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Abstract: Semiconductor lasers can exhibit complex dynamical behavior in the presence of external
perturbations. Delayed optical feedback, re-injecting part of the emitted light back into the laser
cavity, in particular, can destabilize the laser’s emission. We focus on the emission properties of
a semiconductor laser subject to such optical feedback, where the delay of the light re-injection is
large compared to the relaxation oscillations period. We present an overview of the main dynamical
features that emerge in semiconductor lasers subject to delayed optical feedback, emphasizing how
to experimentally characterize these features using intensity and high-resolution optical spectra
measurements. The characterization of the system requires the experimentalist to be able to si-
multaneously measure multiple time scales that can be up to six orders of magnitude apart, from
the picosecond to the microsecond range. We highlight some experimental observations that are
particularly interesting from the fundamental point of view and, moreover, provide opportunities for
future photonic applications.

Keywords: semiconductor lasers; optical feedback; nonlinear dynamics; long delay

1. Introduction

Semiconductor lasers (SL) have evolved considerably since their introduction in the
early 1960s [1–4]. Nowadays, SL are small and efficient devices regularly used in a variety
of applications such as optical data storage, metrology, spectroscopy, material processing,
bio-sensing, the pumping of other lasers and optical telecommunications. In particular, its
application to long-haul optical data transmission as a high-speed light source has enabled
the worldwide optical fiber communication networks.

A characteristic property of most SL is their nonlinear response to perturbations,
which manifests itself in a pronounced sensitivity to, e.g., noise, variations in the injection
current, external optical injection or delayed optical feedback. This pronounced sensitivity
is particularly relevant, as even small amounts of re-injected light can destabilize the SL
emission [5–7] and induce chaotic dynamics. Even the small back-reflection from an optical
fiber tip can destabilize a SL, which is a nuisance for applications in which stable emission
is required. The corresponding instabilities are usually prevented via the introduction
of optical isolators that shield the laser diode from feedback. Adding optical isolators
implies, however, additional costs and complicates the design of compact and miniaturized
photonic integrated circuits. The onset of dynamical instabilities was one of the first aspects
that was addressed in the study of the nonlinear properties of SL subject to delayed optical
feedback [8–11].

A specific perspective can be adopted when feedback effects are considered from
the point of view of nonlinear dynamics. The different dynamical regimes of a delay-
coupled SL depend directly on the pump current and feedback parameters, allowing
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to target specific dynamical regimes by tuning those parameters. The main feedback
parameters are the amount of light re-injected into the cavity (feedback rate), the length
of the external cavity and the corresponding feedback phase. A SL subject to delayed
optical feedback may exhibit many characteristic high-dimensional dynamical phenomena,
including hyper-chaotic regimes [12,13] and chaos synchronization when coupled to other
SL [14,15]. Moreover, since the complex dynamics generated in delay-coupled SL are
exploited in applications as diverse as encrypted communication with synchronized chaotic
lasers [16], ultrafast random bit sequence generation [17], light sources with tunable
coherence length [18], chaotic LIDAR [19], neuroinspired computation and ultrafast all-
optical signal processing [20], a proper experimental and theoretical characterization and
understanding are crucial.

The importance of SL subject to delayed optical feedback goes beyond the particular
interest in laser dynamics or their photonics related applications. SL are well-controlled
and tunable experimental systems, in which we can study nonlinear dynamics phenomena
with very high accuracy. Therefore, SL subject to delayed optical feedback are excellent
testbed examples of delay-coupled systems in general, being of fundamental importance in
a variety of fields. Some examples of these fields are chaos control [21], neuroscience [22],
traffic dynamics [23], population dynamics [24], gene regulatory networks [25,26], generic
models [27], and secure communications [28].

In this tutorial, we cover some useful experimental tools to characterize the nonlinear
dynamics of single-mode SL subject to optical feedback. We focus on the characterization
of the intensity dynamics and the corresponding high-resolution optical spectra in the case
where the propagation time of the light in the external cavity, i.e., the delay time, is longer
than the characteristic time scale of the solitary laser, namely the period of the relaxation
oscillations [29].

2. Materials and Methods

2.1. Experimental Setup

The simplest configuration of delayed optical feedback comprises a SL diode and an
optical reflector, which could be provided, e.g., by a mirror. Figure 1 shows a schematic view
of such an experimental set-up, where the feedback is implemented as a loop via optical
fibers. We consider a SL diode that emits stably in a continuous wave operation when
unperturbed. The feedback loop redirects a fraction κ f of the laser’s emitted optical field
back into the laser cavity after a delay time τ. The properties of the laser emission depend
on the amount of light that is reinjected into the laser [9]. Here, we will show experimental
results for Discrete-Mode Laser-Diodes that have a Fabry–Perot structure with etched
and longitudinally periodic ridges, which have been designed such that they yield single
longitudinal-mode operation for a wide range of operating conditions [30]. The discrete-
mode laser diode discussed in the following emits at a wavelength of about 1542 nm. The
SL used in the following did not include an optical isolator in its butterfly packaging.

Figure 1. Scheme of our typical experimental setup to study feedback dynamics. LD: laser diode,
Circ: optical circulator, PC: polarization controller; Att: optical attenuator, Spl: one by two intensity
splitter with R = 0.95 and (1 − R) = 0.05 splitting ratios, →: optical isolator, and PD: photodiode.

The first and most straightforward consequence of delayed optical feedback that can
be measured in SL is its effect on the output power. Coherent optical feedback typically
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reduces the lasing threshold as compared to solitary operation. This threshold reduction
is due to photons being re-injected into the laser cavity, reducing the total optical losses.
Figure 2 displays two different power-current characteristics of the same laser under
different experimental conditions. The blue curve corresponds to the case of the SL without
feedback, in comparison to which the presence of delayed optical feedback reduces the SL’s
threshold current, see the orange curve. By means of measuring the relative losses through
the successive elements in the external cavity, a maximum value of the feedback rate can be
estimated. The maximum feedback rate, i.e., the fraction of intensity reflected back to the
laser diode for this particular setup is 54%, excluding the laser and fiber-coupling losses.
The kink in the feedback power-current characteristics is due to the appearance of low
frequency fluctuations dynamics close to the solitary lasing threshold.
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Figure 2. Power-current characteristics of a single-mode laser under different operation conditions:
in solitary emission (blue line) and when subject to delayed optical feedback (orange line). The inset
is a magnification of the region around the two distinct laser thresholds.

2.2. Spectral Characterization of Feedback-Induced Dynamics

Since the lasing threshold is reduced, temporally averaged input–output characteris-
tics draw a rather positive image of delayed optical feedback. From the viewpoint of the
intensity dynamics of the laser, however, delayed feedback has a much more ambiguous
effect. In fact, since the early days of SL, feedback was considered a clear nuisance for their
operation as it created power instabilities and increased the laser’s spectral bandwidth [5–7],
i.e., reducing its coherence.

Figure 3 illustrates this optical feedback-induced broadening on the optical and radio-
frequency power spectra. Figure 3a depicts the optical spectra as measured with a high-
resolution optical spectrum analyzer (resolution 10 MHz). Different colors correspond to
different feedback rates, with the orange curve plotting the solitary laser spectrum and
the blue color plotting the highest feedback rate. In this figure, the higher the value of the
feedback rate, the broader the optical spectrum becomes, mostly broadening towards lower
frequencies, that is, longer wavelengths. For the highest feedback rates on this particular
device, the broadening of the spectrum already covers more than 20 GHz. This well known
phenomenon is frequently referred to in the literature as coherence collapse [8]. For an
even higher feedback rate, the SL can eventually become stable again with a reduced
linewidth [31].
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Figure 3. Experimental signatures of delayed optical feedback on the optical and radio-frequency
(RF) spectra of a semiconductor laser. (a) High-resolution optical spectra of the laser without feedback
(orange) and with different amounts of feedback. (b) Effect of delayed optical feedback on the RF
power spectral density. The RF spectrum is depicted over a 15 GHz frequency span for increasing
feedback conditions. RF spectra are shown for the solitary laser emission (orange line) and four
successively higher values of the feedback rate (from red towards blue). Inset: Zoom of the first
100 MHz for the maximum feedback rate. The external cavity frequency resonances are here clearly
visible as equidistant peaks separated by 13.29 MHz. The arrow indicates the broadening direction of
the optical spectrum and the overall bandwidth increase of the RF spectrum when the feedback rate
increases, respectively.

A complementary spectral characterization tool for the experimentalist is the radio
frequency (RF) power spectrum of the emitted light intensity. Figure 3b depicts the impact
of delayed optical feedback on the RF power spectrum, providing additional informa-
tion complementary to that present in the optical domain. On a multi-GHz scale, one
can observe a clear broadening of the RF spectrum due to the feedback. The relaxation
oscillations frequency is visible for the solitary laser around 4 GHz (frequency with the
highest power density for the orange curve), a feature that is typically observed in the
relative intensity noise spectrum of class B lasers [32]. Increasing the feedback rate results
in a broadening of the RF spectrum with its maximum shifting towards higher frequencies.
Colors for the different feedback scenarios correspond to those of the optical spectra, with
blue representing the highest feedback rate. The inset in Figure 3b depicts the fingerprint of
the delay time in the RF power spectrum. The visible resonances in the RF power spectrum
are separated roughly by the inverse of the light flight time in the external cavity. The
resonance separation is here 13.29 MHz, yielding an approximate value of the external
cavity delay, here (τ ≈ 75 ns) [33]. An experimental method to measure the delay time
more precisely is to induce an optical pulse with a steep slope (small rise time) and to
measure the time intervals between multiple reflections in the external cavity [33].

The linewidth enhancement factor (α), characteristic for SL, plays a crucial role in the
destabilization of the laser emission via delayed optical feedback that ultimately leads to
the collapse of the optical coherence. This parameter accounts for the coupling between
light intensity and optical phase [34]. As a consequence, any intensity fluctuation in the
laser’s emission will be fed-back via the delay path, re-enter the gain medium, and affect
intensity and optical phase.

2.3. Temporal Characterization of Feedback-Induced Dynamics

Figure 4 illustrates the impact of delayed optical feedback on the temporal emission
characteristics of SL. The solitary emission is depicted in Figure 4a, where the AC-coupled
intensity time series shows small fluctuations around the origin. Those intensity fluc-
tuations are the combination of amplified spontaneous emission and detection noise,
particularly when the laser is biased close to the threshold. The corresponding optical
linewidth depends on the optical power and for the operating conditions in Figure 4a is
approximately 1 MHz. In contrast, in Figure 4b, the irregular emission behavior under
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delayed optical feedback is illustrated. The intensity dynamics exhibits chaotic pulsations
on a sub-ns time scale. The optical spectrum corresponding to such dynamics expands the
SL’s linewidth from ∼1 MHz to tens of GHz. The detection bandwidth plays a fundamental
role in the study of the intensity dynamics of the SL subject to optical feedback. The fast
intensity pulsations, which remained mostly unresolved until first measured with a streak
camera [35], can now be characterized in detail due to oscilloscopes with several tens of
GHz analog bandwidth in combination with fast photodetectors.

(a) (b)

Figure 4. Fingerprint of the coherence collapse phenomenon on the intensity dynamics. The AC-
coupled (average power is subtracted by a photodiode, with a low cut-off frequency of a few kHz)
time traces are plotted in (a) for the solitary laser and (b) for the laser subject to delayed feedback.
Colors correspond to the experimental conditions depicted in blue and orange colors in Figure 3.
In (b), the tens of GHz laser’s optical linewidth is reflected in fast and chaotic oscillations of the
corresponding time trace.

While it is, meanwhile, possible to fully resolve the complex intensity dynamics
exhibited by delayed feedback lasers, a direct inspection of chaotic time series is of restricted
help for understanding how the dynamics depends on the different system parameters.
Here, choosing an appropriate representation of the measured time series is key. Figure 5
illustrates two useful methods to represent features of the time-resolved intensity dynamics
in a comprehensive and informative way. Figure 5a depicts the autocorrelation function
(ACF) of the intensity dynamics. The most characteristic signature of delayed dynamics is
present in the revival peaks located at multiples of the delay time. The inset in Figure 5a
zooms on the first ACF peak at a lag time of ∼τ. The spatio-temporal representation of the
intensity dynamics is shown in Figure 5b. In this two-dimensional representation, inspired
by the two main timescales in the ACF, delay time intervals are plotted as a pseudo-space
variable [36]. Here, the abscissa denotes the time offset in a delay interval of length τ,
while the vertical axis denotes the ordinal of the current delay interval. In this manner, the
intensity time series is divided in temporal segments of length τ and consecutive segments
are then plotted on top of each other. For instance, the bottom line in Figure 5b corresponds
to time 0 ≤ t < τ in the original time-series, the line directly above corresponds to time
τ ≤ t < 2τ, and so on. The intensity of the laser is encoded in grey-scale. From such a
representation, specific information can be extracted from a long time series, in particular
if the plotted dynamics is irregular or chaotic [37].
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Figure 5. Different representations of the chaotic intensity dynamics of delayed feedback lasers.
(a) The autocorrelation function (ACF) corresponding to the same feedback conditions as depicted in
the intensity dynamics of Figure 4b. The ACF was calculated over a time series of 2 million samples
recorded with a sampling rate of 40 GS/s. (b) The spatio-temporal representation of the same chaotic
time series. The abscissa denotes the time offset in a delay interval of length τ, while the vertical axis
stacks the time series segments of length τ. The magnitude of the intensity fluctuations is color-coded.

2.4. Theoretical Background

The results reported in this tutorial have been obtained in experiments using quantum
well single mode laser diodes. Even though these results are model-independent, it is
of major interest to link these findings with existing numerical models. A SL subject to
moderate optical feedback can in many cases be described by the Lang–Kobayashi rate
equations as follows [38]:

dE(t)

dt
=

1 + i α

2

[
GN (N(t)− No) − 1

τp

]
E(t) + κE(t − τ)e−i2π fthτ , (1)

dN(t)

dt
=

I

e
− N(t)

τs
− GN (N(t)− No)|E(t)|2 , (2)

where E and N are the complex electric field amplitude and the carrier number, respectively.
The main feedback parameters, namely the delay time τ and the feedback rate κ, can be
seen in Equation (1). Other parameters in Equation (1) are the linewidth enhancement
factor α, the differential optical gain GN, the carrier number at transparency No, the photon
lifetime τp, and the laser solitary frequency at lasing threshold fth. In Equation (2), I is the
pump current, e the electron charge, and τs is the carrier lifetime.

For a detailed analysis of the Lang–Kobayashi model, we refer the reader to the existing
literature [10,39]. Here, we will focus on the steady-state solutions of Equations (1) and (2)
since they provide the backbone of the observed dynamical phenomena.

2.4.1. External Cavity Modes

The relative equilibria solutions for the SL subject to optical feedback can be obtained
by introducing P(t) = |E(t)|2 = Ps, N(t) = Ns, and φs(t) = 2π( fs − fth)t in Equations (1)
and (2). Here, φ(t) denotes the phase of the electric field E(t), while Ps, Ns and fs are
constant. Accordingly, the steady-state solutions read:

Ns = Nth − 2
κ

GN
cos (2π fsτ), (3)

2π( fs − fth) = κ
√

1 + α2 sin (2π fsτ + arctan(α)), (4)

Ps =
I
e − Ns

τs

GN(Ns − No)
, (5)

6
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where Nth = No + 1/(τpGN). The solutions in Equations (3)–(5) are rotating waves, which
lie on an ellipse in the ( fs, Ns) plane [40,41]. Figure 6 shows such ellipses of relative
equilibria obtained for different parameter values of the feedback rate, delay time, and
linewidth enhancement factor. The external cavity modes (ECM) are the solutions that
originate from constructive interference between the laser field and the delayed feedback,
blue circles in Figure 6, while the external cavity antimodes are the ones corresponding to
destructive interference and are shown as orange triangles in Figure 6.

Figure 6. Ellipse of steady-state solutions for the Lang–Kobayashi model. External cavity modes are
depicted as blue circles and antimodes as orange triangles. (a) Parameters: κ = 20 ns−1, τ = 1 ns,
and α = 2. (b) Parameters: κ = 20 ns−1, τ = 2 ns, and α = 2. (c) Parameters: κ = 20 ns−1, τ = 1 ns,
and α = 4.

As illustrated in Figure 6, the maximum feedback-induced frequency shift in the
Lang–Kobayashi model is approximately ∆ f f b = ακ/2π (extremes of the ellipse) and
the frequency separation between ECM is proportional to τ−1, where fEC = τ−1 is the
frequency associated to the external cavity. Thus, the extent of the ellipse is ∆ f f b ∼ 6.35 GHz
in Figure 6a,b, while ∆ f f b ∼ 12.7 GHz in Figure 6c, respectively. In turn, the separation
between the ECMs is τ−1 ∼ 1 GHz in Figure 6a,c, while τ−1 ∼ 0.5 GHz in Figure 6b,
respectively. The eccentricity of the ellipse of external cavity modes and antimodes is
determined by α.

To understand the feedback-induced laser dynamics, the relaxation oscillation fre-
quency of the solitary laser is of great relevance. The relaxation oscillation frequency of the
solitary laser, i.e., Equations (1) and (2) with κ = 0, is given by fRO = 1

2π

√
GN(I − Ith)/e,

where Ith is the pump current at the lasing threshold. As will be shown in Section 3, the
relationship between ∆ f f b and fRO plays a major role in the observed dynamics of the SL
subject to optical feedback since we are dealing with an experimental system with a large
delay (τ ≈ 75 ns).

3. Experimental Results: Dynamical Regimes

Spectral and dynamical phenomena in delayed feedback SL depend on the combi-
nation of both, laser and feedback parameters. It is possible, however, to group these
intricate dependencies in different scenarios or feedback regimes. Here, three characteristic
experimental scenarios are analyzed, corresponding to different degrees of influence of
feedback on the single laser behavior. In the following, feedback rate and bias current are
the two parameters varying between low, intermediate and strong feedback scenarios.

As illustrated in [42], feedback regimes depend mainly on the relation between the
system’s three principal frequencies: the relaxation oscillations frequency fRO, the external
cavity frequency fEC, and the feedback-induced frequency shift ∆ f f b, respectively. The
dynamical characteristics, shown for a given combination of feedback and laser parameters,
are similar to any other combination of parameters that keep the ratios fRO/∆ f f b and
fRO/ fEC constant. As discussed in Section 2.4.1, fRO depends on bias current I and ∆ f f b

on feedback rate κ. The particular values of the three bias currents and feedback rates

7
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in the following were chosen to best illustrate the dynamic and spectral characteristics
of feedback-induced semiconductor laser dynamics in the low, intermediate and strong
feedback regimes, respectively. By working in the limit of long external cavities, with
fRO ≫ fEC, the ratio fRO/∆ f f b dominates the global dynamics, while the ratio fRO/ fEC

determines if the temporal dynamics is contracting or expanding [42].
The experimentally measured transition between the three feedback conditions shown

here does not necessarily visit discrete feedback regimes, but rather features continuous
transitions between these. A description of such dependence and their relation with the
system’s time scales can be found in [42]. For a detailed study of the bifurcation-cascade
diagrams in delayed feedback lasers we refer, e.g., to this previous work [43].

3.1. Low Feedback Rate

The first illustrated regime corresponds to the weakest feedback condition, the onset
region of dynamical instabilities. In the selected example, the bias current I = 18 mA
is approximately ≃ 1.5Ith and the feedback rate has been strongly attenuated by 31 dB
from its maximum value. This combination of bias current and feedback rate leads to the
condition fRO > ∆ f f b. In particular, the chosen parameter values correspond to undamped
relaxation oscillations dynamics [44], occurring just after the destabilization of the solitary
laser emission.

Figure 7a shows the optical spectrum, which is characterized by the presence of
sharp well defined peaks at left and right sides of the solitary laser mode ( fSOL). The
frequency peak at its immediate left side corresponds to the feedback-induced frequency
shift (∆ f f b). In addition, one can observe several side peaks that are shifted by multiples
of the relaxation oscillation frequency ( fRO). This is the signature of the undamping of
the relaxation oscillations. Such resonances are clearly identifiable in the RF spectrum
depicted in Figure 7b. As shown in Figure 7a, ∆ f f b is smaller than the relaxation oscillations
frequency fRO for this weak feedback regime.

The ACF is depicted in Figure 7c for an interval of 10τ. The overall ACF decay along
multiple delay echoes is very small and the system contains, on average, persistent τ-
feedback memory of its past states. The inset in Figure 7c depicts the ACF oscillations
around the first delay echo. These oscillations are the signature of the undamped relaxation
oscillations in the ACF and are dominated by fRO, as visible in the RF spectrum. In
the broader view of the ACF, a particular lobe structure modulates the ACF envelope
amplitudes in between delay echoes. Only a slight modification of any of the feedback
parameters can significantly modify the lobe structure, but their influence on the ACF
height will be minor.

Figure 7d illustrates the spatio-temporal representation of the intensity dynamics.
This representation clearly elicits the high correlation of the local dynamics with the
delay time τ. For a time window of 500τ (more than 30 µs), two distinct and separate
dynamical behaviors—namely stable emission and an oscillatory state—coexist. The region
magnified in the inset allows the identification of oscillations of constant frequency fRO

that characterize the oscillatory region and a sharp transition to the stable regime. The
coexistence of stable and unstable dynamics is a common feature of SL with low optical
feedback [43,45,46].
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Figure 7. Characteristics for undamped relaxation oscillation dynamics at a bias current of I = 18 mA
and a feedback rate that has been attenuated by 31 dB from its maximum value. (a) Optical spectrum,
(b) RF power spectrum, (c) Autocorrelation function (ACF) of the intensity time series with inset
around the first delay echo, (d) Spatio-temporal representation of the intensity time series with inset
for magnification of the intensity dynamics around the origin.

3.2. Intermediate Feedback Rate

Here, we show results for a bias current of I = 16 mA (≃1.3Ith) and a feedback rate
that has been attenuated by 13 dB from its maximum value. These parameter choices
correspond to the intermediate feedback condition fRO ≈ ∆ f f b.

The intermediate feedback region can be associated with a strong chaos regime in the
weak–strong chaos paradigm for delayed systems [47,48]. In this regime, all correlations in
dynamic and spectral signatures are strongly reduced as a result of the enhanced nonlinear
mixing between fRO and ∆ f f b. This feature can be identified in Figure 8a, with a broad
optical spectrum covering more than 20 GHz at −20 dB height. No sharp peaks are present
neither in the optical spectrum nor in the RF power spectrum shown in Figure 8b.

The envelope of the ACF in Figure 8c illustrates the fast fading memory of the dy-
namics at successive delay echoes for these experimental conditions. The ACF height
at the first delay echo is below 0.3, as visible in the inset. This low value of the ACF at
multiples of τ is a signature of strong chaos in delayed feedback lasers [48]. Figure 8d
depicts the spatio-temporal representation for such time series. The spatio-temporal plot
shows differentiated structures with little correlation between them, disappearing rapidly
and losing their correlation within a few delay times.
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Figure 8. Exemplary dynamics at intermediate feedback levels. The bias current is I = 16 mA and the
feedback rate has been attenuated by 13 dB from its maximum value. (a) Optical spectrum; (b) RF
power spectrum; (c) Autocorrelation function (ACF) of the intensity time series with inset around
the first delay echo, (d) Spatio-temporal representation of the intensity time series with inset for
magnification around the origin.

3.3. High Feedback Rate

Strong feedback conditions are depicted in Figure 9. In this case, the bias current is
I = 13 mA (≃1.1Ith) and the feedback rate is the maximum value allowed in the experimental
set-up, yielding the condition fRO < ∆ f f b.

The optical spectrum in Figure 9a shows a two-peaked structure with a distance of
∼20 GHz between the peaks. The highest peak, at lower optical frequencies, corresponds
to the spectral signature of the maximum feedback-induced frequency shift (∆ f f b), while
the peak at the right hand side of the spectrum is the signature of the dynamics in the
region of the solitary laser mode. The RF power spectrum in Figure 9b illustrates that the
chaotic bandwidth broadens when the feedback rate is increased, with the particularity that
the power for low frequencies significantly increases (see inset of Figure 9b). This increase
of the RF power density at lower frequencies is due to the appearance of the so-called
low frequency fluctuations (LFF) in the intensity dynamics. The LFF dynamics, which
appear for currents close to the lasing threshold and strong feedback, is characterized
by irregularly distributed dropouts in the intensity dynamics [49–51]. The LFF power
dropouts are distinguishable in Figure 9d as dark horizontal lines that typically last a τ-
interval and repeat irregularly every ∼20τ. Here, LFFs are observed in the strong feedback
case since the laser is operated close to the lasing threshold I ≃ 1.1Ith.

The high feedback rate conditions lead to large delay-induced correlation peaks, as
shown in detail at the inset in Figure 9c. Despite the fast chaotic dynamics and a broad
RF spectrum, the slow decay of the ACF envelope hints at the fact that this dynamics
correspond to a weak chaos regime [48]. The long-term vertical propagation of the struc-
tures visible in the spatio-temporal representation of Figure 9d (and magnified in the inset)
supports this interpretation. In delayed feedback SL, strong chaos does not occur when
feedback is strongest, but rather in the region where the feedback induced frequency shift
approaches the frequency of the relaxation oscillations of the solitary laser [42]. It is worth
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noting that, when the feedback is strong enough, the laser again enters the weak chaos
regime and, eventually, for particularly strong feedback and bias currents not far from
threshold, the laser intensity can be stabilized again. This latter scenario leads the laser to a
particularly high coherent state [31].
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Figure 9. High feedback rate dynamics. The bias current is I = 13 mA and the feedback rate is the
maximum value allowed in the experimental set-up. (a) Optical spectrum, (b) RF power spectrum,
(c) Autocorrelation function (ACF) of the intensity time series with inset around the first delay echo,
(d) Spatio-temporal representation of the intensity time series with inset for magnification around
the origin.

4. Discussion and Conclusions

The complex dynamical behavior of SL subject to optical feedback leaves characteristic
fingerprints that can be observed in time and frequency domains. In this tutorial, we
presented a basic overview of the main dynamical phenomena and the feedback-induced
features in optical spectra and laser intensity measurements of single-mode SL. The impact
of optical feedback on multi-mode lasers is a further, interesting aspect that has not been
covered here. We have focused instead on the conditions where long delayed optical
feedback yields a transition between stable dynamics and undamped relaxation oscillations,
as well as in two conditions that lead to two chaotic regimes of different natures. In all these
cases, the interplay between the relaxation oscillations frequency fRO and the maximum
feedback-induced frequency shift ∆ f f b is crucial for the dynamics that can be observed
in the laser. The particularities of the dynamical features, such as the shape of the optical
spectrum or the structures in the spatio-temporal representation, do, however, depend
on the parameters of the considered device. In particular, lasers with a higher linewidth
enhancement factor α are typically more sensitive to feedback.

By directly detecting the laser emission with a photodiode, one gets information
about the intensity dynamics. Characterization of the phase dynamics is more challenging
but also possible through, e.g., heterodyne measurements [52]. For the heterodyne tech-
nique, the field of the delayed-feedback laser is coherently added to the field of a narrow
linewidth laser of a similar optical frequency, and the mixed fields are then detected by a
fast photodetector. In this manner, a signal proportional to the optical frequency dynamics
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can be measured in the radio-frequency domain. By simultaneously measuring intensity
and optical frequency dynamics, along with the carrier dynamics, with high temporal
resolution, one obtains a complete picture of the dynamical evolution of the laser along
the three dynamical dimensions of the corresponding rate equation model [53]. The full
knowledge of the dynamics can allow for tailoring the response of the laser for applications
by performing a proper phase space engineering.

In the last few years, the study of SL with optical feedback has been extended beyond
the single, fixed delay case. From the fundamental point of view, two notable extensions
include the realization of state-dependent delays [54] or 2D spatio-temporal dynamics [55]
in laser systems with two delays. From the application point of view, SL subject to optical
feedback and optical injection have been demonstrated to allow for information processing
in the context of photonic reservoir computing [20,56]. We envision that the complex
dynamics of SL with optical feedback described in this tutorial will still prove to be a
valuable resource for further research and innovation.
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Abstract: We present a theoretical study of the nonlinear dynamics of a long external cavity delayed
optical feedback-induced interband cascade laser (ICL). Using the modified Lang–Kobayashi equa-
tions, we numerically investigate the effects of some key parameters on the first Hopf bifurcation
point of ICL with optical feedback, such as the delay time (τf), pump current (I), linewidth enhance-
ment factor (LEF), stage number (m) and feedback strength (f ext). It is found that compared with τf, I,
LEF and m have a significant effect on the stability of the ICL. Additionally, our results show that
an ICL with few stage numbers subjected to external cavity optical feedback is more susceptible to
exhibiting chaos. The chaos bandwidth dependences on m, I and f ext are investigated, and 8 GHz
bandwidth mid-infrared chaos is observed.

Keywords: interband cascade laser; mid-infrared chaos; optical feedback; nonlinear dynamics

1. Introduction

As a mid-infrared semiconductor laser, the interband cascade laser (ICL) has made
significant progress in the last two decades [1–6]. The RAND Corporation reports that
mid-infrared lasers in the 3–5 µm band of the atmospheric transmission window have
good atmospheric transmission characteristics, lower transmission losses than other bands,
and are less susceptible to weather factors [7]. In addition, the mid-infrared band covers
the absorption peaks of many atoms and molecules [8]. Therefore, ICL can be used in
applications such as gas detection [9,10], clinical respiratory diagnosis [11] and free-space
optical communication [12].

In contrast to the quantum cascade laser (QCL), the ICL is a bipolar device, with
the electronic transition of the ICL occurring between the conduction and the valence
sub-bands [13]. Therefore, the carrier lifetime of the ICL is in the nanosecond order like
in more conventional semiconductor lasers. Furthermore, in recent experimental reports
the linewidth enhancement factor of the ICL was found to be about 2.2, which is much
higher than that of QCL [14,15]. Both of these characteristics suggest that when subjected
to external perturbation, the ICL will exhibit rich nonlinear dynamics. Wang et al.’s
recent experiments confirm that with external optical feedback the ICL exhibits periodic
oscillations and weak chaos [16]. 450 MHz low frequency oscillation (detector bandwidth
limited) chaos was observed. However, the route to chaos and the identification of the
means for obtaining strong chaos are open for detailed study. A recent report shows that
based on a QCL with external optical feedback, a generated mid-infrared low frequency
chaotic oscillation was used to achieve 0.5 Mbit/s message private free-space optical
communication [17]. To realize a much higher-speed message secure transmission, strong
broadband chaos is essential.

In this paper, modified Lang–Kobayashi equations are used to investigate the dynam-
ics of the ICL subject to external optical feedback. ICLs with short external cavities have
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been used to affect wavelength tuning [18]. In contrast, and with a view to performing
experiments with discrete devices [19–25], we focus on the case of optical feedback from
longer external cavities, wherein the external feedback delay time is larger than the oscilla-
tion relaxation time of the ICL [26]. The pump current, feedback strength, stage number
and linewidth enhancement factor effects on the stability of the ICL with optical feedback
are analyzed, and the influence of the stage number, pump current and feedback strength
on the bandwidth of chaos are investigated.

2. Theoretical Model

Figure 1a presents an ICL structure having three stages. Initially, the electron transition
in the ICL occurs between the first conduction sub-band and the first valence sub-band,
as indicated as Ee (blue potential well) and Eh (red potential well) in the left upper corner
in Figure 1a [27]. After the first electron transition, the electron reaches the second stage
conduction sub-band through interband tunneling and then repeats the electron transition
in the second stage and then in the third stage. Figure 1b is the schematic diagram of an
ICL subjected to external mirror feedback, where τf is the feedback time delay.
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Using appropriately modified Lang–Kobayashi equations, the rate equations for the
ICL with optical feedback are as follows [28,29]:

dN(t)

dt
= η

I

q
− ΓpυggS − N(t)

τsp
− N(t)

τaug
(1)

dS(t)

dt
=

[
mΓpυgg − 1

τp

]
S(t) + mβ

N(t)

τsp
+ 2k

√
S(t)S(t − τf )cosθ(t) (2)

dϕ(t)

dt
=

αH

2

[
mΓpυgg − 1

τp

]
− k

√
S(t − τf )

S(t)
sinθ(t) (3)

where N(t), S(t) and ϕ(t) respectively represent the per stage carrier number, total photon
number of all gain stages and phase of the electric field. M is the number of gain stages, τsp

is the spontaneous radiation lifetime, and τaug is the Auger recombination lifetime. Since
the Auger recombination lifetime τaug in the ICL is smaller than the spontaneous radia-
tion lifetime τsp, τaug must be considered in the current-carrying dynamics. In principle,
the Auger coefficient has a carrier density dependence, as in ref. [30]. In this work, we
follow [29] in assuming a constant value for the Auger lifetime. η is the current injection
efficiency, Γp is the optical confinement factor per gain stage, νg is the group velocity of
light, g is the material gain per stage which is given by g = a0[N(t) − Ntr]/A. τp is the
photon lifetime, and k is the feedback coefficient which is given by k = 2Cl

√
fext/τin, where

τin is the internal cavity roundtrip time, fext is the feedback strength which is defined as the
power ratio between the feedback light and the laser output, and Cl is an external coupling
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coefficient. The external coupling coefficient can be expressed as Cl= (1 − R)/2
√

R, with
R being the reflection coefficient of the laser front facet facing the external mirror.

The steady-state solutions for the ICL operating above the threshold current are as
follows [29]:

N =
1
m

A

Γpvga0τp
+ Ntr (4)

S0 = mητp
I − Ith

q
(5)

Ith =
q

η

(
1
m

A

Γpvga0τp
+ Ntr

)(
1

τsp
+

1
τaug

)
(6)

The descriptions of other symbols and their values used in the simulation are given in
Table 1, as taken from [14,27,29–32]. The integration time step in the simulation is 0.1 ps.

Table 1. ICL parameters used in the simulations.

Parameter Symbol Value

Cavity length L 2 mm
Cavity width W 4.4 µm

Group velocity of light vg 8.38 × 107 m/s
Wavelength λ 3.7 µm
Active area A 8.8 × 10−9 m2

Facet reflectivity R 0.32
Refractive index nr 3.58

Optical confinement factor Γp 0.04
Stage number m 3–20

Injection efficiency H 0.64
Photon lifetime τp 10.5 ps

Spontaneous emission time τsp 15 ns
Auger lifetime τaug 1.08 ns

Threshold current Ith 19.8 mA (m = 5)
Feedback strength fext 0~30%

Time delay τf 1.5~5.0 ns
Differential gain a0 2.8 × 10−10 cm

Transparent carrier number Ntr 6.2 × 107

Spontaneous emission factor β 1 × 10−4

Linewidth enhancement factor αH 2.2

3. Numerical Results

We calculate the carrier number and photon number for an increasing bias current, as
shown in Figure 2a,b, respectively. It is found that the number of stages m has little effect
on the carrier number (in Figure 2a) but that it influences the photon number (in Figure 2b).
For relatively large numbers of stages such as m = 10 (red dashed curve), the output power
is much higher than in the case of m = 5 (black solid curve), as shown in Figure 2b.

3.1. Route to Chaos

Figure 3 shows the output of the ICL with external optical feedback as the feedback
strength increases, for the case of m = 5. The ICL output is stable when the feedback
strength fext ranges from 0 to 0.019%. Without feedback, that is fext = 0, the relaxation oscil-
lation frequency f R can be observed from the RF spectrum in Figure 3(d-i) to be 1.02 GHz.
This is in accordance with the value 1.035 GHz obtained by calculating the relaxation
oscillation frequency via the relation f R = (G0S0/τp)−1/2/(2π), where G0 = Γpvga0/A and
S0 are found from Equation (5). As the feedback strength increases, the ICL enters into
period-1 dynamics (ii), quasi-periodic dynamics (iii), weak chaos oscillations (iv), and then
displays strong chaos (v). The frequency of period-1 oscillations is 1.03 GHz, as shown
in Figure 3(d-ii), which is a little larger than the relaxation oscillation frequency shown
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in Figure 3(a-ii). As the feedback strength increases, a quasi-periodic oscillation is found,
which is confirmed by the RF spectrum and phase diagram; that is, more frequencies are
induced in Figure 3(d-iii) and more loops are found in the phase in Figure 3(c-iii), respec-
tively. An irregular laser intensity oscillation is observed where the ICL enters into weak
chaos, as shown in Figure 3(a-iv). Although the highest peak in the RF spectrum is still at
1.03 GHz, more frequency components appear, as presented in Figure 3(d-iv). For a further
increase in the feedback strength, more complex nonlinear dynamics are introduced, hence
achieving strong mid-infrared optical chaos, as shown in Figure 3(a-v–e-v). In the optical
spectra of the chaos shown in Figure 3(e-v), many external cavity modes with a frequency
interval around 410 MHz are found. This can be confirmed from the auto-correlation
functions shown in Figure 3(b-v), where the sidelobe peak is at 2.4 ns, corresponding to a
cavity length of 36 cm.
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Figure 2. (a) Carrier number and (b) photon number vs. pump current. Black solid and red dashed 
curves represent stage numbers m = 5 and m = 10, respectively. 
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By using bifurcation diagrams, the dynamics of the ICL for increasing feedback
strength can be obtained, as shown in Figure 4(a-i) with m = 5 and Figure 4(b-i) with
m = 10. Maximum Lyapunov exponents [33,34] can be used to determine whether the ICL
output with external optical feedback is chaotic (red dots) or not (blue dots), as shown
in Figure 4(a-ii,b-ii). As shown in Figure 4(a-i), the route to chaos for a 10-stage ICL with
external optical feedback is from stable (S) to period-1 (P1), then quasi-periodic (QP) and
then chaos (C). This route is different from that of a 10-stage ICL where multiple-periodic
(MP) oscillations are observed. The number of stages m has an effect on the photon number
and phase, as presented in Equations (2) and (3), which results in different routes to chaos.

3.2. Hopf Bifurcation Analysis

In this section, we explore the stability of ICLs with external optical feedback. We first
compare two stage numbers, which are m = 5 and m = 10, to reveal the effects of the time
delay, bias current and linewidth enhancement factor on the Hopf bifurcation points. Then,
we ascertain how the Hopf bifurcation changes for stage numbers m in the range of 3 to 20.

The pump current is set a little above the threshold current, that is 1.1Ith. Figure 5
shows that the external cavity delay has little effect on the Hopf bifurcation point. As the
external cavity delay increases from 1.5 ns to 5.0 ns, the Hopf bifurcation point values,
that is the feedback power ratio where the ICL enters into P1, are around 0.02% to 0.33%.
As shown in Figure 5, there is a periodic dependence of the Hopf bifurcation point on
the external cavity delay time; for a 2.1 ns delay time, the value of the Hopf bifurcation
point reaches a maximum and the second peak is at 3.0 ns. As the delay time increases, the
differences between the Hopf bifurcation points reduce.
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To illustrate the pump current effects, the dependence of the Hopf bifurcation point
on bias current is investigated. In Figure 6a,b, two external cavity delays are compared,
viz τf = 2.0 ns and τf = 2.4 ns. As the pump current increases, the Hopf bifurcation point
gradually increases for both m = 5 (squares) and m = 10 (circles) cases, as well as for
τf = 2.0 ns and τf = 2.4 ns. Compared with τf = 2.4 ns, at τf = 2.0 ns there is a need for a
larger feedback power ratio to enable the ICL to enter an unstable state, which is around
1.3 times that of τf = 2.4 ns for a pump current of 3Ith. Since these two delays show
similar trends for the Hopf bifurcation point versus bias current, we focus our attention on
τf = 2.4 ns in the following results.
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For ICLs, the number of stages, m, is usually less than 20. Figure 8 shows the Hopf 
bifurcation point value versus stage number with I = 1.5Ith, τf = 2.4 ns. It is seen that an 
increased stage number gives rise to an exponential increasing Hopf bifurcation point 
value, which indicates that ICLs with a large number of stages are more stable. 
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It is well-appreciated that the linewidth enhancement factor, αH, plays a crucial role in
semiconductor laser nonlinear dynamics. For common quantum well laser diodes, αH is in
the range of 2.0 to 5.0 [35,36]. A recent report shows that the below-threshold linewidth
enhancement factor of ICL is in the range of 1.1–1.4 [14]. Here, we calculate the Hopf
bifurcation point versus linewidth enhancement factor, which ranges from 1 to 5, as shown
in Figure 7. As the linewidth enhancement factor increases from 1 to 2, the Hopf bifurcation
point value reduces rapidly and then tends to be stable as αH increases further. Thus, as
expected, a small αH imparts the ICL with considerable dynamic stability.

For ICLs, the number of stages, m, is usually less than 20. Figure 8 shows the Hopf
bifurcation point value versus stage number with I = 1.5Ith, τf = 2.4 ns. It is seen that an
increased stage number gives rise to an exponential increasing Hopf bifurcation point
value, which indicates that ICLs with a large number of stages are more stable.
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creasing tendency. Once the pump current increases to 2Ith, a 6 GHz chaos bandwidth is 
obtained when the stage number is 10, and a 8 GHz chaos bandwidth can be achieved 
with 3Ith, as shown in Figure 10. 

Figure 8. Hopf bifurcation point value vs. stage number m with I = 1.5Ith, τf = 2.4 ns.

3.3. Bandwidth of Chaos

A broadband RF spectrum is one of the significant characteristics of chaos. The band-
width of chaos determines the range resolution of chaotic lidar [37], the bit rate of random
sequence generation [38] and the transmission rate of optical chaos communications [39].
We use a conventional definition of bandwidth of chaotic signals as the frequency span
between the DC and the frequency where 80% of the energy is contained [40], and investi-
gate the bandwidth of mid-infrared chaos. Similar to regular quantum well laser diodes,
the bandwidth of chaos from ICL with external optical feedback increases as the feedback
power ratio increases, as shown in Figure 9.
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Increasing the pump current and hence the relaxation oscillation frequency is expected
to enhance the bandwidth of chaos, and this is confirmed in Figure 10. Here, we notice
that mid-infrared chaos from ICL with different stage numbers has the same increasing
tendency. Once the pump current increases to 2Ith, a 6 GHz chaos bandwidth is obtained
when the stage number is 10, and a 8 GHz chaos bandwidth can be achieved with 3Ith, as
shown in Figure 10.
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The stage number effect is presented in Figure 12, where m ranges from 3 to 20 and 
the pump currents are 1.1Ith (black squares) and 2Ith (red circles). Although the increase in 
bandwidth for the relatively high pump current, 2Ith, is faster than that of the relatively 
low pump current, 1.1Ith, the tendency of the stage number effects is the same, that is the 
bandwidth of chaos increases as the stage number increases. This tendency is verified in 
Figures 9–11. 

Figure 10. Bandwidth of chaos vs. bias current when f ext = 28% and τf = 2.4 ns with m = 5 (black
squares), m = 10 (red circles).

Figure 11 respectively presents the time series, auto-correlation, phase diagram, RF
spectrum and optical spectral of mid-infrared chaos for m = 5 (in Figure 11a) and m = 10 (in
Figure 11b). This indicates that for relatively high number of stages the bandwidth of chaos
from ICLs is further enhanced, as shown in Figure 11(a-iv,b-iv). The enhanced bandwidth
of the chaos is due to the relaxation oscillation frequency of the ICL increasing with the
number of stages.
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Figure 11. Output chaos of ICL with external optical feedback as stage number increases with I = 1.9Ith, τf = 2.4 ns and
fext = 28%. (a) m = 5, (b) m = 10. Columns (i–v) are TS, ACF, PP, RFS, OS, respectively.

The stage number effect is presented in Figure 12, where m ranges from 3 to 20 and
the pump currents are 1.1Ith (black squares) and 2Ith (red circles). Although the increase in
bandwidth for the relatively high pump current, 2Ith, is faster than that of the relatively
low pump current, 1.1Ith, the tendency of the stage number effects is the same, that is the
bandwidth of chaos increases as the stage number increases. This tendency is verified in
Figures 9–11.
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with τf = 2.4 ns.

By using Maximum Lyapunov exponents, we distinguish chaos from QP, and calculate
the 80% energy power bandwidth versus feedback power ratio and pump current, as shown
in Figure 13. By using dashed curves, we distinguish QP and C, while the white region
represents the stable(S) output. It is found, in Figure 13a, that S is observed for a small
number of stages m = 5 when the bias current is below 1.2Ith and the feedback power
ratio is in the range of 4% to 30%. Stable output is also found in the top left corner of
Figure 13a. For a large stage number, that is m = 10, S is observed when the pump current is
small, below 1.2Ith, and the feedback power ratio is around 28%, as indicated in the bottom
right corner of Figure 13b. S is also observed for m = 10 when the bias current is higher
than 2.16Ith and the feedback power ratio is less than 4%, as seen in Figure 13b. These
results indicate that an ICL with a relatively high bias current will exhibit S, QP and then
enter into C as the feedback power ratio increases. As the stage number increases from
5 to 10 and the ICL is subject to a relatively high bias current, both S and QP regions are
extended, as shown towards the left of Figure 13a,b. This confirms that for relatively few
stage numbers an ICL with external optical feedback is amenable to exhibiting chaos. The
results for both cases confirm that in order to obtain broadband mid-infrared chaos, one
needs a relatively high pump current as well as a large feedback power ratio. Furthermore,
a 8 GHz bandwidth of mid-infrared chaos can be obtained for m = 10, as shown in the top
right corner of Figure 13b.
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4. Discussion

A mid-infrared chaotic laser will be a promising source for implementing secure
free-space optical communication. In this paper, we show how to obtain broadband mid-
infrared chaos using an ICL with long-cavity optical feedback. The analysis of the laser
stability is effected by identifying the Hopf bifurcation point. From such considerations
we find that ICLs with a relatively small number of stages are more unstable and thus
susceptible to exhibiting chaos. The chaos bandwidth of the ICL is related to the relaxation
oscillation frequency, which increases linearly with the cube root of the stage number and
laser pump current. Therefore, to obtain broadband chaos from an ICL there is a need for
a high pump current, large number of stages as well as strong optical feedback strength.
Our calculations show that 8 GHz bandwidth mid-infrared chaos can be generated using
a 10-stage ICL biased at three times the threshold current. With the availability of such
broadband mid-infrared chaos, it is expected that of-order Gbit/s secure free-space optical
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Abbreviations

The following abbreviations are used in this manuscript:
ICL interband cascade laser
LEF linewidth enhancement factor
QCL quantum cascade laser
TS time series
ACF autocorrelation curves functions
PP phase portrait
RFS radio-frequency spectrum
OS optical spectral
S stable
P1 period-1
QP quasi-periodic
MP multiple-periodic
C chaos
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Abstract: To increase the spectral efficiency of coherent communication systems, lasers with ever-
narrower linewidths are required as they enable higher-order modulation formats with lower bit-error
rates. In particular, semiconductor lasers are a key component due to their compactness, low power
consumption, and potential for mass production. In field-testing scenarios their output is coupled
to a fiber, making them susceptible to external optical feedback (EOF). This has a detrimental effect
on its stability, thus it is traditionally countered by employing, for example, optical isolators and
angled output waveguides. In this work, EOF is explored in a novel way with the aim to reduce and
stabilize the laser linewidth. EOF has been traditionally studied in the case where it is applied to only
one side of the laser cavity. In contrast, this work gives a generalization to the case of feedback on
both sides. It is implemented using photonic components available via generic foundry platforms,
thus creating a path towards devices with high technology-readiness level. Numerical results shows
an improvement in performance of the double-feedback case with respect to the single-feedback
case. In particularly, by appropriately selecting the phase of the feedback from both sides, a broad
stability regime is discovered. This work paves the way towards low-cost, integrated and stable
narrow-linewidth integrated lasers.

Keywords: laser dynamics; optical feedback; narrow-linewidth lasers; semiconductor lasers; laser stability

1. Introduction

The effect of external optical feedback (EOF) on diode laser dynamics has been ex-
tensively studied for the past half century [1,2]. EOF has been proven to affect laser
performance, showing regimes that can aid in linewidth reduction [3–6], as well as others
responsible for highly unstable behavior, from mode hopping to the case of coherence
collapse [7–12]. Methods to improve laser stability thus need to take EOF into account,
as even weak feedback can be detrimental. A traditional approach to mitigate its effects is to
include an off-chip isolator at the laser output. Yet, this component negatively impacts the
dimensions of packaged devices as well as fabrication times and costs. As such, research is
ongoing to develop an integrated solution that can minimize the negative effects of EOF.
Efforts include adjusting the feedback phase to tune into line-narrowing regimes [13,14],
using unidirectional phase modulators [15,16], reducing the linewidth enhancement factor,
e.g., using quantum dots [17–19], employing electromagnetic effects [20,21], harnessing the
mode propagation properties of ring lasers [22,23], or the extended cavity approach [24–27].

Double external feedback on the same side of the laser cavity has been previously
explored for chaos stabilization in Reference [28]. Its results numerically show that, by in-
troducing an additional feedback term, a chaotic regime can be stabilized in terms of output
power, where a robust stable region for a wide parameter range can be seen. Furthermore,
linewidth is numerically shown to be reduced with respect to the single feedback case.
However, it lacks an analytical expression for the linewidth, and it does not explore the
effect of the added term on other optical feedback regimes, which limits the scope of the
analysis [7]. Dual external cavities have also been explored to maximize the sensitivity
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of self-mixing interferometers for sensing applications [29–31]. These studies focus on
improving the interferometric signal in terms of output power characteristics, yet they do
not study the effect EOF has on linewidth, which is crucial for other applications such
as coherent communications [32] or frequency metrology [33]. Furthermore, in all works
exploring dual external cavities, both external reflections return to the same side of the laser
cavity and thus have the same propagation direction. Moreover, phase shifts in the external
phase cavity are not accounted for, thus ignoring, e.g., possible phase shifts at the mirrors.

The established line of thought relies on the key assumption that feedback is intro-
duced from only one side of the laser cavity. Current integration technologies make this
assumption obsolete, as they allow for arbitrarily complex design geometries with a variety
of functionalities, such as tunability and modulation, while maintaining narrow-linewidth
performance [34–38]. Consequently, this work aims to extend the theoretical foundations
of EOF to the case of feedback coupling into the laser cavity from both sides. This system is
studied to obtain and analyze its dynamic rate equations. Furthermore, the frequency noise
power spectral density and subsequently the intrinsic linewidth’s dependence on feedback
is computed. The Lang–Kobayashi approach is used [39], where an additional term to
account for the extra feedback term is included. In a similar fashion, to obtain analytical
solutions both small-signal and weak feedback conditions are assumed. The obtained
equations are then numerically solved. Results show that feedback-insensitivity can be
achieved by tuning the feedback parameters. In contrast with previous works, this can be
accomplished in a monolithic platform by including a single active component in a straight-
forward geometric configuration. As such, design complexity is reduced which enables
devices with a compact form factor. Furthermore, existing methods for laser fabrication
are suitable for realizing the proposed device. In particular, the proposed laser system
can be made with mature photonic integrated components available in generic foundry
platforms [40,41], thus creating a path towards devices with high technology-readiness
level while maintaining low cost and size.

2. Rate Equations Model

This section includes a derivation of the dynamic equations of a laser cavity with EOF
coupled into the laser cavity from both sides. Starting from the Lang–Kobayashi model [39],
the lasing frequency and threshold gain shifts due to feedback are obtained, as well as an
analytical expression for the frequency noise power spectral density from which the change
of intrinsic linewidth can be computed.

This work proposes a revised laser system, as shown in Figure 1. The laser cavity of
length L is delimited by two mirrors with complex reflection coefficients ρ1 and ρ2 , re-
spectively. Assuming two interfaces at each side of the main cavity, two additional back-
reflections (ρ1,ext and ρ2,ext ) are considered and accounted for by computing effective reflec-
tion coefficients. The case of weak feedback is discussed here, for which:

|ρ
j,ext | ≪ 1. (1)

The following parameters are introduced:

κj ≡
1 − ρ2

j

ρ
j

∣∣∣ρj,ext

∣∣∣
tcav

(2a)

φj ≡ ωFB tj + φmj
(2b)

δω ≡ ωFB − ωref (2c)

tcav = 2L/vg, (2d)

with j = 1, 2, where κj is the coupling coefficient; tcav is the cavity round-trip time, with the
group velocity vg; φj is the phase delay due to the external cavities determined by the
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external round-trip time tj, the lasing frequency in the presence of feedback ωFB , and a
phase shift at the external mirrors φmj

; and ωref is the free running laser frequency.
The first step is extracting the lasing conditions of the proposed laser system.

L

Figure 1. Schematic of a laser cavity affected by external optical feedback from both sides.

2.1. Lasing Conditions

By analyzing the slowly-varying amplitude of the complex electric field, effective

reflection coefficients
(

ρeff
j

)
can be obtained:

ρeff
j

ρ
j

≈ 1 + κjtcave±iφj , (3)

where the plus and minus signs corresponds to j = 1 (left mirror) and j = 2 (right
mirror), respectively. The additional reflection influences the lasing condition, as shown
in Appendix A, and thus the threshold gain and lasing frequency. To calculate them, the
following definitions are convenient:

GFB ≡ ΓgFB vg (4a)

Gref ≡ Γgrefvg (4b)

∆φm ≡ φm1 − φm2 , (4c)

γH ≡
√

1 + α2
H

(4d)

θH ≡ arctan(αH) (4e)

where Γ is the confinement factor; gFB and gref are the threshold gain coefficient with
and without feedback, respectively; and αH is the linewidth enhancement factor [42].
From Appendix B, it is possible to obtain:

GFB − Gref ≡ δG
(A16)≈ −2κ2 cos(φ2)− 2κ1 cos(φ1) (5a)

δω
(A23)≈−γH [κ2 sin(φ2 + θH) + κ1 sin(θH − φ1)]. (5b)

The relation between the right-hand terms determines the shift in threshold gain and
lasing frequency with feedback. When comparing with previous literature regarding dual
external cavity lasers, a sign difference is observed with respect to the lasing frequency
shift equations found in References [28,29], arising from the different propagation direction
of the additional feedback term. A clearer contrast is present with the lasing frequency shift
shown in ref. [30], where a single term accounts for both external reflections. Furthermore,
a phase shift at the external mirrors (φmj

) is not considered in the mentioned sources, thus
the feedback terms included in both the excess gain and lasing frequency variations are
distinct with respect to those in Equation (5).
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Given the transcendental form of Equation (5b), a numerical analysis under different
feedback conditions is studied in Section 3. Nevertheless, an analytical solution for lasing
frequency stability can be found for the condition:

δω = 0. (6)

Under this condition, Equation (5b) becomes:

κ2 sin(φ2 + θH)
(6)
= −κ1 sin(θH − φ1), (7)

which is determined by the feedback parameters κj and φj, the latter being dependent
on the time delay tj as well as the lasing frequency. Finding a stable solution that does
not depend on the lasing frequency is of particular interest, as it can be advantageous for
tunable lasers and their numerous applications. With the following assumption:

κ2 = κ1 ≡ κ, (8)

Equation (7) can be rewritten as:

sin(φ2 + θH) = − sin(θH − φ1) = sin(φ1 − θH)

⇒ φ2 + θH = φ1 − θH + 2mπ. (9)

Without loss of generality, the parameter m is set to m = 0, thus:

2θH = φ1 − φ2
(2b)
=

(4c)
= ωFB(t1 − t2) + ∆φm

⇒ 2θH − ∆φm = ωFB(t1 − t2). (10)

Choosing an equal time delay in both external cavities:

t2 = t1 ≡ text, (11)

sets the right hand term of Equation (10) to zero, so that:

2θH = ∆φm. (12)

This result suggests that by tuning the phase in the external cavities, so that condition (12)
is met, it is possible to obtain a feedback-insensitive lasing frequency. An active method
to tune the phase is however required as αH is dependent on laser parameters, such as
carrier density and wavelength [43]. This can be managed by, for example, phase shifters,
which are mature and widely used components that can be included on-chip in a laser.
The shown stable solution thus requires meeting the conditions (8), (11) and (12), which
constrain the feedback parameters of one side of the cavity with respect to those of the
other side, but do not restrict their absolute value. Nevertheless, if conditions (8) and (11)
are not met, solutions for stable performance become frequency dependent. Such a case
would thus only be satisfied for certain lasing frequency values for a given set of feedback
parameters, which can potentially yield unstable solutions for other frequencies.

Regarding the variations in threshold gain, under conditions (8) and (11)
Equation (5a) becomes:

δG = −2κ[cos(ωreftext + φm1) + cos(ωreftext + φm2))], (13)
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which vanishes if:

cos(ωreftext + φm1) = − cos(ωreftext + φm2)

cos(ωreftext + φm1) = cos(ωreftext + φm2 − π) (14)

⇒ ωreftext + φm1 = ωreftext + φm2 − π + 2mπ m ∈ Z

m=0⇒ ∆φm = π.

This condition, while different than condition (12), also yields stability regardless of lasing
frequency in this case for the threshold gain. Both cases are studied numerically in Section 3.

2.2. Rate Equations

In order to obtain the frequency noise (FN) power spectral density (PSD), and from it
the laser intrinsic linewidth, the laser rate equations for the intensity and phase, as well as
one for the carrier number, need to be studied. The former two can be extracted from the
dynamic equations for the field inside the laser cavity, following the Lang-Kobayashi [39]
approach. Its full derivation is shown in Appendix C. Furthermore, Langevin noise terms
are included to account for shot noise fluctuations. The following definitions are useful to
simplify notation:

A(t) =
√

S(t)e−iφ(t) (15a)

S±
j ≡ κj

√
S(t ± tj) (15b)

φ±
tj
≡ φ(t ± tj) (15c)

∆Φ+
1

(15c)
= φ(t)− φ+

t1
− φ1 (15d)

∆Φ−
2

(15c)
= φ(t)− φ−

t2
+ φ2 (15e)

∆G ≡ GFB − τ−1
ph , (15f)

with j = 1, 2 relating to the EOF components from the left and right, respectively, and τph is
the photon decay time, which accounts for cavity and mirror losses. The field amplitude A
is assumed to be slowly varying, where S is the photon number inside the laser cavity and
φ is the phase of the field. With these definitions, the rate equations of the system can be
written as:

Ṡ
(A27)
= S∆G + 2S−

2

√
S cos(∆Φ−

2 ) + 2S+
1

√
S cos(∆Φ+

1 ) + Rsp + FS (16a)

φ̇
(A28)
=

αH ∆G

2
− δω − S−

2√
S

sin
(
∆Φ−

2

)
− S+

1√
S

sin
(
∆Φ+

1

)
+ Fφ (16b)

Ṅ
[3]
= I − GS(t)− Nτ−1

sp + FN , (16c)

where I is the effective rate of injected current (in electrons), τsp is the carrier lifetime,
and Rsp is the spontaneous recombination rate. This system is compatible with those
presented in refs. [28,31], by accounting for the sign change in the delayed feedback term
corresponding to the left external mirror, due to it having the opposite propagation direction.
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The steady state solution of Equation (16) can be seen in Equation (A33). The Langevin
noise sources FS(t), Fφ(t) and FN(t) satisfy [44]:

〈Fi(t)〉 = 0 (17a)

〈Fi(t1)Fj(t2)〉 = 2Dijδ(t1 − t2) with i, j = S, φ or N, (17b)

where:

DSS = RspS ; Dφφ =
Rsp

4S
; DNN = RspS + Nτ−1

sp ; DSN = −RspS, (18)

are standard diffusion coefficients. A usual approach for solving the system from Equation (16)
involves a small-signal analysis. Small deviations from a steady-state value are assumed:

S ≃ S0+ S∆ = S0+
∫ ∞

−∞
eiΩ′tS0p(Ω

′)dΩ′ with S0 ≫ S∆ (19a)

φ ≃ φ∆ =
∫ ∞

−∞
eiΩ′tφ0p(Ω

′)dΩ′ (19b)

N ≃ N0+N∆ = N0+
∫ ∞

−∞
eiΩ′tN0p(Ω

′)dΩ′ with N0 ≫ N∆, (19c)

where the steady state value of the phase is assumed to be zero. The full linearization of
the rate equations is shown in Appendix D, which uses the following definitions:

κc
j ≡ κjtj cos

(
φj

)
(20a)

κs
j ≡ κjtj sin

(
φj

)
(20b)

Ks ≡ κs
2 + κs

1 (20c)

Kc ≡ 1 + κc
2 − κc

1 (20d)

ζ
S
≡ Rsp/S0 (20e)

ag = Γvga (20f)

Gi ≈ ag(Ni − Ntr) (20g)

τ−1
e ≡ agS0 + τ−1

sp , (20h)

where a linear approximation for the gain has been introduced, with a the differential
gain coefficient and Ntr the number of electrons at transparency. Applying the Fourier
transform to Equation (A36a–c), the following system of equations is obtained in the
frequency domain:

iΩKcS0p
(A36a)
= agS0N0p − ζ

S
S0p − 2iΩS0Ksφ0p + F̂S (21a)

2iΩKcφ0p
(A36b)
= αH agN0p + iΩ

Ks

S0
S0p + 2F̂φ (21b)

iΩN0p
(A36c)
= − τ−1

e N0p − G0S0p + F̂N , (21c)

where the unknowns S0p, φ0p, N0p, and F̂S, F̂φ and F̂N depend on the Fourier angular
frequency Ω. These equations are the first step to obtain the FN PSD.
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2.3. Power Spectral Density and Laser Intrinsic Linewidth

The next step is to calculate the FN PSD, and from it the laser intrinsic linewidth. By
solving the system in Equation (21) it is possible to find an expression for the PSD [45]:

S
(1)
f (Ω) =

Ω2

2π2 〈|φ0p(Ω)|2〉, (22)

which, using the following definitions:

F0 ≡ ζ2
S
+K

2
c τ−2

e − 2KcagG0S0 (23a)

F1 ≡ K
2
s +K

2
c (23b)

Λ4 ≡ 4F1Dφφ (23c)

F2 ≡ KcαH +Ks (23d)

F3 ≡ Kc − αHKs (23e)

∆4 ≡ F
2
1, (23f)

and:

Λ2 ≡ a2
gF

2
2DNN + 4Dφφ

(
K

2
s τ−2

e + F0

)
− 2

Ks

S0
DSSag

(
τ−1

e F2 − ζ
S
αH − αH G0

)
(23g)

Λ0 ≡ α2
H

a2
g

[
DSS

(
ζ2

S
+ G2

0 + 2ζ
S
G0

)
+ ζ

S
Nτ−1

sp

]
+
(

τ−1
e ζ

S
+ agG0S0

)2
4Dφφ (23h)

∆2 ≡ K
2
c ζ2

S
+ τ−2

e F
2
1 − 2F1agG0S0F3 (23i)

∆0 ≡
(

agG0S0F3 +Kcζ
S
τ−1

e

)2
, (23j)

can be written as:

4π2S
(1)
f

(23)
=

(A46)
=

Λ4Ω4 + Λ2Ω2 + Λ0

∆4Ω4 + ∆2Ω2 + ∆0
. (24)

This is an analytical solution for the FN PSD of the isolated laser system. From the following
expression [46] :

S
(1)
f (Ω → 0) = 2π∆ f , (25)

which is valid for a Lorentzian lineshape, the intrinsic linewidth can be obtained. As shown
in Appendix F:

F ≡ ∆ f

∆ f0
(
1 + α2

H

) (A49)
= [1 + γH κ2t2 cos(φ2 + θH)− γH κ1t1 cos(φ1 − θH)]

−2, (26)

where ∆ f0 is the Schawlow–Townes linewidth [47]. The expression found for the intrinsic
linewidth has two feedback terms, one contribution from each side, with a sign that depends
on φ1 and φ2. Recalling from Equation (2b) that these quantities are a function of tj and
φmj

, a proper design of the laser can yield linewidth stability or a reduction of the intrinsic
linewidth with respect to the case of one-sided feedback. This is further explored using a
numerical analysis in Section 3. Additionally, it is possible to find an analytical expression
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for Equation (26) under the conditions for frequency stability, namely conditions (8), (11)
and (12). Using this assumptions in Equation (26):

F = {1 + γH κtext[cos(φ2 + θH)− cos(φ1 − θH)]}
−2. (27)

Taking a closer look at the feedback terms yields:

cos(φ2 + θH)
(12)
= ωreftext + φm1 − 2θH + θH = cos(φ1 − θH). (28)

Using Equation (28) in Equation (27) yields a value of F = 1 which indicates that, under the
assumed conditions, the intrinsic linewidth is insensitive to feedback. This result is signifi-
cant as under the same condition the frequency is also feedback-insensitive, as shown in
Section 2.1, regardless of lasing frequency. It is worth noting however that weak feedback
is assumed in this analysis, with which the upper bound for feedback strength under which
these equation are valid is not established. Nevertheless, achieving stability in the full
frequency domain even under this condition is an improvement with respect to the single
feedback case.

3. Numerical Study

Laser stability is studied by numerically evaluating the equations for the shift in lasing
frequency, threshold gain and intrinsic linewidth under the revised EOF conditions, namely
Equations (5) and (26), under different feedback parameters. Particular attention is given
to the previously analyzed case under conditions (8), (11) and (12), which shows feedback-
insensitive solutions for the lasing frequency and intrinsic linewidth. System tolerances
to these conditions are explored by varying each while keeping the other two fixed. The
simulated equations are plotted as a function of the unperturbed laser frequency multiplied
by t2, which represents the phase delay in the right external cavity for the free running
laser frequency. It is kept between 0 and 1 (i.e., ωreft2 ∈ (0, 2π]) given the periodicity of
the numerically solved functions. Furthermore, without loss of generality, φm2 is kept
fixed at zero so that the value of ∆φm is selected by varying φm1 . Additionally, simulations
assume αH = 3. This value is compatible with measurements for semiconductor lasers [48],
and thus meeting condition (12) requires that ∆φm = 2θH ≃ 2.5. A summary of the values
used in the numerical solutions is given in Table 1.

Table 1. Summary of values used in numerical solutions of Equations (5) and (26).

Parameter Value

ωreftext (0,2π)

αH 3

0.1581 (case 1)
κ2t2 0.3162 (case 2)

0.4111 (case 3)

φm2 0

Results are compared with the case with feedback from a single side, where:

κ1 = 0. (29)

In this case, as shown in [7], as feedback strength increases solutions for the lasing frequency
become multi-valued. This gives rise to instabilities in the system such as mode hopping
or coherence collapse regimes. The separation between single-valued and multi-valued
solutions is related to the coefficient:

C = γH κ2t2, (30)
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where C = 1 is the critical value that separates both behaviours.
Numerical solutions of the proposed system under conditions (8) and (11) are thus

compared to the single feedback case for three cases:
Case 1: C = 0.5. This represents the single-feedback case with a single solution,

and results for various values of ∆φm are shown in Figure 2. Column A, B and C show
the numerical solutions for the variations in lasing frequency, threshold gain and intrinsic
linewidth, given by Equations (5) and (26) , respectively. By plotting the logarithm of the
latter, negative values correspond to linewidth narrowing. The blue and orange plots
represent the double-feedback and the single-feedback case, respectively, and these labels
are maintained throughout the document.

Figure 2. Numerical solutions for C = 0.5 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

The upper row shows the case where ∆φm = 0, i.e., additional phase shifts at, for
example, the external mirrors (φmj

) are kept at zero. Linewidth narrowing for a wide range
of frequencies can be observed, evidenced, as mentioned, by ln(F) < 1. As an example,
when freft2 = 0.75, a 74% and a 42% reduction in linewidth is seen with respect to the
free running laser and the single feedback case, respectively. Additionally, the signal is
singled valued in the full domain, yet it is close to the critical point where multi-valued
solutions arise. As ∆φm increases, the amplitude of the lasing frequency shift is reduced
until becoming zero for all values when condition (12) is met, as expected from previous
analysis. Under this condition the intrinsic linewidth does not experience fluctuations either,
and the amplitude of the threshold gain fluctuations is lower than in the single feedback
case, indicating better stability across the three analyzed parameters with respect to the
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single feedback case. For the case of ∆φm = π, the threshold gain shows no fluctuations
as predicted by Equation (14), and while the lasing frequency and intrinsic linewidth
fluctuations are no longer zero, they are less pronounced than in the single feedback case.
Further increases in ∆φm show an increase in the fluctuations across all functions, and for
φm > 6 multi-valued solutions arise.

Case 2: C = 1. This represents the limiting case between single and multivalued
solutions in the single-feedback case. Results for various values of ∆φm are shown in
Figure 3. As expected, the threshold gain is stable for ∆φm = π, and meeting condition (12)
results in a stable lasing frequency and intrinsic linewidth. As ∆φm deviates from these
optimal points in either direction, the amplitude of fluctuations increase until reaching
multi-valued solutions for ∆φm < 1.5 and ∆φm > 3.5. Comparing these results with the
previous case shows that as feedback increases, the single valued solutions become more
sensitive to the value of ∆φm.

Figure 3. Numerical solutions for C = 1 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

Case 3: C = 1.3. This represents the single-feedback case with multi-valued solutions.
Results for various values of ∆φm are shown in Figure 4. In the single feedback case,
multi-valued solutions are present in a given frequency range, and this span increases
with increasing feedback strength. The multi-valued characteristics are evidenced experi-
mentally with unstable regimes characterized by mode hopping and eventually coherence
collapse for sufficiently high feedback. In contrast, the system proposed in this work shows
that by tuning the value of ∆φm to meet condition (12), even with increasing feedback it
is possible to achieve stable performance regardless of frequency. In the case shown in
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Figure 4 for C = 1.3, single valued solutions can be found for ∆φm ∈ (1.5, 3.3) which is
equivalent to a phase variation of more than 90◦. Still, comparing with previous cases it is
possible to see that as feedback increases, the single valued solutions tolerance with respect
to ∆φm decreases. Nevertheless, it is an improvement with respect to the single feedback
case which shows no single value solutions across all frequencies for C > 1.

Figure 4. Numerical solutions for C = 1.3 under conditions (8) and (11) for different ∆φm. Double-
feedback case shown in blue, single feedback case shown in orange. Column (A) shows the lasing
frequency shift results. Column (B) shows the threshold gain shift. Column (C) shows the intrinsic
linewidth variations.

Taking all cases into account, it can be seen that linewidth narrowing regions are
present for all cases of ∆φm analyzed. The only exception are the stable cases when meeting
the three conditions (8), (11) and (12), yet the feedback-insensitivity provided by this case
is also beneficial. Selecting an appropriate ∆φm can thus be used to harness linewidth
narrowing properties at a desired frequency.

Furthermore, system tolerances to conditions (8) and (11) are studied, while main-
taining condition (12). Results for up to a 20% deviation are shown in Figures A2–A4 for
cases 1, 2 and 3, respectively, where single valued solutions are observed in all cases in
the full frequency span. Results show a high tolerance with respect to feedback strength.
Looking at case 3, single valued solutions are obtained for κ1/κ2 ∈ (0.2, 1.7). While the
system is no longer feedback-insensitive, results evidence single-valued solutions that are
robust with respect to condition (8). The system is more sensitive with respect to (11),
with single valued solutions achieved within t1/t2 ∈ (0.47, 1.2). Nevertheless, tolerances
become once again stricter as feedback increases for both parameters, thus laser design
is of paramount importance and should focus on meeting the discussed stability condi-
tions. In particular, choosing equal lengths for both external cavities should suffice to meet
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condition (11). Fabrication tolerances in foundry processes are the main limiting factor for
time delay accuracy. To meet condition (8), a possible approach is to merge the output of
the two external cavities into a single one using a coupler, which can be included in the
laser on-chip. Finally, as mentioned before, condition (12) can be met by using a phase
shifter, which is a mature component in active platforms.

All in all, results demonstrate that, with proper design of the laser cavity,
conditions (8), (11) and (12) can be met, with which it is possible to obtain lasing frequency
and intrinsic linewidth insensitivity to feedback.

4. Discussion

The existing mature photonic integration fabrication processes are very flexible with
respect to device geometry. They are however limited by a lack of commercially available
on-chip isolators, and thus new approaches are required to minimize the effect feedback
has on laser stability. The current work proposes a theoretical extension of laser dynamics
under EOF by considering two external reflections, one from each side of the cavity. The
proposed analysis yields new laser dynamic equations. These are numerically solved,
which show the existence of a stable regime with high feedback tolerances. Similar results
have been seen in previous double external cavity schemes [28], with EOF on the same
side of the laser cavity, which showed robust stabilization of the chaotic regime by tuning
the external feedback parameters. Yet other feedback regimes are not explored, and nei-
ther analytical stability conditions nor dependence with free laser running frequency are
reported. The present analysis shows that feedback-insensitivity is achievable for a wide
range of feedback strengths, under conditions that can be met with current laser fabrication
processes and components, such as phase shifters for meeting condition (12) and couplers
for condition (8).

It has previously been shown, for the single feedback case, that tuning the feedback
phase can result in linewidth narrowing [13], however this still requires low feedback levels
and a precise phase shift which can suffer variations due to external parameters, such
as temperature or driving currents. In the approach proposed in this work, the stability
conditions do not require specific values, instead relating the feedback parameters from one
side to those from the other side. For example, condition (11) only implies equal round-trip
times at the external cavities, regardless of value. This allows for additional flexibility in
the feedback parameters and gives versatility to the device. Furthermore, this method
allows for feedback-insensitivity across the full spectra, which is not seen in the single
feedback case. This is of particular importance for tunable lasers, as all lasing frequencies
are thus equally affected. Additionally, it relaxes the need for an isolator, reducing the
cost and size of packaging processes. Another significant improvement of the proposed
method with respect to the single feedback case is the increase in feedback tolerance: by
choosing feedback parameters close to the stability conditions of Equations (11) and (12),
higher levels of feedback strength are allowed without seeing multi-valued solutions, which
results in experimentally seen mode-hopping. As a weak feedback approximation is used,
the upper bound for feedback tolerance cannot be extracted from this analysis. Despite
this, even under this approximation, tolerances are higher than that of the single feedback
case. Furthermore, this system has a high tolerance to deviations from the optimal stability
conditions as analyzed in the previous section. Linewidth narrowing can be achieved
in these cases for certain frequency values, which can be tuned by selecting appropriate
feedback parameters, as was the case for single feedback conditions, while maintaining
stable solutions.

Finally, while the dynamics under consideration are complex, the laser system itself
involves a straight-forward configuration using widely used on-chip components, which
are available in generic foundry platforms. Previously studied methods to reduce feedback
sensitivity include resourceful yet intricate designs. The proposed system is, in contrast,
potentially easier to design, fabricate and characterize. An experimental study of this laser
system is essential to validate the obtained results, and more importantly to explore the
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limitations of the model, and is the next step for a more comprehensive understanding of the
proposed system. It is worth noting that, for the single feedback case, the Lang-Kobayashi
approach yields results compatible with experimental data [49–51], which suggests that
future experimental realization of the method here presented will be compatible with its
theoretical predictions.

5. Conclusions

This work explores an extension of the theoretical background of EOF. By assuming
that feedback couples into the laser cavity from both sides, new dynamic equations are
found for the lasing frequency, the threshold gain and the intrinsic linewidth. These are
numerically evaluated to analyze laser stability. Solutions with linewidth reduction are
observed, where tuning of the feedback parameters yielded a 74% and a 42% reduction
with respect of the free running laser and the single feedback case, respectively. Results
also show the existence of a stable solution, with feedback-insensitive lasing frequency and
intrinsic linewidth, regardless of the lasing frequency. This case is obtained by tuning the
phase of the feedback field, for external cavities with equal lengths and coupling factors.
Furthermore, the feedback-insensitive case exists regardless of the feedback strength,
within a weak feedback approximation, which is an major improvement with respect to
the single feedback case. Additionally, the stability conditions show good tolerances with
respect to all feedback parameters, albeit they become stricter as the feedback strenght
increases. Choosing feedback parameters close to the feedback-insensitive conditions
ensures stable solutions that are feedback tolerant. Finally, the proposed system relies on
few components in straight-forward configurations, and the stable conditions can be met
with mature components available in generic foundry platforms. This enables close to
market, low cost, feedback-tolerant semiconductor lasers which have direct applications
in multiple fields that rely on stable laser sources, such as coherent communications
and spectroscopy.
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Appendix A. Amplitude and Phase Conditions

To obtain the revised lasing conditions resulting from the additional feedback compo-
nent, extracting the amplitude and phase of the effective reflection coefficients is needed.
In polar notation:

ρeff
j =

∣∣∣ρeff
j

∣∣∣eiϕj , (A1)

where the magnitude is computed as:

∣∣∣ρeff
j

∣∣∣
2
/

ρ2
j

(3)
=
[
1 + κjtcav cos(φj)

]2
+
[
κjtcav sin(φj)

]2

= 1 + 2κjtcav cos(φj) + κ2
j t2

cav. (A2)

39



Photonics 2022, 9, 43

Assuming condition (1) of weak external feedback, the last term on the right-hand side of
Equation (A2) is neglected, resulting in:

∣∣∣ρeff
j (ωFB)

∣∣∣
/

ρi =
√

1 + 2κjtcav cos(φj)
(1)≈ 1 + κjtcav cos(φj). (A3)

The phase of the effective reflection coefficient is extracted from:

ϕj = arctan
[(

ρeff
j

)′′ / (
ρeff

j

)′] (3)
= arctan

[
±κjtcav sin(φj)

1 + κjtcav cos(φj)

]

(1)≈ arctan[±κjtcav sin(φj)]
(1)≈ ±κjtcav sin(φj). (A4)

The fields traveling forward and backward in the laser cavity, Ef and Eb shown in Figure A1,
can now be related by the effective reflection coefficients:

Ef(z = 0) = ρeff
1 Eb(z = 0) (A5a)

Eb(z = L) = ρeff
2 Ef(z = L). (A5b)

Using the propagation constant:
β ≡ nω/c , (A6)

with n the effective refractive index of the lasing mode and c the speed of light in vacuum,
the fields can be written as:

Ef = A f e−iβz+ 1
2 (Γg−α)z (A7a)

Eb = Abe−iβ(L−z)+ 1
2 (Γg−α)(L−z), (A7b)

where g is the gain coefficient and α is the attenuation coefficient. Replacing Equation (A5)
into Equation (A7):

E f 0
(A1)
=
∣∣∣ρeff

2

∣∣∣eiϕ2 Abe−iβL+(Γg−α)L/2 (A8a)

Eb0
(A1)
=
∣∣∣ρeff

1

∣∣∣eiϕ1 A f e−iβL+(Γg−α)L/2, (A8b)

and inserting Equation (A8a) into Equation (A8b) results in:

1 =
∣∣∣ρeff

1

∣∣∣eiϕ1

∣∣∣ρeff
2

∣∣∣eiϕ2 e−2iβL+(Γg−α)L =
∣∣∣ρeff

1 ρeff
2

∣∣∣e−i(2βL−ϕ1−ϕ2)e(Γg−α)L. (A9)

Once lasing has been established, the gain assumes its threshold value:

eff eff

fε

bε
Figure A1. Schematic of the effective cavity of the laser, resulting from calculating effective reflec-
tion coeffitients.

g = gFB , (A10)
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where gFB is the threshold gain with feedback. Thus, Equation (A9) yields a lasing condition
for the amplitude:

1 =
∣∣∣ρeff

1 ρeff
2

∣∣∣e(ΓgFB−α)L

(A10)
=

(A3)≈ ρ2 ρ1 [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e
(ΓgFB−α)L, (A11)

and the phase:

2πm = 2βL − ϕ2 − ϕ1
(A4)
= 2βL + κ2tcav sin(φ2)− κ1tcav sin(φ1) , m ∈ Z. (A12)

where the influence of feedback gives rise to two terms in Equations (A11) and (A12), one
from each side. The new lasing conditions result in a variation of the lasing frequency and
threshold gain of the system, and thus have to be studied to determine the laser dynamics.

Appendix B. Threshold Gain Reduction and Lasing Frequency Shift

Under feedback from both sides of the laser cavity, new lasing conditions are found
which subsequently result in a shift of the laser threshold gain and lasing frequency with
respect to the case without feedback, in which:

κj = 0. (A13)

In this case, the amplitude condition from Equation (A11) becomes:

1
(A13)
= ρ2 ρ1 e(Γgth−α)L. (A14)

Using the expansion:

ln(1 + x) ≃ x, (A15)

the threshold gain reduction due to feedback can be found by computing the ratio between
Equations (A11) and (A14):

1 =
ρ2 ρ1 [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e

(ΓgFB−α)L

ρ2 ρ1 eΓgref−αL

= [1 + κ2tcav cos(φ2)][1 + κ1tcav cos(φ1)]e
Γ(gFB−gref)L

(2)⇔ GFB − Gref ≈ −2κ2 cos(φ2)− 2κ1 cos(φ1). (A16)

The relation between the right hand terms determines the threshold gain reduction, as dis-
cussed in Section 2.1.

The phase lasing condition from Equation (A12) yields the lasing frequency shift
equation. Consider the following definitions related to the effective refractive index [52]:

n ≡ n′ + in′′ (A17a)

ng ≡ n + ω
∂n

∂ω
(A17b)

n′′ ≡ − cG

2ωvg
, (A17c)
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αH ≡ ∆n′/∆n′′ (A17d)

∂n

∂N
=

∂n

∂n′′
∂n′′

∂N

(A17a)
=

(A17c)
=

(A17d)
= − ∂G

∂N

αH c

2ωvg
, (A17e)

where ng is the group refractive index. To find the lasing frequency shift equation, calculat-
ing the change in β is first needed:

cδβ
(A6)
= δ(nω) = ωδn + nδω

(2c)
= ω

[
∂n

∂N
(N − Nth) +

∂n

∂ω
δω

]
+ nδω

(A17b)
=

(A17e)
= −GFB − Gth

2vg
αH c + ngδω

(5a)
= [κ2 cos(φ2) + κ1 cos(φ1)]

αH c

vg
+ ngδω, (A18)

with which:

2Lδβ
(5a)
= [κ2 cos(φ2) + κ1 cos(φ1)]αH tcav + tcavδω. (A19)

Furthermore, using:
sin[arctan(x)] =

x√
1 + x2

(A20a)

cos[arctan(x)] =
1√

1 + x2
(A20b)

sin(x ± y) = sin(x) cos(y)± cos(x) sin(y) (A20c)

cos(θH)
(4e)
=

(A20b)
=

(4d)
= 1/γH , (A20d)

the following can be computed:

αH cos(φj)
(A20a)
=

(4d)
=

(4e)
= γH sin(θH) cos(φj)

(A20c)
= γH

[
sin(θH ± φj)∓ cos(θH) sin(φj)

]
(A21)

(A20d)
= γH

[
sin
(
θH ± φj

)
∓ sin(φj)

/
γH

]

⇔ αH cos(φj)± sin(φj) = γH sin
(
θH ± φj

)
.

Finally, using the phase condition in Equation (A12), and assuming without generality loss
that m = 0, it is possible to compute:

2πm
(A19)
= tcavδω + κ2tcav[αH cos(φ2) + sin(φ2)] + κ1tcav[αH cos(φ1)− sin(φ1)]

m=0⇔ δω = −κ2[αH cos(φ2) + sin(φ2)] + κ1[αH cos(φ1)− sin(φ1)] (A22)

δω
(A21)
= −γH [κ2 sin(φ2 + θH) + κ1 sin(φ1 − θH)],

which describes the lasing frequency shift as a function of the feedback parameters κ1, κ2, φ1
and φ2, Similarly to the threshold gain reduction, the interaction between the two right
hand terms determines the lasing frequency stability which is discussed in Section 2.1.

42



Photonics 2022, 9, 43

Appendix C. Deriving the Rate Equation for the Intensity and Phase

To further inspect the laser dynamics, the rate equations for the intensity and phase
must be studied. Considering Equation (15), and a slowly varying electric field given by:

E(t) = A(t)e−iωFB t, (A23)

and following the approach from Lang and Kobayashi [39], the laser field equation which
considers EOF from both sides of the laser cavity can be written as:

Ė =

(
−iωref + ∆G

1 − iαH

2

)
E(t) + κ2E(t − t2) + κ1E(t + t1)

(A23)⇔
d
[
A(t)e−iωFB t

]

dt

(15)
= e−iωFB t

[(
−iωref + ∆G

1 − iαH

2

)
A(t) + κ2A(t − t2)e

iφ2 + κ1A(t + t2)e
−iφ1

]
(A24)

⇔ Ȧ(t)
(2c)
=

(2b)
=

(
iδω + ∆G

1 − iαH

2

)
A(t) + κ2A(t − t2)e

iφ2 + κ1A(t + t2)e
−iφ1 .

The last two right-hand terms appear as a result of the imposed feedback conditions, each
term to account for feedback on each side of the cavity. In the case without feedback the
lasing frequency become ωFB = ωref and κj = 0, thus recovering the no-feedback field
Equation [42]. The slowly varying field amplitude A can be modeled as Equation (15a),
and thus the rate equations for the photon number S and phase φ can be found using:

Ṡ =
d[AA∗]

dt
= AȦ∗ +A∗Ȧ (A25a)

φ̇ = − 1
S
ℑ
(
A∗Ȧ

)
. (A25b)

Replacing Equations (15a) and (A24) into Equation (A25a) the photon rate equation reads:

Ṡ
(15d)
=

(15e)
= S∆G + 2S−

2

√
S cos(∆Φ−

2 ) + 2S+
1

√
S cos(∆Φ+

1 ). (A26)

In the case of the phase, its rate equation comes from replacing Equations (15a) and (A24)
into Equation (A25b):

φ̇
(15)
=

∆G

2
αH − δω − S−

2√
S

sin
(
∆Φ−

2

)
− S+

1√
S

sin
(
∆Φ+

1

)
. (A27)

Equations (A26) and (A27) are the amplitude and phase rate equations for the laser system
proposed in this work. These are the starting point to compute the frequency noise PSD,
and extract the intrinsic linewidth.

Appendix D. Small-Signal Analysis

To find the FN PSD, the system shown in Equation (16) is to be solved. This is done
using the small-signal analysis proposed in Equation (19). Assuming a narrow-linewidth
laser, i.e., a long coherence time with respect to the external cavity lenghts:

text < tcoh, (A28)

the following approximation is valid:

Ωtext ≪ 1. (A29)
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By linearizing the following expressions:

√
S(t ± tj)

S(t)

(A28)≈ =

√

1 ± Ṡ

S
tj

(19a)≈
√

1 ± iΩ′S∆

S0
tj

(A29)≈ 1 ± iΩ′S∆

2S0
tj (A30a)

φ − φ(t ± tj)
(A28)≈ φ − φ ∓ tjφ̇

(19b)
= ∓itjΩ

′φ∆ , (A30b)

it is possible to rewrite Equation (16) as:

iΩ′S∆
(A30)
= S∆G + Rsp + 2

κ2

tcav
S

(
1 − iΩ′S∆

2S0
t2

)
cos
(
iΩ′φ∆t2 + φ2

)

+ 2κ1S

(
1 +

iΩ′S∆

2S0
t1

)
cos
(
iΩ′φ∆t1 + φ1

)
+ FS

iΩ′φ∆
(A30)
= αH

∆G

2
− δω − κ2

tcav

(
1 − iΩ′S∆

2S0
t2

)
sin
(
iΩ′φ∆t2 + φ2

)
(A31a)

+ κ1

(
1 +

iΩ′S∆

2S0
t1

)
sin
(
iΩ′φ∆t1 + φ1

)
+ Fφ (A31b)

iΩ′N∆
(19)
=

(A30)
= I − GFB S − Nτ−1

sp + FN . (A31c)

Solving Equation (A31) requires the steady-state solution of Equation (16). Under station-
ary conditions:

Ṡ = 0 ⇒ S(t) = S(t ± tj) = S0 (A32a)

φ̇ = 0 ⇒ φ(t) = φ(t ± tj) (A32b)

Ṅ = 0 ⇒ N(t) = N(t ± tj) = N0, (A32c)

the steady-state equations are:

τ−1
ph = G0 + 2κ2 cos(φ2) + 2κ1 cos(φ1) +

Rsp

S0
(A33a)

δω = αH

G0 − τ−1
ph

2
− κ2 sin(φ2) + κ1 sin(φ1) (A33b)

I = G0S0 + N0τ−1
sp , (A33c)

where the Langevin noise terms are not included as their mean value is zero. Next,
using Equation (A33) and the following expansions:

sin(x + ∆) ≈ sin(x) + ∆ cos(x) (A34a)

cos(x + ∆) ≈ cos(x)− ∆ sin(x), (A34b)
Equation (A31a) can be rewritten as:

iΩ′S∆
(19)
=

(A33)
=

(20)≈
(

G0 + agN∆ −
{

G0 + 2[κ2 cos(φ2) + κ1 cos(φ1)] +
Rsp

S0

})
(S0 + S∆)

+ 2
{

κ2(S0 + S∆)
[
cos(φ2)− iΩ′φ∆t2 sin(φ2)

]

− κ2(S0 + S∆)
iΩ′S∆

2S0
t2
[
cos(φ2)− iΩ′φ∆t2 sin(φ2)

]

+ κ1(S0 + S∆)
[
cos(φ1)− iΩ′φ∆t1 sin(φ1)

]

+ κ1(S0 + S∆)
iΩ′S∆

2S0
t1
[
cos(φ1)− iΩ′φ∆t1 sin(φ1)

]}
+ Rsp + FS.
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Simplifying this equation, and neglecting the quadratic terms yields:

iΩ′S∆

(20)≈ agN∆S0 − ζ
S
S∆ − iΩ′φ∆2KsS0 + iΩ′S∆(κ

c
1 − κc

2) + FS. (A35a)

In a similar way, Equation (A31b) can be rewritten using Equations (A33) and (20):

iΩ′φ∆ ≈ αH

2

(
G0 + agN∆ − τ−1

ph

)
−
[

αH

G0 − τ−1
ph

2
− κ2 sin(φ2) + κ1 sin(φ1)

]

− κ2

(
1 − iΩ′S∆

2S0
t2

)[
sin(φ2) + iΩ′φ∆t2 cos(φ2)

]
(A35b)

+ κ1

(
1 +

iΩ′S∆

2S0
t1

)[
sin(φ1) + iΩ′φ∆t1 cos(φ1)

]
+ Fφ

⇔ 2iΩ′φ∆
(20a)
=

(20b)
= αH agN∆ + 2(κc

1 − κc
2)iΩ

′φ∆ +
iΩ′S∆

S0
Ks + 2Fφ.

Finally, Equation (A31c) can be rewritten as:

iΩ′N∆
(19)
=

(A33)
=

(20)≈ G0S0 −
(
G0 + agN∆

)
S0 −

(
G0 + agN∆

)
S∆ − τ−1

sp N∆ + FN

⇔ iΩ′N∆
(20h)
= − τ−1

e N∆ − G0S∆ + FN . (A35c)

The linearized rate equations of the laser under study are thus Equations (A35a)–(A35c),
from which the power spectral density, and subsequently the intrinsic linewidth, can
be computed.

Appendix E. Power Spectral Density

The next step is to find an expression for φ0p from which the FN PSD, and thus the
laser intrinsic linewidth, can be computed. The following definitions are convenient:

Aφ ≡
(

iΩ + τ−1
e

)(
iΩKc +

agG0

iΩ + τ−1
e

S0 + ζ
S

)
(A36a)

2AS ≡ iΩKs
iΩ + τ−1

e
S0

− αH agG0 (A36b)

2AN ≡ αH Aφ + 2S0 AS

iΩ + τ−1
e

ag (A36c)

Bφ ≡ Kc Aφ − αH agG0S0Ks + iΩK
2
s

(
iΩ + τ−1

e

)
. (A36d)

First, N0p is extracted from Equation (21c):

N0p =
F̂N − G0S0p

iΩ + τ−1
e

. (A37)
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Next, replacing Equation (A37) into Equation (21a) yields the expression for S0p:

(iΩKc + ζ
S)S0p = ag

F̂N − G0S0p

iΩ + τ−1
e

S0 − 2iΩS0Ksφ0p + F̂S

⇔ Aφ

iΩ + τ−1
e

S0p = agS0
F̂N

iΩ + τ−1
e

− 2iΩS0Ksφ0p + F̂S (A38)

⇔ S0p
(A36a)
=

agS0 F̂N − 2iS0ΩKs

(
iΩ + τ−1

e
)
φ0p +

(
iΩ + τ−1

e
)

F̂S

Aφ
.

Finally, inserting Equation (A37) and (A38) into Equation (21b) and grouping the terms
with φ0p, F̂S, F̂φ and F̂N yields:

2iΩBφ φ0p
(A36)
=
[
−αH agG0S0 + αH Aφ + iΩKs

(
iΩ + τ−1

e

)] ag

iΩ + τ−1
e

F̂N + 2AS F̂S + 2 Aφ F̂φ

(A36b)
=

(
αH Aφ + 2S0 AS

) ag

iΩ + τ−1
e

F̂N + AS F̂S + 2Aφ F̂φ (A39)

⇔ φ0p
(A36c)
=

AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ
.

With Equation (A39) it is possible to calculate an expression for Equation (22):

2π2|Bφ|2S
(1)
f

(22)
= Ω2|Bφ|2

〈
φ0p(Ω)φ∗

0p(Ω)
〉

(A39)
= Ω2|Bφ|2

〈
AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ

(
AN F̂N + AS F̂S + Aφ F̂φ

iΩBφ

)∗〉
(A40)

=

〈(
AN F̂N + AS F̂S + Aφ F̂φ

)(
AN F̂N + AS F̂S + Aφ F̂φ

)∗〉
.

It can be seen from Equation (A36) that the coefficients Ai are independent of time, and as-
suming an ergodic process they can be taken out of the average in Equation (A40), obtain-
ing:

π2|Bφ|2S
(1)
f

(17b)
= |AN |2DNN + |AS|2DSS + |Aφ|2Dφφ +

(
AS A∗

N + AN A∗
S

)
DSN (A41)

⇔ 4π2|Bφ|2S
(1)
f

(A36)
=
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2
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e F2 − ζ
S
αH
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DSS

⇔ 2π2S
(1)
f

(23)
=

Λ4Ω4 + Λ2Ω2 + Λ0

2|Bφ|2
. (A42)
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Furthermore, using the following definitions:

∆4 ≡ F
2
1 (A43a)

∆2 ≡ K
2
c ζ2

S
+ τ−2

e F
2
1 − 2F1agG0S0F3 (A43b)

∆0 ≡
(

agG0S0F3 +Kcζ
S
τ−1

e

)2
, (A43c)

the expression for Bφ from Equation (A36d) can be rewritten as:

Bφ = agG0S0F3 − Ω2
F1 + iΩ

(
Kcζ

S
+ τ−1

e F1

)
+Kcζ

S
τ−1

e (A44a)

⇔ |Bφ|2 = Ω2
(
Kcζ

S
+ τ−1

e F1

)2
+
(

agG0S0F3 − Ω2
F1 +Kcζ

S
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e
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Kcζ

S
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− 2F1agG0S0F3 − 2F1Kcζ

S
τ−1

e

]
+ ∆0

(A43c)
= Ω4∆4 + Ω2∆2 + ∆0, (A44b)

with which the expression of the FN PSD becomes:

4π2S
(1)
f

(23)
=

Λ4Ω4 + Λ2Ω2 + Λ0

∆4Ω4 + ∆2Ω2 + ∆0
. (A45)

Appendix F. Expression for the Intrinsic Linewidth

The laser intrinsic linewidth can be found from Equation (25). Defining:

β
Ag

≡ τ−1
e ζ

S

agG0S0
; δ

Ag
≡ ζ

S

G0
; ∆ f0 =

Rsp

4πS0
, (A46)

where, following [3]:
δAg ≃ 0 ≃ β

Ag
, (A47)

as δAg < 10−2, which accounts for shot noise in the generation and recombination of
minority carriers, and β

Ag
is inversely proportional to the laser power which above thresh-

old becomes negligible. Starting from Equation (A45) and setting Ω = 0 as required by
Equation (25):
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(A47)⇔ ∆ f

∆ f0
(
1 + α2

H

) ≃ F
−2
3

(23)
=

(20)
= {1 + κ2t2[cos(φ2)− αH sin(φ2)]− κ1t1[cos(φ1) + αH sin(φ1)]}−2

(A20a)
=

(A20b)
= [1 + γH κ2t2 cos(φ2 + θH)− γH κ1t1 cos(φ1 − θH)]

−2. (A48)

The presence of EOF from both sides of the laser cavity results in two terms in the linewidth
expression, one for each side, as was seen in the threshold gain reduction and lasing
frequency shift due to feedback. This result is discussed in Section 2.3.

Appendix G. Suplementary Images: Tolerances

Figure A2. Numerical solutions for C = 0.5 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in or-
ange. Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain
shift. Column (C) shows the intrinsic linewidth variations.
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Figure A3. Numerical solutions for C = 1 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in orange.
Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain shift.
Column (C) shows the intrinsic linewidth variations.
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Figure A4. Numerical solutions for C = 1.3 under condition (12) for a ±20% variation of
conditions (8) and (11). Double feedback case shown in blue, single feedback case shown in or-
ange. Column (A) shows the lasing frequency shift results. Column (B) shows the threshold gain
shift. Column (C) shows the intrinsic linewidth variations.
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Abstract: A modified rate equation model was presented to theoretically investigate the nonlinear
dynamics of solitary two-state quantum dot lasers (TSQDLs) under optical feedback. The simulated
results showed that, for a TSQDL biased at a relatively high current, the ground-state (GS) and
excited-state (ES) lasing of the TSQDL can be stimulated simultaneously. After introducing optical
feedback, both GS lasing and ES lasing can exhibit rich nonlinear dynamic states including steady
state (S), period one (P1), period two (P2), multi-period (MP), and chaotic (C) state under different
feedback strength and phase offset, respectively, and the dynamic states for the two lasing types
are always identical. Furthermore, the influences of the linewidth enhancement factor (LEF) on the
nonlinear dynamical state distribution of TSQDLs in the parameter space of feedback strength and
phase offset were also analyzed. For a TSQDL with a larger LEF, much more dynamical states can be
observed, and the parameter regions for two lasing types operating at chaotic state are widened after
introducing optical feedback.

Keywords: nonlinear dynamics; quantum dot lasers; optical feedback; chaotic; linewidth enhance-
ment factor (LEF)

1. Introduction

After introducing external perturbations, semiconductor lasers (SLs) can exhibit rich
nonlinear dynamics [1,2], which can be applied in many fields such as random number
generation, secure communication, photonic microwave signal generation, all-optical logic
gates, and reservoir computing [3–7].

Quantum dot (QD) lasers are self-assembled nanostructured SLs. Compared with tra-
ditional quantum well (QW) SLs, QD lasers have many advantages such as low threshold
current density [8], high temperature stability [9], low chirp [10], and large modulation
bandwidth [11]. Such unique characteristics make QD lasers become excellent candidate
light sources in optical communication, optical interconnection, silicon photonic integrated
circuits, and photonic microwave generation, etc. [12–16]. Due to strong three-dimension
quantum confinement of the carriers, QD lasers have discrete energy levels and state densi-
ties, which lead to their unique emission performances. Related studies have shown that
there exist two current thresholds in ordinary QD lasers. When the bias current is increased
to the first threshold, QD lasers can emit on the ground-state (GS). Continuously increasing
the bias current, the number of carriers at the excited-state (ES) increases rapidly. Once the
bias current exceeds a certain value (the second threshold), QD lasers can simultaneously
emit on GS and ES. Correspondingly, such QD lasers are named as two-state QD lasers
(TSQDLs) [17,18]. Via some technologies, QD lasers can emit solely on GS or ES, and the
corresponding QD lasers are named as GS-QD lasers and ES-QD lasers, respectively [19,20].
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Previous studies have shown that different types of QD lasers can exhibit different
performances. GS-QD lasers possess a low threshold current and low sensitivity to op-
tical feedback owing to relatively low energy levels and strong damping of relaxation
oscillation [21,22]. Compared with GS-QD lasers, ES-QD lasers possess larger modulation
bandwidths and richer nonlinear dynamics under external perturbations owing to faster
carrier capture rates [23–26]. Different from GS-QD lasers and ES-QD lasers, TSQDLs can
lase at two wavelengths separated by several tens of nanometers [27] and exhibit lower
intensity noise [28], which can be applied in many fields such as terahertz (THz) signal
generation, two-color light sources, two color mode-locking, all-optical processing, and
artificial optical neurons, etc. [29–32]. In recent years, the investigations on the nonlinear dy-
namics of TSQDLs under external perturbations have attracted special attention. Through
introducing optical injection into GS, the ES emission in TSQDLs can be suppressed and
the mode switching from ES to GS is triggered [33,34]. Through scanning the optical
power of injection light along different varying routes, a bistable phenomenon can be
observed [35,36]. After introducing optical feedback to TSQDLs, many interesting phenom-
ena can be observed such as mode switching and mode competition between the GS and
ES [37,38], energy exchanging among longitudinal modes [39], two-color oscillating [40],
and anti-phase low frequency fluctuating [41]. However, to our knowledge, the nonlinear
dynamical state evolution of TSQDLs under optical feedback has not been reported.

In this work, based on three-level model of QD lasers [42,43], a modified theoretical
model for TSQDLs under optical feedback was presented to numerically investigate the
nonlinear dynamical characteristics of TSQDLs under optical feedback. Moreover, the
influences of the linewidth enhancement factor (LEF) on the nonlinear dynamical state
distribution of TSQDLs in the parameter space of feedback strength and phase offset were
also analyzed.

2. Rate Equation Model

The theoretical model in this work was based on the three-level model of QD lasers,
which has been adopted to analyze the static and dynamic behaviors, noise characteristics
of QD lasers operating at free-running [42,43], and the small-signal modulation response
and relative intensity noise of QD lasers under optical injection-locking conditions [44].
Figure 1 shows the simplified schematic diagram of the carrier dynamics for two-state
QD lasers (TSQDLs) based on the three-level model [45]. In this system, two relatively
low energy levels involving ground state (GS) and the first excited state (ES) were taken
into account. The electrons and holes were treated as neutral excitons (electron-hole pairs),
and the stimulated emission can occur in GS and ES. It was assumed that all QDs had
the same size and the active region consisted of only one QD ensemble. Therefore, the
inhomogeneous broadening effect was ignored. As shown in the figure, the carriers were
injected directly into the wetting layer (WL) from the electrodes. In the WL, owing to
Auger recombination and phonon-assisted scattering processes [46,47], some carriers were
captured into ES with a captured time τWL

ES . Some carriers relaxed directly into GS with a
relaxation time τWL

GS . The rest of the carriers recombined spontaneously with a time τ
spon
WL .

For the carriers in ES, some of them relaxed into GS with a relaxation time τES
GS and the

other carriers recombined spontaneously with an emission time τ
spon
ES . On the other hand,

owing to the thermal excitation effect, some carriers were excited into WL with an escape
time τES

WL. Similarly, the carriers in GS were excited into ES with an escape time τGS
ES , and

some carriers also recombined spontaneously with an emission time τ
spon
GS . Based on the

three-level model, after referring to the optical feedback processing methods in Ref. [48],
we propose modified rate equations for describing the nonlinear dynamics of TSQDLs
under optical feedback as follows:

dNWL

dt
=

η I

q
+

NES

τES
WL

− NWL

τWL
ES

(1 − ρES)−
NWL

τWL
GS

(1 − ρGS)−
NWL

τ
spon
WL

(1)
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dNES

dt
=

NWL

τWL
ES

(1 − ρES) +
NGS

τGS
ES

(1 − ρES)−
NES

τES
WL

− NES

τES
GS

(1 − ρGS)−
NES

τ
spon
ES

− ΓPvggESSES (2)

dNGS

dt
=

NWL

τWL
GS

(1 − ρGS) +
NES

τES
GS

(1 − ρGS)−
NGS

τGS
ES

(1 − ρES)−
NGS

τ
spon
GS

− ΓPvggGSSGS (3)

dSGS

dt
=

(
ΓPvggGS −

1
τp

)
SGS + βsp

NGS

τ
spon
GS

+ 2
k

τin

√
SGS(t)SGS(t − τ) cos(∆φGS) (4)

dSES

dt
=

(
ΓPvggES −

1
τp

)
SES + βsp

NES

τ
spon
ES

+ 2
k

τin

√
SES(t)SES(t − τ) cos(∆φES) (5)

dφGS

dt
=

α

2

(
ΓPvggGS −

1
τp

)
− k

τin

√
SGS(t − τ)

SGS(t)
sin(∆φGS) (6)

dφES

dt
=

α

2

(
ΓPvggES −

1
τp

)
− k

τin

√
SES(t − τ)

SES(t)
sin(∆φES) (7)

where WL, ES, GS are the wetting layer, excited-state, and ground-state, respectively, and
the superscript spon represents the spontaneous emission. N, S, φ are the carrier number,
photon number, and phase, respectively. I is the injection current, η is the current injection
efficiency, and q is the electron charge. Γp is the optical confinement factor, υg (= c/nr, where
c is the light speed in vacuum and nr the refractive index) is the group velocity. τp is the
photon lifetime, τin is the round-trip time in the laser cavity, and τ (= 2 lex/c, where lex the
external cavity length) is the round-trip time of external cavity. k is the feedback strength,
and α is the linewidth enhancement factor. Considering that GS and ES have twofold
degeneration and fourfold degeneration, respectively, the carrier occupation probabilities
and the gains of GS and ES can be expressed as [42]:

ρGS =
NGS

2NB
; ρES =

NES

4NB
(8)

gGS =
aGS

1 + ξGS
SGS
VS

NB

VB
(2ρGS − 1) (9)

gES =
aES

1 + ξES
SES
VS

NB

VB
(2ρES − 1) (10)

where NB is the number of quantum dots. aGS and aES are the differential gain, ξGS and ξES

are the gain compression factor, vs. is the volume of the laser field inside the cavity, and VB

is the volume of the active region. The feedback phase variation can be described as:

∆φGS = φGS(t)− φGS(t − τ) + ωGSτ (11)

∆φES = φES(t)− φES(t − τ) + ωESτ (12)

where ωGS and ωES are the angular frequencies for GS and ES lasing, respectively.
The rate equations can be numerically solved by the fourth-order Runge-Kutta method

via MATLAB software. During the calculations, the used parameters and their values are
given in Table 1 [42]:
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Figure 1. Schematic diagram of the carrier dynamics for QD lasers based on the three-level model.
WL: wetting layer; GS: ground state; ES: excited state.

Table 1. Simulation parameters of the QD lasers.

Symbol Parameter Value

τWL
ES

Capture time from WL to ES 12.6 ps

τES
GS

Capture time from ES to GS 8 ps

τWL
GS

Relaxation time from WL to GS 15 ps

τGS
ES

Escape time from GS to ES 10.4 ps

τES
WL

Escape time from ES to WL 5.4 ns

τ
spon
WL

Spontaneous emission time from WL 0.5 ns

τ
spon
ES

Spontaneous emission time from ES 0.5 ns

τ
spon
GS

Spontaneous emission time from GS 1.2 ps

τP
Photon lifetime 4.1 ps

NB
Total number of QD 1.0 × 107

Γp
Optical confinement factor 0.06

nr
Refractive index 3.5

τin
Round-trip time 10 ps

aGS
Differential gain from GS 5.0 × 10−15 cm2

aES
Differential gain from ES 10.0 × 10−15 cm2

ξGS
Gain compression factor from GS 1.0 × 10−16 cm3

ξES
Gain compression factor from ES 8.0 × 10−16 cm3

βsp
Spontaneous emission factor 5.0 × 10−6

ωGS
Angular frequency from GS 1.446 × 1015 rad/s

ωES
Angular frequency from ES 1.529 × 1015 rad/s

VB
Active region volume 5.0 × 10−11 cm3

VS
Resonant cavity volume 0.833 × 10−15 cm3

η Injection efficiency 0.25

q Elementary charge 1.6 × 10−19 C

τ Feedback delay time 100 ps

α Linewidth enhancement factor 3.5

3. Results and Discussion

Figure 2 shows the normalized output power of the GS and ES lasing as a function of
the injection current for a TSQDL under free-running (solid lines) or optical feedback with

56



Photonics 2021, 8, 300

a feedback strength of k = 0.11 (dotted lines). For the TSQDL operating at free-running, the
threshold currents of the GS and ES lasing were 36 mA (IGS

th ) and 88 mA (IES
th ), respectively.

With the increase of the current from 36 mA to 88 mA, the power of GS lasing gradually
increased while the ES lasing was always in a suppressed state. However, once the injection
current was exceeded 88 mA, the ES lasing could be observed. Further increasing the
current, the power of the ES lasing rapidly increased while the power of the GS lasing
increased slowly. Above results are in agreement with those reported in Ref. [43]. After
introducing an optical feedback of k = 0.11, the threshold current for GS slightly decreased,
which is similar with that observed in a single-mode distributed feedback semiconductor
laser under optical feedback. However, optical feedback raises the threshold of ES. The
reason is that the predominant component in the feedback light is originating from GS
lasing, and therefore the optical feedback enhances the competitiveness of the GS lasing.
Correspondingly, a higher current is needed for ES to start oscillation. In the following, we
fixed the current of the TSQDL at 120 mA, at which the power of GS lasing was more than
that of ES lasing.

 

τ

Figure 2. Normalized output power as a function of the injection current for a TSQDL under
free-running (solid lines) or optical feedback with a feedback strength of k = 0.11 (dotted lines).

Figure 3 displays the time series, power spectra, and phase portraits of typical dy-
namic state output from GS lasing and ES lasing of a TSQDL biased at 120 mA under
optical feedback with τ = 100 ps and different k. For k = 0.03, the output intensity of GS
lasing (Figure 3(a1)) was nearly a constant, the power spectrum was relatively smooth
(Figure 3(a2)), and the phase portrait was a dot (Figure 3(a3)). Obviously, under this case,
the dynamical state of GS lasing is a stable (S) state. For k = 0.07, the time series of GS
lasing (Figure 3(b1)) exhibited a stable periodic oscillation with a fundamental frequency
of about 6.3 GHz obtained from the power spectrum (Figure 3(b2)), and the phase por-
trait is a dense dot (Figure 3(b3)). Based on these characteristics, the dynamic state of
GS lasing can be judged as a period-one (P1) state. For k = 0.092, the time series of GS
lasing (Figure 3(c1)) behaves periodic oscillation with two peak intensities, both the sub-
harmonic frequency (about 3.1 GHz) and the fundamental frequency (about 6.3 GHz)
present clearly in the power spectrum (Figure 3(c2)), and the corresponding phase portrait
(Figure 3(c3)) is two closed circles, which are typical characteristics of period-two (P2) state.
For k = 0.097, the time series of GS lasing (Figure 3(d1)) exhibited multiple different peaks,
a quarter-harmonic frequency component appeared in the power spectrum (Figure 3(d2)),
and the phase portrait (Figure 3(d3)) showed multiple loops. These features mean that
the dynamical state of GS lasing is a multi-period (MP) state. For k = 0.154, the time series
of GS lasing (Figure 3(e1)) showed a disordered oscillation, and the power spectra were
broadened (Figure 3(e2)). In addition, the corresponding phase portrait (Figure 3(e3))
showed a strange attractor. Therefore, the dynamic state of GS lasing can be determined to
be the chaotic (C) state. Through comparing the characteristics of ES lasing with those of
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GS lasing, it can be seen that the dynamical states of ES lasing are always the same as those
of GS lasing.

 
 

τ
Figure 3. Time series, power spectra, and phase portraits output from GS lasing (red) and ES lasing (blue) in a TSQDL biased
at 120 mA under optical feedback with τ = 100 ps and k = 0.03 (a), 0.07 (b), 0.092 (c), 0.097 (d), and 0.154 (e), respectively.

Above results show that, through setting feedback parameters at different values,
some typical dynamical states can be observed for both ES and GS lasing. In order to
inspect the evolution route of dynamical state with the feedback strength, Figure 4 presents
the bifurcation diagrams of the power extreme and largest Lyapunov exponent (LLE) of the
GS lasing and ES lasing as a function of feedback strength. LLE is an important indicator
to measure the stability of a laser nonlinear dynamical system [49]. A positive LLE value
means that the laser operates at a chaotic state while a negative LLE value corresponds to a
steady state. For a laser operating at periodic states, the LLE value tends to approach zero.
From this diagram, it can be seen that, with the increase of k from 0 to 0.043, the output
of GS lasing and ES lasing remains in a stable state due to the relatively low feedback
strength. Further increasing the feedback strength, the external cavity modes compete with
the intrinsic oscillation frequency of the laser, and the dynamic states of GS lasing and ES
lasing transform into periodic states including P1, P2, and MP. When the feedback strength
exceeds 0.11, the TSQDL enters into the C state due to coherent collapse. As a result, the
dynamics evolution routes of S-P1-P2-MP-C of the GS lasing and ES lasing are presented.
Continuously increasing the feedback strength, the laser enters into the chaos state through
period-doubling bifurcation, and such an evolution process repeats continuously.
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Figure 4. Bifurcation diagrams of power extreme and largest Lyapunov exponent (LLE) as a function of feedback strength
of the GS lasing (a) and ES lasing (b) in a TSQDL biased at 120 mA under optical feedback with τ = 100 ps.

Next, we discuss the influences of the round-trip time (τ) of the external cavity under
a given feedback strength of k = 0.1. Here, we only consider the case that τ is varied
around τ0 = 100 ps within a very small range, in which the offset (∆τ) of τ from τ0 = 100
ps satisfies –π/ωGS ≤ ∆τ ≤ π/ωGS. Under this case, the phase offset ϕ(=∆τωGS) of GS
lasing is varied within (−π, π), and the corresponding phase offset of ES lasing is varied
within (−1.06π, 1.06π). Figure 5 presents the bifurcation diagrams of the power extreme
and LLE of the GS lasing and ES lasing as a function of phase offset under k = 0.1. With the
increase of phase offset ϕ from −π to π, the dynamics evolution routes are more diverse.
There exist multiple chaotic evolution routes for GS lasing and ES lasing including P1-S-C,
P2-P1-P2-C, and C -MP-P2-C.

τ

τ
τ
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1.06π). Figure 5 presents the bifurcation diagrams of 
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Figure 5. Bifurcation diagrams of the power extreme; LLE as a function of phase offset of the GS lasing (a) and ES lasing (b)
in a TSQDL under I = 120 mA and k = 0.1.

The above results demonstrate that the feedback strength and the round-trip time
τ (equivalent to phase offset) of the external cavity are two crucial parameters affecting
the nonlinear dynamics of TSQDLs. Therefore, it is essential to investigate the overall
dynamical evolution in the parameter space of feedback strength and phase offset. Figure 6
presents the mapping of the dynamical states for GS lasing (a) and ES lasing (b) in the
parameter space of feedback strength and phase offset. There are rich dynamic states
including S, P1, P2, MP, and C in the parameter space. With the increase of feedback
strength, the phase offset required for achieving a chaotic state is gradually widened.
Although the dynamic state distributions of GS lasing and ES lasing are similar, there exist
subtle differences at the boundary between two modes. Through observing this diagram
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carefully, it can be found that there are multiple evolution routes for driving the laser into
the chaotic state such as S-P1-P2-MP-C, P1-P2-MP-C, and P1-MP-C.

 

α

α

α α

α
α
α

α α
α α

Figure 6. Mapping of the dynamical states for GS lasing (a) and ES lasing (b) of a TSQDL in the
parameter space of feedback strength and phase offset. S: stable, P1: period-one, P2: period-two, MP:
multi-period, and C: chaos.

Relevant research shows that the linewidth enhancement factor (LEF) α plays an
important role for the nonlinear dynamics of SLs under external perturbations [50,51]. The
above results were obtained under a fixed α taken as 3.5. Finally, we discuss the influences
of LEF on the dynamical state distribution of a TSQDL under optical feedback. Figure 7
depicts mappings of dynamic states of GS lasing and ES lasing under different α. For
α = 0.5 (Figure 7(a1,a2), the dynamical states of GS and ES are relatively simple, which
include S, P1, and C. In the whole parameter space, most of the region is in a stable state,
and only a small region is in the chaotic state. For α = 2.5, as shown in Figure 7(b1,b2),
there are much richer dynamic states involving P2 and MP. For a larger α of 4.5 as shown
in Figure 7(c1,c2), the chaotic state occupies a large area. Therefore, a large α is helpful for
achieving chaotic state output.

α

α

α α

α
α
α

 

α α
α α

Figure 7. Mappings of the dynamical states of GS lasing (the first row) and ES lasing (the second row)
in the parameter space of feedback strength and phase offset under different α, where (a) α = 0.5, (b)
α = 2.5, (c) α = 4.5. S: stable, P1: period-one, P2: period-two, MP: multi-period, and C: chaos.
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Additionally, it should be pointed out that above results were obtained under the
condition that the spontaneous emission noises were ignored. In fact, after considering
the influence of spontaneous emission noise, the boundary of dynamical states may be
changed slightly.

4. Conclusions

In summary, via a rate equation model used to characterize TSQDLs with optical
feedback, the nonlinear dynamics of TSQDLs subject to optical feedback were investigated
theoretically. For a TSQDL biased at 120 mA, both GS and ES lasing could be stimulated
simultaneously, and the output power of GS emission was slightly larger than that of
ES emission. After introducing optical feedback, multiple nonlinear dynamical states
including S, P1, P2, MP, and C were observed for GS lasing and ES lasing under suitable
feedback strengths and phase offset. Through mapping the evolution of dynamics state in
the parameter space of feedback strength and phase offset, different evolution routes were
revealed. In addition, the influences of the linewidth enhanced factor (LEF) on the dynamic
state distribution of TSQDLs in the space parameter of feedback strength and phase shift
were also presented. For a larger LEF, the parameter regions for GS lasing and ES lasing
operating at chaotic state were wider. Although the dynamical behaviors of TSQDLs
under optical feedback were similar to those observed in quantum well lasers under
optical feedback, TSQDLs under optical feedback have the ability to provide two-channel
chaotic signals with different lasing wavelengths, which are more promising for high-speed
random number generation, wavelength-division multiplexing secure communication, and
parallel-reservoir computing.
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Abstract: We study the output of a semiconductor laser with optical feedback operated in the low-
frequency fluctuations (LFFs) regime and subject to weak sinusoidal current modulation. In the
LFF regime, the laser intensity exhibits abrupt drops, after which it recovers gradually. Without
modulation, the drops occur at irregular times, while, with weak modulation, they can lock to the
external modulation and they can occur, depending on the parameters, every two or every three
modulation cycles. Here, we characterize experimentally the locking regions and use the well-
known Lang–Kobayashi model to simulate the intensity dynamics. We analyze the effects of several
parameters and find that the simulations are in good qualitative agreement with the experimental
observations.

Keywords: semiconductor lasers; optical feedback; modulation; locking; low-frequency fluctuations

1. Introduction

Locking is a phenomenon that ubiquitously occurs in oscillators that are subject to
an external periodic forcing, and refers to the synchronization, or to the adjustment, of
the oscillator’s rhythm, to that of the external forcing. Locking has many applications, for
example, for cardiac re-synchronization after arrhythmia, for deep brain stimulation, jet lag
re-adjustment, etc. [1–3].

A semiconductor laser whose pump current is periodically modulated is a stochastic
nonlinear oscillator that can shows bistability and a chaotic output [4,5], and that allows
controlled experiments in order to understand how locking emerges and how it depends on
the parameters of the laser and of the external signal. With weak optical feedback, the laser
intensity shows feedback-induced fluctuations that, under appropriate conditions, can be
controlled by periodic current modulation. In particular, a weak modulation of the laser
current can control the low-frequency fluctuations (LFFs) that occur when the laser operates
near the threshold [4]. Without current modulation, the laser intensity shows irregular and
abrupt drops (that in the following we will refer to as spikes), while with current modulation,
under appropriate conditions, the spikes lock to the modulation (see Figure 1), and they
occur with a rhythm that depends on the frequency of the modulation [6–17].

In recent years, we have performed detailed experiments on the modulated LFF
dynamics, characterizing the temporal correlations in the spike times [18,19], the role of the
modulation waveform [20], and the degree of locking [21] and we compared the spiking
LFF dynamics with simulations of a weakly forced neuron [22]. We have also discovered
that weak sinusoidal modulation can generate time-crystal-like behavior [23,24] because it
can produce highly regular subharmonic locking, but not harmonic locking [25,26]. The lack
of harmonic locking under weak sinusoidal modulation could be understood when using
the well-known Lang–Kobayashi (LK) model [27] to simulate the intensity dynamics [28].
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The goal of this work is to perform an in-depth comparison of experimental observa-
tions and the predictions of the LK model. This paper is organized as follows. In Section 2,
we present the LK model, in Section 3 we describe the experimental setup and datasets, in
Section 4 we present the comparison of observations and simulations, and in Section 5, we
present the discussion and the conclusions.

Figure 1. Available online: examples (accessed on) of intensity time series recorded with different
modulation amplitudes. (a) Amod = 0%, (b) 0.73% (c) 1.22%, (d) 1.70%, and (e) 2.43% of the dc level
Idc = 26 mA. The modulation frequency is fmod = 44 MHz. The red dots indicate the detected
spike times.

2. Model

The Lang–Kobayashi rate equations describing a single-mode semiconductor laser
with weak optical feedback and sinusoidal pump current modulation are [26–28]:

Ė = k(1 + iα)(G − 1)E + ηE(t − τ)e−iω0τ +
√

Dξ, (1)

Ṅ = γN(µdc + amod sin(2π fmodt)− N − G|E|2). (2)

Here, E represents the slowly varying complex optical field (|E|2 is proportional to the
laser intensity) and N, the carrier density. η, τ, and ω0τ are the feedback strength, the delay
time, and the feedback phase, respectively; k = 1/(2τp) where τp is the photon lifetime,
γN = 1/τN where τN is the carrier lifetime, G = N/(1 + ǫ|E|2) is the gain and ǫ is the
gain saturation coefficient, α is the linewidth enhancement factor. ξ is a complex Gaussian
white noise that takes into account spontaneous emission and D is the strength of the noise.
µdc is the dc value of the pump current parameter, which is proportional to Idc/Ith,sol [29],
with Idc being the dc value of the pump current and Ith,sol the threshold current without
feedback. amod and fmod are the modulation amplitude and frequency, respectively.

The model equations were integrated with the same procedure and parameters as
in [26,28] that fit the experimental conditions: k = 300 ns−1, γN = 1 ns−1, α = 4, ǫ = 0.01,
η = 30 ns−1, τ = 5 ns, µdc = 0.99, and D = 10−5 ns−2. To detect the spike times, the
intensity time series, |E(t)|2, was band-pass filtered to simulate the finite bandwidth of the
experimental detection system, and was then normalized to zero mean and unit variance.
Then, a spike was detected whenever the intensity dropped below a threshold, Th = −1.1.

66



Photonics 2022, 9, 103

To analyze the statistical characteristics of the spikes, for each set of parameters five
intensity time series were simulated, starting from random initial conditions and using
different noise seeds, and from them, after disregarding a transient time, the average
number of spikes, the average inter-spike interval (IS), and the average standard deviation
of the distribution of ISIs were calculated.

3. Experimental Setup and Datasets

The experimental setup and datasets were described in [20]. A diode laser with center
wavelength of 685 nm (Thorlabs HL6750MG, Newton, NJ, USA) was used, whose tempera-
ture and current were stabilized with an accuracy of 0.01 C and 0.01 mA, respectively. A
beam splitter sent 90% of the light reflected by a mirror back to the laser, and the other
10% to the detection system: a high-speed photo-detector (Thorlabs Det10A/M) connected
to an amplifier (Femto HSA-Y-2-40, Berlin, Germany) whose output was recorded with
a digital oscilloscope (Agilent Technologies Infiniium DSO9104A, 1 GHz bandwidth). A
500 MHz Bias-T in the laser mount was used to modulate the laser current with a periodic
signal generated by an arbitrary waveform generator (Agilent 81150A, Santa Clara, CA,
USA). The length of the external cavity was 70 cm, which gave a feedback delay time of
4.7 ns. The threshold current of the free-running laser was Ith,sol = 26.62 mA, and with
optical feedback, it was reduced to Ith = 24.70 mA (7.2% reduction). In the experiments,
three modulation parameters were varied, the dc value of the laser current, Idc, the am-
plitude, Amod, and frequency, fmod, of the driving signal, and for each set of parameters,
three modulation waveforms were used (pulse-down, pulse-up, and sinusoidal). Here, we
analyze the data recorded with sinusoidal modulation. Specifically, we analyze the ISIs
recorded with different Idc, Amod, and fmod.

4. Results

Figure 1 presents experimental intensity time series recorded without current modu-
lation (top panel) and with current modulation of increasing amplitude (panels b–e). We
see that for intermediate modulation amplitudes the spikes become periodic and a spike
occurs every three modulation cycles (locking 3:1). Model simulations that show good
agreement with these observations were presented in [26] (Figure 4).

To perform a systematic comparison of experiments and model simulations, we
analyze how the statistics of the ISIs depend on the amplitude and on the frequency of the
modulation. Specifically, we analyze the number of spikes, the mean ISI normalized to the
modulation period, Tmod, and the coefficient of variation, Cv, that measures the relative
width of the ISI distribution (Cv = σISI/〈ISI〉 where 〈ISI〉 and σISI are the mean and the
standard deviation of the ISI distribution). The results are presented in Figures 2 and 3, for
the experimental and the simulated data, respectively. We see a good qualitative agreement:
the number of spikes increases in the regions of locking, which are seen as a well-defined
cyan region (locking 2:1, 〈ISI〉 = 2Tmod) and a yellow region (locking 3:1, 〈ISI〉 = 3Tmod),
and in these regions Cv is small, revealing a narrow ISI distribution.

Figure 2. Analysis of the experimental inter-spike intervals (ISIs). (a): number of spikes (in color
code) vs. the modulation amplitude and frequency; (b): mean ISI normalized to the modulation
period (the red color represents 〈ISI〉/Tmod ≥ 5); (c) coefficient of variation. The dc value of the
pump current is as in Figure 1.
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Figure 3. As in Figure 2, but obtained from model simulations with µdc = 0.99, other parameters are
as indicated in the text.

Let us next compare the combined effect of varying the dc value of pump current and
the modulation amplitude, keeping the modulation frequency fixed. In Figures 4 and 5,
we present the analysis of experimental and simulated ISIs, respectively. In both figures,
from top to bottom, fmod = 26 MHz, 44 MHz, and 55 MHz. We again observe a very good
qualitative agreement between experiments and simulations. As Idc or µdc increase, we see
that the number of spikes increases (left column) and the mean ISI decreases (in the blue
regions, the mean ISI becomes equal to or smaller than the modulation period). However,
we see in the right column that the coefficient of variation increases with Idc or µdc, which
indicates that 1:1 locking is not achieved.

Figure 4. Experimental characterization of the locking region as a function of the modulation
amplitude and the dc value of the pump current, for different modulation frequencies. (a,d,g)
number of spikes; (b,e,h) 〈ISI〉/Tmod; (c,f,h) coefficient of variation. (a–c) fmod = 26 MHz; (d–f)
fmod =44 MHz; (g–i) fmod =55 MHz.

In Figure 4b, we note that for large enough Idc the mean ISI is approximately equal to
the modulation period, but there is no 1:1 locking because the ISI distribution is quite broad
(the coefficient of variation is ≈ 0.5). One could wonder if for other modulation frequencies,
harmonic locking could be obtained. To address this point, we examine the statistics of the
ISIs as a function of the modulation amplitude and frequency. The results are presented
in Figure 6 (experimental data recorded with Idc = 27 mA) and in Figure 7 (simulated
data with µdc = 1.01). In Figure 6b, we see, for low modulation frequencies, a blue region
that indicates 〈ISI〉/Tmod ∼ 1, but in this region Cv is large (Cv ∼ 0.5). In Figure 7b, we
also see a blue region with similar characteristics. In contrast with the experiments, in the
simulation, 3:1 locking is not seen because the yellow region in Figure 7b is quite narrow,
and in this region, Cv is large.
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Figure 5. As Figure 4, but obtained from model simulations. First row, fmod = 26 MHz; second row,
fmod = 44 MHz; and third row, fmod = 55 MHz. We again see a tendency of the mean ISI to decrease
as the dc value of the pump current increases, but no 1:1 locking is obtained because in the region
where 〈ISI〉/Tmod ∼ 1, the width of the distribution of ISIs, measured by the coefficient of variation,
is quite large.

Figure 6. As Figure 2, but the dc value of the pump current is Idc = 27 mA. (a) number of spikes; (b)
〈ISI〉/Tmod; (c) coefficient of variation.

Figure 7. As Figure 3, but µdc = 1.01, other parameters are as indicated in the text.

5. Conclusions

We have studied the dynamics of a semiconductor laser with optical feedback and
current modulation, which operates in the LFF regime. We have analyzed how the number
of spikes and how the mean and the standard deviation of the ISI distribution vary with
the modulation parameters: the dc value, the amplitude, and the frequency. We have found
a very good agreement between experimental observations and the simulations of the LK
model. With increasing Idc, 〈ISI〉 tends to decrease, but, at least in the range of modulation
amplitudes studied here, no 1:1 locking was found. Harmonic locking can be observed with
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larger modulation amplitudes [28], but in that case the intensity dynamics are dominated
by the modulation and the feedback-induced spikes are rather small.

The main motivation of our study was to understand the locking phenomena of a
diode laser, from the point of view of nonlinear dynamics. In that sense, model simula-
tions have been performed to further understand why small-amplitude sinusoidal current
modulation does not produce harmonic locking. Since we have found well-defined regions
of subharmonic locking (exploring the parameters space pump current, modulation am-
plitude, and modulation frequency) our results may be of interest for applications that
use small-amplitude electric modulation to generate highly regular optical pulsing with a
repetition rate in the MHz range.

It will be interesting for future work to understand how the locking behavior depends
on the feedback strength, i.e., to characterize the transition from locked sinusoidal-like
oscillations (without optical feedback) to locked feedback-induced spikes. It will also be
interesting to analyze if the interplay of noise, delayed feedback, and current modulation
can produce locking regions where the spikes are emitted with a very regular timing.
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Abstract: This study investigates the effects of asymmetric coupling strength on nonlinear dynamics
of two mutually long-delay-coupled semiconductor lasers through both experimental and numerical
efforts. Dynamical maps and spectral features of dynamical states are analyzed as a function of the
coupling strength and detuning frequency for a fixed coupling delay time. Symmetry in the coupling
strength of the two lasers, in general, symmetrizes their dynamical behaviors and the corresponding
spectral features. Slight to moderate asymmetry in the coupling strength moderately changes their
dynamical behaviors from the ones when the coupling strength is symmetric, but does not break the
symmetry of their dynamical behaviors and the corresponding spectral features. High asymmetry in
the coupling strength not only strongly changes their dynamical behaviors from the ones when the
coupling strength is symmetric, but also breaks the symmetry of their dynamical behaviors and the
corresponding spectral features. Evolution of the dynamical behaviors from symmetry to asymmetry
between the two lasers is identified. Experimental observations and numerical predictions agree not
only qualitatively to a high extent but also quantitatively to a moderate extent.

Keywords: semiconductor lasers; nonlinear dynamics; mutual coupling; asymmetric coupling
strength; symmetry breaking

1. Introduction

Nonlinear dynamics of two mutually delay-coupled semiconductor lasers has at-
tracted much research interest due to its profound physics and promising applications.
By simply adjusting the operating conditions of the two lasers, including bias current,
coupling strength, and detuning frequency, various dynamical behaviors can be induced,
such as mutual injection locking, period-one (P1) dynamics, period-two (P2) dynamics,
quasi-periodic dynamics, and chaos. The unique temporal and spectral features found
in these dynamical behaviors have been proposed, respectively, to improve performance
characteristics of existing technologies, such as enhancing the bandwidth of direct mod-
ulation [1–5] and suppressing nonlinear distortion due to direct modulation [6–8], or to
provide alternatives for novel applications, such as tunable microwave generation [9–12],
chaotic synchronization [13–16], reservoir computing [17–19], and decision making [20].
For these technological applications, the bias currents of the two lasers are, in general,
adjusted independently and differently so that specific characteristics or functionalities are
achieved. This inevitably leads to a difference in the coupling strength between the two
lasers, i.e., the coupling strength is asymmetric.

Prior studies [21–25] that investigate nonlinear dynamical behaviors and their features
in mutually coupled lasers mainly considered symmetric coupling strength only. The dy-
namical behaviors of the two lasers are mainly identical, i.e., symmetric, even though
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symmetry breaking in their behaviors does happen over a limited range of operating condi-
tion. An interesting yet fundamental question to ask is whether the dynamical behaviors of
the two lasers with asymmetric coupling strength are kept symmetric. For example, the re-
sult of a recent study [26], of which purpose focuses on showing that coupling strength
asymmetry makes the mutually coupled laser system behave like a unidirectionally cou-
pled laser system, indicates that their dynamical behaviors are still identical even when
their coupling strength becomes slightly or moderately asymmetric. Would the dynamical
behavior symmetry still hold if the extent of the coupling strength asymmetry enhances?
The answer to this question is important not only for fundamental understandings about
how and to what extent such a laser system responds to asymmetric coupling strength,
but also for technological applications where such a laser system is expected to operate
at a specific dynamical behavior all the time even when the coupling strength becomes
asymmetric. However, this issue has not been much emphasized yet, and is thus numer-
ically and experimentally investigated in this study using two mutually coupled lasers
with a delay time longer than the relaxation resonance period of the lasers at free running.
As shown in the following analyses, slight to moderate asymmetry in the coupling strength
does not break the symmetry between the dynamical behaviors of the two lasers. Sym-
metry breaking of the dynamical behaviors happens when the coupling strength is highly
asymmetric. Evolution of the dynamical behaviors from symmetry to asymmetry between
the two lasers is observed, where numerical predictions and experimental observations
agree not only qualitatively to a high extent but also quantitatively to a moderate extent.

The remainder of this paper is outlined as follows. In Section 2, the numerical model for
two mutually delay-coupled semiconductor lasers, which is derived from the well-known
Lang–Kobayashi equations, used in this study is described, and numerical predictions
are demonstrated. In Section 3, the experimental setup of the laser system used in this
study is introduced, and experimental observations are presented and compared with the
numerical predictions shown in Section 2. Finally, a summary is given in Section 4.

2. Numerical Prediction

The dynamical behaviors of two mutually delay-coupled semiconductor lasers are
numerically investigated in this section to obtain a picture of when, how, and to what
extent changes in their dynamical behaviors happen if their coupling strength varies
from symmetry to asymmetry. The numerical results would serve as a proper guidance
for an experiment study demonstrated in Section 3 to verify the numerical predictions.
Optical and microwave spectra presented here are obtained by considering the spontaneous
emission noise of both lasers in the numerical calculation so that a fair comparison can be
made with those obtained in the experimental study. Temporal evolutions shown here are
calculated without taking into account the spontaneous emission noise of both lasers so
that an easy comparison can be made between the outputs of the two lasers.

2.1. Numerical Model

Two mutually delay-coupled semiconductor lasers under study can be mathematically
described by the following Lang–Kobayashi equations [27–30]:

Laser Diode 1 (LD1):

dA1

dt
= −γc1

2
A1 + i(ω01 − ωc1)A1 +

Γ1

2
g1(1 − ib1)A1 (1)

+η21 A2(t − τ2)e
iω02τ2 − iΩA1 + Fsp1

dN1

dt
=

J1

ed1
− γs1N1 − g1S1. (2)

74



Photonics 2022, 9, 28

Laser Diode 2 (LD2):

dA2

dt
= −γc2

2
A2 + i(ω02 − ωc2)A2 +

Γ2

2
g2(1 − ib2)A2 (3)

+η12 A1(t − τ1)e
iω02τ1 + Fsp2

dN2

dt
=

J2

ed2
− γs2N2 − g2S2. (4)

Here, Aj is the total complex intracavity field amplitude of LDj, where j = 1 or 2, γcj is the
cavity decay rate, ω0j is the free-running oscillation frequency, ωcj is the angular frequency
of the cold cavity, Γj is the confinement factor describing the spatial overlap between the
gain medium and the optical mode, bj is the linewidth enhancement factor relating the
dependence of the refractive index on changes in the optical gain, gj is the optical gain
parameter which is a function of the charge carrier density Nj and the intracavity photon
density Sj, Fspj = Frj + iFij is the complex field noise, η12 and η21 are the injection coupling
rates from LD1 to LD2 and from LD2 to LD1, respectively, τ1 and τ2 are the coupling delay
times from LD1 to LD2 and from LD2 to LD1, respectively, fi = Ω/2π = (ω01 − ω02)/2π
is the detuning frequency between LD1 and LD2 at free running, Jj is the bias current
density, e is the electron charge, dj is the active layer thickness, and γsj is the spontaneous
carrier decay rate. The photon density is related to the intracavity field by:

Sj =
2ǫ0n2

j

h̄ω0j
|Aj|2 (5)

where ǫ0 is the free-space permittivity, nj is the refractive index, and h̄ is the reduced Plank’s
constant. The gain coefficient gj is a function of the photon density and carrier density
described as:

gj =
γcj

Γj
+ γnj

Nj − N0j

S0j
− γpj

Sj − S0j

ΓjS0j
(6)

where γnj represents the differential carrier relaxation rate, γpj describes the nonlinear
carrier relaxation rate, N0j indicates the free-running carrier density, and S0j expresses the
free-running photon density, respectively.

For the purpose of numerical calculation, Equations (1)–(4) are recast about the
steady-state, free-running operating point of each laser, where Aj = |A0j|(arj + iaij) and
Nj = N0j(1 + ñj) are used, and A0j is the free-running field amplitude.

Laser Diode 1 (LD1):

dar1

dt
=

1
2

[
γc1γn1

γs1 J̃1
ñ1 − γp1(a2

r1 + a2
i1 − 1)

]
(ar1 + b1ai1) (7)

+Ωai1 + ξs
21γc1[ar2(t − τ2) cos ω02τ2 − ai2(t − τ2) sin ω02τ2] + Far1

dai1

dt
=

1
2

[
γc1γn1

γs1 J̃1
ñ1 − γp1(a2

r1 + a2
i1 − 1)

]
(−b1ar1 + ai1) (8)

−Ωar1 + ξs
21γc1[ai2(t − τ2) cos ω02τ2 + ar2(t − τ2) sin ω02τ2] + Fai1

dñ1

dt
= −

[
γs1 + γn1(a2

r1 + a2
i1)
]
ñ1 − γs1 J̃1(a2

r1 + a2
i1 − 1) (9)

+
γs1γp1

γc1
J̃1(a2

r1 + a2
i1)(a2

r1 + a2
i1 − 1).
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Laser Diode 2 (LD2):

dar2

dt
=

1
2

[
γc2γn2

γs2 J̃2
ñ2 − γp2(a2

r2 + a2
i2 − 1)

]
(ar2 + b2ai2) (10)

+ξs
12γc2[ar1(t − τ1) cos ω02τ1 − ai1(t − τ1) sin ω02τ1] + Far2

dai2

dt
=

1
2

[
γc2γn2

γs2 J̃2
ñ2 − γp2(a2

r2 + a2
i2 − 1)

]
(−b2ar2 + ai2) (11)

+ξs
12γc2[ai1(t − τ1) cos ω02τ1 + ar1(t − τ1) sin ω02τ1] + Fai2

dñ2

dt
= −

[
γs2 + γn2(a2

r2 + a2
i2)
]
ñ2 − γs2 J̃2(a2

r2 + a2
i2 − 1) (12)

+
γs2γp2

γc2
J̃2(a2

r2 + a2
i2)(a2

r2 + a2
i2 − 1).

Here ξs
12 = η12|A01|/γc2|A02| and ξs

21 = η21|A02|/γc1|A01| represent the strength of cou-
pling from LD1 to LD2 and from LD2 to LD1, respectively. A superscript s is used for
both symbols to distinguish the coupling strength defined here from the one defined in
the experimental study presented in Section 3. The normalized bias level is described
by J̃j = (Jj/edj − γsjNj)/γsjNj. The phase factor ω02τj is set to zero throughout the numer-
ical calculation in order to simplify the study. The normalized Langevin noise-source
parameters Farj = Frj/|A0j| and Faij = Fij/|A0j| describe the real and imaginary parts of the
normalized spontaneous emission parameters, respectively, and are characterized by a
spontaneous emission rate as [31]:

〈
Farj(t)Farj(t

′)
〉
=
〈

Faij(t)Faij(t
′)
〉
=

Rspj

2|A0j|2
δ(t − t′) (13)

〈
Farj(t)Faij(t

′)
〉
=
〈

Faij(t)Farj(t
′)
〉
= 0 (14)

where Rspj represents the fraction of the spontaneous emission noise into the laser mode.
The values of the intrinsic laser parameters used for the numerical calculation here,

which are experimentally measured using the four-wave mixing method [32], are shown in
Table 1. Throughout the numerical calculation, the intrinsic laser parameters of LD1 and
LD2 are set identical in order to simplify the study. Under this condition, the relaxation
resonance frequency of either free-running laser is 10.25 GHz. A second-order Runge–Kutta
method with the measured laser parameters is used to solve Equations (7)–(12). Throughout
the numerical study, a time duration of about 0.47 ps is used for one integration step, and a
time duration of 1 µs is adopted for complete integration.

2.2. Dynamics Behaviors under Symmetric Coupling Strength

For the purpose of comparison, the dynamical behavior of the mutually delay-coupled
laser system is first investigated when the coupling strength is symmetric, i.e., ξs

12 = ξs
21,

in this subsection. To obtain a global understanding of how the laser system behaves at a
fixed coupling delay time of 40.15 ns under study, maps of dynamical states as a function
of ξs

12 and fi for LD1 and LD2 are presented in Figure 1a and 1b, respectively. Regions
of mutual injection locking, P1 dynamics, P2 dynamics, and chaos are marked by red,
yellow, blue, and black, respectively. Periodic dynamics with periods higher than two are
included in the regions of chaos. Comparing Figure 1a with Figure 1b demonstrates that the
dynamical behaviors of both lasers are generally identical over the range of ξs

12 and fi under
study when the coupling strength is symmetric. In addition, each different dynamical
state generally appears symmetrically with respect to fi = 0. The mutual injection locking
states emerge at weak coupling strength and small frequency detuning. The P1 dynamical
states appear when ξs

12 is smaller than 0.044 over the range of fi under study. The chaotic
states start to emerge when ξs

12 is greater than 0.007. Note that the coupling delay time,
40.15 ns, is chosen here according to the one used in the experimental setup described in
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Section 3 so that fair comparisons can be made between numerical and experimental results
demonstrated in Section 3.

Table 1. The values of laser parameters used in the numerical calculation.

Parameter Symbol Value

Linewidth enhancement factor b1, b2 3
Normalized bias level J̃1, J̃2 1.222
Coupling delay time τ1, τ2 40.15 ns
Cavity decay rate γc1, γc2 5.36 × 1011 s−1

Spontaneous carrier relaxation rate γs1, γs2 5.96 × 109 s−1

Differential carrier relaxation rate γn1, γn2 7.53 × 109 s−1

Nonlinear carrier relaxation rate γp1, γp2 1.91 × 1011 s−1

Spontaneous emission rate Rsp1, Rsp2 4.7× 1018 V2m−1s−1 [31]

Figure 2 shows the typical optical spectrum, microwave spectrum, and temporal
evolution for each different dynamical state of LD1 (red curve) and LD2 (black curve)
presented in Figure 1. Note that the frequency axes of all the optical spectra shown in this
study are relative to the free-running oscillation frequency of LD2. As Figure 2(a-i) shows,
where (ξs

12, fi) = (0.009, −2.9 GHz), both LD1 and LD2 oscillate at the same offset frequency
of −1.52 GHz, indicating that mutual injection locking is established between the two lasers.
Two relaxation resonance sidebands appear 10 GHz away from the principal oscillation
with the lower one being slightly stronger due to the positive value of b. As Figure 2(b-i)
presents, photodetection of the optical signal generates a spectral component at 10 GHz
due to the relaxation resonance and a small bump around 0 GHz. The bump actually
consists of several spectral components that are equally separated by 12.45 MHz, as the
inset shows. The frequency separation corresponds to the loop frequency of the round-trip
delay coupling between the two lasers, i.e., the reciprocal of the summation of the two
coupling delay times. The appearance of such loop modes is a typical feature of a delay-
coupled system because an additional resonance condition given by the round-trip delay
coupling is required for the system to satisfy. As Figure 2(c-i) shows, the intensity of both
lasers is constant over time yet with an extremely weak modulation at the loop frequency,
12.45 MHz, which can be hardly observed with bare eyes. Note that the intensity value
shown in the figures of this section is calculated by removing the direct-current component
of each signal. As Figure 2(c-i) also presents, the temporal evolution of the intensity is
identical between the two lasers. In fact, LD1 leads LD2 by about 40.15 ns (i.e., the coupling
delay time) in Figure 2(c-i) where the temporal evolution of the LD1 intensity is shifted by
about 40.15 ns for easy comparison.

As Figure 2(a-ii) shows, where (ξs
12, fi) = (0.011, −20 GHz), either LD1 or LD2 oscillates

at a frequency that is slightly red-shifted from its free-running oscillation frequency due
to the injection pushing effect [33]. Moreover, oscillation sidebands appear around the
principal oscillation of each laser, which are equally separated by an oscillation frequency
of f0 = 20.06 GHz. Such a spectral feature is a typical signature of the P1 dynamics.
This generates a microwave at f0 = 20.06 GHz and its harmonics after photodetection,
as illustrated in Figure 2(b-ii), which is highly advantageous for high-frequency microwave
generation [34–38]. Due to the round-trip delay coupling, there also appears a small
bump around 0 GHz, which consists of several spectral components equally separated by
12.45 MHz, as those shown in the inset of Figure 2(b-i). Similar closely-spaced spectral
components also appear on top of each P1 spectral component shown in Figure 2(b-ii).
As Figure 2(c-ii) shows, the intensity of either laser oscillates sinusoidally with a single
period equal to the reciprocal of f0 = 20.06 GHz. The sinusoidal intensity oscillation of
either laser is, in fact, extremely weakly modulated at the loop frequency, 12.45 MHz,
which can be hardly observed with bare eyes. As Figure 2(c-ii) also presents, the temporal
evolution of the intensity oscillation is identical between the two lasers yet with LD1 leading
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LD2 by about 40.15 ns, corresponding to the coupling delay time. For easy comparison,
the temporal evolution of the LD1 intensity is shifted by about 40.15 ns in Figure 2(c-ii).

Figure 1. Maps of dynamical states for (a) LD1 and (b) LD2, respectively, in the mutually-coupled
laser system when ξs

12 = ξs
21. Regions of mutual injection locking, P1 dynamics, P2 dynamics,

and chaos are marked by red, yellow, blue, and black, respectively.

Figure 2. (a) Optical spectra, (b) microwave spectra, and (c) temporal evolutions of LD1 (red curve)
and LD2 (black curve) for (i) mutual injection locking at (ξs

12, fi) = (0.009, −2.9 GHz), (ii) P1 dynamics
at (ξs

12, fi) = (0.011, −20 GHz), (iii) P2 dynamics at (ξs
12, fi) = (0.02, −20 GHz), and (iv) chaos at (ξs

12,
fi) = (0.05, −20 GHz). The inset of (b-i) shows the enlargement of the microwave spectrum for LD2
around 0 GHz. The x-axes in (a) are relative to the free-running oscillation frequency of LD2. The red
curves in (a,b) are up-shifted by 100 dB for clear visibility.

By increasing the coupling strength so that (ξs
12, fi) = (0.02, −20 GHz), as Figure 2(a-iii)

shows, while the spectral components observed in Figure 2(a-ii) for either laser are simi-
larly kept with a slight increase in their frequency separation, leading to f0 = 20.21 GHz,
subharmonics emerge in the midway between the spectral components. Such a spectral

78



Photonics 2022, 9, 28

feature is a typical signature of the P2 dynamics. The beating between the spectral com-
ponents at the photodetector not only gives rise to a microwave at f0 = 20.21 GHz and its
harmonics, but also leads to subharmonics at the midway between the spectral components,
as Figure 2(b-iii) shows. Due to the round-trip delay coupling, there also appears a small
bump around 0 GHz, which consists of several spectral components equally separated by
12.45 MHz, as those shown in the inset of Figure 2(b-i). Similar closely-spaced spectral
components also appear on top of each P2 spectral component shown in Figure 2(b-iii).
As Figure 2(c-iii) shows, not only does the intensity of either laser oscillate sinusoidally
with a period equal to the reciprocal of f0 = 20.21 GHz, but the intensity oscillation is also
moderately modulated with a period equal to two times the reciprocal of f0 = 20.21 GHz.
Such a moderately modulated intensity oscillation is also extremely weakly modulated at
the loop frequency, 12.45 MHz, which can be hardly observed with bare eyes. As Figure 2(c-
iii) also presents, the temporal evolution of the moderately modulated intensity oscillation
is almost identical between the two lasers. In fact, LD1 leads LD2 by about 40.15 ns (i.e.,
the coupling delay time) in Figure 2(c-iii) where the temporal evolution of the LD1 intensity
is shifted by about 40.15 ns for easy comparison.

By continuing to increase the coupling strength so that (ξs
12, fi) = (0.05, −20 GHz),

as Figure 2(a-iv) shows, a broad and continuous spectral distribution appears for either laser,
which is a typical signature of chaos. After photodetection, as Figure 2(b-iv) presents, such
a spectral feature generates a broadband chaotic microwave with a spectral distribution of
more than 40 GHz, which is highly advantageous for chaos-based applications, such as high-
resolution chaotic radars [39–42], high-speed chaotic communication [43–46], and high-
entropy random number generation [47–50]. Owing to the round-trip delay coupling,
spectral components that are equally separated by 12.45 MHz, as those shown in the
inset of Figure 2(b-i) yet with much weaker intensity, also emerge on top of the spectral
distribution in Figure 2(b-iv). As Figure 2(c-iv) shows, the intensity of both lasers oscillates
irregularly, and is extremely weakly modulated at the loop frequency, 12.45 MHz, which can
be hardly be observed with bare eyes. The temporal evolution of the intensity oscillation is
similar between the two lasers with LD1 leading LD2 by about 40.15 ns, corresponding to
the coupling delay time. For easy comparison, the temporal evolution of the LD1 intensity
is shifted by about 40.15 ns in Figure 2(c-iv).

As observed from Figure 2(a-ii) to Figure 2(a-iv), the laser system follows a period-
doubling route to chaos as ξs

12 increases at fi = −20 GHz. A similar route is also found
when fi falls between −24 GHz and −13 GHz and between 15 GHz and 26 GHz, as Figure 1
presents. The results obtained in either Figure 1 or Figure 2 conclude that the dynamical
behaviors of both lasers are, in general, symmetric when the coupling strength is symmetric,
which agrees with the observations in prior studies [23–25].

2.3. Dynamics Behaviors under Asymmetric Coupling Strength

In the following analyses, to investigate how the two lasers react when the coupling
strength becomes asymmetric, the strength of the coupling from LD2 to LD1 is fixed at
ξs

21 = 0.01 and 0.001, respectively, while the strength of the coupling from LD1 to LD2 is
varied from ξs

12 = 0 to 0.06. As noted, while ξs
21 = 0.01 is about the same order of magnitude

as ξs
12, ξs

21 = 0.001 is about an order of magnitude smaller than ξs
12. Maps of dynamical states

as a function of ξs
12 and fi for LD1 and LD2 when ξs

21 = 0.01 are presented in Figure 3(a-i)
and 3(b-i), respectively, at a fixed coupling delay time of 40.15 ns. Note that periodic
dynamics with periods higher than two are included in the regions of chaos. Comparing
Figure 3(a-i) and Figure 3(b-i) with Figure 1 shows that, while the regions of chaos suppress
moderately, the regions of mutual injection locking and P1 dynamics expand moderately.
The spectral features of different nonlinear dynamical states in Figure 3(a-i) and Figure 3(b-i)
are closely similar to those presented in Figure 2. Comparing Figure 3(a-i) with Figure 3(b-i)
demonstrates that the dynamical behaviors of the two lasers are generally symmetric at the
extent of the coupling strength asymmetry under study here.
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Figure 3. Maps of dynamical states for (a) LD1 and (b) LD2, respectively, in the mutually coupled
laser system when (i) ξs

21 = 0.01 and (ii) ξs
21 = 0.001. Regions of mutual injection locking, P1 dynamics,

P2 dynamics, and chaos are marked by red, yellow, blue, and black, respectively.

Such dynamical behavior symmetry is, however, not guaranteed if the extent of the
coupling strength asymmetry increases, as Figure 3(a-ii) and Figure 3(b-ii) demonstrate,
where ξs

21 is reduced from 0.01 to 0.001. While the dynamical behaviors of the two lasers
are symmetric over most of the operating conditions considered here, asymmetry happens
over a region where ξs

12 falls between 0.034 and 0.06 and fi is between 11 GHz and 22 GHz,
a region where ξs

12 falls between 0.03 and 0.055 and fi is between 7 GHz and 10 GHz, and a
region where ξs

12 falls between 0.018 and 0.06 and fi is between −25 GHz and −12 GHz.
Comparing Figure 3(a-ii) and Figure 3(b-ii) with Figure 3(a-i) and Figure 3(b-i) shows that,
as ξs

21 is reduced, the regions of mutual injection locking and P1 dynamics continue to
expand and thus become dominant, while the regions of chaos continues to suppress.

To investigate how the dynamical behaviors of both lasers evolve from symmetry
to asymmetry when ξs

21 = 0.001, a development of optical spectra, microwave spectra,
and temporal evolutions for LD1 (red curve) and LD2 (black curve) is presented in Figure 4
when ξs

12 is adjusted and fi is fixed at 9 GHz. At ξs
12 = 0.0019, either LD1 or LD2 behaves as

a P1 dynamical state with an oscillation frequency of about 9 GHz, as either Figure 4(a-i),
Figure 4(b-i), or Figure 4(c-i) presents. The temporal evolution of the intensity oscillation is
identical between the two lasers yet with LD1 lagging LD2 by about 40.15 ns, as Figure 4(c-i)
shows where the temporal evolution of the LD2 intensity is shifted by about 40.15 ns.
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Figure 4. (a) Optical spectra, (b) microwave spectra, and (c) temporal evolutions of LD1 (red
curve) and LD2 (black curve) for (i) ξs

12 = 0.0019, (ii) ξs
12 = 0.006, (iii) ξs

12 = 0.028, (iv) ξs
12 = 0.048,

and (v) ξs
12 = 0.055, respectively, when ξs

21 = 0.001 and fi = 9 GHz. The x-axes in (a) are relative to
the free-running oscillation frequency of LD2. The red curves in (a,b) are up-shifted by 100 dB for
clear visibility.

As ξs
12 is increased to 0.006, either LD1 or LD2 still behaves as a P1 dynamical state

yet with an oscillation frequency of about 8.87 GHz, as either Figure 4(a-ii), Figure 4(b-ii),
or Figure 4(c-ii) presents. The temporal evolution of the intensity oscillation is identical
between the two lasers yet with LD1 lagging LD2 by about 40.15 ns, as Figure 4(c-ii) presents
where the temporal evolution of the LD2 intensity is shifted by about 40.15 ns. While the
microwave spectral features and temporal evolutions between the two lasers look highly
similar in Figure 4(b-ii) and Figure 4(c-ii), respectively, a slight deviation exists in their
optical spectral features in Figure 4(a-ii). Not only a few more spectral components appear
in LD2, but also the principal oscillation becomes less dominant, making the optical spectral
profile of LD2 more widely distributed. This implies that the two lasers start to behave
differently in a subtle manner even though they both behave as a P1 dynamical state. Such
a deviation becomes more significant when ξs

12 is further increased to 0.028, as Figure 4(a-iii)
shows. Both lasers now evolve into a P2 dynamical state, as more evidently observed in
Figure 4(b-iii) where subharmonics emerge in the midway of spectral components at the
integral multiples of 11.29 GHz, and also in Figure 4(c-iii) where an intensity oscillation
with a period equal to the reciprocal of 11.29 GHz is moderately modulated with a period
equal to two times the reciprocal of 11.29 GHz. As noted, the temporal evolution of the
moderately modulated intensity oscillation becomes moderately dissimilar between the
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two lasers with LD1 leading LD2 by about 40.15 ns, as Figure 4(c-iii) presents where the
temporal evolution of the LD1 intensity is shifted by about 40.15 ns.

As ξs
12 continues to increase to 0.048, the optical spectra, microwave spectra, and tem-

poral evolutions of both lasers shown in Figure 4(a-iv), Figure 4(b-iv), and Figure 4(c-iv), re-
spectively, exhibit completely different features and profiles. On one hand, as Figure 4(a-iv)
shows, LD1 oscillates at an offset frequency of 9 GHz that is surrounded by two low-
intensity spectral components about 11 GHz away. The two low-intensity components
result from the modified relaxation resonance of LD1 due to the optical injection from LD2.
Such a modification leads to the enhancement of the relaxation resonance frequency, which
is more clearly identified in Figure 4(b-iv) where the microwave spectrum peaks at around
11 GHz. This indicates that LD1 now emits a continuous-wave optical output with a slightly
higher relaxation resonance frequency as compared with its free-running condition, which
is verified by Figure 4(c-iv) where the LD1 intensity remains constant over time. On the
other hand, as either Figure 4(a-iv) or Figure 4(b-iv) shows, a broad and continuous spectral
distribution is observed for LD2, indicating that LD2 now behaves as a chaotic state, which
is verified by Figure 4(c-iv) where the LD2 intensity oscillates irregularly.

By further increasing ξs
12 to 0.055, either LD1 or LD2 behaves as a P1 dynamical state

with an oscillation frequency of about 12.28 GHz, as either Figure 4(a-v), Figure 4(b-v),
or Figure 4(c-v) presents. While the microwave spectral features and temporal evolutions
of both lasers look highly similar in Figure 4(b-v) and Figure 4(c-v), a distinct deviation
exists in their optical spectral features in Figure 4(a-v). Not only do a few more spectral
components emerge in LD2, but the principal oscillation also becomes less dominant,
making the optical spectral profile of LD2 more widely distributed. This implies that the
two lasers behave differently in a subtle manner even though they both behave as a P1
dynamical state.

The extremest case for the dynamical behavior asymmetry happens when ξs
21 = 0.

This indicates that no optical injection is introduced from LD2 to LD1 and the laser system
therefore work as a unidirectional optical injection system. Under such an operating
condition, the distribution of dynamical states as a function of ξs

12 and fi for LD2 is greatly
similar to the one presented in Figure 3(b-ii), while LD1 is kept at its free-running operation
and thus emits a continuous-wave optical output no matter how ξs

12 and fi are adjusted.
The results shown in Figures 1–4 indicate that the dynamical behavior of the laser

system could change when the coupling strength becomes asymmetric. This suggests
that if a specific dynamical behavior is used for applications where a difference in the
coupling strength between the two lasers is likely to happen in order to achieve certain
features or functionalities, care must be taken so that the laser system is operated at the
same dynamical behavior even when the coupling strength becomes asymmetric during
operation. In addition, the results also demonstrate that the dynamical behaviors of
the two lasers could become asymmetric when the coupling strength becomes highly
asymmetric. This suggests that if both lasers are expected to simultaneously operate at a
specific dynamical behavior all the time for applications, care must be taken either to avoid
the operation of the laser system with highly asymmetric coupling strength, or to avoid
the operation of the laser system over regions where symmetry breaking in the dynamical
behavior happens.

3. Experimental Observation

In the previous section, the dynamical behaviors of two mutually delay-coupled
semiconductor lasers are numerically investigated when their coupling strength becomes
asymmetric. Slight to moderate asymmetry in the coupling strength moderately changes
their dynamical behaviors from the ones when the coupling strength is symmetric, but does
not break the symmetry of their dynamical behaviors and spectral features. High asymme-
try in the coupling strength, however, not only strongly changes their dynamical behaviors
from the ones when the coupling strength is symmetric, but also breaks the symmetry of
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their dynamical behaviors and spectral features. In this section, an experimental study is
carried out to verify the numerical predictions.

3.1. Experimental Setup

A schematic diagram of a mutually long-delay-coupled laser system consisting of
two single-mode distributed feedback semiconductor lasers, LD1 (Furukawa FRL15DCW5-
A81) and LD2 (Furukawa FRL15DCW5-A81), is presented in Figure 5a. The two lasers
are mutually coupled by optical injection from one to the other through an optical circu-
lator in each optical injection route, as the blue or red path indicates. For LD2, its bias
current and temperature are fixed at 70 mA and 18.9 ◦C, respectively, throughout the
study. This results in a free-running oscillation frequency of 193.28 THz, an output power
of 15.48 mW, and a relaxation resonance frequency of 10 GHz. For LD1, while its bias
current is fixed at 70 mA throughout the study, its temperature is slightly adjusted around
25.57 ◦C in order to detune its free-running oscillation frequency away from 193.28 THz
(i.e., the free-running oscillation frequency of LD2) by fi for the excitation of possible
dynamical behaviors. The free-running LD1 therefore emits an output power varying
slightly around 13.43 mW, depending on the temperature adjustment, with a relaxation
resonance frequency of 10 GHz. A variable optical attenuator in each optical injection
route adjusts the power of the optical injection (i.e., the coupling strength) from one laser
to the other. For the experimental analysis, the coupling strength received by LD2, ξe

12, is
defined as the square root of the power ratio between the optical injection from LD1 and the
free-running LD2. Similarly, the coupling strength received by LD1, ξe

21, is defined as the
square root of the power ratio between the optical injection from LD2 and the free-running
LD1. Note that a superscript e is used for both symbols to distinguish the coupling strength
defined here from the one defined in the numerical investigation presented in Section 2.
These definitions differ by a factor of η12/γc2 for coupling from LD1 to LD2 and η21/γc1
for coupling from LD2 to LD1, respectively. According to the values of η12, η21, γc1, and γc2
used in the simulation of this study, as previously indicated, the coupling strength defined
in the experimental study is about an order of magnitude larger than that defined in the
numerical investigation for a given ratio between the fields of the optical injection and
the injected laser. Polarization maintaining fibers are used for all the optical devices and
components to keep the polarization states of both lasers unchanged. Both optical injection
routes have approximately the same fixed length, which corresponds to a coupling delay
time of about 40.15 ns from one laser to the other. Such a delay time is longer than the
relaxation resonance period of either laser used here. To investigate the spectral features
of LD1 and LD2 outputs, respectively, one output port of each fiber coupler in Figure 5a
is connected to a detection system consisting of an optical spectrum analyzer (Advantest
Q8384) and a microwave spectrum analyzer (Keysight PXAN9030A) following a 50-GHz
photodetector (u2t Photonics XPDV2120R), as shown in Figure 5b.

Figure 5. Schematic diagram of (a) a mutually delay-coupled laser system and (b) a detection
system. LD1, laser diode 1; LD2, laser diode 2; FC, fiber coupler; C, circulator; VOA, variable optical
attenuator; PD, photodetector; OSA, optical spectrum analyzer; and MSA, microwave spectrum
analyzer.
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3.2. Dynamical Behaviors under Symmetric Coupling Strength

The dynamical behavior of the mutually delay-coupled laser system is first studied
when the coupling strength is symmetric, i.e., ξe

12 = ξe
21, in this subsection. To obtain a global

understanding of how the laser system behaves at a fixed coupling delay time of 40.15 ns
under consideration, maps of dynamical states as a function of ξe

12 and fi for LD1 and LD2
are presented in Figure 6a and 6b, respectively. Regions of mutual injection locking, P1
dynamics, P2 dynamics, and chaos are marked by red, yellow, blue, and black, respectively.
Periodic dynamics with periods higher than two are included in the regions of chaos.
Comparing Figure 6a with Figure 6b demonstrates that the dynamical behaviors of both
lasers are generally identical over the range of ξe

12 and fi under study when the coupling
strength is symmetric. This experimental observation is consistent with the numerical
prediction presented in Figure 1. Except for the P2 dynamical states that only appear over
a small region where fi falls between −26 GHz and −14 GHz, other nonlinear dynamical
states generally appear symmetrically with respect to fi = 0. The mutual injection locking
states emerge at weak coupling strength and small frequency detuning. The P1 dynamical
states appear when ξe

12 is smaller than 0.21 over the range of fi under study. The chaotic
states start to emerge when ξe

12 is greater than 0.1. Comparing Figure 6 with Figure 1 shows
that, except for the P2 dynamical states that appear over a region where fi falls between
15 GHz and 26 GHz only in the numerical result, the distribution of different dynamical
states as a function of ξs

12 and fi is highly similar. For example, the mutual injection locking
states appear when ξe

12 is smaller than 0.125 in Figure 6 and when ξs
12 is smaller than 0.012

in Figure 1, while the chaotic states start to emerge when ξe
12 is greater than 0.1 in Figure 6

and when ξs
12 is greater than 0.007 in Figure 1. Considering that ξe

12 is by definition about
an order of magnitude larger than ξs

12, these results demonstrate that the numerical model
used here reproduces the experimental observations not only qualitatively to a high extent
but also quantitatively to a moderate extent.

Figure 6. Maps of dynamical states for (a) LD1 and (b) LD2, respectively, in the mutually coupled laser
system when ξe

12 = ξe
21. Regions of mutual injection locking, P1 dynamics, P2 dynamics, and chaos

are marked by red, yellow, blue, and black, respectively.

Figure 7 shows the typical optical and microwave spectra for each different dynamical
state of LD1 (red curve) and LD2 (black curve) presented in Figure 6. Note that the
frequency axes of all the optical spectra shown in this study are relative to the free-running
oscillation frequency of LD2. As Figure 7(a-i) shows, where (ξe

12, fi) = (0.06, −5 GHz),
both LD1 and LD2 oscillate at the same offset frequency of −2.84 GHz, indicating that
mutual injection locking is established between the two lasers. Photodetection of such
an optical signal only generates a small bump around 0 GHz, as Figure 7(b-i) presents.
The bump actually consists of several spectral components that are equally separated by
12.45 MHz, as the inset shows, which corresponds to the loop frequency of the round-trip
delay coupling between the two lasers. The loop modes are not observed in Figure 7(a-i)
due to the limited resolution, about 0.01 nm at the wavelength of 1550 nm, of the optical
spectrum analyzer used in this study.
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Figure 7. (a) Optical spectra and (b) microwave spectra of LD1 (red curve) and LD2 (black curve) for
(i) mutual injection locking at (ξe

12, fi) = (0.06, −5 GHz), (ii) P1 dynamics at (ξe
12, fi) = (0.1, −20 GHz),

(iii) P2 dynamics at (ξe
12, fi) = (0.15, −20 GHz), and (iv) chaos at (ξe

12, fi) = (0.28, −20 GHz). The inset
of (b-i) shows the enlargement of the microwave spectrum for LD2 around 0 GHz. The x-axes in
(a) are relative to the free-running oscillation frequency of LD2. The red curves in (a,b) are up-shifted
by 100 dB for clear visibility. The gray curves in (b-iv) show the noise floor of the laser system.

As Figure 7(a-ii) shows, where (ξe
12, fi) = (0.1, −20 GHz), either LD1 or LD2 oscillates

at a frequency that is slightly red-shifted from its free-running oscillation frequency. In ad-
dition, oscillation sidebands emerge around the principal oscillation of each laser, which
are equally separated by an oscillation frequency of f0 = 20.8 GHz. Such a spectral feature
is a typical signature of the P1 dynamics. Photodetection of the optical signal generates a
microwave at f0 = 20.8 GHz and its harmonics, as illustrated in Figure 7(b-ii). Due to the
round-trip delay coupling, there also appears a small bump around 0 GHz, which consists
of several spectral components equally separated by 12.45 MHz, as those shown in the
inset of Figure 7(b-i). Similar closely-spaced spectral components also appear on top of
each P1 spectral component shown in Figure 7(b-ii).

By increasing the coupling strength so that (ξe
12, fi) = (0.15, −20 GHz), as Figure 7(a-iii)

shows, while the spectral components observed in Figure 7(a-ii) for either laser are similarly
kept with a slight increase in their frequency separation, leading to f0 = 21.5 GHz, subhar-
monics emerge in the midway between the spectral components. Such a spectral feature is
a typical signature of the P2 dynamics. The beating between the spectral components at
the photodetector not only gives rise to a microwave at f0 = 21.5 GHz and its harmonics,
but also leads to subharmonics at the midway between the spectral components, as Fig-
ure 7(b-iii) shows. As observed, due to the round-trip delay coupling, there also appears a
small bump around 0 GHz, which consists of several spectral components equally separated
by 12.45 MHz, as those shown in the inset of Figure 7(b-i). Similar closely-spaced spectral
components also appear on top of each P2 spectral component shown in Figure 7(b-iii).
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By continuing to increase the coupling strength so that (ξe
12, fi) = (0.28, −20 GHz),

as Figure 7(a-iv) shows, a broad and continuous spectral distribution appears for either laser,
which is a typical signature of chaos. After photodetection, as Figure 7(b-iv) presents, such
a spectral feature generates a broadband chaotic microwave with a spectral distribution
of more than 40 GHz. Due to the round-trip delay coupling, spectral components that are
equally separated by 12.45 MHz, as those shown in the inset of Figure 7(b-i) yet with much
weaker intensity, also emerge on top of the spectral distribution in Figure 7(b-iv).

As noted from Figure 7(a-ii) to Figure 7(a-iv), the laser system follows a period-
doubling route to chaos as ξe

12 increases at fi = −20 GHz, which agrees with the numerical
prediction shown in Figure 2. A similar route is also found when fi falls between −26 GHz
and −14 GHz, as demonstrated in Figure 7. The observations found in either Figure 6
or Figure 7 conclude that the dynamical behaviors of both lasers are, in general, symmet-
ric when the coupling strength is symmetric, which verifies the numerical predictions
demonstrated in either Figure 1 or Figure 2.

3.3. Dynamics Behaviors under Asymmetric Coupling Strength

To study how the two lasers respond when the coupling strength becomes asymmetric,
the strength of the coupling from LD2 to LD1 is fixed at ξe

21 = 0.01, while the strength of the
coupling from LD1 to LD2 is varied from ξe

12 = 0 to 0.3. Note that ξe
21 = 0.01 is an order of

magnitude smaller than ξe
12, and is so chosen that the dynamical behavior asymmetry could

happen based on the numerical prediction found in Section 2.3. Maps of dynamical states
as a function of ξe

12 and fi for LD1 and LD2 are presented in Figure 8a and 8b, respectively,
at a fixed coupling delay time of 40.15 ns. Note that periodic dynamics with periods higher
than two are included in the regions of chaos. Comparing Figure 8 with Figure 6 shows that,
while the regions of chaos shrink dramatically, the regions of mutual injection locking and
P1 dynamics largely expand and become dominant. Comparing Figure 8a with Figure 8b
demonstrates that, while the dynamical behaviors of the two lasers are symmetric over
most of the operating conditions considered here, asymmetry breaking happens mainly
over a region where ξe

12 falls between 0.17 and 0.24 and fi is around 10 GHz and mildly over
a region where ξe

12 is around 0.16 and fi is around −20 GHz. Compared with Figure 3(a-ii)
and Figure 3(b-ii), the experimental observations on the distribution of different dynamical
states greatly agree with the numerical predictions, except for the P2 dynamical states
appearing on the right-upper corner of Figure 3.

Figure 8. Maps of dynamical states for (a) LD1 and (b) LD2, respectively, in the mutually coupled
laser system when ξe

21 = 0.01. Regions of mutual injection locking, P1 dynamics, P2 dynamics,
and chaos are marked by red, yellow, blue, and black, respectively.

To study how the dynamical behaviors of both lasers develop from symmetry to
asymmetry when ξe

21 = 0.01, a progression of optical and microwave spectra for LD1 (red
curve) and LD2 (black curve) is presented in Figure 9a and 9b, respectively, when ξe

12 is
adjusted and fi is fixed at 10 GHz. At ξe

12 = 0.019, either LD1 or LD2 behaves as a P1
dynamical state with an oscillation frequency of about 10 GHz, as either Figure 9(a-i) or
Figure 9(b-i) demonstrates. As ξe

12 is increased to 0.064, either LD1 or LD2 still behaves as a
P1 dynamical state yet with an oscillation frequency of about 9.4 GHz, as either Figure 9(a-
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ii) or Figure 9(b-ii) presents. While the microwave spectral features of both lasers look
highly similar in Figure 9(b-ii), a slight deviation exists in their optical spectral features in
Figure 9(a-ii). Not only do a few more spectral components emerge in LD2, but the principal
oscillation also becomes less dominant, making the optical spectral profile of LD2 more
widely distributed. This implies that the two lasers start to behave differently in a subtle
manner even though they both behave as a P1 dynamical state. Such a deviation becomes
more significant when ξe

12 is further increased to 0.151, as Figure 9(a-iii) shows. Both lasers
now evolve into a P2 dynamical state, as more evidently observed in Figure 9(b-iii), where
subharmonics emerge in the midway of spectral components at the integral multiples of
11.9 GHz.

As ξe
12 is continued to increase to 0.213, both optical and microwave spectra of the two

lasers shown in Figure 9(a-iv,b-iv) exhibit completely different spectral features. On one
hand, as Figure 9(a-iv) presents, LD1 oscillates at an offset frequency of 9.47 GHz that is
surrounded by two low-intensity spectral components about 11.7 GHz away. The two
low-intensity components result from the modified relaxation resonance of LD1 due to the
optical injection from LD2, which is more clearly identified in Figure 9(b-iv) where a small
bump appears at around 11.7 GHz. This indicates that LD1 now emits a continuous-wave
optical output with a slightly higher relaxation resonance frequency as compared with
its free-running condition. On the other hand, as either Figure 9(a-iv) or Figure 9(b-iv)
shows, a broad and continuous spectral distribution is observed for LD2, indicating that
LD2 now behaves as a chaotic state. By further increasing ξe

12 to 0.3, either LD1 or LD2
behaves as a P1 dynamical state with an oscillation frequency of about 16 GHz, as either
Figure 9(a-v) or Figure 9(b-v) demonstrates. While the microwave spectral features of both
lasers look similar in Figure 9(b-v), a slight deviation exists in their optical spectral features
in Figure 9(a-v). Not only do a few more spectral components emerge in LD2, but the
principal oscillation also becomes less dominant, making the optical spectral profile of LD2
more widely distributed. This implies that the two lasers behave differently in a subtle
manner even though they both behave as a P1 dynamical state. Comparing Figure 9 with
Figure 4 demonstrates that the experimental observations on the evolution of the dynamical
behaviors from symmetry to asymmetry agree well with the numerical predictions.

The extremest case for the dynamical behavior asymmetry happens when no optical
injection is introduced from LD2 to LD1, i.e., ξe

21 = 0. Under such an operating condition,
the distribution of dynamical states as a function of ξe

12 and fi for LD2 is greatly similar to
the one presented in Figure 8b, while LD1 is kept at its free-running operation and thus
emits a continuous-wave optical output no matter how ξe

12 and fi are adjusted.
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Figure 9. (a) Optical spectra and (b) microwave spectra of LD1 (red curve) and LD2 (black curve) for
(i) ξe

12 = 0.019, (ii) ξe
12 = 0.064, (iii) ξe

12 = 0.151, (iv) ξe
12 = 0.213, and (v) ξe

12 = 0.3, respectively, when
ξe

21 = 0.01 and fi = 10 GHz. The x-axes in (a) are relative to the free-running oscillation frequency of
LD2. The red curves in (a,b) are up-shifted by 100 dB for clear visibility. The gray curves in (b-iv)
show the noise floor of the laser system.

4. Conclusions

This study experimentally and numerically investigates the effects of asymmetric
coupling strength on nonlinear dynamics of two mutually coupled semiconductor lasers
with a delay time longer than the relaxation resonance period of either laser at free running.
Symmetry in the coupling strength of the two lasers, in general, symmetrizes their dynami-
cal behaviors and the corresponding spectral features. Slight to moderate asymmetry in
the coupling strength moderately changes their dynamical behaviors from the ones when
the coupling strength is symmetric, but does not break the symmetry of their dynamical
behaviors and the corresponding spectral features. The former suggests that if a specific
dynamical behavior is used for applications where a difference in the coupling strength
between the two lasers is likely to happen in order to achieve certain features or functionali-
ties, care must be taken so that the laser system is operated at the same dynamical behavior
even when the coupling strength becomes asymmetric during operation. High asymmetry
in the coupling strength not only strongly changes their dynamical behaviors from the ones
when the coupling strength is symmetric, but also breaks the symmetry of their dynamical
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behaviors and the corresponding spectral features. This suggests that if both lasers are
expected to simultaneously operate at a specific dynamical behavior all the time for appli-
cations, care must be taken either to avoid the operation of the laser system with highly
asymmetric coupling strength, or to avoid the operation of the laser system over regions
where symmetry breaking in the dynamical behavior happens. Evolution of the dynamical
behaviors from symmetry to asymmetry between the two lasers is observed. The numerical
model used here reproduces the experimental observations not only qualitatively to a high
extent but also quantitatively to a moderate extent.
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Abstract: Optical injection is a key nonlinear laser configuration both for applications and funda-
mental studies. An important figure for understanding the optically injected laser system is the
two parameter stability mapping of the dynamics found by examining the output of the injected
laser under different combinations of the injection strength and detuning. We experimentally and
theoretically generate this map for an optically injected quantum dot laser, biased to emit from the first
excited state and optically injected near the ground state. Regions of different dynamical behaviours
including phase-locking, excitability, and bursting regimes are identified. At the negatively detuned
locking boundary, ground state dropouts and excited state pulses are observed near a hysteresis cycle
for low injection strengths. Higher injection strengths reveal µs duration square wave trains where
the intensities of the ground state and excited state operate in antiphase. A narrow region of extremely
slow oscillations with periods of several tens of milliseconds is observed at the positively detuned
boundary. Two competing optothermal couplings are introduced and are shown to reproduce the
experimental results extremely well. In fact, the dynamics of the system are dominated by these
optothermal effects and their interplay is central to reproducing detailed features of the stability map.

Keywords: optical injection; quantum dot lasers; semiconductor lasers; excitability; nonlinear
dynamics; neuromorphic dynamics; chaos

1. Introduction

Optical injection is a key technique in many modern photonic systems and particularly
unidirectional optical injection, where light from a primary laser is injected into the cavity
of a secondary laser. It is used in high sensitivity signal sensing, to improve coherence of
high power lasers, for spectral density enhancement in optical communications, and for
arbitrary pulse shaping, among many other applications. Mapping the behaviour of an
optically injected laser over control parameter space is thus of central importance for many
applications. A stability map where one varies the injection level and the detuning (the
frequency of the primary laser minus that of the secondary laser) and generates a diagram
characterising the output of the injected device is one of the most effective tools in this
regard [1]. Stability maps can take several forms and can be as simple as displaying the
region where phase locking is obtained. Indeed, for many applications this is the most
important regime, and this simple map is all that is needed. On the other hand, optically
injected semiconductor lasers are also rich sources of fundamental non-linear dynamics,
and the stability map can also be used to classify regions of different behaviour including,
but not limited to, excitability, multistability, oscillatory behaviour, and chaos [1–3]. Such
regions can be of interest both for fundamental studies and for applications. For example,
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period 1 dynamics have been used for tunable microwave generation [4,5], chaotic dynamics
have attracted attention for random number generation [6], and the potential of excitability
for use in neuromorphic photonics has been highlighted in [7] and elsewhere. Thus, a
stability map detailing the different dynamical regimes is also of great importance. In [2]
an automated, efficient, and quick technique for creating such an experimental map is
presented. In [2] the device studied is a two frequency quantum well (QW) based device,
but the technique is applicable to any device type. In short, the injection power is swept
up and down at fixed values of the detuning. The output power is measured at regular
intervals using fast detectors and a fast, real-time oscilloscope. Calculating the mean and
standard deviation of the power then allows for easy discrimination of different regions in
parameter space and simultaneously allows for identification of hysteretic regions.

Rate equation modelling of the system has proven to be extremely accurate with
quantitative agreement between the maps produced experimentally and those arising from
the model. A particularly striking example of this agreement is shown in [1] for a single
frequency QW based laser. In this example, the map takes the form of a two parameter
(injection level and detuning) bifurcation diagram, identifying where qualitative changes
in the laser’s behaviour occur. Analytic studies can also be performed, such as those
in [3,8–10], and in particular, analytic expressions can be found for the two most important
bifurcations for the generation of phase locking, namely the saddle node bifurcation and
the Hopf bifurcation. In [11–13] numerical analyses of the Lyapunov exponents were
used to produce the stability maps. One can also perform numerical studies analogous
to the experimental technique to produce the mapping as shown in [2]. The superb
agreement between experiment and theory allows great trust to be placed in simulations
and predictions that arise from theory.

Optically injected InAs/GaAs based quantum dot (QD) lasers have attracted substan-
tial attention in recent years. They display many different dynamical regimes, including
several novel regimes heretofore unobserved with other devices, such as optothermal
excitability [14], and mixed mode oscillations and canard explosions [15,16]. In [3,9], the
stability map for a single mode QD laser is analysed both experimentally and analytically
with excellent qualitative agreement between the experimental and analytical figures. The
striking similarity to the Class A stability diagram [10] is also discussed. Microscopic rate
equation analysis has also been performed [17], again agreeing well with the experiment.
This model allows for a more accurate analysis of phase-amplitude coupling going beyond
the simplified constant α factor typically assumed. In [18], excellent agreement between
experimentally and numerically generated maps for multimode optically injected QD lasers
is demonstrated with the importance of including spatial hole-burning emphasised.

A unique characteristic of InAs/GaAs QD lasers is their ability to lase from multiple
different energy levels [19,20]. In particular they typically display ground state (GS)
emission close to 1300 nm and first excited state (ES) emission at approximately 1215 nm.
Each of these states has its own threshold and which state lases depends on many factors
including the optical losses and the pump current. A typical evolution as the pump current
is increased is presented in [21]. First, the GS threshold is reached, at which GS only light is
emitted. This is followed by the ES threshold, where the GS and ES emit simultaneously.
Further increasing the pump current typically results in a quenching of the GS emission after
which only the ES lases. However, in other cases—such as with short device lengths—there
may not be sufficient gain available in the GS to overcome the losses below the ES threshold.
Then, as the current is increased, the ES threshold can be reached without any lasing ever
being achieved from the GS. In this case, no emission from the GS is found at any pump
current. This is the case for the device investigated in this work.

This multi-state structure allows for unique dual state injection scenarios. In particular,
one can bias a QD device to emit from the ES only and then inject the device with light at
the GS frequency from an external laser. In this configuration, it has been shown that the ES
can be made to turn off and the GS to turn on, with the output phase locked to that of the
injecting primary laser [21]. This behaviour can be obtained regardless of whether the QD
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device can be made to emit from the GS while free-running. Several dynamical regimes
have been reported and analysed in this configuration, such as fast state switching [22],
all-optical gating [23], dual state excitability [24], and neuromorphic bursting [15], with
excellent agreement between experiment and theory.

We present a comprehensive combined experimental and theoretical analysis of the
stability map for an optically injected dual state QD device. As well as mapping out
previously discovered dynamical regions, we uncover new features such as slow oscillations
with a period of 10s of milliseconds near the positively unlocked boundary. Optothermal
effects are shown to play an important role in the system. Superb agreement is obtained
between experiment and theory. We also note a marked absence of chaos in the system.

2. Results

2.1. Experiment

The device under investigation is a 300 µm QD laser composed of InAs quantum
dots on a GaAs. It has the same epitaxial structure as the device used in [14,21] but is
significantly shorter (300 µm here compared to 600–900 µm in [14,21]). As a result, the
device under test here never lases from the GS when free-running, and instead, lases only
from the ES. It is pumped at 75 mA (1.3 times threshold at 20.5 ◦C). A schematic of the
experimental setup is shown in Figure 1. The device is mounted and placed on an xyz
stage. The primary laser (PL) is a commercial tunable laser source with minimum step size
of 0.1 pm (∼0.0178 GHz). Light from the PL is injected into the secondary laser (SL) — the
QD laser — via an optical circulator with an isolation greater than 30 dB. A polarisation
controller is used to set the polarisation of the injected light and maximise coupling. The
light from the SL enters the second port of the circulator and is directed to a filter where the
ES and GS are separated. The ES emission is sent directly to a 12 GHz detector connected
to a high speed, real-time oscilloscope. 10% of the GS power is sent to a power meter (PM)
to monitor alignment and 90% goes directly to another 12 GHz detector, again connected to
the oscilloscope.

Figure 1. Schematic experimental setup. SL is the secondary (QD) laser. PL is the tunable primary
laser. Light from the PL is is sent to a circulator and is then injected into the SL. A polarisation
controller (PC) is used to maximise coupling. Light from the SL is sent to the circulator and then to a
filter where the ES and GS light are separated. The ES light is sent directly to a 12 GHz detector and
the GS light goes to a 90/10 splitter. The 10% is sent to a power meter (PM) for alignment control,
and the 90% goes to another 12 GHz detector. Both detectors are connected to a high speed real-time
oscilloscope. Red lines are GS light; blue lines are ES light; purple lines contain both GS and ES light;
and black lines are high speed electrical cables.

Typically, one can define the experimental injection level as the ratio of the magnitude
of the electric field of the injected light to the magnitude of the electric field of the free
running laser. However, in this work, when the device is free-running, the GS is never
lasing and so this measurement cannot be used. Instead, we define injection strength as the
square root of the power of the PL reaching the facet of the SL normalised to the maximum

power of the PL reaching the facet of the SL in the experiment, K =
√

Pfacet

Pfacet
max

. Thus, the

maximum value of K is 1. Similarly, as the GS mode being injected is always subthreshold,
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the detuning is also difficult to define. We thus pragmatically define zero detuning to be
where the ES is at a minimum power after injection.

The experimental technique to build the stability maps is similar to that of [2], but here
we fix the detuning and vary the injection strength for each slice of our map. We record
and analyse 20 µs-long time series of both the GS and ES intensities at regular intervals.
Initially the frequency of the PL is set and the power of injected light reaching the facet of
the secondary laser from the PL is swept from 0.25 mW to 2.47 mW in 120 equal steps of
K. Then, a down sweep is performed where the power reaching the facet is swept from to
2.47 mW to 0.25 mW with the same 120 steps. The wavelength is then decreased in steps of
0.2 pm (∼0.0356 GHz) and the power sweeps are repeated after each step.

2.1.1. Stability Maps

The average power from the GS is plotted in Figure 2a,d and that of the ES is plotted in
Figure 2b,e. The variance of the ES output is also calculated and plotted in Figure 2c,f. The
variance plots are particularly useful for immediate identification of the constant output
regions (dark blue) and areas where the intensity is oscillating (green/yellow). When the ES
intensity is constant, that of the GS is also constant, and when the ES intensity is oscillating,
that of the GS is also oscillating. The upper panels in all stability map figures in this section
show the results generated when the injection sweep is upwards (from low strengths to
high strengths) and the lower panels show the corresponding maps for the downward
sweep (from high strengths to low strengths).
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Figure 2. Experimental stability maps. The top panels show results when the injection strength, K, is
swept from low to high. The bottom panels show the results when injection strength is swept from
high to low. (a,d) show the average GS intensity. (b,e) show the average ES intensity. The ES variance
is shown in (c,f). The average ES and GS intensities are calculated for 20 µs long measurements.
The phase locked region is identified as the bright yellow/cyan area in (a,d), where the GS has high
output intensity. This corresponds to a quenched ES, shown as dark blue in (b,e). In (c,f) green
denotes oscillatory behaviour and dark blue corresponds to constant output. The speckled area on
the positively detuned boundary of (a,c) is related to very slow oscillations. A more detailed map of
this boundary is shown later.

In Figure 2a, the bright yellow region in the centre is the phase-locked region. Here,
only the GS is lasing and the ES is completely quenched as indicated by the corresponding
dark blue region in Figure 2b and the zero variance in Figure 2c. To the negative detuning
side of the phase locked region there is a broad area of dynamics as indicated by the
green and yellow region in the variance in Figure 2c. On the positive boundary of the
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phase locked region there is a region of very slowly varying GS power, indicated by the
non-smooth colouring/speckled pixels in Figure 2a. We defer discussion of this for now
and return to it below.

To the positive side of the slowly varying speckled region, the device behaves as a dual
state emitter, with both states emitting constant intensities. As the detuning is increased
there is a smooth, continuous evolution of both, with the GS power decreasing and the
ES power increasing. The same dual state behaviour is mirrored in the negative detuning
region to the left of the dynamic oscillatory regime. We interpret this as follows: in the
GS only system (or indeed any conventional optical injection system), there are unlocking
boundaries outside of which there are only oscillating unlocked solutions. In the limit
of large detuning, the oscillations can be physically interpreted as a beating between the
injected light and the emission of the secondary laser. However, in our dual state system
there is no free-running GS. Thus, this beating cannot arise. The output of our QD SL can
then be thought of as a mixture of regenerated injected light [4,25] and ES emission from
the secondary laser. We thus distinguish between the phase-locked output (dark blue)
in Figure 2b, where the ES is completely off, and the regenerated injected light output of
somewhat large detunings where there is dual state emission.

Figure 3 shows just some of traces taken during a single upsweep of the injection
strength K for a fixed detuning of −6.9 GHz. The coloured labels correspond to the
coloured dots in Figure 4, marking their location on the maps. (The maps in Figure 4 are
the same as in Figure 2, with some additional markings to allow for comparison with
Figure 3). Figure 3a shows a periodic train of GS dropouts and the corresponding ES pulses
as reported in [23,24]. As the injection strength is increased these periodic trains disappear,
and in Figure 3b a bursting oscillation is obtained while various mixed mode oscillation
(MMO) and bursting MMO regions [26,27] are observed in Figure 3c–e. In Figure 3b there
is a switching between a quiescent phase, where the GS is on and the ES is off, and an active
phase with oscillations in both states (similar to the dropouts and pulses of Figure 3a). A
further increase to K = 0.61 leads to a different bursting dynamic as shown in Figure 3c.
In this region, the switching is between a quiescent phase with the GS on and the ES off
and an evolving bursting phase. The switch to the bursting phase is via an initial period of
decreasing amplitude oscillations, followed by a long series of growing oscillations before
a switch back to the quiescent phase. Such evolving bursts were previously reported in [15]
and shown to arise via an optothermal coupling. The evolution of the bursting state arises
via a determinstic thermal sweep of the detuning leading to slow passages through several
bifurcations, breaking underlying bistabilities similar to the generation of excitable square
waves in the GS only system in [14]. In Figure 3d K = 0.68, the trace is qualitatively similar
to that in Figure 3c, but in Figure 3d the oscillations following the GS dropout die away
quickly and the bursting part of the trace is shorter. Finally, when K is increased to 0.99
as shown in Figure 3e, there are no oscillations following the GS dropout and only a very
short region of oscillations preceding the return to the quiescent, GS on phase.

2.1.2. Hysteresis and Bistabilty

In order to identify regions of bistability in the maps, we can compare the upsweep
and downsweep figures in Figure 4. The upper panel shows the upsweep with a red line
superimposed, marking the boundaries from the downsweep. The lower panel shows the
downsweep with a white line superimposed, corresponding to the boundaries of oscillatory
behaviour from the upsweep. The boundaries are largely the same, and reveal bistabilities
where they differ. The negatively detuned side of the phase-locked region (the red/white
line in the centre of each figure) is the same in both cases. At high injection strengths and
negative detunings, the two directions match at the boundary between the dynamical region
and the regeneration region. However, at moderate injection strengths from approximately
K = 0.5 to K = 0.65, and between detunings of approximately −8.5 GHz and −6 GHz,
there is a clear region of hysteresis. This stands out clearly in all of the plots, but most
obviously in Figure 4f.
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Figure 3. The upper panels, (a–e) show representative intensity traces for the different dynamical
regimes observed during an upsweep where the detuning remains fixed at −6.9 GHz. The injection
strength is given above each subfigure. The lower panels (f–j) show zooms of the corresponding
upper panels. The colour of the font indicating the injection strength corresponds to the colour of dots
in Figure 4 which in turn mark the locations on the map where the intensity traces were recorded.
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Figure 4. The same experimental stability maps of average GS and ES intensities, and ES variance,
previously shown in Figure 2 but shown again here with markings added for direct comparison
with the time traces in Figure 3. The injection strength is swept up in (a–c) and down in (d–f). The
coloured dots correspond to the timetraces in Figure 3. For a more obvious identification of hysteresis
the boundary of oscillating dynamics observed in the downsweep is plotted on top of the upsweep
data as a red line. Similarly the boundary of oscillating dynamics seen in the upsweep is plotted as
a white line on the down sweep map. Hysteresis is particularly evident in (f) where the region of
oscillating dynamics extends beyond the white line, which marks the boundary observed (c).
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Figures 5 and 6 compare the timetraces from an upsweep and a downsweep, respec-
tively, at a detuning of −8.2 GHz. The sweeps move across the widest part of hysteresis
region, just to the right of the almost vertical part of the red line shown in the upper panels
in Figure 4. It is important to note that the injection strengths are plotted in the same grid
position of both figures for easy comparison. Thus, the upsweep shown in Figure 5 was
performed from Figure 5a–l, while the timetraces during the downsweep shown in Figure 6
were collected in reverse, from Figure 5l–a.
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Figure 5. Timetraces from an upsweep in the region of hysteresis at −8.2 GHz detuning. The sweep
was performed from panel (a) to panel (l). The injection strength is indicated in each subfigure. The
corresponding downsweep timetraces are shown in Figure 6.
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Figure 6. Timetraces from a downsweep in the region of hysteresis at −8.2 GHz detuning. The sweep
was performed from panel (l) to panel (a). Hysteresis is clear when comparing the subfigures (b–h)
here with the corresponding subfigures in Figure 5.

In the case of the upsweep in Figure 5a–g, dual state emission is observed (this is in
the regenerated region). As K is increased to 0.645, shown in Figure 5h, the GS appears to
oscillate with a very small amplitude suggestive of a Hopf bifurcation, before the onset
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of bursting and MMOs at K = 0.651 shown in Figure 5i. The lifetime of the bursting state
decreases as the injection strength is further increased.

Similar MMOs are seen for high injection strengths during the downsweep until
K = 0.645. Then, the presence of hysteresis can be seen by comparing the corresponding
subplots of Figures 5 and 6. As K is further decreased below 0.645, we do not find continu-
ous wave dual state emission until K = 0.605. Between these two values, the lifetime of the
bursting state continues to increase and the switches to the quiescent phase become more
rare. Eventually, trains of GS dropouts and ES pulses are observed, as seen in Figure 6b.
These trains were observed for the entire 20 µs acquisition time of the oscilloscope. As
there are fewer quiescent phases, the overall variance is large and is therefore represented
as bright yellow in the variance map (Figure 4f). Clearly, the yellow region extends beyond
the white line marking the upsweep dynamical boundary, highlighting the hysteresis cycle.
In Figure 6a, where K = 0.605, the oscillations disappear, and continuous wave dual state
emission is obtained, as is also observed in the upsweep in Figure 5a–g. Thus, we find a
bistability between the constant dual state emission (constant ES and regenerated injected
light) and dynamic, pulsing behaviour with MMOs.

2.1.3. Slow Oscillations

As mentioned above, on the positive detuning side close to the transition between the
phase-locked and regeneration regions, there is an area of dynamics indicated by a speckled,
non-uniform colour along the diagonal boundary in Figure 2a,d (and also, of course, in
Figure 4a,d). In fact, there are essentially two colours, indicating that there are two distinct
average GS intensities. The binomial nature of the colouring suggests a slow dynamic of
which we only sample a short, nearly constant part within the 20 µs measurement interval.
The sampling window is increased to 1 second and new maps are created and shown in
Figure 7. We note that there are also very narrow regions of hysteresis on both the left and
right of this region.

Figure 8 shows timetraces from an upsweep at −0.6 GHz marked by white lines in the
upper panels of Figure 7. The period of the oscillations is extremely long: approximately
40 ms. The output is strongly dominated by the GS, but very small corresponding oscilla-
tions are also observed in the ES as can be seen in Figure 8. The cycle resembles a periodic
oscillation between the phase-locked GS output and the dual state regenerated light output.

At the lower injection strength boundary of this region (i.e. at the bottom of the white
line), the lower intensity section of the timetrace is longer lived than the upper intensity
section, as is clear in Figure 8b. Increasing K, the duty cycle changes, eventually reaching
0.5, as seen in Figure 8h. Continuing to increase the injection strength, the higher GS
intensity section becomes longer lived than the lower GS intensity section, as is most clearly
seen in Figure 8k. Qualitatively, this behaviour is extremely similar to the optothermal
square waves on the negative detuning side in the GS only system [14,16] and to the
square wave/bursting phenomena reported here and originally in [15], where optothermal
coupling breaks bistabilities. We thus interpret this region as another broken bistability
between a low power GS output such as that shown in Figure 8a and a high power GS
output such as that shown in Figure 8l. However, and importantly, the oscillations here are
∼100,000 times slower.

The qualitative similarity of the oscillations with the previously investigated optother-
mal effect is very suggestive. However, even apart from the vast difference in timescales,
there is a significant difference that prevents the explanation of the oscillations via the
original thermal coupling. Consider the phase locked bistability near the negative detuning
boundary of [14]. In that case, the low power solution is on the negatively detuned side
of the region and the high power solution on the positive side. The physical source of the
coupling in that case is non-radiative carrier recombination. The low-power solution results
in high carrier density and an ensuing higher temperature via increased non-radiative
recombination. In the high power solution, the carrier density is lower and so the tem-
perature is lower. Thus, higher power leads to lower temperature and vice versa; the
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deterministic cycle is driven by the low power solution being pushed towards positive
detuning and the high power solution pushed towards negative detuning, yielding an
anticlockwise phasor cycle as shown in [14,16]. However, in the new region identified
in this work, the high power solution is the more negatively detuned of the two. Thus,
the high power solution would push the system further towards the negative detuning
direction and vice versa for the low power solution, and so the cycle would not arise. Thus,
heating due to non-radiative recombinations cannot account for the phenomenon, and a
coupling with the opposite sign is required. Such a coupling does exist, as can be seen by
considering several important ways in which heating can arise in the device. In particular,
reabsorption of light in the device can lead to such heating. In [28,29] both recombinative
and re-absorptive heating was included. It is also known that self-absorption arises in
QD lasers in particular, due to the wide distribution of states and dot sizes [30]. Thus,
for re-absorption, a higher optical power leads to an increased temperature, and so the
effect results in an effective detuning sweep in the opposite direction to that of the first
optothermal effect, as required. Furthermore, the timescale for the second effect should be
significantly longer as the time over which re-absorptive heating is distributed through the
device can be of the order of tens of milliseconds, or even longer [28,31]. This matches the
observed timescale extremely well. We see below that including such an effect in the model
allows for excellent agreement with the experiment.
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Figure 7. Experimental maps of the positively detuned side of the unlocking boundary. The top
row shows an upsweep and the bottom shows a downsweep. The timetraces used to build this map
were 1 second long. Three regions are visible in (a,b) and in (d,e). In (a,d) the large yellow region
with high GS intensity is a phase locked region. The blue region is the regenerated light region. The
narrow green region in between the yellow and blue regions is where there are slow oscillations
between the high and low GS intensity solutions, and thus the average intensity lies somewhere
in the middle. (b,e) show a completely quenched ES—dark blue—when the laser is phase locked.
The region of slow oscillations is represented by the slightly lighter shade of dark blue. For positive
detuning values, dual state emission is clear. The variance shows the region where slow oscillations
occur more clearly (c,f). There is a small hysteresis cycle of one to two pixels at both sides. The white
lines in the region of slow oscillations in (a–c) correspond to the timetraces shown in Figure 8.
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Figure 8. Slow oscillations observed during an upsweep at −0.6 GHz, near the positively detuned
side of the unlocking boundary. The sweep is marked by a white line in Figure 7. Comparing (a)
and (l), there are two very different GS amplitudes at either side of the region of oscillations. The
slow oscillations shown in panels (b–k) are between these two intensities, suggesting there is an
underlying broken bistability. As K is increased the duty cycle moves from longer lived lower sections
as most clearly seen in (b), through 50:50 in (f,g), and on to longer lived upper sections as most clearly
seen in (k).

2.2. Theory

We use a rate equation model to numerically investigate the system. Rate equation
models have been used extensively to great effect in studies of optically injected QD lasers,
such as in [3,9,32,33] and further references within. Superficially, there are several different
models. Of course, all arise from the same starting point: the Maxwell–Bloch equations.
The differences then arise via choices about how to describe carrier capture and escape
between the carrier reservoir, the excited state(s), and the ground state of the QDs and
even whether to treat the electrons and holes separately or together in an excitonic model.
Further, one can also consider whether to include effects such as phase-amplitude coupling
and inhomogeneous broadening microscopically or phenomenologically, or indeed at all.
We necessarily need to extend any model to include two optothermal effects with extremely
slow timescales and so, for purposes of computational efficiency, we use an excitonic model
for the carrier dynamics, while for the light dynamics we consider the electric field of the
GS and the intensity of the ES. Our model is,

ĖGS = g(1 + iαGS)[(2ρGS − 1)− κ]EGS

+ 2igαES[(2ρES − 1)− κ]EGS

− 2πi(∆0 + ∆1 + ∆2)EGS + K, (1)

İES = [4g(2ρES − 1)− 2κ]IES + βρES/τ, (2)

ρ̇GS = Srel − g|EGS|2(2ρGS − 1)− ρGS/τ, (3)

ρ̇ES = − 1
2Srel + Scap − 2gIES(2ρES − 1)− ρES/τ, (4)

Ṅ = J − 4Scap − N/τ, (5)

where EGS is the electric field of the GS, IES is the power of the ES, ρGS and ρES are the
occupation probabilities of the GS and ES, respectively, and N is the normalised charge-
carrier number in the quantum well reservoir. The rate equation model in Equations (1)–(5)
is thus a two state extension of that used in [3,9] where it was used to model GS only QD
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lasers under optical injection. The scattering terms in Equations (6)–(8), on the other hand,
are of the form used in [32,33] and are given by

Srel = Srel

[
(1 − ρGS)ρES − exp

(
−εGSES

kBT

)
ρGS(1 − ρES)

]
, (6)

Scap = Scap(ρ
eq
ES − ρES), (7)

ρ
eq
ES =

(
1 + exp

(
−εES
kBT

)[
exp

(
N

D2D

)
− 1
]−1
)−1

. (8)

There are three ∆ terms controlling the detuning in the system. ∆0 allows us to choose
our reference frame. We define ∆0 ≡ δ0 + δ with δ0 chosen so that the GS frequency of the
free-running laser is at zero. Thus, δ0 compensates the frequency shift due to the phase–
amplitude coupling and the optothermal effects in the free-running laser. Then, δ = 0 is at
the central GS frequency of the free-running quantum dot laser and it is δ that defines the
x-axis in each of our maps below. The other two terms, ∆1 and ∆2, are used to implement
the aforementioned optothermal coupling mechanisms. ∆1 accounts for heating of the
active region due to recombinative heating, while ∆2 models overall device heating via
re-absorption. We implement these two different effects with individual coupling strengths
c1,2, and characteristic time scales γ1,2 in the following two equations,

∆̇1 = γ1(c1[2(ρGS − ρGSth) + 4(ρES − ρESth) + (N − Nth)]− ∆1), (9)

∆̇2 = γ2(c2[|EGS|2 + IES]− ∆2), (10)

where the subscript “th” denotes the value of the corresponding charge-carrier variable at
the laser threshold. (We note that in [14,16] the thermal effect was coupled to the power even
though the physical explanation is via the carriers. In the Class A case, this is unavoidable,
as the carriers are adiabatically eliminated.) The meaning of all the other parameters used
in the equations and their values are given in Table 1.

Table 1. Parameter values.

Symbol Value Meaning

J 25 ns−1 Normalised pump current
αGS 2 Phase-amplitude coupling from the GS
αES 0.5 Phase-amplitude coupling from the ES
g 80 ns−1 Optical gain coefficient
κ 76 ns−1 Optical loss coefficient
β 10−5 Spontaneous emission factor
τ 1 ns Charge-carrier recombination time

Scap 0.2 ps−1 QD capture rate
Srel 1 ps−1 QD relaxation rate
εES 50 meV Confinement energy of the ES

εGSES 40 meV Energy separation between GS and ES
D2D 10.9 Normalised 2D density of states

T 300 K Temperature
γ1 40µs−1 Characteristic time scale of non-radiative thermal effects
γ2 4µs−1 Characteristic time scale of reabsorption thermal effects

2.2.1. No Optothermal Effects

It turns out to be quite instructive to first consider the system in the absence of any
optothermal effects, then with only one effect, and finally with both effects included, thereby
allowing for a comprehensive description of how the observed features emerge. There are
many features that are common to all three cases. In particular, there is a large, central,
phase-locked region; there are large dual state, regenerated, injected light regions for large
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magnitude detunings; and for low injection strengths at negative detuning, an antiphase
dropout and pulsing dynamic is found in each case.

In the absence of any optothermal coupling, there are no square wave phenomena for
either negative or positive detuning. Instead, we find multiple bistabilities near the negative
detuning boundary. One of these is very clear from Figure 9 in the top left corner of each
subplot. Consider the leftmost edge of Figures 9a,d. In the upsweep, the regenerated, two
state output persists right up to the top of the figure. Figure 9c shows that the regenerated
two state output eventually destabilises via a Hopf bifurcation along the bright line in the
top left corner. There is only a very narrow region over which the resulting oscillatory
solution exists, after which the system moves to the phase locked output. In the downsweep
case, however, the bright yellow phase-locked region extends down to K∼4.8 at the extreme
left of Figure 9d. Thus, there is a clear bistability between the phase-locked output and the
regenerated two state output over a large region and, indeed, another bistability between
the phase-locked output and the oscillating two state output over a small region.
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Figure 9. Stability maps in the absence of any optothermal effects. (a–c) show the results for the
upsweep. (d–f) show the corresponding downsweep. Bistabilty 1, the bistability between two phase-
locked states, can be seen by comparing the top left corners of (a,d) at high injection strengths. It can
also be seen clearly by comparing the top left corners of (b,e) at high injection strengths. Bistability 2,
the bistability between a phase locked solution and the dual state output at moderate injection
strengths, is clear when looking at the top left corners of the variance plots (c,f). Bistability 3, the
low injection strength bistability between a constant (dual state) output and an oscillating (dual
state) output, is visible at the bottom of the oscillating regime seen in (c,f). It is even clearer in the
supplemental gif.

There is another region of hysteresis around K∼4. This is not as easy to see in the figure
as it is over a much smaller area. We include a gif in the supplementary material showing
the transition from Figure 9c,f, in which the hysteresis is clear. At this injection strength,
the phase-locked solution first destabilises into the oscillating GS dropout/ES pulse regime
reported in [24] as the injection strength is decreased. This phase-locked/pulsing regime
is bistable with the regenerated two state output and its destabilising Hopf induced cycle
discussed above (again, as is clear in the supplemental gif). Notably, though, there is
not a bistability for positive detuning (where we find the extremely slow dynamic in
the experiment).

One might reasonably expect the negative detuning bistabilities from previous GS
only analyses [9,17], and some have even already been described in [15,21,32]. In [15], it
was shown that the introduction of an optothermal coupling leads to the destruction of
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high injection strength bistability and that a periodic bursting dynamic is instead obtained.
We repeat this analysis here with our model.

2.2.2. First Optothermal Effect

Here, we introduce the first optothermal effect, arising from non-radiative recombi-
nations, and plot the updated maps in Figure 10. As expected, (and again, as was already
shown in [15]) this breaks the upper bistability, and yields the periodic bursting square wave
regime. The bistability between the phase locked/pulsing output and the dual state/Hopf
dynamic is preserved although its precise location and size has changed. However, more
intriguing here is the effect that this has on the positive detuning boundary. Now, where
before there was no bistability, we find one. It is a bistability between the phase-locked
output and the constant dual state output as indicated in Figure 11 near 1 GHz. This arises
as the first optothermal effect shears the map so that the two solutions now overlap. It
arises in a relatively narrow region precisely where the extremely slow square waves are
obtained in the experiment. The appearance of this bistability motivates the introduction
of a second optothermal coupling. As discussed in the experimental section above, this
coupling must take the opposite sign to the original optothermal effect in order to yield the
desired deterministic oscillations.
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Figure 10. Simulated stability maps with one optothermal effect. The top panels show the results
from an upsweep and the lower panels show the corresponding downsweep. (a,d) show the average
GS intensity and (b,e) show the average ES intensity. (c,f) show the variance in the ES intensity.
The region of high variance seen in (c,f) is much larger than in Figure 9 as the large phase locked
bistability is broken and is replaced with a square wave regime. γ1 = 40µs−1, c1 = 3 ns−1.

2.2.3. Second Optothermal Effect

We use a characteristic timescale of γ2 = 4µs−1 for the second optothermal effect,
which is not quite as slow as the experiment but allows for a reasonable computation
time while maintaining a large enough timescale separation with the existing dynamic
timescales. We have verified that an even longer timescale for γ2 reproduces qualitatively
identical dynamics. With the addition of the second optothermal effect, the square wave
bursting solutions and the experimentally observed bistability are preserved as shown in
Figure 12. We note that the value of c1 when the two effects are included is different to
the one we chose for just one optothermal effect. This is because the second optothermal
effect counteracts the first one and so, in order to maintain the same overall shape, c1 must
change when the second coupling is introduced. On the positive detuning side, the new
thermal effect yields a region of very slow oscillations in the region where there had been
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a bistability. The region over which these arise is most clearly seen when looking at the
GS variance in Figure 12c,f and in the number of maxima as shown in Figure 13c,f in the
narrow lines at the positive detuning boundaries. (In fact, there is even still a very small
region of hysteresis as can be seen in Figure 11b in agreement with the experiment.)

Figure 11. 1D bifurcation diagrams showing the bistabilities. The many diagonal lines are brought
about by the bursting phenonema, where the amplitude is growing even though the input parameter
for detuning remains fixed. (a) only one optothermal effect is included. A bistability is created on the
positive unlocking boundary. At the negative unlocking boundary, there is a large cycle between the
remnants of a bistability, with some of the bistability remaining intact. (b) both optothermal effects
are included. The bistability at the positive boundary has been replaced with a limit cycle. In both
cases K = 4.5.
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Figure 12. Simulated maps with two optothermal effects. (a,d) show the average GS intensity and
(b,e) show the average ES intensity. (c,f) show the variance in the ES intensity. (a–c) show the
results for the upsweep. (d–f) show the corresponding downsweep. γ1 = 40µs−1, c1 = 4.5 ns−1,
γ2 = 4µs−1, and c2 = 0.7 ns−1.

Figure 13 is very instructive in highlighting the evolution of dynamical features with
the inclusion of optothermal effects. We plot the number of maxima in the time series
when there is no optothermal coupling in Figure 13a,d, when there is recombinative
optothermal coupling in Figure 13b,e, and when both optothermal couplings are included
in Figure 13c,f. Without optothermal coupling, there are very few regions of dynamics and
those that exist do so only over small areas. When one optothermal coupling is included as
in Figure 13b,e dynamics become much more prevalent in the system and a large region
of dynamics appears in the central region of the map. In Figure 13c,f we find that the two
competing optothermal effects endow the system with all of the experimentally observed
dynamics. Most notably, as already mentioned, the experimentally observed extremely
slow oscillations are found near the positive boundary.
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Apart from the dynamical features, there are several distinct features in the shape
of experimental map. One of these is the near vertical boundary for negative detuning
for K∼0.6 in Figure 1. This feature is recovered with the inclusion of both optothermal
effects as seen in the lower panels in Figures 12 and 13c,f for K ∼ 4. A second feature
is the shape of the dynamical region (and consequently the phase locked region). In the
experiment, there is a large and very asymmetric region of dynamics for negative detuning
and a very narrow region of dynamics along the positive detuning boundary. Figure 13
shows the evolution of the dynamics arising in the model as the optothermal effects are
included. There is one very narrow region of dynamics for negative detuning when no
optothermal coupling is included. There is a large, somewhat symmetric, central region
of dynamics when the recombinative optothermal effect is included. Finally, when both
optothermal couplings are included, the map is sheared so that the dynamical region is
rendered asymmetric, folding back towards negative detuning as the injection strength is
increased, just as in the experiment.

Figure 13. Simulated maps showing the number of maxima in log scale when no optothermal effect
is included (a,d), when the non-radiative optothermal effect is included (b,e), and when both the
non-radiative and light reabsorption optothermal effects are included (c,f). The top panels show the
results from the upsweep and the lower panels show the corresponding downsweep. Chaos is not
present in any case.

2.2.4. Absence of Chaos

As mentioned in the introduction, there is a marked absence of chaos when a QD
laser emitting from the ES is optically injected near the GS. We have not observed any
chaotic regimes in the experiment or in the numerical studies. The presence of chaos in
optically injected QD lasers for the GS only case has been reported several times both
experimentally and theoretically, such as in [3,32,34] and we have confirmed it arises using
our model by adjusting the parameters to allow for GS only lasing. However, it appears to
be absent in the dual state system analysed in this work. While there are multiple maxima
in large regions of the map as shown in Figure 13c,f, these correspond only to the bursting
dynamics, which is complex but not chaotic.

3. Discussion

We have presented a detailed stability map for the optically injected dual state QD
system. This is the first comprehensive experimental map in the literature to the best of
our knowledge. We also present the first numerical map taking optothermal effects into
account. These effects have dramatic effects on the overall system, but allow for excellent
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agreement between our experimental and numerical results. Unlike with the optically
injected conventional semiconductor laser, optothermal effects play a somewhat prominent
role in the map, and there is an array of intact and broken bistabilities due to competing
optothermal effects. A particularly beautiful route to an extremely slow square wave
dynamic near the positive detuning boundary is obtained. As with the implementation
of optothermal effects in other systems, a bistability is broken yielding a deterministic
optothermal cycle. However, the bistability only exists due to a different, competing,
optothermal coupling in the first place! There is no sign or even hint of the dynamic in the
bare system.

The need to consider optothermal effects in this system, and indeed in the conventional
GS only system, arose entirely due to experimental findings where unexpected square
wave and bursting phenomena were observed. However, the inclusion of optothermal
effects in the model is shown here to improve the mapping beyond simply recovering the
dynamics, with characteristic shapes and features found in the experiment recovered only
when the full system is analysed. This suggests that perhaps including such couplings in
other injection systems might be worthwhile.

With a view to the future, QD lasers are particularly suited to photonic integrated
circuits, given their potential for isolator free operation on chip due to the enhanced stability
to optical feedback [35–37]. Novel neuromorphic information processing may be possible
using dual state QD lasers, as described recently in [38]. The stability map is an indispens-
able tool for analysing such applications, revealing the regions and parameter ranges over
which dynamics are obtained. In fact, many of the dynamic regions obtained in this system
are neuromorphic. The excitable dynamic reported in [24] persists at low injection strength
and is of clear relevance while the neuromorphic potential of the optothermal bursting has
previously been highlighted in [15].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/photonics9020101/s1, supplemental gif.
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Abstract: Optical frequency comb technologies have received intense attention due to their numerous
promising applications ranging from optical communications to optical comb spectroscopy. In this
study, we experimentally demonstrate a new approach of broadband comb generation based on the
polarization mode competition in single-mode VCSELs. More specifically, we analyze nonlinear
dynamics and polarization properties in VCSELs when subject of optical injection from a frequency
comb. When varying injection parameters (injection strength and detuning frequency) and comb
properties (comb spacing), we unveil several bifurcation sequences enabling the excitation of free-
running depressed polarization mode. Interestingly, for some injection parameters, the polarization
mode competition induces a single or a two polarization comb with controllable properties (repetition
rate and power per line). We also show that the performance of the two polarization combs depends
crucially on the injection current and on the injected comb spacing. We explain our experimental
findings by utilizing the spin-flip VCSEL model (SFM) supplemented with terms for parallel optical
injection of frequency comb. We provide a comparison between parallel and orthogonal optical
injection in the VCSEL when varying injection parameters and SFM parameters. We show that
orthogonal comb dynamics can be observed in a wide range of parameters, as for example dichroism
linear dichroism (γa = −0.1 ns−1 to γa = −0.8 ns−1), injection current (µ = 2.29 to µ = 5.29) and
spin-flip relaxation rate (γs = 50 ns−1 to γs = 2300 ns−1).

Keywords: optical frequency comb; polarization switching; optical injection; nonlinear dynamics;
VCSEL

1. Introduction

The nonlinear dynamics of externally driven semiconductor laser have been exten-
sively studied last decades [1–3]. The polarization dynamics in Vertical-Cavity Surface-
Emitting Lasers (VCSELs) have particularly attracted much attention due to their com-
pactness, low cost, low energy consumption and possibility of mass production. These
properties have enabled several applications such as optical communications, sensing and
computing [4]. The polarization properties of the VCSEL are directly linked to their cavity
and active region geometrical properties. The cylindrical geometry of the VCSEL cavity
combined with the symmetry of the gain in the plane of quantum wells yields a weak
polarization anisotropy giving rise to light emission of two linear orthogonally polarized
fundamental modes. In addition, polarization mode instability including polarization
switching (PS), polarization bistability and polarization mode hopping can be observed in
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the VCSELs between the two polarization modes [5–7]. Polarization switching has been
first observed in the free-running operation when varying the injection current [8]. More
recently, optical injections have been demonstrated as a powerful tool to induce PS in
VCSELs [6,9,10]. Depending on the injected power and detuning frequency, the PS has
been found to bifurcate to more complex dynamics including periodic dynamics, complex
dynamics and chaos [6]. Interestingly, a very recent study has shown that VCSEL output
can exhibit complex chaotic dynamics even in free-running [11]. These rich nonlinear po-
larization dynamics in VCSELs have found several applications such as optical frequency
comb generation [12].

Optical frequency combs have been in recent years the focus of intense scientific
research from the fundamental viewpoint, as well as from the technological perspec-
tives [13–15]. These works have unveiled several physical systems generating optical
frequency combs such as mode-locked lasers [14,16], electro-optic modulator and optically
pumped nonlinear microresonators [17]. The development of semiconductor laser based
frequency combs has been widely motivated by their numerous properties such as low
energy consumption, low size and possibility of mass production and on-chip integration.
The semiconductor lasers employed for optical comb generation by mode locking include
multisection lasers, Vertical Extended-Cavity Surface-Emitting Lasers (VECSELs) [16,18],
quantum cascade lasers [19,20] and quantum dot lasers [21,22]. Unfortunately, the repeti-
tion rate of the combs based on these systems depend intrinsically of their cavity properties
including cavity length and temperature inside the cavity. Frequency combs with large
comb spacing have been proposed using the above systems but achieving a low and stable
comb spacing remains a challenge because of the change in the cavity due to tempera-
ture variations. For example, 6-millimeter-long devices correspond to a comb spacing
of ≈7.5 GHz [23] and require an active stabilization by acting on the cavity temperature for
practical implementations such as dual comb spectroscopy. The comb generation system
based on the electro-optic modulators has been adopted to overcome the limitations of the
mode-locked lasers-based frequency combs. Optical comb generation using electro-optic
modulators is relatively simple because the comb is obtained by directly modulating the
output of a single-frequency CW laser. The physical phenomena underlying these comb
generation systems are linked to the electro-optic effect. Electro-optic modulator based-
optical combs have shown several limitations including fluctuation in the amplitude of
the comb lines and low bandwidth. Insertions of the electro-optic modulator inside an
optical resonator and cascade electro-optic modulator have been adopted as alternatives to
improve comb bandwidth and flatness. Recent works have controlled the comb properties
by injecting a narrow comb into semiconductor lasers [24–27]. Optical injection of comb is
used: first as a method to select and amplify a desired line in an optical frequency comb,
but more recently as a technique to induce rich nonlinear laser dynamics, such as relaxation
oscillation frequency locking [24], harmonics frequency locking [24] and Devil’s staircase
resonance [25]. However, to date, the full potential of this technique for broadband optical
comb generation has only recently been addressed, with an in-depth analysis and mapping
of nonlinear comb dynamics [26,27]. In addition, in a very recent work, we have experimen-
tally taken advantage of polarization dynamics in VCSEL to extend the comb’s bandwidth
and improve the power per comb lines referred to as carrier to noise ratio (CNR) [28]. It
is shown that polarization switching induced by orthogonal optical injection plays a key
role in the control of the comb properties (bandwidth and CNR) through the generation of
two combs with orthogonal polarization. This work was restricted to a single-mode VCSEL
with birefringence of ∼18 GHz and does not consider the full potential of the VCSEL
parameters. The literature provides a lot of research on the optical injection dynamics in
VCSEL with orthogonal polarized light [7,10,29–35]. The parallel (orthogonal) injection
is the injection of light with linear polarisation parallel (orthogonal) to the free-running
VCSEL linear polarisation direction. Although parallel optical injection in VCSELs shows
similarities to optical injection in the conventional single-polarization edge-emitting laser,
very interesting additional polarization dynamics have been reported recently [36–40].
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The excitation of the polarization modes has been found to bifurcate to periodic, complex
or chaotic dynamics with orthogonal polarization. The question of how parallel optical
frequency comb injection in VCSELs induces additional nonlinear polarization dynamics is
of great interest and has not been addressed so far.

In this paper, we analyze, in detail, nonlinear dynamics and polarization properties
in VCSELs subject to optical frequency comb injection. More specifically, we provide an
in-depth experimental and theoretical description of the bifurcation scenarios when the
polarization of injection comb is parallel to that of the VCSELs. We show that a variation of
the injection parameters together with the bias current allows enabling the excitation of
the normally depressed polarization mode accompanied by the generation of two combs
with orthogonal polarization directions. The appearance of the two polarization combs is
directly linked to the evolution of the injection current. Indeed, for a fixed injection current,
comb generation performance is limited by the increase in injected comb spacing, but the
increase in bias current allows overcoming this limitation. Experimental and numerical
simulations highlight that the injection current is an addition parameter to control comb
properties. Beyond this, the injection parameters are used to tailor the comb properties
in a VCSEL in our previous work [28]; here, we take advantage of linear dichroism and
birefringence to improve comb properties in the VCSEL. We also contrast experimentally
and theoretically the comb dynamics in the cases of parallel and orthogonal optical injection
when varying injection parameters, i.e., the comb spacing and injection strength and most
importantly the injection current in the VCSEL. More specifically, we provide an in-depth
bifurcation analysis of polarization comb dynamics when varying VCSEL parameters.
The bifurcation diagrams show that VCSEL parameters can be used to suppress the comb
in the normally depressed polarization mode or to tailor power in each polarization comb.

2. Experimental Polarization Dynamics

2.1. Experimental Setup

Figure 1a shows the experimental setup for parallel optical injection in a single-mode
VCSEL. The tunable laser (TL) output is first amplified by an Erbium-Doped Fiber Amplifier
(EDFA). The output of EDFA is then sent to the RF port of the Mach–Zehnder Modulator
(MZM), which is driven with an electrical signal modulation generated by an Arbitrary
Waveform Generator (AWG) (Tektronix AWG 700002A). Three optical frequency lines are
created at the output of the MZM. The polarization controller at the input of the MZM
is used to align its polarization with the tunable laser. A fiber circulator is arranged to
provide isolation for the comb injection in the VCSEL. The total power of the injected comb
is controlled using a Variable Optical Attenuator (VOA). The VCSEL output is amplified
before being sent to a 50/50 coupler to analyze the optical spectra and the corresponding
time series separately. Optical spectra are analyzed with a high-resolution optical spectrum
analyzer, BOSA 400, which allows monitoring optical spectra with a resolution of about a
minimum of 0.1 pm (12 MHz) at the operating wavelength of 1550 nm. Figure 1b–d present
the optical spectra of the injected comb for a fixed comb spacing of Ω = 1 GHz, Ω = 2 GHz
and Ω = 4 GHz, respectively. The ratio between the power of the central comb line and the
side comb lines is around 12 dB. The VCSEL (Raycan) used is a single-mode device with a
threshold current equal to I = 3 mA. In free-running conditions, the dominant polarization
mode (normally depressed polarization mode) emits along the X (Y) axis, as shown in
Figure 1e. The ratio between the power of the linear polarization modes (X-PM and Y-PM)
is around 43 dB. Figure 1e is obtained for a bias current at I = 6 mA, which corresponds
to 2-times the threshold current. At that current, the total output power of the VCSEL
has been measured to be Pinj = 330 µW. The dominant polarization mode (X-PM) emits
at 1553.8 nm at I = 6 mA. The difference in frequency between linear polarization modes
(VCSEL birefringence) is around 17.71 GHz at 23 ◦C. The x-axes of the optical spectra
will show the relative frequency with respect to the X-Polarization mode (X-PM), i.e., the
zero value will correspond to the frequency position of the dominant X-Polarization mode
(X-PM). In the following, the frequency detuning ∆ν will be defined from the frequency
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of the central injected comb line to the frequency of dominant polarization mode of the
VCSEL (X-PM), i.e., ∆ν = ν0 − νx, where ν0 and νx are the frequencies of the central injected
comb line and the X-polarization mode of VCSEL (X-PM), respectively.
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Figure 1. (a) Setup for frequency comb injection into a single-mode VCSEL. TL: Tunable Laser,
EDFA: amplifier, P.C: Polarization Controller, AWG: Arbitrary Waveform Generator, MZM: Mach–
Zehnder Modulator, VOA: Variable Optical Attenuator, OSA: Optical Spectrum Analyser, PD: photo-
diode, ESA: Electrical spectrum analyzer. (b–d) correspond to the optical spectra of the injected comb
for comb spacing of Ω = 1 GHz, Ω = 2 GHz and Ω = 4 GHz, respectively. (e) shows the optical
spectrum of the VCSEL in free running.

2.2. Impact of the Injected Comb Spacing

We first analyze the nonlinear polarization dynamics of a VCSEL under a narrow
optical comb injection. To this end, we fix the bias current at I = 6 mA and then scan the
plane of injection parameters, namely the detuning frequency and injected power that leads
to various polarization mode competition. That bias current corresponds to a relaxation
oscillation frequency of ωRO = 4.2 GHz. Figure 2 describes the sequence of bifurcations
leading to the excitation of the normally depressed polarization mode (Y-PM) accompanied
by unlocked time-periodic dynamics, which extends the injected comb to a much broader
optical spectrum. Figure 2 is obtained for a small injected comb spacing, Ω = 1 GHz and
fixed detuning frequency ∆ν = 1.6 GHz when varying the injected power, Pinj. The VCSEL
output shows stable free-running operation at a very low injected power (see Figure 2a).
A small increase in the injected power destabilizes the VCSEL output to modulated signal
as a result of nonlinear wave-mixing in the dominant polarization mode (X-PM) (Figure 2b).
In agreement with our previous publications [26,27], this nonlinear wave mixing takes place
at the detuning frequency and a new frequency that depends on the injected comb spacing.
The number of frequency lines involved in the nonlinear wave-mixing decreases with the
injected power, as shown in Figure 2c. The VCSEL output is then an unstable comb with a
high noise pedestal in X-PM at the injected comb repetition rate. By fine-tuning the injected
power, instead of stabilizing the comb in a single polarization mode, a new bifurcation
scenario results in the excitation of the free-running normally depressed polarization mode
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of the VCSEL. Interestingly, this polarization mode competition induces in the VCSEL
two optical frequency combs with orthogonal polarization directions, as seen in Figure 2d.
The two polarization combs have comparable power and the same repetition rate as the
injected one with nine frequency lines in the X-PM comb and eight in the Y-PM comb
at −30 dB from the maximum. The strongest comb line in the optical spectrum of Y-PM
appears at the frequency position of the free-running Y-PM, i.e., its frequency position is
ruled by the VCSEL linear birefringence. When we keep increasing the injected power,
harmonic frequency comb dynamics takes place simultaneously in the two polarization
combs, as shown in Figure 2e,f. The harmonic comb dynamics result in a reduction in comb
repetition rate. Subharmonic bifurcations are well studied and understood phenomena
that occur naturally in periodically forced oscillators [41]. Subharmonic dynamics have
been expected to be a form of frequency locking different from the Adler type in diode laser
optically injected with optical comb [24,25]. They appear when the detuning frequency is
close to the rational fraction of the injected comb spacing. When we increase the injected
power, the harmonic polarization comb destabilizes to complex polarization dynamics in X-
PM and Y-PM (Figure 2g). It is worth observing that the X-PM still shows some remarkable
comb lines at the repetition rate of the injected comb. A further increase in injected power
results in a progressive suppression of all the power in the depressed polarization mode
Y-PM accompanied by the stabilization of the comb dynamics in the dominant polarization
mode X-PM, as seen in Figure 2h,i. Such single-polarization comb has the same repetition
rate as the injected one.

Figure 3 shows the polarization resolved optical spectra for comb dynamics in
Figure 2d–f. Figure 3 confirms that the total VCSEL output combs shown in Figure 2d–f
are formed by two combs with orthogonal polarization. In the optical spectrum of X-PM
(Y-PM), we observed some comb lines at the frequency position of Y-PM (X-PM). This is
due to the extension ratio of the polarization controllers.

We have shown in Figure 2 the possibility of two orthogonal combs generation from
polarization mode competition in a single-mode VCSEL. As discussed earlier in the in-
troduction, the tunability of the optical frequency comb is a key property for many ap-
plications. In order to demonstrate tuning capability, we show in Figure 4 bifurcation
scenarios inducing two polarization comb dynamics for the same detuning ∆ν = 1.6 GHz
when increasing the injected comb spacing to Ω = 2 GHz. Similarly for Ω = 1 GHz
comb injection, the VCSEL output at low injected power shows the free-running operation,
which bifurcates to nonlinear wave mixing due to a modulation involving detuning and
injected comb spacing. In agreement again with Figure 2, wave-mixing results in a two
polarization combs generation. Most importantly, despite the comparable power of the two
polarization combs, the numbers of lines in X-PM and Y-PM have significantly decreased
compared to Ω = 1 GHz comb injection case. Indeed, the number of frequency lines in
each polarization mode has decreased to achieve 3 at −30 dB from the maximum. It is
important to notice that the two polarization comb dynamics are observed in a very small
area of injection parameters for Ω = 2 GHz comb injection. We have checked by using
polarization resolved optical spectra that these total combs are formed by two micro-comb
with orthogonal polarization in single-mode VCSEL, as shown in Figure 5. A small increase
in the injected power destabilizes VCSEL to more complex dynamics in each polarization
mode, as shown in Figure 4d. We have checked that the size of the two polarization comb
region shrinks when increasing the injected comb spacing until it disappears at Ω = 4 GHz.
Figure 6 shows how to overcome this limitation. Similarly to Ω = 1 GHz comb injection,
complex polarization dynamics bifurcates to the single-polarization comb in X-PM. This
polarized comb has an important noise pedestal and, therefore, deteriorating the comb
performances. Interestingly, we have also checked that the two polarization comb dynamics
in the single-mode VCSEL under parallel optical injection are not observed when the bias
current is below I = 6 mA. In contrast, when the polarization of the injected comb is
orthogonal to that of VCSEL, the two polarization comb dynamics is always observed,
whatever the bias current is.
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Figure 2. Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These
optical spectra are obtained for detuning ∆ν = 1.6 GHz and injected comb spacing Ω = 1 GHz when
increasing the injected power, Pinj. (a) Stable output at Pinj = 3 µW, (b,c) wave mixing at Pinj = 16 µW
and Pinj = 32 µW, respectively, (d) two polarization comb at Pinj = 48 µW, (e,f) two polarization
harmonics comb at Pinj = 80 µW and Pinj = 96 µW, respectively, (g) two polarization complex dynamics
at Pinj = 128 µW and (h,i) X-polarization comb at Pinj = 144 µW and Pinj = 240 µW, respectively.
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Figure 3. Polarization resolved-optical spectra corresponding to an example of two polarization comb
dynamics similar to Figure 2d–f for detuning ∆ν = 1.6 GHz and injected power Pinj = 20 µW. (a–c) cor-
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Figure 4. Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These
optical spectra are obtained for detuning ∆ν = 1.6 GHz and injected comb spacing Ω = 2 GHz.
(a) Stable output at Pinj = 3 µW, (b) wave mixing at Pinj = 16 µW, (c) two polarizations comb at
Pinj = 48 µW, (d) two polarization harmonics comb at Pinj = 112 µW, (e) two polarization complex
dynamics at Pinj = 208 µW and (f) X-polarization comb at Pinj = 240 µW.
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Figure 5. Polarization resolved-optical spectra corresponding to an example of two polarization
comb dynamics in Figure 4c. (a–c) are obtained for detuning ∆ν = 1.6 GHz and injected power
Pinj = 20 µW. (a–c) correspond to the optical spectra of Y-PM, X-PM and the superposition of Y-PM
and X-PM, respectively.

2.3. Influence of the Injection Current

We next increase the injected comb spacing to Ω = 4 GHz and the bias current to
I = 8 mA, which is 2.67 times the threshold current. Such bias currents have been used in
VCSELs to observe various nonlinear dynamics in the presence of single-mode injection
with parallel polarization [37,39]. Compared to the I = 6 mA bias current injection where
nonlinear wave-mixing is accompanied by two polarization comb as a result of excitation
of the normally depressed polarization mode, the VCSEL output bifurcates to selective
amplification of the central injected lines in X-PM, as shown in Figure 6a–c. As observed in
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Figure 6c,d, selective amplification smoothly induces a broad optical comb characterized by
the appearance of new frequency lines. When we increase the injected power, polarization
mode competition results in the extension of the polarized comb to a much broader optical
spectrum, as shown in Figure 6e. We checked through polarization resolved-optical spectra
in Figure 7 that this overall comb corresponds to two combs based on the linear orthogonal
polarization of the VCSEL. It is also possible to control the power in each polarization
mode by fine-tuning the detuning. The two polarization combs and the polarized comb
have the same repetition rate as the injected comb. By fine-tuning the injected power,
the noise pedestal smoothly increases accompanied by harmonics comb line generation
simultaneously in the two polarization combs as shown in Figure 6e. The harmonic comb
significantly increases the number of resulting output lines and gives rise to a new comb
with a low repetition rate ( Ω = 2 GHz in Figure 6e). Most importantly, Figure 6e highlight
a new possibility of broadband Ω = 2 GHz comb generation using the same injection
technique as in Figure 4c,d. When we keep increasing the injected power, the harmonics
comb destabilizes to complex dynamics with remarkable frequency comb lines mainly
around the dominant polarization mode (X-PM), as seen in Figure 6g. Interestingly, when
further increasing injected power, VCSEL bifurcates again to the new broadband comb
encompassing the two polarization modes with a significant increase in noise pedestal, as
shown in Figure 6h,i. Similarly to Figure 6e, this overall comb is formed by two combs with
the orthogonal polarization direction. The noise pedestal increases again with the injected
power to deteriorate comb performance, such as CNR and comb bandwidths. We have
shown that the properties (bandwidth and CNR) of the two polarization combs induced
by parallel optical injection are limited by increasing the injected comb spacing for fixed
bias current. However, the increase in bias current is, therefore, an alternative to improve
polarization combs properties.
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Figure 6. Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These
optical spectra are obtained for detuning ∆ν = −0.9 GHz and injected comb spacing Ω = 4 GHz.
(a,b) Wave mixing at Pinj = 3 µW and Pinj = 32 µW, respectively, (c,d) single polarization comb
at Pinj = 48 µW and Pinj = 228 µW, respectively, (e,h,i) two polarizations comb at Pinj = 304 µW,
Pinj = 560 µW and Pinj = 704 µW, respectively, (f) two polarization harmonics comb at Pinj = 376 µW
and (g) two polarization complex dynamics at Pinj = 448 µW.
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Figure 7. Polarization resolved-optical spectra corresponding to an example of two polarization
comb dynamics in Figure 6e–i. (a–c) are obtained for detuning ∆ν = −0.9 GHz and injected power
Pinj = 432.8 µW. (a–c) correspond to the optical spectra of Y-PM, X-PM and the superposition of
Y-PM and X-PM, respectively.

2.4. Tailoring Comb Properties

Figure 8 provides further insight in comb dynamics when varying injection parameters,
the injection current in the VCSEL and the polarization of injected light. Figure 8a,b analyze
the comb properties for an injected comb spacing of Ω = 2 GHz and fixed detuning,
∆ν = 1.6 GHz. For the measurement of comb bandwidth, we consider an output comb
line when its amplitude lies above −30 dB from the maximum amplitude in the optical
spectrum. When the spectrum total optical comb shows a big dip, the total comb bandwidth
is estimated from the separate bandwidth of X-PM and Y-PM spectra. The polarization of
the injected comb is parallel to that of the free-running VCSEL. When increasing injected
power, the comb bandwidth for I = 6 mA and I = 8 mA current reaches a maximum of
around Pinj = 100 µW and Pinj = 200 µW, respectively, as shown Figure 8a. The decrease
in comb bandwidth is due to the bifurcation of the two polarization comb to a single
polarization comb generation in X-PM, as shown in Figures 2i and 4f. Figure 8b shows that
the best CNR is found for low injected power Pinj. CNR decreases with injected power
due to the increase in the noise pedestal, which destabilizes comb properties. Figure 8a,b
also show that the comb bandwidth and CNR increase with the injection current for the
same injected comb properties. We next highlight the impact of polarization of the injected
comb lines on VCSEL output comb dynamics in Figure 8c,d. In Figure 8c,d, blue and red
correspond to parallel and orthogonal optical injection cases, respectively. As discussed
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in [28], the two polarization comb dynamics are mainly observed when VCSEL is injected
between the two linear polarizations. However, for parallel optical injection, the two
polarizations combs are observed only when the central injected comb lines are close to the
dominant polarization mode of the VCSEL (detuning close to zero) at low injection currents,
as shown in Figure 8a,b. When the injection current increases, the two comb dynamics are
observed in a large portion of the plane of the injection parameters. Figure 8c shows that
comb bandwidth increases with the injected power in the parallel and orthogonal optical
injection case, which is in agreement with our previous publication [26–28]. Interestingly,
the comb bandwidth for parallel optical injection is better than orthogonal optical injection
at high injection currents, as shown in Figure 8c. When comparing Figure 8a to [28], we
can observe that the comb bandwidth at low injection current is better for orthogonal
than parallel optical injection. We also checked that optical comb performances do not
change with the increase in injection currents. In the case of parallel optical injection,
the improvement in the comb performance with the increase in the injection current is
due to polarization mode instability, i.e., the excitation of the depressed polarization mode
in the VCSEL at a large injection current. The excitation of the free-running depressed
polarization mode in the VCSEL has been recently analyzed in several studies [37,39,40].
In these works, VCSEL was injected with a single frequency line master laser, and the
injection current was higher than two-times the threshold current of VCSEL. The influence
of the polarization of the injected comb is more impactful when we consider CNR. Figure 8d
shows the CNR of comb dynamics induced by parallel (blue) and orthogonal (red) optical
injections. We observe that, for parallel optical injection, whatever is the injected comb
spacing and the injection current, the best CNR is found at low injected power and then
decreases due to the increase in noise pedestal, as shown in Figure 6d–f. As shown in
Figure 8b,d, the best values of CNR are found at low injections for orthogonal and parallel
optical injections, which is in agreement with [28].
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Figure 8. Control of comb properties using the injection parameters and polarization of the injected
light. (a,b) are obtained for fixed detuning and comb spacing ∆ν = 1.6 GHz and Ω = 2 GHz,
respectively. (c,d) are obtained for fixed comb spacing (Ω = 4 GHz) and injection current I = 8 mA.
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The blue and red curves correspond to the parallel and orthogonal optical injection, respectively.
The comb dynamics in parallel and orthogonal optical injection are obtained for fixed detuning
∆ν = −0.9 GHz and ∆ν = −11.6 GHz, respectively.

3. Theoretical Bifurcation Analysis

In addition to experimental results, theoretical studies have been performed to provide
further insight into the polarization dynamics of comb injected VCSELs. We have used
the Spin-Flip Model (SFM) [42], which is widely used to describe polarization dynamics in
free-running VCSELs and supplemented it with additional term describing optical comb
injection. SFM parameters are chosen such that the dominant polarization mode (normally
depressed polarization mode) of the VCSEL in free-running emits along the X-axis ((Y-axis).
Model equations are given in Equations (1)–(4). In these equations, Ex and Ey are the two
linearly polarized slowly varying components of the complex fields in the X and Y directions,
respectively. D and n are the sum and the difference between the population inversions for
spin-up and spin-down radiation channels. µ is the normalized current injection.

dEx

dt
= −(κ + γa)Ex − i(κα + γp)Ex + κ(1 + iα)(DEx + inEy) + EM, (1)

dEy

dt
= −(κ − γa)Ey − i(κα − γp)Ey + κ(1 + iα)(DEy − inEx), (2)

dD

dt
= −γ[D(1 + |Ex|2 +

∣∣Ey

∣∣2)− µ + in(EyE∗
x − ExE∗

y)], (3)

dn

dt
= −γsn − γ[n(|Ex|2 +

∣∣Ey

∣∣2) + iD(EyE∗
x − ExE∗

y)]. (4)

The meaning of the remaining SFM parameters is the following: γp and γa correspond
to linear birefringence and linear dichroism, respectively; γs is the spin-flip relaxation rate,
γ is the decay rate of D, κ is the field decay rate and α is the linewidth enhancement factor.

The complex electrical field of the injected comb is written as follows:

EM = κinj ∑
j

Ej(t)e
i(2πνjt+ϕj(t)) (5)

with angular frequency ωj and amplitude Ej corresponding to jth comb lines and coupling
coefficient κinj. We consider an optimal coupling between the VCSEL output and the
injected comb, which correspond to κinj = κ. We consider a comb with three frequency
lines and we simplify the calculations by supposing ϕj = 0, i.e., the phase of the indi-
vidual injected comb lines is zero. The detuning frequency ∆νj is the difference between

νj and the intermediate frequency between those of X and Y polarizations, 2πνx+2πνy

2 ,
with 2πνx = αγa − γp and 2πνy = γp − αγa, the frequency corresponding to the linear
polarization mode X and Y, respectively.

SFM parameters are taken as κ = 33 ns−1, γa = −0.1 ns−1, α = 2.8, µ = 2.29,
γp = 9 GHz, γ = 2.08 ns−1 and γs = 2100 ns−1. These numerical values are taken

from [38]. In the following, we shall use κinj for injection strength, with κinj =
Einj

E0
, where

Einj and E0 are the total amplitude of the injected field and the total amplitude of the VCSEL
in free-running mode, respectively. Rate Equations (1)–(4) are numerically integrated using
a fourth-order Runge–Kutta method. Numerical simulations are typically performed with
a times series of 200 ns and a time step equal to 1.2 ps. The detuning frequency value is
defined from the central injected comb line and is referred to as ∆ν. In this section, we
model the experiment by considering that the difference between the amplitude of the
central injected comb line and the side comb lines is 12 dB.
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3.1. Y-PM Comb Dynamics

Experimental results have demonstrated the possibility of generating two combs with
orthogonal polarization in a VCSEL subject to parallel optical injection. We have also shown
that this polarization comb performance is limited by the increase in injected comb spacing.
In Figure 9, we analyze the two polarization comb numerically by using bifurcation diagrams.
Figure 9 is obtained for fixed injected comb spacing Ω = 2 GHz and detuning ∆νx = −9 GHz.
These bifurcation diagrams are plotted by selecting the minima and the maxima of polarization-
resolved intensities, Ix,y = |Ex,y|2, for each injection strength. In Figure 9, the left and right
panels correspond to the bifurcation diagrams of X-PM and Y-PM, respectively. Figure 9(a1,b1)
show the bifurcation diagrams for fixed linear dichroism γa = −0.1 ns−1. When increasing
the injection strength, the VCSEL output first shows a nonlinear wave-mixing involving the
detuning and the injected comb spacing in X-PM. When we kept increasing the injection
strength, wave mixing bifurcates to periodic dynamics corresponding to the optical frequency
comb in the two linear orthogonal polarization modes. The two polarization comb region is
referred to as “comb” in Figure 9. The X-PM shows a larger number of lines than the Y-PM,
but the number of lines in Y-PM can be controlled with injection parameters. The two comb
dynamics remain stable with a simultaneous increase in the number of lines over a large range
of injection strengths. Interestingly, by finetuning the injection strength, the VCSEL output
shows harmonic comb dynamics simultaneously in the two orthogonal combs at the boundary
of the comb regions. A further increase in injection strength results in complex dynamics
in X-PM and Y-PM accompanied by the abrupt suppression of all power in Y-PM. Cascade
comb dynamics resulting in a very low comb repetition rate are observed in between complex
dynamics depending on injection parameters. The complex polarization dynamics bifurcate
to a single polarization comb in the dominant polarization mode (X-PM). We next vary linear
dichroism to highlight its impact on the two polarization comb dynamics. Interestingly,
when decreasing linear dichroism, the size of the two polarization comb region decreases, as
observed in Figure 9(a2,a3,b2,b3). The double horizontal arrows indicate how much the size of
the combs’ regions decreases with the decrease in linear dichroism. It is worth observing that
all bifurcation sequences are similar to the case of γa = −0.1 ns−1. When linear dichroism
reaches γa = −0.8 ns−1, the two polarization comb disappear and Y-PM is suppressed, as
shown in Figure 9(a4,b4). Therefore, with the exception of the disappearance of comb lines in
Y-PM, the bifurcation scenarios remain similar for X-PM. The bifurcation scenarios described
in Figure 9 are in a very good agreement with the experimental ones in Figures 2 and 4.

Figure 10 shows an example comb and complex dynamics in the two polarization modes.
Figure 10(a1,b1) show the optical spectra of comb dynamics in X-PM and Y-PM, respectively.
We observe clearly in these spectra that the bandwidth of the frequency comb in the injected
polarization mode (X-PM) is larger than the comb in the depressed polarization mode,
Y-PM. As discussed early in the experimental section, these X-PM and Y-PM combs can
combine to form a broad comb in the total output power of the VCSEL. Figure 10(a2,b2)
show an example of complex polarization dynamics. Depending on injection parameters
and injected comb properties, these complex polarization dynamics can simultaneously
bifurcate to a two polarization harmonic comb or single-polarization comb.

Figure 9 has shown that the decrease in linear dichroism results in the complete
suppression of the comb lines in the normally depressed polarization mode (Y-PM). In
Figure 11, we provide a further insight on comb generation, whatever the linear dichroism
is. To this end, we keep the parameters used to obtain Figure 9(a4,b4), and then we
vary the bias current. When the normalized bias current reaches 2.9 times the threshold,
i.e., µ = 4.2, comb dynamics start to take place again in the two polarization modes, as
observed in Figure 11a,b. Most importantly, the bifurcation scenarios giving rise to the
two polarization comb dynamics remain similar to the case of µ = 2.29. When we increase
the bias current to µ = 5.29 in Figure 11c,d, the bifurcation to the two polarization comb
dynamics remains similar to the case of µ = 4.2. Interestingly, unlike the case of µ = 4.2,
where the two polarization becomes abruptly chaotic, the VCSEL output bifurcates to
cascade harmonic comb dynamics in the two polarization modes. The two polarization
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harmonics comb results in the suppression of all the power in Y-PM and bifurcates and,
therefore, to polarized comb generation in the X-PM. Interestingly, we checked that when
the polarization of the injected comb is orthogonal to that of the VCSEL, the size of the two
polarization combs area increases slightly when linear dichroism, γa, is decreased.

(a1)

(a2)

(a3)

(a4)

(b1)

(b2)

(b3)

(b4)

Comb Comb

Figure 9. Bifurcation diagrams for fixed injected comb spacing Ω = 2 GHz and detuning
∆νx = −9 GHz. The left and right panels correspond to X-polarization mode (X-PM) and Y-
polarization mode (Y-PM). (a1,b1), (a2,b2), (a3,b3) and (a4,b4) are obtained for γa = −0.1 ns−1,
γa = −0.2 ns−1, γa = −0.6 ns−1 and γa = −0.8 ns−1.
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Figure 10. Optical spectra for fixed Ω = 2 GHz, ∆νx = −9 GHz and γa = −0.6 ns−1. The left (a) and
right (b) panels correspond to X-PM and Y-PM, respectively. The top figures (a1,b1) are obtained for
κ = 0.525 and the bottom figures (a2,b2) are obtained for κ = 0.6.

(a) (b)

(c) (d)

Figure 11. Bifurcation diagrams for fixed injected comb spacing Ω = 2 GHz and γa = −0.8 ns−1.
The left and right panels correspond to X-PM and Y-PM, respectively. (a,b) are obtained for µ = 4.2
and (c,d) for µ = 5.29.
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3.2. Influence of Spin-Flip Relaxation Rate

Further insight into the two polarization comb dynamics is provided in Figure 12,
where bifurcation diagrams are shown for fixed ∆νx = −9 GHz when varying the injection
strength together with the spin-flip relaxation rate γs. The blue and red colors in Figure 12
correspond to the bifurcation diagrams of X-PM and Y-PM, respectively. When γs is small
(Figure 12a), the two polarization modes are excited at very low injection strengths. Most
importantly, the comb lines start to progressively appear in each polarization mode as
injection strength increases. Interestingly, when we keep increasing the spin-flip relaxation
rate γs, the VCSEL output first shows the complex dynamics in the dominant polarization
mode, which bifurcates to the excitation of the depressed polarization mode accompanied
by comb generation, as shown in Figure 12b. The bifurcation sequence remains quite
similar when further increasing the spin-flip relaxation rate. Still, the size of the complex
dynamics region in X-PM increases, therefore resulting in a decrease in the size of the
two combs region, as seen in Figure 12b–d. The size of the comb regions remains fixed
at a high value of γs, as seen in Figure 12c,d. Unlike the case of Figure 12a,b, where the
two polarization combs take place smoothly, the two comb appearance is abrupt when
the spin-flip relaxation rate is large in Figure 12c,d. The two polarization comb dynamics
bifurcates to a single polarization comb at large injection strength for each bifurcation
diagram. It is worth observing that cascade harmonics characterizes bifurcation to single
polarization comb dynamics at low γs. In contrast, the two complex polarization dynamics
result in the single polarization comb at significant γs. Once the single polarization mode
operation is achieved in VCSEL, bifurcation scenarios remain similar whatever the value
the spin-flip relaxation rate is. In addition to the spin-flip relaxation rate, we have checked
that the two polarization comb dynamics are observed in a wide range of SFM parameters
including linear dichroism (γa = −0.1 ns−1 to γa = −0.8 ns−1), injection current (µ = 2.29
to µ = 5.29), linewidth enhancement factor (α = 1 to α = 5) and linear birefringence
(γp = 1 GHz to several hundred of GHz).

(a) (b)

(c) (d)

Figure 12. Bifurcation diagrams for fixed injected comb spacing Ω = 2 GHz and detuning
∆νx = −9 GHz when varying γs. (a–d) are obtained for γs = 50 ns−1, γs = 200 ns−1, γs = 1000 ns−1

and γs = 2300 ns−1, respectively.
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4. Conclusions

We have shown experimentally and theoretically that VCSEL can bifurcate to interesting
polarization dynamics under optical frequency comb injection. Interestingly, we have
demonstrated that when the polarization of the injected comb is parallel to that of the
VCSEL, polarization mode competition can induce two combs in a single-mode VCSEL.
These combs are based on the two linear orthogonal polarizations in the VCSEL. We
have also shown that these polarization combs are limited by an increase in the injected
comb spacing, especially in the normally depressed polarization mode, Y-PM. Our results
have shown that comb performance can be regained when increasing the bias current in
VCSEL. We have performed numerical simulations to highlight a strong agreement with
experimental results by using bifurcation diagrams. We have also numerically analyzed
the influence of linear dichroism and the spin-flip relaxation rate on the two polarization
comb dynamics. Interestingly, the two polarization comb area becomes narrower when
linear dichroism decreases until it disappears at γa = −0.8 ns−1. By contrast, the size of the
region of two polarizations comb dynamics increases with the decrease in linear dichroism
when VCSEL is under an orthogonal optical injection. The single or two polarization combs
induced by parallel optical injection are not as efficient in terms of bandwidth and CNR as
the case of orthogonal comb injection investigated in [28] in terms of the number of lines at
low bias current. Furthermore, two polarization combs are observed only if the bias current
is significantly large, at least twice the threshold current for the VCSEL considered here.
In the case of orthogonal optical injection, single and two polarization combs dynamics
show the same performance (bandwidth and CNR), whatever the injection current is.
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Abstract: We present comprehensive numerically simulated scans of the spectral evolution of the
output from a single-mode semiconductor laser diode undergoing external light injection. The spectral
scans are helpful to understand the different regimes of operation as well as the system evolution
between each state: i.e., locked state, four-wave mixing, pulsations, chaos. We find that, when under
strong injection, when the injected power equals about half of the laser power, two distinct regions of
chaotic behaviour are observed. One of the chaotic regions arises due to the usual period-doubling
route to chaos; the other chaotic region is a blurring of what would be higher-order period pulsations
whose periodicity is broken by spontaneous emission and the laser spectrum is chaotic. Eliminating
spontaneous emission in our simulations confirms the latter chaotic region becomes a region with
higher-order pulsations.

Keywords: semiconductor lasers; injection-locking; noise; simulation; pulsation; chaos

1. Introduction

External laser injection-locking is a curious field of study due to the range of dynamical
states that are produced: laser synchronisation; chaos; four-wave mixing (FWM); self-
pulsation and associated period-doubling routes to chaos [1–10]. Recently, it was discovered
that lasers acting under injection-locking exhibit a strong increase in the potential direct
modulation bandwidth, with subsequent studies to unlock the potential of using such
strong modulation capability [9,10], with algorithms developed to achieve the optimal
injection-locking point [11]. A recent detailed review, in article [4], details optical injection
applications including laser synchronisation for phase-sensitive applications and frequency
distribution. Injection-locking is also important for stabilizing gain-switched optical pulse
sources and for phase stabilization of optical frequency combs [12,13]. External injection of
a semiconductor is highlighted in Figure 1, where two lasers are involved and light from
the master laser is injected into the slave laser. The optical isolator (Iso.) ensures that no
light from the slave laser is injected back into the master laser. In order to observe the
phenomena associated with external injection, the central lasing frequency (or wavelength)
of both lasers should be similar, within ±25 GHz of each other.

Laser rate equations have been shown to capture the various phenomena of externally
injected lasers [1–3,6]. Despite their simplicity, the equations reveal all of the relevant
dynamical phenomena of externally injected lasers. An extended treatise in [6], analysing
the dynamical regimes of externally injected lasers, is given in this paper, identifying
chaotic, pulsation states including Hopf-bifurcations of the pulsation into general period-N
(P-N) pulsation states [6]. One aspect that we notice when solving laser rate equations
when spontaneous emission (SE) is included [3] is the absence of higher pulsation states
beyond the P-2 pulsation states; this would be predicted when SE is omitted in the analysis.
Previous studies attributed SE to be the cause of an observed absence of a period-doubling
route to chaos [14]; a more formal analysis [15] examined the behaviour of noise-induced
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chaos when the external-injected laser system was in a delicate high order pulsation state
and that study found that SE could induce chaotic behaviour.

Figure 1. Schematic of external injection laser system. Light from the master laser is coupled to the
slave laser, the optical isolator (Iso.) ensures that light from the slave laser does not couple to the
master. Depending on the master–slave detuning, master power lever, a whole range of dynamical
effects are observed, from injection-locking, four-wave mixing, pulsation and chaos.

In this paper, we present a detailed study of the evolution of the optical spectral
output from the injected laser system. We concentrate on varying the detuning frequency
between the master and slave lasers and building up the output spectra. The plots are
characterised by constant master power, and show FWM, injection-locking, self-pulsations,
period-doubling and chaos. We find that only period-2 (P-2) pulsations (i.e., pulsations
with double the period of the self-pulsation) are present when we solve the complete rate
equations with stochastic SE included. For the first time, to the best of our knowledge, we
find a chaotic regime solely created from noise-induced chaos, when SE is removed from
the simulation that the region is entirely comprised of high-order pulsations of periodicity
P-2 and greater. The conditions to observe this noise-induced chaos regime is when the
injection level is quite high, close to 50% of the slave laser power. The noise-induced chaos
regime is entirely separate from the chaotic regime caused by the usual period-doubling
route to chaos that remains even when the SE is set to zero. In order to quantify how much
SE is needed for noise-induced chaos to exist, we use a value for the SE coupling coefficient
into the lasing mode to be 1 × 10−4; this value would be at the lower end of the observed
values for this parameter [16]. We run our simulations with hypothetical lower values of
SE coupling coefficient and that for values < 1 × 10−7 that noise-induced chaos still exists.

2. Materials and Methods

To conduct this study, we employ the field version of the rate equations for semicon-
ductor lasers. The fundamental derivation of the model is given in [3], though we keep
with the complex-valued envelope of the optical field to avoid numerical instability issues
when the slave power tends briefly to zero, as can happen with external injection. We imple-
mented the field version of the rate equations before in relation to laser gain-switching [17];
here, we just concentrate on DC biasing of the lasers.

dN

dt
=

Ibias

eV
− R(N)− a(N − N0)

1 + εNL|E|2
|E|2 + FN (1)

dE

dt
=

(1 − jαH)

2

[
a(N − N0)

1 + εNL|E|2
− 1

τp

]
E + kcEinj exp(j2π fDt) + FE (2)

where all of the symbols have their usual meaning and are defined in Table 1. The carrier
density is given by N and E is the envelope of the optical field and is related to the
photon density in the laser. The first term on the right-hand side of (1) is given by the
electric bias current flowing into the laser, where Ibias = 60 mA throughout for this study.
Carrier recombination is given by R(N) = AN + BN2 + CN3 for nonradiative, bimolecular
and Auger recombination, respectively; the third term represents stimulated emission. E is
a complex-valued quantity describing the envelope of the optical field and encompasses
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all amplitude and phase modulation effects imposed by the injected-laser system; E is
normalised such that |E|2 represents the photon density of the laser field. FN denotes
stochastic carrier recombination (which will be defined later). The first term on the right-
hand side of (2) describes the complex gain of the laser field. The gain coefficient is given by
a(N − N0), where a is the differential gain and N0 is the carrier density at transparency. The
gain coefficient is modified by the nonlinear gain εNL. τP is the cavity lifetime. Note that
lumping the photon lifetime with the gain-phase coupling allows for the slave laser to be
centred at the zero frequency within the simulation; this is beneficial so that master–slave
detuning can be easily controlled via the exp(j2π fDt) frequency-translation operation term
for the external injection. Einj is the envelope of the optical field of the master laser; in this
paper, we take a constant amplitude (noiseless) for each simulation run. The final term,
FE, is the random addition of SE due to bimolecular recombination into the lasing field,
denoting spontaneous emission into the lasing field.

Table 1. Parameters and values used in the simulation.

Symbol Definition Value and/or Unit

N Carrier density m−3

E Optical field m
3
2

I Laser bias current 60 mA
e Quantum of electronic charge 1.6 × 10−19 C
V Volume of active region 6 × 10−17 m3

A Non-radiative carrier recombination rate coefficient 1 × 109 s−1

B Bimolecular recombination rate coefficient 1 × 10−16 m3 s−1

C Auger recombination rate coefficient 1 × 10−41 m6 s−1

a Differential gain 9 × 10−13 s−1 m3

Γ Confinement factor 0.3
αH Linewidth enhancement factor 4
N0 Carrier density at transparency 1 × 1024 m−3

τP Photon lifetime 3 ps
kc Coupling of external injection into the slave laser 2 × 1012 s−1

β Fraction of spontaneous emission into the lasing mode 1 × 10−4

εNL Nonlinear gain coefficient 1 × 10−23 m3

∆ fD Master –slave detuning Hz
∆t Simulation timestep 1 ps

Bsim Simulation bandwidth 1 1 THz
υ0 Lasing frequency 193 THz
A Area of lasing mode 1 × 10−13 m2

ng Group index 3.5
1 Inverse of the simulation timestep.

The stochastic terms are appropriately scaled for numerical computations (1) and (2)
with Bsim = t−1

s , where ts is the step time. We solve the system of equations using Huen’s
predictor–corrector method.

FN =
√

2R(N)BsimeN(t) (3)

FE =
√

βBN2Bsim

(
eEI(t) + jeEQ(t)

)
(4)

Each e term is an independent identically distributed random sample taken from a
Gaussian random number generator with unity variance. The current is held constant;
the only sweeping parameters that we consider is the power of the master laser and the
master–slave detuning. We define the detuning fD = υmaster − υslave. When solving the
equations, we are adjusting fD directly in (2) and the spectrum is always centred for the
slave; however, centring the spectrum for the master laser makes it easier to unequivocally
show the injection-locking. To centre the spectrum for the master, one needs to take the
complex-conjugate of the exp(2π fDt) array (calculated when constructing the injection
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term in (4)) and multiply by the output from solving the differential equations E(t) to
frequency translate E(t) to be centred at the master laser.

Converting from photon density to optical power PW is given by

PW

|E|2
=

c

ng
hυ0 A (5)

where c is the speed of light in a vacuum, ng is the group index, h is Planck’s constant,
and A is the area of the laser mode. One can interpret the spectral scan as essentially
tuning the slave laser into the master laser and noting the spectrum. Practically, one
would tune the slave laser using temperature control, taking advantage of the available
~0.1 nm/K (12 GHz/K at 1550 nm) thermal tuning of semiconductor lasers. In all of our
simulations, we simulate at a 1 ps timestep, using an initial condition of NIC = 1 × 1024

and EIC = 1 × 1012. In order to lessen the strength and duration of the transient, we are
simulating E by taking 110,000 sample points (unless otherwise stated), and the first 10,000
samples are discarded to remove any transient. The remaining 100,000 data points are used
to calculate the spectrum using fast Fourier transforms (FFT). The number of data points
and the sampling time allows us a resolution bandwidth of 10 MHz, and this is within
the range of high-resolution optical spectral analysers. The spectrum we are calculating
is the squared magnitude of the (complex valued) FFT array, and here we are circularly
shifting by half of the number of samples in the FFT array such that the spectrum is centred
at the zero frequency. In order to minimise randomness within the spectra, we perform the
following: for each set of parameters the simulation is run twenty times and the spectrum
is averaged over those twenty runs. This averages the noise to the average spectral power
within each frequency bin in the FFT array.

Preliminary simulations showing the standard laser power of the slave, without
external injection, versus bias current are shown in Figure 2a; the threshold current is about
15 mA. The optical spectrum of the slave is shown in Figure 2b with a linewidth of 2 MHz.
The relative intensity noise is show in Figure 2c; the noise at low frequencies is −165 dB/Hz
and the relaxation oscillation frequency (ROF) occurs at 9.4 GHz.

Figure 2. Plot of (a) laser L-I curve of the slave without external injection. (b) The optical spectrum
of the free-running slave laser showing Lorentzian broadening. (c) RIN spectrum of the slave laser
without external injection showing a relaxation oscillation frequency of 9.4 GHz.

3. High-Resolution Spectral Scans Due to External-Injection

We show the detailed scans of the output spectra as the slave laser is tuned across the
master laser, as was performed experimentally in [18] (Figure 4). To build up the scans, we
simulate the averaged spectrum for a given set of laser parameters; then, we adjust one
of the parameters (here, we adjust the detuning) and then stack all the calculated spectra
and display the spectra as a 3D colour map. Even though our calculated spectra run from
−500 GHz to 500 GHz, we only show the spectra running from −100 GHz to 100 GHz for
clarity because the most interesting features of the spectra are located within ±100 GHz of
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the master laser. We plot the spectral scan with the injected power of the master taken to
be constant within each scan. The spectral maps are shown in Figures 3 and 4. Different
regimes are identified in Figures 3 and 4 by letters A–H; individual spectra corresponding
to the of the different regimes are shown in Figure 5. Trajectories of the photon density
and normalised carrier density (N–P trajectories) for the same points A–H are shown in
Figure 6. Figure 7 presents the calculated RF spectrum after photodetection of the laser
output for the different regimes A–H. We will explain the dynamics in more detail later;
first, we qualitatively describe the regions labelled A–H in Figures 3 and 4. In Figure 3a,
the injection power is 10 µW, and we can clearly see that there is a short locking range from
about −3 GHz to 3 GHz, when the output of the slave laser is locked to the master laser;
when locking has not been achieved, obvious four wave mixing (FWM) products appear in
the spectrum. Note that all of the spectra shown in this section are qualitatively similar to
the experimentally taken spectra of external injection dynamics in [11].

Case A: FWM. Region A corresponds to FWM between the master and slave, and the
master and slave are clearly not locked; the beating between both lasers modulates the slave
laser to create additional frequency products in the spectrum, each spaced by f d about the
slave laser. This is clearly shown in the optical spectrum in Figure 3a. The N–P trajectory in
Figure 6A for FWM shows a slight modulation of the carrier density (as expected), and the
RF spectrum in Figure 7A shows a few peaks each spaced by f d.

Case B: Injection-locking. When the detuning between the two lasers is reduced, the
magnitude of the varying carrier density increases and becomes sufficient to synchronise
the slave laser to the master laser. The lasing frequency of the slave also reduces because the
carrier density for threshold of the injected laser system is smaller than that for the solitary
free-running laser system. Injection-locking has been extensively studied previously [1–13]
and we shall only briefly describe the results. The N–P trajectories (Figure 6B) indicate
a single point for the injection-locked case and negligible modulation of the photon and
carrier densities. We can deduce the carrier density at threshold of Nth 1.42 × 1024 m−3

(injection power of 10 µW), which is lower than the carrier density at threshold for the
solitary slave laser of 1.422 × 1024 m−3. When N exceeds (goes below) the threshold, the
slave becomes amplifying (attenuating). The optical spectrum shows a single lasing mode,
and the absence of strong mixing tones in the RF spectrum (Figure 7) indicates that the
system is locked.

Increasing the injection power exacerbates the modulation of the photon and carrier
densities; therefore, we expect more complex and interesting behaviour. As the injection
power is increased, the locking range is increased, as is the case in Figure 3b. We notice, here,
that for detuning values close to the locking range, the slave is pulled more strongly towards
the master. The next dynamical feature that appears is FWM-induced period-doubling.

Case C: FWM-induced period-doubling. This feature appears when the FWM goes into
a period-doubling type oscillation for detuning close to the locking range before injection-
locking occurs. In this example, there is detuning of about −18 GHz (Figure 4a and it is
also observed in [18] (Figure 4). The cause of this behaviour is that the RO frequency of the
slave is midway between the master and slave detuning; hence, the pulsation arising from
the FWM exacerbates period-doubling oscillation. As the detuning is increased, the slave
laser emerges into a FWM regime without the laser going into self-pulsation.

Case D: Self-pulsation. As the master power is increased further, regions of self-
pulsation appear, as shown at point D in Figure 4a. This happens because the system
becomes unstable as the damping can no longer suppress random fluctuations in the
photon density; hence, optical pulsations grow. One can clearly see that the spectral lines
of the self-pulsation coincide with the ROF. The laser system cannot support continuously
growing oscillation and the oscillating pulses deplete the carrier density and the pulses
thus decay, thereby keeping the self-pulsation stable. The process keeps repeating because
the carrier density builds up in the absence of photons, and once the pulse builds up, this
depletes the carrier density. In Figure 6D, by looking at the N–P trajectory, one can see a
large swing in the carrier density in addition to a large swing in the photon density.
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Figure 3. Simulation of the spectra as the master slave detuning is increased from −25 GHz to 25 GHz.
Each subplot shows the scan for a different master power. The master power is set to (a) 10 µW,
(b) 100 µW. The different regions are identified in yellow capitals: A is FWM; B is injection-locking.
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Figure 4. Simulated detuning scan of the spectral evolution of the externally injected laser as the
injection power is increased to (a) 1 mW and (b) 2 mW. In these plots, the labelled regions are: (C) is a
frequency doubled pulsation due to FWM as the laser nears injection-locking regime, self-pulsation
(D), period-doubling (E), chaos (F), (G) is chaos with period-doubled oscillations and subject to a
more detailed study in Section 4; (H) is another FWM regime.
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Figure 5. Averaged optical spectra corresponding to the regimes (A–H) in Figures 3 and 4. One
could consider Figures 3 and 4 to be a stacked collection of these spectra. The pulsation regimes
(D) are the P-1 oscillation regimes, whereas (E) is the P-2 oscillation regime. The chaotic regimes in
(F,G) show wide spectrum though a clear absence of any spectral line structure that would indicate
regular pulsation.
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Figure 6. Phase–space portraits of the trajectory of the carrier and photon densities for the regimes
outlined in Figure 1. Slight modulation for the FWM states in (A,H), a static point when injection-
locked in (B). Period-doubling in (C,E); note the position of the extra loop in both cases for P-1
pulsations (D) and chaos in (F,G).
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Figure 7. Calculated RF spectra of the regimes (A–H) identified in Figures 3 and 4. Injection-locking
is achieved when the RF spectrum is minimised. The RF spectrum can yield information about
the pulsation regimes, allowing one to distinguish between pulsation regimes (C–E) showing clear
spectral lines and chaotic pulsation regimes (F,G) showing a broad continuum. The RF spectra for the
FWM cases (A,H) show a few tones in the spectrum with the tone spacing equalling the master-slave
detuning frequency.

Case E: Period-doubling. When the photon and carrier densities require two oscillation
periods to revert to the same position, extra spectral lines, which are spaced at half the
distance for the case of self-pulsation spectral lines, also appear in the spectrum in region
E in Figure 4a and within the optical and RF spectra in Figures 5E and 7E, respectively.
In the trajectory in Figure 6E, a small loop appears, indicating a pattern of consecutive
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larger and smaller pulses in the pulse train. One interesting aspect to note that is indicated
by the simulations is that there is an obvious narrowing of the spectral lines for period-
doubling (Figure 5E compared to the spectral lines self-pulsation case (Figure 5D). This can
be explained by looking at their N–P traces in Figure 6E,D, respectively. One can clearly see
that the photon density tends towards zero in both scenarios; large phase changes occur
when the value of the laser field is small compared to the SE [19]. For the self-pulsation case,
the photon density goes to zero once per pulsation cycle; however, for the period-doubling
case, the photon density goes to zero once at half the rate for self-pulsation. This explains
why the spectral line broadening is smaller for period-doubling compared to self-pulsation

Case F: Chaos. Chaos has been studied in detail before [6,7], so we will just briefly
describe the effect here. The main characteristic of chaos is the broad continuous spectrum;
this is clearly seen in Figures 4b and 5F. As the injection power is increased to 2 mW,
then it is possible for the pulsations to become completely chaotic, as there is no way to
regularise the photon density in the cavity at the instant the carrier density reaches above
the threshold. Looking at the detuning range at which chaotic behaviour is observed in
Figure 4b (~10 GHz detuning), and noting the corresponding region in Figure 4a when
less injection power is used: in that detuning region (~10 GHz) in Figure 4a, notice there is
an abrupt change in the spectral line spacing when increasing the detuning in region D in
Figure 4a; it is within this region of abrupt pulsation frequency change that chaos occurs
when the injection power is increased. It is interesting to note from the N–P trajectory of
chaotic regime in Figure 6F that there is no regular pulsation, as is the case for the trajectory
for self-pulsation; however, in the coherence case, photon density can go towards zero,
and the time taken to build up a lasing field again depends on the value of the photon
density in the slave laser as the laser goes above the threshold. One curious aspect of chaos
is that the optical spectrum is the same irrespective of whether or not SE is included in
the simulation. We have described in previous work how regular pulse trains can have
continuous optical spectra without any ‘comb’-like structure when there is no memory of
the optical phase from pulse to pulse [20]. We rule out any such phenomenon being the
cause of the continuous spectrum for chaos by looking at the RF spectrum in Figure 7F;
there are clearly no distinct lines that would indicate pulsation with jitter [21].

Case G: Noise-Induced Chaos Regime. This is the regime that we are identifying for
the first time in this paper. It is clear in Figure 5G that the laser system is going into a
different pulsation regime to that of chaos in Case F (Figure 5F). The extra peaks in the
spectrum, similar to those of period-doubling, are visible, though the laser is still in a
chaotic state. As we show in the following section, without SE, this region is comprised of a
higher-order pulsation regime. Clearly, the N–P trajectory is chaotic (Figure 6G); moreover,
the chaotic trajectory looks to have the same form for period-doubling in Figure 6E, though
there is no regular trajectory path and it is clearly taking a chaotic trajectory.

Case H: Four-wave mixing. As the master–slave detuning is increased further, the
lasers no longer pulsate because of the limited carrier density dynamics, and only FWM-
products are created, which is similar to case A.

Now that we have described all of the operating regimes of the externally injected
laser system, we concentrate on case G, the period-doubling regime, in more detail.

4. Influence of Spontaneous Emission

In this section, we justify the claim made in the previous section that the SE is re-
sponsible for keeping the injected laser system, for high injection powers, in a chaotic
state. To enact this, we repeat the scans of Figure 4a,b with the value of the spontaneous
coefficient β set to zero. The results are plotted in Figure 8 for injection powers of (a) 1 mW
and (b) 2 mW. For the case of 1 mW injection without SE, a very thin region of chaos is
clearly identifiable by a spectral continuum at a detuning of about 10.5 GHz. Note this was
present in Figure 4a, though the detuning range over which chaos occurs here is narrow;
thus, we concentrated on chaos at the higher power of 2 mW for clarity. In Figure 8a, clear
evidence of P-2, P-3 and P-4 oscillations appears either side of this narrow chaotic state
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(in the vicinity of detuning of 11 GHz), which were not present when SE was included in
Figure 4a; this finding is consistent with [14], where a lack of a period-doubling route to
chaos was found. Within this detuning window in Figure 8a, periodic-pulsation states are
now observable due to the removal of SE in the model. This noise-induced chaos behaviour
was formally studied in [15]. The impact of SE is starker for the second chaotic region
in Figure 4b. There are now clearly observable P-2, P-3 and P-4 oscillations within the
detuning window from 13 GHz to 17 GHz; these are washed away by the SE in Figure 4a,
where a chaotic state with the hallmarks of a P-2 state exists over the detuning range from
13 to 17 GHz (approx.).

Figure 8. Scan of the injection-locking for (a) 100 uW and (b) 200 uW. In each case, the value of the
spontaneous emission coefficient is set to zero. These plots show more dynamical pulsation states
than in Figure 4, especially for the case of 2 mW in the region from 6 to 20 GHz detuning.

The detail in these scans is only as good as the detuning granularity when constructing
the spectral scans with detuning. A more in-depth examination at the spectral plots is
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repeated by exploring the detuning over smaller detuning ranges, as well as zooming into
the central portion of the spectrum. Spectral resolution is also enhanced by increasing the
number of samples taken when solving the system equations; the number of samples taken
was 1,010,000 (the first 10,000 samples are discarded). The spectral resolution is now 1 MHz.
These were conducted over the detuning range from 6 to 18 GHz with the injection power
equal to 2 mW; the spectral scan results are shown in Figure 9. This figure clarifies the stark
differences when SE is included or omitted in the simulations, and higher-order P5 (and
above) oscillations are revealed when SE is omitted.

Figure 9. Detailed scan of the region around the chaotic regime showing the changes from regular
pulsations to chaotic pulsations for the case (a) without SE and (b) including SE. The injection power
is 2 mW. Note the absence of period-N oscillations when SE is included, leaving just the amalgamated
chaotic version of the P-2 state for detunings around 14 GHz to 15 GHz.
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For completeness, we investigate the level of SE coupling required to observe oscilla-
tions of a higher order than P-2 oscillations. We take the injection power level to be 2 mW
and the master–slave detuning to be 14.55 GHz. In Figure 9, we find that there is a P-6
oscillation without SE and a noise-induced chaotic state with SE included. We find that the
SE coupling needs to be reduced below the value of 1 × 10−7 to see the P-6 oscillation; the
scan of the spectra with the value of SE coupling increased from 0 to 1 × 10−7, as shown in
Figure 10.

Figure 10. Spectral scan of the influence when very low SE coupling for the external injection laser
system when the detuning is 14.55 GHz and the injection power is 2 mW. At the right-hand side of
the plot, we note a continuum in the spectrum with two prominent horizontal lines corresponding to
the noise-induced chaos within a P2 pulsation. As the SE coupling is reduced towards zero (far left),
we see extra horizontal lines emerge, which signify emergence of a higher-order pulsation period.
When SE coupling equals zero, there are three extra spectral lines between the P2 pulsation lines;
therefore, the system is in a P6 regime. The values of SE coupling are at least 3 orders of magnitude
below typical value of SE coupling.

5. Conclusions

We have shown, through numerical solutions, the spectral evolution of an externally
injected laser system and the role that SE plays in washing out higher-order pulsation
regimes in the dynamics of externally injected lasers. We identify an operating regime
comprised entirely of noise-induced chaos destroying higher-order pulsations, especially
under strong injection powers. The spectral scans by themselves would be helpful to those
operating externally injected lasers to understand the regimes of operation as they are
tuning the lasers to achieve injection-locking. The level of employed SE in the slave laser
would be considered to be at the lower end, as we chose a value of SE coupling coefficient
to be an order of magnitude lower than a typical value for this parameter. We show that a
value of SE coupling needs to be as low as 1 × 10−7, many orders of magnitude smaller than
typical values in order to observe higher-order pulsations. There is sufficient experimental
evidence to show existence of P3 oscillations in [6,22] and P4 oscillations in [5,14], though
much work is needed to understand the laser parameters and operating conditions of
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injection lasers to achieve higher-order pulsations than the P2 pulsations in the presence
of SE.
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Abstract: The statistics of the optical phase of the light emitted by a semiconductor laser diode when
subject to periodic modulation of the applied bias current are theoretically analyzed. Numerical
simulations of the stochastic rate equations describing the previous system are performed to describe
the temporal dependence of the phase statistics. These simulations are performed by considering
two cases corresponding to random and deterministic initial conditions. In contrast to the Gaussian
character of the phase that has been assumed in previous works, we show that the phase is not
distributed as a Gaussian during the initial stages of evolution. We characterize the time it takes
the phase to become Gaussian by calculating the dynamical evolution of the kurtosis coefficient of
the phase. We show that, under the typical gain-switching with square-wave modulation used for
quantum random number generation, quantity is in the ns time scale; that corresponds to the time
it takes the system to lose the memory of the distribution of the initial conditions. We compare the
standard deviation of the phase obtained with random and deterministic initial conditions to show
that their differences become more important as the modulation speed is increased.

Keywords: semiconductor laser; optical phase; gain-switching; spontaneous emission noise;
quantum random number generation

1. Introduction

Experimental and theoretical understanding of the fluctuations of laser light began
shortly after the invention of the laser [1–5]. Special attention has been devoted to fluc-
tuations of the light emitted by semiconductor lasers [6–10] due to their vast variety of
applications. The best available theoretical description of these fluctuations is based on the
Fokker–Planck equation, or alternativelly on Langevin’s stochastic rate equations [3,6–8,11].
The phase of the laser electrical field is a random quantity, mainly due to the effect of the
spontaneous emission noise. The random character of this phase is precisely the basis of
some of the available methods for quantum random number generation (QRNG).

Random numbers are a vital resource for numerous applications including cryptogra-
phy, statistical analysis, stochastic simulations, decission making in engineering processes,
quantitative finance, gambling, massive data processing, etc. [12,13]. Random number gen-
erators (RNG) use software algorithms (pseudorandom number generators) or hardware
physical devices. Typical physical processes used to generate random numbers are radioac-
tive decay, Johnson or Zener’s noise, chaos noise [13,14] and quantum phenomena [12,13].
QRNGs are a particular case of physical RNGs that can generate truly random numbers
from the fundamentally probabilistic nature of quantum events [13]. The advantage of
using QRNGs relies on its unpredictibility, which can be proven to be based on quantum
physics laws. Typical QRNGs are based on quantum optics [13]. These generators can
be divided in (i) generators that use single-photon sources, and (ii) generators that use
multi-photon sources, typically semiconductor lasers or LEDs. QRNGs based on single-
photon detection methods include: Branching path generators [15], generators measuring
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the time of arrival of photons [16], photon counting generators [17], and attenuated pulse
generators [18]. These methods have been experimentally compared in [19]. Multi-photon
QRNGs include: Generators based on quantum vacuum fluctuations [20], on amplified
spontaneous emission (ASE) signals [21,22], and on phase noise in continuous wave [23–25]
and in pulsed laser diodes [26–31].

Spontaneous emission is a useful mechanism to generate quantum fluctuations,
as it can be ascribed to the vacuum fluctuations of the optical field [26]. Randomness
due to spontaneous emission is the basis of QRNGs based on pulsed single-mode laser
diodes [26–28,30,31]. These generators have several advantages. They are made of com-
mercially available components: For instance, standard photodetectors can be used due
to the high signal levels. They are simple, low-cost, robust, and fast: Generation rates up
to 43 Gbps quantum random bit generation have been experimentally demonstrated [27].
In these QRNGs the laser diode is periodically modulated from below to above threshold
in such a way that gain-switching operation is obtained, typically at Gbps rates. While
the laser is below threshold the optical phase becomes random due to the spontaneous
emission noise. Gain-switching operation produces a periodic train of laser pulses with
random phases. Phase fluctuations are then converted into amplitude fluctuations by
using interferometric setups [27,31]. Detection and filtering of the amplitude fluctuations
provides the generation of random values with an almost uniform distribution.

The applications of QRNGs, for instance in cryptography [31,32], require that the
physical processes underlying their operation must be properly understood and described.
For QRNGs based on pulsed semiconductor lasers, it is essential an accurate description
of the phase diffusion process, that is, laser phase fluctuations must be qualitatively
and quantitatively characterized. Modelling of these fluctuations has been performed
by numerical integration of the laser stochastic rate equations [27,30,31,33–36]. Good
quantitative agreement between experiments and theory is achieved when the complete set
of parameters of the rate equations is known for the specific laser diode. Good agreement
between experimental and theoretical phase fluctuations has been recently reported for a
discrete mode laser (DML) [36] for which a complete extraction of the intrinsic parameters
was performed [35,37]. This permits a quantitative description of the dependence of phase
diffusion on the laser and modulation parameters. On the qualitative side, statistics of
optical phase has been described as Gaussian in numerical simulations [27,33,34] since
spontaneous emission noise has also Gaussian distribution. However, in these generators
the bias current is periodically modulated in such a way that the evolution is mainly in
a transient regime, specially when operating at fast bit rates. It is then expected that the
choice of initial conditions in the simulations must have impact on the statistics of the
optical phase and on the time it takes the phase to be distributed as a Gaussian. This is
in fact the main objective of this work: The investigation of the conditions for which the
phase becomes distributed as a Gaussian.

In this paper we report a theoretical study of the phase diffusion in gain-switched
semiconductor lasers. This is done by performing numerical simulations of the stochastic
rate equations for the complex electrical field and carrier number. In our modelling we
use the set of parameters recently extracted for a DML device. With these parameters
we first analyze the impact of the carrier noise on the phase statistics. In the rest of the
paper we focus on the calculation of the temporal dependence of the statistical moments
and distribution of the phase. We first consider random initial conditions that contrast
to previous analysis in which deterministic fixed initial conditions were chosen [34]. We
compare the phase statistics obtained for both types of initial conditions. For both cases
we show that the phase is not distributed as a Gaussian because of the non-Gaussianity of
the initial conditions. This contrasts to the Gaussian character of the phase that has been
assumed in previous works [27,33,34]. We characterize the time it takes the phase becomes
approximately Gaussian by calculating the temporal evolution of the kurtosis coefficient
of the phase. Our calculations indicate that under the typical gain-switching with square-
wave modulation used for QRNG, the time it takes to the phase to become Gaussian is in
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the ns scale. These are the typical times for which the memory of the distribution of the
initial conditions is lost. The comparison between the variance of the phase obtained with
random and fixed initial conditions show that their differences become more important as
the modulation speed is increased.

Our paper is organized as follows. In Section 2, we present our theoretical model.
Section 3 is devoted to analyze the dynamical evolution of the relevant variables. In Section 4,
we study the temporal evolution of the phase statistics. Finally, in Section 5 we discuss and
summarize our results.

2. Theoretical Model

Gain-switched single-mode semiconductor laser dynamics can be modelled by using
a set of stochastic rate-equations that read (in Ito’s sense) [6,37,38]

dP

dt
=

[
GN(N − Nt)

1 + ǫP
− 1

τp

]
P + Rsp(N) +

√
2Rsp(N)PFp(t) (1)

dφ

dt
=

α

2

[
GN(N − Nt)−

1
τp

]
+

√
Rsp(N)

2P
Fφ(t) (2)

dN

dt
=

I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt)P

1 + ǫP
(3)

where P(t) is the number of photons inside the laser, φ(t) is the optical phase, and N(t) is
the number of carriers in the active region. The parameters appearing in these equations
are the following: GN is the differential gain, Nt is the number of carriers at transparency, ǫ
is the non-linear gain coefficient, τp is the photon lifetime, α is the linewidth enhancement
factor, e is the electron charge, and A, B and C are the non-radiative, spontaneous, and
Auger recombination coefficients, respectively. In these equations we consider a temporal
dependence of the injected current, I(t), and a rate of the spontaneous emission given by
Rsp(N) = βBN2 where β is the fraction of spontaneous emission coupled into the lasing
mode. The Langevin terms FP(t) and Fφ(t) in Equations (1) and (2), represent fluctuations
due to spontaneous emission, with the following correlation properties, < Fi(t)Fj(t

′) >=
δijδ(t − t′), where δ(t) is the Dirac delta function and δij the Kronecker delta function with
the subindexes i and j referring to the variables P and φ.

QRNG systems based on gain-switching of single-mode laser diodes are such that a
large signal modulation of the bias current is applied to the device. We consider an injected
current following a square-wave modulation of period T with I(t) = Ion during T/2, and
I(t) = Io f f during the rest of the period. This modulation is such that Io f f < Ith, where
Ith is the threshold current of the laser, for obtaining a random evolution of the optical
phase induced by the spontaneous emission noise. Numerical integration of the previous
stochastic rate equations by usual Euler–Maruyama [3,39] or Heun’s predictor-corrector
algorithms [37] present instabilities when the photon number is very small, a situation
always present in this type of QRNGs: some spontaneous noise events cause negative
values of P that lead to numerical instabilities due to the square root factor multipliying
the noise term in Equations (1) and (2). Very recently a set of rate equations for the complex
electrical field, E(t), instead of equations for P and φ has been proposed to solve this
problem [35]. These equations are the following:

dE

dt
=

[(
1

1 + ǫ | E |2 + iα

)
GN(N − Nt)−

1 + iα

τp

]
E

2
+
√

βBNξ(t) (4)

dN

dt
=

I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ǫ | E |2 (5)

where E(t) = E1(t) + iE2(t) is the complex electrical field and ξ(t) = ξ1(t) + iξ2(t)
is the complex Gaussian white noise with zero average and correlation given by <

ξ(t)ξ∗(t′) >= δ(t − t′) that represents the spontaneous emission noise, and where we
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have considered that Rsp(N) = βBN2. These equations exactly correspond to our ini-
tial model because the application of the rules for the change of variables in the Ito’s
calculus [11] to P =| E |2= E2

1 + E2
2 and φ = arctan (E2/E1) in Equations (4) and (5) gives

Equations (1)–(3). Instabilities do not appear because P is not inside the square root factor
that multiplies the noise term.

Up to now we have considered an equation for N that has not any noise term. Carrier
noise can also be important for describing statistics in semiconductor laser dynamics [6].
These fluctuations can be taken into account if we substitute Equation (5) by

dN

dt
=

I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ǫ | E |2

+

√
2
(

AN + BN2 + CN3 +
I(t)

e

)
ξN − 2

√
βBN

(
E1ξ1 + E2ξ2

)
(6)

where ξN is a real Gaussian white noise of zero average and correlation given by <

ξN(t)ξN(t
′) >= δ(t − t′) and statistically independent of ξ(t) [6,10,37,40].

In this work we will numerically solve Equations (4) and (6) by using the Euler–
Maruyama algorithm [3,39] with an integration time step of 0.001 ps. We will use the
numerical values of the parameters that have been extracted for a discrete mode laser
(DML) [35,37]. This device is a single longitudinal mode semiconductor laser emitting
close to 1550 nm wavelength and Ith = 14.14 mA at a temperature of 25 ◦C. The values of
the parameters are GN = 1.48 × 104 s−1, Nt = 1.93 × 107, ǫ = 7.73 × 10−8, τp = 2.17 ps,
α = 3, β = 5.3 × 10−6, A = 2.8 × 108 s−1, B = 9.8 s−1, and C = 3.84 × 10−7 s−1 [35,37].
Simulation and experimental results have shown not only qualitative but also a remarkable
quantitative agreement for a very wide range of gain-switching conditions [35,37,41].

3. Analysis of the Dynamics

We first analyze the dynamical evolution of relevant variables when the laser is
modulated with Ion = 30 mA, Io f f = 7 mA, and T = 1 ns. The laser is switched-off with a
current close to Ith/2, for obtaining a significant effect of the spontaneous emission noise
on the randomness of the phase. Figure 1a–c show the photon number, carrier number, and
optical phase, respectively, as a function of time. We integrate the equations for consecutive
bias current pulses in such a way that the initial conditions for one period correspond to the
final values of the variables at the end of the previous period. Figure 1a shows P for three
consecutive pulses. The laser is switched-on with Ion at t = 1 ns. After this time P begins
to build-up from very small random values determined by the spontaneous emission noise
events. After the emission of the pulse with the corresponding relaxation oscillations, P
begins to decrease at t = 1.5 ns (when Io f f is applied), reaching the small random values at
which spontaneous emission noise dominates the device dynamics. N begins at t = 1 ns
from a value well below the threshold carrier number, Nth = Nt + 1/(GNτp) = 5.045× 107,
as it can be seen in Figure 1b. The characteristics relaxation oscillations of N associated to
the pulse emission are followed by a monotonous decrease from t = 1.5 ns to 2 ns due to
the value below threshold of Io f f .

The optical phase is calculated at each integration step from E1 and E2 in such a
way that it is a continuous function of t. The dynamical evolution of φ is shown in
Figure 1c. When P is large (small) the noise term in Equation (2) is much smaller (larger)
than the other term in that equation and φ mainly evolves in a deterministic (random) way.
The deterministic decrease of φ is due to the value below threshold of the current when
switching-off the laser: GN(N − Nt)− 1

τp
< 0 because N < Nth, and therefore φ decreases

(see Equation (2)).
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Figure 1. (a) Photon number, (b) carrier number, and (c) optical phase as a function of time for three
consecutive pulses when T = 1 ns.

Visualization of different random trajectories and calculation of statistical moments
of the phase, specially its standard deviation, σφ(t), have been usually done by over-
laying them in a temporal window with a duration of a few periods [33–35]. For in-
stance just one period is considered in references [34,35] to calculate the value of σφ(t) =√
< φ2 > (t)− < φ >2 (t) with 0 ≤ t ≤ T. To obtain well defined averages, < φ > (t)

and < φ2
> (t), it is necessary to make a choice of the initial conditions at the beginning

of each period because φ is an unbounded quantity, as shown in Figure 1. One choice is
to take P(0) =< P(0) >, N(0) =< N(0) >, and φ(0) =< φ(0) > [34], that is fixed initial
conditions. A second choice is to take random initial conditions [35]. Photon and carrier
numbers at t = 0 are those obtained at the end of the previous period, like in Figure 1. The
change with respect to Figure 1 is related to the phase and it is based on the cyclic nature of
angles: We consider that φ at the beginning of the period, φ(0), is that corresponding to
φ at the end of the previous period, φ(T), but converted into the [0, 2π) range, that is we

consider that φ(0) is given by φ(T)− int
( φ(T)

2π

)
2π.

Figure 2 shows the temporal evolution of P, N and φ, plotted in a window of duration
T, corresponding to the three consecutive pulses of Figure 1 and using the previous choice
of random initial conditions. Figure 2a,c show that laser pulses that have a larger switch-on
time, defined as the time at which P crosses a fixed level, have also a larger value of
the maximum of N and P [9]. Figure 2b shows that φ takes values in a range of several
multiples of 2π during one period. Figure 2b also shows, in a more clear way than in
Figure 1, that the phase fluctuations are more important at the beginning and at the end of
the pulse. Comparison between Figure 2a,b shows that pulses with a similar evolution of
P can have a very different phase evolution (see black and red realizations). In the next
section we will focus on the description of the temporal evolution of the phase statistics.
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Figure 2. (a) Photon number, (b) phase, and (c) carrier number dynamical evolution for three
different realizations are shown with black, red, and green lines in a temporal window of duration T.
(d) Variance of the phase as a function of t. In this figure T = 1 ns and the three realizations are
extracted from the time traces of Figure 1.

4. Analysis of the Phase Statistics

The dynamical evolution of the variance of the phase, σ2
φ, is shown in Figure 2d for

the case of random initial conditions and a temporal window of duration T = 1 ns. σ2
φ(t)

has been calculated by averaging over 2 × 104 temporal windows. σ2
φ(0) > 0 because of

our choice of random initial conditions. Large increases of σ2
φ(t) occur while P is small

and dominated by the spontaneous emission noise, that is at the beginning and at the end
of the period. While the evolutions of P and φ are deterministic and I > Ith (0.15 ns < t
< 0.5 ns) σ2

φ(t) oscillates with the frequency of the relaxation oscillations around a value
that increases linearly with time, similarly to what was observed by Henry [8]. These
oscillations and the linear increase are barely seen in Figure 2d because of the vertical scale
determined by the large values of the variance when the laser is switched-off. From 0.5 ns
< t < 0.65 ns, while φ still has a deterministic evolution, there is a slight decrease of σ2

φ(t).
After that time, both φ and P become determined by the spontaneous emission noise. In
this way the linear increase of σ2

φ(t) with t, characteristic of phase diffusion, is observed
until the end of the period, as it is seen in Figure 2d.

We now analyze the effect of carrier noise on the statistics of the phase. Figure 3 shows
the probability density function (pdf) of φ at three different times when the carrier noise is
considered (that is, integrating Equation (6)) and when it is neglected (considering instead
Equation (5)). This figure has been obtained using the same conditions of Figure 2.

Figure 3 shows that the effect of carrier noise on the statistics of φ is very small. In fact,
it has been shown that the consideration of noise in the carrier equation is not important
during transient regimes [9,33], being only essential in the stationary regime for calculating
quantities like the relative intensity noise [6]. Figure 3 also shows the Gaussian distributions
of average and standard deviation given by the simulation with carrier noise. It is clear
that the Gaussian distribution does not describe well the phase satististics, specially for
short times (t = 0.1 and t = 0.5 ns). The Gaussian approximation becomes better at longer
times (t = 0.9 ns).
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Figure 3. Probability density function of the phase at three different times in (a) linear, and
(b) logarithmic vertical scale. Pdfs obtained with and without noise in the carrier number equa-
tion are plotted with red and black solid lines. Gaussian approximations are plotted with blue
dashed lines.

A way of quantifying if the Gaussian distribution is suitable for describing the phase
statistics is by calculating moments of φ of order higher than 2. Asymmetry and kurtosis
coefficient of the simulated data are shown in Figure 4 as a function of time. Both coefficients
must vanish if the distribution is Gaussian. Figure 4a shows with black lines the asymmetry,
γr, and kurtosis, κr, coefficients obtained under the same conditions of Figure 2, that is
with random initial conditions. While the phase distribution is symmetric (γr ∼ 0), κr is
significantly larger than zero. κr decreases fast until it develops a small peak close to the
time at which the first relaxation oscillation appears. After that peak it reaches a plateau
that finishes when P reaches the spontaneous emission noise level (around t = 0.7 ns).
From that time φ diffuses and κr monotonously decreases reaching values that are closer
to zero at the end of the period (κr = 0.65 at t = 0.9 ns). Figure 4b shows γr and κr when
T = 2 ns. In this case φ has more time to diffuse when the laser is switched-off and then
the Gaussian approximation is better at the end of the period (κr = 0.14 at t = 2 ns).
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Figure 4. Asymmetry and kurtosis coefficients of the phase as a function of time for (a) T = 1 ns, and
(b) T = 2 ns. Asymmetry and kurtosis coefficients are plotted with solid and dashed lines, respectively.
Results for random and fixed initial conditions are plotted with black and red lines, respectively.
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The reason why φ is not Gaussian can be understood by plotting the pdf of φ at t = 0.
Figure 5 shows that distribution for the case of T = 1 ns. The distribution corresponds to a
uniform random variable in [0, 2π). This is because of the way random initial conditions

are chosen: Doing the operation φ(0) = φ(T)− int
( φ(T)

2π

)
2π from a broad nearly Gaussian

distribution for φ(T) makes φ(0) a uniform random variable, U(0, 2π). The kurtosis of
U(0, 2π) is 354/5 ∼ 70.8. Diffusion of φ at the beginning of the period (see Figure 2) makes
κr to decrease quickly, but not enough for becoming strictly Gaussian, even at the end of
the period.
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Figure 5. Probability density function of the initial value of the phase for T = 1 ns.

Of course these results depend on the way initial conditions are chosen. Another
way of choosing these values is by considering fixed initial values for E(0), and N(0).
Figure 4 shows, with red lines, asymmetry and kurtosis coefficients, γ f and κ f , when
fixed initial conditions are used. We choose these values in the following way. We first
integrate Equations (4) and (6) from arbitrary initial conditions corresponding to below
threshold operation in order to find the averaged < P(t) >,< N(t) >, and < φ(t) > for
0 ≤ t ≤ T. Then we choose N(0) =< N(T) >, and E(0) =

√
< P(T) >(cos < φ(T) >

+i sin < φ(T) >). This election is similar to that considered in [34]. Figure 4 shows that
the evolution of γ f and κ f is very similar to that of γr and κr, respectively. κ f > κr because
the initial delta-like distribution of φ(0) produce larger values of the kurtosis. These
differences decrease with t, specially when spontaneous emission dominates the phase
evolution: In Figure 4a,b when t > 0.7 ns (t > 1.2 ns).

The choice of initial conditions also impacts on the values of the standard deviation as
a function of t. In Figure 6a the dynamical evolution of σφ for both, random and fixed initial
conditions, is shown when T = 1 ns. Again both standard deviations have similar trends
but the value for random initial conditions is larger than that obtained for the fixed ones.
This is due to the non-zero value of σφ(0) obtained with the uniform distribution of φ(0) in
contrast to the zero value obtained for fixed initial conditions. Relative differences between
both quantities enhance if the speed of QRNG increases as it can be seen in Figure 6b where
results obtained for T = 0.4 ns have been plotted. For instance, σφ at 0.2 ns is around 20 %
smaller for the case of fixed initial conditions.
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Figure 6. Standard deviation of the phase as a function of time for (a) T =1 ns, and (b) T =0.4 ns.
Results for random and fixed initial conditions are plotted with black and red lines, respectively.
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The dependence of the phase statistics on the way initial conditions are chosen sug-
gests that averages must be done in a different way in order to lose the memory of those
initial conditions. We have been considering averages performed in a temporal window
with the same duration than the period of the current, T. From now on we will con-
sider longer temporal windows for calculating statistical averages. Figure 7 illustrates the
situation found when averages are calculated over a window of duration 2T. Random

initial conditions are considered such that φ(0) = φ(2T)− int
( φ(2T)

2π

)
2π. Averages have

been done over 2 × 104 2T-windows, where T = 1 ns, in order to compare with situations
illustrated in previous figures. Figure 7a shows the averaged phase vs t. The drift towards
decreasing values of the phase is similar to that shown in Figure 1c. Standard deviation
and variance of the phase are shown in Figure 7b,c, respectively. < φ(t) >, σφ(t) and
σ2

φ(t) during the second half of the 2T-window are basically replicas of what was found
in the first half. The continuity of φ along the 2T-window makes that σφ(t) and σ2

φ(t)
monotonously increase. However the situation is different when considering the kurtosis
coefficient as Figure 7d shows. In this case, during the second half of the window κr keeps
on decreasing towards the zero value. This means that the distribution of the phase keeps
on approaching to the Gaussian shape. In fact κr = 0.22 when t = 2 ns.
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Figure 7. (a) Average, (b) standard deviation, (c) variance, and (d) kurtosis coefficient of the phase as
a function of time for a two-period window with T = 1 ns.

That approach can be illustrated by plotting the phase pdf at two different times.
Figure 8 shows those distributions at times t = 0 and t = 1.1 ns. The phase at t = 0 is a
U(0, 2π) random variable, similarly to Figure 5. The phase at t = 1.1 ns is approximately
Gaussian as it can be seen when comparing with the Gaussian of average and standard
deviation obtained from simulations. The kurtosis coefficient in Figure 8b is 0.4. Figure 8b
can also be compared with the pdf obtained at t = 0.1 ns in Figure 3b because both
distributions correspond to 0.1 ns after switching-on the bias current. The pdf in Figure 3b
is not Gaussian while the pdf in Figure 8c is approximately Gaussian. This indicates that in
order to have a phase distributed as a Gaussian it is necessary to calculate and average the
phase in windows with durations of several modulation periods. In this way the memory
of the initial conditions and their distribution is lost.
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5. Discussion and Summary

In our study we have considered two types of initial conditions, corresponding to
deterministic and random values of the variables. Fixed initial conditions have been
considered because they have been used in previous studies of QRNG. They are not the
best choice for simulation of these systems because the spontaneous emission noise, that
is always present in the system, causes fluctuations in the variables of the system at all
times. These include the times at which each period begins, and so initial conditions must
be also random, as it is also expected in an experimental realization of the system. We have
chosen these random initial values by calculating the phase angle in the [0, 2π) range that
corresponds to the final value in the previous averaging window. Note that the conversion
to the [0, 2π) range is necessary if a calculation of well defined statistical moments of
the phase is required. If no conversion is done, not even < φ(t) > could be calculated
because φ decreases in each averaging window in a magnitude of more than several 2π,
as illustrated for instance in Figure 1c.

Deterministic initial conditions and phase averages over windows of T-duration have
been recently used for describing the phase statistics [34]. While these conditions can give an
approximation to the phase distribution and their statistical moments, our results show that
it is necessary to consider averages over windows of several T-duration and random initial
conditions for obtaining Gaussian statistics for the phase at the end of the averaging period.

We now briefly discuss the effect of two laser parameters, the non-linear gain and
the Auger coefficients, on the standard deviation of the phase. The number of relaxation
oscillation peaks increases when the non-linear gain coefficient decreases. The standard
deviation of the phase at the end of the modulation period oscillates when changing
Ion [35]. The number of these oscillations is directly related to the number of relaxation
oscillation peaks that are excited. In this way, the main effect of having a small nonlinear
gain coefficient is to observe more oscillations of the standard deviation of the phase
as a function of Ion. The effect of the Auger coefficient is also important for describing
the standard deviation of the phase. In fact we have shown that the Auger term must
be considered in the carrier recombination term for achieving good agreement between
experiments and theory [36].

Summarizing, we have theoretically analyzed the phase diffusion in gain-switched
semiconductor lasers by performing numerical simulations of the corresponding stochastic
rate equations. We have focused on the calculation of the temporal dependence of the
statistical moments and distribution of the phase. We have considered several types of initial
conditions for the phase. By using the temporal dependence of the kurtosis coefficient we
have shown that the phase pdf becomes Gaussian only after the memory of the statistical
distribution of the initial conditions is lost. We show that under the typical gain-switching
with square-wave modulation used in QRNGs, the time it takes for the phase to become
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Gaussian is in the ns scale. We finally compared the variance of the phase obtained with
random and fixed initial conditions to show that their differences are more important as the
modulation speed is increased. This is precisely the situation in which faster generation bit
rates are achieved when using QRNGs based on gain-switched laser diodes.
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Abstract: We present and analyze a simple model based on six rate equations for an electrically
pumped organic diode laser. The model applies to organic host-guest systems and includes Stoke-
shifted reabsorption in a self-consistent manner. With the validated model for the Alq3:DCM host-
guest system, we predict the threshold for short-pulse laser operation. We predict laser operation
characterized by damped relaxation oscillations in the GHz regime and several orders of magnitude
linewidth narrowing. Prospect for CW steady-state laser operation is discussed.
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1. Introduction

An Organic Diode Laser (ODL) is the lasing manifestation of an Organic Light Emitting
Diode (OLED). It represents a promising class of new lasers with foreseen applications
in spectroscopy, sensing, environmental monitoring, optical communication, short haul
data transfer [1,2]. Since Heeger’s demonstration of “plastic” conductivity in 1977 [3],
organic semiconductor technology has made a huge step forward. With relatively simple,
economic, and environmentally friendly production processes, and virtually unlimited
availability of amorphous organic semiconductors, organic optoelectronics has become
a large research field for various device types such as organic photovoltaic cells (OPV),
organic transistors (OFETs), and OLEDs [4–7]. Developments in OLEDs have resulted in
successful applications including lighting or display technologies such as screens for TV
and mobile phones, but they have so far been underused in optical transmission systems in
comparison to their inorganic counterparts, namely the conventional light emitting diode
devices (LEDs).

The ODL will open a new era in the field of lasing. Firstly, because solid-state organic
materials, contrary to their III-V counterparts, cover continuously the whole visible spec-
trum as well as part of the IR and UV spectrum. Secondly, they can be deposited more
easily on almost any substrate with less energy consumption for the manufacturing process
than conventional epitaxially-grown III-V materials [8]. Thirdly, this new device combines
properties from dye-lasers and III-V diode lasers and as such will open new perspectives
and potential applications. Fourthly, organic electronics is a low-carbon industry, unlike
the III-V industry.

Regarding perspectives, organic materials exhibit dependence of the refractive index
on the carrier density different from conventional III-V semiconductors, which is largely
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due to the specific mobility of disordered organic semiconductors [9,10]. Therefore, new
and interesting dynamical behavior will occur, especially when the laser is submitted
to different types of external perturbations, such as optical injection and feedback [11].
Potential applications and new possibilities will be facilitated by the ease of deposition
of organic heterostructures on a large variety of substrates including silicon, silica, glass,
as well as flexible substrates, and by the availability of an almost unlimited library of
electroluminescent organic materials [12].

Until now, solid-state organic lasers have been realized by optical pumping of OLEDs
provided with an integrated optical cavity [13–15]. Lasing based on electrical injection
appears to be much more difficult, because of gain quenching due to triplet accumulation
and absorption from the metallic anode [13]. We will summarize our rate-equation theory
for an electrically injected ODL [16], extend the theory to include a detailed treatment of
the self-consistent reabsorption, and present simulation results for operation below and
above laser threshold.

2. Characterization of a Laser OLED

Organic Diode Lasers (ODLs) are organic hetero structures with an integrated optical
cavity to enhance the interaction time of photons with the active molecules before they
are emitted, thus enabling a sufficiently high level of stimulated emission to generate
laser light. A schematic of the layer structure of an organic hetero structure is given in
Figure 1a. An important difference with conventional III-V semiconductor devices is that
the charges are not just electrons and holes, but rather electron-like (i.e., negatively charged)
polarons and hole-like (positively charged) polarons. These polarons are special organic
molecules brought in excited states under influence of an applied voltage and created in the
regions indicated electron injection layer (EIL) and hole transport layer (HTL), respectively,
indicated in Figure 1b. The polarons have an effective mobility based on their diffusion
by hopping of the excitation from one molecule to the next. In the emitting layer (EL,
see Figure 1b) both type of polarons will be present allowing them to recombine forming
excitons, with 25% chance of a singlet exciton and 75% chance of a triplet. Only the singlet
excitons can decay optically to the ground state, whereas the decay of the triplets to ground
state is optically forbidden. The schematic energy level diagram corresponding to Figure 1a
is depicted in Figure 1c. The hole-blocking role of TPBi can be explained with the HOMO
energy difference between TPBi (HBL) and Alq3 (EL) being 0.5 eV whereas it is only 0.2 eV
for the corresponding LUMO.

The layer structure is integrated with a horizontal cavity consisting of a second-order
Bragg grating sandwiched between two first-order Bragg gratings, such that the photons
are emitted downward due to the second-order grating. This configuration is sketched
in Figure 1e, with a top-view photograph of the Bragg gratings in Figure 1d. The blue
arrow starting from Figure 1b points to one of the various organic heterostructure units in
Figure 1e that provide the optical gain in the cavity formed by the grating structure.

The optical gain is provided by the singlet excitons in the emitting layer. When a
singlet decays radiatively, the molecule is left in the ground state and the exciton will
disappear. There are several other decay channels for the singlets, that is, intersystem
crossing (ISC), singlet-singlet annihilation (SSA), singlet-triplet annihilation (STA), and
singlet-polaron annihilation (SPA). These decay processes will be explained briefly here;
they are extensively discussed in [17]. ISC is a spin-flip induced intra-molecular process in
which the singlet decays to the triplet on the same molecule, i.e., a loss of 1 singlet and at
the same time a gain of 1 triplet. The other annihilation processes are of bi-molecular nature.
In case of SSA, the interaction of two singlet excitons yields one ground state molecule plus
one exciton with 25% chance of a singlet and 75% chance of a triplet, i.e., on average a net
loss of 7/4 singlet and a net gain of 3/4 triplet [17]. In case of STA, the interaction of one
singlet exciton and one triplet exciton leads to annihilation of the singlet exciton, which has
decayed to the ground state, i.e., a net loss of 1 singlet. The interaction between a polaron
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and a singlet exciton in case of SPA leads to annihilation of the singlet, both for hole-like
and electron-like polarons.

 

 

 

 

Figure 1. Schematics and direction of light emission of (a) the layer structure indicated in (b) with (c) the energy level
diagram. In (d) a top view photograph is shown of the second-order grating sandwiched between the two first-order
gratings and (e) presents a sketch of the OLD structure indicating the confined light between the mirrors formed by the
first-order gratings.

In view of STA, proper accounting of the triplet population is crucial for the calculation
of the optical gain (or: will be decisive for the available optical gain). Triplets are annihi-
lated in the bi-molecular processes of triplet-triplet annihilation (TTA) and triplet-polaron
annihilation (TPA). Like SSA, in TTA the interaction of two triplet excitons yields one
ground state molecule plus one exciton with 25% chance of a singlet and 75% chance of a
triplet. Hence, TTA leads, on average, to a net loss of 5/4 triplet and a net gain of 1/4 singlet.
TPA leads to a loss of the triplet, just as SPA for the singlet does. In the rate equations that
will be presented in Section 3, each of the above described processes corresponds to a term
with corresponding rate coefficient.

3. Rate-Equation Model for the ODL

In the model we assume that the hole-type and electron-type polarons that participate
in charge transfer across the organic semiconductor layers recombine in the emitting layer
to form singlet and triplet excitons. We consider the situation where the emitting layer is
composed of host molecules (the matrix), doped with a few percent of guest molecules (the
dopant), and where the excitonic states are quickly transferred from the host molecules to
the singlet and triplet excitons of the dopant molecules by Förster transfer and, to a lesser
extent, by Dexter transfer, respectively. With a host-guest system like Alq3:DCM [18], the
host (Alq3) singlets have their optical transition in the green part of the spectrum (~530 nm),
whereas the dopant (DCM) singlets provide both spontaneous and stimulated emission in
the red spectrum (~620 nm).
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The model equations read
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P0 =
N0

NMOL
; P0D =

N0D
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These equations are valid in the emitting layer and the variables are: NP the polaron
density, NS the density of singlet excitons, NT the density of triplet excitons, N0 the
density of ground-state molecules, all in the host; NSD, NTD and N0D the respective dopant
singlet, triplet and ground-state population densities. PHO is the photon density, J(t) the
current density, NMOL is the molecular density, NDOP and NHOST the respective densities
of dopant and host molecules. P0 and P0D are the respective probabilities that a host or
dopant molecule is in the ground state. Finally, W represents the overlap between the
dopant absorption spectrum SA(λ) and the emission spectrum SE(λ),

W ≡ ξA M(A, E, CAV)

ξE M(E, E, CAV)
≡ ξA

∫
dλSA(λ)SE(λ)SCAV(λ)

ξE

∫
dλS2

E(λ)SCAV(λ)
, (9)

where ξX are the coefficients for emission (X = E) and absorption (X = A) of the dopant
and the normalization should be such that

∫
dλSCAV(λ) = 1 and SX(λX) = 1, with λX

the wavelength for which SX is maximal (X = E,A). Note that W in (9) also depends on the
cavity mode wavelength λCAV .

The derivation of (9) and the definition of M are given in Appendix A. W accounts
for the fraction of dopant ground-state molecules that participate in the absorption of the
emitted light. Note that W = 1 for identical spectra and ξA = ξE. The various parameters
in (1) to (8) are listed in Table 1 together with their values. More about W will be discussed
in Section 3.1.

Before we proceed with a brief discussion of the processes described by Equations (1)–
(8), two remarks should be made. The first remark concerns the light emission by the host
singlet excitons (green in case of Alq3). As we will see in Section 4, the build-up of NS

remains relatively small, compared to NSD. Moreover, no resonating structure is considered
for the green light. Nevertheless, the host singlets will decay under spontaneous emission
of green light. This photonic interaction is not considered in the rate equations.

As the second remark, note that the emission spectrum of the organic dopant emitter
(DCM) is Stoke-shifted to the red by 160 nm from its absorption spectrum [19]. This implies
that W will depend on the shift between the emission and absorption spectra as well as
their respective widths. We estimate, using (A9) and (A10) (see Appendix A), that in the
weak micro-cavity limit with κCAV = 1.0 × 1014 s−1, Q ∼ 18, we estimate W ≈ 0.019,
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but as κCAV decreases with increasing cavity quality factor and the threshold for lasing is
approached, the emitted spectrum will narrow, implying smaller values for W. Therefore,
W is a dynamic quantity, and this will be studied in more detail in Section 3.1.8.

Table 1. Model Parameters (Alq3:DCM).

Symbol Name Value Ref.

S OLED active area 10−4 cm2

d OLED active layer thickness 30 nm
γ Langevin recombination rate 6.2 × 10−12 cm3 s−1 to 2.0 ×10−9 cm3 s−1 [20,21]

NMOL Molecular density 2.1 × 10 21 cm−3

C Dopant concentration 2%
κFRET Förster transfer rate 1.15 × 1010 s−1 [19,22,23]
κDEXT Dexter transfer rate 1.0 × 1010 s−1 to 5.0 × 1015 s−1

κS Host singlet-exciton decay rate 8.0 × 107 s−1 [24,25]
κSD Dopant singlet-exciton decay rate 1.0 × 109 s−1 [24]
κT Host triplet decay rate 6.5 × 102 s−1 to 4.0 × 104 s−1 [24,26]

κTD Dopant triplet decay rate 6.6 × 102 s−1 [26]
κISC Host inter-system crossing rate 2.2 × 104 s−1 to 1.0 × 107 s−1 [17,27]

κISCD Dopant inter-system crossing rate 2.2 × 104 s−1 to 1.0 × 107 s−1 [17,27]

κSS
Host singlet-singlet annihilation

(SSA) rate 3.5 × 10−12 cm3 s−1 [24]

κSSD
Dopant singlet-singlet annihilation

(SSA) rate 9.6 × 10−13 cm3 s−1 [24]

κSP
Host singlet-polaron annihilation

(SPA) rate 3.0 × 10−10 s−1 [24]

κSPD
Dopant singlet-polaron annihilation

(SPA) rate 3.0 × 10−10 cm3 s−1 [24]

κTP
Host triplet-polaron annihilation

(TPA) rate 2.8 × 10−13 cm3 s−1 [24]

κTPD
Dopant triplet-polaron annihilation

(TPA) rate 5.6 × 10−13 cm3 s−1 [27]

κST
Host singlet-triplet annihilation

(STA) rate 1.9 × 10−10 cm3 s−1 [17,24]

κSTD
Dopant singlet-triplet annihilation

(STA) rate 1.9 × 10−10 cm3 s−1 [28,29]

κTT
Host triplet-triplet annihilation (TTA)

rate 2.2 × 10−12 cm3 s−1 [24]

κTTD
Dopant triplet-triplet annihilation

(TTA) rate 2.4 × 10−15 cm3 s−1 [27]

Γ Confinement factor 0.29

ξE
Dopant stimulated emission gain

coefficient 1.4 × 10−5 cm3 s−1 [17,20]

ξA Dopant absorption coefficient 1.4 × 10−5 cm3 s−1

κCAV Cavity photon decay rate 1–300 × 1012 s−1

βSP Spontaneous emission factor <0.15

3.1. Brief Discussion of Equations (1)–(8)

3.1.1. The Polaron Recombination

Polarons appear in two manifestations, positively charged hole-like polarons (den-
sity NP

+) and negatively charged electron-like polarons (density NP
−), where in view of

assumed charge neutrality both populations are equal, NP
+ = NP

−. Moreover, each
neutral polaron pair recombines to form one exciton together with one neutral molecule,
which occurs at the Langevin-recombination rate γ [17,30]. This recombination process
drives the electrical current and leads to the sink term in (1). Since γ is related to the
polaron mobilities µh ∧ µe as γ = e

ǫ (µh + µe), and since according to the Poole-Frenkel
model the mobilities show an exponential dependence on the square root of the electric
field F, we expect the value of γ to increase substantially with increasing applied diode
voltage. In ref. [20] the zero-field value γ = 6.2 ×10−12 cm3 s−1 is evaluated.

3.1.2. Host Singlet Excitons

The first term on the right-hand side (r.h.s.) of (2) is a source for the singlet excitons
originating from the above-mentioned polaron recombination term. The factor 1/4 is due
to the randomly injected spin statistics. The second term is a source term arising from
triplet-triplet annihilation with generation rate κTT [24]. All other terms are sink terms. The
first sink term describes the Förster Resonance Energy Transfer (FRET) of singlet excitons
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from host to dopant molecules with transfer rate κFRET. The probability P0D accounts for
the potential depopulation of the dopant-ground state that would limit the energy transfer.

The second sink term describes the decay of the singlet exciton due to both radiative
and non-radiative processes. The third sink term accounts for the inter-system crossing
(ISC), a non-radiative mechanism, i.e., a spin-flip-induced intra-molecular energy transfer
from singlet to triplet with a decay rate κISC. The last sink terms in (2) describe the de-
population of the host singlet density with different annihilation terms: singlet-singlet
annihilation (SSA) with decay rate κSS [24], singlet-polaron annihilation (SPA) with decay
rate κSP [24], and singlet-triplet annihilation (STA) with decay rate κST [17,24].

3.1.3. Host Triplet Excitons

Rate Equation (3) describes the variation of host triplet excitons. The first three terms
in the r.h.s. are sources. The first is a contribution arising from the polaron recombination.
With a 3/4 factor resulting from the spin statistics, this source term, when added to the first
singlet source term in (2), matches the first sink term for the polaron recombination in (1).
The second term describes the increase of NT due to ISC in the same way as it decreases NS

in (2). The third term corresponds to the decay of the triplet excitons with rate κT [24,26].
The fourth and fifth terms correspond respectively to triplet-triplet annihilation (TTA) [24],
and triplet-polaron annihilation (TPA) [24].

3.1.4. Dopant Singlet Excitons

The dynamics of the dopant-singlet density NSD is described by (4). The first term on
the r.h.s. is the source because of the Förster energy transfer [19,22,23]. This term matches
the corresponding sink term in (2). The second term is a relatively small and indirect
source term due to the dopant triplet-triplet annihilation (TTA) leading to generation of
singlets at rate κTTD [27]. Except for the last term on the r.h.s., all other terms are the
corresponding counterparts of terms in (2). In the first sink term, the dopant singlets decay
radiatively at rate κSD. For the Alq3-DCM host-guest system we have taken the value
κSD = 1.0 × 109 s−1 [24]. The last term describes the dopant singlet interaction with the
photons due to stimulated emission with differential gain coefficient ξ.

3.1.5. Dopant Triplet Excitons

Rate Equation (5) describes the dopant triplet density NTD variations. The first term
matches the corresponding Dexter transfer term in (3). The second term is the source
resulting from the ISC matching the corresponding fourth term in (4). The third term
represents the decay of the dopant triplet density at rate κTD [26] by de-excitation, while
other terms correspond to the absorption processes TTA (κTTD) and TPA (κTPD) [27].

3.1.6. Photons and Linewidth

Rate Equation (6) accounts for the dynamics of the photon density PHO. The first
term on the r.h.s. gives the spontaneous-emission contribution arising from the radiative
recombination of the dopant singlets NSD at the rate κSD where the spontaneous-emission
factor βsp is the fraction of emitted photons within the lasing mode. The second term gives
the net-amplification rate due to stimulated-emission

ASTIM ≡ ΓξE M(E, E, CAV)(NSD − WN0D)− κCAV , (10)

which will be large and negative so long the device operates below the lasing threshold but
will climb up to a value close to zero if lasing is to be reached. In (10), (NSD −WN0D) is the
effective inversion. Γ is the confinement factor introduced to consider the fact that only
the part of the photons inside the emitting layer is amplified. The last term on the r.h.s.
accounts for the photon losses out of the cavity, with decay rate κCAV = 1/τCAV , where
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τCAV is the cavity photon lifetime. The dopant singlet density, for which the photon net
loss, WN0D + κCAV

ΓξE M(E,E,CAV)
, is precisely compensated, defines the threshold for lasing, i.e.,

NSD|thr = WN0D +
κCAV

ΓξE M(E, E, CAV)
, (11)

As we will see in Section 4, laser operation is characterized by the clamping of the dopant
singlet density at a value very close to the value defined in (11) at the same time the
net-amplification rate (11) is clamping near zero.

The frequency linewidth ∆ν of the emitted light can be related to the effective photon
cavity decay rate (see the last term in (6))

κCAV,e f f = κCAV + ΓξE M(E, E, CAV)(WN0D − NSD) (12)

as [31]

∆ν =
κCAV,e f f

2π
, (13)

valid as long the system is quasi cw and no linewidth enhancement due to amplitude-phase
coupling occurs. The cavity width ∆CAV that should be substituted in M(E, E, CAV) and

W (see (A7), (A8), and (A11)), is related to the linewidth (13) as ∆CAV =
λ2

E
2πc ∆ν, with c the

vacuum light velocity.

3.1.7. Cavity Quality Factor

The outcoupling, diffraction, and absorption of the light in the cavity define a rela-
tionship between the cavity photon lifetime τcav and the corresponding quality factor Q
which reads:

Q = ω0τCAV , (14)

where ω0 is the resonance (angular) frequency of the cavity mode. The cavity photon decay
rate κCAV can be expressed in the quality factor Q and the resonance wavelength in vacuum
λCAV as

κCAV =
1

τCAV
=

2πc

nλ0Q
, (15)

where n is the refractive index. At 620 nm wavelength, a typical value for an OLED
undergoing a parasitic weak microcavity is Q ≈ 6, corresponding to a cavity decay rate of
κCAV ≈ 3.0 × 1014 s−1. In a DFB-type laser cavity, a reasonable value for the quality factor
Q ≈ 1800 is achievable, and this corresponds to a cavity decay rate κCAV ≈ 1.0 × 1012 s−1.

3.1.8. (Re)Absorption Factor W

Despite the Stoke shift, the absorption spectrum SA(λ) and the emission spectrum
SE(λ) of the emitted light by the dopant show some overlap, which induces a residual
reabsorption of the photons emitted in the cavity by the dopant singlet excitons NSD. With
W representing the spectral overlap, the reabsorption rate per unit photon density equals
ΓξE M(E, E, CAV)WN0D. Note that the reabsorption of photons yields a source term for
the dopant singlet population in (4). In the bad-cavity limit, the broad cavity spectrum
SCAV and the absorption spectrum SA maximally overlap, hence re-absorption is maximal.
When approaching the lasing threshold, the effective cavity spectrum narrows, and W will
assume its smallest value.

In Appendix A an expression for W is derived in terms of integrals of intersecting
spectra. For a model with Gaussian absorption and emission spectra, this expression can
be written as (see (A8) and (A12))

W ≡ ξA M(A, E, CAV)

ξE M(E, E, CAV)
=

ξAC(A, E)∆0(A, E)V(λCAV − λ0(A, E); ∆0(A, E), ∆CAV)

ξEC(E, E)∆0(E, E)V(λCAV − λ0(E, E); ∆0(E, E), ∆CAV)
, (16)
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where V is the Voigt function [32], and definitions for C(X, Y), ∆0(X, Y), λ0(X, Y), and
∆0(X, Y) are given in ((A13)–(A15)). Note that W = 1 in case of identical spectra (λA = λE,
ξA = ξE and ∆A = ∆E), irrespective of λCAV and ∆CAV. Taking λA = 460 nm, ∆A = 50 nm,
λE = λCAV = 620 nm and ∆E = ∆CAV = 50 nm, we find W = 0.035.

4. Simulations

4.1. Below Laser Threshold

We will first present results for an OLED without a special optical cavity, that is,
for which κCAV = 1 × 1014 s−1, corresponding to Q ∼= 18. The current density of
~500 A/cm2, switched on at time 0, is applied during 300 ns and the parameters are as in
Table 1, except for some values mentioned in the caption of Figure 2. In Figure 2a, apart
from the current density, time evolutions are seen for the ground-state probabilities P0 for
a host molecule, P0D for a dopant molecule, the spectral overlap W and the linewidth ∆υ
of the light emitted by the dopant single excitons. W and ∆υ remain nearly constant at
respective values 5 × 10−2 and 1.6 × 1013 s−1. Due to the formation of excitons, the fraction
of dopant molecules in the ground state falls to zero in ~100 ns, when the total number of
dopant excitons approaches the total number of dopant molecules. This is demonstrated in
Figure 2b, where it is seen that after ~100 ns the dopant triplet density NTD is already at the
level of the total dopant density of 4.2 × 1019 cm−3. We recall that the light is emitted by
the dopant singlet density NSD and the photon density PHO is seen to exhibit the same time
development, apart from a proportionality constant. This is indicative for spontaneous
emission. An important feature visible in Figure 2b is the sharp decrease of NSD after
reaching its maximum ~7.5 ns after the current offset. The reason for this is the rapid
increase of NTD and the associated singlet-triplet absorption STA leading to the dominant
contribution to the singlet decay rate (see (4)) κSTD NTD ∼ 7.6 × 109s−1. Therefore, with
the parameters as in Table 1, sufficient amount of gain to reach a laser threshold can only
be expected in a small time interval below ~10 ns.

4.2. Validation of the Model for an OLED

To validate our model, we have confronted our simulation with an experimen-
tal analysis of an electrically pumped OLED without a special cavity. In this device,
the organic hetero-structure itself defines a residual weak micro-cavity effect (Q ~ 6,
κCAV ~ 3.0 × 1014 s−1 and reabsorption fraction W ~ 8%. A 20 ns, 45 V pulse excita-
tion voltage is applied to the OLED and the electrical injection current is measured and
recorded together with the emitted light intensity. This measured current is taken as the
source term in the polaron rate Equation (1). The exciton and photon densities are then
calculated from the set of Equations (1)–(8) with model parameters from Table 1, except for
the fitted parameters given in Table 2. The results are plotted in Figure 3, where Figure 3d
shows the measured and simulated photon densities in one plot for comparison.

The values for γ and κDEXT in Table 2 are the result of detailed fitting of the shape of
the simulated photon response to the measured data. Variations in κDEXT values mainly
affect the leading edge and the maximum of the photon response. The black dashed curve
in Figure 4d is the simulated photon density if the literature value γ = 6.2 × 10−12 cm3 s−1

instead of the fitted value in Table 2 is taken. The nearly two orders of magnitude larger
value for γ stems from the Poole-Frenkel effect for the mobility due to the internal electric
field, induced by the high voltage of 45 V applied in the experiment (see Section 3.1.1). The
validation of our model for a sub-threshold case is important, since it validates the gain
behavior represented by the dopant singlet density NSD. When the cavity quality factor is
increased, the effective amplification rate by stimulated emission (see Equation (6)) will
increase from large negative toward zero, without changing the underlying exciton dy-
namics, except NSD near and above the threshold. In fact, here the last term in Equation (4)
will become the dominant loss, leading to clamping of NSD to the threshold value given in
(10). Hence, we can use our validated model to predict laser operation behavior based on
simulations where we increase the Q-factor of the OLED.
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Figure 2. Time evolutions of various quantities for an OLED far below the threshold for lasing. The
applied injection current has amplitude 0.5 kA/cm2, and a duration of 300 ns. There is no special cav-
ity arrangement assumed; κCAV = 1 × 1014 s−1, corresponding to Q ∼= 18, γ = 1 × 10−10 cm3 s−1,
βsp = 0.05, κDEXT = 2 × 108 s−1, κT = 6.5 × 102 s−1, κISC(D) = 2.2 × 104 s−1. (a) Current den-
sity J in kA/cm2, ground-state probabilities P0 and P0D respectively for host and dopant molecules
and the linewidth ∆υ of the emitted light. (b) Polaron density NP, exciton densities for host and
dopant molecules and the photon density PHO. The light blue curve is 10−1 × NSD|thr (see (11);
clearly, the maximum of NSD (~ 1017 cm−3) is far below the threshold value (~2.5 × 1019 cm−3).
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Figure 3. Comparison between measurements and simulation of the dynamical optical responses
of an OLED under a peak current density of 0.462 kA/cm2. In (a) the measured current and the
simulated polaron density are depicted, in (b) the simulated host singlet and triplet densities and in
(c) the dopant excitons. In (d) the measured (red curve) and simulated (black curve) photon densities
(right scale) are shown together with the amplification rate (10) (blue curve; left scale). Parameters
used in the simulation are given in Table 1, except for those given in Table 2. The dashed black curve
in (d) is the simulated photon density for the zero-voltage value γ = 6.2 × 10−12 cm3 s−1.

 

 

γ − −
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κ ௦௣ߚ− = 3 × 10ିସ
Figure 4. Simulated time-integrated photon density versus (a) the cavity quality factor Q and (b) the applied electrical
current density J. In (a) the pump current is 2.0 kA/cm2 and the points A, B, C correspond to the cases of Figure 5a–c,
respectively; in (b) the quality factor is 2000 (κCAV ~ 9 × 1011 s−1). The duration of the pulse is 20 ns; the parameter values
are for the validated case in Figure 3 and βsp = 3 × 10−4.
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Figure 5. Time evolutions of the photon density PHO

(
×106) (red), singlet density NSD

(
×102) (green)

and threshold density NSD|thr

(
×102) (blue; see (11)) for (a) below threshold Q = 1700, (b) at threshold

Q = 2200 and (c) above threshold Q = 3000. In each case the pump current density is 2 kA/cm2 and
applied from 0 to 20 ns while βsp = 3 × 10−4.
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Table 2. Model Parameters for Figure 3.

Symbol Name Value

S OLED active area 1.5 × 10−4 cm2

γ Langevin recombination rate 5.6 × 10−10 cm3 s−1

κDEXT Dexter transfer rate 2.0 × 108 s−1

κs Host singlet-exciton decay rate 8.3 × 107 s−1

κT Host triplet decay rate 6.5 × 102 s−1

κISC(D) Dopant inter-system crossing rate 2.2 × 104 s−1

κSP Host SPA rate 1.0 × 10−11 s−1

κSPD Dopant SPA rate 3.0 × 10−10 cm3 s−1

κTPD Dopant TPA rate 9.0 × 10−11 cm3 s−1

κST Host STA rate 2.5 × 10−10 cm3 s−1

κSTD Dopant STA rate 3.7 × 10−10 cm3 s−1

κTTD Dopant TTA rate 8.0 × 10−12 cm3 s−1

Γ Confinement factor 0.29
βsp Spontaneous emission factor 1.3 × 10−3

4.3. Laser Predictions

So far, in the literature only one apparent though reserved and modest claim of
observed lasing in an electrically pumped organic diode is given. It is reported in [33]
and the OLED has the organic BsB-Cz as gain material in a configuration as sketched
in Figure 1. Our model is validated for sub-threshold behavior but as we argued in the
previous section, we can predict laser operation behavior by simulations with increasing
Q-factor.

Figure 4a shows the simulated LQ-characteristic for the case of pump current J = 2 kA/cm2.
The pump pulse duration is 20 ns and the parameter values are for the validated case in Figure 3.
A laser threshold is clearly seen at QTH ~ 2200 (κCAV ~ 8.1 × 1011 s−1). In Figure 4b the
integrated photon density versus the pump current is depicted for fixed quality factor
Q = 2000 (κCAV ~ 9.0 × 1011 s−1). This is the more usual LI-curve and shows the threshold
at JTH ~ 2.2 kA/cm2. For the operation points labeled A, B, and C, the corresponding
simulated photon density PHO(t), the singlet density NSD(t) and its threshold value NSDthr

are plotted in the respective Figure 5a–c. In Figure 5a the maximum of the singlet density
(green curve) remains below the threshold value for lasing (blue curve); in Figure 5b the
singlet top just touches the threshold value at t ~ 3 ns producing a short laser pulse during
~1 ns. In Figure 5c, the system is above threshold, the singlet density is clamped to its
threshold value from t = 1.6 ns up to t = 3.9 ns and during this time interval the system
emits stimulated emission. The photon density after the onset of lasing shows a damped
oscillation with frequency 3.8 GHz.

Such a relaxation oscillation is well known to occur in conventional III-V semicon-
ductor lasers and more generally in class-B lasers [11,34]. For the case of Figure 5c, the
evolutions of the reabsorption fraction W(t) and the instantaneous linewidth ∆ν (see (13)
of the emitted light are shown in Figure 6 together with the photon density oscillations.
Note the 3 to 4 orders of magnitude linewidth reduction during the lasing phase.
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Figure 6. Time evolutions of the photon density (red), instantaneous linewidth (purple) and reab-
sorption factor (yellow) for the case of Figure 5c, i.e., Q = 3000 and J = 2 kA/cm2.

5. Discussion

With the formulation of the rate Equations (1)–(6) we have established the simplest
possible model for an organic laser diode with a host-guest system that includes all known
processes which underly the gain mechanism and the buildup of the photons in the cavity.
The model applies to a host-guest system where the optical transitions of the host system
can be disregarded and takes the reabsorption of the dopant into account in a self-consistent
manner. The numerical simulations are for Alq3 as the host and a small volume fraction
of 2% DCM as the dopant. Extension of the model to include light emitted from the host
molecules is straightforward, and so is a different dopant fraction. The characteristic
properties of the host and dopant molecules are reflected by the molecular parameter
values, whereas the interaction of the gain with the optical field involves the optical-cavity
parameters, such as the confinement and quality factor.

We have simulated the dynamics of the various molecular entities, i.e., the polarons
and excitons responding to an electrical injection of 0.5 kA/cm2 with a relatively long
duration of 300 ns, which shows that a (quasi) steady state is reached after ~100 ns, which
is characterized by a fully quenched gain. The reason is that the buildup of triplet excitons
continues until all dopant molecules are used and no gain-providing singlets are present
anymore. The bi-molecular interaction process of triplet-singlet absorption (TPA) starts to
hamper the buildup of singlets already a few nanoseconds after the onset of the electrical
injection. From this information it is concluded that if laser action with Alq3:DCM is to
occur, it only will happen during a short time interval of a few nanoseconds.

The model has been validated by applying it to an experimental analysis of an elec-
trically pumped OLED with weak residual micro-cavity effect defined by the organic
heterostructure itself. The measured electrical current is taken as the source term in (1)
and the emitted light intensity obtained with the model simulation is compared with
the observed intensity. By fitting some of the parameters, good agreement was obtained
(Figure 3d). Although in this case the emitted light is amplified spontaneous emission, we
argue that based on the validation we can extrapolate to the case of laser emission. The
argument is that most of the molecular dynamics remains unchanged; it is rather the cavity
quality factor that will be different.

This leads to predictions for single-pulse laser operation during a few nanoseconds at
most and accompanied by several orders of magnitude linewidth reduction and relaxation
oscillations. For an applied current density amplitude of 2 kA/cm2 the threshold can be
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reached for Q ~ 2200, and for Q ~ 2000 the threshold current J ~ 2.2 kA/cm2. These are all
feasible values for practical systems.

Finally, we can speculate on the feasibility of CW laser operation. Inspection of Figure 5c
suggests that if the singlet density NSD could be maintained at a larger value, it might be
possible to extend the laser operation to a longer time interval. Apart from the singlet-exciton
decay rates κS(D), the parameters that influence the singlet decay most are the singlet-triplet
absorption and to a lesser extent the singlet-polaron absorption rate. Indeed, assuming
somewhat smaller values for κST(D) and κTP(D) than in Table 2, we find CW laser operation
with a linewidth of ~65 MHz in a simulation longer than 1000 ns electrical pumping for
J = 2.8 kA/cm2, Q = 2000 and κST(D) = 5 × 10−11 cm3 s−1, κSP(D) = 1.0 × 10−11 cm3 s−1.
For this case the laser threshold for CW operation is at ~ 0.8 kA/cm2. We have indications
that these parameter values apply to the organic material BsB-Cz [16,33]. A systematic
investigation of CW laser operation in dependance of molecular parameters will be pub-
lished separately.
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Appendix A

To derive an expression for W, we decompose the total photon density in its cavity
mode continuum. The photons in the active layer are distributed in wavelength according
to the emission spectrum SE(λ) intersected with the normalized Lorentzian cavity profile
SCAV(λ) with

∫
dλSCAV(λ) = 1. Hence

PHO(λ) ≡ SCAV(λ)SE(λ)PHO, (A1)

PHO =
∫

dλPHO(λ). (A2)

The stimulated emission rate in the wavelength interval dλ is

.
PHO (λ)|SEdλ = ξESE(λ)NSDPHO(λ)dλ (A3)

and the absorption is

.
PHO (λ)|ABSdλ = ξASA(λ)N0DPHO(λ)dλ (A4)
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where SX(λ) is the emission respectively absorption spectrum for X=E, A, with

SX(λX) = 1 (A5)

and λX is the wavelength for which the corresponding spectrum assumes its maximum value.
In principle, the respective linearized gain and absorption coefficients, ξA and ξE,

may be different. Subtracting (A4) from (A3), integrating over λ and using (A2), the net
stimulated emission can be written as

.
PHO|stim = ξEPHO M(E, E, CAV)(NSD − ξA M(A, E, CAV)

ξE M(E, E, CAV)
N0D), (A6)

with
M(X, Y, CAV) ≡

∫
dλSX(λ)SY(λ)SCAV(λ), (X, Y = A, E). (A7)

Hence, comparing (A6) with (6), we obtain

W ≡ ξA M(A, E, CAV)

ξE M(E, E, CAV)
=

ξA

∫
dλSA(λ)SE(λ)SCAV(λ)

ξE

∫
dλS2

E(λ)SCAV(λ)
. (A8)

For numerical purposes, the following explicit forms for the spectra are introduced:

SA(λ) = e
− (λ−λA)2

2∆2
A (absorption spectrum approximated by a Gaussian); (A9)

SE(λ) = e
− (λ−λE)2

2∆2
E (emission spectrum approximated by a Gaussian). (A10)

Then, with the normalized Lorentzian cavity spectrum

SCAV(λ) =
∆CAV

π((λ − λCAV)
2 + ∆2

CAV)
, (A11)

the spectral overlap integral M(X, Y, CAV) can be expressed in the Voigt function V [32],

M(X, Y, CAV) = C(X, Y)
√

2π∆0(X, Y)V(λCAV − λ0(X, Y); ∆0(X, Y), ∆CAV), (A12)

where V is a standard built-in function and

C(X, Y) ≡ e
− (λ||X−λY )2

2(∆2
X
+∆2

Y
) , (A13)

λ0(X, Y) ≡ ∆2
YλX + ∆2

XλY

∆2
Y + ∆2

X

, (A14)

∆0(X, Y) ≡ ∆X∆Y√
∆2

X + ∆2
Y

. (A15)

In case emission and absorption spectra are equal, i.e., SA(λ) = SE(λ), ξA = ξE

and λA = λE we find W = 1. With λA = 460 nm, ∆A = 50 nm, λCAV = λE = 620 nm,
∆E = ∆CAV = 50 nm, we calculate W = 0.035. For ∆CAV → 0 , i.e., very narrow
cavity line (Q → ∞ ), we find W → SA(λE) = 0.006 . With ∆CAV = λ2

EκCAV/(2πc) and
κCAV = 1014 s−1, we find ∆CAV = 20 nm and W = 0.019.
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Abstract: A general model for the dynamics of arrays of coupled spin-polarised lasers is derived.
The general model is able to deal with waveguides of any geometry with any number of supported
normal modes. A unique feature of the model is that it allows for independent polarisation of the
pumping in each laser. The particular geometry is shown to be introduced via ’overlap factors’,
which are a generalisation of the optical confinement factor. These factors play an important role
in determining the laser dynamics. The model is specialised to the case of a general double-guided
structure, which is shown to reduce to both the spin flip model in a single cavity and the coupled
mode model for a pair of guides in the appropriate limit. This is applied to the particular case of a
circular-guide laser pair, which is analysed and simulated numerically. It is found that increasing the
ellipticity of the pumping tends to reduce the region of instability in the plane of pumping strength
versus guide separation.

Keywords: spin-VCSELs; laser arrays; laser dynamics; spin flip model; coupled lasers

1. Introduction

Detailed control of the polarization dynamics of vertical cavity surface emitting laser
(VCSEL) arrays opens up many technological opportunities. In addition to being high-
power sources, potential applications may lie in emerging areas, such as reservoir com-
puting based on polarization dynamics [1] and secure key distribution based on chaos
synchronization [2,3], as well as an enhanced understanding of anticipation in polarisation
chaos synchronisation of coupled VCSELs [4] for secure communications.

Key to this development is the understanding of both polarisation dynamics in a given
laser and the evanescent coupling to nearby elements in the laser array. The dynamics in a
single laser are governed by the interplay between spin-polarised carriers and the circularly
polarised components of the optical field. The spin flip model (SFM) [5] is now well-
established as providing an excellent quantitative description of these effects. However,
despite extensive developments of the SFM, it remains restricted to the description of
single lasers.

The dynamics of coupled lasers are typically studied using a coupled mode model.
However, this approach has the shortcoming that it does not allow for independent po-
larisation of the pump in each laser, whether this is optical or via spin-polarised injection
current. Nor does it allow us to investigate the spatial variation in the optical polarisation.
What is required to deal properly with this scenario is a supermode (also known as normal
mode) model, in which one finds the optical solutions of the entire array. This also allows
for the spatial distribution of the polarisation to be studied. Whilst supermode studies
of laser arrays have been undertaken [6], to our knowledge none have incorporated the
optical polarisation or carrier spin-dynamics . This current work is intended to remedy this
deficit, in which we extend the SFM to apply to a general supermode model for laser arrays.
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The basic SFM consists of four coupled rate equations (two for spin-polarised carriers
and two for polarised field components) and it includes rates of carrier recombination,
photon field decay, and electron spin relaxation (spin relaxation of holes is usually assumed
to be instantaneous). The nonlinear dispersion that couples the carrier concentrations to
the phases of the optical fields is described by the linewidth enhancement factor, and the
field interactions due to nonlinear anisotropies are included via rates of birefringence and
dichroism. For conventional VCSELs, the SFM has been applied to explain the experimental
results of polarisation switching (PS) [7,8]. An “extended SFM” [9] that accounts for thermal
effects and includes a realistic spectral dependence of the gain and the index of refraction
of the QWs has been used [10] to explain the experimental results on elliptically polarised
dynamical states that occur in the polarisation dynamics of VCSELs in the vicinity of one
type of PS. For a more complete discussion of polarisation dynamics in VCSELs, the reader
is referred to [11].

A further development of the extended SFM [12] includes a description of the spatial
variation of the electromagnetic modes and the carrier densities. The variation in the
longitudinal direction is dealt with by integration over the length of the VCSEL cavity,
whilst the radial and azimuthal variation is described by accurate solutions of the wave
equation. The model assumes a given functional dependence of the guiding mechanisms
(built-in refractive index and thermal lensing) as well as the spatial dependence of the
current density. The transverse mode behaviour of gain-guided, bottom, and top-emitter
VCSELs were studied, and it was shown that the stronger the thermal lens, the stronger
the tendency toward multimode operation, which indicates that high lateral uniformity
of the temperature is required in order to maintain single mode operation in gain-guided
VCSELs. Additionally, close-to-threshold numerical simulations showed that, depending
on the current profile, thermal lensing strength and relative detuning, different transverse
modes could be selected.

Another version of the extended SFM [13] includes a rate equation for the temperature
of the active region, which takes decay to a fixed substrate temperature, Joule heating, and
heating due to non-radiative recombination into account. The temperature dependence
of the PS point is characterised in terms of various model parameters, such as the room-
temperature gain-cavity offset, the substrate temperature, and the size of the active region.

The SFM has also been widely applied to describe the behaviour of spin-VCSELs
whose output polarisation can be controlled by the injection of spin-polarised electrons
using either electrical or optical pumping (for a review with more details, see [14]). In the
latter case the polarisation of the optical pump is included [15] to reveal its effect on the
output polarisation [16–18]. The SFM has also been used [19–21] to explain the experimental
results on high-speed polarisation oscillations that result from competition between the
spin-flip processes, dichroism, and birefringence.

From this brief summary of the SFM and its applications, it is clear that the structures
studied have been limited to single lasers, either conventional electrically driven VCSELs
or spin-VCSELs that may be pumped electrically or optically. In the present contribution,
we seek to extend the range of application to include structures, where two or more
evanescently-coupled lasers are arranged in parallel to form arrays with the possibility
of different lasers having differing pumping polarisation. To the best of our knowledge,
this configuration has not been analysed previously, although there is one report [22] of an
experiment where optical pumping with orthogonally polarised beams was used to study
the interaction between two VCSELs as a function of their separation. There is considerable
literature on laser arrays because of their important practical applications as high-power
sources (including, most recently, for three-dimensional (3D) sensing in smartphones [23])
and very sophisticated models of VCSEL arrays have been developed [24]. Arrays of
coupled lasers are also of fundamental interest in view of the range of nonlinear dynamics
that they can exhibit (see, for example, [25] and references cited therein). Although there
is sometimes a need to stabilise the polarisation of such arrays of VCSELs, the possibility
of manipulating the output polarisation of an array by means of independent pumping
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polarisations has not yet been considered. Moreover new potential applications of the
theory developed here may lie in emerging areas, such as reservoir computing based on
polarization dynamics [1] and secure key distribution based on chaos synchronization [2,3],
as well as an enhanced understanding of anticipation in polarisation chaos synchronisation
of coupled VCSELs [4] for secure communications. Hitherto, these topics have been studied
by adding delayed optical injection terms into the SFM equations [26], whereas the present
theory permits a more general analysis which is applicable to a much wider range of VCSEL
array applications. Thus, these developments, together with the issue of how the array
dynamics is affected by spin-polarised pumping, provide the motivation for the present
study (the reader is also referred to complementary work reported in [27], which focusses
on numerical results in terms of new dynamics and regions of bistability obtained with
this theory).

In Section 2, we derive a model for guided mode lasers of general geometry with any
number of real-index guides and any number of normal modes. An important aspect of
this model is the introduction of the ‘overlap factors’, as discussed in detail in Section 3.
These are calculated by integrating products of the spatial mode solutions of the Helmholtz
equation over the active regions. As such, they represent a generalisation of the optical
confinement factor. It is through these factors that the particular geometry of the waveguide
is introduced and their effect on the laser dynamics can be quite significant, as indicated in
Ref. [28] in comparison to the coupled mode model [29].

Familiarity with the overlap factors should give the necessary physical intuition into
their properties and limiting behaviour that we frequently exploit in the derivation of the
double-guided model in Section 4. Here, we specialise to the case of just two guides and
only consider the lowest two normal modes. This model is still quite general in regards to
the waveguide geometry that may be simulated, although it is particularly appropriate for
the case of symmetric waveguides. In this paper, we look at two particular cases: equal
slab guides and equal circular guides, both with real, stepped refractive index profiles,
as shown schematically in Figure 1. The application to coupled VCSELs with circular
guides is indicated in the schematic of Figure 2, omitting the Bragg mirrors, substrate,
and other structural details. Note that, in Figures 1 and 2, a resonant cavity is assumed
with propagation in the z-direction, i.e., normal to the plane of optical confinement. No
further account is taken of the z-direction in what follows and the values of parameters
appearing in the analysis are assumed to be averaged over the cavity length. For widely
separated guides, we show, in Section 4.2, that the model reduces to both the SFM [5,15,30]
and coupled mode model [29] in the appropriate limits.

Having established the mathematical model, we investigate the effect of varying the
optical pump polarisation in each guide via numerical simulation in Section 6. A novel
feature of this model is that it allows for us to examine the spatial variation of the circularly
polarised components of the optical intensity and the optical ellipticity throughout the
waveguide structure. Section 6.2 provides examples of this. In Section 6.3, we give some
introductory examples of stability boundaries in the plane of total pump power and
normalised guide separation. This illustrates how we can use this model to investigate
the effect of independently varying the pump polarisation in each guide. More generally,
we may also vary the overall pump power or adjust the relative sizes of each guide,
thereby introducing an effective frequency detuning. Such investigations are deferred for
future study.
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(a)

(b)

Figure 1. The refractive index profiles of the double guided structures used in this work. Here,
the distance between the guides is given as 2d, whilst a is used both for the half-width of a slab
guide and the radius of a circular guide. Elsewhere in this work, we use n1 = ncore and n2 = nclad

for brevity. (a) Slab waveguide. (b) Circular waveguide.

Figure 2. A three-dimensional (3D) schematic of two coupled circular waveguides encapsulating the
essence of the application to a pair of vertical cavity surface emitting laser (VCSEL) cavities. Shown
are the cylindrical waveguide regions incorporating the active areas. Pumping is assumed to be
confined to these regions. Note that we have omitted the Bragg stack mirrors and substrate from
this figure.
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1.1. Summary Overview of the Paper

Briefly summarising the structure of the paper:

• Section 2: derivation of the general model for the dynamics of arrays of coupled,
spin-polarised lasers;

• Section 3: discussion of the ‘overlap factors’, which incorporate the details of the
geometry of the arrays;

• Section 4: specialisation to a double-guided structure and demonstration that the
model reduces to both the spin-flip model and coupled mode model in the appropri-
ate limit;

• Section 5: discussion of steady state solutions, giving exact and approximate expres-
sions;

• Section 6: numerical solutions, illustrating spatial profiles for the optical ellipticity
and stability boundaries; and,

• Section 7: conclusions.

2. The General Model

2.1. The Optical Rate Equations

In any waveguiding structure that is defined by a spatially-dependent relative permit-
tivity ǫ(r), we will have optical mode solutions Φk(r) satisfying the Helmholtz equation

[
∇2 +

Ω2ǫ(r)

c2

]
Φk(r) = 0, (1)

where Ω is a reference frequency that is taken to be the average of the modal frequencies and
k is the transverse mode index. The Φk(r) are known as the normal modes or, sometimes,
supermodes of the waveguide. For modes of a given order, the orthogonal polarisations
have almost exactly the same spatial profile (having checked this numerically for cases
of interest), and we shall assume this to be precisely true. Thus, each mode Φk(r) may be
associated with two polarisations. Later, we shall explicitly formulate this in terms of left
and right-circularly polarised light.

After cancelling a phase factor eiβz, where β is the propagation constant along the
cavity length (see Appendix A of Ref. [31]), the total optical field may then be written as a
superposition of the normal modes, as

E(x, y, t) = ∑
k

Ek(t)Φk(x, y)e−iνkt, (2)

where Ek(t) is a time dependent Jones vector that incorporates the polarisation and νk is
the modal frequency, determined via a solution of the Helmholtz equation for the mode.
Hereafter, we shall use r = xex = yey for brevity wherever we need to denote spatial
coordinates, but it should be remembered that r is confined to the x − y plane.

Starting from the general form of Maxwell’s wave equation and applying the slowly
varying envelope approximation (SVEA), as described in Appendix A of Ref. [31], we may
obtain a set of optical rate equations for the complex amplitudes of the normal modes

∂Ek,±
∂t

=

[
i(νk − Ω)− 1

2τp

]
Ek,± −

[
γa + iγp

]
Ek,∓

+ ∑
k′

c

2ng
(1 + iα)Ek′ ,±ei∆νkk′ t ∑

i

g
(i)
± Γ

(i)
kk′ . (3)

Here, the ± subscripts denote the right (+) and left (−) circularly polarised com-
ponents, τp is photon lifetime, c is the speed of light, ng is the group refractive index,
and α is the linewidth enhancement factor, as defined in terms of the change in the
real and imaginary components of the electric susceptibility, ∆χ′

± and ∆χ′′
±, respectively,

by α = −∆χ′
±/∆χ′′

±. Note that we have adopted this sign convention for consistency with
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the SFM model [5,15,30] and it is opposite to that used in Ref. [29]. Hence, the values of α
that are used in this work take the opposite sign to that in the latter reference.

Each polarisation component is coupled to the other via the birefringence rate γp and
dichroism rate γa. The time-dependent exponential factor involves the difference between
modal frequencies ∆νkk′ = νk − νk′ .

The summation over i in the last term of (3) is over the optically confining guides.

Here, we have defined optical overlap factors Γ
(i)
kk′ for the ith guide via

g
(i)
± Γ

(i)
kk′ ≡

∫

(i)
g±(r)Φk(r)Φk′(r) d2r,

where g
(i)
± is the average gain for each polarisation in guide (i) and the integral is over

the ith guide. In practice, we take the gain to be spatially constant over a guide and zero
outside it. Hence, in this paper, the overlap factors are simply defined by

Γ
(i)
kk′ ≡

∫

(i)
Φk(r)Φk′(r) d2r (4)

and we normalise the spatial profiles, so that
∫
|Φk(r)|2 d2r = 1,

where the integral is over all space.

2.2. The Carrier Rate Equations

The rate equations for spin-polarised populations of carriers may be derived from
the optical Bloch equations. The general result for the spatially dependent carrier concen-
trations N±(r, t) and circularly polarised optical fields E±(r, t), including spin relaxation,
may be found to be given by

∂N±
∂t

= −N±
τN

+ Λ± − γJ(N± − N∓)−
c

ng
g±(N±)|E±|2, (5)

where τN is the carrier lifetime, Λ± is the pumping rate, and γJ is the spin relaxation rate.
The ± subscripts on N refer to spin up (+) and spin-down (−) carriers, which directly
couple with right (+) and left (−) circularly polarised photons respectively. Here, we
assume that all carrier pumping, whether that be optical or electrical, is confined to the
active region, and, hence, the effects of lateral diffusion are neglected at this time.

Note that we take |E±(r, t)|2 = S(r, t) to be the photon density and, hence, E± does
not have dimensions of electric field in (5). This is unproblematic, since the optical rate
Equations (3) may be multiplied by any arbitrary factor to match the dimensions of E±
in (5) without changing the dynamics.

The earlier assumption that the gain is spatially constant over a given guide and zero
between guides requires a similar assumption for the carrier concentrations. We shall
assume a linear gain model of the form g(N) = g0(N − N0), where N0 is the transparency
concentration, so, if g(N) is a step function, N ≤ N0 outside the active regions. With the
pumping confined to the active regions and no spatial diffusion, we may take any optical
loss in the cladding regions to have been absorbed into the cavity loss rate κ. Therefore, we
may take the carrier concentration in this region to be exactly N0.

Taking the spatial dependence to be in the x − y plane only, we may then put

N±(t, x, y) = ∑
i

N
(i)
± (t)ξ(i)(x, y), (6)

where N(i)(t) is the time dependent carrier concentration in the ith guide and ξ(i)(x, y) is a
step function. Because we may subtract N0 from either side (which we do on normalisation),
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we may take this as effectively giving zero outside the active regions. Applying this
assumption, we find that the rate equations for the spin-polarised concentrations in the
(i)th guide are given by

∂N
(i)
±

∂t
= −N

(i)
±

τN
+ Λ

(i)
± − γJ

(
N

(i)
± − N

(i)
∓
)

− c

ng
∑
k,k′

E∗
k,±Ek′ ,±g

(i)
± Γ

(i)
kk′e

i∆νkk′ t, (7)

where the (i) superscripts on a quantity label the values of that quantity in each guide.
Appendix B of Ref. provide the details of the derivation [31].

In this study, we assume that |∆νk,k′ | ≪ νk, νk′ . This assumption is physically relevant,
provided that the coupled waveguides are well separated (relative to a characteristic
length). In that case, the modal frequency of the symmetric and anti-symmetric modes will
become very similar. However, the assumption may not be so accurate for the frequency
difference between different orders of transverse modes. Our main interest lies only in the
symmetric and anti-symmetric versions of the lowest order mode of a two-guide structure,
in which case the assumption is well-justified. Under this assumption, the non-autonomous
Equations (3) and (7) may have their explicit time dependence removed and simplified to

∂Ẽk,±
∂t

=

[
i(νk − Ω)− 1

2τp

]
Ẽk,± −

[
γa + iγp

]
Ẽk,∓

+ ∑
k′

c

2ng
(1 + iα)Ẽk′ ,± ∑

i

g
(i)
± Γ

(i)
kk′ . (8)

and

∂N
(i)
±

∂t
= −N

(i)
±

τN
+ Λ

(i)
± − γJ

(
N

(i)
± − N

(i)
∓
)

− c

ng
∑
k,k′

Ẽ∗
k,±Ẽk′ ,±g

(i)
± Γ

(i)
kk′ , (9)

where we have used the tilde notation to denote the transformed optical field.
Equations (8) and (9) then represent the general model for any number of normal modes
and any number of confining guides.

In the following, instead of the model (3) and (7), we will analyse (8) and (9). Neverthe-
less, the analysis of the latter equations will still be valid in recognising unstable solutions
of the former ones with a critical eigenvalue λ that is much larger than |∆νk,k′ |. which is
because, before the factor exp(i∆νk,k′ t), which is slowly varying, starts to have any effect in
the system, the unstable solution will already show its instability.

Stable solutions of (8) and (9) will also correspond to stable solutions of the model (3)
and (7) if the time frame is of order O(1/|∆νk,k′ |). In this way, we also conjecture that, if all
the eigenvalues of a solution are far away from the imaginary axis, then the presence of the
slowly varying phase exp(i∆νk,k′ t) should not change the eigenvalues much.

3. The Overlap Factors

3.1. Equal Guides

The overlap factors that are defined by (4) are calculated from the spatial modal
solutions of the Helmholtz equation Φ(r). Details of the solutions used in this work are
given in Appendix E of Ref. [31]. Firstly, we shall just consider equal guides with the same
refractive index n1 in the core regions and n2 elsewhere, although our treatment of the rate
equations in Section 4 is general enough to deal with twin guides of any geometry. Table 1
lists the parameters used in our example calculations.
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Table 1. Waveguide parameters used in the solution of the Helmholtz equation.

Parameter Value Unit Description

n1 3.400971 - Core refractive index

n2 3.4 -
Cladding refractive

index

a 4 µm
Half guide

width/radius

λ0 1.3 µm
Free-space

wavelength

The guides may be characterised by a normalised decay constants u (in the core
regions) and w (in the cladding regions)

u = a

√(n1νk

c

)2
− β2 (10)

and

w = a

√
β2 −

(n2νk

c

)2
, (11)

where a is either the half-width of a slab waveguide or the radius of a circular guide,
as illustrated in Figure 1. These decay constants can also be combined into a conventional
’normalised frequency’ v, which is defined as

v =
√

u2 + w2. (12)

In practice, we shall take (10)–(12) to refer to the value for a single isolated guide.
In a solitary slab guide, for values of v < π/2, only one guided TE mode is supported.
For equal double slab guides with this same index profile, only two TE modes are supported.
Therefore, we refer to such structures as being ‘weakly-guiding’.

Because of the symmetry of equal guides, the lowest mode has even parity and the
second lowest, odd parity. We refer to these as the ‘symmetric’ and ‘anti-symmetric’ modes,
respectively, and then label them by suffixes s and a, respectively. Note that the anti-
symmetric mode Φa(x) always goes through zero in between the guides, whereas the
Φs(x) does not. This qualitative behaviour persists, even when we break the symmetry
of the guides, so that we may still use s and a as labels, although they would then be
distinguished by topology rather than geometric symmetry.

The overlap factors Γ
(i)
k′k are found by integrating the products of the spatial modes

over each guide, as in (4). For closely spaced guides, the products Φ2
s (x), Φ2

a(x) and the
modulus |Φs(x)Φa(x)| are noticeably different (see Figures 3 and 4 of Ref. [31]). Hence, we
note that, in general,

Γ
(i)
ss 6= Γ

(i)
aa 6=

∣∣∣Γ(i)
sa

∣∣∣.

However, in the case of equal guides, by symmetry, we do have

Γ
(1)
ss = Γ

(2)
ss and Γ

(1)
aa = Γ

(2)
aa (equal guides).

Additionally, by symmetry, the integral of |Φs(x)Φa(x)| will be the same in each guide,
although the sign will be opposite, so

Γ
(1)
sa = −Γ

(2)
sa .

As the separation between the guides gets larger, the spatial profiles become like those
of isolated guides. The difference between these profiles and those of an isolated guide
are: (i) the normalisation—the integral of the squared modulus of the spatial modes will be
half that of the optical confinement factor—and (ii) the sign of the anti-symmetric mode is
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flipped in one of the guides. In fact, as the separation tends to infinity, we may obtain the
wave functions of the isolated guides by adding and subtracting the modes via

Φ1(x) = lim
d→∞

1√
2
(Φs(x) + Φa(x)) (equal guides)

and
Φ2(x) = lim

d→∞

1√
2
(Φs(x)− Φa(x)) (equal guides).

This is the basis for the definition of the ’composite modes’ in terms of the normal
modes that are defined in (18) and (19) defined in the next section. We then have

∫

(1)
|Φ1(x)|2dx =

∫

(2)
|Φ2(x)|2dx = ΓS (equal guides),

where ΓS is the optical confinement factor of a single guide. In this limit, we also have

lim
d→∞

Γ
(i)
ss = lim

d→∞
Γ
(i)
aa = lim

d→∞

∣∣∣Γ(i)
sa

∣∣∣ = ΓS

2
(equal guides).

Figure 3 shows the variation of the overlap factors for equal width slab guides with
v = π/2 as a function of guide separation. The overlap factors are divided by ΓS, and we
clearly see the tendency of all values to ΓS/2 at large separation. Only the factors for guide
(1) are shown, since the values for guide (2) are the same, except for the change of sign

on Γ
(2)
sa .

Figure 3. Plot of the overlap factors relative to ΓS for a weakly-guiding (v = π/2) symmetric
slab structure as a function of spatial separation between the guides. Here, 2d is the edge-to-edge
separation between the guides and 2a is the guide width (8 µm in this case). Only the overlap factors

for guide (1) are shown. The factors for guide (2) are the same, except that Γ
(2)
sa is negative.
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(a)

(b)

Figure 4. Spatial modes for slab guides with widths w1 = 7.9 µm and w2 = 8.1 µm (the wider guide
is on the right). In this case, we define a = (w1 + w2)/4. The normalised frequency for an averaged
guide is v = π/2. Note that, as the guide separation increases, the s mode becomes more greatly
confined to the wider guide, whilst the a mode is confined to the narrower. (a) Spatial modes for
unequal guides with d/a = 1. (b) Spatial modes for unequal guides with d/a = 2.

For such a weakly guiding structure, there is significant variation of the factors for

d/a < 2. For more strongly guiding structures, v > π/2, this variation from Γ
(1)
sa is

greatly reduced.

3.2. Unequal Guides

For double-guided structures with unequal guiding regions, we lose the symmetric
relations that were previously found. Figure 4 illustrates two examples with guide widths
w1 = 7.9 µm and w2 = 8.1 µm, where the wider guide is on the right. In these cases, we
have put a = (w1 + w2)/4, whilst the same refractive index difference has been used as for
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the equal width guides. It can be clearly seen that the component of each mode is different
in each guide, and it is now the case that

Γ
(1)
ss 6= Γ

(2)
ss and Γ

(1)
aa 6= Γ

(2)
aa (unequal guides).

We also note that each mode becomes more localised to a particular guide with
increasing separation, with the s-labelled mode tending to the wider guide. This may be
understood from basic waveguiding theory, since the s mode has the biggest effective index
(or propagation constant) and the effective index (or propagation constant) of a mode of a
single guide varies as the width. As the separation between the guides tends to infinity,
each normal mode approaches the mode of a single isolated guide. Hence, labelling the
narrow and wide guides (1) and (2), respectively,

lim
d→∞

Γ
(1)
ss = 0, lim

d→∞
Γ
(2)
ss = Γ2,

lim
d→∞

Γ
(1)
aa = Γ1, lim

d→∞
Γ
(2)
aa = 0

and
lim

d→∞
Γ
(1)
sa = lim

d→∞
Γ
(2)
sa = 0 (unequal guides),

where Γ1 and Γ2 are the optical confinement factors of single guides of width w1 and w2.
Figure 5 illustrates these behaviours, which shows the variation of the overlap factors for

a non-symmetric slab guide as a function of spatial separation. The calculations presented
here use the same guide widths as for the modes that are shown in Figure 4. Note that, since
ΓS is the optical confinement factor of the averaged isolated guide, the limiting values of

Γ
(2)
ss /ΓS and Γ

(1)
aa /ΓS are not exactly the same.

Figure 5. Plot of the overlap factors for a weakly-guiding (v = π/2) non-symmetric slab structure
as a function of spatial separation between the guides. Here, 2d is the edge-to-edge separation
between the guides and 2a = (w1 + w2)/2 is the average guide width, using w1 = 7.9 µm and
w2 = 8.1 µm, as in Figure 4. In contrast to the case of symmetric guides, in this case the s mode tends
to occupy guide (2) (the wider guide) and the a mode occupies guide (1). As the separation increase,
the corresponding overlap factors tend to the optical confinement factor, whilst all other factors tend

to zero. Here, the modulus of Γ
(2)
sa is shown, as this factor is negative.
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3.3. Circular Guides

For circular guides, we used a commercial eigensolver to find solutions of the Helmholtz
equation for symmetric structures at various guide separations. These solutions are for
the two polarisation components of the lowest-order symmetric and antisymmetric mode.
To interpolate between these results, we found that the overlap factors could be fitted very
well by the following empirical formulae:

Γ
(i)
ss (d) =

ΓS

2

(
1 − e−a1d

)
+ Γ1e−b1d, (13)

Γ
(i)
aa (d) =

ΓS

2

(
1 + e−a1d

)
− Γ2e−b1d (14)

and ∣∣∣Γ(i)
sa (d)

∣∣∣ = ΓS

2

(
1 + e−a2d

)
− Γ3e−b2d. (15)

Table 2 lists the parameters used. Here, ΓS is again the optical confinement factor
associated with the lowest mode of a single isolated guide. For circular guides, this is HE11
(LP01) mode.

In Section 4.2.2, we discuss the reduction of the normal mode model to the coupled
mode model. It is found that the coupling coefficient µ is given by the difference in
normal mode frequencies µ = (νs − νa)/2. Using the calculated values of these frequencies,
the coupling coefficient for equal circular guides is found to be well-approximated by the
Ogawa [32] expression

µ ∝
1

d1/2 exp
(
−2wd

a

)
,

where w is given by (11). The constant of proportionality may be found by fitting this to
the calculated value of (νs − νa)/2 at d/a = 1.

Table 2. Parameters used in fitting functions for circular waveguides. Here, the cladding refractive
index is n2 = 3.4 and the core refractive index is n1 = n2 + ∆n.

Parameter ∆n = 0.000971 Unit

a1 0.200 µm−1

a2 0.399 µm−1

b1 0.247 µm−1

b2 0.441 µm−1

ΓS 0.5766 -
Γ1 0.346 -
Γ2 0.300 -
Γ3 0.3156 -

4. Double-Guided Structure

4.1. Real Form of the Rate Equations

4.1.1. Optical Rate Equations

In this paper, we confine our attention to structures that only involve two weakly-
confining guides supporting only two guided modes. The treatment that we shall follow in
this section will be valid for the general case of unequal guides, although it is of particular
use for the symmetric case, which we focus on in this paper.

For a double-guided structure, we may put reference frequency to Ω = (νs + νa)/2.
The optical rate equations of (8) may now be written

∂Ẽk,±
∂t

=

[
i
νk − νk′

2
− 1

2τp

]
Ẽk,±

+
c

2ng
(1 + iα)Σ̃k,± −

[
γa + iγp

]
Ẽk,∓, (16)
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where k = s, a for the symmetric and anti-symmetric modes, respectively and

Σ̃k,± = ∑
k′

Ẽk′ ,± ∑
i

g
(i)
± Γ

(i)
kk′ , (17)

where k′ = a, s. These are then the equations for the evolution of the normal modes.
However, solutions in terms of the normal modes do not lend themselves well to physical
intuition. When thinking of optical guides in close proximity, it is more natural to think of
the optical intensity in each guide. To this end, it is convenient to introduce new optical
field variables, as defined by

E1,± =
1√
2

(
Ẽs,± + Ẽa,±

)
(18)

and
E2,± =

1√
2

(
Ẽs,± − Ẽa,±

)
. (19)

The motivation for this is that the squared modulus of these ‘composite’ modes
becomes the optical intensity in each guide at infinite separation, which greatly aids in the
visualisation of the laser dynamics.

In the following sections, we write all of the equations in their real form. Although these
are often quite ungainly, there are practical advantages to rendering them in this way. In par-
ticular, any stability analysis of these equations must start with writing the equations out
in real form anyway. Moreover, the real form is generally better suited, if not required,
for numerical calculations, whether this be for dynamical simulation via the Runge–Kutta
method or finding the steady state solutions using a nonlinear solver.

Defining the φ21±± as the phase difference between E2± and E1± and φkk+− as the
phase difference between Ek+ and Ek−, in Appendix C of Ref. [31] we find that the optical
rate equations may be written in real form as

∂|E1,±|
∂t

=

[
− 1

2τp
+

cΓS

2ng
G12±

]
|E1,±|

+

[
cΓS

2ng
∆G±(cos(φ21±±)− α sin(φ21±±))− µ sin(φ21±±)

]
|E2,±|

−
[
γa cos(φ11+−) + γp sin(φ11+−)

]
|E1,∓| (20)

∂|E2,±|
∂t

=

[
− 1

2τp
+

cΓS

2ng
G21±

]
|E2,±|

+

[
cΓS

2ng
∆G±(cos(φ21±±) + α sin(φ21±±)) + µ sin(φ21±±)

]
|E1,±|

−
[
γa cos(φ22+−) + γp sin(φ22+−)

]
|E2,∓| (21)

∂φ21±±
∂t

=
cΓS

2ng
α(G21± − G12±) + µ cos(φ21±±)

( |E1,±|
|E2,±|

− |E2,±|
|E1,±|

)

+
cΓS

2ng
∆G±

[
α cos(φ21±±)

( |E1,±|
|E2,±|

− |E2,±|
|E1,±|

)
− sin(φ21±±)

( |E1,±|
|E2,±|

+
|E2,±|
|E1,±|

)]

+ γp

[
cos(φ11+−)

|E1,∓|
|E1,±|

− cos(φ22+−)
|E2,∓|
|E2,±|

]

∓ γa

[
sin(φ11+−)

|E1,∓|
|E1,±|

− sin(φ22+−)
|E2,∓|
|E2,±|

]
. (22)
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and

∂φ11+−
∂t

=
cΓS

2ng
α(G12+ − G12−) + µ

(
cos(φ21++)

|E2,+|
|E1,+|

− cos(φ21−−)
|E2,−|
|E1,−|

)

+
cΓS

2ng

[
∆G+(α cos(φ21++) + sin(φ21++))

|E2,+|
|E1,+|

− ∆G−(α cos(φ21−−) + sin(φ21−−))
|E2,−|
|E1,−|

]

+ γa sin(φ11+−)
( |E1,+|
|E1,−|

+
|E1,−|
|E1,+|

)
+ γp cos(φ11+−)

( |E1,+|
|E1,−|

− |E1,−|
|E1,+|

)
(23)

Note that, since φ22+− = φ21++ − φ21−− + φ11+−, we do not need an equation for this
last phase variable.

In these equations, we have used

µ =
νs − νa

2
, (24)

whilst the gain terms are defined by

G12± =
Γ
(1)
+ g

(1)
± + Γ

(2)
+ g

(2)
±

ΓS
, (25)

G21± =
Γ
(1)
− g

(1)
± + Γ

(2)
− g

(2)
±

ΓS
(26)

and

∆G± =
∆Γ(1)g

(1)
± + ∆Γ(2)g

(2)
±

ΓS
. (27)

The Γ terms that are introduced above are further defined in terms of the optical
overlap factors via

Γ
(i)
± =

Γ
(i)
ss + Γ

(i)
aa ± 2Γ

(i)
sa

2
(28)

and

∆Γ(i) =
Γ
(i)
ss − Γ

(i)
aa

2
. (29)

It is worth noting a general limiting behaviour as the separation between guides tends

to infinity that Γ
(i)
ss → Γ

(i)
aa ≡ Γ(i) and Γ

(i)
sa → 0, where Γ(i) is half the optical confinement

factor in an isolated guide. Hence, in this limit (recalling that the separation between the
guides is 2d),

lim
d→∞

Γ
(i)
± ≡ Γ

(i)
∞ and lim

d→∞
∆Γ(i) = 0. (30)

For equal guides, 2Γ
(i)
∞ = ΓS, the optical confinement factor of an isolated guide.

For unequal guides, we may take ΓS to be an average of the optical confinement factors.
This does not undermine the generality of (20)–(23), since, in all cases, the factor of ΓS in
the denominator of the gain terms cancels with the factor multiplying it. The inclusion
of ΓS here is one of convenience to elucidate the limiting behaviour of the rate equations,
as discussed later in Section 4.2.
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4.1.2. Carrier Rate Equations

The carrier rate equations are straight-forward to render in the notation for the double
guided structure. From (9), these are

∂N
(i)
±

∂t
= −N

(i)
±

τN
+ Λ

(i)
± − c

ng
g
(i)
± I

(i)
± − γJ

(
N

(i)
± − N

(i)
∓
)

, (31)

where
I
(i)
± = ∑

k,k′
Γ
(i)
kk′ Ẽ

∗
k,±(t)Ẽk′ ,±(t). (32)

Using Γ
(i)
sa = Γ

(i)
as , we can expand (32) in terms of E1,± and E2,±, as

I
(i)
± =

Γ
(i)
ss + 2Γ

(i)
sa + Γ

(i)
aa

2
|E1,±|2

+
(

Γ
(i)
ss − Γ

(i)
aa

)
|E1,±||E2,±| cos(φ21±±)

+
Γ
(i)
ss − 2Γ

(i)
sa + Γ

(i)
aa

2
|E2,±|2.

Expressing this in terms of (28) and (29), we have

I
(i)
± = Γ

(i)
+ |E1,±|2

+ 2∆Γ(i)|E1,±||E2,±| cos(φ21±±) + Γ
(i)
− |E2,±|2.

4.1.3. Normalised Rate Equations

Upon normalisation (described in detail in Appendix D of Ref. [31]), Equation (31)
may be re-written as

∂M
(i)
±

∂t
= γ

[
η
(i)
± −

(
1 + I (i)

±
)

M
(i)
±
]
− γJ

(
M

(i)
± − M

(i)
∓
)

, (33)

where the M
(i)
± are the normalised carrier densities and

I (i)
± =

Γ
(i)
+

ΓS
|A1,±|2 + 2

∆Γ(i)

ΓS
|A1,±||A2,±| cos(φ21±±)

+
Γ
(i)
−

ΓS
|A2,±|2. (34)

Here, we have used assumed a linear gain model, having put

g = g0(N − N0), (35)

where g0 is the differential gain and N0 is the transparency concentration. Hence, in the
steady state, we find the threshold carrier concentration NS for the single guide to be
given by

NS − N0 =
ng

ΓSg0cτp
. (36)

The normalised carrier concentrations appearing in (33) are then of the general form

M =
N − N0

NS − N0
.

Hence, M will be zero at transparency and unity at threshold.
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Further defining

M12± =
Γ
(1)
+ M

(1)
± + Γ

(2)
+ M

(2)
±

ΓS
, (37)

M21± =
Γ
(1)
− M

(1)
± + Γ

(2)
− M

(2)
±

ΓS
(38)

and

∆M± =
∆Γ(1)M

(1)
± + ∆Γ(2)M

(2)
±

ΓS
, (39)

and the cavity decay rate κ = 1/(2τp), the normalised optical rate equations are

∂|A1,±|
∂t

= κ(M12± − 1)|A1,±|

+ [κ∆M±(cos(φ21±±)− α sin(φ21±±))− µ sin(φ21±±)]|A2,±|
−
[
γa cos(φ11+−)± γp sin(φ11+−)

]
|A1,∓|, (40)

∂|A2,±|
∂t

= κ(M21± − 1)|A2,±|

+ [κ∆M±(cos(φ21±±) + α sin(φ21±±)) + µ sin(φ21±±)]|A1,±|
−
[
γa cos(φ22+−)± γp sin(φ22+−)

]
|A2,∓|, (41)

∂φ21±±
∂t

= κα(M21± − M12±) + µ cos(φ21±±)
( |A1,±|
|A2,±|

− |A2,±|
|A1,±|

)

+ κ∆M±

[
α cos(φ21±±)

( |A1,±|
|A2,±|

− |A2,±|
|A1,±|

)
− sin(φ21±±)

( |A1,±|
|A2,±|

+
|A2,±|
|A1,±|

)]

+ γp

[
cos(φ11+−)

|A1,∓|
|A1,±|

− cos(φ22+−)
|A2,∓|
|A2,±|

]

∓ γa

[
sin(φ11+−)

|A1,∓|
|A1,±|

− sin(φ22+−)
|A2,∓|
|A2,±|

]
, (42)

and

∂φ11+−
∂t

= κα(M12+ − M12−) + µ

(
cos(φ21++)

|A2,+|
|A1,+|

− cos(φ21−−)
|A2,−|
|A1,−|

)

+ κ∆M+(α cos(φ21++) + sin(φ21++))
|A2,+|
|A1,+|

− κ∆M−(α cos(φ21−−) + sin(φ21−−))
|A2,−|
|A1,−|

+ γa sin(φ11+−)
( |A1,+|
|A1,−|

+
|A1,−|
|A1,+|

)
+ γp cos(φ11+−)

( |A1,+|
|A1,−|

− |A1,−|
|A1,+|

)
. (43)

Here, the amplitudes A are normalised according to

|A|2 =
ΓSg0cτN

ng

∣∣Ẽ
∣∣2.

Equations (33), (34), and (40)–(43) constitute the dynamical model of double-guided
structure. This may be applied to any waveguide geometry that is restricted to two guides
and the two lowest confined modes.
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4.2. Limiting Behaviour for Widely Separated Guides

4.2.1. Reduction to the Spin-Flip Model (SFM)

In this section, we assume equal guides and, so, employ the results for the identities
and limiting behaviour of the overlap factors that are found in Section 3.1. Because d → ∞,
the factors that are defined earlier in (28) and (29) become

Γ
(1)
+ = ΓS, Γ

(1)
− = 0, Γ

(2)
+ = 0, Γ

(2)
− = ΓS

and

∆Γ(i) = 0.

The carrier terms that are defined in (37)–(39) then become

M12± = M
(1)
± , M21± = M

(2)
± and ∆M± = 0 (44)

and the expression for the optical intensity of (34) appearing in the carrier rate equations
becomes

I (i)
± = |Ai,±|2, (45)

for i = 1, 2. Additionally, note that the term given earlier in (24) as µ = (νs − νa)/2
approaches zero as the guide separation approaches infinity and the frequencies of the
normal modes become equal.

Hence, Equations (40)–(43) for the normalised optical rate equations reduce to

∂|Ai,±|
∂t

= κ
(

M
(i)
± − 1

)
|Ai,±|

−
(
γa cos(φii+−)± γp sin(φii+−)

)
|Ai,∓|, (46)

for i = 1, 2,

∂φ21±±
∂t

=

[
καM

(2)
± −

(
γp cos(φ22+−)∓ γa sin(φ22+−)

) |A2,∓|
|A2,±|

]

−
[

καM
(1)
± −

(
γp cos(φ11+−)∓ γa sin(φ11+−)

) |A1,∓|
|A1,±|

]

and

∂φ11+−
∂t

= κα
(

M
(1)
+ − M

(1)
−
)
+ γa sin(φ11+−)

( |A1,+|
|A1,−|

+
|A1,−|
|A1,+|

)

+ γp cos(φ11+−)
( |A1,+|
|A1,−|

− |A1,−|
|A1,+|

)
(47)

Recalling that φ22+− = φ21++ − φ21−− + φ11+−, we find that

∂φ22+−
∂t

=
∂φ21++

∂t
− ∂φ21++

∂t
+

∂φ11+−
∂t

,

= κα
(

M
(2)
+ − M

(2)
−
)
+ γa sin(φ22+−)

( |A2,+|
|A2,−|

+
|A2,−|
|A2,+|

)

+ γp cos(φ22+−)
( |A2,+|
|A2,−|

− |A2,−|
|A2,+|

)
, (48)
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Meanwhile, (33) for the carrier rate equations becomes

∂M
(i)
±

∂t
= γ

[
η
(i)
± −

(
1 + |Ai,±|2

)
M

(i)
±
]

− γJ

(
M

(i)
± − M

(i)
∓
)

, (49)

The guides are now completely uncoupled and we have two sets of equivalent equa-

tions for each. Defining new variables N = (M
(i)
+ + M

(i)
− )/2, m = (M

(i)
+ − M

(i)
− )/2,

|A±| = |Ai,±|/
√

2 and φ = φii+− for each guide, we may re-write (46)–(49) as

∂|A±|
∂t

= κ(N ± m − 1)|A±|

−
(
γa cos φ ± γp sin φ

)
|A∓|, (50)

∂φ

∂t
= 2καm + γa sin φ

( |A+|
|A−|

+
|A−|
|A+|

)

+ γp cos φ

( |A+|
|A−|

− |A−|
|A+|

)
, (51)

∂N

∂t
= γ

[
η −

(
1 + |A+|2 + |A−|2

)
N

−
(
|A+|2 − |A−|2

)
m
]

(52)

and

∂m

∂t
= γ

[
Pη −

(
|A+|2 − |A−|2

)
N

−
(
|A+|2 + |A−|2

)
m
]
− γsm. (53)

Here, η = (η+ + η−)/2 (dropping the (i) superscripts), we have defined an effective
spin relaxation rate γs = γ + 2γJ and P is the pump ellipticity defined by

P =
η+ − η−
η+ + η−

. (54)

Equations (50)–(53) are the real form of the spin-flip model (SFM) [5,15,30]. Note that
Gahl et al. [15] have the factor of (1 + iα) multiplying the cavity loss term in the complex
rate equations, which we take to be unphysical, so there will be a discrepancy between
their expressions and those above.

4.2.2. Reduction to the Coupled Mode Model (CMM)

We may consider an alternative scenario in which we retain the coupling term µ

between the guides, but let the overlap factors take their limiting values as the guide
separation tends to infinity. Additionally, we may remove the coupling between the spin
polarised components by setting γJ = γa = γp = 0. In this case, Equations (40)–(43)
reduce to

∂|A1,±|
∂t

= κ
(

M
(1)
± − 1

)
|A1,±| − µ sin(φ21±±)|A2,±|, (55)

∂|A2,±|
∂t

= κ
(

M
(2)
± − 1

)
|A2,±|+ µ sin(φ21±±)|A1,±|, (56)
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∂φ21++

∂t
= κα

(
M

(2)
+ − M

(1)
+

)

+ µ cos(φ21++)

( |A1,+|
|A2,+|

− |A2,+|
|A1,+|

)
. (57)

and

∂φ21−−
∂t

=
∂φ21++

∂t
+

∂φ11+−
∂t

− ∂φ22+−
∂t

,

= κα
(

M
(2)
− − M

(1)
−
)

+ µ cos(φ21−−)
( |A1,−|
|A2,−|

− |A2,−|
|A1,−|

)
, (58)

whilst the carrier rate equations become

∂M
(i)
±

∂t
= γ

[
η
(i)
± −

(
1 + |Ai,±|2

)
M

(i)
±
]
. (59)

These give us two independent sets of equations for the polarisation components, each
of which reproduces the coupled mode model of Ref. [29] with real coupling coefficient
µ and no frequency detuning (although with a difference in sign on the α factor, due to
opposite sign definitions). It is of particular note that the coupling coefficient µ, given in
terms of the difference between the mode frequencies in (24), is consistent with the analysis
of Marom et al. [33], who found the same relation between the coupled mode and normal
mode models.

5. Steady State Solutions

In general, analytical steady state solutions of the double-guided structure are not
obtainable. However, exact expressions and very good approximations are both available
in certain limiting cases. In this section, we continue to consider only the case of symmetric
guides. Only results are given here; for additional details of the derivations, see Ref. [31].

5.1. Effect of Spin Relaxation

In the steady state, the carrier rate equations of (33) yield

M
(i)
± =

(
I
(i)
∓ + 1 + γJ/γ

)
η
(i)
± + (γJ/γ)η

(i)
∓(

I
(i)
+ + 1

)(
I
(i)
− + 1

)
+ (γJ/γ)

(
I
(i)
+ + I

(i)
− + 2

) . (60)

Alternatively, we may make the intensities the subject, giving

I
(i)
± =

η
(i)
±

M
(i)
±

− 1 − γJ

γ

(
1 − M

(i)
∓

M
(i)
±

)
. (61)

Close to threshold, we may take the optical intensities in (60) to be negligible and put
these to zero, giving

M
(i)
th± ≈

(
1 + γJ/γ

)
η
(i)
th± + (γJ/γ)η

(i)
th∓

1 + 2(γJ/γ)
, (γJ ≫ γ). (62)

Note that, in general, the different polarisation components of the intensity will not

go to zero at the same overall pumping rate η(i) = η
(i)
+ + η

(i)
− , so (62) is not exact. However,

with a large spin relaxation rate γJ ≫ γ, Equation (62) is found to be a good approximation
(in practice, γJ > 10γ).
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5.2. Equal Pumping

A useful simplification to make is to assume equal pumping in each guide. That is,

the total pump power and pump ellipticity are both the same η
(1)
± = η

(2)
± . Under the equal

pumping assumption, Equation (42) reduces to

∂φ21±±
∂t

= −2κ∆M± sin(φ21±±). (63)

In the steady state, this is satisfied for φ21±± = 0, π. On reduction to the coupled mode
model [29], these are referred to as the ‘in-phase’ and ‘out-of-phase’ solutions, respectively.

Because |A1,±| = |A2,±|, Equations (40) and (41) may be written as

∂|Ai,±|
∂t

= κ
(

Mij± − 1
)
|Ai,±|+ (−1)nκ∆M±|Ai,±|

−
[
γa cos(φii+−)± γp sin(φii+−)

]
|Ai,∓|, (64)

where n = 0, 1 for the in-phase and out-of-phase solutions, respectively, and i = 1, 2 for
each guide.

We may simplify (64) even further by assuming that there is no direct optical coupling
between the polarisation components. That is, the dichroism and birefringence rates are
both zero, γa = γp = 0 (note that these components may still be indirectly coupled via the
spin-polarised carrier concentrations).

With this simplification, we find

M
(i)
± =

ΓS

2Γ
(i)
ss

, (φ21±± = 0; γa = γp = 0) (65)

for the in-phase solution and

M
(i)
± =

ΓS

2Γ
(i)
aa

, (φ21±± = π; γa = γp = 0) (66)

for the out-of-phase solution (at infinite separation, Γ
(i)
ss , Γ

(i)
aa → ΓS/2 and we would have

M
(i)
± = 1 in both cases). Note that these solutions do not depend on carrier spin in any

way; hence, we also have M
(i)
± = M

(i)
∓ .

Using Equations (34) and (61), we find

|Ai,±| =
√

η
(i)
± − ΓS

2Γ
(i)
ss

, (φ21±± = 0; γa = γp = 0) (67)

and

|Ai,±| =
√

η
(i)
± − ΓS

2Γ
(i)
aa

, (φ21±± = π; γa = γp = 0). (68)

With these results for |Ai,±|, M
(i)
± and φ21±±, we see that nothing depends on φ11+−

(moreover, it may also be shown that ∂φii+−/∂t = 0 follows without assuming it to be so).
Hence, in this simplified case, we have found exact, analytic steady state solutions for all of
the variables (whilst φ11+− may be set arbitrarily).

If we now allow for γa and γp to be non-zero, we may obtain the condition

tan φii+− =

(
αγa − γp

αγp + γa

)
ε(i), (69)
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where we have defined the modal optical ellipticity in the (i)th guide via

ε(i) =
|Ai,+|2 − |Ai,−|2
|Ai,+|2 + |Ai,−|2

. (70)

Equation (69) agrees with the result of taking the ratio of Equations (15) and (16) in
Adams et al. [18], in the case where there is no misalignment of birefringence and dichroism.

We describe (70) as the ‘modal’ ellipticity, since it is terms of the composite mode
amplitudes. Although this is defined for each guide, there is spatial dependence beyond
this. Later, in Section 6.2, we shall define a spatially varying ellipticity, hence the reason
for the specific nomenclature here. Note that, since tan(φii+−) = tan(mπ + φii+−), where
m is an integer, we have two possible solutions for φii+− of φ0 and φ0 + π, where φ0
is the solution of the arctangent of Equation (69) for φ0 ∈ [−π/2, π/2]. Applying this
consideration, we find

M
(i)
± =

ΓS

2Γ
(i)
kk

[
1 +

(−1)m

κ
(γa cos(φii+−)

± γp sin(φii+−)
) |Ai,∓|
|Ai,±|

]
, (71)

where m = 0, 1. In the reduction to the spin-flip model, these solutions are also referred
to as being ‘in-phase’ (m = 0) and ‘out-of-phase’ (m = 1). However, we will not use this
terminology here, in order to avoid confusion with the previously defined meaning of
these terms in the context of the coupled mode model.

In this case, no closed form expression for the optical amplitudes can be found.
However, the results of numerical simulation show that using (67) and (68) in conjunction
with (69) provides a very good approximation for the pump ellipticities of |P(i)| < ∼0.8.

6. Results and Discussion

In this paper, we mainly focus on the role of pump ellipticity. Further investigations
into bistability and polarisation switching based on the theoretical model that was devel-
oped here were carried in [27], which may be viewed in conjunction with the present paper.

6.1. Numerical Solutions of the Rate Equations

For general solutions of the model, we employ a combination of numerical methods.
For time series simulations of (33) and (40)–(43), we use an adaptive Runge–Kutta method
of orders 4 and 5 [34,35]. This is very useful for finding both stable steady state solutions
and simulating the temporal dynamics in regions of instability. For finding the unstable
steady state solutions and computing the Jacobian, we use a nonlinear solver implementing
a trust-region dogleg algorithm [36] based on the interior-reflective Newton method [37,38].
Where steady state solutions exist, this latter method is much faster than time series
simulation, facilitating efficient routines for tracing stability boundaries and analysing the
Jacobian eigenvalues to establish the nature of bifurcations.

In this section, we give the results for weakly guided structures with v = π/2. Table 1
lists the waveguide parameters, whilst Table 3 depicts the specific laser parameters used.
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Table 3. Laser parameters used in numerical simulations. Note that we tabulate the effective spin
relaxation rate γs = γ + 2γJ to aid direct comparison with the spin-flip model (SFM) model.

Parameter Value Unit Description

α −2 Linewidth enhancement
κ 70 ns−1 Cavity loss rate
γ 1 ns−1 Carrier loss rate
γa 0.1 ns−1 Dichroism rate
γp 2 ns−1 Birefringence rate
γs 100 ns−1 Effective spin relaxation rate
N0 1.1 × 1018 cm−3 Transparency density
g0 1.1 × 10−15 cm2 Differential gain
ng 3.4 Group refractive index

6.2. Spatial Profiles

The spatial profiles of the intensity and output ellipticity presented in this section were
calculated directly from the numerical solutions of the Helmholtz equation for circular
guides (i.e., no empirical interpolation was used). The spatially-dependent output ellipticity
is defined as

ε(x, y) =
I+(x, y)− I−(x, y)

I+(x, y) + I−(x, y)
, (72)

where the circularly-polarised intensities are given in terms of the normal mode amplitudes
Ak,±, by

I±(x, y) = |As,±Φs(x, y) + Aa,±Φa(x, y)|2. (73)

The normal mode amplitudes Ak,± are reconstructed from the composite mode solu-
tions, as described in Appendix C of Ref. [31]. In Figure 6, we show the intensity results
with pump ellipticities of P(1) = 0 and P(2) = 1 and a total normalised pump power in each

guide of η(i) = η
(i)
+ + η

(i)
− = 100 for circular guides of radius a = 4 µm and an edge-to-edge

separation that is given by d/a = 1 with an optical wavelength λ0 = 1.3 µm.
Here, the mid-line joining both of the guides is in the y-direction and guide (2) is in

the positive y half of the plane (to the left in the diagrams). We note a residual component
of left-circularly-polarised light in guide (2). At this pumping power, this is largely due to
spatial coupling between the guides.

Figure 7 shows the corresponding output ellipticity for these intensities. We note a dip
in between the guides where the ellipticity goes to −1, even though the pump polarisation
is P(2) = 1 in guide (2) and P(1) = 0 in guide (1). The reason for this can be seen in
Figure 8, which plots the modal amplitudes against the pump ellipticity in guide (2).
Across the whole range, the optical polarisation is dominated by the anti-symmetric mode,
which follows the ellipticity of P(2). However, at y = 0, the anti-symmetric mode goes
through zero, so the only contribution at this point comes from the much smaller symmetric
component, for which the left-circularly polarised amplitude is slightly larger. Hence we
see this dramatic dip. However, note that the optical intensity for both components is very
small in this region.
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(a)

(b)

Figure 6. The spatial variation of the circularly-polarised components of the intensity, defined by (73)
for pump ellipticities of P(1) = 0 and P(2) = 1 with a total normalised pump power in each guide

of η(i) = η
(i)
+ + η

(i)
− = 100. Guide (2) is to the left in the diagrams (in the positive y direction).

(a) Right-circularly polarised intensity I+(x, y). (b) Left-circularly polarised intensity I−(x, y).

Figure 7. The spatial variation of the optical ellipticity, as defined by (72) for pump ellipticities of

P(1) = 0 and P(2) = 1 with a total normalised pump power in each guide of η(i) = η
(i)
+ + η

(i)
− = 100.

Guide (2) is to the left in the diagrams (in the positive y direction).
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Figure 8. Variation of the normal mode amplitudes |Ak,±| against P(2), the pump ellipticity in

guide (2), for P(1) = 0 and η(i) = η
(i)
+ + η

(i)
− = 100. Note that the polarisation is dominated by the

anti-symmetric mode.

6.3. Stability Boundaries

An initial comparison of the normal mode model to the coupled mode model [29]
(neglecting polarisation) has highlighted the importance of the overlap factors on the laser
dynamics [28]. This is more significant for the weakly-guided structures that are designed to
support only the lowest optical modes. Here we extend this initial investigation to explore
the effects of including both optical and carrier-spin polarisation. In particular, we consider
the stability of the laser dynamics as a function of the ratio of the optical pump power to
the threshold pump against the normalised guide separation. In all cases, we take the total

pump power in both guides to be equal, which is η(1) = η
(1)
+ + η

(1)
− = η(2) = η

(2)
+ + η

(2)
− ,

and so we may drop the guide index.
Following Ref. [29] in the case of zero pump ellipticity, we may define the pump-to-

pump threshold ratio in terms of Q = (η+ + η−)/2 (the factor of two accounts for the
normalisation method used) and consider the threshold pump power Λth at infinite guide
separation. This gives us the relation

Λ

Λth
=

Q + CQ

1 + CQ
, (74)

where CQ = g0N0/gth and the threshold gain is gth = 2κng/(cΓS). The values of the
differential gain g0, transparency density N0 and other laser parameters are given in
Table 3. With the optical confinement factor ΓS for a circular guide with refractive index
step ∆n = 0.000971 listed in Table 2, this gives a value of CQ = 43.9.

For non-zero pump polarisation, we may expect the threshold pump to be affected.
We retain the definition Q = (η+ + η−)/2 and, again, consider the behaviours at infinite
separation. With no pump polarisation, the threshold pump would be Q = 1. In the same
limiting conditions, our model is equivalent to the spin-flip model.

Following the same analysis that led to the steady state threshold density expres-

sion (71) and noting that, when the laser just turns on Qth = Nth = (M
(i)
+ + M

(i)
− )/2, we

find that

Qth = 1 ± 1

κ
√

1 − ε2

(
γa cos φ0 − εγp sin φ0

)
, (75)
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where ε is the modal ellipticity in either guide, as given by (70) and φ0 is the solution
of (69) for φ0 = φii+− ∈ [−π/2, π/2]. Note that we have taken the limiting condition

ΓS/(2Γ
(i)
kk ) → 1.

Using the parameters shown in Table 3, we find, via numerical simulation, that, even
for P(i) = 1, the modal ellipticity does not exceed 0.6, and Qth − 1 is of order 0.001. Hence,
we may safely neglect the effect of the pump ellipticity on (74).

In the Λ/Λth − d/a plane, we find a Hopf bifurcation separating the stable steady
state solutions in the upper right half of the plane from unstable solutions in the lower
left. Regions of stability also appear at low pump powers and small separation, again
being separated by a Hopf bifurcation. In both of the regions, these stable solutions are the
out-of-phase solutions, which have predominantly anti-symmetric modal components.

Solutions for slab waveguides neglecting the polarisation have been initially reported
in Ref. [28] and compared to the coupled mode model results. It was found that, generally,
the overlap factors tended to push the boundaries up in the direction of both increasing
power and increasing separation, thus enlarging the regions of instability.

In this work, we focus on the effect of optical pump ellipticity and the simulation
results described here are for weakly-guiding (∆n = 0.000971, v = π/2) circular guides.
Starting with equal pump ellipticities P(1) = P(2) in Figure 9. Here, we have plotted curves
from P(1) = 0 to P(1) = 1 in steps of 0.2. The instability region is steadily reduced as
P(1) = P(2) is increased. On the other hand, the boundary of the lower stability region
remains insensitive to these changes.

In Figure 10, the ellipticity in guide (1) is kept fixed at P(1) = 0, whilst P(2) is varied
from 0 to 1 in steps of 0.2. Here, we see the same qualitative behaviour, with the stability
moving towards the origin with increasing P(2), although not to the same extent as in
Figure 9. Note that the lower stability region has not been plotted in this case.

Figure 11 effectively shows the continuation of this set of results (but starting with
P(1) = 1 and P(2) = 0) and increasing P(2) in steps of 0.2 to 1, ending with P(1) = P(2) = 1,
as in Figure 9. Finally, Figure 12 shows the effect of putting P(1) = −P(2) and increasing
P(1) from 0 to 1. In this case, the final curve with P(1) = 1 and P(2) = −1 does not diminish
the instability region to quite the same extent as P(1) = 1 and P(2) = 1, although we still
see the same qualitative reduction of the region with increased pump ellipticity.

Figure 9. Stability boundaries for equal pump ellipticities. The calculated curves are for
P(1) = P(2) ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, with P(1) = 0 at the top and P(1) = 1 at the bottom.
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Figure 10. Stability boundary for pump ellipticity P(1) = 0 in guide (1) and varying P(2) in guide
(2) from 0 to 1 in steps on 0.2.

Figure 11. Stability boundary for pump ellipticity P(1) = 1 in guide (1) and varying P(2) in guide
(2) from 0 to 1 in steps on 0.2.

Figure 12. Stability boundaries for P(1) = −P(2), varying P(1) from from 0 to 1 in steps on 0.2.

7. Conclusions

We have derived a set of general rate equations for the laser dynamics in a waveguide
of arbitrary geometry supporting any number of guiding regions and normal modes.
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The details of the geometry are encoded into the ‘overlap factors’ (generalisations of the
optical confinement factor), which may then have a significant effect on the laser dynamics.

We have focused on the particular case of a double-guided structure in the case of
just two supported normal modes and derived a set of real rate equations in terms of
‘composite modes’. This treatment is particularly useful for the consideration of symmetric
guides (with reflection symmetry) and it can be shown to reduce to both the spin flip model
and the coupled mode model in the appropriate limiting case.

Assuming symmetric guides, we have found both exact and approximate analytical
expressions for steady state solutions in certain simplified cases. In particular, we have
looked at the case of equal power pumping in both guides and investigated the spatial
solutions for the circularly polarised intensities (and optical ellipticity) and stability maps
for different pump ellipticities. We have found that, in general, increasing the pump
ellipticity reduces the region of instability in the pump power versus the normalised
separation plane.

The effect of high birefringence has been explored in subsequent work [27] based on
the model that was developed here, revealing new dynamics and regions of bistability.
It has been shown that optical switching of the polarisation states of the lasers may be
controlled through the optical pump and that, under certain conditions, the polarisation of
one laser may be switched by controlling the intensity and polarisation in the other.

Although the equations that we have derived are general enough to deal with non-
symmetric guides, where there is a large difference between guides in double guided
structure, it may be more appropriate to use the general solutions, since the behaviour of
the overlap factors tends to diverge from the symmetric case quite rapidly. We have not
investigated the resulting dynamics that are associated with this in this paper and leave
this matter to be addressed in more detail in future work.
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