DFCAs. For strong mergeability, we always obtain deterministic transitions
because we remove some of the states’ transitions.

For a transition t = p α→ q, p, q ∈ Q, α ∈ Σ , and a substitution σ, we consider
σ(t) = {p a→ q|a ∈ σ(α)}, i.e., the set of all transitions that can be obtained by substituting
the letter α ∈ Σ with σ(α). If A = (Q, Σ , δ, q0, F) is a DFCA for L, we can denote by
Δ = {p α→ q | α ∈ Σ , δ(p, α) = q}, i.e., the set of all transitions in the automaton A and
Γ = {p a→ q | (p a→ q) ∈ σ(p α→ q), (p α→ q) ∈ Δ)}, the set of all transitions obtained from
the original ones by applying the substitution σ.

We now define the compatibility of two states in a  -DFCA.

Definition 3. Let A = (Q, Σ , δ, q0, F) be a  -DFCA. Two states p, q ∈ Q are σ-compatible for
the substitution σ, denoted by p ↑ q, if the set {(a, s) | (p a→ s) ∈ Γ} = {(a, s) | (q a→ s) ∈ Γ}.

Two states p, q ∈ Q are σ-strongly compatible, denoted p ⇒ q, if they are σ-compatible,
#{s | (p a→ s) ∈ Γ or (q a→ s) ∈ Γ} ≤ #Σ , and if there are s, r ∈ Q and a ∈ Σ such that

(p a→ s), (p a→ r) ∈ Γ, we either have r = s, or (p b→ s) ∈ Δ, for all b ∈ Σ, or (p b→ r) ∈ Δ, for
all b ∈ Σ.

When the substitution σ is understood or in case σ( ) = Σ�, it can be omitted and we say
that p and q are compatible, respectively, strongly compatible.

In other words, two states are compatible if by applying the substitution of “do not
care” symbols for the  -transitions, we obtain the same destination states from p and q
using the same letters in Σ. A weak merge, in the sense of Definition 2 can be used in case p
and q are compatible, but we need to check that this procedure won’t change the language.
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At the same time, two states are strongly compatible if we can take a destination state
s and all transitions with all letters to s can be replaced by only one transition using a “do
not care” symbol, and all other destinations can be reached by at most one symbol from Σ
for all the other transitions originating in p and q.

Thus, by merging state p with state q and considering the set T of consolidated
transitions, we can replace transitions in T with transitions T′ such that

1. we will have only one transition for each symbol in Σ and
2. by applying the substitution σ, we get the same consolidating transitions, i.e., σ(T) = σ(T′).

This new procedure can be defined for partial DFAs and it corresponds to the strongly
merging procedure in Definition 2.

Let us check the time complexity required to:

1. Decide if two states are strongly compatible, and
2. Define a method to merge two strongly compatible states.

To decide if two states are strongly compatible, we need to check the following:

1. Check if {(a, s) | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ} = {(a, s) | (q a→ s) ∈ σ(q α→
s), q α→ s ∈ Δ}. If no, then the states are not strongly compatible, so we do not attempt
to strongly merge them (Consolidate the outgoing transitions and modify them to get
deterministic transitions only).

2. The number of destinations #{s | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ} can be at most
#Σ . If not, the states are not strongly compatible.

3. If for a letter a ∈ Σ, there are at least three distinct states s1, s2, s3, such that (a, si) ∈
{(a, s) | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ}, for all 1 ≤ i ≤ 3, then the states are not
strongly compatible.

4. If there exists a letter a ∈ Σ, such that if there are two states s1, s2 with {(a, s1), (a, s2)} ⊆
{(a, s) | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ}, then we must have either for all b ∈ Σ \ {a},
b ∈ σ( ), (b, s1) ∈ {(a, s) | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ}, or for all b ∈ Σ \ {a},
b ∈ σ( ), (b, s2) ∈ {(a, s) | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ}, but not both.
If this condition is not satisfied, we cannot replace all the transitions on b ∈ σ( ) to
only one of the states s1, or s2 with the “do not care” symbol, and we do not obtain
determinism for the transitions in the merged state.

Because #{s | (p a→ s) ∈ σ(p α→ s), p α→ s ∈ Δ} ≤ #Σ , all these steps, 1 to 4, take
O(1) time. Of course, for step 4, we may have two choices for the resulting automaton,
but either one we choose, it takes constant time to do the merging. In step 4, if we have a
transition from state p to state s with a letter a ∈ Σ and a transition from state p to state s
with “do not care” symbol  , the transition from state p to state s with a letter a ∈ Σ can
be absorbed into transition from state p to state s with “do not care” symbol  , as it is a
redundant transition.

In Figure 1 are depicted all possible cases of merging two strongly compatible states,
in case the alphabet is Σ = {a, b}.

Remark 1. By strongly merging two states, we may obtain nondeterministic transitions. However,
in the case of strongly compatible states, redundant transitions can be absorbed into the do not care
symbol obtaining only deterministic ones.

For defining the similarity relation in a  -DFCA for two states p and q, we need the
states to be similar in the corresponding NFCA, as in Definition 2 of [10].

Hence, we get the following:

Definition 4. For a  -DFCA A = (Q, Σ , δ, q0, F) two states p and q are similar, denoted p ∼A q,
if for all w ∈ Σ≤l−max{levelA(p),levelA(q)} and a partial word u such that w ∈ σ(u), there is a partial
word v, such that w ∈ σ(v), and we also have that δ(p, u) ∈ F if δ(q, v) ∈ F.
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Figure 1. If the two states are strongly compatible and the result of strongly merging them is state p,
the second  transition will be from p to s and it may overlap with an a or a b transition, or a diamond
transition. In this case, we keep just one  transition and we drop the transitions on all letters b ∈ Σ
from p to s that are overlapping with it, to avoid nondeterminism. In all cases any non-deterministic
choice can be avoided by “absorbing” a letter transition into the “do not-care” symbol transition.

Lemma 1. Let  -DFCA A = (Q, Σ , δ, q0, F) be a  -DFCA. If two states p and q are similar,
then they can be either strongly merged eliminating redundant transitions, if they are strongly
compatible, or weakly merged otherwise.

Proof. Let L′ be the language of partial words accepted by A, L = σ(L) ⊆ Σ� the associated
finite language, and l the length of the longest words in L. Without any loss of generality,
we may assume that levelA(p) ≤ levelA(q). Let v ∈ Σ≤l such that δ(q, v) ∈ F, v = αv′,
α ∈ Σ . It follows that for every word w ∈ σ(v) and any xq ∈ σ(yq) such that δ(q0, yq) = q
and xqw ≤ l, we have that xqw ∈ L. We also have that |xq| ≥ level(q) ≥ level(p).

There is a partial word u, such that w ∈ σ(u) and δ(p, u) ∈ F because p ∼A q. Thus,
by redirecting all transitions from q to p (the weakly merging method), we obtain a new
automaton A′ for which xqw is in the associated language of A′.

If we have a word w in the associated language of A′, it means that there is a partial
word z accepted by A′ such that w ∈ σ(z). If for every prefix of π of z, δ′(q0, π) �= p, then
δ(q0, π) �= p, and z is accepted by A, therefore w ∈ L.

We have that δ′(p, v) ∈ F because δ′(q′0, z) ∈ F in case δ(q0, π) = p for some π with
z = πv. Since p ∼A q, for y ∈ σ(v), there is a partial word u, such that y ∈ σ(u) and
δ(q, u) ∈ F. We have either δ(q0, π) = p, or δ(q0, π) = q because A′ is obtained from A by
weakly merging q into state p. In both cases, w ∈ σ(πu) ∪ σ(πv), and either πu ∈ L(A), or
πv ∈ L(A), so w ∈ L.

Hence, the language associated with the automaton A′ does not change in case we do
a weak merging of similar states.

If p and q are strongly compatible, let w = aw′, a ∈ σ( ). Thus, either δ′(p, a) = δ(q, a),
or δ′(p,  ) = δ(q, a). Consequently, the word xqw is also in the language associated with
the automaton A′.

If w is in the associated language of A′, then there is a partial word z such that w ∈ σ(z).
In case δ(q0, π) = p for some π with z = πv, because δ′(q′0, z) ∈ F, then δ′(p, v) ∈ F and
w = xy, y ∈ σ(v).
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Since p ∼A q, for y ∈ σ(v), there is a partial word u, such that y ∈ σ(u), and
δ(q, u) ∈ F.

Because A′ is obtained from A by strongly merging q into state p, we have either
δ(q0, π) = p, or δ(q0, π) = q. In both cases, w ∈ σ(πu) ∪ σ(πv), and either πu ∈ L(A), or
πv ∈ L(A), so w ∈ L.

Let us see how we can use the above results to minimize  -DFCAs.
In Section 2 of [12], the authors show that NFA minimization is NP-hard even in the

case when the NFAs recognize finite languages, and they have limited non-determinism,
i.e., the automata have at most one non-deterministic transition. Moreover, Corollary 7
on page 208 of [12], states that the minimization problem is NP-hard even if the input
is given as a DFA. Their proof is based on the fact that the normal set cover problem is
NP-complete [26,27]. Hence, if you consider these sets as paths, which corresponds to
words, in an NFA, finding a minimal NFA is equivalent to finding a minimal set cover. For
proving it in case of limited nondeterminism, they need a normal set cover B of a set C,
i.e., for each c ∈ C, there is a subset Bc of B such that c = ∪X∈Bc X the elements in Bc are
pairwise disjoint. The partition B is separable normal set basis for C if B can be written
as a disjoint union of two other non-empty sets B1 and B2 such that for each c ∈ C, the
subcollection Bc contains at most one element of B1 and at most one element of B2. To do
that, they use a modified version of a known reduction from vertex cover to normal set
basis (Lemma 4 in [28]), showing that the second problem is NP-hard. Using this result,
they show that some instances of normal set basis sets in the partition will be pairwise
disjoint and you can have just one state with two a-transitions. For (C, s), a separable
normal set basis they consider, the language considered is L = {acb | c ∈ C, b ∈ c}, over a
growing alphabet Σ = {a} ∪⋃1≤i≤n{ci, bi1 , . . . , bi,ni}.

All accepted words are of length 3.
Therefore, for our case, we can use the same proof in two ways:

1. Either showing that  -DFAs satisfy the conditions of Definition 1 page 201 of [12] and
asking that the minimum length of the longest accepted string is at least 3, or

2. Use the same input as they use and replace the a symbol, that generates the nondeter-
ministic transition, with a “do not care” symbol, so we get a  -DFA. In this case, the
only change would be that L = {αcb | α ∈ Σ, c ∈ C, b ∈ c}, and we would get several
instances of the same problem, only with the first letter changed. Finding a minimal a
normal set cover will only involve letters 2 and 3 for all paths from the start state to
the final state, therefore, we can follow the same proof, but ignoring the part where
they need to show that the minimal finite automaton is not ambiguous—in our case,
that’s not necessary. One can check that the proof works without any other change for
 -DFCAs, considering that the length of the longest accepted word is at least l, with
l ≥ 3.

It follows that:

Theorem 1. Minimizing  -DFCAs is NP-hard.

Therefore, we need to seek simplification algorithms rather than minimization al-
gorithms for  -DFCAs. We already know [1,7,24,29] that all minimization algorithms
for DFCAs are based on determining all similar states and merge them. For testing the
similarity, one method [24,29], is to compute the gap function for two states p and q, where
gap(p, q) is the length of the shortest word that will distinguish between the states p and
q. For  -DFCAs, this means that we need to determine the length of the shortest word w
such that:

1. if w ∈ σ(u), u ∈ Σ≤l−max{level(p),level(q)}
 , and δ(q, u) ∈ F, then for any partial word

v �= u, v ∈ Σ≤l−max{level(p),level(q)}
 such that w ∈ σ(v), we have that δ(p, v) /∈ F.
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2. if w ∈ σ(v), v ∈ Σ≤l−max{level(p),level(q)}
 , and δ(p, v) ∈ F, then for any partial word

u �= v, u ∈ Σ≤l−max{level(p),level(q)}
 such that w ∈ σ(u), we have that δ(q, u) /∈ F.

It follows that:

1. if δ(p, a) = r and δ(q, a) = s and gap(r, s) = k, then gap(p, q) ≤ k + 1, and
2. if δ(p, a) = r and δ(q,  ) = s, and gap(r, s) = k, then gap(p, q) ≤ k + 1.

Hence, we deduce that the gap function can be recursively computed as follows:
gap(p, q) = 1 + min{gap(r, s) | r = δ(p, α), s = δ(q, β), α, β ∈ Σ and we have α =

β, or α ∈ σ(β), or β ∈ σ(α)}.
Because the number of transitions from p and q is bounded by #Σ , computing the

gap function for a DFCA can be done in constant time for any pair p, q, if we know the gap
function for all pairs r, s, such that r = δ(p, α), s = δ(q, β), α, β ∈ Σ .

Two state would be then similar if gap(p, q) ≥ l − max(level(p), level(q). With these
observations and the fact that all known minimization algorithms for DFCAs are based on
computing the similarity relation, we can modify any of the known minimizing algorithms
for DFCAs [1,4,7,29] or l-DFCAs [24], to obtain a simplification algorithm for  -DFCAs,
without changing their computational complexity. Since the minimization algorithms for
DFCAs are at most O(n4) [1,10], for all these simplification algorithms the time complexity
will be at most O(n4) as well, which is better than the time complexity of the simplification
algorithm proposed in [13]. Accordingly, we have obtained the following result:

Theorem 2. For every DFCA minimization algorithm based on merging similar states having
the run time complexity of O( f (n)), there is a simplification  -DFCA algorithm having the same
complexity of O( f (n)).

A language L′ is σ-minimal partial language for L if for any other language L” such
that σ(L”) = L, there is no word w ∈ L′ such we can find x ∈ L” with x is weaker than w
and x �= w.

For example, L′ = { a } is σ-minimal partial language for L = {aaa, aab, baa, bab}.
Indeed, if L′′ is σ-partial language for L, x ∈ L′′ and w ∈ L′ are such that x � w, then we
either have x =    or x = w. In the first case, aba ∈ σ(L′′) �= L and in the second case
x �= w is false. Therefore, L′ is a σ-minimal partial language for L.

It must be noted that the simplification algorithm proposed in [13] obtains an approxi-
mation of the σ-minimal partial language L′ for the regular language L, and obtaining this
σ-minimal partial language is NP-hard [13]. The cover language L′, for the finite language
L that we obtain by applying the simplification algorithm, may not be a cover language
for the σ-minimal partial language Lσ, i.e., L′ ∩ Σ≤l �= Lσ, but it is a σ-partial language
that may have a lower state complexity than the original DFCA for L and σ(L′) is a cover
language for L, i.e., σ(L′) ∩ Σ≤l = L. Please note that Lσ is the weakest partial language
such that σ(Lσ).

In Figure 2 for the language L = {a, b, aa, ab, ba, aaa, aab, aba, abb, baa, bab}, max{|w| |
w ∈ L} = l = 3, we have the partial language L1 = { , ba, a ,  a , a  }, recognized by the
 -automaton A1 = ({a, b}, {0, 1, 2, 3, 4}, δ1, 0, {2, 4}), with useful transitions δ1(0, a) = 1,
δ1(0,  ) = 2, δ1(0, b) = 3, δ1(1,  ) = 4, δ1(2, a) = 0, δ(3, a) = 2, δ1(4,  ) = 2, that is a
σ-minimal partial cover language for L, i.e., σ(L1) ∩ Σ≤l = L, and the words in L1 are the
weakest possible with this property. We have that the csc(L1) = 5.

The language L2 recognized by the  -automaton A2 = ({a, b}, {0, 1, 2}, δ2, 0, {2}), with
useful transitions δ2(0, a) = 2, δ2(1, a) = 2, δ2(0, b) = 1, δ2(2,  ) = 2, is a σ-partial cover
language for L, i.e., σ(L2) ∩ Σ≤l = L, and csc(L2) = 3. L2 ∩ Σ≤3 = {a, b, ba, a , a  , ba }
and it contains 6 words, but L1 ∩ Σ≤3 = { , ba, a , a  ,  a } has only 5 words.

The example above shows that it is impossible to obtain a cover language for the
σ-partial minimal language that has, at the same time, the minimal cover state complexity.
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Figure 2. Automaton A1, left, and automaton A2, right. L(A1) is a cover language for the
σ-minimal partial language for L, and L(A2) is a cover partial automaton for L, where L =

{a, b, aa, ab, ba, aaa, aab, aba, abb, baa, bab}.

4. Multiple Entry DFCAs

For multiple entry DFCAs, we can have two possible flavors of extensions. The first
one and the easiest to consider is the same maximum length for all words accepted by the
m-DFCA. The second approach is to consider for each initial state a different maximum
length. Therefore, we can use the following definition:

Definition 5. A multiple entry DFCA with m initial states, i.e., an m-DFCA, is a structure
A = (Q, Σ, δ, Q0, F, Λ), such that Q, Σ, δ, and F are the same as for usual DFCAs, Q0 is the
set of initial states, #Q0 = m, and Λ = (l1, . . . , lm) is a sequence of m integers representing the
maximum accepted length for each initial state. If Q0 = {q0,1, . . . q0,m} and Λ = (l1, l2, . . . , lm),
the language accepted by the m-DFCA A is

L(A) = {x ∈ Σ� | δ(q0,i, x) ∈ F and |x| ≤ li, for some 1 ≤ i ≤ m}.

We have the condition L(A) = ∪m
i=1Li, where Li = L(Ai) ∩ Σ≤li , Ai = (Q, Σ, δ, q0,i, F).

The automata Ai are subautomata induced by the m-DFCA A.
We observe from the above definition that the set of initial states has the size m. Thus,

by replacing the set Q0 with an m-tuple Q0 = (q0,1, . . . q0,m), if we assign two possible
lengths to an initial state, it does not change the accepted language. Assume that the initial
states q0,i and q0,j are the same, i.e., q0,i = q0,j. The automaton will then accept all the words
of length less than max{li, lj}, meaning that we can eliminate the one with the lowest
maximum length, getting an (m − 1)-DFCA.

In the example given by Björklund and Martens [12], they prove that minimizing
m-DFAs is NP-hard, using a construction with a finite language. Because any m-DFA for a
finite language is also an m-DFCA, by setting li to be the length of the longest accepting
walk starting at q0,i, it follows that

Theorem 3. Minimizing m-DFCA is an NP-hard problem.

We can reduce the size of m-DFCA efficiently in a similar way to the previous case for
partial automata, obtaining a simplified m-DFCA by merging states. To avoid changing the
language recognized by an m-DFCA A, the simplest solution is to merge similar states in
all the subautomata Ai with the corresponding maximum length li. Any other merge of
states will modify at least one of the languages involved, which will not guarantee that
their union stays the same as before. Therefore, we can obtain the following definition for
similarity in m-DFCAs:

Definition 6. Let A = (Q, Σ, δ, Q0, F, Λ) be an m-DFCA for the finite language L. Two states p
and q are similar if p and q are similar in all cover automata Ai = (Q, Σ, δ, q0,i, F, λi), 1 ≤ i ≤ m.

The simplification algorithms for m-DFCAs can be obtained as before by modifying
existing DFA-minimization algorithms, therefore in what follows we will focus on state
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complexity problem, namely, on constructing a minimal DFCA for the same language, and
evaluating the state complexity of this transformation.

It is known that for NFA to DFA transformation for finite languages, [30], in case
of a binary alphabet, the upperbound is 2

n
2 +1 − 1 if n is even, and 3 · 2

n−1
2 − 1, if n is

odd, n being the number of states of the NFA. Moreover, it is reached by the language
Lm,n = {a, b}≤ma{a, b}n when n = m, or n = m − 1, so sc(Lm−1,m−1) = 2m+1 − 1, and
sc(Lm,m−1) = 3 · 2m − 1.

Because the length of the longest word is m + n + 1, the minimal nondeterministic
finite automaton recognizing this language will have at least m + n + 2 states, while the
minimal DFA will have at least m + n + 3 states, [30], Theorem 2. A minimal (m + 1)-DFA
for Lm,n has the same number of states as the NFA, plus the sink state, therefore, is minimal
as a m-DFA. A minimal (m + 1)-DFCA for Lm,n has the same number of states as the NFA
minus one, because the sink state is similar with state 0, and that is the only possible
similarity. We can see that the minimal nondeterministic cover automaton for Lm,n has
only n + 2 states. For this NFCA for Lm,n, the initial state is obtained by merging all the
m + 1-entries into one, so a minimal (m + 1)-DFCA must have m states more than the
NFCA, that is m + n + 1.

Starting from an m-DFA for a finite language, we can construct an equivalent NFA by
observing that there is one initial state q0,0 with no incoming transition, and for each initial
state q0,i ∈ Q0, if δ(q0,i, a) = si, we can add the transitions from q0,0 with a in si, and we
delete the sink state. This way, for the m-DFA to DFA transformation, we obtain the limits
for NFA to DFA transformation, but we need to consider the extra sink state for m-DFAs.

Therefore, we just proved the following result:

Theorem 4. In case of a binary alphabet, the upperbound for a n-state m-DFCA to DFCA trans-
formation is 2

n−1
2 +1 − 1 if n is odd, and 3 · 2

n−2
2 − 1, if n is even, and the bound is reached.

Figure 3 shows a 5-DFA with 11 states for the language L4,4. This 5-DFA is a minimal
multi-entry DFA. Any nondeterministic finite automaton recognizing L4,4 must have at
least 11 states which is the length of the longest word in L4,4 plus 1. A DFA, multi-entry or
not must have a sink state, because the language is finite, therefore the automaton depicted
in Figure 3a is minimal. The corresponding multi-entry DFCA, Figure 3b has the dead
state d similar with state 0, so we can reduce the size by one state. The NFCA in Figure 3c
recognizes L4,4, and it has only 6 states. The general case for Lm,n−1 is depicted in Figure 4.
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Figure 3. Example of 5-DFA having 11 states for L4,4 (a), the corresponding 5-DFCA (b), and the
corresponding NFCA (c). A corresponding equivalent minimal DFA for L4,4 has 25 − 1 states and a
minimal DFCA has 16 states.

The upperbound for m-DFA to DFCA transformation is the same as the NFA to DFCA
transformation, but there is one difference. We have to consider that in the m-DFA, we
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must have one more state as dead state because the language is finite, while in the NFA
that state can be eliminated, as it is not useful.

a) ���� ���� ���� ����0 1 2 3
�� �� �� �� ��

� � � ������m �a, b a, b a, b a, b a �� ��m + 1 � �a, b a, b a, b ����d
�� ���� �	m + n �

� �b

�

︸ ︷︷ ︸
m states

︸ ︷︷ ︸
n states

b)
���� ���� ���� ���� ����0 1 2 3
�� �� �� �� ��

� � � �a, b a, b a, b a, b
m

a �� ��� m + 1 � �a, b a, b�� ���� �	m + n

� �
b

�

� �
a, b

�

︸ ︷︷ ︸
m states

︸ ︷︷ ︸
n states

c)

���

a, b����� a���� ���� ���� ���� ����0 1 2 3 4� � � � �a, b a, b a, b a, b �a, b �� ���� �	n

︸ ︷︷ ︸
n states

Figure 4. Example of m-DFA having m + n + 2 states for Lm,n−1 (a), the corresponding m-DFCA (b),
and the corresponding NFCA (c).

5. Discussion

This paper investigates the feasibility of extending the definition of cover automata to
include the cases when we allow multiple entries or “do not care” symbols. Because both
operations induce a degree of nondeterminism, existing minimization algorithms working
on DFAs may not give the smallest automaton in the new class, so we need to verify their
run time complexity, and their correctness.

The previous automata constructions prove that minimization problems for certain
nondeterministic automata are NP-hard. We checked that the same examples could also be
used without any significant modification for cover automata. Hence, the results hold. The
proof details for these results were omitted, as it can be found in [12] for NFAs and m-DFAs.
For cover automata, we only needed to add the “do not care” symbols to substitute one
letter in one transition for the first case and to add the maximum length for both cases.

In the previous studies [31,32] on state complexity of partial words DFAs we can find
particular classes of languages where minimization bounds can be established. The general
case is still open.

I proved that there are simplification algorithms with the same time complexity as
existing minimizing DFCA algorithms. I have also computed the state complexity bound
for m-DFCA to DFCA transformation.

In the case of DFCAs, the idea was floating around even in the 1960s [33,34], but no
formal definition was given until 1998. That is the reason why until 2001, there was no
result published on this topic, but several papers followed after the publication of [1]. In
this paper, I give the required formal definitions for two DFCA extensions, and I also prove
some essential results necessary to start any further investigation.

There are several questions that one may ask; for example, the following questions
might be of interest:

1. Finding the state complexity of operations on  -DFCAs.
2. Finding the state complexity of operations on with multiple entry DFCA.
3. Considering or exclusive nondeterministic finite cover automata, XNFCA.
4. Considering multiple entry XDFCA.
5. State complexity of XOR-star, XOR-concatenation for finite languages.
6. State complexity of XOR-reverse. Algebraic properties of finite languages and XOR

acceptance—same length and different lengths.
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7. Considering multiple lengths for multiple entry DFAs.

The study of state complexity of operations with finite languages represented by
finite deterministic automata was started in [35] and later on in [36]. Later on, the state
complexity of operations using nondeterministic automata were considered in [5,37–39].
It would be interesting to see where would the state complexity bounds for operations
on these extensions that introduce a low level of nondeterminism would fit: closer to the
deterministic results or closer to the non-deterministic models.

For each of these extensions, we need to study the following aspects:

1. Analyze the complexity of the membership problem.
2. Investigate the existence of complexity of minimization/simplification algorithms.
3. Find and evaluate the dynamic complexity and state complexity of transforming the

new automata model into a known one.
4. Find bound for state complexity of operations done using the new representation model.

6. Conclusions

Two extensions are formally defined for the cover automata model of representing
finite languages. Fundamental properties of these extensions were checked and proved,
followed by the methodology at the end of Section 5. This article also proves that the
minimization of  -DFCAs and m-DFCAs is NP-hard, and it shows a process for obtaining
simplification algorithms based on merging states in Theorem 2. The upper bound for
m-DFCA to DFCA transformation is computed and proved in Theorem 4. The Discussion
section also includes open problems and future research directions.
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A Hypergraph Model for Communication Patterns

Gabriel Ciobanu

Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 Iasi, Romania; gabriel@info.uaic.ro
† In Memoriam Solomon Marcus (1925–2016).

Abstract: The article deals with interaction in concurrent systems. A calculus able to express specific
communication patterns is defined, together with its abstract control structures. A hypergraph model
for these structures is presented. The hypergraphs are able to properly express the communication
patterns, providing a fully abstract model for the pattern calculus. It is also proved that the hy-
pergraph model preserves the operational reductions of processes from pattern calculus and of the
actions from the control structures.

Keywords: process calculus; communication patterns; control structures; hypergraph model

1. Introduction

Mathematics has sometimes been called a ‘science of patterns’ [1], meaning that
patterns are at the heart of mathematics. The nice description of mathematics as the
“study of patterns” was given by G.H. Hardy in his book A Mathematician’s Apology: “A
mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas”. Essentially, patterns are
regularities that we can perceive. Regarding the skilful ability of applying a pattern to
multiple contexts, Solomon Marcus was a wonderful example of applying knowledge
patterns to surprising contexts.

Since mathematics and technology have developed a fruitful relationship over past few
decades, patterns have been investigated recently in modern fields. New communication
technologies have changed the computing landscape, and the Internet is now a platform
for large scale distributed programming. Nowadays, we deal with global computation
based on multiple interactions with the environment (instead of isolated systems). Con-
currency is essential now in computer science; web servers handle multiple simultaneous
clients, and cloud servers allow several simultaneous applications and users. Message-
passing represents a way in which concurrent processes communicate (a process is an
instance of a running program). In software architecture, a messaging pattern describes
how two different processes communicate with each other. In telecommunications, a mes-
sage exchange pattern describes the messages required by a communications protocol or
the message flow between parties involved in communication. For example, when navi-
gating on Internet (representing the channel), a web browser (the communicating party)
uses the communication protocol HTTP to request a web page from the server (another
communicating party). In general, the interaction between clients and servers follows a
specific communication pattern: the client sends a request, the server returns a response,
and so on. Such an exchange of messages is only an example of communication patterns.
More complicated behaviours appear due to the concurrent interaction of communicating
processes; this complexity reveal the necessity to find new ways to describe and build up
concurrent systems. The communicating parties in such a concurrent system should have a
common language to communicate; moreover, they should follow the rules defined in a
communications protocol. There exits already a calculus able to express communication
patterns called join calculus; it is used as a basis for some programming languages (JoCaml
and Cω), but also as a basis for libraries (embedded in C#, F# and Scala). This calculus
is based on ‘join patterns’, namely rules describing how a certain combination of values
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sent through multiple channels triggers a specific reaction and removes the values from
the communication channels. Interaction in such a calculus is provided by sharing the
communication channels names.

We introduce the pattern calculus as a weak version of join calculus. After presenting
the control structures for pattern calculus, we provide a hypergraph model of these struc-
tures. The hypergraphs are able to express properly the communication patterns described
by the pattern calculus. It is proved that the hypergraph model is fully abstract for the
calculus; a model is fully abstract if all observationally equivalent processes represent the
same object in the model, meaning also that processes with different behaviour are not
mapped to the same hypergraph. Furthermore, there is a correspondence between the
dynamics of the processes of the calculus and their hypergraph representation.

2. Pattern Calculus

The pattern calculus is inspired by the join calculus [2], a calculus proposed to underlie
programming languages for distributed systems. A presentation of the join calculus can
also be found in [3]. The specific construction of the new calculus is the definition of
communication channels: def u〈y〉 � P in Q. To elucidate the simplicity of this syntactical
construction, let us say that it could be expressed in the π-calculus [4] by using several
syntactical constructions: def u〈y〉 � P in Q = νu.(!u(y).P | Q).

The syntax of the pattern calculus is defined by using a countable set X of names
ranging over u, v, x, . . ., together with ũ, ṽ, x̃, ỹ . . . ranging over finite strings of names.
We use P, Q, R, . . . ranging over the set of processes. The set P of processes contains an
empty process 0, as well as an output message u〈v〉 sending v by using a channel u. The
process P | Q describes the parallel composition of processes P and Q. The communication
between processes is achieved by the channel definition def u〈v〉 � P in Q indicating that the
interaction of processes P and Q is realized by the channel u (which is created only for the
communication between them).

Definition 1. The processes of our calculus are defined by the following syntax:

P ::= 0 | u〈v〉 | P | Q | def u〈v〉 � P in Q .

In def u〈v〉 � P in Q, both u and v are bound. The scope of v is P, while the scope of u
is given by the whole definition. It is worth noting that only this definition binds names.
The free names are defined inductively by fn(0) = ∅, fn(u〈v〉) = {u, v}, fn(P | Q) =
fn(P) ∪ fn(Q), and fn(def u〈v〉 � P in Q) = (fn(Q) ∪ (fn(P)− {v}))− {u}.

A substitution {y/x}P replaces all the free occurrences of name x in P by name y;
name-capture is avoided by using the α-conversion (defined in the standard way).

Definition 2. A structural congruence ≡ ⊆ P × P is defined as the smallest congruence
satisfying the following axioms:

• def u〈v〉 � P in Q ≡ def u〈t〉 � {t/v}P in Q, if t �∈ fn(P)
• def u〈v〉 � P in Q ≡ def w〈v〉 � {w/u}P in {w/u}Q if v �∈ {u, w} and w �∈ fn(P | Q)
• Q1 | def u〈v〉 � P in Q2 ≡ def u〈v〉 � P in (Q1 | Q2) if u �∈ fn(Q1)
• def u〈v〉 � P1 in def w〈t〉 � P2 in Q ≡ def w〈t〉 � P2 in def u〈v〉 � P1 in Q

if u �= w, u �∈ fn(P2), and w �∈ fn(P1)
• P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R).

The evolution of the processes is given by a reduction relation → .
For the specific construct def u〈y〉 � P in Q, the reduction is described mainly by:

def u〈y〉 � P in Q | u〈v〉 → def u〈y〉 � P in Q | {v/y}P.
More exactly, process Q can send a name v along the channel u, while process P waits

at the other end of channel u to receive certain channel names. When the name v is received,
process Q continues its execution in parallel with process P in which all free occurrences
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of y are replaced by v, i.e., {v/y}P. Then, channel u remains open to receive other names.
The formal definition is given below.

Definition 3. The reduction relation →⊆ P ×P is defined as the smallest relation satisfying:

r1: def u1〈v1〉 � Q1 in def u2〈v2〉 � Q2 in . . . def un〈vn〉 � Qn in (P | ui〈v〉) →
def u1〈v1〉 � Q1 in def u2〈v2〉 � Q2 in . . . def un〈vn〉 � Qn in (P | {v/vi}Qi)

if {ui+1, . . . , un} ∩ (fn(Qi) ∪ {ui}) = ∅ with i ∈ [n] and n ≥ 1

r2:
P1 → P2

def u〈v〉 � Q in P1 → def u〈v〉 � Q in P2

r3:
P1 ≡ Q1, Q1 → Q2 and Q2 ≡ P2

P1 → P2
.

It is worth noting that there is no rule for parallel composition in the definition of
this reduction. The following (easy-to-prove) results show that such a rule for parallel
composition is just a consequence.

Lemma 1. Considering any substitution σ = {x/y},
P ≡ Q implies σP ≡ σQ, and P1 → P2 implies σP1 → σP2.

Proposition 1. P1 → P2 implies Q | P1 → Q | P2.

3. Hypergraphs

In the theory of distributed systems, Petri nets [5] and π-nets [6] provide both algebraic
and graphical descriptions for concurrent systems. Compared to Petri nets, our hypergraph
model for pattern calculus has a flexible structure; compared to π-nets, the hypergraph
model is simpler, but still able to describe a large class of processes.

Following [7], we present the definitions for hypergraphs and some standard related
notions such as isomorphism and contractions (on nodes and on edges). For a set S of
hyperedges and a set V of vertices, it is defined an incidence relation E ⊆ S × V. A rooted
hypergraph is a tuple H = 〈S, V, E, s〉, where s ∈ S is the root hyperedge. For a hypergraph H,
we use the notations SH , VH , EH and sH .

The graphical presentation of a hypergraph H is provided by:

- A hyperedge t represented as an oval with its name t outside.
- A vertex v represented as a point having the name v .
- An element (t, v) of the incidence relation represented as lines from the hyperedge t

to the vertex v; “v lies on t” whenever (t, v) ∈ EH .
- The root indicated by an arrow pointing to the hyperedge sH .

Example 1. Considering a hypergraph with SH = {s, t, t′}, VH = {v, w, w′}, EH = {(s, v),
(t, v), (t, w), (t′, v), (t′, w′)} and sH = {t}, various graphical representations are depicted in
Figure 1. The left representation uses only lines of non-zero length, while the right one uses only
lines of zero length. The representation in the middle is a compromise (between lengths) to provide a
reasonable picture.

v

t’

v
t’v

t’

s

t t

s

s

t

w w’

w w’

w w’

Figure 1. Graphical representations of a hypergraph.

For a given rooted hypergraph H and a nonempty subset W ⊆ VH of nodes, a
contraction on vertices is specified by the hypergraph H/W with the same root hyperedge
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(sH/W = sH), the same hyperedges (SH/W = SH), but with VH/W = (VH \ W) ∪ {v} for a
fresh v �∈ VH and EH/W = (EH \ SH × W) ∪ { (t, v) | {t} × W ∩ EH �= ∅ }.

For a given rooted hypergraph H and a nonempty subset T ⊆ SH of hyperedges, a
contraction on hyperedges is specified by the hypergraph H/T with the same set of vertices
(VH/T = VH), but with SH/T = (SH \ T) ∪ {t} for a fresh t �∈ SH , and EH/T = (EH \ T ×
VH) ∪ { (t, v) | T × {v} ∩ EH �= ∅ }. Regarding the root hyperedge sH/T , if sH ∈ T then
sH/T = t, otherwise it remains the same sH .

Example 2. Considering two vertices v, w ∈ VH, we denote by Hv=w the contraction on vertices
in H/{v, w}. For two hyperedges s, t ∈ SH, we denote by Hs=t the contraction on hyperedges in
H/{s, t}. For the hypergraph H used in the previous example, the contraction on vertices Hw=w′
and the contraction on hyperedges Ht=t′ are depicted in Figure 2.

v

t’

s

t

v’

s

s’

w w’

v

Figure 2. A contraction on vertices (left), and a contraction on hyperedges (right).

The isomorphism between two hypergraphs H and H′ is defined by two bijections
φS : SH → SH′ and φV : VH → VH′ which satisfy φS(sH) = sH′ and (s, v) ∈ EH if and
only if (φS(s), φV(v)) ∈ EH′ for all s ∈ SH and v ∈ VH . In such a situation, we say that
hypergraphs H and H′ are isomorphic (denoted by H = H′).

The isomorphism relation is an equivalence over hypergraphs. The names of hy-
peredges and vertices do not play any role in the isomorphism of hypergraphs. For the
graphical representation of an equivalence class, it can be used any hypergraph (after
removing the names of hyperedges and vertices).

4. Control Structure for Pattern Calculus

Milner proposed the control structures and action calculi as a unifying framework for
the models of concurrent systems in [8]. A control structure defines the static aspects of
a process calculus, while the corresponding action calculus describes various models of
interactive behaviours. Regarding the behaviour, distinct action calculi differ only in their
generators (called controls). Thus, the previously mentioned Petri nets and π-nets, as well
as our hypergraph model, differ only in their generators. Analyzing these generators, it
is possible to compare and classify the formal models for concurrent systems. Moreover,
by selecting some specific generators, it is possible to combine existing models in order to
obtain a new desired model.

The control structures presented here follow the definitions of [9]. Essentially, a control
structure is defined by a set of terms, an equational theory, and a reduction relation over
terms. This fact is condensed in the following expression:

ControlStructure = Actions + EquationalTheory + Reaction.

From an algebraic viewpoint, a control structure is a symmetric strict monoidal cate-
gory with an additional structure [10]. The morphisms of the symmetric strict monoidal
category correspond to the terms of the control structure; they are denoted by a, b, c, . . . and
called actions.

The control structure uses an enumerable set X of names together with a signature
(P,K) in which P is a set of prime arities and K is a set of control operators. Every name
x ∈ X has a prime arity p ∈ P, and this is denoted by x : p. Each control K ∈ K has an arity
rule. In addition to the specific control operators, every control structure contains a datum
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operator 〈x〉 : ε → p (where x : p) and a discard operator ωp : p → ε, as well as an abstractor
operator abx a : p ⊗ m → p ⊗ n (where x : p and a : m → n). The equational theory is the
same for all control structures. To express the evolution, a set R of reaction rules is used;
reaction rules are ordered pairs of terms with the same arity.

Each action a possesses a surface surf(a) = {x ∈ X | ∃p.x : p and abx a �= idp ⊗ a}.
The equality = between actions is valid whenever the equation a = b could be proved

by using the axioms of the control structure; otherwise a �= b.
We present here some results used later in the proofs of our results.

Proposition 2. The following properties hold in any control structure:

surf(〈x〉) ⊆ {x} surf(ω) = ∅ surf(a ⊗ b) ⊆ surf(a) ∪ surf(b).

The following properties hold in any control structure, whenever x �∈ surf(c):

surf(id) = ∅ surf(p) = ∅ surf(a · b) ⊆ surf(a) ∪ surf(b).

Additionally,
1. pn,ε = idn
2. a ⊗ b = b ⊗ a (a, b : ε → ε)
3. (x)(c · b) = (idp ⊗ c) · (x)b (x : p)
4. (x)(c ⊗ b) = c ⊗ (x)b (c : ε → n)
5. (x)(a ⊗ c) = (x)a ⊗ c
6. (z)(y)a = (pp,q ⊗ idm) · (y)(z)a (z : p, y : q, a : m → n)

Proposition 3. The following properties are provable in any control structure:
1. [x/y](a · b) = [x/y]a · [x/y]b;
2. [x/y](a ⊗ b) = [x/y]a ⊗ [x/y]b;
3. [x/y](z)a = (z)[x/y]a if z �∈ {x, y};
4. [x/y](x)a = (w)[x/y][w/x]a if w �∈ surf(a) ∪ {x, y} and x �= y.

We define the control structure for our pattern calculus, emphasizing on its actions.
We also present a graphical representation for its processes. The monoid (N,+, 0) of the
natural numbers provides the arity monoid of the control structure, with m, n, k, . . . ranging
over natural numbers, and [n] = {1, 2, . . . , n} denoting the first n natural numbers. The
(unique) prime arity 1 is associated with each name x ∈ X . For a number k and a function
f : [n] → Y, we define k ⊕ f : {k + 1, . . . k + n} → Y by (k ⊕ f )(i) = f (i − k). Following [9],
the control structure is defined over the set X = {zi | i ∈ N} of names using x, y, u, . . . as
meta-variables.

Regarding the actions of the control structure for our calculus, they are given by
enriched hypergraphs called shortly pattern nets. An action a = (H, Σ) with arity m → n is
given by a hypergraph H together with its decoration Σ = 〈I, O, λ, τ, μ〉 consisting of:

- An input function given by an injective function I : [m] → VH ;
- An output function given by a function O : [n] → VH ;
- A label function given by an injective function λ : Z → VH , where Z ⊆ X ;
- A transition relation τ ⊆ VH × VH ;
- A resource function μ : SH → NVH×VH .

We can look at these functions as multisets over SH × VH × VH . We denote by {x, y, y}
a multiset μ over {x, y, z} such that μ(x) = 1, μ(y) = 2 and μ(z) = 0; we use the standard
multiset operations over these functions: (%,−, . . .).

We extend in a straightforward way the isomorphism and contraction introduced
for hypergraphs. Considering ai = (Hi, Σi) with Σi = 〈Ii, Oi, λi, τi, μi〉 (i ∈ [2]), the
nets a1 and a2 are isomorphic if there is a hypergraph isomorphism (φS, φV) between H1
and H2 such that φV ◦ I1 = I2, φV ◦ O1 = O2, φV ◦ λ1 = λ2, and (v, v′) ∈ τ1 if and only if
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(φV(v), φV(v′)) ∈ τ2, together with μ1(s, v, v′) = μ2(φS(s), φV(v), φV(v′)) for all s ∈ SH1

and v, v′ ∈ VH1 .

For the graphical representations of the pattern nets, let us consider a generic net
a = (H, Σ) with Σ = 〈I, O, λ, τ, μ〉; the hypergraph H is presented by assuming that its
lines are of length zero (see Figure 1):

- Whenever I(i) = v, O(k) = v′ and λ(x) = w, an input label (i) is assigned to vertex v,
an output label 〈k〉 to vertex v′, and a name label x to vertex w;

- Whenever (v, v′) ∈ τ, an arc is drawn outside any oval from vertex v to vertex v′;
- Whenever μ(s, v, v′) > 0, v and v′ lie on the same hyperedge s: (s, v), (s, v′) ∈ EH ;

more exactly, whenever μ(s, v, v′) = k > 0, we have k arcs inside the oval s from vertex
v to vertex v′.

As for hypergraphs, isomorphic nets are not distinguished. The names of vertices and
hyperedges do not play any role in the isomorphic nets, and so the graphical representation
of an isomorphic (equivalence) class of pattern nets is given by any net of the class after
removing the names of vertices and hyperedges.

The control structure operators for our pattern nets are:
- datum 〈x〉γ = (H, Σ) : 0 → 1 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈∅, {1 &→ v}, {x &→ v}, ∅, ∅〉

x

<1>

- discard ωγ = (H, Σ) : 1 → 0 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈{1 &→ v}, ∅, ∅, ∅, ∅〉

(1)

The three controls generating the pattern nets are:
– νγ = (H, Σ) : 0 → 1 defined by
H = 〈{s}, {v}, {(s, v)}, s〉 and
Σ = 〈∅, {1 &→ v}, ∅, ∅, ∅〉 <1>

– outγ = (H, Σ) : 2 → 0 defined by
H = 〈{s}, {v, v′}, {(s, v), (s, v′)}, s〉 and
Σ = 〈∅, {1 &→ v, 2 &→ v′}, ∅, ∅, {(s, v′, v)}〉

<2>

<1>

– If a = (H, Σ) : 1 → 0 and Σ = 〈I, O, λ, τ, μ〉, then
defγ a = (H′, Σ′) : 1 → 0, where

H′ = 〈SH ∪ {t}, VH ∪ {v}, EH ∪ {(t, v)}, t〉, for fresh
t �∈ SH and v �∈ VH , and
Σ′ = 〈{1 &→ v}, O, λ, τ ∪ {(v, I(1))}, μ〉.

The equational theory is defined by the following operators.
Let us consider the nets ai = (Hi, Σi) with Σi = 〈Ii, Oi, λi, τi, μi〉 and λi : Zi → VHi ,

where i ∈ [2]. Without loss of generality, we consider sH1 = sH2 = s. (SH1 − {sH1}) ∩
(SH2 − {sH2}) = ∅ and λ1(z) = λ2(z) ∀z ∈ Z1 ∩ Z2, as well as (VH1 − λ1(Z1 ∩ Z2)) ∩
(VH2 − λ2(Z1 ∩ Z2)) = ∅.

– Identity idγ
m = (H, Σ) : m → m defined by

H = 〈{s}, {vi|i ∈ [m]}, {(s, vi)|i ∈ [m]}, s〉 and
Σ = 〈{i &→ vi|i ∈ [m]}, {i &→ vi|i ∈ [m]}, ∅, ∅, ∅〉

(m) <m>. . .<1>(1)

– Symmetry pγ
m,n = (H, Σ) : m + n → n + m defined by

H = 〈{s}, {vi|i ∈ [m + n]}, {(s, vi)|i ∈ [m + n]}, s〉
Σ = 〈{i &→ vi|i ∈ [m + n]}, {i &→ vm+i|i ∈ [n]} ∪
{n + i &→ vi|i ∈ [m]}, ∅, ∅, ∅〉

(1) <n+1> . . . (m) <n+m>

. . . (m+n) <n>(m+1) <1>

– Tensorial product a1 ⊗ a2 : m + k → n + l of two nets a1 : m → n and a2 : k → l is
obtained by combining them as follows: in a2, the input labels are incremented by m and
the output labels are incremented by n; then overlap the two roots and the vertices of a1
and of a2 with the same name. Formally, a1 ⊗ a2 = (H, Σ), where

H = 〈SH1 ∪ SH2 , VH1 ∪ VH2 , EH1 ∪ EH2 , s〉 and
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Σ = 〈I1 ∪ m ⊕ I2, O1 ∪ n ⊕ O2, λ1 ∪ λ2, τ1 ∪ τ2, μ1 % μ2〉.
– Composition a1 · a2 : m → k of two nets a1 : m → n and a2 : n → k is obtained by

combining them as follows: overlap the two roots and vertices of a1 and a2 with the same
name; for every i ∈ [n], overlap the vertex labelled 〈i〉 in a1 with the vertex labelled (i)
in a2, and then remove the labels (i) and 〈i〉.

Formally, a1 · a2 = (H, Σ)O1(1)=I2(1),...,O1(n)=I2(n), where

H = 〈SH1 ∪ SH2 , VH1 ∪ VH2 , EH1 ∪ EH2 , s〉 and

Σ = 〈I1, O2, λ1 ∪ λ2, τ1 ∪ τ2, μ1 % μ2〉.
– Abstractor. Let us consider a net a = (H, Σ) : m → n with Σ = 〈I, O, λ, τ, μ〉.
Then abγ

x a : 1 + m → 1 + n is obtained from a in the following steps: increment all
the input and output labels by 1; assign both the input label (1) and the output label 〈1〉 to
vertex x, and then remove the label x. Formally, abγ

x a = (H, Σ′), where

Σ′ = 〈{1 &→ λ(x)} ∪ 1 ⊕ I, {1 &→ λ(x)} ∪ 1 ⊕ O, λ − {x &→ λ(x)}, τ, μ〉.

In general, these operators over the pattern nets are well-defined. However, the
abstractor abγ

x a is not well-defined if a vertex labelled by x is not contained in the net a. To
avoid such a situation, we adjust the definition of the above operators by

op(a, . . .)
de f
= opγ(a ⊗γ i, . . .)⊗γ i,

where op stands for each operator defined above, and i = (H, Σ) is the pattern net

H = 〈{s}, {vi|i ∈ N}, {(s, vi)|i ∈ N}, s〉

Σ = 〈∅, ∅, {zi &→ vi|i ∈ N}, ∅, ∅〉.
Following [9], it is not difficult to prove the following result.

Proposition 4. The operators 〈x〉, ω, ν, out, def, id, p, ·, ⊗ and abx define a control structure.

The actions of this control structure determine the hypergraph model for the pattern
calculus. We actually use the derived control operators:

outu
de f
= (〈u〉 ⊗ id1) · out;

defu a
de f
= 〈u〉 · def a.

The reaction ↘ is the smallest relation over the pattern nets closed under equality,
composition, tensorial product and abstraction which satisfies the control rule

outu ⊗ defu a ↘ a ⊗ defu a.

The corresponding graphical description of the reaction rule is given by:
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In this diagram, the scope of the def operator is represented as a gray patch; due to the
properties derived from the syntax of our calculus, this patch can actually be determined
from the hypergraph structure.

The operators, actions and reaction complete the definition of our nets.

It is worth noting that the def operator can be generalized, namely we can have a more
general control operator defu1...um by defu1...um a = (〈u1〉 ⊗ . . . ⊗ 〈um〉) · def a. Moreover,
the corresponding graphical representation is extended by using m external arcs to connect
the new root hyperedge to the old one. The corresponding reaction is generalized in the
following way: outu1 ⊗ . . . ⊗ outum ⊗ defu1...um a ↘ a ⊗ defu1...um a.

We present some proprieties of the pattern nets. The proofs of these properties are
tedious (but easy), based mainly on definitions and the structure of the nets.

Lemma 2. We have the following properties:

1. surf(outu) ⊆ {u} and surf(defu a) ⊆ {u} ∪ surf(a).
2. For any substitution σ = {x/y}, [x/y]outu = outσu and [x/y]defu a = defσu [x/y]a.
3. If a ↘ b, then there exists b′ such that b = b′ and surf(b′) ⊆ surf(a).
4. 〈v〉 · outw ⊗ defu (y)a ↘ b iff u = w and b = [v/y]a ⊗ defu (y)a.
5. a1 ⊗ a2 ⊗ a3 ↘ c iff

• either there exists i ∈ [3] such that ai ↘ b and c = b ⊗ aj ⊗ ak, or
• there exist i, j ∈ [3] such that ai ⊗ aj ↘ b and c = b ⊗ ak, where [3] = {i, j, k}.

6. Whenever u �∈ surf(b), b ⊗ defu a ↘ c iff b ↘ b′ and c = b′ ⊗ defu a.
7. ν · (x)a ↘ b iff a ↘ a′ and b = ν · (x)a′.

5. Fully Abstract Hypergraph Model of the Pattern Calculus

This section presents the main results of the paper. These results reveal the hyper-
graphs as a fully abstract model for the pattern calculus. According to [11], a model is fully
abstract if all observationally equivalent terms in the object language represent the same
object in the model. This means that processes with different behaviour are not mapped to
the same hypergraph. Moreover, we prove a correspondence between the reduction of the
processes and the reduction of their hypergraph representation.

Definition 4. The semantic relationship [[ − ]] between the pattern calculus processes and the
pattern nets is defined by structural induction as follows:

1. [[ 0 ]] = id0 ;
2. [[ u〈v〉 ]] = 〈v〉 · outu ;
3. [[ P | Q ]] = [[ P ]] ⊗ [[ Q ]] ;
4. [[ def u〈y〉 � P in Q ]] = ν · (u)( [[ Q ]] ⊗ defu (y) [[ P ]] ) .

We prove some results involving this semantic relationship [[ − ]] .

Lemma 3. For every process P ∈ P , we have [[ P ]] : 0 → 0 .

Proof. A simple induction on the structure of P. In the case of our nets, 0 is the neutral
element of the arity monoid (N,+, 0). For case (4) of the previous definition, we use the
discard operator ω instead of ωp. Since 1 is the only prime arity p of the monoid (N,+, 0),
we omit the index without any risk of confusion.

Lemma 4. For every process P ∈ P , we have surf( [[ P ]] ) ⊆ fn(P).

Proof. By induction on the structure of P (the proof uses Lemma 2).

Lemma 5. For two names x, y ∈ X and a process P ∈ P , we have [[ {x/y}P ]] = [x/y] [[ P ]] .
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Proof. Induction on the definition of the substitution over processes (and Lemma 5).

Proposition 5. If P ≡ Q, then [[ P ]] = [[ Q ]] .

Proof. Induction on the definition of structural congruence. Let us consider the relation

∼= {(P, Q) ∈ P | P ≡ Q and [[ P ]] = [[ Q ]] }.

Proof is reduced to the equality between ∼ and ≡. Obviously, ∼⊆≡. We show that ∼
satisfies the axioms from the definition of ≡. Since ≡ is the smallest relation satisfying
these axioms, it follows that ≡⊆∼, and so ∼=≡. Thus, to prove that ≡⊆∼, it is enough to
verify that ∼ satisfies the axioms from the definition of ≡.

The cases P | 0 ≡ P, P | Q ≡ Q | P and (P | Q) | R ≡ P | (Q | R) are rather trivial,
based on the fact that id0 is neutral for tensor product, together with the commutativity
and associativity of tensor product ⊗ in the equational theory (of the control structures).

Let us consider the other cases.

– def u〈v〉 � P in Q ≡ def u〈t〉 � {t/v}P in Q, if t �∈ fn(P).
Assume t �∈ fn(P). By Lemma 4, it follows that t �∈ surf( [[ P ]] ). Then,
[[ def u〈t〉 � {t/v}P in Q ]] =

= ν · (u)( [[ Q ]] ⊗ defu (t) [[ {t/v}P ]] ) by Lemma 5
= ν · (u)( [[ Q ]] ⊗ defu (t)[t/v] [[ P ]] )
= [[ def u〈v〉 � P in Q ]] .

– def u〈v〉 � P in Q ≡ def w〈v〉 � {w/u}P in {w/u}Q if v �∈ {u, w}, w �∈ fn(P | Q).
Assume v �∈ {u, w} and w �∈ fn(P | Q); then, u �= v and w �∈ fn(P) ∪ fn(Q) ∪ {v}. By
Lemma 4, w �∈ surf( [[ P ]] ) ∪ surf( [[ Q ]] ). If u = w, then the result is trivial.
Let us assume that u �= w.
[[ def w〈v〉 � {w/u}P in {w/u}Q ]] =

= ν · (w)( [[ {w/u}Q ]] ⊗ defw (v) [[ {w/u}P ]] ) by Lemma 5
= ν · (w)([w/u] [[ Q ]] ⊗ defw (v)[w/u] [[ P ]] ) by Proposition 3 and Lemma 2
= ν · (w)[w/u]( [[ Q ]] ⊗ defu (v) [[ P ]] ) by Lemma 2
= [[ def u〈v〉 � P in Q ]] .

– Q1 | def u〈v〉 � P in Q2 ≡ def u〈v〉 � P in (Q1 | Q2) if u �∈ fn(Q1).
Assume u �∈ fn(Q1). By Lemma 4, u �∈ surf( [[ Q1 ]] ). Then,
[[ def u〈v〉 � P in (Q1 | Q2) ]] =

= ν · (u)( [[ Q1 ]] ⊗ [[ Q2 ]] ⊗ defu (v) [[ P ]] ) by Lemma 3 and Proposition 2
= [[ Q1 | def u〈v〉 � P in Q2 ]] .

– def u〈v〉 � P1 in def w〈t〉 � P2 in Q ≡ def w〈t〉 � P2 in def u〈v〉 � P1 in Q
if u �= w, u �∈ fn(P2), and w �∈ fn(P1).

Assume u �= w, u �∈ fn(P2) and w �∈ fn(P1). By Lemma 4, it follows that u �∈ surf( [[ P2 ]] )
and w �∈ surf( [[ P1 ]] ). Furthermore, by Lemma 2, w �∈ surf(defu (v) [[ P1 ]] .
[[ def u〈v〉 � P1 in def w〈t〉 � P2 in Q ]] =

= ν · (u)(ν · (w)( [[ Q ]] ⊗ defw (t) [[ P2 ]] )⊗ defu (v) [[ P1 ]] ) by Proposition 2
= ν · (u)(ν · (w)( [[ Q ]] ⊗ defw (t) [[ P2 ]] ⊗ defu (v) [[ P1 ]] )) by Proposition 2
= (ν ⊗ ν) · (u)(w)( [[ Q ]] ⊗ defw (t) [[ P2 ]] ⊗ defu (v) [[ P1 ]] ) = X.

In a similar way, we obtain [[ def w〈t〉 � P2 in def u〈v〉 � P1 in Q ]] =
= (ν ⊗ ν) · (w)(u)( [[ Q ]] ⊗ defu (v) [[ P1 ]] ⊗ defw (t) [[ P2 ]] ) = Y.

To complete the proof, it remains to prove that X = Y.
X = by Proposition 2
= (ν ⊗ ν) · p1,1 · (w)(u)( [[ Q ]] ⊗ defw (t) [[ P2 ]] ⊗ defu (v) [[ P1 ]] )
= p0,0 · (ν ⊗ ν) · (w)(u)( [[ Q ]] ⊗ defu (v) [[ P1 ]] ⊗ defw (t) [[ P2 ]] )
= Y.

Theorem 1. If P → Q, then [[ P ]] ↘ [[ Q ]] .
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Proof. By induction on the definition of P → Q.
* r1: P → Q is

def u1〈y1〉 � Q1 in def u2〈y2〉 � Q2 in . . . def un〈yn〉 � Qn in R | ui〈v〉 →

def u1〈y1〉 � Q1 in def u2〈y2〉 � Q2 in . . . def un〈yn〉 � Qn in R | {v/yi}Qi, where

{ui+1, . . . , un} ∩ (fn(Qi) ∪ {ui}) = ∅, i ∈ [n], and n ≥ 1. According to Lemma 2 and
Lemma 4, {ui+1, . . . , un} ∩ surf(defui (yi) [[ Qi ]] ) = ∅. According to Proposition 2 and
using the compatibility of ↘ with composition, tensorial product and abstraction,
[[ P ]] = ν · (u1)(defu1 (y1) [[ Q1 ]] ⊗

=
...

ν · (ui)(defui (yi) [[ Qi ]] ⊗
...

ν · (un)(defun (yn) [[ Qn ]] ⊗ [[ R ]] ⊗ 〈v〉 · outui ) . . .) . . .)

= ν · (u1)(defu1 (y1) [[ Q1 ]] ⊗ by Lemma 2
...

ν · (ui−1)(defui−1 (yi−1) [[ Qi−1 ]] ⊗
ν · (ui)(
ν · (ui+1)(defui+1 (yi+1) [[ Qi+1 ]] ⊗

...
ν · (un)(defun (yn) [[ Qn ]] ⊗ [[ R ]] ⊗ 〈v〉 · outui ⊗ defui (yi) [[ Qi ]] )...)))...)

↘ ν · (u1)(defu1 (y1) [[ Q1 ]] ⊗ by Lemma 5
...

ν · (ui)(defui (yi) [[ Qi ]] ⊗
...

ν · (un)(defun (yn) [[ Qn ]] ⊗ [[ R ]] ⊗ [v/yi] [[ Qi ]] ) . . .) . . .)

= [[ Q ]] .

* r2: P → Q is def u〈v〉 � R in P′ → def u〈v〉 � R in Q′ with P′ → Q′.
By induction, [[ P′ ]] ↘ [[ Q′ ]] . Since ↘ is closed under composition, tensor and

abstraction, it follows that

[[ P ]] = ν · (u)( [[ P′ ]] ⊗ defu (v) [[ R ]] ) ↘ ν · (u)( [[ Q′ ]] ⊗ defu (v) [[ R ]] ) = [[ Q ]] .

* r3: P → Q with P ≡ P′, P′ → Q′ and Q′ ≡ Q.
By the induction hypothesis, [[ P′ ]] ↘ [[ Q′ ]] . By Proposition 5, we have [[ P ]] =

[[ P′ ]] and [[ Q′ ]] = [[ Q ]] . Since ↘ is closed under equality, then [[ P ]] ↘ [[ Q ]] .

Lemma 6. 〈v〉 · outu ⊗ [[ P ]] ↘ a iff [[ P ]] ↘ b and a = 〈v〉 · outu ⊗ b.

Proof. (⇐) A consequence of the fact that the reaction is closed under tensorial product
and equality.
(⇒) Induction on the structure of P.

– If P is the empty process or a message, then 〈v〉 · outu ⊗ [[ P ]] �↘ . Therefore, the
statement of the lemma is obviously true because its premise is not satisfied.

– If P is a parallel composition P1 | P2, then 〈v〉 · outu ⊗ [[ P1 ]] ⊗ [[ P2 ]] ↘ a. Since
〈v〉 · outu �↘ , it follows (Lemma 2) that one of the following cases remains possible:

(1) [[ Pi ]] ↘ b′ and a = 〈v〉 · outu ⊗ b′ ⊗ [[ Pj ]] ;
(2) [[ Pi ]] ⊗ [[ Pj ]] ↘ b′ and a = 〈v〉 · outu ⊗ b′;
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(3) 〈v〉 · outu ⊗ [[ Pi ]] ↘ a′ and a = a′ ⊗ [[ Pj ]] , where {i, j} = [2].

Note that by Proposition 2, we have [[ P ]] = [[ Pi ]] ⊗ [[ Pj ]] .
In case (1), [[ P ]] ↘ b′ ⊗ [[ Pj ]] , and we consider b = b′ ⊗ [[ Pj ]] . In case (2), we take
b = b′. In case (3), by induction, we have [[ Pi ]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′. Thus,
[[ P ]] ↘ b′ ⊗ [[ Pj ]] , considering b = b′ ⊗ [[ Pj ]] .

– If P is a definition def w〈t〉 � P1 in P2, then we may assume without losing gener-
ality that w �∈ {u, v}. It follows from Lemma 2 together with Proposition 2 that
ν · (w)(〈v〉 · outu ⊗ [[ P2 ]] ⊗ defw (t) [[ P1 ]] ) ↘ a. By Lemma 2, 〈v〉 · outu ⊗ [[ P2 ]] ⊗
defw (t) [[ P1 ]] ↘ a′ and a = ν · (w)a′. Since 〈v〉 · outu �↘ , defw (t) [[ P1 ]] �↘ and
〈v〉 · outu ⊗ defw (t) [[ P1 ]] �↘ , it follows (according to Lemma 2) that one of the
following cases remains possible:

(1) [[ P2 ]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′ ⊗ defw (t) [[ P1 ]] ;
(2) [[ P2 ]] ⊗ defw (t) [[ P1 ]] ↘ b′ and a′ = 〈v〉 · outu ⊗ b′;
(3) 〈v〉 · outu ⊗ [[ P2 ]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[ P1 ]] .

In case (1), [[ P ]] = ν · (w)( [[ P2 ]] ⊗ defw (t) [[ P1 ]] ) ↘ ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ).
Considering b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ), it satisfies the requirements (according to
Proposition 2). In case (2), we have [[ P ]] ↘ ν · (w)b′, and consider b = ν · (w)b′. In
case (3), by induction hypothesis, [[ P2 ]] ↘ b′ and a′′ = 〈v〉 · outu ⊗ b′. Thus, [[ P ]] ↘
ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ), and consider b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ).

Lemma 7. [[ P ]] ⊗ [[ Q ]] ↘ a iff one of the following conditions holds:

1. [[ P ]] ↘ b and a = b ⊗ [[ Q ]] ;
2. [[ Q ]] ↘ b and a = [[ P ]] ⊗ b .

Proof. (⇐) A consequence of the fact that the reaction is closed under tensorial product
and equality.
(⇒) Induction on the structure of P.

– If P is the empty process 0, then condition 2 holds obviously.
– If P is a message, then condition 2 holds by Lemma 6.
– If P is a parallel composition P1 | P2, then [[ P1 ]] ⊗ [[ P2 ]] ⊗ [[ Q ]] ↘ a.

By Lemma 2, it follows that one of the following cases is possible:

(i) [[ Q ]] ↘ b′ and a = [[ P1 ]] ⊗ [[ P2 ]] ⊗ b′;
(ii) [[ Pi ]] ↘ b′ and a = b′ ⊗ [[ Pj ]] ⊗ [[ Q ]] ;
(iii) [[ Pi ]] ⊗ [[ Pj ]] ↘ b′ and a = b′ ⊗ [[ Q ]] ;
(iv) [[ Pi ]] ⊗ [[ Q ]] ↘ a′ and a = a′ ⊗ [[ Pj ]] , where {i, j} = [2].

According to Proposition 2, [[ P ]] = [[ Pi ]] ⊗ [[ Pj ]] . In case (i), condition 2 holds by
taking b = b′. In case (ii), we have [[ P ]] ↘ b′ ⊗ [[ Pj ]] . Then, condition 1 holds by taking
b = b′ ⊗ [[ Pj ]] . In case (iii), condition 1 holds by taking b = b′.

In case (iv), by induction, we distinguish two sub-cases:

(a) [[ Pi ]] ↘ b′ and a′ = b′ ⊗ [[ Q ]] ;
(b) [[ Q ]] ↘ b′ and a′ = [[ Pi ]] ⊗ b′.

For (a), we obtain [[ P ]] ↘ b′ ⊗ [[ Pj ]] , and condition 1 holds for b = b′ ⊗ [[ Pj ]] .
For (b), condition 2 holds for b = b′. In both sub-cases, some action commutations are
required; they are possible according to Proposition 2.

– If P is a definition def w〈t〉 � P1 in P2, then we may assume without losing generality
that w �∈ fn(Q). By Lemma 4, w �∈ surf( [[ Q ]] ). According to Proposition 2,
we have ν · (w)( [[ P2 ]] ⊗ defw (t) [[ P1 ]] ⊗ [[ Q ]] ) ↘ a. By Lemma 2, [[ P2 ]] ⊗
defw (t) [[ P1 ]] ⊗ [[ Q ]] ↘ a′ and a = ν · (w)a′. Since defw (t) [[ P1 ]] �↘ , it follows
from Lemma 2 that one of the following cases remains possible:

(i) [[ P2 ]] ↘ b′ and a′ = b′ ⊗ defw (t) [[ P1 ]] ⊗ [[ Q ]] ;
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(ii) [[ Q ]] ↘ b′ and a′ = [[ P2 ]] ⊗ defw (t) [[ P1 ]] ⊗ b′;
(iii) [[ P2 ]] ⊗ defw (t) [[ P1 ]] ↘ b′ and a′ = b′ ⊗ [[ Q ]] ;
(iv) [[ P2 ]] ⊗ [[ Q ]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[ P1 ]] .

In case (i), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ).
In case (ii), by Lemma 2, there exists b such that surf(b) ⊆ surf( [[ Q ]] ) and b = b′;

condition 2 holds for this b. In case (iii), condition 1 holds for b = ν · (w)b′.
In case (iv), we distinguish two sub-cases:

(a) [[ P2 ]] ↘ b′ and a′′ = b′ ⊗ [[ Q ]] ;
(b) [[ Q ]] ↘ b′ and a′′ = [[ P2 ]] ⊗ b′.

For (a), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ). For (b), there exists b
such that surf(b) ⊆ surf( [[ Q ]] ) and b = b′ (by Lemma 2); condition 2 holds for this b.
Proposition 2 is used in all cases and sub-cases.

Lemma 8. [[ P ]] ⊗ defu (y) [[ Q ]] ↘ a iff one of the following conditions holds:

1. [[ P ]] ↘ b and a = b ⊗ defu (y) [[ Q ]] ;
2. P ≡ R | u〈v〉 and a = [[ R | {v/y}Q ]] ⊗ defu (y) [[ Q ]] ;
3. P ≡ def v1〈t1〉 � R1 in def v2〈t2〉 � R2 in ...def vn〈tn〉 � Rn in (R | u〈vn〉), and

a = ν · (v1)(defv1 (t1) [[ R1 ]] ⊗
ν · (v2)(defv2 (t2) [[ R2 ]] ⊗

...
ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R | {vn/y}Q ]] ⊗ defu (y) [[ Q ]] )...)),

where vi �∈ fn(Q) ∪ {u} for every i ∈ [n].

Proof. (⇐) If condition 1 holds, then the implication follows as a consequence of the fact
that the reaction is closed under tensorial product and equality. If condition 2 holds, then
we have
[[ P ]] ⊗ defu (y) [[ Q ]] = by Proposition 5
= [[ R ]] ⊗ 〈v〉 · outu ⊗ defu (y) [[ Q ]] by Lemma 2
↘ [[ R ]] ⊗ [v/y] [[ Q ]] ⊗ defu (y) [[ Q ]] by Lemma 5
= a.

If condition 3 holds, it follows by Lemma 2 and Lemma 4 that vi �∈ surf(defu (y) [[ Q ]] )
for every i ∈ [n]. Then,
[[ P ]] ⊗ defu (y) [[ Q ]] = by Propositions 5 and 2
= ν · (v1)(defv1 (t1) [[ R1 ]] ⊗ by Lemma 2

...
ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R ]] ⊗ 〈vn〉 · outu ⊗ defu (y) [[ Q ]] ) . . .)
↘ ν · (v1)(defv1 (t1) [[ R1 ]] ⊗ by Lemma 5

...
ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R ]] ⊗ [vn/y] [[ Q ]] ⊗ defu (y) [[ Q ]] ) . . .)

= a.
(⇒) Induction on the structure of P.

– If P is the empty process 0 or a message w〈v〉 with w �= u, then [[ P ]] ⊗ defu
(y) [[ Q ]] �↘ . The statement of the lemma is obviously true as its premise is not satisfied.
On the other hand, if P is a message u〈v〉, then

[[ P ]] ⊗ defu (y) [[ Q ]] ↘ by Lemma 2
↘ [v/y] [[ Q ]] ⊗ defu (y) [[ Q ]] ↘ a by Lemma 5
= 0 | {v/y}Q ⊗ defu (y) [[ Q ]] .

Furthermore, P ≡ 0 | u〈v〉. Consequently, condition 2 holds.
– If P is a parallel composition P1 | P2, then [[ P1 ]] ⊗ [[ P2 ]] ⊗ defu (y) [[ Q ]] ↘ a.

Since defu (y) [[ Q ]] �↘ , it follows from Lemma 2 that one of the following cases remains
possible:
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(i) [[ Pi ]] ↘ b′ and a = b′ ⊗ [[ Pj ]] ⊗ defu (y) [[ Q ]] ,
(ii) [[ Pi ]] ⊗ [[ Pj ]] ↘ b′ and a = b′ ⊗ defu (y) [[ Q ]] ,
(iii) [[ Pi ]] ⊗ defu (y) [[ Q ]] ↘ a′ and a = a′ ⊗ [[ Pj ]] , where {i, j} = [2].

According to Proposition 2, we obtain [[ P ]] = [[ Pi ]] ⊗ [[ Pj ]] . In case (i), we obtain
[[ P ]] ↘ b′ ⊗ [[ Pj ]] , and condition 1 holds for b = b′ ⊗ [[ Pj ]] . In case (ii), condition 1
holds for b = b′. In case (iii), we distinguish three sub-cases:

(a) [[ Pi ]] ↘ b′ and a′ = b′ ⊗ defu (y) [[ Q ]] ;
(b) Pi ≡ R′ | u〈v〉 and a′ = [[ R′ | {v/y}Q ]] ⊗ defu (y) [[ Q ]] ;
(c) Pi ≡ def v1〈t1〉 � R1 in . . . def vn〈tn〉 � Rn in (R′ | u〈vn〉) and

a′ = ν · (v1)(defv1 (t1) [[ R1 ]] ⊗
...

ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R′ | {vn/y}Q ]] ⊗ defu (y) [[ Q ]] ) . . .),
where vk �∈ fn(Q) ∪ {u} for every k ∈ [n].

In sub-case (a), we obtain [[ P ]] ↘ b′ ⊗ [[ Pj ]] . Therefore, condition 1 holds for
b = b′ ⊗ [[ Pj ]] . For (b), we have P ≡ R′ | Pj | u〈v〉. By Proposition 2, a = [[ R′ | Pj |
{v/y}Q ]] ⊗ defu (y) [[ Q ]] . Thus, condition 2 holds. For sub-case (c), we may assume
(without losing generality) that vk �∈ fn(Pj) for every k ∈ [n]. By Lemma 4, it follows
that vk �∈ surf( [[ Pj ]] ) for every k ∈ [n]. Then P ≡ def v1〈t1〉 � R1 in . . . def vn〈tn〉 �
Rn in (R′ | Pj | u〈vn〉), and
a = by Proposition 2
= ν · (v1)(defv1 (t1) [[ R1 ]] ⊗

...
ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R′ | Pj | {vn/y}Q ]] ⊗ defu (y) [[ Q ]] ) . . .).

Thus, condition 3 holds.
– If P is a definition def w〈t〉 � P1 in P2, then we can assume without losing generality

that w �∈ fn(Q) ∪ {u}. By Lemma 4 and Lemma 2, w �∈ surf(defu (y) [[ Q ]] ). It follows
from Proposition 2 that [[ P ]] ⊗ defu (y) [[ Q ]] = ν · (w)( [[ P2 ]] ⊗ defw (t) [[ P1 ]]
⊗defu (y) [[ Q ]] ) ↘ a. By Lemma 2, [[ P2 ]] ⊗ defw (t) [[ P1 ]] ⊗ defu (y) [[ Q ]] ↘ a′
and a = ν · (w)a′. Since defw (t) [[ P1 ]] �↘ and defu (y) [[ Q ]] �↘ , then defu (y) [[ Q ]] ⊗
defw (t) [[ P1 ]] �↘ (according to Lemma 2). It follows that one of the following cases
remains possible:

(i) [[ P2 ]] ↘ b′ and a′ = b′ ⊗ defw (t) [[ P1 ]] ⊗ defu (y) [[ Q ]] ;
(ii) [[ P2 ]] ⊗ defw (t) [[ P1 ]] ↘ b′ and a′ = b′ ⊗ defu (y) [[ Q ]] ;
(iii) [[ P2 ]] ⊗ defu (y) [[ Q ]] ↘ a′′ and a′ = a′′ ⊗ defw (t) [[ P1 ]] .

In case (i), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ). In case (ii), condi-
tion 1 holds for b = ν · (w)b′. In case (iii), by induction, we distinguish three sub-cases:

(a) [[ P2 ]] ↘ b′ and a′′ = b′ ⊗ defu (y) [[ Q ]] ,
(b) P2 ≡ R′ | u〈v〉 and a′′ = [[ R′ | {v/y}Q ]] ⊗ defu (y) [[ Q ]] ,
(c) P2 ≡ def v1〈t1〉 � R1 in . . . def vn〈tn〉 � Rn in (R′ | u〈vn〉) and

a′′ = ν · (v1)(defv1 (t1) [[ R1 ]] ⊗
...

ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R′ | {vn/y}Q ]] ⊗ defu (y) [[ Q ]] ) . . .),
where vk �∈ fn(Q) ∪ {u} for every k ∈ [n].

In sub-case (a), condition 1 holds for b = ν · (w)(b′ ⊗ defw (t) [[ P1 ]] ). In sub-case (b),
we have P ≡ def w〈t〉 � P1 in (R′ | u〈v〉). We distinguish two situations:

• v �= w. Then P ≡ def w〈t〉 � P1 in R′ | u〈v〉. It is easy to see that surf( [[ {v/y}Q ]] ) ⊆
{v}∪surf( [[ Q ]] ), and so w �∈ surf( [[ {v/y}Q ]] ). By Proposition 2, a = [[ def w〈t〉 �
P1 in R′ | {v/y}Q ]] ⊗ defu (y) [[ Q ]] . Thus, condition 2 holds.

• v = w. Then P ≡ def v〈t〉 � P1 in (R′ | u〈v〉). Moreover, a = ν · (v)(defv (t) [[ P1 ]]
⊗ [[ R′ | {v/y}Q ]] ⊗ defu (y) [[ Q ]] ). Thus, condition 3 holds.
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In sub-case (c), P ≡ def w〈t〉 � P1 in def v1〈t1〉 � R1 in . . . def vn〈tn〉 � Rn in (R′ | u〈vn〉).
Using Proposition 2, we obtain

a = ν · (w)(defw (t) [[ P1 ]] ⊗
ν · (v1)(defv1 (t1) [[ R1 ]] ⊗

...
ν · (vn)(defvn (tn) [[ Rn ]] ⊗ [[ R′ | {vn/y}Q ]] ⊗ defu (y) [[ Q ]] ) . . .)).

Thus, condition 3 holds.

Theorem 2. If [[ P ]] ↘ a, then there exists a process Q such that P → Q and [[ Q ]] = a.

Proof. Induction on the structure of P.
– If P is the empty process or a message, then [[ P ]] �↘ . Therefore, the statement of

the theorem is obviously true because the premise is not satisfied.
– If P is a parallel composition P1 | P2, then [[ P1 ]] ⊗ [[ P2 ]] ↘ a. By Lemma 7, one of

the following cases holds:

(1) [[ P1 ]] ↘ a1 and a = a1 ⊗ [[ P2 ]] ;
(2) [[ P2 ]] ↘ a2 and a = [[ P1 ]] ⊗ a2.

It is sufficient to consider the case (1), the other one being similar (symmetric).
By induction, we have P1 → Q1 and a1 = [[ Q1 ]] . According to Proposition 1,

P → Q1 | P2 and a = [[ Q1 ]] ⊗ [[ P2 ]] . Thus, the result of the theorem holds for
Q = Q1 | P2.

– If P is a definition def w〈t〉 � P1 in P2, then ν · (w)( [[ P2 ]] ⊗ defw (t) [[ P1 ]] ↘ a. It
follows from Lemma 2 that [[ P2 ]] ⊗ defw (t) [[ P1 ]] ↘ a′ and a = ν · (w)a′. By Lemma 8,
only one of the following cases holds:

(i) [[ P2 ]] ↘ b and a′ = b ⊗ defw (t) [[ P1 ]] ;
(ii) P2 ≡ R | w〈v〉 and a′ = [[ R | {v/t}P1 ]] ⊗ defw (t) [[ P1 ]] ;
(iii) P2 ≡ def w1〈t1〉 � R1 in . . . def wn〈tn〉 � Rn in (R | w〈wn〉) and

a′ = ν · (w1)(defw1 (t1) [[ R1 ]] ⊗
...

ν · (wn)(defwn (tn) [[ Rn ]] ⊗ [[ R | {wn/t}P1 ]] ⊗ defw (t) [[ P1 ]] )...),
where wi �∈ fn(P1) ∪ {w} for every i ∈ [n].

In case (i), by the induction hypothesis, P2 → Q2 and b = [[ Q2 ]] . It follows that
P → def w〈t〉 � P1 in Q2 and a = ν · (w)( [[ Q2 ]] ⊗ defw (t) [[ P1 ]] ) Thus, the result of the
theorem holds for Q = def w〈t〉 � P1 in Q2.

In case (ii), we have P → def w〈t〉 � P1 in (R | {v/t}P1) and a = ν · (w)( [[ R |
{v/t}P1 ]] ⊗ defw (t) [[ P1 ]] ) = [[ Q ]] . Thus, the result of the theorem holds for
Q = def w〈t〉 � P1 in (R | {v/t}P1).

In case (iii), it follows that wi �∈ surf(defw (t) [[ P1 ]] ) for any i ∈ [n] (Lemmas 2 and 4).
P ≡ def w〈t〉 � P1 in def w1〈t1〉 � R1 in ...def wn〈tn〉 � Rn in (R | w〈wn〉) →
def w〈t〉 � P1 in def w1〈t1〉 � R1 in . . . def wn〈tn〉 � Rn in (R | {wn/t}P1)︸ ︷︷ ︸

Q

a = ν · (w)( by Proposition 2
ν · (w1)(defw1 (t1) [[ R1 ]] ⊗

...
ν · (wn)(defwn (tn) [[ Rn ]] ⊗ [[ R | {wn/t}P1 ]] ⊗ defw (t) [[ P1 ]] ) . . .))

= ν · (w)(defw (t) [[ P1 ]] ⊗
ν · (w1)(defw1 (t1) [[ R1 ]] ⊗

...
ν · (wn)(defwn (tn) [[ Rn ]] ⊗ [[ R | {wn/t}P1 ]] ) . . .))

= [[ Q ]] .
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6. Describing Communication Patterns by Using the Hypergraph Model

In the Unix operating system, interprocess communications based on message queues
allow exchange of information between processes. The processes exchange information by
accessing a common message queue. Essentially, one process produces a message queue
(via a message-passing module) that other processes may access; often a server places a
message onto a queue which can be read by multiple clients. The sending process may
specify its type when placing the message in a queue such that the reading processes
can select the appropriate message; thus, message queues provide a way of multiplexing
information from one producer to more consumers.

As example, we consider a simple system in which only one channel is used to
exchange messages between the server and clients, and any message at the input of any
client must appear at the output of all the clients (this is a requirement for several social
networks including a chat messaging system). A type associated to each message allows a
client to access the (unique) message queue for selectively reading only specific messages
(in a first-in–first-out manner). We simplify the system, and consider a process S working
as a server and two clients A and B. The channels idA and idB are used to indicate the type
of messages from S to A and B, respectively; a channel idS indicates the type of messages
from the clients to the server. Client A uses an input channel inA and an output channel
outA; client B uses channels inB and outB). For a message m sent along the input channel
inA, the pattern calculus process corresponding to this system is:

CommSyst = def q〈x〉 | idS〈y〉 � q〈x〉 | idA〈_〉 | q〈x〉 | idB〈_〉 ∧
q〈x〉 | idA〈y〉 � outA〈x〉 ∧
q〈x〉 | idB〈y〉 � outB〈x〉 ∧

inA〈x〉 � q〈x〉 | idS〈_〉 ∧
inB〈x〉 � q〈x〉 | idS〈_〉

in inA〈m〉 .

Using the hypergraph model, in Figure 3 is presented the net corresponding to this process.

idA idB

m

any

inA inB

q

outA outB

idS

Figure 3. The net of a simple communication system described previously in pattern calculus.

Except the root hyperedge, the structure of this net does not change during the
evolution. Therefore, the evolution of the system could be described graphically focusing
only on the root hyperedge; this evolution is depicted in Figure 4.

113



Axioms 2022, 11, 8

q
any

m

inA inA

idBidA

q
any

m

inB inB

idAidA

idA idB

idBidB

m

mm

any any

any

q

inA

inA inA

idA idB

inBinB

inB

q q

outBoutA outB outB

outBoutB

outA outA

outA outA

idS idS idS

idS idS

Figure 4. The evolution of the system (as it appears in the root hyperedge).

In Figure 4 it is not difficult to check visually the requirement that a message appearing
at the input of a client appears also at the output of all the clients. In our case, the message
m on the input channel inA (the initial step) appears at the output channels outA and outB

in the final step described in Figure 4.

7. Conclusions and Related Work

In this paper we introduce a hypergraph model (given by the pattern nets) for the
communication patterns. These nets provide a fully abstract model for the pattern calculus.
In this way, a new sound graphical model for concurrency is introduced. We present a
semantic interpretation of the pattern calculus in the framework of control structures, creating
a graphical representation for the pattern calculus given by a new hypergraph model given
by the pattern nets. By introducing a mapping from the control structure of pattern calculus
into a set of hypergraphs, we provide a graphical model for communication patterns. It is
also proved that the hypergraph model preserves the operational reductions of processes
from pattern calculus and of the actions from the control structures. As an example, simple
interprocess communications based on message queues inspired by the social networks
are described by using our pattern nets. This example could be a first step towards more
realistic scenarios in which the proposed model can be used to identify control structures
supporting specific communication patterns. Future work will investigate realistic autonomic
networking, mobility management, multiaccess selection, wireless and mobile networks (as
they are presented in [12], for instance).

Graphical representations for process calculi highlight a new perception, providing
a visual approach of concurrency and networks. According to our knowledge, just a
few papers are devoted to the graphical presentations of the process calculi. We mention
our previous attempts, namely the faithful π-nets [13], a graphical representation of the
π-calculus machine [14], and a related approach by using jc-nets [15]. There exist also the
graphical representations introduced by Robin Milner, namely action graphs and π-nets.
Action graphs [16] are the graphical presentation of action calculi; they are very general, and
so they are not able to describe specific features of certain action calculi. In the graphical
presentation of the π-calculus given by the π-nets [6], channels are represented as rather
complicated nodes called torpedos together with boxes representing guards, and messages
are represented as directed arcs. The boxes obscure the internal nodes representing channels;
to ensure access to the hidden channels, a rather complex additional mechanism of links is
used. To avoid such a mechanism, in [13,14] the channels are represented by nodes, messages
are represented by boxes of arcs and guards are represented by arcs between boxes. This
approach simplified the graphical representation of the π-calculus; unfortunately, it provided
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identical representations for processes with different behaviours. Fortunately, this deficiency
was overtaken in the pattern calculus hypergraph model: processes with different behaviours
are not mapped to the same hypergraph. The hypergraph model is presented in the same
formal framework used for the π-nets (it is worth noting that hypergraph model avoids
certain irrelevant aspects of π-nets). It is simpler than the π-nets, preserving much of their
expressive power (according to [2], the join calculus has the same expressive power as the
π-calculus). Compared with all of them, the pattern nets represent a simple but sound
graphical model for concurrency, providing a fully abstract model for the pattern calculus.
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Abstract: P systems have been known to provide efficient polynomial (often linear) deterministic
solutions to hard problems. In particular, cP systems have been shown to provide very crisp and
efficient solutions to such problems, which are typically linear with small coefficients. Building on a
recent result by Henderson et al., which solves SAT in square-root-sublinear time, this paper proposes
an orders-of-magnitude-faster solution, running in logarithmic time, and using a small fixed-sized
alphabet and ruleset (25 rules). To the best of our knowledge, this is the fastest deterministic solution
across all extant P system variants. Like all other cP solutions, it is a complete solution that is not a
member of a uniform family (and thus does not require any preprocessing). Consequently, according
to another reduction result by Henderson et al., cP systems can also solve k-colouring and several
other NP-complete problems in logarithmic time.
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1. Introduction

The P-versus-NP problem remains one of the most important unsolved problems in
computational complexity theory. Loosely following Sipser [1] and keeping the discussion
focused on deterministic algorithms—as we do throughout this paper—the class P can be
viewed as the class of decision problems that can be solved “quickly”, whereas NP can be
viewed as the possibly larger class of decision problems with solutions that can be verified
“quickly”, where “quickly” is taken in the theoretical sense, i.e., polynomial time. It is
straightforward to see that P ⊆ NP. However, it is still unknown whether this inclusion is
strict or not, in other words, whether P � NP or P = NP. In a nutshell, the big theoretical
question is whether every problem of which the solution can be verified in polynomial time
(NP) can also be solved in polynomial time (P).

The current widespread opinion is that P � NP, as there are quite a few “hard” prob-
lems that can be “quickly” verified, but do not seem to have “quick” solutions, with
their fastest known solutions taking time substantially greater than any polynomial (e.g.,
exponential). Therefore, many studies have investigated different approaches to solve
such hard problems in a reasonable amount of time (e.g., polynomial or even linear time).
Such methods include approximation [2], fixing parameters [3], or the use of alternative
theoretical models, such as P systems [4–9].

P systems—also known as membrane computing—are a family of parallel and dis-
tributed biologically inspired models of computing, proposed by Gheorghe Păun in [10],
first as cell-like P systems, then followed by many variants, such as P systems with active
membranes [11], tissue-like P systems [12], neural-like P systems [13], and P systems with
compound terms (cP systems) [14,15]. These systems have been found to have theoretically
time-efficient solutions to many hard problems, even beyond NP, e.g., in PSPACE [16–21].
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It may be worthwhile to note that, with the exception of cP systems, most other
P systems solutions are actually uniform families of related solutions, with one custom
solution (e.g., custom alphabet and ruleset) for each problem size n. Here, uniform means
that each custom size n solution is built via an additional preprocessing phase, by means of
an ad-hoc polynomial-time algorithm (typically not described but reasonably evident). In
contrast, cP solutions are given by fixed-size alphabets and rulesets (typically small), while
running with the same theoretical efficiency, or even faster.

In this work, we present a novel deterministic cP solution to SAT, running in logarithmic
time, O(log n). To the best of our knowledge, this represents a significant breakthrough
in membrane computing, being orders-of-magnitude faster than all previous deterministic
solutions. As mentioned, we do not consider here the interesting area of non-deterministic
computations, where there are several interesting results, e.g., using neural-like P sys-
tems [22].

Our novel solution builds upon and substantially improves the already very fast
cP solution to SAT recently proposed by Henderson et al. [4], which runs in square-root
time, O(

√
n). The solution presented here is based on a fast method of creating and

evaluating a complete binary tree of height n, in O(log n) time. When measuring the
number of rule templates, we see that our new solution is comparable to those of previous
P systems studies. However, when counting rules rather than the templates, we see that
other solutions can have an exponential number of rules.

Using the results presented in this paper, reductions such as those presented in Stamm-
Wilbrandt [23] and Henderson et al. [4] will enable more logarithmic time solutions,
O(log n), to quite a few other NP-complete problems, such as k-colouring.

However, to the best of our knowledge, all these efficient solutions are still theoretical
and have not yet been practically implemented. Designing efficient, practical implementa-
tions is a topic of current research.

2. Background

In this section, we briefly recall the well-known Boolean satisfiability problem (SAT)
and we offer a short introduction to cP systems.

2.1. The SAT Problem

SAT is one of the best-known examples of an NP-complete problem and is a relatively
simple but central problem in many areas of computer science (e.g., complexity, artificial
intelligence, cryptography, etc.). Like all other NP-complete problems, it has no known
(worst-case) polynomial solution in the Turing machine model (or related models). In this
paper, we show that cP systems can theoretically solve SAT in sublinear logarithmic time.

SAT determines if the variables of a given Boolean formula can be assigned Boolean
values that evaluate the formula to true. A Boolean formula is an expression involving
Boolean variables and Boolean operations. A Boolean formula is in conjunctive normal
form (CNF) if it is expressed as a conjunction (∧) of clauses. A clause is a disjunction (∨) of
literals. A literal is a variable or its negation (here indicated by overbars).

Basic SAT assumes that the formulae are given in CNF, with implicit existential
quantifiers on all variables. The existential quantifier (∃) results are true if one of the
possible assignments of the variables allows the formula to be true.

Example 1. For example, the following Boolean formula with two variables is in CNF:

(x1 ∨ x2) ∧ (x1 ∨ x2) .

SAT interprets the above formula as the following decision problem:

∃x1∃x2(x1 ∨ x2) ∧ (x1 ∨ x2) .

The size of the problem is given by the number of variables, n, e.g., n = 2, for
the formula of Example 1. There are straightforward bijections between several sets of
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size 2n: (i) candidate solutions (variable allocations) of a CNF formula with n variables,
(ii) (characteristic functions for) subsets of set {1, 2, . . . , n}, (iii) branches (root-to-leaf paths)
of the complete binary tree of height n. For case (iii), a tree path starting from a root can be
naturally labelled as a string of bits, where bits indicates its left/right “choices” (turns) in
the top-down (root-to-leaf) order.

Example 2. Consider the complete binary tree of Figure 1 of height n = 2, with 4 branches, in
left-to-right order:

Branch SectionAllocations Subset
00 x1 = 0, x2 = 0 {} (empty)
01 x1 = 0, x2 = 1 { 2 }
10 x1 = 1, x2 = 0 { 1 }
11 x1 = 1, x2 = 1 { 1, 2 }

Note that branches 01 and 10 correspond to solutions for the formula of Example 1.

λ

0 1

00 01 10 11

x1 = 0

x2 = 0

x1 = 0

x2 = 1

x1 = 1

x2 = 0

x1 = 1

x2 = 1

x1 = 0 x1 = 1

Figure 1. Complete binary tree of height 2. Nodes hold branch labels, and are decorated with
attributes that are explicit corresponding variable allocations. Branches 01 and 10 correspond to
solutions for the formula of Example 1, (x1 ∨ x2) ∧ (x1 ∨ x2).

Our cP solution is based on a parallel construction of complete binary tree branches,
followed by a parallel formula evaluation on these branches.

2.2. cP Systems

In this paper we propose a novel cP solution to a hard problem; to the best of our
knowledge, this is the first P solution running in logarithmic time, which represents an
improvement of orders of magnitude.

P systems, also known as membrane computing, are a framework for designing
computational models inspired by biology. Similarly to many other P systems variants,
such as cell-like and tissue-like P systems, cP systems are based on nested labelled multisets
and offer: (i) unbounded access to resources, such as space and processing power; (ii) top-
level cells, with sub-cells organised into nested tree structures; (iii) graph based networks of
top-level cells; and (iv) evolutions driven by formal multiset rewriting rules, with additional
messaging primitives between top-level cells.

However, distinctively, cP systems’ multiset rewriting rules are generic, with variables
instantiated by one-way unification (pattern matching). In conjunction with nesting, generic
rules provide useful logical and associative capabilities, including good support for emu-
lating arithmetic with natural numbers (base one) and usual data structures (such as lists,
strings, and associative arrays). Recall that instantiations assign values to variables—ground
values in pattern matching—whereas unifications are matching instantiations.

Leveraging their capabilities, most P systems variants, including cP systems, are able
to transform “brute-force” algorithms into theoretically efficient solutions, with typically
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linear or sublinear runtimes. This allows the design of theoretically fast solutions to hard
problems. Moreover, cP systems solutions for hard problems are typically the fastest,
having small runtime coefficients. Additionally, cP systems solutions typically use small
rulesets of fixed sizes, which do not change with the problem size (no uniform families, no
polynomial preprocessing).

In this section, we introduce the basic features of a simplified version of cP systems,
called single-cell cP systems, which have one single top-level cell, with nested sub-cells
(thus there is no place for top-level cell networks and messaging). Listing 1 describes the
basic formal syntax of single-cell cP-systems; for a more comprehensive description and
explanation of cP systems, the reader is referred to [14,15]. This formal description consists
of two BNF-like grammars, presented together, because of their similarities: (1) a top-level
cell, in the sequel called top-cell (for brevity); (2) a multiset rewriting rule. Note that, in this
figure and the sequel, we use the following two common abbreviations: lhs = left-hand-side,
rhs = right-hand-side.

Listing 1. Simplified syntax for single-cell cP systems. Lhs = left-hand-side, rhs = right-hand-side,
var-X = X may contain variables. Braces ({,}) and brackets ([,]) are meta-syntactic constructs followed
by repetition bounds; here, braces generate multisets, whereas brackets generate sequences.

<top-cell> ::= <state> <objects>
<state> ::= <atom>
<objects> ::= {<atom> | <sub-cell>}∞

0
<sub-cell> ::= <functor> ’(’<objects> [’;’ <objects>]∞

0 ’)’
<functor> ::= <atom>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<rule> ::= <lhs> →<mode> <rhs> [’|’ <promoters>]∞
0

<mode> ::= ’1’ | ’+’
<lhs> ::= <state> <var-objects>
<rhs> ::= <state> <var-objects>
<state> ::= <atom>
<promoters> ::= <var-objects>
<var-objects> ::= {<variable> | <atom> | <var-sub-cell>}∞

0
<var-sub-cell> ::= <functor> ’(’<var-objects> [’;’ <var-objects>]∞

0 ’)’
<functor> ::= <atom>

A single-cell cP system consists of one single top-cell, which—following the first
grammar presented in Listing 1—has a state and contains objects, i.e., atoms and recursively
nested sub-cells.

Remark 1. In Prolog terminology, cell objects are terms, sub-cells are compound terms; and all cell
objects are ground, i.e., cannot contain variables. Furthermore, unlike Prolog, cP functors do not
have arities, and just represent multiset labels.

Conventionally, atoms are represented by lowercase letters and variables by uppercase
letters. A dedicated atom 1 is typically used to represent unary natural numbers (more
details below). Anonymous (discard) variables in cP systems are denoted by underscores
( ). The empty multiset is denoted by λ. As usual, multiset elements can be written in
any order, and repetitions can be denoted as powers. Sample ground sub-cells: a(bbc) =
a(b2c) = a(bcb), a(b(cc) d(e f )), n(111) = n(13).

Remark 2. The grammar given in Listing 1 specifies that a sub-cell functor can be followed by a
sequence of multiset arguments, which seems to require an ad hoc ordering concept. Functors with
one single multiset argument are indeed essential in cP systems (similar to terms in Prolog), but
functors with two or more arguments are not, because these could be replaced by one more level
deeper cell nesting. For example, the sub-cell a(bc; de; f g) could be also considered a shorthand for
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a(bc · (de) : ( f g)) (or a(: ( f g) bc · (de)), etc.), where the nested functors (·) and (:) could be
given ad hoc or provided by the system. Briefly, this conceptually redundant ordering appears for
convenience only, and the given grammar could be simplified, and strictly restricted to nested
labelled multisets. Note that alternative definitions of cP systems use additional parentheses
instead of the semicolons used here, e.g., the following two notations describe the same abstract
syntax a(bc; de; f g) ≡ a(bc)(de)( f g).

As mentioned, natural numbers can be emulated using a dedicated unary symbol, such
as 1. By convention, we can also directly use the corresponding numbers, rather than their
lower-level unary representation. For example:

111 = 13 = 3
λ = 10 = 0

A single-cell cP system evolves through a sequence of configurations by changing its
state and contents. These changes are driven by the high-level rewriting rules associated to
its top-cell, which are constructed according to the second grammar presented in Listing 1.
Unlike similar cells in cell-like P systems, cP sub-cells are more restricted, by not having
their own rules. Thus, sub-cells are just data storage facilities, and are acted upon by the
top-cell’s rules only. This restriction seems substantially outweighed by the extra power of
the cP rules. Unlike other P systems variants, rules in cP systems are generic templates, i.e.,
their var-objects may contain variables that must be instantiated before the rule application.

Before a rule can apply:

• Its lhs state must match the current top-cell state.
• Its rhs state must match the already committed next state, if any, as further detailed

below, in the section on weak priority order.
• The rule must be completely instantiated, i.e., all its variables must be replaced by

ground objects, ensuring that its lhs and promoter var-objects match extant top-
cell objects.

Rules are applied in a weak priority order, with rules considered in the given top-down
order. Conventionally, the first lhs state is the state of the initial configuration. Once
an applicable rule has been found, this commits to the next state, with subsequent rules
committing to different states disabled. Rules going to the same state as the applicable rule,
which can also be applied, will be applied in the same step. This state-based weak priority
order supports a straightforward emulation of basic control flow (e.g., goto, conditional
goto, or loop structures). Note that rules can be partitioned by their lhs state, without
altering the semantics, as long as we keep the relative top-down order of rules starting with
the same lhs state.

Essentially, applying a rule:

• Commits to the next state.
• Consumes (deletes) extant top-cell objects matching its lhs. Promoters must also match

extant top-cell objects, but are not consumed by the rule.
• Creates new objects as indicated by its instantiated rhs. Newly created objects are

temporary unavailable and become available after the end of the current step only, as
in traditional P systems.

There are two rule application modes: exactly-once (→1) and max-parallel (→+). An
exactly-once rule will apply for one single matching (non-deterministically chosen). A max-
parallel rule will apply it as many times as possible, conceptually all in the same step, but
following a serialisation semantics, i.e., its effects must be identical to a sequential repetition
of the same rule in the exactly-once mode (sequence non-deterministically chosen). Although,
as just mentioned, the cP semantics allow non-deterministic computations, most of our
work has focused on confluent evolutions, often deterministic; the solution proposed in this
paper is deterministic.
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As with most other P system variants, the runtime of single-cell cP systems is measured
in steps. Generally, a step is indicated by a state change, when a rule commits to a rhs state
that differs from its lhs state. If the last applied rule does not change the state, then the
control resumes at the first rule of that state, and this is also counted as a step. The system
halts if a rule commits to a state with no associated rule; such states are called final. The
system also halts if there are rules for the current state, but none is applicable (†). This last
case, marked by a dagger (†), can be easily avoided by adding an extra catch-all rule, which
will ensure termination in final states only.

As mentioned, like many other P system rules, cP rules have a significant potential for
non-determinism. However, well-designed practical applications are highly deterministic. A
cP system is rule-deterministic if each rule ends with exactly the same results, regardless of
whether it is exactly-once or max-parallel, or how exactly it is instantiated and executed. A
cP system is step-deterministic if each step is locally confluent with a guaranteed join after all
step rules are applied, i.e., the step ends with exactly the same result, regardless of how
its rules are applied. Obviously, rule-determinism is the stronger version, implying the
weaker version, step-determinism. In both cases, we consider only evolutions that start
from an expected initial configuration (not from arbitrary contents).

2.3. Examples

We provide several examples to clarify how cP systems are defined and used.

Example 3. Matching examples, var-object (left) = ground object (right):

• Matching a(b(X) c(1X)) = a(b(12) c(13)) deterministically instantiates one single unifier:
X = 12.

• Matching a(b(X) c(1X)) = a(b(12) c(12)) fails.
• Matching a(XY2) = a(de2 f ) deterministically instantiates one single set of unifiers: X, Y =

d f , e.
• Matching a(XY) = a(d f ) non-deterministically instantiates one of the following four sets of

unifiers: X, Y = λ, d f ; X, Y = d f , λ; X, Y = d, f ; X, Y = f , d.

Example 4. Consider a cell in state s1 that contains two objects a(1), a(11). Depending on the
actual application mode α ∈ {1,+}, the following rule increments one or both a’s by 1:

s1 a(X) →α s2 a(1X)

By unifying the lhs a(X) against the given as, two ground rules are instantiated:

s1 a(1) →1 s2 a(11) (1)
s1 a(11) →1 s2 a(111) (2)

When the application mode of the rule is exactly-once, α = 1, the system non-
deterministically applies one of the above two instantiations, (1) or (2). Thus, the result can
be either a(11), a(11) or a(1), a(111).

However, when the application mode is max-parallel, α = +, both instantiations are
applied, and the result will be a(11), a(111). Here, this transformation is rule-deterministic,
not depending on the application order, (1,2) or (2,1).

Example 5. Consider a cell in state s1 that contains two objects a(13), b(15), which respectively
represent the numbers 3 and 5. The following rule destructively computes their sum, c = a + b:

s1 a(X) b(Y) →1 s2 c(XY)

This rule is instantiated as s1 a(13) b(15) →1 s2 c(18). Its application consumes the
given a(13) and b(15), and creates a new objects c(18), corresponding to the sum 3 + 5.

Alternatively, a non-destructive summing can be performed using the following rule,
where the given a and b appear as promoters:
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s1λ →1 s2 c(XY) | a(X) b(Y)

Example 6. Consider a cell in state s1 that contains two objects a(1) and three objects b(11). The
following max-parallel rule (1) consumes two a(1) and two b(11), creating two objects c(111) and
leaving exactly one b(11); while the following max-parallel rule (2), which uses promoters, creates
six objects c(111), leaving the given as and bs intact:

s1 a(X) b(Y) →+ s2 c(XY) (1)
s1 λ →+ s2 c(XY) | a(X) b(Y) (2)

Rule (1) could be considered rule-deterministic only if special configurations are
guaranteed, such as the one given above; but, more generally, it is highly non-deterministic.
Rule (2) is always rule-deterministic; essentially, it makes a Cartesian product of the given
as and bs, concatenating the contents of all pairs.

Example 7. Consider a cell in state s1 that contains two objects a(1) and three objects a(11). The
following max-parallel rule removes all duplicates, leaving exactly one a(1) and one a(11):

s1 a(X) →+ s2 λ | a(X)

The application of this rule is equivalent to the following sequence of instantiations:

s1 a(1) →1 s2 λ | a(1)
s1 a(11) →1 s2 λ | a(11)
s1 a(11) →1 s2 λ | a(11)

The transformation is confluent, and the results will be the same, not depending on
the relative application order of the above instantiations. After these three applications, no
further unifying instantiations are possible because there are no longer sufficient remaining
as to satisfy both the lhs and the promoter. Thus, this rule is rule-deterministic.

Example 8. Consider a cell in state s1 that contains one a(...) and one b(...), with unspeci-
fied contents. The following two-rule sequence models a non-destructive if-then-else operation,
c = if a ≤ b then 0 else 1, accompanied by a state change (to either s2 or s3):

s1 λ →1 s2 c(0) | a(X) b(X ) (1)
s1 λ →1 s3 c(1) (2)

Rules are applied in weak-priority order. If rule (1) applies, then it commits to the
target state s2, so rule (2) becomes inapplicable. Otherwise, if rule (1) does not apply, the
target state is still undecided, so rule (2) unconditionally applies and commits to target
state s3.

Example 9. Consider a cell in state s1 that contains a multiset of as, with numerical contents, e.g.,
a(5), a(3), a(5), a(9), a(7). The following two max-parallel rules find the minimum in exactly two
steps, regardless of the cardinality of the given multiset:

s1 λ →+ s2 b(X) | a(X) (1)
s2 b(X 1) →+ s3 λ | a(X) (2)

Rule (1) makes temporary working copies of all as as bs. Rule (2) deletes all bs for
which there is a strictly lesser a. At state s3, the cell contains one or more bs, all containing
the same minimum value; in our given sample scenario, there will be one single b(3). Both
rules (1) and (2) are rule-deterministic.

123



Axioms 2022, 11, 66

3. The Logarithmic cP SAT Solution

We gradually develop our single-cell cP solution solution in three main phases. First,
we show how a cP system can efficiently build all branches of a complete binary tree—this
forms the backbone of our SAT solution. Secondly, we refine the building rules to decorate
all these branches with explicit variable allocations; although conceptually redundant,
explicit variable allocations are critical for efficient processing. Thirdly, and finally, we use
these decorated tree branches to evaluate the given CNF formula, for all sets of variable
allocations, which solves the SAT problem.

Leveraging the cP max-parallel mode, the full solution ruleset runs very efficiently, in
O(log n) time. It also has a small fixed size (25 rules) that does not depend on the problem
size n (no uniform family, no polynomial preprocessing).

3.1. Building Trees

In this section we solve a subproblem that will later be incorporated in our SAT
solution. Using a single-cell cP system, we aim to build a complete binary tree of height n, in
deterministic O(log n) time, by building its 2n tree branches as cP objects. For simplicity,
we also assume that n is a power of 2, n = 2k, for some k ≥ 1. If the given n is not a power
of 2, we take n to be the next power of 2; we may thus obtain a bigger tree, which, however,
does not affect our sought results.

The rules are shown in Listing 2. This ruleset has 8 rules, using 5 states, and assumes
that n is given at the start via a namesake functor (e.g., n(4)). If needed, the reader is
advised to crosscheck the appendix for an equivalent pseudocode, cf., Appendix B.

Listing 2. Ruleset for building complete binary trees of size n.

s1 λ →1 s2 h(1) t(λ; 0) t(λ; 1) (1)

s2 h(N ) →1 s5 λ | n(N) (2)

s2 λ →+ s3 t′(X; Y) | t(X; Y) (3)

s3 λ →+ s4 t′′(t(X; Y); t(X′; Y′)) | t(X; Y) t′(X′; Y′) (4)
s3 t( ; ) →+ s4 λ (5)
s3 t′( ; ) →+ s4 λ (6)

s4 t′′(X; Y) →+ s2 t(X; Y) (7)
s4 h(H) →1 s2 h(HH) (8)

Rule (1) creates the starting tree, of height 1, with two branches. The current tree
height is given by a sub-cell with functor h. Our tree branches are sub-cells with functor
t and two arguments (two for consistency with the next branches that will be built via
conceptual concatenation). The initial two branches are encoded as t(λ; 0) and t(λ; 1); by
discarding the functors and parentheses, these encodings map to usual bit string labels,
here 0 and 1, respectively. The cP encoding may seem to be overkill, but is required as
cP systems lack strings, and are essentially based on amorphous multisets, where nesting
is the only facility for structuring objects. For simplicity, in discussions, we will also use t
as the name of the current tree (as the tree is completely defined by its branches).

Next, we repeatedly extend the current tree t, k = log n times (taking the ceiling if n is
not power of 2), by transforming each leaf into the root of a new subtree t′, ad hoc created
as a structurally identical copy of t. Thus, the height of our trees grows exponentially:
1, 2, 4, 8, . . . , 2k = n.

Rules (2–8) form the core loop of our system, starting at state s2 and exiting at state
s5. Rule (2) breaks the loop if the current height h has reached (or exceeded) the given n.
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Otherwise, rule (3) copies the current tree t into a temporary template t′. We note that the
copy t′ is not really needed here, but adds clarity.

Rules (4–6) creates the new higher tree t′′, as the Cartesian product between the
branches of t with the branches of t′, then cleans the no-longer-needed objects t and t′. Each
new branch is a concatenation of two previous branches and is represented as a new object
t with two arguments, one for each component branch. For example, concatenating the
branch z with the branch z′ creates a new branch t(z; z′).

Rules (7–8) rename t′′ as t, double the height h, and restart the loop from state s2.
The following table lists the successively created branches, for n = 4. Anecdotally,

note the relations h = 2k, d = k + 2, where h is the height of the current tree t; k counts the
completed iterations of loop (2–8); and d is the nesting depth of the branches.

k h branches–as bit strings branches–as cP encodings

0 1 0; 1 t(λ, 0); t(λ, 1)
1 2 00; 01; 10; 11 t(t(λ, 0), t(λ, 0)); . . . ; t(t(λ, 1), t(λ, 1))
2 4 0000; 0001; . . . ; 1111 t(t(t(λ, 0), t(λ, 0)), t(t(λ, 0), t(λ, 0))); . . .

Theorem 1. The cP ruleset 2 builds all branches of the complete binary tree of height n, in
O(log n) time.

Proof. The previous discussion of the rules shows that they indeed build a complete binary
tree. Rule (1) takes one step (s1 → s2) and creates the initial complete binary tree of height
h = 1. The loop formed by rules (2–8) takes 3 steps (s2 → s3 → s4 → s2), runs k = log n
times (�log n� times, if n is not power of 2), each time doubling the tree height h. The
Cartesian product ensures that all created trees are still complete. The final break exit at
rule (2) takes one more step (s2 → s5). The total step count is 1 + 3 log n + 1 = O(log n).
The final height is 2k = n.

Remark 3. Ruleset 2 is rule-deterministic (and therefore also step-deterministic). Regardless of
how it is instantiated and performed, each rule, whether exactly-once or max-parallel, ends with
exactly the same results.

3.2. Decorating Trees with Variable Allocations

In this section we extend the ruleset from the previous Section 3.1, by decorating all
branches t with attributes a, representing explicit variable allocations. Although explicit
allocations are, at first glance, redundant, because allocations can be recovered by parsing
the branch label, they are critical for fast processing.

For example, looking at Figure 1, branch x should be decorated by allocations set a(x),
as follows: (i) for the height 1 tree: a(0) = {x1 = 0}, a(1) = {x1 = 1}; (ii) for the height
2 tree: a(00) = {x1 = 0, x2 = 0}, a(01) = {x1 = 0, x2 = 1}, etc. Furthermore, for a tree
of height 4 = 2 + 2, we should have a(0100) = {x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Note
that a(0100) = a(01) ∪ a′(00), where a′(00) = {x1+2 = 0, x2+2 = 0}, i.e., a′(00) is a(00)
transformed by shifting the indices of its variables by +2.

Recalling that we build trees by means of successive concatenations, our ruleset
formalises this intuition. Formally, the allocation set for branch t(X; Y) is given by all
sub-cells a(X; Y; I; V), where I is a variable index and V its value (0 or 1). These a subsets
are only virtually grouped together, solely by their shared branch label. This will not be a
problem in regard to the logical and associative powers of cP systems. On the contrary, as
we will see in the next Section 3.3, these loose associative collections will enable very fast
evaluations.

The rules are shown in Listing 3. This ruleset has 14 rules, uses 6 states, and assumes
that n is given at the start via a namesake functor (e.g., n(4)). If needed, the reader is advised
to crosscheck the appendix: the sample traces listed in Appendix A and an equivalent
pseudocode in Appendix C.
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Listing 3. Ruleset for decorating trees.

s1 λ →1 s2 h(1) t(λ; 0) t(λ; 1) a(λ; 0; 1; 0) a(λ; 1; 1; 1) (1)

s2 h(N ) →1 s6 λ | n(N) (2)

s2 λ →+ s3 t′(X; Y) | t(X; Y) (3)
s2 λ →+ s3 a′(X; Y; IH; V) | h(H) a(X; Y; I; V) (4)

s3 λ →+ s4 t′′(t(X; Y); t(X′; Y′)) | t(X; Y) t′(X′; Y′) (5)
s3 t( ; ) →+ s4 λ (6)
s3 t′( ; ) →+ s4 λ (7)

s4 λ →+ s5 a′′(t(X; Y); Z; I; V) | t′′(t(X; Y); Z) a(X; Y; I; V) (8)
s4 λ →+ s5 a′′(Z; t(X; Y); I′; V) | t′′(Z; t(X; Y)) a′(X; Y; I′; V) (9)
s4 a( ; ; ; ) →+ s5 λ (10)
s4 a′( ; ; ; ) →+ s5 λ (11)

s5 t′′(X; Y) →+ s2 t(X; Y) (12)
s5 a′′(X; Y; I; V) →+ s2 a(X; Y; I; V) (13)
s5 h(H) →1 s2 h(HH) (14)

Rule (1) creates the initial height 1 tree t and its allocations a (as mentioned above).
Rules (2–14) form the core loop, starting at state s2 and exiting at state s6. Rule (2)

breaks the loop if h ≥ n. Otherwise, rule (3) copies the current tree t into a temporary
template t′, and rule (4) copies the current allocations a into temporary objects a′, shifting
the variable indices by h.

Rules (5–7) creates the new higher tree t′′, as the Cartesian product between the
branches of t with the branches of t′, then cleans the no-longer-needed objects t and t′.
Rules (8,9) creates the allocations a′′ for the new tree t′′: rule (8) “lifts” the allocations a
belonging to the former tree t, and rule (9) “lifts” the allocations a′ belonging to the former
template tree t′. Rules (10,11) clean the now-unneeded objects a and a′.

Rules (12–14) rename t′′ as t and a′′ as a, double the height h, and restart the loop from
state s2.

Arguments similar to those used in the proof of Theorem (1) lead us to the following
result.

Proposition 1. The cP ruleset 3 builds all branches of the complete binary tree of height n and
decorates these with explicit variable allocations, in O(log n) time.

Remark 4. Like its base, ruleset 2, ruleset 3 is rule-deterministic (and therefore also step-deterministic).
Regardless of how it is instantiated and performed, each rule, whether exactly-once or max-parallel,
ends with exactly the same results.

3.3. Formula Evaluations

Up to this stage, the tree construction has ignored the actual problem, considering
only its size and the number of variables, n. It is now time to introduce the formula that we
actually want to solve. For this, we assume that the formula is given as the multiset of all its
literal objects, r, where each literal object has the format r(k; i; s), where k is a clause index
in [1, m], i is a variable index in [1, n] and s is a sign in {−,+}, which indicates whether the
clause k variable xi is negated (−) or not (+).

For example, the formula of Example 1, (x1 ∨ x2) ∧ (x1 ∨ x2), can be given as the
multiset containing the following four r objects:

r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)

126



Axioms 2022, 11, 66

For fast processing, we use a lookup table that quickly indicates the value of a literal,
based on the variable value, regardless of whether or not the variable is negated. This
lookup table is given by the following set with four w objects:

w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)

where in w(u; s; v), u is a variable value, s is a sign associated with a possible negation, and
v is the literal value after considering s.

The rules are shown in Listing 4. This ruleset has 11 rules, uses 6 states, and assumes:
(i) the r literal objects representing the given formula; (ii) the t and a objects as built by the
ruleset of Listing 3. If needed, the reader is advised to crosscheck the appendix: the sample
traces listed in Appendix A and an equivalent pseudocode in Appendix D.

Listing 4. Ruleset for formula evaluations (continuing from Ruleset 3).

s6 λ →+ s7 f (X; Y; K; I; S) | t(X; Y) r(K; I; S) (15)

s7 f (X; Y; K; I; S) →+ s8 f ′(X; Y; K; W) | a(X; Y; I; V) w(V; S; W) (16)

s8 f ′(X; Y; K; ) →+ s9 λ | f ′(X; Y; K; 1) (17)
s8 f ′(X; Y; K; ) →+ s9 λ | f ′(X; Y; K; 0) (18)
s8 f ′(X; Y; K; W) →+ s9 f ′′(X; Y; K; W) (19)

s9 f ′′(X; Y; ; ) →+ s10 λ | f ′′(X; Y; ; 0) (20)
s9 f ′′(X; Y; ; ) →+ s10 λ | f ′′(X; Y; ; 1) (21)
s9 f ′′(X; Y; ; W) →+ s10 f ′′′(X; Y; W) (22)

s10 f ′′′(X; Y; ) →+ s11 λ | f ′′′(X; Y; 1) (23)
s10 f ′′′(X; Y; ) →+ s11 λ | f ′′′(X; Y; 0) (24)
s10 f ′′′( ; ; W) →1 s11 d(W) (25)

The evaluation ruleset starts from s6, the end state of the ruleset of Listing 3. Rule (15)
makes a Cartesian product of branches and literals, for each branch t and literal r, creating
an object f , which combines the branch t and the literal r.

Rule (16) transforms objects f into objects f ′, by replacing sign positions with actual
literal values, taken from lookup table w. Briefly, these transformed f ′ objects record
evaluated literals, separately for each branch and clause.

For each branch and clause, if there is a literal value 1, then rule (17) keeps this f ′ and
deletes all other f ′ objects. Otherwise, if there still exists a literal value 0 (i.e., if all literal
values were 0), then rule (18) keeps this f ′ and deletes all other f ′ objects (for the same
branch and clause). At this stage, for each branch and clause, there is one single f ′ object
left, indicating the clause value, 1 or 0. Rule (19) transforms these surviving f ′ objects into
f ′′ objects, discarding the now-superfluous variable index. In a nutshell, f ′′ objects record
evaluated clauses, separately for each branch.

Essentially, rules (20–22) repeat the same pattern and create f ′′′ objects, which indicate
formula values, separately for each branch. Now, if there is a branch where the formula
is evaluated to 1, then rule (23) keeps this f ′′′ and deletes all other f ′′′ objects; otherwise,
rule (24) keeps one single f ′′′ that indicates 0 and deletes all other f ′′′ objects.

Finally, there is exactly one f ′′′ object left, which indicates whether or not there is an
allocation that satisfies the formula. Using this sole surviving f ′′′, rule (25) creates a d object
that records the final decision.

Example 10. The following table summarises the essential evaluation steps, in symbolic represen-
tation, for the formula of Example 1, cf. also Figure 1. Each branch has its own copy of formula
literals, clause 1: {x1, x2}, clause 2: {x1, x2}.
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Branch Allocations Eval. literals Eval. clauses Eval. formula
00 x1 = 0, x2 = 0 {0, 0}, {1, 1} 0, 1 0
01 x1 = 0, x2 = 1 {0, 1}, {1, 0} 1, 1 1
10 x1 = 1, x2 = 0 {1, 0}, {0, 1} 1, 1 1
11 x1 = 1, x2 = 1 {1, 1}, {0, 0} 1, 0 0

If required, we could also return the set of all successful allocations, if any, but here we
merely return the sought decision result, d(0) (i.e., no), or d(1) (i.e., yes). In our example
case, there are two successful allocations, for branches 01 and 10, so the final decision is
yes, d(1).

Straightforward arguments show that the formula is exhaustively evaluated, and the
evaluation ruleset takes a constant number of steps (5).

Proposition 2. Given the complete binary tree built and decorated via the ruleset of Listing 3, the
ruleset of Listing 4 solves SAT in O(1) time.

Remark 5. Ruleset 4 is only step-deterministic, not rule-deterministic. Three of its steps have
deterministic step results, but consist of locally confluent fragments: 17–19, 20–22, and 23–25. The
ruleset could be slightly modified to be strictly rule-deterministic, but we prefer the current version,
due to its better readability.

Noting that O(log n) + O(1) = O(log n), the following theorem is a direct conse-
quence of Propositions 1 and 2. We also include a couple of static metrics provided by a
close inspection of the rulesets of our two parts.

Theorem 2. The SAT decision problem can be solved in O(log n) time by means of a cP system
ruleset with 11 states and 25 rules.

3.4. Other NP-Complete Problems

Using the results of Stamm-Wilbrandt [23], Henderson et al. [4] have designed a
cP solution that achieves a constant time reduction, O(1), from another famous NP-complete
problem, k-colouring, to SAT. Combined with their square root SAT solution, O(

√
n), they

conclude that k-colouring and quite a few other NP-complete problems can be solved in
square root time by cP-systems, as O(

√
n) +O(1) = O(

√
n).

Based on the results of this paper, we similarly conclude that k-colouring, and possibly
many other NP-complete problems, can be solved in logarithmic time by means of cP-
systems, as O(log n) +O(1) = O(log n).

Theorem 3. The k-colouring decision problem can be solved in O(log n) time in the cP sys-
tem model.

4. Discussion

This section starts with a rough summary comparison of a few selected, and hopefully
the most relevant, deterministic P systems solutions for the SAT problem. Essentially,
we want to compare the ruleset sizes and the running times. Many of these solutions are
linear, but their runtime often includes both the number of variables, n, and the number
of clauses, m, e.g., O(m + n). See Nagy [6] for a short survey on some of the previous
P system solutions.

There is also a recently proposed cP solution by Henderson et al. [4], which managed
a remarkable breakthrough, being sublinear, O(

√
n). Our new solution, proposed in this

paper, shows that cP systems are able to solve SAT and other NP-complete problems in
a substantially faster sublinear time of O(log n). As seen in Table 1, our novel solution
surpasses all other extant solutions in runtime, and is comparable to the number of template
rules (more about this below).
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This comparison is a difficult problem by itself, as the many P systems variants have
substantial differences, so one should be careful when “comparing apples with oranges”,
and then drawing strong conclusions. First, all P systems measure the runtimes in terms
of steps, which at the first seems to be a uniform measure, but the definition of steps may
differ among variants, and may have different granularity.

Secondly, the rules also have different granularity. Here, we attempt to create a more
level playing-field by following the methods used by Henderson et al. [16]. Thus, we
indicate the ruleset size in two ways: (i) the actual number of rules, and (ii) the number of
rule templates. As defined in [16], rule templates are groupings of similar rules, differing
only by symbol indices, e.g., ai → bi, i = 1, 2, . . . , n, which represents n rules but one
single rule template. This should considerably level the playing field, as such a template is
typically subsumed by one single generic rule in cP systems, e.g., a(I) → b(I) | c(I).

On the other side, when counting rule templates and rules, we did not consider the
numbers of repeated copies placed in different membranes/neurons. Additionally, non
cP systems solutions are not single solutions, but uniform families of solutions, i.e., a
different solution will be used for each different problem size, typically following the same
templates, but with different alphabet and ruleset sizes. The needed pre-processing time
was roughly estimated from the papers, and presented in a separate column. cP systems
do not have such facilities, as they use a fixed ruleset that must be defined in the top-level
cell only (subcells do not have their own rules). This may seem to create some bias against
cP systems, but we feel that the power of generic rules will finally rebalance the comparison.

Table 1. Ruleset size and runtime for several proposed P system solutions. † = this paper. The
preprocessing time was only estimated by us.

Paper P System Variant #Templates #Rules Runtime Preprocessing

[7] 2006 with active membranes 27 O(mn2) O(m + n) Θ(mn2)

[8] 2016 with proteins on membranes 22 O(mn) O(mn) Θ(mn)

[9] 2017 tissue-like 29 O(mn2) O(m + n) Θ(mn2)

[4] 2021 cP system 19 19 O(
√

n) NA

† 2021 cP system 25 25 O(log n) NA

We conclude this section by noting several research directions that could follow the
current result. (1) Design a shallow solution for this problem. (2) As a combined method of
space and task optimisation, partially evaluate the given formula while building the tree.
This would enable one to prune branches that cannot lead to any solution, because one of
the clauses is already false. This should substantially reduce the actual work, and balance
it better, possibly leading to more efficient practical implementations. (3) Develop a similar
approach for QSAT, a famous related PSPACE-complete problem, which is substantially
more complex and challenging. (4) Investigate the feasibility of similar solutions in other
P system variants.

5. Conclusions

In this work, we have presented a novel cP solution to SAT, a famous NP-complete
(and thus NP-hard) problem. Our solution is deterministic and runs in logarithmic time,
O(log n). To the best of our knowledge, this represents a significant breakthrough in
membrane computing, being orders-of-magnitude faster than all previous deterministic
solutions.

In conjunction with a couple of known reduction results, our solution enables further
logarithmic-time solutions, O(log n), to other NP-complete problems, such as k-colouring.

Our results open the way to several other challenging research problems, such as
extending this method to cover QSAT (which is a substantially harder, PSPACE-complete
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problem); designing a time- and space-optimised version and possibly a shallow version;
and investigating the feasibility of similar solutions in other P system variants.
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Appendix A. Traces for Sections “Decorating Trees with Variable Allocations” and

“Ruleset Evaluations”

This section traces critical configuration fragments for the whole proposed SAT algo-
rithm, i.e., the combined rulesets 3 and 4. The trace is organised by steps, listing essential
configuration contents at the start of each new step. The initial configuration does not
change, so it only appears for state s1. We again consider the formula of Example 1:
(x1 ∨ x2) ∧ (x1 ∨ x2), with n = 2, m = 2.

For readability, the two components of nested cP branch labels, which appear as
arguments for functors t, a, f (possibly primed), are indicated by their corresponding binary
equivalents (cf,. Section 2.1), which are underlined, e.g.,: t(0) = t(λ; 0), t(1) = t(λ; 1),
t(00) = t(t(λ; 0); t(λ; 0)), t(01) = t(t(λ; 0); t(λ; 1)), a(01; 1; 0) = a(t(λ; 0); t(λ; 1); 1; 0),
f (01; 1; 2;+) = f (t(λ; 0); t(λ; 1); 1; 2;+), f ′′(01; 2; 1) = f ′′(t(λ; 0); t(λ; 1); 2; 1), etc.

• Enter state s1, with immutable objects (not further listed unless actually useful):

n(2)
w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)
r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)

• Step s1 → s2, rule (1): Create initial height 1 tree objects, t and a.
• Enter state s2, with:

n(2) h(1)
t(0) t(1) a(0; 1; 0) a(1; 1; 1)

• Step s2 → s3, rules (3-4): Enter the loop, duplicate tree objects t and a, as t′ and a′.
• Enter state s3, with:

h(1)
t(0) t(1) a(0; 1; 0) a(1; 1; 1)
t′(0) t′(1) a′(0; 2; 0) a′(1; 2; 1)

• Step s3 → s4, rules (5-7): Create double height tree t′′ by the Cartesian product of
t and t′.

• Enter state s4, with:

h(1)
t′′(00) t′′(01) t′′(10) t′′(11)
a(0; 1; 0) a(1; 1; 1) a′(0; 2; 0) a′(1; 2; 1)
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• Step s4 → s5, rules (8-11): Create a′′, allocation attributes for t′′.
• Enter state s5, with:

h(1)
t′′(00) t′′(01) t′′(10) t′′(11)
a′′(00; 1; 0) a′′(01; 1; 0) a′′(10; 1; 1) a′′(11; 1; 1)
a′′(00; 2; 0) a′′(10; 2; 0) a′′(01; 2; 1) a′′(11; 2; 1)

• Step s5 → s2, rules (12–14): Double the height and rename temporary tree objects
t′′ and a′′ as t and a.

• Enter state s2, with:

n(2) h(2)
t(00) t(01) t(10) t(11)
a(00; 1; 0) a(00; 2; 0) a(01; 1; 0) a(01; 2; 1)
a(10; 1; 1) a(10; 2; 0) a(11; 1; 1) a(11; 2; 1)

• Step s2 → s6, rule (2): Take loop exit.
• Enter state s6 (end of ruleset 3, and start of 4), with:

r(1; 1;+) r(1; 2;+) r(2; 1;−) r(2; 2;−)
t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

• Step s6 → s7, rule (15): Multiply formula literals, making copies for each branch.
• Enter state s7, with:

w(0;+; 0) w(0;−; 1) w(1;+; 1) w(1;−; 0)
t(00) a(00; 1; 0) a(00; 2; 0) f (00; 1; 1;+) f (00; 1; 2;+) f (00; 2; 1;−) f (00; 2; 2;−)
t(01) a(01; 1; 0) a(01; 2; 0) f (01; 1; 1;+) f (01; 1; 2;+) f (01; 2; 1;−) f (01; 2; 2;−)
t(10) a(10; 1; 0) a(10; 2; 0) f (10; 1; 1;+) f (10; 1; 2;+) f (10; 2; 1;−) f (10; 2; 2;−)
t(11) a(11; 1; 0) a(11; 2; 0) f (11; 1; 1;+) f (11; 1; 2;+) f (11; 2; 1;−) f (11; 2; 2;−)

• Step s7 → s8, rule (16): Evaluate literals.
• Enter state s8, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′(00; 1; 0) f ′(00; 1; 0) f ′(00; 2; 1) f ′(00; 2; 1)
t(01) a(01; 1; 0) a(01; 2; 0) f ′(01; 1; 0) f ′(01; 1; 1) f ′(01; 2; 1) f ′(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0) f ′(10; 1; 1) f ′(10; 1; 0) f ′(10; 2; 0) f ′(10; 2; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′(11; 1; 1) f ′(11; 1; 1) f ′(11; 2; 0) f ′(11; 2; 0)

• Step s8 → s9, rules (17–19): Disjunctions between literals.
• Enter state s9, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′′(00; 1; 0) f ′′(00; 2; 1)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′(01; 1; 1) f ′′(01; 2; 1)
t(10) a(10; 1; 0) a(10; 2; 0) f ′′(10; 1; 1) f ′′(10; 2; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′′(11; 1; 1) f ′′(11; 2; 0)

• Step s9 → s10, rules (20–22): Conjunctions between clauses.
• Enter state s10, with:

t(00) a(00; 1; 0) a(00; 2; 0) f ′′′(00; 0)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′′(01; 1)
t(10) a(10; 1; 0) a(10; 2; 0) f ′′′(10; 1)
t(11) a(11; 1; 0) a(11; 2; 0) f ′′′(11; 0)
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• Step s10 → s11, rules (23–25): Disjunction between branches and final decision.

– Intermediate snapshot after rules (23–24):

t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0) f ′′′(01; 1)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

• Enter state s11 (end, with success), with:

d(1)
t(00) a(00; 1; 0) a(00; 2; 0)
t(01) a(01; 1; 0) a(01; 2; 0)
t(10) a(10; 1; 0) a(10; 2; 0)
t(11) a(11; 1; 0) a(11; 2; 0)

Appendix B. Pseudocode for Section “Building Trees”

The pseudocode is shown in Listing A1. We assume that n is already given as an
initial parameter. Multisets are denoted by capital letters, e.g., T is the multiset (actually
set) of all t objects. Branches are represented by their intuitive bit string notation (not
as cP encodings). At state s3, the Cartesian product (×) is followed by projecting string
concatenations (·) of all pairs, which creates double-length branches.

Listing A1. Pseudocode for the ruleset of Listing 2.

s1:
h ← 1; T ← {0, 1} // initial tree height and branches

s2:
if h ≥ n then goto s5 else // alt while h < n do ...

T′ ← T // copy current branches

s3:
T′′ ← {t · t′ | (t, t′) ∈ T × T′} // concatenate all branch pairs
T ← null
T′ ← null

s4:
T ← T′′; T′′ ← null // next tree
h ← h + h // next height
goto s2

s5: // end

Appendix C. Pseudocode for Section “Decorating Trees with Variable Allocations”

The pseudocode is shown in Listing A2. We assume that n is already given as an
initial parameter. Multisets are denoted by capital letters, e.g., T is the set of all t objects
(branches), where branches are represented by their intuitive bit string notation (not as
cP encodings).

Variable allocations are given as partial functions [1, n] → {0, 1}. For example, using a
Python-like notation, the allocation set {x1 = 0, x2 = 1} is represented as the list α = {1 :
0, 2 : 1}; thus α[2] = 1. At state s2, σ is a transformation that shifts the variable indices in
a given allocation set α by a given number h, i.e., σ(α, h) = {i : (v + h) | (i : v) ∈ α}; e.g.,
σ({1 : 0, 2 : 1}, 2) = {3 : 0, 4 : 1}, and, more symbolically, {x3 = 0, x4 = 1}.
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At state s3, the Cartesian product (×) is followed by projecting string concatenations
(·) of all pairs, which creates double-length branches.

Listing A2. Pseudocode for the ruleset of Listing 3.

s1:
h ← 1; T ← {0, 1} // initial tree height and branches
A ← {(0, {1 : 0}), (1, {1 : 1})} // initial branch variable allocations

s2:
if h ≥ n then goto s6 else // alt while h < n do ...

T′ ← T // copy current branches
A′ ← {(t, σ(α, h)) | (t, α) ∈ A} // copy allocations and shift indices by h

s3:
T′′ ← {t · t′ | (t, t′) ∈ T × T′} // concatenate all branch pairs
T ← null
T′ ← null

s4:
A′′ ← {(t · t′, α) | t · t′ ∈ T′′, |t| = |t′|, (t, α) ∈ A} // lift from A

∪ {(t · t′, α) | t · t′ ∈ T′′, |t| = |t′|, (t′, α) ∈ A′} // lift from A′
A ← null
A′ ← null

s5:
T ← T′′; T′′ ← null // next tree
A ← A′′; A′′ ← null // next allocations
h ← h + h // next height
goto s2

s6: // end (of this phase)

Appendix D. Pseudocode for Section “Ruleset Evaluations”

The pseudocode is shown in Listing A3. We assume that this code follows the code of
the preceding section, given in Listing A2. As before, × denotes the Cartesian product op-
erator.

T is the set of all branches and A is the (conceptually redundant) set of all associated
allocations. as constructed using the preceding pseudocode A2, Rk is the set of all literals
that appear in clause k ∈ [1, m], and R is the set of all possible literals. For example,
assuming that its clauses are indexed in left-to-right order, the previously discussed formula,
(x1 ∨ x2) ∧ (x1 ∨ x2), is given by R1 = {x1, x2}, R2 = {x1, x2}, R = {x1, x2, x1, x2}.

We also assume a function ω : R× A → {0, 1}, roughly corresponding to our w lookup,
such that ω(r, α) is the Boolean value of literal r for the allocation set α (considering its
possible negation). For example, assume that (in symbolical form): r = x1, r′ = x1; and α =
{x1 = 0, x2 = 1}, i.e., the symbolical form of {1 : 0, 2 : 1}. Then, ω(r, α) = 0, ω(r′, α) = 1.
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Listing A3. Pseudocode for the ruleset of Listing 4.

s6: // attach literal copies to each branch in T
F ← ⋃m

k=1(T × {k} × Rk) // F is (normally) a set

s7: // evaluate literals for branch t and clause k
F′ ← {(t, k, w) | (t, k, r) ∈ F, (t, α) ∈ A, ω(r, α) = w} // take F’ as a multiset!
F ← null

s8: // evaluate each clause for branch t, using disjunctions between literals
F′′ ← {(t, k, 1) | (t, k, 1) ∈ F′} // take F” as a set

∪ {(t, k, 0) | (t, k, 1) �∈ F′}
F′ ← null

s9: // evaluate formula for branch t, using conjunctions between clauses
F′′′ ← {(t, 0) | ∃k ∈ [1, m], (t, k, 0) ∈ F′′} // take F”’ as a set

∪ {(t, 1) | ∀k ∈ [1, m], (t, k, 0) �∈ F′′}
F′′ ← null

s10: // the decision is yes, if there is at least one branch evaluating true
d ← if ∃t ∈ T, (t, 1) ∈ F′′′ then 1 else 0
F′′′ ← null

s11: // end
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